

Lecture Notes in Computer Science 5947
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Amir Pnueli Irina Virbitskaite
Andrei Voronkov (Eds.)

Perspectives of
Systems Informatics

7th International Andrei Ershov Memorial Conference, PSI 2009
Novosibirsk, Russia, June 15-19, 2009
Revised Papers

13

Volume Editors

Amir Pnueli (1941-2009)
The Weizmann Institute of Science, Rehovot, Israel
New York University, NY, USA

Irina Virbitskaite
A.P. Ershov Institute of Informatics Systems
Siberian Division of the Russian Academy of Sciences
6, Acad. Lavrentiev pr., 630090, Novosibirsk, Russia
E-mail: virb@iis.nsk.su

Andrei Voronkov
University of Manchester
Department of Computer Science
Oxford Road, Manchester, M13 9PL, UK
E-mail: voronkov@cs.man.ac.uk

Library of Congress Control Number: 2009943004

CR Subject Classification (1998): F.3, D.3, D.2, D.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11485-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11485-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12829361 06/3180 5 4 3 2 1 0

Preface

This volume contains the final proceedings of the 7th International Andrei
Ershov Memorial Conference on Perspectives of System Informatics Akadem-
gorodok (Novosibirsk, Russia), June 15–19, 2009.

PSI is a forum for academic and industrial researchers, developers and users
working on topics relating to computer, software and information sciences. The
conference serves to bridge the gaps between different communities whose re-
search areas are covered by but not limited to foundations of program and system
development and analysis, programming methodology and software engineering,
and information technologies.

PSI 2009 was dedicated to the memory of a prominent scientist, academician
Andrei Ershov (1931–1988), and to a significant date in the history of computer
science in the country, namely, the 50th anniversary of the Programming De-
partment founded by Andrei Ershov. Initially, the department was a part of
the Institute of Mathematics and later, in 1964, it joined the newly established
Computing Center of the Siberian Branch of the USSR Academy of Sciences.
Andrei Ershov, who was responsible for forming the department, gathered a
team of young graduates from leading Soviet universities. The first significant
project of the department was aimed at the development of ALPHA system, an
optimizing compiler for an extension of Algol 60 implemented on a Soviet com-
puter M-20. Later, the researchers of the department created the Algibr, Epsilon,
Sigma, and Alpha-6 programming systems for the BESM-6 computers. The list
of their achievements also includes the first Soviet time-sharing system AIST-0,
the multi-language system BETA, research projects in artificial intelligence and
parallel programming, integrated tools for text processing and publishing, and
many others. The scope of problems facing the Programming Department was
widening in time, its organizational structure changed and new research direc-
tions appeared, including school informatics and mixed computation. Founded
in 1990, the Institute of Informatics Systems is justly considered to be the suc-
cessor of the Programming Department, preserving its main research directions
and maintaining its best traditions.

The first six conferences were held in 1991, 1996, 1999, 2001, 2003 and 2006,
and proved to be significant international events. The seventh conference followed
the traditions of the previous ones and preserved the style of the PSI conferences:
the program of PSI 2009 included invited papers in addition to contributed
regular and short papers.

This time 67 papers were submitted by researchers from 26 countries. Each
paper was reviewed by four experts, at least three of them from the same or
closely related discipline as the authors. The reviewers generally provided a
high-quality assessment of the papers and often gave extensive comments to
the authors for the possible improvement of the presentation. The Program

VI Preface

Committee selected 26 regular and 4 short papers for presentation at the con-
ference. A range of hot topics in system informatics was covered by five invited
talks given by prominent computer scientists.

We are glad to express our gratitude to all the persons and organizations
who contributed to the conference – to the authors of all the papers for their
effort in producing the materials included here, to the sponsors for their moral,
financial and organizational support, to the Steering Committee members for
their coordination of the conference, to the Program Committee members and
the reviewers who did their best to review and select the papers, and to the
members of the Organizing Committee for their contribution to the success of
this event and its great cultural program. Finally, we would like to mention the
fruitful cooperation with Springer during the preparation of this volume.

The Program Committee work and the volume preparation were done using
the EasyChair conference management system.

During the last stages of preparation of this volume, we received the sad news
that Amir Pnueli has passed away. We offer our condolences to his friends and
family.

November 2009 Irina Virbitskaite
Andrei Voronkov

Organization

Steering Committee

Members

Manfred Broy (Munich, Germany)
Bertrand Meyer (Zurich, Switzerland)
Andrei Voronkov (Manchester, UK)

Honorary Members

Tony Hoare (Cambridge, UK)
Niklaus Wirth (Zurich, Switzerland)

Conference Chair

Alexander Marchuk (Novosibirsk, Russia)

Sponsoring Organizations

– Russian Foundation for Basic Research
– Intel Corporation
– HP Labs
– Google
– Microsoft Research
– Formal Methods Europe
– Semantic Technology Institute (STI) Innsbruck
– EMC R&D Center
– Sun Microsystems
– Office of Naval Research Global

The content of the proceedings does not necessarily reflect the position or the
policy of the United States Government and no official endorsement should be
inferred.

Program Committee

Janis Barzdins (Riga, Latvia) Igor Belousov (Moscow, Russia)
Frédéric Benhamou (Nantes, France) Eike Best (Oldenburg, Germany)
Stefan Brass (Halle, Germany) Kim Bruce (Claremont, USA)
Mikhail Bulyonkov (Novosibirsk, Russia) Albertas Čaplinskas (Vilnius,

Lithuania)
Gabriel Ciobanu (Iasi, Romania) Javier Esparza (Munich, Germany)

VIII Organization

Jean Claude Fernandez (Grenoble,
France) Chris George (Macau)

Jan Friso Groote (Eindhoven,
The Netherlands) Heinrich Herre (Leipzig, Germany)

Victor Ivannikov (Moscow, Russia) Victor Kasyanov (Novosibirsk,
Russia)

Joost-Pieter Katoen (Aachen, Germany) Alexander Kleshchev (Vladivostok,
Russia)

Nikolay Kolchanov (Novosibirsk, Russia) Gregory Kucherov (Lille, France)
Rustan Leino (Redmond, USA) Johan Lilius (Turku, Finland)
Pericles Loucopoulos (Loughborough, UK) Audrone Lupeikiene (Vilnius,

Lithuania)
Andrea Maggiolo-Schettini (Pisa, Italy) Klaus Meer (Cottbus, Germany)
Dominique Méry (Nancy, France) Torben Mogensen (Copenhagen,

Denmark)
Bernhard Möller (Augsburg, Germany) Hanspeter Mössenböck (Linz,

Austria)
Peter Mosses (Swansea, UK) Peter Müller (Redmond, USA)
Fedor Murzin (Novosibirsk, Russia) Valery Nepomniaschy (Novosibirsk,

Russia)
Nikolaj Nikitchenko (Kiev, Ukraine) José R. Paramá (A Coruña, Spain)
Francesco Parisi-Presicce (Rome, Italy) Wojciech Penczek (Warsaw, Poland)
Jaan Penjam (Tallinn, Estonia) Peter Pepper (Berlin, Germany)
Alexander Petrenko (Moscow, Russia) Amir Pnueli (New York, USA)
Vladimir Polutin (Moscow, Russia) Wolfgang Reisig (Berlin, Germany)
Viktor Sabelfeld (Bern, Switzerland) Donald Sannella (Edinburgh, UK)
Timos Sellis (Athens, Greece) Alexander Semenov (Novosibirsk,

Russia)
Klaus-Dieter Schewe (Massey,

New Zealand) David Schmidt (Manhattan, USA)
Nikolay Shilov (Novosibirsk, Russia) Alexander Tomilin (Moscow, Russia)
Mark Trakhtenbrot (Rehovot, Israel) Irina Virbitskaite (Novosibirsk,

Russia)
Andrei Voronkov (Manchester, UK) Alexander L. Wolf (London, UK)
Tatyana Yakhno (Izmir, Turkey) Wang Yi (Uppsala, Sweden)

Organization IX

Reviewers

Anureev I. Athanasiou S. Auer P. Barzdins G.
Barzdins J. Belousov I. Bourdon J. Brass S.
Brazdil T. Bruce K. Bulyonkov M. Cameron N.
Campbell B. Čaplinskas A. Caravagna G. Cats Th.
Chong S. Ciobanu G. Claude Fernandez J. Demakov A.
Dubtsov R. Emelyanov P. Esparza J. Fahland D.
George C. Giannopoulos G. Gierds Ch. Glück R.
Glukhankov M. Grall H. Groote J.F. Gross R.
Herre H. Hilscher M. Hoefner P. Idrisov R.
Jarocki M. Johnstone A. Kahrs S. Karaulov A.
Katoen J.-P. Kleeblatt D. Kleshchev A. Kolchanov N.
Kucherov G. Lanotte R. Lazard S. Leino R.
Levy A. Liagouris J. Lilius J. Loucopoulos P.
Lupeikiene A. Luttenberger M. Meer K. Méry D.
Meyer R. Milazzo P. Möller B. Mössenböck H.
Mogensen T. Æ. Monfroy E. Mosses P. Motik B.
Müller P. Murzin F. Mutilin V. Nazim B.
Nepomniaschy V. Nguyen V.Y. Niewiadomski A. Nikitchenko N.
Nõmm S. Opmanis M. Pahikkala T. Parama Gabia J.R.
Parisi-Presicce F. Patroumpas K. Penabad M. Penczek W.
Penjam J. Pepper P. Petrenko A. Pliuskevicius R.
Polutin V. Pyzhov K. Rakow A. Reisig W.
Rikacovs S. Rybin P. Sabelfeld V. Sannella D.
Schewe K.-D. Schmidt D. Schmitt I. Schneider S.-A.
Schult Ch. Semenov A. Shilov N. Shkurko D.
Skiadopoulos S. Stasenko A. Stigge M. Suermeli J.
Suwimonteerabuth D. Szreter M. Tini S. Trakhtenbrot M.
Van Weerdenburg M. Vityaev Eu. Voronkov A. Wilkeit E.
Willemse T. Wolf A. Yakhno T. Yi W.

Table of Contents

Invited Talks

Games, Interaction and Computation (Abstract) . 1
Samson Abramsky

Rôle of Domain Engineering in Software Development—Why Current
Requirements Engineering Is Flawed ! . 2

Dines Bjørner

Compositional and Quantitative Model Checking
(Extended Abstract) . 35

Kim G. Larsen

Invariants, Modularity, and Rights . 43
Ernie Cohen, Eyad Alkassar, Vladimir Boyarinov, Markus Dahlweid,
Ulan Degenbaev, Mark Hillebrand, Bruno Langenstein,
Dirk Leinenbach, Micha�l Moskal, Steven Obua, Wolfgang Paul,
Hristo Pentchev, Elena Petrova, Thomas Santen, Norbert Schirmer,
Sabine Schmaltz, Wolfram Schulte, Andrey Shadrin, Stephan Tobies,
Alexandra Tsyban, and Sergey Tverdyshev

Distributed Embedded Systems: Reconciling Computation,
Communication and Resource Interaction . 56

Lothar Thiele

Regular Papers

Simulation of Kohn’s Molecular Interaction Maps through Translation
into Stochastic CLS+ . 58

Roberto Barbuti, Daniela Lepri, Andrea Maggiolo-Schettini,
Paolo Milazzo, Giovanni Pardini, and Aureliano Rama

A Two-Level Approach for Modeling and Verification of
Telecommunication Systems . 70

Dmitry Beloglazov and Valery Nepomniaschy

SVM Paradoxes . 86
Jean Beney and Cornelis H.A. Koster

Indexing Dense Nested Metric Spaces for Efficient Similarity Search 98
Nieves R. Brisaboa, Miguel R. Luaces, Oscar Pedreira,
Ángeles S. Places, and Diego Seco

XII Table of Contents

On the Containment Problem for Queries in Conjunctive Form with
Negation . 110

Victor Felea

Towards a Scalable, Pragmatic Knowledge Representation Language
for the Web . 124

Florian Fischer, Gulay Unel, Barry Bishop, and Dieter Fensel

An Experiment with the Fourth Futamura Projection 135
Robert Glück

Extracting the Essence of Distillation . 151
Geoff W. Hamilton

Establishing Linux Driver Verification Process . 165
Alexey Khoroshilov, Vadim Mutilin, Alexander Petrenko, and
Vladimir Zakharov

A Method for Test Suite Reduction for Regression Testing of
Interactions between Software Modules . 177

Dmitry Kichigin

A Java Supercompiler and Its Application to Verification of
Cache-Coherence Protocols . 185

Andrei V. Klimov

Proving the Equivalence of Higher-Order Terms by Means of
Supercompilation . 193

Ilya Klyuchnikov and Sergei Romanenko

Unifying the Semantics of UML 2 State, Activity and Interaction
Diagrams . 206

Jens Kohlmeyer and Walter Guttmann

Applicability of the BLAST Model Checker: An Industrial Case
Study . 218

Emanuel Kolb, Ondřej Šerý, and Roland Weiss

ΣK–constraints for Hybrid Systems . 230
Margarita Korovina and Oleg Kudinov

A Complete Invariant Generation Approach for P-solvable Loops 242
Laura Kovács

Standardization and Testing of Mathematical Functions 257
Victor Kuliamin

Using AOP for Discovering and Defining Executable Test Cases 269
Philipp Kumar and Thomas Baar

Table of Contents XIII

Cryptographic Protocols Analysis in Event B . 282
Nazim Benaissa and Dominique Méry

A Query Language for Logic Architectures . 294
Anton Malykh and Andrei Mantsivoda

Planet Map Generation by Tetrahedral Subdivision 306
Torben Ægidius Mogensen

Towards Checking Parametric Reachability for UML State Machines . . . 319
Artur Niewiadomski, Wojciech Penczek, and Maciej Szreter

A Flexible Approach to Automated Development of Cross Toolkits for
Embedded Systems . 331

Nikolay Pakulin and Vladimir Rubanov

A Technique for Information Retrieval from Microformatted
Websites . 344

J. Guadalupe Ramos, Josep Silva, Gustavo Arroyo, and
Juan C. Solorio

From Dynamic to Static and Back: Riding the Roller Coaster of
Information-Flow Control Research . 352

Andrei Sabelfeld and Alejandro Russo

History-Dependent Stochastic Petri Nets . 366
Helen Schonenberg, Natalia Sidorova, Wil van der Aalst, and
Kees van Hee

Privacy Preserving Modules for Ontologies . 380
Thomas Studer

Symbolic Bounded Conformance Checking of Model Programs 388
Margus Veanes and Nikolaj Bjørner

Multi-level Virtual Machine Debugging Using the Java Platform
Debugger Architecture . 401

Thomas Würthinger, Michael L. Van De Vanter, and Doug Simon

Anti-unification Algorithms and Their Applications in Program
Analysis . 413

Peter E. Bulychev, Egor V. Kostylev, and Vladimir A. Zakharov

Author Index . 425

Games, Interaction and Computation

Samson Abramsky

Oxford University, UK

Our current understanding of computation has widened enormously beyond the
original closed world picture of numerical calculation in isolation from the en-
vironment. In the age of the Internet and the Web, and now of pervasive and
ubiquitous computing, it has become clear that interaction and information flow
between multiple agents are essential features of computation. The standard unit
of description or design, whether at a micro-scale of procedure call-return inter-
faces or hardware components, or a macro- scale of software agents on the Web,
becomes a process or agent, the essence of whose behaviour is how it interacts
with its environment across some defined interface.

These developments have required the introduction of novel mathematical
models of interactive computation. The traditional view whereby a program
is seen as computing a function or relation from inputs to outputs is no longer
sufficient: what function does the Internet compute? One of the compelling ideas
which has taken root is to conceptualize the interaction between the System and
the Environment as a two-person game. A program specifying how the System
should behave in the face of all possible actions by the Environment is then a
strategy for the player corresponding to the System.

Over the past 15 years, there has been an extensive development of Game
Semantics in Computer Science. One major area of application has been to the
semantics of programming languages, where it has led to major progress in the
construction of fully abstract models for programming languages embodying a
wide range of computational effects, and starting with the first semantic con-
struction of a fully abstract model for PCF, thus addressing a famous open prob-
lem in the field. It has been possible to give crisp characterizations of the shapes
of computations carried out within certain programming disciplines: including
purely functional programming, stateful programming, general references, pro-
gramming with non-local jumps and exceptions, non-determinism, probability,
concurrency, names, and more.

More recently, there has been an algorithmic turn, and some striking appli-
cations to verification and program analysis. We shall give an introduction and
overview of some of these developments.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Rôle of Domain Engineering in Software
Development

Why Current Requirements Engineering Is
Flawed !

Dines Bjørner

Fredsvej 11, DK-2840 Holte, Danmark
bjorner@gmail.com

www.imm.dtu.dk/~db

Abstract. We introduce the notion of domain descriptions (D) in order
to ensure that software (S) is right and is the right software, that is, that
it is correct with respect to written requirements (R) and that it meets
customer expectations (D). That is, before software can be designed (S)
we must make sure we understand the requirements (R), and before we
can express the requirements we must make sure that we understand the
application domain (D): the area of activity of the users of the required
software, before and after installment of such software. We shall outline
what we mean by informal, narrative and formal domain descriptions,
and how one can systematically — albeit not (in fact: never) automat-
ically — go from domain descriptions to requirements prescriptions. As
it seems that domain engineering is a relatively new discipline within
software engineering we shall mostly focus on domain engineering and
discuss its necessity. The paper will show some formulas but they are
really not meant to be read, let alone understood. They are merely there
to bring home the point: Professional software engineering, like other
professional engineering branches rely on and use mathematics. And it
is all very simple to learn and practise anyway ! We end this paper with,
to some, perhaps, controversial remarks: Requirements engineering, as
pursued today, researched, taught and practised, is outdated, is thus
fundamentally flawed. We shall justify this claim.

1 The Software Development Dogma

1.1 The Dogma

The dogma is this: Before software can be designed we must understand the
requirements. Before requirements can be finalised we must have understood
the domain.

We assume that the reader knows what is meant by software design and
requirements. But what do we mean by “the domain” ?

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 2–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.imm.dtu.dk/~db

Rôle of Domain Engineering in Software Development 3

1.2 What Do We Mean by ‘Domain’ ?

By a domain we shall loosely understand an ‘area’ of natural or human activity,
or both, where the ‘area’ is “well-delineated” such as, for example, for physics:
mechanics or electricity or chemistry or hydrodynamics; or for an infrastructure
component: banking, railways, hospital health-care, “the market”: consumers,
retailers, wholesalers, producers and the distribution chain.

By a domain we shall thus, less loosely, understand a universe of discourse,
small or large, a structure (i) of simple entities, that is, of “things”, individuals,
particulars some of which are designated as state components; (ii) of functions,
say over entities, which when applied become possibly state-changing actions
of the domain; (iii) of events, possibly involving entities, occurring in time and
expressible as predicates over single or pairs of (before/after) states; and (iv) of
behaviours, sets of possibly interrelated sequences of actions and events.

1.3 Dialectics

Now, let’s get this “perfectly” straight ! Can we develop software requirements
without understanding the domain ? Well, how much of the domain should we
understand ? And how well should we understand it ?

Can we develop software requirements without understanding the domain ? No,
of course we cannot ! But we, you, do develop software for hospitals (railways,
banks) without understanding health-care (transportation, the financial markets)
anyway ! In other engineering disciplines professionalism is ingrained: Aeronautics
engineers understand the domain of aerodynamics; naval architects (i.e., ship de-
signers) understand the domain of hydrodynamics; telecommunications engineers
understand the domain of electromagnetic field theory; and so forth.

Well, how much of the domain should we understand ? A basic answer is this:
enough for us to understand formal descriptions of such a domain.

This is so in classical engineering: Although the telecommunications engineer
has not herself researched and made mathematical models of electromagnetic
wave propagation in the form of Maxwell’s equations: Gauss’s Law for Electricity,

Gauss’s Law for Magnetism, Faraday’s Law of Induction, Ampéres Law:

the telecommunications engineer certainly understands these laws.
And how well should we understand it ? Well, enough, as an engineer, to

manipulate the formulas, to further develop these for engineering calculations.

1.4 Conclusion

It is about time that software engineers consult precise descriptions, including
formalisations, and establish, themselves or by consultants, such descriptions,
of the application domains for software. These domain models may have to be
developed by computing scientists. Software engineers then “transform” these
into requirements prescriptions and software designs.

4 D. Bjørner

2 The Triptych of Software Development

We recall the dogma: before software can be designed we must understand the
requirements. Before requirements can be finalised we must have understood the
domain.

We conclude from that, that an “ideal” software development proceeds, in
three major development phases, as follows:

– Domain engineering: The results of domain engineering include a domain
model: a description, both informal, as a precise narrative, and formal, as a
specification. The domain is described as it is.

– Requirements engineering: The results of requirements engineering in-
clude a requirements model: a prescription, both informal, as a precise nar-
rative, and formal, as a specification. The requirements are described as we
would like the software to be, and the requirements must be clearly related
to the domain description.

– Software design: The results of software design include executable code
and all documentation that goes with it. The software design specification
must be correct with respect to the requirements.

2.1 Technicalities: An Overview

Domain Engineering. Section 3 outlines techniques of domain engineering.
But just as a preview: Based on extensive domain acquisition and analysis an
informal and a formal domain model is established, a model which is centered
around sub-models of: intrinsics, supporting technologies, management and or-
ganisation, rules and regulations, script [or contract] languages and human be-
haviours, which are then validated and verified.

Requirements Engineering. Section 4 outlines techniques of requirements en-
gineering. But just as a preview: Based on presentations of the domain model to
requirements stakeholders requirements can now be “derived” from the domain
model and as follows: First a domain requirements model is arrived at: projec-
tion of the domain model, instantiation of the domain model, determination of
the domain model, extension of the domain model and fitting of several, separate
domain requirements models; then an interface requirements model, and finally
a machine requirements model. These are simultaneously verified and validated
and the feasibility and satisfiability of the emerging model is checked. We show
only the briefly explained specifications of an example “derivation” of (and in
this case only of, and then only some aspects of) domain requirements.

Software Design. We do not cover techniques of software design in detail —
so only this summary. From the requirements prescription one develops, in stages
and steps of transformation (“refinement”), first the system architecture, then the
program (code) organisation (structure), and then, in further steps of develop-
ment, the component design, the module design and the code. These stages and

Rôle of Domain Engineering in Software Development 5

step can be verified, model checked and tested with respect to the previous phase
of requirements prescription, respectively the previous software design stages and
steps. One can then assert that the Software design is correct with respect to the
Requirements in the context of the assumptions expressed about the Domain:

D, S |= R

3 Domain Engineering

We shall focus only on the actual modelling, thus omitting any treatment of
the preparatory administrative and informative work, the identification of and
liaison with domain stakeholders, the domain acquisition and analysis, and the
establishment of a domain terminology (document). So we go straight to the
descriptive work. We first illustrate the ideas of modelling domain phenomena
and concepts in terms of simple entities, operations, events and behaviours, then
we model the domain in terms of domain facets. Also, at then end, we do not
have time and paper space for any treatment of domain verification, domain
validations and the establishment of a domain theory.

3.1 Simple Entities, Operations, Events and Behaviours

Without discussing our specification ontology, that is, the principles according
to which we view the world around us, we just present the decomposition of
phenomena and concepts into simple entities, operations, events and behaviours.
All of these are “first class citizens”, that is, are entities.

We now illustrate examples of each of these ontological categories.

Simple Entities. A simple entity is something that has a distinct, separate
existence, though it need not be a material existence, to which we apply func-
tions. With simple entities we associate attributes, i.e., properties modelled as
types and values. Simple entities can be considered either continuous or dis-
crete, and, if discrete then either atomic or composite. It is the observer (that
is, the specifier) who decides whether to consider a simple entity to be atomic or
composite. Atomic entities cannot meaningfully be decomposed into sub-entities,
but atomic entities may be analysed into (Cartesian) “compounds” of properties,
that is, attributes. Attributes have name, type and value. Composite entities can
be meaningfully decomposed into sub-entities, which are entities. The composi-
tion of sub-entities into a composite entity “reveals” the, or a mereology of the
composite entity: that is, how it is “put together”.

Example 1: Transport Entities: Nets, Links and Hubs — Narrative

1. There are hubs and links.
2. There are nets, and a net consists of a set of two or more hubs and one or

more links.
3. There are hub and link identifiers.

6 D. Bjørner

4. Each hub (and each link) has an own, unique hub (respectively link) iden-
tifiers (which can be observed from the hub [respectively link]).

Example 2: Transport Entities: Nets, Links and Hubs — Formalisation

type
1 H, L,
2 N = H-set × L-set

axiom
2 ∀ (hs,ls):N • card hs≥2 ∧ card hs≥1

type
3 HI, LI

value
4a obs HI: H → HI, obs LI: L → LI

axiom
4b ∀ h,h′:H, l,l′:L •

h�=h′⇒obs HI(h)�=obs HI(h′) ∧ l�=l′⇒obs LI(l)�=obs LI(l′)

Operations. By an operation we shall understand something which when ap-
plied to some entities, called the arguments of the operation, yields an entity,
called the result of the operation application (also referred to as the operation
invocation). Operations have signatures, that is, can be grossly described by the
Cartesian type of its arguments and the possibly likewise compounded type of
its results. Operations may be total over their argument types, or may be just
partial. We shall consider some acceptable operations as “never terminating”
processes. We shall, for the sake of consistency, consider all operation invoca-
tions as processes (terminating or non-terminating), and shall hence consider all
operationdefinitions as also designating process definitions.

We shall also use the term function to mean the same as the term operation.
By a state we shall loosely understand a collection of one or more simple

entities whose value may change. By an action we shall understand an operation
application which applies to and/or yields a state.

Example 3: Link Insertion Operation

5. To a net one can insert a new link in either of three ways:
(a) Either the link is connected to two existing hubs — and the insert

operation must therefore specify the new link and the identifiers of two
existing hubs;

(b) or the link is connected to one existing hub and to a new hub — and
the insert operation must therefore specify the new link, the identifier
of an existing hub, and a new hub;

Rôle of Domain Engineering in Software Development 7

(c) or the link is connected to two new hubs — and the insert operation
must therefore specify the new link and two new hubs.

(d) From the inserted link one must be able to observe identifier of respec-
tive hubs.

6. From a net one can remove a link. The removal command specifies a link
identifier.

type
5 Insert == Ins(s ins:Ins)
5 Ins = 2xHubs | 1x1nH | 2nHs
5a 2xHubs == 2oldH(s hi1:HI,s l:L,s hi2:HI)
5b 1x1nH == 1oldH1newH(s hi:HI,s l:L,s h:H)
5c 2nHs == 2newH(s h1:H,s l:L,s h2:H)

axiom
5d ∀ 2oldH(hi′,l,hi′′):Ins • hi′�=hi′′ ∧ obs LIs(l)={hi′,hi′′} ∧
∀ 1old1newH(hi,l,h):Ins • obs LIs(l)={hi,obs HI(h)} ∧
∀ 2newH(h′,l,h′′):Ins • obs LIs(l)={obs HI(h′),obs HI(h′′)}

7. If the Insert command is of kind 2newH(h’,l,h”) then the updated net of
hubs and links, has
– the hubs hs joined, ∪, by the set {h′,h′′} and
– the links ls joined by the singleton set of {l}.

8. If the Insert command is of kind 1oldH1newH(hi,l,h) then the updated net
of hubs and links, has
8.1 : the hub identified by hi updated, hi′, to reflect the link connected to

that hub.
8.2 : The set of hubs has the hub identified by hi replaced by the updated

hub hi′ and the new hub.
8.2 : The set of links augmented by the new link.

9. If the Insert command is of kind 2oldH(hi’,l,hi”) then
9.1–.2 : the two connecting hubs are updated to reflect the new link,

9.3 : and the resulting sets of hubs and links updated.

int Insert(op)(hs,ls) ≡
�i case op of
7 2newH(h′,l,h′′) → (hs ∪ {h′,h′′},ls ∪ {l}),
8 1oldH1newH(hi,l,h) →
8.1 let h′ = aLI(xtr H(hi,hs),obs LI(l)) in
8.2 (hs\{xtr H(hi,hs)}∪{h,h′},ls ∪{l}) end,
9 2oldH(hi′,l,hi′′) →
9.1 let hsδ = {aLI(xtr H(hi′,hs),obs LI(l)),
9.2 aLI(xtr H(hi′′,hs),obs LI(l))} in

8 D. Bjørner

9.3 (hs\{xtr H(hi′,hs),xtr H(hi′′,hs)}∪ hsδ,ls ∪{l}) end
�j end �k pre pre int Insert(op)(hs,ls)

Events. Informally, by an event we shall loosely understand the occurrence of
“something” that may either trigger an action, or is triggered by an action, or
alter the course of a behaviour, or a combination of these.

An event can be characterised by a predicate, p and a pair of (“before”)
and (“after”) of pairs of states and times: p((tb, σb), (ta, σa)). Usually the time
interval ta − tb is of the order ta
 (tb) + δtiny.

Example 4: Transport Events

(i) A link, for some reason “ceases to exist”; for example: a bridge link falls
down, or a level road link is covered by a mud slide, or a road tunnel is afire,
or a link is blocked by some vehicle accident. (ii) A vehicle enters or leaves the
net. (iii) A hub is saturated with vehicles.

Behaviours. By a behaviour we shall informally understand a strand of (sets
of) actions and events. In the context of domain descriptions we shall speak of
behaviours whereas, in the context of requirements prescriptions and software
designs we shall use the term processes.

By a behaviour we, more formally, understand a sequence, q of actions and/or
events q1, q2, . . . , qi, qi+1, . . . , qn such that the state resulting from one such
action, qi, or in which some event, qi, occurs, becomes the state in which the
next action or event, qi+1, if it is an action, is effected, or, if it is an event, is
the event state.

Example 5: Transport: Traffic Behaviour

10. There are further undefined vehicles.
11. Traffic is a discrete function from a ‘Proper subset of Time’ to pairs of nets

and vehicle positions.
12. Vehicles positions is a discrete function from vehicles to vehicle positions.

type
10 Veh
11 TF = Time →m (N × VehPos)
12 VehPos = Veh →m Pos

13. There are positions, and a position is either on a link or in a hub.
(a) A hub position is indicated just by a triple: the identifier of the hub in

question, and a pair of (from and to) link identifiers, namely of links
connected to the identified hub.

(b) A link position is identified by a quadruplet: The identifier of the link,
a pair of hub identifiers (of the link connected hubs), designating a

Rôle of Domain Engineering in Software Development 9

direction, and a real number, properly between 0 and 1, denoting the
relative offset from the from hub to the to hub.

type
13 Pos = HPos | LPos
13a) HPos == hpos(s hi:HI,s fli:LI,s tli:LI)
13b) LPos == lpos(s li:HI,s fhi:LI,s tli:LI,s offset:Frac)
13b) Frac = {|r:Real•0<r<1|}

3.2 Domain Facets

By a domain facet we mean one amongst a finite set of generic ways of analysing
a domain: a view of the domain, such that the different facets cover conceptually
different views, and such that these views together cover the domain

We shall postulate the following domain facets: intrinsics, support technolo-
gies, management & organisation, rules & regulations, script languages [contract
languages] and human behaviour. Each facet covers simple entities, operations,
events and behaviours.

We shall now illustrate these.

Intrinsics. By domain intrinsics we mean those phenomena and concepts of a
domain which are basic to any of the other facets (listed earlier and treated, in
some detail, below), with such domain intrinsics initially covering at least one
specific, hence named, stakeholder view.

Example 6: Intrinsics, I

The links, hubs, hence the nets, and the identifiers of links and hubs are
intrinsic phenomena, respectively concepts.

So are:
Example 7: Intrinsics, II

14. From any link of a net one can observe the two hubs to which the link is
connected.
(a) We take this ‘observing’ to mean the following: From any link of a net

one can observe the two distinct identifiers of these hubs.
15. From any hub of a net one can observe the one or more links to which are

connected to the hub.
(a) Again: by observing their distinct link identifiers.

16. Extending Item 14: the observed hub identifiers must be identifiers of hubs
of the net to which the link belongs.

17. Extending Item 15: the observed link identifiers must be identifiers of links
of the net to which the hub belongs.

10 D. Bjørner

value
14a obs HIs: L → HI-set,
15a obs LIs: H → LI-set,

axiom
14b ∀ l:L • card obs HIs(l)=2 ∧
15b ∀ h:H • card obs LIs(h)≥1 ∧
∀ (hs,ls):N •

14a) ∀ h:H • h ∈ hs ⇒ ∀ li:LI • li ∈ obs LIs(h) ⇒
∃ l′:L • l′ ∈ ls ∧ li=obs LI(l′) ∧ obs HI(h) ∈ obs HIs(l′) ∧

15a) ∀ l:L • l ∈ ls ⇒
∃ h′,h′′:H • {h′,h′′}⊆hs ∧ obs HIs(l)={obs HI(h′),obs HI(h′′)}

16 ∀ h:H • h ∈ hs ⇒ obs LIs(h) ⊆ iols(ls)
17 ∀ l:L • l ∈ ls ⇒ obs HIs(h) ⊆ iohs(hs)

value
iohs: H-set → HI-set, iols: L-set → LI-set
iohs(hs) ≡ {obs HI(h)|h:H•h ∈ hs}
iols(ls) ≡ {obs LI(l)|l:L•l ∈ ls}

Support Technologies. By domain support technologies we mean ways and
means of concretesing certain observed (abstract or concrete) phenomena or
certain conceived concepts in terms of (possibly combinations of) human work, me-
chanical, hydro mechanical, thermo-mechanical, pneumatic, aero-mechanical, electro-
mechanical, electrical, electronic, telecommunication, photo/opto-electric, chemical,
etc. (possibly computerised) sensor, actuator tools.

In this example of a support technology we shall illustrate an abstraction of the
kind of semaphore signalling one encounters at road intersections, that is, hubs.
The example is indeed an abstraction: we do not model the actual “machinery”
of road sensors, hub-side monitoring & control boxes, and the actuators of the
green/yellow/red sempahore lamps. But, eventually, one has to, all of it, as part
of domain modelling.

Example 8: Hub Sempahores

To model signalling we need to model hub and link states.
A hub (link) state is the set of all traversals that the hub (link) allows. A

hub traversal is a triple of identifiers: of the link from where the hub traversal
starts, of the hub being traversed, and of the link to where the hub traversal
ends. A link traversal is a triple of identifiers: of the hub from where the link
traversal starts, of the link being traversed, and of the hub to where the link
traversal ends.

A hub (link) state space is the set of all states that the hub (link) may be
in. A hub (link) state changing operation can be designated by the hub and a
possibly new hub state (the link and a possibly new link state).

Rôle of Domain Engineering in Software Development 11

type
LΣ′ = L Trav-set
L Trav = (HI × LI × HI)
LΣ = {| lnkσ:LΣ′ • syn wf LΣ{lnkσ} |}
HΣ′ = H Trav-set
H Trav = (LI × HI × LI)
HΣ = {| hubσ:HΣ′ • wf HΣ{hubσ} |}
HΩ = HΣ-set, LΩ = LΣ-set

value
obs LΣ: L → LΣ, obs LΩ: L → LΩ
obs HΣ: H → HΣ, obs HΩ: H → HΩ

axiom
∀ h:H • obs HΣ(h) ∈ obs HΩ(h) ∧ ∀ l:L • obs LΣ(l) ∈ obs LΩ(l)

value
chg HΣ: H × HΣ → H, chg LΣ: L × LΣ → L
chg HΣ(h,hσ) as h′

pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg LΣ(l,lσ) as l′

pre lσ ∈ obs LΩ(h) post obs HΣ(l′)=lσ

Well, so far we have indicated that there is an operation that can change
hub and link states. But one may debate whether those operations shown are
really examples of a support technology. (That is, one could equally well claim
that they remain examples of intrinsic facets.) We may accept that and then ask
the question: How to effect the described state changing functions ? In a simple
street crossing a semaphore does not instantaneously change from red to green
in one direction while changing from green to red in the cross direction. Rather
there is are intermediate sequences of, for example, not necessarily synchronised
green/yellow/red and red/yellow/green states to help avoid vehicle crashes and
to prepare vehicle drivers. Our “solution” is to modify the hub state notion.

type
Colour == red | yellow | green
X = LI×HI×LI×Colour [crossings of a hub]
HΣ = X-set [hub states]

value
obs HΣ: H → HΣ, xtr Xs: H → X-set
xtr Xs(h) ≡
{(li,hi,li′,c)|li,li′:LI,hi:HI,c:Colour•{li,li′}⊆obs LIs(h)∧hi=obs HI(h)}

axiom
∀ n:N,h:H • h ∈ obs Hs(n) ⇒ obs HΣ(h)⊆xtr Xs(h) ∧
∀ (li1,hi2,li3,c),(li4,hi5,li6,c′):X •

{(li1,hi2,li3,c),(li4,hi5,li6,c′)}⊆obs HΣ(h) ∧
li1=li4 ∧ hi2=hi5 ∧ li3=li6 ⇒ c=c′

12 D. Bjørner

We consider the colouring, or any such scheme, an aspect of a support
technology facet. There remains, however, a description of how the technology
that supports the intermediate sequences of colour changing hub states.

We can think of each hub being provided with a mapping from pairs of
“stable” (that is non-yellow coloured) hub states (hσi,hσf) to well-ordered se-
quences of intermediate “un-stable’ (that is yellow coloured) hub states paired
with some time interval information 〈(hσ′, tδ′), (hσ′′, tδ′′), . . . , (hσ′···′, tδ′···′)〉
and so that each of these intermediate states can be set, according to the time
interval information,1 before the final hub state (hσf) is set.

type
TI [time interval]
Signalling = (HΣ × TI)∗

Sema = (HΣ × HΣ) →m Signalling
value

obs Sema: H → Sema
chg HΣ: H × HΣ → H
chg HΣ Seq: H × HΣ → H
chg HΣ(h,hσ) as h′ pre hσ ∈ obs HΩ(h) post obs HΣ(h′)=hσ
chg HΣ Seq(h,hσ) ≡

let sigseq = (obs Sema(h))(obs Σ(h),hσ) in sig seq(h)(sigseq) end

sig seq: H → Signalling → H
sig seq(h)(sigseq) ≡

if sigseq=〈〉 then h else
let (hσ,tδ) = hd sigseq in
let h′ = chg HΣ(h,hσ); wait tδ;
sig seq(h′)(tl sigseq) end end end

Management and Organisation

Management. By domain management we mean people (i) who determine, for-
mulate and thus set standards (cf. rules and regulations, a later lecture topic)
concerning strategic, tactical and operational decisions; (ii) who ensure that
these decisions are passed on to (lower) levels of management, and to “floor”
staff; (iii) who make sure that such orders, as they were, are indeed carried out;
(iv) who handle undesirable deviations in the carrying out of these orders cum
decisions; and (v) who “backstop” complaints from lower management levels and
from floor staff.

Organisation. By domain organisation we mean the structuring of management
and non-management staff levels; the allocation of strategic, tactical and oper-
ational concerns to within management and non-management staff levels; and
hence the “lines of command”: who does what and who reports to whom —
administratively and functionally.

Rôle of Domain Engineering in Software Development 13

Examples. Formalisation of the next example is found in Sect. 3.2, Pages 18–21.

Example 9: Bus Transport Management & Organisation

In Sect. 3.2, Pages 18–21, we illustrate what is there called a contract lan-
guage. “Programs” in that language are either contracts or are orders to per-
form the actions permitted or obligated by contracts. The language in question
is one of managing bus traffic on a net. The management & organisation of
bus traffic involves contractors issuing contracts, contractees acting according
to contracts, busses (owned or leased) by contractees, and the bus traffic on
the (road) net. Contractees, i.e., bus operators, "start" buses according to a
contract timetable, "cancel" buses if and when deemed necessary, "insert"
rush-hour and other buses if and when deemed necessary, and, acting as con-
tractors, "sub-contract" sub-contractees to operate bus lines, for example,
when the issuing contractor is not able to operate these bus lines, i.e., not able
to fulfill contractual obligations, due to unavailability of buses or staff. Clearly
the programs of bus contract languages are “executed” according to manage-
ment decisions and the sub-contracting “hierarchy” reflects organisational
facets.

Rules and Regulations. Human stakeholders act in the domain, whether
clients, workers, managers, suppliers, regulatory authorities, or other. Their ac-
tions are guided and constrained by rules and regulations. These are sometimes
implicit, that is, not “written down”. But we can talk about rules and regulations
as if they were explicitly formulated.

The main difference between rules and regulations is that rules express prop-
erties that must hold and regulations express state changes that must be effected
if rules are observed broken.

Rules and regulations are directed not only at human behaviour but also at
expected behaviours of support technologies.

Rules and regulations are formulated by enterprise staff, management or work-
ers, and/or by business and industry associations, for example in the form of
binding or guiding national, regional or international standards2, and/or by pub-
lic regulatory agencies.

Domain Rules. By a domain rule we mean some text which prescribes how people
or equipment are expected to behave when dispatching their duty, respectively
when performing their functions.

Domain Regulations. By a domain regulation we mean some text which prescribes
what remedial actions are to be taken when it is decided that a rule has not been
followed according to its intention.

2 Viz.: ISO (International Organisation for Standardisation, www.iso.org/iso/-
home.htm), CENELEC (European Committee for Electrotechnical Standardization,
www.cenelec.eu/Cenelec/Homepage.htm), etc.

14 D. Bjørner

Two Informal Examples. The two informal examples will be followed up by
sketches of formalisation.

Example 10: Trains at Stations: Available Station Rule and Regulation

– Rule: In China the arrival and departure of trains at, respectively from,
railway stations is subject to the following rule:

In any three-minute interval at most one train may either arrive to
or depart from a railway station.

– Regulation: If it is discovered that the above rule is not obeyed, then there
is some regulation which prescribes administrative or legal management
and/or staff action, as well as some correction to the railway traffic.

Example 11: Trains Along Lines: Free Sector Rule and Regulation

– Rule: In many countries railway lines (between stations) are segmented into
blocks or sectors. The purpose is to stipulate that if two or more trains are
moving along the line, then:

There must be at least one free sector (i.e., without a train) between
any two trains along a line.

– Regulation: If it is discovered that the above rule is not obeyed, then there
is some regulation which prescribes administrative or legal management
and/or staff action, as well as some correction to the railway traffic.

A Formal Example. We shall develop the above example (11, Page 14) into a
partial, formal specification. That is, not complete, but “complete enough” for
the reader to see what goes on.

Example 12: Continuation of Example 11 Page 14

We start by analysing the text of the rule and regulation. The rule text:
There must be at least one free sector (i.e., without a train) between any two
trains along a line. contains the following terms: free (a predicate), sector (an
entity), train (an entity) and line (an entity). We shall therefore augment our
formal model to reflect these terms. We start by modelling sectors and sector
descriptors, lines and train position descriptors, we assume what a train is,,
and then we model the predicate free.

type
Sect′ = H × L × H,
SectDescr = HI × LI × HI
Sect = {|(h,l,h′):Sect′ • obs HIs(l)={obs HI(h),obs HI(h′)}|}
SectDescr = {|(hi,li,hi′):SectDescr′ •

∃ (h,l,j′):Sect•obs HIs(l)={obs HI(h),obs HI(h′)}|}

Rôle of Domain Engineering in Software Development 15

Line′ = Sect∗,
Line = {|line:Line′•wf Line(line)|}
TrnPos′ = SectDescr∗

TrnPos =
{|trnpos′:TrnPos′•∃ line:Line•conv Line to TrnPos(line)=trnpos′|}

value
wf Line: Line′ → Bool
wf Line(line) ≡
∀ i:Nat • {i,i+1}⊆inds(line) ⇒

let (,l,h)=line(i),(h′,l′,)=line(i+1) in h=h′ end
conv Line to TrnPos: Line → TrnPos
conv Line to TrnPos(line) ≡
〈(obs HI(h),obs LI(l),obs HI(h′))|1≤i≤len line∧line(i)=(h,l,h′)〉

The function lines yield all lines of a net.

value
lines: N → Line-set
lines(hs,ls) ≡

let lns = {〈(h,l,h′)〉|h,h′:H,l:L•proper line((h,l,h′),(hs,ls))}
∪ {ln̂ln′|ln,l′:Line•{ln,ln′}⊆lns∧adjacent(ln,ln′)} in

lns end

The function lines makes use of an auxiliary function:

adjacent: Line × Line → Bool
adjacent((,l,h),(h′,l′,)) ≡ h=h′

pre {obs LI(l),obs LI(l′)}⊆ obs LIs(h)

We reformulate traffic in terms of train positions.

type
TF = T →m (N × (TN →m TrnPos))

We formulate a necessary property of traffic, namely that its train positions
correspond to actual lines of the net.

value
wf TF: TF → Bool
wf TF(tf) ≡
∀ t:T•t ∈ dom tf ⇒

let ((hs,ls),trnposs) = tf(t) in
∀ trn:TN • trn ∈ dom trnposs ⇒
∃ line:Line • line ∈ lines(hs,ls) ∧

trnposs(trn) = conv Line to TrnPos(line) end

16 D. Bjørner

Nothing prevents two or more trains from occupying overlapping train posi-
tions. They have “merely” – and regrettably – crashed. But such is the domain.
So wf TF(tf) is not part of an axiom of traffic, merely a desirable property.

value
has free Sector: TN × T → TF → Bool
has free Sector(trn,(hs,ls),t)(tf) ≡

let ((hs,ls),trnposs) = tf(t) in
(trn �∈ dom trnposs ∨ (tn ∈ dom trnposs(t) ∧
∃ ln:Line • ln ∈ lines(hs,ls) ∧

is prefix(trnposs(trn),ln))(hs,ls)) ∧
∼∃ trn′:TN • trn′ ∈ dom trnposs ∧ trn′�=trn ∧

trnposs(trn′)=conv Line to TrnPos(〈follow Sect(ln)(hs,ls)〉)
end
pre exists follow Sect(ln)(hs,ls)

is prefix: Line × Line → N → Bool
is prefix(ln,ln′)(hs,ls) ≡ ∃ ln′′:Line • ln′′ ∈ lines(hs,ls) ∧ ln̂ln′′=ln′

The test ln′′ ∈ lines(hs,ls) in the definition of is prefix is not needed for the cases
where that function is invoked as only shown here.

The function follow Sect yields the sector following the argument line, if
such a sector exists.

exists follow Sect: Line → Net → Bool
exists follow Sect(ln)(hs,ls) ≡
∃ ln′:Line•ln′ ∈ lines(hs,ls)∧ln̂ln′ ∈ lines(hs,ls)
pre ln ∈ lines(hs,ls)

follow Sect: Line → Net ∼→ Sect
follow Sect(ln)(hs,ls) ≡

let ln′:Line•ln′ ∈ lines(hs,ls)∧ln̂ln′ ∈ lines(hs,ls) in hd ln′ end
pre line ∈ lines(hs,ls)∧exists follow Sect(ln)(hs,ls)

We doubly recursively define a function free sector rule(tf)(r). tf is that
part of the traffic which has yet to be “searched” for non-free sectors. Thus
tf is “counted” up from a first time t till the traffic tf is empty. That is, we
assume a finite definition set tf . r is like a traffic but without the net. Initially
r is the empty traffic. r is “counted” up from “earliest” cases of trains with no
free sector ahead of them. The recursion stops, for a given time when there
are no more train positions to be “searched” for that time; and when the
“to-be-searched” traffic is empty.

type
TNPoss = T →m (TN → TrnPos)

value
free sector rule: TF × TF → TNPoss

Rôle of Domain Engineering in Software Development 17

free sector rule(tf)(r) ≡
if tf=[] then r else
let t:T•t ∈ dom tf∧smallest(t)(tf) in
let ((hs,ls),trnposs)=tf(t) in
if trnposs=[] then free sector rule(tf\{t})(r) else
let tn:TN•tn ∈ dom trnposs in
if exists follow Sect(trnposs(tn))(hs,ls)

∧∼has free Sector(tn,(hs,ls),t)(tf)
then

let r′ = if t ∈ dom r then r else r ∪ [t�→[]] end in
free sector rule(tf†[t�→((hs,ls),trnposs\{tn})])

(r†[t�→r(t)∪[tn�→trnposs(tn)]]) end
else

free sector rule(tf†[t�→((hs,ls),trnposs\{trn})])(r)
end end end end end end

smallest(t)(tf) ≡ ∼∃ t′:T• t′isin dom tf∧t′<t pre t ∈ dom tf

Script Languages [Contract Languages]. By a domain script language we
mean the definition of a set of licenses and actions where these licenses when
issued and actions when performed have morally obliging power.

By a domain contract language a domain script language whose licenses and
actions have legally binding power, that is, their issuance and their invocation
may be contested in a court of law.

A Script Language. The next examples exemplify narrative and formal descrip-
tion of syntax of bus timetables as well as formal description of semantics of bus
timetables.

Example 13: Narrative Syntax of a Bus Timetable Script Language

18. Time is a concept covered earlier. Bus lines and bus rides have unique
names (across any set of time tables). Hub and link identifiers, HI, LI, were
treated from the very beginning.

19. A TimeTable associates to Bus Line Identifiers a set of Journies.
20. Journies are designated by a pair of a BusRoute and a set of BusRides.
21. A BusRoute is a triple of the Bus Stop of origin, a list of zero, one or more

intermediate Bus Stops and a destination Bus Stop.
22. A set of BusRides associates, to each of a number of Bus Identifiers a Bus

Schedule.
23. A Bus Schedule a triple of the initial departure Time, a list of zero, one or

more intermediate bus stop Times and a destination arrival Time.

18 D. Bjørner

24. A Bus Stop (i.e., its position) is a Fraction of the distance along a link
(identified by a Link Identifier) from an identified hub to an identified hub.

25. A Fraction is a Real properly between 0 and 1.
26. The Journies must be well formed in the context of some net.

Example 14: Formal Syntax of a Bus Timetable Script Language

type
18. T, BLId, BId
19. TT = BLId →m Journies
20. Journies′ = BusRoute × BusRides
21. BusRoute = BusStop × BusStop∗ × BusStop
22. BusRides = BId →m BusSched
23. BusSched = T × T∗ × T
24. BusStop == mkBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
25. Frac = {|r:Real•0<r<1|}
26. Journies = {|j:Journies′•∃ n:N • wf Journies(j)(n)|}

Example 15: Semantics of a Bus Timetable Script Language

type
Bus

value
obs X: Bus → X

type
BusTraffic = T →m (N × (BusNo →m (Bus × BPos)))
BPos = atHub | onLnk | atBS
atHub == mkAtHub(s fl:LIs hi:HI,s tl:LI)
onLnk == mkOnLnk(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
atBSt == mkAtBS(s fhi:HI,s ol:LI,s f:Frac,s thi:HI)
Frac = {|r:Real•0<r<1|}

value
gen BusTraffic: TT → BusTraffic-infset
gen BusTraffic(tt) as btrfs

post ∀ btrf:BusTraffic • btrf ∈ btrfs ⇒ on time(btrf)(tt)

We omit definition of several functions, including the interesting on time pred-
icate.

A Contract Language. We shall, as for the timetable script, just hint at a contract
language.

Rôle of Domain Engineering in Software Development 19

Example 16: Informal Syntax of Bus Transport Contracts

An example contract can be ‘schematised’:

con id: contractor corn contracts contractee ceen
to perform operations "start","cancel","insert","subcontract"
with respect to bus timetable tt.

Example 17: Formal Syntax of a Bus Transport Contracts

type
CId, CNm
Contract = CId × CNm × CNm × Body
Body = Op-set × TT
Op == ′′conduct′′ | ′′cancel′′ | ′′insert′′ | ′′subcontract′′

an example contract:

(cid,cor,cee,({′′start′′,′′cancl′′,′′insrt′′,′′subcon′′},tt))

Example 18: Informal Syntax of a Bus Transport Actions

Example actions can be schematised:

(a) cid: start bus ride (blid,bid) at time t
(b) cid: cancel bus ride (blid,bid) at time t
(c) cid: insert bus ride like (blid,bid) at time t

The schematised license (Page 19) shown earlier is almost like an action; here is
the action form:

(d) cid: contractee cee is granted a license cid′

to perform operations {”start”,”cancel”,”insert”,subcontract”}
with respect to timetable tt′.

Example 19: Formal Syntax of a Bus Transport Actions

type
Action = CNm × CId × (SubLic | SmpAct) × Time
SmpAct = Start | Cancel | Insert
DoRide == mkSta(s blid:BLId,s bid:BId)
Cancel == mkCan(s blid:BLId,s bid:BId)

20 D. Bjørner

Insert = mkIns(s blid:BLId,s bid:BId)
SubCon == mkCon(sci:ConId,sce:CNm,sbd:(sos:Op-set,stt:TT))

examples:
(a) (cee,cid,mkRid(blid,id),t)
(b) (cee,cid,mkCan(blid,id),t)
(c) (cee,cid,mkIns(blid,id),t)
(d) (cee,cid,mkCon(cid′,({′′start′′,′′cancl′′,′′insrt′′,′′subcon′′},tt′),t))

where: cid′ = generate ConId(cid,cee,t)

Example 20: Semantics of a Bus Transport Contract Language, I

type
Body = Op-set × TT
ConΣ = RcvConΣ×SubConΣ×CorBusΣ
RcvConΣ = CNm→m (CId→m (Body×TT))
SubConΣ = CNm→m (CId→m Body)
BusNo
BusΣ = FreeBusesΣ × ActvBusesΣ × BusHistsΣ
FreeBusesΣ = BusStop →m BusNo-set
ActvBusesΣ = BusNo →m BusInfo
BusInfo = BLId×BId×CId×CNm×BusTrace
BusHistsΣ = Bno →m BusInfo∗

BusTrace = (Time×BusStop)∗

CorBusΣ = CNm →m (CId →m ((BLId×BId)→m (BNo×BusTrace)))
AllBs=CNm→m BusNo-set

Example 21: Semantics of a Bus Transport Contract Language, II

value
cns:CNm-set, busnos:BNo-set, ibσ:IBΣs=CNm→m BusΣ,
rcor,icee:CNm • rcor �∈ cns∧icee ∈ cns, itr:BusTraffic,
rcid:ConId, iops:Op-set={′′subcontract′′}, itt:TT, t0:Time
allbs:AllBs • dom allbs=cns ∪ {rcor}∧∪ rng allbs=busnos,
icon:Contract=(rcid,rcor,icee,(iops,itt)),
icσ:ConΣ=([icee �→ [rcid �→ [icee �→ icon]]]

∪ [cee �→ [] | cee:CNm • cee ∈ cnms\{icee}],[],[]),
system: Unit → Unit
system() ≡

cntrcthldr(icee)(ilσ(icee),ibσ(icee))
‖(‖{cntrcthldr(cee)(ilσ(cee),ibσ(cee))|cee:CNm•cee ∈ cns\{icee}})

Rôle of Domain Engineering in Software Development 21

‖(‖{bus ride(b,cee)(rcor,′′nil′′)
| cee:CNm,b:BusNo•cee ∈ dom allbs ∧ b ∈ allbs(cee)})

‖time clock(t0) ‖ bus traffic(itr)

bus−ride bus−ride bus−ride

bus−ridebus−ridebus−ride

bus−ride bus−ride bus−ride

bus−ride bus−ride bus−ride

...

...

...

...

...

... Bus
Traffic

Time

contract−holder

contract−holder

contract−holder

contract−holder

contract−holder

...
...

...
...

...

...

...

... ...

Fig. 1. An organisation

The thin lines of Fig. 1 denote communication “channels”.

Human Behaviour. By human behaviour we mean any of a quality spectrum
of carrying out assigned work: from (i) careful, diligent and accurate, via (ii)
sloppy dispatch, and (iii) delinquent work, to (iv) outright criminal pursuit.

Example 22: A Diligent Operation

The int Insert operation of Page 7 was expressed without stating necessary
pre-conditions:

27. The insert operation takes an Insert command and a net and yields either
a new net or chaos for the case where the insertion command “is at odds”
with, that is, is not semantically well-formed with respect to the net.

28. We characterise the “is not at odds”, i.e., is semantically well-formed, that
is: pre int Insert(op)(hs,ls), as follows: it is a propositional function which
applies to Insert actions, op, and nets, (hs.ls), and yields a truth value if the

22 D. Bjørner

below relation between the command arguments and the net is satisfied.
Let (hs,ls) be a value of type N.

29. If the command is of the form 2oldH(hi′,l,hi′) then
�1 hi′ must be the identifier of a hub in hs,
�2 l must not be in ls and its identifier must (also) not be observable in

ls, and
�3 hi′′ must be the identifier of a(nother) hub in hs.

30. If the command is of the form 1oldH1newH(hi,l,h) then
�1 hi must be the identifier of a hub in hs,
�2 l must not be in ls and its identifier must (also) not be observable in

ls, and
�3 h must not be in hs and its identifier must (also) not be observable in

hs.
31. If the command is of the form 2newH(h′,l,h′′) then

�1 h′ — left to the reader as an exercise (see formalisation !),
�2 l — left to the reader as an exercise (see formalisation !), and
�3 h′′ — left to the reader as an exercise (see formalisation !).

value
28′ pre int Insert: Ins → N → Bool
28′′ pre int Insert(Ins(op))(hs,ls) ≡
�2 s l(op)�∈ ls ∧ obs LI(s l(op)) �∈ iols(ls) ∧

case op of
29 2oldH(hi′,l,hi′′) →

{hi′,hi′′}⊆iohs(hs),
30 1oldH1newH(hi,l,h) →

hi ∈ iohs(hs)∧h�∈ hs∧obs HI(h)�∈ iohs(hs),
31 2newH(h′,l,h′′) →

{h′,h′′}∩ hs={}∧{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}
end

These must be carefully expressed and adhered to in order for staff to be said
to carry out the link insertion operation accurately.

Example 23: A Sloppy via Delinquent to Criminal Operation

We replace systematic checks (∧) with partial checks (∨), etcetera, and
obtain various degrees of sloppy to delinquent, or even criminal behaviour.

value
28′ pre int Insert: Ins → N → Bool
28′′ pre int Insert(Ins(op))(hs,ls) ≡
�2 s l(op)�∈ ls ∧ obs LI(s l(op)) �∈ iols(ls) ∧

case op of
29 2oldH(hi′,l,hi′′) →

hi′ ∈ iohs(hs)∨hi′′isin iohs(hs),

Rôle of Domain Engineering in Software Development 23

30 1oldH1newH(hi,l,h) →
hi ∈ iohs(hs)∨h�∈ hs∨obs HI(h)�∈ iohs(hs),

31 2newH(h′,l,h′′) →
{h′,h′′}∩ hs={}∨{obs HI(h′),obs HI(h′′)}∩ iohs(hs)={}

end

Dialectics. So now you should have a practical and technical “feel” for domain
engineering: What it takes to express a domain model.

But there is lots’ more: We have not shown you (i) the rôle of domain stake-
holders: (i.1) how to identify them, (i.2) how to involve them and (i.3) how they
help validate resulting domain descriptions. (ii) the domain (ii.1) knowledge ac-
quisition and (ii.2) analysis processes, (ii) the domain (ii.1) model verification
and (ii.2) validation and processes, and (iii) the domain theory R&D process.

Can we agree that we cannot, as professional software engineers, start on
gathering requirements, let alone prescribing these before we have understood
the domain ? Can we agree that, “ideally”, we must therefore first R&D the
domain model before we can embark on any requirements prescription process ?

By “ideally” we mean the following: Ideally domain engineering should fully
precede requirements engineering, but for many practical reasons3 we must co-
develop domain descriptions “hand-in-hand” with requirements prescriptions.
And that is certainly feasible, when done with care. So we shall, for years assume
this to be the case.

Pragmatics. While the software industry “humps along”: co-developing do-
main descriptions and requirements with their clients, or, for COTS, with their
marketing departments, private and public research centres should and will em-
bark on large scale (5–8 manyears/year), long range projects (5–8 year) foun-
dational research and development (R&D) of infrastructure component domain
models of the financial service industry: banking (all forms); insurance (all forms);
portfolio management; securities trading: brokers, traders, commodities and stock
etc. exchanges; transportation: road, rail, air, and sea; healthcare: physicians, hos-
pitals, clinics, pharmacies, etc.; “the market”: consumers, retailers, wholesalers, and
the supply chain; etcetera.

3.3 Further on the Modelling of Domains

[6] Part IV, Chaps. 8–16 covers techniques of domain modelling.

3 Among the many practical reasons for not first fully developing a domain model are:
(a) it takes literally “ages” to develop a complete domain model, (b) in fact one will
never achieve complete domain models, and (c) software houses and their clients
cannot wait for this software!

24 D. Bjørner

4 Requirements Engineering

We cannot possibly, within the confines of a seminar talk and a reasonably
sized paper cover, however superficially, both informal and formal examples of
requirements engineering.

Instead we shall just briefly mention the major stages and sub-stages of re-
quirements modeling:

– Domain Requirements: those which can be expressed sôlely using terms
from the domain description;

– Interface Requirements: those which can be expressed using terms both
from the domain description and from IT; and

– Machine Requirements: those which can be expressed sôlely using terms
from IT.

IEEE Definition of Requirements

By IT requirements we understand (cf. IEEE Standard 610.12): “A condition or ca-
pability needed by a user to solve a problem or achieve an objective on a computing
machine”.

By computing machine we shall understand a, or the, combination of com-
puter (etc.) hardware and software that is the target for, or result of the required
computing systems development.

4.1 Domain Requirements

Domain Requirements

By domain requirements we mean such which can be expressed sôlely using terms
from the domain description

To construct the domain requirements the domain engineer together with the
various groups of requirements stakeholder “apply” the following “domain-to-
requirements” operations to a copy of the domain description: projection,
instantiation, determination, extension and fitting. First we briefly chara-
terise these.

The Domain-to-Requirements Operations. The ‘domain-to-requirements’
operations cannot be automated. They increasingly “turn” the copy of the do-
main description into a domain requirements prescription.

Projection removes, from that emerging requirements document all the domain
phenomena and concepts for which the customer does not need IT support.

Simple Linear Road: Projection

Our requirements is for a simple road: a linear sequence of links and hubs:

type

Rôle of Domain Engineering in Software Development 25

N, L, H, LI, HI
value

obs Hs: N → H-set, obs Ls: N → L-set
obs HI: H → HI, obs LI: L → LI
obs HIs: L → HI-set, obs LIs: H → LI-set

axiom
See Items 14–17 Pages 9–9

Instantiation makes a number of entities: simple, operations, events and be-
haviours, less abstract, more concrete.

Simple Linear Road: Instantiation

The linear sequence consists of eaxtly 34 links.

type
H, L,
N′ = H × (L × H)∗

N′′ = {|n:N′•wf(n)|}
value

wf N′′: N′ → Bool
wf N′′(h,(l,h)̂lhl) ≡

len lhl = 33 ∧
obs HI(l)=obs HI(h) ∧
∀ i,j:Nat • {i,i+1,j}⊆inds lhl ⇒

let (li,hi)=lhl(i),(li′,hi′)=lhl(i+1),(lj,hj)=lhl(j) in
h �=hi∧i �=j⇒li �=lj∧hi �=hj∧
obs HIs(li′)={obs HI(hi),obs HI(hi′)}∧
obs LIs(hi)∩ obs LI(li)�={}∧obs LIs(hi′)∩ obs LI(li′)�={} end

obs N: N′′ → N
obs N(h,lhl) ≡

({h}∪{hi|(hi,li):(L×H)•(hi,li)∈ elems lhl},
{li|(hi,li):(L×H)•(hi,li)∈ elems lhl})

wf N’ secures linearity; obs N allows abstraction from more concrete N′′ to more
abstract N.

Determination makes the emerging requirements entities more determinate, that
is, removes undesired non-determinism.

Simple Linear Road: Determination

All links and all non-end hubs are open in both directions; we leave end-hub states
undefined — but see below, under ‘Extension’.

type
LΣ = (HI×HI)-set, LΩ

26 D. Bjørner

HΣ = (LI×LI)-set, HΩ
value

obs LΩ: L → LΩ
obs HΩ: H → HΩ

axiom
∀ (h,〈(l1,h2)〉̂lhl):N′′ •

obs LΣ(l1)={obs HI(h),obs HI(h2)}∧
∀ i,i+1:Nat • {i,i+1}⊆inds lhl ⇒

let (li,hi)=lhl(i),(li′,hi′)=lhl(i+1),(lj,hj)=lhl(j) in
obs LΩ(li′)={{(obs HI(hi),obs HI(hi′)),(obs HI(hi′),obs HI(hi))}}∧
obs HΩ(hi)={{(obs LI(li),obs LI(li′)),(obs LI(li′),obs LI(li))}} end

The last two lines of the axiom express that links are always open two ways and
that hubs are always open for through traffic.

Extension introduces new, computable entities that were not possible in the
non-IT domain.

Simple Linear Road: Extension

We extend the model of linear roads by introducing the concept of a Hub-Plaza:
this is an area “around” each hub from where and into where there is always access
onto, respectively from the hub:

type
HP, HPI
HΣ′ = (LI×LI)-set ∪ (LI×HPI)-set ∪ (HPI×LI)-set
HΩ′ = HΣ′-set

value
obs HΩ′: H → HΩ′

obs HP: H → HP
obs HPI: HP → HPI

axiom
∀ h,h′:H • h �=h′ ⇒

obs HP(h)�=obs HP(h′)∧obs HPI(obs HP(h))�=obs HPI(obs HP(h′)),
∀ (h,(l,h)̂lhl):N′′ •

∀ i,j:Nat • {i,i+1,j}⊆inds lhl ⇒
let (li,hi)=lhl(i),(li′,hi′)=lhl(i+1),(lj,hj)=lhl(j) in
obs HΩ′(h)=
{{(obs LI(l),obs HPI(obs HP(h))),(obs HPI(obs HP(h)),obs LI(l))}}

∀ i,i+1:Nat • {i,i+1}⊆inds lhl ⇒
let (,hi)=lhl(i),(,hi′)=lhl(i+1),(,hj)=lhl(j) in
obs HΩ′(hi)=
{{(obs LI(li),obs LI(li′)),

(obs LI(li′),obs LI(li)),
(obs HPI(obs HP(hi)),obs LI(li)),

(obs HPI(obs HP(hi)),obs LI(li′))

Rôle of Domain Engineering in Software Development 27

(obs LI(li),obs HPI(obs HP(hi))),
(obs LI(li′),obs HPI(obs HP(hi)))}}

end end

The obs HΩ′ lines of the axiom with respect to that of ‘Determination’ express
plaza access.

Fitting merges the domain requirements prescription with those of other, more-
or-less independent IT developments.

• • •
The domain requirements examples are necessarily “microscopic”. The very
briefly outlined domain requirements methodology has many fascinating aspects
— more fully covered in [4,5,6] and the upcoming [7].

4.2 Interface Requirements

Interface Requirements

By interface requirements we mean such which those which can be expressed
using terms from both the domain description and from IT, that is, terminology
of hardware and of software.

When phenomena and concepts of the domain are also to be represented by
the machine, these phenomena and concepts are said to be shared between the
domain and the machine; the requirements therefore need be expressed both in
terms of phenomena and concepts of the domain and in terms of phenomena
and concepts of the machine.

Shared Phenomena and Concepts. A shared phenomenon or concept is
either a simple entity, an operation, an event or a behaviour.

Shared simple entities need to be initially input to the machine and their
machine representation need to be regularly, perhaps real-time refreshed.

Shared operations need to be interactively performed by human or other
agents of the domain and by the machine.

Shared events are shared in the sense that their occurrence in the domain
(in the machine) must be made known to the machine (to the domain).

Shared behaviours need to occur in the domain and in the machine by
alternating means, that is, a protocol need be devised.

For each of these four kinds of interface requirements the requirements en-
gineers work with the requirements stakeholders to determine the properties of
these forms of sharing. These interface requirements are then narrated and for-
malised. They are always “anchored” in specific items of the domain description.

• • •
The very briefly outlined interface requirements methodology has many fasci-
nating aspects — more fully covered in [4,5,6] and the upcoming [7].

28 D. Bjørner

4.3 Machine Requirements

Machine Requirements

By machine requirements we mean those which can be expressed sôlely using terms
from the machine, that is, terminology of hardware and of software.

We shall not cover any principles or techniques for developing machine require-
ments, but shall just list the very many issues that must be captured by a
machine requirements.

– Performance
• Storage
• Time
• Software Size

– Dependability
• Accessibility
• Availability
• Reliability

• Robustness
• Safety
• Security

– Maintenance
• Adaptive
• Corrective
• Perfective
• Preventive

– Platform (P)
• Development P
• Demonstration P
• Execution P
• Maintenance P

– Documentation
Requirements

– Other Requirements

The machine requirements are usually not so easily, formalised, if at all, with
today’s specification language tools. Extra great care must therefore be exerted
in their narration. Some formal modelling calculations, like fault (tree) analysis,
can be made in order to justify quantitative requirements.

4.4 Further on the Modelling of Requirements

[6, Part V, Chaps. 17–24] and the upcoming [7] covers techniques of require-
ments modelling, including machine requirements in far more detail than here
enumerated.

5 Why “Current” Requirements Engineering (RE) Is
Flawed

Current, conventional requirements engineering has no scientific basis. The re-
quirements engineering sketched in this paper starts with a domain model. The
domain model provides the scientific basis. “Derivation” of domain and interface
requirement provides a further scientific basis. The fact that the requirements
engineering models advocated in this paper also are formalised provides a fi-
nal scientific basis. The separation of concerns: (the formalised) domain model,
in-and-by-itself, and the (the formalised) requirements projection, instantiation,
determination, extension and fitting operations provide a basis for scientific anal-
ysis. Current, conventional RE does not have these bases. If we are to pursue
Software Engineering in a professionally responsible manner then requirements
engineering must be pursued in a scientifically responsible manner.

Rôle of Domain Engineering in Software Development 29

6 Conclusion

6.1 Summary — A Wrap Up

We have illustrated the triptych concept: from domains via requirements to soft-
ware. We spent most time on domain engineering. We just sketched major re-
quirements engineering concepts. And we assumed you know how to turn formal
requirements into correct software designs !

6.2 Dialectics

So, are we clear on this: (i) that we must understand the domain before we
express the requirements; (ii) that we can “derive” major parts of the require-
ments prescription from the domain description; (iii) that domains are far more
“stable” than requirements; (iv) that prescribing requirements with no prior
domain description is thoroughly unsound; (v) that describing [prescribing] do-
mains [requirements] both informally (narratives) and formally (formal speci-
fications) helps significantly towards consistent specifications; and (vi) that we
must therefore embrace the triptych: from domains via requirements to software.

Implication: Theory-work. So, get on with it ! Pick up one or another of the
new domain engineering ideas: business processes, facets, domain theories, etc.,
or the new requirements engineering ideas: projection, instantiation, determi-
nation, extension and fitting, research them, write papers about it.

Implication: Engineering-work — Extrovert Applications. But do it in
connection with real life, actual domains: banking, insurance, stock exchange
and brokerage, hospitalisation, bus & tax transport, rail transport, container
line shipping, etcetera. That is, “build” some impressive domain theories !

Implication: Engineering-work — Introspective Applications. By in-
trospective applications we mean such as providing software for, or such as the
Internet, the Web, operating systems database management, data communica-
tion, etcetera, etcetera, Also these are lack proper domain descriptions.

6.3 For More on Domain and Requirements Engineering

For details on domain and requirements engineering we refer to:

Software Engineering [6]:
Vol. 3: Domains, Requirements and Software Design, XXX+766 pages.
Texts in Theoretical Computer Science, EATCS Series, 2006 Springer

and the upcoming book:

From Domain to Requirements, [7]
The Triptych Approach to Software Engineering

30 D. Bjørner

This book (draft) has been and is the basis for lectures at (i) Univ. Henri
Poincaré/INRIA, Nancy, France, Oct.-Dec. 2007; (ii) Techn. Univ. of Graz, Aus-
tria Nov.-Dec. 2008; (iii) Univ. of Saarland, Germany March 2009; (iv) Univ. of
Edinburgh, Scotland, Sept.–Oct. 2009; (v) Univ. of Tokyo, Japan Fall (Oct.-
Nov.) 2009.

6.4 For More on Extrovert Applications

We refer to some indicative Internet-based reports — from: www.imm.dtu.dk/~db/

– air traffic: brisbane.pdf and airtraffic.pdf;
– container line industry: container-paper.pdf;
– the ‘Market’: themarket.pdf;
– IT security: 5lectures/it-system-security-ISO.pdf;
– oil industry and pipelines: de-p.pdf and pipeline.pdf;
– railways: www.railwaydomain.org/;
– transportation (in general): tseb.pdf;
– logistics: logistics.pdf
– et cetera.

6.5 Software Engineering Archeology

In general I would prefer to see precise domain models of the Internet, the Web,
‘Cloud Computing’, Windows Vista, Linux and idealised SQL4 as the basis for re-
quirements and software that claim that they are “based” on the Internet, the Web,
‘Cloud Computing’, Windows Vista, Linux and/or SQL.

Here is clearly a fascination engineering task.
I see the Internet as an instantiation of ‘Cloud Computing’.

6.6 For More on Research Topics

A number of research topics of domain theory has been outlined in [8]:

Domain Theory: Practice and Theories, Discussion of Possible Research
Topics. In ICTAC’2007, volume 4701 of Lecture Notes in Computer Sci-
ence (eds. J.C.P. Woodcock et al.), pages 1–17, Heidelberg, September 2007.
Springer.

Excursions in ‘Philosophy of Informatics’ are covered in [12,13]:

On Mereologies in Computing Science. Festschrift for Tony Hoare, Springer
UK, History of Computing (ed. Bill Roscoe), 2009
An Emerging Domain Science – A Rôle for Stanis�law Leśniewski’s Mereology
and Bertrand Russell’s Philosophy of Logical Atomism. Higher-order and
Symbolic Computation, Fall 2009.

4 By idealised SQL I mean an SQL where relations are indeed sets, and hence that
all results of SQL queries are sets. To my knowledge Oracle SQL does not satisfy
this simple property, but the Frontbase SQL92 system does (http://www.front-
base.com/cgi-bin/WebObjects/FrontBase)

Rôle of Domain Engineering in Software Development 31

Acknowledgements

The author thanks the organisers, the steering and the programme commit-
tee for PSI’09 for inviting me to present this paper and for funding my stay
in Akademgorodok. The author also thanks Prof. Victor Ivannikov, Director,
Institute of Systems Programming, Russian Academy of Science, Moscow, for
funding my domestic travel in the Russian Federation, my stay in Moscow, and
for inviting me to give two talks at ISPRAS. The author finally thanks Formal
Methods Europe for covering my international travel, visa expenses and further
miscellaneous expenses.

Bibliographical Notes

Specification languages, techniques and tools, that cover the spectrum of domain
and requirements specification, refinement and verification, are dealt with in Al-
loy: [36], ASM: [52,53], B/event B: [1,2], CSP [31,55,56,32], DC [60,61] (Duration
Calculus), Live Sequence Charts [17,27], Message Sequence Charts [33,34,35],
RAISE [21,23,4,5,6,20] (RSL), Petri nets [37,47,50,49,51], Statecharts [26,28],
Temporal Logic of Reactive Systems [40,41,46,48], TLA+ [38,39,42,43] (Tem-
poral Logic of Actions), VDM [10,11,19,18], and Z [57,58,59,30,29]. Techniques
for integrating ‘different’ formal techniques5 are covered in [3,24,15,14,54]. The
recent book on Logics of Specification Languages [9] covers ASM, B/event B,
CafeObj, CASL, DC, RAISE, TLA+, VDM and Z.

References

1. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Tracts in Theoretical
Computer Science. Cambridge University Press, Cambridge (1996)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2009)

3. Araki, K., Galloway, A., Taguchi, K. (eds.): IFM 1999: Integrated Formal Methods.
LNCS, vol. 1945. Springer, Heidelberg (1999)

4. Bjørner, D.: Software Engineering. Abstraction and Modelling. Texts in Theoretical
Computer Science, the EATCS Series, vol. 1. Springer, Heidelberg (2006)

5. Bjørner, D.: Software Engineering. In: Specification of Systems and Languages, ch.
12-14 are primarily authored by Christian Krog Madsen. Specification of Systems
and Languages. Texts in Theoretical Computer Science, the EATCS Series, vol. 2.
Springer, Heidelberg (2006)

6. Bjørner, D.: Software Engineering. In: Domains, Requirements and Software De-
sign. Texts in Theoretical Computer Science, the EATCS Series, vol. 3. Springer,
Heidelberg (2006)

7. Bjørner, D.: From Domains to Requirements: The Triptych Approach to Software
Engineering. Submitted to Springer for evaluation in 2009. Slightly incomplete
draft version, approximately XXVII+160+25 pages (frontmatter, main text, ap-
pendices) (2009), http://www.imm.dtu/~db/de+re-p.pdf

5 The ’difference’ is primarily in the semantic types of the formal specification lan-
guages and in the proof systems of these ‘different’ formal techniques.

http://www.imm.dtu/~db/de+re-p.pdf

32 D. Bjørner

8. Bjørner, D.: Domain Theory: Practice and Theories, Discussion of Possible Re-
search Topics. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS,
vol. 4711, pp. 1–17. Springer, Heidelberg (2007)

9. Bjørner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Mono-
graph in Theoretical Computer Science. Springer, Heidelberg (2008)

10. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-
Language. LNCS, vol. 61. Springer, Heidelberg (1978)

11. Bjørner, D., Jones, C.B. (eds.): Formal Specification and Software Development.
Prentice-Hall, Englewood Cliffs (1982)

12. Bjørner, D.: On Mereologies in Computing Science Festschrift for Tony Hoare. In:
Roscoe, B. (ed.) History of Computing. Springer, UK (2009)

13. Bjørner, D.: An Emerging Domain Science – A Rôle for Stanis�law Leśniewski’s
Mereology and Bertrand Russell’s Philosophy of Logical Atomism. In: Higher-order
and Symbolic Computation. Springer, Heidelberg (2009)

14. Boiten, E.A., Derrick, J., Smith, G.P. (eds.): IFM 2004. LNCS, vol. 2999. Springer,
Heidelberg (2004)

15. Butler, M., Petre, L., Sere, K. (eds.): IFM 2002. LNCS, vol. 2335. Springer, Hei-
delberg (2002)

16. Cansell, D., Méry, D.: Logical Foundations of the B Method. Computing and In-
formatics 22(1-2) (2003)

17. Damm, W., Harel, D.: LSCs: Breathing life into Message Sequence Charts. Formal
Methods in System Design 19, 45–80 (2001); Early version appeared as Weiz-
mann Institute Tech. Report CS98-09, April 1998. An abridged version appeared
in Proc. 3rd IFIP Int. Conf. on Formal Methods for Open Object-based Distributed
Systems (FMOODS 1999), pp. 293–312. Kluwer, Dordrecht (1999)

18. Fitzgerald, J.S.: The Typed Logic of Partial Functions and the Vienna Develop-
ment Method. In: Logics of Specification Languages [9], pp. 453–487. Springer,
Heidelberg (2008)

19. Fitzgerald, J.S., Larsen, P.G.: Developing Software using VDM-SL. Cambridge Uni-
versity Press, Cambridge (1997)

20. George, C., Haxthausen, A.E.: The Logic of the RAISE Specification Language.
In: Logics of Specification Languages [9]. Springer, Heidelberg (2008)

21. George, C.W., Haff, P., Havelund, K., Haxthausen, A.E., Milne, R., Nielsen, C.B.,
Prehn, S., Wagner, K.R.: The RAISE Specification Language. The BCS Practi-
tioner Series. Prentice-Hall, Hemel Hampstead (1992)

22. George, C.W., Haxthausen, A.E.: The Logic of the RAISE Specification Language.
Computing and Informatics 22(1-2) (2003)

23. George, C.W., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.:
The RAISE Method. The BCS Practitioner Series. Prentice-Hall, Hemel Hamp-
stead (1995)

24. Grieskamp, W., Santen, T., Stoddart, B. (eds.): IFM 2000. LNCS, vol. 1945.
Springer, Heidelberg (2000)

25. Hansen, M.R.: Duration Calculus. In: Logics of Specification Languages [9], pp.
299–347. Springer, Heidelberg (2008)

26. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

27. Harel, D., Marelly, R.: Come, Let’s Play – Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, Heidelberg (2003)

28. Harel, D., Naamad, A.: The STATEMATE semantics of Statecharts. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 5(4), 293–333 (1996)

Rôle of Domain Engineering in Software Development 33

29. Henson, M.C., Deutsch, M., Reeves, S.: Z Logic and Its Applications. In: Logics of
Specification Languages [9], pp. 489–596. Springer, Heidelberg (2008)

30. Henson, M.C., Reeves, S., Bowen, J.P.: Z Logic and its Consequences. Computing
and Informatics 22(1-2) (2003)

31. Hoare, T.: Communicating Sequential Processes. C.A.R. Hoare Series in Computer
Science. Prentice-Hall International, Englewood Cliffs (1985)

32. Hoare, T.: Communicating Sequential Processes. Published electronically (2004),
http://www.usingcsp.com/cspbook.pdf Second edition of [31],
http://www.usingcsp.com/

33. ITU-T. CCITT Recommendation Z.120: Message Sequence Chart (MSC) (1992)
34. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC)(1996)
35. ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart (MSC)(1999)
36. Jackson, D.: Software Abstractions Logic, Language, and Analysis. The MIT Press,

Cambridge (2006)
37. Jensen, K.: Coloured Petri Nets. In: Kurt Jensen. EATCS Monographs in Theo-

retical Computer Science, vol. 1: Basic Concepts (234 pages + xii), vol. 2: Analysis
Methods (174 pages + x), vol. 3: Practical Use (265 pages + xi). Springer, Heidel-
berg (1985); revised and corrected second version (1997)

38. Lamport, L.: The Temporal Logic of Actions. Transactions on Programming Lan-
guages and Systems 16(3), 872–923 (1995)

39. Lamport, L.: Specifying Systems. Addison–Wesley, Boston (2002)
40. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive Systems: Specifications.

Addison Wesley, Reading (1991)
41. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive Systems: Safety. Addison

Wesley, Reading (1995)
42. Merz, S.: On the Logic of TLA+. Computing and Informatics 22(1-2) (2003)
43. Merz, S.: The Specification Language TLA+. In: Merz, S. (ed.) Logics of Specifi-

cation Languages [9], pp. 401–451. Springer, Heidelberg (2008)
44. Mossakowski, T., Haxthausen, A., Sannella, D., Tarlecki, A.: Casl – the Common

Algebraic Specification Language. In: Logics of Specification Languages [9], pp.
241–298. Springer, Heidelberg (2008)

45. Mossakowski, T., Haxthausen, A.E., Sanella, D., Tarlecki, A.: CASL — The Com-
mon Algebraic Specification Language: Semantics and Proof Theory. Computing
and Informatics 22(1-2) (2003)

46. Moszkowski, B.C.: Executing Temporal Logic Programs. Cambridge University
Press, Cambridge (1986)

47. Petri, C.A.: Kommunikation mit Automaten. Institut für Instrumentelle Mathe-
matik, Schriften des IIM Nr. 2, Bonn (1962)

48. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, IEEE CS FoCS, Providence,
Rhode Island, pp. 46–57. IEEE CS, Los Alamitos (1977)

49. Reisig, W.: A Primer in Petri Net Design, 120 pages. Springer, Heidelberg (1992)
50. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs in Theoretical Com-

puter Science, vol. 4. Springer, Heidelberg (1985)
51. Reisig, W.: Elements of Distributed Algorithms: Modelling and Analysis with Petri

Nets, xi + 302 pages. Springer, Heidelberg (1998)
52. Reisig, W.: The Expressive Power of Abstract State Machines. Computing and

Informatics 22(1-2) (2003)
53. Reisig, W.: Abstract State Machines for the Classroom. In: Logics of Specification

Languages [9], pp. 15–46. Springer, Heidelberg (2008)

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/

34 D. Bjørner

54. Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.): IFM 2005. LNCS, vol. 3771.
Springer, Heidelberg (2005)

55. Roscoe, A.W.: Theory and Practice of Concurrency. C.A.R. Hoare Series in Com-
puter Science. Prentice-Hall, Englewood Cliffs (1997),
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

56. Schneider, S.: Concurrent and Real-time Systems — The CSP Approach. World-
wide Series in Computer Science. John Wiley & Sons, Ltd., Baffins Lane (2000)

57. Spivey, J.M.: Understanding Z: A Specification Language and its Formal Semantics.
Cambridge Tracts in Theoretical Computer Science, vol. 3. Cambridge University
Press, Cambridge (1988)

58. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall Inter-
national Series in Computer Science (1992)

59. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Pren-
tice Hall International Series in Computer Science (1996)

60. Zhou, C.C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real–
time Systems. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2004)

61. Zhou, C.C., Anthony, C., Hoare, R.: A Calculus of Durations. Information Proc.
Letters 40(5) (1992)

http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

Compositional and Quantitative Model Checking
(Extended Abstract)�

Kim G. Larsen

Dept. of Computer Science, Aalborg University, Denmark
kgl@cs.aau.dk

Abstract. This paper gives a survey of a composition model checking
methodology and its succesfull instantiation to the model checking of
networks of finite-state, timed, hybrid and probabilistic systems with
respect to suitable quantitative versions of the modal μ-calculus [Koz82].

The method is based on the existence of a quotient construction, al-
lowing a property ϕ of a parallel system A|B to be transformed into a
sufficient and necessary quotient-property ϕ/A to be satisfied by the
component B. Given a model checking problem involving a network
P1| . . . |Pn and a property ϕ, the method gradually move (by quotient-
ing) components Pi from the network into the formula ϕ. Crucial to the
success of the method is the ability to manage the size of the intermedi-
ate quotient-properties by a suitable collection of efficient minimization
heuristics.

1 Model Checking

During more than twenty years efficient methods and heuristics model checking
algorithms have been devised for finite-state systems. More recently substantial
effort has been made toward quantitative model checking where the model (as
well as the properties to be checked) include timing, hybrid or probabilistic and
stochastic aspects.

In all cases the main obstacle is that of the so-called state-space-explosion
problem, which refers to the fact that the size of the state-spaces to be analyzed
grow exponentially in the number of components of the model to be analysed.
In fact for all of the above models (and logics) the model checking of composite
systems are complexity-wise hard problems, e.g. either PSPACE-complete or
EXPTIME-complete.

Thus, effort has been focused on the development of a variety of heuristics have
been proposed to overcome this problem at least for the analysis of large ranges
of realistic systems. The heuristics developed include symbolic model-checking,
on-the-fly techniques, guided model checking, bounded model checking, partial
order techniques.

� This paper has been partly supported by the VKR Center of Excellence MT-LAB.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 35–42, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 K.G. Larsen

2 Compositional Model Checking

An alternativ technique for overcoming the problem of state-space explosion is the
compositional model checking introduced by Andersen [And95] in 1995 for finite-
state systems and later extended to real-time [LL98a, LL98b, KLL+97, LL95] and
hybrid systems [CL00]. The method is based on the notion of quotienting for par-
allel composition: given a propertyϕ and a parallel systemA|B the quotient prop-
erty ϕ/A should satisfy the following equivalence:

A|B |= ϕ if and only if B |= A/ϕ (1)

Depending on the specification formalims used for specifying ϕ, the modeling
formalism used to describe A and B as well as the particular notion of parallel
composition, |, the quotient-formula ϕ/A may, or may not, be expressible in the
specification formalism. We shall see examples of this when instantiating the
compositional model checking methodology to probabilistic systems.

Now consider the following typical model checking problem (P1| . . . |Pn) |= ϕ
involving a network of n components (finite state, timed automata, hybrid au-
tomata or probabilistic systems). Assuming the existence of a quotient con-
struction, we may verifty that the parallel composition of the n components
satisfies the formula ϕ without having to construct the complete state space of
the network (P1| . . . |Pn): we simply remove the components Pi one by one while
simultaneously transforming the formula according. Thus, when removing the
component Pn we will transform the formula ϕ into the quotien formula ϕ/Pn

such that: (
P1| . . . |Pn

)
|= ϕ if and only if

(
P1| . . . |Pn−1

)
|= ϕ/Pn (2)

Now clearly, if the quotient is not much larger the original formula, we have
succeeded in simplifying the problem. Repeated application of quotienting yields:(

P1| . . . |Pn

)
|= ϕ if and only if 1 |= ϕ/Pn/Pn−1/ . . . /P1 (3)

where 1 is the unit with respect to parallel composition. However, based on
quotienting alone, (3) provides no solutoin ot the problem as the explosion will
now occur in the size of the final quotient formula instead. The crucial and
experimentally “verified” observation by Andersen was that each quotienting
should be followed by a minimization of the formula based on a collection of
few, efficiently implementable strategies.

3 Finite State Systems

In this section we give a detailed instatiation of the described compositional
model checking technique in the setting of finite state systems. First we introduce
the (well-known) notion of a (finite) labelled transition system:

Compositional and Quantitative Model Checking 37

Table 1. Satisfaction relation for the modal μ-calculus

P |= tt

P |= ϕ1 ∧ ϕ2 iff P |= ϕ1 and P |= ϕ2

P |= ϕ1 ∨ ϕ2 iff P |= ϕ1 or P |= ϕ2

P |= 〈a〉ϕ iff ∃P ′.P
a→ P ′ ∧ P ′ |= ϕ

P |= [a]ϕ iff ∀P ′.P
a→ P ′ ⇒ P ′ |= ϕ

P |= Xi iff P |= ϕi where (X = ϕi) ∈ E .

Definition 1. A (finite) labelled transition system P over a set of labels or
actions Act consists of a finite set of processes (or states) Proc and a transition
relation →⊆ Proc×Act×Proc is the transition relation. Whenever (P, a, P ′) ∈→
we write P a→ P ′. None

Now properties are specified in the following version of the modal μ-calculus
[Koz82]:

ϕ ::= tt |ff |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 | 〈a〉ϕ | [a]ϕ |X
HereX belongs to a set of formula-variables {X1, . . . , Xm} each having a defining
equation E : {Xi = ϕi|i = 1 . . .n}, where σi ∈ {μ, ν}. The notion of satisfaction
P |= ϕ satisfies the equivalences of Table 11. We recall that the modal μ-calculus
provides a characterization of bisimulation in the sence that P ∼ Q if and only
if ∀ϕ.P |= ϕ⇔ Q |= ϕ.

Quotienting

Networks or composite systems over a labelled transition systems P are terms
of the form (P1| . . . |Pn)[f], where Pi ∈ Proc for all i ∈ {1 . . .n} and f : (Act ∪
{0}) ⇀ Act is a synchronization function combining actions from each of the
n components – with 0 indicating inaction, i.e. P 0→ P – into an action of the
composite system in the obvious way:

[Pi
ai→ P ′

i] i=1..n

(P1, . . . , Pn)[f] a→ (P ′
1, . . . , P

′
n)[f]

f(a1, . . . , an) = a

Note that the synchronization functions given by fint(0, . . . , a, . . . , 0) = a respec-
tively fsync(a, . . . , a) = a provides pure interleaving and synchonous composition
respectively.

Now, let f be a binary synchronization function. Then – for non-variable
formula – the quotient construction is defined by structural induction according
to Table 2. Quotienting a formula-variableXi with defining equationXi =σi= ϕi

is defined as Xi/P = XP
i where XP

i is a new formula variable with defining
equation XP

i =σi= ϕi/P .
1 |= is actually the the maximal or minimal relation satisfying Table 1 depending on

whether σi = μ (minimal) or = ν (maximal).

38 K.G. Larsen

Table 2. Structural definition of quotient formula ϕ/P

tt/P = tt
ff/P = ff

ϕ1 ∨ ϕ2/P = ϕ1/P ∨ ϕ2/P
ϕ1 ∧ ϕ2/P = ϕ1/P ∧ ϕ2/P

〈a〉ϕ/P =
∨

P
b→P ′,f(c,b)=a

〈c〉(ϕ/P ′)

[a]ϕ/P =
∧

P
b→P ′,f(c,b)=a

[c](ϕ/P ′)

Theorem 1. Let P and Q be processes and ϕ a formula. Then P |Q |= ϕ if and
only if Q |= ϕ/P . None

3.1 Simplifications

Now after quotienting the number of new (quotient) formula variables XP
i is

obviously n · |Proc|. Thus in order to avoid explosion in the number of formula
variables, efficient heuristic methods for simplifying formulas and reducing the
number of variables must be provided. The heuristics below are suggested in
[And95] with reported good effect on a number of case-studies including Milner’s
Scheduler:

Boolean Simplification: A number of simple boolean simplifications may be per-
formed, e.g. ϕ∨ tt ≡ tt, ϕ∧ tt ≡ ϕ and ϕ∧ϕ ≡ ϕ∧ϕ ≡ ϕ. Also, 〈a〉ff ≡= ff
and [a]tt ≡ tt.

Reachability Analysis: Removal of variables XP unreachable from X0/P0,
where P0 is the initial process.

Constant Propagation: Remove trivial variables X =d tt and X =d ff. Obvi-
ously, after constant propagation the formulas in which X occurs are subject
to boolean simplification.

Trivial Equation Elimination: Replace X =d ϕ with X =d tt if ϕ[tt/X] ≡ tt.

Equation Reduction: Collapse X and Y if X =d ϕ, Y =d ψ and ϕ[Y/X] ≡
ψ[Y/X].

4 Timed Automata

In this section we review the quotient-based compositional model checking
method applied to timed automata, a formalism introduced by Alur and Dill
[AD94, AD90] which by now established itself as a classical formalism for de-
scribing the behaviour of real-time systems.

The set Φ(C) of clock constraints ϕ over a finite set (of clocks) C is defined
by the grammar ϕ ::= x � k | ϕ1 ∧ϕ2 where x ∈ C, k ∈ �, � ∈ {≤, < and ≥, >.

Compositional and Quantitative Model Checking 39

Definition 2. A timed automaton is a tuple (L, �0, F, C,Act, I, E) consisting
of a finite set L of locations, an initial location �0 ∈ Q, a set F ⊆ Q of final
locations, a finite set C of clocks, a finite set Act of actions, a location invariants
mapping I : L→ Φ(C), and a set E ⊆ L× Φ(C)× Act× 2C × L of edges. None

We shall denote an edge (�, ϕ, a, r, �′) ∈ E by �
ϕ,a,r−−−→ �′.

Definition 3. The zone of a clock constraint in Φ(C) is a set of clock valuations
C → �≥0 given inductively by

�x � k� = {v : C → �≥0 | v(x) � k}
�ϕ1 ∧ ϕ2� = �ϕ1� ∩ �ϕ2�

We shall write v |= ϕ instead of v ∈ �ϕ�. None

Definition 4. The semantics of a timed automaton A = (L, �0, F, C,Σ, I, E) is
the transition system �A� = (S, s0, Σ ∪�≥0, T = Ts ∪ Td) given by

S =
{
(�, v) ∈ L×�C

≥0

∣∣ v |= I(�)
}

s0 = (�0, v0)

Ts =
{
(�, v) a−→ (�′, v′)

∣∣ ∃� ϕ,a,r−−−→ �′ ∈ E : v |= ϕ, v′ = v[r]
}

Td =
{
(�, v) d−→ (�, v + d)

∣∣ ∀d′ ∈ [0, d] : v + d′ |= I(�)
}

None

Now properties are specified in the logic Lν [LLW95] being a timed extension of
the modal μ-calculus, given a finite set of formula clocks K:

ϕ ::= tt | ff | Z |
ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈a〉ϕ | [a]ϕ |
∃ϕ | ∀ϕ | x in ϕ | x ∼ n | x− y ∼ n

where x ∈ K. Now given a timed automaton A Table 3 provides some of the
structural defintions of the interpretion of Lν over extended states 〈(l, u), v〉,
where (l, u) is a state of A and v is a clock valuation over K. When A is a timed
automata and ϕ a formula we write A |= ϕ if and only if 〈(l0, u0), v0〉 |= ϕ, where
l0 is the initial location of A, u0 and v0 are clock valuations assigning 0 to all
clocks.

Quotienting

Assuming disjoint sets of clocks Ci, parallel composition of timed automata
A1, . . . , An are semantically parallel compositions of states si = (li, ui) of the
respective timed automata with synchronization of discrete actions Act given by
a synchronization function f . The rules for discrete and delay transitions are
given below:

[si
ai→ s′i] i=1..n

(s1, . . . , sn)[f] a→ (s′1, . . . , s′n)[f]
f(a1, . . . , an) = a

40 K.G. Larsen

Table 3. Interpretation of Lν

〈(l, u), v〉 |= 〈a〉ϕ iff ∃(l, u) a→ (l′, u′).〈(l′, u′), v〉 |= ϕ

〈(l, u), v〉 |= ∃ϕ iff ∃d.〈(l, u + d), v + d〉 |= ϕ

〈(l, u), v〉 |= x in ϕ iff 〈(l, u), v[x = 0]〉 |= ϕ

Table 4. Timed Quotient

c/n = c
(ϕ1 ∧ ϕ2)/n = ϕ1/n ∧ ϕ2/n
(x in ϕ)/n = x in (ϕ/n)

(∀ϕ)/n = ∀(ϕ/n)
X/n = Xn where Xn = ϕX/n

([a]ϕ)/n =
∧

n
gar→ m

(g ⇒ [a](r in ϕm)

Table 5. Constraint Propagation

ff ⇒ ϕ ≡ tt
D ⇒ C ≡ tt if D ⊆ C

D ⇒ ([a]ϕ) ≡ [a](D ⇒ ϕ)
D ⇒ (ϕ1 ∧ ϕ2) ≡ (D ⇒ ϕ1) ∧ (D ⇒ ϕ2)

· · ·
D ⇒ (∀ϕ) ≡ ∀(D↑ ⇒ ϕ) if D↓ ⊆ D

[si
ε(d)→ s′i] i=1..n

(s1, . . . , sn)[f]
ε(d)→ (s′1, . . . , s′n)[f]

Urg. Constr.

Now let B be a timed automaton over clock set C and let ϕ be an Lν formula
over clock set K, then we define the quotient formula ϕ/n over C∪K inductively
as indicated in Table 4. Then the following theorem holds:

Theorem 2. Let B be a timed automaton over clock-set C and let ϕ be a for-
mula over clock set K. Then for any timed automaton A, (A|B) |= ϕ if and only
if A |= ϕ/n0, where n0 is the initial location of B. None

Simplification

In addition to the simplification rules for boolean simplification, constant pro-
pogation, reachability analysis, trivial equation elimination and equation reduc-
tion a number of simplification rules for propagating constraints are used as
illustrated in Table 5.

The quotient construction and simplification rules have been implemented in
the tool CMC [LL98a, KLL+97] which allows for compositional model checking
of networks of timed automata.

Compositional and Quantitative Model Checking 41

5 Concluding Remarks

Quotient constructions has been provided for both linear hybrid systems [CL00]
and probabilistic systems [LS92]. In the latter case it turns out that the nat-
ural probabilistic extension of the modal μ-calculus is not expressive enough
for quotienting to exist. The least expressive extension of this logic is
characterized.

Also quotienting for timed automata with respect to reachability properties
has been considered in [ABL98, ABBL98]. Obviously, reachability properties are
not closed under quotienting and the above papers characterizes logical prop-
erties which may be obtained as the quotient of a reachability property with
respect to some (test) timed automata.

References

[ABBL98] Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reacha-
bility testing for timed automata. In: Arvind, V., Sarukkai, S. (eds.) FST
TCS 1998. LNCS, vol. 1530, pp. 245–257. Springer, Heidelberg (1998)

[ABL98] Aceto, L., Burgueño, A., Larsen, K.G.: Model checking via reachability
testing for timed automata. In: Steffen, B. (ed.) TACAS 1998. LNCS,
vol. 1384, pp. 263–280. Springer, Heidelberg (1998)

[AD90] Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson,
M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg
(1990)

[AD94] Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer
Science (TCS) 126(2), 183–235 (1994)

[And95] Andersen, H.R.: Partial model-checking (extended abstract). In: Proc. 10th
IEEE Symp. on Logic in Computer Science (LICS 1995), pp. 398–407. IEEE
Computer Society Press, Los Alamitos (1995)

[CL00] Cassez, F., Laroussinie, F.: Model-checking for hybrid systems by quoti-
enting and constraints solving. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 373–388. Springer, Heidelberg (2000)

[KLL+97] Kristoffersen, K.J., Laroussinie, F., Larsen, K.G., Pettersson, P., Yi, W.:
A compositional proof of a real-time mutual exclusion protocol. In: Bidoit,
M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997.
LNCS, vol. 1214, pp. 565–579. Springer, Heidelberg (1997)

[Koz82] Kozen, D.: Results on the propositional μ-calculus. In: Nielsen, M.,
Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 348–359. Springer,
Heidelberg (1982)

[LL95] Laroussinie, F., Larsen, K.G.: Compositional model-checking of real-time
systems. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962,
pp. 27–41. Springer, Heidelberg (1995)

[LL98a] Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-
checking of real-time systems. In: Proc. IFIP Joint Int. Conf. on Formal
Description Techniques & Protocol Specification, Testing, and Verification
(FORTE-PSTV 1998), pp. 439–456. Kluwer Academic, Dordrecht (1998)

42 K.G. Larsen

[LL98b] Laroussinie, F., Larsen, K.G.: Cmc: A tool for compositional model-
checking of real-time systems. In: Budkowski, S., Cavalli, A.R., Najm,
E. (eds.) FORTE. IFIP Conference Proceedings, vol. 135, pp. 439–456.
Kluwer, Dordrecht (1998)

[LLW95] Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic –
and back. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969,
pp. 529–539. Springer, Heidelberg (1995)

[LS92] Larsen, K.G., Skou, A.: Compositional verification of probabilistic pro-
cesses. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp.
456–471. Springer, Heidelberg (1992)

Invariants, Modularity, and Rights�

Ernie Cohen1, Eyad Alkassar2, Vladimir Boyarinov3, Markus Dahlweid4,
Ulan Degenbaev2, Mark Hillebrand3, Bruno Langenstein3, Dirk Leinenbach3,

Micha�l Moskal4, Steven Obua2, Wolfgang Paul2, Hristo Pentchev2,
Elena Petrova2, Thomas Santen4, Norbert Schirmer3, Sabine Schmaltz2,

Wolfram Schulte5, Andrey Shadrin2, Stephan Tobies4, Alexandra Tsyban2,
and Sergey Tverdyshev2

1 Microsoft Corporation, Redmond, WA, USA
ernie.cohen@microsoft.com

2 Saarland University, Computer Science Dept., Saarbrücken, Germany
{eyad,ulan,obua,wjp,pentchev,petrova,sabine,shadrin,azul,

deru}@wjpserver.cs.uni-sb.de
3 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

{Vladimir.Boyarinov,mah,langenstein,Dirk.Leinenbach,
Norbert.Schirmer}@dfki.de

4 European Microsoft Innovation Center, Aachen, Germany
{markus.dahlweid,michal.moskal,thomas.santen,

stephan.tobies}@microsoft.com
5 Microsoft Research, Redmond, WA, USA

schulte@microsoft.com

Abstract. The quest for modular concurrency reasoning has led to re-
cent proposals that extend program assertions to include not just knowl-
edge about the state, but rights to access the state. We argue that these
rights are really just sugar for knowledge that certain updates preserve
certain invariants.

1 Introduction

Over the years, many approaches to reasoning about concurrent systems have
been proposed. At their core, most of these approaches are based on invariants.
Invariance reasoning is conceptually simple, and compositional across concur-
rent composition. But invariance reasoning also has a downside: to check an
update to the state, you have to check all of the invariants that the update
might break. This is not usually a problem when reasoning about concurrent
algorithms, where you can afford to see all of the invariants. Nor is it usually
a problem when reasoning about concurrent hardware or distributed systems,
where the sharing of data and invariants across components is typically static.
� Work partially funded by the German Federal Ministry of Education and Research

(BMBF) in the framework of the Verisoft XT project under grant 01 IS 07 008. Work
of the sixteenth author was funded by the German Research Foundation (DFG)
within the program ‘Quality Guarantees for Computer Systems’.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 43–55, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

44 E. Cohen et al.

But it is a big problem when reasoning about large concurrent programs, where
sharing is dynamic, and code might break invariants that are out of scope (or,
indeed, might not have even been written when the code is verified).

The modern attack on this problem is to strengthen the specification language
to specify not only a thread’s knowledge1 (about the state) but also its rights (what
it is allowed to do to the state), the combination of which we call a thread’s stuff.
For example, the stuff of a thread typically includes exclusive access to its local
data (that is, right to modify the data and knowledge of its exact value), and lesser
rights and knowledge about shared data (e.g., one thread might be allowed only to
increase a counter and another only to decrease it; the former thread can possess
knowledge about its maximum value, the latter about its minimum).

In rely-guarantee reasoning [5], the stuff in a thread is static over its lifetime.
In more recent approaches, stuff can move in and out of threads, e.g., through
shared objects such as resources. A procedure specification describes the stuff
provided to the procedure on entry, and the stuff returned on exit (or, depending
on methodology, how the stuff can change). (Fork and join are conceptually
similar to procedure call and return.)

The usual way to represent stuff, typified by Concurrent Separation Logic
(CSL) [7], is to describe stuff using a linear logic. This elegant approach has led
to some very beautiful proofs of programs. However, it is not without drawbacks:

1. Rights and knowledge are very different things, governed by very different
mathematics. Knowledge follows the rules of ordinary logic and can be freely
created or destroyed, while rights have to follow some conservation principles
to avoid unsoundness (e.g., from duplicating and distributing an exclusive
right) or resource leakage (e.g., if you forget about your exclusive right to a
chunk of memory). The introduction of linearity features into the logic pro-
duces a substantial jump in computational complexity (e.g., for separation
logic see [1,2]).

2. There are many ways to form a linear space of rights. For example, in CSL,
one might use either fractional permissions or counting permissions; there
are also other possibilities, such as a tree-like structuring of permissions, or
permission accounting using infinitesimals (as in Chalice [6]), not to mention
more expressive approaches, such as relational permissions [4]. So it seems
odd to build such a commitment into the programming logic.

The point of this paper is that once we have a program logic that provides ghost
state and two-state invariants (which we need anyway to do internal simulation
reasoning2), we no longer need rights within the logic; rights can be represented
as the knowledge that certain updates don’t break certain invariants. (In order to

1 We use knowledge here in the usual sense of what the thread can deduce about the
state or changes thereto, not in the sense as in logics of knowledge.

2 To show that a program simulates some abstract specification, we make this spec-
ification a (two-state) invariant of an explicit ghost object, with a 1-state coupling
invariant linking it to the concrete state. The ghost object is then updated (either
implicitly or explicitly) so as to maintain these invariants.

Invariants, Modularity, and Rights 45

make knowledge – and rights – first class, we use objects as the carriers of knowl-
edge.) This might seem odd; since knowledge can be freely duplicated, what makes
an exclusive right exclusive? The trick is to view threads as objects. The invari-
ant of a thread is given implicitly by the annotation one would put on the thread
(i.e., a disjunction with disjuncts of the form “if control is here, then this predi-
cate holds”). So if thread T uses its exclusive right to a variable to deduce (in its
assertion) that the value of the variable has some value at some point in its execu-
tion, another thread can’t change the value without breaking T ’s invariant. Since
threads are verified without access to what code might be running in other threads,
this means that exclusive rights effectively prevent modifications by other threads.

The price we pay is that to move rights around, we have to manipulate ghost
state. But this is to be expected, given the complexity gap between validity
checking in ordinary logic and linear logics; the use of linear logics amounts
to folding these manipulations of ghost state into the programming logic. One
advantage to our approach is that, by building rights on top of ghost code and
invariants, the “logic” of rights can be extended by just adding more code; the
substitution of code verification for metatheory is usually a good trade. Equally
important, software engineers understand code and invariants, whereas they are
likely to reject fancy program logics. Nevertheless, our approach is compatible
with the use of fancier linear rights.

The ideas here were developed in the context of the design of the Verifying
C Compiler (VCC) [3], an automatic verifier for concurrent C code. However,
many of the ideas are realized somewhat differently in VCC; we point out some
of these differences in the footnotes.

2 Local Invariance Reasoning

Assume a state consisting of an addressable heap (containing both real state
and ghost state). When we speak of a variable, we mean a heap address, and
when we speak of the value of a variable a, we mean the value [a] stored at
the address a in a given state. Define [A], where A is a set of addresses, to be
the partial (heap) map restricted to the addresses in A. On top of the state,
we imagine a collection of objects,3 each with a unique identifier (so that we
can store object references on the heap), and each with a fixed collection of
invariants (two-state predicates on the heap).4 If o denotes an object identifier,
3 An alternative (but essentially equivalent) approach, used in VCC, is to start with

objects and fields, and to use only ownership between objects. However, we then
need additional system invariants to prevent aliasing objects from existing at the
same time and to make sure that there is always some existing object for each bit
of memory (to prevent memory leakage). Moreover, because it should be possible to
change the owner of an object without having to check the object’s invariant, the
ownership bit for an object has to be treated specially.

4 Note that we are assuming a fixed grain of atomicity; all objects share the same
notion of system step. This might seem inelegant, but has the enormous practi-
cal advantage of allowing invariants of different objects to be freely combined with
conjunction when reasoning about the state.

46 E. Cohen et al.

define inv (o) to be the conjunction of the invariants of o; intuitively, we expect
each object invariant should hold across each state transition (pair of consecutive
states) in every execution of the program. In two-state predicates, old(e) gives
the value of the (single-state) expression e in the prestate, while e gives the value
in the poststate. Define unch(e) ≡ (e = old(e)). Define the single-state invariant
inv1 (o) to hold in a state s iff inv(o) holds across the transition from s to s
(the stuttering transition from s). Finally, define the single-state predicate 〈p〉
(“necessarily p”) to mean that every possible state transition from the current
state satisfies the two-state invariant p.

To enable modular checking that a state update preserves all invariants, we
introduce an ownership policy on state, as follows. We add to ghost state a map
owner from addresses to objects5; if owner (a) = o, we say that o owns a. Define
span(o) ≡ [{a | owner(a) = o}], i.e., the span of o consists of the set of locations
owned by o and the values of the heap at these locations. We require the object
invariants to satisfy the following admissibility condition, for every object o, over
every possible state transition:

(∀o′ : old(inv1 (o′))) ∧
(∀o′ : unch(span(o′)) ∨ inv(o′))
⇒ inv(o)

This condition says that to check that an update preserves all invariants, we only
have to check the invariants of those objects who own an updated location or
who acquired or released ownership of a location, i.e., whose span has changed.
It thus provides the desired modularity when checking an update: we need only
to find a set of objects whose spans cover the updated data, and check the
invariants of these objects (assuming that all single-state invariants hold in the
prestate). Admissibility checking itself is modular – we can check admissibility
of an object invariant without knowing all of the object invariants (although it
usually depends on some of them). Note that admissibility requires in particular
that all invariants are preserved under stuttering.

To allow objects to be created and destroyed, the heap contains for each object
o a (ghost) Boolean variable exists(o) that says whether that object actually
exists. We think of each object invariant as implicitly containing a hypothesis
that the object exists in the prestate or the poststate. In addition, o has an
invariant that says that it owns exists(o), whether o exists or not6.

To allow object invariants to assert the invariants of other objects, we al-
low invariants to contain terms of the form inv(o), as long as such terms occur

5 We are here assuming that owner is not on the heap, to avoid giving it an owner;
equivalently, we could put it on the heap, making its owner a system object whose
only invariant is that it owns owner .

6 It is important for o to own exists(o) even when it doesn’t exist to avoid having to
worry about breaking the invariant of the old owner of exists(o) when truthifying
exists(o).

Invariants, Modularity, and Rights 47

only with positive polarity; this polarity constraint guarantees a consistent in-
terpretation of which invariants hold across any state transition7. Let I be the
conjunction of all object invariants; if I ∧ old([exists(o)]) ⇒ p (across every
possible pair of states), we say that o claims p.

3 Structuring Invariants

Some forms of invariants are trivially admissible. For example, an invariant of
object A that can be written as a predicate on span(A) is admissible as long
as it is invariant under stuttering. More generally, any invariant of the form
unch(span(A)) ∨ p is admissible. However, invariants that depend on data owned
by other objects sometimes require help from the owning objects.

Suppose that an invariant of an object B depends on some variable a in
the span of an object A. For example, A might be a lower-level object forming
part of the representation of B, and a might hold some part of the abstract
state of A. Typically, an update to a requires checking some condition on B,
or even concurrent update to B, to avoid breaking B’s invariant. Without some
precaution, this will make B’s invariant inadmissible. We don’t want to put
B’s particular invariant in A, because the implementation of B is not in A’s
scope. (Moreover, in most cases, the particular object dependent on A is state-
dependent, e.g., given by some ghost variable of A, such as its owner.)

One approach is to turn the relevant state of B into an existentially quantified
variable. For example, if B’s invariant is a single-state invariant p that relates
[a] with the value of a variable b in the span of B, we can replace B’s invariant
with the invariant (∃c : p′), where p′ is p with [b] replaced by c. This approach
is suitable only when we don’t need to constrain updates to A, and only need to
mirror them by updating b appropriately8.

An approach that we have found more useful is to allow changes to a only
when some condition on the ghost heap holds, with an invariant (in A) of the
form (unch([a]) ∨ p) (which itself is necessarily admissible). For example, p
might be simply [b], where b is a state bit owned by B, allowing B to inhibit
updates to a by keeping b false; this right can move around with ownership of
b. More sophisticated predicates are also possible; for example, p might require
a more complex test on the state, or even a particular simultaneous update of
the state. The form that we have found most useful is where p is of the form
inv(B), which essentially requires a check of B’s invariant (without saying what
that invariant is) when updating a; we say that B approves changes to a. This

7 There are various ways to weaken the polarity constraint. For example, one can
stratify the objects according to a static well-founded relation (e.g., on object types),
so that the invariant of object o can use inv(o′) with negative polarity only if o′ < o,
or stratify on the basis of the time when exists(o) becomes true.

8 Another issue is that if other objects refer to b, replacing these references with exis-
tential loses the coherence between the instances. We have considered adding to VCC
existential variables that are defined by such existential formulas, but the defining
formulas of such variables have to be suitably stratified to guarantee consistency.

48 E. Cohen et al.

automatically gives B’s invariants admissible use of a. We can allow this power
of approval to move around by replacing the constant B with a state expression,
have multiple approvers by using a conjunction of such invariants, or approve a
more restricted class of changes (e.g., changes that increase a).

The simplest case of approval arises where B claims that (under some condi-
tion) A exists. There are many ways to make such a B admissible. One is for A
to keep track of such “clients” with the invariant that A isn’t destroyed while
this set is nonempty and that taking an object out of the set requires approval of
the object. (Note that this doesn’t have to be done for all objects that claim the
existence of A, just for those whose admissibility cannot be established in other
ways.) Because B is a full-fledged object, the existence of B can be claimed
by other objects, creating a graph-like information structure. Another way to
structure this is to extend ownership to objects, and to give each object an im-
plicit invariant that its owner approves its destruction or ownership changes.
Yet another is to assign a fraction in the range (0, 1] to each claimant, with the
invariant that these claims sum to 1, which simulates fractional permissions of
CSL. These can all be mixed together in the same system.

4 Threads

Because the system state is stored on the heap, the continuation of each thread
has to likewise be stored on the heap, and we think of the thread as owning
the locations used to represent its continuation. (For example, in a higher-order
language, we would have a location for each thread that stores its continuation.)
In a standard hardware architecture, we can think of the thread owning (mem-
ory locations corresponding to) the local registers (in particular, the program
counter), the register data saved in the stack frames on the control stack, and
any stack memory reserved beyond the current stack top. Stack variables are
owned by the thread when they are allocated and when they are released, but in
between ownership might pass out of the thread; this is necessary for languages
like C that allow references to stack variables to be stored in data structures.

Checking admissibility of a thread means checking that updates that don’t
change the span of the thread don’t break its (implicit) invariants. This amounts
to checking that any assertion we attach to a control location is stable under any
action that preserves all invariants of updated objects. This stability is normally
proved using the invariants of objects mentioned in the assertion.

The invariant of a thread (like the invariant of any object) can admissibly
talk about any data the thread owns. Similarly it can talk admissibly about any
data whose update is approved by the thread. Note that in contrast to other
approaches, where threads can only update locations that they own exclusively,
nothing logically prevents a thread from changing state owned by another thread
(even its program counter). However, the possibility of such updates do not
effect the verification of the potentially modified thread. Moreover, as a practical
matter, threads typically don’t have access to the actual invariants of other
threads, so we cannot verify threads that change state owned by other threads.

Invariants, Modularity, and Rights 49

5 Claims

An object that owns no interesting data can nevertheless provide useful knowl-
edge about the state (or how the state may change), through its invariant. Use-
ful knowledge is almost never permanent; for example, knowledge about a data
structure is destroyed when the structure is torn down. Thus, the admissibility
of such knowledge depends on its approving destruction of the relevant parts of
the state, as described in the last section. We call such an object a claim.

Why would we wish to use a claim to pass information around, as opposed to
an ordinary assertion within program code? The answer is that code assertions
can only speak sensibly about state that is owned by the thread running the
code, whereas shared objects (e.g., locks) are usually not owned by the thread.
Even if some property of a shared object is known to hold at some point in a
program, any write to nonlocal state can destroy such information. Verifying that
such information is not destroyed typically requires using invariants of objects
that are out of scope (e.g., because they are invariants of lower level data objects
whose implementation is hidden). Even if the invariants are in scope, this would
force the properties being maintained to be proved over and over again, which
would be a disaster for practical reasoning. Conversely, the knowledge carried
within a claim is guaranteed to stay around until the claim itself is destroyed;
because the claim is typically owned by the thread, this can only happen if the
thread itself destroys the claim. Thus, claims allows knowledge to be broken
up into logical units, these units moved around as necessary (put into data
structures, passed in and out of procedures, etc.).

The admissibility check when forming a claim amounts to checking that its
invariant is stable (i.e., cannot be falsified) as long as the claim exists; it is
essentially analogous to the check of an assertion associated with a program lo-
cation, except that it cannot assume the constancy of data owned by the thread.
Of course the two-state invariant of the claim must hold over the transition in
which the claim is “created” (i.e., when it goes from nonexistence to existence).

It is often convenient to use claims to build new claims. In order to do this,
claims themselves must keep track of these dependent claims, so that the de-
pendents can approve destruction of the claim. Such claims can be destroyed
only when all of its dependents have been destroyed (or are simultaneously de-
stroyed). A program using such a claim thus has to maintain (through program
assertions or object invariants) information about the possible dependents that
might still exist.

Claims are often passed as ghost arguments to procedures9. Typically, a pre-
condition of the procedure guarantees that the claim exists and is owned by the
thread executing the procedure (so that it remains in existence until the thread
destroys it or gives up its ownership). There are several possible idioms for what
the procedure can do with the claim. The most usual is that the precondition

9 It is also possible to simply assert as a precondition the existence of a claim with
the suitable properties, but passing it as a ghost argument has the advantage of
immediately giving it a name to which it can be referred to in ghost code.

50 E. Cohen et al.

guarantees that the claim is returned with the same dependents as upon entry10.
In some cases, the procedure has to be able to destroy the claim (e.g., if it is
destroying an object referenced by the claim)11; in this case, the precondition
also specifies the claimants that might exist on entry.

Procedures that operate on shared synchronization objects (such as locks)
typically take as a ghost argument a claim that claims that the target object
exists. From these initial claims, a thread can deduce the existence of other ob-
jects (possibly claims themselves). For example, acquisition procedures typically
return an object with ownership of the object transfered to the calling thread;
for exclusive access (as in a writer lock) this object is the very object protected
by the lock, whereas for shared access (as in a reader lock), the object is a claim
claiming the existence of the protected object.

6 Permissions

We return to the question of what it means to have permission to perform an
action. Suppose we want to update the heap at some location, say by atomically
setting it to 0. What would justify such an update?

If the thread owns the updated location, the thread’s invariant is all that has
to be checked. By the form of the thread invariant, this means just checking
that if performing the update from a state satisfying the program assertion
preceding the update results in a state satisfying the program assertion following
the update. This is just ordinary sequential program reasoning.

On the other hand, if the updated location is owned by some object, we have
to check that object’s invariant (as well as that of the thread). The obvious
thing to do is to use the prestate to deduce which object owns the location, and
that the state is such that the update preserves this object’s invariant. Often
this approach is possible. For example, in the code implementing a concurrent
object, the procedures updating some private part of the object state usually
have enough local information to do this check. The majority of atomic updates
in commercial code can be checked in this way (if the hardware intrinsics are
treated as primitives).

However, there are cases where this approach is insufficient. First, procedures
that serve as low-level wrappers of atomic hardware intrinsics (e.g., interlocked
increment,) cannot talk about all possible objects that might own (or refer to)
the updated location. Second, even if code updating the heap knows the object
that owns the data and can see its invariant, this object might use approval or
similar mechanisms that require checking the invariants of other objects; since
these other objects are typically at higher levels, their invariants are likely to be
out of scope (as well they should be).

10 This corresponds to returning the same “amount” of claim in logics based on frac-
tional permissions.

11 To make this more convenient, claims in VCC have the property that once destroyed
they can never again be recreated, allowing the destroyer of a claim to assert that
the claim doesn’t exist on procedure return.

Invariants, Modularity, and Rights 51

Let us consider a typical example, where an object A has an invariant
unch([a]) ∨ inv(B). We’d like to pass to the code updating a a claim c that it
can use to check the update to a. When updating a, we cannot soundly assume
the invariant of c holds across the update, even if the update doesn’t destroy c.
However, we can safely assume that the invariant of c holds over the transition
that stutters from the prestate of the update. To get from this information about
a nonstuttering transition from the prestate (such as the update to a, we use a
claim with a (single-state) invariant that talks about all possible transitions from
the prestate. To allow the code to update a without breaking B, we pass to it a
claim that claims 〈p⇒ inv(B)〉. For example, ifB has the invariant [a] ≤ [b], then
from a claim that claims that [b] = 5 we can construct a dependent claim claiming
〈unch(span(B)) ∧ [a] ≤ 5 ⇒ inv(B)〉, which says that any change that doesn’t
change B and satisfies [a] ≤ 5 preserves the invariant of B.

Note that this technique is more modular than a rely-guarantee condition,
because A might have other approvers besides B (that the client might not even
know about). The claim doesn’t claim that an update satisfying p will satisfy
all invariants (which would be impossible without breaking information hiding),
only that it will not break B’s invariant.

Now, just as we don’t want to expose information about B to the code, we
also don’t want to expose details of the update to the client providing the claim
(since the update to a might need to simultaneously update other data belonging
to A. All that p has to specify (beyond the change to a) is that the update
doesn’t update the span of B. For example, if the whole invariant of B (beyond
ownership of b) is ([exists(A)] ∧ [a] < [b]), a suitable claim would be one that
claims 〈old([a]) ≥ [a] ∧ unch(span(B)) ⇒ inv(B)〉 (which can be read as: from
the current state, any state change that doesn’t increase a and doesn’t change
B preserves the invariant of B). In general, we can view any claim of the form
〈p〉 as giving information about the effects of potential updates, and therefore a
form of partial permission.

7 Read Permissions

So far, we have talked about permissions that allow a thread to change the state.
Fractional permissions or counting permissions (as described in the implemen-
tation of claims) are often used in logics such as CSL to allow reading part of
the state.

In the view presented here, reading a location requires no permission at all; the
reason for having a read permission is to allow the thread reading the location
to make a subsequent assertion about the location (such as its having the same
value that was read). That is, the read permission is just an invariant that makes
the subsequent assertion admissible. In the CSL tradition, a read permission
specifically guarantees that the location isn’t changing, which can be expressed
in an ordinary invariant.

A natural objection is that this means we would be certifying programs that
read possibly “invalid” regions of memory (which would, of course, result in a

52 E. Cohen et al.

page fault on typical hardware). One response would be that such reads are not
really “reads”, but calls to lower level reading procedures that require that the
memory being read is valid12.

8 Superposition

In some cases, permission isn’t enough. In some cases, b must be updated along
with a, e.g., to preserve an invariant in B of the form [a] = [b]. Note that in real
software, this situation would only arise when b was a ghost variable, whereas
a could be either real or ghost. We call the required update to b that restores
an invariant a compensation. The need for compensation creates a dilemma: we
can’t update b within the code that knows about a (because b is out of scope),
nor in the code that knows about b (since any required updates to private parts
of A would not be possible).

What we need to do is to pass a suitable compensation to the code updating
a; the compensation thus looks like a callback that is called within the atomic
action that updates b. This is a bit tricky, because the compensation has to “run”
starting from a state (after the update of a, but still within the atomic action)
where object invariants might no longer hold (not even for objects that haven’t
been modified). So validation of the callback usually needs to know something
about the update that preceded it. Dually, the atomic action needs to know some
properties of the callback.

We could pass the compensation as an explicit (mathematical) function from
states to states, but since the compensation updates only ghost state, it is suf-
ficient to know that a state representing the result of the compensation exists.
So we can pass a compensation in the form of a claim that claims

(∀S : p(S0, S)⇒ (∃S′ : q(S, S′) ∧ r(S0, S
′)))

where S0 denotes the current state. Here, p describes what the caller (or whoever
justifies the compensation) knows about the update, q describes what the code
performing the atomic action needs to know about the compensation, and r
describes what it needs to know about the combined effect. So in the case of
the invariant [a] = [b], we could define p ≡ unch(span(B)), q ≡ unch(span(A)),
and r ≡ inv(B). The claim can be constructed13 by defining S′ to be the state
obtained by applying the update b := a to the state S. Within the atomic action,
the code updates a, then simply moves to an arbitrary state S′ satisfying the
condition given by the claim.
12 In VCC, in the name of efficacy we dispense with these explicit memory access

procedures, and simply keep track of which memory locations are valid according to
the rules of C, checking that all memory accesses are to valid memory locations.

13 An automatic verifier can hardly be expected to guess the witnessing Skolem func-
tion S′(S0, S) automatically, so the code constructing the compensation claim gives
explicit code performing the necessary compensation, i.e., the code snippet b := a.
Note that, like all ghost code, this code has to be guaranteed to terminate to ensure
soundness, and any nondeterminism can be considered angelic rather than demonic.

Invariants, Modularity, and Rights 53

9 Automata

The claim used to provide permission in the last section allows an update to
be done an arbitrary number of times. Sometimes, we want to allow an update
to happen only once. For example, if we are simulating a step of a processor,
we might in a single step write to memory while simultaneously updating the
(virtual) program counter. This permission can only be used once – we don’t
want execution of a single machine instruction to result in multiple writes to
shared memory.

We can get this effect in two ways. One is for the compensation to require
the destruction of the permission as part of the atomic action. (Note that be-
cause permissions are objects, they are effectively additive – if a thread gains two
permission objects, he can use them for two separate updates.) The other ap-
proach is to use a more complex form of permission that, instead of being based
on claims, is based on more general objects that can own additional “local”
state that is updated when the permission is used. Such an object can represent
more complex permissions that allow operations to be performed only according
to some (arbitrarily complex) protocol (given by the invariant of the object).
Moreover, the local state can be used to make sure that the client has actually
used the permission when it returns. (In the case of simulating the processor
step, this allows the caller to ascertain that the virtual program counter has
actually moved forward.)

10 Implementation

The development of VCC has been driven by the verification of the Microsoft
Hypervisor (the core component of Hyper-VTM) as part of the Verisoft XT
project14. The hypervisor, consisting of 100KLOC of concurrent C and about
6KLOC of x64 assembler, runs directly on multiprocessor x64 hardware, turning
it into a number of virtual multiprocessor x64 machines (with an extra level of
virtual address translation, to allow each machine to be given the illusion of 0-
based contiguous memory). Except for moderate size, it is fairly representative
of low-level commercial system software: it contains a small operating system
(albeit without devices), complete with kernel, memory manager, scheduler, de-
bugger, etc. The most complex part of the system (which uses shadow page tables
to provide a virtual TLB) uses a number of very subtle concurrent algorithms,
with a quite complex simulation relation.

In VCC, most objects correspond to structured type declarations within the
code. That is, for each struct declaration, we provide annotations giving its in-
variants; these invariants apply to each instance of the type. By default, each
object owns its fields (except for fields of compound types, which are considered
separate objects; large structs can be broken up by introducing ghost substruc-
tures). The type declarations are proved admissible using only type information

14 http://www.verisoftxt.de

http://www.verisoftxt.de

54 E. Cohen et al.

(they don’t need to examine the code). Claims are treated differently from or-
dinary type definitions, because most claims are local to the code of a single
procedure. So the admissibility of a claim is checked at the point at which the
claim is formed in the code.

In VCC, there are actually two levels of object construction. The first level
merely gives an object ownership of some memory; it guarantees that, in any
state, the heap is interpreted in a consistent way. Whenever code accesses mem-
ory using a structured type, it requires existence of the structured object. The
second level of existence is called “closing” an object; it is only while an object
is closed that its declared invariants hold.

In C, there is an important difference between access to variables that are
owned by a thread and those that might be concurrently accessed by another
thread; in the former case, the compiler can safely reorder operations, while in
the latter it cannot. In C, accesses of the later type must be marked as volatile,
to prevent such optimizations. Only volatile data is update in explicit atomic ac-
tions; nonvolatile updates are treated using ordinary sequential reasoning. Non-
volatile fields of an object can only be updated when the object is open and
owned by the updating thread.

11 Conclusion

In the world of security, the rights abstraction was introduced for a very practi-
cal reason: it provides a simple characterization of what a principal (such as a
thread) might do, one that can be simply understood and can be enforced with
simple hardware and software mechanisms in a small trusted computing base. It
also provided a degree of modularity: a thread can check that it has the rights it
needs so that it doesn’t get stuck, and can keep certain rights to itself to make
sure that other threads don’t interfere.

The main lesson of this paper is that rights are a natural derivative of knowl-
edge and invariance, rather than a fundamental notion. From a methodological
standpoint, this is enabled by an alternative approach (admissibility) to the
required modularity of invariance reasoning. In our approach, the expressive-
ness of rights grows naturally with the expressiveness of knowledge, and that
new rights abstractions can be introduced through programming rather than
through extensions to the logic and metatheory. From an implementation stand-
point, it allows reuse of the substantial infrastructure built up to reason about
knowledge, without the need to introduce new program logics.

These observations do not mean that expressive logics combining knowledge
and rights are not a good idea; they provide useful abstractions and guidance for
how proofs of programs can be structured. We have even considered including
such notations in VCC, as syntactic sugar. But we are very conservative when
it comes to extending the program logic itself, and our general policy is to avoid
doing so when the desired functionality can be built at the program level. We
have not yet found such extensions necessary.

Invariants, Modularity, and Rights 55

References

1. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. In: Kaminski, M., Mar-
tini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 323–338. Springer, Heidelberg (2008)

2. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for
a spatial assertion language for data structures. In: APLAS, pp. 289–300 (2001)

3. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Urban, C. (ed.) TPHOLs 2009. LNCS, vol. 5674, pp. 1–22. Springer, Heidelberg
(2009) (invited paper)

4. Dodds, M., Feng, X., Parkinson, M., Vafeiadis, V.: Deny-guarantee reasoning. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 363–377. Springer, Heidelberg
(2009)

5. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress, pp.
321–332 (1983)

6. Rustan, K., Leino, M.: A basis for verifying multi-threaded programs. In: Castagna,
G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg (2009)

7. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput.
Sci. 375(1-3), 271–307 (2007)

Distributed Embedded Systems:
Reconciling Computation, Communication and

Resource Interaction

Lothar Thiele

Swiss Federal Institute of Technology Zurich (ETH), Zurich, Switzerland
thiele@tik.ee.ethz.ch

http://www.tik.ee.ethz.ch/∼thiele/

Extended Abstract

Embedded systems are typically reactive systems that are in continuous inter-
action with their physical environment to which they are connected through
sensors and actuators. Examples are applications in multimedia processing, au-
tomatic control, automotive and avionics, and industrial automation. This has
as result that many embedded systems must meet real-time constraints, i. e.
they must react to stimuli within a time interval dictated by the environment.

The embedding into a technical environment and the constraints imposed
by a particular application domain often require a distributed implementation
of embedded systems, where a number of hardware components communicate
via some interconnection network. The hardware components in such systems
are often specialized and aligned to their local environment and their function-
ality. And also the interconnection networks are often not homogeneous, but
may instead be composed of several interconnected sub-networks, each with its
own communication protocol and topology. And in more recent embedded sys-
tems, the architectural concepts of heterogeneity, distributivity and parallelism
can even be observed on single hardware components themselves: they become
system characteristics that can be observed on several abstraction layers.

It becomes apparent that heterogeneous and distributed embedded real-time
systems as described above are inherently difficult to design and to analyze.
During the system level design process of an embedded system, a designer is
typically faced with questions such as whether the timing properties of a certain
system design will meet the design requirements, what architectural element will
act as a bottleneck, or what the memory requirements will be. Consequently it
becomes one of the major challenges in the design process to analyze specific
characteristics of a system design, such as end-to- end delays, buffer require-
ments, or throughput in an early design stage, to support making important
design decisions before much time is invested in detailed implementations. This
analysis is generally referred to as system level performance analysis.

Based on the above discussion we can summarize that embedded systems are
characterized by a close interaction between computation, communication, the
associated resources and the physical environment. The solution of the above

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 56–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Distributed Embedded Systems 57

complex analysis and design problems relies on our abilities to properly deal
with some of the following challenges:

– Challenge 1: Designing component models whose interfaces talk about extra-
functional properties like time, energy and resource interaction.

– Challenge 2: Designing models of computation that talk about functional
component properties and resource interaction.

– Challenge3: Developing systemdesignmethods that leadto timing-predictable
and efficient embedded systems.

It will be necessary to (re)think the classical separation of concerns which re-
moved very successfully physical aspects from the concept of computation. It will
be necessary to (re) combine the computational and physical view of embedded
software.

The presentation we will cover the following aspects:

– Component-based performance analysis of distributed embedded systems
(Modular Performance Analysis): basic principles, methods and tool support.

– Real-time Interfaces: from real-time components to real-time interfaces, adap-
tivity and constraints propagation.

– Application examples that show the applicability of the concepts and their
use in embedded system design.

References

1. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: Proc. Intl. Symposium on Circuits and Systems, vol. 4, pp.
101–104 (2000)

2. Chakraborty, S., Kunzli, S., Thiele, L.: A general framework for analysing system
properties in platform-based embedded system designs. In: Proc. 6th Design, Au-
tomation and Test in Europe (DATE), pp. 190–195 (2003)

3. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: International Conference on Embedded Software EMSOFT 2006,
Seoul, Korea, pp. 34–43 (2006)

4. Wandeler, E., Thiele, L.: Interface-based design of real-time systems with hierar-
chical scheduling. In: Proc. 12th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), San Jose, CA, USA, April 2006, pp. 243–252
(2006)

5. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation
using modular performance analysis — a case study. Software Tools for Technology
Transfer (STTT) 8(6), 649–667 (2006)

6. Perathoner, S., Wandeler, E., Thiele, L., Hamann, A., Schliecker, S., Henia, R.,
Racu, R., Ernst, R., González Harbour, M.: Influence of different system abstrac-
tions on the performance analysis of distributed real-time systems. In: Proc. 7th
International Conference on Embedded Software (EMSOFT), Salzburg, Austria,
pp. 193–202 (2007)

7. Wandeler, E., Thiele, L.: Real-Time Calculus (RTC) Toolbox (2008),
http://www.mpa.ethz.ch/Rtctoolbox

http://www.mpa.ethz.ch/Rtctoolbox

Simulation of Kohn’s Molecular Interaction
Maps through Translation into Stochastic CLS+

Roberto Barbuti1, Daniela Lepri2, Andrea Maggiolo-Schettini1,
Paolo Milazzo1, Giovanni Pardini1, and Aureliano Rama1

1 Dipartimento di Informatica, Università di Pisa
{barbuti,maggiolo,milazzo,pardinig,rama}@di.unipi.it

2 Institutt for Informatikk, Universitetet i Oslo
leprid@ifi.uio.no

Abstract. Kohn’s Molecular Interaction Maps (MIMs) are a graphical
notation for describing bioregulatory networks at the molecular level.
Even if the meaning of Kohn’s diagrams can be often easily understood,
in many cases, due to the lack of a precise mathematical semantics,
the notation can be ambiguous. By this paper we achieve two goals.
Firstly, we give a precise meaning to MIMs by their translation into
a formalism, the Stochastic Calculus of Looping Sequences (SCLS+),
with a mathematical semantics. Further, by this translation we provide
MIMs with all the tools developed for SCLS+, namely analysers and
simulators. The ability of SCLS+ to specify compartments allows us to
easily translate MIMs descriptions also when membranes are involved in
the interactions.

1 Introduction

The definition of a diagrammatic graphical language able to describe biochem-
ical networks in a clearly visible and unambiguous way is an important step
towards the understanding of cell regulatory mechanisms. One of the most well
designed and rigidly defined proposals of graphical language are Kohn’s Molec-
ular Interaction Maps (MIMs) [1,2,3]. In these maps, biochemical components
of bioregulatory networks are depicted using a notation similar to the “wiring
diagrams” used in electronics, and various types of interactions that may oc-
cur between the components can be represented. Interactions include complex
formations, phosphorylations, enzyme catalysis, stimulation and inhibition of
biochemical reactions, DNA transcription, etc.

The use of a single MIM diagram to describe all the interactions in a biochem-
ical network allows the tracing of pathways within the network, for instance with
the aid of computer simulation. However, even if the meaning of MIM symbols
is clear and easy to understand, there is a lack of univocal interpretation when
symbols are combined, hence some diagrams cannot be used directly as an input
for a simulation tool. This is confirmed by the distinction made by Kohn in [2]
between heuristic maps, which may have more than one interpretation, and ex-
plicit maps, that are less expressive but unambiguous. The conclusion of Kohn

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 58–69, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Simulation of Kohn’s MIMs through Translation into Stochastic CLS+ 59

is that only the latters should be used to perform simulations, by translating
them into a list of chemical reactions.

In this paper we face the problem of allowing the simulation of a set of di-
agrams larger than the explicit ones. In particular, we consider the Stochastic
CLS formalism [4], that is a formal language based on term rewriting for the de-
scription of biochemical systems. We recall its definition by adopting the syntax
of CLS+ [5,6] (we call this variant Stochastic CLS+). We translate MIMs into
Stochastic CLS+ by exploiting (i) the similarities between biochemical reactions
and rewrite rules and (ii) the capability of Stochastic CLS+ to model compart-
ments. We show that with this translation we can simulate more diagrams than
the set of explicit ones.

As regards related work, in [7] a simple example of MIM has been modeled
using the Beta–binders formalism [8]. Another translation of MIMs in a for-
mal syntax (concurrent constraint programming) can be found in [9]. Moreover,
other graphical languages for biochemical networks have been defined [10,11,12].
Among these, the notation introduced in [10] (which has been compared with
MIMs in [13]) seems to be another promising proposal, as it has been used to
model a real complex example of signalling pathway [14] and it is supported by
useful software tools [15]. A different approach to the graphical description of
biochemical networks based on graph rewriting is proposed in [16,17]. Finally,
present work is based on the approach proposed in [18].

2 Stochastic CLS+

In this section we recall the definition of the Stochastic Calculus of Looping
Sequences (SCLS for short) and the syntax of an extension called CLS+, to
define a variant we call Stochastic CLS+. For the sake of brevity we omit some
technical details. Missing details of the calculus can be found in [4,5,6].

The Stochastic CLS+ formalism is basically a term rewriting framework in-
cluding some typical features of process calculi for concurrency. A model in the
Stochastic CLS+ is composed by a term describing the inital state of the mod-
eled system, and a finite set of rewrite rules to be applied to terms, describing the
events that may occur in the system. In the definition of Stochastic CLS+ terms,
that follows, we assume an alphabet of elements E ranged over by a, b, c,

Terms T , branes B and sequences S of the Stochastic CLS+ are given by the
following grammar:

T ::= S
∣∣ (B)L �T

∣∣ T |T B ::= S
∣∣ B |B S ::= ε

∣∣ a
∣∣ S · S

We denote with T , B and S the sets of all terms, all branes and and all sequences,
respectively. Note that E ⊂ S ⊂ B ⊂ T . A term can be either (i) a sequence of
symbols in E with ε as the empty sequence and · as the sequencing operator, or
(ii) a looping sequence (B)L (that is a parallel composition of sequences, with
| as the parallel composition operator) containing another term T , with � as
the containment operator, or (iii) the parallel composition (the juxtaposition) of
two terms.

60 R. Barbuti et al.

The calculus comes with structural congruence relations on sequences ≡S , on
branes ≡B and on terms ≡ such that ≡S⊂≡B⊂≡. The first, ≡S , is defined as the
least congruence on S for which (S, ·, ε) is a monoid. The second, ≡B, is the least
congruence such that (B, | , ε) is a commutative monoid. The third, ≡, is the least
congruence closed under (·)L � · and such that (T , | , ε) is a commutative monoid.
A rewrite rule is essentially a pair of terms with variables (called patterns) P1, P2
representing a portion of the described system before and after the occurrence
of the modeled event. A rewrite rule can be applied to a term T if there exists
a subterm of T which is structurally equivalent to an instantiation of P1, by
replacing the subterm with the corresponding instantiation of P2. Variables V
are of different kinds. Element variables x, y, . . . ∈ X , which can be instantiated
by elements in E , sequence variables x̃, ỹ, . . . ∈ SV , for sequences in S, brane
variables X,Y , . . . ∈ BV for branes in B, and term variables X,Y, . . . ∈ T V for
terms in T . Formally, patterns are defined as follows:

P ::= SP
∣∣ (BP)L �P

∣∣ P |P
∣∣ X BP ::= SP

∣∣ BP |BP
∣∣ X

SP ::= ε
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

We denote by P the set of all Patterns and by Σ the set of all instantiation
functions σ : V �→ T . Instantiation functions are required to preserve the types
of the variables. Formally, a rewrite rule is a triple (P ′, P ′′, f), where P ′, P ′′ ∈ P
and f : Σ �→ R+, such that P ′ �≡ ε and V ar(P ′′) ⊆ V ar(P ′).

In what follows, we will use the notation P ′ f�→P ′′ for a rewrite rule (P ′, P ′′, f),
and we will call f the rate function of the rewrite rule. Such a function gives the
rate value of the rule, depending on the actual term used for the instantiation
of the variables in P ′. We say that a rewrite rule (P ′, P ′′, f) is ground if both
P ′ and P ′′ contain no variables.

Now, a Stochastic CLS+ model consisting of a set of rewrite rules R and of an
initial ground term T0, evolves by means of a sequence of application of rewrite
rules in R to term T0. After each application, a new term is obtained which
describes the state of the system after the occurrence of the event modeled by
the applied rule. At each step, the rule to be applied is randomly chosen with
a probability which depends on an actual application rate. Such an actual rate
is the value obtained by the rate function multiplied by the number of possible
positions in the term where the rule can be applied. The actual application rate
is used also as the parameter of an exponential distribution to determine the
quantity of time spent by the occurrence of the described event.

More precisely, at each step a set of applicable ground rewrite rules AR(R, T)
is computed which contains all the ground rules that can be applied to T and
that are obtained by instantiating variables in the rules in R. In each of these
ground rules we have r = f(T), where f is the rate function of the rewrite
rule from which it was istantiated. By the finiteness of R and of T we have
that AR(R, T) is a finite set of ground rewrite rules. For each ground rule R in
AR(R, T) and for each possible term T ′ that can be obtained by the application
R, the number of different application positions in T where R can be applied
producing T ′ is computed. Such a number, called the application cardinality of

Simulation of Kohn’s MIMs through Translation into Stochastic CLS+ 61

R leading from T to T ′, is denoted as AC(R, T, T ′), and is the number that must
be multiplied by the rate constant of R to obtain the actual application rate.

The semantics of the Stochastic CLS+ can now be given as a labeled transition
system, in which a transition corresponds to the application of a rule and its label
contains a reference to the applied rule and the actual application rate. In the
definition of the semantics we use a notion of context to express the position in
the term where a rewrite rule is applied.
Formally, Term Contexts CT and Brane Context CB are given by:

CT ::= �
∣∣ CT | T

∣∣ T |CT

∣∣ (B)L �CT

CB ::= �
∣∣ CB |T

∣∣ T |CB

∣∣ (C′
B)L �T

∣∣ (B)L �CB

C′
B ::= �

∣∣ C′
B |T

∣∣ T |C′
B

where T ∈ T , B ∈ B and S ∈ S. Context � is called the empty context. CT is
the set of all the Term Contexts and CB is the set of all Brane Contexts.

With C[T] we denote the term obtained by replacing � with T in C. The
structural congruence relation can be easily extended to contexts.

Definition 1 (Semantics). Given a finite set of rewrite rules R, the seman-
tics of the Stochastic CLS+ is the least labeled transition relation satisfying the
following inference rules:

R = T ′ r�→ T ′′ ∈ AR(R, C[T ′]) C ∈ CT

C[T ′]
R,r·AC(R,C[T ′],C[T ′′])−−−−−−−−−−−−−−−→ C[T ′′]

R = B′ r�→ B′′ ∈ AR(R, C[B′]) C ∈ CB

C[B′]
R,r·AC(R,C[B′],CB [B′′])−−−−−−−−−−−−−−−−−→ C[B′′]

The semantics of the calculus is a transition relation describing all the possi-
ble evolutions of the modeled system. From such a relation a Continuous Time
Markov Chain (CTMC) can be easily derived, allowing the verification of prop-
erties of the system. However, since the whole CTMC describing the system has
often a huge number of states, hence its construction is often unfeasible, we can
follow a standard simulation procedure that corresponds to Gillespie’s simula-
tion algorithm [19]. A complete simulator for Stochastic CLS has been already
implemented in F#, based on this simulation strategy [20].

3 Molecular Interaction Maps

In this section we recall the definition of Kohn’s Molecular Interaction Maps
(MIMs) and we show how they can be translated into Stochastic CLS+. Since
several definitions of MIMs are available, we refer to the definition that can
be found in [3]. We present both MIMs and their translation incrementally,
by showing first the diagrams for basic molecular interactions and then their
extension with contingency symbols.

A species in a MIM is depicted as a box containing the species name (Fig. 1.a).
In the case of a DNA site, the box is placed over a thick line representing a DNA
strand, and more than one site can be placed over the same line (Fig. 1.c). A
bullet (Fig. 1.b) is used to denote both a species when it is the result of a reaction
and different instances of the same species (see the dimer AB:AB in Fig. 4).

62 R. Barbuti et al.

A(a) (b)

DNA site2DNA site1(c)

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 1. Species in MIMs Fig. 2. Contingency arrows Fig. 3. Reaction symbols

Basic Diagrams. Basic MIM diagrams are composed by species and DNA
fragments related each other by some reaction symbols. Reaction symbols are
arrows, and they are listed in Fig. 3. In the figure, arrow (a) connects two species
and denotes the reversible binding of them; (b) points to one species and de-
notes a covalent modification (phosphorylation, acetylation, etc.), the type of
the modification is usually written at the tail of the arrow; (c) connects two
species and denotes a covalent binding; (d) connects two species and denotes a
stoichiometric conversion, namely the species at the tail of the arrow disappears
while the pointed one appears; (e) is like (d) without the loss of the species
at the tail of the arrow; (f) connects a DNA strand and a species and denotes
DNA transcription; (g) represents the cleavage of a covalent bond; finally, (h)
is connected to a single species and represents its degradation. Every reaction
symbol in a MIM diagram is associated with a kinetic constant (to be obtained
from biological experiments) representing its occurrence rate. Arrow (a) is as-
sociated with two kinetic constants: one describing the rate of binding and the
other describing the rate of unbinding.

Extended Diagrams. MIM diagrams can be extended with reaction modifiers,
called “contingencies”. Contingency arrows start from a species (or a compound
of species) and point to a reaction, meaning that the presence (or absence) of the
species influences the reaction. This influence is expressed as a change in the rate
at which the reaction can happen. Contingency arrows are listed in Fig. 2. In the
figure, arrow (a) stimulates the reaction pointed (increase its reaction rate) if the
species is present in the environment; (b) is the necessity contingency and means
that the reaction can happen only if the species is present (if not present, the
reaction rate drops to zero); inhibition contingency (c) is dual to the previous
one in that the reaction is allowed only if the species at hand is not present in
the environment; finally, (d) is the catalysis arrow which means that the reaction
have a much higher reaction rate if the species is present than if it is not.

Example. Here we show a small example of a real life MIM. In Figure 4 one
can see a MIM depicting a process of RNA synthesis inside the cell nucleus,
activated by the presence of a species (B) outside the outer membrane of the
cell through interaction with a membrane channel (species A). Species B can
bind to species A that is present onto the plasma membrane forming complex
A:B. Two such complexes can bind together, forming compound AB:AB, which
allows the phosphorilation of a third A, denoted A p, which can then migrate
inside the nucleus membrane. There, compund species A p can bind to a DNA
fragment and together they stimulate the synthesis of a fragment of RNA.

Simulation of Kohn’s MIMs through Translation into Stochastic CLS+ 63

P l a s m a
m e m b r a n e

D e
A

D i

B

A B

N u c l e u s
m e m b r a n e

D N A
R N A

A _ p : D N A

A B : A B

A _ p

1

0 D u m m y
m e m b r a n e

k 1 , k 2 k 3 , k 4

k5 ’

k 5
k 6

k 6 , k 7

k 8

k8 ’

2

P

Fig. 4. Example of an explicit MIM with rate constants

4 Translating Maps into Stochastic CLS+

In this section we provide a precise semantics for MIMs by its translation into
Stochastic CLS+. Since there is no formal description of MIMs, we introduce
an intermediate encoding of MIMs, that allows us to formally specify the source
of our translation. This intermediate encoding is sufficiently high level to allow
a straightforward construction of the encoding from a diagram. Since we are
interested in the possibility of simulating the MIMs, we need additional infor-
mation about the initial number and position of the molecules of each species.
This information, which is not provided by MIM diagrams, has to be included
in the intermediate encoding.

4.1 Intermediate Encoding of MIM

An intermediate encoding is composed of a Membrane Structure, a Set of Species,
and a Set of Reactions. The first specifies the (static) membrane structure, the
second describes position and initial number of the molecules of each species, the
third captures the interaction capabilities of the species and their contingencies.
We assume that membranes are uniquely identified by natural numbers in N. We
represent each different species (simple or compound) that appears in a MIM
diagram as a simple CLS+ sequence S.

Definition 2 (Membrane Structure of a MIM). A Membrane Structure
MS is a set of tuples of the form 〈i, I〉 ∈ N×P(N), where i is the membrane
number, that uniquely identifies it, and I contains the identification numbers of
the membranes which are immediately contained in membrane i.
We denote with MS the set of all possible Membrane Structures.

Definition 3 (Set of Species). A Set of Species SS is a set of tuples of the
form 〈S, (i, j), q〉 ∈ S×(N×{0, 1})×N where each tuple corresponds to a CLS+

64 R. Barbuti et al.

sequence S (representing a species), whose position in the membrane hierarchy
is described by (i, j), and whose quantity is q. In particular, i is the membrane id
and j specifies if S is either on the surface of the membrane, (j = 0), or inside
the membrane, (j = 1). We denote by SS the set of all possible Sets of Species.

Definition 4 (Set of Contingencies, CS). A Set of Contingencies CS is a
set of pairs of the form 〈C, k〉 ∈ SS × R, where each pair corresponds to a
contingency symbol, C is the Set of Species that must exist for the contingency
to be verified and k is the reaction rate constant.
We denote with CS the set of all possible Sets of Contingencies.

Definition 5 (Set of Reactions, RS). Given a MIM, its Set of Reactions RS
is a set of tuples of the form 〈CS,R, P 〉 ∈ CS × SS × SS where each tuple
corresponds to a reaction symbol in the MIM. In particular, CS are the contin-
gencies, and R and P specify reactants and products of the reaction, respectively.
We denote with RS the set of all possible Sets of Reactions.

The construction of an intermediate encoding of a MIM diagram is almost
straightforward. First of all, assuming to identify each membrane with a natural
number, and each species with a simple CLS+ sequence S, we can construct
a Membrane Structure and a Set of Species by inspecting the MIM diagram.
Please note that in the Set of Species we have to specify the initial quantity
of each molecular species in each position where they appear. To simplify the
translation, we assume the existence of a dummy outer membrane with id = 0
that contains the whole system.

For each reaction symbol of the MIM diagram, we create one or two tuples
in the Set of Reactions specifying contigency species, reactants and products.
Reactants specify the species that are needed for the reaction to happen, and
are replaced by the product species once the reaction occurs. This representation
is sufficient to describe the behavior of any MIM reaction symbol (fig. 3). For
instance in fig. 4 the reversible binding between A and B is described by tuples
〈〈∅, k1〉, R, P 〉 and 〈〈∅, k2〉, P,R〉 where R = {〈A, (1, 0), 1〉, 〈B, (0, 1), 1〉} and
P = {〈AB, (1, 0), 1〉}.

As regards contingencies, the intermediate representation treats uniformly the
different MIM symbols available (fig. 2), by modeling each contigency as a set
of species whose presence in the environment affects the (constant) basal rate
of the reaction. First of all, the basal reaction rate to use when no contingency
is involved is also represented in the Set of Contingencies, by a tuple of the
form 〈∅, k0〉. We call it neutral contingency, and assume that each reaction
has one. To avoid ambiguity in determining the basal rate of a reaction for
which more than one contingency is verified, we impose some constraints on the
Set of Contingencies. In particular, we require that, for any two contingencies
〈C1, k1〉, 〈C2, k2〉 ∈ CS there exists a contingency 〈C1 ∪ C2, k3〉 specifying the
rate to use (k3) when all the species of C1 and C2 are present. In this way,
we can determine the basal reaction rate as the one given by the most specific
contingency, i.e. the one for which biggest set of contingency species are present.

Simulation of Kohn’s MIMs through Translation into Stochastic CLS+ 65

4.2 From the Intermediate Encoding to Stochastic CLS+

The translation is composed of two parts. The first concerns translation of the
initial state of the MIM system, described by its Membrane Structure and a Set
of Species, into a CLS+ term. The second deals with the interaction symbols,
by translating the Set of Reactions of the MIM into a set of rewrite rules.

Translation of the initial state. In the following, we need to extract, from a
Set of Species SS, its subset of species appearing on a precise position, i.e. on the
surface or inside a given membrane. We denote this subset as SSij ∈ SS, where
i is the membrane id and j specifies if we need the elements on the surface of the
membrane, if j = 0, or those inside, if j = 1. Formally, SSij = {〈S, (i, j), q〉 ∈
SS}. Moreover, we denote by membrane(SS) ⊂ N the ids of the membranes
appearing in a given SS, i.e. membrane(SS) = {i ∈ N|〈S, (i, j), q〉 ∈ SS}.

The following definitions formally describe the construction of the initial
CLS+ term corresponding to a MIM.

Definition 6 (Set of species Translation Function, φ). Given a set of
species SS, the function φ : SS → T gives the corresponding CLS+ term
formed by the parallel composition of all species with their multiplicities, i.e.
φ〈{〈S1, p1, q1〉, . . . , 〈Sn, pn, qn〉}〉 = q1 �S1 | · · · | qn �Sn, where n�T stands for
a parallel composition of n times T , that is T | . . . |T of length n (0 � T ≡ ε).

Note that the term produced by the function φ is always a brane B since it never
contains a looping sequence operator.

Definition 7 (Term Translation Function, �·�). Given a Membrane Struc-
ture MS ∈ MS and a Set of Species SS ∈ SS, the Term Translation Function
�·� is defined by the following rule schema:

〈jk, Ck〉 ∈ MS �〈jk, Ck〉� �→ Tk k = 1, . . . , n

�〈i, {j1, . . . , jn}〉� �→ (i |φ(SSi0))L � (φ(SSi1) |T1 . . . |Tn)

Note that SSi0 is the set of species present on the surface of the membrane i
while SSi1 contains the species inside membrane i.

Definition 8 (Initial Term of a MIM). Given a Molecular Interaction Map,
described by a Membrane Structure MS ∈ MS and a Set of Species SS, the
initial CLS+ term is T0 = �〈0, C〉�, where 〈0, C〉 ∈MS.

The initial term is constructed by Term Translation Function applied to the
outer membrane with id = 0. This translation computes a CLS+ term, where
each membrane of the MIM is represented by a looping sequence, and their con-
tainment hierarchy is preserved. The species appearing on the surface and inside
the membranes are put in the correct position in the corresponding looping se-
quences. Finally, a special symbol i is present on each looping sequence, denoting
the membrane id from which it has been constructed.

66 R. Barbuti et al.

Translation of the interactions. Given a membrane structure MS and a set
of nodes N , we denote by subtree(MS,N) ∈ MS the smallest subtree of MS
induced by the nodes N , that is the minimal tree containing all the nodes in N .
We also assume the function root :MS → (N×P(N)) that gives the root node
of the membrane structure (where a node is the pair of its id and the set of ids
of the nodes immediately contained in it).

Each reaction of a MIM, represented by an element of a Set of Reactions RS, is
translated into a stochastic CLS+ rewrite rule. This translation is performed by
the reaction translation function, which uses an auxiliary function, the parallel
pattern builder, for constructing the patterns which compose the rewrite rule.

Definition 9 (Parallel Pattern Builder Function, �·�pp). Given a mem-
brane structure MS, the parallel pattern builder function �·�pp : (N×P(N))×
(SS × SS)→ P ×P is defined as follows:

X0 = new(BV) X1 = new(T V)

〈cj , Cj〉 ∈ MS �〈cj , Cj〉, (SS1, SS2)�pp �→ (P1j , P2j) j = 1, 2, . . . , k

φ(SSi0
1) = T1i0 φ(SSi1

1) = T1i1 φ(SSi0
2) = T2i0 φ(SSi1

2) = T2i1

�〈i, {c1, c2, . . . ck}〉, (SS1, SS2)�pp �→ ((i |T1i0 |X0)L � (T1i1 |P11 | . . . |P1k |X1),

(i |T2i0 |X0)L � (T2i1 |P21 | . . . |P2k |X1))

where Xi = new(. . .) means that the term variable Xi has not previously been
used in the current application of �·�pp, Pi ∈ P and Ti ∈ T .

The parallel pattern builder function takes as arguments a root membrane (and
its children), two sets of species (the reactants and the products of a reaction)
and it gives as a result the pair of reactants-products expressed as CLS+ terms.
The �·�pp function is used in the definition of the function for translating a
reaction into a stochastic CLS+ rewrite rule.

The reaction translation function also uses the following function xc to deal
with contingencies. Function xc is applied to a pattern, obtained by the paral-
lel pattern builder, and a set of species SS, representing the contingencies of
the reaction. It associates, with each term variable X appearing in P , a term
containing the species from SS that can be instantianted in the variable X . In
this way, we can keep track of the variables in which the contigency species can
appear. Formally, function xc : P × SS →P(BV ∪ T V × T) is defined as:

xc(
(
i |B1 |X1

)L � (P2 |X2), SS) = {〈X1, φ(SSi0)〉, 〈X2, φ(SSi1)〉} ∪ xc(P2, SS)

xc(P1 |P2, SS) = xc(P1, SS) ∪ xc(P2, SS) xc(T, SS) = ∅

Definition 10 (Reaction Translation Function, �·�r). Let MS be the Mem-
brane Structure of a MIM. Given a reaction 〈CS,RS, PS〉, the Reaction Trans-
lation Function �·�r : (CS × SS × SS) → � is defined as follows:

(P1, P2) = �root(MS′), (CS, RS, PS)�pp MS′ = subtree(MS,N)

N = membrane((
⋃n

j=1 Cj) ∪ RS ∪ PS) CS = {(C1, k1), (C2, k2), . . . , (Cn, kn)}

xc(P1, Ci) �→ {〈X1, T
i
1〉, 〈X2, T

i
2〉, . . . , 〈Xm, T i

m〉} i = 1, . . . , n

�〈CS, RS, PS〉�r = (P1, P2, f)

Simulation of Kohn’s MIMs through Translation into Stochastic CLS+ 67

where P1, P2 are CLS+ patterns, and the rate function f is defined as follows:

f(P1σ) = basalRate(σ) ·
∏

〈S,(i,j),q〉∈RS

(
occ(P1σ, (i, j), S)

q

)

basalRate(σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k1 if ∃U1, . . . , Um. σ(X1) ≡ T 1

1 |U1 ∧ . . . ∧ σ(Xm) ≡ T 1
m |Um

k2 if ∃U1, . . . , Um. σ(X1) ≡ T 2
1 |U1 ∧ . . . ∧ σ(Xm) ≡ T 2

m |Um

...
...

kn if ∃U1, . . . , Um. σ(X1) ≡ T n
1 |U1 ∧ . . . ∧ σ(Xm) ≡ T n

m |Um

The function f computes the rate of the application of the rewrite rule as the
product of a basal rate and of the number of different reactions represented by
this application. The basal rate is a constant rate that depends on the contin-
gencies. In the definition of basalRate we are assuming that, if more than one
condition is satisfied (i.e. more than one contingency is applicable), then the
most specific one is used. The constraints we imposed on the set of contincencies
(see Sec.4.1) ensure that the definition of basalRate is unambiguous.

The number of different reactions represented by the application of a rewrite
rule takes into account the reactions involving molecules of a same species S.
Considering a single compartment i, j, the reaction can happen among any subset
of molecules of that species S, having the right cardinality. Therefore, for each
reactant species S in each compartment i, j, described by a tuple in RS, the
number of reactions corresponds to the binomial coefficient of q, i.e. the number
of molecules required, and occ(P1σ, (i, j), S), i.e. the number of molecules present
in compartment (i, j) in the actual term P1σ.

Definition 11 (Set of Rewrite Rules of a MIM, RR). Given a Molec-
ular Interaction Map, described by a Membrane Structure MS and whose re-
actions are encoded in the Set of Reactions RS = {R1, . . . , Rn}, the Set of
Rewrite Rules RR ⊂ � of the corresponding Stochastic CLS+ model is RR =
{�R1�r, �R2�r, . . . , �Rn�r}.

5 Applications

Now we show a small example of the translation process we defined by translat-
ing part of MIM of Fig.4 which showed a process of RNA synthesis. In the first
phase of the process, protein A binds to protein B thus forming the complex
A:B on the plasma membrane. Then two complexes can form a dimer which can
be phosphorilated. In the following, we show these two reactions translated as
Stochastic CLS+ terms and rewrite rules.
Firstly, we define the membrane structure: MS = {〈0, {1}〉, 〈1, {2}〉, 〈2,∅〉}.
Then we want to formalize the reaction where B binds to A (A | B

k1�
k2
AB).

68 R. Barbuti et al.

To do so, we need to describe two reaction tuples for this reaction, one for the
complexation and another one for the de-complexation:

R1 = 〈{〈∅, k1〉}, {〈A, (1, 0), 1〉, 〈B, (0, 1), 1〉}, {〈AB, (1, 0), 1〉}〉
R2 = 〈{〈∅, k2〉}, {〈AB, (1, 0), 1〉}, {〈A, (1, 0), 1〉, 〈B, (0, 1), 1〉}〉

As one can see, no contingency influences these reactions, hence the only one
present is the neutral one. We place the product on membrane 1, since the
complex should be still connected to the membrane. The resulting rewrite rules
for these reactions are:

(R1) (0 |X0)L � (B | (1 |A |X2)L �X3 |X1)
f1�→ (0 |X0)L � ((1 |AB |X2)L �X3 |X1)

(R2) (0 |X0)L � ((1 |AB |X2)L �X3 |X1)
f2�→ (0 |X0)L � (B | (1 |A |X2)L �X3 |X1)

where the basalRate of both f1 and f2 have constant results, resp. k1 and k2.
Now we describe the phosphorylation of the A component allowed by the

presence of the dimer AB:AB on the plasma membrane. This modification will
be described by a single reaction tuple since it is not reversible. The presence
of a “necessity” contingency pointing to the reaction will be a tuple in the
Set of Contingencies of the Reaction Set. Thus, we will formalize the following

(mutually exclusive) reactions A
k5� pA and AB:AB | A

k′
5� AB:AB | pA.

A single reaction tuple will model both reactions:

R3 = 〈{〈∅, k5〉, 〈{〈AB:AB, (0, 1), 1〉}, k′
5〉}, {〈A, (1, 0), 1〉}, {〈pA, (1, 0), 1〉}〉

where k5 is equal to zero in our example (since the phosphorylation needs the
presence of AB:AB). The resulting rewrite rule for this reaction tuple is:

(R3) (0 |X0)L � ((1 |A |X2)L �X3 |X1)
f�→ (0 |X0)L � ((1 | pA |X2)L �X3 |X1)

basalRate(σ) =

{
k′
5 if σ(X1) ≡ AB:AB | T

k5 otherwise

6 Conclusions

In this paper we have given a formal definition of the semantics of Kohn’s Molec-
ular Interaction Maps by providing a translation into a variant of the Stochastic
Calculus of Looping Sequences (called Stochastic CLS+). Such a definition al-
lows unambiguous understanding and reasoning on Kohn’s maps. Moreover, the
translation into SCLS+ provides MIMs with simulators and other tools and
methodologies developed for CLS+. We plan to implement our translation and
to perform some simulations in order to validate the obtained CLS+ model with
respect to biological observations. Future work will involve the contruction of
graphical interfaces allowing the input of Molecular Interaction Maps and the
automatic translation of them into CLS+ terms and rules. This will allow biol-
ogists to use the tools for CLS+ with MIMs as interfaces.

Simulation of Kohn’s MIMs through Translation into Stochastic CLS+ 69

References

1. Aladjem, M.I., Pasa, S., Parodi, S., Weinstein, J.N., Pommier, Y., Kohn, K.W.:
Molecular Interaction Maps–A Diagrammatic Graphical Language for Bioregula-
tory Networks. Sci. STKE 2004 (222), 8 (2004)

2. Kohn, K.W.: Molecular Interaction Maps as Information Organizers and Simula-
tion Guides. CHAOS 11(1), 84–97 (2001)

3. Kohn, K.W., Aladjem, M.I., Weinstein, J.N., Pommier, Y.: Molecular Interaction
Maps of Bioregulatory Networks: A General Rubric for Systems Biology. Molecular
Biology of the Cell 17, 1–13 (2006)

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tiberi, P., Troina, A.: Stochastic
CLS for the Modeling and Simulation of Biological Systems. Trans. on Comput.
Syst. Biol. IX 5121, 86–113 (2008)

5. Milazzo, P.: Qualitative and Quantitative Formal Modeling of Biological Systems.
PhD thesis, Computer Science Department - University of Pisa (2007)

6. Milazzo, P.: Formal Modeling in Systems Biology. An approach from Theoretical
Computer Science. VDM - Verlag Dr. Muller, Saarbrucken (2008)

7. Ciocchetta, F., Priami, C., Quaglia, P.: Modeling Kohn Interaction Maps with
Beta-Binders: An Example. Trans. on Comput. Syst. Biol. III 3737, 33–48 (2005)

8. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer,
Heidelberg (2005)

9. Bortolussi, L., Fonda, S., Policriti, A.: Constraint-Based Simulation of Biological
Systems Described by Molecular Interaction Maps. In: IEEE International Confer-
ence on Bioinformatics and Biomedicine, vol. 0, pp. 288–293 (2007)

10. Kitano, H.: A Graphical Notation for Biochemical Networks. BIOSILICO 1(5),
169–176 (2003)

11. Pirson, I., Fortemaison, N., Jacobs, C., Dremier, S., Dumont, J.E., Maenhaut,
C.: The Visual Display of Regulatory Information and Networks. Trends in Cell
Biology 10, 404–408 (2000)

12. Systems Biology Graphical Notation, http://sbgn.org
13. Kohn, K.W., Aladjem, M.I.: Circuit Diagrams for Biological Networks. Molecular

Systems Biology 2 (2006)
14. Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A Comprensive Pathway Map of

Epidermal Growth Factor Receptor Signaling. Molecular Systems Biology 1 (2005)
15. Funahashi, A., Morohashi, M., Kitano, H.: CellDesigner: a Process Diagram Editor

for Gene–Regulatory and Biochemical Networks. BIOSILICO 1(5), 159–162 (2003)
16. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comp. Sci. 325(1), 69–110

(2004)
17. Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Graphical rule-based representation of

signal-transduction networks. In: Symposium on Applied Computing (SAC), pp.
133–140 (2005)

18. Lepri, D.: A formal semantics for Molecular Interaction Maps. Master Thesis in
Computer Science, University of Pisa (2008)

19. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal
of Physical Chemistry 81(25), 2340–2361 (1977)

20. CLSm: simulation tool, http://www.di.unipi.it/~milazzo/biosims

http://sbgn.org
http://www.di.unipi.it/~milazzo/biosims

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 70–85, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Two-Level Approach for Modeling and Verification of
Telecommunication Systems

Dmitry Beloglazov and Valery Nepomniaschy

A.P. Ershov Institute of Informatics Systems
Siberian Division of Russian Academy of Sciences

6, Lavrentiev ave., Novosibirsk 630090, Russia
dmitry.beloglazov@gmail.com, vnep@iis.nsk.su

Abstract. For modeling, specification and verification of telecommunication
systems, the models such as finite automata, Petri nets and their generalizations
are usually applied. The goal of our paper is to represent a new two-level
approach for modeling, specification and verification of telecommunication sys-
tems. On the first level, telecommunication systems are specified by communi-
cating extended finite automata, while on the second level the automata systems
are translated into coloured Petri nets (CPN). Correctness of the translation al-
gorithm is justified by proving bisimilarity between the resulting CPN and the
automata system. This method is applied to investigation of two case studies:
ring protocols (RE-protocol and ATMR-protocol) and the feature interaction
problem in telephone networks. CPN Tools [9] are used for modeling these
telecommunication systems and constructing reachability graphs of CPN. We
used the Petri Net Verifier [11] for verification of the net models with respect to
properties expressed in mu-calculus by the model checking method.

1 Introduction

The development of methods and tools for analysis, validation and verification of
telecommunication systems is an important problem. Formal description technique
SDL based on extended finite automata (EFA) is widely used to represent telecom-
munication systems. It should be noted that a high expressive power of SDL compli-
cates analysis and verification of telecommunication systems.

A natural approach to overcome the problem is to use the models like EFA [12] or
high level Petri nets. Coloured Petri Nets (CPN) [8] should be distinguished among
Petri nets, because CPN have significant expressive power, a wide application, and
the simulation and analysis tool available called CPN Tools [9]. A method for transla-
tion from SDL into CPN, as well as the STSV tool (SDL Telecommunications Sys-
tems Verifier) which implements this method, have been described in [15]. However,
formal justification of such translators is an open difficult problem. STSV extends
CPN Tools with our model checker PNV (Petri Net Verifier) [11] that allows us to
verify net model properties represented by mu-formulas.

Note that communicating EFA are useful for initial specification of telecommuni-
cation systems from some classes, such as ring protocols and telephone networks. For
example, natural compact specifications of RE-protocol and ATMR-protocol are

A Two-Level Approach for Modeling and Verification of Telecommunication Systems 71

represented as communicating EFA in [4] and [16], respectively. Telephone networks
are specified in this way in [1, 3].

The goal of our paper is to represent a new two-level approach for modeling, speci-
fication and verification of telecommunication systems. On the first level, telecom-
munication systems are specified by communicating EFA, while on the second level
the automata systems are translated into CPN. Correctness of the translation algorithm
is justified. This method is applied to investigation of two case studies: ring protocols
(RE-protocol and ATMR-protocol and the feature interaction problem in telephone
networks [10]. CPN Tools are used for modeling these telecommunication systems
and constructing reachability graphs of CPN. We used the Petri Net Verifier for veri-
fication of the net models by the model checking method.

The paper consists of 7 sections. Communicating EFA are defined in Section 2.
Section 3 represents the translation algorithm specification. Section 4 is devoted to
justification of this translation algorithm. Section 5 and 6 describe the application of
our method to ring protocols and telephone networks, respectively. The results and
perspectives of our approach are discussed in Section 7.

This work is partly supported by Russian Foundation for Basic Research under the
grant 07-07-00173.

2 Communicating Extended Finite Automata

Our goal is to define the system of communicating Extended Finite Automata (EFA).
For this, we took definitions from [12] as the basis and made the following significant
change: instead of reading and writing symbols, the automaton gets an incoming sig-
nal of a predefined format from an environment and sends output signals to the envi-
ronment. Also, along with the local variables, the automaton can use global system
variables. Integer, boolean, enumeration, record and list types are accepted as the
types of local and global variables.

Definition. The Extended Finite Automaton (EFA) is a tuple
α = <S, V, G, I, O, T>, where
• S is a set of states.
• V is a set of local variables of the automaton. It includes a special integer

variable id which denotes the automaton identifier used for communication
with other automata.

• G is a set of global variables.
• I is a set of incoming signals.
• O is a set of outgoing signals. Incoming and outgoing signals have the fol-

lowing format: [Src, Dest, Type, Param], where Src is the identifier of the
sender, Dest – the identifier of the recipient, Type – the enumeration type of
the signal and Param is an optional parameter of the signal.

• T is a set of transitions. Each transition from T is a tuple
t = {Ss, Se, Os(G,V,I0), P(G,V,I0)), E(G,V, I0)}, where

- Ss is an initial state,
- Se is a resulting state,

72 D. Beloglazov and V. Nepomniaschy

- I0 is an incoming signal from Env,
- Os(G,V,I0) is a subset of the set O.
- P(G,V,I0) is a predicate,
- E(G,V,I0) is a set of assignment expressions on global and local

variables.
The incoming signal I0 may be empty meaning that the transition is independent from
the incoming signal.

Definition. The system of communicating EFA (or EFA system) is a tuple
Σ = <A, G, Env, Init>, where
• A is a set of Extended Finite Automata.
• G is a set of global variables of all automata in the system.
• Env is the set of the signals awaiting reception in the system.
• Init is an initialization function defined on G and A which defines the initial

states and the initial values for the local variables of all EFA from the set A,
the initial values for the global variables from the set G, and initializes the
set Env. If the initialization function is not defined then no assignments to
the variables will be made and the Env set will be empty initially.

All sets in the definitions, i.e. states, transitions and variables, should be finite. The
namespace of global variables should not intersect the namespace of local variables of
automata. The system execution is defined with respect to global time, i.e. the set of
steps expressed by positive integer numbers.

Definition. The configuration of the automaton α of the system Σ at a step k is the
pair <S(k), V(k)>, i.e. the state of the automaton and the values of its local variables at
the step k. The configuration of the system at the step k is the set of configurations of
all automata, the set of all global variables values and the value of Env at this step.

Definition. The transition t of EFA α of the system Σ is enabled if the automaton is in
the state Ss and P(G,V,I0) is true for some signal I0 from Env. Occurrence of the en-
abled transition means

• changing the state from Ss to Se,
• if I0 is specified, removing an incoming signal I0 from the environment Env,
• changing the values of the variables according to E(G,V, I0),
• putting the output signals Os(G,V,I0) to the environment Env.

We say that an automaton executes a transition when some of its enabled transitions
occurs (nondeterministic choice). We say that the system executes a step k when some
automaton of the system executes a transition at this step (nondeterministic choice).

Example. Consider the following simple example of the communicating EFA system
– the “Sender-Receiver” system. This system consists of two interacting EFA – the
Sender automaton and the Receiver automaton. Sender sends a message to Receiver
and awaits the reception of acknowledgment. Receiver receives the message and re-
turns the acknowledgement to Sender.

 Initially Sender is in IDLE state. Its algorithm is as follows.
1. If the current state is IDLE, then send the signal of type msg (message) to

Receiver and go to AWAITING_ACK (awaiting acknowledgement) state.

A Two-Level Approach for Modeling and Verification of Telecommunication Systems 73

2. If the current state is AWAITING_ACK and the incoming signal of type ack
(acknowledgement) is received, then return to the initial IDLE state.

The algorithm of Receiver consists of the following rule: if the message (a signal of
type msg) is received, the ack signal is returned to its sender.

Thus, according to EFA definition, for Sender we have
αs = <S, V, G, I, O, T>, where
S = {IDLE, AWAITING_ACK}, V = {Receiver_id}, G = {}, T = {t1, t2},
t1 = {IDLE, AWAITING_ACK, [id, Receiver_id, msg, null], -, -},
t2 = {AWAITING_ACK, IDLE, -, I0.type = ack, -}.

The Receiver automaton is αr, where
S = {IDLE}, V = {}, G = {}, T = {t1},
t1 = {IDLE, IDLE, [id, I0.src, ack, null], I0.type = msg, -}.

The corresponding EFA system is Σ = <A, G, Env, Init>, where
 A = {αs, αr},G = {},Env = {},Init = {αs.id = 1, αs.Receiver_id = 2, αr.id = 2}.

The graphical representation of the system is given on Figure 1.

 Sender Receiver

Fig. 1. Sample EFA system: Sender-Receiver

3 Translation of EFA Systems to Coloured Petri Nets

Below we define the rules for the translation of EFA systems (EFAS) to coloured
Petri nets [8,9]. The main idea is the following: for each state of an automaton, integer
coloured (typed) places are created, where each 1’x token represents an automaton
with id = x. The transition of an automaton from one state to another becomes a tran-
sition of the corresponding token from one place to another.

The translation should be done step-by-step according to the following algorithm.

Algorithm EFAS→CPN
1. Build the auxiliary data types (colours):

• sType = enum {…} – enumeration for signal types,
• Signal = record [int Src, int Dest, sType Type, int Param] – for signals.

2. For all variables in the system (global and local), build the corresponding data
types. For arrays, create the record data types of the format
[int ind, <array type>], where ind denotes the array index.

3. For each global variable gi of type Ti, create a place with the name gi and color
Ti.

IDLE IDLE

t1 t1

t2

AWAITING_ACK Env

74 D. Beloglazov and V. Nepomniaschy

4. For Env, build a place Env of color Signal.
5. For each automaton α from A, perform the following actions.

5.1. For each local variable li of type Ti (except for id), build a place named α_li
of color Record[int, Ti].

5.2. For each state s from S, build an integer place α_s.
5.3. For each transition t from T, build a transition named α_t in CPN as follows.

5.3.1. Build an incoming arc from α_Ss to α_t with the expression id.
5.3.2. Build an outgoing arc from α_t to α_Se with the expression id.
5.3.3. If the predicate P is defined for the transition, then

5.3.3.1. Create the incoming and outgoing arcs to the places corre-
sponding to the variables used in P (gi and α_li). For arc ex-
pressions, create the variables of the corresponding types.

5.3.3.2. If P contains the condition on the incoming signal I0, add the
incoming arc from the place Env with the following expres-
sion: [Src, id, Type, Param].

5.3.3.3. Translate P into the guard function on the transition, replac-
ing the variables by the expressions from the corresponding
incoming arcs.

A special case is the translation of expressions like M[x] = y,
where M is an array. According to 5.3.3.1, there is an arc from the
corresponding place to this transition. The expression on this arc has
the format [i, v], where i is an index and v is the corresponding value.
If M is a global array, then M[x] = y should be translated to the con-
junction i = x & v = y. Local arrays are translated using the similar
technique.

5.3.4. If E(G,V,I0) is defined for the transition, then for each evaluation
v = f(G,V,I0) create
5.3.4.1. Incoming arcs for all variables from f(G,V,I0). For arc ex-

pressions, define the variables of the corresponding color.
5.3.4.2. An outgoing arc to the place corresponding to the variable v

with the expression f(G,V,I0), where all occurrences of vari-
ables are substituted by expressions from the corresponding
incoming arcs. Also, if an outgoing arc to this place already
exists (it was created at some preceding step), it should be
deleted. The evaluation for arrays is translated similar to
5.3.3.3: the check for equality is added for the array index
and the argument, and then the array value is placed to the
corresponding outgoing arc.

5.3.5. If the outgoing signals Os are set, build the incoming and outgoing
arcs to the corresponding places of the variables used (gi and α_li). For
arc expressions, define the variables of the corresponding types. Then
build the outgoing arc to the Env with the expression

[id, Dest, Type, Param], where each variable should be replaced by
the corresponding variable retrieved from the incoming arcs.

A Two-Level Approach for Modeling and Verification of Telecommunication Systems 75

6. The initial CPN marking based on the initialization function of the EFA system is
defined as follows.
6.1. For the automaton α with the identifier id which is in its initial state s, put a

token with the value id to the place α_s.
6.2. For each global variable assignment gi = xi, place the xi token to the place gi.
6.3. For each automaton α with the identifier id and for each local variable as-

signment li = yi , put [id, yi] token to the place α_li. For global and local ar-
rays, the values should be initialized for all possible indexes that are going
to be used by the automata during the system execution.

6.4. For each signal in Env, put the corresponding token to the place Env.

Example. For the sample from the previous chapter, let us build a coloured Petri net
using the translation algorithm. Fulfilling it step by step, we need to do the following:

1. Build the auxiliary data types. The sType will have the following definition:
sType = typedef {msg, ack}.

2. There is one global variable Receiver_id in the system and it has the default
color (integer), so we skip this step.

3. Create the place Receiver_id with int color.
4. Build the place Env with Signal color.
5. Build the following elements for the Sender transitions.

• For transition t1={IDLE, AWAITING_ACK, [id, Receiver_id, msg, null], -, -}
create
- Sender_t1 transition,
- Sender_IDLE and Sender_AWAITING_ACK places and the arcs

Sender_IDLE Sender_t1 and Sender_t1 Sender_AWAITING_ACK
with the expression id,

- Incoming and outgoing arcs for the place Receiver_id (as we use this
variable) with the corresponding expressions,

- The outgoing arc to the Env place with the expression [id, receiver_id,
msg, null].

• For the transition t2 = {AWAITING_ACK, IDLE, -, I0.Type = ack, -} we build
the following elements:

• Sender_t2 transition,
- Sender_AWAITING_ACK Sender_t2 and Sender_t2 Sender_IDLE

arcs with the expression id,
- An arc from Env with the expression [Src, id, Type, Value] and the guard

function I0.Type = ack (or the expression [Src, id, ack, Value]).
We build the Receiver transitions in the similar manner.

6. Assuming that the Sender has id = 1 and the Receiver has id = 2, the initial
marking of the CPN will be as follows:

Sender_IDLE = {1’1}, Sender_AWAITING_ACK = {},
Receiver_IDLE = {1’2}, Receiver_id = {1’2}, Env = {}.

The resulting CPN is shown on Fig. 2.

76 D. Beloglazov and V. Nepomniaschy

Fig. 2. The resulting CPN

4 Justification of the EFAS→CPN Algorithm

Below we define bisimilarity between EFA system and CPN and justify the
EFAS→CPN algorithm by proving that it preserves this bisimilarity.

Definition. Let us define bisimilarity between a EFA system configuration and a CPN
marking. The EFA system configuration consists of global variables values, Env value
and configurations of all EFA in the system. We will call the EFA system configura-
tion bisimilar to CPN marking if

- for each global variable gi , gi = xi iff in CPN there is a token in the place gi
with the value xi;

- for each automaton α with the identifier id, the automaton α is in state Sk iff
the place α_Sk contains the token with the value id;

- for each local variable li of each automaton α with the identifier id, li = уi iff
in CPN there is a token in the place α_li with the value [id, уi];

- for each signal from Env, there is a corresponding token in the place Env in
CPN.

We call CPN bisimilar to EFA system if
1. the initial marking of CPN is equivalent to the initial configuration of the

EFA system;
2. if at some step k the CPN marking is equivalent to the EFA configuration,

then the equivalence is preserved after the occurrence of any transition, i.e.
the state graphs of CPN and EFA system coincide.

The following theorem justifies the EFAS→CPN algorithm.

Theorem. The EFAS→CPN algorithm builds a CPN which is bisimilar to the initial
EFA system.

Sender_
IDLE

Sender_
AWAITING_
ACK

Sender_1

Sender_2
Receiver_1 Receiver_

IDLE

Env

Receiver_id

1’Receiver_id

1’id 1’id

1’[id, receiver_id, msg, null]

1’id

1’id

1’[Src, id, ack, Value]

1’[Src, id, msg, Value]

1’[id, Src, ack, null]

1’id

A Two-Level Approach for Modeling and Verification of Telecommunication Systems 77

Proof. According to the translation rules, in particular, point 6, the initial configura-
tion of the EFA system is bisimilar to the initial CPN marking.

Assuming that at some step k the EFA system configuration is bisimilar to the CPN
marking, let us prove that after any transition to the step k+1 bisimilarity is preserved.
We consider the transition from k to k+1 which is the result of the occurrence of some
transition t of an automaton a with the identifier id. The transition has the following
format: t = {Ss, Se, Os(G,V,I), P(G,V,I), E(G,V, I)}, where

E(G,V,I) = gi = fgi(G,V,I), i=1..n; lk = flk(G,V,I), k=1..m. Os(G,V,I) = oi(G,V,I)
= [Srci(G,V,I), Desti(G,V,I), Typei(G,V,I), Parami(G,V,I)], i=1..k.

Here gi are the global variables of the automaton a, li are its local variables and fgi,
fli, Srci(G,V,I), Desti(G,V,I), Typei(G,V,I), Parami(G,V,I) are functions of the corre-
sponding data types on the global variables, local variables of the automaton and the
incoming signal.

Assume that at step k the configuration was as follows.
• The environment Env contained the signal I0 = [Src, id, Type, Param],
• The automaton α was in the state Ss,
• The global variables gi had values xi , respectively,
• The local variables li of the automaton α had the values yi, respectively.

The bisimilar marking of CPN has the form:
• The place Env contains the token I0 = [Src, id, Type, Param],
• The place α_Ss contains the token id,
• The places gi contain the tokens xi , respectively,
• The places α_li contain tokens yi , respectively.

As a result of translation, the transition t becomes the transition α_t in CPN, where
• The transition α_t has the incoming arc from α_Ss with the expression id.
• The transition α_t has the outgoing arc to α_Se with the expression id.
• The transition has the incoming arcs from the places gi, α_li and Env with the

corresponding expressions: gi, α_li, [Src, id, Type, Param].
• The guard function on the transition coincides with P(G,V,I) with the only

difference: the α_li variables are used instead of the local variables li.
• The outgoing arcs to the places gi and li are supplied by the expressions

fgi(G,V,I0) and fli(G,V,I0), correspondingly. In these expressions, again, all
variables have values from the incoming arcs.

• The outgoing arc to the place Env has the following expressions: oi(G,V,I0) =
[Srci(G,V,I0), Desti(G,V,I0), Typei(G,V,I0), Parami(G,V,I0)].

The above means that the conditions on the occurrence of the automaton transition
coincide with the equivalent conditions on the occurrence of the CPN transition.

As a result of occurrence of t in EFA system, the following happens.
• The signal I0 = [Src, id, Type, Param] is removed from Env.
• Signals oi(G,V,I0) are placed to Env.
• The automaton α enters the Se state.
• The global variables gi change their values from xi to fgi(G,V,I0).
• The local variables li change their values from yi to li(G,V,I0).

As a result of occurrence of the corresponding transition α_t of CPN, the following
happens:

• The token I0 = [Src, id, Type, Param] is removed from the place Env.

78 D. Beloglazov and V. Nepomniaschy

• Tokens oi(G,V,I0) are put to the Env place.
• The token id leaves the Ss place and enters the Se place.
• The token xi is removed from the place gi.
• The token fgi(G,V,I0) is put to the place gi.
• The token yi is removed from the place α_li.
• The token fli(G,V,I0) is put to the place α_li.

Finally we can see that the CPN marking preserved bisimilarity with the EFSA
system configuration after the transition from step k to step k+1. This means that the
resulting CPN preserves bisimilarity for all transitions, i.e. the state graphs of EFA
system and CPN coincide. Thus, the resulting CPN is bisimilar to the EFA system.

5 Case Study: Ring Protocols

In this section two ring protocols are modeled and verified – RE-protocol and ATMR-
protocol. They were studied before in [15] based on the given SDL specifications
translated to CPN, but the verification was not complete as there is no proof for the
translation algorithm correctness.

5.1 RE-protocol

The ring RE-protocol which was introduced in [4] is used in the slotted-ring network,
where the data transfer is performed within the regular time periods in synchronous
mode for all stations.

The frame of the fixed length travels through the ring from station to station. The
frame is split into slots. For simplicity we’ll assume that frame equals to slot (see [4]).

The main principle of ring networks is that each station receives the frame from its
upstream neighbor (the previous station in the ring) and sends it to the downstream
neighbor (the next station). If the station has some data to send, it waits for the frame
labeled as empty, changes this label to full and loads its data into the frame. The sta-
tion which received the full frame, transmits it unaltered, and in case when the desti-
nation address equals to the station address, it copies the frame data into the local
buffer.

RE-protocol uses 2 bits for labeling and the structure of the frame is as follows:

R E DEST SRC DATA RESP

• R and E – are the auxiliary label bits,
• DEST – the field which stores the destination station address,
• SRC – the field which stores the sender address,
• DATA – the field for the data being transferred,
• RESP – the checksum field.

In the RE-protocol one of the stations controls the protocol functionality and corrects
it in case of errors in bits R and E, as these bits are not protected by the checksum.
This special station is called the monitor.

A Two-Level Approach for Modeling and Verification of Telecommunication Systems 79

Let us apply the concept of the communicating EFA to the RE-protocol modeling.
Actually the original model presented in [4] has the form of finite automata. We just
need to formally specify it according to our definition and define the communication
mechanism.

The states are obviously preserved, i.e. the station automaton will have the
LISTEN, RESET and RECOVERY states, and the monitor will have NORMAL, RESET
and RESTORE states. For simplicity let the signal type be a RE pair value. Thus the
system will have 4 types of signals: 00, 01, 10 and 11. So the RE-protocol will have
sType = {00, 01, 10, 11}. The frame fields SRC and DEST should be put to the signal
parameter Param, as the record of two corresponding variables.

The communication will be organized in a following natural way: the stations will
have the identifiers from 1 to N, and the monitor will have the id = N+1. For the sta-
tions and the monitor we define the local variable n_id, dedicated for storing the iden-
tifier of the downstream neighbor. For example, the station with id = 1 will have n_id
= 2. The monitor will have n_id = 1, and thus the ring is enclosed.

We use [1, 2, 00, [null, null]] as the initial signal value which means that in our
system the station number 1 sends the frame to the station number 2 and the SRC and
DEST fields are empty (null).

Here is the sample transition of the station:
t = {LISTEN, LISTEN, [id, n_id, 11, I0.Param], I0.Type = 11, -}

The following table illustrates the EFA station model for the RE-protocol.

Table 1. RE-protocol station model

Ss Se P Os
1. LISTEN LISTEN I0.Type = 11 [id, n_id, 11, I0.Param]

2. LISTEN LISTEN I0.Type = 01 [id, n_id, 01, I0.Param]

3. LISTEN LISTEN I0.Type = 00 [id, n_id, 00, I0.Param]

4. LISTEN ACTIVE I0.Type = 00 [id, n_id, 01, [id, Rnd x]]

5. ACTIVE LISTEN I0.Type = 01 & I0.
Param.Src = id

[id, n_id, 00, [null, I0.Param.Dest]]

6. ACTIVE LISTEN I0.Type = 10 [id, n_id, 10, I0.Param]

7. ACTIVE RECOVERY (I0.Type = 00 | I0.Type = 01) &
I0.Param.Src != id

[id, n_id, 00, [null, I0.Param.Dest]]

8. ACTIVE RECOVERY I0.Type = 10 [id, n_id, 10, I0.Param]

9. LISTEN RECOVERY I0.Type = 10 [id, n_id, 10, I0.Param]

10. RECOVERY LISTEN I0.Type = 11 [id, n_id, 11, I0.Param]

11. RECOVERY RECOVERY (I0.Type = 00 | I0.Type = 01 |
 I0.Type = 10)

[id, n_id, 10, I0.Param]

In Table 1 Rnd x denotes a random station number. This expression is used to

model message sending to random recipient. To model this we use an additional
STATIONS_POOL place and in the transition where the signal parameter is Rnd x we
add an incoming arc with the integer expression x from the STATIONS_POOL to this
transition and a condition “x is not equal id” so the station doesn’t send a message to

80 D. Beloglazov and V. Nepomniaschy

itdelf. The STATIONS_POOL place is initialized with the full set of tokens corre-
sponding to identifiers of the stations in the ring.

After applying the EFAS→CPN algorithm to the EFA system model the equivalent
CPN was built. For this CPN we performed simulation using the CPN Tools [9]. Us-
ing this system we studied the general behavior of the protocol and check some basic
properties such as the absence of deadlocks and the presence of loops.

Using CPN Tools together with the special module of the STSV system [15] we
built the reachability graph for the CPN and prepared it for the further analysis (model
checking). The RE-protocol was studied for cases of reliable and unreliable medium
with up to 10 stations and a monitor. It was checked to be satisfying the following
properties [15]:

1. Presence of deadlocks. RE-protocol in cases studied has no deadlocks.
2. Safety. This property holds in systems where it is possible to receive all sent

messages. This property holds for RE-protocol in all cases studied.
3. Extended safety. This property means “all sent messages are received”. This

property holds only for cases with reliable medium.
4. Repeating messages. This property was discovered in our earlier studies,

when the RE-protocol was specified using ESTELLE language and then
simulated. We found that if the medium is unreliable, the message sent by
one station to another may eventually come more than one time to its recipi-
ent. Our program verification confirmed that in case of unreliable medium
the repetition of messages appears. This is not happening for models with re-
liable medium. The corrections were introduced to solve this problem.

Table 2. RE-protocol verification results

Network type Deadlocks Extended
safety

Repeating
messages

Reliable medium false true false
Unreliable medium false false true
Unreliable medium, corrected false false false

The results for different types of medium and for the corrected protocol are shown in
the Table 2. Compared to [15] we were able to check the properties of the RE-
protocol for more stations (up to 10), because models were significantly smaller. Also
we made the complete verification of the above properties, as the translation from
EFA from CPN is justified.

5.2 ATMR Protocol

It is also a ring protocol similar to RE-protocol in its basics, however there is no spe-
cial station to control the correctness of network functioning. The ATMR-protocol is
a high-speed protocol and it has no unreliable medium handler. It is supposed that
high-level protocols should take care of re-sending messages. That is why we studied
ATMR-protocol for cases with reliable medium.

A Two-Level Approach for Modeling and Verification of Telecommunication Systems 81

Table 3. ATMR-protocol station model

Ss Se P Os E
1. IDLE IDLE I0.Type = D & I0.Param.DST = id [id, n_id, E, [0, I0.Param.BA]] -

2. IDLE IDLE I0.Type = D & I0.Param.DST != id [id, n_id, D, I0.Param] -

3. IDLE IDLE I0.Type = R [id, n_id, R, I0.Param] C = MaxCr

4. IDLE IDLE I0.Type = E & I0.Param.BA != id [id, n_id, E, I0.Param] -

5. IDLE SEND Has_data & C > 0 - -

6. IDLE RESET I0.Type = E & I0.Param.BA = id [id, n_id, R, I0.Param] -

7. IDLE WAIT Has_data & C <= 0 - -

8. SEND IDLE I0.Type = E [id, n_id, D, [Rnd x, id]] C = C - 1

9. SEND IDLE I.Type = R [id, n_id, R, I0.Param] C = MaxCr

10. SEND SEND I0.Type = D & I0.Param.DST = id [id, n_id, E, [0, id]] -

11. SEND SEND I0.Type = D & I0.Param.DST != id [id, n_id, D, [I0.Param.DST, id]] -

12. RESET IDLE I0.Type = R [id, n_id, D, [I0.Param.DST, id]] C = MaxCr

13. RESET RESET I0.Type = D & I0.Param.DST = id [id, n_id, E, [0, I.Param.BA]] -

14. RESET RESET I0.Type = D & I0.Param.DST != id [id, n_id, D, I0.Param] -

15. RESET RESET I0.Type = E [id, n_id, E, I0.Param] -

16. WAIT IDLE I0.Type = R [id, n_id, R, I0.Param] C = MaxCr

17. WAIT RESET I0.Type = E & I0.Param.BA = id [id, n_id, R, I0.Param] -

18. WAIT WAIT I0.Type = D & I0.Param.DST = id [id, n_id, E, [0, I0.Param.BA]] -

19. WAIT WAIT I0.Type = D & I0.Param.DST != id [id, n_id, D, I0.Param] -

20. WAIT WAIT I0.Type = E & I0.Param.BA != id [id, n_id, E, I0.Param] -

The ATMR protocol operates cells instead of frames. Each cell can be of 3 types:

Empty (E), Data (D), Reset (R). When the station has some data to send and it re-
ceives an Empty cell, it can fill it with the data changing its type to Data and puts the
recipient address to the DST field. Each station has a certain number of Credits (C),
which corresponds to the number of messages the station can send in a row. Each
time a station sends a message it subtracts 1 from its Credits value. When it has no
credits left, it waits for a Reset cell to refill its Credits to the maximum value. The
Reset cell is sent by one of the stations, which identifies that it’s the only active sta-
tion in the ring (using the Busy Address (BA) field containing the address of last active
station).

The specification was given in [16] in a form of EFA, and we only had to adjust
this specification to meet our format. The station automaton has IDLE, SEND, RESET
and WAIT states, the signal types are E, D and R. The DST and BA field is modeled as
the record of two corresponding variables in the signal parameter. The communica-
tion was organized the same way as for the RE-protocol, using the n_id variable. The
Table 3 illustrates the ATMR-protocol station specification in terms of EFA.

We used the EFAS→CPN algorithm to build the CPN models and we studied the
models for up to 5 stations. We checked the same properties as for the RE-protocol.
ATMR-protocol appeared to have no deadlocks, satisfy safety and extended safety as
well as have no repeating messages. And that was quite expected, since the medium

82 D. Beloglazov and V. Nepomniaschy

was reliable. Comparing to [15] we were able to model ring networks with more sta-
tions and perform the justified verification of the properties.

6 Case Study: Feature Interaction Problem in Telephone Network

In this part of our work we present a model for feature interaction problem (FIP).

Basic Call State Model. The basic interaction of the subscribers and the station is
defined by the so-called Basic Call State Model (BCSM). This is the model of the
Basic Call Service (BCS) which allows subscribers to communicate – dial a number,
answer calls, etc.

We model the subscribers and the telephone station as separate automata, separating
the logic of the subscriber from the station logic. The subscribers send the requests to
the station which processes the requests and returns results to the subscribers.

The additional features (or services) are modeled by the separate element – the
Feature Manager – which becomes a mediator between the subscribers and the BCS.
This element processes the signals coming from the subscribers according to which
features the caller (and/or callee) has enabled. Feature Manager either responds to the
subscribers directly or it passes the control to the Basic Call Service.

As the result, we built a model with 3 different automaton types: the Subscriber (in
multiple instances), the Basic Call Service and the Feature Manager. The Subscriber
automation has the states corresponding to what subscribers can do: Idle, Dialling,
Calling, Talking, etc. Both Basic Call Service and the Feature Manager have only one
state: they process the incoming signals, change the values of the variables and send
the outgoing signals to Subscribers and to each other. The signal types that Subscrib-
ers send to Feature Manager are offhook, onhook and dial. In return, they receive the
signals of types: dialtone, busytone, incoming_call, etc.

We modeled the following 3 features considered in [15]: Direct Connect (DC),
Denied Termination (DT), Call Forwarding when Busy (CFB). In addition, we mod-
eled the following two features:

1. Originating Call Screening (OCS). If x subscribes to OCS and puts y to the
OCS screening list then any outgoing call to y from x is restricted, while any
other call to z from x is allowed. Suppose the x receives dial tone. At this
time, even if x dials y, x receives busy tone instead of calling y.

2. Terminating Call Screening (TCS). If x subscribes to TCS and puts y to the
TCS screening list then any incoming call from y to x is restricted, while any
other call from z to x is allowed. Suppose the y receives dial tone. At this
time, even if y dials x, y receives busy tone instead of calling x.

Using the CPN Tools and the EFAS→CPN algorithm, we built the coloured Petri net first
for Basic Call State Model and then for the whole system (with the Feature Manager).

Using this model we performed the simulation and the program verification of the
interesting properties for the models with up to 5 subscribers.

The simulation was made using the CPN Tools. For verification we used the STSV
system [15]. For the models (reachability graphs) built with STSV we checked the
following properties: the presence of deadlocks, loops, nondeterminism and condi-
tions violation [15].

A Two-Level Approach for Modeling and Verification of Telecommunication Systems 83

Here are some comments on the results. If the subscriber has enabled CFB and DT
simultaneously than the nondeterminism occurs and it is not clear which feature
should occur: should the incoming call be dropped or should it be forwarded? Another
example of nondeterminism is DT + TCS, as both of them trigger on an incoming
call, and it is not clear which one should occur if both of them are enabled. In case of
CFB + CFB the loop is present in the system if two subscribers had pointed this fea-
ture to each other (forward the incoming calls to each other).

The results are shown on Table 4.

Table 4. Feature Interaction model checking results

Features Deadlocks Loops Nondeterminism Condition
Violation

CFB + DC false false false false
CFB + DT false false true false
DC + DT false false false false

CFB + CFB false true false false
CFB + OCS false false true false
CFB + TCS false false true false
DC + OCS false false false false
DC + TCS false false false false
DT + OCS false false true false
DT + TCS false false true false

All Features false true true false

7 Conclusion

To the best of our knowledge, our approach using communicating EFA and high-level
Petri nets for modeling, specification and verification of telecommunication systems
is a new approach. Our approach has the following advantages:
- Initial specification of telecommunication systems by means of communicating

EFA is compact and natural for some classes such as ring protocols and tele-
phone networks.

- CPN models are constructed from communicating EFA by the proposed correct
algorithm.

- Combination of different means for modeling, analysis and verification of CPN
models that have been implemented in CPN Tools [9] and STSV [15] plays an
important role.

The described case studies illustrate these advantages allowing to perform justified
verification of some telecommunication systems such as ring protocols and telephone
networks with interacting features. Verification of ATMR-protocol described in [16]
is performed using the model-checker SPIN which is applied to its specification in the
Promela language, but this specification is not justified with respect to its initial EFA
specification in [16].

Modeling and verification of telephone networks with interacting features has been
considered in the interesting papers [1,2,3,5,13,14,17], where communicating EFA or

84 D. Beloglazov and V. Nepomniaschy

related models are used in [1,3,5,17] and high-level Petri nets are used in [2,13,14]. It
should be noted that different kinds of EFA are used in [1,3], but there are no appro-
priate tools for their direct analysis and verification. For verification of telephone
networks with respect to properties represented by LTL formulas and mu-formulas,
model checking method is used in [1] and [17], respectively. Note that some verified
service properties are expressed in mu-calculus using fixed point operator [17] which
is not expressed in the logic LTL. In contrast to [1], we performed more justified veri-
fication of telephone networks with interacting features, because along with EFA
specifications Promela specifications are used in [1]. We detected new undesirable
feature interactions as comparing with [15].

A method to check the preservation of safety properties under the addition of fea-
tures in telephone networks is described in [6]. It is supposed to use this method in
our approach. Moreover, we are going to extend our EFA systems in order to investi-
gate the feature interaction problem for mobile telephone networks using CPN Tools
and STSV.

We are grateful to anonymous reviewers for helpful remarks.

References

1. Calder, M., Miller, A.: Using SPIN for Feature Interaction Analysis – A Case Study. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 143–162. Springer, Heidelberg
(2001)

2. Capellmann, C., Dibold, H., Herzog, U.: Using High-Level Petri Nets in the Field of Intel-
ligent Networks. In: Billington, J., Díaz, M., Rozenberg, G. (eds.) APN 1999. LNCS,
vol. 1605, pp. 1–36. Springer, Heidelberg (1999)

3. Cavalli, A., Maag, S.: A New Algorithm for Service Interaction Detection. In: George,
C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 371–382. Springer, Heidelberg
(2002)

4. Cohen, R., Segall, A.: An Efficient Reliable Ring Protocol. IEEE Transactions on Com-
munications 39(11), 1616–1623 (1991)

5. Gibson, P., Hamilton, G., Mery, D.: Integration Problems in Telephone Feature Require-
ments. In: Proc. of the 1st Intern. Conf. on Integrated Formal Methods, York (IFM 1999),
pp. 129–148. Springer, Heidelberg (1999)

6. Guelev, D., Ryan, M., Schobbens, Yv.: Model-checking the Preservation of Temporal
Properties upon Feature Integration. Int. J. on Software Tools for Technology Trans-
fer 9(1), 53–62 (2007)

7. Imai, K., Ito, T., Kasahara, H., Morita, N.: ATMR: Asynchronous transfer mode ring pro-
tocol. Computer Networks and ISDN Systems 26, 785–798 (1994)

8. Jensen, K.: Coloured Petri Nets: basic concepts, analysis methods and practical use, vol. 1,
2, 3. Springer, Heidelberg (1996)

9. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for modeling
and validation of concurrent systems. Int. J. on Software Tools for Technology Transfer 9,
213–254 (2007)

10. Keck, D.O., Kuehn, P.J.: The Feature and Service Interaction Problem in Telecommunica-
tions Systems: A Survey. IEEE Trans. on Software Eng. 24(10), 779–796 (1998)

11. Kozura, V.E., Nepomniaschy, V.A., Novikov, R.M.: Verification of Distributed Systems
Modelled by High-level Petri Nets. In: Proc. Intern. Conf. on Parallel Computing in Elec-
trical Engineering, Warsaw, Poland, pp. 61–66. IEEE Comp. Society, Los Alamitos (2002)

A Two-Level Approach for Modeling and Verification of Telecommunication Systems 85

12. Lee, D.: Principles and methods of testing finite state machines. Proc. IEEE 84(8), 1090–
1123 (1996)

13. Lorentsen, L., Tuovinen, A., Xu, J.: Modelling Feature Interaction Patterns in Nokia Mo-
bile Phones using Coloured Petri Nets and Design/CPN. In: Proc. 3rd Workshop on Practi-
cal Use of Coloured Petri Nets (CPN 2001), Aarhus Univ., DAIMI PB-554, pp. 1–14
(2001)

14. Nakamura, M.: Design and Evaluation of Efficient Algorithms for Feature Interaction De-
tection in Telecommunication Services. PhD dissertation, Osaka University (1999)

15. Nepomniaschy, V., Beloglazov, D., Churina, T., Mashukov, M.: Using Coloured Petri
Nets to Model and Verify Telecommunications Systems. In: Hirsch, E.A., Razborov, A.A.,
Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications. LNCS,
vol. 5010, pp. 360–371. Springer, Heidelberg (2008)

16. Peng, H., Tahar, S., Khendek, F.: SPIN vs. VIS: A Case Study on the Formal Verification
of the ATMR Protocol. Int. J. on Software Tools for Technology Transfer 4(2), 234–248
(2003)

17. Schatz, B., Salzmann, C.: Service-based systems engineering: Consistent combination of
services. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 86–104.
Springer, Heidelberg (2003)

SVM Paradoxes

Jean Beney1 and Cornelis H.A. Koster2

1 LCI, Département Informatique, INSA de Lyon F69621 Villeurbanne
Université de Lyon

jean.beney@insa-lyon.fr
2 Radboud University, ICIS, Nijmegen

kees@cs.ru.nl

Abstract. Support Vector Machines (SVM) is widely considered to be
the best algorithm for text classification because it is based on a well-
founded theory (SRM): in the separable case it provides the best result
possible for a given set of separation functions, and therefore it does
not require tuning. In this paper we scrutinize these suppositions, and
encounter some paradoxes.

In a large-scale experiment it is shown that even in the separable
case SVM’s extension to non-separable data may give a better result by
minimizing the confidence interval of the risk. However, the use of this
extension necessitates the tuning of the complexity constant.

Furthermore, the use of SVMfor optimizingprecision and recall through
the F function necessitates the tuning of the threshold found by SVM. But
the tuned classifier does not generalize well. Furthermore, a more precise
definition is given to the notion of training errors.

1 Introduction and Related Work

Support Vector Machines (SVM) is the most popular and successfull algorithm
for classification. Apart from its use in text classification, SVM has been used
sucessfully in many other classification tasks: in the classification of speech pat-
terns [7], plasma discharge [14], cancers [16,1] as well as various kinds of images.

In text classification its success is relative: compared to other methods, SVM
gives the best accuracy but in some cases this accuracy is not very good ([5,2,11]),
too low for practical use.

The problem lies in the number of features. There may be as few as 8 param-
eters in plasma discharge classification to a few hundred pixels, but in document
classification we may encounter over 500,000 word forms to be used as features.
This problem is linked to the bound of the generalization error ([19], pages 77-81)
which increases with the number of features.

But this large number of features has an advantage: it is always possible to
find enough words to built a separator between two classes [8]. Thus, the data
is linearly separable, and any kernel (polynomial, RBF) can be used as well. As
no properties of the vector space can be derived from the construction of this
space, there is no way to choose the best kernel. We may as well work with a
linear separator and use a method for linearly separable data.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 86–97, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

SVM Paradoxes 87

The elegant theorical foundation of SVM proves that this method gives the
best error expectation and therefore it is often said that it is not subject to
overfitting. As a corollary, it is also claimed that it has the advantage to have
no parameter that should be tuned [8].

Even in the separable case, many authors prefer the SVM variant for non-
separable data [12], or even the skew variant that attaches different weights to
false negatives and false positives [20]. In order to explain this paradox, we report
on an experiment with SVM on a large set of patent applications and we analyze
the results of the tuning of the complexity constant (section 4).

Another paradox is that SVM was defined to minimize the number of errors
whereas it is often used with another accuracy measure such as precision, recall
and the F1 function. Its result may not necessarily be optimal in terms of these
other accuracy measures.

In particular, precision and recall are often very different, which makes it likely
that the F1-value is not optimal because it is far from the break-even point. In
section 5 we discuss how to optimize F1 by modifying the threshold in order to
reach this break-even point.

Other authors have written on the optimization of SVM parameters in relation
to other measures, such as Mean Average Precision [20], F1: Li-CoNLL [13], or
more sophisticated methods (derivative-free method APPSPACK: [6], Genetic
Programming: [4]). These methods cannot be used with our huge document set
because of the large amount of training they require. But previous experiments
have shown that the optimal parameters may have rather different values when
working with a small subset [9].

In the next sections, we first recapitulate the theory of SVM and then describe
the experiments we have performed.

2 SVM and Structural Risk Minimization

SVM is based on the method of Structural Risk Minimization (SRM) as intro-
duced by Vapnik [19]. It consists in the search for that function, belonging to a
given set of functions, that minimizes the functional risk. If the function set is
characterized by parameters α, this risk can be defined by:

R(α) =
∫
Q(z, α)dF (z)

whereQ(z, α) is a measure of the loss between the true function and the estimated
function and F (z) is the distribution of the data in the given space. When F (z) is
not known, but only l points (train examples) are given, the empirical risk is used:

Remp(α) =
l∑

i=1

Q(zi, α)

These two risks are linked by the inequality:

R(α) ≤ Remp(α) + Φ(α)

where Φ(α) is the confidence interval.

88 J. Beney and C.H.A. Koster

In the classification problem, given a set of functions (e.g. the linear functions,
hyperplanes), every exact separator of the train set is a function that minimizes
the empirical risk (to zero). In general, it is advisable to look for the function
that minimizes the confidence interval, in order to minimize the upper bound of
the functional risk.

The optimal function is the separator for which the margin between posi-
tive and negative examples is maximal. Support Vector Machines compute this
separator, even when it is not linear, or when the train data is not separable.

2.1 The Optimal Hyperplane

In this brief introduction to SVM, we follow [3]. Let there be given a set of
labeled training examples xi ∈ Rn:

E = {< xi, yi > |1 ≤ i ≤M}, yi = ±1

is said to be linearly separable if:

yi(〈w.xi〉+ b) ≥ 1 (1)

where 〈.〉 is the inner product. The optimal hyperplane:

〈w0.x〉+ b0 = 0

is the unique one that separates the examples with a maximal margin. This
margin is:

ρ(w, b) =
2
|w| =

2√
〈w.w〉

The problem is then to find w0 that minimizes w.w under the constraints (1).
With the Lagrange multipliers method, it is easy to show that the vector w0

can be written as a combination of the training vectors :

w0 =
M∑
i=1

αiyixi (2)

Since the multipliers αi are zero for many training examples, w0 depends only on
the Support Vectors (those vectors that are near to the margin). The maximal
margin also depends only on the SV because:

〈w0.w0〉 =
M∑
i=1

αi

The quadratic programming problem (called dual) to be solved is to maximize:

L(Λ) =
M∑
i=1

αi −
1
2

M∑
i=1

M∑
=1

αiαjyiyj 〈xi · xj〉 (3)

subject to the constraints:

SVM Paradoxes 89

M∑
i=1

αiyi = 0 (4)

αi ≥ 0, i = 1,M (5)

2.2 Non-separable Data: The Soft Margin Hyperplane

When the train set is not linearly separable, the preceding problem and its dual
have no solution. In that case, training errors should be allowed for, but their
number should be minimized. This is done by introducing slack variables ξi ≥ 0
to relax the constraints:

yi(〈w.xi〉+ b) ≥ 1− ξi i = 1, ...,M

and using:
M∑
i=1

ξi

as a measure of the number of errors1 that should be minimized. In fact, this
sum is an upper bound of the number of errors.

As we now must optimize two functions, they are combined in one with the
use of a constant C that expresses the relative importance of the 2 optima.

R =
1
2
〈w.w〉 + C

M∑
i=1

ξi

The constant C is called the complexity constant.
The Lagrange multipliers method leads to the following dual problem: mini-

mize L(Λ) (equation 3) subject to the constraints (4) and :

C ≥ αi ≥ 0, i = 1,M (6)

2.3 Kernel Functions

As the above objective functions only depend on the inner products between
pairs of data vectors, these inner products can be replaced by a Kernel func-
tion K(u, v), that is a symmetric positive definite function, which leads to the
minimization of:

L(Λ) =
M∑
i=1

αi −
1
2

M∑
i=1

M∑
=1

αiαjyiyjK(xi, xj)

under the constraints (4) and (4) (or (6) for non-separable data). This method
allows to look for non-linear separators, for example a polynomial or exponential
(radial or potential) function. Since our data is linearly separable, we will not
use such kernel functions.
1 The real number of errors cannot be used because it is not derivable. Other functions

may be used instead.

90 J. Beney and C.H.A. Koster

2.4 Solving the Quadratic Programming Problem

Due to the large number of training data xi, and consequently the large number
of Lagrange multipliers to compute, it may be too time consuming to solve
the dual problem. Several investigations have led to efficient methods to solve
quadratic programming problems by working on subsets of the variables to be
computed. Sequential Minimal Optimization [15] considers two variables in each
step. In SVM light [18], each step is not limited to two variables.

3 Experimentation Setup

We briefly describe the software and data sets used in the experiments.

3.1 The Programs

In the experiment we made use of SVM light implemented by Thorsten Joachims
[18]. This program proceeds by solving sub-problems (several vectors are selected
and their multipliers are moved towards the solution) until all Lagrange multi-
pliers have been computed.

The data were preprocessed by term selection (selecting 105 000 out of 558 000
terms according to the Simplified ChiSquare criterion). The strength of the terms
(raw words) in the documents were computed using the LTC formula, followed
by a cosine normalization.

Due to the large size of the corpus EPO2F and the high number of runs to
perform (44 classes, many parameter values) we did not use cross-validation but
a single shuffle of the given example into 80% for training and 20% for testing.

3.2 The Data

EPO2F is a corpus of patent applications selected by the European Patent Office
for the evaluation of classification programs [10]. The documents were chosen by
EPO, from one year of input, in such a way that each of the training sets corre-
sponding to the 44 classes (called directorates) contains at least 2000 documents.
Each patent was labeled by EPO with one or more classes (up to 7 in practice),
so that we chose to classify each directorate separately.

Some statistics of EPO2F are given in the table 1.

3.3 The Quality Measures

The patent applications that arrive at EPO must be sent only to the relevant
directorate(s) (EPO calls this preclassification) and within each directorate to
the relevant examiner(s) that will check that the invention is really new. When a
document is sent to a wrong directorate, it costs time; therefore a high precision
is required.

The examiners need to search in a database, to find all the related patents
already registered. At this stage, a very high recall is needed.

SVM Paradoxes 91

Table 1. Statistics of the data set EPO2F

number of documents 68 418
number of classes 44
classes/doc : mean 1,43
classes/doc : maximum 7
docs/class : mean 2 227
docs/class : minimum 2 000
docs/class : maximum 2 947
words/doc : mean 59 528
words/doc : minimum 357
words/doc : maximum 163 261
unique words 557 790

As well as the number of errors (E), we will compute the precision (P), the
recall (R) and the F1 measure that combines them giving equal weight to both:

F1 =
2PR
P +R

It is known that at the point where the precision equals the recall (break-even
point), F1 is approximately maximal.

In other applications, where precision is more important than recall or vice
versa, a more general measure Fγ can be used, where γ controls the relative
importance of precision and recall. In that case, a variant of SVM for unbalanced
data can be used which includes two parameters C+ and C−, expressing the cost
of false positives and false negatives, in place of the C parameter of SVM for the
non-separable data.

4 Tuning the Complexity Constant

Although the data are linearly separable with a large margin for each clas-
sification (directorate), we have experimented with different values for the C
parameter (the complexity constant). For smaller C values, the errors have less
importance in the goal function, errors are allowed provided that at the same
time the margin is enlarged.

We first consider the case of one class, then of 44 (the number of directorates).

4.1 Results on 1 Class

Table 2 gives the results obtained on the directorate number 01. Figure 1 shows
F(1) on dir01 and its average on the 44 directorates.

These results call for the following remarks:

– When C is greater than or equal to 50, we get a perfect classifier of the train
data (no errors) but the results on test data are not optimal. The limit on
the Lagrange multipliers (condition 6) allows to improve the results.

92 J. Beney and C.H.A. Koster

Table 2. Varying C (dir01)

train set test set
C P R F1 E P R F1 E
0.3 92.75 70.58 80.16 830 88.89 63.05 73.77 1065
0.5 94.01 79.29 86.02 612 87.70 67.43 76.24 998
0.7 94.94 84.51 89.42 475 86.52 69.70 77.20 978
0.9 96.01 88.13 91.90 369 85.50 71.28 77.74 970
1 96.38 89.65 92.89 326 85.24 71.80 77.94 965
1.2 97.33 92.05 94.61 249 85.15 72.33 78.21 957
1.3 97.66 92.93 95.23 221 84.80 72.33 78.07 965
1.4 97.81 93.86 95.79 196 84.41 73.03 78.30 961
1.5 98.16 94.40 96.24 175 84.18 72.68 78.00 974
1.7 98.45 96.13 97.27 128 83.84 72.68 77.86 982
2 98.85 97.35 98.09 90 83.20 72.85 77.68 995
3 99.54 99.49 99.51 23 81.60 73.03 77.07 1032
5 99.79 99.83 99.80 9 80.19 73.03 76.44 1059
10 99.96 99.87 99.91 4 80.27 73.38 76.67 1061
20 100.00 99.96 99.97 1 79.96 73.38 76.52 1069
50 100.00 100.00 100.00 0 80.19 73.03 76.44 1069
100 100.00 100.00 100.00 0 80.15 72.85 76.32 1074
150 100.00 100.00 100.00 0 80.15 72.85 76.32 1074
200 100.00 100.00 100.00 0 80.15 72.85 76.32 1074

– When C is lower, we have a few errors on train data () and a better result
on test data (+2% on F(1), -10% on the number of errors).

– The difference between the results on train and test data is very large.

These phenomena can be explained by the following arguments:

– The so-called training errors (2.2) are not necessarily errors: they are vectors
that are either on the wrong side of the separation hyperplane or on the right
side but inside the margin. They should rather be called marginal errors.

– Allowing marginal errors can give a larger margin and a better generalization
error, because the confidence interval of the risk is decreased.

– The train data is not perfectly representative of the test set. This is always
the case with documents when the terms are the words (raw or lemmatized)
because it is known that every document brings a lot of new words.
In this situation, every method (including SVM) is subject to overfitting:
obtaining much better results on train data than on test data. When the
method includes certain parameters (C for SVM, promotion factor and num-
ber of iterations for Winnow or Perceptron [9]), they sometimes can be used
to reduce the effect of overfitting. When the method has no such parameters
(Rocchio, SBC), there is no way to reduce overfitting.

SVM Paradoxes 93

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 10 100

F
1

Complexity factor C

SVM (dir01)

Train dir01
Test dir01

Test, average 44 classes

Fig. 1. Accuracy as a function of C

4.2 Results on the 44 Classes

We have trained each of the 44 directorates using the strategy one against all.
The values given are the micro-averaged F1. As in EPO2F the number of exam-
ples is stable across the classes, the macro-averaged values are very similar.

With a good choice of C, the possible gain for each class varies from 0.37% to
6.16% with an average value of 2.43%. Unfortunately, the maximum is obtained
for different value of C for the different classes (between 1 and 150), which means
that tuning is necessary for each class separately.

However, by choosing C = 2 for all the classes, the gain is 2.20% (F(1)=64.20)
compared to the case C = 200 (perfect classifier of the train data).

5 Tuning the Threshold

When the result hyperplane:

〈w0.xi〉+ b0 = 0

is used for the classification of new data, a document (vector) is said to belong
to the class when:

〈w0.xi〉 ≥ −b0

Then b0 is called the threshold. It is computed using one (unbounded2) support
vector xi, yi because such a vector lies on the margin:

b0 = yi − 〈w0.xi〉
2 A support vector xi is bounded if αi = C; it is unbounded when αi < C.

94 J. Beney and C.H.A. Koster

Table 3. Threshold tuning (dir01, C=1.4)

train test
b P R F1 Nb Err P R F1 Nb Err
0.5 94.45 98.78 96.56 167 70.10 87.04 77.65 286
0.6 95.22 98.15 96.66 161 74.05 84.94 79.12 256
0.65 95.68 97.77 96.71 158 75.12 84.06 79.33 250
0.66 95.75 97.73 96.72 157 75.55 83.89 79.50 247
0.67 95.82 97.69 96.74 156 75.99 83.71 79.66 244
0.68 95.82 97.56 96.68 159 76.57 83.54 79.90 240
0.69 95.82 97.52 96.66 160 77.02 83.36 80.06 237
0.7 95.90 97.43 96.65 160 77.45 83.01 80.13 235
0.75 96.32 96.93 96.62 161 78.89 79.86 79.37 237
0.8 96.71 96.55 96.62 160 80.54 78.28 79.39 232
0.85 97.14 95.79 96.46 167 81.60 76.88 79.16 231
0.9 97.50 95.08 96.27 175 82.82 75.13 78.78 231
0.99830698 97.81 93.86 95.79 196 84.41 73.03 78.30 231
1 97.81 93.77 95.74 198 84.38 72.85 78.19 232
1.1 98.26 92.42 95.25 219 86.39 70.05 77.36 234

The above results (table 2) are not at the break-even point (3.3): the precision is
always much larger than the recall. Therefore, we may expect that it is possible
to get a larger F1 value. One possible method is to use the SVM variant for
unbalanced data (3.3) with C+ > C−, which is also paradoxal because we are
looking for a balanced result.

We have experimented with another method: to chose a smaller threshold
whose result will be to select more documents, then enlarging the recall and
probably decreasing the precision.

5.1 Results on 1 Class

Table 3 and figure 2 show that setting the threshold at 0.67 improves F1 on
the train data by .95% above the result given in table 2. The threshold at the
break-even point is different (about 0.8) but F1 is rather stable between these
two points.

The corresponding F1 increase on test data is even larger (+1.36%) but this
is still not the maximum possible (+1.83% for a threshold 0.7).

This improvement causes also a decrease of the number of errors on train
documents (196 to 156), which may be surprising as SVM is already supposed
to minimize the number of errors. But, as before, we must consider that SVM
minimizes the number of marginal errors while we are interested in the number
of true errors.

5.2 Results on the 44 Classes

Unfortunately, the positive result obtained on the class dir01 cannot be repeated
on all other classes: the tuning of the threshold on the train data does not

SVM Paradoxes 95

 95

 95.5

 96

 96.5

 97

 0.5 0.6 0.7 0.8 0.9 1

F
1

Seuil

SVM

F(1)
Precision

Recall

Fig. 2. Accuracy on unseen data as a function of the threshold (dir01)

Table 4. F1 on unseen data after tuning of the threshold

dir01 average 44 classes
b0 SVM best b0 b0 SVM best b0

C>100 72.85 61.80
C=2 76.32 78.82 64.20 64.00

best C for each class 78.30 79.33 64.23 63.50

necessarily improve F1 on the test data. The micro-averaged effect on F1 may
even be negative as shown in table 4, where we compare the best C value for
each class with a standard value C=2.

Note that for a perfect classifier of the train data (C>100), no tuning is
possible since there are no errors to remove.

It means that the result given by SVM, even if it not the best possible on train
data, has a very good generalization capacity. In most cases, trying to reduce
the number of true train errors leads to overfitting, and therefore a worse result
on test data.

6 Conclusions and Further Work

In this paper, we have addressed a number of paradoxes and common misunder-
standings associated with the SVM classification method.

To begin with, we have shown experimentally that SVM is subject to overfit-
ting just like many other classification methods. It is not perfect in this respect.

The basic method for separable data generalizes rather well. But the use of the
variant for non-separable data (which would seem useless) allows the reduction

96 J. Beney and C.H.A. Koster

of overfitting by reducing the confidence interval, at the price of a less than
perfect separation of the train data (the empirical risk is not null).

Then, the complexity constant must be chosen carefully for each class by
trying several values, with the possible help of the gradient.

The large difference between the accuracy on train and test documents is due
to the many new terms that appear with new documents. When we build a
test set independent from the training set, they are not identically distributed.
Therefore, the train data cannot be said to belong to the same distribution as
the whole document set, and the same holds for the test set.

SVM is not defined to optimize F1 so that it is possible to increase the value
of this measure on the train data by moving the threshold in order to be nearer
from the break-even point (precision equals recall). But the classifier obtained
by this process does not generalize as well as the one given by SVM.

We have also seen that, when we decrease the risk (less true errors and better
F1 on train data), we often increase its confidence interval; this improvement
leads to overfitting. In this situation, the direct SVM result is the best and must
be taken as it is, even if the method was not designed to optimize F1..

Incidently, this result suggest that optimizing F1 on the train data is not the
best strategy because the classifier obtained does not generalize very well on a
train set.
In consequence of these results, we are working on the following ideas:

– is it possible to design a better problem setting based on true errors instead
of marginal errors?

– how can we establish a theory of overfitting, based on statistics of new words
in each documents?

Aknowledgement. The experimentation was performed on the Large Data
Collider of the Information Retrieval Facility.

References

1. Ayat, N.E., Cheriet, M., Suen, C.Y.: Kmod-a two parameter svm kernel for pattern
recognition. In: ICPR, pp. 30331–30334 (2002)

2. Basu, A., Watters, C., Shepherd, M.: Support vector machines for text catego-
rization. In: HICSS 2003: Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS 2003) - Track 4, Washington, DC, USA, p.
103. 3. IEEE Computer Society, Los Alamitos (2003)

3. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

4. Cummins, R., O’Riordan, C.: Evolved term-weighting schemes in Information Re-
trieval: an analysis of the solution space. Artificial Intelligence Review, 35–47
(November 2007)

5. Dumais, S., Platt, J., Heckerman, D., Sahami, M.: Inductive learning algorithms
and representations for text categorization. In: CIKM 1998: Proceedings of the
seventh international conference on Information and knowledge management, pp.
148–155. ACM Press, New York (1998)

SVM Paradoxes 97

6. Eitrich, T., Lang, B.: Efficient optimization of support vector machine learning pa-
rameters for unbalanced datasets. J. Comput. Appl. Math. 196(2), 425–436 (2006)

7. Huang, J.: Face recognition using component-based svm classification and mor-
phable models. In: SVM, pp. 334–341 (2002)

8. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

9. Koster, C.H.A., Beney, J.G.: On the importance of parameter tuning in text clas-
sification. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
270–283. Springer, Heidelberg (2007)

10. Krier, M., Zaccà, F.: Automatic categorisation applications at the european patent
office. World Patent Information 24, 187–196 (2002)

11. Lauser, B., Hotho, A.: Automatic multi-label subject indexing in a multilingual
environment. In: Koch, T., Sølvberg, I.T. (eds.) ECDL 2003. LNCS, vol. 2769, pp.
140–151. Springer, Heidelberg (2003)

12. Li, Y., Bontcheva, K., Cunningham, H.: Svm based learning system for informa-
tion extraction. In: Proceedings of Sheffield Machine Learning Workshop. LNCS.
Springer, Heidelberg (2005)

13. Li, Y., Bontcheva, K., Cunningham, H.: Using Uneven Margins SVM and Percep-
tron for Information Extraction. In: Proceedings of Ninth Conference on Compu-
tational Natural Language Learning, CoNLL 2005 (2005)

14. Lukianitsa, A.A., Zhdanov, F.M., Zaitsev, F.S.: Analyses of iter operation mode
using the support vector machine technique for plasma discharge classification.
Plasma Physics and Controlled Fusion 50(6), 065013, 14 p. (2008)

15. Platt, J.: Sequential minimal optimization: A fast algorithm for training support
vector machines. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods - Support Vector Learning. MIT Press, Cambridge (1998)

16. Rifkin, R., Mukherjee, S., Tamayo, P., Ramaswamy, S., Yeang, C.h., Angelo, M.,
Reich, M., Poggio, T., Eric, S.L., Golub, T.R., Mesirov., J.P.: An analytical method
for multiclass molecular cancer classification. SIAM Review 45, 706–723 (2003)

17. Sebastiani, F.: Classification of text, automatic. In: The Encyclopedia of Language
and Linguistics, pp. 457–463. Elsevier Science Publishers, Amsterdam (2006)

18. Thorsten, J.: Making large-scale svm learning practical. In: Schölkopf, B., Burges,
C., Smola, A. (eds.) Advances in Kernel Methods – Support Vector Learning, ch. 11,
pp. 41–56. MIT Press, Cambridge (1999)

19. Vapnik, V.: The nature of Statistical Learning Theory, 2nd edn. Springer, New
York (2000)

20. Yue, Y., Finley, T.: A support vector method for optimizing average precision. In:
Proceedings of SIGIR 2007 (2007)

Indexing Dense Nested Metric Spaces for
Efficient Similarity Search�

Nieves R. Brisaboa, Miguel R. Luaces, Oscar Pedreira,
Ángeles S. Places, and Diego Seco

Database Lab., Universidade da Coruña
Facultade de Informática, Campus de Elviña s/n, 15071 A Coruña, Spain

{brisaboa,luaces,opedreira,asplaces,dseco}@udc.es

Abstract. Searching in metric spaces is a very active field since it of-
fers methods for indexing and searching by similarity in collections of
unstructured data. These methods select some objects of the collection
as reference objects to build the indexes. It has been shown that the way
the references are selected affects the search performance, and several al-
gorithms for good reference selection have been proposed. Most of them
assume the space to have a reasonably regular distribution. However,
in some spaces the objects are grouped in small dense clusters that can
make these methods perform worse than a random selection. In this pa-
per, we propose a new method able to detect these situations and adapt
the structure of the index to them. Our experimental evaluation shows
that our proposal is more efficient than previous approaches when using
the same amount of memory.

1 Introduction

Similarity search has become a necessary operation for a large number of appli-
cations that deal with data without a semantically clear structure. For instance,
multimedia databases manage unstructured objects as images, sound, or video.
Content-based retrieval of the most similar images to another one given as a
query is an example of similarity search. Applications related to strings and
documents are present in systems that range from text editors to big search en-
gines: finding words similar to another one for spelling correction, near-duplicate
detection of documents, query rewriting, or spam detection are some examples.
We can find more applications in areas such as computational biology (retrieval
of DNA or protein sequences), or pattern recognition (where a pattern can be
classified from similar, previously classified patterns) [1,2].

Similarity search can be formalized through the concept of metric space. A
metric space is a pair (X, d) composed of a universe of objects X and a metric
� This work has been partially supported by “Ministerio de Educación y Cien-

cia” (PGE y FEDER) ref. TIN2006-16071-C03-03 and by “Xunta de Galicia”
ref. PGIDIT05SIN10502PR., and by “Dirección Xeral de Ordenación e Calidade
do Sistema Universitario de Galicia, da Conselleŕıa de Educación e Ordenación
Universitaria-Xunta de Galicia” for Diego Seco.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 98–109, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Indexing Dense Nested Metric Spaces for Efficient Similarity Search 99

d : X×X −→ R+, a function that satisfies the properties of strictly positiveness
(d(x, y) ≥ 0, and d(x, y) = 0 ⇔ x = y), symmetry (d(x, y) = d(y, x)), and
the triangle inequality (d(x, y) ≤ d(x, z) + d(z, y)). The value d(x, y) is called
the distance from x to y with respect to the metric d, and it represents the
dissimilarity between them [3]. The database or collection of objects where the
searches are carried out is represented by a finite subset U ⊆ X of size n = |U |.

A query is expressed as a query object q ∈ X and a criterion of similarity on
that object. The result set is the subset of objects of the collection that satisfy
that criterion of proximity. There are two main queries of interest in metric
spaces: (i) range search retrieves all the objects of the collection up to a certain
distance r to the query object q; (ii) k-nearest neighbors search retrieves the k
most similar objects to the query. Range search is the most important, since it
is the more general and other queries can be implemented in terms of it [1].

Vector spaces are a particular case of metric spaces, where each object is
a tuple of real numbers. In this case, we can use any of the metrics of the
Lp family, defined for Rl as Lp(x, y) = (

∑
1≤i≤l|xi − yi|p)1/p. For instance, L1

is the Manhattan distance, L2 the Euclidean distance (the usual choice), and
L∞ = max1≤i≤l|xi− yi| is the maximum distance. The set of all the strings of a
given alphabet with the edit distance (computed as the number of symbols we
need to add, remove, or replace to transform one string into another) is another
example of a metric space. The dictionaries of different languages are possible
databases, and we could be interested in retrieving all the words up to a certain
distance of the query to correct spelling errors.

The naive way of implementing similarity search consists in sequentially com-
paring the query object with all the objects of the database. However, this so-
lution is not feasible in practice since the comparison of two objects is supposed
to involve a high computational cost and the database may have a large number
of objects. This has motivated the development of methods for indexing and
searching that make this operation more efficient by trying to reduce the num-
ber of comparisons of objects needed to solve a query. This can be achieved by
building indexes that store information that, during the search, permits to di-
rectly discard a significant amount of objects from the result set without directly
comparing them with the query object.

Although reducing the number of evaluations of the distance function is the
main goal of these methods, there are other issues to take in account. Some
methods can only work with discrete distance functions, while others can work
with continuous distances too. This constraint limits the range of problems in
which the algorithm can be applied. Processing the information stored in the
index for solving a query involves an extra CPU time that also affects the overall
search performance. The possibility of efficiently storing the index in secondary
memory and the number I/O operations needed to process it is other important
aspect.

Methods for searching in metric spaces use a set of objects from the collection
as reference points that are used to obtain the information stored in the index to
speed-up the search. It has been shown that the specific set of reference objects

100 N.R. Brisaboa et al.

affects the final search cost [4,5] and several techniques have been proposed for
their effective selection. These references are selected without caring about the
topology of the space, assuming that it is reasonably regular. However, in some
cases the spaces present irregularities that may cause these techniques to perform
worse than even a random selection.

In this paper we propose Sparse Spatial Selection for Nested Metric Spaces
(SSS-NMS), a new method for searching in metric spaces that adapts the index
structure to the distribution of the collection. The rest of the paper is organized
as follows: Section 2 introduces some concepts and related work we use in this
paper. Section 3 presents SSS-NMS. In Section 4 we describe the experimental
evaluation we carried out and the results we obtained. Finally, in Section 5 we
present the conclusions of this work and possible lines of future work.

2 Background and Related Work

Methods for searching in metric spaces can be grouped in two classes [1]: pivot-
based methods, and clustering-based methods. In pivot-based methods, the index
is a data structure that stores precomputed distances from the objects of the
database to a subset of objects used as pivots. When given a query (q, r), the
query object is compared with the pivots. For every x ∈ U and every pivot
p ∈ U , we know (by the triangle inequality) that d(p, x) ≤ d(p, q) + d(q, x), and
therefore d(q, x) ≥ |d(p, x) − d(p, q)|. If |d(p, x) − d(p, q)| > r, then d(q, x) > r
and x can be discarded from the result set without comparing it with the query.
The simplest index consists in a table storing the distances from all the objects
of the database to all the pivots. Well-known pivot-based methods are BKT [6],
FQT [7], VPT [8], AESA [9] and LAESA [10].

Clustering-based methods partition the metric space in a set of clusters, each
of them represented by a cluster center c ∈ U and the covering radius rc ∈ R+:
the distance from the center to its furthest object in the cluster. When given
a query (q, r), the query object is compared with the cluster centers. For each
cluster (c, rc), the whole cluster can be directly discarded if d(q, c) − rc > r,
since in this case, the intersection of the cluster and the result set is empty.
Well-known clustering-based methods are BST [11], GHT [12], GNAT [5] and
M-Tree [13].

In both cases, the objects that could not be discarded make up the candidate
list and have to be directly compared with the query. The search complexity is
given by the sum of the comparisons of the query with pivots or centers (internal
complexity) and the comparisons with candidate objects (external complexity).

Selection of Reference Objects

Both pivot-based and clustering-based methods use some objects of the collection
as references for building the index: pivots in the case of pivot-based methods
and cluster centers in the case of clustering-based methods.

It has been shown that the specific set of objects used as references affects
the search performance of the method [4,5]. The number of references, and their

Indexing Dense Nested Metric Spaces for Efficient Similarity Search 101

x

z

y

p3

p1

p2

Fig. 1. Dense subspaces nested in a general metric space

location with respect to other references and to the objects of the database deter-
mine the effectiveness of the index for discarding objects. Several techniques have
been proposed for selecting references. [10,5,8] proposed different techniques for
selecting references far away from each other. [4] formally analyzed the problem
of reference selection, and proposed a criterion for comparing the effectiveness of
two sets of pivots and several techniques based on the iterative optimization of
that criterion. [14,15,16] are also based on defining a criterion for measuring the
effectiveness of the set of reference objects and select the references by trying to
optimize that criterion.

Sparse Spatial Selection (SSS) [17] selects a set of pivots well distributed in the
space. In contrast to previous techniques, SSS is dynamic, this is, the database
is initially empty and new references are selected as needed when new objects
are inserted in the database. When a new object is inserted, it is selected as
a reference if its distance to the other references is greater or equal than Mα,
being M the maximum distance between any two objects, and α a constant
that usually takes values around 0.4. The object becomes a reference if it is far
enough from the already selected references.

[17] shows that the optimal values of α are in the range [0.35, 0.40] and the
search cost is virtually the same for all the values in that interval. Other impor-
tant feature of SSS is that it is not necessary to specify the number of references
to select. SSS selects more references as needed when the database grows, adapt-
ing the number of objects to the complexity of the collection. Although it was
originally proposed for selecting pivots, it can be applied for selecting cluster
centers without changes.

Nested Metric Spaces

Most methods for searching in metric spaces assume that the topology of the
collection of objects is reasonably regular. However, some spaces present irregu-
larities that can affect their behavior and degrade the search performance they
achieve.

In many applications the objects of the collection are grouped in different
clusters or subspaces, in such a way that different dimensions or variables explain
the differences between objects inside each subspace.

102 N.R. Brisaboa et al.

 0

 100

 200

 300

 400

 500

English Nasa Color

D
is

ta
nc

e
co

m
pu

ta
tio

ns

Incremental
SSS

Random

Fig. 2. Average search cost for the collections for English, Nasa, and Color, with Incre-
mental, SSS, and random pivot selection

Figure 1 shows an example of this situation. The database is a subset of
R3. This space has three explicit dimensions: the main corresponds to the x
axis, and the other two correspond to the y and z axis. In this example, there
are two subspaces with a large number of objects along the axes y and z. The
objects inside a subspace are almost equal according to the main dimension, but
different according to the specific dimensions of the subspace they belong to. In
this example, the maximum distance between two objects is given by the main
dimension. If working with SSS, after selecting the pivots p1, p2, and p3, no more
pivots could be selected. However, a random pivot selection has the chance of
putting pivots inside each subspace since they have a large number of objects.

Figure 2 shows the average search cost for solving a query in the collections
English, Nasa, and Color (the details of each collection are described in Section
4). SSS gets the best result in English and Nasa. However, in Color it is worse
than even a random selection. Most the coordinates of the feature vectors of
Color take the value 0 or are very close to 0, so a large number of objects is
grouped near the origin of coordinates. The irregularity of this collection makes
SSS to obtain this result.

3 Sparse Spatial Selection for Nested Metric Spaces

Sparse Spatial Selection for Nested Metric Spaces (SSS-NMS) is a new method
for searching in metric spaces that identifies dense clusters of objects in the
collection and adapts the structure of the index to this situation.

The index built by SSS-NMS is structured in two levels. In a first level, SSS-
NMS selects a set of reference objects with SSS and uses them as cluster centers
to create a Voronoi partition of the space. In a second phase, those clusters

Indexing Dense Nested Metric Spaces for Efficient Similarity Search 103

Fig. 3. At the first level, the space is partitioned using reference objects selected with
SSS as cluster centers

considered dense are further indexed by applying SSS in each of them. Following
this procedure, SSS-NMS is able to detect complex groups of objects in the
database and to index them according to their complexity.

3.1 Construction

The construction of the index is carried out in two phases. Since SSS is used in
each of them, we will call α and β the constants that control the selection of
reference objects with SSS in each phase respectively.

Voronoi Partition of the Space with SSS

In the first phase SSS is applied to obtain a set of reference objects used as
cluster centers {c1, . . . , cm}. To create a Voronoi partition of the collection, each
object is assigned to the cluster corresponding to its nearest cluster center: Ci =
{x ∈ U/∀j �= i, d(x, cj) ≥ d(x, ci)}, where Ci is the cluster associated to the
center ci (see Figure 3).

The value of α should be small in this first phase. Having few cluster centers
could result in dense clusters that contain also objects that do not belong to the
real dense cluster of objects. However, a small value of α can also result in empty
clusters. Those empty clusters are removed, and their corresponding centers are
added to the rest of clusters as any other object of the collection.

Indexing Dense Clusters with SSS

In the second phase, those clusters considered dense are further indexed using a
set of references obtained with SSS as pivots. We compute the density of each
cluster as the number of elements in the cluster divided by the maximum distance
between them:

density(Ci) =
|Ci|

max{d(x, y)/x, y ∈ Ci}

Computing the density of all clusters could be very costly if the maximum dis-
tance of each of them is obtained by comparing all the objects of the cluster

104 N.R. Brisaboa et al.

with all the rest of objects. To avoid this overhead in the construction time, we
obtain an approximation of the maximum distance. To do this, an object of the
cluster is picked at random and compared with the rest of objects of the cluster.
Its furthest object is then compared with all the objects of the cluster, to obtain
it furthest object too. After repeating the process for a few iterations, a good
approximation of the maximum distance (if not the actual maximum distance)
is obtained. This approximation is also used when applying SSS in the first level.

We consider that the cluster Ci has a high density if density(Ci) > μ + 2σ,
where μ and σ are the mean and the standard deviation of the densities of all
clusters. For each dense cluster, a set of objects is obtained with SSS to be
used as pivots, and the table of distances from all the objects of the cluster to
the pivots is computed and stored. In this second phase the index stores more
information for the dense complex subspaces. In this case, the value of β should
be around 0.4, as indicated in [17].

3.2 Search

Given a query (q, r), the query object is compared with all the cluster centers
of the first level. Those clusters Ci = (ci, rc) for which d(q, ci) − rc > r are
directly discarded from the result set, since the intersection of the cluster and
the result set is empty. For the clusters that could not be discarded there are
two possibilities. If the cluster does not have associated a table of distances from
its objects to pivots, the query has to be directly compared with all the objects
of the cluster. If the cluster has associated a table of distances, the query is
compared with the pivots and the table is processed to discard as many objects
as possible, as described in 2. The objects that can not be discarded are directly
compared with the query.

4 Experimental Evaluation

Test Environment

For the experimental evaluation of our method we used three collections of real
data available in the Metric Spaces Library [18]: English is a collection of 69, 069
words extracted from the English dictionary, and compared using the standard
edit distance; Nasa is a collection of 40, 150 images extracted from the archives of
image and video of the NASA, and represented by feature vectors of dimension
20; Color is a collection of 112, 544 color images represented by feature vectors
of dimension 112. Both in Nasa and Color the images are compared using the
Euclidean distance of their feature vectors. As usual, the experimental evalua-
tion focused in range search, using the number of distance computations as the
measure of the search cost.

Construction and Search

Our initial hypothesis was that, when working with real collections, we can not as-
sume a regular distribution of the objects in the space, and that they are usually

Indexing Dense Nested Metric Spaces for Efficient Similarity Search 105

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

Highest cluster density: 975.2

Cluster density

Histogram of cluster densities for the collection Nasa

Fig. 4. Histogram of clusters density for Nasa

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

x 10
−4

Highest cluster density: 3.755e+004

Cluster density

Histogram of cluster densities for the collection Color

Fig. 5. Histogram of clusters density for Color

grouped in dense subspacesnested into a more generalmetric space. With these ex-
periments we also obtained the densities of the clusters obtained in the first phase
of the construction. Figures 4 and 5 show the histograms of cluster densities for
the collections Nasa and Color. As we can see, most of the clusters have more or less
the same density, although some of them have a much higher density. The number
of clusters with a too high density is small, and these are the ones indexed in the
second level of the index. The results are similar for English, and for other values
of α (we do not include the graphics for reasons of space).

The construction of SSS-NMS depends on the parameters α and β, that con-
trol the number of reference objects selected by SSS in the first and second levels
of the index respectively. Since these parameters affect the structure of the in-
dex and the information it stores, they also affect the search performance. In the
previous section we indicated that the value of α should be small for selecting
a significant number of cluster centers in the first level, and that the value of β
should be around 0.4, as indicated in [17].

106 N.R. Brisaboa et al.

 9000

 11000

 13000

 15000

 17000

 19000

 21000

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
is

ta
nc

e
co

m
pu

ta
tio

ns

β

62,162 objects, 6,907 queries, r = 2

α = 0.1
α = 0.2
α = 0.3
α = 0.4

Fig. 6. Search cost in terms of α and β for English

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
is

ta
nc

e
co

m
pu

ta
tio

ns

β

36,135 objects, 4,015 queries, retrieving the 0.01% of the database

α = 0.1
α = 0.2
α = 0.3
α = 0.4

Fig. 7. Search cost in terms of α and β for Nasa

 5000

 7000

 9000

 11000

 13000

 15000

 17000

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

D
is

ta
nc

e
co

m
pu

ta
tio

ns

β

101,290 objects, 11,254 queries, retrieving the 0.01% of the database

α = 0.1
α = 0.2
α = 0.3
α = 0.4

Fig. 8. Search cost in terms of α and β for Color

Indexing Dense Nested Metric Spaces for Efficient Similarity Search 107

In our first set of experiments we indexed the three collections for values of
α between 0.1 and 0.4, and values of β between 0.3 and 0.6. In each case, the
90% of objects of the database were indexed, and the other 10% were used as
queries. The search radius for English was r = 2, and for Nasa and Color we used
search radius that retrieve a 0.01% of the objects of the collection. Figure 6, 7,
and 8 show the results we obtained. As we can see in these results, the optimal
search cost is obtained for α = 0.2 and β = 0.5. Although in Nasa the best result
is obtained for α = 0.4, the difference with the result obtained for α = 0.2 is
small. These results are consistent with [17], since the optimal β for each space
is always around 0.4, and the search cost for all those values is virtually the
same.

Comparison

We evaluated the search efficiency of SSS-NMS by comparing it with existing
state-of-art methods. Particularly, we compared it with SSS [17], Incremental
[4] and LAESA with random pivots [10]. All of them are pivot-based methods.
Comparing SSS-NMS with clustering-based methods would not make sense, since
it uses a cluster approach at a first level, to which it adds more information in
the second level.

Pivot-based algorithms achieve better results as more space for storing the
index is given to them. However, this is only possible for small collections, since
in large collections their optimal result can require an index of several gigabytes.
Thus, the comparison was carried out configuring the methods to use the same
amount of space for storing the index.

Again, 90% of the objects of each collection were indexed and 10% were used
as queries, retrieving an average of 0.01% of objects of the database for each
query in the case of Nasa and Color, and using a search radius r = 2 for English.

 0

 5000

 10000

 15000

 20000

 25000

English Nasa Color

D
is

ta
nc

e
co

m
pu

ta
tio

ns

SSS-NMS
SSS

Incremental
Random

Fig. 9. Comparison of SSS-NMS with LAESA with random pivots and SSS pivots

108 N.R. Brisaboa et al.

Figure 9 shows the results we obtained. For each collection and method we
show the average distance computations needed for solving a query. These results
show that SSS-NMS is more efficient in terms of distance computations than the
other methods when using the same amount of space.

5 Conclusions

In this paper we propose a new method for searching in metric spaces called
Sparse Spatial Selection for Nested Metric Spaces (SSS-NMS). The main feature
of SSS-NMS, is that it assumes that the data does not necessarily have a regular
distribution, and it adapts the index structure to the actual distribution of the
space. SSS-NMS indexes the dataset in two levels: the first one creates a Voronoi
partition of the Space using SSS; in the second level, those clusters considered
to have a high density of objects are further indexed with pivots selected with
SSS too. Thus, SSS-NMS obtains more information for the complex regions of
the space.

The paper also presents experimental results with collections of words and
images from the Metric Spaces Library [18], that show the efficiency of SSS-
NMS against other methods.

There are still some open questions for future work. As in pivot-based methods
is possible to gain efficiency by adding more space, we are studying ways of
making possible SSS-NMS to use more space and thus be even more efficient
when the characteristics of the application allow that use of additional memory.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

2. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search. The metric space
approach. Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)

3. Searcóid, M.O.: Metric Spaces. Springer Undergraduate Mathematics Series.
Springer, Heidelberg (2007)

4. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity
searching in metric spaces. Pattern Recognition Letters 24(14), 2357–2366 (2003)

5. Brin, S.: Near neighbor search in large metric spaces. In: Proc. of 21st conference
on Very Large Databases (VLDB 1995). ACM Press, New York (1995)

6. Burkhard, W.A., Keller, R.M.: Some approaches to best-match file searching. Com-
munications of the ACM 16(4), 230–236 (1973)

7. Baeza-Yates, R., Cunto, W., Manber, U., Wu, S.: Proximity matching using fixed-
queries trees. In: Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807,
pp. 198–212. Springer, Heidelberg (1994)

8. Yianilos, P.: Data structures and algorithms for nearest-neighbor search in general
metric spaces. In: Proc. of the fourth annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 1993), pp. 311–321. ACM Press, New York (1993)

9. Vidal, E.: An algorithm for finding nearest neighbors in (approximately) constant
average time. Pattern Recognition Letters 4, 145–157 (1986)

Indexing Dense Nested Metric Spaces for Efficient Similarity Search 109

10. Micó, L., Oncina, J., Vidal, R.E.: A new version of the nearest-neighbor approxi-
mating and eliminating search (aesa) with linear pre-processing time and memory
requirements. Pattern Recognition Letters 15, 9–17 (1994)

11. Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest
point problem. IEEE Transactions on Software Engineering 9, 631–634 (1983)

12. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters 40, 175–179 (1991)

13. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proc. of the 23rd International Conference on Very
Large Data Bases (VLDB 1997), Athens, Greece, pp. 426–435. ACM Press, New
York (1997)

14. Vleugels, J., Veltkamp, R.C.: Efficient image retrieval through vantage objects.
Pattern Recognition 35(1), 69–80 (2002)

15. van Leuken, R.H., Veltkamp, R.C., Typke, R.: Selecting vantage objects for similar-
ity indexing. In: Proc. of the 18th International Conference on Pattern Recognition
(ICPR 2006), pp. 453–456. IEEE Press, Los Alamitos (2006)

16. Venkateswaran, J., Kahveci, T., Jermaine, C.M., Lachwani, D.: Reference-based
indexing for metric spaces with costly distance measures. The VLDB Journal 17(5),
1231–1251 (2008)

17. Brisaboa, N.R., Fariña, A., Pedreira, O., Reyes, N.: Similarity search using sparse
pivots for efficient multimedia information retrieval. In: Proc. of the 8th IEEE
International Symposium on Multimedia (ISM 2006), San Diego, California, USA,
pp. 881–888. IEEE Press, Los Alamitos (2006)

18. SISAP: Metric spaces library, http://sisap.org/metric_space_library.html

http://sisap.org/metric_space_library.html

On the Containment Problem for Queries in
Conjunctive Form with Negation

Victor Felea

“Al.I.Cuza” University of Iasi
Computer Science Department, 16 General Berthelot Street, Iasi, Romania

felea@infoiasi.ro

http://www.infoiasi.ro

Abstract. We consider the problem of query containment for conjunc-
tive queries with safe negation property. A necessary and sufficient con-
dition for two queries to be in containment relation is given. Using this
condition a class of queries is emphasized and a characterization of con-
tainment problem for this class using certain maximal sets is specified.
The time complexity of containment problem for this class of queries is
studied.

Keywords: query containment, negation, safeness, sets of equality
relations.

1 Introduction

The problem of query containment is very important in database management,
including query optimization, checking of integrity constraints, data sources in
data integration, verification of knowledge bases, finding queries independent of
updates, rewriting queries using views. The problem of query containment has
already captivated many researchers. In [24] J. D. Ullman presents an algorithm
based on canonical databases, using an exponential number of such databases. In
[16] and [25] F. Wei and G. Lausen propose an algorithm that uses containment
mappings defined for two queries. This algorithm increases the number of posi-
tive atoms from the first query in the containment problem. Many authors study
the problem of query containment under constraints. Thus, in [10] C. Farre et
al. specify a constructive query containment method to check query containment
with constraints. N.Huyn et al. consider the problem of incrementally checking
global integrity constraints [15]. Some authors approach the containment prob-
lem for applications in Web services, e. g. A. Deutsch et al. in [8], X. Dong et
al. in [9] , Li Chen in [18] and B. Ludascher et al. in [19]. D. Florescu et al. in
[13] give a syntactic criteria for query containment, based on a notion of query
mappings, which extends containment mappings for conjunctive queries. In [21]
T. Millstein et al. define relative containment, which formalizes the notion of
query containment relative to the sources available to a data-integration system.
The containment problem of conjunctive queries using graph homomorphisms
giving necessary or sufficient conditions for query containment is investigated by

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 110–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.infoiasi.ro

On the Containment Problem for Queries 111

M. Leclere and M. L. Mugnier in [17]. The reduction of the containment prob-
lem to equivalence for queries with expandable aggregate functions is treated by
S. Cohen et al. in [6,7]. The containment query problem is used for rewriting
queries using views by F. Afrati et al. in [1] and [2]. In [14] A. Halevy studies the
problem of answering queries using views and different applications of this prob-
lem as query optimization, containment problem and so on. In a recent paper
the author introduces and studies a notion of strong containment that implies
classical containment problem for two queries in conjunctive form with negation
[11]. In [12] the author studies the containment problem for a special class of
queries, where the first query has a single literal in his negated part.

Checking containment of conjunctive queries without negation (called posi-
tive) is an NP-complete problem (A. K. Chandra [5]). It can be solved by testing
the existence of a containment mapping corresponding to the two queries. For
queries with negation, query containment problem becomes ΠP

2 -complete.
In this paper we give a necessary and sufficient condition for two queries to

be in the containment relation. Using this condition we study a special class of
queries. The time complexity for the containment problem of queries from this
class is discussed.

The paper is organized as follows: in Section 2 we give some definitions and
notations used in the following. In Section 3 we give a necessary and sufficient
condition for the containment problem. In Section 4 we consider a special class
of queries and characterize the containment problem for this class using certain
maximal sets. In Section 5 we specify a method to calculate the sets of equality
relations used by the conditions formulated in Section 4. In Section 6 some
aspects of time complexity for the containment problem associated to the class
specified in Section 4 are given. Finally, a conclusion is presented.

2 Preliminaries

Consider two queries Q1 and Q2 having the following forms:

Q1 : H(x) : −R1(w1), . . . , Rh(wh),¬Rh+1(wh+1), . . . ,¬Rh+p(wh+p) (1)

Q2 : H(x) : −S1(w′
1), . . . , Sk(w′

k),¬Sk+1(w′
k+1), . . . ,¬Sk+n(w′

k+n) (2)

where x is a variable vector consisting of all free variables from Q1 and Q2, wi, w
′
i

are variable vectors, the symbols Ri and Sj are relational symbols, 1 ≤ i ≤ h+p,
1 ≤ j ≤ k + n.

Let us denote by X the set of all variables from x. The vectors wi can contain
other variables beside the variables from X , that are called nondistinguished
in Q1 and implicitly they are existentially quantified in Q1. Let us denote the
set of these variables by: Y1 = {y1, . . . , ym}. Let Y = X ∪ Y1. The vectors
w′

j can contain other variables beside the variables from X , that are called
nondistinguished in Q2 and implicitly they are existentially quantified in Q2,
and we denote by Z the set of these variables. Each variable from X occurs in
at least wi and in at least w′

j . Moreover, we assume that all variables occurring

112 V. Felea

in the negated subgoals also occur in the positive ones (safe negation property).
Let us denote by f1(X,Y1) the right part of Q1 and by f2(X,Z) the right part
of Q2.

Definition 1. Let Dom be a domain of values, that can be constants or vari-
ables. A database D is a set of atoms defined on Dom. We say that D is a
database on Dom. For a query Q1 having the form as in (1) and a database D
we define the answer of Q1 for D, denoted Q1(D) as the set of all H(τx), where
τ is a substitution for variables from X such that there is a substitution τ1 that
is an extension for τ to all variables from Y1 such that D satisfies the right part
of Q1 for τ1. Formally,

Q1(D) = {H(τx) | ∃τ1 an extension of τ so that D |= τ1f1(X,Y1)} (3)

where f1(X,Y1) denotes the right part of Q1.
We say that D satisfies τ1f1(X,Y1) denoted D |= τ1f1(X,Y1) if

τ1Rj(wj) ∈ D, 1 ≤ j ≤ h, and τ1Rh+i(wh+i) �∈ D, 1 ≤ i ≤ p. (4)

Definition 2. We say that the query Q1 is contained in Q2, denoted Q1 ⊆ Q2,
if for each value domain Dom and a database D on Dom, the answer of Q1 for
D is contained in the answer of Q2 for D, that means Q1(D) ⊆ Q2(D).

Definition 3. A query Q1 having the form as in (1) is satisfiable if there are a
domain Dom and a database D such that Q1(D) �= ∅, otherwise it is unsatisfi-
able.

Proposition 1. [25] A query Q1 as in (1) is unsatisfiable iff there is Rj(wj),
1 ≤ j ≤ h and Rh+i(wh+i), 1 ≤ i ≤ p such that these atoms are identical, that
means Rj = Rh+i and wj = wh+i.

In case where f1(X,Y1) satisfies the condition of unsatisfiability from Proposition
1 , we denote this by f1(X,Y1) = ⊥. Since in case when f1(X,Y1) = ⊥, we have
Q1(D) = ∅, it is sufficient to consider the case when f1(X,Y1) �= ⊥.

We need to consider the equality relations defined on the set Y = {x1, . . .xq,
y1, . . . , ym}, where xj , 1 ≤ j ≤ q are all variables from X and yi, 1 ≤ i ≤ m
are all variables from Y1. Let us denote by M a set of equality relations on Y .
We express M as: M = {(tα1 , tβ1), . . . , (tαs , tβs)}, tαi , tβi ∈ Y . Let us denote
by M∗ the reflexive, symmetric and transitive closure of M . Thus, M∗ pro-
duces a set of equivalence classes denoted Classes(M). We denote by ŷi the
class that contains yi. We must consider a total order on Y , let us define this
order as x1 < . . . < xq < y1 < · · · < ym. We denote by M0 the empty set of
equality relations. Intuitively, the significance of the Classes(M) is the follow-
ing: all elements belonging to a class will be considered equal and two elements
belonging to a different classes will be considered distinct. Let us consider a
conjunction of literals like those from f1(X,Y1). We define the conjunction de-
noted ψMf1(X,Y1) by replacing in f1(X,Y1) each variable tj with a, where a
is the minimum element from the class t̂j with respect to ”<” order defined

On the Containment Problem for Queries 113

on the set Y . If f1(X,Y1) is a conjunction of literals that is satisfiable, then
it could exists a set M such that ψMf1(X,Y1) is unsatisfiable. For example,
let f1(X) = a(x1, x2),¬a(x1, x3), where X = {x1, x2, x3}. Evidently, we have
f1(X) �= ⊥. If we take M = {(x2, x3)}, then ψMf1(X) = ⊥. By pos(fi) we mean
the set of all atoms from positive part of fi, neg(fi) means the set of all atoms
from negated part of fi. By Rel(pos(fi)) we mean the set of all relational sym-
bols from pos(fi) and Rel(neg(fi)) denotes all relational symbols from neg(fi).
We denote by Rel(fi) the set of all relational symbols from fi. Moreover, we
consider Rel(neg(f2)) ⊆ Rel(f1), because otherwise we can easily construct a
database D such that Q1(D) �⊆ Q2(D).

3 A Necessary and Sufficient Condition for the
Containment Query Problem

In this section we give a necessary and sufficient condition for two queries to be
in the containment relation. For this we consider the following formula:

F (Y) = (∀M)(M a set of equality relations on Y)(∀D0)
(D0 a database on ψM (Y))(∃θ)[(D0 |= ψMf1) ⇒ ((D0 |= θf2) ∧ (θx = ψMx))],
where θ is a mapping from X ∪Z into ψM (Y). The notation (θx = ψMx) means
θ(xj) = ψM (xj) for each j, 1 ≤ j ≤ q. Since the sets X , Y and Z are finite, the
problem ”F (Y) is a tautology” is decidable. For the queries from Example 1 we
give the corresponding formula F (Y).

Theorem 1. Let Q1 and Q2 be two queries. We have Q1 ⊆ Q2 iff F (Y) is a
tautology.

Proof. Firstly, assume that Q1 ⊆ Q2. Let M be a set of equality relations
defined on Y and D0 a database on ψM (Y) such that D0 |= ψMf1. From
Definition 1 we have H(ψMx) ∈ Q1(D0). Using the hypothesis, we obtain
H(ψM (x)) ∈ Q2(D0). This means, there exists a mapping θ from X ∪ Z into
ψM (Y) such that D0 |= θf2 and θx = ψMx.
Inversely, we assume that F (Y) is a tautology. We must show that Q1 ⊆ Q2.
Let Dom be a value domain, D a database on Dom and λ1 be a mapping from
Y into Dom such that D |= λ1f1. This means H(λ1x) ∈ Q1(D). We need to
show that H(λ1x) ∈ Q2(D) that is equivalent to:

∃θ : X ∪ Z → Dom, such that D |= θf2 and θx = λ1x (5)

We do not restrict the generality if we consider Y ∩ Dom = ∅. Let Y =
{t1, . . . , tq+m} and λ1(tj) = vj , 1 ≤ j ≤ q + m. Corresponding to λ1 we de-
fine a set of equality relations M as follows: M = {(tα, tβ)|tα < tβ and λ1(tα) =
λ1(tβ)}. Let w1, . . . , wp be all distinct elements from the string v1, . . . , vq+m,
considered in the order from this string. Let W = {w1, . . . , wp}. Let ij =
min{l, 1 ≤ l ≤ q + m,wj = vl}, 1 ≤ j ≤ p. We define a new mapping de-
noted λ2 as follows: λ2(tij) = vij , 1 ≤ j ≤ p. Let Y ′ = {ti1 , . . . , tip}. We note
that Y ′ = ψM (Y). In this manner, λ2 is a one to one mapping from Y ′ into

114 V. Felea

W and λ1=λ2ψM . We split the database D into two databases denoted D1
and D2, where D1 = {R(u)|R(u) ∈ D and u contains values only from W} and
D2 = D −D1. Let D′

1 = {R(λ−1
2 (u))|R(u) ∈ D1}. If the vector u has the form:

u = (v1, . . . , vr), then we define λ−1
2 (u) = (λ−1

2 (v1), . . . , λ−1
2 (vr)). Since we have:

D |= λ1f1, we obtain: D1 |= λ1f1, hence we get: D1 |= λ2ψMf1, which implies
λ−1

2 (D1) |= ψMf1. The database D0 = λ−1
2 (D1) is defined on Y ′ and therefore

applying the hypothesis we obtain:

∃θ′ from X ∪ Z into Y ′, such that D0 |= θ′f2 and (θ′x = ψMx) (6)

From the first assertion of (6) we obtain D1 |= θf2, where θ = λ2θ
′. Moreover,

we have: θx = ψMx. From the properties of D1 and D2 and the safe negation
property of Q2 we obtain: D = D1 ∪D2 |= θf2, hence (5) is true.

In the following we need to specify several notations. For a set of equality rela-
tions M on Y , let us denote by D0

M and Dmax
M the following databases:

D0
M = ψMpos(f1) (7)

Dmax
M = {ψM R(w)|R ∈ Rel(f1), w is a vector on Y } − ψM neg(f1) (8)

Intuitively, the database D0
M is minimum database defined on ψM (Y) with re-

spect to the inclusion relation between sets, that satisfies the condition D0
M |=

ψMf1 and Dmax
M is maximum with the same property.

For each subset S from Dmax
M we define the following set of substitutions:

FM (S) = {θ|θ : X ∪ Z → ψM (Y), θ pos(f2) ⊆ S, and θx = ψMx} (9)

We need to consider another set of substitutions denoted NM and defined as
follows:

NM = {σ|σ : X ∪ Z → ψM (Y), σ neg(f2) ⊆ ψM neg(f1),

σ pos(f2) ∩ ψM neg(f1) = ∅ and σx = ψMx}
For each substitution σ ∈ NM we define a subset Sσ from Dmax

M , where Sσ =
ψMpos(f1)∪ σ pos(f2). Let PM = {Sσ|σ ∈ NM}, SM = {S|D0

M ⊆ S ⊆ Dmax
M }

and QM = {S|S ∈ SM , ∃θ ∈ FM (S) such that θ neg(f2) ⊆ ψM neg(f1)}.

Example 1. Let us consider the following two queries:
Q1 : H : −a(y1, y2), a(y2, y3),¬a(y1, y3),¬a(y2, y2)
Q2 : H : −a(A,B), a(C,D),¬a(A,C),¬a(B,D)

We have X = ∅, Y = Y1 = {y1, y2, y3}. The sets M0 and M1 = {(y1, y3)} are
all sets that satisfy ψMf1 �= ⊥ (see Example 5).We have: ψM1f1 = a(y1, y2),
a(y2, y1),¬a(y1, y1),¬a(y2, y2), D0

M0
= {a(y1, y2), a(y2, y3)}, Dmax

M0
= {a(yi, yj)|

1 ≤ i, j ≤ 3} − {a(y1, y3), a(y2, y2)}, D0
M1

= Dmax
M1

= {a(y1, y2), a(y2, y1)}.
For the set M0 the statement D0 |= f1 is equivalent to D0

M0
⊆ D0 ⊆ Dmax

M0

(ψM0f1 = f1) and for the set M1 the statement D0 |= ψM1f1 is equivalent to
D0

M1
⊆ D0 ⊆ Dmax

M1
. Hence, the formula F (Y) is the following:

F (Y) = (∀D0)[D0
M0
⊆ D0 ⊆ Dmax

M0
](∃θ)[D0 |= θf2] ∧ (∃θ)[D0

M1
|= θf2].

On the Containment Problem for Queries 115

The set NM0 consists of the substitutions σ1, σ2, σ3, where σ1(A,B,C,D) =
(y1, y1, y3, y3), σ2(A,B,C,D) = (y1, y2, y3, y2) and σ3(A,B,C,D) = (y2, y1, y2,
y3). We order the elements of Dmax

M0
so that a(i, j)τa(k, l) if (i, j)ρ(k, l), where

ρ is the ascending lexicography order defined on {1, 2, 3} × {1, 2, 3}. Thus, the
set Dmax

M0
consists of ui, 1 ≤ i ≤ 7, where u1τ . . . τu7 and u1 = a(y1, y1), u7 =

a(y3, y3). We get: D0
M0

= {u2, u4}, Sσ1 = {u2, u4, u1, u7}, Sσ2 = {u2, u4, u6},
Sσ3 = {u2, u4, u3}.

Proposition 2. The classes PM and QM satisfy the inclusion: PM ⊆ QM

and for all S ∈ QM , there exists Sθ ∈ PM such that Sθ ⊆ S.

For a set of equality relationsM such that ψMf1(X,Y1) �= ⊥ we need to consider
all subsets S from SM . Let us define a function denoted MARK. We consider
the following conditions:
(C0) FM (S)=∅. In this case we consider MARK(S) = 0.
(C1) There exists θ ∈ FM (S) such that θ neg(f2) ⊆ ψM neg(f1). In this case
we take MARK(S) = 1.
(C2) The condition (C1) is not satisfied, but there is θ ∈ FM (S) such that
θ neg(f2) ∩ S = ∅. In this case we take MARK(S) = 2.
(C3) For every θ ∈ FM (S) we have θ neg(f2) ∩ S �= ∅. Then MARK(S) = 3.

Remark 1. (i) We have MARK(Sσ) = 1 for all database Sσ from PM .
(ii) The elements S from PM are minimal in SM with respect to the inclusion
relation between sets having the property MARK(S) = 1.

Proposition 3. In the case when MARK(S) = 1 we have: there exists θ from
FM (S) such that S′ |= θf2 for each subset S′ with the property: S ⊂ S′ ⊆ Dmax

M .

Proof. From (C1) we obtain: for the subset S there exists θ from FM (S)
such that S |= θf2. Since S′ ∩ ψMneg(f1) = ∅ and MARK(S) = 1, we obtain
S′ |= θf2. Moreover, we have MARK(S′) = 1. This statement justifies the
deletions in step 2 from the function COMP (M) specified in the following.

We order the elements of SM in the form SM=(E1, . . . , Em) such that if Ei ⊂ Ej

then i < j (a topological order).
We denote by COMP (M) a function that computes the values of the function
MARK. The function COMP (M) is computed using the following steps:
1. If FM (D0

M) = ∅ Then MARK(D0
M) = 0; return 0; EndIf

2. For all Sσ ∈ PM do MARK(Sσ) = 1;
While ∃ S2 ∈ SM and Sσ ⊂ S2 delete S2 from SM ; EndWhile
Endfor

3. For all S ∈ SM do
If S satisfies (C3) Then MARK(S) = 3; return 3; EndIf
If S satisfies (C2) Then MARK(S) = 2; EndIf
EndFor

4. return 1;

Remark 2. By Proposition 2, the function COMP (M) in step 2 deletes all ele-
ments from QM , that are not minimal with respect to ” ⊆ ” relation.

116 V. Felea

The following propositions specifies some properties of the functions MARK
and COMP .

Proposition 4. (i) If COMP (M) = 0 then we have MARK(D0
M) = 0, hence

Q1 �⊆ Q2.
(ii) If COMP (M) = 3 then there is a set S having MARK(S) = 3 such that

S �|= θf2, for each θ from FM (S), hence Q1 �⊆ Q2.
(iii) If MARK(S) = 2 then we have: there exists θ ∈ FM (S) such that S |= θf2.
(iv) If MARK(S) = 1 then we have: there exists θ from FM (S) such that S |=

θf2 and θ neg(f2) ⊆ ψM neg(f1).
(v) S |= ψM pos(f1), for each S ∈ SM .

Proof. If MARK(D0
M) = 0 then there is no containment mappings (FM (D0

M)
= ∅), hence Q1 �⊆ Q2. If MARK(S) = 3, then we get:

(∀θ)(θj ∈ FM (S))(∃lj)(1 ≤ lj ≤ n)[θj Sk+lj (w
′
k+lj) ∈ S] (10)

This statement implies S �|= θf2, for each θ from FM (S).
If MARK(S) = 1 then we have the following two assertions:

∃θ ∈ FM (S) such that θSk+l(w′
k+l) ∈ ψMneg(f1) for each l, 1 ≤ l ≤ n (11)

and θSl(w′
l) ∈ S for each l, 1 ≤ l ≤ k (12)

From relations (11) and (12) we obtain S |= θf2.
If MARK(S) = 2 then we have:

∃θ ∈ FM (S) such that θ Sk+l(w′
k+l) �∈ S for each l, 1 ≤ l ≤ n (13)

This statement implies S |= θ f2.

Proposition 5. Let M0 = ∅ and M1 be a set of equality relations such that
ψM1f1(X,Y1) �= ⊥. We have: (MARK(D0

M0
) �= ∅) implies (MARK(D0

M1
) �= ∅),

or equivalently COMP (M0) �= 0 implies COMP (M1) �= 0.

Proposition 6. LetM be a set of equality relations such that ψMf1(X,Y1) �= ⊥.
The following two assertions are equivalent:
(i) for each S such that D0

M ⊆ S ⊆ Dmax
M , there exists θ from FM (S) such that

S |= θf2.
(ii) COMP (M) = 1.

Proof. From Propositions 3, 4 and the steps of the function COMP .

In the following proposition we specify that MARK(Dmax
M) = 1 is a necessary

condition for Q1 ⊆ Q2.

Proposition 7. Let Q1 and Q2 be two queries. If Q1 ⊆ Q2 then for each set M
of equality relations on Y such that ψMf1(X,Y1) �= ⊥ we have:

MARK(Dmax
M) = 1 (14)

On the Containment Problem for Queries 117

Proof. Since Dmax
M |= ψMf1 and Q1 ⊆ Q2, using Theorem 1 we obtain: there

exists θ ∈ FM (Dmax
M) such that Dmax

M |= θ f2 and θ neg(f2) ⊆ ψM neg(f1),
hence the relation (14) holds.

Now we specify the main result of this section, that gives a necessary and suffi-
cient condition for the containment problem.

Theorem 2. Let Q1 and Q2 be two queries having the form as in (1) and (2),
respectively. We have Q1 ⊆ Q2 iff the following statement yields:
(i) for each set of equality relations M such that ψMf1(X,Y1) �= ⊥ we have
COMP (M) = 1.

Proof. From Theorem 1 and Proposition 6.

Example 2. Let us consider the queries from Example 1. From Propositions 2
and 3 we obtain: MARK(Sσi) = 1, for all i, 1 ≤ i ≤ 3. After the execution
of step 2 from the function COMP (M0), the class SM0 contains beside D0

M0

and Sσi , 1 ≤ i ≤ 3, the databases Sj , 1 ≤ j ≤ 5, where S1 = {u2, u4, u1},
S2 = {u2, u4, u7}, S3 = {u2, u4, u5}, S4 = {u2, u4, u1, u5}, S5 = {u2, u4, u7, u5}.
For these databases we have: MARK(Sj) = 2. Moreover, we have (see Ex-
ample 1)D0

M1
= Dmax

M1
. On the other hand, we get: MARK(Dmax

M1
) = 1 and

MARK(Dmax
M0

) = 1. So, using the function COMP and Theorem 2 we obtain
Q1 ⊆ Q2.

Example 3. Let us consider the following two queries:
Q1 : H : −a(y1, y2), a(y2, y3),¬a(y1, y3)
Q2 : H : −a(A,B), a(C,D),¬a(A,D),¬a(B,C),¬a(A,C)

For M0 = ∅ we have: D0
M0

= {a(y1, y2), a(y2, y3)}. Let us consider the follow-
ing subset S = {a(y1, y2), a(y2, y3), a(y2, y2)}. We have: for all θ ∈ FM0(S),
θa(A,D) ∈ S or θa(B,C) ∈ S or θa(A,C) ∈ S which implies S �|= θf2,
for each θ from FM0(S). This means Q1 �⊆ Q2. We have MARK(S) = 3, and
COMP (M0) = 3.

4 A Special Class of Queries

In this section we point out a class of queries for what the containment problem
is expressed using maximal sets of equality relations on Y . Let us give some
notations for this section. For a set M of equality relation let us define the set
denoted YM , where YM = {t|t ∈ Y and t occurs in ψMneg(f1)}. For two sets
M1 and M2 such that M1 ≤ M2 we define a mapping denoted ψM1,M2 from
ψM1(Y) into ψM2(Y) and defined by: ψM1,M2(t) = ψM2(t), for each t ∈ ψM1(Y).
In the following we consider the queries Q1, Q2 specified in (1) and (2) such that
Q1 has the property:

(∀M1)(∃M2)(M1 ≤M2)(∀t ∈ YM2)[|ψ−1
M1,M2

(t)| = 1] (15)

and the query Q2 satisfies the following restriction:

(∀i, j)(1 ≤ i < j ≤ k)[(Si(w′
i), Sj(w′

j) ∈ pos(f2)) ⇒ (prZ(w′
i) ∩ prZ(w′

j) = ∅)]
(16)

118 V. Felea

where prZ(w′
i) denotes the set of all variables from Z that occur in w′

i and M2
is a maximal set of equality relations and M1 ≤ M2 is given in the following
definition. Moreover, we consider the restriction of ψM2 on the set X as a one-
to-one mapping. The notation |S| means the cardinality of S.

Definition 4. We consider two partial order relations on sets of equality re-
lations denoted “ < ” and “ ≤ ”. They are defined as follows: M1 < M2 if
M∗

1 ⊂ M∗
2 , that means the set M∗

1 is strictly included in M∗
2 . We say that

M1 ≤M2 if M1 < M2 or M∗
1 = M∗

2 .

Firstly, let us emphasize the relations between the sets of substitutions corre-
sponding to different sets of equality relations.

Proposition 8. Let M1 and M2 be two sets of equality relations such thatM1 ≤
M2. Let ψM2 be the mapping from Y into Y defined by M2. We have:

ψM2FM1(S) = FM2(ψM2 (S)), for each subset S of atoms of the form R(w),
(17)

where R is a relational symbol from Rel(f1) and w is a vector on Y .

Proof. In general, for the sets of substitutions from (17) we have ψM2FM1(S) ⊆
FM2(ψM2 (S)), but using the condition specified in (16) we obtain the equality
between the two sets of substitutions.

In the following proposition we establish a relation between COMP (M1) and
COMP (M2) in case when M1 < M2.

Proposition 9. Let M1 and M2 be two sets of equality relations such thatM1 <
M2 and (M1,M2) satisfies (15). If COMP (M1) = 3 then COMP (M2) = 3.

Proof. Let M1 be with the property COMP (M1) = 3. This means there exists
S that satisfies D0

M1
⊆ S ⊆ Dmax

M1
such that S �|= θ1f2, for each θ1 from FM1(S).

The condition (15) assures that S ∈ SM1 implies ψM2(S) ∈ SM2 . Let θ be a
substitution from FM2(ψM2(S)). By Proposition 8 there exists a substitution θ1
from FM1(S) such that θ = ψM2θ1. Since S �|= θ1f2, we have:

θ1Sl(w′
l) ∈ S, for every l, 1 ≤ l ≤ k and (∃r)(1 ≤ r ≤ n) θ1Sk+r(w′

k+r) ∈ S
(18)

Applying ψM2 to the formulas from (18) we obtain:

ψM2θ1Sl(w′
l) ∈ ψM2(S), 1 ≤ l ≤ k and

(∃r)(1 ≤ r ≤ n) ψM2θ1Sk+r(w′
k+r) ∈ ψM2(S) (19)

Since we have θ = ψM2θ1, the relation (19) implies ψM2(S) �|= θf2, for each θ
from FM2(ψM2(S)) . Hence MARK(ψM2(S)) = 3 and COMP (M2) = 3.

Theorem 3. Let Q1 and Q2 be two queries having the form as in (1) and (2),
respectively and the two queries satisfy the restrictions from (15) and (16). We
have Q1 ⊆ Q2 iff the following three conditions are satisfied:

On the Containment Problem for Queries 119

a) COMP (M0) �= 0 and
b) The relation (14) yields for every set of equality relations M on Y such that
ψMf1(X,Y1) �= ⊥ and
c) COMP (Ms) = 1 for all maximal sets Ms of equality relations on Y such that
ψMsf1(X,Y1) �= ⊥.

Proof. If Q1 ⊆ Q2, then using Theorem 2, Proposition 6 from Section 3
and Lemma 2.1 from [25] we obtain the statements from a), b), c). Inversely,
assume that the statements from a), b), c) are satisfied, let us show the as-
sertion (i) from Theorem 2. Assume the contrary, then there exists M such
that COMP (M) ∈ {0, 3}. Let Ms be the maximal set having the property
ψMsf1(X,Y1) �= ⊥ such thatM ≤Ms andM,Ms satisfy (15). If COMP (M) = 3
then, using Proposition 9, we obtain COMP (Ms) = 3, which contradicts the
hypothesis. If COMP (M) = 0, since M0 ≤ M from Proposition 5 we have
COMP (M0) = 0, which contradicts the condition a).

Example 4. Let us consider two queries Q1 and Q2 as follows:
Q1 : H : −a(y1, y2), a(y2, y3),¬a(y2, y2), Q2 : H : −a(A,B), a(C,D),¬a(A,D).
The sets of equality relations M such that ψMf1(X,Y1) �= ⊥ are M0 = ∅ and
M1 = {(y1, y3)} (as in Example 5). The second is maximal with the property
specified. We have:
D0

M0
= {a(y1, y2), a(y2, y3)}, D0

M1
= {a(y1, y2), a(y2, y1)} , Dmax

M0
= {a(yi, yj)|1

≤ i, j ≤ 3} − {a(y2, y2)}, Dmax
M1

= {a(y1, y2), a(y2, y1), a(y1, y1)}. If we con-
sider the substitutions denoted θ1 and θ2 and defined by: θ1(A,B,C,D) =
(y2, y3, y1, y2), θ2(A,B,C,D) = (y2, y1, y1, y2), then we have: θ1 satisfies (14)
for Dmax

M0
and θ2 satisfies (14) for Dmax

M1
. Moreover, COMP (M0) = 1 and

COMP (M1) = 1, hence by Theorem 2 (and by Theorem 3 as well) we have
Q1 ⊆ Q2. The conditions from (15) and (16) are satisfied for Q1 and Q2.

5 Maximal Sets of Equality Relations

In this section we specify a method to obtain all maximal subsets M of equality
relations such that ψMf1(X,Y1) �= ⊥. We define a boolean function denoted
ϕM for pairs of elements from Y , pairs of vectors on Y , and for expressions
constructed with conjunction and disjunction operations having pairs of elements
from Y and pairs of vectors as components of expressions:
(i) ϕM (yi, yj) = TRUE if ψM (yi) = ψM (yj), yi, yj ∈ Y ,
(ii) ϕM (p1 ∧ p2) = ϕM (p1) ∧ ϕM (p2), ϕM (p1 ∨ p2) = ϕM (p1) ∨ ϕM (p2),
where p1 and p2 are pairs of elements from Y ,
(iii) If w = t1 . . . ts and w′ = t′1 . . . t′s, then ϕM (w,w′) = TRUE if ψM (ti) =
ψM (t′i) for each i, 1 ≤ i ≤ s, ti, t′i ∈ Y ,
(iv) ϕM (q1∧q2) and ϕM (q1∨q2) are defined as in (ii), where q1 and q2 are pairs
of vectors on Y .
Now for two expressions E1 and E2 we define an equivalence relation between
them with respect to ϕM :

E1 ≡M E2 if ϕM (E1) = ϕM (E2).

120 V. Felea

Let Rj(wj) be an atom from neg(f1), where h+1 ≤ j ≤ h+p. For the relational
symbol Rj we consider all atoms from pos(f1), that have Rj as relational symbol.
Let us denote these atoms by Rj(wα1), . . . , Rj(wαr). Associated to Rj(wj) we
consider an expression denoted Ej and defined as follows:

Ej = (wj , wα1) ∨ . . . ∨ (wj , wαr) (20)

In case when r = 0 we define Ej = FALSE. We take the disjunction of all
expressions Ej , h+ 1 ≤ j ≤ h+ p, denoted E, i.e.

E = Eh+1 ∨ . . . ∨Eh+p (21)

Let r be the number of vector pairs from E. We consider a certain order on these
pairs and let (wl, w

′
l), 1 ≤ l ≤ r be all pairs from E. Thus, we take expression

E as follows:
E = (w1, w

′
1) ∨ . . . ∨ (wr, w

′
r)

It is clear that ϕM (E) = TRUE iff ψMf1(X,Y1) = ⊥. (22)

From the statement (22) we obtain:

ψMf1(X,Y1) �= ⊥ iff ϕM (¬E) = TRUE (23)

where the symbol ”¬” represents the logic negation. But the expression ¬E is
equivalent to the following expression:

¬E ≡M ¬(w1, w
′
1) ∧ . . . ∧ ¬(wr, w

′
r) (24)

If wl= (t1, . . . , ts) and w′
l= (t′1, . . . , t′s) then

¬(wl, w
′
l) ≡M ¬(t1, t′1) ∨ . . . ∨ ¬(ts, t′s) (25)

Using the assertions from (24) and (25) and the distributivity of conjunction
with respect to disjunction we obtain an expression E′ that is equivalent to ¬E
with respect to ϕM and E′ is in a disjunctive form:

E′ ≡M F1 ∨ . . . ∨ Fm (26)

where Fi has the form [¬(tα1 , t
′
α1

) ∧ . . . ∧ ¬(tαq , t
′
αq

)] (27)

For an expression Fi we define a graph GFi = (Y,EFi), so its vertex set is Y and
its edge set is denoted EFi and defined as follows:

EFi = {(t, t′)|t, t′ ∈ Y } − {(tα1 , t
′
α1

), . . . , (tαq , t
′
αq

)} (28)

To find a maximal set M of equality relations defined on Y such that ψMf1(X,
Y1) �= ⊥ is equivalent to find a maximal set M from Y ×Y such that there exists
an integer i, 1 ≤ i ≤ m having the property: M∗ ⊆ EFi . Let C1, . . . , Cp be all
maximal cliques from the graph GFi . We also consider a clique as the set of all
its edges, hence as a subset of Y × Y . If the vertex set of the clique Cl is Vl =
{t1, . . . , tr}, then the edge set of Vl is Ul = {(tα, tβ), 1 ≤ α, β ≤ r}, 1 ≤ l ≤ p.
We consider all union of pair-wise disjoint subsets of different Ul. Let us denote
by Cl1(Gi) the obtained class of sets. Let Cl2(Gi) be the class that consists of
all elements from Cl1(Gi) that are maximal. Let Clj = ∪{Clj(Gi)|1 ≤ i ≤ m},
j = 1, 2. Concerning these classes we have the following result:

On the Containment Problem for Queries 121

Theorem 4. Let M be a set of equality relations on Y . We have:
(i) M∗ ∈ Cl1 iff ψMf1(X,Y1) �= ⊥.
(ii) M∗ ∈ Cl2 iff M is maximal such that ψMf1(X,Y1) �= ⊥.

Proof. Let us consider M such that ψMf1(X,Y1) �= ⊥. From the relation (22)
we have ϕM (¬E) = TRUE, hence ϕM (E′) = TRUE. Therefore, there exists i,
1 ≤ i ≤ m such that ϕM (Fi) = TRUE. This implies the statements:

ϕM (tαj , t
′
αj

) = FALSE for each j, 1 ≤ j ≤ q and (29)

ϕM (t, t′) = TRUE for each (t, t′) ∈ EFi (30)

The set M∗ is a union of equivalence classes on Y as follows:M∗ = T1∪ . . .∪Tn,
where Ti ∩ Tj �= ∅, for each 1 ≤ i �= j ≤ n. We intend to show that Tl, 1 ≤
l ≤ n, is a clique in the graph GFi . By definition of the application ψM we have
ψM (t) = ψM (t′) for each t and t′ from Tl, which implies ϕM (t, t′) = TRUE. Let
us denoted by Node(Tl) the set of all vertex from Tl. If Node(Tl) = {t1, . . . , tm}
then we have:

ϕM (ti, tj) = TRUE for each i, j such that 1 ≤ i, j ≤ m (31)

Using the statements from (29), (30) and (31) we obtain Tl is a clique in the
graph GFi . Hence, we obtain: M∗ ∈ Cl1(Gi). If M is maximal with the prop-
erty ψMf1(X,Y1) �= ⊥, it results that M∗ ∈ Cl2(Gi). The inverse part follows
similarly.

Example 5. Let us consider the query Q1 from Example 1. We must compute all
sets M so that ψMf1 �= ⊥. The symbol a is the only relational symbol from f1.
We rewrite f1 as follows: f1 = a(w1), a(w2),¬a(w3),¬a(w4), where w1 = y1y2,
w2 = y2y3, w3 = y1y3, w4 = y2y2. We get the expressions E1 and E2 as follows:
E1 = (w3 = w1) ∨ (w3 = w2) and E2 = (w4 = w1) ∨ (w4 = w2). Hence, we
obtain ¬E ≡ ¬(y2 = y3)∧¬(y1 = y2). This implies M0 = ∅ and M1 = {(y1, y3)}.

6 Some Aspects of Time Complexity

To our best knowledge, only two algorithms for the queries in conjunctive form
with negation were proposed, one of them was studied by J. D. Ullman in [24]
and the other one by Wei and Lausen in [25]. For a database S let us denote by
|S| its cardinality. Let R1,. . . , Rr be all distinct relational symbols from Rel(f1).
Let nj be the arity of Rj . Let yM=|ψM (Y)|, s = n1 + . . .+nr, h = |ψMpos(f1)|,
p = |ψMneg(f1)|, k = |pos(f2)|, n = |neg(f2)| and x = |X |. We have: |Dmax

M |
≤ yn1

M + . . . + ynr

M − p. The time complexity to compute the set PM is O(s1),
where s1 = n+x∗k∗pn+1 The time complexity for COMP (M) is O(rM), where
rM = n∗ (hk +C(n′−h, 1)∗ (h+1)k + . . .+C(n′−h, n′−h)∗n′k), n′ = |Dmax

M |,
and C(i, j) denotes the number of all j−combinations of i elements. So in the
worst case the conditions from Theorem 2 imply the same performance as the

122 V. Felea

algorithm proposed in [24]. However, the existence of sets S withMARK(S) = 1
implies fewer operations in COMP (M).

For the class of queries specified in Section 4, for a certain M the time com-
plexity to test the relation (14) is O(np). Hence, if nM=|{M |ψMf1(X,Y1) �= ⊥}|,
then the time complexity to verify (14) is O(nM ∗np). The time complexity to test
COMP (M0) �= 0 is O(kh). The time complexity to compute all maximal cliques
of a graph with l vertices is O(3l/3) ([20, 23]). Let m1 = |Y | and C1, . . . , Cpi

be all maximal cliques from Gi. Let si = max{|Vl|, 1 ≤ l ≤ pi}. We obtain:
pi ≤ 3m1/3, si ≤ m1. If ri denotes the time complexity of Cl1(Gi) and qi the
time complexity for Cl2(Gi), then we get: ri ≤ 2pi∗si and qi ≤ r2i . Hence, we
obtain the time complexity for Clj is O(tj), where t1 = m ∗ 2t3 , t2 = m ∗ 22∗t3 ,
and t3 = m1 ∗ 3m1/3. Let M1, . . . ,Mv be all maximal sets from the class Cl2 and
rMj be the time complexity for COMP (Mj), 1 ≤ j ≤ v. The time complexity to
test the condition c) from Theorem 3 is O(t), where t = t2 ∗ rM1 ∗ . . . rMv . In [22]
N. Tamas and C. Gabor give some functions to compute all or maximal cliques
in a graph. The problem of the enumeration of maximal cliques in a graph is
studied by E. A. Akkoyunlu in [3] and I. M. Bomze et al. in [4].

7 Conclusion

In this paper we have given a characterization for the containment problem for
two conjunctive queries. A special class of queries was studied with respect to
the containment problem. We have used sets of equality relations defined on the
set of all universally and existentially quantified variables from the first query.
For the future work, we intend to use the results of this paper for the problem
of rewriting queries using views with negation.

References

1. Afrati, F., Pavlaki, V.: Rewriting Queries Using Views with Negation. AI Commu-
nications 19, 229–237 (2006)

2. Afrati, F., Mielikainen, T.: Advanced Topics in Databases, University of Helsinki
(2005)

3. Akkoyunlu, E.A.: The enumeration of maximal cliques of large graphs. SIAM Jour-
nal of Computing 2, 1–6 (1973)

4. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique prob-
lem. In: Handbook of Combinatorial Optimization, vol. 4, pp. 1–74 (1999)

5. Chandra, A.K., Merlin, P.M.: Optimal implementations of conjunctive queries in
relational databases. In: ACM Symp. on Theory of Computing (STOC), pp. 77–90
(1977)

6. Cohen, S.: Containment of Aggregate Queries. ACM SIGMOD 34(1), 77–85 (2005)
7. Cohen, S., Nutt, W., Sagiv, Y.: Containment of Aggregate queries,

http://www.macs.hw.ac.uk/~nutt/Publications/icdt03.pdf

8. Deutsch, A., Tannen, V.: XML queries and constraints, containment and reformu-
lation. Theoretical Computer Science 336(1), 57–87 (2005)

9. Dong, X., Halevy, A.Y., Tatarinov, I.: Containment of Nested XML Queries,
http://data.cs.washington.edu/papers/nest-vldb.pdf

http://www.macs.hw.ac.uk/~nutt/Publications/icdt03.pdf
http://data.cs.washington.edu/papers/nest-vldb.pdf

On the Containment Problem for Queries 123

10. Farre, C., Teniente, E., Urpi, T.: Checking query containment with CQC method.
Data and Knowledge Engineering 53(2), 163–223 (2005)

11. Felea, V.: A Strong Containment Problem for Queries in Conjunctive Form with
Negation. In: Proceedings on The First DBKDA 2009, Cancun, Mexico, March 1-6
(2009), http://profs.info.uaic.ro/~felea/FeleaVictor-DB09.pdf

12. Felea, V.: On the Containment Problem for Queries with Safe Negation. In: Pro-
ceedings of the 33 Annual Congress of the American Romanian Academy of Arts
and Sciences, Sibiu, June 2-7, vol. II, pp. 201–205 (2009)

13. Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries with
regular expressions. In: ACM Symp. on Principles of Database Systems (PODS),
pp. 139–148 (1998)

14. Halevy, A.Y.: Answering Queries Using Views: A survey. VLDB Journal 10(4),
270–294 (2001)

15. Huyn, N.: Efficient Complete Local Tests for Conjunctive Query Constraints with
Negation, http://dbpubs.stanford.edu/pub/1966-26

16. Lausen, G., Wei, F.: On the containment of conjunctive queries. In: Klein, R., Six,
H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp.
231–244. Springer, Heidelberg (2003)

17. Leclere, M., Mugnier, M.L.: Some algorithmic improvements for the containment
problem of conjunctive queries with negation. In: Schwentick, T., Suciu, D. (eds.)
ICDT 2007. LNCS, vol. 4353, pp. 404–418. Springer, Heidelberg (2006)

18. Chen, L.: Testing Query Containment in the Presence of Binding Restrictions,
technical report (1999)

19. Ludascher, B., Nash, A.: Web service composition through declarative queries: the
case of conjunctive queries with union and negation. In: Proc. 20th Intern.Conf.
on Data Engineering, pp. 840–860 (2004)

20. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004)

21. Millstein, T., Levy, A., Friedman, M.: Query Containment for Data Integration
Systems. In: Proc. of Symp. on Principles of Database Systems, pp. 67–75 (2000)

22. Tamas, N., Gabor, C.:
http://cneurocvs.rmki.kfki.hu/igraph/doc/R/cliques.html

23. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gener-
ating all maximal cliques. In: Proc. 10th Int. Computing and Combinatorics Conf.
(2004); also in Theoretical Computer Science 363(1), 28–42 (2006)

24. Ullman, J.D.: Information integration using logical views. In: International Con-
ference on Database Theory (ICDT), pp. 19–40 (1997)

25. Wei, F., Lausen, G.: Containment of Conjunctive Queries with Safe Negation. In:
Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
346–360. Springer, Heidelberg (2002)

http://profs.info.uaic.ro/~felea/FeleaVictor-DB09.pdf
http://dbpubs.stanford.edu/pub/1966-26
http://cneurocvs.rmki.kfki.hu/igraph/doc/R/cliques.html

Towards a Scalable, Pragmatic Knowledge
Representation Language for the Web

Florian Fischer, Gulay Unel, Barry Bishop, and Dieter Fensel

Semantic Technology Institute (STI) Innsbruck,
University of Innsbruck, Austria
firstname.lastname@sti2.at

Abstract. A basic cornerstone of the Semantic Web are formal lan-
guages for describing resources in a clear and unambiguous way. Logical
underpinnings facilitate automated reasoning about distributed knowl-
edge on the Web and thus make it possible to derive only implicitly
available information.

Much research is geared to advancing very expressive formalisms that
add increasingly complex modelling constructs. However, this increase in
language expressivity is often intrinsically linked to higher computational
cost and often leads to formalisms that have high theoretical complexity
and that are difficult to implement efficiently.

In contrast, reasoning in the context of the Web has a distinct set
of requirements, namely inference systems that can scale to planetary-
size datasets. A reduced level of expressivity is often sufficient for many
practical scenarios and crucially, absolutely necessary when reasoning
with such massive datasets. These requirements have been acknowledged
by active research towards more lightweight formalisms and also by in-
dustrial implementations that often implement only tractable subsets of
existing standards.

In this paper we aim to explore this trend and formulate a basic lan-
guage, called L2, layered upon RDF as the data-model, that is inherently
tractable, easy to implement on common rule engines and motivated by
pragmatic considerations concerning the use of language constructs and
the means to implement them.

1 Introduction

The next evolutionary step for the Web, the Semantic Web [1], envisions human-
readable content enriched with meta-data that has machine-understandable se-
mantics for the purpose of sharing and interconnecting commercial, scientific,
personal, and other data. Using a well defined formal language for this purpose
enables machine interpretability and in turn automated processing. This vision
leads to a Semantic Web, in which content has a well defined meaning and can
be reasoned with in order to derive implicit knowledge.

The Web has made tremendous amounts of information available that can
be processed based on the formal semantics attached to it, e.g. as a product

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 124–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Towards a Scalable, Pragmatic Knowledge Representation Language 125

of the Linking Open Data (LOD)1 [2] community. A number of languages have
been developed that use logic for the purpose of defining these formal semantics.
However, the initial sets of standards for this purpose, e.g. OWL [3], have very
high worst-case complexity results for key inference problems (usually ExpTime
or higher).

The inherent trade-off between the expressiveness of a logical representation
formalism and scalability of reasoning has been clearly observed from a theoret-
ical point of view [4] and has also been shown to have a very practical impact on
possible use-cases. While worst-case complexity results might not always reflect
the practical behavior of an implementation they become increasingly important
when faced with the sheer size of the data that is involved in reasoning at a Web
scale. Furthermore, data found on the Web is not only special in terms of size,
but also in terms of diversity, and in turn inconsistency. Consequently, since
completeness in the traditional sense might be a hopeless endeavor, it makes
sense to focus only on a pragmatically selected subset of inferences that

– provide a useful level of additional semantics for end-users on the web, falling
in line with language constructs that are actually employed,

– are inherently tractable in terms of computational complexity,
– can be practically implemented without major obstacles, or that are already

supported by existing tools.

As a contribution towards this goal, we propose L2, a very lightweight formalism
that supports tractable inferences by both omitting “expensive” language con-
structs and in certain cases “weakening” the semantics of them. L2’s intended
semantics is defined as set of “entailment rules” that operate directly on RDF
triples, and are thus independent of any particular high level syntax.

This paper is structured as following: Section 2 motivates our approach and
describes related work. Section 3 outlines the features of L2. Section 4 extends
this high-level view with the relevant formal underpinnings in the form of en-
tailment rules that operate directly on a set of RDF triples, and specify L2’s
intended semantics. Finally, Section 5 concludes and summarizes this paper.

2 Motivation and Related Work

RDF as a data-model represents a labeled, directed multi-graph. Layered upon
this are more expressive languages such as RDF Schema [5] and OWL [3], which
were introduced to provide a greater degree of expressive power. A fundamental
result is that even small increases in the expressive power of a language can
have a severe impact on the associated reasoning complexity that leads to the
intractability of inference. However, as [6] and others point out, a large portion
of Semantic Web data is often only described using a limited subset of existing
standards, i.e. RDFS plus certain elements from OWL. Moreover, an important

1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

126 F. Fischer et al.

observation is that while resources on the Web are likely to be annotated with
relatively lightweight ontologies, the number of resources annotated with these
ontologies is likely to be very large [7].

Practical computational efficiency is important and is reflected both by active
research on tractable, lightweight formalisms such as DL-Lite [8], EL++ [9],
pD∗ [10], ELP [11], . . . as well as the adoption of tractable profiles within the
upcoming OWL 2 standard [12].

Aside from the theoretical work in this area, it is notable that existing imple-
mentations of large-scale, RDF-based inference engines often support only a
specific subset of current standards in order to scale to very large data-sets. These
inference engines give an indication of what modeling primitives are useful and are
usually a combination of primitives with low complexity overhead or are based on
practical user requirements. In other words, language features are not considered
purely in terms of their theoretical characteristics, but also in terms of:

1. The relevance of specific language constructs for users.
2. The practicability of implementing certain language features efficiently.

The subsets implemented, e.g. in OWLIM2, Oracle 11g3, or AllegroGraph RDF-
Store4 all support a very similar set of language primitives, usually with the aim
of avoiding inferences that derive disjunctions or the existence of anonymous in-
dividuals. The features supported usually include support for the basic features
available in RDFS and additionally specific parts of the OWL vocabulary along
the lines of [10]. More particularly, all of these products support (to various
extents) class and property hierarchies, equivalence (of properties, classes and
individuals), and additional qualitative statements about properties (denoting
transitivity, symmetricity, etc).

3 Language Overview

In this section we describe the language primitives of L2, which are selected
based on (i) practical considerations outlined in the previous section, (ii) theo-
retical complexity results. This selection mostly consists of the RDFS vocabulary
and a limited sub-set of OWL that is still inherently tractable. As L2 could be
considered an OWL fragment, in the sense that it allows a restricted set of infer-
ences to be made, we can use the OWL 2 functional-style5 as high-level syntax.
However, any surface syntax with an appropriate mapping to the underlying
RDF primitives can be used, e.g. [13], because the fundamental design aspects
of the language are independent of the particular syntax employed. This achieves
two goals: First of all, it automatically aligns L2 with existing standards and at
the same time facilitates easy end-user adoption.

2 http://www.ontotext.com/owlim/index.html
3 http://www.oracle.com/technology/tech/semantic_technologies/index.html
4 http://agraph.franz.com/allegrograph/
5 http://www.w3.org/TR/owl2-syntax/

http://www.ontotext.com/owlim/index.html
http://www.oracle.com/technology/tech/semantic_technologies/index.html
http://agraph.franz.com/allegrograph/
http://www.w3.org/TR/owl2-syntax/

Towards a Scalable, Pragmatic Knowledge Representation Language 127

We will now briefly enumerate the features in L2, explain why they are in-
cluded and provide informal descriptions.

Class definitions. (rdfs:Class) A class defines a set of individuals that be-
long together because they share common properties. Only partial class def-
initions are supported and not complete class definitions, because they allow
the emulation of several other language features that are not explicitly in-
cluded, e.g. class intersection.

Subclass descriptions. (rdfs:subClassOf) L2 allows the definition of class
hierarchies in the same way as RDFS. Thus the intended meaning is exactly
the same: If class C1 is defined to be the subclass of a class C2 then the
set of individuals that “belong to” (are in the class extension of) C1 should
be a subset of those that belong to C2. Furthermore, subclass relations are
transitive and a class is a subclass of itself.

Property definitions. (rdf:Property) Properties can be used to state specific
relations, either between individuals or between individuals and plain data
values.

Subproperty descriptions. (rdfs:subPropertyOf) In the same fashion as
for classes it is also possible to organize properties in hierarchies by stating
that a property is a sub-property of a number of other properties. Obviously,
as subclassing, rdfs:subPropertyOf has transitive behavior.

Domain and Range restrictions. (rdfs:domain and rdfs:range) The do-
main of a property restricts what individuals the property can be applied
to, while the range restricts the set of values that a property can take. Both
domain and range restrictions impose global constraints on a property in-
dependently of which specific class a property is applied to. It needs to be
noted that for both domains and ranges, it is possible to give two different
kinds of interpretations, namely inferring and constraining. For example, as-
sume an individual x that is related to another individual y via a certain
property p, with a class C1 as domain and another class C2 as the range.
Applying an inferring interpretation, it is possible to conclude that x belongs
to C1 and furthermore that y belongs to C2. A constraining interpretation
on the other hand, would actually check that the individual is of the correct
type, as a condition, and otherwise raise this as an error. Both semantics of
domain and ranges are valid and a choice should be made depending on the
requirements of an application.

Class equivalence. (owl:equivalentClass) Two classes may be stated to be
equivalent, in which case they also have the same set of instances and more-
over also share common super and subclasses. This functionality is useful to
perform basic schema mapping. Class equivalence is a symmetric, reflexive,
and transitive property. Furthermore, class equivalence between two classes
C1 and C2 simply requires two implications stating that C1 is a subclass of
C2 and vice versa. In this sense it is cleanly layered on top of RDFS, where
this functionality is already available, but with no explicit syntax.

Transitive properties. (owl:TransitiveProperty) Transitivity of properties
has the usual meaning that if a property p holds for a pair of individuals
(x, y) and another pair (y, z), then it also holds for (x, z).

128 F. Fischer et al.

Symmetric properties. (owl:SymmetricProperty) A symmetric property is
a property that is true in both directions. L2 allows for the specification of
symmetric properties with the usual meaning; if a property p holds for a pair
(x, y), then it also holds for (y, x).

Inverse properties. (owl:inverseOf) Furthermore, properties can be stated
to be the inverse of another property, i.e. hasParent and hasChild. If p1 is
the inverse of p2 and an individual x is related to another individual y by
p1, then y is related by p2 to x.

Property equivalence. (owl:equivalentProperty) Two properties may be
stated to be equivalent in the same fashion as classes can. Equivalent prop-
erties relate one individual to the identical set of other individuals.

Individual equivalence. (owl:sameAs) Individual equality is included in the
language for practical purposes since two distinct URIs can identify the
same resource. While individual equality slightly raises the computational
complexity (see [14] for an in-depth treatment) it can still be dealt with in
practical implementations by various means.

4 Formal Semantics

4.1 Basic Definitions

In this section we give a formal definition of the language primitives outlined in
the previous section using specific entailment rules. To do so, we briefly recall
the required basic terminology as in [15], as a slight extension of the notions
in [16].

First, let U denote the set of URI references, B denote the (infinite) set of
blank nodes, and L denote the set of literals, i.e. data values such as strings,
booleans, or XML documents. L is partitioned into the set Lp of plain literals
and the set Lt of typed literals. A typed literal l consists of a lexical form s and a
datatype URI t; l can then be denoted as the pair l = (s, t). The sets U , B, Lp,
and Lt are pairwise disjoint. A vocabulary is a subset of U ∪L. Any symbol t in
U ∪B ∪ L is called a RDF term and the set of RDF terms is denoted by T .

The basic notion of RDF graphs [17,16] only allows URI references in the place
of predicates, however, generalized RDF graphs, which also allow properties to
be blank nodes, were introduced in [15] to solve the problem that the standard
set of entailment rules for RDFS [17] is incomplete.

Definition 1 (Generalized RDF Graph). An RDF graph G is a subset of
the set (U ∪B) × (U ∪B)× (U ∪B ∪ L).

The elements (s, p, o) of an RDF graph are called triples, which consist of a
subject s, a predicate (or property) p, and an object o, respectively. We write
triples as s p o .

The set T (G) of RDF terms of an RDF graph G is the set of all elements that
occur in the graph, and the set bl(G) of blank nodes of an RDF graph G is in
turn defined as bl(G) = T (G) ∩B. A graph is ground if it does not contain any
blank nodes, that is if bl(G) = ∅.

Towards a Scalable, Pragmatic Knowledge Representation Language 129

Definition 2 (Vocabulary of an RDF graph). Based on this, the vocabulary
of an RDF graph G is defined by V (G) = T (G) ∩ (U × L).

An interpretation of an RDF graph is intrinsically tied to this notion of a specifc
vocabulary (RDF, RDFS, . . .), as in [17], starting with simple interpretation, as
following:

Definition 3 (Simple Interpretation). An interpretation I of a vocabulary
V is a tuple I = (RI , PI , EI , SI , LI , LVI), where RI is a nonempty set, called
the set of resources, PI is the set of properties (not required to be disjoint from
resources), LVI is the set of literal values, which is a subset of RI that contains
at least all plain literals in V , and where EI , SI and LI are functions:

– EI : PI → 2RI×RI

– SI : (V ∩ U)→ (RI ∪ PI)
– LI : (V ∩ Lt)→ RI

4.2 Entailment Rules

We then use entailment rules, as in [15]. An entailment rule is considered as a
pair of generalized RDF graphs where variables can occur as predicate, subject
and object in triples. In other words, a rule consists of two sets of triple patterns6.

For any rule ρ = (ρl, ρr), we call ρl the body of the rule ρ and ρl the head of
the rule. Syntactically such rules take the following simple form:

IF ρl THEN ρr

Informally, a proper entailment rule describes under which conditions ρl the
statements ρr must hold. From this, the statements ρr can be inferred whenever
we detect the situation specified by ρl – it characterizes the expected inferences
over a domain vocabulary.

Given a rule ρ, the set of variables of ρ is denoted by var(ρ) = var(ρl), the
set of blank nodes of ρ by bl(ρ) = bl(ρr), and the vocabulary of ρ by
V (ρ) = V (ρ) ∪ V (ρr).

If R is a set of rules, then V (R) =
⋃

ρ∈R V (ρ). An entailment rule ρ is said
to introduce blank nodes if bl(ρ) �= ∅. A rule ρ is called finite if the rule head ρr

and the rule body ρl are both finite. A rule ρ is called a proper rule if the rule
head ρr and the rule body ρl are both nonempty.

From the above, it is possible to define the meaning of entailment rules in a
model-theoretic sense, by defining when a rule is satisfied by an interpretation,
and secondly by defining what statements (triples) are entailed by a specific set
of rules R, i.e. the notion of simple R-entailment.

6 In the sense defined by the RDF Data Access Group, W3C, http://www.w3.org/
2001/sw/DataAccess/

http://www.w3.org/2001/sw/DataAccess/
http://www.w3.org/2001/sw/DataAccess/

130 F. Fischer et al.

4.3 Definition of L2 Language Features

We are now in a position to give a concise, formal definition of the semantics of
L2 by defining (i) its vocabulary, and (ii) the corresponding set of entailment
rules, as described in the previous sections. L2’s vocabulary is constructed as an
extension of the RDF and RDFS vocabulary (see [17]) and adds the following
selected constructs from OWL:

Definition 4 (L2 Vocabulary). VL2= { owl:sameAs,
owl:SymetricProperty, owl:TransitiveProperty, owl:inverseOf,
owl:equivalentClass, owl:equivalentProperty } ∪ VRDFS ∪ VRDF

L2’s set of entailment rules is then defined on top of RDFS entailment (omitting
literal generalization) and several additional rules covering the OWL primitives
as depicted in Table 1. The semantics defined for them via the listed entailment
rules are slightly weaker than their OWL counterparts, mostly for performance
reasons, and in this sense L2 is a semantic subset. In the following, we point out
some important characteristics of the chosen rule set.

– For performance reasons L2 has only “if-conditions” for e.g.
rdf:range, rdf:domain, rdf:subClassOf, rdf:subPropertyOf,
owl:TransitiveProperty, etc. instead of the stronger extensional
“if and only if conditions” as in OWL.

– In order to capture the intended semantics of class and property hierarchies,
including reflexivity and transitivity, rules are included to make this notion
explicitly visible.

– Axiomatic triples are not considered during inference.
– Class equivalence is cleanly layered on top of RDFS in the sense that two

classes are considered equivalent if and only if they are both a subclass of
each other, whereas in OWL only their extensions have to be equal. The
same reasoning applies for property equivalence. This style of modeling the
semantics of equivalence is rooted in the fact that equivalence, e.g. between
classes, can already be indirectly expressed in RDFS in this way, only the
vocabulary to make this explicit was not available.

– Furthermore OWL treats owl:sameAs strictly as equivalence whereas L2
slightly weakens its interpretation and only treats it as an equivalence re-
lation. In order to recapture a set of essential inferences several additional
rules are added.

Common reasoning tasks, such as query answering, reduce to entailment be-
tween two generalized RDF graphs. Due to its close relationship with pD∗ [10]
known complexity and tractability carry over to L2, i.e. ground entailment can
be checked in polynomial time. Moreover, we ensure tractability by restricting
entailment rules to Horn rules (see [18] for relevant complexity results).

For the specific rule-set of L2 we additionally give relevant complexity mea-
sures in Table 1. These include for each rule, the time complexity T for detecting
a required rule application and the space complexity Δ for the number of triples
inferred (the number of nodes needed to construct the closure graph in terms

Towards a Scalable, Pragmatic Knowledge Representation Language 131

Table 1. Intended semantics for L2 given by means of first-order implications /
entailment rules. Rule (1) and (2) cover symmetry and transitivity of properties. Rules
(3a) and (3b) formalize the notion that an individual can be considered to be equal
to itself. Rule (4) captures reflexivity and respectively and rule (5) transitivity of
individual equivalence. Rule (6) and (7) cover the semantics of inverse properties,
including its reflexivity. Rules (8) and (9) denote that individuals that are classes or
properties are considered sub-classes or sub-properties of themselves. These rules are
important to facilitate basic meta-modelling in the language. Rule (10) denotes that
existing relations are preserved when renaming nodes. Rules (11a), (11b) and (11c)
express the semantics of class equivalence, while (12a), (12b) and (12c) do the same
for property equivalence.

Rule No. IF THEN T Δ

1 ?p type SymmetricProperty ?w ?p ?v O(n2) O(n)
?v ?p ?w

2 ?p type TransitiveProperty ?u ?p ?w O(n3) O(n2)
?u ?p ?v
?v ?p ?w

3a ?v ?p ?w ?v sameAs ?v O(n) O(n)
3b ?v ?p ?w ?w sameAs ?w O(n) O(n)
4 ?v sameAs ?w ?w sameAs ?v O(n) O(n)
5 ?u sameAs ?v ?u sameAs ?w O(n2) O(n2)

?v sameAs ?w
6 ?p inverseOf ?q ?w ?q ?v O(n2) O(n)

?v ?p ?w
7 ?p inverseOf ?q ?w ?p ?v O(n2) O(n)

?v ?q ?w
8 ?v type Class ?v subClassOf ?w O(n2) O(n)

?v sameAs ?w
9 ?p type Property ?p subPropertyOf ?q O(n2) O(n)

?p sameAs ?q
10 ?u ?p ?v ?w ?p ?q O(n3) O(n)

?u sameAs ?w
?v sameAs ?q

11a ?v equivalentClass ?w ?v subClassOf ?w O(n) O(n)
11b ?v equivalentClass ?w ?w subClassOf ?v O(n) O(n)
11c ?v subClassOf ?w ?v equivalentClass ?w O(n2) O(n)

?w subClassOf ?v
12a ?v equivalentProperty ?w ?v subProperty ?w O(n) O(n)
12b ?v equivalentProperty ?w ?w subProperty ?v O(n) O(n)
12c ?v subPropertyOf ?w ?v equivalentProperty ?w O(n2) O(n)

?w subPropertyOf ?v

132 F. Fischer et al.

Table 2. Omitted rules and the associated scalability with respect to the to the increase
in the size of the computed closure and the effort needed to apply them

Rule No. IF THEN T Δ

N1 ?p type FunctionalProperty ?v sameAs ?w O(n3) O(n)
?u ?p ?v
?u ?p ?w

N2 ?p type InverseFunctionalProperty ?u sameAs ?w O(n3) O(n)
?u ?p ?w
?v ?p ?w

N3 ?v hasValue ?w ?u type ?w O(n3) O(n)
?v onProperty ?p
?u ?p ?w

N4 ?v hasValue ?w ?u ?p ?w O(n3) O(n)
?v onProperty ?p
?u type ?v

N5 ?v someValuesFrom ?w ?u type ?v O(n4) O(n)
?v onProperty ?p
?u ?p ?x
?x type ?w

N6 ?v allValuesFrom ?w ?x type ?w O(n4) O(n)
?v onProperty ?p
?u type ?v
?u ?p ?x

of the size of the initial graph). To contrast this with more computationally
expensive entailment rules, we show the same information for additional rules
from [10] in Table 2.

As shown the highest time complexity for the rules we included in L2 is
O(n3), whereas it is O(n4) for the omitted rules in Table 2. The most complex
rule covers transitive properties (Rule 2), which poses the same challenges as
existing RDFS vocabulary. As a practical solution, the application of this rule
on a graph can be mapped to a well studied problem, graph reachability, where
efficient optimization algorithms exist see [19] [20] [21].

5 Conclusion

In this paper we presented L2, a lightweight and tractable language for the de-
scription of resources on the Semantic Web for which rule based and efficient rea-
soning methods are directly applicable. For that purpose we considered related
work concerning theoretical research results as well as practical implementations
that are similar in spirit to our approach. We gave a high level explanation of the
modeling primitives supported, that (i) are implementable in a scalable way and
(ii) useful in practical settings. Lastly, we gave a formal definition of entailment
rules that capture the semantics of L2 and from which it is straightforward to
establish the tractability of L2.

Towards a Scalable, Pragmatic Knowledge Representation Language 133

It should be noted, that the definition of the formal semantics of L2 by re-
stricted entailment rules is not the only possible approach and should not nec-
essarily be taken as a direct algorithmic evaluation procedure. However, this
approach can be understood as a basis for defining a minimal, useful and imple-
mentable language that is in line with existing Web standards, and also allows
for extension with custom rule sets.

Acknowledgments

This research has been partially supported by the LarKC EU-funded project
(FP7-215535). For more information visit http://www.larkc.eu.

References

1. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The Semantic Web. Scientific Amer-
ican 284(5), 28–37 (2001)

2. Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on the Web.
In: Demonstrations Track, 4th European Semantic Web Conference, Innsbruck,
Austria (2007)

3. McGuinness, D., van Harmelen, F., et al.: OWL Web Ontology Language Overview.
W3C Recommendation 10, 2004–03 (2004)

4. Brachman, R., Levesque, H.: The tractability of subsumption in frame-based de-
scription languages. In: Proc. of the 4th Nat. Conf. on Artificial Intelligence (AAAI
1984), pp. 34–37 (1984)

5. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation 2 (2004)

6. Wang, T., Parsia, B., Hendler, J.: A Survey of the Web Ontology Landscape. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 682–694. Springer, Heidelberg
(2006)

7. Weithoner, T., Liebig, T., Luther, M., Bohm, S.: What’s Wrong with OWL Bench-
marks? In: Second International Workshop on Scalable Semantic Web Knowledge
Base Systems, SSWS 2006 (2006)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable Description Logics for Ontologies. In: Proceedings of the National Con-
ference on Artificial Intelligence, vol. 20(2), p. 602 (2005)

9. Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope Further. In: Proceedings
of the OWLED Workshop (2008)

10. ter Horst, H.J.: Combining RDF and part of owl with rules: Semantics, decidability,
complexity. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 668–684. Springer, Heidelberg (2005)

11. Krötzsch, M., Rudolph, S., Hitzler, P.: Elp: Tractable rules for owl 2. In: Sheth,
A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 649–664. Springer, Heidelberg (2008)

12. Grau, B., Horrocks, I., Parsia, B., Patel-Schneider, P., Sattler, U.: Next Steps for
OWL. OWL Experienced and Directions (2006)

13. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.: The
Manchester OWL Syntax

http://www.larkc.eu

134 F. Fischer et al.

14. Volz, R.: Web Ontology Reasoning with Logic Databases. PhD thesis, Universität
Karlsruhe (TH), Universität Karlsruhe (TH), Institut AIFB, D-76128 Karlsruhe
(2004)

15. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
schema and a semantic extension involving the owl vocabulary. J. Web Sem. 3(2-3),
79–115 (2005)

16. Klyne, G., Carroll, J., McBride, B.: Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation 10 (2004)

17. Hayes, P., McBride, B.: RDF Semantics. W3C Recommendation 10 (2004)
18. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power

of logic programming. ACM Computing Surveys (CSUR) 33(3), 374–425 (2001)
19. Schenkel, R., Theobald, A., Weikum, G.: Efficient Creation and Incremental Main-

tenance of the HOPI Index for Complex XML Document Collections. In: Proceed-
ings of the International Conference on Data Engineering, 1998, vol. 21, p. 360.
IEEE Computer Society Press, Los Alamitos (2005)

20. Schenkel, R., Theobald, A., Weikum, G.: HOPI: An Efficient Connection Index for
Complex XML Document Collections. In: Bertino, E., Christodoulakis, S., Plex-
ousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT
2004. LNCS, vol. 2992, pp. 237–255. Springer, Heidelberg (2004)

21. Wang, H., He, H., Yang, J., Yu, P., Yu, J.: Dual labeling: Answering graph reacha-
bility queries in constant time. In: Proceedings of the 22nd International Conference
on Data Engineering (ICDE), p. 75 (2006)

An Experiment with
the Fourth Futamura Projection

Robert Glück�

DIKU, Dept. of Computer Science, University of Copenhagen,
DK-2100 Copenhagen, Denmark

glueck@acm.org

Abstract. We have experimentally validated the theoretical insight,
that a compiler generator is an Ershov generating extension of a pro-
gram specializer, by showing that an existing offline partial evaluator
can perform the fourth Futamura projection. Specifically, an online and
an offline partial evaluator for an imperative flowchart language were
transformed into two new compiler generators by Romanenko’s classical
partial evaluator Unmix. The two partial evaluators are described, as is
a novel recursive method for polyvariant specialization. The new com-
piler generators are demonstrated by converting a universal parser into
a parser generator. These results strongly indicate that existing partial
evaluation techniques can be put to work on several new applications. To
date, all previous compiler generators based on partial evaluation were
either generated by self-application or handwritten. None of these works
considered the generation of one compiler generator by another.

1 Introduction

The three Futamura projections stand as a cornerstone in the development of
partial evaluation. The observation by Futamura, that the self-generation of a
compiler generator is due to a fourth projection [6], and the insight by Klimov
and Romanenko, that Futamura’s abstraction scheme can be continued beyond
his third projection [19], were recently investigated, and several new applications
for compiler generators were identified [10].

Computer experiments are needed to test these theoretical results and to de-
termine whether existing partial evaluation technology is strong enough for this
task. This paper describes and assesses such experiments. The focus is not on
introducing new specialization methods geared towards solving the transforma-
tion challenges, but on determining whether and in what way existing partial
evaluators can computationally realize some of the theoretical predictions. For
our experiments, we chose Romanenko’s partial evaluator Unmix for a first-order
subset of Scheme [21], a direct descendant of the first offline partial evaluator
Mix [18], which is the basis for practically all offline partial evaluators today. The
results obtained for Unmix should therefore be applicable to many of the later
� Part of this work was performed while the author was visiting the National Institute

of Informatics (NII), Tokyo.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 135–150, 2010.
� Springer-Verlag Berlin Heidelberg 2010

136 R. Glück

and more developed partial evaluators and to hand-written compiler generators
based on the offline approach, though the technical details and programming lan-
guages may vary from case to case (e.g. Similix, C-Mix, Tempo, PGG, Logen).

We investigate the structure and organization of partial evaluators needed for
their conversion into compiler generators by the fourth Futamura projection. For
this purpose, we wrote two partial evaluators for the imperative flowchart lan-
guage of Gomard and Jones [14], one employing online and one employing offline
techniques. The two partial evaluators are functionally equivalent to Hatcliff’s
online and offline partial evaluators [15], disregarding block order and renaming
of labels in the residual programs. An important advantage is that partial eval-
uation for this language has been very well documented (e.g., [1,14,17,15,3,2]),
which should make our results easily accessible and comparable.

The main contribution of this paper is to experimentally validate the appli-
cation of the fourth Futamura projection: the generation of one compiler gener-
ator by another. The results demonstrate that this can be performed by existing
partial evaluators and gives reasonable results. We also show a novel recursive
method for polyvariant specialization, which allows the generation of a compiler
generator based on online partial evaluation, producing generating extensions
that are as efficient as those produced by its offline counterpart. This result is
remarkable because partial evaluation folklore has indicated that online tech-
niques unavoidably lead to overgeneralized generating extensions [17, Ch. 7.3.2].
The quality of our generating extensions is demonstrated by staging Bulyonkov’s
universal parser for regular languages [1]. The new compiler generators have an
interesting property, in that they can turn interpreters into cross-compilers.

Throughout this paper, we assume that readers are familiar with the basics
of partial evaluation, e.g., as presented by Jones et al. [17, Part II].

2 The Fourth Futamura Projection

We begin with a brief review of the third and fourth Futamura projections,
using a notation adapted from Jones et al. [17]; see also [9]. An L-program s is
an N/L-specializer iff ∀p ∈ PN and ∀x, y ∈ D : [[[[s]]L(p, x)]]

N
y = [[p]]N(x, y).

Futamura noticed [5] that a compiler generator cog produced by his third
projection, that is by double self-application of an L/L-specializer s, generates a
copy of itself when applied to s. Starting with the third Futamura projection (3.)
and apply s once more to abstract from the second argument in the projection,
where the second argument (s) is underlined for clarity:

Abstract: Instantiate:
3. [[s]]L(s, s) = cog
4. [[s]]L(s, s) = cog [[cog]]L s = cog

It follows from the correctness of the specializer s applied in (4.) that the ap-
plication of its residual program cog to s, [[cog]]L s, returns the same result as
[[s]]L(s, s) in (3.). Thus, cog is self-generating when applied to s, a finding first
observed for the compiler generator of the partial evaluator Mix [18].

An Experiment with the Fourth Futamura Projection 137

A residual program produced by a specializer can be applied to many differ-
ent arguments; in particular, the residual program cog produced by the fourth
projection can be applied to many different specializers (s0, s1, ...), not only to
s, and each specializer is turned into a compiler generator (cog0, cog1, ...):

[[cog]]L s0 = cog0, [[cog]]L s1 = cog1, [[cog]]L s2 = cog2, (1)

At first glance, the fourth Futamura projection (4.) appears disappointing, since
it seems to produce nothing new. But the situation is different when applying
cog to different specializers. Since these specializers can have different charac-
teristics, e.g., concerning specialization methods and subject languages, several
new application scenarios emerge [10]. In general, a compiler generator turns
a program with two arguments into a generating extension. Since a specializer
is a two-argument program that is turned into a compiler generator, there is
good reason to add to Ershov’s generating extensions [4] an important case: the
generating extension of a specializer is a compiler generator.

2.1 The Experiment: Generating a New Compiler Generator

Experimental validation is required to determine whether existing specialization
methods can turn specializers into compiler generators without self-application.
A compiler generator, cogOLD, for a language S, which may be written by hand
or obtained by self-application, can be characterized by the equation

[[[[[[cogOLD]]S p]]
S
x]]

S
y = [[p]]S(x, y). (2)

If we write a new N/S-specializer sNEW, where N may or may not be identical to S,
application of cogOLD to sNEW produces a compiler generator cogNEW in one step:

[[cogOLD]]S sNEW = cogNEW. (3)

This new compiler generator can be described by the equation

[[[[[[cogNEW]]S q]]
S
x]]

N
y = [[q]]N(x, y). (4)

This indicates that cogNEW is implemented in S, along with the generating exten-
sion that it produces, genq = [[cogNEW]]S q. Application of the generating exten-
sion genq to x produces an N-program that consumes the remaining input y. The
equations assert that N/S-specializers can be turned into compiler generators in
one step and without self-application [10]. This is interesting for several reasons:

1. The language N may be a domain-specific language, which is not well suited
for implementing a program specializer, or N may not be Turing-complete.
Nevertheless, we obtain a compiler generator cogNEW, which turns N-programs
into generating extensions implemented in S that produce N-programs.

2. The specializer sNEW may not be self-applicable for formal reasons, because
N �= S, or for practical reasons, even when N = S, because sNEW may employ
online specialization techniques for which self-applicability has not been def-
initely determined. These include online partial evaluation [15,22], Turchin’s
supercompilation [24,13], and Futamura’s generalizedpartial computation [7].

138 R. Glück

(a)

sNEW

S

N N•

cogNEW

S

N SN

cogOLD

S

S SS

(b)

int

N

L

comp

S

L N→

cogNEW

S

N SN

Fig. 1. Transformation of a specializer into a compiler generator, [[cogOLD]]S sNEW =cogNEW,
and transformation of an interpreter into a cross-compiler, [[cogNEW]]S int = comp

To illustrate the involved languages, it is convenient to use a variant of the T-
diagrams familiar from compiler construction. The specializer and the two com-
piler generators are shown in Fig. 1a. The figure shows the subject language N,
the target language N, and the implementation language S of the N/S-specializer
sNEW. The bullet (•) in the center distinguishes its T-diagram from that of a
compiler. The two compiler generators have an additional language, written in
the center of their T-diagrams, namely the target language of the generating
extensions that they produce (S in the case of cogOLD, N in the case of cogNEW).

In our experiments, S was the functional language Scheme, a statically-scoped
version of Lisp, well suited for symbol manipulation, whereas N was an unstruc-
tured imperative language with assignments and jumps, called FCL. The seman-
tics of FCL is identical to those that have been formalized and published [15,17].
The compiler generator cogOLD was obtained by self-application of the offline par-
tial evaluator Unmix [21]. Utilizing the partial evaluation methods by Gomard
and Jones [14] and Hatcliff [15], we wrote two FCL/S-partial evaluators, an online
partial evaluator sON and an offline partial evaluator sOFF. Both partial evaluators
work on a Scheme representation of FCL-programs (Fig. 2). They are examples
for the second case above (N �= S). Scheme is also better suited for implementing
the partial evaluators than FCL, which illustrates the first case.

When we performed an experiment with an interpreter written in FCL for the
while-language MP [18], we found that both compiler generators produced efficient
MP-to-FCL-compilers written in Scheme. In general, cogNEW turns an L-interpreter
int written in N into an L-to-N-compiler comp written in S (Fig. 1b). A cross-
compiler can therefore be obtained in two steps: [[[[cogOLD]]S sNEW]]S int = comp.

3 A Universal Parser and Its Generating Extension

To show the quality of the new compiler generators, we present a complete ex-
ample. Application of the compiler generator cogNEW to a universal parser parse
written in FCL, yields a parser generator parsegen written in Scheme:

[[cogNEW]]S parse = parsegen. (5)

One of the first programs to which polyvariant specialization was applied is a
universal parser for regular languages over the two-character alphabet {a, b} [1].
The universal parser parse written in FCL is shown in Fig. 3, where ta and tb

An Experiment with the Fourth Futamura Projection 139

p ::= ((x∗) (l) (b+)) (program)
b ::= (l a∗ j) (basic block)
a ::= (x := e) (assignment)
j ::= (goto l) (unconditional jump)

| (if e l l) (conditional jump)
| (return e) (program return)

e ::= (o u∗) (simple expression)
o ::= car | cdr | cons | + | - | = | < | . . . (primitive operator)
u ::= x | 'v (operator argument)
x ∈ Name v ∈ Value l ∈ Label

Fig. 2. Scheme representation of the flowchart language FCL

((s ta tb) (init) ((init (q := '0) ;

start state
(goto loop))

(loop (if (= s '()) end isab))

(isab (c := (car s)) ; next char
(s := (cdr s)) ; rest string
(if (= c 'a) doa dob))

(doa (q := (ith ta q)) ; next state
(goto loop))

(dob (q := (ith tb q)) ; next state
(goto loop))

(end (return q))))

Example FSA and its tabular form:

start

“even” “odd”

�

��

��
0

��

�	
0

��

��
1

a

a

�
�b �

� b

� �

q a b

0 1 0
1 0 1

Fig. 3. A universal parser for regular languages over alphabet {a, b} written in FCL and
a finite state automaton (FSA) that accepts strings with an even number of a

((s) (init) ((init (if (= s '()) end0 isab0))

(isab0 (c := (car s)) ; state 0
(s := (cdr s))

(if (= c 'a) doa0 dob0))

(doa0 (if (= s '()) end1 isab1))

(dob0 (if (= s '()) end0 isab0))

(end0 (return '0))

(isab1 (c := (car s)) ; state 1
(s := (cdr s))

(if (= c 'a) doa1 dob1))

(doa1 (if (= s '()) end0 isab0))

(dob1 (if (= s '()) end1 isab1))

(end1 (return '1))))

Fig. 4. Specialized parser for strings with an even number of a (see FSA in Fig. 3)

is the tabular representation of the corresponding finite state automaton (FSA),
q is the state of the automaton, c is the current character, and s is the string.
The program returns the last state as the result, which indicates whether the
string given to the parser has been accepted. The three input parameters (s, ta,
tb) and the initial label (init) are written at the beginning of the FCL-program.
As is customary, the set of values in FCL is that of the Lisp S-expressions, where
'() is the empty list. The string s is a list of characters. The operator ith

140 R. Glück

(define (pefcl-1 tab) ; The parser generator inputs a table tab = (ta tb)

(pestmts-1 0 (car tab) (cadr tab) (mkHEAD ' (s) ' init ' (ta tb) tab)))

(define (pestmts-1 q ta tb code)

(pepoly-2 q ta tb

(pepoly-1 q ta tb

(mkBLOCK ` (if (= s '()) (end (q ta tb) (,q ,ta ,tb))

(isab (q ta tb) (,q ,ta ,tb))) . ,code))))

(define (pepoly-1 q ta tb code)

(if (done? 'end '(q ta tb) `(,q ,ta ,tb) code) code

(mkBLOCK `((return ' ,q) (end (q ta tb) (,q ,ta ,tb)) ,code))))

(define (pepoly-2 q ta tb code)

(if (done? 'isab '(q ta tb) `(,q ,ta ,tb) code) code

(pepoly-4 q ta tb

(pepoly-3 q ta tb

(mkBLOCK `((if (= c 'a) (doa (q ta tb) (,q ,ta ,tb))

(dob (q ta tb) (,q ,ta ,tb)))

(s := (cdr s)) (c := (car s))

(isab (q ta tb) (,q ,ta ,tb)) ,code))))))

(define (pepoly-3 q ta tb code)

(if (done? 'doa '(q ta tb) `(,q ,ta ,tb) code) code

(pestmts-1 (list-ref ta q) ta tb

`((doa (q ta tb) (,q ,ta ,tb)) ,code))))

(define (pepoly-4 q ta tb code)

(if (done? 'dob '(q ta tb) `(,q ,ta ,tb) code) code

(pestmts-1 (list-ref tb q) ta tb

`((dob (q ta tb) (,q ,ta ,tb)) ,code))))

Fig. 5. Parser generator produced in Scheme by the new compiler generators

returns the ith element of a list; car and cdr return the head and tail of a list,
respectively.

As an example consider the regular language that contains all strings with an
even number of a. The language is accepted by the FSA, which starts and accepts
in state 0 (Fig. 3). State 1 indicates non-acceptance. The tabular description of
the FSA is ta = (1 0) and tb = (0 1).

Parser Generator. Application of the parser generator parsegen (Fig. 5) to the
tabular description of an FSA generates a parser for that language. For example,
the specialized parser in Fig. 4 was generated for the FSA in Fig. 3. Its control
flow resembles the FSA. The parser generator is remarkably compact and read-
able, in part because cogNEW inherited the Unmix postprocessor, including the
arity raiser [20], improving the quality of the generating extension. It was gen-
erated automatically and consists of specialized versions of the procedures in
the partial evaluators described below (pefcl, pepoly, pestmts). The program
shown in the figure was obtained by hand-editing which consisted only of name
changes because machine-produced names are uninformative. The boxes indi-
cate the program code that is generated. Code generation makes liberal use of

An Experiment with the Fourth Futamura Projection 141

the Scheme “backquote” notation. For example, pepoly-1 contains a code tem-
plate for a return statement in which the value of q is inserted as a constant (the
specialized parser in Fig. 4 contains two such return statements).

Some operations originating from the universal parser can be performed when
the parser generator is running, whereas others are placed into the generated
parser. Operations that depend only on the given tables (ta, tb) can be performed
by the parser generator. These include the table lookups in procedures pepoly-3

and pepoly-4 by the Scheme procedure list-ref, which returns the ith element
of a list. Operations that may depend on the unknown string s, such as taking
the next character by car, are performed in the specialized parser (Fig. 4).

The program in Fig. 5 is the complete parser generator, except for three
auxiliary procedures. These are mkHEAD, which creates the head of an FCL-program
with parameters and initial label; mkBLOCK, which adds a new block to code; and
done?, which determines whether a block that needs to be generated already
exists in code. The three procedures take 12 lines of Scheme text.

Two technical points, however, require further explanation: (1) Statements are
pushed onto code. This explains the reversed order in which they appear, e.g.,
(s := (cdr s)) (c := (car s)) in pepoly-2. When a block is completed, mkBLOCK
adds the reversed list to the generated parser. (2) The syntax of FCL allows S-
expressions as labels. The labels produced by the parser generator take the form
(source-label static-names static-values), e.g., (doa (q ta tb) (0 (1 0) (0 1))).
For readability, these were later replaced by shorter labels (e.g., by doa0; Fig. 4).

4 The Online and Offline Partial Evaluators

This section presents the online and offline partial evaluators for FCL that we de-
signed and implemented in Scheme. Our aim was not to discuss the advantages of
using online compared with offline strategies. Rather, we sought to assess the or-
ganization and structure of the two partial evaluators, allowing an ‘off-the-shelf’
compiler generator to turn these into compiler generators that produce efficient
generating extensions from FCL-programs. More specifically, we transformed the
partial evaluators, sON and sOFF, into two new compiler generators, cogON and
cogOFF, using Unmix’s compiler generator cogUNMIX, where S denotes Scheme:

[[cogUNMIX]]S sON = cogON, (6)
[[cogUNMIX]]S sOFF = cogOFF. (7)

Recursive Polyvariant Specialization The two partial evaluators are based on
polyvariant block specialization [1]: each block in an FCL-program may give raise
to several specialized versions in the residual program. Each block in a residual
program is a specialization of a block in the subject program with respect to
different variable divisions and/or different values for the static variables.

A main difficulty during the specialization of a partial evaluator with respect
to an FCL-program is to obtain enough static information about the pending
list, which is a dynamic data structure. In an offline partial evaluator this im-
portant information, the labels of blocks and their divisions, can be determined

142 R. Glück

beforehand (offline) by a binding-time analysis (BTA) and made available to the
partial evaluator via the annotations of the subject program. When an offline
partial evaluator is specialized with respect to an annotated FCL-program, the
information about the pending list can be recovered by a binding-time improve-
ment, called ‘The Trick’, which is the key to the generation of efficient generating
extensions [17, Ch. 4.8.3]. This programming trick cannot be used in an online
partial evaluator that has no BTA and determines the necessary information in-
crementally during the specialization (online) of an unannotated FCL-program.

Using a recursive method, we can perform polyvariant specialization without
a pending list. This avoids the need for an accumulating parameter (the pending
list). We use a procedure pepoly that specializes a block l in an FCL-program p

with respect to the static names sn and the static values sv. The procedure takes
as last argument the current residual program in code and adds to it the spe-
cialized version of block l, unless that version already exists in code. The type is
pepoly :: Label × Program × Names × Values × Code → Code. Representing the
static store of a block by two lists (sn, sv) allows to give them different binding
times. This binding-time improvement is well known in partial evaluation. To
represent the division of variables, it is sufficient to know the names of the static
variables sn; all others are regarded as dynamic.

A conditional jump (if e l1 l2) with a dynamic test expression e gives raise
to two new tasks for block specialization, the specialization of the target blocks
l1 and l2. To specialize the blocks, we nest two calls to pepoly:

(pepoly l2 p sn sv

(pepoly l1 p sn sv code)).

This method can be used regardless of whether the specialization of statements
in a block li is performed online or offline. We therefore use the same recursive
polyvariant specialization method in both partial evaluators. The nesting of the
two calls can be seen in the case of a dynamic conditional jump in Figs. 7 and 8.
Note that the specialization of a block li can lead to further block specializations.

When the two calls to pepoly are specialized with respect to li, p, and sn, two
code generators are produced, one for each block (e.g., the pepoly-1 and pepoly-2

in Fig. 5, where Unmix’s arity raiser [20] split the list sv into the three variables
q, ta, tb; note also the nested calls to pepoly-1 and pepoly-2 in pestmts-1).

The Partial Evaluators. Common to both partial evaluators is the main program
in Fig. 6. Offline specialization is performed by replacing onpestmt by offpestmt

in procedure pestmts. The underlines represent the annotation by a monovariant
BTA and will be explained later. The main procedure pefcl takes as input an
FCL-program program (an annotated FCL-program in the offline case) and the
static names sn and the static values sv of the program. These FCL-programs
are assumed to be syntactically correct. Specialization begins by using initcode

to make the header of the residual program with the residual parameters (all
variables xs except those in sn) and the start label, followed by generation of the
residual blocks with peblock. The procedure peblock looks up the statement list
of block l in program p and specializes the list by pestmts. To avoid generating

An Experiment with the Fourth Futamura Projection 143

(define (pefcl program sn sv) ; PE of program
(with (((xs (l) p) program))

(peblock l p sn sv (initcode xs l sn sv))))

(define (peblock l p sn sv code) ; PE of block
(pestmts (lookupstmts l p) p sn sv code))

(define (pestmts stmts p sn sv code) ; PE of statements
(onpestmt (car stmts) (cdr stmts) p sn sv code))

(define (pepoly l p sn sv code) ; polyvariant specialization
(if (done? l sn sv code) code

(peblock l p sn sv (mkLABEL l sn sv code))))

Fig. 6. Main program of the FCL-partial evaluators

the same specialized version of a block twice, the procedure done? in pepoly

determines whether the desired block already exists in code.
A partial evaluator takes values for the static parameters of a program and

tries to precompute as many statements as possible. Statements that cannot be
precomputed are placed into the residual program. A specialization strategy is
said to be online if the values computed at the time of specialization can affect
the choice of action taken; otherwise a strategy is said to be offline [17, Ch. 4.4.7].
We will briefly explain the online and offline strategies for the partial evaluation
of FCL-statements (Figs. 7 and 8). The pattern matching expression select in
the figures improves readability and is expanded into Scheme by Unmix.

Online Partial Evaluation of Statements. The online strategy for specializing
an assignment x := e is simple: if e depends only on static names, as tested by
static?, the static store is updated with the value of e; otherwise, variable x is
removed from the static store. This makes x dynamic. Procedure mkASG generates
an assignment x := e′, in which e′ is obtained from e by replacing every occurrence
of a static name by its value. An expression e = (gen x) is always considered as
dynamic, even when x is static, and may be used in an FCL-program to avoid
possible finite or infinite code explosion during partial evaluation [15].

One of the most interesting aspects of the online strategy and one that distin-
guishes online from offline strategies is specializing a conditional jump if e l1 l2.
If e depends only on static names, the conditional jump is replaced by the state-
ments obtained by specializing the block li selected by the value of e. This unfold-
ing decision depends on the actual static values. If e is not static, however, either
branch may be executed when the residual program is run. A conditional jump
with residual labels is generated by mkIF, completing the current block special-
ization. The blocks l1 and l2 are then specialized by pepoly, as described above.

An unconditional jump goto l can be replaced by the statements obtained by
specializing block l. A return statement return e is replaced by return e′, where
e is reduced to e′ in the current static store.

144 R. Glück

(define (onpestmt stmt stmts p sn sv code)

(select (stmt)

((x ':= e) => (if (static? e sn)

(pestmts stmts p (updsn x sn) ; static assign
(updsv x (evalop e sn sv) sn sv) code)

(pestmts stmts p (delsn x sn) ; dynamic assign
(delsv x sn sv) (mkASG x e sn sv code))))

(('IF e l1 l2) => (if (static? e sn)

(if (evalop e sn sv) ; static if
(peblock l1 p sn sv code)

(peblock l2 p sn sv code))

(pepoly l2 p sn sv ; dynamic if
(pepoly l1 p sn sv

(mkIF e l1 l2 sn sv code)))))

(('GOTO l) => (peblock l p sn sv code)) ; goto
(('RETURN e) => (mkRETURN e sn sv code)))) ; return

Fig. 7. Online partial evaluation of FCL-statements by sON

(define (offpestmt stmt stmts p sn sv code)

(select (stmt)

((x ':=S e) => (pestmts stmts p (updsn x sn) ; static assign
(updsv x (evalop e sn sv) sn sv) code))

((x ':=D e) => (pestmts stmts p (delsn x sn) ; dynamic assign
(delsv x sn sv) (mkASG x e sn sv code)))

(('IFS e l1 l2) => (if (evalop e sn sv) ; static if
(peblock l1 p sn sv code)

(peblock l2 p sn sv code)))

(('IFD e l1 l2) => (pepoly l2 p sn sv ; dynamic if
(pepoly l1 p sn sv

(mkIF e l1 l2 sn sv code))))

(('GOTO l) => (peblock l p sn sv code)) ; goto
(('RETURN e) => (mkRETURN e sn sv code)))) ; return

Fig. 8. Offline partial evaluation of FCL-statements by sOFF

As an example, consider the specialization of the universal parser in Fig. 3
with respect to sn= (ta tb) and sv= ((1 0) (0 1)). This produces the residual
program in Fig. 4, in which the label names have been rewritten for readability.

Offline Partial Evaluation of Statements. Decisions taken by the offline strategy
do not depend on the actual static values, but only on the annotations of the

An Experiment with the Fourth Futamura Projection 145

(define ($pefcl program sn) ; staging of program
(with (((xs (l) p) program))

` (CALL ($peblock ,l ,p ,sn) sv (initcode ' ,xs ' ,l ' ,sn sv)))

(define ($peblock l p sn) ; staging of block
($pestmts (lookupstmts l p) p sn))

(define ($pestmts stmts p sn) ; staging of statements
($onpestmt (car stmts) (cdr stmts) p sn))

(define ($pepoly l p sn) ; staging of polyvariant
specialization
` (if (done? ' ,l ' ,sn sv code) code

(CALL ($peblock ,l ,p ,sn) sv (mkLABEL ' ,l ' ,sn sv code))))

Fig. 9. Compiler generator for FCL: specializing polyvariant specialization

FCL-program. A dynamic conditional, ifD e l1 l2, and a dynamic assignment,
x :=D e, are always treated as dynamic regardless of whether e is actually static
or not. The handling of goto and return is the same as in the online case.

The offline strategy in Fig. 8 works with any congruent annotation of an FCL-
program. It can be used together with a monovariant, pointwise or polyvariant
BTA. In the case of a polyvariant BTA, a polyvariant expansion of the subject
program is used to represent the different divisions of a block. In the case of a
monovariant BTA, which means that the same division is valid for all blocks, the
handling of assignments in Fig. 8 can be simplified by omitting the procedures
calls that change the division (updsn, delsn, delsv).

Annotation of the Partial Evaluators. Unmix is an offline partial evaluator with
a monovariant BTA [21]. The annotation of our programs by Unmix’s BTA is
shown in Figs. 6–8 by underlining the dynamic expressions. The classification
of the three parameters of the main procedure pefcl in Fig. 6: the FCL-program
program and the name list sn are static and the value list sv is dynamic. Opera-
tions that depend only on program and sn can be static, while all other operations
that may depend on sv are underlined. In particular, the first three parameters
of pepoly in Fig. 6 remain static and only sv and code are dynamic. The recursive
method of polyvariant block specialization kept the essential information static
(l, p, sn), providing the key to a good specialization of our partial evaluators.

Procedures that carry no annotation are fully evaluated when the partial
evaluators are specialized with respect to an FCL-program and do not occur in the
generating extensions produced by Unmix. As an example, the important tests
static? in Fig. 7 are evaluated when the online partial evaluator is specialized.
They will thus never occur in the generating extensions (cf., Fig. 5). Also, a
change of the transition compression strategy does not affect the binding time
separation. The Unmix-inserted call annotation rcall is not shown in Figs. 6–8.

146 R. Glück

(define ($onpestmt stmt stmts p sn) (select (stmt)

((x ':= e) => (if (static? e sn)

` (CALL ($pestmts ,stmts ,p ,(updsn x sn)) ; stat.assign
,($updsv x sn ($evalop e sn)) code)

` (CALL ($pestmts ,stmts ,p ,(delsn x sn)) ; dyn.assign
,($delsv x sn) (mkASG ' ,x ' ,e ' ,sn sv code))))

(('IF e l1 l2) => (if (static? e sn)

` (if ,($evalop e sn) ; static if
(CALL ($peblock ,l1 ,p ,sn) sv code)

(CALL ($peblock ,l2 ,p ,sn) sv code))

` (CALL ($pepoly ,l2 ,p ,sn) sv ; dynamic if
(CALL ($pepoly ,l1 ,p ,sn) sv

(mkIF ' ,e ' ,l1 ' ,l2 ' ,sn sv code)))))

(('GOTO l) => ` (CALL ($peblock ,l ,p ,sn) sv code)) ; goto
(('RETURN e) => ` (mkRETURN ' ,e ' ,sn sv code)))) ; return

Fig. 10. Online staging of FCL-statements by cogON

(define ($offpestmt stmt stmts p sn) (select (stmt)

((x ':=S e) => ` (CALL ($pestmts ,stmts ,p ,(updsn x sn)) ; stat. assign
,($updsv x sn ($evalop e sn)) code))

((x ':=D e) => ` (CALL ($pestmts ,stmts ,p ,(delsn x sn)) ; dyn. assign
,($delsv x sn) (mkASG ' ,x ' ,e ' ,sn sv code)))

(('IFS e l1 l2) => ` (if ,($evalop e sn) ; static if
(CALL ($peblock ,l1 ,p ,sn) sv code)

(CALL ($peblock ,l2 ,p ,sn) sv code)))

(('IFD e l1 l2) => ` (CALL ($pepoly ,l2 ,p ,sn) sv ; dynamic if
(CALL ($pepoly ,l1 ,p ,sn) sv

(mkIF ' ,e ' ,l1 ' ,l2 ' ,sn sv code))))

(('GOTO l) => ` (CALL ($peblock ,l ,p ,sn) sv code)) ; goto
(('RETURN e) => ` (mkRETURN ' ,e ' ,sn sv code)))) ; return

Fig. 11. Offline staging of FCL-statements by cogOFF

5 The Two New Compiler Generators

The online and offline partial evaluators described in the previous section can be
specialized by Unmix with respect to an FCL-program, thereby producing a gen-
erating extension of the FCL-program written in Scheme, or they can be turned
by Unmix’s compiler generator into compiler generators that produce the same
generating extensions as the specialization of the partial evaluators, but faster.

An Experiment with the Fourth Futamura Projection 147

Partial evaluation folklore has suggested that online strategies unavoidably
lead to overgeneralized “crazy” generating extensions [17, Ch. 7.3.2]. The com-
pact and efficient generating extension shown in Fig. 5, which was produced by
cogON, demonstrates that this is not necessarily the case. In fact, inspection of
cogON reveals that its generating extensions never suffer from this deficiency. An
online strategy cannot discover extra static values in the universal parser (Fig. 3)
and both compiler generators produce the same parser generator (Fig. 5). In gen-
eral, an online strategy can propagate more static values than an offline strategy
with a monovariant BTA. This can lead to a deeper specialization by cogON, but
may also lead to the generation of larger programs than cogOFF. An important
practical advantage is that both compiler generators inherit the postprocessor
of Unmix, which improves the quality of the generating extensions.

The Compiler Generators. The staging transformations performed by the two
compiler generators, cogON and cogOFF, are shown in Fig. 9–11. Pattern match-
ing was added for readability. The figures do not show the main loop that was
inherited from Unmix and that controls the polyvariant specialization by a con-
ventional pending list [17, Ch. 5.4]. The difference between the compiler genera-
tors is immediately visible: the online staging of FCL-statements (Fig. 10) takes
all decisions based on division sn, that is, the handling of assignments (:=) and
conditional jumps (IF), while the corresponding part in Fig. 11 follows the anno-
tations (:=S, :=D, IFS, IFD). Aside from the decision taking, the generated Scheme
code is the same for each statement, as shown by comparing Figs. 10 and 11.
The quality of the generating extensions produced by cogOFF thus depends only
on the accuracy of the BTA. If the BTA is maximally polyvariant, both compiler
generators produce the same generating extensions. This is consistent with the
finding that an offline partial evaluator can be as accurate as an online partial
evaluator for FCL, provided the BTA is maximally polyvariant [2].

We now explain the staging in more detail. The compiler generators consist
of procedures of Unmix specialized with respect to procedures of the FCL-partial
evaluators. Procedures that generate Scheme code are prefixed with �. They
produce parts of the generating extension. Procedures that have no prefix, such
as static?, are the same as in the partial evaluators. Procedures �onpestmt in
Fig. 10, and likewise �offpestmt in Fig. 11, have only four parameters. The
static values sv and the residual program code, which are known to the partial
evaluators, are unknown to the compiler generators.

If the expression e in an assignment x := e is static, x is added to sn by updsn,
whereas �updsv generates Scheme code that can update sv with the value of e
when the generating extension is run. Otherwise, x is removed from sn by delsn

and a call to mkASG is placed into the generating extension. Calls to simple non-
recursive procedures are unfolded by Unmix’s postprocessor, e.g., a call such as
(mkASG 'c '(car s)) is replaced by the FCL-code that it generates: '(c := (car s)).

If e in a conditional jump if e l1 l2 is static, a Scheme-conditional (if . . .)
is emitted that can generate FCL code for either target block when the generat-
ing extension is run and e can be computed. Procedure �evalop places into the

148 R. Glück

Scheme-conditional a test expression that implements e in Scheme. This there-
fore translates simple FCL-expressions into Scheme-expressions. The strategy for
staging a conditional jump is inherited from the FCL-partial evaluator.

The staging of the partial evaluators into compiler generators by Unmix’s com-
piler generator follows the principles outlined for the staging of annotated Scheme
programs into generating extensions [17, Ch. 5.8]. This explains the structural sim-
ilarities between the partial evaluators and the compiler generators.

The compiler generators inherit the specialization method for Scheme pro-
cedures from Unmix. This method is well known and documented [17, Ch. 5.4].
Before emitting a new Scheme procedure, the main loop of the compiler generator
scans the procedure body and replaces every (CALL (�fname v1 . . . vm) . es) by a
Scheme procedure call (fnamev1 ...vm . es), and invokes the code generator �fname

with the values v1, . . . , vm to generate the specialized procedure fnamev1 ...vm .

6 Related Work

Compiler generators have been generated by self-application of specializers, which
is the approach followedbyMix [18]andUnmix [21], orwrittenbyhand,which is the
more recent cogen-approach. A compiler for MP has also been produced by special-
izing a small online partial evaluator with respect to an interpreter by a stronger
online specializer [22]. Amix is a self-applicable offline partial evaluator that has
different subject and target languages [16]. None of these, however, considered the
generationofone compiler generator byanother.Ahigher-order pending list,which
was used by a breadth-first inverse interpreter to allow good specialization by Sim-
ilix [12, p. 15], is an alternative to the lifting of the pending list into a recursion on
the meta-level, as illustrated here. This method could not be used because Unmix
is a partial evaluator for a first-order subset of Scheme.

7 Conclusions and Future Work

At first, the step beyond the third Futamura projection does not appear to
make sense, but the situation is different when specializers are used in a mixed
fashion. We have shown that existing partial evaluation methods can be used
for several novel applications, such as the staging of online partial evaluators
and the generation of cross-compilers. From the compiler generators that we
obtained, it appears that writing online compiler generators by hand is also
feasible (cf. [23]), possibly taking advantage of an efficient representation for the
generating extensions [11], including the compiler generators themselves.

An intriguing question is whether the step can be repeated by writing in FCL
a new partial evaluator, thereby continuing the bootstrapping that we started
by writing an FCL-partial evaluator in Scheme. Based on our previous investiga-
tion [9], we expect that Jones optimality plays an essential role in the quality of
those compiler generators, especially since Unmix is Jones-optimal [8], whereas
FCL-partial evaluation is not [14].

An Experiment with the Fourth Futamura Projection 149

Acknowledgements. It is a great pleasure to thank Akihiko Takano for hosting
the author at the National Institute of Informatics (NII), Tokyo, and for provid-
ing excellent working conditions, and Neil Jones, Sergei Romanenko, and Lars
Hartmann for insightful comments on an earlier version of this paper.

References

1. Bulyonkov, M.A.: Polyvariant mixed computation for analyzer programs. Acta
Informatica 21(5), 473–484 (1984)

2. Christensen, N.H., Glück, R.: Offline partial evaluation can be as accurate as online
partial evaluation. ACM TOPLAS 26(1), 191–220 (2004)

3. Debois, S.: Imperative-program transformation by instrumented-interpreter spe-
cialization. Higher-Order and Symbolic Computation 21(1-2), 37–58 (2008)

4. Ershov, A.P.: On the partial computation principle. Information Processing Let-
ters 6(2), 38–41 (1977)

5. Futamura, Y.: Partial computation of programs. In: Goto, E., Nakajima, R.,
Yonezawa, A., Nakata, I., Furukawa, K. (eds.) RIMS 1982. LNCS, vol. 147, pp.
1–35. Springer, Heidelberg (1983)

6. Futamura, Y.: Partial evaluation of computation process, revisited. Higher-Order
and Symbolic Computation 12(4), 377–380 (1999)

7. Futamura, Y., Konishi, Z., Glück, R.: WSDFU: Program transformation system
based on generalized partial computation. In: Mogensen, T.Æ., Schmidt, D.A.,
Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 358–
378. Springer, Heidelberg (2002)

8. Gade, J., Glück, R.: On Jones-optimal specializers: a case study using Unmix.
In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 406–422. Springer,
Heidelberg (2006)

9. Glück, R.: An investigation of Jones optimality and BTI-universal specializers.
Higher-Order and Symbolic Computation 21(3), 283–309 (2008)

10. Glück, R.: Is there a fourth Futamura projection? Partial Evaluation and Program
Manipulation. Proceedings, pp. 51–60. ACM Press, New York (2009)

11. Glück, R., Jørgensen, J.: Efficient multi-level generating extensions for program
specialization. In: Hermenegildo, M., Swierstra, S.D. (eds.) PLILP 1995. LNCS,
vol. 982, pp. 259–278. Springer, Heidelberg (1995)

12. Glück, R., Kawada, Y., Hashimoto, T.: Transforming interpreters into inverse inter-
preters by partial evaluation. In: Proceedings of Partial Evaluation and Semantics-
Based Program Manipulation, pp. 10–19. ACM Press, New York (2003)

13. Glück, R., Klimov, A.V.: Occam’s razor in metacomputation: the notion of a perfect
process tree. In: Cousot, P., Falaschi, M., Filé, G., Rauzy, A. (eds.) WSA 1993.
LNCS, vol. 724, pp. 112–123. Springer, Heidelberg (1993)

14. Gomard, C.K., Jones, N.D.: Compiler generation by partial evaluation: a case
study. Structured Programming 12, 123–144 (1991)

15. Hatcliff, J.: An introduction to online and offline partial evaluation using a simple
flowchart language. In: Hatcliff, J., Mogensen, T. Æ., Thiemann, P. (eds.) DIKU
1998. LNCS, vol. 1706, pp. 20–82. Springer, Heidelberg (1999)

16. Holst, C.K.: Language triplets: the Amix approach. In: Bjørner, D., et al. (eds.)
Partial Evaluation and Mixed Computation, pp. 167–185. North-Holland, Amster-
dam (1988)

150 R. Glück

17. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

18. Jones, N.D., Sestoft, P., Søndergaard, H.: Mix: a self-applicable partial evaluator
for experiments in compiler generation. Lisp and Symbolic Computation 2(1), 9–50
(1989)

19. Klimov, A.V., Romanenko, S.A.: Metavychislitel’ dlja jazyka Refal. Osnovnye pon-
jatija i primery (A metaevaluator for the language Refal. Basic concepts and exam-
ples). Preprint 71, Keldysh Institute of Applied Mathematics, Academy of Sciences
of the USSR, Moscow (1987) (in Russian)

20. Romanenko, S.A.: Arity raiser and its use in program specialization. In: Jones,
N.D. (ed.) ESOP 1990. LNCS, vol. 432, pp. 341–360. Springer, Heidelberg (1990)

21. Romanenko, S.A.: The specializer Unmix (1990), Program and documentation,
ftp://ftp.diku.dk/pub/diku/dists/jones-book/Romanenko/

22. Ruf, E., Weise, D.: On the specialization of online program specializers. Journal of
Functional Programming 3(3), 251–281 (1993)

23. Sumii, E., Kobayashi, N.: Online-and-offline partial evaluation: a mixed approach.
In: Proceedings of Partial Evaluation and Semantics-Based Program Manipulation,
pp. 12–21. ACM Press, New York (2000)

24. Turchin, V.F.: The concept of a supercompiler. ACM TOPLAS 8(3), 292–325
(1986)

ftp://ftp.diku.dk/pub/diku/dists/jones-book/Romanenko/

Extracting the Essence of Distillation

G.W. Hamilton

School of Computing
Dublin City University

Ireland
hamilton@computing.dcu.ie

Abstract. In this paper, we give a re-formulation of our previously
defined distillation algorithm, which can automatically transform higher-
order functional programs into equivalent tail-recursive programs. Our
re-formulation simplifies the presentation of the transformation and hope-
fully makes it easier to understand. Using distillation, it is possible to
produce superlinear improvement in the run-time of programs. This repre-
sents a significant advance over deforestation, partial evaluation and pos-
itive supercompilation, which can only produce a linear improvement.

1 Introduction

It is well known that programs which are written using lazy functional program-
ming languages often tend to make use of intermediate data structures, and are
therefore inefficient. A number of program transformation techniques have been
proposed which can eliminate some of these intermediate data structures; for
example partial evaluation [1], deforestation [2] and supercompilation [3]. Posi-
tive supercompilation [4] is a variant of Turchin’s supercompilation which was
introduced in an attempt to study and explain the essentials of Turchin’s su-
percompiler. Although positive supercompilation is strictly more powerful than
both partial evaluation and deforestation, Sørensen has shown that positive su-
percompilation (and hence also partial evaluation and deforestation) can only
produce a linear speedup in programs [5]. A more powerful transformation algo-
rithm should be able to produce a superlinear speedup in programs.

Example 1. Consider the function call nrev xs shown in Fig. 1. This reverses
the list xs, but the recursive function call (nrev xs′) is an intermediate data
structure, so in terms of time and space usage, it is quadratic with respect to
the length of the list xs. A more efficient function which is linear with respect
to the length of the list xs is the function arev shown in Fig. 1. A number of
algebraic transformations have been proposed which can perform this transfor-
mation (e.g. [6]) by appealing to a specific law stating the associativity of the
app function. However, none of the generic program transformation techniques
mentioned above are capable of performing this transformation.

Previously, we defined a transformation algorithm called distillation [7] which
will allow transformations such as the above to be performed. In our previous

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 151–164, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

152 G.W. Hamilton

nrev xs
where
nrev = λxs .case xs of

[] ⇒ []
| x ′ : xs ′ ⇒ app (nrev xs ′) [x ′]

app = λxs .λys .case xs of
[] ⇒ ys

| x ′ : xs ′ ⇒ x ′ : (app xs ′ ys)
arev xs
where
arev = λxs .arev ′ xs []
arev ′ = λxs .λys .case xs of

[] ⇒ ys
| x ′ : xs ′ ⇒ arev ′ xs ′ (x ′ : ys)

Fig. 1. Alternative Definitions of List Reversal

work, the definition of distillation was dependent upon that of positive supercom-
pilation. In this paper, we give a definition of distillation which is not dependent
upon positive supercompilation, thus simplifying the algorithm and hopefully
making it easier to understand.

The distillation algorithm was largely influenced by positive supercompila-
tion, but also improves upon it. Both algorithms involve driving to produce a
process tree representing all the possible states in the symbolic execution of a
program, and folding to extract a (hopefully more efficient) program from this
process tree. Generalization may also be required to ensure the termination of
the algorithm. The extra power of the distillation algorithm over positive super-
compilation is obtained through the use of a more powerful matching mechanism
when performing folding and generalization. In positive supercompilation, fold-
ing and generalization are performed on flat terms; terms are considered to match
only if they use the same functions. In distillation, folding and generalization are
performed on process trees, so terms are considered to match only if they have
the same recursive structure.

The remainder of this paper is structured as follows. In Section 2 we define
the higher-order functional language on which the described transformations
are performed. In Section 3 we define the driving rules for this language which
perform symbolic execution to produce a process tree. In Section 4 we define
generalization on terms in this language and also on process trees. In Section 5
we show how folding can be performed on process trees to extract corresponding
programs. In Section 6 we give some examples of the application of distillation
and Section 7 concludes.

2 Language

In this section, we describe the higher-order functional language which will be
used throughout this paper. The syntax of this language is given in Fig. 2.

Extracting the Essence of Distillation 153

prog ::= e0 where f1 = e1 . . . fk = ek Program

e ::= v Variable
| c e1 . . . ek Constructor
| f Function Call
| λv .e λ-Abstraction
| e0 e1 Application
| case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek Case Expression

p ::= c v1 . . . vk Pattern

Fig. 2. Language Syntax

Programs in the language consist of an expression to evaluate and a set of
function definitions. The intended operational semantics of the language is nor-
mal order reduction. It is assumed that erroneous terms such as (c e1 . . . ek) e
and case (λv.e) of p1 ⇒ e1 | · · · | pk ⇒ ek cannot occur. The variables in the
patterns of case expressions and the arguments of λ-abstractions are bound; all
other variables are free. We use fv(e) and bv(e) to denote the free and bound
variables respectively of expression e. We write e ≡ e′ if e and e′ differ only in
the names of bound variables. We require that each function has exactly one def-
inition and that all variables within a definition are bound. We define a function
unfold which replaces a function name with its definition.

Each constructor has a fixed arity; for example Nil has arity 0 and Cons
has arity 2. We allow the usual notation [] for Nil , x : xs for Cons x xs and
[e1, . . . , ek] for Cons e1 . . . (Cons ek Nil).

Within the expression case e0 of p1 ⇒ e1 | · · · | pk ⇒ ek , e0 is called the
selector, and e1 . . . ek are called the branches. The patterns in case expressions
may not be nested. No variables may appear more than once within a pattern.
We assume that the patterns in a case expression are non-overlapping and ex-
haustive.

We use the notation {v1 := e1, . . . , vn := en} to denote a substitution, which
represents the simultaneous substitution of the expressions e1, . . . , en for the
corresponding variables v1, . . . , vn, respectively. We say that an expression e is
an instance of expression e′ if there is a substitution θ such that e ≡ e′ θ. We
also use the notation [e′1/e1, . . . , e

′
n/en] to denote a replacement, which represents

the simultaneous replacement of the expressions e1, . . . , en by the corresponding
expressions e′1, . . . , e′n, respectively.

3 Driving

In this section, we define driving rules similar to those for positive supercompi-
lation to reduce a term (possibly containing free variables) using normal-order
reduction and produce a process tree. We define the rules for driving by identi-
fying the next reducible expression (redex) within some context. An expression

154 G.W. Hamilton

which cannot be broken down into a redex and a context is called an observable.
These are defined as follows.

Definition 1 (Redexes, Contexts and Observables). Redexes, contexts
and observables are defined as shown in Fig. 3, where red ranges over redexes,
con ranges over contexts and obs ranges over observables (the expression con〈e〉
denotes the result of replacing the ‘hole’ 〈〉 in con by e).

Definition 2 (Normal Order Reduction). The core set of transformation
rules for distillation are the normal order reduction rules shown in Figure 4
which defines the map N from expressions to ordered sequences of expressions
[e1, . . . , en]. The rules simply perform normal order reduction, with information
propagation within case expressions giving the assumed outcome of the test.

red ::= f
| (λv .e0) e1

| case (v e1. . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k

| case (c e1. . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k

| case (case e0 of p1 ⇒ e1 | · · · | pn ⇒ en) of p′
1 ⇒ e ′

1 | · · · | p′
k ⇒ e ′

k

con ::= 〈〉
| con e
| case 〈〉 of p1 ⇒ e1 | · · · | pk ⇒ ek

obs ::= v e1 . . . en

| c e1 . . . en

| λv .e

Fig. 3. Syntax of Redexes, Contexts and Observables

N [[v e1 . . . en]] = [e1, . . . , en]
N [[c e1 . . . en]] = [e1, . . . , en]
N [[λv .e]] = [e]
N [[con〈f 〉]] = [con〈unfold f 〉]
N [[con〈(λv .e0) e1 〉]] = [con〈e0{v := e1}〉]
N [[con〈case (v e1 . . . en) of p1 ⇒ e ′

1 | · · · | pk ⇒ e ′
k 〉]]

= [v e1 . . . en , con〈e ′
1 [p1 /v e1 . . . en]〉, . . . , con〈e ′

k [pk/v e1 . . . en]〉]
N [[con〈case (c e1 . . . en) of p1 ⇒ e ′

1 | · · · | pk ⇒ e ′
k 〉]]

= [con〈ei{e1 := v1 , . . . , en := vn}〉] where pi = c v1 . . . vn

N [[con〈case (case e0 of p1 ⇒ e1 | · · · | pn ⇒ en) of p′
1 ⇒ e ′

1 | · · · | p′
k ⇒ e ′

k 〉]]
= [case e0 of

p1 ⇒ con〈case e1 of p′
1 ⇒ e ′

1 | · · · | p′
k ⇒ e ′

k〉
...
pn ⇒ con〈case en of p′

1 ⇒ e ′
1 | · · · | p′

k ⇒ e ′
k 〉]

Fig. 4. Normal Order Reduction Rules

Extracting the Essence of Distillation 155

Definition 3 (Process Trees). A process tree is a directed tree where each
node is labelled with an expression, and all edges leaving a node are ordered.
One node is chosen as the root, which is labelled with the original expression to
be transformed. We use the notation e → t1, . . . , tn to represent the tree with
root labelled e and n children which are the subtrees t1, . . . , tn respectively.

Definition 4 (Driving). Driving in distillation is defined by the following map
D from expressions to process trees:

D[[e]] = e → D[[e1]], . . . ,D[[en]] where N [[e]] = [e1, . . . , en]

As process trees are potentially infinite data structures, they should be lazily
evaluated.

Example 2. A portion of the process tree which would be generated as a result
of driving the expression nrev xs as defined in Fig. 1 is shown in Fig. 51.

4 Generalization

In distillation, as for positive supercompilation, generalization is performed when
an expression is encountered which is an embedding of a previously encountered
expression. The form of embedding which we use to guide generalization is known
as homeomorphic embedding. The homeomorphic embedding relation was derived
from results by Higman [8] and Kruskal [9] and was defined within term rewriting
systems [10] for detecting the possible divergence of the term rewriting process.
Variants of this relation have been used to ensure termination within positive
supercompilation [11], partial evaluation [12] and partial deduction [13,14]. It
can be shown that the homeomorphic embedding relation � is a well-quasi-
order, which is defined as follows.

Definition 5 (Well-Quasi Order). A well-quasi order on a set S is a reflexive,
transitive relation ≤S such that for any infinite sequence s1, s2, . . . of elements
from S there are numbers i, j with i < j and si ≤S sj .

This ensures that in any infinite sequence of expressions e0, e1, . . . there definitely
exists some i < j where ei � ej , so an embedding must eventually be encountered
and transformation will not continue indefinitely.

Definition 6 (Recursive Component). A variable v is called a recursive
component of another variable v′ (denoted by v � v′) if v is a sub-component of
v′ and is of the same type. We also define v � v′ if v � v′ or v = v′.

Definition 7 (Homeomorphic Embedding Relation). The rules for the
homeomorphic embedding relation are defined as follows:

1 This process tree, and later ones presented in this paper, have been simplified for
ease of presentation by removing some intermediate nodes.

156 G.W. Hamilton

nrev xs

case xs of . . .

xs app (nrev xs ′) [x ′]

xs = x′ : xs′

[]

xs = []

* case (nrev xs′) of . . .

case xs′ of . . .

xs ′ case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

[x ′]

xs′ = []

† case (nrev xs′′) of . . .

case xs′′ of . . .

xs ′′ case (app (nrev xs′′′) [x′′′]) of . . .

xs′′ = x′′′ : xs′′′

[x ′′, x ′]

xs′′ = []

case (nrev xs′′′) of . . .

Fig. 5. Portion of Process Tree Resulting From Driving nrev xs

Extracting the Essence of Distillation 157

e1 � e2
e1 � e2

e1 � e2
e1 � e2

fv � fv′
fv � fv′

bv = bv′

bv � bv′

f = f ′

f � f ′
c = c′ ∀i.ei � e′i

(c e1 . . . en) � (c′ e′1 . . . e′n)

e � (e′{v′ := v})
λv.e � λv′.e′

e0 � e
′
0 e1 � e′1

(e0 e1) � (e′0 e
′
1)

e � e′ ∀i.pi ≡ (p′i θi) ∧ ei � (e′i θi)
(case e of p1 : e1| . . . |pn : en) � (case e′ of p′1 : e′1| . . . |p′n : e′n)

∃i.e � ei
e � (c e1 . . . en)

e � e′

e � λv.e′

∃i.e � ei
e � (e0 e1)

∃i.e � ei
e � (case e0 of p1 : e1| . . . |pn : en)

An expression is homeomorphically embedded within another if either diving
(denoted by) or coupling (denoted by �) can be performed. Diving occurs
when an expression is embedded in a sub-expression of another expression, and
coupling occurs when two expressions have the same top-level functor and all
the corresponding sub-expressions of the two expressions are embedded. Free
variables are considered to be embedded if they are related by the � relation,
and the corresponding bound variables within expressions must also match up.

Example 3. Some examples of these embedding relations are as follows:

1. f2 (f1 x) � f3(f2 (f1 y)) 2. f1 (f2 x) � f1 (f2 (f3 y))
3. f2 (f1 x) � f3(f2 (f1 y)) 4. f1 (f2 x) � f1 (f2 (f3 y))
5. f2 (f1 x) �/ f3(f2 (f1 y)) 6. f1 (f2 x) � f1 (f2 (f3 y))
7. λx.x � λy.y 8. λx.x � λy.x

Definition 8 (Generalization of Expressions). The generalization of two
expressions e and e′ (denoted by e�e e

′) is a triple (eg, θ, θ′) where θ and θ′ are
substitutions such that egθ ≡ e and egθ′ ≡ e′, as defined in term algebra [10]2.
This generalization is defined as follows:

2 Note that, in a higher-order setting, this is no longer a most specific generaliza-
tion, as the most specific generalization of the terms f (h x) and f (g (h x))
would be (f (v (h x)), [(λx.x)/v], [(λx.g x)/v]), whereas f (h x) �e f (g (h x))
= (f v, [(h x)/v], [(g (h x))/v]).

158 G.W. Hamilton

e �e e
′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(φ(eg1, . . . , e
g
n),
⋃n

i=1 θi,
⋃n

i=1 θ
′
i), if e � e′

where e = φ(e1, . . . , en)
e′ = φ(e′1, . . . , e

′
n)

(egi , θi, θ
′
i) = ei �e e

′
i

(v v1 . . . vk, {v := λv1 . . . vk.e}, {v := λv1 . . . vk.e′}), otherwise
where {v1 . . . vk} = bv(e) ∪ bv(e′)

Within these rules, if both expressions have the same functor at the outermost
level, this is made the outermost functor of the resulting generalized expres-
sion, and the corresponding sub-expressions within the functor applications are
then generalized. Otherwise, both expressions are replaced by the same variable
application. The arguments of this application are the bound variables of the
extracted expressions; this ensures that these bound variables are not extracted
outside their binders. The introduced variable application is a higher-order pat-
tern [15]; any term which contains the same bound variables as one of these
patterns will therefore be an instance of it, as described in [16].

Definition 9 (Generalization of Process Trees). Generalization is extended
to process trees using the �t operator which is defined as follows:

t �t t
′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(eg
0 → tg1 , . . . , t

g
n ,
⋃n

i=0 θi,
⋃n

i=0 θ
′
i), if e0 � e′0

where t = e0 → t1 , . . . , tn
t′ = e ′

0 → t ′1 , . . . , t
′
n

(eg0, θ0, θ
′
0) = e0 �e e

′
0

(tgi , θi, θ
′
i) = ti �t t

′
i

(v v1 . . . vk, {v := λv1 . . . vk.e0}, {v := λv1 . . . vk.e′0}), otherwise
where {v1 . . . vk} = bv(e0) ∪ bv(e′0)

The following rewrite rule is exhaustively applied to the triple resulting from this
generalization to minimize the substitutions by identifying common substitutions
which were previously given different names:⎛⎝ e,

{v1 := e′, v2 := e′} ∪ θ,
{v1 := e′′, v2 := e′′} ∪ θ′

⎞⎠⇒
⎛⎝ e{v1 := v2},
{v2 := e′} ∪ θ,
{v2 := e′′} ∪ θ′

⎞⎠

5 Folding

In this section, we describe how folding is performed in distillation. This folding
is performed on process trees, rather than the flat terms used in positive su-
percompilation. As process trees are potentially infinite data structures, we use
co-induction to define a finite method for determining whether one process tree
is an instance of another.

Definition 10 (Process Tree Instance). The following co-inductive rules are
used to determine whether one process tree is an instance of another:

Extracting the Essence of Distillation 159

Γ, con〈f〉 ≡ con′〈f〉 θ � t ≡ t′ θ
Γ � (con〈f〉 → t) ≡ (con′〈f〉 → t′) θ

IND

Γ, con〈f〉 ≡ con′〈f〉 θ � (con〈f〉 θ → t) ≡ (con′〈f〉 θ → t′) θ HYP

Γ � e ≡ e′ θ, ti ≡ t′i θ
Γ � (e→ t1, . . . , tn) ≡ (e′ → t′1, . . . , t

′
n) θ

NON-IND

The environment Γ here relates previously encountered corresponding expres-
sions which have a function as their redex. To match the recursive structure of
process trees, the corresponding previously encountered expressions are initially
assumed to match if one is an instance of the other in the rule IND. In rule HYP,
if corresponding expressions are subsequently encountered which are an instance
of previously encountered ones, then we have a recursive match.

Definition 11 (Embedding Process Trees). We define the embedding pro-

cess trees of an expression e within a process tree t (denoted by e ∅=⇒ t) to be the
finite set of subtrees of t where the root expression is coupled with e. This can
be defined more formally as follows:

e
σ=⇒ (e0 → t1 , . . . , tn) =

⎧⎪⎨⎪⎩
∅, if ∃e′0 ∈ σ.e′0 � e0
{e0 → t1 , . . . , tn}, if e � e0⋃n

i=1 e
σ′
=⇒ ti, otherwise, where σ′ = σ ∪ {e0}

The parameter σ contains the set of expressions previously encountered within
the nodes of the process tree, and will be empty initially. If the root expression
of the current subtree is coupled with an expression in σ, then nothing further
is added to the result set. If the root expression of the current subtree is coupled
with the given expression, then the subtree is added to the result set and nothing
further is added. Otherwise, the subtrees of the current node are searched for
embedding process trees, and the expression in the current node is added to σ.

Definition 12 (Folding). Folding in distillation is defined as the map F from
process trees to expressions, as defined in Fig. 6.

Within these rules, the parameter ρ contains a set of newly defined function
calls and the previously encountered process trees they replaced. The rules de-
scend through the nodes of the process tree until an expression is encountered
in which the redex is a function. If the process tree rooted at this expression is
an instance of a previously encountered process tree in ρ, then it is replaced by
a corresponding call of the associated function in ρ. If there are no embeddings
of the root expression of the current process tree, then this root node is ignored
and its subtree is further folded. If there are embeddings of the root expression
and at least one of them is not an instance, then the process tree is generalized
and further folded; the sub-terms extracted as a result of generalization are then
further distilled and substituted back in. If all of the embeddings of the root
expression are instances, then a call to a newly defined function is created, and
this function call is associated with the current process tree in ρ.

160 G.W. Hamilton

F [[(v e1 . . . en) → t1 , . . . , tn]] ρ = v (F [[t1]] ρ) . . . (F [[tn]] ρ)

F [[(c e1 . . . en) → t1 , . . . , tn]] ρ = c (F [[t1]] ρ) . . . (F [[tn]] ρ)

F [[(λv .e) → t]] ρ = λv .(F [[t]] ρ)

F [[(con〈(λv .e0) e1 〉) → t]] ρ = F [[t]] ρ

F [[(con〈case (c e1 . . . en) of p1 ⇒ e ′
1 | · · · | pk ⇒ e ′

k 〉) → t]] ρ = F [[t]] ρ

F [[(con〈case (v e1 . . . en) of p1 ⇒ e1 | · · · | pn ⇒ en〉) → t0 , . . . , tn]] ρ
= case (F [[t0]] ρ) of p1 ⇒ (F [[t1]] ρ) | · · · | pn ⇒ (F [[tn]] ρ)

F [[con〈case (case e0 of p1⇒e1 | · · · | pn⇒en) of p′
1⇒e ′

1 | · · · | p′
k⇒e ′

k〉 → t]] ρ=F [[t]] ρ

F [[con〈f 〉 → t]] ρ = if ∃(f ′ v1 . . . vn = t′) ∈ ρ.(con〈f 〉 → t) ≡ t′ θ
then (f ′ v1 . . . vn) θ

else if (con〈f〉 ∅=⇒ t) = ∅
then F [[t]] ρ

else if ∃ t′ ∈ (con〈f〉 ∅=⇒ t).�θ.t′ ≡ (con〈f 〉 → t) θ
then (F [[tg]] ρ) θ′′

where
(con〈f 〉 → t) �t t′ = (tg, θ, θ′)
θ = {vi := ei}
θ′′ = {vi := F [[D[[ei]]]] ρ}

else f ′ v1 . . . vn

where
f ′ = λv1 . . . vn.F [[t]] ρ′

ρ′ = ρ ∪ {f ′ v1 . . . vn = con〈f 〉 → t}
{v1 . . . vn} = fv(con〈f〉 → t)

Fig. 6. Folding Rules for Distillation

6 Examples

In this section, we give some examples of the application of the distillation
algorithm.

Example 4. The result of applying the driving rules to the expression nrev xs
defined in Fig. 1 is shown in Fig. 5. When the folding rules are applied to this
output, it is found that the subtree with root labelled * is coupled with the
subtree with root labelled †. Generalization is therefore performed to obtain the
process tree given in Fig. 7, where the extracted variable v has the value Nil.
The subtree with root labelled † is now an instance of the subtree with root
labelled *. Folding is therefore performed to obtain the program shown in Fig.
8. This program has a run-time which is linear with respect to the length of the
input list, while the original program is quadratic.

Extracting the Essence of Distillation 161

nrev xs

case xs of . . .

xs app (nrev xs ′) [x ′]

xs = x′ : xs′

[]

xs = []

* case (nrev xs′) of . . .

case xs′ of . . .

xs ′ case (app (nrev xs′′) [x′′]) of . . .

xs′ = x′′ : xs′′

x ′ : v

xs′ = []

† case (nrev xs′′) of . . .

case xs′′ of . . .

xs ′′ case (app (nrev xs′′′) [x′′′]) of . . .

xs′′ = x′′′ : xs′′′

x ′′ : x ′ : v

xs′′ = []

case (nrev xs′′′) of . . .

Fig. 7. Result of Generalizing nrev xs

Example 5. Consider the expression app (arev′ xs ys) zs where the functions
app and arev′ are as defined in Fig. 1. The result of applying the driving rules
to this expression is shown in Fig. 9. When the folding rules are applied to
this output, it is found that the subtree with root labelled * is coupled with
the subtree with root labelled †. Generalization is therefore performed to obtain
the process tree given in Fig. 10, where the extracted variable v has the value

162 G.W. Hamilton

case xs of
[] ⇒ []

| x ′ : xs ′ ⇒ f x ′ xs ′ []
where
f = λx ′.λxs ′.λv .case xs ′ of

[] ⇒ x ′ : v
| x ′′ : xs ′′ ⇒ f x ′′ xs ′′ (x ′ : v)

Fig. 8. Result of Distilling nrev xs

app (arev ′ xs ys) zs

* case (arev′ xs ys) of . . .

case xs of . . .

xs † case (arev′ xs′ (x′ : ys)) of . . .

xs = x′ : xs′

app ys zs

xs = []

case xs′ of . . .

xs ′ case (arev′ xs′′ (x′′ : x′ : ys)) of . . .

xs′ = x′′ : xs′′

x ′ : app ys zs

xs′ = []

Fig. 9. Result of Driving app (arev′ xs ys) zs

app ys zs. We can now see that the subtree with root labelled † is an instance
of the subtree with root labelled *. Folding is therefore performed to obtain the
program shown in Fig. 11. The intermediate list (arev′ xs ys) within the initial
program has therefore been eliminated. This intermediate list is not removed
using positive supercompilation.

Extracting the Essence of Distillation 163

app (arev ′ xs ys) zs

* case (arev′ xs ys) of . . .

case xs of . . .

xs † case (arev′ xs′ (x′ : ys)) of . . .

xs = x′ : xs′

v

xs = []

case xs′ of . . .

xs ′ case (arev′ xs′′ (x′′ : x′ : ys)) of . . .

xs′ = x′′ : xs′′

x ′ : v

xs′ = []

Fig. 10. Result of Generalizing app (arev′ xs ys) zs

f xs (g ys zs)
where
f = λxs .λv .case xs of

[] ⇒ v
| x ′ : xs ′ ⇒ f xs ′ (x ′ : v)

g = λys.λzs .case ys of
[] ⇒ zs

| y ′ : ys ⇒ y ′ : (g ys ′ zs)

Fig. 11. Result of Distilling app (arev′ xs ys) zs

7 Conclusion

We have presented the distillation transformation algorithm for higher-order
functional languages. The algorithm is influenced by the positive supercompila-
tion transformation algorithm, but can produce a superlinear speedup in pro-
grams, which is not possible using positive supercompilation. Of course, this
extra power comes at a price. As generalization and folding are now performed
on graphs rather than flat terms, there may be an exponential increase in the
number of steps required to perform these operations in the worst case.

164 G.W. Hamilton

There are a number of possible directions for further work. Firstly, we intend
to incorporate the detection of non-termination into distillation and also into
our theorem prover Poit́ın. Secondly, it has already been shown how distillation
can be used to verify safety properties of programs [17]; work is now in progress
to show how it can also be used to verify liveness properties. Finally, it is in-
tended to incorporate the distillation algorithm into the Haskell programming
language; this will not only allow a lot of powerful optimizations to be performed
on programs in the language, but will also allow the automatic verification of
properties of these programs. This will also allow the distillation algorithm to
be made self-applicable as it has itself been implemented in Haskell.

References

1. Jones, N., Gomard, C., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall, Englewood Cliffs (1993)

2. Wadler,P.:Deforestation:TransformingPrograms toEliminateTrees. In:Ganzinger,
H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 344–358. Springer, Heidelberg (1988)

3. Turchin, V.: The Concept of a Supercompiler. ACM Transactions on Programming
Languages and Systems 8(3), 90–121 (1986)

4. Sørensen, M., Glück, R., Jones, N.: A Positive Supercompiler. Journal of Functional
Programming 6(6), 811–838 (1996)

5. Sørensen, M.: Turchin’s Supercompiler Revisited. Master’s thesis, Department of
Computer Science, University of Copenhagen, DIKU-rapport 94/17 (1994)

6. Wadler, P.: The Concatenate Vanishes. FP Electronic Mailing List (December 1987)
7. Hamilton, G.W.: Distillation: Extracting the Essence of Programs. In: Proceedings

of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pp. 61–70 (2007)

8. Higman, G.: Ordering by Divisibility in Abstract Algebras. Proceedings of the
London Mathemtical Society 2, 326–336 (1952)

9. Kruskal, J.: Well-Quasi Ordering, the Tree Theorem, and Vazsonyi’s Conjecture.
Transactions of the American Mathematical Society 95, 210–225 (1960)

10. Dershowitz, N., Jouannaud, J.P.: Rewrite Systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, pp. 243–320. Elsevier, MIT Press (1990)

11. Sørensen, M., Glück, R.: An Algorithm of Generalization in Positive Supercom-
pilation. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 335–351. Springer,
Heidelberg (1994)

12. Marlet, R.: Vers une Formalisation de l’Évaluation Partielle. PhD thesis, Université
de Nice - Sophia Antipolis (1994)

13. Bol, R.: Loop Checking in Partial Deduction. Journal of Logic Programming 16(1-
2), 25–46 (1993)

14. Leuschel, M.: On the Power of Homeomorphic Embedding for Online Termination.
In: Proceedings of the International Static Analysis Symposium, pp. 230–245 (1998)

15. Miller, D.: A Logic Programming Language with Lambda-Abstraction, Function
Variables and Simple Unification. In: Schroeder-Heister, P. (ed.) ELP 1989. LNCS,
vol. 475, pp. 253–281. Springer, Heidelberg (1991)

16. Nipkow, T.: Functional Unification of Higher-Order Patterns. In: Eighth Annual
Symposium on Logic in Computer Science, pp. 64–74 (1993)

17. Hamilton, G.W.: Distilling Programs for Verification. Electronic Notes in Theoret-
ical Computer Science 190(4), 17–32 (2007)

Establishing Linux Driver Verification Process

Alexey Khoroshilov, Vadim Mutilin, Alexander Petrenko,
and Vladimir Zakharov

Institute for System Programming, RAS
Moscow, Russia

Abstract. This paper presents an initiative program aimed at enhanc-
ing Linux device driver designing and maintenance by launching a long-
term process that will attend the OS kernel development. This process
includes two adjacent lines of activity: 1) creation and replenishment of a
repository of potential faults and errors that may occur in Linux device
drivers, and 2) development and improvement of special-purpose verifica-
tion tools for automatic detection of all errors specified in repository. We
describe in some details both lines of activity, present an architecture
of a perspective verification toolset, compare our project with similar
work, and finally discuss the current state of art in Linux device driver
verification.

1 Introduction

Linux is one of the most widespread OS that gains in popularity among both
home and business users. The leading research companies anticipate further open
source software growth. As it was noticed in [1], Linux, which initially was mostly
deployed for infrastructure-oriented workloads (such as print and file services,
DNS serving, DHCP and HTTP), extends its area of service to business-oriented
workloads including ERP, CRM, database applications, and line-of-business so-
lutions. The authors of [1] forecast “that spending on software related to Linux
server platforms is on a compounded annual grow rate of 35.7 percent from 2006
to 2011”.

The base of Linux is an open source kernel composed of a kernel core and
drivers. Drivers interact with the kernel core through the application program
interface (API) (Fig. 1). In order for drivers to call API functions correctly,
restrictions are imposed on the interactions of drivers with the kernel core. When
the interaction rules are not observed, this often leads to fatal effects, such as
system crashes, damages of objects under control, material loses. The empirical
data indicates [2,3] that bugs in kernel-space device drivers cause 85% system
crashes. This results from several factors. Firstly, drivers’ code constitutes the
major part (up to 70%) of the OS code. Secondly, device drivers are developed
mostly by suppliers of corresponding devices who are not experts in OS kernel.
Therefore, to provide the safety of OS one needs to check that every driver meets
all requirements that specify its interactions with the kernel core.

As a lot of open source projects which progressed to the “bazaar phase” [4],
Linux kernel development falls within the scope of the open source development

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 165–176, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

166 A. Khoroshilov et al.

Kernel

D
r
i
v
e
r
s

K
e
r
n
e
l
c
o
r
e

U
s
e
r
s
p
a
c
e
c
o
d
e

H
a
r
d
w
a
r
e

– kernel core API

Fig. 1. Interaction between driver and kernel core

model. This model differs from the proprietary one in many aspects. While
the development of a proprietary software is a centralized process, the Linux
development model is much more distributed. A great number of developers
submit proposals (patches). Linux Foundation [5] reports that from the 2.6.11
to the 2.6.24 kernel release (a total of 1140 days) there were, on average, 2.83
patches applied to the kernel tree per hour. It comes to an impressive 3,621 lines
added, 1,550 lines removed, and 1,425 lines changed every day for the past 2 1

2
years. Such rate of change exceeds that of any other public software project.
Permanent modifications are necessary for continuous kernel improvement, for
responding to modern trends, and for supporting new features of architectures
and devices. Needless to say that such a vast variety of modifications influences
the kernel core API used by drivers. Moreover, as explained in Greg Kroah-
Hartman’s article [6], kernel core API for drivers is supposed to be unstable
and may be changed suddenly. This brings up a difficult task of evolving drivers
along with the evolution of the kernel core. Therefore, driver verification process
should follow the kernel development process and correspond to all modifications
of the kernel.

One of the main advantages of an open source development model is that it
offers considerable scope for extensive and thorough code reviewing and testing:
availability of the code allows anyone to analyze it. If a software project has
a strong community of interested consumers this possibility leads to intensive
code review process. Since everyone looks at the code from his own point of view
based on his own experience, the effect of “many eyes” [7] allows to fix most if
not all of the bugs in a short time. Clearly, this approach does not guarantee the
detection of all bugs [8], since only a small number of core developers comprehend
in full details the most sophisticated interactions between the components of the
kernel and thus can detect difficult-to-find errors that display themselves under
rare concourses of circumstances.

Involving volunteer users as testers is especially important in view of modular-
ity and massive concurrent development of kernel. Although originally developed
for 32-bit x86-based PCs (386 or higher), today Linux also runs on at least eigh-
teen architectures. Therefore, developers of drivers can hardly test their software

Establishing Linux Driver Verification Process 167

in all configurations. Usually, they test their drivers only in some available con-
figurations and leave other configurations to discretion of volunteer testers.

Unfortunately, drivers outside the kernel do not attract so much attention
from OS users to benefit from the effect of “many eyes”. Developers of such
drivers are forced to study all specific features of kernel core API and keep
up with modifications. As a rule, these drivers are subject to a greater extent
to unexpected bugs and faults. Further testing (unit, system, integration) do
not solve the problem of fixing difficult-to-find bugs violating the contract with
kernel core API.

Can formal methods be of any use for effective device drivers development?
It is believed that the ideal solution is as follows:

1. to describe formally a kernel core API using contract specifications (e.g. in
terms of preconditions and postconditions), and

2. to check using automatic verification tools the compliance of driver source
code to restrictions on interactions with the kernel core.

But since the development of general-purpose automatic verification tools is not
feasible in the nearest future, we suggest more realistic light-weight approaches
to this problem. The first approach assumes to describe the API in a formal way
and uses a run-time partial verification instead of total formal verification. The
second approach is to use formal models (patterns) of the most frequently en-
countered errors and inefficiencies instead of formal specification of the interface
as a whole and to develop a program static analysis toolset that can be able
to discover such patterns in source code of device drivers. Since static analysis
algorithms are much simpler and faster than formal verification engines, this
gives a hope that the corresponding tools can be readily exploited by drivers
developers.

The principle drawback of the first approach is that a run-time verification
can detect only those violations that happen during the current execution of
a program. This means that some problems (e.g. a diversity of configurations)
remain unresolved. The main advantage of the approach is that it is free from
false positives and detects a violation immediately as it happens.

The advantages of the second approach are as follows:

– it can detect bugs in many configurations simultaneously;
– it can detect bugs without using hardware required to execute the code;
– it can detect even those bugs that occur when several rare events happen

simultaneously along a single run.

The principle drawback of the second approach is that it requires a separate
model for each kind of violations instead of using universal contract specification.
At the same time a development of a set of simple models requires far less efforts
than a development of a complex one. Therefore, considering the problem of
automatic detection of typical bugs occurred in the interactions of device drivers
with kernel core, we believe that the second approach is more promising.

We introduce an initiative program aimed at enhancing Linux device driver
designing and maintenance by launching a long-term process that will attend

168 A. Khoroshilov et al.

the OS kernel development. This process includes two adjacent lines of activity:
1) creation and replenishment of a repository of potential faults and errors that
may occur in Linux device drivers, and 2) development and improvement of
special-purpose verification tools for automatic detection of all errors specified
in repository. The rest of the paper is organized as follows. In the next section
we present the proposed process of Linux device driver verification. Section 3
describes a perspective verification toolset for automatic detection of issues in
drivers source code. In the last sections we discuss the related work, summarize
the results and overview future directions.

2 Linux Device Driver Verification Process

In this section we outline a procedure which provide the community of Linux
device driver developers with an easy-to-use means for automatic verification
of their software products. The general scheme of the verification process is
presented in Fig. 2.

The key components of the verification system are 1) a repository of templates
of potential errors and inefficiencies that may occur in Linux device drivers and
2) a verification toolset aimed at detecting such templates in driver code. Our
repository is publicly available at the web site of Linux Verification Center of
Institute for System Programming of RAS [9] and contains informal and formal
descriptions of rules for well written Linux device drivers. A verification toolset
is composed of a set of verification engines operating under the control of a
procedure which implements a verification strategy by assigning a specific engine
to every error template to be checked.

The Linux device driver verification process consists of the following subpro-
cesses:

– Kernel monitoring;
– Formalization;
– Potential issues detection;
– Result analysis.

The first subprocess is continuously observing the Linux kernel development with
the object of revealing and identifying the following events:

Informal
Description

Potential
issues

detection

Result
analysis

Journal
Files

Reports of the
Issues Found

LKML,
Kernel Change

Log

3. 4.Kernel
monitoring

1.

Verification
Toolset

Record
Informal

Description

Record

Formalized
Rule

Drivers
Source
Code

Repository of
Potential Problems

Formalization
2.

Fig. 2. Linux device driver verification process

Establishing Linux Driver Verification Process 169

– changes in kernel core API that may cause device drivers developed for the
former API to erroneous behavior;

– changes in kernel core API that may cause device drivers to inefficient be-
havior;

– bug fixes and improvement in the kernel/drivers that can be applicable for
other drivers as well.

The main activities of kernel monitoring subprocess are 1) analysis of Linux
Kernel Mailing List (LKML) and change logs of the kernel, 2) identification
of relevant messages, 3) extracting new API interaction rules for well written
drivers, and 4) recording into the repository the informal descriptions of these
rules and potential consequences of their violation. In case of successful evolve-
ment of the project we hope that the major part of activities on the analysis of
changes in kernel core API will be done by kernel developers. It will make the
process more efficient, because new verification rules and changes in the old ones
are rare in contrast to the rate changes in kernel code.

For example, when analyzing the LKLM message [10] which describes a fix in
drivers/firmware/dmi scan.c, we file the record ID 0060 depicted in Fig. 3. Note,
that the rule describes just a part of requirements to the interface functions which
are important for the rule, but not the complete requirements. For example, the
rule ID 0060 does not describe precondition of list add, which requires non null
arguments head and new.

ID 0060: An element of linked list should not be inserted in the linked list again

DESCRIPTION: A linked list is one of the most widespread data structures in the kernel. They are
based on the structure list head

struct list head

{
struct list head *next, *prev;

};
The basic operation to add a new element to the list is the list add() function:

static inline void list add(struct list head *new,

struct list head *prev,

struct list head *next)

{
next→prev = new;

new→next = next;

new→prev = prev;

prev→next = new;

}
static inline void list add(struct list head *new,

struct list head *head)

{
list add(new, head, head→next);

}
The new argument is a pointer to a structure to be added to a list. The head argument is a pointer to the

current head of the list.
Let us consider a situation when an element of a list is added to the list again. In this case the list add()

function modifies next and prev fields of the element and, thus, brakes the old links.
If the list before operation looks like: → a ↔ b ↔ c ↔ d ↔ e ← and we add the element c after the

element a, we will have the list: → a ↔ c ↔ b → c{↔ b} ← d ←, where {} means the new link of the
element c.
As a result an iteration of the list in the forward direction will lead to the infinite cycle.

LINKS: http://www.mail-archive.com/git-commits-head@vger.kernel.org/msg41536.html

EXAMPLE OF FIX: 2.6.25 → drivers/firmware/dmi scan.c

Fig. 3. Example of verification rule

170 A. Khoroshilov et al.

The records in the repository are used to track current status of the corre-
sponding problem and to collect all information of it in one place.

These records are analysed within the second subprocess. For each record an
expert decides if there exists an available verification tool which can check that all
computations of a driver comply with the corresponding rule of its interaction
with the kernel. If it is not possible to automatically check such a rule, some
feature requests to verification tools are prepared and the rule is marked as
“automatically unverifiable” in the repository.

If automatic checking is possible, the most suitable verification engine is iden-
tified. Then a formal description (specification) of the rule is prepared and placed
to the repository. Each verification engine has its own requirements to formal
representation of the rule to be verified. Thus, the specification of a rule depends
on the selected verification engine.

The third subprocess performs an automatic verification of Linux device
drivers against the current set of formalized rules. As the result the subprocess
outputs

– a list of potential problems in source code of drivers;
– a list of recommendations on the improvement of source code of drivers;
– information on compatibility of drivers with various versions of the Linux

kernel.

On the early stages of the development the main objective of potential issues
detection subprocess is to ensure the quality of verification tools. To achieve it
device drivers for the analysis are taken from kernel.org source code repositories
and from other public sources as well. Later the objective will be shifted to
detection of bugs in actual drivers. In this case the authors of individual drivers
and patches will apply the tools to their code independently.

In more details we discuss formalized rules and verification toolset in the next
section.

Within the fourth subprocess an expert analyses the results obtained at the
previous stages and decides whether an issue detected by a verification toolset
can really happens along some run of a driver, or it is a false positive. In the first
case the report on the errors detected is sent to the maintainers of the driver. In
the second case an expert works out the recommendations on the improvement
of verification engines and formalized rules to avoid false positives in future.

Ideally, the role of the fourth subprocess should be reduced to the minimal
activity and the work of an expert should be done by maintainer of the driver,
but this becomes possible only at some stage of maturity of the verification tools
and rule specifications which can be achieved after some time of real operation
of the process.

3 Toolset

A verification subprocess is based on a program verification toolset which in-
cludes a verification framework and a set of verification engines. An effectiveness

Establishing Linux Driver Verification Process 171

of the subprocess depends to a large measure on the ability of choosing an ap-
propriate verification engine for every formalized API interaction rule.

As an input the engine takes a driver source code and a formalized rule from
a repository; a rule to be checked is represented by an appropriate failure model,
kernel model, traceability descriptor, as well as verification type and list of ver-
ification engines.

Failure model should be properly adapted to the data format used in a selected
verification engine. Thus, for example, a BLAST-based engine described below
can only check that assert statements are not violated. Therefore, a failure model
of the rule ID 0060 have to be written in terms of assert statements (see Fig. 4).

The rule ID 0060 in natural language says that an element can be added to
the list if it was not added to the list before or was deleted from it. So we should
check that the element new does not equal to any element in the list, i.e. for
every elem in the list holds new �= elem. Due to lack of precision in analysis of
heap graphs and arrays in BLAST we can not simply check if a given element is
included in the implementation list list head, as well as we can not model it using
an array. So here, for expressing universal quantification over potentially infinite
set of dynamically allocated list of elements we use the universal quantification
trick. We store one non-deterministically chosen object which was added using
list add in the state variable elem. If elem is NULL then no object was chosen
in list add or the elem was deleted from the list by list del. Hence, verification
engine independently check assertion in list add for all single objects which can
be added to the list. This technique has been extensively used earlier in SLIC
[11] and [12].

To make driver source code independently executable we supply it with a
kernel model which is based on original kernel headers, except that simplified
model implementations of required functions are provided, and a testbed which
models requests to the driver is included. Physically kernel model consists of
several C headers and source files. Kernel models can be partially shared between
rules, but usually each rule is assigned an individual model. For instance, driver
initialization and shutdown procedures invocation is a common part for all kernel
models, and spinlocks state tracking is a part specific for proper lock usage rule.

State variable:
struct list head *elem = NULL;

Insert before call to
void list add(struct list head *new, struct list head *head)
Code:

assert(new!=elem);
if(*) elem = new; // * – nondeterministic choice

Insert before call to
void list del(struct list head *entry)
Code:

if(entry==elem) elem=NULL;

Fig. 4. Failure model of rule ID 0060

172 A. Khoroshilov et al.

Verification engine

Kernel core modelFauilure model Traceability
descriptor

Driver source

Verdict

Formalized Rule (Id, Type, Engine-list)

Fig. 5. Potential issues detection subprocess

Traceability descriptor is required to represent an output of a general-purpose
verification engine in rule-specific terms.

Verification of a rule is schematically shown in Fig. 5. Given a driver source
code and a formalized rule, we choose one of verification engines from the list of
engines. The engine takes as input a failure model, a kernel model, and a driver
source code, transforms these components into its intermediate representation in
which it solves the verification tasks. After getting a solution, the engine outputs
a verdict using a traceability descriptor for interpretation of the results.

We distinguish three types of rules: syntactic, safety, liveness. Syntactic rules
describe restrictions on usage of syntactic constructs, such as deprecated types,
fields and functions. Special cases of other rules are also considered as syntactic
if they can be checked using code templates. Safety rules are written in terms
of reachability requirements. Liveness rules concern the issues of termination of
program runs or that of some progress along code execution.

In most cases each rule can be analyzed with the help of numerous verification
engines of appropriate type. Therefore, a rule is usually supplied with some
specific information which helps to select the most adequate verification engine.

The simplest utilities like grep can be used for checking a part of syntactic rules.
For example, search for calls to deprecated functions can be implemented with grep
by supplying a corresponding regular expression in failure model. But for many
other syntactic rules advanced syntactic analyzers are required. An example of such
rule is one which do not recommend to use structure initializations in gcc style.

At present for checking safety rules we have two verification engines. The first
one is a dataflow analysis tool under development which is intended to handle
most gcc C language extensions that may occur in driver sources. Since this tool
is based on the static analysis iteration procedures, it operates much faster than
BLAST although this is achieved at the expense of low precision (an abundance
of false positives). The second one is a BLAST-based engine which we consider
her in more details.

BLAST [13] is an open source tool, which implements counter-example guided
abstraction refinement (CEGAR) [14] verification technique for programs written
in C programming language. As an input, BLAST takes a program written in C

Establishing Linux Driver Verification Process 173

and containing calls to assert function. This function has one Boolean parameter.
If there is an execution path where the assert function is called with false, the
input program is considered as incorrect, otherwise it is considered as correct.

Drivers are kernel modules containing declarations of initialization and exit
functions. Typically, an initialization function registers drivers event handler
functions in the kernel. Driver is a reactive program by nature, i.e. operating
system calls event handlers in unpredictable order. Since BLAST is aimed to
verify sequential programs we developed a special toolset which translates a
source code of a driver into a sequential program modeling reactive behavior of
the source driver using special nondeterministic operator supported by BLAST.
The toolset generates usual entry point main() containing calls to initialization,
exit functions and event handlers registered by the driver. The translated code
is combined with verification model and passed to BLAST for verification.

4 Related Work

To the best of our knowledge the only project which has a verification process is
SDV project [15,16] where the development of verification rules coexists with the
development of MS Windows kernel. Now they have formalized more than 160
rules. But as it was mentioned above, the development of proprietary software
differs from the development of an open source software. So, this process would
not be easily applicable to Linux kernel. Moreover, the only thing we know
about that process is that the authors of SDV were developing the rules in a
close contact with kernel developers.

The necessity of carrying out a verification process in the framework of kernel
development is discussed in [17], where a number recommendation on organizing
an open source software certification are suggested. In particular, the authors
of [17] claim that verification engines should meet the requirements imposed by
features of open source development, including huge amount of modifications,
distributed development, lack of specifications and impossibility of imposing any
style of programming.

There are many work on the development and improvement of verification
engines. Thus, SDV team [15,16] uses SLAM engine which is a verification tool
intended for checking safety properties of Windows device drivers. It is based
on predicate abstraction refinement [18] and is accompanied with specification
language SLIC [11] and rule descriptions. SLAM was successfully used to find
bugs in Windows drivers [15].

Counterexample guided abstraction refinement is also a principle utilized by
BLAST software model checker [13,14]. There are several applications of BLAST
for analyzing drivers and other source code in C [19,20,21]. But its practical
applicability has been criticized in [22]. The authors of [22] noticed that BLAST
needs to instrument driver before verification, and this has been done in our
BLAST-based verification engine.

CBMC [23] model checker was successfully used in [12], where they have
adapted the SDV approach to the verification of Linux device drivers. To this

174 A. Khoroshilov et al.

end they developed an extension of SLIC and a tool which transforms it into
C code that uses CBMC’s specification and modeling directives. As far as we
know they have collected seven rules that can be checked with the help of their
verification tool set.

DDVerify is predicate abstraction-based tool is intended for automated verifi-
cation of Linux device drivers [24] and provides an accurate model of the relevant
parts of the kernel [25].

Symbolic approximation can be used to verify large amounts of source code.
In [26] it was shown how symbolic approximation can be sharpened to reflect
details of C semantics.

Manual program abstraction can be used to facilitate testing [27]. Only rele-
vant parts of a program are inputed to model checker, and its output is trans-
formed into a test trace of the original program. This approach was successfully
applied for semi-automatic analysis of kernel sources.

In the practical sense of Linux driver verification it is important to note suc-
cessful application of Coverity static analysis tool [28], which searches for com-
mon errors and inefficiencies such as the existence of dead code, null pointer
dereference, use before test, buffer overrun, resource leak, unsafe use of returned
values, type and allocation size mismatch, uninitialized values read and use after
free. These rules were adapted for Linux kernel so that standard library functions
are replaced by kernel API functions. For example, resource leak is described for
different kernel resources like pci pool, usb urb etc. In the view of confidential
nature of the tool it remains unclear how much far it can be extended for new
verification rules.

5 Conclusions

We began to collect rules in the mid of 2007. Since that time we identified
API interaction rules for device drivers by analyzing educational resources like
books, articles, and by reading Linux kernel source code. At the end of 2007 we
gathered 39 rules, but further identification were hard. At the beginning of 2008
we switched to LKML, that increased the rate of identification. Till the middle
of 2008 we have collected 71 rules. Today we feel that LKML is inexhaustible
source of rules and there is a need to continuously monitor it.

Verification of Linux device drivers is an actual topic from both scientific
and industrial points of view. As we discussed in the Section 4 there are several
research groups trying to apply different verification techniques to Linux drivers.

We investigate applicability of our verification techniques, but the main goal
of the Linux device driver verification program presented in the paper is to build
a common framework for cooperation and collaboration of all researches and
developers interested in the topic. We believe that sharing common resources
such as the repository of potential problems in drivers, kernel core models, etc.
will help to achieve a synergetic effect and will be a step forward to an industrial-
ready solution.

Establishing Linux Driver Verification Process 175

Also we are designing our verification framework so that it could easily inte-
grate various verification engines. Thus, the framework can be used as a common
entry point for device driver developers, who would like to test existing verifica-
tion tools with their drivers.

References

1. Gillen, A., Stergiades, E., Waldman, B.: The role of Linux servers and commercial
workloads (2008),
http://www.linux-foundation.org/publications/IDC_Workloads.pdf

2. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.: An empirical study of operat-
ing systems errors. In: SOSP 2001: Proceedings of the eighteenth ACM symposium
on Operating systems principles, pp. 73–88. ACM, New York (2001)

3. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity
operating systems. In: SOSP 2003: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pp. 207–222. ACM, New York (2003)

4. Senyard, A., Michlmayr, M.: How to have a successful free software project. In:
11th Asia-Pacific Software Engineering Conference, pp. 84–91 (2004)

5. Kroah-Hartman, G., Corbet, J., McPherson, A.: Linux kernel development (2008),
http://www.linux-foundation.org/publications/

linuxkerneldevelopment.php

6. Kroah-Hartman, G.: The Linux kernel driver interface,
http://www.kernel.org/doc/Documentation/stable_api_nonsense.txt

7. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly, Sebastopol (2001)

8. Glass, R.L.: Facts and Fallacies of Software Engineering, 1st edn. Addison Wesley
Professional, Sebastopol (2003)

9. Web-site: Linux Verification Center, http://linuxtesting.ru
10. LKML: Message 41536,

http://www.mail-archive.com/git-commits-head@vger.kernel.org/

msg41536.html

11. Ball, T., Rajamani, S.K.: SLIC: A specification language for interface checking.
Technical report, Microsoft Research (2001)

12. Post, H., Küchlin, W.: Integrated static analysis for Linux device driver verification.
In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 518–537. Springer,
Heidelberg (2007)

13. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. SIGPLAN Not. 39(1), 232–244 (2004)

14. Henzinger, T.A., Jhala, R., Majumdar, R.: Lazy abstraction. In: Symposium on
Principles of Programming Languages, pp. 58–70. ACM Press, New York (2002)

15. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
SIGOPS Oper. Syst. Rev. 40(4), 73–85 (2006)

16. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
technology transfer of formal methods inside Microsoft. Technical report, Microsoft
Research (2004)

17. Breuer, P., Pickin, S.: Open source certification. FLOSS-FM (2008)
18. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-

straction of C programs. SIGPLAN Not. 36(5), 203–213 (2001)

http://www.linux-foundation.org/publications/IDC_Workloads.pdf
http://www.linux-foundation.org/publications/linuxkerneldevelopment.php
http://www.linux-foundation.org/publications/linuxkerneldevelopment.php
http://www.kernel.org/doc/Documentation/stable_api_nonsense.txt
http://linuxtesting.ru
http://www.mail-archive.com/git-commits-head@vger.kernel.org/msg41536.html
http://www.mail-archive.com/git-commits-head@vger.kernel.org/msg41536.html

176 A. Khoroshilov et al.

19. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:
Temporal-safety proofs for systems code. In: Brinksma, E., Larsen, K.G. (eds.)
CAV 2002. LNCS, vol. 2404, pp. 526–538. Springer, Heidelberg (2002)

20. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model
checker Blast: Applications to software engineering. Int. J. Softw. Tools Technol.
Transf. 9(5), 505–525 (2007)

21. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: Checking memory safety
with blast. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 2–18. Springer,
Heidelberg (2005)

22. Mühlberg, J.T., Lüttgen, G.: Blasting Linux code. In: Brim, L., Haverkort, B.R.,
Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346,
pp. 211–226. Springer, Heidelberg (2007)

23. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

24. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-
current Linux device drivers. In: ASE 2007: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, pp. 501–
504. ACM, New York (2007)

25. Witkowski, T.: Formal verification of Linux device drivers. Master’s thesis, Dresden
University of Technology (2007)

26. Breuer, P., Pickin, S.: Verification in the light and large: Large-scale verification for
fast-moving open source C projects. In: Software Engineering Workshop, Annual
IEEE/NASA Goddard, pp. 246–255 (2007)

27. Kim, M., Hong, S., Hong, C., Kim, T.: Model-based kernel tesiting for concurrency
bugs through counter example replay. In: Fifth Workshop on Model-Based Testing
(2009)

28. Coverity: Linux report (2004), http://scan.coverity.com

http://scan.coverity.com

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 177–184, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Method for Test Suite Reduction for Regression
Testing of Interactions between Software Modules

Dmitry Kichigin

dkichigin@gmail.com

Abstract. In order to reduce the cost of regression testing, researchers have
proposed the use of test-suite reduction techniques which aim to reduce the size
of a test suite with respect to some criteria. Emerging trends in software devel-
opment such as complexity of software being developed and increasing use of
commercial off-the-shelf components present new challenges for existing test
suite reduction techniques. The paper presents results of a new experimental
evaluation together with a brief description of our test suite reduction method
presented in earlier papers which is not affected by these challenges. The results
suggest that the method has a good potential for the use for test suites reduction
for software integration testing.

1 Introduction

Raising level of software modularity makes integration and regression integration
testing is a vital step in software development and maintenance process. At the same
time, high speed of software evolution, and, especially, a big number and high fre-
quency of its modifications, significantly increase the cost of regression integration
testing. Test suite reduction [14, 13, 6] is one of possible solutions to this problem.

Test suite reduction looks to reduce the number of test cases in a test suite while re-
taining a high percentage of the original suite’s fault detection effectiveness [14].
Such a reduction decreases the costs of a software execution on the tests as well as the
costs of a test suite maintenance [14], thereby reducing the overall cost of regression
testing.

A traditional approach to test suite reduction was initially developed for unit test-
ing and is based on filtering individual tests out of an original test suite while preserv-
ing original test suite’s coverage level (in terms of selected coverage criteria) and in-
volves a static analysis and/or instrumentation of a source code. In case of integration
testing, the majority of test suite reduction methods are an adaptation of existing
methods for unit testing. The main difference is that they consider coverage not of all
code but only a part of it, which is responsible for interactions of software elements
being integrated.

Recent trends in software development, such as component-based software devel-
opment and use of commercial off-the-shelf (COTS) components, and increasing size
and complexity of the software being developed, present new challenges for existing
test suite reduction techniques that may limit their applicability. The source code is
usually unavailable for COTS components, thus making it impossible to use methods
which are based on analysis or instrumentation of a source code [14]. It also can be

178 D. Kichigin

very expensive and hard to conduct source-code based coverage analysis for large
software [18, 15]. These problems limit the applicability of existing test suite reduc-
tion techniques, thus creating a need for new methods which are able to work without
access to a source code.

To resolve this problem, we developed a new test suite reduction technique for
regression integration testing which is based on analysis of interactions between mod-
ules being integrated and uses sequences of interface functions, invoked during
software execution. We considered interactions between two software modules which
occur via interface of functions which can take only scalar parameters, however the
method can be adapted to handle other parameters as well. Our method does not re-
quire source code access or instrumentation for one of two interacting modules and
does not require source code analysis for the other module which significantly in-
creases the area of the method’s applicability.

This paper is an extension of our earlier work [19] where we presented the method
together with results of its experimental evaluation on GNU Assembler test suite.
Those experiments showed promising results, however they were not enough in the
sense that they did not evaluate the actual gain in resource consumption during the
testing using a reduced test suite. In this paper we aim to eliminate this gap and we
present the results of an additional experiment which we conducted to measure this
characteristic as well.

2 Existing Test Suite Reduction Methods

A traditional approach to test suite reduction consists in building a test suite of a
smaller size but equivalent to the original one in terms of a selected coverage metric
[7]. Several methods were developed to measure coverage of integration testing.

Interface mutation systematically adds integration errors to part of program’s
source code which relate to unit interfaces and measures coverage in terms of per-
centage of errors detected by test cases [4].

Structural metrics examine the ability of a test suite to test software structural
elements involved into interactions being tested. These metrics analyze module’s
source code to discover dependencies between software elements being integrated and
build graph models to represent them. By the type of this graph, structural metric are
divided into two groups: metrics which use program control flow model [17, 12]; and
metrics which use program data flow model [2, 12]. After a program graph is built,
execution of software on test suite modeled as a path in the graph which is called an
execution path. Structural coverage metrics reflect how well execution paths cover
graph’s elements thus giving the information about coverage of internal software ele-
ments involved into interactions being tested.

Both mutation analysis and structural metrics require an instrumentation or access
to source code. This makes it complex and time consuming to use these methods for
large software, and even impossible when source code is unavailable as in the case of
the component-based development using COTS components.

 A Method for Test Suite Reduction for Regression Testing of Interactions 179

3 Description of the Method

To solve problems, highlighted in the previous section, we present a new test suite re-
duction method for regression testing of interactions between two software modules.
The method is based on modelling of interactions “behaviour” on a test suite and does
not require source code access or instrumentation.

3.1 The Model of Interaction between Two Modules

To model behaviour of interactions between modules, we use sequences of module’s
interface functions, invoked during the execution of software under test. We take into
consideration function names together with parameter values passed to functions on
invocation.

Before we start, we need to make some definitions. Let’s assume we have two
modules, A and B, and we consider interactions between modules which are done via
the interface of module B. We define:

Interface functions - functions, which form a part of module’s interface.
Interaction trace for a test case t – a sequence of interface functions of module B,

which are called by module A during software execution on the test case t. We assume
that these functions are represented by their names together with parameter values
passed to them on invocation and occur in the trace in the order of their invocation.

K-length sequence of interface functions - an arbitrary continuous sequence of
length K, which can be located in an interaction trace.

Set of sequences of interface functions, which corresponds to interaction between
modules A and B on the test t, - a set of all possible K-length sequences, which can be
located in the interaction trace for the interaction between A and B on t. To construct
the set of K-length sequences we use “sliding window” technique [8,19] with window
size equal to K.

Having these definitions we define a model of interaction between module A and
module B on a test t as the set of sequences defined above.

3.2 Equality Relation for Interaction Models

For the model of interaction between modules defined above, we can define an equal-
ity relation. As we have shown in [19], we can define equality relation between two
interaction behavior models as:

(1)

]))interval(),(interval(),(

))name(),(name([

]))interval(),(interval(),(

))name(),(name([),(

11

11

21

22 11 1

12

11 22 1

21

∏∏

∏ ∑ ∏

∏∏

∏ ∑ ∏

+==

∈ ∈ =

+==

∈ ∈ =

××

××

×××

×=

m

ni

kk

n

i

kk

Ms Ms

K

k

kk

m

ni

kk

n

i

kk

Ms Ms

K

k

kk

iiii

iiii

xyxy

ff

yxyx

ffMM

δδ

δ

δδ

δδ

180 D. Kichigin

where M1,M2 – models being compared; s1,s2 – K-length sequences, which belong to
the models; fk1,fk2 – functions, which have m scalar parameters, where first n parame-
ters are nominal and others are numerical; name(fk) – the name of a function fk;
δ(name(fi),name(fj)) – equality relation between names of functions fi and fj; xi,yi, i =
1..n – values of nominal parameters of functions fk1 and fk2; δ(x,y) – equality relation
between nominal parameters x and y; xi,yi, i = n+1..m – values of numerical parame-
ters of functions fk1 and fk2; interval(x) – the ordinal number of interval to which nu-
merical parameter x belongs; δ(interval(x),interval(y)) – equality relation between
numerical parameters x and y.

The detailed explanation of this equality relation is presented in [19]. Here we
summarize it as: two given models are equal when their sequence sets are equal and
different otherwise. Two sequences of interface functions are considered to be equal
when their elements (i.e. function calls) are equal pairwise. Finally, two function calls
f1 and f2 are equal when 1) the functions have the same names, 2) the values of nomi-
nal parameters are the same, and 3) the values of numerical parameters belong to the
same intervals.

3.3 The Method’s Algorithm

The idea of our test suite reduction method consists in the following. Intuitively, those
tests, which initiate the same sequences of interface functions, also repeat themselves
in the module interactions they test. Moreover, the tests, which do not initiate any in-
teractions between modules, are also of a little interest to us. Our method is based on
these assumptions and “filters out” individual tests which either do not generate new
sequences of interface functions, or do not invoke interface functions at all, and so,
following our assumptions, do not test an interaction in a new way.

The method uses the model of module interaction built in the previous section and
implements the following algorithm:

 MT’ := Ø; T’ := Ø;

 while (T not empty) do begin

t := get_next_test_from(T);

Mt := build_interaction_model(t);

if (Mt is empty) then continue;

if (Mt ∉ MT’) then begin

 MT’ := MT’ ∪ {Mt};

 T’ := T’ ∪ {t};
end;

 end

where:
T – original test suite;
T’ – reduced test suite, T’ ⊆ T;
t – next test case from the original test suite, t ∈ T;

 A Method for Test Suite Reduction for Regression Testing of Interactions 181

Mt – model of interaction behaviour on the test case t;
MT’ – set of models of interaction behaviour on test cases from T’.
1. First, the next test case is picked up from the original test suite and the program is

executed on it;
2. During the program execution, the model Mt of modules’ interaction on a test case

t is built; if the model is empty, the algorithm returns to the first step;
3. Then, Mt is checked whether it belongs to the set of models MT’ or not;
4. If Mt does not belong to MT’, then Mt is added to MT’ and test case t is added to T’;
5. When T is exhausted, the algorithm stops and T’ represents the result of algo-

rithm’s work, i.e. the reduced test suite.
To check whether model Mt belongs to the set of models MT’ or not we will use the
equality relation (4). It is important to add that, although we consider only scalar pa-
rameters of interface functions, the equality relation (4) can be adapted to take into
account any function parameters for which an equality relation can be defined [19].
Therefore our test reduction method can be adapted to handle other types of function
parameters.

3.4 Collecting Interaction Traces

In order to implement our method, we need a technique to collect traces of interac-
tions between software components.

The use of a component in the development of software can be represented as an
integration of two modules: module A, which is the component itself, and module B,
which is the rest of software. In case when a commercial off-the-shelf component is
used, only one component, A, comes without source code but with information about
its interface (otherwise it would be impossible to use the component).

Many platforms and programming environments provide mechanisms which can
be used to collect function call traces without having access to source code. These
mechanisms only need information about the functions’ signatures and, sometime, ac-
cess to object or binary code of applications. Examples of such mechanisms can be: in
Linux operation system - a mechanism of interception of function calls provided by
linker ld [19]; in Windows operation system - Detour tool [1]; .NET and Java plat-
forms have their own built-in mechanisms [11,5] which allow intercepting function
calls without even need of instrumentation of program’s binary or object code.

In our experiments, where we tested subject applications written in C language
and ran in Linux operation system, we used a mechanism provided by linker ld. This
mechanism allows intercepting calls to interface functions together with access to
values of function parameters. This mechanism only requires information about signa-
tures of interface functions and needs access to object code of only one, caller, mod-
ule (module B in the example above) and does not require resource-consuming access
or instrumentation of a source code of modules.

4 Experimental Evaluation

Test suite reduction methods are characterized by two main characteristics:
1. Percentage of test suite reduction. This characteristic demonstrates the ability of a

reduction method to reduce the size of a test suite.

182 D. Kichigin

2. Fault detection rate. This characteristic demonstrates fault-detection ability a test
suite. It is very important that the fault detection rate of the reduced test suite re-
main the same or nearly the same as of the original test suite [13].

The previous experiment [19] showed promising results and demonstrated that our
method can deliver good level of test suite reduction without loss in fault detection
rate, but these results were not enough because they did not show the value of re-
sources which can be saved using reduced test suite for regression testing instead of
an original one. In this experiment, in addition to percentage of test suite reduction
and fault detection rate, we measured time resources needed to run regression testing.
To do this we introduced an additional characteristic which indicates the gain which
reduced test suite delivers over the original test suite during regression testing.

4.1 Experiment Setup

For this experiment we took a test suite which was created for certification of
candidate operation systems under the Linux Standard Base (LSB) specification: LSB
Application Battery v.3.1 [3]. The experiment was conducted in SuSE Linux v10.2
environment. The length K of interface function sequences was the same as in the
previous experiment: 6 calls. Xlib library v.11 and the standard C library were used as
modules to be integrated.

LSB Application Battery v3.1 test suite is a collection of example LSB compliant
applications provided by the LSB project [16] used to test a candidate system if it
complies LSB requirements or not. One of specific tasks of LSB Application Battery
is to test all libraries specified by LSB specification. For this reason, applications
which form LSB Application Battery were selected in a way to collectively exercise
all libraries required by LSB specification [16]. Xlib library is one of libraries re-
quired by LSB specification v.3.1. The library is a part of X Window System, which
is a network-transparent window system. Xlib is a C subroutine library which imple-
ments a low-level C language interface to the X Window System protocol [10].

The to-be-tested interaction between Xlib library and the standard C library was
carried through a subset of library functions responsible for input/output functionality
and defined in stdio.h header file. We used Xlib library which is a part of X Window
System version X11R6.9.0; glibc library v 2.8 [9] was taken as an implementation of
a standard C library.

To conduct the experiment, we seeded 17 artificial integration errors to the differ-
ent parts of Xlib library’s source code, which are responsible into interactions with
the standard C library through its input/output routines. Artificial errors were intro-
duced in the way similar to the one used for mutation integration analysis [4]. Follow-
ing this way, errors were created by inducing simple changes to functions’ input and
output parameters, like passing incorrect parameter values or putting values to wrong
places in the function parameter list, to disturb the interactions between modules.

To evaluate method’s characteristics we used the following indicators:
1. Size of the reduced test suite;
2. Percentage of test suite reduction;
3. Number of detected faults;
4. Fault detection rate (in percent) ;
5. Time of regression testing;
6. Percentage of reduction of time needed for regression testing.

 A Method for Test Suite Reduction for Regression Testing of Interactions 183

On the first step of the experiment we collected modules interaction traces and built
models of modules interaction’s behaviour. To do this we recompiled Xlib library to
intercept calls to interface functions of glibc library. After that we executed tests from
LSB Application Battery test suite and built the interaction behaviour model. Then,
using our test suite reduction method, we built a reduced test suite, calculated its
characteristics: Size of the reduced test suite and Percentage of test suite reduction;
Number of detected faults and Fault detection rate, and compared them with charac-
teristics of the original test suite.

4.2 Experiment Results

Experiment results are summarised in Table 1:

Table 1. Results of the second experiment

Indicator Original test suite Reduced test suite
Size of the reduced test suite 81 9
Percentage of test suite reduction - 88.9%
Number of detected faults 6 6
Fault detection rate 35% 35%
Time of regression testing 1 hour 58 minutes 10 minutes
Percentage of time reduction - 91.5%

The results show that the method has reduced the original test suite by 88.9% (i.e.

by 9 times), which led to reduction of testing time by 91.5% (11.8 times), while the
fault detection ability of the test suite was maintained on the same level as of the
original test suite: the reduced test suit detected the same number of faults as the
original one.

5 Conclusion

In this paper we presented results of a new experimental evaluation of test suite re-
duction method for regression integration testing. In addition to the main characteris-
tics of the test suite reduction method such as a percentage of reduction of a test suite
and a fault detection rate, we measured a gain in resource consumption. The results
suggest that the method has a good potential for the use for test suites reduction for
software integration testing.

References

1. Hunt, G., Brubacher, D.: Detours: binary interception of Win32 functions. In: Proceedings
of the 3rd USENIX Windows NT Symposium, Seattle, WA, July 1999, pp. 135–143
(1999)

2. Harrold, M.J., Soffa, M.L.: Selecting and Using Data for Integration Testing. IEEE
Softw. 8(2), 58–65 (1991)

184 D. Kichigin

3. Linux Standard Base Application Battery pages,
 http://www.linuxfoundation.org/appbat/

4. Delamaro, M.E., Maldonado, J.C., Mathur, A.P.: Interface Mutation: an approach to inte-
gration testing. IEEE TSE 27(3), 228–247 (2001)

5. JavaTM Virtual Machine Tool Interface (JVM TI),
 http://java.sun.com/javase/6/docs/technotes/guides/jvmti/

6. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of a test
suite. ACM Transactions on Software Engineering and Methodology 2(3), 270–285 (1993)

7. Yu, K.D.: About one test suite reduction method. Collection of papers of The Institute for
System Programming of the Russian Academy of Sciences. In: ISP RAS, Moscow (2007);
//Кичигин Д.Ю. Об одном методе сокращения набора тестов. Сборник трудов ИСП
РАН. М: ИСП РАН (2007)

8. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion Detection using Sequences of System
Calls. Journal of Computer Security 6, 151–180 (1998)

9. GNU C Library, GNU Project, Free Software Foundation (FSF), Inc.,
 http://ftp.gnu.org/gnu/glibc/

10. Gettys, J., Scheifler, R.W.: Xlib − C Language X Interface, XWindow System Standard, X
Version 11, Release 6.7., http://www.x.org/docs/X11/xlib.pdf

11. The .NET Profiling API and the DNProfiler Tool, Matt Pietrek, MSDN Magazine (De-
cember 2001),

 http://msdn.microsoft.com/msdnmag/issues/01/12/hood/
 default.aspx

12. Linnenkugel, U., Müllerburg, M.: Test data selection criteria for (software) integration
testing. In: Proceedings of the First international Conference on Systems integration on
Systems integration 1990, Morristown, New Jersey, United States, pp. 709–717. IEEE
Press, Piscataway (1990)

13. Rothermel, G., Harrold, M.J., von Ronne, J., Hong, C.: Empirical studies of test-suite re-
duction. Journal of Software Testing, Verification, and Reliability 12(4) (December 2002)

14. McMaster, S., Memon, A.M.: Call Stack Coverage for Test Suite Reduction. In: Proceed-
ings of the 21st IEEE international Conference on Software Maintenance (ICSM 2005),
September 25 - 30, vol. 00, pp. 539–548. IEEE Computer Society, Washington (2005)

15. Piwowarski, P., Ohba, M., Caruso, J.: Coverage measurement experience during function
test. In: Proceedings of the 15th international Conference on Software Engineering, Balti-
more, Maryland, United States, May 17 - 21, pp. 287–301. IEEE Computer Society Press,
Los Alamitos (1993)

16. Linux Standard Base (LSB) pages. The Linux Foundation,
 http://www.linuxfoundation.org/en/LSB

17. Rountev, A., Kagan, S., Sawin, J.: Coverage Criteria for Testing of Object Interactions in
Sequence Diagrams. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 282–297.
Springer, Heidelberg (2005)

18. Kim, Y.W.: Efficient use of code coverage in large-scale software development. In: Pro-
ceedings of the 2003 Conference of the Centre For Advanced Studies on Collaborative Re-
search, Toronto, Ontario, Canada, October 06 - 09. IBM Centre for Advanced Studies
Conference, pp. 145–155. IBM Press (2003)

19. Kichigin, D.: Test Suite Reduction for Regression Testing of Simple Interactions between
Two Software Modules. In: Proceedings of Spring Young Researchers Colloquium on
Software Engineering (SYRCoSE 2007), ISP RAS, vol. 2, pp. 31–37 (2007)

A Java Supercompiler and Its Application to
Verification of Cache-Coherence Protocols

Andrei V. Klimov�

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
klimov@keldysh.ru

Abstract. The Java Supercompiler (JScp) is a specializer of Java pro-
grams based on the Turchin’s supercompilation method and extended
to support imperative and object-oriented notions absent in functional
languages. It has been successfully applied to verification of a number
of parameterized models including cache-coherence protocols. Protocols
are modeled in Java following the method by G. Delzanno and experi-
ments by A. Lisitsa and A. Nemytykh on verification of protocol models
by means of the Refal Supercompiler SCP4. The part of the supercom-
pilation method relevant to the protocol verification is reviewed. It deals
with an imperative subset of Java.

Keywords: specialization,verification,supercompilation,object-oriented
languages, Java.

1 Introduction

Program specialization methods — partial evaluation [10], supercompilation
[23,24,25], mixed computation [8], etc. — have been first developed for functional
and simplified imperative languages. Later the time has come for specialization
of more complex practical object-oriented languages.

There are already a number of works on partial evaluation of imperative and
object-oriented languages [3,4,5,15,21]. However, to the best of our knowledge,
our work is the first one on supercompilation of a practical object-oriented lan-
guage [9,11,14]. Inspired by far-reaching results by Alexei Lisitsa and Andrei
Nemytykh on verification of protocol models by means of the Refal Supercom-
piler SCP4 [16,17,18], we extended the Java Supercompiler with the elements of
the supercompilation method that were needed to reproduce the results in Java
[12] (namely, with restrictions on configuration variables of integral types).

Specialization of operations on objects in JScp is discussed in another paper
[11]. Since objects are not used in the protocol models coded in Java, in this
paper we review supercompilation of the imperative subset of Java.
� Supported by Russian Foundation for Basic Research projects Nos. 08-07-00280-a,

09-01-00834-a, and 09-07-13598-ofi ts, and Russian Federal Agency of Science and
Innovation project No. 2007-4-1.4-18-02-064.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 185–192, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

186 A.V. Klimov

A novelty of this part of the supercompilation method implemented in JScp
is that breadth-first unfolding of the graph of configurations and recursive con-
struction of the residual code of a statement from the residual codes of nested
statements is used rather than depth-first traversal of configuration as in other
known supercompilers. Another contribution of this paper is reproduction of the
results of the experiment on verification of protocols by another supercompiler
(JScp instead of SCP4) for a rather different language (the object-oriented Java
instead of the functional Refal). This confirms the result is based on the essence
of supercompilation rather than on technical implementation details. As a con-
sequence of the experiment the part of supercompilation method relevant to the
verification of protocols has been uncovered.

This paper is an extended abstract of the longer version published in the
PSI’09 preproceedings [13]. It is organized as follows. In Section 2 the part of
the Java supercompilation method that is relevant to verification of protocols
is reviewed. In Section 3 experiments on verification of protocol models are
described. In Section 4 we conclude.

2 Java Supercompilation

The notion of a configuration While an interpreter runs a program on a
ground data, a supercompiler runs the program on a set of data.

A representation of a subject program state in a supercompiler is referred to
as a configuration. We follow the general rule of construction of the notion of a
configuration in a supercompiler from that of the program state in an interpreter
that reads as follows: add configuration variables to the data domain, and allow
the variables to occur anywhere where an ordinary ground value can occur.
A configuration represents the set of states that can be obtained by replacing
configuration variables with all possible values. Each configuration variable is
identified by a unique integer index and carries the type of values it stands
for: either one of the Java primitive types, or the reference type along with a
class name and some additional information, or the string type. A configuration
variable can carry a restriction on the set of values. The configuration variables
become the local variables of the residual program.

In the Java virtual machine, a program state consists of global variables
(static fields of Java classes), a representation of threads and a heap.

In the Java Supercompiler, non-final global variables are not represented
in a configuration, since at supercompilation time they are considered unknown
and no information about them is kept. The values of final static fields are
evaluated only once at the initialization stage, thus one copy of them is kept
for all configurations. As the current version of JScp does not specialize multi-
threaded code, the configuration contains only one thread now.

The definition of a configuration in the current JScp is as follows:

– a configuration is a triple (thread, restrictions, heap);
– a thread is a call stack, a sequence of frames ;

A JScp and Its Application to Verification of Cache-Coherence Protocols 187

– a frame is a triple (local environment, evaluation stack, program point);
– a local environment is a mapping of local variables to configuration values ;
– an evaluation stack is a sequence of configuration values ;
– the representation of a program point does not matter. It is sufficient to

assume it allows us to resume supercompilation from the point;
– a configuration value is either a ground value, or a configuration variable;
– restrictions are a mapping Restr of configuration variables to predicates on

their values. If a configuration variable v is not bound by the mapping,
Restr(v) = λx.true. In the current version of JScp only restrictions of form
Restr(v) = λx.(x ≥ n), where n is an integer, on variables of the integral
types of the Java language are implemented;

– we leave the notion of a heap unspecified here, since this paper does not deal
with supercompilation of programs with objects.

The following three operations on configurations are used in JScp.

Comparison. of configurations for inclusion represented by a substitution: we
consider C1 ⊆ C2 if there exist a substitution δ that binds configuration values
to configuration variables such that C1 = δC2. Substitutions respect types and
restrictions.

Generalization of configurations: a configuration G is the most specific general-
ization of two configurations C1 and C2 if C1 ⊆ G and C2 ⊆ G and for every G′

satisfying this property, G ⊆ G′.

Homeomorphic embedding, a well-quasi order used for termination of loop un-
rolling: C1 � C2 if the call stacks of C1 and C2 have the same “shape” (the
lengths, the program points and the sets of local variables are the same) and
x1 � x2 holds for all pairs of corresponding configuration values x1 from C1 and
x2 from C2, where � is the least relation satisfying:

– v1 � v2 for all configuration variables v1 and v2 of the same type. If the
configuration variables have an integral type, their restrictions must embed
as well, Restr(v1) � Restr(v2) (see below);

– x1 � x2 for all values x1 and x2 of the String class unless this is switched off
by the user;

– x1 � x2 for all ground values x1 and x2 of the same floating type;
– n1 � n2 for all ground values n1 and n2 of the same integral type such

that 0 ≤ k ≤ n1 ≤ n2 or 0 ≥ −k ≥ n1 ≥ n2, where k is a user-specified
parameter that influences the depth of supercompilation. For verification of
the protocols [12] values k = 0 and k = 1 were used (due to observation by
A. Nemytykh);

– embedding of restrictions: r1 � r2 if r1 = λx.true, or 0 ≤ n1 ≤ n2, or
0 ≥ n1 ≥ n2, where r1 = λx.(x ≥ n1) and r2 = λx.(x ≥ n2).

Supercompilation of a method starts with the initial configuration comprised of
one call stack frame with the method parameters bound to fresh configuration
variables.

188 A.V. Klimov

Driving. In supercompilation, the process of partial execution is referred to as
driving.

Driving of method invocations. In the current version of JScp method invoca-
tions are either inlined, or residualized. No specialized methods are generated
as in other supercompilers [19,22,23,24,25] and partial evaluators [10]. Whether
to inline or not is controlled by certain JScp options. In our experiments on
verification all method invocations were inlined.

Driving of expressions and assignments. Driving of an expression with a cur-
rent configuration yields the value of the expression, residual code, and a new
configuration. Driving is similar to interpretation with the following distinction.

Each unary or binary operation is either evaluated, if there is sufficient in-
formation to produce a ground resulting value, or otherwise residualized with a
fresh configuration variable v as its value in form of a local variable declaration
of form t v = e, where e is the expression representing residualized operation
with the values of arguments substituted into it.

Integer operations v+i and v−i, where i an integer constant, v a configuration
variable with restriction λx.(x ≥ n), are residualized in form t v′ = v + i and
t v′ = v − i, and a new configuration variable v′ with a restriction of form
λx.(x ≥ n+ i) or λx.(x ≥ n− i) is added to the configuration.

Integer comparisons v == i, v != i, v < i, v <= i, v > i, v >= i and their
commutative counterparts, where i is an integer ground value, v a configuration
variable with restriction λx.(x ≥ n), evaluate to true or false, when this is
clear from comparison n > i or n ≥ i.

Driving of conditional statements. Consider a source code if (c) a else b; d,
where c is a conditional expression, statements a and b are branches, statements
d a continuation executed on exit from the if statement.

If driving of c yields true or false, the respective branch a or b is used
for further driving. Otherwise, let c′ be the residual code of the expression c, a
configuration variable v its value. Two configurations Ct and Cf corresponding
to the true and false branches are produced by taking into account the last
operation of c′. If it is x == x′ or x != x′, where x is a configuration variable, the
configuration corresponding to equality is contracted [23], that is, substitution
x �→ x′ is applied to the configuration. If the last operation is x > x′, x >= x′,
x′ < x, or x′ <= x, where x is a configuration variable of an integral type, x′

another variable or nonnegative integer value, the restriction on x is refined
with information from x′, if possible. Then each of the branches a and b is
supercompiled with the respective initial configuration Ct and Cf , producing
residual code a′ and b′ with final configurations Ca and Cb.

Supercompilation of d proceeds either two times with the initial configurations
Ca and Cb, or once with Cg being the generalization of Ca and Cb. The choice
between the alternatives is made by the JScp user. For the task of protocol
verification we used the more aggressive first one.

A JScp and Its Application to Verification of Cache-Coherence Protocols 189

The residual code of the if statement is either c′; if (v) {a′; d′a} else{b′; d′b},
or c′; if (v) {a′;αa} else{b′;αb}; d′, where d′a, d′b, and d′ are residual codes of
d from Ca, Cb, and Cg respectively, αa and αb are assignments that encode in Java
the substitutions δa and δb that emerged from the generalization.

The switch statement is supercompiled analogously.

Configuration analysis of loop statements. Proper configuration analysis
is performed only for loops in the current JScp. All kinds of loops in Java are
reducible to a loop of form L: while(true) b, where b is a loop body statement.

Four kinds of exits are possible from the source and residual code of a loop
body: throw, return, break and continue. The first three kinds are terminal
nodes from the viewpoint of supercompilation of the loop statement. A throw
statement is just residualized and no more actions are taken on that branch.A
return statement is reduced to a break with a label of an appropriate en-
closing statement. Processing of breaks and continues to a level higher than
the loop statement is postponed until the corresponding level is reached. State-
ments break L are exits from the residual code of the loop statement. Residual
statements continue L along with their configurations are subject to further
configuration analysis.

Let a loop statement L: while(true) b be supercompiled with an initial con-
figuration C0. First, the loop body b is supercompiled with C0 producing residual
code b0 and the list of statements continueL with configurations Ci, i ∈ [1..n0].
For those Ci that Ci ⊆ C0, Ci = δiC0, the continue statements are residualized
in form αi; continueL, where αi are assignments encoding the substitution δi.

The remaining configurations Ci, Ci �⊆ C0, comprise a current set Cont of
to-be-supercompiled continue statements. They are points of further loop un-
rolling: the loop body b is supercompiled with each C ∈ Cont and the residual
code is analyzed in the same way as for C0.

This process is repeated and a residual code in form of a tree consisting of
residual loop bodies supercompiled with various initial configurations is built.
Each new configuration Ci on a leaf of an unfinished tree is checked for looping-
back to all of the initial configurations of the residual loop bodies on the path
from C0 to this leaf.The process terminates when the set Cont is empty. However
this does not happen in general case.
Generalization and termination. The most popular termination criterion
[19,22,25] is based on the well-quasi-ordering. Before supercompiling the loop
body with a next configuration Ci, the configuration is compared for homeo-
morphic embedding � (described above) with all of the previous initial con-
figurations of the residual loop bodies on the path to it from C0. If such Cj

that Cj � Ci is found, Cj is generalized with Ci obtaining a configuration G,
Cj ⊆ G. Then the residual subtree below Cj is erased, a sequence of assignments
corresponding to the substitution δ that reduces Cj to G, Cj = δG, is inserted
into the point of Cj , and supercompilation is repeated from the configuration
G. This process terminates due to that there can be only a finite number of
generalizations for each configuration and that our homeomorphic embedding �

is well-quasi-order.

190 A.V. Klimov

3 Application to Verification of Cache-Coherence
Protocols

A. Lisitsa and A. Nemytykh [16,17,18] have found a nice class of applications
solvable by supercompilation. They used the Refal Supercompiler SCP4 devel-
oped by A. Nemytkh and V. Turchin [19] and encoded in the functional language
Refal the protocol models from Web site [6] developed by G. Delzanno [7]. The
code and the results of supercompilation may be found on Web site [17].

Here we demonstrate this method of verification with the use of Java and
the Java supercompiler JScp. The protocol models in Java and the results of
supercompilation are collected on Web site [12]. The Java code of the models is
rather close to the code in the domain-specific language HyTech used in [6].

For the description of the G. Delzanno’s approach to the modeling of cache-
coherence protocols, see his papers, e.g. [7]. Just the structure of the Java code
of models is sufficient for explanation of the use of JScp.The models from [12]
match the following pattern. It is commented in more detail in [13] together with
a sample model of the MOESI cache-coherence protocol.

class model-class-name extends ProtocolModel {
boolean runModel(int[] actions, int[] pars) throws ModelException {

int state-var-1 = initial-value-1-or- pars[0]; ...

require(precondition);

for (int i = 0; i < actions.length; i++) {
switch (actions[i]) {

case 1: require(condition-for-action-1);

computation-of-next-state ; break;

...

default: require(false);

} }
if (condition-for-unsafe-state-1) return false; ...

return true;

}
void require(boolean b) throws ModelException {

if (!b) throw new ModelException();

} }

To try to prove the correctness of a model we supercompile the method runModel
and observe the residual code. If all return statements has form return true,
we conclude the model can never reach an “unsafe” state, a state where the
post-condition returns false.

4 Conclusion

We demonstrated application of the Java Supercompiler to verification of models
belonging to the class of counter systems. There are a lot of works on decidability
of various properties of these systems including reachability, to which verifica-
tion reduces, and development of model-checkers for them. An overview can be

A JScp and Its Application to Verification of Cache-Coherence Protocols 191

found in some of the latest papers, e.g., [1]. As compared to these methods,
supercompilation can be considered as generalization of forward analysis. The
notion of acceleration in forward analysis of counter systems corresponds to that
of generalization in supercompilation. Termination strategies based of well-quasi-
orderings are close as well. The Java Supercompiler being a universal program
specialization tool for a common object-oriented language is not as efficient and
scalable as special-purpose tools and solves less problems from this class. How-
ever, its universality is an advantage for the ordinary user, allowing for combing
program specialization tasks with verification of program from wider classes.

Supercompilation of the imperative subset of the Java language is worth com-
paring with works aimed at practical partial evaluation of imperative [3,5] and
object-oriented languages [4,15,21]. The main distinctive feature of supercompi-
lation is the explicit notion of a configuration with configuration variables and
operations on configurations. This allows for more sophisticated analysis and
transformation of programs, which is essential for program verification.

Acknowledgements. The development of the Java supercompiler would not
be possible without collaboration with many people. The project was started
together with Valentin Turchin and Larry Witte to whom the author is greatly
indebted. Special thanks are due to the developers of various parts of the JScp
system Arkady Klimov and Artem Shvorin. We are very grateful to our partners
Ben Goertzel and Yuri Mostovoy: without their help and support such a complex
project as JScp could not be done. It was a pleasure to collaborate with Andrei
Nemytykh on application of supercompilation to program verification.

References

1. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to
practice. International Journal on Software Tools for Technology Transfer 10(5),
401–424 (2008)

2. Broy, M., Zamulin, A.V. (eds.): PSI 2003. LNCS, vol. 2890. Springer, Heidelberg
(2004)

3. Bulyonkov, M.A., Kochetov, D.V.: Practical aspects of specialization of algol-like
programs. In: Danvy, O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996.
LNCS, vol. 1110, pp. 17–32. Springer, Heidelberg (1996)

4. Chepovsky, A.M., Klimov, And.V., Klimov, Ark.V., Klimov, Y.A., Mishchenko,
A.S., Romanenko, S.A., Skorobogatov, S.Y.: Partial evaluation for common inter-
mediate language. In: Broy, Zamulin (eds.) [2], pp. 171–177

5. Consel, C., Lawall, J.L., Le Meur, A.-F.: A tour of Tempo: a program specializer
for the C language. Sci. Comput. Program. 52, 341–370 (2004)

6. Delzanno, G.: Automatic Verification of Cache Coherence Protocols via Infinite-
state Constraint-based Model Checking,
http://www.disi.unige.it/person/DelzannoG/protocol.html

7. Delzanno, G.: Constraint-based verification of parameterized cache coherence pro-
tocols. Formal Methods in System Design 23(3), 257–301 (2003)

8. Ershov, A.P.: Mixed computation: potential applications and problems for study.
Theoretical Computer Science 18, 41–67 (1982)

http://www.disi.unige.it/person/DelzannoG/protocol.html

192 A.V. Klimov

9. Goertzel, B., Klimov, A.V., Klimov, A.V.: Supercompiling Java Programs, white
paper (2002), http://www.supercompilers.com/white_paper.shtml

10. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

11. Klimov, And.V.: An approach to supercompilation for object-oriented languages:
the Java Supercompiler case study. In: Nemytykh [20], pp. 43–53 (2008),
http://meta2008.pereslavl.ru/accepted-papers/paper-info-4.html

12. Klimov, And.V.: JVer Project: Verification of Java programs by Java Supercompiler
(2008), http://pat.keldysh.ru/jver/

13. Klimov, And.V.: A Java Supercompiler and its application to verification of cache-
coherence protocols. In: Perspectives of Systems Informatics (Proc. 7th Interna-
tional Andrei Ershov Memorial Conference, PSI 2009), Novosibirsk, Russia, June
15-19, pp. 141–149. Ershov Institute of Informatics Systems (2009)

14. Klimov, And.V., Klimov, Ark.V., Shvorin, A.B.: The Java Supercompiler Project,
http://www.supercompilers.ru

15. Klimov, Y.A.: An approach to polyvariant binding time analysis for a stack-based
language. In: Nemytykh [20], pp. 78–84,
http://meta2008.pereslavl.ru/accepted-papers/paper-info-6.html

16. Lisitsa, A.P., Nemytykh, A.P.: Towards verification via supercompilation. In:
COMPSAC (2), pp. 9–10. IEEE Computer Society, Los Alamitos (2005)

17. Lisitsa, A.P., Nemytykh, A.P.: Experiments on verification via supercompilation
(2007), http://refal.botik.ru/protocols/

18. Lisitsa, A.P., Nemytykh, A.P.: Reachability analysis in verification via supercom-
pilation. Int. J. Found. Comput. Sci. 19(4), 953–969 (2008)

19. Nemytykh, A.P.: The supercompiler SCP4: General structure. In: Broy, Zamulin
(eds.) [2], pp. 162–170

20. Nemytykh, A.P. (ed.): Proceedings of the First International Workshop on Meta-
computation in Russia, July 2-5, 2008. Ailamazyan University of Pereslavl,
Pereslavl-Zalessky (2008)

21. Schultz, U.P., Lawall, J.L., Consel, C.: Automatic program specialization for Java.
ACM Trans. Program. Lang. Syst. 25(4), 452–499 (2003)

22. Sørensen, M.H., Glück, R.: An algorithm of generalization in positive supercompila-
tion. In: Lloyd, J.W. (ed.) International Logic Programming Symposium, Portland,
Oregon, December 4-7, pp. 465–479. MIT Press, Cambridge (1995)

23. Turchin, V.F.: The concept of a supercompiler. Transactions on Programming Lan-
guages and Systems 8(3), 292–325 (1986)

24. Turchin, V.F.: The algorithm of generalization in the supercompiler. In: Bjørner,
D., Ershov, A.P., Jones, N.D. (eds.) Partial Evaluation and Mixed Computation,
pp. 531–549. North-Holland, Amsterdam (1988)

25. Turchin, V.F.: Supercompilation: techniques and results. In: Bjorner, D., Broy, M.,
Pottosin, I.V. (eds.) PSI 1996. LNCS, vol. 1181, pp. 227–248. Springer, Heidelberg
(1996)

http://www.supercompilers.com/white_paper.shtml
http://meta2008.pereslavl.ru/accepted-papers/paper-info-4.html
http://pat.keldysh.ru/jver/
http://www.supercompilers.ru
http://meta2008.pereslavl.ru/accepted-papers/paper-info-6.html
http://refal.botik.ru/protocols/

Proving the Equivalence of Higher-Order Terms
by Means of Supercompilation�

Ilya Klyuchnikov and Sergei Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Abstract. One of the applications of supercompilation is proving prop-
erties of programs. We focus in this paper on a specific task: proving term
equivalence for a higher-order lazy functional language. The “classical”
way to prove equivalence of two terms t1 and t2 is to write an equality
function equals and to simplify the term (equals t1 t2). However, this
works only when certain conditions are met. The paper presents another
approach to proving term equivalence by means of supercompilation. In
this approach we supercompile both terms and compare supercompiled
terms syntactically. Some applications of the technique are discussed. In
particular, one of these applications may lead to the development of a
more powerful “higher-level” supercompiler.

1 Introduction

The functional style of programming allows developers to write modular, main-
tainable and elegant programs. However, these advantages do not come for free.
Making use of intermediate data structure, higher-order functions, lazy eval-
uation and function composition may result in a significant overhead during
program execution. There are a number of program transformation techniques
capable of eliminating this overhead. One of them is supercompilation, a tech-
nique suggested by V.F. Turchin in early 1970s. Initially, supercompilation was
developed as a means of optimizing programs written in a functional language
Refal [18,19], but later it was reformulated in more abstract terms [5,9,14,17].

Supercompilation is based on the following procedures:

– The construction of a labeled ”process tree” that represents all possible
traces of a computation process, the label (= ”configuration”) being a rep-
resentation of the possible states of the computation.

– Decomposing and/or generalizing the configurations in order to turn the
(possibly) infinite process tree into a finite graph.

– Generating the target (“residual”) program from the graph.

Surprisingly, supercompilation turned out to be applicable not only to program
optimization but also to program analysis and verification.
� Supported by Russian Foundation for Basic Research projects No. 08-07-00280-a

and No. 09-01-00834-a.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 193–205, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

194 I. Klyuchnikov and S. Romanenko

Namely, transforming a program by means of a supercompiler may produce
an equivalent target program, whose structure is, in a sense, “simpler” than the
structure of the source program, so that some subtle properties of the source
program may become readily apparent and easy to prove.

Moreover, if some knowledge may be formally expressed in terms of a program,
supercompilation may be used for analyzing this knowledge and inferencing and
making explicit some non-trivial, hidden facts.

Hence, supercompilation may play a role in program analysis similar to that
of X-rays in radiography (at least, potentially).

It should be noted that there is a certain contradiction between the goals of
program optimization and program analysis. The main goal of program optimiza-
tion is to produce a program that is small and fast, but which may be absolutely
unreadable for humans, being obscure, messy and ill-structured. Moreover, a
program produced by an optimizer does not have to be strictly equivalent to
the source one! If the source program successfully terminates for some input
data and produces a meaningful result, the optimized program is certainly re-
quired to terminate and produce the same result. However, if the source program
does not terminate, or terminates abnormally, the optimized program is often
allowed to terminate or produce an arbitrary result (especially if this enables the
optimizer to produce a faster and/or smaller target program). For example, the
supercompiler SCP4 [11,12] often transforms functions extending their domains.

On the contrary, if a program transformation technique is used for program
analysis, rather than program optimization, the programs produced by a trans-
former are not supposed to be executed. Thus, the size and execution speed of
a transformed program is not a matter of great importance any more. In partic-
ular, the transformer does not have to try hard to avoid code duplication. For
example, the following code

let p = f x y in g p q p r

can be safely transformed into this:

g (f x y) q (f x y) r

On the other hand, the preservation of program semantics may be highly desir-
able in cases where program transformation is used for the purposes of program
analysis.

The present paper considers the problem of proving term equivalence by means
of supercompilation. It is shown that some interesting classes of equivalencies
can be proved by supercompiling both terms and comparing the supercompiled
terms syntactically. It should be noted that this technique is applicable to lan-
guages with infinite data structures and higher-order functions. In addition, this
approach does not require that a universal built-in equality predicate be present
in the language.

Some applications of the technique are discussed. In particular, one of these
applications may lead to the development of a more powerful supercompiler.

Proving the Equivalence of Higher-Order Terms 195

2 Why a Lazy Language with Higher-Order Functions?

Suppose there is some knowledge that is going to be encoded as a program, in
order to be analyzed by a supercompiler. What programming language should
be considered as “good” for this purpose? It could be argued that

1. The semantics of the language should be clearly defined.
2. The language should be easy for a supercompiler to deal with, especially if

the supercompiler is required to strictly preserve the semantics of programs.
3. The language should be convenient for encoding knowledge as programs.

In particular, infinite data structures are handy for representing infinite se-
quences of events and similar purposes.

4. The language should provide functions as first-class values. This is useful for
formulating and proving “higher-order” assertions quantified over functions.

Since we are interested in reasoning about programs, and this is hardly possible
for a language with obscure semantics, the first requirement is quite natural. Thus
a functional programming language seems to be a good choice for our purposes.

The second requirement is easier to meet in the case of a lazy functional lan-
guage, rather than a strict one, because many program transformation techniques
(including supercompilation and deforestation) are “call-by-name” in nature. If
these techniques are applied to a call-by-value language, the termination prop-
erties of programs may be violated. This, certainly, can be avoided by imposing
some restrictions on input programs. For example, the termination properties
are preserved by supercompilation, if the source program always terminates (see
“total functional programming” [21]). Another approach is to impose certain
restrictions on the transformations performed during supercompilation, which
requires some additional analysis to be perform [9]. However, for the purposes of
program analysis, the most straightforward solution is to just assume that the in-
put language is a lazy one. In addition, for a lazy language the third requirement
is met in a natural way.

The fourth requirement is motivated by the fact that in almost all program-
ming languages a function’s arguments are considered to be universally quan-
tified. So a function definition can be read: for any x, y, . . . If we deal with a
first-order language then we can abstract over first-order data. But if we deal
with a higher-order language, we can abstract over functions, too! Functions may
represent rules, transformations, strategies and so forth.

In addition, there are cases where the results of supercompilation are just
difficult to represent by a first-order program [16].

For the above reason, we have preferred to deal with a lazy functional language
with higher-order functions.

3 HOSC: An Experimental “Higher-Order”
Supercompiler

All experiments in program transformation described in the paper have been car-
ried out by means of an experimental open-source supercompiler HOSC, dealing

196 I. Klyuchnikov and S. Romanenko

typeDef ::= typeCon = dataCon1 | ... | dataConn

typeCon ::= tn type1 ... typen

dataCon ::= c type1 ... typen

type ::= tv | typeCon | type → type | (type)

prog ::= typeDef1...typeDefn e where f1 = e1...fn = en

e ::= v
| c e1...en

| f
| λv.e
| e0 e1

| case e0 of p1 → e1...pk → ek

| letrec f = λv.e in e
| (e)

p :: = c v1...vn

type definition
type constructor
data constructor
type expression

program

variable
constructor
function
abstraction
application
case term
local function
term in parenthesis

pattern

where tn ranges over type names, tv ranges over type variables, c ranges over construc-
tors.

Fig. 1. HLL grammar

with a lazy language with higher-order functions1. HOSC preserves the seman-
tics of programs, which is essential for the techniques described in the paper.

HOSC transforms programs written in HLL, a simple higher-order lazy lan-
guage, similar to that used by Hamilton [6,7]. HLL is typed using the Hindley-
Milner polymorphic typing system.

A program in HLL consists of a number of data type definitions, a term to be
evaluated and a set of function definitions (see Fig. 1).

A left-hand side of a data type definition is a type name (more precisely, a
type constructor name) followed by a list of type variables. The right-hand side
consists of one or more constructor declarations.

The grammar of HLL is shown in Fig. 1. A term is either a variable, a construc-
tor, a lambda abstraction, an application, a case term, a local function definition
or a term in parenthesis. A function definition binds a variable to a lambda ab-
straction. The intended operational semantics of HLL is the normal-order graph
reduction to a weak head normal form. The data analysis is performed by pattern
matching with constructors in case terms (as in [17]).

A term in HLL may contain free variables and local function definitions.
Note that the construct where is only a syntactic sugar, since the function

definitions can always be transformed to letrec-s and moved to the term pre-
ceding where. Hence, any program is essentially a single term (plus a number of
type declarations), so that there is no difference between transforming a term
and transforming a program. In particular, the equivalence of programs is just
the equivalence of terms.

1 See the HOSC web-application and the sources at http://hosc.appspot.com

http://hosc.appspot.com

Proving the Equivalence of Higher-Order Terms 197

4 Proving Term Equivalence

4.1 Proving Properties of Terms by Supercompilation

As shown by Turchin [19,20], some properties of programs can be proved by
program transformation. For example, suppose there is a function f (represented
as a program), and we want to prove that, for any input x, the result returned
by f satisfies some property p. Then we may encode p as a program, and try to
“simplify” the term p(f(x)) by means of a supercompiler. If the structure of the
supercompiled term is trivial, so that it can be readily seen that the evaluation
of the term never returns False and always terminates, we can conclude that
the source term p(f(x)) always returns True. Therefore, the result of evaluating
f(x) always satisfies the property p.

The fruitfulness of this approach has been recently shown by Lisitsa and
Nemythykh [12], who have succeeded in verifying a number of cache coherence
protocols by means of the supercompiler SCP4.

4.2 Equality-Based Approach to Proving Term Equivalence

As pointed out by Turchin [18], proving the equivalence of two terms t1 and
t2 can be reduced to proving a property of a single term. Namely, if equals is
a function testing values for equality, we can compose the term equals t1 t2
and supercompile it to see whether it always returns True.

Consider the program in Fig. 2 in which the function plus takes two natural
numbers (in unary system) and returns their sum. We want to prove that

equals (plus (S x) y) (plus x (S y))

or, in more “mathematical” notation, that

(x+ 1) + y = x+ (y + 1)

The result of supercompiling the program is shown in Fig. 3. It can be read-
ily seen that the supercompiled program never returns False. However, there
remain a few subtle points concerning such kind of reasoning!

4.3 Restrictions and Drawbacks of the Equality-Based Approach

Suppose the term equals t1 t2 never returns False. Does it mean that t1 and
t2 are really “equivalent”?

It depends on what is understood by “equivalence”. The “equality-based”
approach to proving term equivalence is based on a number of assumptions:

1. There exists a built-in equality function equals, or, at least, equals can be
defined for the values returned by t1 and t2.

2. All data structures involved are finite.
3. The evaluation of t1 and t2 always terminates.

Assumption 1 is usually true of first-order strict languages (like Refal [18,12]).
However, in the case of a higher-order language there arise some problems, because
t1 and t2 may return functional values, which are impossible to test for equality.

198 I. Klyuchnikov and S. Romanenko

data number = Z | S number

data boolean = True | False

equals (plus (S x) y) (plus x (S y)) where

plus = λx.λy.
case x of

Z → y

S x1 → S (plus x1 y)

equals = λx.λy.
case x of

Z →
case y of

Z → True

S y1 → False

S x1 →
case y of

Z → False

S y1 → equals x1 y1

Fig. 2. Proving (x + 1) + y = x + (y + 1): the source program

data number = Z | S number

data boolean = True | False

letrec f = λp2.λr2.
case p2 of

Z → letrec g = λs2.
case s2 of

Z → True

S w → g w

in g r2

S p1 → f p1 r2

in f x y

Fig. 3. Proving (x + 1) + y = x + (y + 1): the supercompiled program

Assumption 2 is not automatically true in the case of a lazy language (even
a first-order one).

Assumption 3 may not be true in many interesting cases. For example, if t1 and
t2 deal with infinite data structures and, by necessity, never terminate, but are still
“equivalent” (i.e.have the same “meaning” according to the language’s semantics).

4.4 Normalization-Based Approach to Proving Term Equivalence

In order to get rid of dealing with equality predicates, we need an alternative,
more general, definition of term equivalence. Thus, the “contextual equivalence”,
as defined by Pitt [15], seems to be a reasonable choice:

Proving the Equivalence of Higher-Order Terms 199

Loosely speaking, two expressionsM andM ′ of a programming language
are contextually equivalent if any occurrences of M and M ′ in complete
programs can be interchanged without affecting the results of executing
the programs.

In particular, the above definition implies that two programs are trivially equiv-
alent, if they are “syntactically isomorphic” (i.e. identical, modulo some trivial
renaming and/or rearranging of the constructs appearing in the program).

Let A ⇒sc A
′ mean that A′ is semantically equivalent to A and can be

produced by supercompiling A, or, in other words, ⇒sc is a “supercompilation
relation” (as defined by Klimov [10]).

Let ≈ denote equivalence and ∼= “syntactic isomorphism” of programs. Then
the following holds:

A⇒sc A
′ B ⇒sc B

′ A′ ∼= B′

A ≈ B
Or, in plain words, if supercompiling A and B results in producing essentially
the same residual program, then A and B are equivalent.

Thus, supercompilation can be seen as transformation that, in a sense, “nor-
malizes” terms. Some other program transformation techniques can also be con-
sidered as normalizing ones [1,2,3,4].

Note that the general idea of proving equivalence by normalization is a well-
known one, being a standard technique in such fields as computer algebra. The
idea of using supercompilation for normalization is due to Lisitsa and Webster
[13], who have successfully applied supercompilation for proving the equivalence
of programs written in a first-order functional language, provided that the pro-
grams deal with finite input data and are guaranteed to terminate.

We argue that this techinque is also applicable to higher-order functional
programs, even if they deal with inifinite data structures and do not
terminate for some inputs.

Let us consider the program in Fig. 4 containing definitions of a few well-known
functions over lists. Supercompiling the term map (compose f g) xs produces
the program shown in Fig. 5. On the other hand, supercompiling the term
(compose (map f) (map g)) xs results in the same residual program (mod-
ulo alpha renaming)! Hence, we have proved that the following holds

map (compose f g) xs = (compose (map f)(map g)) xs

for all f, g, and xs that are allowed by the type system of the language HLL.
Note that this statement holds for all lists xs including infinite lists and ⊥, whose
elements may be quite exotic: first-order values, functions, data trees, or ⊥. Also
note that the functions f and g do not have to terminate.

Therefore, the normalization-based approach enables us to prove state-
ments that are even impossible to formulate in terms of the equality-
based approach!

200 I. Klyuchnikov and S. Romanenko

data List a = Nil | Cons a (List a)

data Boolean = True | False

data Pair a b = P a b

compose = λf.λg.λx.f (g x)

unit = λx.Cons x Nil

rep = λxs. append xs

abs = λf. f Nil

iterate = λf.λx. Cons x (iterate f (f x))

fp = λp1.λp2.
case p1 of P a1 a2 →

case p2 of P b1 b2 → P (a1 b1) (a2 b2)

map = λf.λxs.
case xs of

Nil → Nil

Cons x1 xs1 → Cons (f x1) (map f xs1)

join = λxs.
case xs of

Nil → Nil

Cons x1 xs1 → append x1 (join xs1)

append = λxs.λys.
case xs of

Nil → ys

Cons x1 xs1 → Cons x1 (append xs1 ys)

idList = λxs.
case xs of

Nil → Nil

Cons x1 xs1 → Cons x1 (idList xs1)

filter = λp.λxs.
case xs of

Nil → Nil

Cons x xs1 →
case p x of

True → Cons x (filter p xs1)

False → filter p xs1

zip = λp.case p of P xs ys →
case xs of

Nil → Nil

Cons x1 xs1 →
case ys of

Nil → Nil

Cons y1 ys1 → Cons (P x1 y1) (zip (P xs1 ys1))

Fig. 4. Example functions over lists

Proving the Equivalence of Higher-Order Terms 201

data List a = Nil | Cons a (List a)

letrec

h = λys.
case ys of

Nil → Nil

Cons y1 ys1 → Cons (f (g y1)) (h ys1)

in

h xs

Fig. 5. Supercompilation of map (compose f g) xs

The authors have implemented an equivalence checker based on term normaliza-
tion and built on top of the specializer HOSC. Following are a number of sample
equivalences that have been automatically proved by the checker:

compose (map f) unit = compose unit f

compose (map f) join = compose join (map (map f))

append (map f xs) (map f ys) = map f (append xs ys)

append (append xs ys) zs = append xs (append ys zs)

filter p (map f xs) = map f (filter (compose p f) xs)

iterate f (f x) = map f (iterate f x)

map (compose f g) xs = (compose (map f)(map g)) xs

rep (append xs ys) zs = (compose (rep xs) (rep ys)) zs

(compose abs rep) xs = idList xs

map (fp (P f g)) (zip (P x y)) = zip (fp (P (map f) (map g)) (P x y))

append r (Cons p ps) =

case (append r (Cons p Nil)) of

Nil → ps

Cons v vs → Cons v (append vs ps)

Note that some of the above equivalences are instances of Wadler’s “free theo-
rems” [22,8].

Given the program in Fig. 2, the associativity of addition can be proved by
supercompiling both sides of the equation

plus (plus x y) z = plus x (plus y z)

One might expect that the commutativity of addition

plus x y = plus y x

could be proved in the same way. However, this is not the case, just because
the conjecture is not true! The language HLL is a lazy one, for which reason
plus (S Z) ⊥ = (S ⊥), but plus ⊥ (S Z) = ⊥.

5 Applications of the Technique

5.1 Generating Sets of Equivalent Terms

Since the set of all terms is recursively enumerable, it is possible to write a
generator automatically producing sets of equivalent terms. A straightforward
procedure may look as follows.

202 I. Klyuchnikov and S. Romanenko

First, a potentially infinite sequence of term can be generated, the terms being
ordered according to their size. Then the sequence of terms can be filtered,
in order for the terms that are not well-typed to be rejected. Then the well-
typed terms can be “normalized” by supercompiling them, and partitioned into
equivalence classes by comparing their “normalized” versions.

Certainly, the above procedure is not “complete”, because term equivalence is,
in general, undecidable. Hence, for any given supercompiler, some equivalences
will not be proved by supercompilation. However, an important point is that
the above procedure is capable of automatically discovering equivalences, rather
than just proving them.

5.2 Term Equivalence and Higher-Level Supercompilation

As has been shown above, given a supercompiler, a library of term equivalences
can be generated. And this library can be used for increasing the power of
supercompilation. In other words, we can build a “higher-level” supercompiler
using a “classic” supercompiler as a “lower-level” building block.

Namely, if a “classic” supercompiler encounters two configurations A and B,
such that A is homeomorphically embedded into B, the supercompiler tries to
fold B to A. This is possible, if B is an instance of A. Otherwise, the super-
compiler has to throw B away and replace A with a more general configuration,
which may lead to “over-generalization”.

However, given a library of equations, a “higher-level” supercompiler may
replace B with an equivalent configuration B′ that is an instance of A, so that
B′ can be folded to A.

As an example, let us consider supercompiling a näıve definition of the func-
tion reverse into one with an accumulating parameter (which is more efficient).

Let us try supercompiling the following term:
append (reverse xs) ys

After unfolding we get:

case reverse xs of

Nil → ys

Cons x3 x4 → Cons x3 (append x4 ys)
(1)

Further unfolding results in:

case

case xs of

Nil → Nil

Cons x5 x6 → append (reverse x6) (Cons x5 Nil)

of

Nil → ys

Cons x3 x4 → Cons x3 (append x4 ys)

(2)

Now we have to split the configuration by considering two cases: xs = Nil and
xs = Cons x5 x6. If xs = Nil, the configuration is reduced to ys, and, in the
second case, it is transformed into

Proving the Equivalence of Higher-Order Terms 203

data List a = Nil | Cons (List a)

letrec reverse1 = λxs1.λys1.
case xs1 of

Nil → ys1

Cons x2 xs2 → reverse1 xs2 (Cons x2 ys1)

in

reverse1 xs ys

Fig. 6. Higher-level supercompilation of append (reverse xs) ys

case append (reverse x6) (Cons x5 Nil) of

Nil → ys

Cons x3 x4 → Cons x3 (append x4 ys)
(3)

The term (3) embeds the term (1), without being an instance of (1). Hence, a
“classical” supercompiler would have to generalize (1). But the generalization
can be avoided by using the following equation

append r (Cons p ps) =

case (append r (Cons p Nil)) of

Nil → ps

Cons v vs → Cons v (append vs ps)

(4)

Note that this equation can be proved by term normalization.
Applying the substitution {r = reverse x6, p = x5, ps = ys} to the above

equality, we can replace the term (3) with the equivalent term

append (reverse x6) (Cons x5 ys)

which is an instance of the initial term append (reverse xs) ys. Hence, a
folding can be performed, to produce the final result of this “higher-level” su-
percompilation shown in Fig. 6.

Therefore, the following equation has been proved

append (reverse xs) ys = reverse1 xs ys.

which implies that

reverse xs = append (reverse xs) Nil = reverse1 xs Nil.

The original definition of reverse was quadratic in the length of xs, while the
transformed one is linear. Hence, the proposed technique is capable of producing
results similar to those achieved by “distillation”, another approach to “higher-
level” supercompilation suggested by Hamilton [6].

6 Conclusions

We have shown that the equivalence of terms can be proved by means of super-
compilation without the use of an equality predicate, which makes the technique

204 I. Klyuchnikov and S. Romanenko

applicable to lazy languages with higher-order functions. The techniques can be
used to increase the power of supercompilation, to achieve the results similar to
distillation, which is another approach to “higher-level” supercompilation.

Acknowledgements

An early version of this work was presented as a talk at Copenhagen Program-
ming Language Seminar at DIKU, and we would like to thank Robert Glück,
Torben Mogensen and Andrzej Filinski for their useful comments and inspir-
ing advices. The authors are also grateful to Geoff Hamilton, as well as Andrei
Klimov and other participants of Refal Seminars at Keldysh Istitute of Applied
Mathematics for fruitful discussions.

References

1. Albert, E., Vidal, G.: The narrowing-driven approach to functional logic program
specialization. New Generation Computing 20(1), 3–26 (2002)

2. Alpuente, M., Falaschi, M., Vidal, G.: Partial evaluation of functional
logic programs. ACM Transactions on Programming Languages and Systems
(TOPLAS) 20(4), 768–844 (1998)

3. Cockett, R.: Deforestation, program transformation, and cut-elimination. Elec-
tronic Notes in Theoretical Computer Science 44(1), 88–127 (2001)

4. Dybjer, P., Filinski, A.: Normalization and partial evaluation. In: Barthe, G., Dyb-
jer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 137–192.
Springer, Heidelberg (2002)

5. Glück, R., Klimov, A.V.: Occam’s razor in metacompuation: the notion of a perfect
process tree. In: Cousot, P., Filé, G., Falaschi, M., Rauzy, A. (eds.) WSA 1993.
LNCS, vol. 724, pp. 112–123. Springer, Heidelberg (1993)

6. Hamilton, G.W.: Distillation: extracting the essence of programs. In: Proceedings
of the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation, pp. 61–70. ACM Press, New York (2007)

7. Hamilton, G.W., Kabir, M.H.: Constructing programs from metasystem transition
proofs. In: Proceedings of the First International Workshop on Metacomputation
in Russia (2008)

8. Holst, C.K., Hughes, J.: Towards binding-time improvement for free. In: Functional
Programming, Workshops in Computing, Glasgow. Springer, Heidelberg (1990)

9. Jonsson, P.A.: Positive supercompilation for a higher-order call-by-value language.
Lule̊a University of Technology (2008)

10. Klimov, A.V.: A program specialization relation based on supercompilation and
its properties. In: Proceedings of the First International Workshop on Metacom-
putation in Russia, pp. 54–78. Ailamazyan University of Pereslavl (2008)

11. Lisitsa, A., Nemytykh, A.P.: Reachability analysis in verification via supercompi-
lation. International Journal of Foundations of Computer Science 19(4), 953–969
(2008)

12. Lisitsa, A.P., Nemytykh, A.P.: Verification as a parameterized testing (experiments
with the scp4 supercompiler). Programming and Computer Software 33(1), 14–23
(2007)

Proving the Equivalence of Higher-Order Terms 205

13. Lisitsa, A.P., Webster, M.: Supercompilation for equivalence testing in metamor-
phic computer viruses detection. In: Proceedings of the First International Work-
shop on Metacomputation in Russia. Ailamazyan University of Pereslavl (2008)

14. Mitchell, N., Runciman, C.: A supercompiler for core haskell. In: Chitil, O.,
Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 147–164. Springer,
Heidelberg (2008)

15. Pitts, A.M.: Operationally-based theories of program equivalence. In: Semantics
and Logics of Computation, pp. 241–298 (1997)

16. Romanenko, S.A.: Higher-order functions as a substitute for partial evaluation. In:
Proceedings of the First International Workshop on Metacomputation in Russia.
Ailamazyan University of Pereslavl (2008)

17. Sørensen, M.H., Glück, R., Jones, N.D.: A positive supercompiler. Journal of Func-
tional Programming 6(6), 811–838 (1993)

18. Turchin, V.F.: The Language Refal: The Theory of Compilation and Metasystem
Analysis. Department of Computer Science, Courant Institute of Mathematical
Sciences, New York University (1980)

19. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 8(3), 292–325 (1986)

20. Turchin, V.F.: Metacomputation: Metasystem transitions plus supercompilation.
In: Danvy, O., Thiemann, P., Glück, R. (eds.) Dagstuhl Seminar 1996. LNCS,
vol. 1110, pp. 481–509. Springer, Heidelberg (1996)

21. Turner, D.A.: Total functional programming. Journal of Universal Computer Sci-
ence 10(7), 751–768 (2004)

22. Wadler, P.: Theorems for free! In: FPCA 1989: Proceedings of the fourth inter-
national conference on Functional programming languages and computer architec-
ture, pp. 347–359. ACM, New York (1989)

Unifying the Semantics of UML 2
State, Activity and Interaction Diagrams

Jens Kohlmeyer and Walter Guttmann

Universität Ulm, 89069 Ulm, Germany
jens.kohlmeyer@uni-ulm.de, walter.guttmann@uni-ulm.de

Abstract. We define a formal semantics of the combined use of UML 2
state machines, activities and interactions using Abstract State Ma-
chines. The behaviour of software models can henceforth be specified
by composing these diagrams, choosing the most adequate formalism at
each level of abstraction. We present several reasonable ways to link dif-
ferent kinds of diagrams and illustrate them by examples. We also give
a formal semantics of communication between these diagrams. The re-
sulting rules reveal unclear parts of the UML specification and serve as
a basis for tool support.

1 Introduction

Ideally, software development proceeds continuously from requirements through
specification to implementation, using an integrated formalism, method and tool
set. The state-of-the-art proposal aiming at such an integrated approach is to use
Model Driven Development as the method and the Unified Modelling Language
(UML) [17] as the formalism.

In this paper, we focus on behaviour aspects of software systems. They are
represented by several UML language units describing state machines, activities
and interactions, as detailed in Section 2. Each type of diagram is useful by
itself, offering different facilities to exhibit different properties of a system: State
machines emphasise the changes made to a system’s state due to the occurrence
of events, activities emphasise control and data flow, and interactions emphasise
the sequence of messages between the lifelines of objects.

While the UML can be profitably used to describe requirements and spec-
ifications, one of its shortcomings is the lack of a precise semantics. This has
been addressed in recent years by research formalising the semantics of state di-
agrams [1,2,5,10], activity diagrams [8,16,19,20] and sequence diagrams [6,15,21].
The frameworks used include Abstract State Machines, graph transformations
and basic formalisms such as relations and traces. A semantics of class diagrams
is usually implicit, since behaviour applies to objects in the UML. For a detailed
discussion of these and further approaches, see [14].

Hence the current state is that formal semantics have been separately defined
for the various kinds of diagrams specifying behaviour. What is notably missing,
however, is a semantics describing their combined use. This may be due to the

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 206–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Unifying the Semantics of UML 2 State, Activity and Interaction Diagrams 207

fact that the UML specification itself is not very elaborate about this issue, but
already the name Unified Modelling Language aims at such an integrated use.
It is time to give the UML a unified semantics.

We use Abstract State Machines (ASM) [3] to define the semantics. ASMs have
been used to formalise the semantics of several programming and specification
languages, including the UML diagrams for behaviour we are interested in. We
can therefore base our unifying work on the existing specifications. At the same
time, the resulting ASM rules are precise, comprehensible and executable.

We investigate all UML behaviour diagrams and identify various means to
compose them. We formalise the semantics of composition by adding new ASM
rules and by modifying appropriate parts of the established ASM specifications.
The new rules coordinate the instantiation of the different UML diagrams, the
computation of their respective context, and their interplay by communication.
We thus achieve an integrated semantics of UML behaviour.

ASMs and the UML language units are briefly introduced in Section 2. In
Section 3 we discuss a number of ways to combine different kinds of diagrams
and define the corresponding semantics using ASM rules. The communication
aspect is elaborated in Section 4.

Our formalisation is high-level enough to reveal problematic issues concerning
the UML specification, as we discuss throughout the paper. Besides the exposure
of semantical problems, the benefits of a precise semantics are numerous. Among
other things, it reduces the space for interpretation and thus clarifies the meaning
of models. It also serves as a (necessary) foundation for the implementation of
tools supporting model execution, code generation and automated reasoning.
For the first time, these advantages are obtained for models combining different
kinds of behaviour specifications as intended by the UML.

The present paper extends [13] by the following new contributions. We sys-
tematically derive and discuss each of the different ways to compose behaviour,
present the corresponding ASM rules in detail, and give examples. We moreover
describe the semantics of communication.

2 Basics

In this section we describe the UML language units dealing with the behaviour
of software systems, and Abstract State Machines [3] as far as required to under-
stand the rules in this paper. By writing UML we mean UML 2.1.2 as specified
in [17] unless stated otherwise.

Higher-level behavioural formalisms of the UML are based on its language unit
Common Behaviors, and extended in the units Activities, State Machines and
Interactions. Additional units related to behaviour are Actions and Use Cases.

The Common Behaviors language unit comprises three subpackages. The Ba-
sicBehavior subpackage describes behaviour as the change of an associated con-
text object. In all other respects, behaviour is left abstract, with activities, state
machines and interactions as concrete instances. This abstraction is the key to
compose behaviour specified by different kinds of diagrams, as detailed in Sec-
tion 3.1. The Communications subpackage provides the core structure for signal

208 J. Kohlmeyer and W. Guttmann

handling and operation calls. It is the basis for our treatment of communication
in Section 4. The SimpleTime subpackage is relevant for the semantics of the
individual behaviour diagrams, but has no impact on the present paper.

Activity diagrams coordinate lower-level behaviours by specifying their depen-
dences and the allowed execution sequences. They are composed of basic actions
connected by edges to indicate (possibly concurrent) control and object flow.
Parameterised actions send and receive signals, and invoke behaviour specified
elsewhere, for example, in other diagrams. Edges connecting actions may pass
through control nodes (decision, merge, fork, join) that coordinate the flows in an
activity diagram. Interruptible activity regions support the termination of parts
of an activity diagram. Our unifying work uses the ASM semantics of UML 2.0
activities in [19] that sequences actions based on a token flow [20].

State diagrams model discrete behaviour by specifying the states of a system
and the transitions between the states. Transitions are triggered by events, re-
sulting in the change of state and the execution of associated behaviour. States
may be composed of (orthogonal) subregions and (hierarchical) submachines.
Our unifying work uses the ASM semantics of UML 1.4 state machines in [2]
extended to UML 2.0 by [9].

We treat the ‘most common variant’ [17] of interactions, namely sequence
diagrams. They show how several objects communicate by means of messages.
An object’s lifeline orders the occurrences of events that include sending and re-
ceiving messages, creating and destroying objects, and executing behaviour. In
contrast to state machines and activities, which describe behaviour performed
by an object, interactions describe emergent behaviour resulting from the partic-
ipant objects. Our unifying work uses the ASM semantics of UML 2.0 sequence
diagrams developed in [11].

UML use case diagrams capture the high-level requirements of a system, but
do not specify behaviour on their own. They are instead linked to behaviour
specified by the above language units. UML actions specify low-level transfor-
mations on the state of the system, and are modelled independently of the be-
haviours (primarily activities) containing them. Hence an action is likewise not
a behaviour on its own. Because of these reasons, it is unnecessary to specially
consider use cases and actions for the purposes of this paper.

We have adapted the existing ASM semantics to the same UML version 2.1.2.
The modifications necessary to integrate the various diagrams are described in
Sections 3.2–3.5 and 4.

The ASMs, used to formalise the semantics of the UML language units, can
be read as ‘pseudo-code over abstract data’ [3]. An ASM comprises transition
rules operating on a state composed of functions defined over a base set. The
update rule f(s1, . . . , sn) := t modifies the value of f at (s1, . . . , sn) to t. Further
constructs include abstractions using let . . . in, multiway conditionals, and rule
calls with call-by-name semantics. The rule forall x with ϕ do R executes R
in parallel for each x satisfying ϕ. The rule choose x with ϕ do R chooses
some x satisfying ϕ and then executes R. Updates accumulated by these rules
are performed in parallel unless sequentialised by seq.

Unifying the Semantics of UML 2 State, Activity and Interaction Diagrams 209

In our work we use asynchronous multi-agent ASMs, allowing the concurrent
execution of several ASM agents. Each performs its own rules as described above,
and they communicate by shared functions. Further details of ASMs, including
an operational semantics, are provided by [3].

3 Formal Semantics for Combining Language Units

Before we detail the ways to combine behaviour specifications, we briefly describe
our general approach to the semantics of UML. The ASM rules need to access
the concrete diagrams of the model whose semantics they define. To this end, we
translate the UML syntax, also called the ‘meta model’, to static ASM domains
(for classes) and functions (for attributes and associations). They are initialised
to yield the particular values corresponding to the concrete model. Monitored
ASM functions are used for information determined by the environment. In-
dividual executions of behaviour are represented by asynchronous multi-agent
ASMs. To model their interaction and signal handling, we use shared ASM do-
mains and functions. The semantics is then specified by ASM rules acting on
these functions such as those we describe in the following. Further details of this
approach are provided in [19], and the complete set of rules in [14].

3.1 Combining Behaviour Specifications

In this section we systematically derive several different ways to combine activi-
ties, interactions and state machines. To this end, we investigate the UML meta
model, looking for the places where the abstract class Behavior is used to specify
behaviour. This way we identify the possible means to combine behaviour, which
is then realised by specialising the abstract Behavior to the concrete classes Ac-
tivity, Interaction or StateMachine.

We find that the occurrences of Behavior fall into two categories. First, be-
haviour is used for elementary data processing: Data is passed to the behaviour,
which is expected to have no side effects; it produces a result that is further pro-
cessed. Examples are the selection and transformation of tokens at object nodes
and flows and decision nodes in activities, and the reduction of a collection by
ReduceAction. Typically, this processing is low-level and will be described by
code rather than another diagram. The code is easily integrated by specifying
the computation directly as an ASM rule or in a language with ASM semantics
such as Java or C�.

Second, behaviour is invoked that can make full use of UML’s specification
facilities. In this case, we can distinguish the calling and the called behaviour.
Typically, the called behaviour is specified by a diagram as discussed in the
following. If it is low-level, it may also be given by code and integrated as above.

In principle, each kind of diagram can be used independently to specify the
caller and the callee. In practice, it is problematic to call interactions, since they
specify emergent behaviour [17, page 482]. This kind of behaviour results from
the interaction of all participant objects and is not performed by a particular

210 J. Kohlmeyer and W. Guttmann

object [17, page 419]. Hence in general it is not meaningful to let a given object
call emergent behaviour. We will investigate this issue in further work, but do
not allow interactions to be called in the present paper. However, interactions
may appear as the caller, for example, to specify test scenarios as in Section 3.5.
For the callee, we are thus left with activities and state machines, and we now
argue that these two diagrams can indeed be called from activities, interactions
and state machines.

Let us exemplify this argument for state machines as the caller by considering
the relevant part of the UML meta model [17, page 525]. It clearly shows that
a behaviour may be associated to a state as its entry, exit and do-activity, as
well as the effect of a transition. The intended meaning of these behaviours
is described by the UML specification in text form. Each of these behaviours
can independently be specified as an activity or as a state machine, since they
specialise the abstract class Behavior.

We carry out the same procedure for activities and interactions to identify
their possible combinations. For activities, we obtain that behaviour is attached
to CallBehaviorAction [17, page 245]. This kind of action may be used in activ-
ity diagrams, for example, for hierarchical decomposition. For interactions, we
obtain that behaviour can be associated to BehaviorExecutionSpecification [17,
page 467]. This is a specialisation of InteractionFragment, whose instances are
the (partially ordered) constituents of interactions.

We have thus identified the ways to compose UML behaviour diagrams. In the
following section, we formalise the calling mechanism of diagrams. It is applied to
formally define the semantics of calling behaviour from activities, state machines
and interactions, respectively, in Sections 3.3–3.5.

3.2 Calling Mechanism

In the existing ASM semantics of UML behaviour diagrams, there is just one
place describing the invocation of behaviour specified by a diagram: The calling
of an activity from an activity by a CallBehaviorAction [19]. We abstract the
calling mechanism from that description and generalise it to other kinds of dia-
grams for the caller and the callee. The resulting ASM rule takes as arguments
the called behaviour, its context object, its parameters and a flag indicating
whether the call is synchronous or asynchronous. Observe that these arguments
resemble the ingredients of calling mechanisms in programming languages.

StartBehaviour(behaviour , context , input , isSynch) ≡
case behaviour in

Activity : if behaviour .isSingleExecution ∧ isRunning(behaviour)
then ReCall(behaviour , input)
else Call(Activity(behaviour , context , input))

StateMachine : Call(StateMachine(behaviour , context , input))
Interaction : Call(Interaction(behaviour , input))

if isSynch then Self .mode := waiting else Self .mode := completed

For activities, we distinguish if an existing execution is used or a new one cre-
ated according to the isSingleExecution attribute [17, page 317]. In the former

Unifying the Semantics of UML 2 State, Activity and Interaction Diagrams 211

case, treated by the rule ReCall, we notify the already running execution that
new input tokens are available using the internal StartEvent . In the remaining
cases of StartBehaviour, the rule Call creates a new agent executing the
corresponding handler from the ASM semantics for the individual diagrams.

ReCall(activity , input) ≡
let exec = agent(activity) in

exec.callers := exec.callers ∪ {Self }
AddEvent(exec,StartEvent (input))
Self .calledExec := exec

Call(rule) ≡
let exec = new(Agent) in

exec.callers := {Self }
ASM(exec) := rule
Self .calledExec := exec

The called behaviour is informed about its callers. This is necessary so that
they can be notified about termination even in the case of asynchronous calls
(this mechanism is used, for example, to implement the so-called completion
transitions in state machines). If the call is synchronous, we put the calling
agent into a mode waiting for the called execution to terminate.

Let us finally point to the absence of the context object for interactions
in the rule StartBehaviour. This reflects the fact that they specify emer-
gent behaviour of several participating objects, as discussed in Section 3.1. Al-
though interactions cannot be called from other diagrams, they are included in
StartBehaviour to set up the behaviour of the initial objects when the mod-
elled system is started. To this end, we assume that interactions are instantiated
as objects and thus run in their own context [17, page 430].

InitialiseBehaviour ≡
forall object with object ∈ BehaviouredObject do

StartBehaviour(object .classOf .classifierBehaviour , object , ∅, false)

In the initial case, there are no parameters and the calls are asynchronous since
all initial objects act concurrently.

We have thus established the mechanism to call diagrams, namely the rule
StartBehaviour. It allows for a simple integration of further kind of behaviour
having an ASM semantics. The following sections implement the calling of be-
haviour by this mechanism. To abort a called behaviour, we adapt the termina-
tion mechanisms described in [19,9].

3.3 Calling Behaviours from Activities

As our running example, we use a simplified model of an MP3 music player
whose behaviour is specified in Figure 1.

The general behaviour is modelled by the activity diagram on the left: Its first
action shows a welcome message on the display, then the user can simultaneously
edit the play list with the action EditList and listen to music with the action
PlayMusic. These actions are instances of CallBehaviorAction, detailed in further
UML diagrams. The behaviour EditList is modelled by an (omitted) activity
diagram. The calling of activities from activities is described in [19].

212 J. Kohlmeyer and W. Guttmann

�

�

�

�

MP3PlayerBehaviour

•�
�� �	Welcome

�
���

�
�
EditList

���

��
�� play

��� �	PlayMusic

�
��
��

bye

��•

PlayMusic�� •
� �

�

�

�

•�
�� �	volume� 	�

down/volDown

�
� �up/volUp

•�
� �
� 	

playing

do/Play

�� �	paused
�� �	stopped

	
	

	
	

pause

	
	
	
	�

play

�
�
�
�

stop

�
�

�
��

play

�
stop

�off�•
Fig. 1. Simplified MP3 player

In this paper we focus on the right path of the activity diagram which specifies
the playing of music. If the play signal is received – generated by the environ-
ment, for example, by the user pressing a button – a CallBehaviorAction is
executed which activates the behaviour PlayMusic. In our model, this is ade-
quately specified as a state machine on the right of Figure 1. It contains two
regions which model the behaviour of volume control and playing music.

The ASM rule ExecuteCallBehaviourAction handles the calls of other
behaviours. For space reasons we only show the parts of the rule which are rele-
vant for calling another behaviour. The detailed semantics of CallBehaviorAction
can be found in [19].

ExecuteCallBehaviourAction ≡ . . .
if Self .mode = enabled then

let cTag = tagValue(Self .node , CallContext, context) in
if cTag = undefined

then context := Self .activityExecution.context
else context := computeContext (Self .activityExecution.context , cTag)

seq
StartBehaviour(Self .node.behaviour , context ,

{(pinToParameter (n), ts) | (n, ts) ∈ Self .input}, Self .node.isSynchronous)
if Self .mode = waiting then . . .

At first the context object of the called behaviour is computed. This is left
unclear by the UML specification [17, page 429], since the called behaviour is
not owned by the CallBehaviorAction. We therefore add a context tag as in [19]
from which the context is computed. If the tag is not defined, the context of
the caller is used. The function pinToParameter maps the inputs, which are
provided by the input pins of the calling action, to the parameters of the called
behaviour. With these arguments we start the associated behaviour. The waiting
mode of the rule waits for the termination of synchronous calls.

Unifying the Semantics of UML 2 State, Activity and Interaction Diagrams 213

In the MP3 player the context of the called state machine is the activity’s
context. The state machine can thus access attributes of the context object. No
parameters are passed and the call is synchronous by default, hence the calling
activity waits until the state machine terminates.

The behaviour within the playing state of the MP3 player (do-activity) is
specified by the activity diagram Play, not detailed here. Calling activities from
state machines is described next.

3.4 Calling Behaviours from State Machines

The state machine on the right of Figure 1 is interpreted by an ASM agent, called
‘top agent’. As soon as the composite state is reached, another two agents are
started to interpret the orthogonal regions. As described in Section 3.1, calling
behaviours from state machines can occur during (internal or external) transi-
tions or when entering, exiting or being in a state. Each agent holds the currently
active states and executes the rules required to perform transitions and to call
behaviours in its region. Transitions must be performed atomically, including
any behaviour invoked while they take place. We can therefore no longer use the
rules of [2] since these apply to UML 1.4, which allowed only actions, not be-
haviours to be executed. To ensure atomic transitions, we introduce appropriate
modes for the ASM agents.

First, we select one of the available events and a corresponding, enabled tran-
sition. This is done by the selecting and preparing modes of the rule Perform-
Transition, which we discuss in Section 4. Second, we carry out the selected
transition. If it is internal, only its effect has to be executed. In general, the tran-
sition crosses several state boundaries, hence a number of steps must be taken
to execute the exit, effect and entry behaviours in the given order. Moreover, the
running do-activities of the left nodes must be aborted, and new do-activities ini-
tiated after each state is entered. The correct sequence of these tasks is delivered
iteratively by the rule NextTask, updating the current state and task.

PerformTransition ≡ . . .
if Self .mode = running then

case currentTask of
exit: Exit(currentState) do: Do(currentState)
effect: Effect(currentTrans) finish: Finish(currentTrans)
entry: Entry(currentState) Self .mode := selecting

NextTask

Besides doing the necessary book-keeping, the rules Exit, Effect, Entry and
Do call the annotated behaviour. We first discuss Effect; the rules Exit and
Entry are similar. In our example it is invoked when the events up or down trig-
ger a transition in the volume state, and hence the behaviour volUp or volDown.
This is performed by a synchronous call since transitions are atomic. In contrast
to activities, the context object is clearly specified by the UML as the context
of the calling state machine. The parameters are obtained by the monitored
function getEffectParam , since this is left open by the UML [17, page 574].

214 J. Kohlmeyer and W. Guttmann

Effect(trans) ≡
let context = trans.container .stateMachine.context in

let param = getEffectParam(trans , context) in
StartBehaviour(trans.effect , context , param , true)

In our example internal behaviour is started when the playing state is entered,
either initially or as a result of a transition caused by the play event. This is
performed by the rule Do analogously to Effect, except that the do-activity
(Play) is called asynchronously since it must be performed concurrently; for
example, a transition might leave the state while the do-activity is running.

3.5 Calling Behaviours from Interactions

To illustrate the calling of behaviour from interactions, we use them to specify
test cases. Figure 2 shows a possible scenario for the MP3 player example. The
sequence diagram specifies messages and their sequence between two lifelines, a
user and the MP3 player. The events used in the behaviour of the MP3 player
are created by the environment, in our case by the user. If the user turns on
the player, the activity MP3PlayerBehaviour (see Figure 1) is executed. If the
play message is received, the state machine PlayMusic is instantiated. The user
then operates the player (for example, higher volume, pause the player) and
the player reacts by sending messages to the user (for example, if the play list
is finished). These reactions are defined in the do-activity of the playing state.
After the user turns off the player, the state machine is terminated immediately
and the activity sends the message bye to the user before it is stopped.

PlayTest��

:User :MP3Player

�on

�play

�up

�pause

�play

� finished

�off

� bye

{behaviour=MP3PlayerBehaviour,
call, verifyEnd}

��

{behaviour=PlayMusic,
verifyCall, verifyEnd}

��

Fig. 2. Interaction defining test cases

Unifying the Semantics of UML 2 State, Activity and Interaction Diagrams 215

A sequence diagram is interpreted by one ASM agent, processing the con-
stituent interaction fragments. For the purposes of test case specification it is
sufficient to consider one possible sequence of fragments matching the order
imposed by the diagram (conveniently generated by ASM’s choose rule). The
fragments (which may be composed of other fragments) are processed iteratively.
For each fragment, a rule defining the semantics according to its kind is executed.
We only present the parts of the rule relevant for the combination of behaviours.

In the UML meta model the invocation of behaviour from a lifeline (see Figure
2) is represented as a BehaviorExecutionSpecification associated to two Execu-
tionOccurrenceSpecifications, namely its start and its finish. Note that both the
execution and its two occurrence specifications are interaction fragments accord-
ing to the UML. We base our semantics on the occurrences, since they offer the
finer view. If the current fragment is such an execution occurrence, the following
ASM rule is executed.

CaseBehaviourExecutionEvent(fragment) ≡
let context = fragment .covered in

let param = getBehaviourParam (fragment) in
case behaviourKind(fragment) of

call: StartBehaviour(fragment .behaviour , context , param , false)
end: FinishBehaviour(fragment .behaviour , context)
verifyCall: VerifyStartBehaviour(fragment .behaviour , context , param)
verifyEnd: VerifyFinishBehaviour(fragment .behaviour , context)

It distinguishes whether the associated behaviour starts or finishes. For test
scenarios, we further distinguish who controls the start or finish of the behaviour.
This may be the environment; then the behaviour must actually be started or
aborted. Alternatively, the behaviour may be started by the specified diagrams
under test; we then verify if the appropriate action takes place. The decision
is taken according to annotations in the sequence diagram, see Figure 2. We
propose that the context object of the behaviour is its lifeline, since this is left
unclear by the UML.

4 Communication in UML

In [19] a semantics for the event-based communication between activities is
stated. In this section, we describe the necessary modifications due the combi-
nation of different kinds of diagrams. The existing semantics uses an event pool
for each behaviour execution to store event occurrences (for example, a signal
causes an event at its target behaviour). While this suffices for activities, it does
not comply with the UML, which requires the context objects (that may have
more than one associated behaviour executions) to recognise event occurrences
[17, pages 433 and 563].

Thus, we argue that the event pool is located at the context object of a
behaviour, not at the behaviour itself. We specify rules to handle the procedure
of sending signals via SendSignalAction or BroadcastSignalAction in compliance
with the specification. The rules create a request object (several for broadcasts),

216 J. Kohlmeyer and W. Guttmann

capturing among other things the sender and the target object. For specifying
the target of a signal we use the signal path approach proposed in [18], adapted
to our semantics.

Further changes are necessary for the semantics of the particular language
units. We exemplify this for the top agent of state machines, which has to perform
transitions upon receiving a signal.

PerformTransition ≡ . . .
if Self .mode = selecting then

choose e with e ∈ Self .context .eventPool do
dispatched := e . . .

if Self .mode = preparing then
choose trans with trans ∈ fireableTransWithMaxPriority (dispatched) do

FirstTask(trans)
Self .mode := running

The rule chooses an event from the context object’s event pool, the so-called
dispatched event. It then chooses a transition fireable with the dispatched event
and switches into running mode, see Section 3.4. The agents for the orthogonal
regions execute a similar rule, performing transitions enabled by the dispatched
event after synchronising with the top agent.

5 Conclusion

As discussed in the introduction, there are a number of works about the seman-
tics of individual types of diagrams. Two further approaches aim at an integrated
framework. Subsystems interacting by message passing are described in [12], but
this applies to the old UML 1.4 only. Works initiated by the UML Semantics
Project [4,5,8] are based on the ‘system model’ defined in terms of mathematics.
However, the combination of different kinds of diagrams is not discussed; for
example, activities can only call activities [7].

To overcome these limitations, we have presented a formal semantics of the
combined use of activities, state machines and interactions, based on the same
UML version 2.1.2. The resulting rules adhere to requirements present in or
absent from the UML specification. They also allow the integration of code to
implement low-level behaviour.

Based on our semantics, we are currently extending our tool ActiveCharts
(http://activecharts.de/), that directly executes UML activities, to simulate
models specified by state machines and interactions. The tool can be used to
find errors in the modelled system and to obtain a better understanding of it.
Examples we have modelled include a lift and a traffic light control.

Acknowledgement. We thank Guido de Melo for his model of the MP3 player.

References

1. von der Beeck, M.: A structured operational semantics for UML-statecharts. Soft-
ware and Systems Modeling 1(2), 130–141 (2002)

http://activecharts.de/

Unifying the Semantics of UML 2 State, Activity and Interaction Diagrams 217

2. Börger, E., Cavarra, A., Riccobene, E.: On formalizing UML state machines using
ASMs. Information and Software Technology 46(5), 287–292 (2004)

3. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003)
4. Broy, M., Crane, M., Dingel, J., Hartman, A., Rumpe, B., Selic, B.: 2nd UML 2

semantics symposium: Formal semantics for UML. In: Kühne, T. (ed.) MoDELS
2006. LNCS, vol. 4364, pp. 318–323. Springer, Heidelberg (2007)

5. Cengarle, M.V., Grönninger, H., Rumpe, B.: System model semantics of state-
charts. Informatik-Bericht 2008-04, TU Braunschweig (July 2008)

6. Cengarle, M.V., Knapp, A.: UML 2.0 interactions: Semantics and refinement. In:
Jürjens, J., Fernandez, E.B., France, R., Rumpe, B. (eds.) Critical Systems Devel-
opment with UML, pp. 85–99. TU München (2004)

7. Crane, M.L.: Slicing UML’s Three-layer Architecture: A Semantic Foundation for
Behavioural Specification. PhD thesis, Queen’s University (January 2009)

8. Crane, M.L., Dingel, J.: Towards a UML virtual machine: Implementing an inter-
preter for UML 2 actions and activities. In: Chechik, M., Vigder, M., Stewart, D.
(eds.) Conference of the Centre for Advanced Studies on Collaborative Research,
pp. 96–110. ACM Press, New York (2008)

9. Dausend, M.: Entwicklung einer ASM-Spezifikation der Semantik der Zustands-
automaten der UML 2.0. Diploma thesis, Universität Ulm (June 2007)

10. Fecher, H., Schönborn, J.: UML 2.0 state machines: Complete formal semantics
via core state machine. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol,
J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 244–260. Springer,
Heidelberg (2007)

11. Fürst, J.: Entwicklung einer ASM-Spezifikation für die Semantik von UML 2 Se-
quenzdiagrammen als Grundlage zur Anbindung an ActiveCharts. Diploma thesis,
Universität Ulm (February 2008)

12. Jürjens, J.: Formal semantics for interacting UML subsystems. In: Jacobs, B.,
Rensink, A. (eds.) Formal Methods for Open Object-Based Distributed Systems V,
pp. 29–43. Kluwer Academic Publishers, Dordrecht (2002)

13. Kohlmeyer, J.: Executing UML 2 diagrams in ActiveCharts: A formal semantics for
the combination of behavior specifications in the UML 2. In: Bertelle, C., Ayesh,
A. (eds.) ESM 2008, October 2008, pp. 94–101 (2008)

14. Kohlmeyer, J.: Eine formale Semantik für die Verknüpfung von Verhaltensbeschrei-
bungen in der UML 2. PhD thesis, Universität Ulm (July 2009)

15. Li, X., Liu, Z., He, J.: A formal semantics of UML sequence diagram. In: Australian
Software Engineering Conference, pp. 168–177. IEEE, Los Alamitos (2004)

16. Marković, S., Baar, T.: Semantics of OCL specified with QVT. Software and Sys-
tems Modeling 7(4), 399–422 (2008)

17. Object Management Group. UML 2.1.2 Superstructure Specification (November
2007)

18. Sarstedt, S.: Overcoming the limitations of signal handling when simulating UML 2
activity charts. In: Feliz-Teixeira, J.M., Carvalho Brito, A.E. (eds.) ESM 2005,
October 2005, pp. 61–65 (2005)

19. Sarstedt, S.: Semantic Foundation and Tool Support for Model-Driven Develop-
ment with UML 2 Activity Diagrams. PhD thesis, Universität Ulm (July 2006)

20. Sarstedt, S., Guttmann, W.: An ASM semantics of token flow in UML 2 activity
diagrams. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp.
349–362. Springer, Heidelberg (2007)

21. Störrle, H.: Semantics of interactions in UML 2.0. In: Symposium on Human Cen-
tric Computing Languages and Environments, pp. 129–136. IEEE, Los Alamitos
(2003)

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 218–229, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Applicability of the BLAST Model Checker:
An Industrial Case Study*

Emanuel Kolb1, Ondřej Šerý2, and Roland Weiss1

1 Industrial Software Systems, ABB Corporate Research,
ABB AG, Forschungszentrum Deutschland,

Wallstadter Str. 59, D-68526 Ladenburg, Germany
{emanuel.kolb,roland.weiss}@de.abb.com

2 Charles University in Prague
Malostranske nam. 25, 118 00 Prague 1, Czech Republic

ondrej.sery@dsrg.mff.cuni.cz

Abstract. Model checking of software has been a very active research topic re-
cently. As a result, a number of software model checkers have been developed
for analysis of software written in different programming languages, e.g.,
SLAM, BLAST, and Java PathFinder. Applicability of these tools in the general
industrial development process, however, is yet to be shown. In this paper, we
present results of an experiment, in which we applied BLAST, a state-of-the-art
model checker for C programs, in industrial settings. An industrial strength C
implementation of a protocol stack has been verified against a set of formalized
properties. We have identified real bugs in the code and we have also reached
the limits of the tool. This experience report provides valuable guidance for de-
velopers of code analysis tools as well as for general software developers, who
need to decide whether this kind of technique is ready for application and suit-
able for their particular goals.

Keywords: Software analysis, Model checking.

1 Introduction

Is model checking of software ready for application in the industrial development
process? The answer to this question is not simple. In some situations, where short
time to market and initial budget is more important than correctness, the benefits in
the sense of software quality might never outweigh the additional costs of model
checking both in time and money. On the other hand, in some very specific scenarios,
software model checking has already been used for quite a time, e.g., during devel-
opment of Windows device drivers [1]. Nevertheless, it is yet to be shown that soft-
ware model checking can be applied also outside these specific domains.

* This work was funded in the context of the Q-ImPrESS research project (http://www.q-

impress.eu) by the European Union under the ICT priority of the 7th Research Framework
Programme and partially supported by the Grant Agency of the Czech Republic project
201/08/0266.

 Applicability of the BLAST Model Checker 219

There are potential industrial users. Unfortunately, they often miss the information
on which to base their decision of using this technique. Unlike in other fields (e.g.,
theorem proving and HW model checking), there is no widely accepted collection of
problems for software model checking that would allow for comparison of model
checking tools against each other and also assessing the strength of the technique as a
whole. Therefore, a potential industrial users have to make up their minds based on
few available case studies. Moreover, many of these are conducted by the tool’s au-
thors in order to point out benefits of a particular technique they use, which gives
little information on general applicability. Often, the tools are used to find already
discovered errors (e.g., in [14]). This is definitely useful to show that finding a par-
ticular type of error is at least possible. However, when manual code simplifications
are necessary to do so, it is unclear whether those might have been applied even with-
out knowing the error in advance.

We believe that both potential industrial users and authors of the model checking
tools would benefit from more case studies showing applicability and emphasizing
limitations of the tools, which are currently available.

1.1 Goal and Structure of the Paper

In this paper, we document a case study in which we have employed the state-of-the-
art software model checker BLAST in analysis of an industrial strength C implemen-
tation of the OPC UA [13] protocol stack. We have discovered a number of real
defects with a reasonable rate of false positives. Our original input was the C source
code and a set of informally stated properties to be verified.

The rest of the paper is structured as follows. The OPC UA protocol stack and its C
implementation are briefly presented in Section 2. The BLAST model checker is
described in Section 3, where we also advocate its choice. In Section 4, the experi-
ment and its results are discussed. In Sections 5 and 6, the related work is listed fol-
lowed by our conclusions.

2 Case Study: OPC UA Protocol Stack

The OPC Unified Architecture (OPC UA) is a platform-independent standard through
which various kinds of systems and devices can communicate by sending messages
between clients and servers over various types of networks. OPC UA is applicable to
manufacturing software in application areas such as Field Devices, Control Systems,
Manufacturing Execution Systems and Enterprise Resource Planning Systems. These
systems are intended to exchange information and to use command and control for
industrial processes.

It is expected that, over the next years, OPC UA will replace the “classic” OPC
protocols, like OPC DA (Data Access), OPC A&E (Alarm and Event) and OPC HDA
(Historical Data Access). The classic OPC protocols are widely used in industrial
automation, but – due to their specification based on Microsoft’s COM and DCOM
technology – they can only run on Windows computers. Since OPC UA is based on
the web-service paradigm, the protocol is able to run also on non-Windows systems,
like Linux or VxWorks. The OPC UA specification is expected to be released by the
OPC Foundation [17] in the 1st quarter of 2009.

220 E. Kolb, O. Šerý, and R. Weiss

The specification of the OPC UA protocol is not based on a specific programming
language or technology. To access the OPC UA protocol from a specific program-
ming language, a binding of the protocol to the language must be provided. This al-
lows OPC UA applications written in different languages to communicate with each
other. Although the OPC Foundation does not specify bindings for programming
languages, it makes binding implementations (so called OPC UA Stacks) for C/C++,
Java and .Net available. An OPC UA Stack implements the serialization, security and
transport of messages exchanged between different UA Applications.

A typical architecture of an OPC UA communication system is depicted in Figure
1. There are two main roles for OPC UA applications: OPC UA client and OPC UA
server. An OPC UA client builds up a connection to an OPC UA server and ac-
cesses/manages the data that is made available by the server.

Fig. 1. A typical architecture of an OPC UA communication system

In this paper, we are particularly interested the OPC UA C-stack, which implements
the OPC UA protocol binding for the C programming language. The OPC UA C-Stack
is programmed in ANSI C (about 150 KLOC) and is split into a platform independent
and a platform dependent part (also called platform layer). The platform layer contains
the platform specific code that is needed for porting the C-Stack to a specific Operating
System. Currently platform layers for Windows and Linux are available. The compo-
nent is designed for usage in both PC-based and embedded systems.

The internal structure of the OPC UA C-Stack is visualized in Figure 2. Responsi-
bilities of the particular modules are as follows:

• Server Stub provides the OPC UA API for OPC UA server applications. Its main
functions are: “Managing communication endpoints”, “Entry points for OPC UA
services” and “Service infrastructure functions”.

• Client Proxy provides the OPC UA API for OPC UA client applications. Its main
functions are: “Managing connections” and “Calling OPC UA Services in syn-
chronous or asynchronous mode”.

• Secure Channel manages the security layer of the OPC UA protocol. The security
layer is on top of the transport layer “Tcp Transport”. Its main functions are:
“Managing secure connections on client and server side”, “Managing the secure
data stream” and “Managing security policies”.

 Applicability of the BLAST Model Checker 221

• Tcp Transport is responsible for the binary TCP channel of the OPC UA protocol.
Its main functions are: “Managing TCP connections” and “Managing the TCP data
stream”.

• Stack Core contains the core functionality of the C-stack. Its main functions are:
“Providing Binary encoders and decoders”, “Providing the OPC UA built-in
types”, “Providing basic cryptographic functions”, “Basic stream and connection
handling”, “Providing the message types used in the OPC UA services” and “Pro-
viding a string table type”.

• Core contains the UA protocol independent basic functionality. Its main functions
are: “Basic type handling (Guid, DateTime, Buffer, List, String)”, “Basic proxys-
tub handling”, “Basic memory functions”, “Thread and Threadpool management”,
“Timer functions”, “Tracing functions and “Some utility functions (bsearch,
qsort,...)”.

• Platform contains platform specific submodules (Linux, Windows, ...). A platform
specific submodule interfaces and abstracts the OS dependent system calls. Its
main functions are: “Thread handling”, “Mutex/Semaphore functions”, “Timer im-
plementations”, “Date and Time handling”, “Socket handling”, “String handling”
and “Security functions (interfacing OpenSSL)”.

After briefly presenting the BLAST model checker in the next section, we will docu-
ment its application in analysis of the OPC UA C-Stack source codes.

Fig. 2. Internal structure of the OPC UA C-Stack

3 Overview of BLAST

As already mentioned, BLAST is a model checker for analyzing programs written in
the C programming language. As well as some other code model checkers designed
for C, SLAM [1] and SATABS [7], BLAST utilizes predicate abstraction [2] and
iterative refinement of the abstraction based on spurious counter-examples. In

222 E. Kolb, O. Šerý, and R. Weiss

literature, this technique is often referred to as counter-example guided abstraction
refinement (CEGAR).

In a nutshell, a coarse existential abstraction (over-approximation) is initially cre-
ated from the program under analysis. This abstraction is then traversed and sought
for any reachable error state. If no reachable error state is found, the use of over-
approximation grants that also the original program is error-free. On the other hand, if
there is a reachable error state, then this may be either a real error of the original pro-
gram or a spurious error due to the abstraction. In the second case, the abstraction is
refined based on the spurious error in order to avoid it in the future. After such a re-
finement, the new abstraction is traversed and the process iterates.

Unlike other tools based on CEGAR, BLAST features lazy abstraction [11]. This
means that BLAST creates the abstraction on-the-fly, and in the refinement step, it
refines only the necessary portions of the abstraction, while keeping the rest. Thus,
only the reachable part of the abstraction is created and the portions that were previ-
ously proven to be error-free are not refined again. This is in contrast to the naïve
CEGAR implementation which recreates the whole abstraction in every iteration.

Another useful feature of BLAST is configurable program analysis (CPA), pub-
lished by the BLAST’s authors in [5]. The CPA concept stems from abstract interpre-
tation [9] and was originally introduced to provide a uniform view on model checking
and static analysis. The basic idea is to have multiple CPAs for tracking different
kinds of information (e.g., predicates and heap shape) about the program under analy-
sis. Each CPA tracks the information in either a path sensitive or insensitive way. By
combining the different CPAs, various configurations of the resulting analysis can be
achieved. In [6], this idea is extended by the notion of dynamically adjustable preci-
sion of the information that is tracked, yielding configurable program analysis with
dynamic precision adjustment (CPA+).

Fig. 3. Original BLAST architecture with property specification preprocessing and configurable
program analysis

Building on this work of others, we have proposed an improvement of property
specification in CEGAR based tools and implemented an extension in BLAST. Tools
like SLAM and BLAST allow for specification of temporal safety properties in a
specialized formalism SLIC [3] and BLAST specification language [4], respectively.
As depicted in Figure 3, the property specified in such formalism is then used to in-
strument the original source code of the program under analysis. Artificial variables,
their updates, and assertions are added to the source code. The instrumented source
code is then analyzed for reachability of error states. This way, the property is en-
coded into the source code and manifests itself as additional predicates that have to be

 Applicability of the BLAST Model Checker 223

tracked during the state space traversal, requiring additional theorem proving over-
head. Moreover, the instrumentation step has to be repeated after any modification of
the original code.

In [16], we proposed an enhancement based on tracking the state of the property
explicitly side by side with the program’s abstraction, thus, overcoming the need for
prior source code instrumentation. In the prototype implementation of the BLAST
extension, the property is encoded and tracked in a separate Behavior CPA. The idea
is depicted in Figure 4.

Fig. 4. Extended BLAST architecture when property specification is tracked in a specialized
CPA (Behavior CPA)

In the following, we document application of the BLAST model checker enhanced
with the abovementioned property specification extension to the C implementation of
OPC UA Stack. We have chosen BLAST for this purpose, because, it uses very ad-
vanced techniques in comparison to the other CEGAR based tools and it is generally
regarded as a state-of-the-art tool in this category. Another reason was our previous
positive experience with the tool.

4 Experiment

An important aspect of the OPC UA C-Stack source code we have analyzed is that it
is basically a library. In contrast to standalone software, when analyzing a library,
there is always the problem of a missing environment. In other words, one cannot
simply feed the source code into a model checker tool and hope for meaningful re-
sults, because the source code of a library constitutes only a partial model, e.g., there
is no main function and the behavior of user code is missing. Moreover, a library is in
general used in different environments and analyzing it in a specific one fails to pro-
vide guarantees for the others.

There are basically two ways to mitigate this issue. First, one can use the assume-
guarantee principle [12] and try to formulate the library’s assumption about its envi-
ronment by creating a very general testing harness, i.e., the most general environment.
Such an environment should cover both typical usage patterns and border cases. A
consecutive analysis of the library in the most general environment would then pro-
vide guarantees for any environment subsumed by the most general one (i.e., any
environment satisfying the library’s assumption).

224 E. Kolb, O. Šerý, and R. Weiss

The second way to cope with the missing environment is to use defensive pro-
gramming and make no assumptions on the order and the context in which the li-
brary’s API functions are used, while requiring the library to stay error free and inter-
nally consistent at all times. Although the second option gives stronger guarantees and
provides for analysis of the API functions in separation, it is also prone to reporting
many false positives (due to ignoring potential assumptions), unless the library’s
source code is written defensively itself.

Although we have originally planned to try both ways, we were unable to complete
the first one due to several BLAST limitations. We have, however, achieved satisfactory
results in applying the second way with a relatively low ratio of false positives. This is
mainly due to the fact that the OPC UA C-Stack code is written very defensively with
few implicit assumptions. In the following, this second attempt is described in detail.
The discussion of the BLAST’s limitations is postponed to Section 4.4.

4.1 Methodology

In our experiments, we have identified three properties (described in Section 4.2) that
should be satisfied during calls to the OPC UA C-Stack API functions. Each property
was specified using a simple regular language [16]. For each property and each rele-
vant OPC UA C-Stack API function, we have executed the BLAST model checker
with the Behavior CPA extension. Although specific functions were used as entry
points, BLAST traverses all the states reachable from the specific function in an inter-
procedural manner (i.e., also functions transitionally reachable from the API functions
are considered).

Note also, that some code changes had to be introduced to make the analysis by
BLAST possible. Main source of these changes was use of bit operations in error
handling code. Although, in principle, BLAST can analyze source code featuring bit
operations, it cannot reason about them properly when reachability of an error state
depends directly on the result of a bit operation. Note that OPC UA C-Stack was not
developed with model checking in mind. Therefore use of some bit operations in the
error handling code was superfluous and was rewritten by other means to facilitate
analysis. Another change was rewriting of some C macros into functions, so that they
survived code preprocessing and BLAST could reason about them. This was the case
with mutex locking/unlocking functions, which were originally implemented as mac-
ros. After code preprocessing, it was hard to formulate properties concerning proper
ordering of mutex locking and unlocking.

It is worth mentioning that majority of the necessary changes have been made in
header files. In our settings, this resulted in two versions of header files, the original
ones and the “model checking friendly” headers. However, given the rather small
amount of changes (tens of lines), this duality would not be strictly necessary if the
development was started with model checking and its limitations in mind.

4.2 Properties

Initially, a domain expert identified about eight informal properties to be analyzed.
From these, based on experience with model checking tools, we have picked the fol-
lowing three amenable to analysis using BLAST1.

1 Formalized properties are available at: http://dsrg.mff.cuni.cz/~sery/blast/psi09.tgz

 Applicability of the BLAST Model Checker 225

Locking policy. The OPC UA C-Stack is multithreaded by design. Where necessary,
access to shared data structures is controlled by locking and unlocking of mutexes. A
natural question here concerns correctness of such a locking policy. For example, it is
important to see, that any locked lock is always unlocked before returning from an
API function call, no matter what exceptional situation might occur.

MessageContext management. Whenever the OPC UA C-Stack implementation
manipulates a network message, it uses a message context to hold all necessary data.
Before using the message context, the OpcUa_MessageContext_Initialize
function has to be called first to initialize it. The message context has to be cleared for
other use by invoking the OpcUa_MessageContext_Clear function afterwards.

Encoder management. The OPC UA C-Stack supports secure connection by encod-
ing messages using SSL. This task is carried out by an encoder. Similarly to the pre-
vious property, the encoder has to be opened by invoking OpcUa_Encoder_Open
before attaching it to a stream. When the encoding is done, the encoder has to be
closed by calling the OpcUa_Encoder_Close function in order to free the associ-
ated resources and to prevent leaks.

For example, one omitted property is to check that all pointer parameters of an API
function are checked for null before use. This task is more suitable for static analy-
sis than for model checking. Another one is to check that all allocated memory is
eventually freed, which we consider beyond the power of the current model checkers.

4.3 Experiment Results

All the tests were run on a Linux 2.6.27 system with Intel Pentium 4 CPU at 3.00GHz
featuring 2GB of memory2, with approximately 2 person-months effort3. Tables 1-3
summarize running times and number of defects found in the individual tested files
for each of the three above listed properties. The error traces reported by BLAST
(reported errors) were manually inspected to identify real defects (real errors). In a
few cases, the tool was unable to perform the analysis (tool failures). This was mainly
due to recursive functions, which are not supported by the tools combination we have
used. Of course, such cases have to be considered as potentially erroneous.

A typical spurious error is a situation, where the locking policy is rightfully vio-
lated by design. For example, the TcpSecureChannel_GetSecuritySet locks
a mutex which is unlocked by the TcpSecureChannel_ReleaseSecurity-
Set function. In the functions, a missing unlock and a missing lock are reported,
respectively. Second type of a spurious error is a situation, where multiple mutexes
are manipulated in a single function and they are mismatched by the tool. This is due
to the fact that the properties are specified as a correct ordering of function calls,
ignoring the function parameters (which identify the distinct mutexes in the code).
Similar situation may occur also for the other properties.

2 Although the system supports hyper-threading, BLAST and its process subtree was executed

on a single virtual core. This is due to a synchronization issue present in BLAST at the time
of writing, which manifested itself on multiprocessors resulting in random deadlocks.

3 This includes studying the code, identification and formalization of properties, code modifica-
tions, analysis and interpretation of error traces.

226 E. Kolb, O. Šerý, and R. Weiss

Table 1. Analysis results of the locking policy property

Filename time [s] reported errors tool failures real errors
opcua_proxystub.c 2.3 0 0 0
opcua_threadpool.c 2.0 1 0 1
opcua_trace.c 1.2 0 0 0
opcua_thread.c 1.7 0 0 0
opcua_endpoint_ex.c 1.1 0 0 0
opcua_endpoint.c 10.1 0 0 0
opcua_asynccallstate.c 1.1 0 0 0
opcua_channel.c 22.8 4 0 3
opcua_tcpsecurechannel.c 6.3 5 0 2
opcua_securelistener.c 48.2 1 0 0
opcua_secureconnection.c 3:10.4 9 0 1
opcua_binarydecoder.c 1:24.3 0 6 0
opcua_binaryencoder.c 1:54.5 1 8 1
opcua_tcplistener.c 11.1 1 0 0
opcua_tcpconnection.c 7.8 0 0 0
Summary 8:24.9 22 14 8

Table 2. Analysis results of the MessageContext management property

Filename time [s] reported errors tool failures real errors
opcua_endpoint.c 7.7 0 0 0
opcua_channel.c 14.6 2 0 2
opcua_securelistener.c 16.1 0 0 0
opcua_secureconnection.c 2:15.8 4 0 2
Summary 2:54.2 6 0 4

Table 3. Analysis results of the Encoder management property

filename time [s] reported errors tool failures real errors
opcua_endpoint.c 7.5 0 0 0
opcua_channel.c 7.1 0 0 0
opcua_securelistener.c 16.1 0 0 0
opcua_secureconnection.c 1:41.0 1 0 1
summary 2:11.7 1 0 1

Let us also describe a typical representative of the real defects that were found. In

the OPC UA C-Stack, the API function bodies are typically separated into a business
part, which performs the desired activity, and an error handling part, which takes care
of exceptional situations and performs the necessary cleanup. Two macros are used to
facilitate error handling. The OpcUa_GotoErrorIfBad(uStatus) macro
jumps into the error handling code if the preceding activity have failed. In the same
situation, the OpcUa_ReturnErrorIfBad(uStatus) macro immediately re-
turns from the function without performing the cleanup. Misuse of the latter one while
holding a lock violates the locking policy property and may easily lead to a deadlock.

 Applicability of the BLAST Model Checker 227

4.4 Discussion

Above, we have described our findings and it should be clear that, BLAST can be
used in the industrial development process to discover real errors that were missed by
previous conventional testing. On the other hand, it is also necessary to see what
guarantees are really provided by this type of analysis. Or put differently, we should
be aware of what we might have missed.

Naturally, BLAST would verify only those properties that were a priori identified
by a human user. As a trivial consequence, one should never mistakenly interpret
satisfaction of all predefined properties as overall program correctness. There is al-
ways a risk that the set of properties is not exhaustive for a particular task.

Even when an exhaustive set of properties is chosen, some of them might be hard
or impossible to specify and verify. Let us consider the locking policy property again.
A user might want to verify that a specific lock is always locked before a particular
data structure is accessed. Unfortunately, BLAST offers no means for this kind of
property to be specified. It would require a specification language with deeper under-
standing to semantics of data structures than BLAST is capable of. Also related to the
locking policy is a question of deadlock freedom. Although, the verification approach
employed by BLAST, might be used for multithreaded programs in principle, the tool
itself has no support for multithreading. As a result, we were able to verify correct
locking policy of a single thread (e.g., no pending locks) and even identify some real
violations, but there is still a chance that a deadlock may occur (e.g., due to mutexes
acquired in different order by distinct threads).

Another issue we have encountered is limitation regarding pointers. First, the OPC
UA C-Stack uses function-pointers (unsupported by BLAST) quite heavily. In some
situations, this might be overcome by explicit function calls. In others, it cannot. Also
quite often, functions accept out-parameters as pointers to values to be modified.
Under such circumstances, BLAST often fails to reason about properties directly
depending on the modified value. This is the main reason why we were unable to
employ an environment that would call the OPC UA API functions in a specific order
(as described above in Sect. 4). The API functions depend on out-parameters passed
as pointers and modified inside other functions. BLAST failed to analyze this scenario
and we have found no workaround, thus, having to abandon the approach entirely.

As a last comment, BLAST would greatly benefit from support during the entire
development process. There are typically some changes necessary to the code base in
order to make it model checking friendly (e.g., providing dummy versions of some 3rd
party libraries, etc.). With no tool support, managing the two versions is an extra
burden for the developers. Interpreting the checking results with no graphical support
is also very tedious. Unfortunately, there are quite a lot of such minor issues which, in
real development, weight against use of this type of formal analysis.

5 Related Work

As already described in Section 3, BLAST is one of the CEGAR based model check-
ers. Related tools include SLAM [1] and SATABS [7]. A bit different model checker,
CBMC [15], is based on bounded model checking. This means that it does not

228 E. Kolb, O. Šerý, and R. Weiss

exhaustively traverse the whole state space of a program, but rather limits the search
in depth (e.g., by a number of executed code blocks or context switches).

Another direction of related work is application of the model checking tools on
case studies. Typically, authors present their tool on examples more or less chosen to
manifest its strong points. Quite often, the tools are run on a code with a previously
known bug. The source code under analysis is typically manually simplified to make
the analysis feasible. Unfortunately, it is hard to see to whether the simplification is
driven by some kind of generally applicable guidelines or by the goal of finding the
specific bug.

In [14], Muhlberg et al. used BLAST to analyze portions of Linux kernel code for
previously reported bugs. Although the bugs were known in advance, substantial
manual code changes were introduced in order to make them detectable. The authors
conclude that BLAST has several limitations mainly concerning documentation,
pointer support and general usability, on which we agree. In contrast to this experi-
ment, our input was source code and an informal list of properties rather than a list of
previously known defects. In this respect, we have a more positive experience with
identification of previously unknown bugs. However, it would be too optimistic to
claim that our verification effort provides strong guarantees regarding the program
correctness (as discussed in Section 4.4).

Other techniques than model checking (e.g., static and runtime analysis) are often
used for error detection. Nice summaries can be found in [14, 10]. Although these
techniques are typically easier to use and they scale much better than model checking,
the correctness guarantees are weaker.

6 Conclusion

We have presented an experiment comprising application of the state-of-the-art C
code model checker BLAST to an industrial case study. We regard the experiment as
successful. We have discovered a number of real issues of the OPC UA C-Stack with
a reasonable number of false positives. On the other hand, we have met several limita-
tions that make adoption of these tools in the industrial development process difficult.
Some of them follow from the fact that the tools are still research prototypes and
might be overcome by additional tool support facilitating day-to-day use. Other ones
(e.g., better pointer and multithreading support) are still a hot research topic.

References

1. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek,
B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers. SIGOPS Oper.
Syst. Rev. 40(4), 73–85 (2006)

2. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of c
programs. SIGPLAN Not. 36(5), 203–213 (2001)

3. Ball, T., Rajamani, S.K.: Slic: A specification language for interface checking. Technical
Report MSR-TR-2001-21, Microsoft Research (January 2002)

 Applicability of the BLAST Model Checker 229

4. Beyer, D., Chlipala, A., Henzinger, T., Jhala, R., Majumdar, R.: The BLAST query lan-
guage for software verification. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp.
2–18. Springer, Heidelberg (2004)

5. Beyer, D., Henzinger, T.A., Theoduloz, G.: Configurable Software Verification: Concre-
tizing the Convergence of Model Checking and Program Analysis. In: Damm, W., Her-
manns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg (2007)

6. Beyer, D., Henzinger, T.A., Theoduloz, G.: Program analysis with dynamic precision ad-
justment. In: Proceedings of the 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE 2008), L’Aquila, September 15-19. IEEE Computer Society
Press, Los Alamitos (2008)

7. Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate ab-
straction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–
169. Springer, Heidelberg (2000)

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pp. 238–252. ACM, New York (1977)

10. Engler, D., Musuvathi, M.: Static analysis versus software model checking for bug finding.
In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 405–427. Springer,
Heidelberg (2004)

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. SIGPLAN
Not. 37(1), 58–70 (2002)

12. Giannakopoulou, D., Pasareanu, C.S., Cobleigh, J.M.: Assume-guarantee Verification of
Source Code with Design-Level Assumptions. In: Proceedings of the 26th International
Conference on Software Engineering. IEEE, Los Alamitos (2004)

13. Mahnke, W., Leitner, S.-H., Damm, M.: OPC Unified Architecture. Springer, Heidelberg
(2009)

14. Muhlberg, J.T., Luttgen, G.: BLASTing Linux Code. In: Brim, L., Haverkort, B.R.,
Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp.
211–226. Springer, Heidelberg (2007)

15. Rabinovitz, I., Grumberg, O.: Bounded Model Checking of Concurrent Programs. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82–97. Springer, Heidel-
berg (2005)

16. Sery, O.: Enhanced Property Specification and Verification in BLAST. In: Chechik, M.,
Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 456–469. Springer, Heidelberg
(2009)

17. OPC UA Foundation, http://www.opcfoundation.org

ΣK–constraints for Hybrid Systems�

Margarita Korovina1 and Oleg Kudinov2

1 Centre for Interdisciplinary Computational and Dynamical Analysis,
The University of Manchester and IIS SB RAS Novosibirsk

Margarita.Korovina@manchester.ac.uk
2 Sobolev Institute of Mathematics, Novosibirsk

kud@math.nsc.ru

Abstract. In this paper we introduce and study computational aspects
of ΣK-constraints which are powerful enough to represent computable
continuous data, but also simple enough to be an approach to approx-
imate constraint solving for a large class of quantified continuous con-
straints. We illustrate how ΣK -constraints can be used for reasoning
about hybrid systems.

1 Introduction

A continuous constraint is a logical formalism which is used extensively in model-
ing, formal analysis and synthesis of control of hybrid systems [1,5,23,25]. From
a mathematical point of view a continuous constraint is an expression (well
formed formula) in an appropriate language over the reals involving constants,
variables (ranging over continuous data i.e. the real numbers, functions), opera-
tions, relations, logical connectives and quantifiers. Since continuous constraints
involve continuous data such as real numbers, functions and sets, solving of such
constraints is already a challenging research problem.

This has resulted in various different approaches to continuous constraint solv-
ing. There are at least two main nonequivalent models of continuous constraint
solving. The first one is related to model theory and real algebraic geometry
(e.g. [4,6,7,24]) where real numbers are considered as basic entities which can be
added, multiplied, divided or compared in a single step. Here most of methods
for continuous constraint solving are exact and based on quantifier elimination
and cylindrical cell decomposition. However, this approach is restricted to special
cases such as quantified polynomial constraints.

The second model is closely related to numerical and computable analysis
(e.g. [2,22,26]), where continuous data (real numbers, real-valued functions) are
given by appropriate representations and computations of the solution sets of
continuous constraints are infinite processes which produce inner or outer ap-
proximations to the results.

This model conforms to our intuition of reals based on rational approxima-
tions to a real number, but depends on representations of continuous data [26]
� This research was partially supported by EPSRC grant EP/E050441/1, DFG-RFBR

(grant No 436 RUS 113/1002/01, grant No 09-01-91334).

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 230–241, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

ΣK–constraints for Hybrid Systems 231

and particular validated numerical techniques [5]. In this paper we introduce
and study ΣK–constraints which formalise problems involving logical quantifiers
bounded by computable compact sets, computable real numbers and computable
real-valued functions. A key idea of our approach to approximate solving of ΣK–
constraints is based on a procedure which given a ΣK–constraint produces an
effective sequence of quantifier free formulas (inequality polynomial constraints)
defining the solution set. On one hand proposed approach agrees with the second
model mentioned above, on the other hand it does not depend on the particular
representation of real numbers. We illustrate how ΣK-constraints can be used
for studying reachability problems of switched controlled systems.

The paper is structured as follows. In Section 2 we give the main definitions
and notions. We recall properties of Σ-definability and computability over the
real numbers. In Section 3 we introduce the notion of ΣK–constraints and pro-
pose an approach to approximate ΣK–constraint solving. In Section 4 we recall
slightly modified SHS-specifications of switched controlled systems introduced
in [18] and show that under natural assumptions the behaviour of a hybrid sys-
tem is computable. We illustrate how ΣK-constraints can be used for studying
reachability problems.

2 Basic Notions and Definitions

In order to introduceΣK-constraints we propose a basic model, recall the notions
and properties of Σ-definability and computability over the reals.

2.1 Basic Model

Our approach to continuous constraints is based on the notion of definability
[14,15], where continuous objects and computational processes involving these
objects can be defined using finite formulas in a suitable structure. Definability
has been a very successful framework for generalised computability theory, de-
scriptive complexity and databases. One of the most interesting and practically
important types of definability is Σ-definability, which generalises recursive enu-
merability over the natural numbers [3,8]. However, the most developed part of
definability theory deals with abstract structures with equality (i.e., the natu-
ral numbers, trees, automata, etc.). In the case of continuous data, such as real
numbers, real-valued functions and functionals, it is reasonable to consider the
corresponding structures without equality. This is motivated by the following
natural reason. In all effective approaches to exact real number computation via
concrete representations [22,26], the equality test is undecidable. In order to do
any kind of computation or to develop a computability theory, one has to work
within a structure rich enough for information to be coded and stored. For this
purpose we extend the structure IR by the set of hereditarily finite sets HF(IR).
The idea that the hereditarily finite sets over a structure form a natural domain
for computation is discussed in [3,8]. Note that such or very similar extensions
of structures are used in the theory of abstract state machines [11], in query
languages for hierarchic databases [20].

232 M. Korovina and O. Kudinov

According to this motivation we consider the ordered structure of the real
numbers in the finite predicate language, 〈IR, σP , <〉 = 〈IR, σ<〉 , with σP ⊇
{M∗

E,M∗
H ,A+

E ,A
+
H , }, where M∗

E ,M∗
H are interpreted as an open epigraph and

an open hypograph of multiplication respectively, and A+
E ,A

+
H are interpreted

as an open epigraph and an open hypograph of addition respectively. We don’t
assume that the language σP contains equality.

We extend the real numbers by the set of hereditarily finite sets HF(IR) which
is rich enough for information to be coded and stored. We construct the set
of hereditarily finite sets, HF(IR) over the reals, as follows:

1. HF0(IR) � IR,
2. HFn+1(IR) � Pω(HFn(IR)) ∪ HFn(IR), where n ∈ ω and for every set B,

Pω(B) is the set of all finite subsets of B.
3. HF(IR) =

⋃
m∈ω HFm(IR).

We define HF(IR) as the following model: HF(IR) � (HF(IR), U, σ<, ∅,∈) �
(HF(IR), σ) , where the constant ∅ stands for the empty set and the binary pred-
icate symbol ∈ has the set-theoretic interpretation. We also add a 1-ary predicate
symbol U naming the set of urelements (the real numbers). The natural numbers
0, 1, . . . are identified with the (finite) ordinals in HF(IR) i.e. ∅, {∅, {∅}}, . . . ,
so in particular, n+ 1 = n ∪ {n} and the set ω is a subset of HF(IR).

The atomic formulas include U(x), ¬U(x), x < y, x ∈ s, x�∈s where s ranges
over sets, and also, for every Qi ∈ σP with the arity ni, Qi(x1, . . . , xni) which
has the following interpretation:

HF(IR) |= Qi(x1, . . . , xni) if and only if
IR |= Qi(x1, . . . , xni) and, for every 1 ≤ j ≤ ni, xj ∈ IR.

The set of Δ0-formulas is the closure of the set of atomic formulas under ∧,∨,
bounded quantifiers (∃x ∈ y) and (∀x ∈ y), where (∃x ∈ y) Ψ means the same
as ∃x(x ∈ y ∧ Ψ) and (∀x ∈ y) Ψ as ∀x(x ∈ y → Ψ) where y ranges over sets.
The set of Σ-formulas is the closure of the set of Δ0-formulas under ∧,∨,
(∃x ∈ y), (∀x ∈ y) and ∃, where y ranges over sets.

Remark 1. It is worth noting that all predicates Qi ∈ σP and < occur only
positively in Σ-formulas. Hence, if σP does not contain equality then in Σ-
formulas we don’t allow equality on the urelements (elements from IR).

Definition 1. 1. A relation B ⊆ HF(R)n is Σ-definable if there exists a Σ-
formula Φ(ā) such that b̄ ∈ B ↔ HF(R) |= Φ(b̄).

2.2 Basic Properties Σ-definability over the Reals

In this subsection we recall the basic principles for Σ-definability which allow to
make effective reasoning about continuous constraints using Σ-formulas.

ΣK–constraints for Hybrid Systems 233

2.3 Gandy’s Theorem and Inductive Definitions

Let us recall Gandy’s Theorem for HF(R) which shows that continuous objects
and computational processes involving these objects can be defined using Σ-
formulas. Let Φ(a1, . . . , an, P) be a Σ-formula, where P occurs positively in Φ
and the arity of Φ is equal to n. We think of Φ as defining an effective operator
Γ : P(HF(R)n) → P(HF(R)n) given by Γ (Q) = {ā| (HF(R), Q) |= Φ(ā, P)}.
Since the predicate symbol P occurs only positively the corresponding operator
Γ is monotone, i.e., from B ⊆ C implies Γ (B) ⊆ Γ (C). By monotonicity, the
operator Γ has a least (w.r.t. inclusion) fixed point which can be described as
follows. We start from the empty set and apply operator Γ until we reach the
fixed point: Γ 0 = ∅, Γn+1 = Γ (Γn), Γ γ = ∪n<γΓ

n, where γ is a limit ordinal.
One can easily check that the sets Γn form an increasing chain of sets: Γ 0 ⊆

Γ 1 ⊆ By set-theoretical reasons, there exists the least ordinal γ such that
Γ (Γ γ) = Γ γ . This Γ γ is the least fixed point of the given operator Γ .

Theorem 1. [15][Gandy’s Theorem for HF(R)]
Let Γ : P(HF(R)n) → P(HF(R)n) be an effective operator. Then the least fixed-
point of Γ is Σ-definable and the least ordinal such that Γ (Γ γ) = Γ γ is less or
equal to ω.

Definition 2. A relation B ⊂ Rn is called Σ-inductive if it is the least-fixed
point of an effective operator.

Corollary 1. Every Σ-inductive relation is Σ-definable.

2.4 Universal Σ-predicate

The following result shows that we can effectively check validity of a Σ-formula
on HF(IR). As a corollary there exists a universal Σ-predicate for Σ-formulas
over this model.

Theorem 2. [14] There exists a binary Σ-definable predicate Tr such that for
any n ∈ ω and A ∈ HF(IR) we have that (n,A) ∈ Tr if and only if n is the
Gödel number of a Σ-formula Φ, γA is a correct interpretation for free variables
of Φ and HF(IR) |= Φ[γA].

2.5 Semantic Characterisation of Σ-definability

The following theorem reveals algorithmic properties ofΣ-formulas over HF(IR).

Theorem 3. [14][Semantic Characterisation of Σ-definability]
A set B ⊆ IRn is Σ-definable if and only if there exists an effective sequence of
quantifier free formulas in the language σ<, {Φs(x1, . . . , xn)}s∈ω, such that

(x1, . . . , xn) ∈ B ↔ IR |=
∨
s∈ω

Φs(x1, . . . , xn).

234 M. Korovina and O. Kudinov

The proof of this theorem is based on Gandy’s theorem and existence of Σ-
universal predicate. It is worth noting that both of the directions of this char-
acterisation are important. The right direction gives us an effective procedure
which generates quantifier free formulas approximating Σ-relations. The con-
verse direction provides tools for descriptions of the results of effective infinite
approximating processes by finite formulas.

2.6 Computability and Σ-definability over IR

In order uniformly characterise computability of different continuous data in
logical terms, we consider an arbitrary structure A = 〈A, σP , �=〉 = 〈A, σA〉,
where A contains more than one element, and σP is a finite set of basic pred-
icates. We assume that the existential theory of A is computably enumerable.
For the structure A, we introduce a topology τΣ , with the base consisting of the
subsets defined by existential formulas with positive occurrences of basic pred-
icates and �=. As examples we can consider the real numbers without equality
IR< = 〈IR, σ<〉, the real numbers with equality IR= = 〈IR,+, ∗,≤〉, the real-
valued continues functions C(IR) = 〈C(IR), P1, . . . , P12, �=〉 [12]. We denote Σ-
definability in the language σ as Σ-definability in σ. For the definitions of com-
putable real numbers, computable functions, and computable compact sets we
refer to [12,19,22,26]. The following theorems connect computable continuous
data with validity of Σ–formulas.

Proposition 1. [17] A real number is computable if and only if the left Dedekind
cut and the right Dedekind cut are Σ-definable in σ<.

Theorem 4. If f ∈ C[0, 1] and its epigrap and hypograph are Σ-definable in σ=
then f is computable.

Proposition 2. [17] A total function F : IR → IR is computable if and only if
its epigraph and hypograph are Σ-definable in σ<.

Definition 3. A total continuous function F : A × IR → IR is called weakly
computable if there exist effective infinite sequences {〈ψ−

m(x), φ−m(y, z)〉}m∈ω and
{〈ψ+

m(x), φ+
m(y, z)〉}m∈ω of Σ-formulas, where ψ−

m(x) and ψ+
m(x) are Σ-formulas

in σA, φ−m(y, z) and φ+
m(y, z) are Σ-formulas in σ= such that

F (x, y) < z ↔
∨

m∈ω

(ψ−
m(x) ∧ φ−m(y, z)) and

F (x, y) > z ↔
∨

m∈ω

(ψ+
m(x) ∧ φ+

m(y, z)).

It is worth noting that the computable functions is a proper subclass of the
weakly computable functions.

Theorem 5. Let F : A×IR → IR be a weakly computable continuous function. If
there exists a computable function H : A× IR → IR such that |F (x, y)| ≤ H(x, y)
for all x ∈ A and y ∈ IR then F is computable.

ΣK–constraints for Hybrid Systems 235

Proposition 3. [2] A compact subset K ⊂ IRn is computable if and only if the
distance function dK is computable and there exist rational numbers q1 and q2
such that K ⊆ [q1, q2]n.

3 ΣK-constraints

Now we consider the real numbers IR in an extended language σ. Define σ =
σP ∪ σc ∪σf ∪ σK = (0, 1, ·,+, <, c1, . . . , ck, . . . , f1, . . . , fn, . . . ,K1, . . . ,Km, . . .),
where ci is a computable real number, fj is a computable function, and Ks is a
computable compact subset of IRn.
The atomic ΣK-constraints include p(x̄) < q(ȳ), fi(x̄) < fj(ȳ), where x̄ and
ȳ range over the real numbers, p and q are polynomials with computable real
coefficients, fi and fj are computable real functions.
The set of ΣK-constraints is the closure of the set of atomic ΣK-constraints
under ∧,∨, existential quantifiers ∃x and bounded quantifiers (∃x ∈ Ks) and
(∀x ∈ Km), where Ks and Km are computable compact subset of IRn.

Remark 2. By definition, ΣK–constraints involve continuous data such as vari-
ables ranging over the real numbers, computable real constants, computable
real-valued functions, the strict inequality relation <, logical connectives ∨, ∧
and quantifiers bounded by computable compact sets. It is worth noting that
the predicate < occurs only positively in ΣK–constraints.

Theorem 6. There is an algorithm which by a ΣK–constraint ϕ produces an
effective sequence of quantifier free formulas {ψi}i∈ω in the language σ< such
that

IR |= ϕ(x̄) ↔ IR |=
∨
i∈ω

ψi(x̄).

First we prove the following proposition.

Proposition 4. For every Σ-formula ϕ there exists a Σ-formula ψ such that

HF(IR) |= ∀x ∈ [a, b]ϕ(x, y1, . . . , yn) iff HF(IR) |= ψ(a, b, y1, . . . , yn),

where free variables range over IR.

Proof. First we consider the case of ∃-formulas in the language σIR. Using in-
duction on the structure of a ∃-formula ϕ, we show how to obtain a required
formula ψ. Then, based on Theorem 3 we construct a required formula ψ for
an arbitrary Σ-formula.
Atomic case. We consider nontrivial subcases.
a) If ϕ(x, z) � x · x > z then

ψ(a, b, z) � z < 0 ∨ a > b ∨ (a > 0 ∧ b > 0 ∧ a · a > z) ∨ (a < 0 ∧ b < 0 ∧ b · b > z) .

b) If ϕ(x, z) � x · x < z then ψ(a, b, z) � a > b ∨ (a · a < z ∧ b · b < z) .

236 M. Korovina and O. Kudinov

c) If ϕ(x, y) � x · y > x then

ψ(a, b, z) � a > b ∨ (a > 0 ∧ b > 0 ∧ y > 1) ∨ (a < 0 ∧ b < 0 ∧ y < 1) .

d) If ϕ(x) � x · x > x then ψ(a, b) � a > b ∨ (a > 1 ∧ b > 1) ∨ (a < 0 ∧ b < 0) .
e) If y · z < x then ψ(a, b, y, z) � y · z < a ∨ b < a. Other atomic subcases can
be considered by analogy.
Conjunction.
If ϕ� ϕ1 ∧ϕ2 and ψ1, ψ2 are already constructed for ϕ1, ϕ2 then ψ � ψ1∧ψ2.
Disjunction.
Suppose ϕ� ϕ1∨ϕ2 and ψ1, ψ2 are already constructed. Since [a, b] is compact,
validity of the formula ∀x ∈ [a, b] (ϕ1 ∨ ϕ2) is equivalent to existence of a finite
family of open intervals {(αi, βi)}i=1,...,r+s such that [a, b] ⊆

⋃r
i=1(αi, βi), for

i = 1, . . . , r IR |= ϕ1 and for i = r + 1, . . . , s IR |= ϕ2. Since ϕ1 and ϕ2 define
open sets, this is equivalent to existence of a finite family of closed intervals
{[α′

i, β
′
i]}i=1,...,r+s such that [a, b] ⊆

⋃r
i=1[α

′
i, β

′
i], for i = 1, . . . , r IR |= ϕ1 and

for i = r + 1, . . . , s IR |= ϕ2. It is represented by the following formula.

∨
r∈ω

∨
r∈ω

∃α′
1 . . .∃α′

s+1∃β′
1 . . .∃β′

s+1

(
r∧

i=1

∀x ∈ [α′
i, β

′
i]ϕ1 ∧

s∧
j=r+1

∀x ∈ [α′
j , β

′
j]ϕ2

)
.

By induction hypothesis and Theorem 3, this formula is equivalent to a Σ-
formula ψ.
Existential case.
Suppose ϕ � ∃zϕ1(z, x1, . . . , xn). As [a, b] is compact and

{{x1|IR |= ϕ1(z, x1, . . . , xn)}}z∈IR = {Vz}z∈IR

is an open cover, there exists a finite set J = {z1, . . . , zs} ⊂ IR such that [a, b] ⊆⋃
z∈J Vz . So, validity of the formula ∀x1 ∈ [a, b]∃zϕ1(z, x1, . . . , xn) is equivalent

to existence of the finite set J = {z1, . . . , zs} such that

IR |= ∀x1 ∈ [a, b]∃zϕ1(z, x1, . . . , xn) ↔ IR |= ∀x1 ∈ [a, b]ϕs(z1, . . . , zs, x1, . . . , xn),

where ϕs(z1, . . . , zs, x1, . . . , xn) � ϕ1(z1, x1, . . . , xn) ∨ · · · ∨ ϕ1(zs, x1, . . . , xn).
By induction hypotheses, for every J = {z1, . . . , zs} there exists a Σ-formula
ψs(z1, . . . , zs, a, b, x2, . . . , xn) in the language σ ∪ {P ′

λ|λ : {1, . . . , n} → {1, . . . , n}}
which is equivalent to ∀x1 ∈ [a, b]ϕs(z1, . . . , zs, x1, . . . , xn). Finally,

IR |= ∀x1 ∈ [a, b]∃zϕ1(z, x1, . . . , xn) ↔
HF(IR) |=

∨
s∈ω ∃z1 . . .∃zs (ψs(z1, . . . , zs, a, b, x2, . . . , xn)) .

A required Σ-formula ψ can be constructed using Theorem 3.
Now we are ready to construct a required formula ψ for a given Σ-formula

ϕ. By Theorem 3, there exists an effective sequence of quantifier free formulas
{ϕi}i∈ω such that HF(IR) |= ϕ ↔ HF(IR) |=

∨
i∈ω ϕi. As [a, b] is compact and

ΣK–constraints for Hybrid Systems 237

{{x1|IR |= ϕi(x1, . . . , xn)}}i∈ω = {Ui}i∈ω is its cover, there exist k ∈ ω and a
finite family {Ui}i≤k such that [a, b] ⊆

⋃
i≤k Ui. So,

IR |= ∀x1 ∈ [a, b]ϕ(x1, . . . , xn) ↔
HF(IR) |=

∨
k∈ω ∀x1 ∈ [a, b]

∨
i≤k ϕi(x1, . . . , xn).

By induction hypotheses, for every k ∈ ω there exists a Σ–formula ψk(a, b, . . .)
which is equivalent to ∀x1 ∈ [a, b]

∨
i≤k ϕi(x1, . . . , xn). A required Σ-formula ψ

can be constructed using Theorem 3.

Proof (Theorem 6).
We proceed by induction on the structure of the ΣK-constraint ϕ.

Atomic ΣK–constraint case. Suppose ϕ(x̄) � f1(x̄) < f2(x̄), where f1(x̄), f2(x̄)
are computable real-valued functions. It is easy to note that

IR |= ϕ(x̄) iff IR |= ∃a1∃a2∃b1∃b2∀y1 ∈ [a1, b1]∀y2 ∈ [a2, b2](∧
1≤i≤2 (fi(x̄) < bi ∧ fi(x̄) > ai) ∧ (y1 < y2)

)
.

By Proposition 2, fi is computable if and only if fi(x̄) < z and fj(x̄) > z are
Σ-definable. So, we can construct a required sequence of quantifier free formulas
{ψ}i∈ω using Proposition 4 and Theorem 3.
Conjunction, Disjunction and Existential quantifier cases are straightforward

from Theorem 3.
Bounded Existential quantifier case. Suppose ϕ(x̄) � ∃y ∈ Kφ(y, x̄), where K
is a computable compact subset of IRn. Since φ defines effectively open set, the
formula ϕ is equivalent to the formula

∃y′∃ε > 0
(
φ(y′, x̄) ∧ dK(y′) < ε ∧ ∀z ∈ B̄(y′, ε)φ(z, x̄)

)
,

where B̄(y′, ε) is a closed ball. By properties of computable compact sets, the dis-
tance function dK is computable [2], and, as a corollary, the set {(y′, ε)|dK(y′) <
ε} is Σ-definable. By Proposition 4 and Theorem 3, there exists a required se-
quence of quantifier free formulas {ψ}i∈ω.
Bounded Universal quantifier case. Suppose ϕ(x̄) � ∀y ∈ Kφ(y, x̄), where K is
a computable compact subset of IRn. It is easy to see that ϕ is equivalent to the
formula

∀y ∈ [−q, q]n (y �∈ K ∨ ϕ(y, x̄))

for some rational q which can be find effectively by K. By properties of com-
putable closed sets, the distance function dK is computable [2], and, as a corol-
lary, {y|y �∈ K} = {y|dK(y) > 0} is Σ-definable. By Proposition 4 and Theo-
rem 3, there exists a required sequence of quantifier free formulas {ψ}i∈ω.

Remark 3. It is worth noting that Theorem 6 provides an effective procedure
which generates quantifier free formulas approximating the solution set of ΣK–
constraints.

238 M. Korovina and O. Kudinov

4 ΣK–constraints for Hybrid Systems

In this section we reconsider reachability problems in terms of ΣK–constraints
for a large class of hybrid systems, where continuous dynamics are represented
by computable real-valued functions or functionals. In contrast to special types
of hybrid systems such as timed automata or linear hybrid systems, for the
considered class of hybrid systems difficulties arise from the fact that we can not
exactly compute flow successors, but can only effectively approximate.

4.1 SHS-Specifications of Hybrid Systems

We consider the models of hybrid systems proposed by Nerode, Kohn in [21],
called switched controlled systems. A hybrid system is a system which consists
of a continuous plant that is disturbed by the external world and controlled by a
program implemented on a sequential automaton. In the Nerode–Kohn model a
hybrid system is represented by a continuous device given by a collection of dy-
namical systems parameterised by a control set along with a control automaton
for switching among them.

The control automaton has input data (the set of sensor measurements) and
the output data (the set of control laws).

The control automaton is modeled by three units. The first unit is a converter
which converts each measurement into input symbols of the internal control au-
tomaton. The internal control automaton, in practice, is a finite state automaton
with finite input and output alphabets. The second unit is the internal control
automaton, which has a symbolic representation of a measurement as input and
produces a symbolic representation of the next control law to be imposed on
the plant as output. The third unit is a converter which converts these output
symbols representing control laws into the actual control laws imposed on the
plant. The plant interacts with the control automata at discrete times ti, where
the time sequence {ti}i∈ω satisfies realizability requirements. At time ti the con-
trol automaton gets sensor data, computes the next control law, and imposes
it on the plant. The plant will continue using this control law until the next
interaction at time ti+1.

The specification SHS = 〈TS,X,U,D, Init,F, Conv1, A, Conv2〉 of a hybrid
system consists of:

• TS = {ti}i∈ω is an effective sequence of rational numbers which encodes
the times of communication of the external world, the plant and the control
automata and satisfies realizability requirements.

• X ⊆ IRn is a plant state space.
• U ⊆ IRk is a set of control parameters.
• D ⊆ C(IR) is a set of acceptable disturbances.
• F : D × U × X × IR+ → X is a total computable function modeling the

behaviour of the plant.
• Conv1 : D × X → ω is a weakly computable function. At the time of com-

munication this function converts measurements, presented by F, and the

ΣK–constraints for Hybrid Systems 239

representation of external world f into finite words which are input words
of the internal control automata.

• A : ω → ω is a Σ-definable function. The internal control automata, in
practice, is a finite state automata with finite input and finite output al-
phabets. So, it is naturally modeled by Σ-definable function which has a
symbolic representation of measurements as input and produces a symbolic
representation of the next control law as output.

• Conv2 : ω → U is a computable function. This function converts finite words
representing control laws into control laws imposed on the plant.

• Init = InitU × InitX is a computable compact set of initial conditions.

Definition 4. The behaviour of a hybrid system is defined by a function
H : D × X × IR+ → X if for any external disturbance f ∈ D and initial states
x ∈ InitX the function H(f, x, ·) : IR+ → X defines the trajectory of the hybrid
system.

In order to investigate the behaviour of a hybrid system we consider the spaces X,
U and D and their products as structures in appropriate languages with induced
τΣ topologies (see Subsection 2.6).

Theorem 7. Suppose a hybrid system is specified as above. If the behaviour of
the hybrid system is defined by a continuous function H : D×X× IR+ → X and
there exists a computable function G : D×X×IR+ → IRn such that ||H(f, x, t)|| ≤
G((f, x, t)) for all f ∈ D, x ∈ X and t ∈ IR+ then H is computable.

4.2 ΣK-constraints and Reachability Problems

In this section we illustrate how ΣK-constraints can be used for reasoning about
hybrid systems. Suppose a hybrid system is formalised by

SHS = 〈TS,X,U,D, Init,F, Conv1, A, Conv2〉

which satisfies the conditions of Theorem 7.

Theorem 8. The set of Σ-definable sets of X which are reachable by the hybrid
system is computably enumerable.

Proof. Let A be Σ-definable set. The reachability problem can be formalised
as follows: ψ � (∃x ∈ InitX)∃f∃tH(f, x, t) ∈ A. Since the set of polynomials
with rational coefficients is dense in C(IR) with the compact open topology,
Theorem 6 and Theorem 7 imply the equivalence of ψ and a Σ-formula. So, for
every Σ-definable set we can effectively check reachability.

Let D = {fi}i∈ω be a computable family of acceptable computable disturbances.

Theorem 9. The set

{< i, j > |Ai is reachable by the hybrid system under a disturbance fi,

where Ai is Σ-definable and fj ∈ D}

is computably enumerable.

240 M. Korovina and O. Kudinov

Theorem 10. The set

{< i, j > |Ki is unreachable by the hybrid system in bounded time under
a disturbance fi, where Ki is a co-semicomputable compact set and fj ∈ D}

is computably enumerable.

Proof. Let K be co-semicomputable compact set and time bounded by N and
f a computable disturbance. The unreachability problem can be formalised
as follows: ϕ � ∀a ∈ InitX∀t ∈ [0, N]H(f, a, t) �∈ K. By properties of co-
semicomputable compact sets, the distance function dK is lower semicomputable
[2], and, as a corollary, {x|x�∈ K} = {x|dK(x) > 0} is Σ-definable. By The-
orem 6 and Proposition 2, ϕ is equivalent to a Σ-formula. So, for every co-
semicomputable compact set we can effectively check unreachability.

Now let us fix Σ-definable set A and co-semicomputable compact set K. Let
Ir denote a subset of InitX from which the set A is reachable and Iu denote a
subset of InitX from which the set K is unreachable in bounded time.

Theorem 11. The sets Ir and Iu are Σ-definable.

5 Conclusion

We present a methodology that enables the algorithmic analysis of ΣK-const-
raints via translation to effective sequences of quantifier free formulas. We hope
that proposed results and existing numerical constraint satisfaction techniques
(e.g. [5,23]) will lead to new algorithms for effective continuous constraint solving.

References

1. Anai, H., Weispfenning, V.: Reach set computation using real quantifier elimi-
nation. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.
LNCS, vol. 2034, p. 63. Springer, Heidelberg (2001)

2. Brattka, V., Weihrauch, K.: Computability on subsets of euclidean space I: Closed
and compact sets. TCS 219, 65–93 (1999)

3. Barwise, J.: Admissible sets and Structures. Springer, Berlin (1975)
4. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer,

Heidelberg (2003)
5. Benhamou, F., Goualard, F., Languénou, E., Christie, M.: Interval constraint solv-

ing for camera control and motion planning. ACM Trans. Comput. Log. 5(4),
732–767 (2004)

6. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Alge-
braic Decomposition. Springer, Wien (1998)

7. Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylin-
drical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS,
vol. 33, pp. 134–183. Springer, Heidelberg (1975)

8. Ershov, Y.L.: Definability and computability. Plenum, New York (1996)

ΣK–constraints for Hybrid Systems 241

9. Henzinger, T.A., Rusu, V.: Reachability Verification for Hybrid Automata. In:
Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 190–205.
Springer, Heidelberg (1998)

10. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)
11. Blass, A., Gurevich, Y.: Background, reserve and Gandy machines. In: Clote, P.G.,

Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 1–17. Springer, Heidel-
berg (2000)

12. Korovina, M.V., Kudinov, O.V.: Towards Computability over Effectively Enumer-
able Topological Spaces. Electr. Notes Theor. Comput. Sci. 202, 305–313 (2008)

13. Korovina, M.V., Kudinov, O.V.: Towards computability of higher type continuous
data. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526,
pp. 235–241. Springer, Heidelberg (2005)

14. Korovina, M.V.: Computational aspects of Σ-definability over the real numbers
without the equality test. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS,
vol. 2803, pp. 330–344. Springer, Heidelberg (2003)

15. Korovina, M.V.: Gandy’s theorem for abstract structures without the equality test.
In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 290–301.
Springer, Heidelberg (2003)

16. Korovina, M.V., Kudinov, O.V.: Semantic characterisations of second-order com-
putability over the real numbers. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001.
LNCS, vol. 2142, pp. 160–172. Springer, Heidelberg (2001)

17. Korovina, M.V., Kudinov, O.V.: Formalisation of Computability of Operators and
Real-Valued Functionals via Domain Theory. In: Blank, J., Brattka, V., Hertling,
P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 146–168. Springer, Heidelberg (2001)

18. Korovina, M.V., Kudinov, O.V.: Generalised Computability and Applications to
Hybrid Systems. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS,
vol. 2244, pp. 494–499. Springer, Heidelberg (2001)

19. Korovina, M.V., Kudinov, O.V.: Characteristic properties of majorant-
computability over the reals. In: Gottlob, G., Grandjean, E., Seyr, K. (eds.) CSL
1998. LNCS, vol. 1584, pp. 188–203. Springer, Heidelberg (1999)

20. Dahlhaus, E., Makowsky, J.A.: Query languages for hierarchic databases. Informa-
tion and Computation 101, 1–32 (1992)

21. Nerode, A., Kohn, W.: Models for Hybrid Systems: Automata, Topologies, Con-
trollability, Observability. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A.
(eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 317–357. Springer, Heidelberg
(1993)

22. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer,
Heidelberg (1988)

23. Ratschan, S., She, Z.: Constraints for Continuous Reachability in the Verification
of Hybrid Systems. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS
(LNAI), vol. 4120, pp. 196–210. Springer, Heidelberg (2006)

24. Tarski, A.: A Decidion Method in Algebra and Geometry. University of California
Press, Berkeley (1951)

25. Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System De-
sign 32(1), 57–83 (2008)

26. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

A Complete Invariant Generation Approach for
P-solvable Loops�

Laura Kovács

EPFL, Switzerland

Abstract. We present an algorithm for generating all polynomial invariants of P-
solvable loops with assignments and nested conditionals. We prove termination
of our algorithm. The proof relies on showing that the dimensions of the prime
ideals from the minimal decomposition of the ideals generated at an iteration
of our algorithm either remain the same or decrease at the next iteration of the
algorithm. Our experimental results report that our method takes less iterations
and/or time than other polynomial invariant generation techniques.

1 Introduction

In [14], a systematic method for generating polynomial invariants for P-solvable loops
was developed, as follows. (i) First, the body of a P-solvable loop is described by re-
currence equations in the loop counter. (ii) Next, recurrence equations of loop variables
are solved using symbolic summation techniques, and closed forms of variables are de-
rived as polynomials in the loop counter and some algebraic exponential sequences in
the loop counter, where polynomial relations among the exponential sequences are also
generated. (iii) Finally, loop counters and algebraic exponential sequences are elim-
inated using Gröbner basis computation from the polynomial closed form system of
loop variables, and polynomial loop invariants are derived. For P-solvable loops with
assignments only, the method was proved to be complete: any other polynomial invari-
ant can be derived from the ones inferred by our approach. In the case of P-solvable
loops with k conditional branches, completeness was proved only under additional as-
sumptions, by imposing structural constraints on the ideal of polynomial relations after
a sequence of k and k + 1 P-solvable loops.

The main result of this paper is the proof of completeness of our invariant generation
method for P-solvable loops with nested conditionals. For doing so, (i) we generalize
the invariant generation algorithm of [14] for P-solvable loops (Section 3) by iterating
our algorithm until the polynomial invariant ideal is inferred (i.e. not just 2 iterations
as in [14]), and (ii) prove that our approach is sound and complete (Sections 3 and 4).
That is, our method infers a basis for the polynomial invariant ideal of the P-solvable
loop in a finite number of steps. The proof relies on showing that the dimensions of the
prime ideals from the minimal decomposition of the ideals generated at an iteration of

� The author was supported by the Swiss NSF. This research was partly done in the frame of
the Transnational Access Programme at RISC, Johannes Kepler University Linz, supported by
the European Commission Framework 6 Programme for Integrated Infrastructures Initiatives
under the project SCIEnce (contract No 026133).

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 242–256, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Complete Invariant Generation Approach for P-solvable Loops 243

our algorithm either remain the same or decrease at the next iteration of the algorithm.
As dimension of ideals are positive integers, our algorithm must terminate after a fi-
nite number of iterations. Our approach was implemented in the Aligator software
package [13]. Our experimental results report that, when compared to existing invariant
generation techniques [18,17], our method took less iterations and/or less time in gen-
erating polynomial invariant ideals for all examples we tried (Section 5).

Related Work. The problem of synthesizing valid polynomial relations among pro-
gram variables has received much attention [10,15,17,19]. The works [15,19] derive all
polynomial invariants of a priori fixed degree in arbitrary polynomial loops, by generat-
ing linear constraints on the unknown coefficients of the template invariant of bounded
degree. Solutions to these constraints are substituted in the template invariant, and all
invariant relations of bounded degree are thus inferred. A similar approach using quan-
tifier elimination was proposed in [10]. Paper [17] combines abstract interpretation with
polynomial algebra for inferring polynomial invariants of bounded degree, without re-
stricting the structure of the loops.

Unlike the works mentioned above, our approach does not require a priori a bound
on the degree of sought polynomials, but finds all polynomial invariants by restricting
the structure of the programs that can be treated by the method. This is also the case
in [18], where a basis of the polynomial invariant ideal of so-called simple loops is
automatically derived. However, unlike [18], we do not limit our technique to loops
whose closed form solution may only involve positive rational exponentials. Our ap-
proach treats P-solvable loops with arbitrary algebraic exponential sequences in the
closed forms of variables. As affine loops are P-solvable [14], note that our approach
is able to generate all polynomial invariants of affine loops with assignments, nested
conditionals and ignored test conditions, which, to the best of our knowledge, is not the
case in any of the aforementioned techniques.

2 Preliminaries

We give a short presentation of P-solvable loops, followed by a brief overview on poly-
nomial ideals, recurrences and algebraic dependencies. For more details see [14,2,4].
In what follows, N and Q denote respectively the set of natural and rational numbers.
Let K be a field of characteristic zero (e.g. Q) and K̄ denotes its algebraic closure.
Throughout this paper, let X = {x1, . . . , xm} be the set of loop variables (m ∈ N).
The ring of all polynomials in X over K is denoted by K[X]. Rings K[X] and K̄[X]
are integral domains.

P-solvable Loops. We consider loops as below.

While[b, s0;If[b1 Then s1 Else . . . If[bk−1 Then sk−1 Else sk]. . .]; sk+1] (1)

where b0, . . . , bk−1 are boolean expressions, and s0, . . . , sk+1 are sequences of assign-
ments. In our approach for generating polynomial invariants, test conditions b and bi
are ignored, and we deal with non-deterministic programs. Using regular expression
like notation, loop (1) can be thus equivalently written as:

(S1|S2| . . . |Sk)∗, where Si = s0; si; sk+1 for all i = 1, . . . , k. (2)

244 L. Kovács

In our work, we identified a class of loops with assignments, sequencing and nested
conditionals, called the P-solvable loops [14], for which tests are ignored. Loop (1)
is P-solvable iff the inner loops S∗

i from (2) are P-solvable. Namely, the values of X
at any iteration of S∗

i can be expressed as polynomials of the initial values of variables
(those when the loop is entered), the inner loop counter, and some algebraic exponential
sequences in the loop counter, where there are polynomial relations among the expo-
nential sequences. We write Sji

i to mean the ji-times repeated execution of Si, where
ji ∈ N denotes the loop counter of Si. In what follows, for l = 1, . . . ,m, we denote
by xl[ji] the value of variable xl at the jith iteration of Si. As S∗

i is P-solvable, we
have xl[ji] = ql[ji, θ

ji

l1, . . . , θ
ji

ls], where θlk ∈ K̄, ql ∈ K̄[ji, θ
ji

l1 , . . . , θ
ji

ls], and the co-
efficients of ql are determined by the initial values of X (i.e. before entering loop S∗

i).
Using Hoare-triple notation [8], p ∈ K[X] is a polynomial invariant of (2) iff:

{p(X) = 0} (S1| . . . |Sk)∗ {p(X) = 0}
In our work for generating polynomial invariants of P-solvable loops, we rely on algo-
rithmic methods from polynomial algebra and symbolic summation, as follows.

Polynomial Ideals and Invariants. A non-empty subset I ⊆ K[X] is an ideal of K[X],
and we write I � K[X], if p1 + p2 ∈ I for all p1, p2 ∈ I , and pq ∈ K[X] for all p ∈ I
and q ∈ K[X]. The quotient ring ofK[X] by the ideal I is denoted by K[X]/I , and its
elements are of the form q+ I , where q ∈ K[X]. The ideal I is called a radical ideal if
pt ∈ I implies p ∈ I for all p ∈ K[X], t ∈ N. I is a prime ideal if, for all p, q ∈ K[X],
pq ∈ I implies p ∈ I or q ∈ I . Obviously, any prime ideal is radical. Radical ideals can
be uniquely decomposed into prime ideals, as stated below.
THEOREM 2.1 [2] If K is algebraically closed (i.e. K = K̄), then every radical ideal
I � K̄[X] can be written uniquely as a finite intersection of prime ideals, I = P1 ∩
. . .Pr, where Pi � Pj for i �= j. Such a representation of a radical ideal is called a
minimal decomposition.
For I � K[X], there exists a longest descending chain of prime ideals I � P1 � P2 �
. . . . Its length is called the dimension of I and is denoted by dim I .
As observed in [18], the set of polynomials p ∈ K[X] such that p(X) = 0 is a poly-
nomial loop invariant forms a polynomial ideal, called the polynomial invariant ideal.
Hilbert’s basis theorem asserts that every ideal, and in particular thus the polynomial
invariant ideal, has a finite basis. Using the Buchberger Algorithm [1], a special ideal
basis, called Gröbner basis {p1, . . . , pr} (pi ∈ K[X]) of the polynomial invariant ideal
can be effectively computed. Hence, the conjunction of the polynomial equations cor-
responding to the polynomials from the computed basis (i.e. pi(X) = 0) characterizes
completely the polynomial invariants of the loop. Namely, any other polynomial invari-
ant can be derived as a logical consequence of p1 = 0 ∧ · · · ∧ pr = 0.

Our challenge is thus to compute a Gröbner basis of the polynomial invariant ideal.
For doing so, we deploy methods from algorithmic combinatorics, as given below.

Recurrences and Algebraic Dependencies. From the assignment statements of a P-
solvable loop S∗

i , recurrence equations of the variables are built and solved, using
the loop counter ji as the recurrence index. In our work, we only consider P-solvable
loops whose assignment statements describe Gosper-summable [6] or C-finite [16] re-
currences. The closed forms of loop variables can be computed by deploying existing

A Complete Invariant Generation Approach for P-solvable Loops 245

symbolic summation algorithms for solving such recurrences [4,16]. As a result, the
value of each variable at iteration ji of the P-solvable loop Sji

i will be a a polynomial
expression in ji and some algebraic exponential sequences in ji.

As we are interested in deriving polynomial relations among X , we need to deter-
mine the ideal of algebraic dependencies among the algebraic exponential sequences in
ji [12], where an algebraic dependency of the algebraic exponential sequences θji

1 , . . . ,

θji
s with θi ∈ K̄ is a polynomial p ∈ K̄[ji, θ

ji

1 , . . . , θ
js
s] such that p((θj1

1)n, . . . , (θjs
s)n)

= 0, ∀n ∈ N. Using the algebraic dependencies so derived, the loop counter ji and
exponential sequences in ji are then eliminated by Gröbner basis computation from the
closed form system of the loop, and polynomial invariants amongX are thus inferred.

EXAMPLE 2.2 [3] Consider the loop S∗ with iteration counter j ∈ N, where S ≡
q := q/4; p := p/2 + q. The initial values of variables are p = q = 1. The (C-

finite) recurrence equations of Sj are:

{
q[j + 1] = q[j]/4
p[j + 1] = p[j]/2 + q[j + 1] , yielding the

closed form solution system:

{
q[j] = q[0] ∗ a1
p[j] = (p[0] + q[0]) ∗ a2 − q[0] ∗ a3

, where a1 = 4−j ,

a2 = 2−j , a3 = 4−j , and q[0] and p[0] denote respectively the initial values of
q and p (i.e. p[0] = q[0] = 1). The algebraic dependencies among a1, a2, a3 are
{a1 − a3 = 0, a2

2 − a3 = 0}. After eliminating j, a1, a2 and a3, and substituting
the initial values of p and q, the polynomial invariant ideal is generated by the invariant
(p+ q)2 − 4q = 0.

3 Invariant Generation Algorithm

In [14] polynomial invariants of P-solvable loops with k ≥ 1 conditional branches were
inferred by considering polynomial ideals after k and k + 1 loop sequences. Although
experimental results reported that [14] returned the polynomial invariant ideal for all tried
examples, completeness of the approach was only proved under additional assumptions
on the structure of the inferred ideals after k and k+ 1 loop sequences. In this section we
generalize the resultsof [14]by presenting anewalgorithm (Algorithm 3.3) for computing
all polynomial invariants of P-solvable loops with k conditional branches. The algorithm
proposed in this paper iteratively computes the ideal of valid polynomial relations after all
possible loop sequences of lengthk,k+1,k+2, . . . , until a fixed point is reached. Namely,
if at step n ≥ 1 of our invariant generation algorithm the ideal of polynomial relations
after all possible loop sequences of length k+n is the same as the ideal computed at step
n− 1, the algorithm terminates with returning the polynomial invariant ideal (Theorem
3.4). Moreover, we also prove termination of our algorithm (Theorem 4.8).

Our method for invariant generations relies on the following two “ingredients”: (i)
Algorithm 3.1, for deriving the polynomial ideal after an arbitrary sequence of P-
solvable loops of length k + n, and (ii) Algorithm 3.2, for computing the polynomial
ideal after all loop sequences of length k + n. In what follows, we first present these
“ingredients”.

Algorithm 3.1 Polynomial Relations of a P-solvable Loop Sequence [14]
Input: P-solvable loops Sw1 , . . . , Swk

and initial valuesX0

246 L. Kovács

Output: The ideal G � K[X] of polynomial relations amongX after S∗
w1

; . . . ;S∗
wk

Assumption: Swi are sequences of assignments, wi ∈ {1, . . . , k}, ji ∈ N, k ≥ 1

1 for each Sji
wi
, i = 1, . . . , k do

2 Compute the closed form system of Sji
wi

:⎧⎪⎪⎨⎪⎪⎩
x1[ji] = qi,1(ji, θ

ji
wi1

, . . . , θji
wis)

...
xm[ji] = qi,m(ji, θ

ji
wi1

, . . . , θji
wis)

, where
θwir ∈ K̄,
qi,l ∈ K̄[ji, θ

ji
wir],

r = 1, . . . , s, l = 1, . . . , m

3 Compute the ideal Awi = I(ji, θ
ji

wi1, . . . , θ
ji
wis) of algebraic dependencies

4 endfor
5 Compute the merged closed form of Sj1

w1
; . . . ;Sjk

wk
:⎧⎪⎨⎪⎩

x1[jw1 , . . . , jwk
]= f1(j1, θ

j1
w11,. . ., θ

j1
w1s, , jk, θ

jk

wk1, . . . , θ
jk
wks)

...
xm[jw1 , . . . , jwk

]=fm(j1, θ
j1
w11,. . ., θ

j1
w1s, , jk, θ

jk

wk1, . . . , θ
jk
wks)

,where

fl ∈ K̄[j1, . . . , jk, θj1
w11, . . . , θ

j1
w1s, , θjk

wk1, . . . , θ
jk
wks],

6 A =
k∑

i=1

Awi

7 I = 〈x1 − f1, . . . , xm − fm〉+A ⊂ K̄[j1, . . . , jk, θ
j1
w11, . . . , θ

jk
wks, x1, . . . , xm]

8 return G = I ∩K[x1, . . . , xm].

Merging of closed forms at step 5 of Algorithm 3.1 is based on the fact that the initial
values of the loop variables corresponding to the inner loop Sji+1

wi+1 are given by the
final values of the loop variables after Sji

wi
. We write xl[jw1 , . . . , jwk

] to mean the value
of xl after Sj1

w1
;Sj2

w2
; . . . ;Sjk

wk
. Based on [12], we note that although the closed form

solutions of the P-solvable loops lie in the polynomial ring over K̄, G is an ideal in the
ring K[X].

EXAMPLE 3.1 (GCD COMPUTATION OF INTEGERS x AND y. [3]) Consider the P-
solvable imperative loop (S1|S2)∗, where:
S1 ≡ a := a− b; p := p− q; r := r− s and S2 ≡ b := b− a; q := q− p; s := s− r
The initial values of variables are: a = x, b = y, p = 1, q = 0, r = 0, s = 1.
Using Algorithm 3.1, the ideal I12 of valid polynomial relations among the loop vari-
ables a, b, p, q, r, s with initial values a[0], b[0], p[0], q[0], r[0], s[0] after the inner loop
sequence S∗

1 ;S∗
2 is given below.

I1
2 = 〈−r s q[0] + s q[0]r[0] + q r s[0] − s p[0] s[0] − q[0] r[0] s[0] + p[0] s[0]2,

−r q[0] + q[0] r[0] + p s[0] − p[0] s[0], −q r + p s + q[0] r[0] − p[0] s[0],
−s b[0] p[0] + s a[0] q[0] + q b[0] r[0] − b q[0] r[0] − q a[0] s[0] + b p[0] s[0],
−r s b[0] + s b[0] r[0] + b r s[0] − s a[0] s[0] − b[0] r[0] s[0] + a[0] s[0]2,
−q r b[0] + s b[0] p[0] + b r q[0] − s a[0] q[0] − b[0] p[0] s[0] + a[0] q[0] s[0],
−p q b[0] + q b[0] p[0] + b p q[0] − q a[0] q[0] − b[0] p[0] q[0] + a[0] q[0]2,
−r b[0] + b[0] r[0] + a s[0] − a[0] s[0], −p b[0] + b[0] p[0] + a q[0] − a[0] q[0],
−b r + a s + b[0] r[0] − a[0] s[0], −bp + a q + b[0] p[0] − a[0] q[0]〉

A Complete Invariant Generation Approach for P-solvable Loops 247

Closed form computation for inner loops and variable elimination from merged closed
forms of inner loops in Algorithm 3.1 are performed as described in Section 2.

Similarly, by Algorithm 3.1, the ideal I22 of polynomial relations after S∗
2 ;S∗

1 is:

I2
2 = 〈−s p[0] + q r[0] − q[0] r[0] + p[0] s[0], −q r + p s + q[0] r[0] − p[0] s[0],

−s a[0] + b r[0] − b[0] r[0] + a[0]s[0], −q a[0] + b p[0] − b[0] p[0] + a[0] q[0],
−r b[0] p[0] + r a[0] q[0] + p b[0] r[0] − a q[0] r[0] − p a[0] s[0] + a p[0] s[0],
−b r + a s + b[0] r[0] − a[0] s[0], −bp + a q + b[0] p[0] − a[0] q[0]〉

Polynomial Relations for a Set of P-solvable Loop Sequences. In what follows, we
denote by Ll a set of P-solvable loop sequences of length l ≥ 1 over S1, . . . , Sk.
Namely, L = {{Sw1 , . . . , Swl

} | w1, . . . , wl ∈ {1, . . . , k}}. We write |L| to mean
the number of elements of L, and L[[s]] will refer to the sth element of L, where
s = 1, . . . , |L|. Furthermore, for a set Ll = {{Sw1, . . . , SwL} | wl ∈ {1, . . . , k}}
and a P-solvable loop Si, where i ∈ {1, . . . , k}, we write Ll ◦ Si to mean the set of
P-solvable loop sequences of length l+ 1 obtained by appending Si to each element of
L. Namely, Ll ◦ Si = {{Sw1 , . . . , Swl

, Si} | {Sw1 , . . . , Swl
} ∈ L}.

Our algorithm for computing the ideal of valid polynomial relations after all loop
sequences from an arbitrary set of loop sequences is presented in Algorithm 3.2. Algo-
rithm 3.2 generalizes the results of [14], as in our previous work we only computed the
ideal of valid polynomial relations after all loop sequences of length k. Correctness of
Algorithm 3.2 follows directly from [14].

Algorithm 3.2 Polynomial Relations for a Set of P-solvable Loop Sequences
Input: SetLl of P-solvable loop sequences of length l ≥ 1 over S1, . . . , Sk and initial
valuesX0
Output: The ideal G � K[X] of valid polynomial relations among X after all P-
solvable loop sequences of L
Assumption: S1, . . . , Sk are sequences of assignments

1 G = Algorithm 3.1
(
L[[1]], X0

)
2 for s = 2 to | L | do
3 G = G ∩ Algorithm 3.1

(
L[[s]], X0

)
4 endfor
5 return G.

EXAMPLE 3.2 For Example 3.1, consider the set L2 = {{S1, S2}, {S2, S1}} of P-
solvable loop sequences of length 2. Using the notations of Example 3.1, the polynomial
relations for L2 are given by the intersection ideal G = I12 ∩ I22 , and it is generated by
18 polynomials.

Polynomial Invariant Ideal for a P-solvable Loop with Nested Conditionals. Let
Sk denote the set of permutations of length k over {1, . . . , k}. We are now ready to
present our invariant generation method in Algorithm 3.3. Unlike [14], Algorithm 3.3
computes a finite basis of the polynomial invariant ideal, and thus it is complete.

Algorithm 3.3 Polynomial Relations for P-solvable Loops with Conditionals
Input: P-solvable loop (1) with k conditional branches and assignments
Output: Polynomial invariant ideal PI � K[X] for (1)
Assumption: k ≥ 1

248 L. Kovács

1 Transform loop (1) into loop (2) with k P-solvable inner loops S∗
1 , . . . , S

∗
k

2 Lk = {{Sw1 , . . . , Swk
} | (w1, . . . , wk) ∈ Sk} and l = k

3 PI = Algorithm 3.2(Ll, X0)
4 repeat
5 P Í = PI

6 Ll+1 =
k⋃

i=1

Ll ◦ Si

7 PI = Algorithm 3.2(Ll+1, X0)
8 l := l + 1
9 until PI = P Í
10 return PI.

We denote by PIn the ideal PI computed at the nth iteration of the loop between
lines 4-9 of Algorithm 3.3. PI0 denotes the ideal computed at step 3 of Algorithm 3.3.
Further, we denote by PI∗ the polynomial invariant ideal of the P-solvable loop (1).
Generalizing the results of [14], the relations between PIn and PI∗ are summarized in
Theorem 3.3.

THEOREM 3.3 [14] For any n ≥ 0, PI∗ ⊆ PIn+1 ⊆ PIn. If PIn+1 = PIn, then
PI∗ = PIn.

THEOREM 3.4 Algorithm 3.3 is correct. That is, whenever it terminates, PI = PI∗.

Proof The returned ideal PI has the property that there exists an n ≥ 0 such that
PI = PIn = PIn+1. By Theorem 3.3, we thus conclude that PI = PIn = PI∗.

EXAMPLE 3.5 Consider Example 3.2. The idealPI0 of polynomial relations after loop
sequences of length 2 is derived at step 3 of Algorithm 3.3. Using notations of Exam-
ple 3.2, we have PI0 = G. Next, at step 7 of Algorithm 3.3, the ideal PI1 of valid
polynomial relations after all loop sequences of length 3 is inferred:

PI1 = 〈−b p + a q + b[0] p[0] − a[0] q[0],
−b r + a s + b[0] r[0] − a[0] s[0], −q r + p s + q[0] r[0] − p[0] s[0],
−r b[0] p[0] + r a[0] q[0] + p b[0] r[0] − a q[0] r[0] − p a[0] s[0] + a p[0] s[0],
−s b[0] p[0] + s a[0] q[0] + q b[0] r[0] − b q[0] r[0] − q a[0] s[0] + b p[0] s[0]〉

As 〈PI1〉 �= 〈PI0〉, at step 7 of Algorithm 3.3 the ideal PI2 of valid polynomial rela-
tions after all loop sequences of length 4 is next computed:

PI2 = 〈−b p + a q + b[0] p[0] − a[0] q[0],
−b r + a s + b[0] r[0] − a[0] s[0], −q r + p s + q[0] r[0] − p[0] s[0],
−r b[0] p[0] + r a[0] q[0] + p b[0] r[0] − a q[0] r[0] − p a[0] s[0] + a p[0] s[0],
−s b[0] p[0] + s a[0] q[0] + q b[0] r[0] − b q[0] r[0] − q a[0] s[0] + b p[0] s[0]〉

As 〈PI2〉 = 〈PI2〉, Algorithm 3.3 terminates in 2 iterations, and the returned polyno-
mial invariant ideal is PI1.

Further we may substitute in PI1 the concrete values for the symbolically treated
initial values a[0], b[0], p[0], q[0], r[0], s[0]. The ideal of polynomial invariants is thus
generated by the set:

{ −bp + aq + y, −br + as − x, −1 − qr + ps, a − px − ry, b − qx − sy }.

A Complete Invariant Generation Approach for P-solvable Loops 249

4 Termination of the Invariant Generation Algorithm

In this section we prove that Algorithm 3.3 terminates, as follows. (1) We first prove
that the polynomial ideals after k + n P-solvable loops are radical, and thus they admit
a minimal decomposition (Theorems 4.3, 4.4, and 4.7). (2) Next, we prove that the
dimensions of the prime ideals from the minimal decomposition of a polynomial ideal
Ik+n+1 after a P-solvable loop sequence of length k + n + 1 are less or equal than
the dimensions of prime ideals from the minimal decomposition of ideal Ik+n after
a P-solvable loop sequence of length k + n. If a prime ideal from Ik+n+1 decreases
its dimension wrt a prime ideal of Ik+n, it means that some polynomials from the
minimal decomposition of Ik+n are not invariant (Theorem 4.6 and 4.7). (3) However,
the dimension cannot strictly decrease infinitely, and thus our algorithm must terminate
in a finite number of steps (Theorem 4.8).

In what follows we state and prove the results enumerated above. For this we need
one additional lemma proving the primeness of ideals of algebraic dependencies.
LEMMA 4.1 For every i ∈ {1, . . . , k}, let Ai be the ideal of algebraic dependencies
among the exponential sequences from the closed form system of loop S∗

i . For any
i, i1, i2 ∈ {1, . . . , k}, Ai and Ai1 +Ai2 are prime.

Proof For i = 1, . . . , k, we denote by Θi = {θji

is, , θ
ji

is} the set of exponential
sequences from the closed form of the P-solvable loop S∗

i with iteration counter ji ∈ N.
We only prove that Ai is prime. The primeness of Ai1 +Ai2 can be done in the similar
manner, by using the fact that Ai +Aj generates the ideal of all algebraic dependencies
among ji1 , ji2,Θi1 , Θi2 . Consider p, q ∈ K̄[ji, Θi] such that pq ∈ Ai. We then have
pq = 0. As K̄[ji, Θi] is an integral domain, we conclude that p = 0 or q = 0, yielding
that p ∈ Ai or q ∈ Ai.

4.1 Polynomial Relations of k + n and k + n + 1 Loop Sequences, with n ≥ 0

For simplicity of notations, let n = 0. We consider an arbitrary P-solvable loop se-
quence of length k, and let Ik denote the ideal of polynomial relations after the P-
solvable loop sequence of length k. We build a P-solvable loop of length k + 1 by
appending a P-solvable loop to the considered loop sequence of length k. Let Ik+1 de-
note the ideal of polynomial relations after this sequence of k + 1 loops. We show that
Ik and Ik+1 are radical ideals (Theorem 4.4), and the dimensions of prime ideals from
the minimal decomposition of Ik+1 are less or equal than the dimensions of the prime
ideals from the minimal decomposition of Ik (Theorem 4.6).

W.l.o.g., for the P-solvable loop sequence of length k we consider the loop sequence
S∗

1 ; . . . ;S∗
k , and take S∗

1 ; . . . ;S∗
k;S∗

1 for the P-solvable loop sequence of length k + 1.
We write Jk = {j1, . . . , jk}, where ji ∈ N is the loop counter of S∗

i from the loop-
sequence S∗

1 ; . . . ;S∗
k . Further, we denote by Θk the set of all algebraic exponential

sequences in ji from the polynomial closed forms of all Sji

i . By Algorithm 3.1:

Ik = 〈x1 − q1, . . . , xm − qm〉+
k∑

i=1

Ai ∩ ¯K[X], (3)

where ql ∈ K̄[Θk, Jk], and Ai is the ideal of algebraic dependencies of Sji

i . We write
A∗

k =
∑k

i=1Ai. Similarly, we write Jk+1 = Jk ∪ {jk+1}, where jk+1 ∈ N is the loop

250 L. Kovács

counter of the k + 1th loop from S∗
1 ; . . . ;S∗

k ;S∗
1 . We denote by Θk+1 the set of all ex-

ponential sequences from the polynomial closed forms of each loop of S∗
1 ; . . . ;S∗

k ;S∗
1 .

Note that the polynomial closed form of S∗
1 ; . . . ;S∗

k ;S∗
1 is computed by merging the

closed form of the k+ 1th loop with the closed form of S∗
1 ; . . . ;S∗

k . Namely, the initial
values of variables X in the polynomial closed form of the k + 1th loop are given by
the values of variables X after S∗

1 ; . . . ;S∗
k . Let Y = {y1, . . . , ym} respectively denote

the values ofX = {x1, . . . , xm} after S∗
1 ; . . . ;S∗

k . By Algorithm 3.1:

Ik+1 = 〈x1 − p1, . . . , xm − pm, y1 − q1, . . . , ym − qm〉+A∗
k +Ak+1 ∩ K̄[X], (4)

where ql ∈ K̄[Θk, Jk] and A∗
k are as in (3), pl ∈ K̄[jk+1, Θk+1 \ Θk, Y], and Ak+1 ∈

K̄[jk+1, Θk+1 \Θk] is the ideal of algebraic dependencies of Sjk+1
1 . We write A∗

k+1 =
A∗

k +Ak+1. Observe that considering the polynomials of Ak+1 in computing the poly-
nomial relations after Sj1

1 ; . . . ;Sjk

k would yield the same elimination ideal Ik . Hence:

Ik = 〈x1 − q1, . . . , xm − qm〉+A∗
k+1 ∩ ¯K[X].

In what follows, we write ak = 〈x1 − q1, . . . , xm − qm〉 + A∗
k+1 and ak+1 = 〈x1 −

p1, . . . , xm − pm, y1 − q1, . . . , ym − qm〉+A∗
k+1. Note that ak � K̄[Jk+1, Θk+1, X],

ak+1 � K̄[Jk+1, Θk+1, X, Y], and we have:

Ik = ak ∩ K̄[X] and Ik+1 = ak+1 ∩ K̄[X]. (5)

Using the notations above, we prove that the ideals ak, ak+1, Ik and Ik+1 are prime
(Theorems 4.3 and 4.4). For this, we need Lemma 4.2, which says that extending a ring
by an element does not change the ring.

LEMMA 4.2 [11] Let I � K[X] be a prime ideal. For all q ∈ K[X], the ideal I ′ =
〈I ∪ {p}〉 � K[X, y] with p = y − q is prime and K[X]/I ∼= K[x, y]/I ′.

THEOREM 4.3 ak and ak+1 are prime ideals.

Proof .
(1) For each r = 1, . . . ,m, let Pr = xr − qr ∈ K̄[Jk+1, Θk+1, xr]. For each l =

0, . . . ,m, we define the ideals b′l � K̄[Jk+1, Θk+1, x1, . . . , xl] recursively:

b′l = A∗
k+1, if l = 0, and b′l = 〈b′l−1 ∪ {Pl}, if 1 ≤ l ≤ m.

Using Lemma 4.1, we conclude that b′0 = A∗
k+1 is prime. By Lemma 4.2, the

primeness of each b′l implies the primeness of b′l+1, and observe that ak = b′m.
(2) Consider the ring homomorphism f : K̄[Jk+1, Θk+1, X] → K̄[Jk+1, Θk+1, Y]:

xl → yl, for each l = 1, . . . ,m and c→ c, for all c ∈ K̄[Jk+1, Θk+1] (6)

Obviously, ak
∼= f(ak), and hence f(ak) � K̄[Jk+1, Θk+1, Y] is prime. Note that

ak+1 = f(ak) + 〈x1 − p1, . . . , xm − pm〉.
Further, for each r = 1, . . . ,m, let Pr = xr−pr ∈ K̄[Jk+1, Θk+1, Y, xr]. For each
l = 0, . . . ,m, we define the ideals b′l � K̄[Jk+1, Θk+1, Y, x1, . . . , xl] recursively:

b′l = f(ak) if l = 0 and b′l = 〈b′l−1 ∪ {Pl}〉, if 1 ≤ l ≤ m.

By Lemma 4.2, the primeness of each b′l carries over to b′l+1. As ak+1 = b′m, we
conclude that ak+1 is prime.

A Complete Invariant Generation Approach for P-solvable Loops 251

THEOREM 4.4 The ideals Ik and Ik+1 are prime.

Proof We only prove the primeness of Ik � K̄[X]. Proving that Ik+1 is prime can be
done in a similar manner. Consider p, q ∈ K̄[X] such that pq ∈ Ik = ak ∩ K̄[X] ⊆ ak.
By Theorem 4.3, ak is prime, and we conclude that p ∈ ak or q ∈ ak. Thus, p ∈
ak ∩ K̄[X] or q ∈ ak ∩ K̄[X], and Ik is prime.

We note that ak and ak+1 are radical ideals as they are prime. Then, using Theorem 2.1,
they admit a minimal decomposition.

THEOREM 4.5 Let ak =
⋂t

r=1 Ur be the prime ideal decomposition of ak, where
t ∈ N, Ur � K̄[Jk+1, Θk+1, X] are prime ideals, and Ua � Ub for any a �= b. Then
there exist prime ideals Vr � K̄[Jk+1, Θk+1, X, Y] with Va � Vb for any a �= b such
that:

1. ak+1 =
⋂t

r=1 Vr;
2. K̄[Jk+1, Θk+1, X, Y]/Vr

∼= K̄[Jk+1, Θk+1, X]/Ur;
3. Vr ∩ K̄[Jk+1, Θk+1, X] is prime and dim(Vr ∩ K̄[Jk+1, Θk+1, X]) ≤ dimUr.

Proof Consider f : K̄[Jk+1, Θk+1, X] → K̄[Jk+1, Θk+1, Y] as defined in (6).

(1) For every r = 1, . . . , t, we obviously have Ur
∼= f(Ur), and the ideal f(Ur) �

K̄[Jk+1, Θk+1, Y] is thus prime. As ak+1 = f(ak) + 〈x1 − p1, . . . , xm − pm〉, we
have ak+1 =

(⋂t
r=1 f(Ur)

)
+ 〈x1 − p1, . . . , xm − pm〉 =

⋂t
r=1

(
f(Ur) + 〈x1 −

p1, . . . , xm − pm〉
)
. Let us denote by Vr = f(Ur) + 〈x1 − p1, . . . , xm − pm〉 �

K̄[Jk+1, Θk+1, Y,X], and we have ak+1 =
⋂t

r=1 Vr. The m-fold application of
Lemma 4.2 asserts furthermore that Vr is prime, and

K̄[Jk+1, Θk+1, X, Y]/Vr
∼= K̄[Jk+1, Θk+1, Y]/f(Ur). (7)

Moreover, for any a, b ∈ {1, . . . , t} such that a �= b we have Va � Vb, since
Ua � Ub implies f(Ua) � f(Ub).

(2) As K̄[Jk+1, Θk+1, Y]/f(Ur) ∼= K̄[Jk+1, Θk+1, X]/Ur, using (7) we obtain:

K̄[Jk+1, Θk+1, X, Y]/Vr
∼= K̄[Jk+1, Θk+1, X]/Ur and dimVr = dimUr. (8)

(3) We denote Wr = Vr ∩ K̄[Θk+1, Jk+1, X], and hence Wr ⊆ Vr . The primeness of
Vr implies thatWr is prime. By (8), we then have dimWr ≤ dimVr = dimUr.

We finally state the theorem relating Ik and Ik+1.

THEOREM 4.6 The ideals Ik and Ik+1 can be written uniquely as:

Ik = (
t⋂

r=1

Ur) ∩ K̄[X] and Ik+1 = (
t′⋂

r′=1

Wr′) ∩ K̄[X],

where t, t′ ∈ N with t′ ≤ t, and:

– Ur,Wr′ � K̄[Jk+1, Θk+1, X] are prime ideals;
– Ua � Ub andWa′ � Wb′ for any a �= b and a′ �= b′;
– for every r′ ∈ {1, . . . , t′} there exists r ∈ {1, . . . , t} such that dimWr′ ≤ dimUr.

252 L. Kovács

Proof Take Ur andWr as defined in the proof of Theorem 4.5.
We have Ik = (

⋂t
r=1Ur) ∩ K̄[X] and Ik+1 = (

⋂t
r=1Wr) ∩ K̄[X], where t ∈ N,

Ur,Wr � K̄[Jk+1, Θk+1, X] are prime, Ua � Ub for any a �= b, and dimWr ≤
dimUr for every r = 1, . . . , t. However, Wa � Wb for any a �= b may not be the
case. Following the notation from the proof of Theorem 4.5, we have Wr = Vr ∩
K̄[Θk+1, Jk+1, X], where Va � Vb for any a �= b. We then take the maximal subset
{W1, . . . ,Wt′} ⊆ {W1, . . . ,Wt} with t′ ≤ t, satisfying the following properties: (1)
for every r′ ∈ {1, . . . , t′} there exists r ∈ {1, . . . , t} such that Wr′ = Wr, and (2)
Wa′ � Wb′ for every a′ �= b′. In other words, we only keep those prime ideals Wr

that are not included in each other. Hence, Ik+1 = (
⋂t′

r′=1Wr′) ∩ K̄[X]. From the
properties of W ′

r so constructed, we finally infer that for every r′ ∈ {1, . . . , t′} there
exists r ∈ {1, . . . , t} such that dimWr′ = dimWr ≤ dimUr.

Theorems 4.4 and 4.6 can be obviously generalized to ideals of polynomial relations
for k + n and k + n+ 1 loop sequences, where the loop sequence of length k + n+ 1
is obtained by appending an arbitrary P-solvable loop to the considered loop sequence
of length k + n. In the sequel, Jk+n+1 and Θk+n+1 denote respectively the set of
iteration counters and the set of all algebraic dependencies from the closed forms of the
considered k + n+ 1 loops.

THEOREM 4.7 The ideals Ik+n and Ik+n+1 are prime and can be written uniquely as:

Ik+n = (
t⋂

r=1

Ur) ∩ K̄[X] and Ik+n+1 = (
t′⋂

r′=1

Wr′) ∩ K̄[X],

where t, t′ ∈ N with t′ ≤ t, and:

– Ur,Wr′ � K̄[Jk+n+1, Θk+n+1, X] are prime ideals;
– Ua � Ub andWa′ � Wb′ for any a �= b and a′ �= b′;
– for every r′ ∈ {1, . . . , t′} there exists r ∈ {1, . . . , t} such that dimWr′ ≤ dimUr.

4.2 Termination of Algorithm 3.3

We now prove termination of Algorithm 3.3.

THEOREM 4.8 Algorithm 3.3 terminates. That is, there exists n ≥ 0 such that PIn =
PIn+1.

Proof Let us first fix some notations. Lines 3 and 7 of Algorithm 3.3 assert:

PIn =
|Lk+n|⋂

s=1

Is
k+n for every n ≥ 0 (9)

where Is
k+n denotes the ideal of polynomial relations after the P-solvable loop sequence

Lk+n[[s]] of length k + n. For any ideal Is
k+n � K̄[X], whose minimal decomposition

containsNd prime ideals of dimension d (d = 0, 1, 2, . . .), we define the vector (in the
style of [11] – Theorem 4.5):

v(Is
k+n) = (. . . , N2, N1, N0).

A Complete Invariant Generation Approach for P-solvable Loops 253

Since any radical ideal admits a finite decomposition of prime ideals, note that Is
k+n has

only a finite number of non-zero entries Nd. Thus for any Is
k+n there exists a D ∈ N

such that for all d ≥ D we have Nd = 0. This property allows us to lexicographically
compare the vectors v(Is

k+n) and v(Is′
k+n′) of arbitrary two ideals Is

k+n and Is′
k+n′ , as

follows. For two ideals Is
k+n, Is′

k+n′ � K̄[X], we say that v(Is
k+n) = (. . . , N2, N1, N0)

is less than v(Is′
k+n′) = (. . . , N ′

2, N
′
1, N

′
0) and write v(Is

k+n) ≺ v(In′
k+n′) iff Nd < N

′
d

for the maximal d with Nd �= N ′
d.

From Theorem 3.3, we have PIn+1 ⊆ PIn for any n ∈ N. Assume that there
exists an n ∈ N such that PIn+1 � PIn. (Otherwise, there is nothing to prove, since
PIn = PIn+1 implies termination.) Hence, there exists p ∈ K̄[X] such that:

p ∈ PIn and p �∈ PIn+1. (10)

From (9), we have:

PIn =
|Lk+n|⋂

s=1

Is
k+n and PIn+1 =

|Lk+n+1|⋂
s′=1

Is′
k+n+1, (11)

where Is
k+n and Is′

k+n+1 denote respectively the ideal of polynomial relations after the
P-solvable loop sequencesLk+n[[s]] of length k+n, andLk+n+1[[s′]] of length k+n+1.
By (10), we then have p ∈ Is

k+n for all s ∈ {1, . . . , |Lk+n|}, and there exists an s′0 ∈
{1, . . . , |Lk+n+1} such that p �∈ I

s′
0

k+n+1. From line 6 of Algorithm 3.3, there exists
s0 ∈ {1, . . . , |Lk+n|} and i ∈ {1, . . . , k} such that Lk+n+1[[s′0]] = Lk+n[[s0]] ◦ Si.
Observe that:

p ∈ Is0
k+n and p �∈ Is′

0
k+n. (12)

Let Jk+n+1 and Θk+n+1 denote respectively the set of iteration counters and the set of
algebraic exponentials from the closed forms of all k + n+ 1 loops from Lk+n+1[[s′0]].
By Theorem 4.7, the minimal decomposition of the ideals Is′

0
k+n+1 and Is0

k+n is:

Is0
k+n = (

t⋂
r=1

Ur) ∩ K̄[X] and I
s′
0

k+n+1 = (
t′⋂

r′=1

Wr′) ∩ K̄[X], (13)

where t, t′ ∈ N with t′ ≤ t, Ur,Wr′ � K̄[Jk+n+1Θk+n+1, X] are prime, Ua � Ub

and Wa′ � Wb′ for any a �= b and a′ �= b′, and for every r′ ∈ {1, . . . , t′} there exists
r ∈ {1, . . . , t} such that dimWr′ ≤ dimUr.
Let us write Ar = Ur ∩ K̄[X] and Br′ =Wr′ ∩ K̄[X]. We thus have Is0

k+n =
⋂t

r=1Ar

and Is′
0

k+n+1 =
⋂t′

r′=1Br′ . W.l.o.g., we assume that Aa � Ab for any a �= b, and
Ba � Bb for any a �= b. (Otherwise, similarly to Theorem 4.6, we only keep those Aa

and Ba′ that are not included in other ideals Ab and Bb′ , respectively). We conclude
that Ar and Br′ are respectively the prime ideals from the minimal decomposition of

Is0
k+n and Is′

0
k+n+1. Moreover, for every r′ ∈ {1, . . . , t′} there exists r ∈ {1, . . . , t}

such that dimBr′ ≤ dimAr. Then, (12) asserts the existence of r′ ∈ {1, . . . , t} and

r ∈ {1, . . . , t′} such that dimBr′ < dimAr. It follows that v(Is′
0

k+n+1) ≺ v(Is0
k+n).

Furthermore, observe that an infinite sequence

· · · ≺ v(Is′′
0

k+n+2) ≺ v(I
s′
0

k+n+1) ≺ v(I
s0
k+n)

254 L. Kovács

cannot exist (Dickson’s Lemma). Hence there exits an ns ≥ 0 such that v(Is
(ns)
0

k+n+ns
) =

v(Is
(ns+1)
0

k+n+ns+1), which implies Is
(ns)
0

k+n+ns
= I

s
(ns+1)
0

k+ns+n+1, where s(ns)
0 is the short-hand

notation for s

ns times︷︸︸︷
′ · · ·′
0 . We denoted respectively by I

s
(ns)
0

k+n+ns
and I

s
(ns+1)
0

k+n+ns+1 the ideals of

polynomial relations afterLk+n+ns [[s
(ns)
0]] andLk+n+ns+1[[s

(ns+1)
0]], with the property

that there exists i ∈ {1, . . . , k} such that Lk+n+ns+1[[s
(ns+1)
0]] = Lk+n+ns [[s

(ns)
0]]◦Si.

Thus, for every n and s0 with Is0
k+n �= I

s′
0

k+n+1, there exits ns ≥ 0 such that I
s
(ns)
0

k+n+ns
=

I
s
(ns+1)
0

k+n+ns+1. By taking n∗ = Max(ns), we have PIn+n∗ = PIn+n∗+1 (note that
PIn+1 � PIn), which implies that Algorithm 3.3 terminates.

5 Experimental Results

We have implemented our method in the Aligator software package [13] – available
from http://mtc.epfl.ch/software-tools/Aligator/. We have
successfully tested our approach on a large number of examples. For all examples we
tried, a basis of the polynomial invariant ideal was inferred in at most 2 iterations of
Algorithm 3.3. When compared to existing invariant generation techniques [18,17], our
method reported less time and/or iterations on all examples we tried. We summarize
some of our experimental results, obtained on a machine with 1.6GHz processor and
1.75Gb of memory, in Table 4.2. For more details and examples we refer to the above
mentioned URL of Aligator.

For each benchmark example, we present results obtained by our Aligator tool,
the Solvable tool implementing the approach described in [18], and the Inv tool im-
plementing the method of [17]. For each tool, we present the required time in generat-
ing polynomial invariants, the number of iterations needed by the tool’s main algorithm
to infer invariants, and the number of invariants that were derived. Aligator and
Solvable inferred the basis of the ideal of all polynomial invariants, whereas Inv

Table 1. Experimental Results on Benchmark Examples

Binary Division [9]

Timing � Iters � Polys
Aligator 0.55 s 1 1
Solvable 1.78 s 3 1
Inv 1.77 s 5 1

Euclid’s Alg. [7]

Timing � Iters � Polys
Aligator 9.02 s 2 5
Solvable 3.05 s 5 5
Inv 4.13 s 8 1

Fermat’s Alg. [7]

Timing � Iters � Polys
Aligator 0.24 s 1 1
Solvable 1.73 s 4 1
Inv 2.95 s 8 1

Integer Division [19]

Timing � Iters � Polys
Aligator 0.70 s 1 3
Solvable 1.78 s 3 3
Inv 2.54 s 8 3

LCM-GCD [3]

Timing � Iters � Polys
Aligator 1.23 s 2 1
Solvable 2.01 s 5 1
Inv 4.32 s 9 1

Binary Product [7]

Timing � Iters � Polys
Aligator 0.63 s 1 1
Solvable 1.74 s 4 1
Inv 2.79 s 8 1

Square Root [18]

Timing � Iters � Polys
Aligator 0.19 s 1 2
Solvable 1.34 s 2 2
Inv 2.17 s 6 2

Wensley’s Alg. [5]

Timing � Iters � Polys
Aligator 0.63 s 1 3
Solvable 1.95 s 4 3
Inv 3.53 s 8 3

A Complete Invariant Generation Approach for P-solvable Loops 255

inferred polynomial invariants upto degree 2. We also note that even though the number
of loop invariants inferred by Aligator and Solvable differ in some examples, the
reduced Gröbner basis of the polynomial invariant ideals returned by Aligator and
Solvable coincide, and both tools are complete.

6 Conclusions

We present an algorithm for generating all polynomial invariants of P-solvable loops
with assignments and nested conditionals. We prove that our algorithm always termi-
nates. The proof relies on showing that the dimensions of the prime ideals from the
minimal decomposition of the ideals generated at an iteration of our algorithm either
remain the same or decrease at the next iteration of the algorithm. When compared
to existing invariant generation techniques, our method took less iterations and/or less
time in generating polynomial invariants in all examples we tried. Future work includes
generating polynomial inequalities as invariants, and extending our method to handle
nested loops.

Acknowledgements. The author wishes to thank Manuel Kauers for his helpful com-
ments, and for Papa Alioune Ly for collecting experimental data.

References

1. Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class Ring of
a Zero Dimensional Polynomial Ideal. J. of Symbolic Computation 41(3-4), 475–511 (2006)

2. Cox, D., Little, J., O’Shea, D.: Ideal, Varieties, and Algorithms. An Introduction to Com-
putational Algebraic Geometry and Commutative Algebra, 2nd edn. Springer, Heidelberg
(1998)

3. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
4. Everest, G., van der Poorten, A., Shparlinski, I., Ward, T.: Recurrence Sequences. Mathemat-

ical Surveys and Monographs, vol. 104. American Mathematical Society (2003)
5. German, S.M., Wegbreit, B.: A Synthesizer of Inductive Assertions. IEEE Transactions on

Software Engineering 1, 68–75 (1975)
6. Gosper, R.W.: Decision Procedures for Indefinite Hypergeometric Summation. Journal of

Symbolic Computation 75, 40–42 (1978)
7. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley

Publishing Company, Reading (1989)
8. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Comm. of ACM 12(10),

576–580 (1969)
9. Kaldewaij, A.: Programming. The Derivation of Algorithms. Prentince-Hall (1990)

10. Kapur, D.: A Quantifier Elimination Based Heuristic for Automatically Generating Inductive
Assertions for Programs. J. of Systems Science and Complexity 19(3), 307–330 (2006)

11. Kauers, M.: Algorithms for Nonlinear Higher Order Difference Equations. PhD thesis, RISC-
Linz, Johannes Kepler University Linz, Austria (2005)

12. Kauers, M., Zimmermann, B.: Computing the Algebraic Relations of C-finite Sequences and
Multisequences. J. of Symbolic Computation 43(11), 787–803 (2008)

256 L. Kovács

13. Kovacs, L.: Aligator: A Mathematica Package for Invariant Generation. In: Proc. of IJCAR,
pp. 275–282 (2008)

14. Kovacs, L.: Reasoning Algebraically About P-Solvable Loops. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Heidelberg (2008)

15. Müller-Olm, M., Seidl, H.: Computing Polynomial Program Invariants. Indormation Pro-
cessing Letters 91(5), 233–244 (2004)

16. Paule, P., Schorn, M.: A Mathematica Version of Zeilberger’s Algorithm for Proving Bino-
mial Coefficient Identities. J. of Symbolic Computation 20(5-6), 673–698 (1995)

17. Rodriguez-Carbonell, E., Kapur, D.: Automatic Generation of Polynomial Invariants of
Bounded Degree using Abstract Interpretation. Science of Comp. Programming 64(1) (2007)

18. Rodriguez-Carbonell, E., Kapur, D.: Generating All Polynomial Invariants in Simple Loops.
J. of Symbolic Computation 42(4), 443–476 (2007)

19. Sankaranaryanan, S., Sipma, H.B., Manna, Z.: Non-Linear Loop Invariant Generation using
Gröbner Bases. In: Proc. of POPL (2004)

Standardization and Testing of Mathematical
Functions

Victor Kuliamin

Institute for System Programming
Russian Academy of Sciences

109004, Solzhenitsina, 25, Moscow, Russia
kuliamin@ispras.ru

Abstract. The article concerns problems of formulating standard re-
quirements to implementations of mathematical functions working with
floating-point numbers and conformance test development for them. In-
consistency and incompleteness of available standards in the domain is
demonstrated. Correct rounding requirement is suggested to guarantee
preservation of all important properties of functions and to support high
level of interoperability between different mathematical libraries and
software using them. Conformance test construction method is proposed
based on different sources of test data: numbers satisfying specific pat-
terns, boundaries of intervals of uniform function behavior, and points
where correct rounding needs much higher precision than in average.
Analysis of test results obtained on various implementations of POSIX
mathematical library is also presented.

1 Introduction

Computers now are widely used in physics, chemistry, biology, social sciences to
model and understand behavior of very complex systems, which can hardly be
examined in any other way. Confirmation of such models’ correctness by experi-
ments is too expensive and often even impossible. To ensure accurateness of this
modeling we need to have adequate models and correctly working modeling sys-
tems. The article is concerned with the second problem – how to ensure correct
operation of modeling systems. Such systems are often based on very sophisti-
cated and peculiar numeric algorithms, and in any case they use mathematical
functions implemented in software libraries or in hardware.

Thus mathematical libraries are common components of most simulation soft-
ware and correct operation of the latter cannot be achieved without correct im-
plementation of basic functions by the former. In practice software quality is
controlled and assured mostly with the help of testing, but testing of mathe-
matical libraries often uses simplistic ad hoc approaches and random test data
generation. Specifics of floating-point calculations make construction of both
correct and efficient implementations of functions along with their testing a
nontrivial task. This paper proposes an approach for standardization of floating-
point calculations beyond the bounds of IEEE 754 standard [1] and presents a

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 257–268, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

258 V. Kuliamin

systematic method of conformance test construction for mathematical functions
implemented in software or hardware.

The core of the standardization proposed is correct rounding requirement. It
means that an implementation of a function is always required to provide results,
which are mathematically precise values correctly rounded to floating-point (FP)
numbers according to the current rounding mode. Obeying such a requirement
gives an easy way to preserve almost all useful properties of a function im-
plemented, and, more important, it provides an unprecedented interoperability
between various mathematical libraries and modeling software using them. Now
this interoperability is far from the high level.

The test construction method presented checks correct rounding requirement
and uses three different sources of test data – floating-point numbers of specific
structure, boundaries of intervals where the function under test behaves in uni-
form way, and floating-point numbers, for which correct rounding of the function
value requires much higher precision of calculations than in average. All these
sources are concerned with common errors made by developers of mathematical
libraries, which is confirmed both by the practical experience and by the results
of tests developed according to this method also presented in the paper.

The main contribution of this article in comparison with [2] and [3] is precise
formulation of requirements proposed for standardization and the presentation
of considerable testing statistics, which demonstrates rather high error rate of
commonly used implementations of mathematical functions and confirms the
practical adequacy of the test construction approach proposed.

2 Current Standards’ Requirements

Practically significant requirements on the behavior of functions on FP numbers
can be found in several standards.

– IEEE 754 [1] (a.k.a IEC 60559) defines representation of FP numbers, round-
ing modes and describes basic arithmetic operations.

– ISO C [4] and POSIX [5] impose additional requirements on about 40 func-
tions of real and complex variable implemented in standard C library.

– ISO/IEC 10697-2 [6] gives more elaborated requirements for elementary
functions.

2.1 Floating-Point Numbers

Standard IEEE 754 defines FP numbers based on various radices. Further only
binary numbers are considered, since other radices are used in practice rarely.
Nevertheless, all the techniques presented can be extended to FP numbers with
different radices.

Representation of binary FP numbers is defined by two main parameters – n,
the number of bits in the representation, and k < n, the number of bits used to
represent an exponent. The interpretation of different bits is presented below.

Standardization and Testing of Mathematical Functions 259

– The first bit represents the sign of a number.
– The next k bits – from the 2-nd to the k+ 1−th – represent the exponent of

a number.
– All the rest bits – from k + 2−th to n−th – represent the mantissa or the

significand of a number.

A number X with the sign bit S, the exponent E, and the mantissa M is ex-
pressed in the following way.

1. If E > 0 and E < 2k − 1 then X is called normalized and is calculated
with the formula X = (−1)S2(E−2k−1+1)(1 +M/2n−k−1). Actual exponent
is shifted to make possible representation of both large and small numbers.
The last part of the formula is simply 1 followed by point and mantissa bits
as the binary representation of X without exponent.

2. If E = 0 then X is called denormalized and is computed using another
formula X = (−1)S2(−2k−1+2)(M/2n−k−1). Here mantissa bits follow 0 and
the point. Note that this gives two zero values +0 and −0.

3. Exponent 2k − 1 is used to represent positive and negative infinities (zero
mantissa) and not-a-number NaN (any nonzero mantissa). Infinities repre-
sent mathematically infinite values or numbers greater or equal to 22k−1

.
NaN represents results of operations that cannot be considered consistently
as finite or infinite, e.g. 0/0 = NaN.

IEEE 754 standard defines the following FP number formats: single precision
(n = 32 and k = 8), double precision (n = 64 and k = 11), and extended double
precision (128 ≥ n ≥ 79 and k ≥ 15, Intel processors use n = 79 and k = 15). In
the current (2008) version of the standard quadruple precision numbers (n = 128
and k = 15) are added.

2.2 IEEE 754 Requirements

IEEE 754 defines requirements to basic arithmetic operations on numbers (ad-
dition, subtraction, multiplication, and division, fused multiplication-addition
x ∗ y+ z), comparisons, conversions between different formats, square root func-
tion, and calculation of FP remainder [7]. Since results of these operations ap-
plied to FP numbers are often not exact FP numbers, it defines rules of rounding
such results. Four rounding modes are defined: to the nearest FP number, up (to
the least FP number greater than the result), down (to the greatest FP number
less than the result), and to 0 (up for negative results and down for positive
ones). If the result is exactly in the middle between two neighbor FP numbers,
its rounding to nearest get the one having 0 as the last bit of its mantissa.

To make imprecise and incorrect results more visible IEEE 754 defines a set
of FP exception flags.

– Invalid flag should be raised if the result is NaN, while arguments of the
operation performed are not NaNs. In addition NaNs are separated in two
classes – signaling NaNs and quiet NaNs. NaN result of an operation on

260 V. Kuliamin

not-NaN arguments is signaling one. If any of arguments of an operation
is signaling NaN, then invalid flag is raised. Quiet NaNs can be used as
arguments without raising invalid flag with quiet NaN as the result.

– Divide-by-zero flag should be raised if the result is exactly positive or nega-
tive infinity, while arguments are finite.

– Overflow flag should be raised if the result absolute value is greater than
maximum FP number.

– Underflow flag should be raised if the result is not 0, while its absolute value
is less than minimum positive normalized FP number.

– Inexact flag should be raised if the precise result is no FP number, but no
overflow or underflow occurs.

2.3 Requirements of ISO C and POSIX

ISO C [4] and POSIX [5] standards provide description of mathematical functions
of standard C library, including most important elementary functions (square
and cubic roots, power, exponential and logarithm with bases e, 2 and 10, most
commonly used trigonometric, hyperbolic and their reverse functions) of real or
complex variables. Some special functions are added – error function, comple-
mentary error function, gamma function, and logarithmic gamma function.

ISO C standard defines points where the specified functions have exact well-
known values, e.g. log 1 = sinh 0 = 0, cos0 = 1. It also specifies situations where
invalid and divide-by-zero flags should be raised, the first one – if a function
is calculated outside of its domain, the second one – if the value of a function
is precisely positive or negative infinity. These requirements are specified as
normative for real functions and as informative for the complex ones.

POSIX slightly extends the set of described functions; it adds Bessel functions
of the first and the second kind of orders 0, 1, and of an arbitrary integer order
given as the second parameter. It also extends ISO C by specifying situations
when overflow and underflow flags should be raised for functions in real variables.
POSIX specifies that value of errno should be set to ERANGE if overflow or
underflow occurs or if the result is precise infinity, and errno should be set to
EDOM if the arguments are out of the domain of a function, excluding arguments
for which it returns signed infinite results.

POSIX requires that real functions having asymptotic f(x) ∼ x near 0 should
return x for each denormalized argument value x. Note, that this would be
inconsistent with IEEE 754 rounding requirements if they were applied to such
functions.

One more contradiction between POSIX and natural extension of IEEE 754
concerns overflow. IEEE 754 in this case requires to take rounding mode in
account – e.g. to return positive infinity for to nearest and up rounding modes
and the biggest positive finite FP number for to 0 or down modes. POSIX
requires returning in any case one value BIG VALUE.

Both ISO C and POSIX do not say anything on precision of function calcu-
lation in general situation.

Standardization and Testing of Mathematical Functions 261

2.4 Requirements of ISO 10697

The only standard specifying some calculation precision for rich set of mathemat-
ical functions is ISO 10697 [6], standard on language independent arithmetic. It
provides the following requirements to implementations of elementary functions.

– Preservation of sign and monotonicity of ideal mathematical function where
no frequent oscillation occurs. Frequent oscillation occurs where difference
between two neighbor FP numbers is comparable with length of intervals
of monotonicity or sign preservation. Trigonometric functions are the only
elementary functions that oscillate frequently on some intervals.

– Rounding errors should not be greater than 0.5− 2.0 unit of least precision
(ulp), depending on the function. Again, this is not applied to implementa-
tions of trigonometric functions on arguments greater than some big angle.
Note that precision 0.5 ulp is equivalent to the correct rounding to the near-
est FP number.

– Preservation of evenness or oddity of implemented functions. For this reason
the standard does not support directed rounding modes – up and down.
Only symmetric modes – to nearest and to zero – are considered.

– Well-known exact values for functions are specified, extending ISO C require-
ments. In addition it requires to preserve asymptotic of the implemented
function in 0 or near infinity.

– Natural inequalities (e.g. cosh(x) ≥ sinh(x)) should also be preserved.

ISO 10697 provides the most detailed set of requirements including precision
requirements. Unfortunately, it has not yet recognized by applied programmers
and no widely-used library has declared compliance with this standard. Maybe
this situation will improve in future.

3 Correct Rounding Requirement

Analysis of existing standards shows that they are not fully consistent with each
other and are usually restricted to some specific set of functions. Trying to con-
struct some systematic description of general requirements based on significant
properties of mathematical functions concerned with their computation one can
get the following list.

– Exact values and asymptotic near them.
– Preservation of sign, monotonicity, and inequalities with other functions.
– Symmetries – evenness, oddity, periodicity, or more complex properties like
Γ (x+ 1) = xΓ (x).

– NaN results outside of function’s domain, infinity results in function’s poles,
correct overflow and underflow detection, raising correct exception flags.

– Preservation of bounds of function range, e.g. −π/2 ≤ arctan(x) ≤ π/2.
– Correct rounding according to natural extension of IEEE 754 rules and rais-

ing inexact flag on imprecise results.

262 V. Kuliamin

Correct rounding requirement here is of particular significance.

– It immediately implies almost all other properties in this list. If we want
to preserve these properties without correct rounding, much harder work is
required, peculiar errors become possible, and thorough testing of such an
implementation becomes much harder task.

– It provides results closest to the precise ones. Without correct rounding it is
necessary to specify how the results may differ from the precise ones, which
is hard and very rarely done in practice. It is supposed usually that correct
rounding for sine function on large arguments is too expensive, but none of
widely used sine implementations (except for Microsoft’s one [9]) explicitly
declares its error bounds on various intervals. Users usually don’t analyze
the results obtained from standard mathematical libraries, and are not com-
petent enough to see the boundaries between areas where their results are
relevant and the ones where they become irrelevant due to (not stated explic-
itly) calculation errors in standard functions. Correct rounding moves most
of the problems of error analysis to the algorithms used by the applications,
standard libraries become as precise as it is possible.

– Correct rounding implies almost perfect compatibility of different mathe-
matical libraries and precise repeatability of calculation results of modeling
software on different platforms, which means very good portability of such
applications. This goal is rather hard to achieve without such a requirement
– one needs to standardize specific algorithms as it was made by Sun in
mathematical library of Java 2. Note that strict precision specification is
much more flexible requirement than standardization of algorithms.

High efforts required to develop a function implementation and its resulting
ineffectiveness are always mentioned as drawbacks of correct rounding. How-
ever, efficient algorithms and resolving techniques are already known for a long
time (e.g. see [10,11] for correct argument reduction for trigonometric functions).
Work of Arenaire group [12] in INRIA on crlibm [13,14] library demonstrates
that inefficiency problems can be resolved in almost all cases. So, now these
drawbacks of correct rounding can be considered as not really relevant.

More serious issues are contradictions between correct rounding requirement
and some other useful properties of mathematical functions. In each case of such
a contradiction we should decide how to resolve it.

– Correct rounding can sometimes contradict with boundaries of function
range, if they are not precise FP numbers. For example, arctan(x) ≤ π/2 is
an important property. It occurs that single precision FP number closest to
π/2 is greater than it, so if we round arctangent values on large arguments to
the nearest FP number, we get arctan(x) > π/2, that can radically change
the results of modeling of some complex systems. In this case we prefer to
give priority to the bounds preservation requirement and do not round values
of arctangent (with either rounding mode) to FP numbers out of its range.

– Oddity and some other symmetries using minus sign or taking reciprocal
values can be broken by directed rounding modes (up and down), while

Standardization and Testing of Mathematical Functions 263

symmetric modes (to nearest and to 0) preserve them. In this case it is
natural to prefer correct directed rounding if it is chosen, because usually
such modes are used to get correct boundaries on exact results.

– Correct rounding for different modes contradicts with two POSIX require-
ments – that some BIG VALUE should be always returned in case of over-
flow, and that a function close to x near 0 should return the value of its
argument for denormalized arguments. In both cases correct rounding seems
to be more justified.

So, we propose to make correct rounding according to the current rounding
mode the main requirement for standardization of any kind of functions working
with FP numbers. The single exception is more privileged range preservation
requirement in cases where it comes to contradiction with correct rounding. In
all other cases correct rounding is sufficient to infer all the properties of an
implementation.

In case of overflow a function should return the corresponding infinity for
rounding to the nearest and in the direction of the overflow. For rounding in the
opposite direction and to 0 maximum positive or negative FP number should be
returned. On the arguments outside function’s domain it should return signaling
NaN, or signed infinity if the sign can be naturally determined by mathematical
properties of this function. On infinite arguments a function should return the
corresponding limit value, if it has any one, otherwise signaling NaN should be
returned. If any of the arguments is signaling NaN, the result should also be
signaling NaN. If any of the arguments is quiet NaN and there are no signaling
NaNs among them, the result should be quiet NaN.

These requirements should be supplemented with IEEE 754 exception flags
raising and setting errno to specific values in the corresponding specific situa-
tions (see above).

Further we consider test construction to check correct rounding requirement
with 4 rounding modes specified by IEEE 754. We also demonstrate that such
tests are useful and informative even for implementations that do not satisfy
these requirements.

3.1 Table Maker Dilemma

An important issue related with correct rounding requirement is table maker
dilemma [15,16]. It consists in the fact that sometimes one needs much higher
precision of calculations to get correctly rounded value of a function than in
average. An example is the value of natural logarithm of a double precision
FP number 1.613955DC802F816 ·2−35 (mantissa is represented in hexadecimals)
equal to −17.F02F9BAF6035 7F149. . .16 . Here F14 means 14 digits F, giving
with neighbor digits 60 consecutive units staying after a zero just after the
double precision mantissa. This value is very close to the mean of two neighbor
FP numbers, and to be able to round it correctly to the nearest FP number we
need calculations with relative error bound about 2−113 while 0.5 ulp precision
corresponds to only 2−53 bound.

264 V. Kuliamin

4 Test Construction Method

Test construction method proposed checks difference between correctly rounded
value of a function and the value returned by its implementation in a set of test
points. We prefer to have test point selection rules based only on the properties
of the function under test and structure of FP numbers, and do not consider spe-
cific implementation algorithms. This black box approach appears to be rather
effective in revealing errors in practice, and at the same time it does not require
detailed analysis of numerous and ever growing set of possible implementation
algorithms and various errors that can be made in them.

Test points are chosen by the following rules (see more details in [3]).

1. FP numbers of special structure
First, natural boundary FP numbers are taken as test points: 0,−0,∞,−∞,
NaN, the least and the greatest positive and negative denormalized and
normalized numbers.
Second, numbers with mantissa satisfying some specific patterns are chosen.
Errors inanalgorithmor an implementationoften lead to incorrect calculations
on somepatterns. ThenotoriousPentiumdivisionbug [17] canbedetected only
on divisors having units as mantissa bits from 5-th to 10-th. Pattern use for
testing FP calculations in hardware is already described, e.g. in [18].
Third, two previous rules are used to get points where reverse function is
calculated and pairs of closest FP numbers to its values are taken as test
arguments for direct function. So, a function is tested in points satisfying
some patterns, and in points where its value is closest to the same patterns.

2. Boundaries of intervals of specific function behavior
All singularities of the function under test, bounds of intervals of its non-
overflow behavior, of constant sign, of monotonicity or simple asymptotic
determine some partitioning of FP numbers. Boundaries of these intervals
and several points on each of them are chosen as test points.

3. FP numbers, for which calculation of correctly rounded function
value requires higher precision
Bad cases, which require more than M additional bits for correct rounding
(the ”badness”), are taken as test points. Two values ofM are used: n−k−10
for the worst cases and (n− k)/2, because some errors can be uncovered in
not-very-bad cases. This rule adds test points helping to reveal calculation
errors and inaccuracies of various nature.

Implementation of the method is rather straightforward. Test points are gathered
into text files, each test point is accompanied with correctly rounded value of
the function under test for each rounding mode (only two different values are
required at most). Correctly rounded values are calculated with the help of
multiprecision implementations of the same functions taking higher precision to
guarantee correct results and using both Maple and MPFR library [19] to double
check the correctness. A test program reads test data, calls the function under
test, and compares its result with the correct one. In case of discrepancy the
difference in ulps is counted and reported. In addition the test program checks

Standardization and Testing of Mathematical Functions 265

exception flags raising according to IEEE 754 rules extended to the function
under test. Test execution is completely automated.

The hard step of the approach is to compute bad cases. Methods to do this
include search based techniques, dyadic method, lattice reduction, and integer
secants method (see details in [3]). They do not solve the problem completely,
but help to deal with it in many particular cases.

5 Test Results Analysis

The test construction method presented above has been applied to make test
suites for POSIX functions exp, expm1, log, log10, log1b, sin, asin, cos,
acos, tan, atan, sinh, asinh, cosh, acosh, tanh, atanh in double precision.
The tests have been executed on the following platforms.

– Platform A – Sun Solaris 10 on UltraSpark III processor.
– Platform B – SUSE Linux Enterprise Server (SLES) 10.0 with glibc 2.4 or

Debian Linux 4.0 with glibc 2.3.6 on Intel Itanium 2 processor.
– Platform C – Red Hat Fedore Core 6 with glibc 2.5 or Debian Linux 4.0

with glibc 2.7 on Intel Pentium 4.
– Platform D – Windows XP operating system with Microsoft Visual Studio

2005 C runtime library on Intel Pentium 4 processor.
– Platform E – Red Hat Enterprise Linux 4.0 with glibc 2.3.4 on Intel Pentium

4 or AMD Athlon 64 processors.
– Platform F – Debian Linux 4.0 with glibc 2.7 on 64-bit PowerPC processor.
– Platform G – SLES 10.0 with glibc 2.4 on IBM s390 processor.
– Platform H – SLES 10.0 with glibc 2.3.5 on 32-bit PowerPC processor.

Platforms E-H being different in minor details are very similar in general picture
and demonstrate almost the same numbers of similar errors, so they seem to have
almost identical implementations of glibc math functions (and actually identical
results are demonstrated by platforms F and G for atan, asinh, atanh, expm1,
log1p, log, log10 and by platforms E and H for atan, log, log10). Other
platforms show more differences and specific errors.

The following errors and “features” were detected.

Table 1. Examples of errors found

Func. Platf. Rounding Argument Value

exp E down, to 0 -1.02338886743052249 1.12533187332226478e+307
exp F up 7.07297806243595915e+2 -5.62769256250533586e+306
exp H up -6.59559560885092266e-1 1.00194134452638006
cosh G up 7.09150193027364367e+2 -2.35289304846008447e+307
sinh E down 6.68578051047927488e+2 -5.48845314236507489e+288
sin H up 3.36313335479954389e+1 7.99995094799809616e+22
cos F down, to 0 1.62241253252029984e+22 -1.19726021840874908e+52
sin D all -1.79346314152566190e-76 9.80171403295605760e-2

266 V. Kuliamin

– The most serious bug is numerous and huge calculation errors in implementa-
tions of sin, cos, tan, exp, sinh, cosh on many platforms. Only platforms
A and B implement trigonometric functions without serious errors (with only
1-bit or 2-bit errors). Exponential function and hyperbolic sine and cosine
are implemented without big errors on platforms A-D. The salient fact is
that on the platforms E-H all these functions work almost correctly for the
rounding to nearest (only few 1-bit errors were detected for trigonometric
functions, 2-bit ones for hyperbolic functions, and no calculation errors were
found for exp), but for other rounding modes almost arbitrary inaccuracies
are possible. Examples are given in Table 1.
Implementations of trigonometric functions on platforms C and D, although
erroneous, have imprecise argument reduction [10] as the main source of
errors, so they show smooth increase of inaccuracies from 0 to infinities,
independently of rounding modes.

– Sine is implemented with errors in the interval (−0.1,−10−76) on platform
D. An example is shown in the last row of Table 1. This error is hard to
show due to compiler-implemented transformation sin(−x) = − sin(x). To
overcome it test data should be generated or loaded dynamically, so that the
compiler cannot notice that they are negative numbers.

– The platform B is the only one which preserves oddity or evenness of all
the functions tested. cosh is implemented as an even function on all the
platforms except for D. atan, cos, sin, tan also preserve their symmetry
on the platform C, asin – on the platform D. In all other cases the symmetry
is somehow broken.

– Arctangent function for large arguments calculated with up rounding returns
the result greater than π/2 on the platforms A, B, and C.

– Platform C shows big calculation errors in acos for rounding up, tanh for
rounding down, expm1 for rounding up and down. Also acos(−1) = −π
instead of π for rounding up.

– On platform A functions asin, acos, log, log10 return not-NaN FP number
instead of NaN for arguments out of function domain.

– Finite number (actually maximum float value) is returned instead of infinity
in case of overflow for exp, cosh, sinh and in 0 for log, log10 on platform
A. Maximum finite double value is returned instead of infinity for exp, cosh,
sinh on platform D. These bugs may be related with POSIX requirement
to return some BIG VALUE in case of overflow independently of rounding
mode. This requirement (with BIG VALUE equal to infinity) is implemented
on all platforms except for A and D for exp, on platforms B, E, H for cosh,
on platforms E, H for expm1, and only on the platform B for sinh.

– On all platforms, except for B, functions that are equivalent to x near 0 “try”
to return the argument value for denormal arguments for all rounding modes.
That is, POSIX requirement is implemented on most platforms in most cases.
However, this requirement is implemented only for positive denormals for
asin, tanh and atanh on the platform C and for tanh on the platform G.
Platform B implements correct rounding requirement.

Standardization and Testing of Mathematical Functions 267

– A lot of minor calculation errors were detected. The best accuracy is demon-
strated by platform B – maximum errors are only 2-bit and such errors are
rather rare, the worst results are shown by atan, for which 10% of test points
discovered such errors. Platform A shows maximum 3-bit difference from
correct results. Sometimes such errors are very often, for example, 99.8%
of test points discovered 1-bit errors in acos implementation on platform
D for rounding up. In some cases probable mistakes in table values used in
implementations are uncovered, for example,
• On platforms E-H atan has erroneous 7 last bits of mantissa for rounding

up, down or to 0 near -6.25.
• On platform C sinh value for rounding up has erroneous 15 last bits

near 1.986821485e-8.
• On platform D exp value has 6 erroneous last bits near -2.56e-9.

– Some errors detected concern incorrect flag (not-)raising and incorrect errno
values. For example, for almost all implementations of functions that are
equivalent to argument near 0 UNDERFLOW flag and ERANGE errno
value are not set for denormal arguments. For atanh in 1 or −1 errno value
in all implementations is set to domain error, not to range error as it is
required by POSIX.

The main result is that tests based on structure of FP numbers and intervals of
uniform behavior of the function under test are very good for finding various errors
related with mistakes made by programmers, while bad cases for correct rounding
help to assess calculation errors in whole and general distribution of inaccuracies.

6 Conclusion

The approach presented in the paper helps to formulate consistent require-
ments and construct corresponding conformance test suites for floating-point
implementations of various mathematical functions in one real variable. Error-
revealing power of such test suites is rather high – many errors were found in
mature and widely used libraries. Although test suites are intended to check
correct rounding requirement, they also give important information about im-
plementations that do not obey this restriction.

Some further research is needed to formulate heuristics or rules that help to
make test suites more compact. Now they consists of about 2 · 106 test points
and require sometimes several hours to execute. The experiments conducted
demonstrated that for exponential function the test suite constructed using the
method described and consisting of about 3.7 · 106 test cases, and the reduced
test suite of about 104 test cases detect all the same errors.

One idea to extend the method proposed for functions in two or more variables
is rather straightforward – it is necessary to use not intervals, but areas of
uniform behavior of functions. But extension of rules concerning FP numbers
of special structure and bad cases seem to be much more peculiar, since their
straightforward generalizations gives huge number of tests without any hope

268 V. Kuliamin

to get all the data in a reasonable time. So, some reduction rules should be
introduced here from the very beginning to obtain manageable test suites.

The standardization proposed and tests developed with the presented ap-
proach can facilitate and simplify construction of correct and portable mathe-
matical libraries giving more adequate and precise means for evaluation of their
correctness and interoperability.

References

1. IEEE 754-2008. IEEE Standard for Binary Floating-Point Arithmetic. NY, IEEE
(2008)

2. Kuliamin, V.: Standardization and Testing of Implementations of Mathematical
Functions in Floating Point Numbers. Programming and Computer Software 33(3),
154–173 (2007)

3. Kuliamin, V.: Test Construction for Mathematical Functions. In: Suzuki, K.,
Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS,
vol. 5047, pp. 23–37. Springer, Heidelberg (2008)

4. ISO/IEC 9899. Programming Languages - C. Geneve: ISO (1999)
5. IEEE 1003.1-2004. Information Technology - Portable Operating System Interface

(POSIX). NY, IEEE (2004)
6. ISO/IEC 10967-2. Information Technology - Language Independent Arithmetic -

Part 2: Elementary Numerical Functions. Geneve, ISO (2002)
7. Goldberg, D.: What Every Computer Scientist Should Know about Floating-Point

Arithmetic. ACM Computing Surveys 23(1), 5–48 (1991)
8. Defour, D., Hanrot, G., Lefevre, V., Muller, J.-M., Revol, N., Zimmermann, P.: Pro-

posal for a standardization of mathematical function implementation in floating-
point arithmetic. Numerical Algorithms 37(1-4), 367–375 (2004)

9. http://msdn.microsoft.com/library/wkbss70y.aspx

10. Ng, K.C.: Arguments Reduction for Huge Arguments: Good to the Last Bit (1992),
http://www.validlab.com/arg.pdf

11. Kahan, W.: Minimizing q ∗ m − n. (1983) (unpublished),
http://http.cs.berkeley.edu/~wkahan/testpi/nearpi.c

12. http://www.inria.fr/recherche/equipes/arenaire.en.html

13. de Dinechin, F., Ershov, A., Gast, N.: Towards the post-ultimate libm. In: Proc.
of 17th Symposium on Computer Arithmetic, June 2005. IEEE Computer Society
Press, Los Alamitos (2005)

14. http://lipforge.ens-lyon.fr/www/crlibm/

15. Lefèvre, V., Muller, J.-M., Tisserand, A.: The Table Maker’s Dilemma. INRIA
Research Report 98-12 (1998)

16. Lefèvre, V., Muller, J.-M.: Worst Cases for Correct Rounding of the Elementary
Functions in Double Precision. In: Proc. of 15th IEEE Symposium on Computer
Arithmetic, Vail, Colorado, USA, June (2001)

17. Edelman, A.: The Mathematics of the Pentium Division Bug. SIAM Review 39(1),
54–67 (1997)

18. Ziv, A., Aharoni, M., Asaf, S.: Solving Range Constraints for Binary Floating-
Point Instructions. In: Proc. of 16th IEEE Symposium on Computer Arithmetic
(ARITH-16 2003), pp. 158–163 (2003)

19. http://www.mpfr.org

http://msdn.microsoft.com/library/wkbss70y.aspx
http://www.validlab.com/arg.pdf
http://http.cs.berkeley.edu/~wkahan/testpi/nearpi.c
http://www.inria.fr/recherche/equipes/arenaire.en.html
http://lipforge.ens-lyon.fr/www/crlibm/
http://www.mpfr.org

Using AOP for Discovering and Defining
Executable Test Cases

Philipp Kumar and Thomas Baar

akquinet tech@spree GmbH
Software Reengineering Group

Bülowstraße 66, D-10783 Berlin, Germany
{philipp.kumar,thomas.baar}@akquinet.de

Abstract. The functional specification of software systems is often given
in form of use cases. The compliance of a system implementation to a use
case specification is validated by system tests, which can nowadays be au-
tomated. Unfortunately, system tests run slowly and assume that all
needed external systems such as databases and authentication servers are
accessible and run correctly. For these reasons, software developers rather
rely on module tests, which test the functionality of individual modules.
Module tests, however, have the disadvantage of being defined indepen-
dently of the customer’s system specification.

In this paper, we describe an approach to combine the advantages of
system and module tests. The core technique is (i) to record the com-
plete information flow between modules during the execution of system
tests and (ii) to generate, based on this data, corresponding module tests
afterwards. The resulting module tests are fast, they are independent of
external systems, and they reflect test scenarios defined in use cases. Our
approach is heavily based on aspect-oriented programming (AOP) and
implemented by the open-source framework jautomock.

Keywords: Aspect-oriented programming (AOP), automated test gen-
eration, regression tests.

1 Introduction

Each software project starts with the goal to correctly implement all require-
ments the customer has formulated. To ensure correct behavior of the system
under development, most projects contain, in addition to production code, a
considerable amount of test code. Despite this test effort, many projects still fail
and do not deliver the expected functionality in time and budget.

In our experience, a major problem of failed projects is that customer require-
ments have not strictly been taken into account in all project phases. A project
typically starts with the documentation of requirements. Then, the overall archi-
tecture is developed, including the integration of external systems, and – when
a test-based development process has been adopted – the customer’s functional
requirements are formulated in form of system tests (aka. user acceptance tests).

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 269–281, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

270 P. Kumar and T. Baar

Test-based development processes advocate to write a suite of test cases for
each module in order to test it individually. Isolated module tests require mock
implementations of all components the module communicates with (other mod-
ules and external systems). A mock implementation of a component simulates
the behavior of this component adequately for the purpose of the test. The
development of such mocks and their embedding in a module test can be chal-
lenging and usually requires a substantial amount of work. Moreover, module
tests require the tested module to be highly configurable (e.g. within the test,
the module should communicate with mock implementations and not with the
original components), which can pollute the design of the module considerably.

While system tests reflect the customer’s requirements very closely, they are
often neglected and rarely executed in the development process even if they can
be automated. A prominent argument of developers is that running such tests
takes too long. Another observation of ours is that system tests are not very
accepted by software developers because they tend to be unstable. They fail as
soon as an external system is not available or has changed its state in a way that
it behaves slightly differently. In other words, system tests rely on test conditions
that are out of control of the developer. Once the conditions change, the test
might fail though the implemented system still runs correctly. In this case, the
software developer has to adapt the test description to the new test conditions,
an error-prone and tedious task. Last but not least, if the system failes because
of an implementation error, the failed test usually does not give much hints on
which parts of the code might be responsible.

Module tests are much more accepted among developers because they avoid
the disadvantages of system tests. They are fast to execute, failures can easily
tracked back to the source, and they do not depend on the availability or the
state of external systems. However, the input data for module tests is usually
invented by the software developer herself and not necessarily derived from the
original customer’s requirements.

The contribution of this paper is to bridge the gap between system and module
tests. Our technique generates tests, which are, just like system tests, strictly
based on the original customer requirements, while having all the advantages of
module tests, such as independence from external systems, fast execution, and
easy debugging. The basic idea is to record all communication across module
borders while executing a system test. In a second step, this information is
used in order to automatically generate a corresponding module test for each
module, including all needed mock implementations of the neighboring modules
and external systems. Our approach is heavily based on AOP and has been
implemented in form of the open-source framework jautomock.

The paper is organized as follows. Section 2 briefly explains the most relevant
concepts of AOP. Section 3 describes, based on a running example, our approach
in detail and Sect. 4 discusses its achievements and limitations. While Sect. 5
reviews related work, Sect. 6 closes the paper with some concluding remarks.

Using AOP for Discovering and Defining Executable Test Cases 271

2 Background

2.1 Aspect-Oriented Programming

Aspect-oriented programming (AOP) is a programming paradigm that allows
to manipulate the control flow of a given program. A central notion of AOP is
the join point that can, for the purpose of this paper, be described as a certain
location in the source code. Typical join point types are method call, method
execution, constructor call, constructor execution, member variable access and
throw/catch of exceptions. Figure 1 shows join points of mentioned types within
an exemplary program flow.

Fig. 1. Join point examples

A set of join points is called pointcut. Pointcuts can be defined by the pro-
grammer using a selection language. A pointcut is associated with an advice.
An advice is a set of instructions to be automatically executed whenever a join
point from the associated pointcut is reached at runtime. Pointcut-advice com-
binations are defined within aspects.

The goal of AOP is to improve separation of concerns. AOP provides the
means to implement concerns in a modular way. A common example is the real-
ization of the concern logging. Using traditional languages, the programmer has
to write logging code at many places within the program. This has a negative
impact on readability and maintainability. AOP allows to overcome this defi-
ciency and to encapsulate the implementation code for logging in one separate
unit (the aspect).

272 P. Kumar and T. Baar

The paradigm of AOP has been implemented in various ways. There are Java
frameworks such as Spring and JBoss Seam that enable control flow manipu-
lation by so-called interceptors. Another realization is in form of programming
languages such as AspectJ.

2.2 AspectJ

AspectJ [1,2,3] is a popular aspect-oriented programming language based on
Java. It introduces language constructs to define aspects as well as containing
advice that can be associated with pointcuts. The defined source code is compiled
to Java bytecode executable on any common Java Virtual Machine. For this
purpose, AspectJ distributions come with a compiler that is able to translate
AspectJ sources as well as Java sources.

In this paper we use the annotation-based syntax of AspectJ [4]. This allows
us to create aspects without introducing non-Java language constructs. Aspects
are defined by annotating a class with @Aspect, while pointcuts are added by
annotating an empty method with @Pointcut.

3 Deriving Module Tests from System Tests

In this section, we detail our two-step approach of deriving module tests from
system tests. After introducing a running example as well as prerequisites for
the approach, each step is described in a separate subsection.

Running example

The description of our approach is organized around a simple but typical prod-
uct ordering application written in Java, which will serve as the running example
throughout the paper. Figure 2 shows the package and class structure with im-
portant attributes and methods.

An order is placed by calling anOrderService.placeOrder(..), which takes
an XML document as argument and returns the id of the generated order. This
document should look similar to that in Listing 1.1. Each order is associated
with a certain customer, who has a name and may have qualified for a certain
discount, and a list of order items. An order item is related to a product and has
an attribute for the quantity with which the product was ordered. Each product
knows its price.

There are two use cases of the software system. For each of them, the class
OrderService offers a method:

placeOrder – an order is created according to the information passed in argu-
ment orderXml.

calculateTotalCharge – the calculation of the total cost of an order depending
on the quantity of each order item, the price of the ordered products, and
the customer’s discount. Products and customers are referenced via ids and
managed by databases (ProductDB, CustomerDB).

Using AOP for Discovering and Defining Executable Test Cases 273

Fig. 2. Class diagram for order service

Listing 1.1. XML input example for the order service
1 <order customerId="21">
2 <item productId="7" quantity ="5" />
3 <item productId="8" quantity ="2" />
4 </order >

The example system comes with one system test for the use case “Calculate
total charge for an order”. It runs against the entire system. The test is shown
in Listing 1.2, formulated as a JUnit test case1.

Listing 1.2. System test for calculateTotalCharge

1 public class SystemTest {
2 private OrderService orderService; // object under test
3 private int orderId ;
4

5 @Before
6 public void setUp () throws Exception {
7 this.orderService = new OrderService();
8

9 String inputXml =
10 "<order customerId=\"22\">"
11 + "<item productId=\"7\" quantity = \"5\" />"
12 + "<item productId=\"8\" quantity =\"3\" />"
13 + "</order >";
14

15 /* Place the order */
16 this.orderId = orderService.placeOrder(inputXml);
17 }
18

19 @Test
20 public void testCalculateTotalCharge() {
21 // Assuming that database yields that
22 // product 7 costs $2 , product 8 costs $5 , customer 22 has
23 // not qualified for a discount ,
24 // we expect 5*2 + 3*5 = 25 as return value.
25 double expectedSum = 25;

1 In JUnit, @Before marks the method that defines the setup procedure to be per-
formed before each test method, while @Test marks an actual test method.

274 P. Kumar and T. Baar

26 double actualSum = orderService.calculateTotalCharge(orderId);
27 Assert.assertEquals(expectedSum , actualSum , 0.001);
28 }
29 }

System tests are bad candidates for frequent regression testing, however. They
are expensive to execute since they need the entire system to run, including
databases. Also, they are often dependent on data that is not under control of
the tester. For example, the test in Listing 1.2 relies on certain product prices
and discount values stored in the database.

Approach prerequisites

In order to define efficient regression tests, the system should be divided into
modules that are to be tested individually and independently from each other.
This partitioning process depends on the structure of the particular system un-
der test, yet there are general criteria that may help to identify modules. One
criterion is to specify a particular group of to-be-refactored classes as a module.
Another is to define modules on the basis of performance characteristics: Slow
system parts shall be omitted and thus be defined outside of to-be-tested mod-
ules. Behavior that is not under the control of the tester is also a good candidate
for module classification, like database systems.

For our example, we will use a partition that separates business and database
classes, effectively defining the following modules:

– Module A: OrderService, Order, OrderItem, Product, Customer
– Module B: ProductDB, CustomerDB

3.1 First Step: Recording Phase

In the first step, we obtain data to be used later for testing each module in
isolation (module tests). For module tests, we need to know how a module re-
acts when another module calls a method of it. Thus, we have to monitor the
interactions between modules during the acceptance tests and to record the data
which is exchanged between them. This is basically a logging concern and can
be implemented using AOP without touching the production code. An aspect
can detect when a module calls another module’s method and in that case logs
all argument values as well as the return value.

The described process of recording the information flow between modules can
be automated by using the framework jautomock [5], which has been developed
by the authors as an implementation of the approach described in this paper.
In order to record the information flow, one has to extend the framework as-
pect JAutoMockTestCase as shown in Listing 1.3. The resulting aspect is a test
that acts as a wrapper of the acceptance test from our example application
and also specifies the module borders in the AspectJ pointcut language. This
is done by overwriting the pointcut subSystemBorders2 of the super aspect.
2 In AspectJ, a pointcut is defined via @Pointcut, annotating an empty method and

defining the pointcut within the annotation’s string argument.

Using AOP for Discovering and Defining Executable Test Cases 275

F
ig

.
3
.
U

M
L

se
qu

en
ce

di
ag

ra
m

di
sp

la
yi

ng
co

nt
ro

l
flo

w
du

ri
ng

ru
n

of
ac

ce
pt

an
ce

te
st

276 P. Kumar and T. Baar

Listing 1.3. Regression test for module Am
1 @Aspect
2 public class OrderServiceTest extends JAutoMockTestCase {
3 private OrderService orderService; // object under test
4 private int orderId ;
5

6 @Pointcut("within(example . orderservice.*) && ("
7 + " call(* example . orderservice.db .*.*(..))"
8 + " || call(example . orderservice.db.*.new(..))"
9 + ")")

10 protected void subSystemBorders() {}
11

12 @Test
13 public void testOrderService() {
14 // run system test from here
15 }
16 }

The border is here defined to be traversed whenever a method call occurs from
module A to module B, i.e. from package example.orderservice into package ex-
ample.orderservice.db (including calls to constructors). Figure 3 shows an UML
sequence diagram that visualizes the control flow during execution of the test.

When this test is executed, objects passed across the defined border, includ-
ing method arguments, return values and thrown exceptions, are automatically
serialized and persisted to the filesystem. Listing 1.4 shows a section of the corre-
sponding output. A method call is identified by the calling class, the target class,
the methods name, its parameter values and a sequence number (to distinguish
multiple calls to the same method). Each call is associated with a return value
and the parameter values3.

Listing 1.4. Fragment of the serialized information flow
1 <map>
2 ...
3 <entry>
4 <MethodCall>
5 <caller >example . orderservice.Product </caller >
6 <targetMethod class="method">
7 <class>example .orderservice.db.ProductDB</class>
8 <name>getProductById</name>
9 <parameterTypes>

10 <class>int</class>
11 </parameterTypes>
12 <parameterValues class="java.util.Arrays $ ArrayList">
13 <a>
14 <int>7</int>
15
16 </parameterValues>
17 </targetMethod>
18 <invocationSequenceNumber>0</invocationSequenceNumber>
19 </MethodCall>
20 <MethodCallReturnValue>
21 <returnValue class="example . orderservice.Product ">
22 <id>7</id>
23 <description>Beer</description>
24 <price>2.0</price >
25 </returnValue>

3 As a method can potentially change the state of its parameters, the parameter values
are serialized as well after the method has been executed.

Using AOP for Discovering and Defining Executable Test Cases 277

26 <parameterValues class="java.util.Arrays $ ArrayList">
27 <a>
28 <int>7</int>
29
30 </parameterValues>
31 </MethodCallReturnValue>
32 </entry>
33 ...
34 </map>

The serialization is achieved using the open source framework XStream [6],
capable of serializing a large variety of objects to XML using Java’s reflection
mechanism.

3.2 Second Step: Playback Phase

In order to test a module individually, all dependencies to other modules must be
eliminated through the use of mock objects. A mock object mimics the behavior
of the original object in a given context, e.g. during the execution of a test case.
For example, a database can be substituted by an ordinary Java object, as long
as the object returns the same answers as the original database for the queries
issued within the current test.

Using AOP, calls from one module to another can be intercepted and handled
by logic defined within an aspect, effectively redefining the semantics of the call
in a way that is transparent to the caller. The production code remains unaltered.
This mechanism allows us to dispatch method calls across a module border to
mock objects instead of actually invoking production logic.

The described interception process has been implemented by the jautomock
framework. This playback phase is automatically performed when we run the
test from Listing 1.3 a second time: The framework notices the existence of
objects that have been serialized during the first run, and whenever a call across
a module border occurs, it is now intercepted. Instead of invoking code of the
called module, the framework reconstructs the previously serialized result object
for that specific call and returns it. The method call arguments are updated
to the state recorded during the previous phase in order to reflect preformed
argument state changes. Also, if an exception occurred during the recording
phase it is now rethrown.

It is possible to obtain new mock objects by simply discarding the old ones
and rerunning the test. Another recording phase will take place, and subsequent
runs of the test will perform a playback using the newly recorded mock objects.

4 Limitations

The generated module tests are a good substitute for system tests: They are
faster to execute, more stable, independent from external systems and easier to
debug.

However, they are not a complete substitute. First of all, some changes within
the external systems might require to alter the integration of that external system

278 P. Kumar and T. Baar

with our own. Such changes remain undetected, if we rely on the generated
module tests only, because the behavior of the external system is “frozen” at a
certain point in time.

The second limitation of our approach is the requirement that all calls from
a module to its environment remain stable. If a module has indeterministic
behavior that causes the parameter values of outgoing method calls to vary (e.g.
a random number generator is used), the objects serialized during the recording
phase cannot be correctly associated to the arguments of those outgoing calls.
And, if the module is refactored to include additional calls to other modules or
if these calls are reordered, no suitable prerecorded objects exist during replay
phase, causing the module test to fail.

Objects are recorded in association to method calls and their argument values.
This implies a necessity to compare deserialized objects to the ones passed as
arguments during replay in order to determine if they are equal. In Java, a class
must correctly implement the method equals(..) to support this.

As our approach relies on object serialization, it shares its restrictions in
serializing certain kinds of objects. Such objects become invalid when serialized
and deserialized. Examples are thread-like objects and objects keeping system
resources such as file handles. In these and similar cases, one should investigate
the possibility of implementing custom XStream converters (see [6]) in order to
enable XStream to properly serialize and deserialize objects of specific types,
e.g. to reinitialize a file handle properly.

The proposed approach does not support cyclic dependencies between the
module under test and modules to be replaced by the mocking mechanism. If
one of the latter modules calls a method of the module under test, this call is not
captured during the recording phase and thus does not occur during the playback
phase. It may be possible to track such behavior and replay it accordingly by
generating corresponding pointcuts and surrounding aspects as needed instead
of defining them manually.

5 Related Work

Elbaum et al. describe in [7] a general technique of extracting module tests from
system tests and call this technique “carving and replay differential unit tests
(DUTs)”. The authors discuss multiple realization variants for simulating the
environment of a unit when executing the unit tests (state-based, action-based)
but the basic idea is the same as in our approach: Whenever a unit makes a
call to its environment, this execution of the call is simulated by a mock, while
the simulation might not be restricted on just yielding the return value (as in
our approach) but to simulate also side-effects of the called method by update
the state of the unit (what overcomes some of the limitations of our approach).
Following the taxonomy in [7], our approach would be classified as a “action-state
hybrid CR approach”. Unlike our approach, their implementation is not based on
AOP but employs code instrumentation and the Byte Code Engineering Library
(BCEL).

Using AOP for Discovering and Defining Executable Test Cases 279

Saff et al. describe in [8] an approach of extracting unit tests from system
tests, which is very similar to ours, has similar limitations and which is called
“factoring unit tests”. The most important difference is the used technique for
recording and replaying interactions between modules. While our approach is
based on AOP, the tool implemented by Saff et al. relies on Java instrumentation.

Concurrently with Saff et al., Orso and Kennedy developed a similar technique
in [9]. While they describe their capture-and-replay approach in a language-
agnostic way, the provided implementation of the approach targets Java programs
and is, as the other approaches cited above, based on Java instrumentation.

While AOP is not yet used as wide-spread as it was anticipated [10], there
are numerous success stories from industry in using this technique. One im-
portant application scenario is the enhancement of existing applications aiming
at improving its overall quality. Bodkin and Furlong [11] report on adding a
component to a widely deployed application at Daimler-Chrysler for monitoring
user behavior. The collected data was used to improve both the application and
even the overall business process. There is also ongoing research work aiming
at combining AOP and testing. This effort, however, is devoted to develop new
techniques for testing aspects themselves [12,13], which is a quite different goal
from ours.

There are numerous frameworks available that facilitate the automated test
of Java code, among them JUnit being the most famous. EasyMock is another
popular framework, which helps to test a class in isolation from its neighboring
classes. Before a test is executed, the neighboring objects of the object under test
are substituted by mock objects, whose behavior can be defined programmat-
ically based on dynamic proxies. The technique has limitations when the code
under test calls static methods including constructors at neighboring classes, as
it was the case in our running example.

Last but not least we have to mention the framework JMockit that uses the
concept of JVM class redefinition introduced in Java 5. The main idea is to sub-
stitute certain classes with mock classes during runtime. This is basically the in-
terceptor technique also realized by AOP. It is possible to formulate JMockit tests
that are semantically equivalent to the generated module tests of our approach.
One disadvantage of JMockit is the lack of the powerful wildcard notation to
define a set of join points where interception should apply. More importantly,
JMockit cannot be used for the purpose of tracing production code as required
by the first step of our approach.

6 Conclusions

We have applied AOP to define mock tests in which parts of the system under
test are substituted by mock objects. One of the biggest problems in writing
mock tests is to find an elegant solution for the substitution problem: If the
system under test is executed in test mode, then mock objects should be used,
while in production mode, mock objects must not be used. The production code
itself, of course, must not be aware of the two different execution modes.

280 P. Kumar and T. Baar

Our solution for this substitution problem is based on AOP, which allows to
manipulate the control flow of the production code ”from outside” in an elegant
way, i.e. without altering the production code itself. A definitive advantage over
other mock frameworks like EasyMock is that not only calls from the object
under test to neighboring objects can be substituted, but also any kind of method
call, including calls to static methods and calls that are deeply nested within the
production code. This feature of our approach makes it possible to easily define
modules of the system under test by simply grouping some classes. Using our
AOP-based technique, all outgoing method calls for a group of classes can be
captured within a given test scenario.

Future work

Our approach is implemented by the open-source framework jautomock. One of
its current limitations is the necessity to perform the test generation seperately
for each module. Also, one has to define the module borders within the source
code of the aspects used. Possible future work includes developing a module-
definition language and generating the module borders within aspects automat-
ically.

Ongoing research includes the visualization of generated module tests to fa-
cilitate their understanding, particularly the control flow of the system test in
the recording phase in form of sequence diagrams. We plan to augment this vi-
sualization with other diagrams, e.g. object diagrams for visualizing all involved
objects.

Acknowledgement

We would like to express our gratitude to Professor Franz Schweiggert, Ulm
University, and to our colleague Michael Bouschen for their input and support.

References

1. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, p.
327. Springer, Heidelberg (2001)

2. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
(2003)

3. AspectJ Team. The AspectJ programming guide (2003),
http://eclipse.org/aspectj/

4. AspectJ Team. The AspectJ 5 development kit developer’s notebook (2004),
http://eclipse.org/aspectj/

5. jautomock Homepage, http://sourceforge.net/projects/jautomock/
6. XStream Homepage, http://xstream.codehaus.org/
7. Elbaum, S., Chin, H.N., Dwyer, M.B., Jorde, M.: Carving and replaying differential

unit test cases from system test cases. IEEE Transactions on Software Engineer-
ing 35(1), 29–45 (2009)

http://eclipse.org/aspectj/
http://eclipse.org/aspectj/
http://sourceforge.net/projects/jautomock/
http://xstream.codehaus.org/

Using AOP for Discovering and Defining Executable Test Cases 281

8. Saff, D., Artzi, S., Perkins, J.H., Ernst, M.D.: Automatic test factoring for java.
In: ASE 2005: Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pp. 114–123. ACM, New York (2005)

9. Orso, A., Kennedy, B.: Selective capture and replay of program executions. In:
WODA 2005: Proceedings of the third international workshop on Dynamic analysis,
pp. 1–7. ACM, New York (2005)

10. Wiese, D., Hohenstein, U., Meunier, R.: How to convince industry of AOP. In:
Industry Track of Sixth International Conference on Aspect-Oriented Software
Development, AOSD, Vancouver, British Columbia, Canada (2007),
http://aosd.net/2007/program/industry/index.php

11. Bodkin, R., Furlong, J.: Gathering feedback on user behaviour using AspectJ.
In: Chapman, M., Vasseur, A., Kniesel, G. (eds.) Industry Track Proceedings of
5th International Conference on Aspect-Oriented Software Development, Techni-
cal report IAI-TR-2006-3, Computer Science Department III, University of Bonn,
Germany, pp. 58–67 (2006)

12. Alexander, R.T., Bieman, J.M., Andrews, A.A.: Towards the systematic testing of
aspect-oriented programs. Technical Report CS-4-105, Colorado State University,
Fort Collins, Colorado (2004)

13. Ceccato, M., Tonella, P., Ricca, F.: Is AOP code easier or harder to test than OOP
code? In: On-line Proceedings of the First Workshop on Testing Aspect-Oriented
Programs (WTAOP 2005), Chicago, Illinois, USA (2005)

http://aosd.net/2007/program/industry/index.php

Cryptographic Protocols Analysis in Event B�

Nazim Benaissa and Dominique Méry

Université Henri Poincaré Nancy 1 and LORIA
BP 239

54506 Vandœuvre-lès-Nancy, France
{benaissa,mery}@loria.fr

Abstract. We consider the proof-based development of cryptographic
protocols satisfying security properties. For instance, the model of Dolev-
Yao provides a way to integrate a description of possible attacks, when
designing a protocol. We use existing protocols and want to provide
a systematic way to prove but also to design cryptographic protocols;
moreover, we would like to provide proof-based guidelines or patterns
for integrating cryptographic elements in an existing protocol. The goal
of the paper is to present a first attempt to mix design patterns (as in
software engineering) and formal methods (as a verification tool). We
illustrate the technique on the well known Needham-Schroeder public
key protocol and Blake-Wilson-Menezes key transport protocol. The un-
derlying modelling language is Event B and is supported by the RODIN
platform, which is used to validate models.

1 Introduction

To provide a secure communication between two agents over an insecure com-
munication channel, these agents should establish a fresh key to use in their
subsequent communications. The chosen session key must be known only by the
two agents involved in the communication, it also needs to be a fresh key to avoid
using a key established in a previous session. There are several cryptographic
protocols dedicated to key establishment that aim to provide such properties.
To be able to prove them on a protocol, we must be able to model the knowledge
of the attacker. A pet model of attacker’s behaviour is the Dolev-Yao model [1];
this model is an informal description of all possible behaviours of the attacker
as described in section 3.4. We model and prove key establishment protocols
using Event B [2,3] as a modelling language. We apply our methodology on
two protocols: the well known Needham-Schroeder public key protocol [4] and
Blake-Wilson-Menezes key transport protocol [5].

Proving properties on cryptographic protocols such as secrecy is known to be
undecidable. However, works involving formal methods for the analysis of security
protocols have been carried out. Theorem provers or model checkers are usually
used for proving properties. For model checking, one famous example is Lowe’s
� This work is supported by grant No. ANR-06-SETI-015-03 awarded by the Agence

Nationale de la Recherche.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 282–293, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Cryptographic Protocols Analysis in Event B 283

approach [6] using the process calculus CSP and the model checker FDR. Lowe
discovered the famous bug in Needham-Schroeder’s protocol. Model checking is
efficient for discovering an attack if there is one, but it can not guarantee that a
protocol is reliable. We should be carefull on the question of stating properties
of a given protocol and it is clear that the modelling language should be able to
state a given property and then to check the property either using model checking
or theorem proving. Other works are based on theorem proving: Paulson [7] used
an inductive approach to prove safety properties on protocols. He defined proto-
cols as sets of traces and used the theorem prover Isabelle [8]. Other approaches,
like Bolignano [9], combine theorem proving and model checking taking general
formal method based techniques as a framework. Let us remember that we fo-
cus on a correct-by-construction approach and we are not (yet) proposing new
cryptographic protocols: we analyse existing protocols and show how they can
be composed and decomposed using proof-based guidelines. Two protocols illus-
trate the usefulness of our pattern. We have already developed the MONDEX case
study [10] and we have identified a structure for this kind of protocol. Protocols
are summarized by diagrams showing the information flows and the interactions
among agents. We call these diagrams interaction diagrams.

The Blake-Wilson-Menezes key transport protocol is a key transport proto-
col. Agent B creates a fresh session key KBA and sends it to the agent A. The
protocol is based on signed messages using public cryptographic keys in order
to provide mutual authentication. The Needham-Schroeder public key protocol
provides mutual authentication using exchanged shared nonces Na ,Nb (see fig-
ure 1). These nonces can be used as shared secret for key establishment, this
is why the last message that contains Nb remains encrypted even if it is not
necessary for authentication. We consider in this paper the Lowe’s fixed version
of the protocol. Lowe discovered an attack on this protocol using FDR model
checker and proposed a variant protocol where the identifier B was added in the
second message of the protocol run.

Blake-Wilson-Menezes key transport
protocol.

Needham-Schroeder public key protocol.

Fig. 1. Two protocols

284 N. Benaissa and D. Méry

Both protocols can be modelled using interaction diagrams. The proposed
guideline is based on this observation and on integration of elements of attack.

2 Development by Step-Wise Refinement

Our event-driven approach [11] is based on the B notation. It extends the
methodological scope of basic concepts in order to take into account the idea of
formal models. Roughly speaking, a formal model is characterized by a (finite)
list x of state variables possibly modified by a (finite) list of events ; an invari-
ant I(x) states properties that must always be satisfied by the variables x and
maintained by the activation of the events. In the following, we briefly recall def-
initions and principles of formal models and explain how they can be managed
by tools [12]. State variables can be modified and we express changes to state
variable values, using a general form denoted by the construct x : | P (x, x′).
This should be read: “x is modified in such a way that the predicate P (x, x′)
holds”, where x′ denotes the new value of the vector and x denotes its old value.
This is clearly non-deterministic in general. In the following, the so-called before-
after predicate BA(x, x′) describes an event as a logical predicate expressing the
relationship linking the values of the state variables just before (x) and just af-
ter (x′) the “execution” of event evt1. Each event has two main parts: a guard,
which is a predicate built on the state variables, and an action, which is a gen-
eralized substitution. Proof obligations are produced from events in order to
state that an invariant condition I(x) is preserved. Their general form follows
immediately from the definition of the before-after predicate, BA(x, x′), of each
event: I(x) ∧ BA(x, x′) ⇒ I(x′).

The refinement [13,14] of a formal model allows us to enrich a model in a step-
by-step approach, and is the foundation of our correct-by-construction approach.
Refinement provides a way to strengthen invariants and to add details to a
model. It is also used to transform an abstract model into a more concrete version
by modifying the state description. This is done by extending the list of state
variables, by refining each abstract event into a corresponding concrete version,
and by adding new events. The abstract state variables, x, and the concrete ones,
y, are linked together by means of a, so-called, gluing invariant J(x, y). A number
of proof obligations ensure that (1) each abstract event is correctly refined by its
corresponding concrete version, (2) each new event refines skip, (3) no new event
takes control for ever, and (4) relative deadlock-freeness is preserved. We suppose
that an abstract model AM with variables x and invariant I(x) is refined by a
concrete model CM with variables y and gluing invariant J(x, y). If BAA(x, x′)
andBAC(y, y′) are respectively the abstract and concrete before-after predicates
of the same event, we have to prove the following statement, corresponding to
proof obligation (1): I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′ · (BAA(x, x′) ∧
J(x′, y′)).
1 The prime notation, where we represent the value of a variable x, say, after an event

by x′ is a fundamental part of the modelling language and is used throughout all
the models that follow.

Cryptographic Protocols Analysis in Event B 285

To summarize, refinement guarantees that the set of traces of the abstract
model contains (modulo stuttering) the traces of the concrete model.

3 Guidelines for Modelling Protocols

A proof-based guideline is defined by a proof-based development of Event B
models which are modelling protocols in a very abstract and general way. A
protocol is a system which is controlling the traffic of messages between agents.
The first three models are common to protocols where authentication properties
have to be established, while the fourth model is dedicated to key establishment
protocols. The four models defining the development are as follows:

– In this first model, different steps of the protocol run are modelled using
the notion of abstract transactions. A transaction has different attributes
such as source and destination. These attributes are used to express safety
properties we want to prove on our protocol in particular the authentication
properties.

– In this first refinement, we add the remaining parts of the protocol that were
not modelled in the abstract model. Attacker event preserves (or keeps) the
invariant.

– In the second refinement, the attacker knowledge is modelled and used to
prove that the safety properties of the model are maintained though at-
tacker’s behaviour. This refinement models the behaviour of a Dolev-Yao
style attacker. This model can be reused for different protocols.

– This refinement is specific to key establishment protocols, we use the au-
thentication properties and the characterization of the attacker’s knowl-
edge proven in the two previous refinements to prove properties over the
exchanged keys.

A last data refinement is added where abstract transactions are replaced by
concrete nonces. We should recall that the goal is to help the developer in dis-
charging proof obligations and the table of proof obligations for the proof-based
guideline applied to the two protocols is given in the tables 1 and 2. Now, we
give first a description of the proof-based guideline and then we show how it is
applied to model both protocols.

Table 1. Proof obligation of the Needham-Schroeder public key protocol

Model Total number of PO Automatics Interactives
Abstract model 60 60 (100%) 0 (0%)
First refinement 71 71 (100%) 0 (0%)

Second refinement 44 32 (73%) 12 (27%)
Total 175 163 (94%) 12 (6%)

286 N. Benaissa and D. Méry

Table 2. Proof obligation of the Blake-Wilson-Menezes key transport protocol

Model Total number of PO Automatics Interactives
Abstract model 50 50 (100%) 0 (0%)
First refinement 50 50 (100%) 0 (0%)

Second refinement 10 7 (70%) 3 (30%)
Total 110 107 (97%) 3 (3%)

3.1 Abstract Model

The proof-based guideline is based on the notion of abstract transactions. Safety
propertieswill first be expressed over these abstract transactions. In cryptographic
protocols, nonces are used to identify each session or protocol run. Intuitively, each
transaction of the abstract model corresponds to a fresh nonce in the concrete
model. A transaction has several attributes and, before giving these attributes,
we need to introduce the basic sets we will use in our model: T is the set of ab-
stract transactions; Agent is the set of agents; MSG is the set of possible messages
among agents; axm1 : I ∈ Agent expresses the existence of a special agent called
the intruder. Note that for most protocols, even if there is more than one dishonest
agent in the system, it suffices to consider only one attacker that will combine the
abilities and knowledge of all the other dishonnest agents.

In public key protocols, we often have an agent that initiates the protocol
run by sending a message to a given agent and then waits for the corresponding
answer. This answer is usually encrypted with the source agent public key or
signed by the destination agent private key. After receiving this answer, the
source agent trusts the authenticity of the destination agent identity, our proof-
based guideline captures this idea. A transaction has a source (t src) and a
destination (t dst). A running transaction is contained in a set trans. When a
transaction terminates it is added to a set end . The answer from the destination
agent is transmitted via a channel (channel).

inv1 : trans ⊆ T
inv2 : end ⊆ trans
inv3 : t src ∈ trans → Agent
inv4 : t dst ∈ trans → Agent
inv5 : channel ⊆ MSG
inv6 : msg src ∈ channel → Agent
inv7 : msg dst ∈ channel → Agent
inv8 : msg t ∈ channel → T
inv9 : t bld dst ∈ trans → Agent

A message from this channel
has a source and a destination
(msg src, msg dst) but also a
variable (msg t) that binds the
message to a transaction. To
complete the authentication of
the destination agent we need
an additional variable t bld dst
that contains the trusted desti-
nation agent by the source agent
where the variable t dst con-
tains the real destination agent.

In this case, to prove authentication, we need to prove that both variables are
equal when a transaction terminates : inv10 : ∀t·t ∈ end⇒t dst(t) = t bld dst(t).
The diagram describes the model’s events. At the beginning of a transaction, the
agent A sets the value of the variable t bld dst to some agent B and adds the

Cryptographic Protocols Analysis in Event B 287

transaction t to the set trans. An agent B answers by sending a message to A,
the variable msg src is set to the value B.

Guideline for modelling public
key protocols

Events of the model are
enumerated as follows:

– EVENT Init: The
transaction source
agent initiates the
transaction by
adding this transac-
tion to the set trans
and sets the values
of the variables
t src to himself and
t bld dst to the
agent he wants to
communicate with.

– EVENT V: The transaction destination agent answers the source agent by
sending a message on the variable channel and sets the variable msg src to
himself for the sent message.

– EVENT End: The transaction source agent receives a message correspond-
ing to this transaction. The variable t dst is set to the received message
source agent contained in the variable msg src.

– EVENT Attk: The attacker sends messages to randomly chosen agents to
try to mislead them about his identity. The variable msg src is set to the
attacker’s identity.

EVENT Init
ANY

t, A, B
WHERE

grd1 : t ∈ T \ trans
grd2 : A ∈ Agent ∧

B ∈ Agent ∧ A �= B
THEN

act1 : trans := trans ∪ {t}
act2 : t src(t) := A
act3 : t bld dst(t) := B

END

EVENT V
ANY

A, B, t, msg
WHERE

grd1 : A ∈ Agent ∧
B ∈ Agent ∧ A �= B

grd2 : t ∈ T
grd3 : msg ∈ MSG \ channel

THEN
act1 : channel := channel

∪ {msg}
act2 : msg src(msg) := B
act3 : msg dst(msg) := A
act4 : msg t(msg) := t

END

When an agentA receives a message corresponding to a transaction,he initiated
from an agentB, he sets the variable t dst to the valueB. Thus, the variable t dst
contains the real transaction destination. The value of this variable is not set in the

288 N. Benaissa and D. Méry

V event, when the agent B sends the message because many agents may answer
to agent A’s request and the real transaction destination is known only once A
receives one of the messages. Since a message may contain additional informations
like a shared session key that B may send to A, when A receives the key, t dst will
contain the identity of the transaction key issuer.

EVENT End
ANY

t, A, B, msg
WHERE

grd1 : t ∈ trans \ end
grd2 : A ∈ Agent ∧ B ∈ Agent∧ A �= B
grd3 : t src(t) = A
grd4 : msg ∈ channel
grd5 : msg t(msg) = t
grd6 : msg src(msg) = B
grd7 : msg dst(msg) = A
grd8 : msg src(msg) = t bld dst(t)

THEN
act1 : end := end ∪ {t}
act2 : t dst(t) := B

END

Depending of the
protocol structure,
the agent A should
know, if the source
of the message
he receives is the
trusted destination
of the transaction
to guarantee the
authentication of
the protocol. But in
this abstract model,
we add the guard 8
that guarantees this
property. We also
add in this model
the attacker event.

In this event the attacker can add a message with randomly chosen attributes
to the channel.

EVENT Attk
ANY

t, A,msg
WHERE

grd1 : t ∈ T
grd2 : A ∈ Agent
grd3 : msg ∈ MSG \ channel
grd4 : A �= I

THEN
act1 : channel := channel ∪ {msg}
act2 : msg src(msg) := I
act3 : msg dst(msg) := A
act4 : msg t(msg) := t

END

Another event modelling
the loss of messages is
added. Messages are re-
moved from the channel
randomly. This loss can
be caused by a malicious
attacker action or by an
error in the communication
channel. To guarantee au-
thentication, the following
invariant was added and
proved. It states that for
completed transaction, the
trusted destination is the real
transaction destinations.

This invariant(inv11 : ∀t·t ∈ end⇒ t dst(t) = t bld dst(t)) is easy to prove
even for the event Attk, because of the guard 8 of the event End.

3.2 Applying the Proof-Based Guideline

In the Needham Schroeder public key protocol (see figure 1) and the Blake-
Wilson-Menezes key transport protocol (see figure 1), the agent A first initiates
a transaction and waits for the answer from agent B. The agent B does the same,

Cryptographic Protocols Analysis in Event B 289

and waits for A’s answer. The figure 2 shows how the proof-based guideline is
applied two times to model each protocol.

Fig. 2. Proof-based guideline for modelling public key protocols

When the proof-based guideline is applied, the corresponding variables, events
and invariants are generated. For both protocols, the following variables are gener-
ated : transA, transB ,A t src,B t src,A t dst ,B t dst ,A t bld dst ,B t bld dst .
Invariant10 is generated two times : ∀t·t ∈ end⇒ A t dst(t) = A t bld dst(t) ∧,
∀t·t ∈ end⇒B t dst(t) = B t bld dst(t).

3.3 First Refinement

The goal of this first refinement is to understand how authentication is achieved,
thus, the remaining details of the modelled protocol messages are added. For
instance, in the last step of the Blake-Wilson-Menezes protocol, agent A sends to
agent B a signed message containing A,B ,NB . In this message, B is contained
in the variable msg dst and NB is in the variable msg t , additional variables
are needed for modelling the attribute A and the key KA in the message. In
the second step of the Needham Schroeder public key protocol, agent B sends
to agent A a message containing (B ,NB ,NA)KA, an additional variable is also
needed for modelling the attribute B in the message. This is done exhaustively
with all the modelled protocol steps. When keys are used for encryption or
signing, a new carrier set is introduced. The relation between the set of agents
and keys depends from the type of the encryption used. In the case of public key
encryption, each agent has a public key and he is the only agent able to decrypt
messages encrypted with this key. Messages attributes are added exhaustively,
for any key used to encrypt or sign a message we add the corresponding variable:

Key / ∗ set of all keys ∗ /
inv12 : Agent Pc key ∈ Agent � Key / ∗ Agents public keys ∗ /
inv13 : Agent Pv key ∈ Agent � Key / ∗ Agents private keys ∗ /
inv14 : msg key ∈ channel → Key
Let MSG VAR be the set of additional variables. In the abstract model we

use the guard 8 in the EVENT End to prove authentication, with this guard

290 N. Benaissa and D. Méry

agent A could know if the message is authentic or not. In cryptographic protocols
it is not possible to perform such tests but the structure of the message itself
guarantees authentication.

EVENT End
ANY

t, A, B, msg
WHERE

⊕ grd8 : Protocol Cond(MSG V AR)
� grd8 : msg src(msg) = B

THEN
act1 : end := end ∪ {t}
act2 : t dst(t) := B

END

Accordingly, the guard 8 in
the EVENT End has to be
substituted by a condition
over the received message
content. This condition
is a predicate over the
set MSG VAR, we call it
Protocol Cond(MSG VAR).
The predicate is directly
derived from the protocol
itself.

To prove that the concrete EVENT End2: refines the abstract event
EVENT End, the following invariant has to be added:
inv15 : ∀t,msg,A,B ·
t ∈ trans ∧A ∈ Agent ∧B ∈ Agent ∧msg ∈ channel ∧ t src(t) = A∧
t bld dst(t) = B ∧msg t(msg) = t ∧ Protocol Cond(MSG VAR)

⇒ msg src(msg) = t bld dst(t)

EVENT Attk
ANY

t, A, msg
WHERE

⊕ grd7 : Attk Cond
THEN

act1 : ⊕MSG VAR
END

The Attacker The next refinement
models attackers’ knowledge and, in this
refinement, the EVENT Attk keeps
the invariant15 . To achieve this we call
Attk Cond the weakest condition that
maintains the invariant15 . Note that
this predicate is obtained from the in-
variant. We use Attk Cond to refine the
event Attk as follows:

3.4 Second Refinement: Attacker’s Knowledge

To be able to prove properties such as secrecy and authentication on a protocol, we
have to be able to model the knowledge of the attacker. To model the knowledge of
the attacker, it isnecessary toknow exactlywhat the attacker is able todo.Onepop-
ular model for attacker’s behavior is the Dolev-Yao model. This refinement models
all the options the attacker has in this attacking model and can be reused for dif-
ferent protocols. One possible modelling is to consider that a part of the attacker
knowledge is contained implicitly in the variables modelling the communication
channel. The attacker can then try to obtain nonces and keys from the content of
the communication channel. The attacker may also have an initial knowledge, or
a knowledge he may acquire by means other than analysing the communication
channel content. To model all these options, we use variables that contain the cru-
cial information the attacker can obtain. Because of the typing constraints in the
2 ⊕ and � are respectively the added and removed guards compared to the refined

event.

Cryptographic Protocols Analysis in Event B 291

event-B, we use one variable for each information type : N Mem for nonces and
K Mem for keys (N Mem ∈ Agent→ P(T),K Mem ∈ Agent→ P(Key)).

We need to answer two issues: What is in the variables N Mem and K Mem
?How does the intruder use the knowledge contained in this variable? The answer
of the second issue is immediate, the event Attk is refined by changing the guard
7. Now the attacker uses only transactions or keys that are in his memory and
also fragments of encrypted messages contained in the communication channel.

EVENT Attk
ANY

t, A, msg
WHERE

� grd7 : Attak Cond
⊕ grd7 : t ∈ N Mem

THEN
act1 : channel := channel ∪ {msg}
act2 : msg src(msg) := I
act3 : msg Key(msg) := Agent Pc Key(A)
act4 : msg t(msg) := t

END

The event Attk is
refined into several
concrete events that
includes all the options,
due to lack of space we
give here one event that
models the attacker
when using transac-
tions in his memory
(without fragment of
encrypted messages).
The following invariant
is added: inv18 : ∀t.t ∈
N Mem⇒Attak Cond.

To prove this invariant we need to answer the first issue: what is in the attacker
memory? This will depend from the chosen attacker model. In the Dolev-Yao one,
attacker has full control of communication channel: He can intercept and remove
any message of the channel or He can also generate infinite number of messages
or He can decrypt parts of the message if he has the appropriate key or He can split
unencrypted messages. In our model we have already added events where messages
are lost no matter if it is done by the attacker or not. And we didn’t limit the num-
ber of messages the attacker can send. To model the fact that an attacker decrypts
parts of the message, if he has the appropriate key, we added the following event
where the attacker uses keys he knows to decrypt fragments of messages:

EVENT Attk Mem
ANY

t, A, msg
WHERE

grd1 : A ∈ Agent
grd2 : Agent Pv key(A) ∈ K Mem
grd3 : msg ∈ channel
grd4 : msg t(msg) = t
grd5 : msg Key(msg) :=

Agent Pc Key(A)
THEN

act1 : N Mem := N Mem ∪ {t}
END

To prove the invariant
invariant18 we need an
additional invariant that
gives a characterization
of the attacker’s knowl-
edge. This invariant is
different from a protocol
to another. In the case of
the Needham-Schroeder
public key protocol where
the proof-based guideline
was applied two times (see
figure 2).

292 N. Benaissa and D. Méry

We had proven that the attackers’s memory contains only transactions that
are not in the set trans or transactions where the attacker is the source or the
trusted destination:
inv19 : ∀t·t ∈ N Mem⇒

(t /∈ transA ∪ transB ∨
(t ∈ transA ∧ (I = A t bld dst(t) ∨ I = A t src(t))) ∨
(t ∈ transB ∧ (I = B t bld dst(t) ∨ I = B t src(t))))
We omit further refinements because of the lack of space. In the third refine-

ment we use the channels where authentication property has been proven to send
the session key. The attacker characterization defined in the second refinement
is used to prove secrecy property for the session key.

4 Conclusion

We have introduced an Event-B-based guideline for cryptographic key establish-
ment protocols and we have applied it on two different protocols. Properties like
authentication, secrecy and key freshness were proved on these protocols. Less
than 5% of the proofs of the models were interactive. Our guidelines facilitate
proof process by reusing partially former developments; we have not yet designed
new cryptographic protocols and it remains to develop other case studies by ap-
plying guidelines. Like design patterns, proof-based guidelines are based on real
cases; they should help the use of refinement and proof techniques; it is then clear
that specific tools should be developed and further works should be carried out
using refinement for discovering new guidelines. As a perspective of our work, it
is necessary to add new properties that are desired in some situation such as key
confirmation where an agent receives an evidence that the other agent involved
in the protocol run received the session key. It is also necessary to address ques-
tions on extensions of Dolev-Yao models. Finally, we should evaluate impacts
of the underlying formalism namely Event B and of the tool namely RODIN,
on the discovery of guidelines; it means that we should define what is clearly a
guideline or a pattern in the Event B context.

References

1. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

2. Abrial, J.: The B Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

3. Cansell, D., Méry, D.: The event-B Modelling Method: Concepts and Case Studies
[15], pp. 33–140. Springer, Heidelberg (2007)

4. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

5. Blake-Wilson, S., Menezes, A.: Entity authentication and authenticated key trans-
port protocols employing asymmetric techniques. In: Christianson, B., Lomas, M.
(eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 137–158. Springer, Heidelberg
(1998)

Cryptographic Protocols Analysis in Event B 293

6. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

7. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6, 85–128 (1998)

8. Paulson, L.C. (ed.): Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
9. Bolignano, D.: Integrating proof-based and model-checking techniques for the for-

mal verification of cryptographic protocols. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 77–87. Springer, Heidelberg (1998)

10. Stepney, S., Cooper, D., Woodcock, J.: An electronic purse: Specification, refine-
ment, and proof. Technical monograph PRG-126, Oxford University Computing
Laboratory (July 2000)

11. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to event-b. Fundamenta Informaticae 77(1-2), 1–28
(2007)

12. Rodin, P.: The rodin project: Rigorous open development environment for complex
systems (2006), http://rodin-b-sharp.sourceforge.net/

13. Back, R.J.R.: On correct refinement of programs. Journal of Computer and System
Sciences 23(1), 49–68 (1979)

14. Back, R.J., von Wright, J.: Refinement Calculus A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer, Heidelberg (1998)

15. Bjørner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Text-
book in Computer Science. Springer, Heidelberg (2007)

http://rodin-b-sharp.sourceforge.net/

A Query Language for Logic Architectures

Anton Malykh and Andrei Mantsivoda

Irkutsk State University, Irkutsk, 664003, Russia

Abstract. In this paper we consider the impact of the Semantic Web
and logical means on a wide range of developers solving traditional tasks
on the WWW. How to make the ’elite’ logic tools acceptable for ordinary
developers? How to incorporate a wide range of users in the space of the
Semantic Web? These and some other questions are considered here and
certain proposals are made. In particular we are based on the concep-
tion of a logic architecture as a stratified description logic system, and
introduce an ontology query language working within logic architectures.

1 Introduction

The tools of the Semantic Web are successfully applied to solving a number
of problems, which demand sophisticated logical descriptions and strong logi-
cal inference ’engines’. On the other hand, there is a wide-spread opinion that
due to the complexity and heaviness of underlying logics, ontologies can not be
successfully applied to solving ’lightweight’ problems consisting mostly of ob-
ject processing. It is true that the existing ontology systems can not compete
with, say, data base management systems on this kind of tasks. And it is a pity,
because this does not allow the Semantic Web to have a significant impact on
’everyday’ web resources development, though it is very important if to keep in
mind the initial aims of the SW. If the overwhelming majority of practical ap-
plications have nothing in common with the SW, it is impossible to ’reorganize’
the Web by the SW’s elegant and strong conceptions and tools.

The high comprehension barrier between conventional developers and logics,
on which the SW is heavily based, is also a problem, because the things that
are done by the ordinary developers should be at least compatible with the
SW principles and add value to the SW environment. This means that while
producing new data, the conventional developer makes it in the form, which is
compatible with the logical formalisms and can be integrated in the SW context.

In [1] we consider a conception of a logic architecture, which in particular tries
to tackle the problem outlined above. The idea here is to stratify the general
logical formalism (e.g. a strong description logic like SHOIN (D)) in such a
way that (1) each stratum is responsible for a specific kind of tasks and/or users
(while the higher layers can be used for sophisticated and advanced knowledge
management, the lower layers can be employed by the wide range of users and
developers); (2) each stratum is supplied with special interfaces and program-
ming methods, which implement the scenarios of work within the stratum; (3)
the architecture is supplied with tools/formalisms, which work at each stratum

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 294–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Query Language for Logic Architectures 295

and ’glue’ the strata together. Among the tools, which can work at each stratum,
a query language plays a key role. The basic feature of this language is to be
acceptable for the conventional developers.

In this paper we introduce a query language (named BoxQL), which meets
the conditions stated above. BoxQL is designed in the XPath-like style at the
both syntactic and operational levels, and looks familiar to many people. The
idea behind BoxQL is that it should have identical behavior at any level of the
logic architecture. BoxQL is intended for logic architectures, which are based
on SHOIN (D) [2] as a ’maximal’ logic. SHOIN (D) is attractive, because it
determines the semantics of the web ontology language OWL DL [3].

2 Preliminaries

The languages and logics we consider in this paper are used to describe the
worlds, which are habitats for objects (individuals like John, planet Jupiter and
this paper). Objects can be grouped in concepts (or classes like Mammals, Plan-
ets and Information resources). Objects are connected with each other through
object properties (or roles – like hasChild or spouse).

The languages describing the worlds are based on vocabularies. A vocabulary
is a structure V = 〈TC , TR, Id〉 in which TC , TR and Id are finite pairwise disjoint
sets. TC is called the set of concept types, and TR the set of relations. Id is the
set of individual names (identifiers). Each relation r ∈ TR is associated with a
non-negative integer σ(r), which is called the arity of r. TC and TR are partially
ordered in such a way that TC has a maximum element �, and the relations
with different arities are not comparable in TR.

Objects can have attributes (e.g. age or price). Attributes are assigned to
objects by datatype properties. The values of datatype properties are taken in
datatype domains (e.g. integers or strings). Knowledge about the worlds is stored
in various namespaces. In order to introduce namespaces and data types we aug-
ment the notion of a vocabulary in the following way. Let NS = {ns1, . . . , nsk}
be the set of namespaces and D = {d1, . . . , dm} the set of datatypes.

Definition 1 (A namespaced vocabulary). Let V = 〈TC , TR, Id〉 be a vocab-
ulary. Then VD

NS = 〈TC , TR, Id,NS,D〉 is a namespaced vocabulary with names
L = TC ∪ TR ∪ Id ∪D, if the following conditions hold:

1. L is divided into k pairwise disjoint subsets L =
k⋃

i=1

Lnsi , such that Lnsi =

T nsi

C ∪T nsi

R ∪Idnsi∪Dnsi . To indicate that a name nm belongs to a namespace
nsi (that is, nm ∈ Lnsi), we write nsi :nm.

2. TR is divided into three pairwise disjoint sets T o
R, T t

R, and T d
R of object

properties, datatype properties and domain specific relations, respectively,
such that TR = T o

R ∪ T t
R ∪ T d

R.
3. TC contains a concept type cns for each ns ∈ NS.

296 A. Malykh and A. Mantsivoda

Informally, a concept type cns denotes the set of objects with names belonging
to the namespace ns. We assume that all cns belong to the initial vocabulary
V . Since we work in the context of SHOIN (D), we have σ(r) = 2 for each
r ∈ T o

R ∪ T t
R. The relations of T d

R can have arbitrary arities.

Definition 2 (A datatype domain). A datatype domain D = 〈D1, , . . . , ,
Dm;LD〉 is an algebra of the language LD, where each Di, 1 ≤ i ≤ m, is the set
of values of the datatype di.

Let |D| = D1 ∪ . . .∪Dm. We denote by TermD+T the set of all ground terms of
the language LD ∪ T t

R ∪ {.}, in which elements of |D|, T t
R and the dot ’.’ play

the role of constants. Term∗
D+T denotes the set of all finite sequences of elements

of TermD+T , that is, if v1, . . . , vk ∈ TermD+T then (v1, . . . , vk) ∈ Term∗
D+T .

Fig. 1. The world of people PW

Example 1. In figure 1 a simple world of people (PW) is introduced. The vo-
cabulary Vpeople of this domain consists of

TC = {Mammal, Female, Male, Person, Man, Woman, Employee},

with the order Woman ≤ Female ≤ Mammal, Man ≤ Male ≤ Mammal, Woman ≤
Person, Man ≤ Person.

TR = {spouse, hasChild, age, name, surname, position, income}

A Query Language for Logic Architectures 297

Id = {Ann, Marie, Mongo, Tom, Paul, Tim, Tongo, John}
Let us describe this world in two namespaces http://people/basic (in which
the basic terminology about people is defined), and http://people/tribe (con-
taining only data about two members of a tribe, named Mongogo and Ton-
goga), plus the datatype namespace http://www.w3c.org/2001/XMLSchema. For
these namespaces we use the shortcuts (prefixes) p, t and x, respectively. Then,
based on VPW with augmented T ′

C = TC ∪ {cp, ct, cx}, we can construct VD
PW :

NS = {p, t, x}, D = {x:integer, x:string}
T o

R = {p:spouse, p:hasChild}
T t

R = {p:age, p:name, p:surname, p:position, p:income}
T d

R = {+, > and other rels & ops of x:integer and x:string}
Idp = {p:Ann, p:Marie, p:Tom, p:Paul, p:Tim, p:John}
Idt = {t:Mongo, t:Tongo}, Idx = ∅

Definition 3 (The language of SHOIN (D)). If c ∈ TC then c is a named
concept of SHOIN (D). Named concepts are concepts. If a, b are concepts, id ∈
Id, r ∈ T o

R ∪ T t
R, p ∈ T d

R then a � b, a � b, ¬a, ∃r.a, ∀r.a, ≤n r, ≥n r,
∃(x1, . . . , xn).p, ∀(x1, . . . , xn).p, {id} are also concepts. If r ∈ T o

R then ∃r′.a
and ∀r′.a are concepts, where r′ ∈ {r+, r−, r±}.

SHOIN (D) is a description logic, which is very close to the Web ontology
language OWL DL. The first S stands in its name for the basic logic ALC
augmented with transitive roles. In ALC the basic description logic constructs
(concepts, roles, disjunction �, conjunction �, negation ¬ and role quantifiers)
are introduced. H stands for role hierarchies, O denotes objects, which can be
represented explicitly, I stands for inverse roles, and N for simple number re-
strictions. (D) means that datatype properties are also allowed.

3 BoxQL: A Query Language

BoxQL is designed in an object-oriented style: it considers the collections of in-
dividuals in ontologies as a network of interconnected objects (like in Fig. 1).
In [1] we introduce the notion of an object-oriented projection, which formally
describes such an understanding of an object network. OO-projections are sim-
ple sublogics of SHOIN (D). The nature of BoxQL is traversal: its queries are
’walking along’ the network of objects and collecting necessary data. This style
is familiar, intuitively easy and acceptable for many people, because it resembles
XPath, directory paths in file systems, and ’dotted’ expressions in the object-
oriented languages. On the other hand, BoxQL is upward compatible with more
sophisticated and elite logic techniques. And the queries in BoxQL are actually
’encoded’ formulas of SHOIN (D), though a flavor of logic is concealed in them.
Like in XPath the general structure of BoxQL queries is

step1[pred1]/.../stepk[predk]

where predicates in square brackets are optional. A BoxQL query produces a
sequence of objects or data values gathered in KB, which satisfy its conditions.

298 A. Malykh and A. Mantsivoda

Example 2. Let us take an example from PW. Imagine that we want to find a
spouse of some man who is 40 and has a grandson. Here is a BoxQL query

Query: @man/spouse[age = 40 and hasChild/hasChild[@man]]
Result: {Ann}

The main path @man/spouse of this query collects all man’s spouses, because
the value of a path is always the value of its rightmost step. The names of
classes are qualified in BoxQL with ’@’. The namespace p is assumed default,
thus its prefix is omitted. The predicate in the square brackets allows us to
select among the man’s spouses those persons who are 40 and for whom the
query hasChild/hasChild[@man] produces a non-empty sequence of objects.
Now let us compare the above query with the following one:

Query: @man/spouse[age = 40]/hasChild/hasChild[@man]
Result: {Tim}

Here we move along the same path as in the first query. But the result is dif-
ferent, because the main path now is @man/spouse/hasChild/hasChild and its
rightmost step gives Tim.

Note that the both queries can be expressed by the formulas of SHOIN (D):

1. ∃spouse−.Man � ∃age.{40} � ∃hasChild.∃hasChild.Man and
2. Man � ∃hasChild−.∃hasChild−.(∃age.{40} � ∃spouse−.Man)

We can see the fundamental difference between the queries and the corresponding
DL formulas. The DL formulas just describe the qualities of a searched object,
whereas the traversal queries show how to get it from scratch (this is why we
need to use the role inversions in the formulas). In practice, the style of writing
queries in BoxQL is closer to navigation over description graphs. BoxQL is based
on the idea that the user ’walks along’ the ontology objects’ network, and points
out, which data must be collected during this walk. For collecting necessary data
the user can employ the fields, like in the following example

Query: @p:person as Granparent/hasChild/hasChild
Result: {(Tim, Grandparent=John), (Tim, Grandparent=Ann)}

Now the solution contains not only the value of the rightmost step (Tim) but also
the value of the field Grandparent corresponding to Tim. The way of formulating
queries in BoxQL is also close to writing dotted expressions in OO programming
languages, though the dot itself serves in BoxQL as an analog of Java’s ’this’:

Query: age[. > 30]
Result: {40, 41, 42}

The result is a datatype sequence, and ‘>’ ∈ T d
R. We do not distinguish a constant

singleton (x) and the value x, so instead of [. > (30)] we can write [. > 30].
An atomic step ns:* selects all objects named within the namespace ns:

Query: t:*/name
Result: {"Tongoga", "Mongogo"}

A Query Language for Logic Architectures 299

An atomic step −ns:ro denotes the inverses of object properties:

Query: −hasChild
Result: {John, Marie, John, Ann, Tom}

Intuitively ’−’ means here that we move from children to parents. John occurs
twice, because he is the father of two persons. BoxQL also allows us to explicitly
use the names of objects like in

Query: &Tom/income
Result: {200, 300, 400}

Using sequences as steps we can combine the sets of elements like in the following
example, in which ’*’ stands for ’all objects’:

Query: (&john, @woman/t:*, *[income])/name
Result: {"John", "Mongogo", "Tom"}

The expression (h ! [r1]) implements in BoxQL the ∀–quantifier of DLs.
The next query selects individuals whose children are all boys (following the
semantics of ∀ in the DLs ! collects also individuals who do not have children):

Query: *[hasChild ! [@man]]
Result: {John, Ann, Marie, Paul, Tom, Tim, t:Tongo, t:Mongo}

Since DLs are based on the open-world paradigm, a BoxQL-query actually pro-
duces a sequence of objects, which are known to satisfy the query’s conditions.
Thus, we should be careful with the negation because its use in open knowl-
edge bases can set dangerous non-monotone traps. For instance, the query *[not
hasChild] asks to find those known objects, which are unknown to have children,
and further updates in the knowledge base can reduce the resulting sequence.
We do not put restrictions on the negation in the general formalism. There are
various ways how to tackle such problems, say, with the help of the epistemic
operator K (see [4], section 6.2.3). In particular, we can restrict the negation only
to those concepts c, the knowledge about which is complete, i.e. ¬Kc � K¬c.

4 The Semantics of BoxQL

First, we formally define the BoxQL syntax.

Definition 4 (BoxQL syntax). Let VD
NS be a namespaced vocabulary. We define

the sets of steps S, paths P and predicates R of BoxQL as follows:

1. The atomic steps of BoxQL are: (a) * ∈ S and ns:* ∈ S for each ns ∈ NS;
(b) if ns:c ∈ TC, then @ns:c ∈ S; (c) if ns:ro ∈ T o

R then ns:ro, -ns:ro ∈ S;
(d) if ns:rd ∈ T t

R then ns:rd ∈ S; (e) if ns:id ∈ Id, then &ns:id ∈ S.
2. S ⊆ P. If h ∈ P and s ∈ S then h/s ∈ P.
3. Term∗

D+T ⊆ S. If h1, . . . , hk ∈ P then the sequence (h1, . . . , hk) ∈ S. A
sequence is called constant if all hi ∈ Id.

300 A. Malykh and A. Mantsivoda

4. If s ∈ S and r ∈ R, then s[r] ∈ S.
5. P ⊆ R. RelD+T ⊆ R.
6. If h ∈ P, r1, r2 ∈ R and c is a constant sequence, then (r1 and r2), (r1

or r2), (not r1), (r1 = c), (h ! [r1]) belong to R.

A BoxQL-query is any h ∈ P . A BoxQL-query fetches basic data about objects in
the underlying knowledge base KB, in which BoxQL works. In other words, KB is
a parameter of BoxQL. The strength of KB depends on the stratum of the logic
architecture, in which BoxQL works at the moment.

Let VD
NS be a namespaced vocabulary and KB = 〈|KB|, |=〉 a knowledge base

of this vocabulary with the interpretation I : VD
NS �→ KB. |KB| is the set of

objects stored in KB. We assume that |= allows us to check whether ns:cI(o1),
ns:roI(o1, o2), ns:rdI(o1, v) are true for any o1, o2 ∈ |KB|, ns:c ∈ TC , ns:ro ∈
T o

R, ns:rd ∈ T t
R and v ∈ |D|. Predicates from RelD+T are also evaluated by |=.

The (naive) procedural semantics of BoxQL is defined in the form of calculi.
Note that the paths of BoxQL focus on collecting objects, while the predicates in
square brackets do the opposite work: they filter out the objects not satisfying
certain conditions. This means that we need to have separate, though mutually
defined, sub-calculi for paths and predicates, which are called the �-calculus and
the �-calculus, respectively. For technical reasons we treat a path h1/ . . . /hk

as if it is obtained from the empty path ε by the multiple applications of the
left-associative operator ’/’: (. . . (ε/h1)/h2)/ . . . /hk).

The derived objects of the �-calculus have the form h〈C〉, where h is a path
and C a finite sequence of elements from |KB|. We say that a sequence A is the
answer to a path h ∈ P on a sequence C (denoted h〈C〉 � A), if there exists
a derivation sequence h〈C〉, h1〈C1〉, . . . , ε〈A 〉 such that ε is the empty path, and
every hi〈 Ci 〉 is obtained from the previous one by the application of some �-rule.
There are two possibilities: A ⊆ |KB| (the result is a sequence of objects), and
A ⊆ |D| (the result is a sequence of datatype values).

Let h ∈ P , r ∈ R, s ∈ S, o ∈ |KB|, x ∈ |KB| ∪ |D|, C ⊆ |KB|, A ⊆ |KB| or
A ⊆ |D|, ns:ro ∈ T o

R, ns:rr ∈ T o
R∪T t

R. For a ground formula f , |= f means that
KB ’knows’ that f is true, and �|= f means that KB ’knows’ that f is false. Here
are the rules of the �-calculus:

�
*/h〈 C 〉
h〈 C 〉 �

ns:*/h〈 C 〉
h〈 C ∩ {o | |= cI

ns(o)} 〉
�

ns:c/h〈 C 〉
h〈 C ∩ {o | |= ns:cI(o)} 〉

�
ns:rr/h〈 C 〉

h〈 {x | ∃o ∈ C : |= ns:rrI(o, x)} 〉 �
-ns:ro/h〈 C 〉

h〈 {o | ∃o′ ∈ C : |= ns:roI(o, o′)} 〉

�
s[r]/h〈 C 〉

h〈 {o | o ∈ C′ : s〈C〉 � C′ and r(o) � true} 〉 �
(x1, . . . , xk)/h〈A 〉
h〈A ∩ {xI

1, . . . , x
I
k} 〉

In the next �-calculus the derived objects are true and false, where true
denotes any non-empty set of elements and false is represented by ∅. To prove
that a predicate r ∈ R holds on an element (an object or a datatype value) x,
we need to derive r(x) � true in the �-calculus, and to derive r(x) � false,
if we want to refute it. The �-rules are:

A Query Language for Logic Architectures 301

�
h〈{x}〉 � {x1, . . . , xk} ∀i : r(xi) � true

h ! [r](x) � true
�

r1(x) � res1 r2(x) � res2
(r1 and r2)(x) � res1 ∧ res2

�
h〈{x}〉 � {x1, . . . , xk} ∃i : r(xi) � false

h ! [r](x) � false
�

r1(x) � res1 r2(x) � res2
(r1 or r2)(x) � res1 ∨ res2

�
r(x) � res

(not r)(x) � ¬ res �
h〈{x}〉 � A

(h = c)(x) � A∩ cI �
h〈{x}〉 � A
h(x) � A

�
∃ pe ↑x : |= pe ↑x
pe(x) � true

�
∀ pe ↑x : �|= pe ↑x
pe(x) � false

Here res, resi ∈ {true, false} and pe ∈ RelD+T . The first rule also applies if
k = 0. pe ↑x is obtained from pe by the substitution of all occurrences of the dot
’.’ by x, and if x is an object, by the substitution of property name occurrences in
pe with the values of these properties in x. Note that if x contains several values
of some property, there can be several such substitutions. ∃ pe ↑x :|= pe ↑x
means that there exists a substitution, which makes pe true.

Thus, we see that BoxQL is indifferent to the logical mechanisms working in
the knowledge base KB, because the procedural semantics of BoxQL uses its
checking tool |= as an oracle in a black box. This means that |= can be defined
in various ways: as an inference machine for SHOIN (D), ALC or whatever we
want. In section 6 we consider an experimental implementation, in which BoxQL
is used for queries in an object data base, in which |= is implemented as simple
check of explicit data. This means that BoxQL can work at any layer of the logic
architecture: ’lifting’ BoxQL through its layers preserves the compatibility and
semantics of the language. In particular this means that, if to be careful enough,
the queries that are asked on the lower layer of an object DB, are still valid on
the higher logical layers, which subsume this ODB.

Note that the last two �-rules show how to handle ordinary relations (=,
<, > etc.) with sequences as arguments. For instance, *[income = 300] selects
persons who have the income of 300. Tom has, but he has also incomes of 200 and
400. Thus, we have to check if {200, 300, 400} = 300. In such situations �-
rules check if there exist equal members in the both parts. Of course, sometimes
such behavior looks tricky, so BoxQL has special built-ins to treat the sequences
in different ways.

The computational complexity of BoxQL depends on the complexity of the
underlying KB: by adjusting the checking tools of KB we can find the necessary
ratio of the efficiency and expressiveness. We hope that this can make BoxQL
useful in various and very different situations.

5 Translation to DL

In this section we investigate the soundness of BoxQL. First, we show that each
BoxQL-query can be translated into a formula of SHOIN (D) (on the other hand,
not any SHOIN (D) formula can be translated into BoxQL).

To translate BoxQL-queries we augment SHOIN (D) with a concept non-
emptiness construct ∃c [2], which holds if the concept c is non-empty. Also to

302 A. Malykh and A. Mantsivoda

h/s P(h/s) r R(r)
ε (empty) � r1 and r2 R(r1) � R(r2)
h/* P(h) r1 or r2 R(r1) � R(r2)
h/ns:* cns � P(h) not r ¬R(r)
h/c (c ∈ TC) c � P(h) h ! [r] ∀P(h).R(r)
h/ro (ro ∈ T o

R) ∃ro−. P(h) h ∈ P ∃P(h)
h/-ro (ro ∈ T o

R) ∃ro. P(h) pe ∈ RelD+T ∃(x1, . . . , xk)pe

h/rt (rt ∈ T t
R) rt∗ � P(h) h = c P(h/c)

h/id (id ∈ Id) {id} � P(h)

h/(h1, . . . , hk) P(h) � (
k
�

i=1
P(hi))

h[r] P(h) � R(r)
h/v (v ∈ |D|) {v} � P(h)

Fig. 2. The translation operators P(·) and R(·)

handle queries like */age resulting in sequences of datatype values, we intro-
duce a construct rt∗ for each datatype property rt ∈ T t

R. For any value v ∈ |D|,
|= rt∗(v) iff ∃o :|= rt(o, v). The connectives �,�,¬ behave on ’datatype’ propo-
sitions as propositional conjunction, discjunction and negation, respectively. Fig-
ure 2 defines operators P and R, which translate paths and predicates, respec-
tively, into the formulas of SHOIN (D) augmented with these two constructs.

Let T be a SHOIN (D)-description of some world, and KBT a knowledge
base, in which |= is interpreted as SHOIN (D)-satisfiability in T . Then the
following proposition holds:

Proposition 1 (soundness). For any h ∈ P, if h〈|KBT |〉 � A in KBT then
for each x ∈ A, P(h)(x) is satisfiable in KBT .

The proof of this proposition is established by induction on the length of a
derivation in �− and �−calculi.

6 Implementation and Evaluation

In this section we consider an implementation and evaluation of BoxQL based on
an experimental OntoBox module, which we are developing now in Java. In On-
toBox, |= is interpreted as an object DB explicit checker. BoxQL is implemented
in OntoBox in a naive style based on the �- and �-calculi. Also we verified
manually some ideas for compilation of BoxQL-queries.

To evaluate the approach, we checked (1) if BoxQL was adequate and reliable
for inexperienced developers, and (2) if it could compete with DB management
systems on the lower levels of object processing.

To achieve the first goal we had a number of experiments and questionnaires.
E.g. we worked with a group of 24 students. The tasks were to develop (after
one introductory lecture) reference systems for LaTeX, CSS, HTML, DOM, etc.
The students developed ontologies and the corresponding interfaces. 4 advanced

A Query Language for Logic Architectures 303

tasks were offered to the best students. 14 students were successful, 5 had minor
problems with interfaces, 3 had minor problems with BoxQL, 2 had problems
with both, 1 failed to solve his task. The questionary showed that in general
BoxQL was considered by students as simple and natural. 18 students think that
BoxQL is easier than SQL. We also asked the students to write the same queries
in SHOIN (D) and then compare the two styles. All of the students confirmed
that writing in BoxQL had been much easier (and more familiar) for them than
writing in SHOIN (D).

As a benchmark for the second goal we took the NCBI taxonomy database [5],
which describes the names of all organisms that are represented in the genetic
databases with at least one nucleotide or protein sequence. This taxonomy con-
tains 482960 objects. The taxonomy established in a database has been converted
into an ontology in which every name is an object of the class node, and the tree
structure is represented by the object property parent. In the experiments we
asked queries of the form parent/.../parent︸ ︷︷ ︸

n

searching for the chains of nodes.

Concurrently we asked the equivalent SQL-queries in the original database (in
MySQL):

select * from nodes where parent id in

(select id from nodes where parent id in

.
(select id from nodes))...);

⎫⎪⎪⎬⎪⎪⎭ n

with indexed columns id and parent id of taxonomy nodes. Here are the re-
sults for Apple Mac OS X 10.5.6, Java 1.6.0 07 (64-Bit Server VM), and MySQL
5.0.51a (MySQL does not allow nestings for n > 32):

n = 1 5 10 20 30 40
number of collected chains 482959 471762 301503 135297 30736 280
MySQL 5.0.51a (sec) 5.02 42.34 83.25 130.24 148.56 n/a
BoxQL(naive, sec) 1.56 6.62 11.93 17.08 18.94 19.2
BoxQL(compiled, sec) 0.16 0.99 1.54 2.16 2.36 2.41

What we want to say by this example is that on the lower levels of the logic archi-
tecture we can develop the tools, which are quite good for ’simple’ but efficient
knowledge management (especially in object models), while staying compatible
(e.g. via the query language BoxQL) with much more expressive methods and
tools of the Semantic Web.

7 Related Work and Conclusion

In this paper a new approach to knowledge and data management is introduced,
which is targeted at conventional web developers, and based on (1) a new query
language designed in the XPath style and compatible with object oriented mod-
els; (2) a fast non-memory based implementation of this language.

304 A. Malykh and A. Mantsivoda

There are a lot of works, which are focused on the management of large
amounts of simple data in the context of the SW. Many researchers consider
incorporating the style of relational DBs as the basic way to efficiently han-
dle simple data within SW applications (e.g. see [6][7] etc.). We are convinced
that the SW itself can provide quite reliable tools, and ’hybridization’ with DBs
can be avoided in many cases. The solutions within the SW could be more el-
egant, coherent and profitable. Concerning the interactions between the object
oriented approach and the SW, paper [8] gives the informal case study of inter-
action between an OO programming language (represented by Java) and OWL.
We develop an OO-style query language based on a strictly formal approach,
which represents object oriented means as a sublogic of general DLs. In [9] in
order to represent structured objects (which are analogous to finite networks
of individuals), DL is augmented with description graphs. The basic difference
between the approaches is that our aim is to handle with BoxQL the networks
of concrete data, whereas in [9] the problem of graph-like object representation
is considered on the level of TBoxes. And for this the strength of DL is not
sufficient due to the well known tree model property [10].

A lot of query languages have been developed in the context of the SW (see
[11]–[18] etc). The basic features, which distinguish BoxQL from them is that it
is a traversal language based on the object oriented paradigm, in which triple
employing is hidden. E.g. in SPARQL [11] the query to find the capitals of all
countries in Africa looks as follows:

SELECT ?capital ?country

WHERE {

?x :cityname ?capital ;

:isCapitalOf ?y .

?y :countryname ?country ;

:isInContinent :Africa .

}

In BoxQL we have:

*[cityname as capital]/
isCapitalOf[countryname as country and isInContinent = &Africa]

The difference is clear. In SPARQL we have to divide the query into a number
of triples with auxiliary variables. In BoxQL we just determine a two-step walk
along the knowledge graph.

The approach considered in this paper raises a number of questions. Is it pos-
sible to use logic architectures and BoxQL for developing SW-technologies, which
can compete (and cooperate with) the standard methods of data management
(like DBs) on lower levels, but enjoy on the higher levels the full strength of
logic? Will such technologies be really interesting to a wider range of users?
Shall we manage to preserve compatibility between the lower and higher layers
of logical architectures in procedural data management environments? There are
no answers yet, but the initial steps look promising.

A Query Language for Logic Architectures 305

References

1. Malykh, A., Mantsivoda, A., Ulyanov, V.: Logic Architectures and the Object
Oriented Approach. Technical Report (2009)

2. Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic
satisfiability. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 17–29. Springer, Heidelberg (2003)

3. Horrocks, I., Hayes, P., Patel-Schneider, P.F.: OWL Web Ontology Language Se-
mantics and Abstract Syntax, http://www.w3.org/TR/owl-semantics/

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

5. The NCBI Entrez Taxonomy,
http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy

6. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics by a Reduction
to Disjunctive Datalog. Journal of Automated Reasoning 39(3), 351–384 (2007)

7. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval.
Journal of Automated Reasoning 41(2), 99–142 (2008)

8. Puleston, C., Parsia, B., Cunningham, J., Rector, A.L.: Integrating Object-
Oriented and Ontological Representations. A Case Study in Java and OWL, pp.
130–145

9. Motik, B., Grau, B.C., Horrocks, I., Sattler, U.: Representing Structured Objects
using Description Graphs. In: KR 2008, pp. 296–306 (2008)

10. Vardi, M.Y.: Why Is Modal Logic So Robustly Decidable? In: Proc. DIMACS
Workshop. DIMACS Series, vol. 31, pp. 149–184.

11. Prudhommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (2008)

12. Seaborne, A.: RDQL - A Query Language for RDF. W3C Member Submission
(2004)

13. Ortiz, M., Calvanese, D., Eiter, T.: Data Complexity of Query Answering in Ex-
pressive Description Logics via Tableaux. Journal of Automated Reasoning 41,
61–98 (2008)

14. Bry, F., Furche, T., Linse, B.: Data Model and Query Constructs for Versatile
Web Query Languages: State-of-the-Art and Challenges for Xcerpt. In: Alferes,
J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp.
90–104. Springer, Heidelberg (2006)

15. Kaplunova, A., Möller, R.: DIG 2.0 Concrete Domain Interface Proposal.,
http://www.sts.tu-harburg.de/~al.kaplunova/dig-cd-interface.html

16. Frasincar, F., Houben, G.-J., Vdovjak, R., Barna, P.: RAL: An Algebra for Query-
ing RDF. World Wide Web: Internet and Web Information Systems 7, 83–109
(2004)

17. Noy, N., Musen, M.A.: Specifying ontology views by traversal. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725.
Springer, Heidelberg (2004)

18. Ogbuji, C.: Versa: Path-Based RDF Query Language,
http://www.xml.com/pub/a/2005/07/20/versa.html?page=1

http://www.w3.org/TR/owl-semantics/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy
http://www.sts.tu-harburg.de/~al.kaplunova/dig-cd-interface.html
http://www.xml.com/pub/a/2005/07/20/versa.html?page=1

Planet Map Generation by Tetrahedral Subdivision

Torben Ægidius Mogensen

DIKU, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen O, Denmark

torbenm@diku.dk

Abstract. We present a method for generating pseudo-random, zoomable planet
maps for games and art. The method is based on spatial subdivision using tetra-
hedrons. This ensures planet maps without discontinuities caused by mapping a
flat map onto a sphere.

We compare the method to other map-generator algorithms.

1 Introduction

Computer games have featured (pseudo-)randomly generated maps since at least the
1980s. The best known uses of random maps are in strategy games, such as Sid Meier’s
Civilization series or Microsoft’s Age of Empires series, but random maps have also
been used in arcade games and role-playing games. The main advantage of randomly
generated maps is replay-ability: The same game can be played on a near infinite num-
ber of different maps, providing different challenges each time. Random maps can also
contain more detail than it would be realistic to expect from manually created maps.

Nearly all methods for creating pseudo-random maps create a 2D array of values, a
so-called height field. This can then be rendered in various ways. In the simplest ren-
dering, each altitude is mapped to a colour (like on topographic maps). More complex
renderers add shadows or compute a 3D surface from the height field and render this us-
ing any 3D rendering algorithm (such as ray tracing). We will in this paper not consider
rendering but focus on generation of heights.

Landscapes are fractal of nature [7]. In practise, this means:

1. Maps are continuous, i.e., points close to each other differ little in altitude.
2. There is a similar degree of detail at all levels of magnification (up to a point), i.e.,

the map is self-similar.

Landscapes are also irregular, so no systematic construction of self-similar maps will
give convincing natural maps. Hence, randomness is needed in the process, and the
self-similarity is of a statistical rather than exact nature.

One way to make a statistically self-similar map is by generating noise where the
power spectral density is inversely proportional to the frequency. This can be done by
generating a large number of points in the frequency domain, distributed according
to the power density, and then Fourier-transforming this into the amplitude domain
to form a height field [1], as illustrated in figure 1. This, however, has a number of
disadvantages:

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 306–318, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Planet Map Generation by Tetrahedral Subdivision 307

Before FFT After FFT

Fig. 1. Fourier-transforming 1/n noise

1. It is computationally expensive.
2. You can not generate a map of a local region significantly faster than the full map.
3. The map is periodic, i.e., it “wraps around” both vertically and horizontally.

For these reasons, it is more common to use a recursive mid-point displacement method:
An initial polygon (or polygon grid) is given height values at its vertices, and is sub-
divided into smaller polygons where the height values of the new vertices are obtained
by adding pseudo-random offsets to the averages of the nearest vertices in the origi-
nal polygon. By subdividing recursively down to the desired level of detail, a height
field can be generated. A common subdivision algorithm is called the diamond-square
algorithm [5]:

A square grid is given height values at each vertex. This is then subdivided in the
following fashion:

Step 1 (diamond). The mid-point of each square is given a height that is an offset from
the average of the heights of the four corners. The original square grid points and
the new mid-points form a diamond grid.

Step 2 (square). The mid-point of each diamond is given a height that is an offset from
the average of the heights of the four corners. The original square grid points plus
the points generated in step 1 and 2 now form a square grid with twice the resolution
as the original.

Repeat. from step 1 until you get the desired resolution.

Figure 2 illustrates this. The new grid points are shown as filled circles, and the dotted
lines connect to the old grid points (shown as outlined circles) used to generate the new.

This is computationally cheap, you can generate a regional map to any detail without
computing the full map, and you don’t have any undesired wrap-around.1. Some arte-
facts may occur in the images due to the use of a regular axis-aligned grid and because
the initial vertices are present in the final grid. There are various refinements to the basic
algorithm that reduce some of these effects [8]. More algorithms are described briefly
in [3].

1 It is still possible to make the map wrap around if this is desired.

308 T.Æ. Mogensen

Step 1 (diamond)

� � �

� � �

� � �

� �

� �

Step 2 (square)

� � �

� � �

� � �

� �

� �

� �

� �

� �

� � �

� � �

Fig. 2. The diamond-square algorithm

Both the Fourier-transform method and the diamond-square algorithm generate
height fields: An altitude value assigned to each point on a 2D grid. This means that the
generated landscapes can’t have overhangs or caves, and since the displacement gets
smaller at smaller scales, you don’t get vertical cliff faces either. While this limits the
type of landscapes that can be created, it is rarely a problem for the typical applications
(generating maps for games or landscapes for animation).

The focus of the present article is different: The desire is to make a zoomable map of
a full planet. The above methods all generate flat maps, and though they can be made
to wrap, this will either create cylindrical or toroidal maps, not spheres. If you wrap
these maps on a sphere, you will get distortion and discontinuities (e.g., at the poles).
The distortion can be minimised by using conformal, i.e., angle-preserving maps, such
as stereographic or Mercator projections (in reverse), but these will still give disconti-
nuities in at least one or two points on the sphere. Hence, we will abandon the idea of
generating a flat map and wrap this around a sphere, but instead create an everywhere
continuous inherently spherical map which (for display purposes) can be projected onto
a flat surface.

2 Extending to 3D

To get a full planet map, we need to move to three dimensions. We can easily extend the
Fourier-transform to 3D by using a three-dimensional FFT. The result is a cubical grid
with a height value at each grid point. To create a spherical map, you embed a sphere
in this grid and for each point on the surface of the sphere use a weighted average of
values at the nearest grid points.

The altitude values represent displacements of the surface points relative to the centre
of the sphere, similar to the way the 2D methods described earlier generate altitudes that
represent vertical displacements of points on a 2D grid.

Note that you can embed any surface in the cubical grid, but since worlds tend to be
(near) spherical, we will focus on spheres.

Due to the nature of FFT, we can not effectively generate values only for the grid
points that are close to the spherical surface, so we generate a lot of values that we
never use.

Planet Map Generation by Tetrahedral Subdivision 309

The diamond-square algorithm can also be modified to 3D using a cubical grid and
three steps to get to a finer cubical grid:

Step 1. Find a value for the middle of each cube using the values at its eight corners.
Step 2. Find a value for the middle of each face of the cubes using the values at the four

corners of the face and at the midpoints (from step 1) of the two adjoining cubes.
Step 3. Find a value for the middle of each edge of the cubes using the values at its two

ends and at the midpoints (from step 2) of the four adjoining faces.
Repeat. from step 1 until the desired resolution is obtained.

This, like the Fourier-based method, computes all points in a 3D grid, while we in the
end use only small subset of these. It would be natural to subdivide only cubes that
contain parts of the spherical surface, which would drastically reduce the required time.
However, steps 2 and 3 use information from adjoining cubes, so we can’t just omit
these. It is possible to modify the algorithms so it in step 2 only uses the four corners of
the face and not the adjoining cubes and step 3 so it uses only the two end-points of the
edge. This will, however, reduce the quality of the maps.

Additionally, just like the use of a regular square grid in the 2D diamond-square
algorithm can produce artefacts that make features orient to the grid, the use of a regular
cubical grid in the 3D extension can produce artefacts that make features orient to the
3D grid. This means that, even after rotating the spherical map, it is often possible to
visually identify the orientation of the grid.

2.1 Spatial Subdivision

We will now present a method that attempts to address these problems.
Let us say that we wanted to find the height value of just a single point on the surface

of a sphere. We can do this using the following algorithm:

1. Embed the sphere inside a polyhedron, where each vertex is assigned a height value
2. Cut the polyhedron into two smaller polyhedra, generating height values for the

new vertices from their neighbouring old vertices.
3. Select the polyhedron in which the desired point is located
4. Repeat from step 2 until the polyhedron is small enough
5. Use the average height values of the vertices of the final polyhedron as the height

value of the desired point.

When you render a picture of a planet, you find the visible points on the planet surface
and apply the above algorithm to each point to find its height value. For example, in ray
tracing each ray that hits the surface will define a visible point.

A question is how small is “small enough” in the above algorithm? Basically, you
would not want two neighbouring pixels in the image to get the same value because
you stop subdivision at the same polyhedron for both pixels. Since the volume of the
polyhedron is halved in each step, three steps will double the resolution of the details. So
a rough estimate is that a 1000×1000 image will require 30 subdivisions for each pixel
(since 210 = 1024), but this assumes that all pixels represent equal areas on the sphere,
which is not typically the case. A better solution is to project the corners of the pixel

310 T.Æ. Mogensen

onto the sphere and stop only when at most one of the projected corner points is inside
the polyhedron that holds the desired point (which is the projection of the middle of the
pixel). In all but the most extreme cases, this will ensure that neighbouring pixels end in
different polyhedra. A somewhat simpler and almost as good method is to estimate the
pixel’s projected size on the sphere and stop when the polyhedron diameter is smaller
than this size. If a standard map projection is used, it is not difficult to make a good
estimate of projected pixel diameter without actually projecting the pixel corners to the
sphere. For example, in the Mercator projection, the area of a pixel projected to the
surface at point (x,y,z) is

√
1− y2 times the area if a pixel projected to the equator.2

The next question is which type of polyhedron to use and how to subdivide it. The
most obvious choice is to use a rectangular box and cut it into two boxes. Indeed, if
you choose the proportions correctly,3 the two new boxes will have the same relative
proportions as the original, much like A4 paper is cut into two A5 papers that have the
same relative side-lengths. An earlier version of the algorithm presented in this paper
did, indeed, use such rectangular boxes. However, using rectangular boxes has several
disadvantages:

1. This is equivalent to using a regular axis-aligned grid, which can give artefacts.
2. Four new vertices are created at each subdivision. We would like fewer new vertices

at each step to keep the number of calculations per step low.

Our solution is to use a tetrahedron. A tetrahedron can be divided into two tetrahedra
by cutting along a plane defined by two vertices and a point on the opposing line, as
illustrated in figure 3.

�������

����������

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�

�
�
�

�

Fig. 3. Cutting a tetrahedron in two

There are no possible proportions of a tetrahedron that will make such a cut produce
two tetrahedra with the same relative proportions as the original (even if we allow the
two smaller tetrahedra to be of different size). But this is actually an advantage: By

2 If the sphere has radius 1 and the polar axis is the y-axis.
3 1×2

1
3 ×2

2
3 .

Planet Map Generation by Tetrahedral Subdivision 311

Input: A target point p and four vertices v1, . . . ,v4 of a tetrahedron, each with
the following information:

– Coordinates (xi,yi,zi)
– Seed for pseudo-random number generator si
– Altitude value ai

Repeat:

1. Re-order vertices v1, . . . , v4 so the longest edge of the tetrahedron is be-
tween v1 and v2, i.e., such that (x1−x2)2 +(y1−y2)2 +(z1− z2)2 is max-
imised.

2. Define new vertex vm by

(xm,ym,zm) = ((x1 +x2)/2, (y1 +y2)/2, (z1 + z2)/2)
l =

√
(x1−x2)2 +(y1−y2)2 +(z1− z2)2

sm = random((s1 + s2)/2)
am = (a1 +a2)/2+offset(sm, l, a1, a2)

3. If p is contained in the tetrahedron defined by the four vertices vm, v1, v3
and v4, set v2 = vm. Otherwise, set v1 = vm.

Until: l is small enough
Return: (a1 +a2 +a3 +a4)/4

Fig. 4. Tetrahedron subdivision

keeping the tetrahedra irregular and different, we avoid the artefacts created by using
axis-aligned boxes.

We will use a tetrahedron where all edges are of different lengths and we will always
cut the longest edge at its midpoint. The algorithm requires that there is always a unique
longest edge to cut. We have no mathematical proof that this is the case with the chosen
initial side lengths, but we have tested this uniqueness property down to a large number
of subdivisions (by making a full-world map of very high resolution and a large number
of detail maps with large magnification) and found no cases where there is no unique
longest edge.

With tetrahedron cuts, we now create only one new vertex at each subdivision, so
the calculation of new vertices has been cut by four compared to using rectangular
boxes. However, extra time is needed to identify the longest edge, and the calculations
required to identify in which tetrahedron the goal point is located are more complex, so
there is no overall reduction in computational cost. Hence, the main advantage of using
tetrahedra is reduction of artefacts caused by using a regular grid.

A more detailed algorithm description can be found in figure 4. Notes:

– The function random(s) produces a pseudo-random value from a seed s. The same
seed will always give the same result. Note that random() is seeded by the average
of the seeds of the end points of the edge, so the result is independent of the other
vertices and of the order of v1 and v2. Since the same edge is shared between several

312 T.Æ. Mogensen

tetrahedrons, all of which may cut this edge, we need to cut the edge in the same
way regardless of which tetrahedron it is considered a part of.

– The function offset(s, l,a1,a2) provides an offset that depends on the seed s, the
length l of the edge and the altitude values a1 and a2 at the end-points of the edge.
In the simplest case, the offset is simply proportional to l, but more realistic land-
scapes can be made by making the offset proportional to lq, where q < 1 (since
altitudes tend to differ relatively more over short distances than over longer dis-
tances), and by adding in a contribution that is proportional to the altitude difference
|a1−a2| (since steep areas tend to be less even than flatter areas). Other variations
are possible, such as taking the distance from sea-level into account (since areas at
higher altitude tend to be more rugged than low-altitude areas).

– The altitude values at the vertices of the initial tetrahedron will affect the altitudes
on the surface of the sphere, but since the vertices are outside the sphere, they can
not determine exact altitudes of any points on the surface. Hence, while setting
these four altitudes to sea level will typically give planet maps with roughly equal
parts land and sea, the amount of land and sea can vary greatly if different seeds
are used.

– A normal vector of the landscape at a point on the sphere surface can be estimated
from the altitude values and coordinates of the four vertices in the final tetrahedron.
This can be used for shadow effects and bump maps.

Step 1 (reordering vertices) uses about 50% of the time, 30% is spent in step 2 (calcula-
tion of new vertex) and 20% in step 3 (determining in which sub-tetrahedron the point
is located).

An optimisation is possible based on the observation that adjacent pixels in a ren-
dered image are likely to correspond to close points on the sphere, so the first many
subdivisions will be the same. The idea is that, after a number of subdivisions, we store
the vertices of the current tetrahedron before we continue. When we repeat the algo-
rithm for the next pixel, we check if the projected point is inside the stored tetrahedron.
If it is, we start subdivision from the stored tetrahedron instead of from the top level.
For detailed maps of smaller regions of a planet, this can dramatically reduce the overall
calculation time.

3 Implementation and Uses

An implementation in the programming language C of the tetrahedron subdivision al-
gorithm can be found at http://www.diku.dk/∼torbenm/. For rendering, a number
of standard map projections such as Mercator, Mollweide and Gnomonic are provided.
The rendering is otherwise fairly primitive: The colour of a point on the surface de-
pends on the altitude at and the latitude of this point, and shadow effects based on
the estimated surface normal can be added. The colouring scheme can be changed by
modifying a palette file, and longitude/latitude lines can be added.

Example outputs (rendered in black and white) are shown in figure 5.
Figure 6 shows zooming in on a detail of the map. Each step uses four times the

resolution of the previous step, so the last picture is 16384 times as detailed as the first.

Planet Map Generation by Tetrahedral Subdivision 313

Fig. 5. Maps using orthographic and stereographic projections

Fig. 6. Zooming in

Fig. 7. Planet views from game prototype

314 T.Æ. Mogensen

While the above program can be used on its own to generate maps for use in role-
playing games and such, the algorithm has also been used in open-source computer
games, including an upcoming version of a Russian space game [10], where it is one of
several planet texture generators. Sample planets rendered by the game engine is shown
in figure 7. The clouds and craters are added by additional texture generators.

4 Comparison to Other Methods

We have already mentioned the diamond-square algorithm and Fourier-transform based
methods, and noted that these are designed for flat maps and will yield discontinuities
if these maps are projected onto spheres. Some tricks are often used to make this less
noticeable:

– Force the edges of the map to have certain pre-specified values (such as deep water),
so they can meet without discontinuities.

– Make the map wrap around horizontally to form a cylinder, map this to a sphere
and add artificial “ice caps” to hide discontinuities at the poles. Fourier-based maps
automatically wrap around, and diamond-square algorithm can be made to do so
fairly easily.

Note that wrapping around both vertically and horizontally makes a torus, so this can’t
solve the discontinuity issue on a sphere.

Other map generators try to simulate plate tectonics [4]. These, also, are inherently
full-map methods with no way of generating a region map significantly cheaper than
the global map. The programs I have seen all use a rectangular grid, so they also have
the problems with mapping to a sphere mentioned above.

The author is aware of one other map-generation method that inherently works on a
spherical surface [11,2,9]:

1. Select a random great circle on the sphere
2. Raise the altitude for the hemisphere on one side of this great circle by a small

amount and lower the altitude for the hemisphere on the other side by the same
amount.

3. Repeat this a large number of times.

The method is illustrated in figure 8.
The great-circle algorithm is normally used in a context where the full map is gener-

ated in a rectangle that is a projection of the sphere, mapping the great circles to curves
in the projection and raising the altitudes on one side of the curve and lowering it on
the other side. It is, however, fairly easy to modify this to find the altitude of a single
surface point:

1. Start with altitude 0
2. Select a random great circle on the sphere
3. If the selected point is on one side of this great circle, raise the altitude, otherwise

lower it.

Planet Map Generation by Tetrahedral Subdivision 315

Fig. 8. Great-circle algorithm

4. Repeat from step 2 N times.
5. Return altitude

If the same initial seed for the pseudo-random number generator is used at every point,
you get a consistent result.

In the standard version of the algorithm, the cuts define discontinuities, since all
points on one side of the hemisphere are raised by the same amount and all all points
on the other side lowered by the same. If this amount is small, this matters little, but at
high magnifications, it will be visible. It is easy to modify the algorithm, so the change
is more gradual, but that makes the terrain smooth at high magnifications unless you
have many cuts, so this doesn’t lower the required number of cuts significantly. More
seriously, whenever a point on the surface is raised, the point opposite of it on the sphere
is lowered, so the maps will have a kind of mirror symmetry: Islands on one side of the
planet will have mirror-image lakes on the opposite side, as seen in figure 9, where the
right map is centred at the opposite point as the left map and then mirrored. If you raise
the waterline above 0 altitude, this is not immediately noticeable, but you can’t have
land on two opposing points on the sphere. Another way to reduce these artefacts is to
make the cuts at smaller circles rather than great circles. There will still be a greater
probability for water opposite land than one would expect, but there is no strict mirror-
image effect.

To compare running times and results, the great-circle algorithm and the tetrahedron-
subdivision algorithm were both run to produce 400×400 pixel full-world and zoomed
(10×) maps using the orthogonal projection. The two programs are identical except for
the algorithm used to generate altitudes for points on the sphere. The great-circle algo-
rithms pregenerates and stores the cuts, so they don’t have to be regenerated for each
point. The tetrahedron-subdivision algorithm uses an optimisation where the tetrahe-
dron after k subdivisions is stored and reused for the next point if it is within the same
tetrahedron.

Fig. 9. Mirror effect

316 T.Æ. Mogensen

The number of cuts used for the great-circle algorithm depends on the level of detail
required. For the full-world map 2000 great circle cuts suffice, but artefacts are obvious
when zooming in. At 10× zoom, ten times as many cuts are needed. This changes the
appearance, as all cuts have equal contribution, so even maps at low resolution have to be
generated with a high number of cuts if any map of the planet is needed at high resolution.

The results can be seen in figure 10.

Tetrahedra Circles (2000 cuts) Circles (20000 cuts)

1.03 seconds 3.46 seconds 34.2 seconds

Zoom 10×

1.23 seconds 4.38 seconds 43.5 seconds

Fig. 10. Comparing great-circle and tetrahedron-subdivision algorithms

For a full planet map of n×n pixels, the great-circle algorithm requires time propor-
tional to n3, as the required number of cuts is proportional to the resolution. In contrast,
the tetrahedron subdivision algorithm requires time proportional to n2 log(n), as the re-
quired number of subdivisions is proportional to the logarithm of the resolution. To
generate a map of a detail of the planet at zoom rate z, the great-circle algorithm needs
z time more cuts and, hence, z times more time. The subdivision algorithm needs log(z)
more subdivisions, so it needs only log(z) times more time.

To compare tetrahedron subdivision with recursive subdivision of a rectangular box,
figure 11 shows two maps using a “bump map” shading that exaggerates feature de-
tails. On the map generated with rectangular box subdivision, there are clear horizontal
artefacts at the mid-right and top-middle parts of the map and a noticeable vertical arte-
fact near the middle, while the map on the right doesn’t show any clear alignment of
features. Subdividing a rectangular box is, in fact, faster than tetrahedron subdivision.
This is because it doesn’t need to identify the longest edge at each step and because it
is simpler to determine in which half-box a point is located.

Planet Map Generation by Tetrahedral Subdivision 317

Rectangular box subdivision: 0.25 seconds Tetrahedron subdivision: 0.56 seconds

Fig. 11. Comparing rectangular-box and tetrahedron subdivision

5 Conclusion

The tetrahedron subdivision algorithm provides fast and zoomable generation of spher-
ical planet maps. Unlike most other planet map generators, there are no discontinuities
nor distortion caused by projecting a flat map onto a sphere. Also, the choice of an
inherently irregular tetrahedron subdivision avoids grid-aligned artefacts.

Since single points can be sampled, the method is well suited in contexts where
varying levels of detail are needed in the same picture, such as landscape views where
the foreground needs more detail than the background: You simply sample points at the
required density. Single-point sampling is also well-suited to ray tracing, since you can
sample exactly the points that are intersected by rays, thus wasting no time generating
details that are not visible.

A limitation with this (and most other fractal map generators) is that there is no ero-
sion, no rivers, no silting and so on – the landscape is everywhere rough, as if newly
created by tectonic faulting. Some map generators add erosion, rivers and sedimenta-
tion in a post-processing phase, but since these are not local phenomena, you need to
perform the process on the full map, which negates the zoomability and variable level of
detail. As an example, the map generator Wilbur [6] allows non-local post-processing
like flow incision and fill basins to emulate erosion and sedimentation.

There is no obvious solution to the locality problem, though various tricks can be
employed to make the map appear more natural, such as making the roughness of terrain
depend on the altitude, so areas under or near sea level are smoother than areas of
high altitude. Wilbur [6] can remap the generated altitudes according to a user-specified
mapping. A standard mapping compresses lower altitudes while higher altitudes are
stretched, and a sudden drop in sub-sea altitudes is made to emulate continental shelves.

References

1. Bourke, P.: Frequency synthesis of landscapes, and clouds (1997),
http://local.wasp.uwa.edu.au/~pbourke/fractals/noise

2. Bourke, P.: Modelling fake planets (2000),
http://local.wasp.uwa.edu.au/~pbourke/fractals/noise

3. Burke, C.: Generating terrain (1996),
http://www.geocities.com/Area51/6902/terrain.html

http://local.wasp.uwa.edu.au/~pbourke/fractals/noise
http://local.wasp.uwa.edu.au/~pbourke/fractals/noise
http://www.geocities.com/Area51/6902/terrain.html

318 T.Æ. Mogensen

4. Burke, C.: Plate tectonics (1996),
http://www.geocities.com/Area51/6902/t_plate.html

5. Fournier, A., Fussel, D., Carpenter, L.: Computer rendering of stochastic models. Communi-
cations of the ACM 25(6), 371–384 (1982)

6. Layton, J.S.: Wilbur (2009), http://www.ridgecrest.ca.us/~jslayton/wilbur.html
7. Mandelbrot, B.: The Fractal Geometry of Nature. W.H. Freeman & Co, New York (1982)
8. Miller, G.S.P.: The definition and rendering of terrain maps. Computer Graphics 20(4), 39–48

(1986)
9. Olsson, J.: Fractal worldmap generator (2004),

http://www.lysator.liu.se/~johol/fwmg/fwmg.html
10. Petrov, O.: Babylon 5; i’ve found her (2008), http://ifh.babylonfive.ru/
11. Voss, R.P.: Random fractal forgeries. Fundamental Algorithms for Computer Graphics 17,

805–835 (1985)

http://www.geocities.com/Area51/6902/t_plate.html
http://www.ridgecrest.ca.us/~jslayton/wilbur.html
http://www.lysator.liu.se/~johol/fwmg/fwmg.html
http://ifh.babylonfive.ru/

Towards Checking Parametric Reachability for
UML State Machines�

Artur Niewiadomski1, Wojciech Penczek1,2, and Maciej Szreter2

1 ICS, University of Podlasie, Siedlce, Poland
artur@iis.ap.siedlce.pl

2 ICS, Polish Academy of Sciences, Warsaw, Poland
{penczek,mszreter}@ipipan.waw.pl

Abstract. The paper presents a new approach to model checking of sys-
tems specified in UML. All the executions of an UML system (unfolded
to a given depth) are encoded directly into a boolean propositional for-
mula, satisfiability of which is checked using a SAT-solver. Contrary to
other UML verification tools we do not use any of the existing model
checkers as we do not translate UML specifications into an intermedi-
ate formalism. Moreover, we introduce some parametric extensions to
the method. The method has been implemented as the (prototype) tool
BMC4UML and several experimental results are presented.

1 Introduction

The Unified Modelling Language (UML) [1] is a graphical specification language
widely used in development of various systems. The version 2.1 consists of thir-
teen types of diagrams. The diagrams allows for describing a system from many
points of view, with different levels of abstraction. Nowadays, model-checking
techniques that are able to verify crucial properties of systems, at a very early
stage of the design process, are used in development of IT systems increasingly
often. The current paper presents results of our work aiming at development
of a novel symbolic verification method that avoids an intermediate translation
and operates directly on systems specified in a subset of UML. The method is
a version of a symbolic bounded model checking, designed especially for UML
systems. All the possible executions of a system (unfolded to a given depth) are
encoded into a boolean propositional formula satisfiability of which is checked
using a SAT-solver. Contrary to other UML verification systems we do not make
use of any existing model checker as we do not translate UML specifications into
any intermediate formalism.

There have been a lot of attempts to verify UML state machines - all of them
based on the same idea: translate a UML specification to the input language of
some model checker, and then perform verification using the underlying model
checker. Some of the approaches [2,3] translate UML to Promela and then make

� Partly supported by the Ministry of Education and Science under the grant
No. N N516 370436.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 319–330, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

320 A. Niewiadomski, W. Penczek, and M. Szreter

use of the model checker Spin. Others [4,5] exploit timed automata as an inter-
mediate formalism and use UPPAAL for verification. The third group of tools
[6,7,8] apply the symbolic model checkers SMV or NuSMV via translating UML
to their input languages.

An important advantage of our method consists in an efficient encoding of
hierarchical state machines (HSM, for short). Most of other methods, that can
handle hierarchy, perform flattening of HSM so they are likely to cause the
state explosion of models generated. To the best of our knowledge only the
paper [8] handles hierarchies directly without flattening. Another disadvantage
of traditional methods follows from the fact that it is hard to reconcile UML
semantics with intermediate formalism semantics. This results in a significant
growth of the model size caused by adding special control structures that force
execution w.r.t. UML semantics.

One of the most serious problems hindering the verification of UML is the
lack of its formal semantics. The OMG standard [1] describes all the UML ele-
ments, but it deals with many of them informally. Moreover, there are numerous
semantic variation points having several possible interpretations. Many papers
on the semantics of UML have been published so far, but most of them skip
some important issues. The interested reader is referred to the surveys [9,10].
The approach of [8], which considers a similar subset of UML, is the closest to
our work, but it does not support timed systems.

This paper is an extension of [11] with deferred events added and experimental
results for a new benchmark. Moreover, we have introduced some elements of
parametric reachability checking. Using our approach, we are able to verify not
only that a property is reachable, but also to find a minimal (integer) time c,
when this is the case.

The rest of the paper is organised as follows. The next section describes the
subset of UML considered and formalises its semantics as a labelled transition
system. In Section 3, we present a symbolic encoding and describe an algorithm
for checking parametric reachability. Preliminary experimental results are dis-
cussed in Section 4. Final remarks are given in the last section.

2 Syntax and Semantics of an UML Subset

This section defines the subset of UML considered in the paper and accepted by
our tool, along with its operational semantics. Due to the space limitations we
give only intuitive explanations of the concepts and the symbols used for defining
the semantics. The remaining details and formal definitions can be found in
[11].We assume also that the reader is familiar with basic UML state machine
concepts.

Overview. We start with an overview of a syntax and a semantics of UML,
while in the next section we give a formal operational semantics. The syntax
is illustrated with the diagrams of the Generalized Railroad Crossing (GRC)
system, which is also used as a benchmark in Section 4.

Towards Checking Parametric Reachability for UML State Machines 321

(a) Class and object diagrams (b) State machine diagram of class Train

Fig. 1. Specification of GRC system

The systems considered are specified by a single class diagram which defines
k classes (e.g. see Fig. 1(a)), a single object diagram which defines n objects
(e.g. in Fig. 1(a)), and k state machine diagrams (e.g. in Fig. 1(b), 2), each one
assigned to a different class of the class diagram.

The class diagram defines a list of attributes and a list of operations (possibly
with parameters) for each class. The object diagram specifies the instances of
classes (objects) and (optionally) assigns the initial values to variables. All the
objects are visible globally, and the set of objects is constant during the life
time of the system - dynamic object creation and termination is not allowed.
We denote the set of all the variables by V , the set of the integer variables by
V int ⊆ V , and the set of the object variables by Vobj ⊆ V . The values of object
variables are restricted to the set of all objects defined in the object diagram,
denoted by O, and the special value NULL.

Each object is assigned an instance of a state machine that determines the
behaviour of the object. An instance of a state machine assigned to ith object is
denoted by SMi. A state machine diagram typically consists of states, regions
and transitions connecting source and target states. The set of all states of SMi

is denoted by Si, whereas S =
⋃n

i=1 Si is the set of all states from all instances
of state machines. We consider several types of states, namely: simple states
(e.g. Away in Fig. 1(b)), composite states, (e.g. Main in Fig. 2), final states,
and initial pseudo-states, (e.g. Initial in Fig. 2). For each object we define the
set of active states Ai, where Ai ⊆ Si, Ai �= ∅, and i = 1, . . . , n. The areas
filling the composite states are called regions. The regions contained in the same
composite state are orthogonal (e.g. Gate and Controller in Fig. 2). The regions
contain states and transitions, and thus introduce a hierarchy of state machines.
We assume that a definition of the hierarchy relation is given, and we implicitly
refer to this relation by using the terms ancestor and descendant.

Let Trig be a set of all triggers and Deferi : Si �−→ 2Trig - a function
returning a set of triggers for each state of Si. This set defines deferrable triggers,
i.e., the events matching these triggers can be retained if they fire no transition.

322 A. Niewiadomski, W. Penczek, and M. Szreter

Fig. 2. Specification of GRC system - state machine diagram of class GateController

The labels of transitions are expressions of the form trigger[guard]/action,
where each of these components can be empty. A transition can be fired if the
source state is active, the guard (a Boolean expression) is satisfied, and the
trigger matching event occurs. An event can be of the following three types:
an operation call, a completion event, or a time event. In general, firing of a
transition causes deactivation and activation of some states (depending on the
type of the transition and the hierarchy of given state machine). We say that
the state machine configuration changes then.

A time event, defined by an expression of the form after(δ1, δ2), where δ1, δ2 ∈
N and δ1 ≤ δ2, can occur not earlier than after passing of δ1 time units and no
later than before passing of δ2 time units. This is the extension of the standard
after(x) expression, which allows one to specify an interval of time in which a
transition is enabled. However, we follow the discrete-time semantics where the
clock valuations are natural numbers. The time flow is measured from entering
the time state, which is the source state of a transition with the trigger of the
form after(δ1, δ2). The set of all time states from SMi is denoted by Γi, and
the set of all time states from all instances of state machines is denoted by Γ ,
where Γ =

⋃n
i=1 Γi.

The operation calls coming to the given object are put into the event queue of
the object, and then, one at a time, they are handled. The event from the head of
the queue possibly fires a transition (or many transitions), and is consumed. If it
cannot fire any transition and the matching trigger is deferred in the current state,
then the event is deferred, i.e. it will be consumed later. Otherwise, the event is dis-
carded. The transitions with non-empty trigger are called triggered transitions. We
refer to the processing of a single event from the queue or a time event as the Run-
To-Completion (RTC) step. Next, an event can be handled only if the previous
one has been fully processed, together with all the completion events which even-
tually have occurred. A completion event (denoted by κ) occurs for a state that has
completed all of its internal activities. The completion events fire the completion
transitions, i.e., transitions without a trigger defined explicitly. The completion
transitions have priority over the triggered transitions.

Towards Checking Parametric Reachability for UML State Machines 323

The execution of the whole system follows the interleaving semantics, similar
to [5]. During a single step only one object performs its RTC step. If more
than one object can execute such a step, then an object is chosen in a non-
deterministic way. However, if none of the objects can perform an untimed action,
then time flows. Note that this happens when all event queues are empty and
all the completion events have been handled. The time flow causes occurrences
of time events. The time events are processed in the next RTC steps.

Operational semantics. There are two key notions of our semantics, namely,
global states and a transition relation. Below, we recall several definitions from
[11], used later to deal with the semantics and extended with deferred events.

Definition 1 (State machine configuration). A set of states is consistent if
for each pair of its distinct states these states either belong to orthogonal regions
or one is an ancestor of the other. A state is completed if a completion event
has occurred for this state, but has not been handled yet.
A configuration of the state machine of the i-th object is a pair 〈Ai, Ci〉, where
Ai ⊆ Si is a consistent set of active states, and Ci ⊆ Ai is a set of completed
states. The set of all the configurations of the i-th object is denoted by Ŝi while
Ŝ is the set of all the configurations of all the objects.

Definition 2 (Valuation). Let E and Q denote respectively the set of all the
events and the set of all the event queues. Let Ω = Z∪O∪ (E \ {κ})�∪Ŝ, where
Z is the set of integer numbers, and (E \ {κ})� is the set of all finite sequences
of events (without completion events).
A valuation function v is defined as: v : V ∪ Q ∪ O �−→ Ω, where v(V int) ⊆ Z,
v(Vobj) ⊆ O ∪ {NULL}, v(Q) ⊆ (E \ {κ})� and v(O) ⊆ Ŝ. The function v
assigns an integer to each integer variable, an object or NULL to each object
variable, a sequence of events to each event queue, and an active configuration
to each object.

The configuration of the i-th object for a given valuation v is denoted by 〈Av
i , Cv

i 〉,
whereas ϑ(v, α) denotes the valuation v′ computed from v after the execution
of the action α. The initial valuation v0 is a valuation that returns an empty
sequence (ε) for all the event queues, the initial states marked as active and
completed for all the objects and the initial values for all the variables.

Definition 3 (Clocks valuation). A clocks valuation function μ : S �−→ N
assigns a natural number to each time state and zero to any other state. For
s ∈ Γ , a clock valuation μ(s) indicates how long ago the system entered the time
state s, or how long ago the system started if s has not been active yet.

Let μ+ δ (for δ ∈ N) denote the clocks valuation such that μ′(s) = μ(s) + δ for
s ∈ Γ and μ′(s) = 0 for s ∈ S \ Γ . For Y ⊆ S let μ[Y := 0] denote the clocks
valuation μ′ such that μ′(s) = 0 for s ∈ Y and μ′(s) = μ(s) for s ∈ S \ Y . The
valuation μ0 such that ∀s∈S μ

0(s) = 0 is called the initial clocks valuation. A
pair g = 〈v, μ〉 is called a global state. It is determined by the active configuration
of all instances of state machines, the valuations of all the variables, the contents
of all the event queues, and the valuations of all the clocks.

324 A. Niewiadomski, W. Penczek, and M. Szreter

Definition 4 (Operational semantics). The operational semantics of the
systems specified in the selected UML subset is defined by the labelled transi-
tion system 〈G, g0, Σ,→〉, where:

– G = ΩO∪V∪Q × NΓ is a set of the global states,
– g0 = 〈v0, μ0〉 is the initial state,
– Σ = N is a set of the labels equal to time units passing during transitions,
– → ⊆ G×Σ×G is the transition relation such that for g = 〈v, μ〉, g′ = 〈v′, μ′〉,

and σ ∈ Σ we have g σ→ g′ iff one of the following conditions holds:
1. ∃i∈{1,...,n} I

v
i �= ∅ ∧ σ = 0 ∧ v′ = ϑ

(
v, discard(Iv

i)
)

∧ μ′ = μ
2. ∃i∈{1,...,n} Cv

i �= ∅ ∧ Iv
i = ∅ ∧ σ = 0 ∧ v′ = ϑ

(
v, λ(tκ)

)
∧ μ′ = μ

[
Λ(tκ) := 0

]
3. ∃i∈{1,...,n} Cv

i = ∅ ∧ enabled(g, oi) �= ∅ ∧ σ = 0 ∧ v′ = ϑ
(
v, λ(ϕ)

)
∧ μ′ = μ

[
Λ(ϕ) := 0

]
4. ∃i∈{1,...,n} Cv

i = ∅∧ v(qi) �= ε∧enabled(g, oi) = ∅∧ isDeferred(g, oi)∧ σ =
0 ∧ v′ = ϑ

(
v, defer(qi)

)
∧ μ′ = μ

5. ∃i∈{1,...,n} Cv
i = ∅ ∧ v(qi) �= ε ∧ enabled(g, oi) = ∅ ∧ ¬isDeferred(g, oi)∧

σ = 0 ∧ v′ = ϑ
(
v, cons(qi)

)
∧ μ′ = μ

6. ∀i∈{1,...,n} Cv
i = ∅ ∧ v(qi) = ε ∧ σ = x ∧ 0 < X1 ≤ x ≤ X2 ∧ v′ = v

∧ μ′ = μ+ x

where: (i) the set Iv
i ⊆ Cv

i contains the completed states of the i-th object that
are the source states for the completion transitions not enabled in the state g,
(ii) discard(Iv

i) is the action of removing the elements of the set Iv
i from Cv

i ,
(iii) λ(tκ) is the sequence of actions w.r.t. the specification of the completion
transition tκ executed, (iv) Λ(tκ) is the set of states activated as a result of
firing the transition tκ, (v) enabled(g, oi) is the set of triggered transitions of
i-th object enabled in the state g, (vi) isDeferred(g, oi) is a function returning
true if the first event in the i-th queue matches a deferrable trigger in state g,
(vii) defer(qi) is the action of deferring the first event of the i-th queue, (viii)
λ(ϕ) is the sequence of actions w.r.t. the specifications of the sequence of triggered
transitions ϕ executed, (ix) Λ(ϕ) is the set of states activated as a result of firing
the set of transitions ϕ ⊆ enabled(g, oi), (x) v(qi) is the content of the i-th event
queue in the state g, (xi) cons(qi) is the action of removing an event from the
head of i-th event queue, (xii) X1, X2 ∈ N are the starting time of the earliest
time event and the earliest expiration time of the considered time events resp.

It follows from Def. 4 that at a state g = 〈v, μ〉 the system can perform one of
the following transitions (the ordering follows the priorities of the transitions):
1. Consumption of the completion events. Removes all the completion
events that cannot fire a completion transition for the i-th object in the state g.
2. Execution of a completion transition. Handles one completion event κ
causing a firing of one completion transition tκ, and changes the valuation ac-
cording to the sequence of actions λ(tκ), that is: exit actions and deactivation
of leaving states, the transition action, the entry actions and activation of the

Towards Checking Parametric Reachability for UML State Machines 325

entered states, and producing completion events for some of the activated states.
Moreover the clocks of the entered timed states are reset.
3. Execution of triggered transitions. Firing of the set of non-conflicting
triggered transitions enabled by the event in the head of the event queue. The
resolution of conflicts is based on the nesting level of the source states of transi-
tions. We deal with changes of the valuation in a way similar to 2. If a transition
is triggered by an event from the queue, then it is additionally consumed. The
second possibility is the firing of a timed transition triggered by a time event.
In this case the enabling condition depends rather on the clock valuation than
the queue contents. Moreover, in the presence of orthogonal (concurrent) re-
gions more than one transition can be fired in the single RTC step, so the action
sequence λ(ϕ) which changes the valuation contains the actions caused by all
executed transitions (the set ϕ).
4. Deferring an event. An event is deferred, i.e., it cannot be dispatched
while staying at the current state, but it will be considered again after leaving
this state.
5. Discarding of an event. Discards an event from the head of the i-th event
queue, when it does not enable any transition.
6. Time flow. If all the event queues are empty and all completion events have
been processed, then x time units pass, where 0 < X1 ≤ x ≤ X2. We compute a
set of the allowed values of x by subtracting of, respectively, the lower and upper
bound of the time events specifications from all the time transitions with guard
expressions satisfied and with active states as sources (μ(s)− δ1 and μ(s)− δ2).
The set is bounded by the starting time of the earliest time event (X1) and the
earliest expiration time of the considered time events (X2).

3 Symbolic Encoding

Below we present a symbolic encoding of the operational semantics introduced
in the previous section. First the encoding of the global states is defined in order
to give the symbolic transition relation.

As usual, the global states are represented by sequences of bits. To this aim
each global state g is represented by n binary sequences, where each sequence
stands for a state of one object. The representation of a single object consists
of five binary sequences that encode respectively a set of active states, a set of
completed states, a contents of the event queue, a valuation of the variables, and
a valuation of the clocks.

Observe that the following conditions hold:

1. The number of bits r needed to encode one global state is given as follows:
r = Σn

i=1

(
|Si|+ |C(oi)|+m∗ b(i)+2 ∗ #log2m$+(|Vi|+ |Reg(Γi)|)∗ intsize

)
2. The number of clocks sufficient for representation of a state of ith object is

equal to number of regions that directly contain time states.

The symbols C(oi),m, b(i), andReg(Γi) denote respectively the set of completion
sensitive states (the states being the source states for completion transitions,

326 A. Niewiadomski, W. Penczek, and M. Szreter

C(oi) ⊆ Si), the size of the event queues, the maximum size of a single element
of a queue, and the set of regions that directly contain time states. By intsize

we denote the number of bits used to encode an integer number. From now on,
we identify a global state with its binary representation.

Symbolic transition relation. Now, we give the encoding of the symbolic
transition relation. The description is structured in a top-down manner, i.e.,
first we provide an encoding of the symbolic path, then the transition relation,
and finally we describe in detail the encoding of some transition types. In order
to encode all the executions of length k for a given system as the formula pathk,
we work with vectors of propositional variables, called state variables. Denote
by Sv a set of state variables, containing the symbols true and false. Each state
of a k-path can be symbolically represented as a valuation of a vector of state
variables w = (w1, . . . , wr).

Definition 5 (Valuation of state variables). Let us define a valuation of the
state variables as V : Sv �−→ {0, 1}. Then, a valuation of the vectors of r state
variables V : Sv

r �−→ {0, 1}r is given as: V (w1, . . . , wr) = (V (w1), . . . ,V (wr)).

All the k-paths can be encoded over a symbolic k-path, i.e., k+1 vectors of state
variables wj for j = 0, . . . , k. Each vector wj is used for encoding global states
of a system. Specifically, w0 encodes the initial state (g0) whereas wk encodes
the last states of the k-paths.

Let w and w′ be vectors of state variables, and V - a valuation of state
variables, as discussed above. Define the following formulae:

– I(w) is a formula s.t. for every valuation V have we that V satisfies I(w) iff
V (w) is equal to the initial state g0 of the transition system.

– T(w,w′) - a formula s.t. for every valuation V we have that V satisfies
T(w,w′) iff V (w) x−→ V (w′), for x ∈ N.

Hence the formula encoding a symbolic k-path is defined as follows:

pathk(w0, . . . ,wk) = I(w0) ∧
k−1∧
i=0

T(wi,wi+1) (1)

Next, we give the detailing encoding of the transition types. We start with a set
of helper formulae that encode enabling conditions and execution of transitions
of types 1 - 6, given in Def. 4. We define propositional formulae for transitions of
types 1 ≤ i ≤ 5 that encode their preconditions over the vector w for the object
o: EOi(o,w). We define also the propositional formulae encoding an execution
of these transitions over the vectors w,w′ for the object o: XOi(o,w,w′) for
1 ≤ i ≤ 5 and the formula encoding the time flow X6(w,w′).

The transitions of types 1–5 are called local as their execution does not depend
on which type of transition can be fired by other objects. The execution of local
transitions for object o over the vectors of state variables w and w′ is recursively
encoded as (we set XO(o,w,w′) = f1(o,w,w′)):

Towards Checking Parametric Reachability for UML State Machines 327

f5(o,w,w′) = EO5(o,w) ∧XO5(o,w,w′)
fi(o,w,w′) = EOi(o,w) ∧XOi(o,w,w′) (2)

∨¬EOi(o,w) ∧ fi+1(o,w,w′) for i ∈ [1, 4]

We ensure that a transition of each level becomes enabled only if the transitions
of the preceeding levels cannot be executed, by nesting the conditions for the
consecutive levels. Then, iterating over the objects of class c, we encode the
execution of local transitions for the class c:

XC(c,w,w′) =
∨

o∈Objects(c)

XO(o,w,w′) (3)

Now we are ready to give the encoding of the transition relation:

T(w,w′) =
∨

c∈Classes

XC(c,w,w′) ∨ E6(w) ∧X6(w,w′) (4)

where E6(w) encodes the enabling conditions of the time flow transition.

Dealing with deferred events: queues. In this subsection we describe some
ideas behind the symbolic encoding of event queues. In particular, we explain
how the queues of [11] have been extended to deal with the deferred events.
We describe informally the general ideas, skipping implementation details of the
Boolean formula encoding each concept.

The queues are implemented as cyclic buffers (Fig. 3). The index i (p) shows
the inserting (removing, resp.) position. Both the indices are incremented (mod-
ulo the queue length) when performing the respective operations. The third
index d points at the first deferred event.

Referring to Fig. 3, the implementation of event queues can be explained as
follows: a) shows the case without deferred events, the event pointed to by p
is to be removed first and a new event will be inserted at the place pointed to
by i. If p = i, then the queue is empty. For b), the pointer d points at the first
event deferred in the current state, so all the events between d and p are deferred
(red/gray fields). As shown in c), consuming a non-deferred event E3 requires
performing a left-shift of the non-deferred events. This is necessary to ensure
that the events in the queue are kept without empty fields between them. Figure
3 d) shows that when leaving the state with deferrable triggers we set p = d, so
all the previously deferred events are now at the beginning of the queue.

E1 E2 E3

p i

p p=d

E1 E2 E1 E2 E3

i

a) b)

c) d)i

E4 E5

E3

...

E1 E3

id p

d

E2

Fig. 3. Implementing event queues

328 A. Niewiadomski, W. Penczek, and M. Szreter

Symbolic encoding: some details. In this section we introduce a symbolic
encoding of transition type 1, leaving the remaining definitions in [12] and [11].
We give the encoding of the preconditions of particular transition types as for-
mulae denoted with labels beginning with E, and the encoding of postconditions
(execution) as formulae denoted with labels beginning with X .

Transitions of type 1 (discarding of completion events). A precondition for a
transition of level one for object o (EO1) is satisfied if in a symbolic state w
there exists a completion sensitive state s that is completed and there does not
exist any completion transition, outgoing from s, having the guard satisfied.

ES1(s,w) =
(
cpl(s,w) ∧

∧
t∈outC(s)

¬(grd(t,w)
)
, EO1(o,w) =

∨
s∈C(o)

ES1(s,w)

where cpl(s,w) is evaluated to true iff state s is completed in w, outC(s) is
a set of all completion transitions outgoing from the state s, and the formula
grd(t,w) encodes the guard of transition t over the state variables from w. The
execution of this transition is encoded as the formula:

XO1(o,w,w′) =
∧

s∈C(o)

(
ES1(s,w) =⇒ ¬cpl(s,w′)

)
∧ cpRest(w,w′)

The UML states satisfying the precondition ES1 are marked as not completed in
the state w′, and the formula cpRest(w,w′) encodes the copying of unchanged
state variables from w to w′.

Parametric Reachability. Now, we introduce an algorithm for finding a min-
imal (integer) time c, when a reachable property α holds in the model:

1. Run BMC for finding a minimal k s.t. α is reachable on a k-path.
2. Add a global clock X to the model to find the time x of reaching α at the

k-path. Let n := x− 1.
3. Run BMC for checking α ∧X ≤ n over the extended model.
4. If BMC returns SAT, then let n := n− 1 and goto 3.
5. If BMC returns UNSAT, then c := n+ 1, STOP.

We present some preliminary results in the next section.

4 Experimental Results

Our prototype implementation has been tested on 3 example specifications. The
first one is Aircraft Carrier (AC) [12]. AC consists of a ship and a number
of aircraft taking off and landing continuously, after issuing a request being
accepted by the controller. The events of answering these requests may be marked
as deferred. Each aircraft refills fuel while on board and burns fuel while airborne.
We check the property whether an aircraft can run out of fuel during its flight.

Towards Checking Parametric Reachability for UML State Machines 329

Table 1. Results of verification of Aircraft Carrier system (defer/no defer)

N k Hugo+Uppaal [s] BMC4UML [s] Parametric [s], c = 4
3 19 1.32 / 1.25 67.59 / 51.26 31.34 / 22.64
4 20 13.15 / 11.41 101.58 / 81.28 45.44 / 42.38
5 21 147.43 / 95.67 155.63 / 132.34 60.49 / 37.01
6 22 Out of mem 257.08 / 216.42 52.23 / 75.08
7 23 - / - 686.06 / 421.85 101.86 / 199.09

The second benchmark - Master-Slave system [12] - is an untimed specifi-
cation of a simple system consisting of one instance of class Master and some
number (N) instances of class Slave. The objects of type Slave send requests
to the object of type Master (m) that handles the messages and decreases the
variable resources. When the variable is equal to 0 the object m enters the state
deadlock. Table 2 presents our experimental results of testing the reachability of
the deadlock state for N objects of class Slave. The column k contains the depth
of the symbolic path for SMUML and our tool. The tests have been performed
on the computer equipped with Pentium M 1.73 GHz CPU and 1.2 GB RAM
running Linux.

Table 2. The experimental results of verification of Master-Slave

N k Hugo+Uppaal [s] SMUML+NuSMV [s] BMC4UML [s]
3 24 17.74 35.62 167.44
4 22 110.05 36.77 59.24
5 22 Out of memory 55.16 65.73
7 22 - 282.03 131.44
9 22 - 2 402.96 666.41

The third specification tested is a variant of the well known Generalised Rail-
road Crossing (GRC) benchmark (Fig. 1, 2). The system, operating a gate at a
railroad crossing, consists of a gate, a controller and N tracks which are occu-
pied by trains. Each track is equipped with sensors that indicate a position of
a train and send appropriate message to the controller. Depending on the track
occupancy the controller can either open or close the gate.

Table 3. The experimental results of verification of GRC (c = 6 for Param. columns)

N k Hugo+Uppaal[s] BMC4UML[s] BMC4UML*[s],k=18 Param.[s] Param.*[s]
3 24 2.89 86.07 40.44 140.87 27.51
4 25 175.41 139.39 50.41 83.45 85.01
5 26 >2500 221.4 59.9 240.85 131.54
6 27 - 1354.89 75.21 365.37 175.63
7 - - - 92.6 - 191.46
20 - - - 448.64 - 620.66

Table 3 presents the results of verification of GRC, where N denotes the num-
ber of trains, and k the depth of symbolic path at which the tested property is

330 A. Niewiadomski, W. Penczek, and M. Szreter

satisfiable. The results in the column marked with asterisk concern the symbolic
paths of length 18 that start not from the initial state of the GRC system, but
from the state where all trains are in the states Away and object ctl is in the
states Main, Open, and control (see Fig. 1, 2). In other words the paths have
been shorted by the “initialization part”. Although this trick can be applied to
all systems, it guarantees an improvement only for those where the initialisation
part of all objects always takes place before any other transitions.

5 Final Remarks

In this paper we described a new approach to Bounded Model Checking for UML.
Instead of dealing with a translation to a standard formalism of timed automata,
we encoded the verification problem directly into SAT. We believe that this is a
way in which symbolic methods can be used to handle high-level languages. Our
preliminary results are very promising. A future work is to enlarge the subset of
the UML state machines handled, and to introduce some more optimisations at
the level of symbolic encoding and implementation.

References

1. OMG: Unified Modeling Language (2007), http://www.omg.org/spec/UML/2.1.2
2. Lilius, J., Paltor, I.P.: vUML: A Tool for Verifying UML Models. In: 14th IEEE

international conference on Automated Software Engineering, Washington DC, pp.
255–258. IEEE Computer Society, Los Alamitos (1999)

3. Jussila, T., Dubrovin, J., Junttila, T., Latvala, T., Porres, I.: Model Checking Dy-
namic and Hierarchical UML State Machines. In: 3rd Workshop on Model Design
and Validation, pp. 94–110 (2006)

4. Knapp, A., Merz, S., Rauh, C.: Model Checking - Timed UML State Machines
and Collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS,
vol. 2469, pp. 395–416. Springer, Heidelberg (2002)

5. Diethers, K., Goltz, U., Huhn, M.: Model Checking UML Statecharts with Time.
In: Proc. of the UML 2002 workshop, TU München, pp. 35–52 (2002)

6. Compton, K., Gurevich, Y., Huggins, J., Shen, W.: An Automatic Verification Tool
for UML. Technical Report CSE-TR-423-00, University of Michigan (2000)

7. Gutiérrez, M.E.B., Barrio-Solórzano, M., Quintero, C.E.C., de la Fuente, P.: UML
Automatic Verification Tool with Formal Methods. Electr. Notes Theor. Comput.
Sci. 127(4), 3–16 (2005)

8. Dubrovin, J., Junttila, T.: Symbolic Model Checking of Hierarchical UML State
Machines. Technical Report B23, HUT TCS, Espoo, Finland (2007)

9. Bhaduri, P., Ramesh, S.: Model Checking of Statechart Models: Survey and Re-
search Directions. ArXiv Computer Science e-prints, cs/0407038 (2004)

10. Crane, M.L., Dingel, J.: On the Semantics of UML State Machines: Categorization
and Comparison. Technical Report 2005-501, Queen’s University (2005)

11. Niewiadomski, A., Penczek, W., Szreter, M.: A New Approach to Model Checking
of UML State Machines. Fundamenta Informaticae 93 (1-3), 289–303 (2009)

12. Niewiadomski, A., Penczek, W., Szreter, M.: Towards Checking Parametric Reach-
ability for UML State Machines. In: 7th International Ershov Memorial Conference
Perspectives of System Informatics, pp. 229–240 (2009)

http://www.omg.org/spec/UML/2.1.2

A Flexible Approach to Automated
Development of Cross Toolkits for Embedded

Systems

Nikolay Pakulin and Vladimir Rubanov

Institute for System Programming of the Russian Academy of Sciences,
Moscow, Russia

npak@ispras.ru, vrub@ispras.ru

Abstract. Cross toolkits (assembler, linker, debugger, simulator, pro-
filer) play a key role in the development cycle of embedded systems.
Early creation of cross toolkits and possibility to quickly adapt them
allows using them as early as at the hardware/software codesign stage,
which shortens time-to-market and becomes an important success fac-
tor for the entire project. Challenging issues for cross toolkits develop-
ment is efficiency of simulation and ability to adapt to CPU instruction
set ongoing changes at the design phase. Developing cross toolkits in
C/C++ produces highly efficient tools but requires extensive rework to
keep up with instruction set changes. Approaches based on automatic
toolkit generation from some top level specifications in Architecture De-
scription Languages (ADLs) are less sensitive to this problem but they
produce inefficient tools, especially simulators. This paper introduces a
new approach to cross toolkit development that combines the flexibility
of ADL and efficiency of C/C++ based approaches. This approach was
implemented in the MetaDSP framework, which was successfully applied
in several industrial projects.

1 Introduction

Nowadays we witness emerging of various embedded systems with rather tough
requirements on their charateristics (chip size, power consumption, performance)
not only for aerospace and military applications but also for industry and even
consumer electronics. The progress in reducing cost and schedule of microelec-
tronics hardware design and development makes it reasonable to develop cus-
tomized computing systems for particular applications and gives new momen-
tum to the market of embedded systems. Such systems consist of a dedicated
hardware platform developed for a particular application domain and problem-
specific software optimized for that hardware.

The process of simultaneous design and development of hardware and software
components of an embedded system is usually referred to as hardware/software
codesign and codevelopment. This general term covers a number of subprocesses
or activities related to embedded system creation:

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 331–343, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

332 N. Pakulin and V. Rubanov

1. design phase, including functional design, when requirements are studied and
transformed into functional architechture, and hardware/software partition-
ing, when functions are divided between hardware and software components;

2. development phase or software/hardware codevelopment when both hard-
ware and software teams develop their components; both development ac-
tivities may influence each other;

3. verification; it spans from unit and module tests to early integration testing
in simulator/emulator.

Hardware/software codesign and codevelopment are crucial factors for success of
embedded systems. They reduce time-to-market by better parallelization of the
development wrokflows and improve the quality by enabling early identification
of design flaws and fine optimization of the product performance.

Cross toolkits play an important role in hardware/software codesign and code-
velopment. Primary components of such cross toolkits are assembler, linker, sim-
ulator, debugger, and profiler. Unlike chip production, development of cross
toolkits does not require precise hardware design description; it is sufficient
to have just a high-level definition of the target hardware platform: the mem-
ory/register architecture and the instruction set with a timing specification. This
allows developing cross tools as soon as at the early design stages even if the
detailed VHDL/Verilog specification is not ready yet. Cross tools could be used
in the following scenarios:

– Hardware prototyping and design space exploration (e.g. [1] and [2]) – early
development, execution and profiling of sample programs allows easy assess-
ment of the overall design adequacy as well as efficiency of particular design
ideas such as adding/removing instructions, functional blocks, registers or
whole co-processors.

– Early software development including development, debugging and optimiz-
ing the software before the target hardware production.

– Hardware design validation. The developed cross-simulator could be used to
run test programs against VHDL/Verilog-based simulators. This capability
could not be overestimated for the quality assurance before the actual silicon
production.

1.1 Paper Overview

In this paper, we present a new approach to cross toolkit development to be
used in hardware/software co-development environments. The method enables
software developers to follow even frequent hardware design changes, most no-
tably instruction set modifications, thus reducing the overall time frame of the
design phase.

The article is organized as follows. Section 2 discusses generic requirements to
cross toolkit develpment that hardware/software codevelopment imposes. Sec-
tion 3 presents the new ADL language for defining instruction set called ISE.
Section 4 introduces MetaDSP framework for cross toolkit development that
uses hybrid hardware description with both high-level ADL part and fine-detail

A Flexible Approach to Automated Development of Cross Toolkits 333

C/C++ part. Section 5 briefly overviews several industrial applications of the
ISE and MetaDSP framework. Conclusion summarizes the lessons learned and
gives some perspectives for future development.

2 Hardware/Software Codesign Requirements for Cross
Toolkit Development

Let us consider a typical co-development process depicted at the fig. 1. The
development process involves at least two teams - one is working on the hardware
part of the system while another one focuses on software development.

Fig. 1. Co-development process

Cross tools make it possible to run software on simulators or emulators of
the target hardware early in the development process. Bottlenecks and perfor-
mance problems identified during running the software might require modifica-
tions of both software and hardware design parts, e.g. adding new instructions
and rewriting software to use them.

Frequent alterations in hardware design are typical for co-development process
in the industry. In section 5, we provide basic statistics on several industrial
projects. The number of major changes in hardware specification varies from 25
to 39 with the average of 31 changes per project.

In order to make the process seamless and continious, cross toolkit developers
must rapidly react to such changes and produce new versions of the toolkit in
short terms. Changes in the instruction set require consistent updates in every
tool of the cross toolkit. Cross tookit developers must be very careful not to
introduce errors during the modification process.

334 N. Pakulin and V. Rubanov

Another critical issue for cross-toolkits application in the co-development pro-
cess is performance of the tools. Special attention should be paid to the perfor-
mance efficiency of the simulator. High-performance simulators are required to
perform validation and profiling of the target software on real-life data within
reasonable time. For instance, processing a 10-second long speech sample on a
DSP board takes about 7 ·1011 CPU cycles. Running this sample on a simulator
slower that 10 MCPS (millions of cycles per second) results in more that 2-hour
long test execution, which could be hardly considered acceptable.

Simulator must be cycle-accurate to guarantee correctness of profiling data for
fine optimizations. But simulator does not need to model the internal structure
of hardware. Only the externally observable effects (e.g. values of registers and
memory) of the simulator must be equivalent to that of the actual hardware while
the internal design need not follow the design of the target hardware (pipline
structure, ALU and FPU, internal buses, etc.)

2.1 Related Work

Efficient cross toolkit development process requires automation to minimize time
and effort necessary to update the toolkit to frequent changes. Such automation
can be built around a machine-readable definition of the target hardware plat-
form. There are three groups of languages suitable for this purpose:

– Hardware Definition Languages (HDL, [3]) used for detailed definition of the
hardware;

– Architecture Description Languages (ADL, [4] and [5]) used for high-level
description of the hardware;

– and general purpose programming languages (such as C/C++).

HDL specifications define CPU operations with very high level of detail. All three
major modern HDLs – VHDL [6], Verilog [7], and SystemC [8] – have execution
environments that can serve as a simulator to run any assembly language pro-
grams for the target CPU: Synopsys VCS, Mentor Graphics ModelSim, Cadence
NC-Sim and others. Still, low performance of HDL-based simulators is one of the
major obstacles for HDL application in cross toolkit development. Another issue
is the late moment of HDL description availability: it appears after completing
the detailed instruction set design and functional decomposition. Furthermore,
HDL does not contain an explicit instruction set definition that makes auto-
mated development of assembler/disassembler impossible. These issues prevent
from using HDL to automate cross toolkit development.

Architecture Description Languages (such as nML [9], ISDL [10], EXPRES-
SION [11]) are under active development during the recent decade. There are
tools for rapid hardware prototyping at the high level including cross toolkit gen-
eration. Corresponding approaches are really good for early design phase since
they help to explore key design decisions. Unfortunately, at the later design
stages details in an ADL description become smaller, the size of the description
grows and sooner or later it comes across the limitations of the language. As a

A Flexible Approach to Automated Development of Cross Toolkits 335

result, is breaks the efficiency of the simulator generated from the ADL descrip-
tion and makes the profiler to give only rough performance estimates without
clear picture of bottlenecks. Cross toolkits completely generated from an ADL
description are not applicable for industrial-grade software development yet.

Manual coding with C or C++ language gives full control over all possible
details and allows creation of cross toolkits of industrial quality and efficiency.
Many companies offer services on cross toolkit development in C/C++ (e.g.
TASKING, Raisonance, Signum Systems, ICE Technology, etc.). Still it requires
significant efforts and (what is more important) time to develop the toolkit
from scratch and maintain it aligned with the requirements. Long development
cycle makes it almost impossible to use cross toolkits developed in C/C++ for
hardware prototyping and design space exploration.

3 ISE Language

We developed ISE (Instruction Set Extension) language to specify hardware
design elements that are subject to most frequent changes: memory architecture
and CPU instruction set. ISE description is used to generate assembler and
disassembler tools completely and to generate components of the linker, debugger
and simulator tool.

The following considerations guided the language design:

– the structure of an ISE description should follow the typical structure of an
instruction set reference manual (like [12] or [13]) that usually serve as the
input for the ISE description development;

– support for irregular encoding of instructions typical for embedded DSP ap-
plications including support for large number of various formats, distributed
encoding of operands in the word, etc.;

– operational definition of data types, logic and arithmetic instructions, other
executable entities should be specified in a C-like programming language.

ISE module consists of 7 sections:

1. .architecture defines global CPU architecture properties such as pipeline
stages, CPU resources (buses, ALUs, etc.), initial CPU state;

2. .storage defines memory structure including memory ranges, I/O ports,
access time;

3. .ttypes and .otypes define data type to represent registers and instruction
operands;

4. .instructions defines CPU instruction set (see 3.1);
5. .aspects defines various aspects of binary encoding of CPU instructions or

specifies additional resources or operational semantics of instructions;
6. .conflicts specifies constraints on sequential execution of instructions such

as potential write after read register or bus conflict; assembler uses conflict
constraints to automatically insert NOP instructions to prevent conflicts
during software execution.

336 N. Pakulin and V. Rubanov

3.1 Instruction Definition

.instruction section is the primary section an ISE module. It defines the in-
struction set of the target CPU. For each instruction cross toolkit developers
can specify:

– mnemonics and binary encoding;
– reference manual entry;
– instruction properties and resources used;
– instruction constraints and inter-instruction dependencies;
– definition of execution pipeline stage.

Mnemonics part of an instruction definition is a template string that specifies
fixed part of mnemonics (e.g. ADD, MOV), optional suffixes (e.g. ADDC or ADDS) and

/*

* This is a C-style block comment.

*/

// This is a C++-style one-line comment.

// <ALU001> - the identifier of the definition.

// ADD[S:A][C:B] - instruction mnemonics with optional parts.

// Actually defines 4 instructions: ADD, ADDS, ADDC, ADDSC.

// GRs, GRt - identifiers of a general-purpose register.

// Rules for binary encoding of GRs and GRt are defined in

// .otypes section.

<ALU001> ADD[S:A][C:B] {GRs}, {GRt}

// Binary encoding rule.

// For example, "ADDC R0, R1" is encoded as

// 0111-0001-1000-1001

0111-0A0B-1SSS-1TTT

// The reference manual string.

"ADD[S][C] GRs, GRt"

// instruction properties:

// reads the registers GRs and GRt,

// writes the register GRs.

properties [wgrn:GRs, rgrn:GRs, rgrn:GRt]

// Operation of the EXE pipeline stage

// specifies using ISE-C language.

action {

alu_temp = GRs + GRt;

// If the suffix ‘C’ is set in mnemonics

// use ‘getFlag’ function from the core library.

if (#B) alu_temp += getFlag(ACO);

// If the suffix ‘S’ is set in mnemonics

// use ‘SAT16’ function from the core library.

if (#A) alu_temp = SAT16(alu_temp);

GRs = alu_temp;

}

Fig. 2. An example of instruction specification

A Flexible Approach to Automated Development of Cross Toolkits 337

operands. A singe instruction might have several definitions depending on the
operand types. For example, MOV instruction could have different definitions for
register-register operation, register-memory and memory-memory operations.

Binary encoding is a template that specifies how to encode/decode instruc-
tions depending on the instruction name, suffixes and operands.

Reference manual entry is a human-readable specification of the instruction.
Properties and resources specify external aspects of the instruction execution

such as registers that it reads and writes, buses that the instruction accesses, flags
set etc. This information is used to detect and resolve conflicts by the assembler
tool. Besides this the instruction definition might specify explicit dependencies on
preceding or succeeding instructions in the constraints and dependencies section.

ISE language contains an extension of C programming language called ISE-C.
This extension is used to specify execution of the operation on each pipeline
stage. ISE-C has extra types for integer and fixed point arithmetic of various bit
length, new built-in bit operators (e.g. shift with rotation), built-in primitives
for bit handling. ISE-C has some grammar extension for handling operands and
optional suffixes in mnemonics. Furthermore ISE-C expression can use a large
number of functions implemented in ISE core library.

An example of instruction specification is presented at figure 2.
Please note that unlike classic ADL languages ISE specification does not pro-

vide the complete CPU model. The purpose of ISE is to simplify definition of
the elements that are subject to the most frequent changes. All the rest of the
model is specified using C/C++ code. This separation allows for flexible and
maintainable hardware definition along with high performance and cycle-precise
simulation.

4 Application to the Codevelopment Process

The proposed hybrid ADL/C++ hardware definition is supported by the
MetaDSP framework for cross-toolkit development. The framework is intended
for use by software developers. Typical use case is as following:

1. hardware developers provide the software team with hardware definition in
the form of ISE specification;

2. software developers generate cross tools from the specification;
3. software team develops the software in Embedded-C[14] and build using the

generated cross-assembler and cross-compiler;
4. the machine code is executed and profiled in simulator.

To support this use case the framework includes:

– ISE translator that generates components of cross tools from the ISE speci-
fication;

– pre-defined components for ISE development (e.g. ISE-C core functions li-
brary);

338 N. Pakulin and V. Rubanov

– an IDE for hardware definition development (in ISE and C++), target soft-
ware development (in Embedded C and assembly languages), controlled ex-
ecution within simulator; the Embedded C compiler supports a number of
optimizations specific for DSP applications[15].

MetaDSP toolkit uses ISE specification to generate cross tools and components.
For example, the MetaDSP tools generate assembler and disassembler tools com-
pletely from the ISE specification. For linker MetaDSP generates information
about instruction binary encodings, instruction operands and relocatable in-
structions. Debugger and profiler use memory structures and operand types from
the ISE specification.

The cycle-precise simulator is an important part of the toolkit. Figure 3
presents its architecture. MetaDSP tools generate several components from the
ISE specification: memory implementation (from .storage section), resources
(from .architecture section), instruction implementations and decoding ta-
bles (from .instruction section), as well as conflicts detector and instruction
metadata.

Within the presented approach certain components are specified in C++:

– control logic, including pipeline control (if any), address generation, instruc-
tion decoder;

Fig. 3. MetaDSP simulator architecture

A Flexible Approach to Automated Development of Cross Toolkits 339

– memory control;
– model of the peripheral devices including I/O ports.

For most of the manual components MetaDSP tools generate stubs or some basic
implementation in C++. Developers may use the generated code to implement
peculiarities of the target CPU, such as jumps prediction, instruction reordering,
etc.

Using C/C++ to implement CPU control logic and memory model facilitates
high performance of the simulator. Another benefit of using C/C++ compared
to true ADL languages is an early development of the cross toolkit: it might
start before completing the function decomposition of the target CPU; thus the
simulator could be used to experiment with design variations.

Figure 4 presents the snapshot of OSCAR Studio, the IDE for target soft-
ware development within the MetaDSP framework. Red numbers mark various
windows of the IDE:

1. Project Navigator window. It displays the tree of the source files and data
files.

2. Source Code Editor window. The editor supports syntax highlight and in-
struction autocompletion (from the ISE specification). The editor window

Fig. 4. OSCAR Studio: the IDE for MetaDSP framework

340 N. Pakulin and V. Rubanov

is integrated with the debugger - it marks break points, frame count points
and trace points.

3. Stack Memory window displays the contents of the stack.
4. Call Stack window displays the enclosing frames (both assembly subroutines

and C functions).
5. Register window displays the contents of the CPU registers.
6. Memory dump window displays contents of various memory regions.
7. Watch window displays the current value of arbitrary C expressions.
8. Code Memory window displays the instructions being executed. It supports

both binary and disassembly forms as well as displaying the current pipeline
stage (fetch, decode, execute, etc.).

9. OS debugger window displays the current state of the execution environment
(OS): list of the current tasks, semaphores, mutexes, etc.

10. Profiler window displays various profiling data. The profiler is integrated
with the editor window as well – the editor can show profiling information
associated with code elements.

5 Industrial Applications

The approach presented in this paper and MetaDSP framework were applied to
five industrial projects. Please note that the each “major releases of the cross
toolkit” mentioned in the project list below is caused by a major change in CPU
design such as modification of the instruction set or memory model alteration.

– 16-bit RISC DSP CPU with fixed point arithmetic. Produced 25 major re-
leases of the cross-toolkit.

– 16-bit RISC DSP CPU with support for Adaptive Multi-Rate (AMR) sound
compression algorithm. Produced 25 major releases of the cross-toolkit.

– 32-bit RISC DSP CPU with support for Fourier transform and other DSP
extensions. Produced 39 major releases of the cross-toolkit.

– 16/32-bit RISC CPU clone of ARM9 architecture.
– 16/32-bit VLIW DSP CPU with support for Fourier transform, DMA, etc.

Produced 33 major releases of the cross-toolkit.

The following list summarizes lessons learned from the practical applications of
the approach. We compared time and effort needed in a pure C++ development
cycle of cross toolkits with the ISE-enabled process:

– size of assembler, disassembler and simulator sources (excluding generated
code), in lines of code: reduced by 12 times;

– cross-toolkit development team (excluding C compiler development): reduc-
ing from 10 to 3 engineers;

– number of errors detected in the presentation of hardware specifications in
cross tools: reduction by the factor of more than 10;

– average duration of the toolkit update: reduced from several days to hours
(even minutes in many cases).

A Flexible Approach to Automated Development of Cross Toolkits 341

5.1 Performance Study

This section presents a performance study of a production implementation of
the AMR sound compression algorithm. The study was performed on Intel Core
2 Duo 2.4 GHz.

The size of the implementation was 119 C source files and 142 C header files,
and 25 files in the assembly language; total size of sources was 20.2 thousand
LOC without comments and empty lines. The duration of the audio sample (10
seconds voice speech) lasted 670 million of cycles on the target hardware.

Table 1 presents elapsed time measurements of the generated cross tools for
the AMR case study. Table 2 presents measurements of the generated simulator
in MCPS (millions of cycles per second).

Table 1. AMR sample – cross toolkit performance

Operation Duration, sec.

Translation (.c → .asm) 22
Assembly (.asm → .obj) 14
Link (.obj → .exe) 1

Build, total 37

Execution on the audio sample (fast mode) 53
Execution on the audio sample (debug mode with
profiling)

93

Table 2. AMR sample – simulator performance

Execution mode MCPS

Fast mode 12.6
Debug mode with profiling 7.2
Peak performance on a synthetic sample 25.0

6 Conclusion

The paper presents an approach to automation of cross toolkit development for
special-purpose embedded systems such as DSPs and microcontrollers. The ap-
proach aims at creation of the cross tools (assembler/disassembler, linker, simu-
lator, debugger, and profiler) at the early stages of system design. Early creation
of the cross tools gives opportunity to prototype and estimate efficiency of de-
sign variations, co-development of the hardware and software components of the
target embedded system, and verification and QA of the hardware specifications
before silicon production.

The presented approach relies on a two-part description of the target hard-
ware: description of the most flexible part – the instruction set and memory
model – using the new ADL language called ISE and description of complex fine

342 N. Pakulin and V. Rubanov

grained functional aspects of CPU operations using a general purpose program-
ming language (C/C++). Having ADL descriptions along with a framework to
generate components of the target cross toolkit and common libraries brings
high level of responsiveness to frequent changes in the initial design that are a
common issue for modern industrial projects. Using C/C++ gives cycle-accurate
simulation and high overall efficiency of the cross toolkits that meets the needs of
industrial developers. The approach is supported by a family of tools comprising
MetaDSP framework.

The approach is applicable to various embedded systems with RISC core
architectures. It supports simple pipelines with fixed number of stages, multiple
memory banks, instructions with fixed and variable cycle count. These facilities
cover most of modern special purpose CPUs (esp. DSP) and embedded systems.
Still some features of modern general purpose high performance processors lay
beyond the capabilities of the presented approach: superscalar architectures,
microcode, instruction multi-issue, out-of-order execution. Besides this, the basic
memory model implemented in MetaDSP does not support caches, speculative
access, etc.

Despite the limitations of the approach mentioned above it was successfully
applied in a number of industrial projects including 16 and 32-bit RISC DSPs
and 16/32 ARM-like CPUs. The number of major design changes (with cor-
responding releases of separate cross toolkit versions) ranged in those projects
from 25 to 40. The industrial applications of the presented approach proved the
concept of using the hybrid ADL/C++ description for automated development
of production quality cross toolkits even in case of volatile design process of the
target embedded systems.

References

1. Hartoog, M., Rowson, J., Reddy, P.: Generation of Software Tools from Processor
Descriptions for Hardware/Software Codesign. In: Design Automation Conference,
DAC (1997)

2. Yung-Chia, L.: Hardware/Software Co-design with Architecture Description Lan-
guage. Programming Language Lab. NTHU (2003)

3. Navabi, Z.: Languages for Design and Implementation of Hardware. In: The VLSI
Handbook, 2nd edn. CRC Press, Boca Raton (2007)

4. Mishra, P., Dutt, N.: Architecture description languages for programmable embed-
ded systems. IEEE Proceedings Computers and Digital Techniques 152(3) (May
2005)

5. Tomiyama, H., Halambi, A., Grun, P., Dutt, N., Nicolau, A.: Architecture Descrip-
tion Languages for Systems-on-Chip Design. In: Proc. Asia Pacific Conf. on Chip
Design Language, pp. 109–116 (1999)

6. VHDL Language Reference Manual. IEEE Std 1076-1987
7. Hardware Description Language Based on the Verilog Hardware Description Lan-

guage. IEEE Std 1364-2005
8. System C Language Reference Manual. IEEE Std 1666-2005
9. Fauth, A., Van Praet, J., Freericks, M.: Describing instruction set processors using

nML. In: Proc. of EDTC (1995)

A Flexible Approach to Automated Development of Cross Toolkits 343

10. Hadjiyannis, G., Hanono, S., Devadas, S.: ISDL: An Instruction Set Description
Language for Retargetability. In: Design Automation Conference, DAC (1997)

11. Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N., Nicolau, A.: EXPRES-
SION: A Language for Architecture Exploration through Compiler/Simulator Re-
targetability. In: DATE 1999 (1999)

12. MicroDSP 2 Instruction Set Description. VIA Technologies Manual (2005)
13. TMS320C6000 CPU and Instruction Set Reference Guide. Texas Instruments Lit-

erature Number SPRU189F,
http://focus.ti.com/lit/ug/spru189g/spru189g.pdf

14. ISO/IEC TR 18037:2008. Programming languages – C – Extensions to support
embedded processors (2004)

15. Rubanov, V., Grinevich, A., Markovtsev, D.: Programming and Computing Soft-
ware 32(1), 19–30 (2006)

http://focus.ti.com/lit/ug/spru189g/spru189g.pdf

A Technique for Information Retrieval from
Microformatted Websites�

J. Guadalupe Ramos1, Josep Silva2, Gustavo Arroyo2, and Juan C. Solorio1

1 Instituto Tecnológico de La Piedad
Av. Tecnológico 2000, La Piedad, Mich., México. CP 59300

guadalupe@dsic.upv.es,juancsol@hotmail.com
2 DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, E-46022 Valencia, Spain

{jsilva,garroyo}@dsic.upv.es

Abstract. In this work, we introduce a new method for information
extraction from the semantic web. The fundamental idea is to model the
semantic information contained in the microformats of a set of web pages,
by using a data structure called semantic network. Then, we introduce
a novel technique for information extraction from semantic networks.
In particular, the technique allows us to extract a portion—a slice—
of the semantic network with respect to some criterion of interest. The
slice obtained represents relevant information retrieved from the semantic
network and thus from the semantic web. Our approach can be used to
design novel tools for information retrieval and presentation, and for
information filtering that was distributed along the semantic web.

1 Introduction

The Semantic Web is considered an evolving extension of the World Wide Web
in which the semantics of information and services on the web is made explicit
by adding metadata. Metadata provides the web contents with descriptions,
meaning and inter-relations. The Semantic Web is envisioned as a universal
medium for data, information, and knowledge exchange.

Recently, a new initiative has emerged that looks for attaching semantic data
to web pages by using simple extensions of the standard tags currently used for
web formatting in (X)HTML1, these extensions are called microformats [1,2]. A
microformat is basically an open standard formatting code that specifies a set
of attribute descriptors to be used with a set of typical tags.

Example 1. Consider the XHTML of the left that introduces information of a
common personal card:
� This work has been partially supported by the Spanish Ministerio de Ciencia e In-

novación under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under
grant ACOMP/2009/017, by the Universidad Politécnica de Valencia (Programs
PAID-05-08 and PAID-06-08) and by the Mexican Dirección General de Educación
Superior Tecnológica (Programs CICT 2008 and CICT 2009).

1 XHTML is a sound selection because it enforces a well-structured format.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 344–351, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Technique for Information Retrieval from Microformatted Websites 345

<h2>Directory</h2> <h2>Directory</h2>
<p> Vicente Ramos
 <div class="vcard">

Software Development
 Vicente Ramos
118, Atmosphere St.
 <div class="org">Software Development </div>
La Piedad, México
 <div class="adr">
59300
 <div class="street-address">Atmosphere 118</div>
+52 352 52 68499
 La Piedad, México

</p> 59300
<h4>His Company</h4> </div>
 <div class="tel">+52 352 52 68499</div>

Company Page <h4>His Company</h4>
Company Page

</div>

Now, observe the code on the rightwhich shows the same information but using the
standardhCardmicroformat [3],which is useful for representing data about people,
companies, organizations, and places. The classproperty qualifies each type of at-
tributewhich isdefinedbythehCardmicroformat.Thecodestartswiththerequired
main class vcard and classifies the information with a set of classes which are auto-
explicative: fn describes name information, adr defines address details and so on.

In this paper we propose the use of semantic networks which is a convenient
simple model for representing semantic data; and we define a slicing technique
for this formalism in order to analyze and filter the semantic web.

2 From the Semantic Web to the Semantic Network

The concept of semantic network is fairly old, and it is a common structure for
knowledge representation, which is useful in modern problems of artificial intel-
ligence. A semantic network is a directed graph consisting of nodes which represent
concepts and edges which represent semantic relations between the concepts [4,5].

In order to represent semantic information in a semantic network we consider
the microformats, i.e., classes as convenient entities for modeling, and then, for
indexing or referencing. If we focus on the relations between classes we identify
two kinds of relations, namely2:

strong relations. that are the relations which come from hypertext links be-
tween pages or sections of a page by using anchors.

weak relations. that can be embedding relationships, for classes that embeds
other classes or semantic relationships among classes of the same type, for
instance, between two vcard.

Example 2. Consider the semantic network depicted in Figure 1 (the grey parts
of the figure do not belong to the semantic network and thus they can be ignored
for the time being). It is composed of two webpages (P1 and P2), and P1
represents the microformatted code of Example 1.

In the figure, the nodes of the first page are labeled with P1 and the nodes of
the second page are labeled with P2. Thus, nodes (i.e., concepts) are unique. We
2 In this paper, without loss of generality, we only consider weak relations (i.e., only

semantic relations), thus we analyze semantic networks without taking into account
the labels associated to the edges.

346 J.G. Ramos et al.

pos-code:P2

dtstart:P2

location:P2

P2

vcard:P2

fn:P2 role:P2 org:P2

adr:P2

tel:P2

vevent:P2

locality:P2

st-adr:P2 summary:P2

description:P2

P1

vcard:P1

fn:P1 org:P1

adr:P1

tel:P1 url:P1

pos-code:P1 st-adr:P1
locality:P1

weak links (semantic network):

strong links (typical URLs):

embeds relates to

links to

 P1

vcard

 P2

 vevent

index

Fig. 1. Example of semantic network

observe three kinds of edges: The locality class from Example 1 is embedded
in the adr class. Thus, there is an embedding relationship from node adr to node
locality. Furthermore, vcard in P1 and vcard in P2 are linked by a semantic
relationship. Besides, there is one strong hyperlink to P2 generated by the micro-
formatted tag . Observe that the graph
only contains semantic information and their relations; and it omits content or
formatting information such as the labels. Observe that we
add to the graph two additional concepts, P1 and P2, which refer to web pages.
This is very useful in practice in order to make explicit the embedding relation
between microformats and their web page containers.

3 A Technique for Information Retrieval

We introduce first some preliminary definitions.

A Technique for Information Retrieval from Microformatted Websites 347

Definition 1 (semantic network). A directed graph is an ordered pair G =
(V , E) where V is a finite set of vertices or nodes, and E ⊆ V × V is a set of
ordered pairs (v → v′) with v, v′ ∈ V called edges. A semantic network is a
directed graph S = (V , E) in which nodes have been labeled with names of web
pages and microformatting classes of these pages.

As an example of semantic network consider the directed graph in Figure 1
(omitting the grey parts) where nodes are the set of microformatted classes
provided by two semantic web pages.

A semantic network is a profuse mesh of information. For this reason, we extend
the semantic network with an index which acts as an interface between the seman-
tic network and the potential interacting systems. The index contains the subset of
concepts that are relevant (or also visible) from outside the semantic net. It is pos-
sible to define more than one index for different systems and or applications. Each
element of the index contains a key concept and a pointer to its associated node.
Artificial concepts such as webpages (See P1 and P2 in Figure 1) can also be in-
dexed. This is very useful in practice because it is common to retrieve the embedded
(microformatted) classes of each semantic web page.

Let K be a set of concepts represented in the semantic network S = (V , E).
Then, rnode : (S, k) → V where k ∈ K (for the sake of clarity, in the following
we will refer to k as the key concept) is a mapping from concepts to nodes; i.e.,
given a semantic network S and a key concept k, then rnode(S, k) returns the
node v ∈ V associated to k.

Definition 2 (semantic index). Given a semantic network S = (V , E) and
an alphabet of concepts K, a semantic index I for S and K is any set I =
{(k, p) | k ∈ K and p is a mapping from k to rnode(S, k)}

We can now extend semantic networks by properly including a semantic index.
We call this kind of semantic network indexed semantic network (IS).

Definition 3 (indexed semantic network). An indexed semantic network
IS is a triple IS = (V , E , I), such that I is a semantic index for the semantic
network S = (V , E).

Now, each semantic index allows us to visit the semantic network from a well
defined collection of entrance points which are provided by the rnode function.

Example 3. An IS with a set of nodes V = {a, b, c, d, e, f, g} is shown in Figure 2
(a). For the time being the reader can ignore the use of colors black and grey and
consider the graph as a whole. There is a semantic index with two key concepts
a and c pointing out to their respective nodes in the semantic network.

Similarly, the semantic network of Figure 1 has been converted to an IS by
defining the index with four entries P1 (page1.html), P2 (page2.html), vcard
and vevent and by removing the strong links. Thus, for instance, vcard entry
points to the cycle of vcard nodes.

Given a graph G = (V , E) and two nodes v1, vn ∈ V , if there is a sequence
v1, v2, . . . , vn of nodes in G where (vi, vi+1) ∈ E for 1 ≤ i ≤ n− 1, then we say

348 J.G. Ramos et al.

that there is a path from v1 to vn in G. Given u, v ∈ V we say that the node v
is reachable from u if there is a path from u to v.

Definition 4 (semantic sub-net). Let IS = (V , E , I) be an indexed semantic
network. Then, a semantic sub-net of IS with respect to concept k, with (k, p) ∈ I
for some p, is Sk = (V ′, E ′) such that V ′ = {rnode((V , E), k)} ∪ {v|v ∈ V and v
is reachable from rnode((V , E), k)} and E ′ = {(u, v)|(u, v) ∈ E and u ∈ V ′}.
Example 4. Figure 2 (a) shows in black color the semantic sub-net extracted
from the whole IS with respect to concept c.

Definition 5 (semantic relationship). Given a semantic network S = (V , E)
and a node v ∈ V, the semantic relationships of v are the edges {v → v′ ∈ E}.
We say that a concept v is semantically related to a concept u if there exists a
semantic relationship (u→ v).

The semantic relations in our semantic networks are unidirectional. The seman-
tics associated to the edges of a semantic network is not transitive because edges
can have different meanings. Therefore, the semantic relation of Definition 5 is
neither transitive.

Given a node n in a semantic network, we often use the term semantically
reachable to denote the set of nodes which are reachable from n through semantic
relationships. Clearly, semantic reachability is a transitive relation.

a

b

c

d

e

g

f

 a c

 c d f g

c 0 1 1 0

d 0 0 0 1

f 0 1 0 0

g 0 0 1 0

a

b

c

d

e

g

f

 a c

Fig. 2. a) A semantic sub-net. b) The sub-net’s adjacency matrix. c) A backward slice.

3.1 Semantic Sub-net Slicing

In this section we present a procedure that allows us to extract a portion of a
semantic sub-net according to some criterion. The procedure uses an adjacency
matrix to represent the semantic sub-net.

The adjacency matrixm of a directed graph G with n nodes is the n×nmatrix
where the non-diagonal entrymij contains 1 if there is an edge such thatmi→mj .3

3 Note that we could write a label associated to the edge in the matrix instead of 1 in
order to also consider other relationships between nodes.

A Technique for Information Retrieval from Microformatted Websites 349

Example 5. Consider the semantic sub-net in Figure 2 (a). Node c has two di-
rected edges, one to node d and other to node f. Thus, in the entry mcd and mcf

we write 1, and 0 in the other cells.

Now, we are in a position to introduce our slicing based method for information
recovering from semantic sub-nets. Firstly, we can select a concept in the index.
From this concept we can extract a semantic sub-net as described before. Next,
in the resultant semantic sub-net we can select the node of interest. Hence, our
slicing criterion consists of a pair formed by a key concept and a node. Formally:

Definition 6 (slicing criterion). Let IS = (V , E , I) be an indexed semantic
network. Then a slicing criterion C for IS is a pair of elements 〈k, v〉 such that
(k, p) ∈ I for some p, v ∈ V ′ and Sk = (V ′, E ′) is the semantic sub-net of IS
with respect to concept k.

Given a semantic sub-net, we can produce two different slices by traversing the
sub-net either forwards or backwards from the node pointed out by the slicing
criterion. Each slice gives rise to different semantic information.

Example 6. Consider the slicing criterion 〈c, d〉 for the IS in Figure 2 c). The
first level of slicing uses c to extract the semantic sub-net highlighted with black
color. Then, the second level of slicing performs a traversal of the semantic
sub-net either forwards or backwards from d. In Figure 2 c) the backward slice
contains all nodes whereas the forward slice would only contain {d, f, g}.

Example 7. Consider the semantic network in Figure 1 together with the slicing
criterion 〈P1, adr:P1〉. With P1 we can perform the first level of slicing to recover
a semantic sub-net which is composed by the nodes {P1, vcard:P1, vcard:P2} and
all of their descendant (semantically reachable) nodes. Then, from node adr :P1
we can go forwards and collect the information related to the address or backwards
and collect nodes vcard :P1, P1 and vcard :P2. The backward slicing illustrates
that the node adr:P1 is semantically reachable from P1, vcard:P1, and vcard:P2,
and thus, there are semantic relationships between them. Hence, we extract a slice
from the semantic network and, as a consequence, from the semantic web.

We can now formalize the notion of forward/backward slice for semantic sub-nets.
In the definition we use→∗ to denote the reflexive transitive closure of→.

Definition 7 (forward/backward slice). Let IS = (V , E , I) be an indexed
semantic network with (k, p) ∈ I for some p. Let Sk = (V ′, E ′) be the semantic
sub-net of IS with respect to k and C = 〈k, node〉 a slicing criterion for IS. Then
a slice of IS is S′ = (V1, E1) such that

forward V1 = {node} ∪ {v|v ∈ V ′ and (node→∗ v) ∈ E ′}
backward V1 = {node} ∪ {v|v ∈ V ′ and (v →∗ node) ∈ E ′}

and E1 = {(u→ v) | (u→ v) ∈ E ′ with u, v ∈ V1}

The algorithm of Figure 3 shows the complete slicing based method for infor-
mation extraction from semantic networks. Roughly speaking, given an IS and a

350 J.G. Ramos et al.

Input: An indexed semantic network IS = (V, E , I)
and a slicing criterion C = 〈k, node〉 where (k, p) ∈ I for some p

Output: A slice S ′ = (V ′, E ′)
Initialization: V ′ := {node}, E ′ := {}, V isited := {}
Begin

Compute Sk = (Vk, Ek) a semantic sub-net of IS
whose adjacency matrix is M

Repeat
let s ∈ (V ′ \ V isited)
let c := column(s,M)
For each s′ ∈ Vk with r = row(s′,M) and Mr,c = 1

V ′ := V ′ ∪ {s′}
E ′ := E ′ ∪ {(s′ → s)}

V isited := V isited ∪ {s}
Until V ′ = V isited

End
Return: (V ′, E ′)

Fig. 3. An algorithm for semantic network backward slicing

slicing criterion, (i) it extracts the associated semantic sub-net, (ii) it computes
the sub-net’s adjacency matrix, and (iii) it extracts (guided by the adjacency
matrix) the nodes and edges that form the final slice.

The algorithm uses two functions row(s,M) and column(s,M) which re-
spectively return the number of row and column of concept s in matrix M. It
proceeds as follows: Firstly, the semantic sub-net associated to IS and the ad-
jacency matrix of the sub-net are computed. Then, the matrix is traversed to
compute the slice by exploiting the fact that a cell Mi,j with value 1 in the ma-
trix means that the concept in column j is semantically related to the concept in
row i. Therefore, edges are traversed backwards by taking a concept in a column
and collecting all concepts of the rows that have a 1 in that column.

4 Related Work and Conclusions

In [6], three prototype hypertext systems were designed and implemented. In
the first prototype, an unstructured semantic net is exploited and an authoring
tool is provided. The prototype uses a knowledge-based traversal algorithm to
facilitate document reorganization. This kind of traversing algorithms is based
on typical solutions like depth-first search and breadth-first search. In contrast,
our IS allows us to optimize the task of information retrieval.

[7] designed a particular form of a graph to represent questions and answers.
These graphs are built according to the question and answer requirements. This
is in some way related to our work if we assume that our questions are the slicing
criteria and our answers are the computed slices. In our approach, we conserve
a general form of semantic network, which is enriched by the index, so, it still
permits to represent sub-graphs of knowledge.

A Technique for Information Retrieval from Microformatted Websites 351

To the best of our knowledge this is the first program slicing based approach
to extract information from the semantic web. The obtained answers are se-
mantically correct, because since, the information extraction method follows the
paths of the source semantic tree, i.e., the original semantic relationships are pre-
served. Furthermore, semantic relationships contained in sets of microformatted
web pages can also be discovered and extracted.

Program slicing has been previously applied to data structures. For instance,
Silva [8] used program slicing for information extraction from individual XML
documents. He also used a graph-like data structure to represent the documents.
However semantic networks are a much more general structure, that could con-
tain many subgraphs, while XML documents are always a tree-like structure. In
contrast to this method, our approach can process groups of web pages.

This method could be exploited by tools that feed microformats. Frequently,
these tools take all the microformats in the semantic web and store them in their
databases in order to perform queries. Our representation improves this behavior
by allowing the system to determine what microformats are relevant and what
microformats can be discarded. Another potential use is related to automatic
information retrieval from websites by summarizing semantic content related to
a slicing criterion. Similarly, web search engines could use this method to be able
to establish semantic relations between unrelated links.

References

1. Microformats.org. The Official Microformats Site (2009),
http://microformats.org/

2. Khare, R., Çelik, T.: Microformats: a Pragmatic Path to the Semantic Web. In:
WWW 2006: Proceedings of the 15th International Conference on World Wide Web,
pp. 865–866. ACM, New York (2006)

3. hCard. Simple, Open, Distributed Format for Representing People, Companies, Or-
ganizations, and Places (2009), http://microformats.org/wiki/hcard

4. Sowa, J.F. (ed.): Principles of Semantic Networks: Explorations in the Representa-
tion of Knowledge. Morgan Kaufmann, San Francisco (1991)

5. Sowa, J.F.: Semantic Networks. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial
Intelligence. John Wiley & Sons, Chichester (1992)

6. Wang, W., Rada, R.: Structured Hypertext with Domain Semantics. ACM Trans-
actions on Information Systems (TOIS) 16(4), 372–412 (1998)

7. Mollá, D.: Learning of Graph-based Question Answering Rules. In: Proc.
HLT/NAACL 2006 Workshop on Graph Algorithms for Natural Language Pro-
cessing, pp. 37–44 (2006)

8. Silva, J.: A Program Slicing Based Method to Filter XML/DTD Documents. In:
van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 771–782. Springer, Heidelberg (2007)

http://microformats.org/
http://microformats.org/wiki/hcard

From Dynamic to Static and Back: Riding the Roller
Coaster of Information-Flow Control Research

Andrei Sabelfeld and Alejandro Russo

Dept. of Computer Science and Engineering, Chalmers University of Technology
412 96 Göteborg, Sweden, Fax: +46 31 772 3663

Abstract. Historically, dynamic techniques are the pioneers of the area of infor-
mation flow in the 70’s. In their seminal work, Denning and Denning suggest a
static alternative for information-flow analysis. Following this work, the 90’s see
the domination of static techniques for information flow. The common wisdom
appears to be that dynamic approaches are not a good match for security since
monitoring a single path misses public side effects that could have happened in
other paths. Dynamic techniques for information flow are on the rise again, driven
by the need for permissiveness in today’s dynamic applications. But they still in-
volve nontrivial static checks for leaks related to control flow.

This paper demonstrates that it is possible for a purely dynamic enforcement to
be as secure as Denning-style static information-flow analysis, despite the com-
mon wisdom. We do have the trade-off that static techniques have benefits of
reducing runtime overhead, and dynamic techniques have the benefits of permis-
siveness (this, for example, is of particular importance in dynamic applications,
where freshly generated code is evaluated). But on the security side, we show
for a simple imperative language that both Denning-style analysis and dynamic
enforcement have the same assurance: termination-insensitive noninterference.

1 Introduction

Historically, dynamic techniques are the pioneers of the area of information flow in the
70’s (e.g., [9]). They prevent explicit flows (as in public := secret) in program runs.
They also address implicit [8] flows (as in if secret then public := 1) by enforcing
a simple invariant of no public side effects in secret context, i.e., in the branches of
conditionals and loops with secret guards. These techniques, however, come without
soundness arguments.

In their seminal paper, Denning and Denning [8] suggest a static alternative for
information-flow analysis. They argue that static analysis removes runtime overhead
for security checks. This analysis prevents both explicit and implicit flows statically.
The invariant of no public side effects in secret context is ensured by a syntactic check:
no assignments to public variables are allowed in secret context. Denning and Den-
ning do not discuss soundness, but Volpano et al. [26] show soundness by proving
termination-insensitive noninterference, when they cast Denning and Denning’s anal-
ysis as a security type system. Termination-insensitive noninterference guarantees that
starting with two initial memories that agree on public data, two terminating runs of a

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 352–365, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

From Dynamic to Static and Back 353

program result in final memories that also agree on public data. Denning-style analy-
sis is by now the core for the information-flow tools Jif [14], FlowCaml [21], and the
SPARK Examiner [4, 7].

The 90’s see the domination of static techniques for information flow [18]. The com-
mon wisdom appears to be that dynamic approaches are not a good match for security
since monitoring a single path misses public side effects that could have happened in
other paths [18].

Dynamic techniques for information flow are on the rise again [24, 13, 20, 12, 23]
driven by the need for permissiveness in today’s dynamic applications. But they still
involve nontrivial static checks for leaks related to control flow.

In this light, it might be surprising that it is possible for purely dynamic enforce-
ment to be as secure as Denning-style static analysis. The key factor is termination.
Program constructs introduce channels for information transfer (recall the explicit and
implicit flows above that correspond to channels via assignments and branching). The
termination channel is introduced by loops: by observing the termination of program
while secret do skip, the attacker learns that secret was 0. Denning-style static
analyses are typically termination-insensitive. They ignore leaks via the termination
behavior of programs. Thus, they satisfy termination-insensitive noninterference [26],
as previously mentioned. Monitors supervise the execution of programs to guarantee
security properties. Executed instructions are first analyzed by the monitor to determine
if they are safe to run. In the presence of unsafe instructions, monitors can take several
countermeasures: block the execution of programs or transform the unsafe instruction
into a safe one. If the monitor can introduce nontermination by blocking the underlying
program, this feature can be used for collapsing high-bandwidth information channels
into low-bandwidth ones. Turning the high-bandwidth implicit-flow channel into the
low-bandwidth termination channel is one example: blocking the execution at an at-
tempt of a public assignment in secret context (note the similarities to the techniques
from the 70’s!) is in fact sufficient for termination-insensitive security.

This paper demonstrates the above insight for a simple imperative language. We
present a Denning-style static analysis in the form of a security type system by Volpano
et al. [26] and a simple monitor. We show that a monitor is strictly more permissive
than the type system, and both the type system and the monitor satisfy termination-
insensitive noninterference.

Sections 2–5 consider a batch-job model: programs run until completion before
the produce a result (which is the final memory). Termination-insensitive noninterfer-
ence [26] for batch-job programs simply ignores diverging runs. However, Section 6
generalizes our results to a language with output, a natural extension [1] of the type
system by Volpano et al. [26] with output, and progress-insensitive noninterference [1],
a generalization of termination-insensitive noninterference to reason about programs
with output, which does not ignore diverging runs, but ignores (the lack of) progress at
each step.

2 Semantics

Figure 1 presents the semantics for a simple imperative language. Configurations have
the form 〈c,m〉, where c is a command andm is a memory mapping variables to values.

354 A. Sabelfeld and A. Russo

〈skip, m〉 nop−→〈stop, m〉
m(e) = v

〈x := e, m〉a(x,e)−→ 〈stop, m[x �→ v]〉

〈c1, m〉 α−→〈stop, m′〉
〈c1; c2, m〉 α−→〈c2, m

′〉
〈c1, m〉 α−→〈c′1, m′〉 c′1 �= stop

〈c1; c2, m〉 α−→〈c′1; c2, m
′〉

m(e) �= 0

〈if e then c1 else c2, m〉 b(e)−→〈c1; end , m〉

m(e) = 0

〈if e then c1 else c2, m〉 b(e)−→〈c2; end , m〉

m(e) �= 0

〈while e do c, m〉 b(e)−→〈c; end ; while e do c, m〉

m(e) = 0

〈while e do c, m〉 b(e)−→〈end , m〉

〈end , m〉 f−→〈stop, m〉

Fig. 1. Command semantics

Semantic rules have the form 〈c,m〉 α−→〈c′,m′〉, which corresponds to a small step be-
tween configurations. If a transition leads to a configuration with the special command
stop and some memory m, then we say the execution terminates in m. Observe that
there are no transitions triggered by stop. The special command end signifies exit-
ing the scope of an if or a while. Observe that end is executed after the branches
of those commands. Commands stop and end can be generated during execution of
programs but they are not used in initial configurations, i.e., they are not accessible to
programmers. For simplicity, we consider simple integer expressions in our language
(i.e., constants, binary operations, and variables). The semantics for expressions is then
standard and thus we omit it here. We note the result of evaluating expression e under
memory m as m(e). The semantics are decorated with events α for communicating
program events to an execution monitor. Event nop signals that the program performs
a skip. Event a(x, e) records that the program assigns the value of e in the current
memory to variable x. Event b(e) indicates that the program branches on expression
e. Finally, event f is generated when the structure block of a conditional or loop has
finished evaluation.

Assume cfg , cfg ′, . . . range over command configurations and cfgm , cfgm ′, . . .
range over monitor configurations. For this work, it is enough to think of monitor con-
figurations as simple stacks of security levels (see below). The semantics are parametric
in the monitor μ, which is assumed to be described by transitions between monitor con-
figurations in the form cfgm α−→μcfgm ′. The rule for monitored execution is:

cfg
α−→cfg ′ cfgm

α−→μcfgm ′

〈cfg |μ cfgm〉−→〈cfg ′ |μ cfgm′〉

The simplest example of a monitor is an all-accepting monitor μ0, which is defined by
ε

α−→μ0ε, where ε is its only state (the empty stack). This monitor indeed accepts all
events α in the underlying program.

From Dynamic to Static and Back 355

pc � skip
lev(e) � Γ (x) pc � Γ (x)

pc � x := e

pc � c1 pc � c2

pc � c1; c2

lev(e) � pc � c1 lev(e) � pc � c2

pc � if e then c1 else c2

lev(e) � pc � c

pc � while e do c

Fig. 2. Typing rules

st
nop−→ st

lev(e) � Γ (x) lev(st) � Γ (x)

st
a(x,e)−→ st

st
b(e)−→ lev(e) : st hd :st

f−→ st

Fig. 3. Monitoring rules

3 Type System

Figure 2 displays a Denning-style static analysis in the form of a security type system
by Volpano et al. [26]. Typing environment Γ maps variables to security levels in a
security lattice. For simplicity, we assume a security lattice with two levels L and H
for low (public) and high (secret) security, where L � H . Function lev(e) returns H if
there is a high variable in e and otherwise returns L. Typing judgment for commands
has the form pc c, where pc is a security level known as the program counter that
keeps track of the context. Explicit flows (as in l := h) are prevented by the typing rule
for assignment that disallows assignments of high expressions to low variables. Implicit
flows (as in if h then l := 1 else l := 0) are prevented by the pc mechanism. It
demands that when branching on a high expression, the branches must be typed under
high pc, which prevents assignments to low variables in the branches.

4 Monitor

Figure 3 presents monitorμ1 (we omit the subscriptμ1 in the transition rules for clarity).
The monitor either accepts an event generated by the program or blocks it by getting
stuck. The monitor configuration st is a stack of security levels, intended to keep track
of the current security context: the security levels of the guards of conditionals and
loops whose body the computation currently visits. This is a dynamic version of the pc
from the previous section. Event nop (that originates from a skip) is always accepted
without changes in the monitor state. Event a(x, e) (that originates from an assignment)
is accepted without changes in the monitor state but with two conditions: (i) that the
security level of expression e is no greater than the security level of variable x and (ii)
that the highest security level in the context stack (denoted lev (st) for a stack st) is no
greater than the security level of variable x. The former prevents explicit flows of the
form l := h, whereas the latter prevents implicit flows of the form if h then l :=
1 else l := 0, where depending on the high guard, the execution of the program leads
to different low events.

356 A. Sabelfeld and A. Russo

Events b(e) result in pushing the security level of e onto the stack of the monitor. This
is a part of implicit-flow prevention: runs of programif h then l := 1 else l := 0 are
blocked before performing an assignment l because the level of the stack is high when
reaching the execution of the assignment. The stack structure avoids overrestrictive
enforcement. For example, runs of program (if h then h := 1 else h := 0); l := 1
are allowed. This is because by the time the assignment to l is reached, the execution has
left the high context: the high security level has been popped from the stack in response
to event f , which the program generates on exiting the if.

We have seen that runs of programs like if h then l := 1 else l := 0 are re-
jected by the monitor. But what about a program like if h then l := 1 else skip,
a common example for illustrating that dynamic information-flow enforcement is deli-
cate? If h is nonzero, the monitor blocks the execution. However, if h is 0, the program
proceeds normally. Are we accepting an insecure program? It turns out that the slight
difference between unmonitored and monitored runs (blocking in case h is nonzero)
is sufficient for termination-insensitive security. In effect, the monitor prevents implicit
flows by collapsing the implicit-flow channel into the termination channel; it does not
introduce any more bandwidth than what the termination channel already permits. In-
deed, implicit flows in unmonitored runs can be magnified by a loop so that secrets can
be leaked bit-by-bit in linear time in the size of the secret. On the other hand, implicit
flows in monitored runs cannot be magnified because execution is blocked whenever it
attempts entering a branch with a public side effect. For example, one implication for
uniformly-distributed secrets is that they cannot be leaked on the termination channel
in polynomial time [1].

5 Results

This section presents the formal results. We assume μ0 is the monitor that accepts all
program events, and μ1 is the monitor from Section 4. First, we show that the monitor
μ1 is strictly more permissive than the type system. If a program is typable, then all of
its runs are not modified by the monitor.

Theorem 1. If pc c and 〈〈c,m〉 |μ0 ε〉 −→∗ 〈〈c′,m′〉 |μ0 ε〉, then 〈〈c,m〉 |μ1 ε〉 −→∗

〈〈c′,m′〉 |μ1 st ′〉.

Proof. We prove a generalization of the theorem (see the appendix). Intuitively, the
theorem holds because (i) the requirements for assignments in the type system and the
monitor μ1 are essentially the same; and (ii) there is a tight relation between the join
operations for pc and pushing security levels on the stack st . �

Further, there are programs (e.g., if l > l then l := h else skip) whose runs are
always accepted by the monitor, but which are rejected by the type system. Hence, the
monitor is strictly more permissive than the type system.

We now show that both the type system and monitor enforce the same security condi-
tion: termination-insensitive noninterference [26]. Two memoriesm1 and m2 are low-
equal (written m1 =L m2) if they agree on the low variables. Termination-insensitive
noninterference demands that starting with two low-equal initial memories, two termi-
nating runs of a typable program result in low-equal final memories.

From Dynamic to Static and Back 357

m(e) = v

〈output(e),m〉o(e)−→v〈stop, m〉

lev(e) � pc � L

pc � output(e)

lev(e) � st � L

st
o(e)−→ st

Fig. 4. Semantics, typing, and monitoring rules for outputs

Theorem 2. If pc c, then for all m1 and m2, where m1 =L m2, whenever we have
〈〈c,m1〉 |μ0 ε〉 −→∗ 〈〈stop,m′

1〉 |μ0 ε〉 and 〈〈c,m2〉 |μ0 ε〉 −→∗ 〈〈stop,m′
2〉 |μ0 ε〉,

thenm′
1 =L m

′
2.

Proof. By adjusting the soundness proof by Volpano et al. [26] (see the appendix). �

Termination-insensitive noninterference also holds for the runs monitored by the mon-
itor from Section 4:

Theorem 3. For all m1 and m2, where m1 =L m2, whenever c contains no end
commands and 〈〈c,m1〉 |μ1 ε〉 −→∗ 〈〈stop,m′

1〉 |μ1 st ′1〉 and 〈〈c,m2〉 |μ1 ε〉 −→∗

〈〈stop,m′
2〉 |μ1 st ′2〉, thenm′

1 =L m
′
2.

Proof. By induction on −→∗. The details can be found in the appendix. �

6 Incorporating Output into the Language

This section introduces outputs to the language. For simplicity, we only consider pub-
lic outputs. The semantics, typing, and monitoring rules for outputs are described in
Figure 4. Command output(e) outputs the value of expression e on a public chan-
nel. Semantically, configurations might now trigger externally observable events with
an additional label (v) indicating an output value. Public outputs can be considered as
special assignments to low variables. In this light, the typing and monitor rules (adapted
from [1] and [2], respectively) for this command are similar to the ones applied when
modifying low variables. Event o(e) conveys information that expression e is output by
the program. Monitored configurations need to be adapted to synchronize with output
events. Formally, a monitor transition 〈cfg |μ cfgm〉−→γ〈cfg ′ |μ cfgm ′〉 is possible if
the program and monitor transitions cfg α−→γcfg ′ and cfgm α−→μcfgm ′ are also possi-
ble. Event α can be o(e) or any of the events described in Section 4. Event γ stands for
an externally observable event: it can be an output (v) or an empty event (ε).

We present the adaptation of Theorems 1–3 for a language with outputs (proved in
an accompanying technical report [19]). The next theorem looks the same as Theorem
1 except for the presence of a vector of output events (%γ).

Theorem 4. If pc c and 〈〈c,m〉 |μ0 ε〉−→�γ
∗〈〈c′,m′〉 |μ0 ε〉, then there exists st ′ such

that 〈〈c,m〉 |μ1 ε〉−→�γ
∗〈〈c′,m′〉 |μ1 st ′〉.

As before, there are programs (e.g., if l > l then l := h else skip) whose runs are
always accepted by the monitor, but which are rejected by the type system. Hence, the
monitor for the extended language is strictly more permissive than the extended type
system.

358 A. Sabelfeld and A. Russo

As explained in Section 1, Sections 2–5 consider a batch-job model: programs run
until completion before the produce a result (which is the final memory). Termination-
insensitive noninterference [26] for batch-job programs simply ignores diverging runs.
This condition is not appropriate for reasoning about programs with output since a pro-
gram that outputs a secret and then diverges would be accepted by the condition [3, 1].
Thus, the security condition guarantee for the extended type system establishes progress-
insensitive noninterference [1], a generalization of termination-insensitive noninterfer-
ence to reason about programs with output, which does not ignore diverging runs, but
ignores (the lack of) progress at each step. We show that given two low-equivalent initial
memories, and the two sequences of outputs generated by monitored executions in these
memories, then either the sequences are the same or one of them is a prefix of the other, in
which case the execution that generates the shorter sequence produces no further public
output events. Formally:

Theorem 5. If pc c, then for all m1 and m2, where m1 =L m2, whenever we have
〈〈c,m1〉 |μ0 ε〉−→ �γ1

∗〈〈stop,m′
1〉 |μ0 st ′1〉, then there exists c′, m′

2, st ′2, %γ2 such that
〈〈c,m2〉 |μ0 ε〉−→ �γ2

∗〈〈c′,m′
2〉 |μ0 st ′2〉 where | %γ2| ≤ | %γ1|, and

a) If | %γ2| = | %γ1|, then %γ1 = %γ2.
b) If | %γ2| < | %γ1|, then prefix(%γ2, %γ1) holds and 〈〈c′,m′

2〉 |μ0 st ′〉 ⇒H .

The number of events in %γ is denoted by |%γ|. We also define predicate prefix(%x, %y)
to hold when list %x is a prefix of list %y. We write 〈〈c,m〉 |μ cfgm〉 ⇒H to denote a
monitored execution that does not produce any public output. Generalized termination-
insensitive noninterference also holds for the extended monitor. More precisely, we
have the following theorem.

Theorem 6. For allm1 andm2, wherem1 =L m2, whenever c contains no end com-
mands and 〈〈c,m1〉 |μ1 ε〉−→ �γ1

∗〈〈stop,m′
1〉 |μ1 st ′1〉 then there exists c′, m′

2, st ′2, %γ2
such that 〈〈c,m2〉 |μ1 ε〉−→ �γ2

∗〈〈c′,m′
2〉 |μ1 st ′2〉 where | %γ2| ≤ | %γ1|, and

a) If | %γ2| = | %γ1|, then %γ1 = %γ2.
b) If | %γ2| < | %γ1|, then prefix(%γ2, %γ1) holds and 〈〈c′,m′

2〉 |μ1 st ′2〉 ⇒H .

The proofs of the above two theorems are by adjusting the soundness proofs from [1]
and [2], respectively, to model that attacker that does not observe changes in low mem-
ories, but only observes public output.

7 Discussion

On joint points The monitor critically relies on the joint-point information for each
branching point (in conditionals in loops). This allows the monitor to discover that the
execution has left a secret context, and relax restrictions on assignment to public vari-
ables. When branching, the command end is inserted at the joint point by the semantics
in Figure 1. At the time of execution, end communicates information that a joint point
has been reached to the monitor.

In a more complex language, we would expect the interpreter/compiler to extract
the information about joint points from the scopes in the program text. This might be
natural in a structured language. We remark, however, that in a low-level languages, or
in a language with breaks and continues, this might require a separate static analysis.

From Dynamic to Static and Back 359

On flow sensitivity Another point to emphasize is regarding flow sensitivity, i.e., pos-
sibility for variables to store values of different sensitivity (low and high) over the
course of computation. Although it might be against the intuition, if we consider a
flow-sensitive type system [11], then it is actually impossible to have a purely dy-
namic sound mechanism that is more precise than the type system. We give the for-
mal details in a separate paper [16], and illustrate the issue with an example (sim-
ilar examples have been discussed in the literature [23, 6]). In the program in Fig-
ure 5, assume secret is a high variable containing a boolean secret (either 0 or 1).

public := 1; temp := 0;
if secret then temp := 1;
if temp �=1 then public :=0

Fig. 5. Example

Imagine a simple purely dynamic monitor that keeps
track of security levels of variables and updates them
on each assignment in the following way. The mon-
itor sets the level of the assigned variable to high in
case there is a high variable on the right-hand side
of the assignment or in case the assignment appears
inside of a high context. The level of the variable is
set to low in case there are no high variables in the right-hand side of the assignment
and the assignment does not appear in high context. Otherwise, the monitor does not
update the the level of the assigned variable. This is a straightforward extension of the
monitor from Section 4 with flow sensitivity.

This monitor labels public and temp as low after the first two assignments because
the variables receive low information (constants). If secret is nonzero, variable temp
becomes high after the first conditional. In this case the guard in the second conditional
is false, and so the then branch with the assignment public := 0 is not taken. Therefore,
the monitor allows this execution. If secret is zero, then temp is not relabeled to high,
and so the second if is also allowed by the monitor even though the then branch is taken:
because it branches on an expression that does not involve high variables. As a result,
the value of secret is leaked into public, which is missed by the monitor.

This illustrates that flow sensitivity introduces a channel that poses a challenge for
purely dynamic enforcement.

8 Related Work

Fenton [9] presents a monitor that takes into account program structure. It keeps track
of the security context stack, similarly to ours. However, Fenton does not discuss sound-
ness with respect to noninterference-like properties. Volpano [24] considers a monitor
that only checks explicit flows. Implicit flows are allowed, and therefore the monitor
does not enforce noninterference. Boudol [5] revisits Fenton’s work and observes that
the intended security policy “no security error” corresponds to a safety property, which
is stronger than noninterference. Boudol shows how to enforce this safety property with
a type system.

Mechanisms by Venkatakrishnan et al. [22], Le Guernic et al. [13, 12], and Shroff et
al. [20] combine dynamic and static checks. They have a number of attractive features,
for example, the mechanism by Le Guernic et al. [13, 12] is flow-sensitive: security
levels of variables may change during the program execution. We take a deeper look at
the impact of flow sensitivity on the trade off between static and dynamic information-
flow enforcement in a separate paper [16] (cf. discussion in Section 7).

360 A. Sabelfeld and A. Russo

Tracking information flow in web applications is becoming increasingly important
(e.g., recent highlights are a server-side mechanism by Huang et al. [10] and a client-
side mechanism for JavaScript by Vogt et al. [23], although they do not discuss sound-
ness). Dynamism of web applications puts higher demands on the permissiveness of the
security mechanism: hence the importance of dynamic analysis.

Yet, all the mechanisms from the above two paragraphs involve nontrivial static anal-
ysis for side effects in conditionals and loops, whereas our proof-of-concept monitor is
purely dynamic.

The monitor presented here is at core of (i) the termination-insensitive part of the en-
forcement of information-release (or declassification) policies by Askarov and Sabelfeld
[2] for a language with dynamic code evaluation and communication and (ii) the monitor
by Russo and Sabelfeld [17] to secure programs with timeout instructions.

9 Concluding Remarks

When it comes to information-flow tracking, static techniques have benefits of re-
ducing runtime overhead, and dynamic techniques have the benefits of permissive-
ness (this, for example, is of particular importance in dynamic applications, where
freshly generated code is evaluated). But on the security side, we have demonstrated
that both Denning-style analysis and dynamic enforcement have the same guarantees:
termination-insensitive noninterference. Another way to interpret the result is that nei-
ther Denning-style analysis nor termination-insensitive noninterference itself offer
strong guarantees (as also hinted in previous findings [1]).

However, when termination-sensitive noninterference is desired, the absence of side
effects of traces not taken is hard to ensure dynamically.

But which policy should be the one of choice, termination-insensitive noninterfer-
ence or termination-sensitive noninterference? Termination-sensitive noninterference
is attractive, but rather difficult to guarantee. Typically, strong restrictions (such as no
loops with secret guards [25]) are enforced. Program errors exacerbate the problem.
Even in languages like Agda [15], where it is impossible to write nonterminating pro-
grams, it is possible to write programs that terminate abnormally: for example, with a
stack overflow. Generally, abnormal termination due to resource exhaustion, is a chan-
nel for leaks that can be hard to counter.

As mentioned earlier, the information-flow tools Jif [14], FlowCaml [21], and the
SPARK Examiner [4, 7] avoid these problems by targeting termination-insensitive non-
interference. The price is that the attacker may leak secrets by brute-force attacks via
the termination channel. But there is formal assurance that these are the only possible
attacks. Askarov et al. [1] show that if a program satisfies termination-insensitive non-
interference, then the attacker may not learn the secret in polynomial running time in
the size of the secret; and, for uniformly-distributed secrets, the probability of guessing
the secret in polynomial running time is negligible.

Acknowledgments. Thanks are due to Gurvan Le Guernic and Rustan Leino for the
interesting discussions. This work was funded by the Swedish research agencies SSF
and VR.

From Dynamic to Static and Back 361

References

[1] Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninterference
leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283,
pp. 333–348. Springer, Heidelberg (2008)

[2] Askarov, A., Sabelfeld, A.: Tight enforcement of information-release policies for dynamic
languages. In: Proc. IEEE Computer Security Foundations Symposium (July 2009)

[3] Banerjee, A., Naumann, D., Rosenberg, S.: Expressive declassification policies and modu-
lar static enforcement. In: Proc. IEEE Symp. on Security and Privacy (May 2008)

[4] Barnes, J., Barnes, J.: High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

[5] Boudol, G.: Secure information flow as a safety property. In: Degano, P., Guttman, J.,
Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 20–34. Springer, Heidelberg (2009)

[6] Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques for mal-
ware analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp.
143–163. Springer, Heidelberg (2008)

[7] Chapman, R., Hilton, A.: Enforcing security and safety models with an information flow
analysis tool. ACM SIGAda Ada Letters 24(4), 39–46 (2004)

[8] Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Comm.
of the ACM 20(7), 504–513 (1977)

[9] Fenton, J.S.: Memoryless subsystems. Computing J. 17(2), 143–147 (1974)
[10] Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., Kuo, S.-Y.: Securing web applica-

tion code by static analysis and runtime protection. In: Proc. International Conference on
World Wide Web, May 2004, pp. 40–52 (2004)

[11] Hunt, S., Sands, D.: On flow-sensitive security types. In: Proc. ACM Symp. on Principles
of Programming Languages, pp. 79–90 (2006)

[12] Le Guernic, G.: Automaton-based confidentiality monitoring of concurrent programs. In:
Proc. IEEE Computer Security Foundations Symposium, July 2007, pp. 218–232 (2007)

[13] Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.: Automata-based confidentiality mon-
itoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 75–89. Springer,
Heidelberg (2008)

[14] Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif: Java information flow.
Software release (July 2001), http://www.cs.cornell.edu/jif

[15] Norell, U.: Towards a practical programming language based on dependent type theory.
PhD thesis, Department of Computer Science and Engineering, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden (September 2007)

[16] Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis (April 2009)
(Draft)

[17] Russo, A., Sabelfeld, A.: Securing timeout instructions in web applications. In: Proc. IEEE
Computer Security Foundations Symposium (July 2009)

[18] Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Selected
Areas in Communications 21(1), 5–19 (2003)

[19] Sabelfeld, A., Russo, A.: From dynamic to static and back: Riding the roller coaster of
information-flow control research (full version) (2009),
http://www.cse.chalmers.se/˜russo/

[20] Shroff, P., Smith, S., Thober, M.: Dynamic dependency monitoring to secure information
flow. In: Proc. IEEE Computer Security Foundations Symposium, July 2007, pp. 203–217
(2007)

http://www.cs.cornell.edu/jif
http://www.cse.chalmers.se/~russo/

362 A. Sabelfeld and A. Russo

[21] Simonet, V.: The Flow Caml system. Software release (July 2003),
http://cristal.inria.fr/˜simonet/soft/flowcaml

[22] Venkatakrishnan, V.N., Xu, W., DuVarney, D.C., Sekar, R.: Provably correct runtime en-
forcement of non-interference properties. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 332–351. Springer, Heidelberg (2006)

[23] Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross-site scripting
prevention with dynamic data tainting and static analysis. In: Proc. Network and Distributed
System Security Symposium (February 2007)

[24] Volpano, D.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, pp. 303–311. Springer, Heidelberg (1999)

[25] Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: Proc. IEEE
Computer Security Foundations Workshop, June 1997, pp. 156–168 (1997)

[26] Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis. J. Com-
puter Security 4(3), 167–187 (1996)

A Appendix

Before proving the theorems described in body of the paper, we need to introduce some
auxiliary lemmas. We describe the most important ones here. We start by showing lem-
mas related to sequential composition of monitored executions.

Lemma 1. If 〈〈c,m〉 |μ st〉 −→∗ 〈〈stop,m′〉 |μ st ′〉, then st = st ′, where μ ∈
{μ0, μ1}.

Lemma 2. Given that stop; c′ denotes c′, if 〈〈c1,m〉 |μ st〉 −→∗ 〈〈c′,m′〉 |μ st ′〉, then
〈〈c1; c2,m〉 |μ st〉 −→∗ 〈〈c′; c2,m′〉 |μ st ′〉, where μ ∈ {μ0, μ1}.

Lemma 3. If 〈〈c1; c2,m〉 |μ st〉 −→∗ 〈〈c′,m′〉 |μ st ′〉 and c1 contains no end instruc-
tions, then there exists c∗, m′′, and st∗ such that c′ = c∗; c2 and 〈〈c1,m〉 |μ st〉 −→∗

〈〈c∗,m′〉 |μ st∗〉; or 〈〈c1,m〉 |μ st〉 −→∗ 〈〈stop,m′′〉 |μ st〉 and 〈〈c2,m′′〉 |μ st〉 −→∗

〈〈c′,m′〉 |μ st ′〉, where μ ∈ {μ0, μ1}.

These lemmas can be proved by a simple induction on −→∗. Before proving Theorem
1, we prove a generalization of it described in the following lemma.

Lemma 4. If pc c, 〈〈c,m〉 |μ0 ε〉 −→∗ 〈〈c′,m′〉 |μ0 ε〉, then it holds ∀ lev (st) �
pc · ∃ lev (st ′) · 〈〈c,m〉 |μ1 st〉 −→∗ 〈〈c′,m′〉 |μ1 st ′〉.

Proof. By induction on −→∗ and the number of sequential instructions in c. We only
show the most interesting cases.

x := e) Given a st such that lev (st) � pc, we need to prove that exists st ′ such
that lev(st ′) and 〈〈x := e,m〉 |μ1 st〉 −→ 〈〈stop,m′〉 |μ1 st ′〉. Let’s take st ′ =
st . Then, the transition under μ1 is possible provided that lev(e) � Γ (x) and
lev (st) � Γ (x). By the typing rules, it holds that lev(e) � Γ (x) and pc � Γ (x).
By these two facts, and having that lev (st) � pc, it holds that lev (e) � Γ (x) and
lev (st) � Γ (x).

http://cristal.inria.fr/~simonet/soft/flowcaml

From Dynamic to Static and Back 363

if e then c1 else c2) Let’s assume thatm(e) �= 0 (the proof follows the same struc-
ture when m(e) = 0). We omit the proof when −→0 since it holds trivially. By
semantics, we know that

〈〈if e then c1 else c2,m〉 |μ0 ε〉 −→ 〈〈c1; end ,m〉 |μ0 ε〉 (1)

〈〈c1; end ,m〉 |μ0 ε〉 −→∗ 〈〈c′,m′〉 |μ0 ε〉 (2)

By definition of the monitor, we know that

〈〈if e then c1 else c2,m〉 |μ1 st〉 −→ 〈〈c1; end ,m〉 |μ1 lev (e) : st〉 (3)

If −→∗ is −→0 in (2), the result follows from (3). Otherwise, by applying Lemma
3 on (2) and semantics, we have that there existsm′′, c∗, and st∗ such that
c′ = c∗; end) In this case, we have that

〈〈c1,m〉 |μ0 ε〉 −→∗ 〈〈c∗,m′〉 |μ0 st∗〉 (4)

We know that st∗ = ε from the definition of μ0. We apply IH on lev(e)� pc
c1 (obtaining from the typing rules) and (4), then we obtain that ∀ lev(st1) �
lev (e) � pc · ∃ lev (st ′1) · 〈〈c1,m〉 |μ1 st1〉 −→∗ 〈〈c∗,m′〉 |μ1 st ′1〉. Let’s
instantiate this formula by taking st1 = lev(e) : st . We then have that

〈〈c1,m〉 |μ1 lev (e) : st〉 −→∗ 〈〈c∗,m′〉 |μ1 st ′1〉 (5)

By Lemma 2 applied to (5) and end , we obtain 〈〈c1; end,m〉 |μ1 lev (e) : st〉
−→∗ 〈〈c′,m′〉 |μ1 st ′1〉. The result follows from this transition and (3).

c′ �= c∗; end)

〈〈c1,m〉 |μ0 ε〉 −→∗ 〈〈stop,m′′〉 |μ0 ε〉 (6)

〈〈end ,m′′〉 |μ0 ε〉 −→∗ 〈〈c′,m′〉 |μ0 ε〉 (7)

By IH on lev (e) � pc c1 (obtaining from the typing rules) and (6), we
have that ∀ lev(st1) � lev(e) � pc · ∃ lev(st ′1) · 〈〈c1,m〉 |μ1 st1〉 −→∗

〈〈stop,m′′〉 |μ1 st ′1〉. Let’s instantiate this formula with st1 = lev(e) : st . We
then have that

〈〈c1,m〉 |μ1 lev(e) : st〉 −→∗ 〈〈stop,m′′〉 |μ1 st ′1〉 (8)

At this point, we do not know the shape of st ′1, but we can deduced it by
applying the Lemma 1 to it: st ′1 = lev(e) : st . Then, by Lemma 2 on (8) and
semantics for end , we have that

〈〈c1; end ,m〉 |μ1 lev (e) : st〉 −→∗ 〈〈end ,m′′〉 |μ1 lev (e) : st〉 (9)

In the case that −→∗ is −→0 in (7), the result holds from (3) and (9). Other-
wise, from semantics rules in (7), we know that c′ = stop and m′ = m′′. By
monitor semantics, we know that

〈〈end ,m′′〉 |μ1 lev (e) : st〉 −→ 〈〈stop,m′′〉 |μ1 st〉 (10)

The result then follows from (3), (9), and (10).
while e do c) Similar to the previous case. �

364 A. Sabelfeld and A. Russo

We can then prove the first theorem.

Theorem 1. If pc c and 〈〈c,m〉 |μ0 ε〉−→∗ 〈〈stop,m′〉 |μ0 ε〉, then 〈〈c,m〉 |μ1 ε〉−→∗

〈〈stop,m′〉 |μ1 st ′〉.

Proof. By Lemma 4, we obtain that ∀ lev (st) � pc · ∃ lev (st ′) · 〈〈c,m〉 |μ1 st〉 −→∗

〈〈stop,m′〉 |μ1 st ′〉. The result follows by instantiating the formula with st = ε since
lev(ε) = L. �

To prove Theorem 2, we firstly prove that, for terminating programs, there is an isomor-
phism between the command semantics and executions under μ0.

Lemma 5. Given command c that contains no end instructions, 〈c,m〉−→∗ 〈stop,m′〉
⇔ 〈〈c,m〉 |μ0 ε〉 −→∗ 〈〈stop,m′〉 |μ0 ε〉.

Proof. Both directions of the implication are proved by a simple induction on −→∗. �

Now, we are in conditions to prove the mentioned Theorem.

Theorem 2. If pc c, then for all m1 and m2, where m1 =L m2, whenever we have
〈〈c,m1〉 |μ0 ε〉 −→∗ 〈〈stop,m′

1〉 |μ0 ε〉 and 〈〈c,m2〉 |μ0 ε〉 −→∗ 〈〈stop,m′
2〉 |μ0 ε〉,

thenm′
1 =L m

′
2.

Proof. By Lemma 5, we have that 〈c,m1〉−→∗〈stop,m′
1〉 and 〈c,m2〉−→∗〈stop,m′

2〉.
The result follows by applying the soundness theorem from [26] to pc c, 〈c,m1〉 −→∗

〈stop,m′
1〉, and 〈c,m2〉 −→∗ 〈stop,m′

2〉. �

We need two auxiliary lemmas in order to prove Theorem 3. They express that public
variables cannot be affected when the security level of the monitor’s stack is H .

Lemma 6. If c contains no end instructions, lev(st) = H , and 〈〈c,m〉 |μ1 st〉 −→∗

〈〈stop,m′〉 |μ1 st ′〉, thenm =L m
′.

Proof. By induction on −→∗. �

Lemma 7. If c contains no end instructions, and 〈〈while e do c,m〉 |μ1 st〉 −→∗

〈〈stop,m′〉 |μ1 st ′〉, thenm =L m
′.

Proof. By performing one small-step in the semantics and then applying Lemma 6. �

The next lemma is a generalization of Theorem 3.

Lemma 8. For all m1 and m2, where m1 =L m2, whenever c contains no end com-
mands and 〈〈c,m1〉 |μ1 st〉 −→∗ 〈〈stop,m′

1〉 |μ1 st ′1〉 and 〈〈c,m2〉 |μ1 st〉 −→∗

〈〈stop,m′
2〉 |μ1 st ′2〉, thenm′

1 =L m
′
2.

Proof. By induction on −→∗. We list the most interesting cases.

From Dynamic to Static and Back 365

if e then c1 else c2) We consider the case when lev(e) = H and that m1(e) �=
m2(e). Otherwise, the proof follows by simply applying IH and Lemmas 2 and 3.
We assume, without loosing generality, that m1(e) �= 0. Consequently, by seman-
tics, we have that

〈〈if e then c1 else c2,m1〉 |μ1 st〉 −→ 〈〈c1; end ,m1〉 |μ1 lev(e) : st〉(11)

〈〈c1; end ,m1〉 |μ1 lev(e) : st〉 −→∗ 〈〈stop,m′
1〉 |μ1 st ′1〉 (12)

〈〈if e then c1 else c2,m2〉 |μ1 st〉 −→ 〈〈c2; end ,m2〉 |μ1 lev(e) : st〉(13)

〈〈c2; end ,m2〉 |μ1 lev(e) : st〉 −→∗ 〈〈stop,m′
2〉 |μ1 st ′2〉 (14)

By applying Lemma 3 on (12) and (14), we have that there existsm′′
1 andm′′

2 such
that

〈〈c1,m1〉 |μ1 lev(e) : st〉 −→∗ 〈〈stop,m′′
1〉 |μ1 lev(e) : st〉 (15)

〈〈end ,m′′
1〉 |μ1 lev(e) : st〉 −→∗ 〈〈stop,m′

1〉 |μ1 st ′1〉 (16)

〈〈c2,m2〉 |μ1 lev(e) : st〉 −→∗ 〈〈stop,m′′
2〉 |μ1 lev(e) : st〉 (17)

〈〈end ,m′′
2〉 |μ1 lev(e) : st〉 −→∗ 〈〈stop,m′

2〉 |μ1 st ′2〉 (18)

By applying Lemma 6 on (15) and (17), we have thatm′′
1 =L m1 =L m2 =L m

′′
2 .

By semantics, (16), and (18), we have thatm′
1 = m′′

1 andm′
2 = m′′

2 . Consequently,
we have thatm′

1 =L m
′
2 as expected.

while e do c) The proof proceeds similarly as the previous case but also applying
Lemma 7 when needed. �

We prove our last last theorem as follows.

Theorem 3. For all m1 and m2, where m1 =L m2, whenever c contains no end
commands and 〈〈c,m1〉 |μ1 ε〉 −→∗ 〈〈stop,m′

1〉 |μ1 st ′1〉 and 〈〈c,m2〉 |μ1 ε〉 −→∗

〈〈stop,m′
2〉 |μ1 st ′2〉, thenm′

1 =L m
′
2.

Proof. By applying Lemma 8 with st = ε. �

History-Dependent Stochastic Petri Nets

Helen Schonenberg, Natalia Sidorova, Wil van der Aalst, and Kees van Hee

Eindhoven University of Technology,
Den Dolech 2, 5600 MB Eindhoven, The Netherlands

{m.h.schonenberg,n.sidorova,w.m.p.v.d.aalst,k.m.v.hee}@tue.nl

Abstract. Stochastic Petri Nets are a useful and well-known tool for
performance analysis. However, an implicit assumption in the different
types of Stochastic Petri Nets is the Markov property. It is assumed that
a choice in the Petri net only depends on the current state and not on
earlier choices. For many real-life processes, choices made in the past
can influence choices made later in the process. For example, taking one
more iteration in a loop might increase the probability to leave the loop,
etc. In this paper, we introduce a novel framework where probability
distributions depend not only on the marking of the net, but also on
the history of the net. We also describe a number of typical abstraction
functions for capturing relevant aspects of the net’s history and show
how we can discover the probabilistic mechanism from event logs, i.e.
real-life observations are used to learn relevant correlations. Finally, we
present how our nets can be modelled and simulated using CPN Tools
and discuss the results of some simulation experiments.

1 Introduction

The use of Petri net-based models for business process modelling as workflows
has become a standard practice both in academia and in industry. These models
allow for both parallelism and choices, which makes them very suitable for the
performance analysis of concurrent systems and for the evaluation of possible
changes in the process design. To provide the information needed for the per-
formance analysis, Petri nets are then extended with the information about the
(distributions of) task durations or costs and the probabilities of choices that
can be made. Stochastic Petri nets (SPN) [3, 10, 15] and Generalised Stochastic
Petri nets (GSPN) [9, 8] have become very popular due to the nice theoretical
basis they provide for the analysis of systems by using Markovian techniques.

A natural question arising when people start using Stochastic Petri nets for
practical applications is how to obtain a model that can be used for the analysis
they want to perform. In the “easy” cases, the basic Petri net for the process
is already known (e.g. the model can be given by the workflow schema running
at the organisation in question), and one “only” needs to define the values of
stochastic elements there. In more difficult cases, the process is also unknown,
and Process Mining techniques [1] can be used to discover the model, after which
the problem is in principle reduced to the “easy” case.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 366–379, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

History-Dependent Stochastic Petri Nets 367

p1

RHB

p2RFD

ADEp5 p6

RDCp3 p4

p7

SP

p8

CP

RCB

RNDD

Probabilities

P[RCB] = 0.43
P[RHB] = 0.43
P[RFD] = 0.11
P[RNDD] = 0.03
P[RDC] = 1
P[ADE] = 1
P[SP] = 0.7
P[CP] = 0.3

P[SP|RCB] = 0.8 P[CP|RCB] = 0.2
P[SP|RHB] = 0.7 P[CP|RHB] = 0.3
P[SP|RFD] = 0.4 P[CP|RFD] = 0.6
P[SP|RNDD]= 0.1 P[CP|RNDD]= 0.9

Legend
RCB: register car burglary
RHB: register house burglary
RFD: register fire damage
RNDD: register natural disaster damage
RDC: report damage claim
ADE: assign damage export
AC: accept claim
RC: refuse claim

LOG
800 RCB ADE RDC SP
200 RCB ADE RDC CP
800 RCB RDC ADE SP
200 RCB RDC ADE CP
700 RHB ADE RDC SP
300 RHB ADE RDC CP
700 RHB RDC ADE SP
300 RHB RDC ADE CP
100 RFD ADE RDC SP
150 RFD ADE RDC CP
100 RFD RDC ADE SP
150 RFD RDC ADE CP
 5 RNDD ADE RDC SP
45 RNDD ADE RDC CP
 5 RNDD RDC ADE SP
45 RNDD RDC ADE CP

Fig. 1. Insurance claim example

A natural source of information about the process behaviour in the past is the
log where the execution of the handled cases is registered. The straightforward
approach for estimating probability distributions based on the log is to define
distributions assuming that they do not depend on the context, i.e. assuming
that the basic model to which the stochastic elements are being added has the
Markov property [13]. Often, this is actually not the case.

Figure 1 gives a simplistic example of a Petri net that models the handling of
claims in an insurance company and its execution log1. A simple procedure (SP)
or a complex procedure (CP) can be chosen to handle a claim. According to the
log, 70% of the cases has been handled by the simple procedure and 30% by the
complex procedure. The probability overview shows a clear difference between
the probability for selecting the procedure (SP or CP), given the initial claim
(RCB, RHB, RFD or RNDD). So, it is not sufficient to increase the flood rate
(RNDD) to estimate the performance of this process in times of severe flooding.
The change should also be propagated to the associated parts of the process. The
effect of increased floods is not reflected in unconditional probabilities P (SP)
and P (CP) and their use in the model will result in wrong conclusions about
the process performance. According to the logged information the number of
complex procedures should increase, since complex procedures occur in 90% of
cases where RNDD occurred (cf. conditional probability P (CP|RNDD)).

In this paper we provide a Petri net extension that exibits history-dependent
probability distributions, estimated from the execution log. Simulation of these
nets allows a “what if” type of performance analysis of workflows, based on
observations and correlations discovered from the log. First we investigate the
problem of constructing a stochastic model for a workflow based on a given
classical Petri net. Like in [13], we assume that each event recorded in the log
refers to a task from the model and to the case in whose context it has been
1 For sake of readability, events from the same case have been grouped into traces

and equal traces have been aggregated and equipped with a counter indicating the
frequency of the trace.

368 H. Schonenberg et al.

executed. In this paper we ignore time aspects and concentrate on probabilistic
choices only. Our framework is based on the extension of classical Petri nets
with the notion of global history2 [4], i.e. we use history-dependent transition
guards. We generalise it by defining a history-dependent probability mechanism
for making choices. We discuss some abstractions on history that allow to reduce
the process to a finite-state process (for bounded nets). Then we show how we
can discover correlations between choices and estimate the history-dependent
probabilistic mechanism by using the information from the log.

The remainder of the paper is organised as follows. In Section 2 we provide
some basic definitions. In Section 3 we introduce History-Dependent Stochas-
tic Petri nets (HDSPNs) and describe techniques for the estimation of history-
dependent probabilities. In Section 4 we show how HDSPNs can be represented
in CPN Tools and discuss some simulation experiments. Section 5 concludes the
paper by discussing directions for future work.

2 Preliminaries

N denotes the set of natural numbers. Let P be a set. A bag (multiset) m over P
is a mapping m : P → N, with dom(m) = P . We identify a bag with all elements
occurring only once with the set containing the elements of the bag. The set of
all bags over P is denoted by NP . We use + and − for the sum and the difference
of two bags and =, <,>,≤ and ≥ for the comparison of bags, which are defined
in the standard way. We overload the set notation, writing ∅ for the empty bag
and ∈ for the element inclusion. We write e.g. m = 2[p] + [q] for a bag m with
m(p) = 2, m(q) = 1, and m(x) = 0 for all x �∈ {p, q}. As usual, |m| and |S| stand
for the number of elements in bag m and in set S, respectively.

For (finite) sequences of elements over a set P we use the following notation:
The empty sequence is denoted with ε; a non-empty sequence can be given by
listing its elements. The concatenation σ; s of sequence σ = 〈a1, a2, . . . , an〉 with
element s is the sequence 〈a1, a2, . . . , an, s〉, and the concatenation σ; γ of σ with
sequence γ = 〈b1, b2, . . . , bn〉 is the sequence 〈a1, a2, . . . , an, b1, b2, . . . , bn〉.

The characteristic function χ is defined as usual, i.e. χ : {false, true} → {0, 1}
with χ(false) = 0 and χ(true) = 1.

2.1 Petri nets

Definition 1 (Petri net). A Petri net N is a tuple 〈P, T, F 〉, where: (1) P and
T are two disjoint non-empty finite sets of places and transitions respectively;
we call the elements of the set P ∪T nodes of N ; (2) F : (P ×T)∪ (T ×P) → N
is a flow relation mapping pairs of places and transitions to the naturals.

We present nets with the usual graphical notation. For any pair of nodes x, y
with F (x, y) ≥ 1, we say that (x, y) is an arc with weight F (x, y).
2 In many practical cases, like workflow engines, the global history is available in a

log.

History-Dependent Stochastic Petri Nets 369

Given a transition t ∈ T , the preset •t and the postset t• of t are the bags
of places where every p ∈ P occurs F (p, t) times in •t and F (t, p) times in t•.
Analogously we write •p, p• for pre- and postsets of places.

A marking m of N is a bag over P ; markings are states (configurations) of a
net. A pair (N,m) is called a marked Petri net. A transition t ∈ T is enabled in
marking m if and only if •t ≤ m. An enabled transition t may fire. This results
in a new marking m′ defined by m′ = m − •t + t•. A marking is called dead if
there are no enabled transitions for this marking.

Definition 2 (Incidence matrix). Let N be the set 〈P, T, F 〉. The incidence
matrix N : (P × T) → Z of N is defined by N(p, t) = F (t, p)− F (p, t).

Definition 3 (Parikh Vector). Let 〈P, T, F 〉 be a net and σ be a finite se-
quence of transitions. The Parikh vector −→σ : T → N of σ maps every transition
t of T to the number of occurrences of t in σ.

We will use the following well-known lemma:

Lemma 1 (Marking Equation). Let N = 〈P, T, F 〉 be a Petri net with the
incidence matrix N. Given a finite firing sequence σ ∈ T ∗ in N leading from a
marking m to a marking m′, the following equation holds: m′ = m+ N · −→σ .

A class of particular practical interest for us are free-choice Petri nets [2]. In
these nets, choice and synchronisation are separated like in many other graphical
process modelling notations. Moreover, as motivated in [1], many process mining
algorithms produce free-choice nets.

Definition 4 (Free-choice nets). A Petri net N = 〈P, T, F 〉 is free-choice if
for any transitions t1, t2 ∈ T , •t1 ∩ •t2 �= ∅ implies that •t1 = •t2.

Definition 5 (Clusters [2]). Let x be a node of a Petri net N = 〈P, T, F 〉. The
cluster of x, denoted by [x], is the minimal set of nodes such that (1) x ∈ [x];
(2) for any p ∈ P , if p ∈ [x], then any transition t ∈ p• belongs to [x], and (3)
for any t ∈ T , if t ∈ [x], then any place p ∈ •t belongs to [x].

An important property of free-choice nets is that when a transition t is enabled
in a marking m, then all other transitions of [t] are enabled as well (see [2]).

2.2 Stochastic Processes

A function f : A × B → [0, 1], where A and B are finite or countable sets, is
called a transition probability function if for all b ∈ B : f(., b) is a probability
over A, i.e. for all b ∈ B :

∑
a∈A f(a, b) = 1.

A discrete stochastic process is a finite or infinite sequence of random vari-
ables X0, X1, X2, . . . with values in some domain X , defined on some probability
space (Ω,F,P), where Ω is the sample space, F is a σ-algebra on Ω and P is a
probability (measure) on F, such that P(∅) = 1 − P(Ω) = 0. We characterise P
without explicit construction of Ω and F, by conditional probabilities:

P[Xn+1 = y|X0 = x0, . . . , Xn = xn] = f(y, 〈x0, . . . , xn〉)

370 H. Schonenberg et al.

for y ∈ X and xi ∈ X , i = 0, 1, 2, . . . , n. We assume that transition probability f
is a computable function on X ×X∗. Note that by the theory of Ionescu Tulcea
(see [11]) the transition probability function characterises the probability mea-
sure P completely. In fact, this is a generalisation of the result of A. Kolmogorov
presented in [7].

Definition 6 (Markov Chain). If there is a computable function f such that
P[Xn+1 = y|X0 = x0, . . . , Xn = xn] = f(y, 〈xn〉) for all y, x0, . . . , xn ∈ X, then
the process is called a Markov chain. For a finite X we call it a finite Markov
chain. If there is a k ∈ N such that P[Xn+1 = xn+1|X0 = x0, . . . , Xn = xn] =
P[Xn+1 = xn+1|Xn−k = xn−k, . . . , Xn = xn] this process is called a k-order
Markov chain.

It is well-known that any discrete stochastic process {Xn|n = 0, 1, . . .} can
be transformed into a Markovian discrete stochastic process {Yn|n = 0, 1, . . .},
where the domain of Y is X∗. It can be defined as Yn = 〈X0, . . . , Xn〉. Note that
{Y0 = 〈x0〉, . . . , Yn = 〈x0, . . . , xn〉} = {X0 = x0 . . . , Xn = xn}. Also note that
P[Xn+1 = xn+1|X0 = x0, . . . , Xn = xn] = P[Xn+1 = xn+1|Yn = 〈x0, . . . , xn〉] =
P[Yn+1 = 〈x0, . . . , xn+1〉|Yn = 〈x0, . . . , xn〉], which proves that {Yn|n = 0, 1, . . .}
is a Markov chain, however, with an infinite domain (Y).

Similarly, we can make a finite Markov chain of a discrete stochastic process
{Xn|n = 0, 1, . . .} if there is a k ∈ N such that P[Xn = xn|X0 = x0, . . . , Xn−1 =
xn−1] = P[Xn = xn|Xn−k = xn−k, . . . , Xn−1 = xn−1]. So only the last k ran-
dom variables have influence on the next step. This process is called a k-order
Markov chain and in case it is finite, it can be transformed into a finite Markov
chain {Yn|n = 0, 1, . . .} where Yn is defined as Yn = 〈Xn−k+1, . . . , Xn−1, Xn〉.
Thus P[Xn = xn|Xn−k = xn−k, . . . , Xn−1 = xn−1] = P[Xn = xn|Yn−1 =
〈xn−k, . . . , xn−1〉] = P[Yn = 〈xn−k+1, . . . , xn〉|Yn−1 = 〈xn−k, . . . , xn−1〉].

3 History-Dependent Stochastic Petri Nets

Now we introduce a class of stochastic Petri nets where the probability of an
enabled transition to fire depends on the execution history. Moreover, we explain
how these probability measures can be estimated based on the execution log.

3.1 Definition of History-Dependent Stochastic Petri Nets

We base our definition on Petri nets extended with history [4] and define history-
dependent probability measures. Let (N,m0) be a marked Petri net N with
initial marking m0. Xn is the stochastic variable corresponding to the nth tran-
sition that fires from m0; domain X = T ∪ {ι, δ} is the set of transition from N
extended with transitions ι and δ (ι, δ /∈ T). The dummy transitions are isolated
from the marked net N,m0 and only serve the purpose of providing a convenient
mapping to an infinite stochastic process. When N is in a dead marking, dummy
transition δ becomes enabled and the process remains in the same state forever.
This way we model a finite workflow process as infinite process starting with ι

History-Dependent Stochastic Petri Nets 371

(X0 = ι) and ending with absorbing3 state δ: if Xn = δ, then Xn+1 = δ. In
Markov chains the transition to move to a state is sometimes identified with the
state, as is the case here for δ. We consider finite histories4 and we introduce a
short hand notation for the history at step n by Hn = 〈X0, . . . , Xn〉 and H = X∗

denotes the set of all possible histories.

Definition 7 (Transition Probability for Petri Nets). For t ∈ (T ∪{ι, δ}),
h ∈ H, we define transition probability function f : (T ∪ {ι, δ}) × H → [0, 1].
We assume function f to be computable and having the following properties:
(1) ∀h ∈ H :

∑
t∈(T∪{ι,δ}) f(t, h) = 1, (2) ∀h ∈ H : f(ι, h) = χ(h = ε), (3)

f(δ, h) = χ(∀t ∈ T : m0 + N
−→
h < •t), and (4) ∀h ∈ H, t ∈ T : m0 + N

−→
h < •t⇒

f(t, h) = 0.

The first condition means that the sum of probabilities over all transitions, in-
cluding ι and δ, equals 1; the second condition assures that ι fires iff no transition
has fired yet; the third condition means that δ will fire iff there are no other en-
abled transitions in the net; and the fourth condition means that the probability
to fire for not enabled transitions equals 0, i.e. our nets are a true extension of
the classical Petri nets.

Definition 8 (History-Dependent Stochastic Petri Net). A history-de-
pendent stochastic Petri net (HDSPN) N is a tuple 〈P, T, F,m0, f〉, where N =
〈P, T ∪ {ι, δ}, F 〉 is a Petri net with •ι = ι• = ∅, •δ = δ• = ∅, m0 is an initial
marking, and f : (T ∪ {ι, δ})×H → [0, 1] is a transition probability function.

Firings of ι and δ do not change the marking of the net. A free-choice Petri
net extended with ι and δ remains a free-choice Petri net, with [δ] = {δ} and
[ι] = {ι}. An HDSPN defines an infinite stochastic process X0, X1, . . . , where
P[Xn+1 = t|Hn = h] = f(t, h). We assume that f(t, h) exists. Usually f(t, h) is
unknown and then we can use the log to estimate f(t, h).

Figure 2 shows the stochastic process {Xn|n = 0, 1, . . .} for the HDSPN based
on the Petri net from Figure 1. The concrete values for f(t, h), given for different
h’s, are defined from the observations in the log, as we will explain in Section
3.2. We transform this process into a stochastic process {Yn|n = 0, 1 . . .} that
has the Markovian property. The state of the Y process is the history, i.e. action
sequence, of the X process, see Figure 3.

We can further specialise our definition for the case of free-choice Petri nets.
Let C be the set of clusters of 〈P, T, F,m0, f〉. Recall that whenever a transition t
of cluster [t] is enabled, all transitions in [t] are enabled. The firing of a transition
from [t] leaves all transitions from other clusters enabled. For this reason we move
to a “two-phase selection” of the transition to fire: first we choose a cluster, and
then a transition from this cluster. Since P[Xn+1 = t|Hn = h] = P[Xn+1 =
t|Hn = h ∧Xn+1 ∈ [t]] · P[Xn+1 ∈ [t]|Hn = h], we can represent f(t, h) as

f(t, h) = p(t, h) · q(t, h),
3 The process remains in this state with probability 1.
4 Estimations are based on finite traces contained in a log.

372 H. Schonenberg et al.

X0 X1 X3 X4 X>4

1) f(RCB,ε) = 0.43
2) f(RHB,ε) = 0.43
3) f(RFD,ε) = 0.11
4) f(RNDD,ε) = 0.03

5) f(ADE,<RCB>) = 0.5
6) f(RDC,<RCB>) = 0.5
7) f(ADE,<RHB>) = 0.5
8) f(RDC,<RHB>) = 0.5
9) f(ADE,<RFD>) = 0.5
10) f(RDC,<RFD>) = 0.5
11) f(ADE,<RNDD>) = 0.5
12) f(RDC,<RNDD>) = 0.5

13) f(RDC,<RCB,ADE>) = 1.0
 f(RDC,<RHB,ADE>) = 1.0
 f(RDC,<RFD,ADE>) = 1.0
 f(RDC,<RNDD,ADE>) = 1.0
14) f(ADE,<RCB,RDC>) = 1.0
 f(ADE,<RHB,RDC>) = 1.0
 f(ADE,<RFD,RDC>) = 1.0
 f(ADE,<RNDD,RDC>) = 1.0

15) f(SP,<RCB,ADE,RDC>) = 0.8
f(SP,<RHB,ADE,RDC>) = 0.7
f(SP,<RFD,ADE,RDC>) = 0.4
f(SP,<RNDD,ADE,RDC>) = 0.1

16) f(CP,<RCB,ADE,RDC>) = 0.2
f(CP,<RHB,ADE,RDC>) = 0.3
f(CP,<RFD,ADE,RDC>) = 0.6
f(CP,<RNDD,ADE,RDC>) = 0.9

17) f(SP,<RCB,RDC,ADE>) = 0.8
f(SP,<RHB,RDC,ADE>) = 0.7
f(SP,<RFD,RDC,ADE>) = 0.4
f(SP,<RNDD,RDC,ADE>) = 0.1

18) f(CP,<RCB,RDC,ADE>) = 0.2
f(CP,<RHB,RDC,ADE>) = 0.6
f(CP,<RFD,RDC,ADE>) = 0.5
f(CP,<RNDD,RDC,ADE>) = 0.9

19) f(δ,<RCB,ADE,RDC,SP>) = 1.0
 f(δ,<RCB,RDC,ADE,SP>) = 1.0
 f(δ,<RHB,ADE,RDC,SP>) = 1.0
 f(δ,<RHB,RDC,ADE,SP>) = 1.0
 f(δ,<RHB,ADE,RDC,SP>) = 1.0
 f(δ,<RHB,RDC,ADE,SP>) = 1.0
 f(δ,<RHB,ADE,RDC,SP>) = 1.0
 f(δ,<RHB,RDC,ADE,SP>) = 1.0
20) f(δ,<RCB,ADE,RDC,CP>) = 1.0
 f(δ,<RCB,RDC,ADE,CP>) = 1.0
 f(δ,<RHB,ADE,RDC,CP>) = 1.0
 f(δ,<RHB,RDC,ADE,CP>) = 1.0
 f(δ,<RHB,ADE,RDC,CP>) = 1.0
 f(δ,<RHB,RDC,ADE,CP>) = 1.0
 f(δ,<RHB,ADE,RDC,CP>) = 1.0
 f(δ,<RHB,RDC,ADE,CP>) = 1.0

X2

21) f(δ, h) = 1.0

5
6

7
8

10

12

9

11

1

3

2

4

13

14

15

16

17

18

19

20

21RHB

RCB

RFD

RNDD RDC

ADE

ADE

RDC SP

CP

δ

Fig. 2. The discrete stochastic process defined by the HDSPN for N from Figure 1

0.43

0.43

0.11
0.03

1

0.5

0.5

1

1 0.2

0.8

Y0 Y1 Y2 Y3 Y4 Y>4

1

1

1

0.8

0.
2

Fig. 3. The Markov Chain (partly) for the stochastic process from Figure 2

where p(t, h) gives the estimated probability of transition t within cluster [t],
and q(t, h) the estimated probability to choose cluster [t].

The probability f(t, h) for ι and δ is known and straightforward. Since
[ι] = {ι} and [δ] = {δ}, there are no other transitions to fire and p(ι, h) =
p(δ, h) = 1. The cluster probability is defined by q(ι, h) = χ(h = ε) and similarly

History-Dependent Stochastic Petri Nets 373

q(δ, h) = χ(∀t ∈ T : m0 +N
−→
h < •t), due to Def. 7. These clusters are selected iff

the history is empty, or when there are no other enabled transitions, respectively.
For the remainder of the paper we assume that when transitions of multiple

clusters are simultaneously enabled, a choice between these clusters is made with
equal probabilities, which is justified by the cluster independency.5

Assumption 1 (Equal Probabilities for Clusters). Let C be the set of all
clusters in N = 〈P, T, F 〉. ∀ci, cj ∈ (C\{[ι], [δ]}) : (∀t ∈ ((ci ∪ cj) ∩ T) : (m0 +
N
−→
h) ≥ •t)) ⇒ P[Xn+1 ∈ ci|Hn = h] = P[Xn+1 ∈ cj |Hn = h].

Assumption 1 implies the following definition of q(t, h):

q(t, h) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 , if q(ι, h) = 1.
0 , if q(δ, h) = 1.

χ(m0 + N
−→
h ≥ •t)∑

c∈(C\{[ι],[δ]})

χ(∀u ∈ (c ∩ T) : (m0 + N
−→
h) ≥ •u)

, otherwise.

(1)
Next we will give some simple examples of possible p(t, h) definitions.

Example 1. Let transitions in a cluster be chosen with equal probabilities p(t, h)
= |[t] ∩ T |−1. Note that in this case not all enabled transitions in the net have
the same probability.

Example 2. We can use the observed firing frequency of transition t in h for
defining its probability. The more often t has fired, the higher the probability
becomes:

p(t, h) =
−→
h (t) + 1∑

x∈([t]∩T)

(
−→
h (x) + 1)

.

The latter example shows that in some cases we cannot aggregate the history to
a k-order finite Markov chain.

Among other typical examples are nets where reaching some threshold of
the occurrence of a transition t increases or decreases the probability of some
transition(s) in the net. For example, error-handling transitions can be more
likely to become enabled after the occurrence of a number of errors. Also the
time spent in the process or the resources involved in the process can be part of
the characterisation. It is not our intention here to be complete, nor to discuss
how to get the best characterisation. In this paper we limit ourselves to the
definition of the framework and showing some example characterisations.

5 Different assumptions can be made. However, since we abstract from time and the
firing in one cluster does not disable transitions in another cluster, this is less rele-
vant.

374 H. Schonenberg et al.

3.2 Discovery of p(t, h)

In real life, p(t, h) is normally unknown. When p(t, h) is unknown, we use the
log to estimate p̂(t, h). Let [t] = {t1, . . . , tk}. The multinomial distribution for
the transitions is the probability distribution of n independent observations
X1, . . . , Xn, where each possible outcome Xi ∈ {t1, . . . , tn} occurs with proba-
bility πi, with π1, . . . , πk ≥ 0 and

∑k
i=1 πi = 1. For n observations we denote the

number of times that ti fired by ni. X1, . . . , Xn follows a multinomial distribu-
tion with parameters n and π = (π1, . . . , πk). We estimate f(ti, h) by estimating
parameter π̂i = ni

n for the multinomial distribution of [ti] from the log.
A naive approach for the estimation would be to look in L how often t was

chosen after h. However, the requirementHn = hmight exclude (too) many cases
from the execution log resulting in a sample from which no reliable estimation
can be made. Abstractions on history can be used to still obtain meaningful
results. Note that we did use history abstractions in the examples above: in
Example 1 the history is completely disregarded, in Example 2 the Parikh vector
abstraction is taken, i.e. the order of transitions in h is ignored. Other examples
of abstractions are finite horizon abstractions and abstractions that consider the
net structure, for example by counting formulae [4]. Note that the definition of
q(t, h) is already an abstraction.

Here we consider one of the possible abstractions in more detail, where we
concentrate on the correlation between the choice of a transition from cluster c
and the last fired transition from cluster R(c), assuming we know a function R
mapping c to a cluster that has the strongest correlation with c. This abstraction
is interesting for practical applications since the choices in some clusters (which
might also be human made choices) can be strongly correlated e.g. due to data
dependencies, that might not be visible in the log. We introduce the history
abstraction function α : H × C → T as follows.

α(h, c) =
{
t , if h = (σ; t; γ) and t ∈ (c ∩ T) and σ ∈ T ∗ and γ ∈ (T \ c)∗,
⊥ , if h ∈ (T \ c)∗.

Now we estimate for every t the probability to choose t under the condition that
s was the last choice in cluster R([t]). If no transition from R([t]) has fired yet,
s is undefined (s = ⊥). Under this condition we obtain the samples from the
log to estimate p(t, h), for every t, given h. For this purpose we divide φ(t, s) by
ψ(t, s), where φ(t, s) is the number of positive observations in the sample, i.e.
the frequency of s ∈ R[t] ∪ {⊥} being the last transition of the cluster R([t])
occurring before t and ψ(t, s) is the sample size, i.e. the frequency of s being the
last transition of R([t]) before some transition of the cluster of t:

φ(t, s) =
∑
h∈L

L(h) · |{h̃ | ∃h̃, γ ∈ T ∗ : h = (h̃; t; γ) ∧ α(h̃, R([t]) = s)}|,

ψ(t, s) =
∑
h∈L

L(h) · |{h̃ | ∃h̃, γ ∈ T ∗, x ∈ [t] : h = (h̃;x; γ) ∧ α(h̃, R([t]) = s)}|.

History-Dependent Stochastic Petri Nets 375

In case the denominator is 0 (i.e. s was never seen before any transition from
cluster [t] in cases registered in the log), we take the history-independent esti-
mation of the probability of t by dividing the number φ(t) of occurrences of t in
the log by the number ψ(t) of the occurrences of transitions from [t] in the log.

φ(t) =
∑
h∈L

L(h) · |{h̃ | ∃h̃, γ ∈ T ∗ : h = (h̃; t; γ)}|, (2)

ψ(t) =
∑
h∈L

L(h) · |{h̃ | ∃h̃, γ ∈ T ∗, x ∈ [t] : h = (h̃;x; γ)}|. (3)

In cases where there are no occurrences of transitions from [t] in the log at all,
we assume that each transition from [t] fires with equal probability. Now p̂(t, h)
takes the following form:

p̂(t, h) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(t, α(h,R([t])))
ψ(t, α(h,R([t])))

, if ∃h ∈ L, x ∈ [t] : x ∈ h ∧ ψ(t, α(h,R([t]))) �= 0,

φ(t)
ψ(t)

, if ∃h ∈ L, x ∈ [t] : x ∈ h ∧ ψ(t, α(h,R([t]))) = 0,

|[t] ∩ T |−1 , if ∀h ∈ L, x ∈ [t] : x /∈ h.

This idea can be straightforwardly generalised for several correlated clusters.
Note that for this abstraction we could easily extend the marking to include the
dependencies with the past, but then the net loses its free-choice property and
becomes more difficult to understand and maintain, especially for more complex
dependencies.

3.3 Discovery of the Correlations between Clusters

In the reasoning above, we assumed that the function R is known. In some cases
R can be defined based on judgements of experts; in many cases R should be
discovered based on the information from the log. Here we describe a simple
procedure for checking whether the choice made in cluster C2 is a significant
correlated with the choice already made in cluster C1.

We introduce two random variables:X and Y , representing the choices in clus-
ters C1 and C2 respectively. The 0-hypothesis is that X and Y are independent.
Let C1 contain transitions x1, . . . , xl and C2 transitions y1, . . . , ym.

From the log we derive the depicted matrix. The test statistic is: T =
l∑

i=1

m∑
j=1

(nij − Eij)2

Eij
, which is χ2-distributed with parameter (m− 1)(l − 1).

We reject the 0-hypothesis if T is sufficiently large. For example if l = m = 7
we reject the independency hypothesis with confidence 99% if the test statistic
is greater than 58.6 and with confidence 95% if it is greater than 51.

376 H. Schonenberg et al.

y1 . . . yj . . . ym

x1 r1

. .
xi nij ri

. .
xl rl

k1 . . . kj . . . km N

Here nij is the number of the occurrences of transition
xi before transition yj , ri =

∑m
j=1 nij , kj =

∑l
i=1 nij

and
∑l

i=1 ri =
∑m

j=1 kj = N .

Under our 0-hypothesis, the expected value Eij of a cell

is Eij = pi · qi · N , where pi =
ri

N
and qi =

kj

N
. So

Eij =
ri · kj

N
.

4 Simulation with HDSPNs

In this section we show how to simulate HDSPNs using CPN tools [6], which is a
well established tool for modelling and analysis of Coloured Petri nets (CPNs) [5]
with support for simulation. We also show some results of simulation experiments
showing the benefits of HDSPNs.

4.1 HDSPNs in CPN Tools

To represent a HDSPN in CPN tools we start with its basis (classical) Petri net
and then add the history and the probability information as follows:

Global History. The global history (or its abstraction) is kept in a special place
that contains a token with the history information. Initially it contains a token
containing the empty history. Every transition of the Petri net is then linked to
the history place, and transition firings update the history token by adding the
information about the firing. If a history abstraction is used, some firings might
leave the history token value unchanged.

For the abstraction described in Section 3.2, the colour set of the history
token can be the set of transitions from the range of function R, i.e. R[T]. The
set contains at most one transition per cluster. Whenever from some cluster
where c ∈ R[T] a transition t ∈ c fires, a transition from c is removed from the
history token (if it was there) and t is added instead.

History-Dependent Probabilities. CPN Tools has the possibility to define
probabilities but these probabilities are history-independent. To introduce a
history-dependent probability mechanism, we add place random that contains
a token whose value is a randomly chosen between 0 and 1. Every firing of a
transition results in updating the value of this token with a new random number.

Within each cluster we define transition guards capturing the probability
mechanism as follows: Let cluster c contain transitions t1, . . . , tn and given his-
tory h, the probability to choose transition ti under condition that cluster c is

chosen is p(ti, h). Then the guard for ti is defined as
i−1∑
j=1

p(tj , h) ≤ r <
i∑

j=1

p(tj , h)

(for transition t1, the lower border is 0), where r is the value of the token on ran-
dom. This definition of the guards implies that in every cluster at every moment

History-Dependent Stochastic Petri Nets 377

at most one transition can enabled. Due to the semantics used by CPN Tools6,
the default choice of the transition is made between the enabled transitions with
equal probability. In our case this actually becomes the choice of the cluster,
from which the transition will fire, thus implementing Equation 1.

To measure relevant performance indicators, necessary information like costs
of actions is added to the transitions of the net.

4.2 Simulation Experiments

One of the intended practical applications for the HDSPN framework is the eval-
uation of process execution recommenders [14]. These recommenders assist users
in deciding which enabled activity to execute next, according to some strategy.
We can compare different recommender strategies by performing the simulation
with the user actions being chosen followed the recommender advises and the
system choices (as opposite to the choices of the user) being made according to
history-dependent probabilities, taking into account the most significant corre-
lations (estimated based on the past performance of the system). The goal of
our experiments below is to show the impact of history-dependent probabilities
on the simulation outcome.

We start with a model M0, which is a CPN model with data-dependent tran-
sition guards and case data generated according to some distributions. We use
this model to produce an execution log of the system before the use of the recom-
mender. Data dependencies in the model induce the existence of correlations be-
tween the choices of transitions in certain clusters. (In real life, data dependencies
are often fuzzy or unknown, so the model with data and data operations defined
is actually not available and cannot be used for simulations; the log is available.)
Then we use this execution log to discover history-dependent probabilities by ap-
plying the abstraction from Subsection 3.2. Finally, we construct modelM1 from
M0 by removing data and adding the discovered history-dependent probabilities
as defined in Section 3.2.

For comparison, we additionally construct two models: M2 obtained from
M0 by removing data and without adding any probabilities (i.e. the default
probability mechanism of CPN Tools is used in the simulations), and M3 where

static (not history-dependent) probabilities are added as
φ(t)
ψ(t)

(with φ and ψ

defined by Equations 2 and 3) for every transition t. We define performance
metrics, e.g. costs, for each transition. Finally, we ran the recommender with all
the four models and compared the obtained results.

We characterise the differences between the approaches by considering the
differences in transition occurrence ratios, because they are independent from
the actual values of the performance metrics. In the simulation on M0 with
a recommender, 381 out of 500 (76,2%) traces of the execution log contained
transition t9. In our HDSPN M1 this number was almost the same: 361 (72,2%),

6 For automatic simulation CPN tools uses random number generation to chose be-
tween enabled transitions

378 H. Schonenberg et al.

in M2 that was only 237 (47,4%) and in M3 233 (46,6%). Similar ratios were
found for the other transitions as well. As expected, our model gave the most
precise approximation of the behaviour of M0.

In this experiment we have changed the simulation settings by using rec-
ommendations. For history-independent approaches we have shown that such
changes do not affect the simulation, i.e. the probabilities for the remainder of
choices remain equal, even though there is a correlation with the part that has
been changed. This is not the case for HDSPNs, due to history-dependency.
Simulation of HDSPNs yields the best estimations for the number of transition
occurrences, making these nets most suitable for the evaluation of recommenders.

5 Conclusion

In this paper we introduced stochastic Petri nets with history-dependent prob-
ability distributions. We also gave an example showing how the probability dis-
tributions can be estimated based on the execution log. In this paper we con-
centrated on untimed nets, where the execution of transitions would have fixed
costs. To allow for timed performance analysis, we will extend our framework
with time. An additional research question arising there is the estimation of the
history influence on the distributions of the execution times of the transitions.
Our experiments showed the potential usefulness of our framework for perfor-
mance analysis of workflows. History-dependency of probabilistic distributions
facilitates analysis of the effect of different executions (choices). This makes the
framework suitable for the evaluation of process execution recommenders. Cur-
rently, we are comparing several strategies for process recommenders by using
simulations on HDSPNs based on real-life logs.

For the future work we also plan systematic investigation of the possible ab-
stractions of history and methods for the discovery of most significant corre-
lations to obtain better estimations of the probability distributions. Another
direction of this research is combining our framework with the theory of Markov
Decision Processes (MDPs) [12] to control the process execution by minimizing
cost, or maximizing reward.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering 47(2), 237–267 (1996)

2. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

3. Florin, G., Natkin, S.: Les Reseaux de Petri Stochastiques. Technique et Science
Informatiques 4(1), 143–160 (1985)

4. van Hee, K.M., Serebrenik, A., Sidorova, N., van der Aalst, W.M.P.: History-
Dependent Petri Nets. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS,
vol. 4546, pp. 164–183. Springer, Heidelberg (2007)

History-Dependent Stochastic Petri Nets 379

5. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. EATCS monographs on Theoretical Computer Science. Springer, Heidelberg
(1992)

6. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Soft-
ware Tools for Technology Transfer 9(3-4), 213–254 (2007)

7. Kolmogorov, A.: Moscow Univ. Math. Bull. 1 (1937)
8. Ajmone Marsan, M., Balbo, G., Chiola, G., Conte, G.: Generalized Stochastic Petri

Nets Revisited: Random Switches and Priorities. In: PNPM 1987: The Proceedings
of the Second International Workshop on Petri Nets and Performance Models,
Washington, DC, USA, pp. 44–53. IEEE Computer Society, Los Alamitos (1987)

9. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. ACM SIGMETRICS Perform. Eval.
Rev. 26(2), 2 (1998)

10. Molloy, M.K.: On the Integration of Delay and Throughput Measures in Dis-
tributed Processing Models. PhD thesis, University of California, Los Angeles
(1981)

11. Neveu, J.: Mathematical Foundations of the Calculus of Probability. Holden-day
(1965)

12. Ross, S.M.: Introduction to Probability Models, 9th edn. Academic Press, Inc.,
Orlando (2006)

13. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering Colored
Petri Nets From Event Logs. International Journal on Software Tools for Technol-
ogy Transfer 10(1), 57–74 (2008)

14. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting
Flexible Processes Through Recommendations Based on History. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

15. Symons, F.J.W.: Modelling and Analysis of Communication Protocols Using Nu-
merical Petri Nets. 152, Ph.D. Thesis, Univ. of Essex, Dep. of Electr. Engineering
Science, Telecommunication Systems Group (May 1978)

Privacy Preserving Modules for Ontologies

Thomas Studer

Universität Bern, Institut für Informatik und angewandte Mathematik,
Neubrückstrasse 10, CH-3012 Bern, Switzerland

tstuder@iam.unibe.ch

Abstract. Data privacy is an important application of ontology modu-
larization. The aim is to publish one module while keeping the information
of another module private. We show how locality and partitioning - two ba-
sic concepts in the theory of modular ontologies - naturally lead to privacy
preserving query answering over modular ontologies.

1 Introduction

Recently, big effort has been made to understand modules in the context of
ontologies and description logic. The problems studied in that context are to find
formalisms for combining OWL ontologies as well as methods for decomposing
ontologies. These issues mainly are investigated in order to enable safe ontology
reuse and to obtain better reasoning algorithms.

We believe that there is another important application of ontology modular-
ization, namely data privacy for ontologies. If we are given a modular ontology,
then it should be possible to publish a module while keeping the information of
another module private. We show how concepts of modular ontologies, such as
locality and partitioning, naturally lead to privacy preserving modules.

The privacy notion we study is provable data privacy which has been intro-
duced in the context of relational database systems [1]. This notion has later
been extended to logic based systems in [2]. Assume we are given a set of axioms
T (which can be seen as general public background knowledge, the database
schema, or an ontology) and a public view definition V . A view VI is possible
if it may be the answer an agent obtains when issuing the queries of V . We say
privacy is preserved for a query C if for no possible view VI the agent can infer
from T and VI that an individual a belongs to the answer of C. In database sys-
tems this is formalized as the set of certain answers to C is empty with respect
to T and VI . For logic based systems this is equivalent to saying that T and VI

do not entail a : C for any a.
This paper is organized as follows. In the next section we introduce the ex-

pressive description logic SHOIQ for which we will state our privacy results.
Further we recall the definitions of provable data privacy in the context of de-
scription logic. In Section 3, we present a first privacy result which is based in
the notion of locality. Intuitively, a concept C is local with respect to a signature
S if we can interpret C by the empty set no matter how S is interpreted. This
leads immediately to a privacy result since having an interpretation I where

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 380–387, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Privacy Preserving Modules for Ontologies 381

CI is empty means that a : C cannot be inferred for any a. Then in Section 4
we investigate data privacy based on partitioning of ontologies. This allows us
to include in the public view definition other queries than in the locality based
approach. Finally we discuss related work and conclude.

2 Technical Preliminaries

In the first part of this section we introduce the description logic SHOIQ, see
[3], which underlies modern ontology languages such as OWL. In the second part
we recall the notion of provable data privacy from [1].

A SHOIQ signature S is the disjoint union of a set of role names R, a set
of concept names C, and a set of nominals I. A SHOIQ role is either R ∈ R or
an inverse role R− for R ∈ R. The set of SHOIQ concepts C is given by the
following grammar

C :== A | j | ¬C | C � C | ∃R.C | ≥ nS.C

whereA ∈ C, j ∈ I, andR,S are roles where S is a simple role1, and n is a positive
integer. We use the abbreviations: C � D := ¬(¬C � ¬D), ∀R.C := ¬∃R.¬C,
and ≤ nS.C := ¬(≥ n+ 1S.C).

A SHOIQ TBox is a finite set of role inclusion axioms R1 � R2 where Ri are
roles, transitivity axioms trans(R) where R ∈ R, and general concept inclusion
axioms C1 � C2 where Ci are concepts. The signature sig(T) of a TBox T is the
set of symbols occurring in T . Similarly, we define the signature of an axiom and
of a concept, respectively.

An interpretation I for the signature S is a par (ΔI , ·I) where ΔI is a non-
empty set (called the domain) and ·I is the interpretation function such that
RI ⊆ ΔI ×ΔI for each R ∈ R, CI ⊆ ΔI for each C ∈ C, and jI is a singleton
subset of ΔI for each j ∈ I. The interpretation function extends to complex roles
by (R−)I := {(y, x) : RI(x, y)} and to concepts by:

(¬C)I := ΔI \ CI

(C �D)I := CI ∩DI

(∃R.C)I := {x : ∃y(RI(x, y) ∧ CI(y))}
(≥ nR.C)I := {x : �{y : RI(x, y) ∧CI(y)} ≥ n}.

We say I |= R1 � R2 iff RI
1 ⊆ RI

2, I |= trans(R) iff RI is transitive, and
I |= C � D iff CI ⊆ DI . An interpretation I is a model of a TBox T (I |= T) iff
it is a model of all axioms of T . A TBox is consistent if it has a model. A TBox
T entails an axiom α (T |= α) iff I |= T implies I |= α for each I.

In this paper we restrict ourselves to the case of data privacy with respect to
retrieval queries. Since our ontology language includes nominals, we do not need
to introduce individuals. Informally, the statement that an individual a belongs
to a concept C can be expressed as {a} � C. Therefore we will treat nominals
as individuals and write j : C for j � C when j ∈ I.
1 See [3] for a precise definition of simple roles.

382 T. Studer

Definition 1 (Query, answer, view)

1. A retrieval query is a concept C.
2. The answer to a query C with respect to a TBox T is the set of all nominals
a ∈ I for which T |= a : C.

3. A view definition is a finite set of queries.
4. A view VI of a view definition V is a finite set of axioms of the form a : C

such that if a : C is an element of VI , then C ∈ V .
5. A view VI is possible with respect to a TBox T and a view definition V , if
VI is a view of V and T ∪ VI is consistent.

In [1] we introduced the notion of provable data privacy. It turned out that
for the setting we introduced above, provable data privacy can be reduced to
entailment, see [2]. We make use of this fact here to give the following definition
of data privacy.

Definition 2 (Data privacy)

1. Given a TBox T , a view VI , and a query C, we say that privacy is preserved
for C with respect to T and VI if the set of answers to C with respect to
T ∪ VI is empty.

2. Given a TBox T , a view definition V , and a query C, we say that privacy is
preserved for C with respect to T and V if for all views VI that are possible
with respect to T and V we have that privacy is preserved for C with respect
to T and VI .

3 Locality Based Privacy

We prove a first privacy theorem based on the notion of locality which was first
introduced in [4] in order to provide a logical framework for modular ontologies.
A similar theorem for subsumption queries and SHIQ TBoxes is shown in [5].

Definition 3 (Trivial expansion). An S-interpretation J = (ΔJ , ·J) is an
expansion of an S′-interpretation I = (ΔI , ·I) if S′ ⊆ S, ΔJ = ΔI , and XJ = XI

for every X ∈ S′. A trivial expansion of I to S is an expansion J of I such that
XJ = ∅ for every role name and concept name X ∈ S \ S′.

Definition 4 (Locality). Let S be a signature.

1. A concept A is positively local wrt. S if for every trivial expansion J of any
S-interpretation to any S′ ⊇ S ∪ sig(A) we have AJ = ∅.

2. An axiom α is local wrt. S if every trivial expansion J of any S-interpretation
to any S′ ⊇ S ∪ sig(α) is a model of α.

Note that the definition of locality implies that an axiom containing a nominal
j cannot be local wrt. S if j /∈ S.

Grau et al. [6] show how locality can be tested by standard DL reasoners.
Although for SHOIQ this is a NEXPTIME-complete problem, the locality test

Privacy Preserving Modules for Ontologies 383

will often perform well in practice. However, they also present a tractable ap-
proximation to the locality condition which is based on the syntactic structure
of concepts.

In order to state our first privacy theorem we make the following assumptions.
Let P and S be two signatures with P ⊆ S. Let T be a TBox over S and let
TP ⊆ T be those axioms of T that are built from the signature P only. Further,
we assume that all axioms of T \ TP are local wrt. P.

Theorem 1. Let C be a positive local query wrt. P. Let V be a view definition
which contains only queries over P. Then data privacy is preserved for C with
respect to the TBox T and the view definition V .

Proof. Let
VI be a possible view with respect to T and V . (1)

Since V contains only concepts of P, we find that sig(VI)\P consists of nominals
only. Therefore

C is positively local wrt. P ∪ sig(VI), (2)
all axioms of T \ TP are local wrt. P ∪ sig(VI). (3)

Because of (1) there exists a P ∪ sig(VI)-interpretation I such that I |= TP

and I |= VI . Let J be a trivial expansion of I to S ∪ sig(C). Thus by (3) and
the definition of locality we immediately get for each α ∈ T \ TP that J |= α.
Therefore we have J |= T ∪ VI . Moreover, by (2) we find CJ = ∅. Since VI was
arbitrary, we conclude that privacy is preserved for C. ��

4 Partition Based Privacy

The assumption in the previous theorem that the view only consists of queries
over P may be too restrictive in practice. In this section, we will present a
privacy result that is based on partitioning an ontology T in a public part TP

and a private (hidden) part TH . The public view definition V may now contain
queries that access TH . However, this access will occur only via quantifiers and
these quantifiers serve the purpose of information hiding. Therefore privacy will
be preserved for positively local concepts of TH .

Definition 5 (Safe TBox)

1. A TBox is called safe if all its axioms are local with respect to ∅.
2. A concept is positively local if it is positively local with respect to ∅.

In [7] an algorithm is presented to generate modules from a safe ontology. We
use this algorithm to produce a partitioning of a TBox T such that T = TP ∪TH

where TH and TP are disjoint. Moreover this algorithm gives a function V such
that

1. V assigns to each concept A in sig(T) either 1 or 2, and
2. V assigns to each role R in sig(T) a pair (i, j) with i, j ∈ {1, 2}.

384 T. Studer

The semantic counterpart of the partitioning of a TBox is given by the following
construction which is used in the proof of Theorem 3 in [7]. Let I = (ΔI , ·I) be
a model for the TBox T . We define an interpretation J as follows.

1. For each x ∈ ΔI we generate two new objects x1 and x2. We then set
ΔJ

1 := {x1 : x ∈ ΔI}, ΔJ
2 := {x2 : x ∈ ΔI}, and ΔJ := ΔJ

1 ∪ΔJ
2 .

2. For each concept name A with V(A) = i we set AJ := {xi : x ∈ AI}.
3. For each role name R with V(R) = (i, j) we set RJ := {(xi, yj) : (x, y) ∈ RI}.

It is easy to see that

1. ΔJ
1 ∩ΔJ

2 �= ∅,
2. AJ ⊆ ΔJ

i for each concept name A with V(A) = i, and
3. RJ ⊆ ΔJ

i ×ΔJ
j for each role name R with V(R) = (i, j).

As in [7] we can show the following lemma.

Lemma 1. For every concept C with V(C) = i we have:

1. if C is positively local, then CJ = {xi : x ∈ CI},
2. if C is not positively local, then CJ = ΔJ

j =i ∪ {xi : x ∈ CI}.

From this we immediately get the following theorem, again see [7] for a proof.

Theorem 2. Let T be a safe TBox and I be a model of T . Let J be the inter-
pretation given above. Then J also is a model of T .

Next we introduce the notion of an open concept. We will then prove that privacy
is preserved for positively local concepts C with V(C) = 2 with respect to the
TBox T and any view definition which consists of open concepts only. This
privacy result is based on the fact that the view definition (consisting of open
concepts) accesses private information only via quantifiers. These quantifiers
serve the purpose of information hiding.

Definition 6. Let T , TP , TH, and V as above. The open concepts are inductively
defined by the following clauses.

1. A concept C is open if V(C) = 1.
2. C �D and C �D are open if both C and D are open.
3. ¬C is open if C is a positively local concept with V(C) = 2.
4. ∃R.C and ≥ nR.C are open if V(R)) = (1, 2) and V(C) = 2.
5. ∃R.C and ≥ nR.C are open if V(R)) = (1, 1) and C is an open concept.
6. ∀R.C and ≤ nR.C are open if V(R)) = (1, 2) and V(C) = 2.
7. ∀R.C and ≤ nR.C are open if V(R)) = (1, 1) and C is an open concept.

An open view definition is a view definition that consists of open concepts only.

Theorem 3. Let T be a safe TBox as above. Let V be an open view definition.
Let C be a positively local concept with V(C) = 2. Then privacy is preserved for
C with respect to T and V .

Privacy Preserving Modules for Ontologies 385

Proof. Assume we are given a view VI based on V and a model I of T and VI .
We define the interpretation J as above where we additionally define

aJ := {x1 : {x} = aI} for each nominal a ∈ sig(VI). (4)

By Theorem 2, we know that J models T . We now show that J also is a model
of VI . Let a : D be an assertion on VI for an open concept D. We show by
induction on the structure of D that {x1 : x ∈ DI} ⊆ DJ .

1. D is a concept with V(D) = 1. In this case our claim follows from Lemma 1.
2. D is of the form E � F or E �F with E and F being open. The claim is an

immediate consequence of applying the induction hypothesis to E and F .
3. D is of the form ¬E where E is a positively local concept with V(E) = 2. We

find by Lemma 1 that ΔJ
1 ⊆ DJ . Therefore we have {x1 : x ∈ DI} ⊆ DJ .

4. D is of the form ∃R.E or ≥ nR.E for (i) a role name R with V(R) = (1, 2)
and a concept E with V(E) = 2 or (ii) R with V(R) = (1, 1) and an open
concept E. Assume there are x, y such that RI(x, y) and EI(y). In case (i)
we find RJ(x1, y2) by the definition of J and by Lemma 1 we find EJ(y2).
In case (ii) we find RJ(x1, y1) and applying the induction hypothesis to E
yields EJ(y1). Therefore in both cases we conclude x1 ∈ (∃R.E)J . The cases
for ≥ nR.E are similar.

5. D is of the form ∀R.E or ≤ nR.E for (i) a role name R with V(R) = (1, 2)
and a concept E with V(E) = 2 or (ii) R with V(R) = (1, 1) and an open
concept E. Assume x ∈ (∀R.E)I . Let y be such that RJ(x1, y). In case (i) we
have that y is of the form z2 for some z with RI(x, z). Thus we have z ∈ EI

and Lemma 1 yields EJ(y). In case (ii) we have that y is of the form z1 for
some z with RI(x, z). Thus we have z ∈ EI and by the induction hypothesis
we obtain y ∈ EJ . Therefore in both cases we conclude x1 ∈ (∀R.E)J . The
cases for ≤ nR.E are similar.

From {x1 : x ∈ DI} ⊆ DJ and (4) we conclude that J |= a : D. Thus J is a
model of T and VI such that for each nominal a ∈ sig(VI) we have aJ ∈ ΔJ

1 .
Since CJ ⊆ ΔJ

2 by Lemma 1, we conclude that privacy is preserved for C. ��

Remark 1. We have to be careful when we try to enlarge the class of open
concepts. The following examples show that privacy will be violated if we allow
additional open concepts. Let C be a concept with V(¬C) = 1 and V(C) = 1.
Further let D be a positively local concept with V(D) = 2. We consider the
following cases:

1. Suppose E � F is open if E is open. Then V = {C � D} is an open view
definition. However, the view a : C �D entails a : D.

2. Suppose E �F is open if E is open. Then V = {C �D,¬C} is an open view
definition. However, {a : C �D, a : ¬C} is a possible view with respect to V
which entails a : D.

3. Suppose ¬E is open if E is open. Then V = {¬¬D} is an open view defini-
tion. However, the view {a : ¬¬D} entails a : D.

386 T. Studer

Thus in all three cases, there is a possible view with respect to which the set of
answers to D is non-empty. Therefore in all three cases privacy is not preserved
for D with respect to V .

5 Related Work and Conclusion

We have introduced the problem of provable data privacy with respect to views
in [1,2]. An investigation of privacy with respect to view definitions in the context
of ALC ontologies is provided in [8]. Provable data privacy is a privacy notion
which corresponds to entailment. Of course there are also other - more fine
grained - notions, most prominently perfect privacy [9]. Unfortunately, lack of
space does not permit a discussion of them here.

Locality has been introduced in [4] in order to support safe merging of ontolo-
gies. That means an ontology can be integrated with a foreign ontology without
changing the meaning of the foreign ontology. Later, locality has also been used
to support partial reuse of ontologies [6]. There the problem is to find a frag-
ment of an ontology which captures completely the meaning of some terms. The
problem of extracting modules from a given ontology has also been addressed in
[7] where the partitioning algorithm is presented which is the core to our results
in Section 4. It is worth mentioning that the result of partitioning an ontology
can be seen as a knowledge base in the language of E-connections [10]. In fact,
all models of an E-connection ontology have the form required for Theorem 3.

A basic notion for the study of modularity is the one of a conservative exten-
sion, see for instance [11]. Grau and Horrocks [12] establish a tight connection
between conservative extensions and privacy guarantees for logic-based informa-
tion systems. Privacy aware access to ontologies is also addressed in [13] in the
context of view-based query answering over ontologies.

Summing up, we have established two privacy theorems stating that given a
modular ontology T , a view definition V , and a query C, privacy is preserved for
C wrt. T and any possible view of V . Our first result is based on the notion of
locality whereas the second one relies on a partitioning algorithm for ontologies.

References

1. Stoffel, K., Studer, T.: Provable Data Privacy. In: Andersen, K.V., Debenham, J.,
Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp. 324–332. Springer, Heidelberg
(2005)

2. Stouppa, P., Studer, T.: A formal model of data privacy. In: Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 400–408. Springer, Heidelberg
(2007)

3. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom.
Reason. 39(3), 249–276 (2007)

4. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modu-
larity of ontologies. In: Veloso, M.M. (ed.) IJCAI 2007, pp. 298–303 (2007)

5. Bao, J., Slutzki, G., Honavar, V.: Privacy-preserving reasoning on the semantic
web. In: WI 2007, pp. 791–797 (2007)

Privacy Preserving Modules for Ontologies 387

6. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting
modules from ontologies. In: WWW 2007, pp. 717–726. ACM, New York (2007)

7. Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and web ontologies.
In: KR 2006, pp. 198–209. AAAI Press, Menlo Park (2006)

8. Stouppa, P., Studer, T.: Data privacy for ALC knowledge bases. In: Artemov, S.,
Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 409–421. Springer, Heidelberg
(2008)

9. Miklau, G., Suciu, D.: A formal analysis of information disclosure in data exchange.
In: SIGMOD (2004)

10. Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-connections of abstract de-
scription systems. Artifical Intelligence 156(1), 1–73 (2004)

11. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Modularity in DL-Lite. In: DL
2007. CEUR Workshop Proceedings, vol. 250 (2007)

12. Cuenca Grau, B., Horrocks, I.: Privacy-preserving query answering in logic-based
information systems. In: ECAI 2008 (2008)

13. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: View-based query an-
swering over description logic ontologies. In: KR 2008, pp. 242–251 (2008)

Symbolic Bounded Conformance Checking of
Model Programs

Margus Veanes and Nikolaj Bjørner

Microsoft Research, Redmond, WA, USA
{margus,nbjorner}@microsoft.com

Abstract. Model programs are high-level behavioral specifications
typically representing Abstract State Machines or ASMs. Conformance
checking of model programs is the problem of deciding if the set of traces
allowed by one model program forms a subset of the set of traces allowed
by another model program. This is a foundational problem in the context
of model-based testing, where one model program corresponds to an im-
plementation and the other one to its specification. Here model programs
are described using the ASM language AsmL. We assume a background T
containing linear arithmetic, sets, and tuples. We introduce the Bounded
Conformance Checking problem or BCC as a special case of the confor-
mance checking problem when the length of traces is bounded and provide
a mapping of BCC to a theorem proving problem in T . BCC is shown to
be highly undecidable in the general case but decidable for a class of model
programs that are common in practice.

1 Introduction

We consider behavioral specifications given in the form of model programs.
Model programs are mainly used to describe protocol-like behavior of software
systems, and the underlying update semantics is based on ASMs [17]. However,
model programs usually depend on additional parameters that are needed for
executability. At Microsoft, model programs are used in the Spec Explorer tool
in the Windows organization as an integral part of the protocol quality assurance
process [16] for model-based testing of public application-level network protocols.
A central problem in the context of model-based testing is to determine if an
implementation conforms to a given specification, meaning that the traces that
are observed from the implementation under test do not contradict the model.
Traditionally, model-based testing is used at system-level, as a black-box testing
technique where the implementation code is not visible to the tester. White-box
testing on the other hand, is used at the unit-level by the developers of the code
and is based on different techniques. Here we assume that the implementation
is also given or abstracted as a model program and consider the conformance
checking problem as a theorem proving problem between the implementation
and the model. The general conformance checking problem is very hard but can
be approximated in various ways. One way is to bound the length of the traces,

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 388–400, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Symbolic Bounded Conformance Checking of Model Programs 389

type Vertex = Integer

type Edge = (Vertex, Vertex)
IsSource(v as Vertex, E as Set of Edge) as Boolean

return not exists e in E where Second(e) = v
Sources(E as Set of Edge) as Set of Vertex
return {First(e) | e in E where IsSource(First(e),E)}

Model program P Model program Q

var E as Set of Edge
var V as Set of Vertex =

{x,y|(x,y) in E}

[Action]

Step(v as Vertex)
require v in V and IsSource(v,E)

forall w in V
remove (v,w) from E

remove v from V

var D as Set of Edge
var S as Set of Vertex = Sources(D)

[Action]

Step(v as Vertex)
require S<>{} and v=Min(S)
D′ = {e|e in D where First(e)<>v}
S := (S\{v}) union Sources(D′)

D := D′

Fig. 1. P specifies a topological sorting of a directed graph G = (V, E) as follows.
The Step-action of P requires that the vertex v has no incoming edges and removes
all outgoing edges from v. Thus, starting from a given initial graph G with n vertices,
a trace Step(v1),Step(v2), . . . ,Step(vn) is allowed in P if and only if (v1, v2, . . . , vn)
is a topological sorting of G. Similarly, the model program Q describes a particular
implementation where during each step the vertex with minimum integer id is selected.
As in ASMs, the top-level loop of a model program is implicit: while there exists an
enabled action, one enabled action is chosen and executed.

which leads to the Bounded Conformance Checking problem, or BCC, and is the
topic of this paper.

Model programs typically assume a rich background universe including tuples
(records) and sets, as well as user defined data structures. Moreover, unlike tra-
ditional sequential programs, model programs often operate on a more abstract
level, for example, they use set comprehensions and parallel updates to compute
a collection of elements in a single atomic step, rather than one element at a
time, in a loop. The definition of model programs here extends the prior defi-
nitions to nondeterministic model programs, by allowing internal choices. Two
model programs, written in AsmL [4,18], are illustrated in Figure 1.

In Section 2 we define model programs. In Section 3 we define the problem
of bounded conformance checking or BCC and show its reduction to a theorem
proving problem in T . Section 4 discusses the complexity of BCC. Section 5 is
about related work.

2 Model Programs

We consider a background T that includes linear arithmetic, Booleans, tuples,
and sets. All values in T have a given sort. Well-formed expressions of T are

390 M. Veanes and N. Bjørner

T σ ::= xσ | Defaultσ | Ite(T B, T σ, T σ) | TheElementOf (T S(σ)) |
πi(T σ0×···×σi−1×σ×···×σk)

T σ0×σ1×···×σk ::= 〈T σ0 , T σ1 , . . . , T σk〉

T Z ::= k | T Z + T Z | k ∗ T Z

T B ::= true | false | ¬T B | T B ∧ T B | T B ∨ T B | T B ⇒ T B | ∀x T B | ∃x T B |
T σ = T σ | T S(σ) ⊆ T S(σ) | T σ ∈ T S(σ) | T Z ≤ T Z

T S(σ) ::= {T σ |x̄ T B} | ∅S(σ) | T S(σ) ∪ T S(σ) | T S(σ) ∩ T S(σ) | T S(σ) \ T S(σ)

T A ::= f (σ0,...,σn−1)(T σ0 , . . . , T σn−1)

Fig. 2. Well-formed expressions in T . Sorts are shown explicitly here. An expression
of sort σ is written T σ. The sorts Z and B are for integers and Booleans, respectively,
k stands for any integer constant, xσ is a variable of sort σ. The sorts Z and B are
basic, so is the tuple sort σ0 × · · · × σk, provided that each σi is basic. The set sort
S(σ) is not basic and requires σ to be basic. All quantified variables are required to
have basic sorts. The sort A is called the action sort, f (σ0,...,σn−1) stands for an action
symbol with fixed arity n and argument sorts σ0, . . . , σn−1, where each argument sort
is a set sort or a basic sort. The sort A is not basic. The only atomic relation that can
be used for T A is equality. DefaultA is a nullary action symbol. Boolean expressions
are also called formulas in the context of T . In the paper, sort annotations are mostly
omitted but are always assumed.

shown in Figure 2. Each sort corresponds to a disjoint part of the universe. We
do not add explicit sort annotations to symbols or expressions but always assume
that all expression are well-sorted. A value is basic if it is either a Boolean, an
integer, or a tuple of basic values.

The expression Ite(ϕ, t1, t2) equals t1 if ϕ is true, and it equals t2, otherwise.
For each sort, there is a specific Default value in the background. In particular,
for Booleans the value is false, for set sorts the value is ∅, for integers the value is
0 and for tuples the value is the tuple of defaults of the respective tuple elements.

The function TheElementOf maps every singleton set to the element in that
set and maps every other set to Default. Note that extensionality of sets:
∀v w (∀y(y ∈ v ↔ y ∈ w) → v = w), allows us to use set comprehensions
as terms: the comprehension term {t(x̄) |x̄ ϕ(x̄)} represents the set such that
∀y(y ∈ {t(x̄) |x̄ ϕ(x̄)} ↔ ∃x̄(t(x̄) = y∧ϕ(x̄))). We make use of explicit definitions
in terms of T such as Min (used in Figure 1), that returns the minimum element
from a set of integers, or 0 when the set is empty, Min(X) def= TheElementOf ({y |
y ∈ X ∧ ∀ z(z ∈ X ⇒ y ≤ z)}). In the general case, model programs also use
maps. We assume a standard representation of maps as function graphs, maps
are needed to represent dynamic ASM functions, see [7], maps are not used in
the current paper.

Actions. There is a specific action sort A, values of this sort are called actions
and have the form f(v0, . . . , varity(f)−1). DefaultA has arity 0. Two actions are

Symbolic Bounded Conformance Checking of Model Programs 391

equal if and only if they have the same action symbol and their corresponding
arguments are equal. An action f(v̄) is called an f -action. Every action symbol
f with arity n > 0, is associated with a unique parameter variable fi for all i,
0 ≤ i < n.1

Choice variables. A choice variable is a variable2 χ that is associated with a
formula ∃xϕ[x], called the range condition of χ, denoted by χ∃xϕ[x]. The following
axiom is assumed to hold for each choice variable:

IsChoice(χ∃xϕ) def= (∃xϕ[x]) ⇒ ϕ[χ∃xϕ]). (1)

In the general case, the sort of χ may be non-basic and χ is a map (a Skolem
function), in which case the range condition must hold for the elements in the
range of the map, see [7].

Model programs. The following definition extends the former definition of model
programs by allowing nondeterminism through choice variables. An assignment
is a pair x := t where x is a variable and t is a term (both having the same
sort). An update rule is a finite set of assignments where the assigned variables
are distinct.

Definition 1 (Model Program). A model program is a tuple P =(Σ,Γ, ϕ0, R),
where

– Σ is a finite set of variables called state variables ;
– Γ is a finite set of action symbols ;
– ϕ0 is a formula called the initial state condition;
– R is a collection {Rf}f∈Γ of action rules Rf = (γ, U,X), where

• γ is a formula called the guard of f ;
• U is an update rule {x := tx}x∈Σf

for some Σf ⊆ Σ, U is called the
update rule of f ,

• X is a set of choice variables of f
All unbound variables that occur in an action rule, including the range condi-
tions of choice variables, must either be state variables, parameter variables,
or choice variables of the action. The sets of parameter variables, state vari-
ables and choice variables must be disjoint.

Intuitively, choice variables are “hidden” parameter variables, the range condi-
tion of a choice variable determines the valid range for its values. For parameter
variables, the range conditions are typically part of the guard. We often say
action to also mean an action rule or an action symbol, if the intent is clear
from the context. The case when all parameter variables and choice variables of
a model program are basic is an important special case when symbolic analysis
becomes feasible, which motivates the following definition.3

1 In AsmL one can of course use any formal parameter name, such as v in Figure 1,
following standard conventions for method signatures.

2 Pronounced “chi”.
3 The standard notion of basic ASMs is more restrictive, in particular model programs

allow unbounded exploration, quantifiers may be unbounded.

392 M. Veanes and N. Bjørner

Definition 2 (Basic Model Programs). An update rule is basic if all pa-
rameter variables and choice variables that occur in it are basic. An action rule
is basic if its update rule is basic. A model program is basic if its action rules
are basic and the initial state condition implies that all nonbasic state variables
are empty sets.

Representing standard ASMs as model programs. Standard ASM update rules
can be translated into update rules of model programs. A detailed translation
from standard ASMs to model programs is given in [7]. Intuitively, a forall-
statement (such as the one used in Figure 1) translates into a comprehension
expression, and each choose-statement introduces a new choice variable. An im-
portant property of the translation is that, if choose statements are not allowed
to occur inside forall statements in the ASM update rules, then the transla-
tion yields a basic model program. When a choose-statement is nested inside a
forall-statement, the resulting model program will depend on a non-basic choice
variable or a choice function (Skolem function). In the general case, the trans-
lation also adds an additional state variable that indicates collisions of updates
and in this way captures “error” states. We assume here that update rules of
actions in a model program correspond to ASM update rules where some choice
variables occur as parameters of the action, in which case their range conditions
are typically part of the guard.

States. A state is a mapping of variables to values. Given a state S and an
expression E, where S maps all the free variables in E to values, ES is the
evaluation of E in S. Given a state S and a formula ϕ, S |= ϕ means that ϕ
is true in S. A formula ϕ is valid (in T) if ϕ is true in all states. Since T is
assumed to be the background theory we usually omit it, and assume that each
state also has an implicit part that satisfies T , e.g. that + means addition and
∪ means set union. In the following let P be a fixed model program.

Definition 3. Let a be an action f(v0, . . . , vn−1) and S a state. A choice ex-
pansion of S for a is an expansion S′ of S ∪ {fi �→ vi}i<n with choice variables
of f .

Definition 4. An f -action a is enabled in a state S if there exists a choice
expansion of S for a that satisfies the guard of f .

Definition 5. An f -action a causes a transition from a state S1 to a state S2,
if a is enabled in S1, S′

1 is a choice expansion of S1 that satisfies the guard of a,
for each assignment x := t of f , xS2 = tS

′
1 , and for any other state variable x,

xS2 = xS1 .

Example 1. Let P be the model program in Figure 1. The set of initial states
of [[P]] includes for example the state S0 = {V �→ {1, 2, 3}, E �→ {〈1, 2〉, 〈2, 3〉}}.
The action Step(1) is enabled in S0 because S0 ∪ {v �→ 1} |= v ∈ V ∧ ¬∃w(w ∈
V ∧ 〈w, v〉 ∈ E). The action Step(1) causes a transition from S0 to S1 = {V �→
{2, 3}, E �→ {〈2, 3〉}}. �

Symbolic Bounded Conformance Checking of Model Programs 393

A labeled transition system or LTS is a tuple (S,S0, L, T), where S is a set of
states, S0 ⊆ S is a set of initial states, L is a set of labels and T ⊆ S × L× S is
a transition relation.

Definition 6. Let P = (Σ,Γ, ϕ0, R) be a model program. The LTS of P , de-
noted by [[P]] is the LTS (S,S0, L, T), where S0 = {S | S |= ϕ0}; L is the set of
all actions over Γ ; T and S are the least sets such that, S0 ⊆ S, and if S ∈ S
and there is an action a that causes a transition from S to S′ then S′ ∈ S and
(S, a, S′) ∈ T .

Definition 7. A model program P is deterministic if forall transitions (S, a, S1)
and (S, a, S2) in [[P]], S1 = S2.

Clearly, any model program without choice variables is deterministic.

Definition 8. A run of P is a sequence of transitions (Si, ai, Si+1)i<κ in [[P]],
for some κ ≤ ω, where S0 is an initial state of [[P]]. The sequence (ai)i<κ is called
an (action) (κ-)trace of P .

3 Symbolic Bounded Conformance Checking

We are now ready to define the central problem of the paper in Definition 10.
Let P and Q be fixed model programs with the same set of action symbols.
Let k ≥ 0 be a fixed bound. We assume here that P and Q have initial state
conditions that require that all the state variables are initially equal to Default.
Under this assumption, we drop the initial state condition from the definition.
This assumption is needed in order to avoid tedious special cases, when for
example the initial conditions are false, etc. Note that, by adding an additional
initialization action, any values can be assigned to the state variables.

Definition 9. Q k-conforms to P , Q �k P , if for all l ≤ k, all l-traces of Q are
l-traces of P . Q conforms to P , Q � P , if Q �k P for all k.

If Q �k P , then P is more liberal by allowing more traces up to length k.
Intuitively, when P is a specification model program and Q is an implementation
model program and Q �k P , then Q behaves as expected by P within k steps.
Conformance testing is an approximation of k-conformance up to some k, where k
depends on the maximum length of the test cases. In the more general case, when
one distinguishes between observable and controllable actions in the context of
asynchronous systems, one needs to consider a more general form of conformance
notion, such as alternating refinement [2] or ioco [26], that is outside the scope
of this paper, see [28]. Note that a most general model program is one where
all actions have an empty update rule and all guards are true, such a model
program is trivially conformed to by any other model program.

Example 2. Let P and Q be the model programs in Figure 1. Assume that
there is an additional Init -action in both P and Q that first initializes the state

394 M. Veanes and N. Bjørner

variables to a concrete graph G and then enables the Step-action. One can show
that Q �k P for all k and thus Q � P . In this particular case, if one shows that,
for all input graphs with k vertices Q �k+1 P , then Q � P follows. Note also
that P ��2 Q. �

Definition 10 (BCC). Bounded Conformance Checking or BCC is the prob-
lem of deciding if Q �k P .

In order to reduce BCC into a theorem proving problem, we construct a special
formula from given P , Q and k, as defined in Definition 11. Given an expression
E and a step number i > 0, we write E[i] below for a copy of E where each
(unbound) variable x in E has been uniquely renamed to a variable x[i]. We
assume also that E[0] is E.

Definition 11 (Bounded Conformance Formula). Let P and Q be model
programs (x�, Γ, (γf,�, Uf,�, Xf,�)f∈Γ), for � = P,Q. Assume that xQ ∩ xP =
∅ and that the choice variables in P and Q are disjoint.4 Assume also that
each action rule includes an assignment for all the state variables.5 The bounded
conformance formula for P , Q, and k is:

BCC (Q,P, k) def= (xQ = Default ∧ xP = Default) ⇒ Conforms(0, k)

Conforms(k, k) def= true

(i < k) Conforms(i, k) def=
∧

f∈Γ

(∀ fj [i]χf,Q[i](γf,Q[i] ∧ IsChoice(χf,Q[i]) ⇒

∃χf,P [i](γf,P [i] ∧ IsChoice(χf,P [i]) ∧
(

∧
x:=tx∈Uf,Q∪Uf,P

x[i+ 1] = tx[i]

⇒ Conforms(i+ 1, k)))))

where fj [i] = f0[i] . . . farity(f)−1[i] are the parameter variables of action f for
step i (the parameter variables of f are shared between P and Q), and χf,P [i]
and χf,Q[i] are the choice variables of f in P and Q, respectively, for step i.

Notice that all parameter variables, and choice variables have distinct names in
each step. This implies that all oracles and parameters are local to a single step,
and do not carry over from one step to the next. The only connection between
the steps happens via the state variables. Note also that if both P and Q are
deterministic, then the resulting formula is essentially a universal formula. If
P has choice variables then the bounded conformance formula has a k-depth
quantifier alternation.

The following theorem allows us to check k-conformance by proving that the
corresponding bounded conformance formula is valid in T .

4 Alternatively rename those variables in Q for example.
5 Add an assignment x := x for each state variable x that is not assigned.

Symbolic Bounded Conformance Checking of Model Programs 395

Theorem 1. BCC (Q,P, k) is valid in T if and only if Q �k P .

Proof (Sketch). For k = 0 the statement holds trivially. Assume k > 0. Both
directions are proved separately. For the direction (=⇒) we assume that Q ��k P
and get a shortest run of length l ≤ k where the last action is enabled in Q but
not in P . From the run we can construct a state where ¬BCC (Q,P, l) is true.
Note that if ¬BCC (Q,P, l) is satisfiable then so is ¬BCC (Q,P, l′), for l′ > l.
The proof of the direction (⇐=) is similar. �

4 Complexity of BCC

Here we look at the complexity of BCC. First we note that the problem is ef-
fectively equivalent to the validity problem of formulas in second-order Peano
arithmetic with sets (Π1

1 -complete). This implies that there exists no refutation-
ally complete procedure for checking k-conformance in general (even for k = 1).
Second, we note that, even if we restrict the background universe to finite sets,
the problem is still undecidable, by being co-re-complete. Third, we show that
BCC is decidable over basic model programs. The reason for this is that for basic
model programs, the set variables can be eliminated, and the problem reduces
to Presburger arithmetic.

Undecidability of BCC. We use the result that the validity problem of formulas
in Presburger arithmetic with unary relations is Π1

1 -complete [1,19]. The Π1
1 -

hardness part is an immediate consequence of the results in [1,19], by considering
model programs that have one action with a set-valued parameter and a linear
arithmetic formula as the guard. The inclusion in Π1

1 can be shown similarly to
the proof of the Σ1

1 -completeness of the BMPC problem in [7].

Corollary 1. BCC is Π1
1 -complete.

Now suppose that the sets in the background are finite and consider the satisfi-
ability problem in T over finite sets that is re-complete [7].

Corollary 2. BCC over finite sets is co-re-complete.

Decidability of BCC over basic model programs. Basic model programs are com-
mon in practical applications. The two main reasons for this are: 1) actions
typically only use parameters that have basic sorts, see for example the Credits
model in [32]. 2) the initial state is usually required to have fixed initial values
or default values for all the state variables. Let T 0 stand for the fragment of T
where all variables are basic. We use decidability of T 0, that follows as a special
case from the decision procedure for T ≺ in [7], that is by reduction to linear
arithmetic.

Theorem 2. BCC of basic model programs is decidable.

396 M. Veanes and N. Bjørner

Proof (Sketch). Let P and Q be basic model programs and k a step bound. Let
ψ = BCC (Q,P, k). The subformula

∧
x∈Σ x[i+ 1] = tx[i] ⇒ Conforms(i+ 1, k)

of ψ is equivalent to the formula Conforms(i + 1, k){x[i + 1] �→ tx[i] | x ∈ Σ}
where x[i+1] has been replaced by tx[i]. Apply this transformation successively
to eliminate each occurrence of x[i+1] for i < k. Finally, eliminate each (initial)
state variable by replacing it with the default value. The resulting formula, say
ϕ, is equivalent to ψ and does not use any state variables. Moreover, since P and
Q are basic, ϕ is in T 0. The statement follows from Theorem 1 and decidability
of T 0. �

It is possible to carry out the reduction in Theorem 2 in polynomial time in the
size ψ. First, the formula ψ is translated into logic without sets but with unary
relations, by replacing set variables with unary relations and by eliminating set
comprehensions and set operations in the usual way, e.g., t ∈ S, where S is a set
variable, becomes the atom RS(t), where RS is a unary relation symbol. It is
easy to show by induction over expressions that such a translation can be done
in polynomial time in the size of ψ and preserves the structure of ψ.

We iterate the following transformation on the resulting formula, say ψi, start-
ing with i = k, repeating the transformation for i := i− 1, until i = 0. For ease
of exposition assume also that there is a single set valued state variable S.

The formula ψi has a subformula of the form (2) where Qȳρ is assumed to be
on Prenex form so that ρ is quantifier free,

∀x(Ri+1(x) ⇔ ϕ[x]) ⇒ Qȳρ[Ri+1(t1), . . . , Ri+1(tn)] (2)

where Ri+1 corresponds to the value of S at step i+ 1 and ϕ as well as each tj
may only contain values of S from step i. The formula (2) is equivalent to (3)
where we may assume that ȳ do not occur free in ϕ.

Qȳ(∀x(Ri+1(x) ⇔ ϕ[x]) ⇒ ρ[Ri+1(t1), . . . , Ri+1(tn)]) (3)

The formula (3) is equivalent to (4) (where z̄ are Boolean).

Qȳ ∀ z̄((
n∧

j=1

zj ⇔ ϕ[tj])︸ ︷︷ ︸
δ

⇒ ρ[z1, . . . , zn]) (4)

Formula δ is equivalent to (5) by using the encoding in [15, p 129],

∀x∀w ((
n∨

j=1

(x = tj ∧ w = zj)) ⇒ (w ⇔ ϕ[x])︸ ︷︷ ︸
Φ[w⇔ϕ]

). (5)

Now consider the formula Φ[w ⇔ ϕ], where ϕ is Qūγ[ū] in Prenex form. The
formula Φ[w ⇔ ϕ] is equivalent to

QūQcū′Φ[(w ∧ γ[ū]) ∨ (¬w ∧ ¬γ[ū′])] (6)

Symbolic Bounded Conformance Checking of Model Programs 397

where Qc is the complement of quantifier prefix Q; (6) is equivalent to

QūQcū′∀b∀b′((γ[ū] ⇔ b ∧ γ[ū′] ⇔ b′︸ ︷︷ ︸
γ′

) ⇒ Φ[(w ∧ b) ∨ (¬w ∧ ¬b′)]) (7)

Using the same encoding from [15] as above, γ′ is equivalent to

∀v̄∀d(((v̄ = ū ∧ d = b) ∨ (v̄ = ū′ ∧ d = b′)) ⇒ (d⇔ γ[v̄])) (8)

Combining the above equivalences, it follows that (2) is equivalent to

Q . . . ((8) ⇒ Φ[(w ∧ b) ∨ (¬w ∧ ¬b′)]) ⇒ ρ[z̄]) (9)

The reduction from (2) to (9) shows that no tj or ϕ needs to be duplicated
and clearly the Prenex form of (9) has the same size as (9). The formula (2) is
replaced in ψi with (9) to get ψi−1.

Finally, recall that the initial values of set variables are empty sets, which
means that ∀x (R0(x) ⇔ false), so each occurrence of an atom R0(t) is replaced
in ψ0 with false.

The above reduction can also be carried out in a more general setting, indepen-
dent of the background theory, by first introducing auxiliary predicates that de-
fine all the subformulas of ψ, by applying a transformation similar to [27] or [24],
and then eliminating the predicates (as a form of deskolemization) by equivalence
preserving transformations similar to the transformations shown above.

The overall reduction shows that the computational complexity of BCC of
basic model programs, regarding both the lower and the upper bound, is the
same as that of Presburger arithmetic, stated here as a corollary of the above
reduction and [15].

Corollary 3. The upper bound of the computational complexity of BCC of basic
model programs is 222cn

and the lower bound is 22cn

, where c is a constant and
n is the size of the input (P,Q, k) for BCC.

5 Related Work

The bounded model program checking problem or BMPC [7,29,31] is a bounded
path exploration problem of a given model program. BMPC is a generalization
of bounded model checking to model programs. The technique of bounded model
checking by using SAT solving was introduced in [5] and the extension to SMT
was introduced in [14], a related approach is described in [3]. BMPC reduces to
satisfiability modulo T . Unlike BCC, the resulting formula for a BMPC problem
is typically existential with no quantifier alternation, even for nondeterminis-
tic model programs, since choice variables and parameter variables are treated
equally. BMPC is therefore better suited for analysis using the SMT approach.
General reachability problems for transition systems as theorem proving prob-
lems are also discussed in [25].

398 M. Veanes and N. Bjørner

Formulating a state refinement relation between two symbolic transition
systems as a theorem proving problem, where one system describes an implemen-
tation and the other one its specification, has a long standing in automatic
verification of hardware, with seminal work done in [11] for verifying control prop-
erties of pipelined microprocessors. In particular the work generated interest in the
use of uninterpreted functions for hardware verification problems [10]. Refinement
techniques related to ASMs are discussed in [8]. Traditionally, such techniques are
based on state transitions, rather than action traces and use untyped ASMs; the
main motivation is incremental system design. Various refinement problems be-
tween specifications are also the topic of many analysis tools, where sets and maps
are used as foundational data structures, such as RAISE, Z, TLA+, B, see [6]. The
ASM method is also described in [6]. In some cases, like in RAISE, the underly-
ing logic is three-valued in order to deal with undefined values in specifications.
In many of those formalisms, frame conditions need to be specified explicitly, and
are not implicit as in the case of model programs or ASMs. In Alloy [20], the anal-
ysis is reduced to SAT, by finitizing the data types. A file system case study of a
refinement problem using Alloy is discussed in [22].

As future and ongoing work, we use the state of the art SMT solver Z3 [13]
for our experiments on satisfiability problems in T . Our current experiments use
a lazy quantifier instantiation scheme that is on one hand not limited to basic
model programs, but is on the other hand also not complete for basic model
programs, some of the implementation aspects are discussed in [32] in the con-
text of BMPC. In particular, the scheme discussed in [32] is inspired by [9], and
extends it by using model checking to implement an efficient incremental satura-
tion procedure on top of Z3. The saturation procedure is similar to CEGAR [12],
the main difference is that we do not refine the level of abstraction, but instead
lazily instantiate axioms in case their use has not been triggered during proof
search. Implementation of the reduction of BCC of basic model programs to
linear arithmetic is future work. In that context the reduction to Z3 does not
need to complete all the reductions to linear arithmetic, but can take advantage
of built-in support for Ite terms, sets, and tuples.

Model programs are used as high-level specifications in model-based testing
tools such as Spec Explorer [30] and NModel [23]. In Spec Explorer, one of the
supported input languages is the abstract state machine language AsmL [17,18].
In that context, sanity checking or validation of model programs is usually
achieved through simulation and explicit state model checking and search tech-
niques [21,30].

References

1. Alur, R., Henzinger, T.A.: A really temporal logic. In: Proc. 30th Symp. on Foun-
dations of Computer Science, pp. 164–169 (1989)

2. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating refinement re-
lations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

Symbolic Bounded Conformance Checking of Model Programs 399

3. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006. LNCS,
vol. 3925, pp. 146–162. Springer, Heidelberg (2006)

4. AsmL, http://research.microsoft.com/fse/AsmL/
5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.

In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

6. Bjørner, D., Henson, M. (eds.): Logics of Specification Languages. Springer, Hei-
delberg (2008)

7. Bjørner, N., Gurevich, Y., Schulte, W., Veanes, M.: Symbolic bounded model check-
ing of abstract state machines. Technical Report MSR-TR-2009-14, Microsoft Re-
search (February 2009) (Submitted to IJSI)

8. Börger, E., Stärk, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

9. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

10. Bryant, R.E., German, S.M., Velev, M.N.: Exploiting positive equality in a logic of
equality with uninterpreted functions. In: Halbwachs, N., Peled, D.A. (eds.) CAV
1999. LNCS, vol. 1633, pp. 470–482. Springer, Heidelberg (1999)

11. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994)

12. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

13. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

14. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model
checking over infinite domains. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI),
vol. 2392, pp. 438–455. Springer, Heidelberg (2002)

15. Fisher, M.J., Rabin, M.O.: Super-exponential complexity of presburger arithmetic.
In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical
Algebraic Decomposition, pp. 122–135. Springer, Heidelberg (1998); Reprint from
SIAM-AMS Proceedings, vol. VII, pp. 27-41 (1974)

16. Grieskamp, W., MacDonald, D., Kicillof, N., Nandan, A., Stobie, K., Wurden,
F.: Model-based quality assurance of Windows protocol documentation. In: ICST
2008, Lillehammer, Norway (April 2008)

17. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Specification and Valida-
tion Methods, pp. 9–36. Oxford University Press, Oxford (1995)

18. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theor. Com-
put. Sci. 343(3), 370–412 (2005)

19. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 complete. Journal

of Symbolic Logic 56, 637–642 (1991)
20. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)
21. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing

and Analysis with C#. Cambridge University Press, Cambridge (2008)
22. Kang, E., Jackson, D.: Formal modeling and analysis of a flash filesystem in Alloy.

In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238,
pp. 294–308. Springer, Heidelberg (2008)

http://research.microsoft.com/fse/AsmL/

400 M. Veanes and N. Bjørner

23. NModel, http://www.codeplex.com/NModel (public version released, May 2008)
24. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.

Symb. Comput. 2(3), 293–304 (1986)
25. Rybina, T., Voronkov, A.: A logical reconstruction of reachability. In: Broy, M.,

Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 222–237. Springer, Heidelberg
(2004)

26. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38.
Springer, Heidelberg (2008)

27. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Mathematics and Mathematical Logic, Part II, pp. 115–125 (1968)

28. Veanes, M., Bjørner, N.: Input-output model programs. In: Leucker, M., Morgan,
C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 322–335. Springer, Heidelberg (2009)

29. Veanes, M., Bjørner, N., Raschke, A.: An SMT approach to bounded reachability
analysis of model programs. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih,
K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 53–68. Springer, Heidelberg (2008)

30. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec Explorer. In:
Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp.
39–76. Springer, Heidelberg (2008)

31. Veanes, M., Saabas, A.: On bounded reachability of programs with set comprehen-
sions. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI),
vol. 5330, pp. 305–317. Springer, Heidelberg (2008)

32. Veanes, M., Saabas, A., Bjørner, N.: Bounded reachability of model programs.
Technical Report MSR-TR-2008-81, Microsoft Research (May 2008)

http://www.codeplex.com/NModel

Multi-level Virtual Machine Debugging Using
the Java Platform Debugger Architecture�

Thomas Würthinger1, Michael L. Van De Vanter2, and Doug Simon2

1 Institute for System Software
Johannes Kepler University Linz

Linz, Austria
2 Sun Microsystems Laboratories

Menlo Park, California, USA
wuerthinger@ssw.jku.at, michael.vandevanter@sun.com, doug.simon@sun.com

Abstract. Debugging virtual machines (VMs) presents unique
challenges, especially meta-circular VMs, which are written in the same
language they implement. Making sense of runtime state for such VMs
requires insight and interaction at multiple levels of abstraction simultane-
ously. For example, debugging a Java VM written in Java requires under-
standing execution state at the source code, bytecode and machine code
levels. However, the standard debugging interface for Java, which has a
platform-independent execution model, is itself platform-independent. By
definition, such an interface provides no access to platform-specific details
such as machine code state, stack and register values. Debuggers for low-
level languages such as C and C++, on the other hand, have direct access
only to low-level information from which they must synthesize higher-level
views of execution state. An ideal debugger for a meta-circular VM would
be a hybrid: one that uses standard platform-independent debugger inter-
faces but which also interacts with the execution environment in terms of
low-level, platform-dependent state.

This paper presents such a hybrid architecture for the meta-circular
Maxine VM. This architecture adopts unchanged a standard debugging
interface, the Java Platform Debugger Architecture (JPDA), in com-
bination with the highly extensible NetBeans Integrated Development
Environment. Using an extension point within the interface, additional
machine-level information can be exchanged between a specialized server
associated with the VM and plug-in extensions within NetBeans.

1 Introduction

Higher level programming languages are increasingly implemented by a virtual
machine (VM), which is implemented in a lower-level language, which is in turn
compiled into the machine language of each target platform. Standard debuggers
for the VM implementation language, often C or C++, suffice in simple situa-
tions, but not when parts of the VM (for example critical libraries) are written

� This work was supported by Sun Microsystems, Inc.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 401–412, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

402 T. Würthinger, M.L. Van De Vanter, and D. Simon

in the implemented language. This is also the case for applications written in the
JavaTMprogramming language [4] that combine Java and C code via the Java
Native Interface(JNI) [5]. This creates a demand for mixed-mode debuggers that
support both languages: implementation and implemented.

The debugging challenge is even more complex and subtle for meta-circular
VM implementations where the implementation and implemented languages are
one and the same. A solution requires what we call multi-level debugging. A VM
developer would like to debug at the source-level of the implementation language,
but since that language is also being implemented by the VM, one must often
drop to a lower level: the machine language of the platform into which the
implementation is compiled. At this lower level one must be able to examine
every aspect of machine state (registers, stacks, data layouts, compiled code,
etc.) and to interpret that state in terms of the implementation language, even
when the implementation may be broken. Such a tool is necessarily specialized,
with the consequence that the many advantages of debugging with a modern
Integrated Development Environment (IDE) are unavailable.

For example, the Maxine Inspector is a multi-level debugger that is of ne-
cessity highly specialized for the meta-circular Maxine Virtual Machine [6], for
which Java is both the implementation and implemented language. The Max-
ine Inspector is an out-of-process, machine-level debugger that has the addi-
tional ability to interpret machine data at multiple levels of abstraction; it does
this through extensive code sharing with and knowledge of the Maxine VM
implementation. For example, Java objects can be viewed either abstractly or
in terms of a concrete memory layout that may vary across implementation
platforms and VM configurations. Java methods can be viewed as source code,
bytecodes, or machine code produced by one of Maxine’s compilers. Register
values and memory words can be interpreted either as bits, as primitive val-
ues, as addresses, or as pointers to known Java objects. Figure 1 shows a Java
object and a Java method, each viewed in both in source- and machine-level
representations.

There are Java debuggers as well as machine code debuggers, but to the
best of our knowledge, no system successfully combines both worlds as does the
Maxine Inspector. The original Inspector, however, stood alone and lacked both
the productivity features and sophisticated user interface that Java programmers
expect. As an alternative to replicating those advantages, we explored integrating
the core of the Inspector, the out-of-process Inspector Debugging Agent that
reads and interprets machine state, with the extensible NetBeans IDE [14].

This has been made possible through development of a new framework for
integration that depends on NetBeans support for the Java Platform Debugger
Architecture (JPDA) [13], which specifies contracts between a Java VM and a
Java debugger. This framework depends on JPDA’s Java Debug Interface (JDI)
[11] and uses JPDA’s Java Debug Wire Protocol (JDWP) [12] to communicate
with the debugged process over a network stream. This approach emphasizes
Java-level functionality and is extended when needed for displaying additional
machine-level information. A new “protocol within the JDWP protocol” enables

Multi-level Virtual Machine Debugging Using the JPDA 403

Fig. 1. Multiple view levels on a Java object and Java code during debugging

the transfer of extended kinds of information via JDWP, a technique of general
interest to VM developers seeking such extensions to debugging support.

Section 2 introduces this technique in the context of the Maxine VM and In-
spector. Section 3 describes the extended JDWP server implementation added
to the Inspector, along with a new mechanism using Java dynamic proxy classes
[10] to transmit additional information via the unchanged JDWP protocol. Sec-
tion 4 shows how a new “protocol with the JDWP protocol” communicates with
NetBeans, in particular with plug-in extensions that allow the debugger to use
the mechanism. Section 5 comments on the advantages of this approach, Section
6 reviews related work, and Section 7 concludes.

2 System Architecture

The Maxine Inspector requires almost no active support from the Maxine VM;
this is necessary because there is no separate implementation language whose
own implementation can be relied upon. The Inspector runs in its own pro-
cess, reads VM memory via inter-process communication, and implements basic
debugging commands by managing the VM process. The original Inspector in-
ternally comprises two software layers: an agent that both communicates with
the VM and interprets its state, and a front end that adds graphical views and
user interaction.

The alternative architecture developed for multi-level Maxine debugging with
NetBeans uses JDWP: an asynchronous protocol that defines a standard for
communication between Java debugger and VM. Important JDWP command
groups are:

– VirtualMachine: get general information, loaded classes, current threads.
– ReferenceType: reflective information about types, class fields and methods.

404 T. Würthinger, M.L. Van De Vanter, and D. Simon

Fig. 2. System architecture

– ObjectReference: retrieve the values of an object; invoke an instance method.
– ThreadReference: get data about the current call stack and thread status.
– EventRequest : install callbacks for events, e.g. class loading and breakpoints.

The Java Platform Debugger Architecture specifies how a Java debugger, using
a standard interface (JDI) and wire protocol (JDWP), can connect to a remote
server for debugging Java programs via a network connection.

Figure 2 shows how Maxine system components interact in this architecture;
new components are dark gray, and the others are unchanged. The new Max-
ine JDWP Server delegates commands to the existing Maxine Inspector Agent.
New plugins extend the NetBeans debugger and communicate directly with the
JDWP server. These plugins use both the standard JDWP protocol and a new
technique, described in Section 4, to access additional information not directly
supported by JDWP. Examples of such information include the address of ob-
jects in memory and compiled machine code for a Java method.

3 The Maxine JDWP Server

Most JDWP commands are queries from the client (debugger) that produce an-
swers from the server (agent), for example to gather information about loaded
classes and thread state. Events that originate in the VM are transmitted to
the client only when the client has registered for the events with a JDWP com-
mand. Current Maxine VM limitations delayed a complete implementation of
the JDWP protocol by the server, but the implemented subset already suffices
for debugging the Maxine VM using NetBeans.

In addition to standard Java debugging operations, the Maxine JDWP Server
can set machine code breakpoints, perform a machine code single-step, examine
memory contents, and more. When a breakpoint is reached, the server transmits
information about threads and their instruction pointers. The NetBeans debug-
ger always needs a correct Java bytecode position, which is then matched back
to the source code and highlighted as the current line in the program. The server
calculates the bytecode position based on the current machine code address; the
position can be either exact or approximate, depending on which Maxine com-
piler produced the code. For setting a breakpoint in the Java source code, the

Multi-level Virtual Machine Debugging Using the JPDA 405

server performs the reverse approximation, because the command sent by the
client Java debugger contains the bytecode location only.

The Maxine JDWP Server holds information about all loaded classes. Re-
quests for object field access are delegated to the Maxine Inspector Agent, which
reads the raw bytes and converts them, if possible, to valid JDWP types. This al-
lows IDE windows that display watch expressions and local variables to work as
expected. Current implementation restrictions in the Inspector Agent prevent
evaluation of method calls in watch expressions, but all other kinds of watch
expressions work as expected.

The Maxine JDWP Server creates artificial fields for the transmission of ad-
ditional, implementation-related information about Java objects. It can do this
because the server controls class layout information transmitted to the client.
Requests for read access to artificial fields are handled directly by the server,
whereas access to other fields requires reading from VM memory via the Inspec-
tor Agent. Figure 3 shows an example Java object and how it would appear in
the debugger client. At this time the server simulates fields for the address and
the header word of an object, both of which are machine-level VM implemen-
tation artifacts. The server also simulates a field that points to an object’s hub:
a Maxine VM implementation object describing the type and other meta-data
related to the object. The client debugger requires no modification to display
artificial fields, since they appear as ordinary Java fields.

Fig. 3. Artificial object fields help transmitting additional information about objects
to the debugger

406 T. Würthinger, M.L. Van De Vanter, and D. Simon

Fig. 4. Code example for the Java dynamic proxy mechanism combined with JDWP

4 A Protocol within the JDWP Protocol

Although artificial fields permit the display of additional information about ob-
jects without modification to the JDWP debugger client, a more general mech-
anism is also needed. This is done without change to the protocol by leveraging
the JDWP invoke command, which was originally intended to support method
calls in watch expressions. Java’s dynamic proxy mechanism [10] makes it possible
to create proxy objects behind an interface, objects that delegate method calls to
JDWP invoke commands. The Maxine JDWP Server creates artificial methods
that provide access to machine-level information via reflective delegation to ap-
propriate methods in the Inspector Agent. The net effect is a kind of specialized
“remote method invocation” available to the client through an interface.

Multi-level Virtual Machine Debugging Using the JPDA 407

Fig. 5. Dynamic proxy objects for implementing a protocol within the protocol

Code samples in Figure 4 show how the dynamic proxy mechanism is im-
plemented. Interface A is defined on both server and client. On the server it is
implemented by class AImpl; on the client a dynamic proxy object is created. The
client-side proxy implements the interface InvocationHandler, which allows the
delegation of Java calls; it delegates method calls to the invoke method.

Figure 5 diagrams the interaction among objects in this architecture. The
client implements the interface with a Java dynamic proxy object; it is based
on a JDI Object Reference to which it delegates method calls. This JDI Object
Reference is also known to the NetBeans Debugger and can be referenced in
JDWP commands. The Maxine JDWP Server delegates invoke commands on
a specific JDWP ID to the corresponding Java object. In conventional usage,
server-side invoke commands are delegated to the VM via the Inspector Agent,
but in this case they are redirected via reflective call to the implementer of the
interface. Glue code for these interactions is automated, so neither the user of
the interface nor the implementer need any special handling.

Three important optimizations address performance concerns:

– State Change: The client normally presumes that a conventional JDWP
invoke invalidates previously retrieved VM state. We can guarantee, how-
ever, that an invoke on an artificial method in the Maxine JDWP Server
executes no VM code. In these cases Java reflection is used to bypass the
built-in refresh mechanisms of JDI, thus avoiding unnecessary overhead on
the client.

– Multiple Objects: Although transmitting data is typically fast, the round trip
needed to perform a JDWP invoke is not. Some return values (e.g. the in-
formation about all registers of a thread) are represented by multiple objects,
and transmitting them individually could introduce undesirable latency. Such

408 T. Würthinger, M.L. Van De Vanter, and D. Simon

values are instead returned from server to client as a unit: a byte array con-
taining the serialized data needed to reconstruct the object graph.

– Cache: Many of the interface methods used in this architecture are guaran-
teed to return the same result when called with the same parameters. The
client further optimizes network traffic by caching these results, based on
annotations applied to such methods. This grants client side implementa-
tions the freedom to invoke remote commands without undue performance
concerns.

This approach, by virtue of specialization, has advantages over Java RMI or
other Java remote technologies in this context:

– It shares an existing JDWP network connection.
– Interfaces can be used to extend standard JDWP objects. For example, a

special interface adds methods to a thread object that provide access to
register state.

– JDWP objects can appear as method parameters and return types.

Figure 6 diagrams the interactions that follow when the client invokes an artificial
method on the Maxine JDWP Server. The client’s dynamic proxy implements the
call, checking first whether the result is cached and can be returned immediately.
If not cached, the client marshalls parameters as JDI values for transmission via

Fig. 6. Example sequence of a call to an interface

Multi-level Virtual Machine Debugging Using the JPDA 409

Fig. 7. Screenshot of the enhanced NetBeans debugger showing both machine code
and Java source code position

JDWP invoke. Primitive types are marshalled by encapsulation in a JDI data
object, reference types by JDWP identifiers managed on the server. Array types
are simply copied to the server and filled with marshalled primitive or reference
values.

The Maxine JDWP Server first unmarshalls the invoke parameters, using
a map to convert JDWP identifiers to object references. The call is then dele-
gated via Java reflection to the implementer of the interface. Finally the server
marshalls the return value into a JDWP value for return to the client.

The client’s dynamic proxy receives the return value as a JDI object and
converts it to a Java object. In case of an array this can again require additional
JDWP commands to retrieve array contents. In case of a byte array containing
the serialized form of a Java object, the bytes are retrieved and deserialized. The
original caller receives a normal Java object in return without special treatment.

5 Status and Results

The architecture of our approach makes it possible for any client that imple-
ments JDWP to debug the Maxine VM at the Java-level. Multi-level debugging,
however, requires additional functionality, for which we chose to extend Net-
Beans. NetBeans already implements JDWP, has a flexible plugin architecture,
and provides standard techniques for extending debugger functionality without
modification.

Our approach succeeds in making it simple to transport additional information
between the Maxine Inspector Agent and the NetBeans IDE. Client-side code
for displaying data can use simple interfaces that are implemented on the server.

410 T. Würthinger, M.L. Van De Vanter, and D. Simon

The Java dynamic proxy mechanism hides the complications implied by data
marshalling and unmarshalling to transmit the data over the network.

The Maxine JDWP server implements both a useful subset of the standard
source-level JDWP protocol and access to the VM’s machine-level state. We have
prototyped additional machine-level views; Figure 7 shows NetBeans debugging
the Maxine VM with these extensions enabled. The Java-level call stack, local
variables, and current position in Java code appear in NetBeans components. The
Maxine Code View highlights the current machine code location based on the
current position in Java code. Also shown are register contents for the currently
selected thread. The address of each Java object appears in an artificial field, and
this address can be used to retrieve the raw memory contents at that location.

The full reuse of the NetBeans Java debugger frees us from implementing
many concepts that are part of a modern Java debugger, and ensures ongoing
benefit as NetBeans evolves. On the other hand, it remains to be seen whether
the tight integration among views at different levels of abstraction will be as easy
as it has been in the specialized Maxine Inspector. Implementing the prototype
described here has already required the use of Java reflection in order to access
NetBeans functionality for which no public API is provided. This difficulty is not
a limitation of the transport architecture described in this paper, but rather the
nature of an IDE for which this type of extension was perhaps not anticipated.

The prototype described here is integrated into the Maxine open source project.
We plan to continue exploring this approach to multi-level debugging for the Max-
ine VM with work on additional components and mutli-level views.

6 Related Work

Ungar et al. developed a meta-circular VM for the Self programming language
[15], which they debugged with a debug server written in C++. Remote debug-
ging in Self relies upon a custom network protocol as well as a custom debugger.

The meta-circular Jikes Research Virtual Machine is also written in Java [1];
it uses a remote reflection technique for accessing VM data that is similar to ours
[7]. The Jikes debugger itself however, is not based on an existing Java debugger.

Simon et al. [9] developed the Squawk VM, a small Java VM written mostly
in Java that runs on a wireless sensor platform. Squawk includes a debug agent
that implements a subset of JDWP, but there are no extensions of the sort that
permit multi-level debugging.

Printezis and Jones created GCspy framework for the analysis of VM mem-
ory management behavior [8]. They considered and rejected using an enhanced
version of JDWP for transmitting their data for two reasons: GCspy data has
nothing to do with debugging, the focus of the JDWP protocol, and its use would
needlessly confine GCspy technology to Java applications. These, however, are
actually advantages in the context of Maxine debugging.

Dimitriev extended the JDWP protocol with additional commands for re-
defining classes in the VM [2][3]. Although this approach is reasonable for func-
tionalities that are of general interest for virtual machines, it would complicate

Multi-level Virtual Machine Debugging Using the JPDA 411

the protocol significantly in our case. By defining a protocol within the JDWP
protocol, we retained flexibility and avoided the need for further standardization.

7 Conclusions

Multi-level debugging for a meta-circular VM presents technical challenges that
are not easily met with conventional development tools, even mixed-mode tools
designed to support multiple languages. Faced with the choice between the de-
velopment cost of a specialized, isolated tool (our original approach), and the
challenges of directly extending an existing IDE, we have explored an alternate
approach. Leveraging a single-level standard architecture (JPDA) for remote de-
bugging, we were able to transport information at additional levels of abstraction
by implementing a remote invocation protocol within the JPDA’s Java Debug-
ging Wire Protocol (JDWP). The advantages of this approach, prototyped using
the Maxine Inspector Agent on the server side and NetBeans as the client, are
that a wide array of rich functionality becomes available for debugging the Max-
ine VM at the Java-level. This dramatically reduces Maxine development cost
for this level of functionality, both present and future as the NetBeans platform
evolves.

Solving the transport problem, however, is only part of the solution. The next
challenge is to provide the advantages of tightly integrated multi-level views,
easily developed in the stand-alone Maxine Inspector, in a rich platform that
was originally designed for single-level debugging.

Acknowledgements

The authors would like to thank Maxine team members Ben Titzer and Bernd
Mathiske for their support and many helpful suggestions.

References

1. Alpern, B., Attanasio, C.R., Cocchi, A., Hummel, S.F., Lieber, D., Mergen, M.,
Shepherd, J.C., Smith, S.: Implementing jalapeño in Java. In: OOPSLA 1999: Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pp. 314–324. ACM Press, New York (1999)

2. Dmitriev, M.: Safe class and data evolution in large and long-lived JavaTM appli-
cations. Technical report, Sun Microsystems Laboratories (2001)

3. Dmitriev, M.: Towards flexible and safe technology for runtime evolution of Java
language applications. In: Proceedings of the Workshop on Engineering Complex
Object-Oriented Systems for Evolution, in association with OOPSLA 2001 Inter-
national Conference (2001)

4. Gosling, J., Joy, B., Steele, G., Bracha, G.: JavaTM Language Specification, 3rd
edn. Java Series. Addison-Wesley Professional, Reading (2005)

5. Liang, S.: The Java Native Interface: Programmers Guide and Specification.
Addison-Wesley Publishing Co., Inc., Reading (1999)

412 T. Würthinger, M.L. Van De Vanter, and D. Simon

6. Mathiske, B.: The maxine virtual machine and inspector. In: OOPSLA Compan-
ion 2008: Companion to the 23rd ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pp. 739–740. ACM, New York
(2008)

7. Ngo, T., Barton, J.: Debugging by remote reflection. In: Bode, A., Ludwig, T.,
Karl, W.C., Wismüller, R. (eds.) Euro-Par 2000. LNCS, vol. 1900, pp. 1031–1038.
Springer, Heidelberg (2000)

8. Printezis, T., Jones, R.: Gcspy: an adaptable heap visualisation framework. In:
OOPSLA 2002: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pp. 343–358. ACM,
New York (2002)

9. Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: JavaTM on the bare
metal of wireless sensor devices: the squawk Java virtual machine. In: VEE 2006:
Proceedings of the 2nd international conference on Virtual execution environments,
pp. 78–88. ACM, New York (2006)

10. Sun Microsystems, Inc.: Java Dynamic Proxy Classes (1999),
http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.html

11. Sun Microsystems, Inc.: Java Debug Interface (2004),
http://java.sun.com/javase/6/docs/jdk/api/jpda/jdi/index.html

12. Sun Microsystems, Inc.: Java Debug Wire Protocol (2004),
http://java.sun.com/javase/6/docs/technotes/guides/jpda/

jdwp-spec.html

13. Sun Microsystems, Inc.: Java Platform Debugger Architecture (2004),
http://java.sun.com/javase/6/docs/technotes/guides/jpda/

14. Sun Microsystems, Inc.: NetBeans (2009), http://www.netbeans.org
15. Ungar, D., Spitz, A., Ausch, A.: Constructing a metacircular virtual machine in

an exploratory programming environment. In: OOPSLA 2005: Companion to the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pp. 11–20. ACM, New York (2005)

http://java.sun.com/j2se/1.5.0/docs/guide/reflection/proxy.html
http://java.sun.com/javase/6/docs/jdk/api/jpda/jdi/index.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/jdwp-spec.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/jdwp-spec.html
http://java.sun.com/javase/6/docs/technotes/guides/jpda/
http://www.netbeans.org

Anti-unification Algorithms and Their
Applications in Program Analysis�

Peter E. Bulychev, Egor V. Kostylev, and Vladimir A. Zakharov

Faculty of Computational Mathematics and Cybernetics,
Moscow State University, Moscow, RU-119899, Russia

peter.bulychev@gmail.com, jegor kostylev@hotmail.com, zakh@cs.msu.su

Abstract. A term t is called a template of terms t1 and t2 iff t1 = tη1

and t2 = tη2, for some substitutions η1 and η2. A template t of t1 and t2
is called the most specific iff for any template t′ of t1 and t2 there exists
a substitution ξ such that t = t′ξ. The anti-unification problem is that of
computing the most specific template of two given terms. This problem
is dual to the well-known unification problem, which is the computing
of the most general instance of terms. Unification is used extensively in
automatic theorem proving and logic programming. We believe that anti-
unification algorithms may have wide applications in program analysis.
In this paper we present an efficient algorithm for computing the most
specific templates of terms represented by labelled directed acyclic graphs
and estimate the complexity of the anti-unification problem. We also
describe techniques for invariant generation and software clone detection
based on the concepts of the most specific templates and anti-unification.

The anti-unification problem is that of finding the most specific template (pat-
tern) of two terms. It is dual to the well-known unification problem, which is the
computing of the most general instance of terms. Unification is extensively used
in automatic theorem proving, logic programming, typed lambda calculus, term
rewriting, etc. The unification problem has been studied thoroughly in many
papers and a wide variety of efficient unification algorithms have been developed
by many authors (see [1] for survey). The anti-unification problem attracted far
less attention. It has been first considered by G.D. Plotkin [12] and J. Reynolds
[13]. The algebraic properties of anti-unification operation have been studied in
[6,11]. To the extent of our knowledge all anti-unification algorithms introduced
so far (see [12,13,15]) deal with tree-like representation of terms. It is obvious
that the anti-unification problem for terms represented by labelled trees can
be solved in linear time. However, if one needs to deal with large sets of sizable
terms then it is more suitable to represent such sets of terms by labelled directed
acyclic graphs (dags). One of the aims of this paper is to develop an efficient al-
gorithm for computing the most specific templates and estimate the complexity
of anti-unification problem for terms represented by labelled dags.

Only few papers concern the application of anti-unification. R. Gluck and
M.H. Sorensen used anti-unification (the most specific generalization) of terms
� The research is supported by RFBR grants 09-01-00277 and 09-01-00632.

A. Pnueli, I. Virbitskaite, and A. Voronkov (Eds.): PSI 2009, LNCS 5947, pp. 413–423, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

414 P.E. Bulychev, E.V. Kostylev, and V.A. Zakharov

to guarantee the termination of a positive supercompilation algorithm developed
in their paper [15]. The utility of anti-unification in the setting of symbolic math-
ematical computing has been studied in [10,17]. We believe that anti-unification
algorithms may have wide applications in many areas of computer science and
software engineering. In this paper we study the perspectives of using the con-
cepts of the most specific templates and anti-unification for invariant generation
and software clone detection.

The generation of invariants is the key technique in the analysis and veri-
fication of programs, since the effectiveness of automated program verification
is highly sensitive to the ease with which invariants, even trivial ones, can be
automatically deduced. Much efforts (see [8,16]) are directed towards the de-
velopment of powerful invariant generating techniques for particular classes of
programs. As opposed to these attempts, we present a light-weight technique
for invariant generation. Our anti-unification based algorithm for invariant gen-
eration operates on the syntactic level. Therefore, it is of little sensitivity to
program semantics and can reveal only trivial invariants. But, due to the effi-
ciency of anti-unification algorithms, this technique provides a way for processing
large pieces of code in short time.

Anti-unification algorithms can be of significant value in software refactoring.
One of the major activities in this area is the detection and extraction of dupli-
cate code. Code duplication can be a serious drawback, leading to bad design,
and increased probability of bug occurrence and propagation. Consequently, du-
plicate code detectors are a useful class of program analysis tools (see [14]). We
describe a anti-unification based algorithm for finding software clones. The al-
gorithm checks fragments of code (sequences of program statements) and assign
two pieces of code to the same clone if they are not too different from their most
specific template.

1 Preliminaries

Given a set of variables Y and a set of functional symbols F={f (m1)
1 , . . . , f

(mk)
k },

we define the set of terms Term[Y,F] as the smallest set of expressions that
contains Y and satisfies the following property: if f (m) ∈ F and t1, . . . , tm ∈
Term[Y,F] then f (m)(t1, . . . , tm) ∈ Term[Y,F].

Let X = {x1, . . . , xn} and Y = {y1, y2, . . .} be two sets of variables. The set
Subst[X ,Y,F] of X -Y-substitutions is the set of mappings θ : X → Term(Y,F).
A X -Y-substitution θ can be represented as the set of bindings θ = {x1/θ(x1),
. . . , xn/θ(xn)}. We denote by Range(θ) the set of all variables in terms θ(x1),
. . . , θ(xn). An application of a substitution θ to a term t = t(x1, . . . , xn) yields
the term tθ = t(θ(x1), . . . , θ(xn)) obtained from t by replacing all variables xi

with the terms θ(xi), 1 ≤ i ≤ n. The composition η = θξ of substitutions
θ ∈ Subst[X ,Y,F] and ξ ∈ Subst[Range(θ),Y,F] is defined as follows: η(x) =
(θ(x))ξ holds for every variable x from X .

The set of substitutions Subst[X ,Y,F] is supplied with a quasi-order �
and an equivalence relation ∼: a relation θ1 � θ2 holds iff there exists ξ ∈

Anti-unification Algorithms and Their Applications in Program Analysis 415

Subst[Range(θ1),Y,F] such that θ2 = θ1ξ, and θ1 ∼ θ2 holds iff θ2 = θ1ρ holds
for some bijection ρ from Range(θ1) to Range(θ2). Let � be a new element
such that θ � � holds for every substitution θ. Quasi-order � induces the par-
tial order (on the quotient set Subst∼[X ,Y,F] = (Subst[X ,Y,F] ∪ {�})/∼.
Poset (Subst∼[X ,Y,F],() has been studied in [6,11]. It is a complete lattice,
and the least element of the lattice is the equivalence class of the empty substitu-
tion ε = {x1/y1, . . . , xn/yn}. The least upper bound θ∼1 ↑ θ∼2 is called the most
general instance of substitutions θ1 and θ2, whereas the greatest lower bound
θ∼1 ↓ θ∼2 is called the most specific template of θ1 and θ2. The operation ↓ of
computing the most specific template of substitutions is called anti-unification
(or generalization). For the sake of simplicity we will often skip the superscript
∼ in our notation. The anti-unification operation can be naturally extended to
the terms. The term t is called the most specific template of terms t1 and t2
(t = t1 ↓ t2 in symbols) if {x/t} = {x/t1} ↓ {x/t2}.

2 Anti-unification Algorithms

In this section we study the complexity of anti-unification of substitutions rep-
resented as labelled directed acyclic graphs (dags). Dags are the most suitable
structures for succinct representation of substitutions. A node V that has no
incoming arcs is called a root of a dag. A labelled single-rooted dag G(t) associ-
ated with a term t, t ∈ Term[Y,F], is arranged as follows. If t is a constant or
a variable then G(t) is single node labelled with t (this node is the root of G(t)).
If t = f (m)(t1, . . . , tm) then the root of G(t) is labelled with f (m) and has m out-
going arcs labelled with integers from 1 to m; the arc labelled with i, 1 ≤ i ≤ m,
leads to the root of G(ti) associated with the subterm ti. Given a node V of such
a dag, we denote bymark(V) the label of V and by desc(V, i) the i-th descendant
of V (i. e., the node that is at the end of the arc outgoing from V and labelled
with i). A labelled dag G represents a substitution θ = {x1/t1, . . . , xn/tn} if it
contains dags G(t1), . . . ,G(tn) associated with the terms t1, . . . , tn as subgraphs,
and the root of each subgraph G(ti) has an extra label xi. We denote these roots
by VG(x1), . . . , VG(xn), respectively. Two nodes V and U of a dag G associated
with a substitution θ are said to be equivalent if the subgraphs rooted at V and
U are associated with the same term. A dag G is called reduced if every node
is reachable from a root extra labelled with a variable x, x ∈ X , and all nodes
of G(θ) are pairwise non-equivalent. Every substitution θ is associated with the
unique reduced dag, which is denoted by G(θ). The size N(θ) of a substitution
θ is the number of nodes in the reduced dag G(θ) associated with θ.

A sequential anti-unification algorithm MST, which computes the most spe-
cific templates of substitutions represented by reduced labelled dags, is depicted
in Fig. 1. The algorithm gets as input a pair of reduced dags G(θ′) and G(θ′′) as-
sociated with substitutions θ′ and θ′′ and outputs the reduced dag G associated
with the most specific template η of θ′ and θ′′. Every node W in G matches some
pair of nodes (subterms) V ′ and V ′′ in the dags G(θ′) and G(θ′′), respectively.
Such a node W is specified by a 3-tuple (y, V ′, V ′′), where y is a variable from

416 P.E. Bulychev, E.V. Kostylev, and V.A. Zakharov

procedure MST (G(θ′),G(θ′′))
set G := G({x1/y1, . . . , xn/yn}), Q := ∅, Q̂ := ∅;
for i := 1 to n do

if exists y, such that (y, VG(θ′)(xi), VG(θ′′)(xi)) ∈ Q
then remove VG(xi) from G; set mark(mem(y)) := xi

else set Q := Q∪ {(yi, VG(θ′)(xi), VG(θ′′)(xi))}, mem(yi) := VG(xi)
fi

od;
while exists (y, V ′, V ′′) ∈ Q such that mark(V ′) = mark(V ′′) do

set Q := Q\{(y, V ′, V ′′)}, Q̂ := Q̂ ∪ {(y, V ′, V ′′)};
if mark(V ′) = f (m) ∈ F then

set mark(mem(y)) := f (m);
for i := 1 to m do

if exists z such that (z, desc(V ′, i), desc(V ′′, i)) ∈ Q ∪ Q̂ then

let Wi = mem(z)
else

let Wi be a new node in G and z be a new variable in Y;
set mark(Wi) := z, mem(z) := Wi, Q := Q∪ {(z, desc(V ′, i), desc(V ′′, i))}

fi;
set desc(mem(y), i) := Wi

od

fi

od;
return G(θ′ ↓ θ′′) := G

end of MST.

Fig. 1. Anti-unification algorithm MST

Y used as a unique identifier of W . A node named y is denoted by mem(y). The
algorithm MST operates with two sets Q and Q̂. The set Q is a worklist of nodes
to be handled. When handling a node W specified by (y, V ′, V ′′) the algorithm
assigns the corresponding label to W , checks all its descendants, and moves W
from the worklist Q to the list of processed nodes Q̂.

Theorem 1. The algorithm MST correctly computes a reduced dag associated
with the most specific template η = θ′ ↓ θ′′ of substitutions θ′ and θ′′ in time
O(n log n), where n = N(η).

Since every node in G matches subterms corresponding to exactly one pair of
nodes in G(ϑ′) and G(ϑ′′), the size N(η) of η does not exceeds N(ϑ′) × N(ϑ′′).
Hence, we arrive at the corollary.

Corollary 1. The most specific template of substitutions θ′ and θ′′ represented by
reduced dags can be computed in time O(n2 logn), where n=max(N(θ′), N(θ′′)).

As can be seen from the assertions below, the upper bound can not be substan-
tially improved.

Theorem 2. Suppose that F contains a functional symbol of arity m > 1. Then
there exists an infinite sequence of pairs of substitutions (θ′i, θ

′′
i), i ≥ 1, such that

1
6N(θ′i)×N(θ′′i) ≤ N(θ′i ↓ θ′′i).

Anti-unification Algorithms and Their Applications in Program Analysis 417

�
� �
� �

�
��

�
��

� �

�����

�����

θ′
1 : x f

f

y′
2

f

y′
1

2 1
1 2

1 2

�
� �
� �

�
��

�
��

� �

�����

�����

θ′′
1 : x f

f

y′′
2

f

y′′
1

2 2
1 1

1 2

�
� �
� �

�
��

�
��

� �

�����

�����

f

f

y′
2

f

y′
1

2 1
1 2

1 2

�
� �
� �

�
��

�
��

� �

�����

�����

f

f

y′
4

f

y′
3

2 1
1 2

1 2

�
� ��

�
��

�
�

��

� �

�������

�������

θ′
2 : x f

f f
1 2

2 1

1 2

�
� �
� �

�
��

�
��

� �

�����

�����

f

f

y′′
2

f

y′′
1

2 2
1 1

1 2

�
��
� �

�
��

�
��

� �

�����

�����

f

f

y′′
4

f

y′′
3

2 2
1 1

1 2

�
� ��

�
��

�
�

��

� �

�������

�������

θ′′
2 : x f

f f

1 1
2 2

1 2

Fig. 2. Dags for substitutions θ′
i and θ′′

i , i = 1, 2

Proof. Suppose that F contains a symbol f of arity 2, and X = {x}. Suppose
also that Y ′ = {y′1, y′2, . . .} and Y ′′ = {y′′1 , y′′2 , . . .} are subsets of Y. Consider two
sequences of substitutions ϑ′i = {x/t′i(y′1, . . . , y′2i)} and ϑ′′i = {x/t′′i (y′′1 , . . . , y

′′
2i)},

i ≥ 1, such that

t′1(y
′
1, y

′
2) = f(f(y′1, y

′
2), f(y

′
1, y

′
2)), t′′1(y′′1 , y

′′
2) = f(f(y′′1 , y

′′
2), f(y′′2 , y

′′
1)),

t′i+1(y
′
1, . . . , y

′
2i+1) = t′1(t′i(y

′
1, . . . , y

′
2i), t′i(y

′
2i+1, . . . , y

′
2i+1)),

t′′i+1(y
′′
1 , . . . , y

′′
2i+1) = t′′1 (t′′i (y′′1 , . . . , y′′2i), t′′i (y′′2i+1, . . . , y

′′
2i+1)), i ≥ 1.

The dags associated with θ′i and θ′′i , i = 1, 2, are presented in Fig. 2 (for the
sake of clarity they are nonreduced). It is easy to see that N(ϑ′i) = 3 · 2i− 2 and
N(ϑ′′i) = 4 · 2i − 3, i ≥ 1, but the reduced dags for substitutions θi = θ′i ↓ θ′′i ,
i ≥ 1, are full binary trees such that N(θi) = 2 · 4i − 1.

Corollary 2. If F contains a functional symbol of arity m > 1 then time com-
plexity of the anti-unification problem for two substitutions represented by reduced
dags of the size n is Ω(n2).

3 Generating Invariants with the Help of Anti-unification

In this section we demonstrate how to generate program invariants with the help
of anti-unification algorithms. We introduce a nondeterministic formal model
of sequential programs and show that the most specific invariants of the form
x1 = t1∧x2 = t2∧ . . .∧xn = tn can be computed by conventional static analysis
techniques (see [9]) adapted to the lattice of finite substitutions.

Let V = {v1, . . . , vn} be a finite set of variables and F be a set of functional
symbols. Then a program is a pair Π = 〈L,E〉, where L is a finite set of program
points (non-negative integers) and E is a finite set of assignment statements. We
will assume that L includes 0 which is the entry point of Π . Every assignment
statement e of a program Π is an expression of the form lin : v ⇐ t : lout, where
v ∈ V , t ∈ Term[V ,F], and lin, lout are program points. The integer lin is called
the entry point of e (denoted in(e)) and the integer lout is called the exit point
of e (denoted out(e)). Any finite sequence of statements tr = e1, e2, . . . , em is
called a trace of a program Π if in(e1) = 0 and out(ei) = in(ei+1) for every

418 P.E. Bulychev, E.V. Kostylev, and V.A. Zakharov

program test(z) program Π0:
x1 = z; 0 : x1 ⇐ z : 1,
z = z+1; 1 : z ⇐ f(z, c1) : 2,
x2 = z; 2 : x2 ⇐ z : 3,
while x2==x1+1 do 2 : x2 ⇐ z : 7,

x1 = z; 3 : x1 ⇐ z : 4,
if prime(z) 4 : z ⇐ f(x2, c1) : 6,

then z = x2+1 4 : x1 ⇐ g(c2, z) : 5,
else x1 = 2*z; z=2*x2+1 5 : z ⇐ f(g(c2, x2), c1) : 6,

fi; 6 : x2 ⇐ z : 7,
x2 = z 6 : x2 ⇐ z : 3.

od
end.

Fig. 3. An example of sequential program

i, 1 ≤ i < m. We say that such a trace tr leads to the point out(em). The set of
all traces of a program Π leading to a point l will be denoted by TrΠ(l).

The semantics of our programs is defined on the first-order structures M =
{DM , f1, . . . , fk,=}, where DM is a semantic domain with equality relation =,
and functions f1, . . . , fk are interpretations of the functional symbols from F .
A data state σ is a mapping V → DM . We write t[σ] to denote the value of
a term t in the data state σ. Let M be a structure, σ0 be a data state, and
tr = e1, e2, . . . , em be a trace of Π such that ei = li : vi ⇐ ti : li+1. Then
the run of a program Π for the data state σ0 and the trace tr is the finite
sequence (e1, σ1), (e2, σ2), . . . , (em, σm), such that the data state σi agrees with
σi−1 except for the variable vi, where the value vi[σi−1] is changed to ti[σi−1],
for every i, 1 ≤ i ≤ m. The final state σm of this run is called the result of the
run and denoted by r(σ0, tr).

Example 1. A conventional pseudo-code depicted in Fig. 3 (left side) can be
translated into the set of labelled assignment statements (right side). To this
end every condition checking is replaced by a nondeterministic choice between
two assignment statements that have the same entry point. The same abstraction
is used in [8]. ��

A first-order formula Φ(v1, . . . , vn) is called an M -invariant of a program Π
at a point l iff M, r(σ0, tr) |= Φ(v1, . . . , vn) holds for every data state σ0 and
trace tr ∈ TrΠ(l). If Φ(v1, . . . , vn) is an M -invariant for every structure M
then it is called a strong invariant. An invariant Φ is called the most specific
strong invariant if, for every strong invariant Ψ , the formula Φ→ Ψ is valid. We
restrict our consideration only with equality invariants Φ(v1, . . . , vn) of the form
∃y1 . . .∃yk(v1 = t1 ∧ v2 = t2 ∧ . . . ∧ vn = tn) .

Theorem 3. Let H be an Herbrand structure. Then a formula Φ(v1, . . . , vn) is
a strong equality invariant of Π at a point l iff Φ(v1, . . . , vn) is an H-invariant
of Π at the same point.

Anti-unification Algorithms and Their Applications in Program Analysis 419

We are in a position to show how anti-unification can be used in generating the
most specific strong equality invariants. Every statement e= lin :vi⇐ t : lout gives
rise to a V-V-substitution θe = {v1/v1, . . . , vi−1/vi−1, vi/t, vi+1/vi+1, . . . vn/vn}.
The substitutions introduced thus provide a way of characterizing the equality
invariants of programs. With every trace tr = e1, e2, . . . , em of a program Π we
associate a substitution ηtr = θem . . . θe2θe1ε which is a composition of substitu-
tions associated with the statements em, . . . , e2, e1 and the empty substitution ε.
Then, given a program Π and a point l of Π , we denote by θΠ,l the substitution
↓tr∈TrΠ(l) ηtr which is the most specific template of all substitutions associated
with the traces of Π leading to the point l.

Theorem 4. Suppose that θΠ,l = {v1/t1, v2/t2, . . . , vn/tn}. Then the formula

ΦΠ,l = ∃y1 . . . ∃yk(v1 = t1 ∧ v2 = t2 ∧ . . . ∧ vn = tn),

where {y1, . . . , yk} is the set of all variables occurred in the terms t1, t2, . . . , tn,
is the most specific strong equality invariant of the program Π at the point l.

To effectively compute the substitutions θΠ,l consider the system of equations

Ω(Π) :
{
Θl =↓e∈E,out(e)=l θeΘin(e), l ∈ L, l �= 0,
Θ0 = ε,

where the Θl, l ∈ L, are the unknown substitutions.

Theorem 5. For every program Π = 〈L,E〉, the set of substitutions {θΠ,l :
l ∈ L} is the least solution to the system Ω(Π) in the lattice of substitutions
Subst[V ,Y,F].

It is easy to check (see [6,11]) that composition of substitutions is left-distributive
over anti-unification, i. e. η(θ1 ↓ θ2) = ηθ1 ↓ ηθ2. This theorem relies upon
this property of substitutions. To solve the system Ω(Π) one can involve anti-
unification algorithms and any iterative technique used in program static analysis
for computing the least fixed points of monotonic operators on lattices (see [9]).
By applying this technique to the system of equations ΩΠ0 corresponding to
the program Π0 presented in Example 1 one can readily compute a substitution
θΠ0,3 = {x1/y, x2/g(y, c1), z/g(y, c1)}. Thus, by Theorem 4, Φ = ∃y(x1 = y ∧
x2 = y+1∧z = y+1) is the most specific strong invariant of the program Π0 at
the point 3 (loop invariant). Since Φ implies x2 = x1 + 1, we draw a conclusion
that the source program test never terminates.

4 Duplicate Code Detection Using Anti-unification

Two sequences of program statements form duplicate code if they are similar
enough according to a selected measure of similarity. Different researchers report
that the amount of duplicate code in software systems varies from 6.4% - 7.5%
to 13% - 20% [14]. Code duplication can be a significant drawback, leading to
bad design, and increased probability of bug occurrence and propagation. As a

420 P.E. Bulychev, E.V. Kostylev, and V.A. Zakharov

result, it can significantly increase maintenance cost (for instance, any bug in
the original has to be fixed in all duplicates), and form a barrier for software
evolution. Consequently, duplicate code detectors are a useful class of software
analysis tools. Such tools can aid in measuring the quality of software systems
and in the process of refactoring.

Detecting duplicate pieces of program code is another task that can be effec-
tively solved with the help of anti-unification. Although there is a huge amount
of papers dealing with the duplicate code detection problem (see [14] for survey),
so far as we know, no generally recognized definitions of code cloning has been
developed yet. Pieces of code can be viewed as similar based on syntactic criteria
or at the semantic level.

The authors of the paper [7] came up with a proposal for detecting code clones
by analyzing the patterns of program expressions. We think that this is one of
the most simple yet effective approach to checking the similarity code pieces.
Following this line of research we have developed a new anti-unification based
duplicate code detection algorithm. Its key idea is as follows. Given two expres-
sions E1 and E2, one need to compute their most specific template E = E1 ↓ E2
and estimate how much E1 and E2 differs from E. The latter can be done based
on anti-unification distance: if E1 = Eη1 and E2 = Eη2 then anti-unification
distance ρ(E1, E2) is the total number of leaves in dag representations of sub-
stitutions η1 and η2. We count leaves only because their number is equal to
the number of lexems covered by the substitutions and thus it is independent
of the program graph’s representation. Anti-unification distance ρ(E1, E2) can
be seen as a variant of tree edit distance introduced in [3]. If ρ(E1, E2) is less
than some threshold d1, and the sizes of both expressions are greater than an-
other threshold d2, then E1 and E2 belong to the same clone. The efficiency of
anti-unification algorithms guarantees that this approach is applicable to large
programs independent of the source language.

Example 2. Let E1 = Add(Name(i), Name(j)) and E2 = Add(Name(n),
Const(1)). These terms have the most specific template E = Add(Name(x1), x2)
such that E1 = Eη1, E2 = Eη2, where η1 = {x1/i, x2/Name(j)} and η2 =
{x1/n, x2/Const(1)}. Then ρ(E1, E2) = 4.

In order to separate real clones that are composed of several statements from
a huge amount of similar small pieces of code we developed a compound algo-
rithm that consists of three stages. In the beginning anti-unification is used to
partition all statements of a program under analysis into clusters. Such clusteri-
zation makes it possible to view the code as a sequence of cluster identifiers. At
the second stage the algorithm finds all pairs of identical sequences of cluster
identifiers. Finally, the matching pairs of sequences having similar statements in
corresponding positions are checked once again for global similarity. This check-
ing also involves the computation of anti-unification distance. Two sequences of
program statements are assigned to the same clone if the distance between them
is below some certain threshold.

Now we discuss the stages of our duplication detection algorithm in some
detail. In the very beginning of the whole algorithm an abstract syntax tree for

Anti-unification Algorithms and Their Applications in Program Analysis 421

the analyzed program is built. For the sake of efficiency and memory saving, this
tree can be transformed into a reduced dag. Every statement is associated with
a subgraph (a tree or a dag) in an abstract syntax graph, and anti-unification
algorithm is used to compute a distance between any pair of program statements.
Clusterization of program statements is performed in two passes. During the
first pass the most frequent templates of program statements in the source code
are discovered and a preliminary clusterization is performed. Every cluster C is
characterized by the template EC =↓E∈C E. Each new statement E′ is compared
with the templates EC of all existing clusters. If the distance ρ(E′, EC) is below
some threshold d3 then the updated template of C becomes equal to EC ↓ E′.
If no such clusters are found then E′ forms a new cluster. During the second
pass all statements are processed again. For every statement E′ the algorithm
chooses the cluster C from the set produced at the first pass whose template EC

is the most similar to E′. When such cluster C is found, E′ is assigned to C.
After the first stage of our algorithm all statements are assigned to clusters

and marked with corresponding clusters identifiers. At the second stage the
algorithm searches for long enough pairs of sequences of statements which are
labelled identically, i.e. the statements at the same position in both sequences are
marked with the same ID. Detected pairs are considered as clone candidates and
their similarity have to be checked at the next stage. This checking is performed
at the third stage as follows. Every sequences B = E1, E2, . . . , En is treated as
a whole expression. If anti-unification distance ρ(B′, B′′) between sequences B′

and B′′ is below a certain threshold then this pair is reported as a clone.
The algorithm described above has been implemented in a software tool Clone

Digger aimed at detecting similar code in Python and Java programs (see [4]).
This tool is provided under the GNU General Public License and can be down-
loaded from the site http://clonedigger.sf.net. In [5] we compared Clone
Digger with two clone-detection tools: DuDe [18] and CloneDRTM[2]. The tool
DuDe [18] deals with the textual representation of programs. As expected, the
quality of clone candidates reported by our tool was better than those discov-
ered by DuDe. For instance, some of the clones reported by DuDe cover the
end of one function and the beginning of the next function; such clones can’t be
refactored. If we split them, the size for one or both parts are far below the cho-
sen threshold. Another expected observation is that DuDe is significantly faster
than Clone Digger, because DuDe uses a very simple suffix tree based algorithm
for finding clones. Next, Clone Digger has been compared with the commercial
abstract syntax tree based clone detection tool CloneDRTM[2]. The main obser-
vation was that Clone Digger was able to detect all the clones that were reported
by CloneDRTM. Moreover, some clones detected by Clone Digger can not be de-
tected by CloneDRTM in principle. There are mainly two types of valuable ad-
ditional clones. First, CloneDRTM is only able to handle renamings, while Clone
Digger handles replacements of subexpressions using the anti-unification based
algorithm. Second, Clone Digger supports parametrization of variable names
and counts several equal renamings as one (appropriate for refactoring), thus
resulting in smaller clone distances.

422 P.E. Bulychev, E.V. Kostylev, and V.A. Zakharov

Thus, the anti-unification based approach gives us a possibility to develop a
high-speed clone detection tool, which is able to detect more real clones than
the available commercial tools.

5 Conclusion

The main contribution of our work is twofold.

1. We introduced an anti-unification algorithm for computing the most spe-
cific templates (patterns) of expressions represented as labelled directed acyclic
graphs. All previously known anti-unification algorithms operate only with tree-
like structures. Since the size of tree representation of some expressions is expo-
nent of the size of their dag representation, our algorithms extend the field of
application of anti-unification techniques. We also proved that time complexity
of our anti-unification algorithms is close to the optimal one. This provides a
firm foundation for the development of various anti-unification based techniques
for program analysis.

2. We also showed that anti-unification machinery can be successfully applied
to the solution of two important problems in program analysis — generation
of program invariants and duplicate code detection. Since anti-unification deals
with program expression on syntactic level only, our techniques for invariant
generation and clone detection are insensitive to any semantical properties of
functions and predicates involved in programs. Thus, program invariants com-
puted with the help of anti-unification capture only primitive relationships be-
tween data structures, and even a small modification of a program (say, a trans-
position of program statements) makes similar pieces of code unrecognizable
by our duplicated code detection algorithm. This is the principal drawback of
any anti-unification based technique for program analysis. On the other hand,
anti-unification algorithms are very efficient and simple, they provide a way for
processing large pieces of code in reasonable time. Non-trivial relationships and
structures (program invariants and clones) revealed by these means can be used
as a raw material for more advanced program analysis procedures. Therefore,
anti-unification based techniques for program analysis can find practical use in
the front end of many tools for program optimization and verification.

References

1. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, pp. 447–533 (2001)

2. Baxter, I., Yahin, A., Moura, L.M., Sant’Anna, M., Bier, L.: Clone Detection Using
Abstract Syntax Trees. In: Proc. of the 14th IEEE International Conference on
Software Maintenance, pp. 368–377 (1998)

3. Bille, P.: A survey on tree distance and related problems. Theoretical Computer
Science 337(1-3), 217–239 (2005)

4. Bulychev, P.: Duplicate code detection using Clone Digger. PythonMagazine 9,
18–24 (2008)

Anti-unification Algorithms and Their Applications in Program Analysis 423

5. Bulychev, P., Minea, M.: An evaluation of duplicate code detection using anti-
unification. In: Proc. of the 3rd Int. Workshop on Software Clones, pp. 22–27
(2009)

6. Eder, E.: Properties of substitutions and unifications. Journal of Symbolic Com-
putations 1, 31–46 (1985)

7. Evans, W., Fraser, C., Ma, F.: Clone detection via structural abstraction. In: Proc.
of 14th Working Conference on Reverse Engineering, pp. 150–159 (2007)

8. Kovac, L.I., Jebelean, T.: An algorithm for automated generation of invariants for
loops with conditionals. In: Proc. of the 7th Int. Symp. on Symbolic and Numeric
Algorithms for Scientific Computing, pp. 245–250 (2005)

9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis, 446 p.
Springer, Heidelberg (1999)

10. Oancea, C.E., So, C., Watt, S.M.: Generalization in Maple. In: Maple Conference,
pp. 277–382 (2005)

11. Palamidessi, C.: Algebraic properties of idempotent substitutions. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 386–399. Springer, Heidelberg (1990)

12. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5(1), 153–
163 (1970)

13. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic
formulas. Machine Intelligence 5(1), 135–151 (1970)

14. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Technical
Report N 2007-541, School of Computing Queen’s University at Kingston Ontario,
Canada

15. Sorensen, M.H.: Gluck. R. An algorithm of generalization in positive supercompi-
lation. In: Proc. of the 1995 Int. Symposium on Logic Programming, pp. 465–479.
MIT Press, Cambridge (1995)

16. Tiwari, A., Rueb, H., Saidi, H., Shankar, N.: A technique for invariant genera-
tion. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 113–127.
Springer, Heidelberg (2001)

17. Watt, S.M.: Algebraic generalization. ACM SIGSAM Bulletin 39(3), 93–94 (2005)
18. Wettel, R., Marinescu, R.: Archeology of Code Duplication: Recovering Duplication

Chains From Small Duplication Fragments. In: Proc. of the 7th Int. Symb. on
Symbolic and Numeric Algorithms for Scientific Computing, pp. 63–70 (2005)

Author Index

Abramsky, Samson 1
Alkassar, Eyad 43
Arroyo, Gustavo 344

Baar, Thomas 269
Barbuti, Roberto 58
Beloglazov, Dmitry 70
Benaissa, Nazim 282
Beney, Jean 86
Bishop, Barry 124
Bjørner, Dines 2
Bjørner, Nikolaj 388
Boyarinov, Vladimir 43
Brisaboa, Nieves R. 98
Bulychev, Peter E. 413

Cohen, Ernie 43

Dahlweid, Markus 43
Degenbaev, Ulan 43

Felea, Victor 110
Fensel, Dieter 124
Fischer, Florian 124

Glück, Robert 135
Guttmann, Walter 206

Hamilton, Geoff W. 151
Hillebrand, Mark 43

Khoroshilov, Alexey 165
Kichigin, Dmitry 177
Klimov, Andrei V. 185
Klyuchnikov, Ilya 193
Kohlmeyer, Jens 206
Kolb, Emanuel 218
Korovina, Margarita 230
Koster, Cornelis H.A. 86
Kostylev, Egor V. 413
Kovács, Laura 242
Kudinov, Oleg 230
Kuliamin, Victor 257
Kumar, Philipp 269

Langenstein, Bruno 43
Larsen, Kim G. 35
Leinenbach, Dirk 43

Lepri, Daniela 58
Luaces, Miguel R. 98

Maggiolo-Schettini, Andrea 58
Malykh, Anton 294
Mantsivoda, Andrei 294
Méry, Dominique 282
Milazzo, Paolo 58
Mogensen, Torben Ægidius 306
Moskal, Micha�l 43
Mutilin, Vadim 165

Nepomniaschy, Valery 70
Niewiadomski, Artur 319

Obua, Steven 43

Pakulin, Nikolay 331
Pardini, Giovanni 58
Paul, Wolfgang 43
Pedreira, Oscar 98
Penczek, Wojciech 319
Pentchev, Hristo 43
Petrenko, Alexander 165
Petrova, Elena 43
Places, Ángeles S. 98

Rama, Aureliano 58
Ramos, J. Guadalupe 344
Romanenko, Sergei 193
Rubanov, Vladimir 331
Russo, Alejandro 352

Sabelfeld, Andrei 352
Santen, Thomas 43
Šerý, Ondřej 218
Schirmer, Norbert 43
Schmaltz, Sabine 43
Schonenberg, Helen 366
Schulte, Wolfram 43
Seco, Diego 98
Shadrin, Andrey 43
Sidorova, Natalia 366
Silva, Josep 344
Simon, Doug 401

426 Author Index

Solorio, Juan C. 344
Studer, Thomas 380
Szreter, Maciej 319

Thiele, Lothar 56
Tobies, Stephan 43
Tsyban, Alexandra 43
Tverdyshev, Sergey 43

Unel, Gulay 124

Van De Vanter, Michael L. 401
van der Aalst, Wil 366
van Hee, Kees 366
Veanes, Margus 388

Weiss, Roland 218
Würthinger, Thomas 401

Zakharov, Vladimir A. 165, 413

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Games, Interaction and Computation
	Rôle of Domain Engineering in Software Development[2mm] Why Current Requirements Engineering Is Flawed !
	The Software Development Dogma
	The Dogma
	What Do We Mean by ‘Domain’ ?
	Dialectics
	Conclusion

	The Triptych of Software Development
	Technicalities: An Overview

	Domain Engineering
	Simple Entities, Operations, Events and Behaviours
	Domain Facets
	Further on the Modelling of Domains

	Requirements Engineering
	Domain Requirements
	Interface Requirements
	Machine Requirements
	Further on the Modelling of Requirements

	Why “Current” Requirements Engineering (RE) Is Flawed
	Conclusion
	Summary — A Wrap Up
	Dialectics
	For More on Domain and Requirements Engineering
	For More on Extrovert Applications
	Software Engineering Archeology
	For More on Research Topics

	References

	Compositional and Quantitative Model Checking (Extended Abstract)
	Model Checking
	Compositional Model Checking
	Finite State Systems
	Simplifications

	Timed Automata
	Concluding Remarks
	References

	Invariants, Modularity, and Rights
	Introduction
	Local Invariance Reasoning
	Structuring Invariants
	Threads
	Claims
	Permissions
	Read Permissions
	Superposition
	Automata
	Implementation
	Conclusion
	References

	Distributed Embedded Systems: Reconciling Computation, Communication and Resource Interaction
	References

	Regular Papers
	Simulation of Kohn’s Molecular Interaction Maps through Translation into Stochastic CLS+
	Introduction
	Stochastic CLS+
	Molecular Interaction Maps
	Translating Maps into Stochastic CLS+
	Intermediate Encoding of MIM
	From the Intermediate Encoding to Stochastic CLS+

	Applications
	Conclusions
	References

	A Two-Level Approach for Modeling and Verification of Telecommunication Systems
	Introduction
	Communicating Extended Finite Automata
	Translation of EFA Systems to Coloured Petri Nets
	Justification of the EFAS→CPN Algorithm
	Case Study: Ring Protocols
	RE-protocol
	ATMR Protocol

	Case Study: Feature Interaction Problem in Telephone Network
	Conclusion
	References

	SVM Paradoxes
	Introduction and Related Work
	SVM and Structural Risk Minimization
	The Optimal Hyperplane
	Non-separable Data: The Soft Margin Hyperplane
	Kernel Functions
	Solving the Quadratic Programming Problem

	Experimentation Setup
	The Programs
	The Data
	The Quality Measures

	Tuning the Complexity Constant
	Results on 1 Class
	Results on the 44 Classes

	Tuning the Threshold
	Results on 1 Class
	Results on the 44 Classes

	Conclusions and Further Work
	References

	Indexing Dense Nested Metric Spaces for Efficient Similarity Search
	Introduction
	Background and Related Work
	Sparse Spatial Selection for Nested Metric Spaces
	Construction
	Search

	Experimental Evaluation
	Conclusions
	References

	On the Containment Problem for Queries in Conjunctive Form with Negation
	Introduction
	Preliminaries
	A Necessary and Sufficient Condition for the Containment Query Problem
	A Special Class of Queries
	Maximal Sets of Equality Relations
	Some Aspects of Time Complexity
	Conclusion
	References

	Towards a Scalable, Pragmatic Knowledge Representation Language for the Web
	Introduction
	Motivation and Related Work
	Language Overview
	FormalSemantics
	Basic Definitions
	Entailment Rules
	Definition of $L2$ Language Features

	Conclusion
	References

	An Experiment with the Fourth Futamura Projection
	Introduction
	The Fourth Futamura Projection
	The Experiment: Generating a New Compiler Generator

	A Universal Parser and Its Generating Extension
	The Online and Offline Partial Evaluators
	The Two New Compiler Generators
	Related Work
	Conclusions and Future Work
	References

	Extracting the Essence of Distillation
	Introduction
	Language
	Driving
	Generalization
	Folding
	Examples
	Conclusion
	References

	Establishing Linux Driver Verification Process
	Introduction
	Linux Device Driver Verification Process
	Toolset
	Related Work
	Conclusions
	References

	A Method for Test Suite Reduction for Regression Testing of Interactions between Software Modules
	Introduction
	Existing Test Suite Reduction Methods
	Description of the Method
	The Model of Interaction between Two Modules
	Equality Relation for Interaction Models
	The Method’s Algorithm
	Collecting Interaction Traces

	Experimental Evaluation
	Experiment Setup
	Experiment Results

	Conclusion
	References

	A Java Supercompiler and Its Application to Verification of Cache-Coherence Protocols
	Introduction
	Java Supercompilation
	Application to Verification of Cache-Coherence Protocols
	Conclusion
	References

	Proving the Equivalence of Higher-Order Terms by Means of Supercompilation
	Introduction
	Why a Lazy Language with Higher-Order Functions?
	HOSC: An Experimental ``Higher-Order'' Supercompiler
	Proving Term Equivalence
	Proving Properties of Terms by Supercompilation
	Equality-Based Approach to Proving Term Equivalence
	Restrictions and Drawbacks of the Equality-Based Approach
	Normalization-Based Approach to Proving Term Equivalence

	Applications of the Technique
	Generating Sets of Equivalent Terms
	Term Equivalence and Higher-Level Supercompilation

	Conclusions
	References

	Unifying the Semantics of UML 2 State, Activity and Interaction Diagrams
	Introduction
	Basics
	Formal Semantics for Combining Language Units
	Combining Behaviour Specifications
	Calling Mechanism
	Calling Behaviours from Activities
	Calling Behaviours from State Machines
	Calling Behaviours from Interactions

	Communication in UML
	Conclusion
	References

	Applicability of the BLAST Model Checker: An Industrial Case Study
	Introduction
	Goal and Structure of the Paper

	Case Study: OPC UA Protocol Stack
	Overview of BLAST
	Experiment
	Methodology
	Properties
	Experiment Results
	Discussion

	Related Work
	Conclusion
	References

	$Σ_K$–constraints for Hybrid Systems
	Introduction
	Basic Notions and Definitions
	Basic Model
	Basic Properties -definability over the Reals
	Gandy's Theorem and Inductive Definitions
	Universal -predicate
	Semantic Characterisation of -definability
	 Computability and -definability over IR

	K-constraints
	K–constraints for Hybrid Systems
	 SHS-Specifications of Hybrid Systems
	K-constraints and Reachability Problems

	Conclusion
	References

	A Complete Invariant Generation Approach for P-solvable Loops
	Introduction
	Preliminaries
	Invariant Generation Algorithm
	Termination of the Invariant Generation Algorithm
	Polynomial Relations of k+n and k+n+1 Loop Sequences, with n0
	Termination of Algorithm 3.3

	Experimental Results
	Conclusions
	References

	Standardization and Testing of Mathematical Functions
	Introduction
	Current Standards' Requirements
	Floating-Point Numbers
	IEEE 754 Requirements
	Requirements of ISO C and POSIX
	Requirements of ISO 10697

	Correct Rounding Requirement
	Table Maker Dilemma

	Test Construction Method
	Test Results Analysis
	Conclusion
	References

	Using AOP for Discovering and Defining Executable Test Cases
	Introduction
	Background
	Aspect-Oriented Programming
	AspectJ

	Deriving Module Tests from System Tests
	First Step: Recording Phase
	Second Step: Playback Phase

	Limitations
	Related Work
	Conclusions
	References

	Cryptographic Protocols Analysis in Event B
	Introduction
	Development by Step-Wise Refinement
	Guidelines for Modelling Protocols
	Abstract Model
	Applying the Proof-Based Guideline
	First Refinement
	Second Refinement: Attacker's Knowledge

	Conclusion
	References

	A Query Language for Logic Architectures
	Introduction
	Preliminaries
	BoxQL: A Query Language
	The Semantics of BoxQL
	Translation to DL
	Implementation and Evaluation
	Related Work and Conclusion
	References

	Planet Map Generation by Tetrahedral Subdivision
	Introduction
	Extending to 3D
	Spatial Subdivision

	Implementation and Uses
	Comparison to Other Methods
	Conclusion
	References

	Towards Checking Parametric Reachability for UML State Machines
	Introduction
	Syntax and Semantics of an UML Subset
	Symbolic Encoding
	Experimental Results
	Final Remarks
	References

	A Flexible Approach to Automated Development of Cross Toolkits for Embedded Systems
	Introduction
	Paper Overview

	Hardware/Software Codesign Requirements for Cross Toolkit Development
	Related Work

	ISE Language
	Instruction Definition

	Application to the Codevelopment Process
	Industrial Applications
	Performance Study

	Conclusion
	References

	A Technique for Information Retrieval from Microformatted Websites
	Introduction
	From the Semantic Web to the Semantic Network
	A Technique for Information Retrieval
	Semantic Sub-net Slicing

	Related Work and Conclusions
	References

	From Dynamic to Static and Back: Riding the Roller Coaster of Information-Flow Control Research
	Introduction
	Semantics
	Type System
	Monitor
	Results
	Incorporating Output into the Language
	Discussion
	Related Work
	Concluding Remarks
	Appendix

	History-Dependent Stochastic Petri Nets
	Introduction
	Preliminaries
	Petri nets
	Stochastic Processes

	History-Dependent Stochastic Petri Nets
	Definition of History-Dependent Stochastic Petri Nets
	Discovery of p(t,h)
	Discovery of the Correlations between Clusters

	Simulation with HDSPNs
	HDSPNs in CPN Tools
	Simulation Experiments

	Conclusion
	References

	Privacy Preserving Modules for Ontologies
	Introduction
	Technical Preliminaries
	Locality Based Privacy
	Partition Based Privacy
	Related Work and Conclusion
	References

	Symbolic Bounded Conformance Checking of Model Programs
	Introduction
	Model Programs
	Symbolic Bounded Conformance Checking
	Complexity of BCC
	Related Work
	References

	Multi-level Virtual Machine Debugging Using the Java Platform Debugger Architecture
	Introduction
	System Architecture
	The Maxine JDWP Server
	A Protocol within the JDWP Protocol
	Status and Results
	Related Work
	Conclusions
	References

	Anti-unification Algorithms and Their Applications in Program Analysis
	Preliminaries
	Anti-unification Algorithms
	Generating Invariants with the Help of Anti-unification
	Duplicate Code Detection Using Anti-unification
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

