

Lecture Notes of the Institute
for Computer Sciences, Social-Informatics
and Telecommunications Engineering 23

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong

Falko Dressler
University of Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Italy

Mario Gerla
UCLA, USA

Hisashi Kobayashi
Princeton University, USA

Sergio Palazzo
University of Catania, Italy

Sartaj Sahni
University of Florida, USA

Xuemin (Sherman) Shen
University of Waterloo, Canada

Mircea Stan
University of Virginia, USA

Jia Xiaohua
City University of Hong Kong, Hong Kong

Albert Zomaya
University of Sydney, Australia

Geoffrey Coulson
Lancaster University, UK

Athanasios V. Vasilakos Roberto Beraldi
Roy Friedman Marco Mamei (Eds.)

Autonomic Computing
and Communications
Systems

Third International ICST Conference, Autonomics 2009
Limassol, Cyprus, September 9-11, 2009
Revised Selected Papers

13

Volume Editors

Athanasios V. Vasilakos
University of Western Macedonia
Department of Telecommunications Engineering
50100 Kozani, Greece
E-mail: vasilako@ath.forthnet.gr

Roberto Beraldi
Universita‘di Roma "La Sapienza"
00100 Rome, Italy
E-mail: beraldi@dis.uniroma1.it

Roy Friedman
Computer Science Department
Technion, Haifa 32000, Israel
E-mail: roy@cs.technion.ac.il

Marco Mamei
University of Modena and Reggio Emilia
Dipartimento di Scienze e Metodi dell’Ingegneria
42100 Reggio Emilia, Italy
E-mail: mamei.marco@unimore.it

Library of Congress Control Number: 2009942250

CR Subject Classification (1998): C.2, G.2.2, G.1.6, I.2.11, J.1, K.6, H.3.4

ISSN 1867-8211
ISBN-10 3-642-11481-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11481-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© ICST Institute for Computer-Sciences, Social Informatics and Telecommunications Engineering 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12828081 06/3180 5 4 3 2 1 0

Preface

These proceedings contain the papers presented at the Third International ICST Con-
ference on Autonomic Computing and Communication Systems, Autonomics 2009,
held at the Cyprus University of Technology, Limassol, Cyprus, during September
9–11, 2009.

As for the previous editions of the conference, this year too the primary goal of the
event was to allow people working in the areas of communication, design, program-
ming, use and fundamental limits of autonomics pervasive systems to meet and ex-
change their ideas and experiences in the aforementioned issues.

In maintaining the tradition of excellence of Autonomics, this year we accepted 11
high-quality papers out of 26 submitted and had 5 invited talks, covering various
aspects of autonomic computing including applications, middleware, networking
protocols, and evaluation.

The wide interest in the autonomic systems is shown by the broad range of topics
covered in the papers presented at the conference. All papers presented at the confer-
ence are published here and some of them, which are considered particularly interest-
ing, will be considered for publication in a special issue of the International Journal
of Autonomics and Adaptive Communications Systems (IJAACS). The conference also
hosted the First International Workshop on Agent-Based Social Simulation and Auto-
nomic Systems (ABSS@AS).

Organization

Autonomics 2009

Steering Committee

Roberto Baldoni University of Rome La Sapienza, Italy
Imrich Chlamtac (Chair) CREATE-NET, Italy
Daniele Miorandi CREATE-NET, Italy

General Chair

Thanos Vasilakos University of Western Macedonia, Greece

Vice Chair

Roberto Beraldi University of Rome La Sapienza, Italy

Technical Program Chairs

Roy Friedman Technion, Israel
Marco Mamei University of Modena, Italy

Conference Coordinator

Gergely Nagy ICST, Belgium

Local Chair

Rozita Pavlidou Cyprus University of Technology, Cyprus

Publications and Publicity Chair

Giorgia Lodi University of Rome La Sapienza, Italy

Web Chair

Marco Platania University of Rome La Sapienza, Italy

 Organization VIII

Technical Program Committee

Antonio Manzalini Telecom Italia, Italy
Aline Carneiro Viana Inria Saclay, France
Borbala Katalin Benko Budapest University of Technology and

Economics, Hungary
Cristian Borcea New Jersey Institute of Technology, USA
Christof Fetzer Dresden University of Technology, Germany
Gregory Chockler IBM Haifa, Israel
Danny Weyns Catholic University of Leuven, Belgium
Giovanna Di Marzo Serugendo Birkbeck University of London, UK
Douglas Blough Georgia Institute of Technology, USA
Eiko Yoneki Univeristy of Cambridge Computer Laboratory,

 UK
Gwendal Simon Telecom Bretagne, France
Matti Hiltunen AT&T Labs Research, USA
Hussein Alnuweiri Texas A&M University of Qatar, Qatar
Luís Rodrigues INESC-ID/IST, Portugal
Raffaela Mirandola Politecnico di Milano, Italy
Oriana Riva ETH Zurich, Switzerland
Manish Parashar Rutgers, USA
Leonardo Querzoni University of Rome La Sapienza, Italy
Ravi Prakash University of Texas at Dallas, USA
Roman Vitenberg University of Oslo, Norway
Thrasyvoulos Spyropoulos ETH Zurich, Switzerland
Maarten van Steen VU University Amsterdam, The Netherlands
Neeraj Suri Technical University of Darmstadt, Germany
Vinny Cahill Trinity College Dublin, Ireland
Ted Herman University of Iowa, USA
Matthias Baumgarten University of Ulster, UK

ABSS@AS 2009 Workshop

Organizing Committee

Mario Paolucci Institute for Cognitive Science and Technology

(ISTC-CNR)
National Research Council

Isaac Pinyol Artificial Intelligence Research Institute
(IIIA-CSIC)
Spanish National Research Council

 Organization IX

Program Committee

Frederic Amblard Universite Toulouse 1, France
Luis Antunes University of Lisbon, Portugal
Cristiano Castelfranchi ISTC-CNR, Italy
Federico Cecconi ISTC-CNR, Italy
Helder Coelho University of Lisbon, Portugal
Rosaria Conte ISTC-CNR, Italy
Gennaro Di Tosto ISTC-CNR, Italy
Bruce Edmonds Centre for Policy Modelling, UK
Boi Faltings Ecole Polytechnique Federale de Lausane,

Switzerland
Nigel Gilbert University of Surrey, UK
Wander Jager University of Groningen, The Netherlands
Marco Janssen Arizona State University, USA
David Hales University of Bologna, Italy
Jean-Pierre Muller CIRAD, France
Pablo Noriega IIIA-CSIC, Spain
Emma Norling Manchester Metropolitan University, UK
Oswaldo Terán University of Los Andes, Venezuela
Mario Paolucci ISTC-CNR, Italy
Juan Pavon Mestras Universidad Complutense Madrid, Spain
Isaac Pinyol IIIA-CSIC, Spain
Walter Quattrociocchi ISTC-CNR, Italy
Jordi Sabater-Mir IIIA-CSIC, Spain
Jaime Sichman University of Sao Paulo, Brazil
Carles Sierra IIIA, Spain
Liz Sonenberg University Melbourne, Australia
Flaminio Squazzoni University of Brescia, Italy
Keiki Takadama Tokyo Institute of Technology, Japan
Klaus Troitzsch University of Koblenz, Germany
Paolo Turrini University of Utrecht, The Netherlands
Laurent Vercouter École Nationale Supérieure des Mines de

Saint-Étienne, France
Harko Verhagen Stockholm University, Sweden

Table of Contents

Autonomics 2009

A-OSGi: A Framework to Support the Construction of Autonomic
OSGi-Based Applications . 1

João Ferreira, João Leitão, and Luis Rodrigues

A Network-Coding Based Event Diffusion Protocol for Wireless Mesh
Networks . 17

Roberto Beraldi and Hussein Alnuweiri

Expressing Adaptivity and Context Awareness in the ASSISTANT
Programming Model . 32

Carlo Bertolli, Daniele Buono, Gabriele Mencagli, and
Marco Vanneschi

Experiences in Benchmarking of Autonomic Systems 48
Xavier Etchevers, Thierry Coupaye, and Guy Vachet

An Online Adaptive Model for Location Prediction 64
Theodoros Anagnostopoulos, Christos Anagnostopoulos, and
Stathes Hadjiefthymiades

MPM: Map Based Predictive Monitoring for Wireless Sensor
Networks . 79

Azad Ali, Abdelmajid Khelil, Faisal Karim Shaikh, and Neeraj Suri

Integrating Autonomic Grid Components and Process-Driven Business
Applications . 96

Thomas Weigold, Marco Aldinucci, Marco Danelutto, and
Vladimir Getov

Using a Teleo-Reactive Programming Style to Develop Self-healing
Applications . 114

James Hawthorne and Richard Anthony

Sensor Selection for IT Infrastructure Monitoring . 130
Gergely János Paljak, Imre Kocsis, Zoltán Égel, Dániel Tóth, and
András Pataricza

Context-Aware Self-optimization in Multiparty Converged Mobile
Environments . 144

Josephine Antoniou, Christophoros Christophorou, Augusto Neto,
Susana Sargento, Filipe Cabral Pinto, Nuno Filipe Carapeto,
Telma Mota, Jose Simoes, and Andreas Pitsillides

XII Table of Contents

Context Discovery in Mobile Environments: A Particle Swarm
Optimization Approach . 160

Christos Anagnostopoulos and Stathes Hadjiefthymiades

ABSS@AS 2009 Workshop

Consequences of Social and Institutional Setups for Occurrence
Reporting in Air Traffic Organizations . 176

Alexei Sharpanskykh

Can Space Applications Benefit from Intelligent Agents? 192
Blesson Varghese and Gerard McKee

A Generic Agent Organisation Framework for Autonomic Systems 203
Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings

Metareasoning and Social Evaluations in Cognitive Agents 220
Isaac Pinyol and Jordi Sabater-Mir

Experiments on the Acquisition of the Semantics and Grammatical
Constructions Required for Communicating Propositional Logic
Sentences . 236

Josefina Sierra and Josefina Santibáñez

An Autonomic Computing Architecture for Self-* Web Services 252
Walid Chainbi, Haithem Mezni, and Khaled Ghedira

Author Index . 269

A-OSGi: A Framework to Support the
Construction of Autonomic OSGi-Based

Applications�

João Ferreira, João Leitão, and Luis Rodrigues

IST/INESC-ID
joao.elias.ferreira@ist.utl.pt, jleitao@gsd.inesc-id.pt, ler@ist.utl.pt

Abstract. The OSGi specification is becoming widely adopted to build
complex applications. It offers adequate support to build modular appli-
cations, where modules can be added and removed at runtime without
stopping the entire application. This paper proposes A-OSGi, a frame-
work that leverages on the native features of the OSGi platform to sup-
port the construction of autonomic OSGi-based applications. A-OSGi
offers a number of complementary mechanisms for that purpose, such
as: the ability to extract indicators for the performance of deployed bun-
dles; mechanisms that allow to have a fine grain control of how services
bind to each other and to gather this information in runtime; and support
for a policy language that allows the administrator to define autonomic
behavior of the OSGi application.

Keywords: Autonomic Computing, OSGi, Service Oriented Computing.

1 Introduction

The OSGi specification [1] (initials for the extinct Open Services Gateway ini-
tiative) defines a standardized component oriented platform for building Ser-
vice Oriented JavaTM applications. OSGi provides the primitives and runtime
support that allows developers to build applications from small, reusable and
collaborative components. The OSGi platform also provides the support for dy-
namically changing such compositions, without requiring restarts. To minimize
the level of coupling, the OSGi provides a service-oriented architecture that en-
ables components to dynamically discover each other for collaboration.

OSGi was first developed for embedded systems software and later automotive
electronics. However, its advantages also made the technology appealing also to
build flexible Desktop Applications [2], Enterprise Applications [3,4], and Web
Applications [5,6]. A key issue associated with the deployment and management
of complex web applications is to ensure the performance of the application in
face of changing workloads. The difficulties in forecasting accurately the demand
and in estimating the interference among the deployed applications, makes the
� This work was partially supported by FCT, through project Pastramy, PTD-

C/EIA/72405/2006.

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 1–16, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

2 J. Ferreira, J. Leitão, and L. Rodrigues

configuration of web applications a significant challenge [7,8]. The concurrent
execution of multiple OSGi bundles, possibly developed by different teams, that
invoke each other in patterns which, due to the dynamics of the system evolution,
are difficult to predict at design time, makes this challenge even more daunting.

Autonomic computing has emerged as a viable approach to manage com-
plex systems such as the one described above [9]. The idea is that a system
must own autonomic management components, able to offer self-configuration,
self-optimization, self-healing and self-protection features. The ability to adapt
its own behavior in response to changes in the execution environment is the
fundamental ability of an autonomic system. The OSGi platform, by allowing
components to be removed, added, and replaced at runtime without stopping
the system, is particularly appealing for building autonomic web applications.

This paper proposes, describes and evaluates A-OSGi, a framework to sup-
port the construction of autonomic OSGi-based applications. A-OSGi offers a
number of complementary extensions to the basic OSGi framework that improve
its autonomic capabilities. Namely, A-OSGi includes the following features: the
ability to extract performance indicators of deployed bundles, mechanisms that
allow to have a fine grain control of how services bind to each other and to gather
this information at runtime, and support for the interpretation of a policy lan-
guage, that allows system administrators to define the autonomic behavior of
OSGi applications deployed over the A-OSGi framework.

The rest of the paper is organized as follows. Section 2 overviews related work.
The design and implementation of A-OSGi is described in Section 3 and Sec-
tion 4, respectively. The resulting system is illustrated and evaluated in Section 5.
Section 6 concludes the paper, providing some pointers for future work.

2 Related Work

In this section we provide a brief description of the OSGi platform architecture.
Then we describe the MAPE-K autonomic control loop in the context of the
OSGi architecture and, finally, we present some previous works that have ex-
plored strategies to enrich the OSGi platform with mechanisms to assist in the
creation of autonomic applications, for instance, by proposing adequate moni-
toring mechanisms.

2.1 OSGi Platform

The OSGi platform [1] is a container supporting the deployment of extensible
Java-based applications composed by components, usually named bundles. The
basic architecture of the platform is depicted in Figure 1. The platform is able to
install, update, and remove bundles without stopping or restarting the system.
Moreover, the platform supports a Service oriented Architecture (SOA), where
bundles interact in a publish/find/bind service model. SOA allow the developing
loosely coupled bundles that interact through service interfaces.

In more detail, a bundle can register with the OSGi platform a number of
services that it makes available to other bundles; the platform offers a service

A Framework to Support Autonomic OSGi-Based Applications 3

Fig. 1. OSGi Architecture

discovery mechanism that allows a bundle to dynamically find, at runtime, ser-
vices that it requires to operate.

The platform functionality is divided into the following four layers: i) The
Security Layer extends the basic Java security architecture specifically the per-
mission model to adapt it to the typical use cases of OSGi deployments; ii) The
Module Layer defines the modularization model employed by the platform, in-
cluding the Java packages visibility among bundles(bundle private packages); iii)
The Life Cycle Layer provides an API to support the mechanisms to install, up-
date, remove, start, and stop individual bundles; iv) The Service Layer owns the
responsibility of providing the mechanisms to support a service-oriented archi-
tecture (SOA) on top of the OSGi platform. This SOA support allows program-
mers to develop loosely coupled components that can adapt to the changing
environment in runtime, without restarting bundles. The SOA becomes even
more essential in OSGi due to the platform dynamic nature.

The OSGi platform was initially oriented to embedded systems and network
devices, however with its inclusion in the Eclipse IDE, OSGi is now widely used for
both desktop and server applications [2,3], and developing web applications [5,6].
OSGi based applications have increased in complexity over the years, however the
OSGi platform still lacks support for developing autonomic applications. Namely,
the platform does not provide mechanisms to monitor the operation of individual
bundles, or to take advantage on distinct service implementations that potentially
present different trade-offs between quality of service provided to the clients and
resource consumption required to provide that service.

iPOJO. One of the useful properties of OSGi, that can assist in developing
autonomic applications, is the Service Oriented Architecture support. However
managing the services dynamics in a system like OSGi rises dependencies man-
agement issues. For instance a service becomes available or unavailable, as a
result of bundle activation or deactivation. This problem is tackled by Service
Oriented Component Models that eases the registering of services and depen-
dencies management.

iPOJO is a Service Oriented Component Model that creates a clear separa-
tion between the bundle business logic and service oriented mechanisms such as
registering a service and binding to other services. This separation allows the

4 J. Ferreira, J. Leitão, and L. Rodrigues

bundle to be implemented as simple POJOs1. In [10], the authors specifically
apply the iPOJO solution over an OSGi platform. Although this approach can
ease the management of services binding in runtime, unlike A-OSGi, it lacks the
remaining components to build a autonomic system. However we rely in iPOJO
to build autonomic bundles on top of A-OSGi.

2.2 MAPE-K Control Loop

Many autonomic systems are modeled through a MAPE-K autonomic manage-
ment control loop [11]. This loop consists on the following operations: monitoring
(M), analysis (A), planning (P), and execution (E). The K stands for a shared
knowledge base that supports these operations. We now provide a brief descrip-
tion of each MAPE-K component and discuss how they can be implemented in
the context of the OSGi platform.

Monitoring. The monitoring component is responsible for managing the different
sensors that provide information regarding the system. In the OSGi context,
sensors can capture the current consumption of critical resources (such CPU and
memory) but also other performance metrics (such as the number of processed
requests per second and the request process latency). The monitoring metrics
must be fine grained, i.e. per bundle. Sensors can also raise notifications when
changes to the system configuration happen. Such sensors can be implemented
using the notifications provided by the OSGi platform during the life cycle of
bundles and services, and when bundles bind and unbind to services.

Analysis. The analysis component is responsible for processing the information
captured by the monitoring component and to generate high level events. For
instance, it may combine the values of CPU and memory utilization to signal an
overload condition in the OSGi platform.

Planning. The planning component is responsible for selecting the actions that
need to be applied to the system in order to correct some deviation from the
desired system state. The planning component relies on a high level policy that
describes an adaptation plan for the system. These policies may be described
using Event Condition Action (ECA) rules that are defined by a high level
language. A ECA rule describes for a specific event and a given condition what
action (or actions) should be executed. In the context of OSGi, the actions may
affect the deployed bundles, the registered services or the bindings to services.

Execution. The execution component applies the actions selected by the planning
component to the target components using the available actuators. In OSGi, we
consider three main action types, as follows: i) specify rules for service bindings,
in such a way that a specific bundle is prohibited, or obliged, to use some spe-
cific service implementation; ii) change service properties, for instance change
a parameter associated with a service implementation; and iii) control the life
cycle of a bundle, by either starting or stopping bundles.
1 Plain Old Java Objects.

A Framework to Support Autonomic OSGi-Based Applications 5

Knowledge Base. The knowledge base component maintains information to sup-
port the remaining components. In the context of OSGi, it maintains infor-
mation about managed elements, specifically which services a bundle is using,
which services a bundle provides, and other information about the dependencies
concerning services.

2.3 OSGi Monitoring

Several previous works have addressed the topic of monitoring OSGi applica-
tions [12,13]. Most of these solutions have focused on providing an adequate
bundle CPU consumption isolation. The work presented in [12] employs a thread-
based approach to monitor each OSGi bundle, by creating threads that are in-
ternally associated with an individual bundle. Another approach can be found
in [13], where the authors employ Isolates (or other execution environment ob-
jects) to achieve the required isolation (unfortunately, this solution only works
in specific, modified, JVMs). Other tools could also be applied to monitor the
resources, such as bytecode instrumentation for CPU accounting [14].

3 The A-OSGi Framework

The A-OSGi framework offers a number of extensions to the OSGi platform to
support the development of autonomic applications. In this section, we provide
an overall overview of the A-OSGi architecture followed by a detailed description
of each of its components.

The A-OSGi architecture follows the general MAPE-K model (introduced
previously in the Section 2.2). More specifically, we have augmented the OSGi
platform with functionalities that support monitoring, analysis, planning, exe-
cution, and the knowledge aspects of that model. As depicted in Fig. 2 these
functionalities are provided by four main components, namely: A-OSGi Mon-
itoring and Analysis component (MAC); A-OSGi Execution component (EC);
A-OSGi Knowledge component (KC); and A-OSGi Policy Interpreter and En-
forcer (PIE).

A-OSGi Monitoring and Analysis Component (MAC). The MAC com-
ponent is responsible for retrieving information from sensors; it interacts with
the OSGi service and module layers, as well as with the JVM. The MAC compo-
nent monitors resource consumption, performance metrics, and changes to both
bundle and service availability, as well as the binding of services by individual
bundles.

Whenever the MAC detects a relevant change in the system, it generates an
event to alert any interested component. Such events are routed to all compo-
nents that have previously subscribed them. In our current architecture, only the
PIE component subscribes all provided events. However, by exposing a publish-
subscribe interface, we facilitate the extension of our architecture with additional
functionalities.

6 J. Ferreira, J. Leitão, and L. Rodrigues

Fig. 2. A-OSGi Architecture

The MAC component is also responsible for generating new events from the
composition of other events. In the current prototype, there is no explicit support
to specify these using some form of domain specific language constructs: analysis
events have to be programmed directly in Java. This pragmatic design choice
allowed us to build a running prototype of the A-OSGi architecture that has
been used to assess the merits of our approach. As future work we will enrich
the analysis component, for instance, integrating previous work by others, such
as the Event Distiller described in [15].

A-OSGi Execution Component (EC). The EC component is responsible
for executing actions over bundles, individual services, and the OSGi kernel. Its
interface exports the primitives that allow to start and stop bundles, change
service binding rules in run-time (by adding or removing binding obligations
and prohibitions), and also change properties of individual services (for instance
by changing parameters associated with the operation of such services). In order
to perform these actions, EC interacts with both the service and the life cycles
layers of the OSGi architecture. In the current version of the architecture, only
the PIE component uses the services of the EC component.

A-OSGi Knowledge Component (KC). The KC component provides a set
of mechanisms that allow other components to consult information regarding
the state of the A-OSGi execution environment. In more detail, this compo-
nent maintains, and exports, information concerning the set of installed bundles
and registered services, and also on existing dependencies among bundles and
services. To maintain such information available, the KC component interacts
directly with the module and service layers of the OSGi architecture. In our
current architecture the information maintained by the KC is accessed by the
PIE component, which uses it to compute adaptation plans.

A Framework to Support Autonomic OSGi-Based Applications 7

A-OSGi Policy Interpreter and Enforcer (PIE). The PIE component in-
terprets the system policy, which is described by a set of ECA rules. The activity
of PIE is driven by events received from the MAC component, that notify the
need to perform adaptations. To select the best course of action, PIE uses the
the information about the system provided by the KC component. As a result
of its activation, PIE may request to the EC component the execution of one or
more actions.

4 Implementation of A-OSGi

In this section we describe in some detail the implementation of A-OSGi. The
components of the A-OSGi architecture are implemented, themselves, as OSGi
bundles. Naturally, these bundles need to be deployed to support the autonomic
behavior of the OSGi system. However, some of the functionality required to im-
plement these bundles requires small changes to the standard OSGi framework.
More precisely, we had to augment the life cycle and service layers of the basic
OSGi framework. These changes were necessary to support the monitoring and
execution components of the MAPE-K cycle.

In the following paragraphs, we first enumerate the technologies that we have
used to build our prototype of the A-OSGi framework and, subsequently, describe
in more detail the implementation of each component.

4.1 Underlying Technologies

The OSGi specification has several implementations, some of the most well-know
are: Eclipse Equinox [16], Apache Felix [17] and Knopflerfish [18]. For the work
presented in this paper we have selected the Apache Felix 1.6.0 implementation.
Notice however that changes performed over this implementation, and described
in this paper, can easily be ported to other existing implementations. Other im-
portant component of our architecture is a HTTP server/container that permits
the registering of resource and servlets to support the deployment of web ap-
plications. In this work we used the Pax Web bundle [19] that implements the
OSGi HTTP service specification [6], on top of Jetty HTTP Server [20].

The interfaces of the KC, EC, and MAC components are exported as JMX
Managed Beans [21]. Thus, any existing JMX client can use these components,
and subscribe the MAC events, or invoke the KC and EC methods. This allows
the services provided by these components to be used by third party components
and even other applications.

Moreover, the operation of the MAC component requires the inclusion of a
JVMTI Agent [22] at the JVM level. Finally, the PIE component is based on the
Ponder2 [23] policy interpreter for handling our ECA rules.

4.2 MAC Implementation

The MAC component monitors different aspects of the OSGi execution using
the available sensors. Each of these sensors has its own specific requirements in
terms of implementation. Namely:

8 J. Ferreira, J. Leitão, and L. Rodrigues

Performance Sensor. A Sensor that monitors the requests received by the
HTTP server and stores information concerning the bundle in charge of pro-
cessing the request. Therefore, this sensor is able to provide information about
the absolute number of requests processed by each bundle and the relative dis-
tribution of requests among bundles. It also stores the observed latency in the
processing of each request. To implement such functionalities, the HTTP server
bundle had to be changed in order to monitor the received requests.

Resource Consumption Sensor. A Sensor that monitors CPU usage and
memory consumption per bundle. In order to extract this information, some
sort of isolation among bundles is necessary. To implement our prototype, we
used a thread based approach to achieve the isolation, by creating a hierarchy
of ThreadGroups that associates a different ThreadGroup to each bundle. To
create this hierarchy of threads, we have altered the life cycle layer of OSGi such
that, whenever a bundle is started, the starting method is executed in a new
thread from the ThreadGroup of that bundle. As a result, all threads created
by the starting thread belong to the ThreadGroup associated with the bundle.
Furthermore, clients of a service are provided with a proxy that executes the
service methods in a thread associated to the bundle that registered the service.

We are aware that the thread based approach used in the current prototype
has a number of limitations. In first place, it has a non-negligible overhead as it
requires two context switch for each service invocation. Furthermore, it is unable
to isolate interactions that do not use the service interfaces (such as when a bun-
dle invokes methods of classes from another bundle). Finally, this approach may
cause deadlocks in services with synchronized methods. Therefore, the approach
requires a careful configuration of which services need to be isolated. Still, it its
able to provide enough feedback to support the required information to implement
many relevant autonomic behaviors. Given that the problem of providing isolation
among OSGi bundles is a challenging research topic on its own, we expect to in-
corporate in the future results from complementary on-going research[13].

With thread isolation, CPU usage can be calculated iterating over the threads
associated to a bundle ThreadGroup and sum all the threads CPU time. The same
approach can be extended to memory since its possible to detect the allocation of
objects and assign allocations to the thread that is performing that operation.

Table 1. A-OSGi MAC Events

Event Name Event Attributes
CPUUsage BundleID, value, oldvalue
MemoryUsage BundleID, value, oldvalue
RequestsPerSec BundleID, value, oldvalue
Latency BundleID, value, oldvalue
BundleStarted BundleID
BundleStopped BundleID
ServiceRegistered BundleID, ServiceID
ServiceUnregistered BundleID, ServiceID
ClientRegistered ClientBundleID, ServiceID
ClientUnregistered ClientBundleID, ServiceID

A Framework to Support Autonomic OSGi-Based Applications 9

OSGi Platform Sensor. This Sensor monitors notifications provided by the
OSGi platform concerning the service registration and bundle life cycle. The
binding between a bundle and a service is monitored by leveraging on the iPOJO
functionalities.

The complete list of events currently provided by the A-OSGi MAC is listed
in Table 1.

4.3 EC Implementation

The EC component not only provides an interface to start and stop bundles
(something that is directly supported by the standard OSGi implementation)
but, more importantly, provides interfaces to control how bundles bind to each
other and, as a result, to control which of multiple alternative implementations
of a given service can, or should, be used. For that purpose, the EC offers the
following mechanisms:

– bindings obligation: a binding obligation specifies that a bundle which op-
eration requires a given service will be obliged to use a specific service im-
plementation. The purpose of this mechanism is to force the use of a service
implementation by a bundle.

– binding prohibitions: a binding prohibition specifies that a bundle which op-
eration requires a given service cannot use a specific service implementation.
The purpose of this mechanism is to limit the use of service implementations
by bundles.

– service property configuration: the EC also provides support to change the
value of a property associated to a service implementation. This functionality
can be used to alter properties that the developer of the bundle exposed as
a service property.

The complete list of actions supported by the EC component is listed in Table 2.
In order to implement the EC component we have augmented the OSGi service
layer. In A-OSGi, this layer was modified to maintain, for each bundle, the
associated obligations and prohibitions. This information is used in run-time to
filter the services a bundle can bind, in order to satisfy the constraints defined
at each moment. We resort to iPOJO functionality to ensure the correctness of
bindings, accordingly to the prohibitions and obligations defined

Table 2. A-OSGi EC Actions

Action Name Parameters
StartBundle BundleID
StopBundle BundleID
SetClientProhibition BundleID, ServiceID
RemoveClientProhibition BundleID, ServiceID
RemoveClientProhibitionForServiceName BundleID, ServiceName
SetClientObligation BundleID, ServiceID
RemoveClientObligation BundleID, ServiceID
ChangeServiceProperty ServiceID, Property, Value

10 J. Ferreira, J. Leitão, and L. Rodrigues

4.4 KC Implementation

The KC provides a set of methods that allow to consult runtime information
about the installed bundles and the registered services, as well as the depen-
dencies between the client bundles and services. To implement these functions,
we use the module layer to extract information about services that a bundle is
using and the service layer to extract information about the bundles being used
by a service. The KC also provides methods to retrieve the current set of service
obligations or prohibitions. The full interface of the KC component is listed in
Table 3.

Table 3. A-OSGi KC functions

A-OSGi Bundle related functions
Function Parameters Returns
getAllBundles BundleID[]
getWebBundles BundleID[]
getBundleName BundleID BundleName
getBundleID BundleName BundleID
getUsedServiceNames BundleID ServiceName[]
getUsedServiceIDs BundleID ServiceID[]
getUsedServiceIDsbyName BundleID, ServiceName ServiceID[]
getAllUsedServicesIDs BundleID ServiceID[]
getProvidedServiceIDs BundleID ServiceID[]
getProvidedServiceNames BundleID ServiceName[]
getUsingBundles BundleID BundleID[]
getAllUsingBundles BundleID BundleID[]

A-OSGi Service related functions
Function Parameters Returns
getAllServices ServiceID[]
getServiceName ServiceID ServiceName
getServiceNames ServiceID ServiceName[]
getServiceBundle ServiceID BundleID[]
getServiceImplementations ServiceName ServiceID[]
getUsingBundles ServiceID BundleID[]
getAllUsingBundles ServiceID BundleID[]
getAllUsingWebBundles ServiceID BundleID[]
getClientProhibitions BundleID ServiceID[]
getClientObligation BundleID ServiceID
getServiceProperty ServiceID, Property Value

4.5 PEI Implementation

For implementing the PEI component we have used the Ponder2 policy inter-
preter [23]. With Ponder2 we implemented Managed Objects that we used as
adaptors to interact with the MAC, KC and EC components (using the corre-
sponding JMX MBeans). To describe ECA rules, Ponder provides a language
called PonderTalk. To create an ECA rule we have to specify an event from the
available MAC events, a condition using the KC functions, and actions provided
by EC. The use of Ponder2 also allows the dynamic definition of the policies,
a property very useful in a OSGi system due to the dynamic nature of the
platform.

A Framework to Support Autonomic OSGi-Based Applications 11

4.6 Framework Modifications

In order to implement A-OSGi, some modifications to the OSGi Framework
were necessary. These modifications can be summarized as follows: i) JVM level,
a JVMTI agent was implemented to support the monitoring of CPU and mem-
ory usage; ii) Life Cycle Layer, the execution of the bundle start method was
modified in order to execute this method in a new Thread with a corresponding
ThreadGroup; iii) Service Layer, to implement the prohibitions and obligations
mechanism in order to filter services a bundle can find, so the services that a
bundle can discover respect the defined constrains.

5 Evaluation

We now illustrate and evaluate the potential of A-OSGi to build autonomic
OSGi-based applications. Our case study uses a Web Application that has been
implemented using the architecture described in the previous section, and that
allows us to demonstrate some of the main features of A-OSGi.

The set of OSGi bundles used by our application is depicted in Figure 3. We
consider two web bundles that implement the presentation layer for an on-line
store that sells CDs and DVDs. These web bundles are implemented as individual
bundles that register with our altered version of the Jetty web server. Both web
bundles allow remote clients to: i) list a sub set of products, available in the store
and currently in stock, and ii) get details for a specific product. Information
about available items in stock is provided by a stock service that consults a
local database. There are two (independent) bundles that offer this service with
distinct trade-offs between quality of service and resource consumption. In more
detail, the first implementation of the stock service, simply named Basic, only
resorts to the internal database to provide information about products. The
second implementation of this service, named Premium, additionally relies on
on a costumer preferences service, to order the product list according to the
client preferences. Also, the premium service can offer suggestions about other

Fig. 3. Case Study Components

12 J. Ferreira, J. Leitão, and L. Rodrigues

products that may be of interest to the user and, therefore, returns additional
items when the client searches for either CDs or DVDs.

The functionality provided by the Premium implementation, by offering per-
sonalized content, can improve the costumer satisfaction and also generate more
revenue to the store. Unfortunately, this additional quality of service comes at
the expense of increased resource consumption. In situations where the server
becomes overloaded with requests, it may be preferable to satisfy more requests,
using the Basic implementation, than to provide the Premium service to a sub-
set of clients and drop the remaining requests. Naturally, when the load allows,
one would like to serve all requests using the Premium service. Furthermore, we
would like to have the possibility of making these adaptations for each service
independently of each other. For instance, if only the CD bundle is overloaded
with requests, it may be possible to adapt only the stock implementation used
by that service, and continue to use the Premium implementation for DVD buy-
ers. As we will show, the A-OSGi architecture provides support to specify and
implement this sort of policies.

5.1 Using A-OSGi

We now describe how A-OSGi can be used to implement the policy described
above for our case study. The policy can be described by only two rules, depicted
in Listing 1. The first rule simply prohibits any web bundle that is consuming
more than 35% of CPU from using the Premium implementation of the stock
service. The second rule removes this prohibition when a web bundle uses less
than 5% CPU. The adequate thresholds for the CPU usage were determined
experimentally. This policy ensures that the most expensive implementation is
used, if and only if, the resources are enough to sustain the current load.

Adaptation is performed with bundle-level granularity. The way the rules are
specified does not require the CD or DVD web bundles to be named explicitly.
Therefore, in run-time, depending on the system load, they may be applied to
just the CD service, to just the DVD service, or both. This is possible because the
KC component maintains updated information about each bundle, specifically on
their bindings. Also, since A-OSGi offers the flexibility to choose which services
should be monitored, it is possible to configure the platform in such a way that
only the CD and DVD services are monitored, reducing the monitoring overhead
to a minimum. Run-time adaptation is performed by restarting the target of the
rule. This forces iPOJO to reevaluate the bindings of the target bundle, taking
into consideration the new set of rules in the system.

5.2 Performance

To evaluate experimentally A-OSGi we used a workbench composed of two Intel
core-2 duo at 2.20 Ghz with 2Gb of memory. Both machines run Linux (Ubuntu
8.10 Desktop Edition) and the Sun Java Virtual Machine 1.6. Both nodes are
connected by a 100 Mbit switch. We deployed A-OSGi in one of these machines,
and loaded the policy depicted in Listing 1. The other machine is used to generate

A Framework to Support Autonomic OSGi-Based Applications 13

Listing 1. Policy

newpol icy := root / f a c t o ry / e capo l i c y c r e a t e .
newpol icy event : root / event /bundleCPU ;

cond i t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . StockServ i c e ”) at : 0) .
usedstockbundle := (s e r v i c e s getServ iceBundle : u s ed s t o ck s e r v i c e) .
s tock1bundle := (bundles getBundleID : ”pt . mediaporta l . s tock . Premium ”) .
(va lue > 35) & (usedstockbundle == stock1bundle)] ;

a c t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . StockServ i c e ”) at : 0) .
s e r v i c e s s e tC l i e n tP r oh i b i t i o n : bundleID se rv i c e ID : u s ed s t o ck s e r v i c e .
bundles stopBundle : bundleID .
bundles startBundle : bundleID .
] ;

a c t i v e : t rue .
newpol icy := root / f a c t o ry / e capo l i c y c r e a t e .
newpol icy event : root / event /bundleCPU ;

cond i t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . StockServ i c e ”) at : 0) .
usedstockbundle := (s e r v i c e s getServ iceBundle : u s ed s t o ck s e r v i c e) .
s tock2bundle := (bundles getBundleID : ”pt . mediaporta l . s tock . Bas ic ”) .
(va lue < 5) & (usedstockbundle == stock2bundle)] ;

a c t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . StockServ i c e ”) at : 0) .
s e r v i c e s removeCl i entProh ib i t i on : bundleID se rv i c e ID : u s ed s t o ck s e r v i c e .
bundles stopBundle : bundleID .
bundles startBundle : bundleID .
] ;

a c t i v e : t rue .

the workload using Apache JMeter 2.3.2 to emulate clients executing requests
to the server. Clients operate by requesting a list of either DVDs or CDs from
the server, and subsequently requesting details on one of the returned items.

During the experiments the web application is subject to 3 different workloads
that we have named, CD/DVD, CD/DVD+, and CD+/DVD+. The CD/DVD
workload imposes 50 requests per second to the CD service and another 50
requests per second to the DVD service. This load is low enough such that the
Premium implementation of the stock service can be used to answer all requests
without overloading the system. The CD/DVD+workload, in addition to the
previous requests, imposes an additional load of 1.500 requests per second to the
DVD service. To sustain this load, one is required to adapt the implementation
of the stock bundle used to process DVD requests (CD requests do not need to
be affected by the adaptation at this point). Finally, the CD+/DVD+ workload
includes an excess of 700 requests per second to the CD service. At this point,
both the DVD and CD requests are required to use the Basic implementation of
the stock service to sustain the heavy load.

The system is initiated with the CD/DVD workload. At time 60 the workload
is changed to the CD/DVD+ workload. Subsequently, at time 120 the workload
is increased again to CD+/DVD+. Finally, at time 180 the workload returns to
the baseline CD/DVD workload. Each individual workload was generated by a
group of 10 client threads. These workloads are illustrated in Figure 4 (time is
measured in seconds).

14 J. Ferreira, J. Leitão, and L. Rodrigues

Fig. 4. Workload Description

The results are depicted in Figure 5. The first plot compares the performance
of a static configuration (providing the premium service) against the autonomic
configuration. The adaptations that result from execution the policy can be in-
ferred by the quality of service provided to the user in plot 5(b). Clearly, the
autonomic configuration is able to ensure a much better throughput than the
static configuration, by dynamically changing to the less expensive implementa-
tion of the stock bundle. Plot 5(c) depicts the total number of requests processed
by both configurations. This last plot makes clear that the autonomic version
responds better to the increase in the workload.

0 50 100 150 200

time (s)

0

1000

2000

3000

4000

th
ro

ug
hp

ut
 (

re
qu

es
/s

)

OSGi
A-OSGi

(a) Throughput

0 50 100 150 200

time (s)

Ba
si

c

Q
ua

lit
y

of
 S

er
vi

ce

Pr
em

iu
m

OSGi
A-OSGi

(b) Quality of Service

0 50 100 150 200

time (s)

0

50000

100000

150000

200000

pr
oc

es
se

d
re

qu
es

ts

OSGi
A-OSGi

(c) Processed Requests

50 100 150 200

time (t)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

re
qu

es
t l

at
en

cy
 (

m
s)

OSGi
A-OSGi

(d) Overhead

Fig. 5. Performance with and without adaptation

A Framework to Support Autonomic OSGi-Based Applications 15

Finally, plot 5(d) compares the average request latency of the application
running in the A-OSGi framework against the same application, under the same
medium workload, running in a plain OSGi framework. This allows us to assess
the overhead induced by the current implementation of the A-OSGi mechanisms.
The difference is in the order of 25%, which is not surprising, given that many of
the A-OSGi components are not yet fully optimized (in particular the isolation
mechanisms required for detailed monitoring).

5.3 Other Policies

Due to lack of space, we have only discussed and evaluated one of several poli-
cies that could be applied to the case study. However, we would like to point
out some other alternatives that would also be supported by the A-OSGi frame-
work. Alternatively, or in addition to commuting between the Basic and Premium
implementation, the policy could also configure the operation of each of these
implementations (for instance, by changing the number of recommendations re-
turned to the client by the Premium service). This would require to write rules
specific for each bundle implementation, a feature that our simple case-study
does not illustrates. Also, instead of setting individual binding constraints, the
global behavior of the system could be controlled by simply installing or unin-
stalling bundles on the fly.

6 Conclusions

In this paper we have proposed A-OSGi, a framework that augments the OSGi
platform to support the implementation of autonomic OSGi-based applications.
A-OSGi offers a number of complementary mechanisms to this end, including
the ability to extract performance indicators about the execution of deployed
bundles, mechanisms that allow to have a fine grain control of how services bind
to each other, and support to describe the the autonomic behavior of the OSGi
application using a policy language.

The architecture has been implemented. Experimental results have illustrated
the benefits of the approach: we were able to selectively adapt the implemen-
tation of a bundle used by different services, in order to augment the system
performance in face of dynamic workloads. As future work, we plan to study
ways to optimize the performance of some of the A-OSGi components, such as
the MAC (by using more efficient isolation techniques), to reduce the overhead
imposed by the autonomic mechanisms.

References

1. The OSGi Alliance: OSGi Service Platform Core Specification, Release 4, Version
4.1 (2007), http://www.osgi.org/Download/Release4V41

2. Gruber, O., Hargrave, B.J., McAffer, J., Rapicault, P., Watson, T.: The eclipse 3.0
platform: Adopting osgi technology. IBM Systems Journal (2005)

http://www.osgi.org/Download/Release4V41

16 J. Ferreira, J. Leitão, and L. Rodrigues

3. Sun Microsystems: Sun GlassFish Enterprise Server v3 Prelude Release Notes
(2008), http://docs.sun.com/app/docs/coll/1343.7

4. OW2 Consortium: Jonas - White Paper v1.2 (2008),
http://wiki.jonas.objectweb.org/xwiki/bin/download/Main/

Documentation/JOnAS5 WP.pdf

5. Spring Source: Spring Dynamic Modules for OSGi (2009),
http://www.springsource.org/osgi

6. The OSGi Alliance: OSGi Service Platform Service Compendium, Release 4, Ver-
sion 4.1 (2007), http://www.osgi.org/Download/Release4V41

7. Diao, Y., Gandhi, N., Hellerstein, J., Parekh, S., Tilbury, D.: Using mimo feedback
control to enforce policies for interrelated metrics with application to the apache
web server. In: Network Operations and Management Symposium, NOMS 2002.
2002 IEEE/IFIP, pp. 219–234 (2002)

8. van der Mei, R., Hariharan, R., Reeser, P.: Web server performance modeling.
Telecommunication Systems (2001)

9. IBM: Autonomic computing: Ibm’s perspective on the state of information tech-
nology. IBM Journal (2001)

10. Escoffier, C., Hall, R., Lalanda, P.: Ipojo: an extensible service-oriented component
framework, July 2007, pp. 474–481 (2007)

11. IBM: An architectural blueprint for autonomic computing, fourth edition. Techni-
cal report, IBM (2006)

12. Miettinen, T.: Resource monitoring and visualization of OSGi-based software com-
ponents. PhD thesis, VTT Technical Research Centre of Finland (2008)

13. Geoffray, N., Thomas, G., Clément, C., Folliot, B.: Towards a new Isolation Ab-
straction for OSGi. In: Proceedings of the First Workshop on Isolation and Inte-
gration in Embedded Systems (IIES 2008), Glasgow, Scotland, UK, April 2008,
pp. 41–45 (2008)

14. Hulaas, J., Binder, W.: Program transformations for light-weight cpu accounting
and control in the java virtual machine. Higher Order Symbol. Comput. 21(1-2),
119–146 (2008)

15. Kaiser, G., Parekh, J., Gross, P., Valetto, G.: Kinesthetics extreme: an external in-
frastructure for monitoring distributed legacy systems. In: Autonomic Computing
Workshop, June 2003, pp. 22–30 (2003)

16. Eclipse Equinox: Homepage, http://www.eclipse.org/equinox/
17. Felix Apache: Homepage, http://felix.apache.org/
18. Knopflerfish: Homepage, http://www.knopflerfish.org/
19. Pax Web: Homepage, http://wiki.ops4j.org/display/paxwev/Pax+Web/
20. Jetty HTTP Server: Homepage, http://www.mortbay.org/jetty/
21. Sun Microsystems: Java Management Extensions,

http://java.sun.com/javase/6/docs/technotes/guides/jmx/index.html

22. Sun Microsystems: Java Virtual Machine Tools Interface,
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html

23. Twidle, K., Lupu, E., Dulay, N., Sloman, M.: Ponder2 - a policy environment for
autonomous pervasive systems, June 2008, pp. 245–246 (2008)

http://docs.sun.com/app/docs/coll/1343.7
http://wiki.jonas.objectweb.org/xwiki/bin/download/Main/Documentation/JOnAS5_WP.pdf
http://wiki.jonas.objectweb.org/xwiki/bin/download/Main/Documentation/JOnAS5_WP.pdf
http://www.springsource.org/osgi
http://www.osgi.org/Download/Release4V41
http://www.eclipse.org/equinox/
http://felix.apache.org/
http://www.knopflerfish.org/
http://wiki.ops4j.org/display/paxwev/Pax+Web/
http://www.mortbay.org/jetty/
http://java.sun.com/javase/6/docs/technotes/guides/jmx/index.html
http://java.sun.com/javase/6/docs/platform/jvmti/jvmti.html

A Network-Coding Based Event Diffusion Protocol for
Wireless Mesh Networks

Roberto Beraldi1 and Hussein Alnuweiri2

1 “La Sapienza” University of Rome, Rome, Italy
beraldi@dis.uniroma1.it

2 Electrical & Computer Engineering Texas A&M University at Qatar
hussein.alnuweiri@qatar.tamu.edu

Abstract. Publish/subscribe is a well know and powerful distributed program-
ming paradigm with many potential applications. In this paper we consider the
central problem of any pub/sub implementation, namely the problem of event dis-
semination, in the case of a Wireless Mesh Network. We propose a protocol based
on non-trivial forwarding mechanisms that employ network coding as a central
tool for supporting adaptive event dissemination while exploiting the broadcast
nature of wireless transmissions. Our results show that network coding provides
significant improvements to event diffusion compared to standard blind dissemi-
nation solutions, namely flooding and gossiping.

Keywords: Network coding, publish/subscribe, wireless.

1 Introduction

This paper investigates the problem of event diffusion over a wireless mesh network
(WMN) by leveraging a recent information dissemination technique called Network
Coding; see [8] for a tutorial. The Wireless Mesh Network (WMN) is an emerging
communication architecture with many practical applications in such areas as self-
organizing community networks, industrial plant automation, wireless sensor networks,
etc., [1]. A WMN can be considered as a two-tier architecture. The first tier is a wireless
backbone composed of mesh routers capable of packet routing and optionally providing
gateway functionality. The second tier is composed of mobile and/or portable wireless
devices (e.g. WiFi-enabled smart phones, mobile TV devices, etc.) which can act as
clients. A WMN is a self-organizing network with a certain degree of variability in
terms of participants and topology. For example, clients can move, new clients can join
a network, mesh routers can be occasionally switched off, or some clients can at times
act as wireless routers. Having a suitable application level abstraction that can face with
such a changes is thus very appealing. In this regards, publish/subscribe (pub/sub) is a
mature interaction paradigm that fits such requirements, since it allows for reference-
decoupled and asynchronous interactions among the participants [7]. In a pub/sub com-
munication system publishers produce information in form of events and subscribers
receive the subset of events that match their interests, expressed as a filter. Pub/sub

1 This paper was supported by the EU STREP SM4ALL FP7-224332.

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 17–31, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

18 R. Beraldi and H. Alnuweiri

Fig. 1. The grid topology arising from a metropolitan deployment of a WMN

systems have been widely studied in wired a setting, e.g., SIENA [6],Gryphon [11],
LeSubscribe [16]. However, while some papers have also focused on pub/sub systems
running over networks exploiting wireless technology, e.g. [3], [13], only a very few of
them have considered WMNs, [10], [21].

We consider a WMN deployed over a Manhattan like city model, see [1], in which
mesh routers can be considered as approximately placed at the intersection of two
streets. Since the streets are running est-west and north-south, mesh routers form a
regular grid topology, Figure 1. We assume that mesh routers are used as a dispatching
structure for supporting event diffusion. This solution is borrowed from the proposal
presented in [10]. We assume that each mesh client can communicate with only one
mesh router (called its local mesh router), and mesh routers are equipped with addi-
tional software appliances that clients interact with. Essentially, when the publisher
needs to publish a new event, it contacts its local mesh router and then sends the event
to it. The mesh router diffuses the newly event to all the other routers in the network, on
behalf of the publisher. A subscriber periodically renews its subscription to its current
local mesh router for a specific period of time, thus implementing a lease mechanism.
Filtering is done at the mesh router, and filters are not propagated into the network. A
router notifies the client as soon as it receives an event matching the filter, given that the
client subscription has not expired. In the rest of the paper we refer to a mesh router as
a node.

1.1 Contribution of the Work

The contribution of the paper is the proposal of an event dissemination protocol suitable
for dynamic environments. The protocol is self tuning in that (i) the behavior of a single
node depends on the amount of information is being received as well as on the number
of neighbors of a node (node density), (ii) the protocol runs efficiently independently of
how many targets there are in the system and where they are located.

The rest of the paper is organized as follows. Section 2 presents a brief tutorial on
the main concept of network coding and discusses basic alternatives to implement event
diffusion in a wireless mesh setting. Section 3 presents the details of our network-coding

A Network-Coding Based Event Diffusion Protocol 19

based protocol, and Section 4 provides several evaluation results. Finally, conclusions
are given in Section 5.

2 Background

Network coding is a relatively recent technique for end-to-end information delivery in
communication networks, introduced in the seminal paper of Ahlswede et al., [2] and
advanced by others [12] for many applications. Network coding marks a clear departure
from the basic network role as a passive relay of data packets or frames, to a more
active model in which network nodes can perform algebraic operations on the data
before sending it out. With network coding the intermediate nodes between source of
information and the destination(s) do not simply relay the received packets. Rather, they
are allowed to combine (encode) incoming data in order to generate the data output to
be forwarded. The original key advantage of this intermediate combination is for data
broadcasting and multicasting. With network coding a source node can always send data
at the network’s broadcasting rate, while without network coding this is not possible in
general. Some concrete examples of network coding based multicast protocols can be
found in [14], [15], [5] and [4]. Additional references can be found in [19].

In the following we adopt a linear network coding approach in which operations
on packets are confined to algebraic operations over a finite field. More precisely, we
confine ourselves to the Galois Field GF (2w) and interpret each data packet as being
composed from a set elements of the field, each of size w bits. We restrict ourselves to
apply linear network coding to the problem of broadcasting an original data packet, X ,
from a source node (e.g. the mesh router on behalf of the publisher) to all the other nodes
of a wireless network. The problem solution can be easily generalized to multi-source
multicast under reasonable additional constraints. The main symbols used throughout
the paper are listed in Table 1.

In linear network coding, the basic operation performed by each network node is
generating linear combinations of incoming packets, and transmitting the new ”coded”
packet. A linear combination is carried over a fixed set of original data chunks, called
a generation of the original packet. More precisely, we assume that special designated
nodes split an original data packet X of length l into m chunks, xi, each of length l/m,

Table 1. Definition of the main symbols

E Event to be diffused
m Generation size
x Original chunk of data
X Vector of the original m chunks
y an encoded chunk
Y Vector of encoded chunks
α Random coefficient
A m × m matrix of random coefficients (decoding matrix)
EV Encoding vector, coefficients used to create a linear comb.
IV Information vector, an encoded chunk sent into a packet

20 R. Beraldi and H. Alnuweiri

+

+
+

+

x1 x2 x3

y = α1x1+ α2x2+ α3x3

y

α3α2α1

original data chunk
element of GF(2w) original data, X

encoded chunk

w=8

Fig. 2. The operation of linear combination over the original chunks of data

to form the generation {x1, x2, . . .xm}. Each chunk of data is composed of k elements
of GF (2w). Hence, l = k × m × w (0s are padded if required). The value m is called
the generation size.

Consider for sake of example only, a data packet X of size 12 bytes, generation size
m = 3 and element size w = 8 bits, or one byte (see Figure 2). The packet is divided
into 3 chunks, x1, x2, x3, each composed of 4 elements (bytes). A linear combination is
achieved by choosing 3 coefficients of length w bits, α1, α2, α3 and computing a new
encoded chunk

y = α1x1 + α2x2 + α3x3

Because all operators are defined over the finite field GF (2w), the above computation
is performed element-wise, i.e., if xi

j is the i-th element of chunk j and yi is the i-th
element of the linear combination we have

yi = α1x
i
1 + α2x

i
2 + αi

3x3 i = 1, 2, 3

However, for the sake of avoiding cumbersome notation, we do not make this replication
explicit, and a linear combination is expressed as

y =
m∑

i=1

αixi

The result y is called an encoded chunk or, when it is sent in a packet, an Information
Vector, IV . The set EV = [α1, . . . , αm] of coefficients used in the combination is
called the Encoding Vector. As common with other network coding schemes, we assume
that a node sends both the information vector IV and the associated encoding vector
EV . Moreover, the coefficients used in a linear combination are generated randomly by
the node.

Note that the overhead due to sending the above encoding vector is m×w. Assuming
typical values of m = 16 and w = 8 bits when sending a 1 KB data packet, the overhead
is only 16/1024 ≈ 1.5%.

An important aspect of linear network coding is that encoded chunks can themselves
be combined to generate new encoded chunks at an intermediate node. For example,

A Network-Coding Based Event Diffusion Protocol 21

to combine n encoded chunks, y1 . . . yn, a node uses n coefficients, say α′
1 . . . α′

n with
which it generates

y′ =
n∑

j=1

α′
jyj

Note that the newly encoded chunk, y′, also represents a linear combination with respect
to the original data chunks. Therefore, since

y′ =
n∑

j=1

α′
j(

m∑
i=1

αjixi) =
m∑

i=1

(
n∑

j=1

α′
jαji)xi

where αji is the i-th coefficient used to calculate yj , the encoding vector the intermedi-
ate nodes is in effect

EV = [
n∑

j=1

α′
jαj1, . . . ,

n∑
j=1

α′
jαjm]

2.1 Event Dissemination with Network Coding

To elucidate the advantage of network coding, we present several alternatives for dis-
seminating (diffusing) an event over a portion of a wireless grid in which each node
can reach four neighbor nodes to the north, south, east and west. For this purpose, we
consider the 2-dimensional grid topology of Figure 3 and explain several alternatives
for disseminating an event E generated by the source node S (located at the center of
the grid) using the smallest amount of data transmissions. The problem we solve is how
to ensure that the event reaches the four destination nodes at the four corners of the
grid. Nodes 1, 2, 3, 4 function as relay nodes in this example.

For the sake of simplicity, we assume here an idealized collision-free broadcast com-
munication channel and that event E fits the size of a single packet (a realistic channel
is used in simulations). Our aim is to compare the performance/cost tradeoff of differ-
ent principle design, where the cost is the total amount of data sent over the network,
T , and the performance is measured through the probability PF that all nodes receive
E. In the following the cost of sending one packet (containing E) is counted as one.

In general, there are two different approaches for event diffusion: informed dissemi-
nation and blind dissemination. Informed Dissemination requires the source node S to
know the topology and coordinate transmissions to the destination nodes. For example,
in the case of Figure 3, S may declare, in the packet header, two destinations which
have to rebroadcast the packet. For example, S can specify nodes 1 and 3 as destina-
tions. This means relay nodes 2 and 4 discard the packet, while nodes 1 and 3 will
rebroadcast their packet to the corner nodes. It is obvious that the cost of this solution is
T = 3, and PF = 1 (ignoring the small cost of sending the additional destination IDs
in the packet header). Clearly, this is the smallest amount of data that must be sent for
disseminating the event.

Blind dissemination is an attractive alternative which is more suited to the distributed
dynamic nature of wireless mesh networks. In such environment, it may not be easy (or
it may be very costly) to maintain the required topology or link-state information for

22 R. Beraldi and H. Alnuweiri

Fig. 3. Event diffusion over a square grid. The source node S is placed at the center.

disseminating events in the presence of node mobility, or some nodes turning off and
new nodes turning on arbitrarily.

In this paper, we are interested mainly in blind dissemination. Next, we review sev-
eral alternatives that avoid the use of coordination among nodes while still requiring the
same amount of data transmissions as in informed dissemination. Normally, this comes
at the cost of a lower value for PF . In order to assess the benefit of applying network
coding for event diffusion, we will explore and compare the performance of network
coding to other blind dissemination techniques, namely flooding, naive dissemination,
and gossip. We will briefly explain these techniques with the help of the wireless grid
example of Figure 3.

NAIVE RANDOM DISSEMINATION. This technique exploits a very simple random for-
warding approach in which coordination is no longer required. Consider the following
variation of the approach. Initially, the source S transmits the event to its four neighbors
(relay nodes). Then each relay node splits the packet (event E) into two parts, say a and
b, of equal size. Now, each relay node chooses only one of these parts, i.e. either a or b,
with equal probability, then transmits it to all destination it can reach. Since each part
contains only half the information carried in E, the cost of sending one part of the event
by a relay node is 1

2 . Thus, the total cost of dissemination is still T = 3.
To calculate PF , let {y1, y2, y3, y4} denote the scheduled parts chosen by the four

relay nodes 1, 2, 3 and 4, respectively. For example, the schedule {a, a, a, b} refers to
the schedule where relay nodes 1, 2, 3 each choose to transmit a, and 4 chooses to
transmit b. For this example, there are 24 different schedules, but only two of them,
namely {a, b, a, b} and {b, a, b, a} allow all the receiver nodes reconstruct the event.
Thus, pF = 2−3 = 1/8 = 0.125. This result shows the weakness of naive random
dissemination.

RANDOM DISSEMINATION WITH NETWORK CODING. The second random solution
leverages linear network coding, where we can show that we can achieve forwarding
probability pF ≈ 1 while maintaining the cost of forwarding practically the same as
with the informed dissemination. Instead of just sending one half of the event E ran-
domly, a relay node now sends a random linear combination of the two parts a and b.

A Network-Coding Based Event Diffusion Protocol 23

To compute the linear combination, the relay node picks two coefficients, α1 and α2,
uniformly at random from a finite field of size q then broadcasts y = α1a+α2b together
with the coefficient’s vector (α1, α1) (all Operations are defined over the field Fq). Note
that the size of the linear combination |y| = |a| = |b| = |E/2|. The transmitted packet
will have a size slightly larger than |y| because we must include the coefficients in the
packet. However, for most practical cases, the overhead due to including the coefficients
in the transmission is small and can be neglected to simplify analysis.

Since a receiver node at one of the corners gets two linear combinations from its
neighbors, say y1 = α11a + α12b and y2 = α21a + α22b with the corresponding 4
coefficients, it will be able to retrieve (i.e. decode) the original event E if it can solve
the following linear system of equations:

α11y1 + α12y2 = x1

α21y1 + α22y2 = x2

There are q4 different possible 2 × 2 matrices whose coefficients are picked randomly
from the field Fq . Considering that the number of linearly independent matrices is (q2−
1)(q2 − q), the probability that the matrix above is non-singular, thus allowing a node
to retrieve the event (by inverting the matrix, or using Gaussian elimination), is

(q2 − 1)(q2 − q)
q4 ;

from which the probability that all of the 4 receivers at the corners of the grid get the

event is PF =
[
(1 − 1

q2)(1 − 1
q)

]4
. For example, if we choose with q = 256, i.e. the

field of 8-bit coefficients, then PF ≈ 0.98. Note, also that the overhead for sending two
coefficients is just two bytes.

GOSSIP. In order to illustrate the powerful utility of network coding in random event
dissemination, we compare it against a probabilistic flooding technique commonly re-
ferred to as gossiping. Using a basic gossip protocol, each relay node transmits the
complete event E to its neighbors with probability p. Let

[tx1, tx1, tx3, tx4]

be the transmit decision of the four relay nodes such that txi = 1 means that node i
decided to transmit the packet, and txi = 0 means it decided to discard the packet.
There are two sets of decisions that allow for all four receivers at the corners of the grid
to get the event. They are

TX = [1, ∗, 1, ∗] TX ′ = [∗, 1, ∗, 1]

where ∗ means any decision. In other words, all receivers will get E when either (at
least) both relay nodes 1 and 3 transmit E, or both nodes 2 and 4 transmit E. A decision
belongs to one of these 2 sets with probability p2. Note that the decision 1, 1, 1, 1 is
common to both sets and occurs with probability p4. Therefore, the probability that all
receivers get the event is the probability to observe a retransmission pattern of type TX
or TX ′ on the relay nodes, or

PF = 2p2 − p4

24 R. Beraldi and H. Alnuweiri

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

PF

Numnber of transmissions

Fig. 4. Probability that all nodes receive the event, PF vs total number of transmissions, T

To compare gossiping to RDNC, we first observe that in gossiping, the average number
of transmissions is T = 1 + 4p, giving us p = (T − 1)/4, where T is the cost of
dissemination. Figure 4 shows the complete reception probability PF as a function of
T for the gossip technique. The above result shows that if we are to maintain the cost
at T = 3 transmissions, then we get p = 0.5; from which we determine PF ≈ 0.43.
On the other hand, in order for gossip to achieve the same dissemination reliability as
network coding, i.e. PF ≈ 0.98, we need to set p ≈ 0.9, which means the cost will
increase to T ≈ 4.6 transmissions.

3 Proposed Protocol

The prosed protocol utilizes a push-pull method whereby the event is diffused in two
phases. During the first phase, the information content of the event is partially pushed
throughput all the network. During the second phase the fraction of nodes that need to
fully decode the event pull the missed information from their neighbor nodes.

The key idea of the protocol is to assure that although a single node doesn’t have the
whole information required to detect the event, the remaining part can be retrieved from
nearby nodes. Roughly speaking, the pushing phase is such that any group of nodes,
which is composed by a node and its neighbors, has the full information required to
decode the event.

In the first phase of the protocol a node adapts its behavior according to the amount
of information being received. A kind of self adaptation is also incorporated in the
second phase, where a feedback mechanism is used to adapt the reaction of each node
according to the current node density.

3.1 Basic Data Structure and Assumption

Each node manages the following data structures

– m×m matrix, A, called Decoding Matrix containing the elements of the encoding
vector

– 1 × m vector, Y , called the local encoded data vector, which contains the encoded
chunks

A Network-Coding Based Event Diffusion Protocol 25

– Operation bit mode, op (normal or collecting)
– Transmission counter, C

A node has direct access to the local broadcast link layer primitive, bcast(P), with
which it can send a packet P to all its neighbor nodes, namely, the ones that are within
its transmission range. A packet P contains the following fields

– Information Vector, P.IV
– Encoding Vector, P.EV
– Generation ID, P.gen
– Topic ID, P.topic

We assume that an event E fits the size of a packet (a simple variation allows to over-
come this limitation). Each event E is uniquely identified through the concatenation of
a generation number, managed by the publisher, and the publisher’s ID.

3.2 Protocol Description

In our algorithm the nodes are classified according to their roles as:

– Source node (the node that sends the packet carrying the event to be diffused)
– Bootstrap nodes (the neighbors of the source)
– Intermediate nodes (all the of other nodes)

An intermediate node may operate into two different modes: normal (op = 0) mode
and collecting mode (op = 1). The nodes initially operate in the normal mode.

The proposed protocol uses the following four key parameters to define a flexible
network-coding specific forwarding policy. These parameters can be tuned to optimize
the performance of the forwarding policy on a wireless mesh. The parameters are:

– BF , Bootstrap Factor
– ΔTC , Collecting Time
– FF , Forwarding Factor
– MaxTx, Maximum number of allowed transmissions

Push phase. The actions performed by each node in the first push phase are the fol-
lowing ones.

PUBLISHER. When the publisher needs to send a new event E, it issues the publish
primitive on the local node (router), say node S. Node S acts as a source of the event
on behalf of the publisher, and sends E by a local broadcast indicating the generation
ID.

BOOTSTRAP NODES. When a bootstrap node, B, receives event E from S, it splits the
event into m chunks, x1, . . . , xm. Then, B executes BF times the following four steps:

1. generate m random coefficients, EV = [α1, . . . , αm]
2. compute the linear combination y = α1x1 + . . . + αmxm

3. prepare a new packet with P.IV = y, P.EV = EV
4. send P via the local broadcast primitive.

26 R. Beraldi and H. Alnuweiri

Fig. 5. The initial phase of event diffusion

The Bootstrap Factor parameter, BF , varies in the range [1..m] and determines the
number of linear combinations sent by a bootstrap node.

Figure 5 shows an example for m = 3. For simplicity, we have assumed that E
is composed of 3 bytes, each of value 1. The bootstrap node B generates two linear
combinations with the coefficients [1, 2, 3] and [3, 2, 4]. Thus, the bootstrap factor is 2.

INTERMEDIATE NODES. When an intermediate node, say I , receives a packet P con-
taining a chunk for a new event, it creates a new decoding matrix, A, associated with the
event. The matrix contains all 0s, except for the first row which contains the coefficients
carried in the EV. The node also creates a new local encoded data vector, Y , containing
all 0s in all entries except the first one, which stores the IV of packet P . Finally, it sets
the transmissions counter C to MaxTx.

After these steps, I enters into the collecting operation mode (op = 1) and starts a
new collecting phase. A new collecting phase is initiated each time the node enters this
mode. During a collecting phase I waits for other possible new innovative chunks if
order to decide how many linear combinations to send.

The Collecting time parameter, ΔTC , determines the minimum duration of the col-
lecting phase. If a new innovative packet is received while the node operates in the
collecting mode, say at time t, then the duration of collecting phase will be postponed
until time t +ΔTC . Should a new innovative packet arrive before the new deadline, the
collecting phase will be again deferred by ΔTC .

The application of collecting-time is sketched in Figure 6. Node I has received two
packets, P1 and P2, carrying two linearly independent combinations over the original
chunks. The decoding matrix thus contains the corresponding encoding vectors. Packet
P1 triggers the collecting phase, while P2 prolonged the phase.

Δ

time

3

2

Fig. 6. Generating linear combination at an intermediate node

A Network-Coding Based Event Diffusion Protocol 27

After ΔTC from when P2 was received, the node does the following: create a new
linear combination using the coefficients 3 and 2 (they are shown to the left of the matrix
in figure 6), create a new information vector whose value is 3 × 6+2 ×9 =36, create
the new encoding vector, 3[1, 2, 3]+2[3, 2, 4]=[9, 10, 17], then send the new packet P3.

The reason for not immediately sending new linear combinations is that we have
empirically seen by simulations that innovative packets tend to arrive as burst1. As
the generation of a new linear combination is more useful if it is done over a wider
number of chunks, deferring the generation time - in the hope of increasing the number
of chunks - is a simple pragmatic way for improving the benefit of network coding. In
fact, the newly generated combination is more likely to be independent from the ones
stored at a larger number of neighbors.

The prolongation of the collecting phase thus acts a very simple adaption mechanism
that uses the reception of a new innovative chunk as an indicator that further useful
chunks are likely to be received in the near future. Please note that if the rank of the
decoding matrix at the beginning of a collecting phase is r, then the node can receive no
more than m − r new linear combinations; thus, the overall duration of the collecting
phase cannot exceed (m − r) × ΔTC .

At the end of the collecting phase the node sends out k = min{�FF × r�, C}
new combinations, where r is the total number innovative packets collected during the
collecting phase. The parameter FF , called the Forwarding Factor is a real number in
the range (0..1]. The forwarding factor regulates the “verbosity” of a node, and can be
useful in reducing the amount of data flooded in the network, or for conserving energy
by reducing the amount of transmissions from a node. Finally the node I decreases the
transmission counter C of k. The push phase ends when C = 0.

3.3 Pull Phase

The pull phase is initiated by a node A after ΔTP time unit from when C = 0 (recall
that each packet carries the topic identification so A triggers this phase only for chunks
belonging to events of interest).

To pull the missed chunks, node A broadcasts a requesting message to its neighbors.
This message contains the event ID and the number of missed chunks, say c, required
for full decoding. Upon receiving such a request, say at time t, a A’s neighbor, say
B, schedules the transmissions of c linear combinations at time t + ΔT , where ΔT is
a random jitter picked in the interval (0, TJ) (TJ is maximum jitter). During ΔT , B
listen for possible updates sent by A. A sends an update message each time it receives
some innovative chunks from any of its neighbors. An update message contains the
number c′ < c of innovative packets that A now wishes to receive. In such an update
message is received, B adjusts the scheduled number of transmissions to c′. Clearly,
the transmissions are cancelled when c′ = 0. Thus for example, a request message with
c = 3 triggers the scheduling of 3 linear combinations at each A’s neighbors (suppone
they are they B and D). Let assume that a neighbor D sends 3 chunks. If after the
reception of the new chunks A needs, say c′ = 1 more new chunks, A will send a new
requesting message containing this new value. In this way B decreases its contribution
from 3 to 1 chunk.

1 We have used the nam animation tool shipped with ns-2.

28 R. Beraldi and H. Alnuweiri

4 Evaluation

This section reports an in-depth performance evaluation study of the proposed protocols
carried out by extensive simulations using ns-2.31 simulation tools [18]. We used a
914 MHz Lucent WaveLAN DSSS radio interface model available in the simulator.
Each node has a transmission range R. We used a two-ray ground refection model as
the wireless propagation model. Each reading of the simulation was taken after 100
independent runs. We have simulated 400 nodes arranged on a grid at distance of 250
meters from one other. The transmission range is either fixed to R = 250m (with
connectivity degree = 4 nodes), or to R = 750m (connectivity degree = 20 nodes). The
duration of each simulation was 500 seconds. The source of the event is placed at the
center of the grid and transmits a new packet of 1KB in size, every 1 s. The default
collecting time is ΔTC = 50 ms while the maximum jitter is TJ = 10 ms. The target
nodes are placed at random.

Arithmetic operations are performed on the Galois field 28. We have used the library
available at [9]. To speed up the simulation, the decoding matrix is managed in the
Gaussian triangular form. We say that a node decodes the event when the associated
encoding matrix has full rank. Using this simulation environment, we provide estimates
of the following performance metrics,

– Percentage of Decoding: percentage of nodes that successfully decode the event.
– Decoding Delay: the amount of time elapsed from when the event is generated until

it is decoded
– Cost of Diffusion: total number of bytes sent transmitted in the network for dissem-

inating the event

4.1 Protocol Tuning

Our first set of experiments concerns the effect of collecting time and the generation
size on the protocol performance. In these preliminary tests we have considered a push-
only protocol, i.e., nodes have no limit on the number of transmissions they are allowed
to perform.

The left plot in Figure 7 shows the full decoding probability as a function of the
generation size and the collecting time given as a parameter. The decoding probabil-
ity is highly affected by the collecting time. When the decoding phase is not applied,
ΔTC = 0, the decoding probability is very low, especially for small generation size.
The decoding probability increases with the collecting time, meaning that waiting al-
lows a node for collecting a larger amount of innovative information and then generating
linear combinations that are useful for a larger number of neighbors.

The right side plot in Figure 7 shows the cost as function of the generation size and
the collecting time as a parameter. The cost increases with the collecting time since a
longer collecting time allows for more node to full decoding and then sending data.

4.2 Performance on a Grid

The left side plot in Figure 8 shows the total per event diffusion cost as a function of
the number of subscribers for a 20 × 20 grid with connectivity 4. The cost of the pro-
posed protocol has been compared against three not adaptive protocols: flooding, gossip

A Network-Coding Based Event Diffusion Protocol 29

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 8 16

F
ul

l D
ec

od
in

g
%

Generation Size

Full Decoding % Varying Generation Size with FF=0.5

deltaT=0 ms
deltaT=10 ms
deltaT=20 ms
deltaT=30 ms
deltaT=40 ms
deltaT=50 ms

deltaT=60 ms
 0

 50

 100

 150

 200

 2 4 8 16

C
os

t [
kB

]

Generation Size

Cost [kB] Varying Generation Size with FF=0.5

deltaT=0 ms
deltaT=10 ms
deltaT=20 ms
deltaT=30 ms
deltaT=40 ms
deltaT=50 ms
deltaT=60 ms

Fig. 7. Full decoding and cost vs generation size, collecting time is a parameter

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

K
B

Number Subscribers

Flooding
Gossip Probability 0.7
Prot Broadcast FF 0.5

Multicast FF 0.4 MaxTx 6 PushCost
Multicast FF 0.4 MaxTx 6 PullCost

Multicast FF 0.4 MaxTx 6 TotalCost

 1500

 2500

 3500

 4500

 5500

 6500

 7500

 0 50 100 150 200 250 300 350 400

m
s

Number Subscribers

Prot Broadcast FF 0.5
Multicast FF 0.4 MaxTx 6

Timer Request Pull

Fig. 8. Cost performance in a 20× 20 grid, connectivity 4. Number of bytes sent (left), decoding
delay (right).

and a push-only protocol with forwarding factor FF=5 and no limit on the number of
transmissions (labelled Prot Broadcast FF = 0.5). In the gossip protocol a node sends
the packet with probability pc = 0.7. The proposed multicast push-pull runs with
FF = 0.4, MaxTx = 6.

The cost of flooding is always 400 KB as all nodes send the packet whereas the
cost of gossip is 280 KB due to the probabilistic transmission. The cost of our protocol
is composed of a fixed part related to the pushing phase, and a variable part due to
the pulling phase, which increases linearly with the number of subscribers. The cost is
always below the gossip’s one.

The right side plot in Figure 8 shows the total decoding delay. The push-only protocol
is used to estimate an upper bound on the delay of the push-phase. The total decoding
delay is dominated by the time after which a node initiates the pulling phase. In our
simulations the pull phase starts after ΔTP = 7 s. This high value was selected for
clearly distinguish the pull phase component of the delay. From the plot we can see that
the pull phase requires approximatively 1 s to terminate. As the push phase requires no
more than 1.5 s., the total decoding delay can be as low as 2.5 sec.

To test the self-adapting mechanism of the pull phase, we have conducted a set of
experiments considering the higher connectivity degree of 20 neighbors. The parame-
ters used in this new setting are FF = 0.3, MaxTX = 3. These values are determined

30 R. Beraldi and H. Alnuweiri

 25

 50

 75

 100

 125

 150

 175

 200

 0 50 100 150 200 250 300 350 400

K
B

Number Subscribers

Prot Broadcast FF 0.3
Multicast FF 0.3 MaxTx 3 PushCost

Multicast FF 0.3 MaxTx 3 PullCost
Multicast FF 0.3 MaxTx 3 TotalCost

Fig. 9. Cost performance in a 20 × 20 grid, connectivity 20

empirically from the simulation and provide near optimal performance. The cost, see
Figure 9, shows a similar behavior and it always is lower than the cost of a push-only
protocol.

5 Conclusions

In this paper we have proposed an adaptive network-coding based event-diffusion pro-
tocol for wireless mesh networks. The proposed partial diffusion protocol uses a push-
pull method to reduce the initial dissemination cost (amount of data sent), but adds
a recovery cost incurred by the subscriber nodes. Compared to other blind dissemi-
nation protocols, most notably probabilistic flooding or gossip, our protocol has the
advantage that it requires significantly smaller amount of data to be transmitted into the
network. This advantage can be especially important for situations when nodes have
limited energy and/or bandwidth, such as sensor networks, or battery-powered wireless
nodes. Even in wireless meshes harnessed with higher-bandwidth IEEE 802.11 wireless
routers, reducing the amount of data transmitted is necessary in broadcast environments
to reduce contention on channels, since collisions can lead to excessive waiting delays
or dropping connections.

Wireless mesh networks can especially benefit from our protocols because the nodes
are not only transmitting and receiving their own data, but are also involved in relaying
data between close and distant neighbors.

References

1. Akyildiz, I.F., Wang, X., Wang, W.: Wireless Mesh Networks: A Survey. Computer Networks
Journal (March 2005)

2. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network Information Flow. IEEE Transac-
tions on Information Theory, IT-46, 1204–1216 (2000)

3. Baldoni, R., Beraldi, R., Cugola, G., Migliavacca, M., Querzoni, L.: Structure-less content-
based routing in mobile ad hoc networks. In: Costa, P., Picco, G. (eds.) IEEE International
Conference on Pervasive Services, ICPS (2005)

A Network-Coding Based Event Diffusion Protocol 31

4. Deb, S., Medard, M., Chote, C.: Algebraic Gossip: A network coding approach to opti-
mal multiple rumor mongering. IEEE/ACM Transactions on Networking, 2486–2507 (June
2006)

5. Mosk-Aoyama, D., Shah, D.: Information Dissemination via Network Coding. In: IEEE Intl.
Symp. on Info. Theory (2006)

6. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and evaluation of a wide-area event notifi-
cation service. ACM Trans. Comput. 19(3), 332–383 (2001)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of publish/ sub-
scribe. ACM Computing Surveys 35(2), 114–131 (2003)

8. Fragouli, C., Le Boudec, J.-Y., Widmer, J.: Network Coding: An Instant Primer. In: ACM
SIGCOMM 2006 (2006)

9. http://www.partow.net/projects/galois/
10. Gavidia, D., Voulgaris, S., van Steen, M.: A Gossip-based Distributed News Service for

Wireless Mesh Networks. In: Proc. Third Int’l Conf. Wireless On-demand Network Systems
and Services (WONS) (January 2006)

11. Gryphon Web Site, http://www.research.ibm.com/gryphon/
12. Ho, T., Mdard, M., Effros, M., Karger, D.: The benefits of coding over routing in a random-

ized setting. In: Proc. IEEE Symp. Information Theory, Yokohama, Japan (June/July 2003)
13. Ionescu, M., Marsic, I.: Stateful Publish-Subscribe for Mobile Environments. In: ACM In-

ternational Workshop on Wireless Mobile Applications and Services on WLAN Hotspots,
WMASH (2004)

14. Katti, S., et al.: XORs in The Air: PracticalWireless Network Coding. In: ACM Sigcom
(2006)

15. Lin, Y., Li, B., Liang, B.: Stochastic Analysis of Network Coding in Epidemic Routing.
JSAC 26(5) (June 2008)

16. Preotiuc-Pietro, R., et al.: Publish/subscribe on the web at extreme speed. In: Proc. of ACM
SIGMOD Conf. on Management of Data, Cairo, Egypt (2000)

17. Mansouri, M., Shah Pakravan, M.R.: Network Coding Based Reliable Broadcasting in Wire-
less Ad-hoc Networks. In: 15th IEEE International Conference on Publication Networks
(ICON 2007), November 2007, pp. 525–530 (2007)

18. http://www.isi.edu/nsnam/ns/
19. http://tesla.csl.uiuc.edu/koetter/NWC/
20. Wu, Y., Chou, P.A., Kung, S.-Y.: Minimum-Energy Multicast in Mobile Ad Hoc Networks

Using Network Coding. IEEE Transaction on Communications 53(11) (November 2005)
21. Zheng, Y., Cao, J., Liu, M., Wang, J.: Dept., Efficient Event Delivery Publish/Subscribe Sys-

tems forWireless Mesh Networks. In: Proc. of IEEE Wireless Communications and Network-
ing Conference, WCNC (2007)

http://www.partow.net/projects/galois/
http://www.research.ibm.com/gryphon/
http://www.isi.edu/nsnam/ns/
http://tesla.csl.uiuc.edu/koetter/NWC/

Expressing Adaptivity and Context Awareness
in the ASSISTANT Programming Model

Carlo Bertolli, Daniele Buono, Gabriele Mencagli, and Marco Vanneschi

Dept. of Computer Science, University of Pisa, Largo Pontecorvo 3, Pisa I-56127 Italy
bertolli@di.unipi.it

http://www.di.unipi.it/∼bertolli

Abstract. Pervasive Grid computing platforms are composed of a vari-
ety of fixed and mobile nodes, interconnected through multiple wireless
and wired network technologies. Pervasive Grid Applications must adapt
themselves to the state of their surrounding environment (context), which
includes the state of the resources on which they are executed. By fo-
cusing on a specific instance of emergency management application, we
show how a complex high-performance problem can be solved according
to multiple parallelization methodologies. We introduce the ASSISTANT
programming model which allows programmers to express multiple ver-
sions of a same parallel module, each of them suitable for particular con-
text situations. We show how the exemplified programs can be included
in a single ASSISTANT parallel module and how their dynamic switch-
ing can be expressed. We provide experimental results demonstrating the
effectiveness of the approach.

Keywords: Adaptivity, Context Awareness, Parallel Programming,
High-Performance Computing.

1 Introduction

Pervasive Grid computing platforms [15] are composed of a variety of fixed and
mobile nodes, interconnected through multiple wireless and wired network tech-
nologies. In these platforms the term context represents the state of logical and
physical resources and of the surrounding environment (e.g. acquired by sensor
data). An example of Pervasive Grid application is risk and emergency man-
agement [4]. These applications include data- and compute-intensive processing
(e.g. forecasting models) not only for off-line centralized activities, but also for
on-line, real-time and decentralized ones: these computations must be able to
provide prompt and best-effort information to mobile users. In general these
applications are composed of multiple software modules interconnected in some
graph structure (e.g. work- or data-flow). In abstract terms each module is re-
sponsible for solving a specific sub-problem. Clearly, each problem can be solved
according to different methods featuring different characteristics. They are suit-
able for different parallelization techniques and optimized for being mapped onto
different resources. For instance, a method can be optimized for the paralleliza-
tion according to task farm instead of data parallel. These computations can also

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 32–47, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Expressing Adaptivity and Context Awareness 33

be different in the provided Quality of Service (QoS). In this paper we consider
the term QoS as a set of metrics, which reflect the run-time behavior of a com-
putation w.r.t. factors such as its memory occupation, its estimated performance
(e.g. the average service time for a stream computation or the completion time
of a single task) and the the quality of computed results. In this paper we show
how multiple versions of a same parallel module can be introduced to target per-
formance issues for different computing nodes, to face with the dynamic nature
of pervasive grids and to meet dynamic user requests. We show that each version
is best suited to be selected depending on conditions which are verified only at
run-time (e.g. failures and user requests). This contribution is synthesized in
the novel ASSISTANT programming model (ASSIST [18] with Adaptivity and
Context-Awareness) which allows programmers to:

– express multiple versions of a same parallel module, exploiting the structured
parallelism paradigm [6] (e.g. skeletons). This feature is inherited from the
previous ASSIST parallel programming model [18];

– dynamically select which parallel version must be performed, in response to
user-defined events or context changes (e.g. related to resource availability
and sensor data). This feature can be expressed by exploiting performance
models of structured parallel computations [19].

Thus, an ASSISTANT parallel module can be used to implement a fully auto-
nomic computation.

We show a prototype implementation of ASSISTANT and we use it on a spe-
cific problem which is part of flood management application. A main module is
involved in computing a flood forecast and it includes the resolution of a large
number of tridiagonal linear systems. We show some different methods to solve
tridiagonal systems, we discuss their properties and how these influence their par-
allelization scheme. We show experimental results of the execution of two parallel
programs on best suited computing platforms. Thus, in this paper we show an ex-
ample focusing on self-healing, self-configuring and self-optimization properties,
leaving to future work the description of the remaining self- properties.

The paper is organized as follows: Sect. 2 discusses related works. Sect. 3 intro-
duces the flood management application. Sect. 4 describes the different versions
solving tridiagonal systems. Sect. 5 introduces the ASSISTANT programming
model. Sect. 6 describes the implementation of the tridiagonal solver methods
in the ASSISTANT model and it shows experimental results.

2 Related Work

Adaptivity has been introduced for mobile and pervasive applications by ex-
ploiting the concept of context [3]. Context definition includes environmental
data, such as air temperature, the state of network links and processing nodes,
and high-level information. Smart Space systems [16] mainly consist in provid-
ing context information to applications, which possibly operate on controllers
to meet some user defined requirements. Some works focus on abstracting use-
ful information from raw sensor data for adaptivity purposes. For instance, [5]

34 C. Bertolli et al.

exploits ontologies to model various context information, to reason, share and
disseminate them.

General mobile applications must adapt themselves to the state of the con-
text. For instance a mobile application can exploit optimized algorithms [12],
protocols [7] or systems [2]. In this vision, it is the run-time support (e.g. the
used protocol) which is in charge of adapting its behavior to the context. In
a more advanced vision adaptivity can be defined as part of the application
logic itself [4]. For instance, in Odyssey [13] an operating system is responsi-
ble of monitoring resources. Significant changes in resource status are notified
to applications, which adapt themselves to meet a fidelity degree. Adaptivity is
expressed in terms of the choice of the used services.

High-performance for context-aware applications is introduced in [11]. Com-
putations are defined as data stream flows of transformations, data fusions and
feature extractions. They are executed on centralized servers, while mobile nodes
are only demanded to result collection and presentation. We go beyond this vi-
sion by: (i) allowing programmers to express multiple versions of a same program
with different QoS; (ii) allowing programmers to execute proper versions also on
mobile nodes.

Independently of pervasive environments, several research works are focused
on adaptivity for high-performance programs [19]. In [1] it is shown how hierar-
chical management can be defined for structured parallel component-based ap-
plications [6]. Adaptivity for service-oriented applications is also targeted in [14],
but application adaptivity is only discussed for large-scale simulations of non-
linear systems. We inherit and extend these research works in our programming
model. In this paper we mainly focus on the programming model mechanisms
to express adaptivity between multiple versions of a same computation, and on
their performances according to a known cost model.

3 A Flood Management Application

We consider a schematic view of an application for fluvial flood management
(see Fig. 1). During the “normal” situation several parameters are periodically
monitored and acquired through sensors and possibly by other services (meteo
and GIS). For instance sensors can monitor the current value and the variation of
flow level and surface height. A forecasting model is periodically applied for spe-
cific geographical areas and for widest combinations of these areas. An example

Geographic

Information System

Flood Forecasting

Model

Meteorological

Prediction Model

Decision

Support System

Sensor

Networks

Precipitation Data

(e.g. satellite images)
Clients

Fig. 1. Scheme of the flood management application

Expressing Adaptivity and Context Awareness 35

is the TUFLOW [17] hydrodynamic model, which is based on mass and momen-
tum partial differential equations to describe the flow variation at the surface.
Their discrete resolution requires, for each time slice, the resolution of a very
large number of linear (tri-diagonal) systems. The quality of the forecasts also
depends on the size of the tridiagonal systems. There exist parallel techniques
which allow us to obtain reasonable response times in scalable manner.

During the execution, the forecasting model may signal abnormal situations
which could lead to a flood. Thus, performance is a critical parameter concerning
the response time of the forecasting model per se and also concerning all graphic
and visualization activities.

Consider an example of a critical situation: the network connection of the
human operator(s) with the central servers is down or unreliable. This is possible
because we are making use of a (large) set of mobile interconnection links which
are geographically mapped onto a critical area. To manage the potential crisis in
real time, we can think to execute the forecasting model and visualization tools
on a set of decentralized resources whose interconnections are currently reliable.

Just limiting to this scenario, it is clear that there is a complex problem in
dynamic allocation of software components to processing and communication re-
sources. Some resources may have specific constraints in terms of storage, pro-
cessing power, power consumption: the same version of the software components
may be not suitable for them, or even may be impossible to run it. Thus, the ap-
plication must be designed with several levels of adaptivity in order to be able to
cover different resource availability situations and dynamic QoS requirements.
In this paper we show how multiple versions can be introduced for the flood
emergency management application.

4 Defining Parallel Versions

We focus on the problem of solving tridiagonal linear systems of equations and we
show how multiple parallel versions can be introduced each with different charac-
teristics. There exist several resolution methods for generic linear systems: if the
system is tridiagonal specialized techniques can be employed [9]. For performance
modeling purposes, in this paper we focus on direct methods, which attempt to
find an exact solution in a fixed, statically known, number of steps. Examples of
direct approaches for tridiagonal systems are twisted factorization and cyclic re-
duction [9]. In this paper we are interested in defining multiple versions by ex-
ploiting different parallelization schemas of the same method: we focus on cyclic
reduction methods because they can be easily generalized to banded and block
tridiagonal systems [9]. In [10] two algorithms are introduced for solving tridiago-
nal systems of generic size N . For brevity, we avoid to introduce the mathematical
formulations of these algorithms: interested readers can refer to [10].

First Algorithm. This algorithm includes two main parts. The first part (de-
noted by transformation) transforms in q − 1 steps (q = log2(N + 1)) the input
system. At each step l we consider all rows i such as i mod 2l = 0. We solve:

36 C. Bertolli et al.

al
i = αia

l−1
i−2l−1 cl

i = γic
l−1
i+2l−1

bl
i = bl−1

i + αic
l−1
i−2l−1 + γi kl

i = kl−1
i + αik

l−1
i−2l−1 + γik

l−1
i+2l−1

αi = −al−1
i /bl−1

i−2l−1 γi = −cl−1
i /bl−1

i+2l−1

(1)

where ai, bi, ci and ki are the diagonal coefficients and the constant term of the
i-th row. The superscripts denote the computational step at which their values
are taken. α and γ are used in this notation to make equation reading easier. The
stencil, i.e. the functional dependencies between successively computed values,
refers the same element i and two neighbors: rows i − 2l−1 and i + 2l−1.

The second part of this algorithm is denoted resolution. We compute the
solutions of the system, according to a fill-in procedure. It includes q steps for
l = q, q − 1, . . . , 1. At each step l we consider all rows i for which i mod 2l = 0

xi = (kl−1
i − al−1

i xi−2l−1 − cl−1
i xi+2l−1)/bl−1

i (2)

In this case we do not need multiple x values for each computation step. The
stencil is the same of the first part of the algorithm.

Second Algorithm. The second algorithm includes two parts as the previous
one. The first part includes q steps. Unlike the first algorithm, we solve the same
equations (1) but for all rows at each step. The second part includes only a single
step in which we directly get all the solutions of the system. These are computed
in the following way: xi = kq

i /bq
i . Notice that we only need the last values of the

transformed system, instead of all the ones computed in the first part.

Discussion. We discuss the features of each algorithm to define the best par-
allelization schemas. In this paper we focus on context events including the state
of the used computing resources and their associated performance. We avoid to
consider environmental data (e.g. sensor data) influencing the version selection
policy (demanded to future work).

The performance features of the described algorithms can be characterized as
following:

– Number of steps: The first algorithm performs q−1 = log2(N−1)−1 steps
during the transformation part and q = log2(N − 1) in the resolution one.
The second algorithm performs less steps: q = log2(N − 1) transformation
steps and only one resolution step.

– Number of Operations: The first algorithm performs a lower number of
operations in the first part w.r.t. the second algorithm. This because the
second algorithm applies, at each step, the equations (1) to all system ele-
ments, instead of only a subset of them. The second part of both algorithms
involves the same number of operations.

– Number of Functional Dependencies: The first algorithm includes a
lower number of functional dependencies because, at each step of the trans-
formation part, equations 1 are solved only for a subset of elements.

In our application we need to solve a stream of tridiagonal systems, i.e. a possibly
unlimited sequence of systems. We need to consider the parallel efficiency on the

Expressing Adaptivity and Context Awareness 37

single system and on the stream of systems. Looking at the algorithms above we
can think to use two kinds of parallel structures:

– Task Farm: The systems (tasks) belonging to the input stream are sched-
uled w.r.t. several replicated workers according to a load balancing strategy,
each worker executing the sequential algorithm. An output stream of results
is produced. As known, this parallelism paradigm does not decrease the pro-
cessing latency of a single element of the stream, but it decreases the service
time (increases the throughput), provided that the stream interarrival time is
sensibly less than the sequential processing time (stream processing situation
in the true meaning).

– Data Parallel: Each tridiagonal system is partitioned (scattered) onto sev-
eral replicated workers, each one performing the sequential algorithm for its
respective partition. In the considered algorithms, workers cooperate during
each step according to a proper communication stencil. The whole result is
obtained by gathering the partial results. With respect to the farm struc-
ture, this parallelism paradigm works both in a stream processing situation,
and when only a single system has to be processed (i.e. equivalently, when
the stream interarrival time is greater than the sequential processing time
for a single task). Moreover, it is able to decrease the processing latency of
a single tridiagonal system and the memory size per node. In a stream situ-
ation, the disadvantage of a stencil-based data parallel structure, w.r.t. the
farm paradigm, is a potential load unbalance and a more critical impact of
the communication/computation time ratio, thus in general a greater service
time.

Two structuring modalities of the whole computation have to be distinguished:
an acyclic graph structure or a cyclic one. In the former case, a pipeline-like
effect is present, provided that a real stream processing situation occurs. In the
latter, the overall computation is a client-server schema. Each client sends the
input data to the tridiagonal solver module (i.e. the server) and it waits for
the corresponding results. To increase the performance of each client we can
parallelize the server with a proper parallelism degree:

– in a task farm structure it is equal to the number of clients;
– in a data parallel structure it is independent of the number of clients and can

be obtained by the proper cost model of the parallel structure. Moreover,
the reduced latency time contributes to decrease the server response time,
thus the client service time.

All the described situations (stream vs single element processing, acyclic graph
vs client-server structure) can be taken into account in an adaptive and context-
aware computation. The farm and the data- parallel paradigms are able to opti-
mize specific situations. In general it may be convenient, or necessary, to switch
from one structure to another one dynamically, thus to switch from a version of
the computation implemented according to a parallelism paradigm to another
version, implemented according to the other parallelism paradigm: this feature

38 C. Bertolli et al.

characterizes our approach to high-performance adaptive and context-aware ap-
plication design.

We have seen that the second algorithm performs more operations than the
first one (but less steps), but also more communications. These can be buffered
and, provided that their support is efficient, the second algorithm can be paral-
lelized according to the data parallel structure. Communication efficiency charac-
terizes multicores: communications between cores are implemented as accesses
to shared variables and the computation can take advantage of the hardware
caching support. Thus, we implement this version on a multicore architecture
(see below).

The first algorithm minimizes the number of operations performed in the
whole computation. Thus, it seems reasonable to: (a) parallelize it according
to the task farm model, which has not the strong requirements, in terms of
communication efficiency, of the data parallel; (b) implement it for both cluster
and multicore architectures. We show experimental results for both versions and
we discuss how the best version is dynamically selected according to specific
context situations.

We show the data parallel program for the second algorithm in the ASSIST
syntax. For brevity, we avoid to show the program of the task farm version.

4.1 The ASSIST Model

ASSIST [18] is a programming environment for expressing parallel and dis-
tributed computations according to the structured parallel paradigm. In ASSIST
it is not possible to natively express an adaptive application, which is one of the
intended goals of ASSISTANT. An ASSIST application is expressed in terms
of a set of ParMods (i.e. Parallel Modules) interconnected by means of typed
streams. The ParMod construct includes three sections:

– input section: It is used to express the distribution of received data from
input streams to the parallel activities performing the computation, accord-
ing to primitive constructs (e.g. on-demand and scatter) or user-programmed
ones;

– virtual processors: They are used to express the parallel computation ap-
plied to each input data, possibly producing an output result. Virtual pro-
cessors are the abstract units of parallelism in ASSIST, which are mapped
onto a set of implementation processes;

– output section: In this section we express the collection of virtual processors
results and their delivery to output streams, by means of primitive strategies
(e.g. gather) or user-programmed ones.

4.2 Parallel Programs in ASSIST

We implement an ASSIST parmod for the data parallel version using the second
algorithm (see Fig. 2). The parmod TSM-DP receives a stream of tridiago-
nal systems (syst row data structure) as input tasks (line 1). For each system

Expressing Adaptivity and Context Awareness 39

1 parmod TSM−DP(input stream syst row i npu t s y s t [N] output stream
s o l u t i o n s s o l s) {

2 topo logy array [i :N] vp ;
3 a t t r i b u t e syst row comput ing syst [2] [N] scatter S [] [∗ i] onto VP[i

] ;
4
5 do input section {
6 guard1 : on , , i n pu t s y s t {
7 distribution i n pu t s y s t [∗ s] scatter to comput syst [0] [s] ;
8 }
9 } while (true)

10
11 virtual processors {
12 so l v e sy s t em (in guard1 out s o l s) {
13 VP i {
14 for (l = 1 ; l <= q ; l++)
15 trans form(i , comput ing syst [i] [l −1] , comput ing syst [i−pow

(2 , l −1)] , comput ing syst [i+pow(2 , l −1)] , s o l s [i]) ;
16
17 so l v e (i , comput syst [i] [] , s o l s [i]) ;
18 }
19 }
20 }
21
22 output section {
23 co l l ects s o l s from ALL vp [i] ;
24 }
25 }

Fig. 2. Data parallel program based on the second cyclic reduction algorithm

it computes the correct solution (solutions data structure). The topology com-
mand (line 2) gives integer numbers (from 1 to N) as names of virtual processors.
Virtual processors are assigned a single system row on which they apply the al-
gorithm. In the implementation, multiple virtual processors are mapped onto
a set of implementation processes. At line 3 an attribute (a ParMod variable)
is used to store two successive system values during its transformation and it
is scattered amongst the virtual processors. The input section (line 5) is fired
when a system is received (line 6) on the input stream. The system is scattered
onto the first position of the attribute (line 7). In the virtual processors section
(line 11) each VPi in parallel: (a) transforms the input system in q steps (line
15); (b) computes the results (line 17). In the output section we gather all com-
puted results (from ALL keyword), which are automatically delivered onto the
output stream.

4.3 Experiments

We have tested the parallel efficiency of the different tridiagonal solver versions
on a emulation of a pervasive grid. The aim of this section is to experimentally
show that different versions can be used to target different context situations,
related to the state of the used computing resources (e.g. their availability)
and on their performance. The experiments are performed on a prototype of
ASSISTANT: we avoid to show the reconfiguration costs (i.e. version selection)

40 C. Bertolli et al.

because it is out of the scope of this paper. The pervasive grid is emulated by
the following nodes:

– a centralized server, emulated with a cluster architecture. The cluster is
composed by 30 nodes Pentium III 800 MHz with 512 KB of cache, 1 GB
of main memory and interconnected with a 100 Mbit/s Fast Ethernet. We
map the task farm version onto this platform;

– an interface node between the cluster and the mobile distributed platform
of PDA nodes and sensor devices. The interface node is emulated with an
Intel E5420 Dual Quad Core multicore processor, featuring 8 cores of 2.50
GHz, 12 MB L2 Cache and 8 GB of main memory. Both data parallel and
farm versions are mapped onto this architecture.

Fig. 3, 4 and 5 show the results in terms of service time and scalability. We define
the service time as the time passing between the consuming of two successive sys-
tems from the input stream (not their complete resolution but only their consum-
ing). Scalability can be defined as the ratio between the sequential computation
time (parallelism equal to 1) and the parallel one: it represents the quality of par-
allelization of the module. Notice that the cluster service time is higher than the
multicore one because of the sensible difference between the processing power of
their single nodes (800 MHz versus 2.5 GHz). For comparable processing powers,
the cluster would provide higher scalability and parallelism degrees. As discussed
at the end of Sect. 4, for acyclic graph application structures:

– the farm version is effective only when the computation operates on a stream
processing situation: in this case it performs better than the data-parallel
solution;

– the data parallel version has to be adopted when the computation operates
on a single tridiagonal system (i.e. too large interarrival time).

For client-server cyclic graph application structures, both versions are potentially
feasible: one or the other will be selected dynamically according the performance
comparison between the farm and the data parallel version, i.e. according to the
optimal parallelism degree of the two versions.

 25

 20

 15

 12

 10

 7

 5

 3

 1
 0

 0 2 4 6 8 10 12 14 16

se
rv

ic
e

tim
e

(s
ec

.)

parallelism degree

8MB
16MB
32MB

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8 9 10

sc
al

ab
ili

ty

parallelism degree

8MB
16MB
32MB

Fig. 3. Experimental results of the cluster task farm version (first algorithm): service
time (left) and scalability (right)

Expressing Adaptivity and Context Awareness 41

 3

 2.5

 2

 1.5

 1

 0.5
 0.3

 0
 1 2 3 4 5 6 7

se
rv

ic
e

tim
e

(s
ec

.)

parallelism degree

1MB
2MB
4MB
8MB

16MB
32MB

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7

sc
al

ab
ili

ty

parallelism degree

1MB farm
2MB farm
4MB farm
8MB farm

16MB farm
32MB farm

Fig. 4. Experimental results of the multicore task farm version (first algorithm): service
time (left) and scalability (right)

 1.5

 1

 0.7

 0.5

 0.3

 0
 1 2 3 4 5 6

se
rv

ic
e

tim
e

(s
ec

.)

parallelism degree

1MB
2MB
4MB

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6

sc
al

ab
ili

ty

parallelism degree

1MB
2MB
4MB

Fig. 5. Experimental results of the multicore data parallel version (second algorithm):
service time (left) and scalability (right)

From this discussion we can conclude that pervasive grid applications must
be programmed as multiple parallel modules, each provided in multiple versions.
Moreover, the programmer needs to express the conditions (or events) under
which each version is dynamically selected, according to the available resources
and user needs. This can be done by specifying different parallel programs and
by introducing a policy for the dynamic selection of the best version. The actual
implementation of version selection can be automatized in the following points:

– low-level version switching: this includes the re-direction of input data streams
between the versions;

– data consistency: the channel re-direction must guarantee that no input el-
ements are lost or re-ordered.

In the next section we introduce an high-level programming model in which all
these actions are automatized, while the application programmer just focuses on
the abstract events inducing a version switching.

5 The ASSISTANT Programming Model

We introduce the novel ASSISTANT programming model for high performance
pervasive applications with adaptive and context-aware behaviors.

42 C. Bertolli et al.

With ASSISTANT we target application adaptivity by allowing programmers
to express how the computation evolves reacting to specified events. We enable
this kind of expressivity with a new ParMod construct. We can characterize
three main logics (Fig.6 (left)) that can be used to describe the semantic and
the behavior of a ParMod:

– Functional logic: This includes all the versions solving the same problem
in the ASSIST syntax. Functional logics of different ASSISTANT ParMods
communicate by means of typed data streams.

– Control logic: This includes the adaptivity strategies, i.e. the reconfiguration
actions performed to adapt the ParMod behavior in response to specified
events. For instance, the control logic can select the best version between
multiple ones, according to specific cost models. The programmer is pro-
vided with high-level constructs to directly express the control logic with
the corresponding adaptivity strategies. Control logics of different applica-
tion ParMods can interact by means of control events.

– Context logic: This includes all the aspects which link the ParMod behavior
with the surrounding context. The programmer can specify events which
correspond to sensor data, monitoring the environmental and resource state
(e.g. air temperature and network bandwidth). It can also specify events
related to the dynamic state of the computation (e.g. the service time of
a ParMod). These context events can be provided by the run-time support
of the programming model, or in other cases primitive context interfaces
(e.g. failure detectors) which communicate with the application modules by
context events.

The different versions of a same ParMod are expressed by means of the operation
construct. Each ParMod can include multiple operations (see Fig. 7), all solving
the same problem according to different algorithms and parallel structures. All
operations of the same ParMod must feature the same input and output inter-
faces, in terms of streams. Each operation includes its own part of functional,
control and context logic of the ParMod in which it is defined. That is, each
operation features its own parallel algorithm, but also its own control and con-
text logics. Notice that operations are not merely alternative sections of code
inside a module definition: they are the adaptation and deployment units of the

OP0 OP1

OP2

EV0 EV2

EV1

EV4

EV6

EV5 EV3

Fig. 6. Example of ASSISTANT ParMods (left) and of event-operation graph (right)

Expressing Adaptivity and Context Awareness 43

parmod:: in_datastream ...; out_datastream ...;
global variables

events

. . .

operation 1 {

operation N { }

control
on_event {

}
. . .

ASSIST
Parallel Program

functional

Fig. 7. Syntactic view of a ParMod

versions of the same Assistant module. For this reason, a new suitable construct
is required to achieve our goals.

Syntactically, the ParMod has a name and a set of input and output streams.
It can feature a global state shared between operations and it can define events
which it is interested to sense. Events may be context ones, whose monitoring
can be provided by context interfaces, or control events obtained from the control
logic of other ParMods. Semantically, only one operation for each ParMod can
be currently activated by its control logic. When a ParMod is started a user-
specified initial operation is performed, possibly deploying it on dynamically
discovered resources. During the execution the context logic of a ParMod, or the
control logic of other modules, can notify one or more events. The control logic
exploits a mapping between these events and reconfiguration actions, defined
by the programmer, to either select a new operation to be executed, or modify
the run-time support of the current operation (e.g the parallelism degree of a
parallel computation as described in [19]). The control logic of an ASSISTANT
ParMod can be described as a graph (see Fig. 6(b)(right)): nodes are operations
of the ParMod and arcs are events (or their combinations with logical expres-
sions on the actual ParMod state). Semantically a ParMod control logic is a
sequential automaton: this is done to avoid nondeterministic behaviors. In the
case of concurrent events we serialize and manage them according to a priority
defined in the control logic itself (i.e. their definition sequence). In the example,
the initial operation is OP0. If the event EV0 occurs, we continue executing OP0
but we modify some aspects of its implementation (e.g. its parallelism degree).
That is, self-arcs, starting and ending in the same node, correspond to run-time
system reconfigurations. Consider now the arc from OP0 to OP1 fired by event
EV1. In this case the programmer specifies that if we are executing OP0 and
event EV1 occurs, we stop executing OP0 and we start OP1. This switching can
include pre- and post- elaborations: for instance, we can reach some consistent
state before moving from OP0 to OP1 in order to allow the former operation to
start from a partially computed result, instead of from the beginning.

Reconfigurations can be performed in the case: (a) some pre-determined events
happen and/or (b) some predicates on the module state are satisfied. That is,
the control logic of a ParMod is stateful. This behavior is expressed in each
operation of a ParMod by means of the on event construct. Syntactically, the
programmer makes use of nondeterministic clauses which general structure is
described as shown in Fig. 8:

44 C. Bertolli et al.

event combination :
do <r e c on f i g u r a t i o n code>
enddo

Fig. 8. General structure of the on event construct

If the event combination logical expression is satisfied, the corresponding re-
configuration code is executed. Programmers are also provided with a parallelism
construct, to specify a modification of the parallelism degree of the current op-
eration (i.e. a run-time system reconfiguration).

6 Programming Adaptivity for the Flood Application in
ASSISTANT

We show how to encapsulate the different versions, to solve tridiagonal systems,
in a single ParMod.The flood management application is composed of the fol-
lowing ParMods:

– Generator: This module emulates all the application phases preceding the
flood forecasting model. It generates a stream of double precision floating
point data related to the conditions of each point in the river [17].

– Tridiagonal Solver Module (TSM): This module implements the fore-
casting model (see Sect. 4), which is applied to each input stream element
received by the Generator. For each input data, it generates and solves four
tridiagonal systems (e.g. see [17]). The TSM includes three different opera-
tions.

– Visualization: This module implements the post-processing activities, vi-
sualizing forecast results on the user’s display.

In this program we consider three different operations for the TSM: the first
one is clusterOperation which is the task-farm mapped onto the cluster architec-
ture as described in Sect. 4. The second one is interfaceNodeFarm) which is the
task farm version executed on interface multicore nodes. The third operation
is interfaceNodeD.-P- which is the data parallel version executed on interface
multicore nodes. As the TSM functional logic has been described in Sect. 4,
we are interested in the control logic. This is responsible of deciding which con-
text changes have to be monitored and which ones cause a reconfiguration. The
considered context changes are:

– a network event from the TSM context logic related to the current status
of network connections (e.g. their availability or presence of high-latency
links). We have considered only two disconnection events: mainNetFail and
mobileNetFail which provide a boolean information related to the connection
capability (based on current latency and connection status) between the
cluster and the considered interface node (the former) and the interface node
and the user’s PDAs (the latter);

Expressing Adaptivity and Context Awareness 45

cluster
Operation

servTime

mainNetFail &&
!mobileNetFail &&

on_stream

on_stream

mainNetRecover &&
mobileNetRecover

!on_stream

mainNetRecover

mainNetFail &&
!mobileNetFail &&

!on_stream

interface
Node
Farm

interface
Node
D.-P.

Fig. 9. Event-Operation graph of the parmod TSM. Bold arrows are implemented in
Fig. 6.

parmod TSM(. .) {
operation interfaceNodeD.−P. {

// Para l l e l Computation in an ASSIST−l i k e fashion :
see Sect ion 3 . .

//Management se c t ion of t h i s operation :
on event {
mainNetRecover && mobileNetRecover :

do
not i f y (Generator Module , c o n f a i l) ;
n o t i f y (Cl ient Module , c o n f a i l) ;
//Stop the operation c ons i s t e n t l y :
this . stop () ;
//Act ivat ion of the new operation :
c l u s t e rOpe ra t i on . s t a r t () ;

enddo
on stream () :

do
. . .
interfaceNodeFarm . s t a r t () ;

enddo
}

}
. . .

Fig. 10. Control part of interfaceNodeD.-P. operation inside the parmod TSM
definition

– the average interarrival time to the ParMod TSM is lower than a maximum
threshold. This event is denoted with on stream.

Fig. 9 shows the event-operation graph of the TSM: bold arrows are those ex-
pressed in the interfaceNodeD.-P. control part. Dotted arrows are expressed in
the other two operations. Fig. 6 shows the corresponding on event section of
the operation inside the TSM definition, implementing its adaptive behavior
when the interfaceNodeD.-P. is executed. This on event instance describes two

46 C. Bertolli et al.

different conditions: while executing interfaceNodeD.-P. the mainNetRecover
and mobileNetRecover events can be received. We choose to execute the fore-
casting model on the cluster, because it enables higher parallelism degree than
the multicore and, consequently, lower service times. If the on stream event is
received, the input stream interarrival time is now lower than the TSM service
time. In this case we can switch to the interfaceNodeFarm operation, which
provides better on stream scalability (see Sect. 4). We also need to notify the
generator and client modules of this re-configuration (i.e. the notify function).

7 Conclusions

In this paper we have shown how adaptivity for pervasive grid applications can
be defined by exploiting multiple versions for the same application module. We
have exemplified our approach on the specific problem of solving tridiagonal sys-
tems of linear equations, introducing two resolution algorithms and parallelizing
them. The two algorithms are shown to be best suited for being executed on
a cluster architecture and on a multicore one. The experimental results show
that: the cluster version and the interface node version, as well as the respec-
tive farm and data parallel schemas, have clear pros and cons that can drive
the selection of the best adaptation strategy at run time. As an example, the
cluster version has to be preferred to the interface node one if the network sta-
tus provides a reasonable communication latency between the cluster and the
mobile users. We have introduced the novel ASSISTANT programming model,
providing constructs to express multiple versions of a same parallel module and
to adapt its execution by dynamically selecting the best one. We have imple-
mented a flood forecasting module exploiting the ParMod construct, including
the two resolution algorithms and their dynamic selection policy.

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Co-design of distributed systems using
skeletons and autonomic management abstractions. In: César, E., et al. (eds.) Euro-
Par 2008 Workshops. LNCS, vol. 5415, pp. 403–414. Springer, Heidelberg (2009)

2. Balasubramanian, A., Levine, B.N., Venkataramani, A.: Enhancing interactive web
applications in hybrid networks. In: 14th ACM International Conference on Mobile
Computing and Networking, pp. 70–80. ACM, New York (2008)

3. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int.
J. Ad Hoc Ubiquitous Computing 2, 263–277 (2007)

4. Bertolli, C., Fantacci, R., Mencagli, G., Tarchi, D., Vanneschi, M.: Next generation
grids and wireless communication networks: towards a novel integrated approach.
Wireless Comm. and Mobile Computing 9, 445–467 (2009)

5. Chaari, T., Ejigu, D., Laforest, F., Scuturici, V.M.: A comprehensive approach to
model and use context for adapting applications in pervasive environments. Journal
of Syst. Softw. 80, 1973–1992 (2007)

6. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Par. Comp. 30, 389–406 (2004)

Expressing Adaptivity and Context Awareness 47

7. Curtmola, R., Rotaru, C.N.: BSMR: Byzantine-Resilient Secure Multicast Routing
in Multi-hop Wireless Networks. IEEE Trans. on Mobile Comp. 8, 263–272 (2009)

8. Danelutto, M.: QoS in Parallel Programming through Application Managers. In:
13th Euromicro Conf. on Parallel, Distributed and Network-Based Processing, pp.
282–289. IEEE Press, Washington (2005)

9. Duff, I.S., Van der Vorst, H.A.: Developments and trends in the parallel solution
of linear systems. Par. Comp. 25, 1931–1970 (1999)

10. Hockney, R.W., Jesshope, C.R.: Parallel Computers: Architecture, Programming
and Algorithms. Institute of Physics Publishing, Bristol (1981)

11. Lillethun, D.J., Hilley, D., Horrigan, S., Ramachandran, U.: MB++: An Integrated
Architecture for Pervasive Computing and High-Performance Computing. In: 13th
IEEE Intl. Conf. on Embedded and Real-Time Computing Systems and Applica-
tions, pp. 241–248. IEEE Press, Washington (2007)

12. Mishra, A., Shrivastava, V., Agrawal, D., Banerjee, S., Ganguly, S.: Distributed
channel management in uncoordinated wireless environments. In: 12th Intl. Conf.
on Mobile Computing and Networking, pp. 170–181. ACM, Los Angeles (2006)

13. Noble, B.D., Satyanarayanan, M.: Experience with adaptive mobile applications in
Odyssey. Mob. Netw. Appl. 4, 245–254 (1999)

14. Plale, B., Gannon, D., Brotzge, J., Droegemeier, K., Kurose, J., McLaughlin, D.,
Wilhelmson, R., Graves, S., Ramamurthy, M., Clark, R.D., Yalda, S., Reed, D.A.,
Joseph, E., Chandrasekar, V.: CASA and LEAD: Adaptive Cyberinfrastructure for
Real-Time Multiscale Weather Forecasting. Computer 39, 56–64 (2006)

15. Priol, T., Vanneschi, M.: From Grids To Service and Pervasive Computing.
Springer, Heidelberg (2008)

16. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt,
K.: A Middleware Infrastructure for Active Spaces. IEEE Perv. Comp. 1, 74–83
(2002)

17. Syme, B.: Dynamically Linked Two-Dimensional/One-Dimensional Hydrodynamic
Modelling Program for Rivers, Estuaries and Coastal Waters. WBM Oceanics, Aus
(1991)

18. Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Par. Comp. 28, 1709–1732 (2002)

19. Vanneschi, M., Veraldi, L.: Dynamicity in distributed applications: issues, problems
and the ASSIST approach. Par. Comp. 33, 822–845 (2007)

Experiences in Benchmarking of Autonomic
Systems�

Xavier Etchevers, Thierry Coupaye, and Guy Vachet

Orange Labs, France Télécom Group
28 chemin du Vieux Chêne, F-38240 Meylan, France

{xavier.etchevers,thierry.coupaye,guy.vachet}@orange-ftgroup.com

Abstract. Autonomic computing promises improvements of systems
quality of service in terms of availability, reliability, performance, se-
curity, etc. However, little research and experimental results have so far
demonstrated this assertion, nor provided proof of the return on invest-
ment stemming from the efforts that introducing autonomic features re-
quires. Existing works in the area of benchmarking of autonomic systems
can be characterized by their qualitative and fragmented approaches.
Still a crucial need is to provide generic (i.e. independent from busi-
ness, technology, architecture and implementation choices) autonomic
computing benchmarking tools for evaluating and/or comparing auto-
nomic systems from a technical and, ultimately, an economical point of
view. This article introduces a methodology and a process for defining
and evaluating factors, criteria and metrics in order to qualitatively and
quantitatively assess autonomic features in computing systems. It also
discusses associated experimental results on three different autonomic
systems.

Keywords: Autonomic computing, benchmark, metrics, criteria, eval-
uation, comparison, return on investment, ROI.

1 Introduction

From an industrial perspective, the overall motivation underlying the emergence
of autonomic computing is based on the observation that the costs related to
the IT infrastructures are quickly and massively migrating from new investments
(development and licensing costs) to maintenance expenses (deployment and ex-
ploitation costs). [10] This evolution illustrates the transformation of computing
systems in terms of size, distribution, sophistication, dynamism, heterogeneity
and interoperability that results in even more complex –and thus expensive–
management tasks. In this context, autonomic computing aims basically inso-
faras possible at automating the deployment and management (administration)
of computing systems in order to reduce human interventions and all associated
costs.
� This work is partially funded by European IST FWP6 Selfman project [5].

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 48–63, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Experiences in Benchmarking of Autonomic Systems 49

Bit by bit research in autonomic computing is starting to generate industrial
solutions. This is the case, for example, of workload management in J2EE web
applications servers (e.g. JOnAS, JBoss, WebSphere, WebLogic). However, even
in such a well-known area, the autonomic features embedded in different products
do not necessarily address the same problems and/or can have different maturity
levels. Moreover, even if some experimental results like [2], [14] or [17] tend to
demonstrate that autonomic behaviors1 (ABs) improve systems efficiency (by
comparing it when enabling and disabling the autonomic features), there are
still no models and no tools for formally measuring and comparing the technical
and economical benefits these autonomic capabilities are supposed to offer.

Nowadays industrial companies continuously strive to improve and simplify
their process for increased customer satisfaction, operational efficiency and cost
reduction. This implies improved efficiency of computing systems in terms of
productivity, performances, quality of service (QoS), trust, etc. Autonomic com-
puting appears to be an appealing solution. However this quite recent and dis-
ruptive approach still raises a number of issues regarding:

(technical) efficiency: can the impact of autonomic computing on the quality
of service (QoS)2 be exhibited or even “proved” - especially when ABs are
built into the system? Is this impact measurable generically with respect to
various business fields, architecture or implementation of different systems?

profitability (i.e. economical efficiency): when comparing all the costs linked to
an autonomic system versus a non-autonomic equivalent one, does autonomic
computing come out as a cheaper or a more expensive technology? How long
will it take to become profitable?

applicability: considering the previous questions, are there some more or less per-
tinent areas to which autonomic computing should or should not be applied?

Such questions raise the need for some autonomic computing benchmark(s) that
would allow for evaluation and comparison of autonomic systems, both from a
technical and an economical perspective. This article hypothesizes that, even
if developing benchmarks are business-specific (i.e. specific to web applications
servers or to P2P systems for the benchmarks considered in this article), some
generic benchmarking elements could be shared among all specific domains and
therefore could allow for inter-area comparison. The contribution of this paper is
twofold. First, it introduces a methodology and a process for defining and eval-
uating factors, criteria and metrics in order to qualitatively and quantitatively
assess autonomic features in computing systems. Second, it analyzes associated
experimental results on three different autonomic systems. The article is orga-
nized as follows. Section 2 discusses existing works on autonomics benchmarking.
Section 3 defines a methodology and a process, based on criteria and metrics, in
order to benchmark autonomics both qualitatively and quantitatively. Section 4
describes and analyzes experimental results. Section 5 concludes.

1 Autonomic behavior (AB) designates the implementation of a particular control loop
or MAPE-loop.

2 In this article, the term ’QoS’ is used in its most general meaning.

50 X. Etchevers, T. Coupaye, and G. Vachet

2 Background

2.1 Models and Metrics

Since autonomic computing aims essentially at improving the QoS of systems,
[15] and [19] try to define an autonomic computing evaluation model based on
the ISO/IEC 9126 standard3 [13]. They describe the qualitative binding between
autonomic characteristics4 and the ISO/IEC 9126 factors (see figure 1). At the
same time, [11] provides a qualitative hierarchy between the eight autonomic
characteristics (the four main ones and the four secondary ones) (see figure 2).
Finally some works focus on the definition of metrics in order to evaluate auto-
nomic capabilities. For example, [12], [3] and [4] propose a non-exhaustive set
of criteria and metrics that are not related to any evaluation standard such as
ISO/IEC 9126.

Fig. 1. Organization of autonomic computing characteristics based on ISO/IEC 9126
standard quality factors [15] [19]

These works constitute indispensable steps toward providing a complete au-
tonomics benchmark, but they can be characterized by a qualitative and frag-
mented approach. [15] and [19] do not provide a quantitative composition of
the factors for evaluating experimentally the autonomic characteristics, nor an
adaptation of ISO/IEC 9126 model to the autonomic computing field. [11] is not
based on any Factors-Criteria-Metrics model and still has to be quantitatively
validated. Finally, [12], [3] and [4] list some criteria and metrics. However, for
most of criteria (i.e. granularity, flexibility, robustness, adaptability), no metrics

3 ISO/IEC 9126 is an adaptation of a generic Factors-Criteria-Metrics model [6] ap-
plied to the software quality field. However it defines only factors and criteria because
software quality metrics are specific to the business area of the considered system.

4 [7] and [9] define autonomic computing thanks to four main characteristics (self-
configuration, self-healing, self-protection and self-optimization) and four secondary
characteristics (self-awareness, context-awareness, openness and anticipation).

Experiences in Benchmarking of Autonomic Systems 51

Fig. 2. Hierarchy between autonomic computing characteristics [11]

have been defined. Moreover the proposed metrics are either qualitative (i.e. de-
gree of autonomy) and therefore their evaluation is subjective, or quantitative
(i.e. adaptation time, reaction time, stabilization duration, latency) but they
remain difficult to measure because of their abstraction level.

2.2 Benchmarking Methodologies and Tools

[1] lists the specificities associated to the benchmarking of autonomic features.
A “classical” performance benchmark and an autonomic computing benchmark
differ along three main axes: 1) environment stability that is questioned for
autonomic computing by the injection of disturbances, 2) management inter-
actions that must not occur in a classical performance benchmark, but that
constitute the AB as well, 3) the antagonism between test realism (regard-
ing the representativeness of the workload or the disturbances load the sys-
tem under test will have to face) and the benchmark requirements, especially
in terms of reproducibility, cost and legality. Among the works dealing with
the experimental evaluation of autonomics efficiency, [2] seems to be one of
the most advanced. It describes one of the first autonomic computing bench-
mark dealing with self-healing evaluation. It details its experimental protocol
for validating the tool. This consists in measuring the impact of thirty differ-
ent classes of disturbances on two metrics. The disturbances are sequentially
injected.

The three main specificities of an autonomic computing benchmark (high-
lighted by [1]) illustrate the addition of a second dimension into an autonomic
computing benchmark compared to a classical QoS benchmark. Each benchmark
can indeed be associated with a function that get injection profiles as inputs and
that returns a vector of evaluated metrics. Thus a classical QoS benchmark is
a function with a single input (i.e. the injected workload profile) whereas an
autonomic computing benchmark consists in a function getting two inputs (i.e.
the injected workload profile and the injected disturbance profile). Concerning
this last type of benchmark, constraints relative to costs, reproducibility and le-
gality, which are antagonistic to test realism, can be declined into constraints on
the injection profiles (synchronization of workload and disturbances injections,
stability of workload injection, etc.). In other words an autonomic computing

52 X. Etchevers, T. Coupaye, and G. Vachet

benchmark consists of two coupled evaluation tools. The first one is dedicated
to the QoS measurement: it is business specific and is essentially made of quan-
titative metrics. The second one focuses on the evaluation of self-management
behaviors. It should include only generic (i.e. domain independent) aspects. Con-
cerning the experimental assessment, works like [2], [14], [17], although they
tend to demonstrate that autonomic features improve systems efficiency, do not
achieve to define a scale offering a synthesized and absolute5 view. Thus [2] and
[3] define a value ranging between 0 (non autonomic) and 1 (fully autonomic)
for assessing self-* features. However this indicator is obtained by restraining
the number of different.disturbances.

3 Assessment Methodology and Process

This section introduces the first contribution of this article, namely the proposed
generic benchmarking methodology and process.

3.1 Methodology

The first step of the proposed approach is to define the constituents, i.e. fac-
tors, criteria and metrics, of an hybrid (refined) ISO/IEC 9126 model for the
autonomic computing area, similarly to the refinement of ISO/IEC 9126 model
proposed in [18] and addressing the concrete case of test specification. Then
high-level indicators are defined for qualifying autonomic features. A bottom-
up approach integrating, supplementing and adapting some existing works (see
section 2) is adopted.

Metrics. An exhaustive set of metrics participating in the empirical evaluation
of the ISO/IEC 9126 model has been identified (by using and enriching the list
defined by [12], [3] and [4]). These metrics have to be:

Generic, i.e. independent from the field of application, in order to be applied to
evaluating various business areas or to inter-domain comparisons;

Measurable, i.e. these metrics can be assessed independently from architecture,
design, implementation or technologies choices;

Quantifiable for metrics processed as inputs of composition functions (see below)
in order to calculate quantitative higher-level indicators. Quantitative met-
rics are intrinsically quantifiable whereas qualitative ones are characterized
by the subjectivity of their evaluation. However some of qualitative metrics
can be composed of discrete but ordered values (e.g. the level of maturity
of an AB) whereas others are made of non ordered values (e.g. the list of
standards or technologies with which a component complies). Only the first
ones are quantifiable.

5 Absolute is relative to a scale that could classify the results from a system without
any autonomic features to an idealistic system that could autonomously anticipate
or deal with any disturbances (without any delay and any impact on the quality of
service).

Experiences in Benchmarking of Autonomic Systems 53

Composition Functions. After having qualitatively defined a hybrid ISO/IEC
9126 model for autonomic computing (see figure 3)6 and tied it to the proposal of
[15] and [19] concerning the coupling between autonomic characteristics and soft-
ware quality factors, the next step consists in defining composition functions for
enabling the computation of higher-level quantitative indicators. Among these
indicators some have to be compared –and be thus quantifiable– whereas others
only relate interesting properties. As for an autonomic computing benchmark,
the four main self-* characteristics, i.e. self-configuration, self-optimization, self-
healing, self-protection, have to be quantifiable so as to be compared, whereas
self-awareness, context-awareness, openness do not directly impact ABs effi-
ciency 7 . In order to get the property of absoluteness of the comparison scale
(i.e. to avoid a restriction of the events set that can occur, see section 2.2), the
value I of each quantifiable high-level indicators is ranged between 0 (non au-
tonomic) and +∞ (idealistic fully autonomic). This value I will be obtained by
adding the result of the corresponding composition function fI applied on each
event e handled by the system and weighted with the occurrence probability pe

of this event:
I =

∑
e

pefI(e) (1)

The indicator value highlights the wideness of the events spectrum the system
is able to compute and the utility of dealing with each event.

3.2 Qualitative Assessment

Table 1 summarizes criteria and metrics defined for qualitative assessment of
ABs.

3.3 Quantitative Assessment

Table 2 summarizes the criteria and metrics defined for quantitative assessment
of ABs.

Four separate time measurements –monitorability, analyzability, planning ca-
pability and changeability– that are mapped on each phase of the widely accepted
concept of MAPE-loop (see figure 4) are defined. This decomposition offers two
main advantages. On the one hand, these quantitative (i.e. per se quantifiable)
metrics are generic and measurable because they are based on the control loop
that is a fundamental concept of ABs implementation. On the other hand, they
can be separately measured, according to the system maturity, because of the
use of a common concept (i.e. the stages of the MAPE-loop) for defining these
metrics and the maturity levels.
6 Efficiency factor and associated criteria and metrics are not, strictly speaking, con-

stituents of this model but they appear on this figure in order to highlight the rela-
tionship between this hybrid model for autonomic computing and business specific
metrics.

7 Whether anticipation is or is not a quantifiable high-level indicator is still to be
determined.

54 X. Etchevers, T. Coupaye, and G. Vachet

F
ig

.
3
.
Q

ua
lit

y
m

od
el

fo
r

au
to

no
m

ic
co

m
pu

ti
ng

as
se

ss
m

en
t

Experiences in Benchmarking of Autonomic Systems 55

Table 1. Qualitative criteria for ABs assessment

Criterion Criterion type

Description of AB Free text. Short description of the AB.
Related to self-*
characteristic

{self-configuration, self-healing, self-optimization,
self-protection}

Coverage Free text describing the list of disturbances the AB is
able to deal with

Interdependency high, medium, low + Free text. Description of the other
ABs and components the current AB is depending on.

Internal constituents
knowledge

Internal features that need to be monitored for this AB

External environment
knowledge

Environmental (i.e. outside the AB) features that need
to be monitored for this AB

Level of automation {-, M, MA, MAP, MAPE}
Monitoring compliance Free text. Technologies used for monitoring: probe

frameworks, standard (e.g. JMX)
Analyzing compliance Free text. Technologies used for event correlation and

diagnosis
Planning compliance Free text. Technologies used for decision making:

deductive rules, actives rules, machine learning
Executing compliance Free text. Technologies used for execution of

reconfiguration plan
Coupling tight, loose + Free text. Description of coupling

between autonomic and functional capabilities inside
the AB.

Manageability high, medium, low + Free text. Capability to be
managed (typically change policy at runtime). This
criterion does not imply the AB ability to interoperate
with other ones but just its ability to be monitored,
introspected, driven an external entity.

Table 2. Metrics for quantitative assessment of ABs

Criterion Sub-criterion Metric

Sensitivity Monitorability Mean time for monitoring
Analyzability Mean time to analyze

Reactivity Planning capability Wait time for plan duration + Mean time to
plan

Changeability Wait time for execution duration + Mean time
to execution

Anticipation Mean time between impacting disturbances
Stability Mean time to stabilization

Anticipation measures the system ability to deal with events while maintaining
its QoS at a satisfying level: the human administrator defines an interval of
satisfaction for QoS values. Thus, among the overall disturbances the system is

56 X. Etchevers, T. Coupaye, and G. Vachet

Fig. 4. Mapping between MAPE-loop stages and their duration

able to compute, the impacting ones are those which modify the system efficiency
(QoS) outside this interval.

Stability measures the time the system needs to return to a stable state, i.e.
a state for which QoS values are stable.

Test Process. [2] proposes a three-step test process for evaluating ABs.

1. First a workload, that will be maintained constant during all the three steps,
is injected in the system under test (SUT). This first step lasts until the
system reaches a stable state regarding its QoS metrics.

2. Then a single disturbance is injected in order to trigger an autonomic reac-
tion of the SUT.

3. The last step consists in observing metrics (related to QoS and autonomic
computing) until the SUT returns to a stable state (possibly different from
the initial one) regarding the QoS metrics.

This test process measures autonomic features efficiency. It exhibits some kind
of reproducibility property (see section 2.2) coming from the stability of the
workload injection during all the test duration. However due to this stability
and to the uniqueness of the injected disturbance, this test process does not fit
the realism property (see the third difference between a “classical” benchmark
and an autonomic computing benchmark in section 2.2). Notwithstanding, this
process is adopted for quantitative experimentations. The injected disturbance
is considered as a default for evaluating self-healing, an attack for evaluating
self-protection, an extra constant workload for evaluating self-optimization and
an event triggering a reconfiguration for evaluating self-configuration (e.g. churn
in P2P systems).

3.4 Economical Assessment (Return on Investment)

As mentioned in section 1, the ultimate goal of autonomic benchmarking, from
an industrial point of view, is to define means for evaluating the return on in-
vestment (ROI) of developing and deploying autonomic computing technologies.
Once the technical evaluation stage is over, available data relative to the econom-
ical cost management (i.e. cost of licenses, disturbance rate and frequency, mean
time to resolve a disturbance, human administrator salary, energy consumption,
etc.) can be collected. Then these economical metrics will be placed in the au-
tonomic computing model in order to obtain an estimation of the economical

Experiences in Benchmarking of Autonomic Systems 57

return on investment. The economical evaluation could be carried out by using
utility functions as proposed in [16]. Utility functions can be seen as composition
functions whose result is a financial value expressed in a given currency. Utility
functions might allow for comparison of the economical efficiency of different
autonomic features in the system under consideration or in different autonomic
systems (e.g. ”is there more ROI to be expected by introducing autonomic fea-
tures in web applications servers or machine-to-machine platforms?”).

4 Experimental Results

This section introduces and discusses the experimental results that have been ob-
tained by applying the methodology described to eleven ABs in three autonomic
systems. The three systems considered cover the architectural classification of
autonomic systems proposed by [12]:

– wide distributed systems composed of a large number of independent col-
laborative intelligent nodes. In our case, a peer-to-peer (P2P) transactional
storage system, namely Scalaris from ZIB (Zuse Institute Berlin) designated
as SUT1, and a P2P system on mobile phones, namely the gPhone appli-
cation from UCL (Université Catholique de Louvain) designated as SUT2.
Both are based on a common structured overlay network (SON). SUT1 and
SUT2 implement eight different ABs (some are common, some are specific).
SUT1 and SUT2 are research-oriented and have been developed in the EU
funded IST Selfman project [5].

– more centralized systems composed of a hierarchy of components. In our
case, an industrial workload management application, designated as SUT38

based on a centralized manager and a cluster of JOnAS [8] J2EE application
servers. SUT3 implements three ABs.

4.1 Qualitative Assessment

The qualitative assessment consisted in filling out each line (i.e. computing each
qualitative metric) of the table 1 in the context of each AB. Altogether, eleven
tables have been obtained (eight for SUT1 and SUT2 and three for SUT3) that
make up dozens of pages in Selfman project deliverables concerning SUT1 and
SUT2. Due to space limitation in this article, results have been summarized
in table 3 that reports the major tendencies highlighted by these individual
assessments.

Among these major tendencies, some are common to all evaluated ABs. The
lack of self-protection ABs is explained by the systems editors as follows: some
of them assume that their solution runs in a safe environment whereas others
estimate that security has to be delegated to another system contributor. How-
ever a further explanation is that self-protection ABs have to deal with more
complex events and thus cannot be elementary behaviors, exclusively focusing
8 For motives of confidentiality, the name of this solution has not been mentioned.

58 X. Etchevers, T. Coupaye, and G. Vachet

Table 3. Synthesis of qualitative assessment on eleven ABs coming from SUT1, SUT2
and SUT3

Criterion Tendency

Related to self-*
characteristic

None of the assessed ABs is related to self-protection.
Moreover, the distinction between self-optimization and
self-configuration is not self-evident.

Coverage All of these ABs can be considered elementary: they only
deal with one or two low-level events (‘peer joining’ or
‘excessive response time to a request’ for instance)

Interdependency Only one of the ABs interoperates with another one but
this interaction is limited to a single query/reply and does
not consist in a structured dialog

Internal constituents
knowledge

All these ABs run according to the monitoring data they
get from the resources they manage

External environment
knowledge

All these ABs have very little (or even no) knowledge of
their external environment

Level of automation However all are fully autonomous regarding their level of
maturation: none of them claims to be autonomic without
fully implementing the four stages of the MAPE-loop

Monitoring compliance Concerning their compliance with a standard and/or a
wide spread / opened technology, all ABs propose highly
proprietary implementation for this MAPE-loop stage

Analyzing compliance Concerning their compliance with a standard and/or a
wide spread / opened technology, all ABs propose highly
proprietary implementation for this MAPE-loop stage

Planning compliance Concerning their compliance with a standard and/or a
wide spread / opened technology, all ABs propose highly
proprietary implementation for this MAPE-loop stage

Executing compliance Concerning their compliance with a standard and/or a
wide spread / opened technology, all ABs propose highly
proprietary implementation for this MAPE-loop stage

Coupling All the ABs of SUT1 and SUT2 are tightly coupled with
the business functionalities in term of implementation
whereas this coupling is loose concerning the three ABs of
SUT3

Manageability Three of the eleven ABs include manageability
capabilities. However the management policy elements
they can get are quite rudimentary (like a timer value or a
combination of simple conditions). This illustrates the
difficulty in converting high-level management policies
into simpler rules understandable by the autonomic
managers

on their internal resources. They might result from the composition (implying
sophisticated interoperability) between different lower-level ABs. Thus the com-
position of ABs becomes an important research domain. However the lack of
compliance with open standards, which characterizes elementary ABs, prevents
any progress on their interoperability.

Experiences in Benchmarking of Autonomic Systems 59

The main difference resulting from these qualitative assessments concerns the
coupling between autonomic features and application specific (business) func-
tionalities. This is due to:

systems architecture: SUT1 and SUT2 lie on a wide distributed multi-peers archi-
tecture whereas SUT3 is based on a centralized and hierarchical architecture;

development history: SUT1 and SUT2 have been developed from scratch whereas
SUT3 consists in a clustered workload management layer added to an existing
of J2EE application server.

4.2 Quantitative Assessment

Again, due to space limitation, this section only focuses on a single AB that illus-
trates the kind of results obtained by applying the quantitative metrics defined
in table 2 on all implemented ABs. This AB concerns self-optimization in SUT3.
It aims at increasing or reducing the number of physical machines (nodes of a
cluster of JOnAS application servers) according to a level of workload addressed
to a given web application. The workload manager is centralized and, in this ex-
ample, is deployed on a dedicated machine. All requests addressed to the given
web application are routed through the workload manager. The experimentation
consists in injecting an extra workload causing a violation of the management
policy concerning the response time limitation.

An evaluation methodology close to the one described in [2] (see section 3.3)
has been used for this benchmark. Preliminarily the workload threshold at which
the manager decides to release the AB, has been determined. This depends
mainly on the material configuration of the test platform. A value of 50 requests
per second (req/s) has been obtained. Then, the same three-step approach has
been applied to each different experimentation.

1. The first stage consists in submitting SUT3 to the maximum workload a
single J2EE application server can handle without breaching the response
time limitation (set to 100 ms).

2. Then, after having achieved the stabilization of response time, an extra work-
load is injected.

3. The last step focuses on the observation of response time (QoS metric) and
of the different autonomic durations until the system returns to a stable
state (with a satisfying response time).

For any SUT, it is possible to draw a figure showing the impact of the injected
disturbance on the QoS. According to the autonomic characteristic –and thus to
the type of disturbance– different injection profiles can be defined. In the field
of self-optimization for instance, the injection profile of extra workload consists
in setting its rate and its emerging speed. Figure 5 illustrates the three-step test
protocol and shows the impact of an extra workload on SUT3 response time. In
this example, the injection profile is characterized by a rate of 20% (+10 requests
per second) and an arising speed of 1 second (i.e. a step profile).

60 X. Etchevers, T. Coupaye, and G. Vachet

Fig. 5. Impact of an extra workload on SUT3 response time

Table 4. Quantitative evaluation of resource optimization of SUT3

Workload profile 1 Workload profile 2 Workload profile 3
Extra workload rate 20% - 10 req/s 20% - 10 req/s 40% - 20 req/s
Extra workload arising
speed

1 s - 10 req/s2 60 s - 0.17 req/s2 60 s - 0.33 req/s2

M + A durations 61 s. 64 s. 66 s.
Wait for P duration 17 ms. 24 ms. 27 ms.
P duration 485 ms. 475 ms. 475 ms.
Wait for E duration 2 ms. 4 ms. 15 ms.
E duration 136 s. 136 s. 131 s.
Stabilization duration 46 s. 53 s. 39 s.

Table 4 synthesizes the results obtained by applying three different extra
workload profiles. Autonomic computing durations were not obtained graphically
but through the analysis of workload manager log files.

These results lead to three major observations.

1. Monitoring and analysis durations9 are amazingly high whereas the time
lag for planning is extremely short. A first explanation might conclude that
monitoring and analysis are really inefficient. However this is not the case.
It results from two causes. On the one hand SUT3 provides a mechanism
for avoiding hyper-sensitivity (i.e. reacting too frequently): the violation of
response time limitation has to last at least one minute before triggering
a reaction plan. SUT3 is effectively an industrial solution whose objectives
are an hourly optimization. It does not find any interest in a finer grained
precision for resource optimization. On the other hand, SUT3 considers that
the disturbance consists of the extra workload injection and its continuation
during a configured duration (at least one minute) whereas in the approach
proposed in this article, the disturbance consists only in the extra workload

9 Data collected from the SUT3 benchmark did not make possible the distinction
between monitoring and analysis durations.

Experiences in Benchmarking of Autonomic Systems 61

(the configured duration defining the minimal length of the wait for planning
duration).

2. Another observation is that the self-optimization behavior is independent
from the injected disturbances profiles. SUT3 does not seem to include an-
ticipation features because it remains insensitive to changes of arising speed
or rate of extra workload (see table 4).

3. Stabilization duration is quite long. It confirms that this measure remains
essential for evaluating the risk the system tends to remain a long time in
an unstable state.

4.3 Discussion

This section discusses the proposed methodology for evaluating autonomic com-
puting whereas section 4.1 and section 4.2 focus on presenting and analyzing the
results coming from the technical benchmark.

On the one hand, the methodology used for qualitative benchmark is relatively
generic: it has been applied successfully, especially as far as qualitative assess-
ment is concerned, to eleven ABs coming from three applications that differ in
business areas, architectures and implementations.

On the other hand, our experiments question the genericity of the approach,
and in particular of the test process (see section 3.3), with respect to system
architecture. Indeed, although the process is adapted for evaluating systems
for which QoS and autonomic metrics are evaluated at the same abstraction
level (this is the case of autonomic systems with a hierarchical architecture
of components, like SUT3), it is not so adequate for systems where QoS and
autonomic metrics are measured at different levels of abstraction, like in a P2P
systems (such as SUT1 and SUT2) where ABs are local and QoS is evaluated at
a macroscopic level. In the latter situation, an injected disturbance will trigger
an autonomic adaptation that could have no measurable effect on the QoS (due
to the important number of peers contributing to the QoS). A solution could be
to define a methodology for composing the results obtained at the peer (local)
level in order to extrapolate the impact of ABs at a global level. This is one of
the subjects that needs further investigations.

Finally the definition of anticipation and stabilization durations independently
from the domain of application and the architecture is also a challenge for a
quantitative autonomics benchmark. It has been experimented indeed that for
now, in some cases, the stabilization duration can be difficult or even impossi-
ble to measure (for example in an AB running periodically without any “real”
triggering event).

5 Conclusion

This article has introduced a methodology and a process for qualitative and
quantitative assessment of autonomic features in computing systems together
with associated experimental results on eleven autonomic behaviors in three

62 X. Etchevers, T. Coupaye, and G. Vachet

different autonomic systems (two P2P systems and one n-tiers system). Our ex-
periments provide an uneven feedback that altogether questions the reachable
genericity of autonomic benchmarking and the possibility of evaluating auto-
nomic systems in which autonomic features are deeply built-in (e.g. in the P2P
systems considered in this article).

Further investigations related to this work are needed so as to validate or to
invalidate these first feedbacks and:

– to improve the ways of measuring some criteria, such as anticipatory or
stabilization;

– to work out a methodology for composing elementary ABs in order to ob-
tain a higher level behavior and allow the comparison of QoS metrics and
autonomic computing indicators at the same level of abstraction;

– to define ways of coupling cost models with a technical benchmark. This
would enable to evaluate the return on investment of autonomic computing
and to determine the pertinence of applying such a disruptive technology to
different fields of application.

Since benchmarking tools have already managed to provide important im-
provements on the efficiency of microprocessors or middleware as mentioned in
[1], autonomics benchmarking is expected to constitute a decision-making tool
for IT managers to assess and hopefully foster the adoption of autonomics in
industry - but this is not an easy road.

References

1. Brown, A.B., Hellerstein, J.L., Hogstrom, M., Lau, T., Lightstone, S., Shum, P.,
Yost, M.P.: Benchmarking Autonomic Capabilities: Promises and Pitfalls. In: 1st
International Conference on Autonomic Computing, pp. 266–267. IEEE Computer
Society, New York (2004)

2. Brown, A.B., Redlin, C.: Measuring the Effectiveness of Self-Healing Autonomic
Systems. In: 2nd International Conference on Autonomic Computing, pp. 328–329.
IEEE Computer Society, New York (2005)

3. Chen, H., Hariri, S.: An Evaluation Scheme of Adaptive Configuration Techniques.
In: 22nd IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 493–496. ACM Press, New York (2007)

4. De Wolf, T., Holvoet, T.: Evaluation and Comparison of Decentralized Autonomic
Computing Systems. Technical report. Department of Computer Science, K.U.
Leuven, Leuven, Belgium (2006)

5. European IST 6th FWP Selman project (self management for large-scale
distributed systems based on structured overlay networks and components),
http://www.ist-selfman.org/wiki/index.php/Selfman_project

6. Forse, T.: Qualimétrie des Systèmes Complexes - Mesure de la Qualité du Logiciel
(Qualimetry of Complex Systems - Measurement of Software Quality). Editions
d’organization (1989)

7. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Information
Technology,
http://www.research.ibm.com/autonomic/manifesto/

autonomic computing.pdf

http://www.ist-selfman.org/wiki/index.php/Selfman_project
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

Experiences in Benchmarking of Autonomic Systems 63

8. JOnAS OpenSource Java EE Application Server, http://jonas.ow2.org/
9. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-

puter 1, 41–50 (2003)
10. Kluth, A.: Make It Simple. The Economist (2004-10-28)
11. Lin, P., MacArthur, A., Leaney, J.: Defining Autonomic Computing: A Software

Engineering Perspective. In: 16th Australian Software Engineering Conference, pp.
88–97. IEEE Computer Society, New York (2005)

12. McCann, J.A., Huebscher, M.C.: Evaluation Issues in Autonomic Computing. In:
Grid and Cooperative Computing - GCC 2004 Workshops: GCC 2004 International
Workshops, IGKG, SGT, GISS, AAC-GEVO, and VVS, pp. 597–608. Springer,
Heidelberg (2004)

13. Milicic, D.: Software Quality Models and Philosophies. In: Lundberg, L., Mattsson,
M., Wohlin, C. (eds.) Software Quality Attributes and Trade-offs, p. 100. Blekinge
Institute of Technology (2005)

14. Oyenan, W.H., DeLoach, S.A.: Design and Evaluation of a Multiagent Autonomic
Information System. In: 2007 IEEE/WIC/ACM International Conference on Intel-
ligent Agent Technology, pp. 182–188. IEEE Computer Society, New York (2007)

15. Salehie, M., Tahvildari, L.: Autonomic Computing: Emerging Trends and Open
Problems. ACM SIGSOFT Software Engineering Notes 4, 1–4 (2005)

16. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility Functions in Autonomic
Systems. In: 1st International Conference on Autonomic Computing, pp. 70–77.
IEEE Computer Society, New York (2004)

17. Wildstrom, J., Stone, P., Witchel, E.: Autonomous Return on Investment analyzis
of Additional Processing Resources. In: 4th International Conference on Autonomic
Computing, p. 15. IEEE Computer Society, New York (2007)

18. Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying
the ISO 9126 Quality Model to Test Specifications - Exemplified for TTCN-3
Test Specifications. In: Software Engineering 2007, Fachtagung des GI-Fachbereichs
Softwaretechnik, pp. 231–244. GI (2007)

19. Zhang, H., Whang, H., Zheng, R.: An Autonomic Evaluation Model of Complex
Software. In: International Conference on Internet Computing in Science and En-
gineering, pp. 343–348 (2008)

http://jonas.ow2.org/

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 64–78, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

An Online Adaptive Model for Location Prediction

Theodoros Anagnostopoulos, Christos Anagnostopoulos,
and Stathes Hadjiefthymiades

Pervasive Computing Research Group, Communication Networks Laboratory,
Department of Informatics and Telecommunications, University of Athens,

Panepistimiopolis, Ilissia, Athens 15784, Greece
Tel.: +302107275127

{thanag,bleu,shadj}@di.uoa.gr

Abstract. Context-awareness is viewed as one of the most important aspects in
the emerging pervasive computing paradigm. Mobile context-aware applica-
tions are required to sense and react to changing environment conditions. Such
applications, usually, need to recognize, classify and predict context in order to
act efficiently, beforehand, for the benefit of the user. In this paper, we propose
a mobility prediction model, which deals with context representation and loca-
tion prediction of moving users. Machine Learning (ML) techniques are used
for trajectory classification. Spatial and temporal on-line clustering is adopted.
We rely on Adaptive Resonance Theory (ART) for location prediction. Loca-
tion prediction is treated as a context classification problem. We introduce a
novel classifier that applies a Hausdorff-like distance over the extracted trajec-
tories handling location prediction. Since our approach is time-sensitive, the
Hausdorff distance is considered more advantageous than a simple Euclidean
norm. A learning method is presented and evaluated. We compare ART with
Offline kMeans and Online kMeans algorithms. Our findings are very promis-
ing for the use of the proposed model in mobile context aware applications.

Keywords: Context-awareness, location prediction, Machine Learning, online
clustering, classification, Adaptive Resonance Theory.

1 Introduction

In order to render mobile context-aware applications intelligent enough to support users
everywhere / anytime and materialize the so-called ambient intelligence, information on
the present context of the user has to be captured and processed accordingly. A well-
known definition of context is the following: “context is any information that can be
used to characterize the situation of an entity. An entity is a person, place or object that
is considered relevant to the integration between a user and an application, including
the user and the application themselves” [1]. Context refers to the current values of
specific ingredients that represent the activity of an entity / situation and environmental
state (e.g., attendance of a meeting, location, temperature).

One of the more intuitive capabilities of the mobile context-aware applications is
their proactivity. Predicting user actions and contextual ingredients enables a new
class of applications to be developed along with the improvement of existing ones.

 An Online Adaptive Model for Location Prediction 65

One very important ingredient is location. Estimating and predicting the future loca-
tion of a mobile user enables the development of innovative, location-based ser-
vices/applications [2], [12]. For instance, location prediction can be used to improve
resource reservation in wireless networks and facilitate the provision of location-
based services by preparing and feeding them with the appropriate information well in
advance. The accurate determination of the context of users and devices is the basis
for context-aware applications. In order to adapt to changing demands, such applica-
tions need to reason based on basic context ingredients (e.g., time, location) to deter-
mine knowledge of higher-level situation.

Prediction of context is quite similar to information classification / prediction (off-
line and online). In this paper, we adopt ML techniques for predicting location
through an adaptive model. ML is the study of algorithms that improve automatically
through experience. ML provides algorithms for learning a system to cluster pre-
existing knowledge, classify observations, predict unknown situations based on a his-
tory of patterns and adapt to situation changes. Therefore, ML can provide solutions
that are suitable for the location prediction problem. Context-aware applications have
a set of pivotal requirements (e.g., flexibility and adaptation), which would strongly
benefit if the learning and prediction process could be performed in real time. We
argue that the most appropriate solutions for location prediction are offline and online
clustering and classification. Offline clustering is performed through the Offline
kMeans algorithm while online clustering is accomplished through the Online kMeans
and Adaptive Resonance Theory (ART). Offline learners typically perform complete
model building, which can be very costly, if the amount of samples rises. Online
learning algorithms are able to detect changes and adapt / update only parts of the
model thus providing for fast adaptation of the model. Both forms of algorithms ex-
tract a subset of patterns / clusters (i.e., a knowledge base) from an initial dataset (i.e.,
a database of user itineraries). Moreover, online learning is more suited for the task of
classification / prediction of the user mobility behavior as in the real life user move-
ment data often needs to be processed in an online manner, each time after a new por-
tion of the data arrives. This is caused by the fact that such data is organized in the
form of a data stream (e.g., a sequence of time-stamped visited locations) rather than a
static data repository, reflecting the natural flow of data. Classification involves the
matching of an unseen pattern with existing clusters in the knowledge base. We rely
on a Hausdorff-like distance [5] for matching unseen itineraries to clusters (such met-
ric applies to convex patterns and is considered ideal for user itineraries). Finally, lo-
cation prediction boils down to location classification w.r.t. Hausdorff-like distance.

We assess two training methods for training an algorithm: (i) the “nearly” zero-
knowledge method in which an algorithm is incrementally trained starting with a little
knowledge on the user mobility behavior and the (ii) supervised method in which sets of
known itineraries are fed to the classifier. Moreover, we assess a learning method for the
online algorithms regarding the success of location prediction, in which a misclassified
instance is introduced into the knowledge base updating appropriately the model.

We evaluate the performance of our models against the movement of mobile users.
Our objective is to predict the users’ future location (their next move) through an on-line
adaptive classifier. We establish some important metrics for the performance assessment

66 T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades

process taking into account low system-requirements (storage capacity) and effort for
model building (processing power). Specifically, besides the prediction accuracy, i.e.,
the precision of location predictions, we are also interested in the size of the derived
knowledge base; that is the produced clusters out of the volume of the training patterns,
and the capability of the classifier to adapt the derived model to unseen patterns. Surely,
we need to keep storage capacity as low as possible while maintaining good prediction
accuracy. Lastly, our objective is to assess the adaptivity of the proposed schemes, i.e.,
the capability of the predictor to detect and update appropriately the specific part of the
trained model. The classifier (through the location prediction process) should rapidly
detect changes in the behavior of the mobile user and adapt accordingly through model
updates, however, often at the expense of classification accuracy (note that an ambient
environment implies high dynamicity). We show that increased adaptivity leads to high
accuracy and dependability.

The rest of the paper is structured as follows. In Section 2 we present the consid-
ered ML models by introducing the Offline kMeans, Online kMeans and ART algo-
rithms. In Section 3 we elaborate on the proposed model with context representation.
Section 4 presents the proposed mobility prediction model based on the ART algo-
rithm. The performance assessment of the considered model is presented in Section 5,
where different versions of that model are evaluated. Moreover, in Section 6, we
compare the ART models with the Offline / Online kMeans algorithms. Prior work is
discussed in Section 7 and we conclude the paper in Section 8.

2 Machine Learning Models

In this section we briefly discuss the clustering algorithms used throughout the paper.
Specifically, we distinguish between offline and online clustering and elaborate on the
Offline/Online kMeans and ART.

2.1 Offline kMeans

In Offline kMeans [3] we assume that there are k > 1 initial clusters (groups) of data.
The objective of this algorithm is to minimize the reconstruction error, which is the
total Euclidean distance between the instances (patterns), ui, and their representation,
i.e., the cluster centers (clusters), ci. We define the reconstruction error as follows:

{ }() ∑∑ −==
t i

itti
k

ii bUE 2
,1 ||||

2

1
| cuc (1)

where

⎩
⎨
⎧ −=−

=
otherwise

if
b lt

l
it

ti ,0

||||min|||| ,1
,

cucu ,

U = {ut} is the total set of patterns and C = {ci}, i = 1,…, k is the set of clusters. bi,t is
1 if ci is the closest center to ut in Euclidean distance. For each incoming ut each ci is
updated as follows:

 An Online Adaptive Model for Location Prediction 67

∑
∑=

t ti

t tti
i b

b

,

, u
c (2)

Since the algorithm operates in offline mode, the initial clusters can be set during the
training phase and cannot be changed (increased or relocated) during the testing
phase.

2.2 Online kMeans

In Online kMeans [3] we assume that there are k > 1 initial clusters that split the data.
Such algorithm processes unseen patterns one by one and performs small updates in
the position of the appropriate cluster (ci) at each step. The algorithm does not require
a training phase. The update for each new (unseen) pattern ut is the following:

()ittiii b cucc −⋅⋅+= ,η

This update moves the closest cluster (for which bi,t = 1) toward the input pattern ut
by a factor of η. The other clusters (found at bigger distances from the considered
pattern) are not updated. The semantics of bi,t, η and (ut – ci) are:

 bi,t ∈ {0, 1} denotes which cluster is being modified,
 η ∈ [0, 1] denotes how much is the cluster shifted toward the new pattern, and,
 (ut – ci) denotes the distance to be learned.

Since the algorithm is online, the initial clusters should be known beforehand1 and
can only be relocated during the testing phase. The number of clusters remains con-
stant. Therefore, the algorithm exhibits limited flexibility.

2.3 Adaptive Resonance Theory

The ART approach [4] is an online learning scheme in which the set of patterns U is
not available during training. Instead patterns are received one by one and the model
is updated progressively. The term competitive learning is used for ART denoting that
the (local) clusters compete among themselves to assume the “responsibility” for rep-
resenting an unseen pattern. The model is also called winner-takes-all because one
cluster “wins the competition” and gets updated, and the others are not updated at all.

The ART approach is incremental, meaning that one starts with one cluster and adds
a new one, if needed. Given an input ut, the distance bt is calculated for all clusters ci, i =
1, .., k, and the closest (e.g., minimum Euclidean distance) to ut is updated. Specifically,
if the minimum distance bt is smaller than a certain threshold value, named the vigi-
lance, ρ, the update is performed as in Online kMeans (see Eq.(3)). Otherwise, a new
center ck+1 representing the corresponding input ut is added in the model (see Eq.(3)). It
is worth noting that the vigilance threshold refers to the criterion of considering two
patterns equivalent or not during the learning phase of a classifier. As it will be shown,

1 One possible approach to determine the initial k clusters is to select the first k distinct in-

stances of the input sample U.

68 T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades

the value of vigilance is considered essential in obtaining high values of corrected clas-
sified patterns. The following equations are adopted in each update step of ART:

()⎩
⎨
⎧

−+=
>←

−=−=

+

=

otherwise

bif

b

itii

ttk

tl

k

l
tit

cucc

uc

ucuc

η
ρ

||||min||||

1

1
(3)

3 Context Representation

Several approaches have been proposed in order to represent the movement history
(or history) of a mobile user [15]. We adopt a spatiotemporal history model in which
the movement history is represented as the sequence of 3-D points (3DPs) visited by
the moving user, i.e., time-stamped trajectory points in a 2D surface. The spatial at-
tributes in that model denote latitude and longitude.

Let e = (x, y, t) be a 3DP. The user trajectory u consists of several time-ordered
3DPs, u = [ei] = [e1, …, eN], i = 1, …, N and is stored in the system’s database. It
holds that t(e1) < t(e2) < … < t(eN), i.e., time-stamped coordinates. The x and y dimen-
sions denote the latitude and the longitude while t denotes the time dimension (and t(⋅)
returns the time coordinate of e). Time assumes values between 00:00 and 23:59. To
avoid state information explosion, trajectories contain time-stamped points sampled at
specific time instances. Specifically, we sample the movement of each user at 1.66⋅10-

3 Hertz (i.e., once every 10 minutes). Sampling at very high rates (e.g., in the order of
a Hertz) is meaningless, as the derived points will be highly correlated. In our model,
u is a finite sequence of N 3DPs, i.e., u is a 3·N dimension vector. We have adopted a
value of N = 6 for our experiments meaning that we estimate the future position of a
mobile terminal from a movement history of 50 minutes (i.e., 5 samples). Specifically,
we aim to query the system with a N-1 3DP sequence so that our classifier / predictor
returns a 3DP, which is the predicted location of the mobile terminal.

A cluster trajectory c consists of a finite number of 3DPs, c = [ei], i = 1, …, N
stored in the knowledge base. Note that a cluster trajectory c and a user trajectory u
are vectors of the same length N. This is because c, which is created from ART based
on unseen user trajectories, is a representative itinerary of the user movements. In
addition, the query trajectory q consists of a number of 3DPs, q = [ej], j = 1, …, N-1.
It is worth noting that q is a sequence of N-1 3DPs. Given a q with a N-1 history of
3DPs we predict the eN of the closest c as the next user movement.

4 Mobility Prediction Model

From the ML perspective the discussed location prediction problem refers to an m+l
model [13]. In m+l models we have m steps of user movement history and we want to
predict the future user movement after l steps (the steps have time-stamped coordi-
nates). In our case, m = N-1, i.e., the query trajectory q, while l = 1, i.e., the predicted
eN. We develop a new spatiotemporal classifier (C) which given q can predict eN.
Specifically, q and c are trajectories of different length thus we use a Hausdorff-like

 An Online Adaptive Model for Location Prediction 69

measure for calculating the ||q - c|| distance. Given query q, the proposed classifier C
attempts to find the nearest cluster c in the knowledge base and, then, take eN as the
predicted 3DP. For evaluating C, we compute the Euclidean distance between the
predicted 3DP and the actual 3DP (i.e., the real user movement). If such distance is
greater than a preset error threshold θ then prediction is not successful. After predict-
ing the future location of a mobile terminal, the C classifier receives feedback from
the environment considering whether the prediction was successful or not, and reor-
ganize the knowledge base accordingly [14]. In our case, the feedback is the actual
3DP observed in the terminal’s movement. Thus the C classifier reacts with the envi-
ronment and learns new patterns once an unsuccessful prediction takes place.

Specifically,

 in case of an unsuccessful prediction, the C appends the actual 3DP to q and up-
dates (i.e., learns) such extended sequence in the model considering as new
knowledge, i.e., an unseen user movement behavior.

 in the case of a successful prediction, C dos not need to learn. A successful pre-
diction refers to a well-established prediction model for handling unseen user
trajectories.

The heart of the proposed C classifier is the ART algorithm. ART clusters unseen user
trajectories to existing cluster trajectories or creating new cluster trajectories depend-
ing on the vigilance value. ART is taking the u1 pattern from the incoming set U of
patterns and stores it as the c1 cluster in the knowledge base. For the t-th unseen user
trajectory the following procedure is followed (see Table 1): The algorithm computes
the Euclidean distance bt between ut and the closest ci. If bt is smaller than the vigi-
lance ρ then ci is updated from ut by the η factor. Otherwise, a new cluster cj ≡ ut is
inserted into the knowledge base. The ART algorithm is presented in Table 1.

Table 1. The ART Algorithm for the C classifier

1. j ← 1
2. cj ← uj
3. For (ut ∈ U) Do
4. bt = ||cj – ut|| = minl=1,…,j||cl – ut||
5. If (bt > ρ) Then /*expand knowledge*/

6.

 j ← j + 1
 cj ← ut

7. Else
8. cj ← cj + η(ut – cj) /*update model locally*/
9. End If
10. End for

Let T, P be subsets of U for which it holds that T ⊆ P ⊆ U. The T set of patterns is

used for training the C classifier, that is, C develops a knowledge base corresponding
to the supervised training method. The P set is used for performing on-line predictions.
We introduce the C-T classifier version, which is the C classifier trained with the
T set. In addition, once the T set is null then the C classifier is not trained beforehand

70 T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades

corresponding to the zero-knowledge training method and performs on-line prediction
with the set P. In this case, we get the C-nT classifier corresponding to the C classifier,
when the training phase is foreseen.

Moreover, in order for the C classifier to achieve prediction, an approximate Haus-
dorff-like metric [5] is adopted to estimate the distance between q and c. Specifically,
the adopted formula calculates the point-to-vector distance between ej ∈ q and c,
δ’(ej, c), as follows:

())|()(|min||||,'
jii

ttjij eff
efce −−=δ

where || . || is the Euclidean norm for fi ∈ c and ej. The δ’(ej, c) value indicates the
minimum distance between ej and fi w.r.t. the time stamped information of the user
itinerary, that is the Euclidean distance of the closest 3DPs in time. Hence, the overall
distance between the N-1 in length q and the N in length c is calculated as

∑
∈

− −
=

qe

cecq
j

jΝ N
),('

1

1
),(1 δδ

(4)

Figure 1 depicts the process of predicting the next user movement considering the
proposed C classifier. Specifically, once a query trajectory q arrives, then C attempts
to classify q into a known ci in the knowledge base w.r.t. Hausdorff metric. The C
classifier returns the predicted eN ∈ ci of the closest ci to q. Once such result refers to
an unsuccessful prediction w.r.t. a preset error threshold θ then the C-T (or the C-nT)
extend the q vector with the actual 3DP and insert q into the knowledge base for fur-
ther learning according to the algorithm in Table 1 (feedback).

qruntime
(Ν-1 steps)

Classification

q ← q + actual 3DP

Prediction eN (threshold θ)

«failure»

return eN

«success»

C
C-T or C-nT

Data Base (U)

Knowledge Base (C)

ART

feedback

Fig. 1. The proposed adaptive classifier for location prediction

 An Online Adaptive Model for Location Prediction 71

5 Prediction Evaluation

We evaluated our adaptive model in order to assess its performance. In our experi-
ments, the overall user movement space has a surface of 540 km2. Such space derives
from real GPS trace captured in Denmark [6]. The GPS trace was fed into our model
and the performance of the C system w.r.t. predefined metrics was monitored. Table 2
indicates the parameters used in our experiments.

Table 2. Experimental Parameters

Parameter Value Comment
Learning rate (n) 0.5 In case of a new pattern ut, the

closest cluster ci is moved
toward ut by half the spatial
and temporal distance.

Spatial coefficient of
vigilance (ρs)

100 m Two 2D points are considered
different if their spatial distance
exceeds 100 meters.

Temporal coefficient
of vigilance (ρt)

10 min Two time-stamps are
considered different if their
temporal distance exceeds 10
minutes.

Precision threshold /
location accuracy (θ)

10 m The predicted location falls
within a circle of radius 10
meters from the actual
location.2

The GPS traces including 1200 patterns were preprocessed and we produced two

training files and two test files as depicted in Figure 2. The first training file, TrainA, is
produced from the first half of the GPS trace records. The second training file, TrainB,
consists of a single trace record. The first test file, TestA, is produced from the entire set
of trace records, including -in ascending order- the first half of the GPS traces and the
other half of unseen traces. Finally the second test file, TestB, is produced from the en-
tire set of the GPS trace records, including -in ascending order- the second half of un-
seen traces and the first half of the GPS traces. During the generation of the training/test
files, white noise was artificially induced into the trace records.

u1 u600 u1200

GPS Pattern Instances (i.e., the U set)

TrainA = {u1, …, u600}

TrainB = {u1}

TestA = {u1, …, u600, u601, …, u1200}

TestB = {u601, …, u1200, u1, …, u600}

Fig. 2. The generated GPS trace files for experimentation

2 Such accuracy level is considered appropriate for the kind of applications where location

prediction can be applied (see the Introduction section or [12]).

72 T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades

We have to quantitatively and qualitatively evaluate the proposed model. For that
reason, we introduce the following quantitative and qualitative parameters: (a) the
precision achieved by the prediction scheme –the higher the precision the more accu-
rate the decisions on the future user location- (b) the size of the underlying knowledge
base –we should adopt solutions with the lowest possible knowledge base size (such
solutions are far more efficient and feasible in terms of implementation) and (c) the
capability of the model to rapidly react to changes in the movement pattern of the
user/mobile terminal and re-adapt. We define precision, p, as the fraction of the cor-
rectly predicted locations, p+, against the total number of predictions made by the C
system, ptotal, that is,

totalp

p
p +=

In the following sub-sections, we evaluate the diverse versions of the C classifier
w.r.t. training methods by examining the classifier convergence (speed of learning
and adaptation) and the derived precision on prediction future locations.

5.1 Convergence of C-T and C-nT

The C classifier converges once the knowledge base does not expand with unseen
patterns, i.e., the set U does not evolve. In Figure 3, we plot the number of the clus-
ters, |U|, that are generated from the C-T/-nT models during the testing phase. The
horizontal axis denotes the incoming (time-ordered) GPS patterns. The point (.)
marked line depicts the behavior of the C-T-1 model trained with TrainA and tested
with TestA. In the training phase, the first 600 patterns of TrainA have gradually gen-
erated 70 clusters in U. In the testing phase, the first 600 patterns are known to the
classifier so there is no new cluster creation. On the other hand, in the rest 600 unseen
patterns, the number of clusters scales up to 110 indicating that the ART algorithm
learns such new patterns.

0 200 400 600 800 1000 1200 1400 1600 1800

20

40

60

80

100

120

Time ordered patterns

N
um

be
r

of
 g

en
er

at
ed

 c
lu

st
er

s,
 |C

|

C-T-1
C-T-2
C-nT

Fig. 3. Convergence of C-T/-nT

 An Online Adaptive Model for Location Prediction 73

The circle (o) marked line depicts the C-T-2 model, which is trained with TrainA
and tested with TestB. Since the train file is the same as in the C-T-1 model, the first
generated clusters are the same in number (|U| = 70). In the testing phase, we observe
a significant difference. ART does not know the second 600 unseen patterns, thus, it
learns new patterns up to 110 clusters. In the next 600 known patters, C-T-2 does not
need to learn additional clusters thus it settles at 110 clusters.

We now examine the behavior of the C-nT model corresponding to the zero-
knowledge training method. The asterisk (*) marked line depicts the training phase
(with TrainB) followed by the testing phase (with TestA) of C-nT. In this case, we
have an incremental ART that does not need to be trained. For technical consistency
reasons, it only requires a single pattern, which is the unique cluster in the knowledge
base at the beginning. In the testing phase, for the first 600 unseen patterns of TestA
we observe a progressive cluster creation (up to 45 clusters). For the next 600 unseen
patterns, we also observe a gradual cluster creation (up to 85 clusters) followed by
convergence. Comparing the C-T-1/-2 and C-nT models, the latter one achieves the
minimum number of clusters (22.72% less storage cost). This is due to the fact that C-
nT starts learning only from unsuccessful predictions in an incremental way by adapt-
ing pre-existing knowledge base to new instances. Nevertheless, we also have to take
into account the prediction accuracy in order to reach safe conclusions about the effi-
ciency and effectiveness of the proposed models.

5.2 Precision of C-T and C-nT

In Figure 4 we examine the precision achieved by the algorithms. The vertical axis de-
picts the precision value p achieved during the testing phase. The point (.) marked line
depicts the precision of the C-T-1 model trained with TrainA and tested with TestA.
During the test phase, for the first 600 known patterns C-T-1 achieves precision value
ranging from 97% to 100%. In the next 600 unseen patterns, we observe that for the first
instances the precision drops smoothly to 95% and as C-T-1 learns, i.e., learn new clus-
ters and optimize the old ones, the precision converges to 96%.

0 200 400 600 800 1000 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time ordered patterns

P
re

ci
si

on
 v

al
ue

, p

C-T-1
C-T-2
C-nT

Fig. 4. Precision of C-T/-nT

74 T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades

The circle (o) marked line depicts the precision behavior for the C-T-2 model
tested with TestB and trained with TrainA. With the first 600 totally unseen patterns
during the test phase, C-T-2 achieves precision from 26% to 96%. This indicates that
the model is still learning during the test phase increasing the precision value. In the
next 600 known patterns, the model has nothing to learn and the precision value con-
verges to 96%.

The asterisk (*) marked line depicts the precision behavior of the C-nT model
tested with TestA and trained with TrainB. In this case, C-nT is trained with only one
pattern instance, i.e., the algorithm is fully incremental, thus, all the instances are
treated as unseen. In the test phase, for the first 600 patterns, the model achieves pre-
cision, which ranges from 25% to 91% In the next 600 patterns, we can notice that for
the first instances the precision drops smoothly to 88% and as the model learns, preci-
sion gradually converges to 93%.

Evidently, the adoption of the training method, i.e., the C-T-1/-2 models, yields
better precision. However, if we correlate our findings with the results shown in
Figure 3, we infer that a small improvement in precision has an obvious storage cost.
Specifically, we need to store 110 clusters, in the case of C-T, compared to 85 clusters
in the case of C-nT (22.72% less storage cost). Furthermore, the user movement pat-
terns can be changed repeatedly over time. Hence, by adopting the training method,
one has to regularly train and rebuild the model. If the mobile context-aware applica-
tion aims at maximizing the supported quality of service w.r.t. precision, while keep-
ing the storage cost stable, the C-nT model should be adopted.

6 Comparison with Other Models

We compare the C-nT model with other known models that can be used for location
prediction. Such models implement the Offline kMeans and Online kMeans algo-
rithms. Such models require a predefined number of k > 1 initial clusters for con-
structing the corresponding knowledge base. We should stress here that, the greater
the k the greater the precision value achieved by Offline/Online kMeans. In our case,
we could set k = 110, which is the convergence cluster-count for the C models
(Section 5). For C-nT, we use TrainB for the training and TestA for the testing phase
(such model adopts the zero-knowledge training method). Moreover, for the Off-
line/Online kMeans models we use TrainA for the training and TestA for the testing
phase because both models require k > 1 initial clusters.

Figure 5 depicts the precision achieved by the C-nT (the point (.) marked line), Off-
line kMeans (the asterisk (*) marked line) and Online kMeans (the circle (o) marked
line) models. The horizontal axis represents the ordered instances and the vertical axis
represents the achieved precision. We can observe in the first 600 patterns C-nT
achieves precision levels ranging from 25% to 91% indicating adaptation to new
knowledge. This is attributed to the learning mechanism (C-nT recognizes and learns
new user movements). In the next 600 patterns we notice that for the first instances, the
precision drops smoothly to 88% and as the knowledge base adapts to new movements
and optimizes the existing ones, precision converges to 93%.

 An Online Adaptive Model for Location Prediction 75

0 200 400 600 800 1000 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time ordered patterns

P
re

ci
si

on
 v

al
ue

, p

C-nT
Online kMeans
Offline kMeans

Fig. 5. Comparison of C-nT with the Offline/Online kMeans models

In the case of Offline kMeans, we observe that for the first 600 patterns, it achieves
precision levels ranging from 96% to 98% once the initial clusters are set to k = 110.
In the next 600 patterns we notice that the precision drops sharply and converges to
57% as the knowledge base is not updated by unseen user movements. By adopting
Online kMeans we observe that for the testing phase (the first 600 patterns) it achieves
precision levels ranging from 94% to 97% given the train file TrainA. In the next 600
patterns we notice that for the first instances the precision drops rather smoothly to
86% and, as the knowledge base is incrementally adapting to new patterns, the preci-
sion value converges to 65%. Evidently, by comparing such three models, the most
suitable model for location prediction is the C-nT since (i) it achieves greater precision
through model adaptation and (ii) requires a smaller size of the underlying knowledge
base (i.e., less clusters) than the Offline/Online kMeans models.

0.7

0.75

0.8

0.85

0.9

0.95

1

100 200 300 400 500 600 700 800 900 1000

V
al

ue
of

?

Value of ps (in meters)

pt = 10 min
pt = 20 min
pt = 30 min
pt = 60 min

Fig. 6. The behavior of the γ parameter vs. temporal and spatial coefficients of the vigilance
threshold

76 T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades

Up to this point we have concluded that the C-nT model achieves good precision
with limited memory requirements, which are very important parameters for mobile
context-aware systems. However, we need to perform some tests with C-nT in order
to determine the best value for the spatiotemporal parameter vigilance ρ. In other
words, we aim to determine the best values for both spatial ρs and temporal ρt vigi-
lance coefficients in order to obtain the highest precision with low memory require-
ments. We introduce the weighted sum γ as follows:

γ = w ⋅ p + (1 - w) ⋅ (1 – a)

where a is the proportion of the generated clusters by the classifier (i.e., the size of the
knowledge base in clusters) out of the total movement patterns (i.e., the size of the
database in patterns), that is: a = |C|/|U|; |C| is the cardinality of the set C. The weight
value w ∈ [0, 1] indicates the importance of precision and memory requirements; a
value of w = 0.5 assigns equal importance to a and p. In our assessment, we set w =
0.7. We require that a assumes low values minimizing the storage cost of the classi-
fier. A low value of a indicates that the applied classifier appropriately adopts and
learns the user movements without retaining redundant information. The value of γ
indicates which values of ρs and ρt maximize the precision while, on the same time,
minimize the memory requirements. Hence, our aim is to achieve a high value of γ
indicating an adaptive classifier with high value of precision along with low storage
cost. As illustrated in Figure 6, we obtain a global maximum value for γ once ρs = 100m
and ρt = 10min (which are the setting values during the experiments – see Table 2).

7 Prior Work

Previous work in the area of mobility prediction includes the model in [7], which uses
Naïve Bayes classification over the user movement history. Such model does not deal
with fully / semi- random mobility patterns and assumes a normal density distribution
for the underlying data. However, such assumptions are not adopted in our model as
long as mobility patterns refer to real human traces with unknown distribution. More-
over, the learning automaton in [8] follows a linear reward-penalty reinforcement
learning method for location prediction. However, such model does not provide satis-
factory prediction accuracy, as reported in [8]. The authors in [9] apply evidential
reasoning in mobility prediction when knowledge on the mobility patterns is not
available (i.e., similarly to this paper). However, such model assumes large computa-
tional complexity (due to the adopted Dempster-Schafer algorithm) once the count of
possible user locations increases and requires detailed user information (e.g., daily
profile, preferences, favorite meeting places). Other methods for predicting trajectory
have also been proposed in the literature [10] but these have generally been limited in
scope since they consider rectilinear movement patterns only (e.g., highways) and not
unknown patterns. A closely related work to ours has been reported in [11], where a
GPS system is used to collect location information. The proposed system then
automatically clusters GPS data taken into meaningful locations at multiple scales.
These locations are then incorporated into a similar Markov model to predict the

 An Online Adaptive Model for Location Prediction 77

user’s future location. The authors in [16] adopt a data mining approach (i.e., rule extrac-
tion) for predicting user locations in mobile environments. This approach achieves predic-
tion accuracy lower than ours (i.e., in the order of 80% for deterministic movement). In
[17], the authors adopt a clustering method for the location prediction problem. Prediction
accuracy is still low (in the order of 66% for deterministic movement). The authors in [18]
introduce a framework where for each user an individual function is computed in order to
capture its movement. This approach achieves prediction accuracy lower than ours (i.e., in
the order of 70% for deterministic movement). In [19], the authors apply movement rules
in mobility prediction given the user’s past movement patterns. Prediction accuracy is
still low (i.e., in the order of 65% for deterministic movement). The authors in [20] intro-
duce a prediction model that uses grey theory (i.e., a theory used to study uncertainty).
This approach achieves prediction accuracy lower than ours (i.e., in the order of 82% for
deterministic movement).

8 Conclusions

We presented how ML techniques can be applied to the engineering of mobile con-
text-aware applications for location prediction. Specifically, we use ART (a special
Neural Network Local Model) and introduce a learning method. Furthermore, we deal
with two training methods for each learning method: in the supervised method the
model uses training data in order to make classification and in the zero-knowledge
method the model incrementally learns from unsuccessful predictions. We evaluated
our models with different spatial and temporal parameters. We examine the knowl-
edge bases storage cost (i.e., emerged clusters) and the precision measures (prediction
accuracy). Our findings indicate that the C-nT model suits better to context-aware
systems. The advantage of C-nT model is that (1) it does not require pre-existing
knowledge in the user movement behavior in order to predict future movements, (2) it
adapts its on-line knowledge base to unseen patterns and (3) it does not consumes
much memory to store the emerged clusters. For this reason, C-nT is quite useful in
context-aware applications where no prior knowledge about the user context is avail-
able. Furthermore, through experiments, we decide on which vigilance value achieves
the appropriate precision w.r.t. memory limitations and prediction error. Finally, in
the Neural Networks Local Models literature there are other models (e.g., Self-
Organizing Maps) that we have not examined in this paper. We intent to implement
and evaluate them with C-nT by means of knowledge base requirements, precision of
the location prediction and adaptation.

References

1. Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7
(2001)

2. Hightower, J., Borriello, G.: Location Systems for Ubiquitous Computing. IEEE Com-
puter 34(8) (August 2001)

3. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)
4. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, Hoboken (2001)

78 T. Anagnostopoulos, C. Anagnostopoulos, and S. Hadjiefthymiades

5. Belogay, E., Cabrelli, C., Molter, U., Shonkwiler, R.: Calculating the Hausdorff Distance
between Curves. Information Processing Letters 64(1), 17–22 (1997)

6. Site, http://www.openstreetmap.org/traces/tag/Denmark
7. Choi, S., Shin, K.G.: Predictive and adaptive bandwidth reservation for hand-offs in QoS-

sensitive cellular networks. In: ACM SIGCOMM (1998)
8. Hadjiefthymiades, S., Merakos, L.: Proxies+Path Prediction: Improving Web Service Pro-

vision in Wireless-Mobile Communications. ACM/Kluwer Mobile Networks and Applica-
tions, Special Issue on Mobile and Wireless Data Management 8(4) (2003)

9. Karmouch, A., Samaan, N.: A Mobility Prediction Architecture Based on Contextual
Knowledge and Spatial Conceptual Maps. IEEE Trans. on Mobile Computing 4(6) (2005)

10. Viayan, R., Holtman, J.: A model for analyzing handoff algorithms. IEEE Trans. on Veh.
Technol. 42(3) (August 1993)

11. Ashbrook, D., Starner, T.: Learning Significant Locations and Predicting User Movement
with GPS. In: Proc. Sixth Int’l Symp. Wearable Computes (ISWC 2002), October 2002,
pp. 101–108 (2002)

12. Priggouris, I., Zervas, E., Hadjiefthymiades, S.: Location Based Network Resource Man-
agement. In: Ibrahim, I.K. (ed.) Handbook of Research on Mobile Multimedia. Idea Group
Inc. (May 2006)

13. Curewitz, K.M., Krishnan, P., Vitter, J.S.: Practical Prefetching via Data Compression. In:
Proceedings of ACM SIGMOD, pp. 257–266 (1993)

14. Narendra, K., Thathachar, M.A.L.: Learning Automata – An Introduction. Prentice Hall,
Englewood Cliffs (1989)

15. Cheng, Jain, R., van den Berg, E.: Location prediction algorithms for mobile wireless sys-
tems. In: Wireless Internet handbook: technologies, standards, and application, pp. 245–
263. CRC Press, Boca Raton (2003)

16. Yavas, G., Katsaros, D., Ulusoy, O., Manolopoulos, Y.: A data mining approach for loca-
tion prediction in mobile environments. Data and Knowledge Engineering 54(2) (2005)

17. Katsaros, D., Nanopoulos, A., Karakaya, M., Yavas, G., Ulusoy, O., Manolopoulos, Y.:
Clustering Mobile Trajectories for Resource Allocation in Mobile Environments. In: Ber-
thold, M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS,
vol. 2810, pp. 319–329. Springer, Heidelberg (2003)

18. Tao, Y., Faloutsos, C., Papadias, D., Liu, B.: Prediction and Indexing of Moving Objects
with Unknown Motion Patterns. In: ACM SIGMOD (2004)

19. Nhan, V.T.H., Ryu, K.H.: Future Location Prediction of Moving Objects Based on Move-
ment Rules. In: ICIC 2006. LNCIS, vol. 344, pp. 875–881. Springer, Heidelberg (2006)

20. Xiao, Y., Zhang, H., Wang, H.: Location Prediction for Tracking Moving Objects Based
on Grey Theory. In: IEEE FSKD 2007 (2007)

MPM: Map Based Predictive Monitoring for
Wireless Sensor Networks�

Azad Ali, Abdelmajid Khelil, Faisal Karim Shaikh, and Neeraj Suri

Technische Universität Darmstadt, Hochschulstr. 10, 64289 Darmstadt, Germany
{azad,khelil,fkarim,suri}@informatik.tu-darmstadt.de

Abstract. We present the design of a Wireless Sensor Networks (WSN)
level event prediction framework to monitor the network and its opera-
tional environment to support proactive self* actions. For example, by
monitoring and subsequently predicting trends on network load or sensor
nodes energy levels, the WSN can proactively initiate self-reconfiguration.
We propose a Map based Predictive Monitoring (MPM) approach where
a selected WSN attribute is first profiled as WSN maps, and based on the
maps history, predicts future maps using time series modeling. The ”at-
tribute” maps are created using a gridding technique and predicted maps
are used to detect events using our regioning algorithm. The proposed ap-
proach is also a general framework to cover multiple application domains.
For proof of concept, we show MPM’s enhanced ability to also accurately
”predict” the network partitioning, accommodating parameters such as
shape and location of the partition with a very high accuracy and efficiency.

Keywords: Predicitve Monitoring, Time Series Analysis, Wireless Sen-
sor Networks, Event Prediction.

1 Introduction

Wireless Sensor Networks (WSN) typically entail an aggregation of sensing/
communicating sensor nodes to result in an ad hoc network linking them to the
base station or sink. The sensor nodes typically possess limited storage and com-
putational capabilities and require low-energy operations to provide longevity of
operational time.

WSN’s are often used for monitoring of spatially distributed attributes such
as detection of physical events, e.g., fire, temperature gradients and high/low
pressure. To maintain the required WSN dependability, network events such as
partitioning of the network are also to be detected. The reporting of such events
beyond simple monitoring becomes highly useful if these events can be predicted
in advance. Consequently, appropriate autonomic actions could be taken either
to avoid or delay events from happening by triggering self* actions.

Varied works exist for event detection [1] such as fire detection [2] and network
partitioning [3, 4, 5]. Most of these efforts are specialized for specific scenarios.
� Research supported in part by HEC, MUET, EC INSPIRE, EC CoMiFiN, and DFG

GRK 1362 (TUD GKMM).

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 79–95, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

80 A. Ali et al.

Some consider generic scenarios [6], but they suppose the event to take certain
shapes and patterns. Also most efforts focus on detecting the events after they
have already happened. In the perspective of reacting to the event, it may be
too late to detect the events after it has already taken place. It would be far
more practical if we could predict the event occurrence.

Multiple efforts exists for predictions [7,12,8,11,13]. However, most are either
limited to predicting specifically a certain attribute like energy or provide only
node level short-term prediction for data compression to minimize data to be
reported from the network.

It is natural to combine prediction of physical and network events with gen-
eralized event detection to take proactive actions. To the best of our knowledge
there exists no work that proposes generalized event prediction. In this paper
we develop a framework to predict the future states of the network for the at-
tribute of interest such as temperature or residual energy. Based on the predicted
states of the network we develop a generalized event detection technique. In this
work we target long-term predictions that require more computational resources
than a sensor node has and sufficient history of the attribute that contains all
variation patterns. Hence, we collect many profiles of the network and perform
the modeling operations on the sink. Typically, the sink uses optimized data
collection techniques to collect such a history of the interested attributes from
the network [8]. We refer to the collection of attribute values or samples from
network as profiling.

In the WSN environment, events usually are defined as spatially correlated
attribute distributions [6]. Thus, the spatial distribution of attribute of interest
needs to be quantified in order to detect events. One such natural spatial quan-
tification is the Map. For a WSN an eMap is an energy map that represents the
current residual energy of the network [9], or tMap for temperature etc. Maps
can generally be created for any attribute and provide a basic utility to detect
events using pattern matching [6]. The use of maps in our work emphasizes the
fact that there is a wide class of events in which a discrete view of a network
on node level is either not necessary or not efficient. Rather, a view at a higher
abstraction level of regions and maps, that represent a group of nodes, is needed.
For example in temperature, pressure, humidity and residual energy monitoring
a map is far more meaningful than discrete node values. This also relates to the
inherent WSN node redundancy that leads to spatially correlated node states.
On this background this paper presents three specific contributions, namely

– Design of a generalized framework for sink aided profile prediction. The
framework is adaptable to different simple as well as complex physical and
network events.

– Development of a regioning technique to detect events from predicted profiles
to support autonomous actions in the specified regions of the network.

– As validation for our Map based Predictive Monitoring (MPM) approach,
we propose a solution of network partition prediction as a case study.

The remainder of the paper is organized as follows. Section 2 discusses the related
work. Section 3 gives the preliminaries. Section 4 details our MPM approach for

MPM: Map Based Predictive Monitoring for Wireless Sensor Networks 81

predictive monitoring in WSN. In Section 5, the case study is given. In Section 6,
we evaluate our approach for the given case study through simulations. Section 7
concludes our work and outlines future directions.

2 Related Work

A variety of work is available for event detection [1]. The most relevant work to
our event detection strategy is [6] that investigates map based event detection
and requires the user to (a) specify the distribution of an attribute over space
and (b) the variation of distribution over time incurred by the event. They fur-
ther define three common types of events namely Pyramid, Fault and Island. Our
work is independent of event shape due to our regioning technique. Furthermore,
our framework predicts the events rather than just detecting it. In [10], Banerjee
et al. present a technique to detect multiple events simultaneously. They employ
a polynomial based scheme to detect event regions with boundaries and propose
a data aggregation scheme to perform function approximation of events using
multivariate polynomial regression. Our work in addition to the capability of de-
tecting multiple events, can predict events beforehand. Various other works exist
that address specific event scenarios like partition detection [3], fire detection [2]
and others [1]. These specific solutions do not feature portability to adapt to
different application scenarios.

There is a variety of work to monitor WSN’s and to minimize the overhead of
data collection for the monitoring. Strategies in [7] and [11] predict the power
consumption in WSN. In [12] Mini et al. propose a network state model and
use it to predict the energy consumption rate and construct the energy map
accordingly. In [13], the authors focus on predicting energy efficiency of multi-
media networks. These works concentrate on predicting specifically the energy,
also they do not provide any extension of their work to attributes other than
energy. Authors in [14] give a theoretical framework for abstracting the world
as WSN maps. Our work in this paper however presents a practical approach
not only for abstraction but also facilitates to predicts the events to take place
in future.

As we present a case study for partition prediction, hence here we discuss
the related work in this respect. In [3], this problem has been addressed for a
sub-class of linearly separable partitions, i.e., cuts. Memento [4] is a health mon-
itoring system that suggests to continuously collect connectivity information at
the sink to be able to detect network partitioning. The Partition Avoidance Lazy
Movement protocol for mobile sensor networks [5] is a decentralized approach,
where a sensor node can locally suspect network partitioning and move to avoid
it. A node periodically collects the position of all its neighbors and checks if at
leat one neighbor is located in a small angle towards the sink. If no neighbor is
located in this ”promising zone”, the node suspects network partitioning. Based
on our event prediction framework as an example we propose a solution that is
generalized and is not dependent on the shape, size or location of the partition.
Moreover, we provide prediction of the time, when network partitioning is going
to happen.

82 A. Ali et al.

3 Preliminaries

We now describe the system model, the requirements driving our approach and
give basic definitions.

3.1 System Model

We consider a WSN composed of N static sensor nodes and one static sink. Sen-
sor nodes are battery powered and usually entail limited processing and storage
capabilities. Sensor nodes are assumed to know their geographic position either
using distributed localization methods [15] or GPS. A typical WSN deployment
may contain hundreds of sensor nodes with varying densities according to the
coverage requirements. In this work, we do not consider a particular node distri-
bution. We assume all sensor nodes to be homogeneous. Hence the nodes have
the same transmission range R and same initial battery capacity. We consider
that nodes crash due to energy depletion only. We assume the events for pre-
dictions to be happening over a longer period of time, for example, events that
may take hours, days or even months to develop. We consider that events are
not spontaneous, spatially correlated, do not depend discretely on a single node
and are predictable.

3.2 Requirements on the MPM

We identify the following three requirements on the MPM. First, the MPM
should be lightweight, i.e., its creation, management and usage require minimal
resources with respect to energy. Second, we desire the MPM to long-term predict
the network status and hence the events accurately. Depending on the context of
the problem, long-term may mean hours to days or even months that should be
enough for the preventive mechanism to activate a self* mechanism to support
autonomic actions. Third, we desire the framework to be generalized to adapt
to prediction of varied event types.

3.3 Definitions

Here we give some basic definitions that are necessary to develop the MPM
framework.

Definition 1. A time series is a sequence of data points xt considered as a
sample of random variable X(t), typically measured at successive times. The
time series can be modeled to predict future values based on past data points.

Definition 2. A stationary random process exhibits similar statistics in time,
characterized as constant probability distribution in time. However, it suffices to
consider the first two moments of the random process defined as weak stationary
or wide sense stationary (WSS) as follows:

1. The expected value of the process (E[X(t)]) does not depend on time. If mx(t)
is the mean of X(t) then
E[X(t)] = mx(t) = mx(t + τ) ∀τ ∈ 	

MPM: Map Based Predictive Monitoring for Wireless Sensor Networks 83

2. The autocovariance function for any lag τ is only a function of τ not time t
E[X(t1)X(t2)] = Rx(t1, t2) = Rx(τ, 0) ∀τ ∈ 	

Definition 3. X(t) is an Autoregressive Moving Average Process ARMA(p, q)
process of order (p, q) p, qεℵ, if X(t) is WSS and ∀ t,

X(t) = φ1Xt−1 + · · · + φpXt−p + θ1Zt−1 + · · · + θqZt−q (1)

where Zt is white noise with mean zero and variance σ2, denoted as WN(0, σ2).

Definition 4. To quantify the continues space of WSN and construct the map a
grid is virtually placed over the WSN field and each grid cell represents the aggre-
gated attribute of all the nodes located within the grid cell. We define the process
of network space quantification as Segmentation and resultant quantification as
Grid Map.

Definition 5. The quantification of WSN space and the conversion of a WSN to
a map level abstraction is the key to detecting generic events. The abstraction of
WSN as map, transforms the event into a region of a map as shown in Fig. 1. For
example an event of fire will be a region of a map in which the value of temperature
exceeds a given threshold. In our framework we define an event as a region of map
whose values fall in the range of attribute values for which event is defined.

4 Predictive Monitoring: The MPM Approach

We present here our MPM Framework that can be used to support self* actions.
To keep the event prediction as generic as possible, we have proposed it as a four
phases process. In each phase we have proposed a technique that is independent
of the attribute to be monitored. It is important to highlight that the use of
proposed techniques in the framework does not imply to limit the framework
to only these, rather for a particular implementation specialized techniques can
always be easily accommodated due to its modular structure. The four phases
of the framework are summarized here. The segmentation phase specifies the
properties of the grid maps (Def. 4) such as grid cell size. In the data collection
phase, data is periodically but efficiently fetched from the network on the sink.
The prediction phase is used for predicting future status of the network in the
form of future grid maps. The event detection phase is used to detect events
(Def. 5) in the predicted grid maps. These phases are individually detailed in
the following sections.

4.1 The Segmentation Phase

In order to reach an acceptable spatial resolution with higher level abstrac-
tion of network as a map, we considered virtual grids and Voronoi diagram [16]
techniques to segment (Def. 4) WSN space. Voronoi-based segmentation depends
only on sensor node distribution and is static for a given node distribution. How-
ever, we require a segmentation strategy that allows variable spatial sampling to

84 A. Ali et al.

accommodate both the physical and network parameters. Such variability allows
to investigate prediction accuracy and profiling efficiency tradeoffs. Grid allows
such flexibility therefore, we base our segmentation on grid.

The virtual grid or simply grid divides the WSN area into fixed size squares
or grid cells as shown in Fig. 1. Thus nodes that fall within a cell are grouped.

For the grid maps construction, two parameters must be specified. The first
parameters is the grid cell size γ, which is a spatial sampling or resolution param-
eter. The second parameter is the aggregation value ξ that a grid cell represents.
Both parameters are essential for event detection. γ defines the geographic area
covered by the grid cell. The number of nodes being grouped in a grid cell is de-
pendant on γ. It can also be seen as a zooming parameter. Hence it can be used
to decide at which level the user intends to detect the event, i.e., very detailed
(zoomed-in) level of node or an overview at the level of regions. Depending on
the application the appropriate value of γ is affected by (1) physical parameters
such as attribute’s spatial distribution, (2) network parameters, such as commu-
nication range, (3) application requirements such as the (zoom) level at which
to detect the event. In applications such as temperature and humidity, the grid
size can be selected big enough that it represents the patches of the geographic
areas, each differing considerably in the attribute values.

WSN Spatial
Distribution

X
Y

Regions

 Pr
ed

ic
te

d
 M

ap
s

C
o

lle
ct

ed
 M

ap
s

Grid Cell Value

Fig. 1. Temporal stack of the grid maps

The grid cell value ξ is an aggre-
gate of the attribute values of the
set of nodes in a cell. The choice of
the exact function depends on the
application. For example to sense
temperature or pressure, it is most
appropriate to average the values
of the nodes in the grid cell. If ξij

is the grid cell value in the (i, j)th

grid cell gij and vn represents at-
tribute value of node n in gij then
ξij is an aggregation function such
as average, min, max of vn

ξij = f(vn) ∀ n ∈ gij (2)

During map construction the nodes undergo coordinate transformation. If a node
has (x, y) coordinates then the grid cell coordinates (i, j) can be calculated as

i = �x/γ�, j = �y/γ� (3)

All the nodes in the area of a certain grid cell have same grid cell coordinates.
We do not impose assumptions on the selection of γ and f , highlighting the

generality of our framework (requirement on our framework). An illustration for
the selection of both parameters is given in the case study in Section. 5.

MPM: Map Based Predictive Monitoring for Wireless Sensor Networks 85

4.2 The Data Collection Phase

In this phase the profiles are obtained by collecting the attribute values from
the network for which the event is to be predicted. The grid technique also aids
in reducing the number of the reporting nodes by forming clusters of nodes.
Once the grid size has been specified (and disseminated) in the network, the
nodes calculate their corresponding grid cell using coordinate transformation.
Consequently, in-network aggregation can be performed according to f by the
nodes within the same grid cell. Only single node should then report ξ to the
sink. This reduces the amount of data to be reported to the sink enormously.
Simple criteria can be used for selection of reporting node such as, node with
maximum energy. It is not efficient even for reporting nodes to send the ξ values
periodically to the sink. To further reduce the overhead on the network as per
our design requirements, the aggregated attribute are modeled as in [8] and only
the model parameters are sent to the sink, which can be used to regenerate the
actual data. The model is recalculated only when the prediction error exceeds
a predefined threshold. With each model update the outliners of the last model
are also reported. To achieve this the reporting nodes maintain a limited history
of the aggregated attribute values to be reported to the sink and fits 3rd order
autoregressive model (AR3) which is only a particular case of the ARMA(p, q)
model (Def. 3), when p = 3, q = 0. This data compression approach uses fixed
simple model because nodes have too low computational resources to determine
the parameters of a general ARMA model.

As per requirement on our framework we emphasize the generality of MPM
with respect to data collection, since we abstract the attribute type as a generic
time series (Def. 1). Using this technique any attribute type can be reported
to sink with a comparable efficiency, making our framework independent of the
attribute type to be reported. We fulfill our first requirement of framework to
be lightweight using the segmentation and data collection techniques. These
techniques collectively reduce the overhead on the network tremendously.

4.3 The Prediction Phase

The models received on the sink in data collection phase from each reporting
node are used to regenerate the variation patterns or attribute history through
reverse transformation. The regenerated history is essentially the grid map rep-
resentation of the WSN. This forms a temporal stack of the grid maps as shown
in Fig. 1. Each grid cell in the grid maps stack can be treated and modeled
as a separate time series for prediction. Individual models of each grid cell can
then be used to predict future values by fitting a prediction model, effectively
predicting grid maps. The time series can be modeled in different ways [13]. In
this paper, we use the widely used time domain modeling because of its general
applicability.

It is important to point out that time series modeling performed in this section
is different from that done on node level for data collection, which is only short-
term prediction to compress the data using the fixed AR3 model. In this phase,

86 A. Ali et al.

we perform a full scale modeling of the collected data to predict the future states
using the complete history and model each component separately.

Modeling Time Series. A time series X(t) can be modeled as a process
containing following components

X(t) = Tt + St + Rt (4)

where Tt is a trend, St is a function of the seasonal component with known
period, and Rt is the random noise component. To keep the notion of generality
valid for the framework we use a well known generalized technique Box-Jenkins
Model to model a time series containing any of these components.

Box-Jenkins (BJ) Model. Box-Jenkins model predicts a time series by fitting
it an ARIMA process (Autoregressive Integrated Moving Average). The term
integrated here means differencing the series to achieve stationarity (Def. 2).
To fit an ARIMA process the model and the order of the model needs to be
specified. The BJ model provides a guideline to select the appropriate model,
i.e., either Autoregressive (AR, Eq. 5.1) or Moving Average (MA, Eq. 5.2)

X(t) = φ1Xt−1 + · · · + φpXt−p {5.1}, X(t) = θ1Zt−1 + · · · + θpZt−q {5.2} (5)

or combination of both, i.e., ARMA process as given in Eq.1. It also gives the
guideline for the model order selection. BJ modeling is a four steps procedure:

i.) Data Preparation: As Box-Jenkins model requires a time series to be sta-
tionary (Def. 2). If it contains trends and seasonal components then these should
be appropriately removed. This can be achieved by either Least Square Polyno-
mial Fitting (LSPF) or differencing as X(t) = X(t) − X(t + u). For a simple
linear trend, u is 1. For higher order trends or seasonal component of period s,
u equals s. This operation is repeated until stationarity is achieved.

ii.) Model Identification: At this stage run-sequence plot or Autocorrelation
Function (ACF) can be used to identify the stationarity of the time series and
the order of the AR model. ACF for k lag is given by

ρk =
∑N−k

i=1

(
Xi − X̄

) (
Xi+k − X̄

)
∑i=1

N

(
Xi − X̄

)2 (6)

where X̄ is the mean value. Non-stationarity is often indicated by an ACF plot
with very slow decay. Order of the AR and MA models are determined with the
help of ACF and Partial Autocorrelation Function (PACF) [17]. To automate the
model selection process either Akaike’s Information Criterion (AIC) or Akaika’s
Final Prediction Error (FPE) [18] can be used. Various models can be computed
and compared by calculating either AIC or FPE. The least value of AIC or FPE
ensures the best fit model.

iii.) Parameter Estimation: In this step the values of the ARMA model coef-
ficients that give the best estimate of the series are determined. Iterative tech-
niques are used for model parameter estimation [18].

MPM: Map Based Predictive Monitoring for Wireless Sensor Networks 87

iv.) Prediction: Once the modeling is complete, it is simple to predict the
series values using the estimated model. It comprises of calculating the future
values at next time instances and reversing all the transformations applied to
the series in phase 1 for data preparation.

To fulfill our second requirement of long-term prediction and to accommodate
any variation patterns in the time series we use a generic time series modeling
techniques that models each component (trend, seasons, random) to facilitate
long-term predictions. We keep the generality of framework valid also in this
phase by abstracting the attribute to be predicted as time series, which makes
this phase also independent of attribute type.

4.4 The Event Detection Phase

From Def. 5 we know that events appears as regions in a map. We introduce
here a generalized regioning technique that can detect the regions and their
perimeters which leads to generic event detection.

The regions are formed due to the fact that the attribute values fall into certain
class of values. For example we normally classify the temperature as freezing,
low, normal, high or very high. These classes also contain event class (range of
values belonging to event such as temperature above 90o for fire). This gives
us a more acceptable abstraction than the exact values themselves. Therefore
the thresholding of values into classes becomes logical representation for event
detection. Thus to detect these events we define the class maps that thresholds
the exact values of the cells in grid map with their class denominations. If we
define class map values C as c1, c2, · · · for the range of the values of grid cell gij

between (ξ2, ξ1] and (ξ3, ξ2] · · · respectively, then a class map value is defined by

C =

⎧⎨
⎩

c1 if ξ2 < ξij ≤ ξ1
c2 if ξ3 < ξij ≤ ξ2
· · ·

(7)

Our regioning algorithm (Fig. 2) takes the grid map as input and determines
perimeter and regions belonging to different classes and hence events. We refer
to the resultant output as the regions map. The grid cells in the grid map that
belong to the same class are grouped to form the regions. The regioning technique
essentially needs a class map to group all the same class cells and determine the
boundary. The process of converting to class map and determining the regions
boundary are both carried out concurrently. In order to merge the cells into
regions, we define attribute classes as in Eq. 7. Neighboring cells are merged
to form the same region if they belong to the same class. The definition of
attribute classes and fusion of same class grid cells makes the regioning algorithm
independent of the shape that a region takes or the number of regions (hence
the number of events) in the map.

The algorithm starts by defining all the cell as not assigned a region by ini-
tializing the variable regionsMap[]=-1. The algorithm next searches a grid cell
that has not been assigned a class yet and lists it as the border of the region, as

88 A. Ali et al.

15: for each neighbor in neighborsList[] do
16: if (currentCell & neighbor are in the same class)
 & neighbor in regionsMap[]==-1 then
17: neighbor in regionsMap[]=regionId;
18: include cell in the newRegionBorder[];
19: changeInBorder=1;
20: end if
21: end for
22: if currentCell and (1 or more) neighbors are not
 in the same class then
23: add cell to newRegionBorder[];
24: end if
25: end for
26: regionBorder[]=newRegionBorder[];
27: until changeInBorder

1: (mapX, mapY)=dimensions(map);
2: regionsMap[]= -1;
3: mapBorders[][];
4: while there is cell not assigned region yet do
5: regionBorder[]= (Find cell with regionsMap=-1)
6: dilateRegion(map,regionBorder[],regionsMap[],regionId)
7: mapBorders[regionId][]=regionBorder;
8: regionId++;
9: end while
10: dilateRegion(map,regionBorder[],regionsMap[],regionId)
11: repeat
12: changeInBorder=0;newRegionBorder[]=0;
13: for (currentCell=each cell in regionBorder[]) do
14: neighborsList[]= eightNeighborsOf(currentCell);

Fig. 2. Regioning algorithm

the region itself and region border at this moment consists of a single cell (line
5, cell with -1 in regionsMap is not assigned a region yet). Algorithm then starts
expanding/dilating the region (line 6). To expand the region, the neighboring
eight cells around the this region cell are checked if they already belong to the
any class (line 14-16), if not then they are also classified according to Eq. 7. If
they belong to the same region they are assigned the same region ID and the new
qualifying cells are listed as the region border, otherwise the previous cells retain
their status as region border (line 17-18). To further expand the region neighbor-
ing cells of each cell in the border cells are searched iteratively until no change
occurs in the border of the region (line 11,27), which implies the completion of
the construction of a single region with its boundary. The whole process repeats
again by searching a new cell that has not been assigned a region yet. It keeps
on repeating until all the cells in the map are classified into their corresponding
regions (line 4,9).

We maintain the generality of the framework by devising a technique that
does not depend on shape, size or the number of events occurring in the WSN.

5 Case Study: MPM Adaptation for Predicting Network
Partition

To use our framework for network partition prediction, the problem needs to be
formulated according to the abstractions (maps, classes etc.) in the framework.

5.1 Problem Formulation

Partition detection is a complex problem as a physical and a network parameter
are being coupled, i.e., energy level of the nodes and communication range neces-
sary to maintain connectivity. Given that sensor nodes are resource constrained,
eventually a WSN has to consider the depletion of node batteries leading to
the partitioning of the network. The energy dissipation however, is generally

MPM: Map Based Predictive Monitoring for Wireless Sensor Networks 89

spatially correlated. Therefore, groups of nodes form hotspots that deplete to
coverage holes. A hole can be defined as a part of the network, which due to the
energy depletion is no longer covered. These holes can sometimes disconnect a
part of network from accessing the sink defined as a partition.

If the network energy state can be modeled and predicted, then we can predict
the occurrence of the holes and consequently the partitions. The holes and par-
titions appear as regions in an energy map. Our framework has all the tools to
profile the energy dissipation patterns, predict the network future energy state
and detect the regions formed due to partitioning. Therefore, partition prediction
becomes a natural candidate problem to be solved using our framework.

We can now define the problem according to the abstraction of our frame-
work. A grid cell gets disconnected from the network if it has energy below a
minimum threshold so that it can not communicate anymore. These depleted
grid cells form a region that represents a hole in an eMap. Partition however,
is a group of non-depleted grid cells that can not access sink due to the holes.
It is therefore sufficient to profile the energy status of the network during its
lifetime by collecting the eMaps in order to predict network partitioning. As per
definition the adaptation of the MPM framework to predict network partitioning
consists of four phases that we discuss as follows.

5.2 The Segmentation Phase

R

2 2
Rγ<

Fig. 3. Max grid size

The first step towards the abstraction of the WSN net-
work as a grid map (eMap in this case) is the selection of
resolution ,i.e., grid cell size at which this event (network
partitioning or holes) is to be detected. From the formu-
lation of the problem we know that we have two coupled
parameters, i.e., energy and communication range. There-
fore, an upper bound for γ is the communication range
(R). To accommodate a worst case scenario of two nodes
lying on opposite corners of two grid cells the γ < R/2

√
2,

as shown in Fig. 3. The lower bound can be obtained from
the node density, it should be selected such that the network area is not over
sampled, as we show in simulation Section. 6.2.

5.3 The Data Collection Phase

Once the grid cell size is specified, the nodes determine their corresponding grid
cells using Eq. 3. As we discussed earlier energy dissipates in a spatially corre-
lated manner, the hotspot energy dissipation model is considered [9]. Therefore,
the nodes in a grid cell are expected to have similar energy dissipation pattern. A
cell is connected to the network until at least a single node has enough energy to
communicate. The node having the highest energy level is selected as reporting
node and Eq. 2 becomes

ξij = max(vn) ∀ n ∈ gij (8)

90 A. Ali et al.

All reporting nodes start aggregating the energy values. AR3 model is fitted to
the data as per the scheme given in Section. 4.2. Model parameters are sent to
the sink. The sink regenerates the time series (data of reporting sensor node) by
applying reverse transformation. The regeneration of the data of the reporting
nodes actually generates the grid maps according to the given parameters.

5.4 The Prediction Phase

The time series of each grid cell is modeled and predicted as described in Section.
4.3. Energy dissipation is a decaying process so the time series contains trends
but no seasonal components. The trends are removed by fitting polynomials.
ARMA models are fitted to random components, selecting the best fit model
using AIC criteria. After completion of modeling the grid cell values are predicted
and hence the future grid maps.

5.5 The Event (Holes/Partition) Detection Phase

The regioning algorithm developed in Section. 4.4 is used for both partition and
hole detection. As per the given scheme we define two energy classes at 10% and
below as the partition (or hole) class, and above 10% as non-partition class. This
definition of energy classes gives the areas that are vulnerable to partitioning
because of low energy. The regioning algorithm detects these regions along with
the perimeter. The regions with energy 10% and below are holes in the network.
To detect partitioning however, the algorithm does not need to find all the
regions, therefore it executes only two iterations. In the first iteration with two
energy classes it starts from the area connected to the sink and merges the non
partitioned area around it. In the next iteration the classes are omitted and rest
of the area is merged to find its perimeter that represents the partitioned region.

6 Evaluation – Viability of Our Approach

To evaluate how well our framework meets to design requirements, we evaluate
it for the problem of partition prediction as formulated in the case study. To de-
termine accuracy and efficiency of MPM we compare it with ideal case situation
in which the data from all nodes is assumed. In the ideal case we predict the
future energy states of every node separately and hence the future profiles of the
network. The future profiles are then converted to maps. We denote these maps
predicted using profiles of all the nodes as ideal grid maps Gi. We denote maps
generated through our approach as optimized grid maps Go.

6.1 Evaluation Metrics

The transformation of a value spatial distribution into a map is a three stage
process, i.e., a grid map, then a class map and finally a regions map. The regions
map is physically same as a class map with additional information of region

MPM: Map Based Predictive Monitoring for Wireless Sensor Networks 91

perimeters. Hence, we use two error criteria for the grid map and the class map.
We use two more metrics to assess the accuracy of regions and efficiency in
terms of number of fetched packets from the network. Our first metric is the
mean sum of absolute error (Eq. 9.1) between the reference grid map Gr
(the actual data generated on the nodes) and the test grid map (Gi and Go),
defined as

Ge =

∑
i

∑
j abs(ξrij − ξtij)

m
{9.1}, Ce =

∑
i

∑
j

count(Crij − Ctij){9.2} (9)

where (i, j) are grid cell coordinates, Ge is the mean sum of absolute error, ξrij is
the grid cell value of reference map and ξtij is the grid cell value of test grid map
and m is the number of occupied grid cells. Gr is the true data generated on the
nodes, while Gi and Go are the gathered data from network, which undergo local
modeling and hence will deviate from true data due to modeling. Ge determines
the relative accuracy of our approach against the ideal case.

The second metric misclassification cell count (Eq. 9.2) counts the number
of misclassified cells between the reference and the test class map. Ce is the total
count of class cells that differ between the reference Cr and test class map Ct (Ct
are ideal class map Ci and optimized class map Co). ’count’ function returns ’1’
if the two cells do not belong to the same class else it returns ’0’. Ce is the direct
measure of correct classification of the grid cells into the classes and indirect mea-
sure of the accuracy of area and perimeter of the detected event area. Our third
metric is the misclassified cells percentage for each region to assess the accuracy
the framework on regions level that we call regional percentile error .

The fourth metric message count is the efficiency metric, where we count
the messages required to profile the network.

6.2 Simulation Settings

Bridges
High activity
 hotspotSink

Fig. 4. Node distribution

As three phases of the framework are car-
ried out on the sink, therefore we performed
our simulations on Matlab. It is a very well
known simulation tool and suits our work
as it facilitates to model energy dissipation
patterns of very huge number of nodes. The
network that we used in our simulations is
generated as a random non-uniform distri-
bution of nodes. The node distribution, as
shown in Fig. 4, was selected to cover many
possible scenarios in a real deployment. It contains some areas with high node
density and some with low node density. It also contains two narrow bridges
between two parts of the network that may lead to network partitioning. For en-
ergy dissipation modeling the common hotspot model [9] was used. The energy
dissipates in a spatially correlated manner around the hotspot. The nodes near-
est to the hotspot are more active and hence dissipate more energy. The parts

92 A. Ali et al.

of the network that act as the coverage-bridge between two parts of the network
and around the sink show relatively high energy dissipation rates. Subsequently
these areas are modeled as hotspots.

We used a network containing 5000 nodes that span an area of 50×100 unit2,
with each node having a communication range R = 2 units. For R = 2 the upper
bound for grid cell size is 0.7 units. We found 0.3 as the lower bound because
if we take a grid size smaller than 0.3 then we have more occupied grid cells
than the number of nodes that over samples the network area. We therefore
selected three grid sizes between upper and lower bounds 0.3, 0.5 and 0.7 units.
Energy dissipation history of 164 profiles was collected for the ideal case from
all the nodes and then using our approach 164 grid maps were collected from
a subset of reporting nodes. To evaluate the statistics we divided the history
of profiles into two parts. 139 profiles were used for modeling purposes and 25
used for validation. 164 profiles represent the network lifetime history. If we scale
164 lifetime profiles to 164 days then 139 days of network operation are used to
predict the next 25 days network status. First, we considered the ideal situation
and 139 profiles of each node were used to predict next 25 states. Each ideally
predicted profile of the network was transformed to grid map. Then using MPM
approach 139 collected grid maps were used to predict next 25 grid maps.

6.3 Simulation Results

Fig. 5(a) shows the graphs for mean sum of absolute error for 25 prediction steps
for 3 different grid sizes. It shows that the optimized grid maps are almost as
accurate as ideal grid maps. The mean error ranges from 0.6 to 0.9 even after
25 prediction steps, showing the level of accuracy of the prediction model. The
lower bound of error 0.6 is actually the maximum error that was allowed in the
local models on sensor nodes. The increasing trend is natural, as an increasing
number of prediction steps makes the prediction model less accurate. In ideal
case due to the cumulative error of considerably more number of nodes, the error
is slightly more than our approach.

Fig. 5(b) shows the misclassified cells count. The results of the mean sum of
absolute error imply that we can not expect much inaccuracy in misclassification
graphs. The highest count is naturally in the case of grid size 0.3, which touches
67 at the peak. The total number of occupied grid cells at this resolution is
4146, so a worst case misclassification of 67 cells accounts to less than 2% of the
total cells. We also see a slight increasing trend in the misclassification for each
prediction step because of the increasing error between model approximation
and the actual data. The peak in the graph gives interesting insight. We have
defined two classes of energy and as soon as the grid cells cross the class threshold
(10% of energy) they are classified into the partitioned class. From Fig. 5(a) it is
obvious that there is a minimum difference of 0.6 between the reference data and
test data, which creates a lag in the value of both data sets. This peak appears
when some cells in the actual data (Cr) cross the threshold of 10% but the cells
from the modeled data (Ct), due to the lag in value do not cross the threshold
at the same time. Therefore, many cells from the reference class are classified

MPM: Map Based Predictive Monitoring for Wireless Sensor Networks 93

 0 5 10 15 20 25
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

M
ea

n
 S

u
m

 o
f A

b
s:

 E
rr

o
r

Prediction Steps

0.3 Grid, Gi
0.3 Grid, Go
0.5 Grid, Gi
0.5 Grid, Go
0.7 Grid, Gi
0.7 Grid, Go

(a) Mean sum of absolute error

 0
 5

 15
 25

 35

 45
 55

 65

 0 5 10 15 20 25

M
is

cl
as

si
fie

d
 C

el
l C

o
u

n
t

Prediction Steps

0.3 Grid, Gi
0.3 Grid, Go
0.5 Grid, Gi
0.5 Grid, Go
0.7 Grid, Gi
0.7 Grid, Go

Max. error count
on class transition

(b) Misclassification cell count

Fig. 5. Predictability and accuracy measures of MPM

1 Regions
1 5 10 15 20 25Prediction step
2 3 4

0

0.02

0.04

0.06

0.08

Re
g

io
n

al
 P

er
ce

n
ti

le
 E

rr
o

r

(a) Profile based prediction

1 Regions
1 5 10 15 20 25Prediction step
2 3 4

0

0.02

0.04

0.06

0.08
Re

g
io

n
al

 P
er

ce
n

ti
le

 E
rr

o
r

(b) Map based prediction

Fig. 6. Misclassification percentile error per region

in the partitioned class but corresponding cells in the test class are still in the
non-partitioned class, which increases the count of difference cells. As soon as
the modeled data crosses the threshold this peak disappears but a slight trend
in increase of error continues.

Fig. 6(a) gives account of the error in the detected regions predicted through
profiles of the nodes and Fig. 6(b) is the regional error predicted through col-
lected maps. To summarize the results we have selected prediction profiles/maps
separated by five prediction steps. On first prediction step there are only two
regions with less than 0.04% max percentile error. With each next prediction
step the number of regions increases and errors distribute between the different
regions. In the worst case scenario a region has a maximum percentile error of
less than 0.06%. The results however show that each region is very accurately
detected. Moreover our approach of maps that uses only a subset data is almost
as good as the profiles that consists of the data from all the nodes. Misclassifi-
cation per region on the average is less than 0.03% which shows the accuracy of
our approach to detect the regions and their boundaries.

Now, we summarize the results w.r.t. efficiency metric, i.e., number of packets
needed for profiling. To profile the whole network of 5000 nodes and to collect 164
profiles for the entire lifetime, requires nearly 1 million data points. This overhead
is reduced dramatically by sending the models instead of raw samples. It is
further reduced to 14214 packets with the utilization of the gridding technique.

94 A. Ali et al.

This equates to each node sending less than 3 packets instead of 164, which is
less then 1.8% of raw data to be collected. If the network is scaled to 100 nodes
the packets to be sent scale down to 284. These results satisfy our requirement
on the framework to be lightweight.

6.4 Discussion

The results obtained in the evaluation are in accordance to the design require-
ments for the framework. It is very lightweight as data compression and gridding
cumulatively reduce the data to less than 1.8% of the raw data needed to profile
all nodes. The prediction is very accurate, represented by max prediction error
of approximately 0.06% in misclassification of the areas of the maps for 25 pre-
diction steps. The 22 days (in scaled time as explained in Section. 6.2) earlier
prediction of partition is also feasible for proactive self reconfiguration, enabling
autonomicity of WSN.

Our framework ensures reliably accurate information for proactive action and
well before the event takes place. The proactive action can be triggered using
regioning algorithm results. If there exists an event region, it will be detected
by the regioning algorithm along with the perimeter of the event regions. The
regioning algorithm determines the perimeter of the holes and the partition, it
implicitly provides the exact information about the area, location and the af-
fected nodes that lie within that perimeter. As soon as the sink successfully
detects an event, it can either trigger an early warning or initiate a proactive
action like move some nodes to affected areas, redeploy new nodes etc. if applica-
ble. The MPM framework gives vital information beforehand to act proactively,
but this proactive action itself is beyond the scope of this work.

7 Conclusion and Future Directions

We have developed Map based Predictive Monitoring, a generalized framework
for event prediction to support an autonomic self* system for WSN. To demon-
strate the feasibility and validity of approach we predicted the network parti-
tioning as a case study. We were able to detect multiple holes and resulting
partitioned area of network; information necessary to initiate proactive self re-
configuration. Simulations support the practicality of our approach by showing
its high accuracy and low monitoring overhead on the network. We plan to ex-
tend our approach for proactive reconfiguration of network entities to enhance
functionality and dependability through the predicted events.

References

1. Yick, J., et al.: Wireless sensor network survey. Computer Networks 52(12), 2292–
2330 (2008)

2. Yu, L., et al.: Real-time forest fire detection with wireless sensor networks. In:
WCNM, vol. 2, pp. 1214–1217 (2005)

MPM: Map Based Predictive Monitoring for Wireless Sensor Networks 95

3. Shrivastava, N., et al.: Detecting cuts in sensor networks. In: IPSN, p. 28 (2005)
4. Rost, S., Balakrishnan, H.: Memento: A Health Monitoring System for Wireless

Sensor Networks. In: IEEE SECON, pp. 575–584 (2006)
5. Shih, K.P., et al.: PALM: A Partition Avoidance Lazy Movement Protocol for

Mobile Sensor Networks. In: Proceedings of the IEEE WCNC, pp. 2484–2489 (2007)
6. Wang, X., et al.: Contour map matching for event detection in sensor networks.

In: SIGMOD, pp. 145–156 (2006)
7. Achir, M., Ouvry, L.: Power consumption prediction in wireless sensor networks.

In: 16th ITCS (2004)
8. Tulone, D., Madden, S.: PAQ: Time series forecasting for approximate query an-

swering in sensor networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN
2006. LNCS, vol. 3868, pp. 21–37. Springer, Heidelberg (2006)

9. Zhao, J., et al.: Residual energy scan for monitoring sensor networks. In: WCNC,
pp. 356–362 (2002)

10. Banerjee, T., et al.: Fault tolerant multiple event detection in a wireless sensor
network. Journal of Parallel and Distributed Computing 68(9), 1222–1234 (2008)

11. Landsiedel, O., et al.: Accurate prediction of power consumption in sensor net-
works. In: EmNets, pp. 37–44 (2005)

12. Mini, A.F., et al.: A probabilistic approach to predict the energy consumption in
wireless sensor networks. In: IV Workshop de Comunicao sem Fio e Computao
Mvel, So Paulo, pp. 23–25 (2002)

13. Wang, X., et al.: Robust forecasting for energy efficiency of wireless multimedia
sensor networks. Sensors 7(11), 2779–2807 (2007)

14. Khelil, A., et al.: MWM: A map-based world model for event-driven wireless sensor
networks. Autonomics, 1–10 (2008)

15. He, T., et al.: Range-free localization and its impact on large scale sensor networks.
Transaction on Embedded Computing Systems 4(4), 877–906 (2005)

16. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data
structure. ACM Computing Surveys 23(3), 345–405 (1991)

17. Montgomery, D.C., et al.: Introduction to Time Series Analysis and Forecasting.
John Wiley and Sons, New Jersey (2008)

18. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, New
Jersey (1998)

Integrating Autonomic Grid Components and
Process-Driven Business Applications

Thomas Weigold1, Marco Aldinucci2, Marco Danelutto3, and Vladimir Getov4

1 IBM Zurich Research Lab., Zurich, Switzerland
twe@zurich.ibm.com

2 Computer Science Dept., University of Torino, Italy
aldinuc@di.unito.it

3 Computer Science Dept., University of Pisa, Italy
marcod@di.unipi.it

4 School of Electronics and Computer Science, University of Westminster,
London, U.K.

V.S.Getov@westminster.ac.uk

Abstract. Today’s business applications are increasingly process driven,
meaning that the main application logic is executed by a dedicate process
engine. In addition, component-oriented software development has been
attracting attention for building complex distributed applications. In this
paper we present the experiences gained from building a process-driven
biometric identification application which makes use of Grid infrastruc-
tures via the Grid Component Model (GCM). GCM, besides guarantee-
ing access to Grid resources, supports autonomic management of notable
parallel composite components. This feature is exploited within our bio-
metric identification application to ensure real time identification of fin-
gerprints. Therefore, we briefly introduce the GCM framework and the
process engine used, and we describe the implementation of the appli-
cation using autonomic GCM components. Finally, we summarize the
results, experiences, and lessons learned focusing on the integration of
autonomic GCM components and the process-driven approach.

Keywords: Autonomic computing, components, parallel applications,
distributed applications, process-driven applications.

1 Introduction

Today’s businesses are increasingly process driven. Ideally, all actions within an
enterprise are explicitly defined as processes with the goal to improve control,
flexibility, and effectiveness of delivering customer value. Additionally, business
processes are oftentimes supported or even fully implemented by software ap-
plications [1]. In many cases, the business processes are turned into software
such that they are hidden in the application’s source code. However, there is
a trend towards separating the main business logic from the functional code
such that the resulting applications become more transparent and more flexi-
ble. The approach is to embed a so-called process engine into the application,

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 96–113, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Autonomic Grid Components 97

which then executes process definitions representing the main control logic of
the application. Functional code is then triggered from the process engine in ac-
cordance with the process definition. Such applications are called process-driven
or workflow-driven applications [2,3,4]. The main advantages of this approach
are the fact that the application logic can be modified without re-compiling the
application, even at runtime, the business logic is more evident, and monitoring
features of the process engine can be explored.

Besides the trend towards process-driven applications, enterprises seek ways
to benefit from resources available from computing Grids/Clouds, in particular
in all those cases were parallel computing is required to guarantee fair perfor-
mances. The development of grid applications is not an easy task, however. Grid
architectures present peculiar features such as dynamicity, heterogeneity and
non exclusive access to resources, that require substantial effort to be suitably
handled; furthermore, this effort is in addition to the normal effort required to
develop efficient parallel/distributed applications. Within the plethora of pro-
gramming environments targeting Grids, GCM (the Grid Component Model
developed within CoreGRID [5] and whose reference implementation has been
provided by GridCOMP) [6]) supports Grid programmers in designing paral-
lel/distributed grid applications. In particular, GCM provides pre-defined com-
posite components modelling standard parallel/distributed computation pat-
terns that users can instantiate just providing the components implementing
the sequential computations involved in the parallel pattern. In addition, these
pre-defined composite components implement proper autonomic managers that
completely take care of non functional aspects related to application execution
according to what is specified in user supplied contracts.

In this work, we discuss a process-driven application, which makes use of
GCM autonomic components to solve the problem of large-scale biometric
identification[7], that has been developed as part of the activities of the Grid-
COMP project [6]. In particular, we discuss how process-driven application de-
velopment exploits the autonomic features provided by the underlying Grid soft-
ware as well as the results, experiences, and lessons learned during application
development focusing on the integration of autonomic GCM components and
the process-driven approach.

The paper is organized as follows: Sec. 2 introduces GCM and Behavioural
Skeletons (BS), i.e. the autonomic composite components modelling notable par-
allel/distributed patterns within GCM. Sec. 3 introduces the process engine used
to implement the biometric identification application discussed in Sec. 4 on top
of GCM/BS. Eventually, Sec. 5 discusses the overall results achieved and Sec. 6
drafts the conclusions of the paper.

2 The GCM Framework

The Grid Component Model (GCM) is a component model explicitly designed
to support component-based autonomic applications in distributed contexts [5].
The main features of this component model can be summarised as follows:

98 T. Weigold et al.

– Hierarchical: GCM components can be composed in a hierarchical way
in composite components. Composite components are first class components
and they are not distinguishable from non composite components at the user
level. Hierarchical composition greatly improves the expressive power of the
component model and is inherited by GCM from the Fractal component
model [8].

– Structured: In addition to standard intra-component interaction mecha-
nisms (use/provide ports [9]) GCM allows components to interact through
collective ports modelling common structured parallel computation commu-
nication patterns. These patterns include broadcast, multicast, scatter and
gather communications operating on collections of components. Also, GCM
provides data and stream ports, modelling access to shared data encapsu-
lated into components and data flow streams. All these additional port types,
not present in other well known component models, increase the possibili-
ties offered to the component system user for developing efficient parallel
component applications.

– Autonomic: GCM specifically supports implementing autonomic compo-
nents in two distinct ways: by supporting the implementation of user defined
component controllers and by providing behavioural skeletons. Component
controllers can be programmed in the component membrane (the membrane
concept, as the place where component control activities take place, is inher-
ited from Fractal [8]) and controllers can be components themselves. This
provides a substantial support to the development of reusable autonomic
controllers. Behavioural skeletons, thoroughly discussed in Sec. 2.1, are com-
posite GCM components modelling notable parallel/distributed computation
patterns and supporting autonomic managers, i.e. components taking care
of non functional concerns affecting parallel computation.

Due to the presence of controllers and autonomic managers, GCM components
implement two distinct kinds of interfaces: functional and non-functional ones.
The functional interfaces host those ports concerned with the implementation of
the functional features of the component. The non-functional interfaces host the
ports related to controllers and autonomic managers. These ports are the ones
actually supporting the component management activity in the implementation
of the non-functional features, i.e. those features contributing to the efficiency
of the component in obtaining the expected (functional) results but not directly
involved in result computation.

GCM has been designed within the Programming Model Institute [10] in
CoreGRID [11] and a reference implementation of the component model has
been developed within the GridCOMP project [6]. Within the same GridCOMP
project, a Grid Integrated Development Environment (GIDE) has been devel-
oped to support development and maintenance of GCM programs.

2.1 Behavioural Skeletons

Behavioural skeletons represent a specialisation of the algorithmic skeleton
concept for component management [12]. Algorithmic skeletons have been

Autonomic Grid Components 99

Algorithmic
Skeletons

Autonomic
Management

Standard code,
parameters

Behavioral
Skeletons

(factory usage)

Working
automomic
application

Developing framework concern

Application programmer concern

Functional concern Non-Functional concern

Behavioral
Skeletons

(factory design)

Fig. 1. Behavioural skeleton rationale

traditionally used as a vehicle to provide efficient implementation templates
of parallel paradigms. Behavioural skeletons, as algorithmic skeletons, represent
patterns of parallel computations (which are expressed in GCM as graphs of
components), but in addition they exploit the inherent skeleton semantics to
design sound self-management schemes of parallel components.

Behavioural skeletons are composed of an algorithmic skeleton together with
an autonomic manager (see Fig. 1). They provide the programmer with a com-
ponent that can be turned into a running application by providing the code
parameters needed to instantiate the algorithmic skeleton parameters (e.g. the
code of the different stages in a pipeline or the code of the worker in a task farm)
plus some kind of Service Level Agreement (SLA, e.g. the expected parallelism
degree or the expected throughput of the application). The code parameters are
used to build the actual code run on the target parallel/distributed architecture,
while the SLA is used by the autonomic manager that will take care of ensuring
this SLA (best effort) while the application is being computed.

The choice of the skeleton to be used as well as the code parameters provided
to instantiate the behavioural skeleton are functional concerns: they only depend
on what has to be computed (i.e. on the application at hand) and on the qual-
itative parallelism exploitation pattern the programmer wants to exploit. The
autonomic management itself is a non-functional concern. The self-management
and self-tuning activities taking place in the manager to ensure user supplied
SLA both depend on the application structure (the one defined by the algorith-
mic skeleton) and on the target architecture at hand. The implementation of
both the algorithmic skeleton and the autonomic manager is in the charge of the
“system” programmer, i.e. the one providing the behavioural skeleton framework
to the application user.

In the programming model provided by behavioural skeletons, the application
programmers are in charge of picking up a behavioural skeleton (or a composition
of behavioural skeletons) among those available and of providing the correspond-
ing parameters and SLA. The system, and in particular the autonomic managers
of the behavioural skeletons instantiated by the application programmer, are in

100 T. Weigold et al.

charge of performing all those activities needed to ensure the user supplied SLA.
These activities, in turn, may include varying some implementation parameters
(e.g. the parallelism degree, the kind of communication protocol used among
different parallel entities or scheduling/mapping of the parallel activities to the
target processing elements) as well as changing the behavioural skeleton (com-
position) chosen by the application programmer (e.g. using “under the hoods”
an equivalent, but more efficient (with respect to the target architecture and
user supplied SLA) behavioural skeleton (composition)).

Autonomic management of non-functional concerns is based on the concur-
rent execution (with respect to the application “business logic”) of a basic con-
trol loop such as that shown in Fig. 2. In the monitor phase, the application
behaviour is observed, then in the analyse and plan phases the observed be-
haviour is examined to discover possible malfunctioning and corrective actions
are planned. The corrective actions are usually taken from a library of known
actions and the chosen action is determined by the result of the analysis phase.
Finally, the actions planned are applied to the application during the execute
phase [13,14,15,16,17,18].

Currently, two kind of behavioural skeletons are implemented in GCM: a task
farm BS and a data parallel BS (see Fig. 3). The former models embarrassingly
parallel computations processing independent items xi of an input stream to
obtain items f(xi) of the corresponding output stream. The latter models data
parallel computations by computing for each item of the input stream xi an
item f(xi, D) of the corresponding output stream, where D represents a read
only data structure and the result of f(xi, D) can be computed as a map of
some function f ′(xi) on all the items of D followed by a reduce of the different
f ′(xi, Dj) with an associative and commutative operator g.

Both BS implement an AM taking care of the performance of the parallel
computation at hand. In particular, the AM may ensure contracts stating the
expected service time (or throughput, i.e. the time between the delivery of two
consecutive items on the output stream) of the BS (both task farm and data
parallel BS) or the expected partition size of data structure D (data parallel
BS only). Currently, the contracts must be supplied to the BS AMs through
the BS non functional ports as a(n ASCII string hosting a) set of JBoss rules

Analyse
Is the contract
broken? Why?

QoS
contract

Plan
Which plan can

solve the problem?

Monitor
How is AE
behaving?

Execute (Adapt)
Actuate the reconf.

protocol

Sensors

Monito

Effectors

Fig. 2. The classical control loop implemented within Autonomic Managers in GCM
Behavioural Skeletons

Autonomic Grid Components 101

Non-Functional
client & server ports

membrane

ABC
LC

CC

BC

AM

S C

W

W

content

Non-Functional
client & server ports

membrane

ABC
LC

CC

BC

AM

S

content

W

W

D

Functional client & server ports

LC: Lifecycle Controller
CC: Content Controller
BC: Binding Controller

ABC: Autonomic Behaviour Controller
AM: Autonomic Manager

W:Worker component

Task Farm BS Data Parallel BSTask Farm BS: receives tasks
to be computed via port S,

schedules them to one worker.
Once computed, results are

delivered to components
connected to port C.

Data Parallel BS: receives
data to be partitioned among

workers through port D and
tasks through port S. Results are

returned as results of calls
to port S.

Fig. 3. Behavioural skeletons currently implemented in GCM

defined in terms of the operations provided by the ABC controller bean. In
fact, the AM control loop is implemented by running an instance of the JBoss
business rule engine at regular intervals of time. At each time interval, all the
pre-condition-action rules supplied to the AM are evaluated and those that turn
out to be fireable (e.g. whose with the pre-condition holding true) are executed
ordered by priority (or salience according to JBoss jargon). The pre-conditions
are evaluated using values provided by the monitoring system implemented in
the ABC controller beans, actually. The period used to run the JBoss engine
is determined in such a way it is neither too fast (reacting when it was not
the case to react to small changes in the system, thus increasing overhead to
the autonomic management) nor too slow (poorly reacting to actual changes in
the system, thus decreasing efficiency of autonomic management).

Current AMs manage the contracts varying the parallelism degree of the BS,
i.e. the number of worker instances actually used to implement the BS. The
variation of the number of worker instances happens adding/removing a fixed
amount of workers. This fixed amount is a BS user configurable constant (Δw).
Rules supplied to the AM in the BS also consist in specific rules avoiding to
perform (probably) useless adaptations (e.g. avoiding to adapt BS parallelism
degree immediately after another adaptation took place) as well as rules default
actions basically only taking care of updating monitored values when no other,
more significant actions turn out to be fireable.

3 The ePVM Process Engine

The embeddable Process Virtual Machine (ePVM) is a research prototype pro-
cess engine [4] basically built upon two core concepts. Firstly, a process model
which is rooted in the theoretical framework of communicating extended finite

102 T. Weigold et al.

state machines (CEFSM). Secondly, whereas many efforts have been made to
create the ultimate process language, ePVM provides in contrast a low-level
run-time environment based on a JavaScript interpreter where higher-level do-
main specific process languages can be mapped to.

The idea of ePVM can be considered to follow a bottom-up or micro-kernel
type of approach for building process-driven applications, Business Process Man-
agement Systems (BPM), or workflow systems. This means that ePVM is a basic
framework for building such systems rather than a complete off-the-shelf appli-
cation that can run stand-alone. It consists of a library including a lightweight,
generic, and easily programmable process execution engine. Lightweight hereby
means that the engine is small in size and imposes minimum requirements on its
environment, namely the host application it is embedded in. ePVM has its own
process model resembling networks of communicating state machines running
in parallel, which makes it an inherently asynchronous, event-driven run-time
system. Every state machine is implemented by one JavaScript function, has an
associated thread executing it, has a state object which is passed every time the
function is invoked, and can communicate with other processes as well as entities
external to the process engine via some messaging system. An arbitrary number
of external entities, so-called host processes, can be attached to the engine to
become visible for ePVM processes. The ePVM programming model based on
the theory of CEFSM combines the simplicity of JavaScript with an easy and
powerful way of defining complex concurrent business processes. More details
can be found in [4].

4 Process-Driven Distributed Biometric Identification

In recent years biometric methods for verification and identification of people
have become very popular. Applications span from governmental projects like
border control or criminal identification to civil purposes such as e-commerce,
network access, or transport. Frequently, biometric verification is used to au-
thenticate people meaning that a 1:1 match operation of a claimed identity to
the one stored in a reference system is carried out. In an identification system,
however, the complexity is much higher. Here, a person’s identity is to be deter-
mined solely on biometric information, which requires matching the live scan of
his biometrics against all enrolled (known) identities. Such a 1:N match opera-
tion can be quite time-consuming making it unsuitable for real-time applications.
In order to tackle this challenge, a distributed biometric identification system
(BIS), which can work on a large user population of up to millions of individuals,
has been developed. It is based on fingerprint biometrics and allows real-time
identification within a few seconds period by taking advantage of the Grid, in
particular via GCM components.

4.1 Application Architecture

The BIS can be considered a process-driven application, as it is centrally driven
by the ePVM process engine. Fig. 4 outlines its high-level architectural design.

Autonomic Grid Components 103

Biometric Identification System (BIS)

Identities
DB

Application
GUI

BIS
services

DB
access

GCM
adapter ePVM process engine

Process definitions

Enrolment Identification

System
management

Admin

Host process

GCM
components

GCM
components

GRID infrastructure

Fig. 4. BIS high-level architecture

A number of ePVM process definitions describing the main control flow for
operations such as starting up the system or identifying a person are loaded
into the process engine. These processes co-operate with external entities such
as the GUI, the database (DB) of known identities, and the distributed GCM
component system via a number of host processes to implement the overall
functionality of the BIS.

4.2 Process-Engine/GCM Interfacing

The actual distributed fingerprint matching functionality is implemented via a
set of GCM components deployed within a Grid/Cloud infrastructure as indi-
cated in Fig. 4. Processes running within the process engine must be able to
create, deploy, configure and interact with these components. For this purpose,
a dedicated host process named GCM adapter (c.f. Fig. 4) has been developed,
which receives messages from ePVM process instances, turns these messages into
method invocations on GCM framework methods or GCM components, and gen-
erates appropriate reply messages returned to ePVM. The GCM adapter repre-
sents the main interface between ePVM and GCM. As ePVM process definitions
are implemented in JavaScript and the GCM framework is available as a Java
library, the GCM adapter essentially converts between JavaScript messages and
Java method invocations.

An alternative option would have been to export the GCM components as
Web services, as supported by the GCM implementation, and invoke them from

104 T. Weigold et al.

within the GCM adapter. However, this would have increased the number of
required type conversions going from Java Script over SOAP to Java and vice
versa. Also, the GCM framework only supports exporting GCM components as
Web services. Other framework services, for example, functionality for deploy-
ment and component creation, cannot be turned into Web services automatically.
Finally, the ePVM process engine does not necessarily require working on Web
Services level like, for instance, process engines based on the Business Process
Execution Language (BPEL). Consequently, we decided not to use Web services
as interfaces between the process engine and GCM.

The functionality provided by the GCM adapter includes:

– Activate a given GCM deployment descriptor to start the nodes available in
the Grid.

– Modify architecture description language (ADL) files describing the GCM
components used.

– Create GCM components within the Grid.
– Invoke methods on GCM components, for example, to configure the quality

of service (QoS) contract, distribute the DB of known identities, or submit
the biometrics of a person for identification.

The GCM adapter is triggered by ePVM process instances to implement the
overall application logic. As an example, the activity flow chart shown in Fig. 5
illustrates the control logic implemented within an ePVM processes as it is exe-
cuted during BIS initialization. For each of the activities a message is being sent
to a host adapter which implements the functionality. Some of the activities
execute in parallel, for instance, activity 1.1 to 1.3, some are sequential.

4.3 Using Autonomic GCM Components

The problem of biometric identification can be considered a search problem
where the compare function is a biometric matching algorithm, here fingerprint

Start

Stop

1.1
Start Nodes

1.2
Generate ADL

1.3
Connect DB

DB Valid? 1.4
Generate DB

2
Create GCM
Components

No

3
Submit QoS

Contract

4
Distribute

DB

Yes

Fig. 5. BIS initialization process flow

Autonomic Grid Components 105

matching. To distribute the problem within a Grid infrastructure, the DB of
known identities needs to be distributed such that each computing node in the
Grid receives a partition of the overall DB and can match a given identity against
this partition. The time spent in matching the given identity against the local
portion of the database is clearly proportional to the size of this local DB por-
tion. Therefore, considering that the distribution of the DB among the grid
nodes is performed once and for all, and considering negligible the time spent to
broadcast the fingerprint that has to be matched with those in the distributed
database, the ability to perform fingerprint matching in real time roughly de-
pends on the ability to distribute local portions of the database small enough
to allow real time matching of the broadcasted fingerprint. More precisely, the
time spent in matching a single fingerprint against the local database also de-
pends on the computing power and on the load of the machine used to perform
the matching. The machine power and the local database sizes are somehow
static properties. The load of the machine is instead a dynamic property. Thus,
in order to keep the matching time perceived by the application user within a
given range (i.e. satisfying a given service level agreement (SLA) or performance
contract), our BIS application should i) properly dimension the number of dis-
tributed resources used to host database portions and ii) dynamically adapt to
the varying load of the grid resources involved in such a way a user supplied per-
formance contract (such as match fingerprint in less than 30 secs) is ensured.
Both features are supported within the GCM Behavioural skeletons presented
in Sec. 2.1: if the user instantiates a Behavioural skeleton to implement the BIS
search process, and if he/she provides a contract stating the expected latency
of the fingerprint matching process, the AM of the behavioural skeleton will
start with a predefined number of workers (i.e. a predefined parallelism degree)
and then adapt this number to achieve the matching latency adding (removing)
workers from the BS composite component. In case of overload of some of the
resources used in the matching, the AM of the behavioural skeleton will also
manage to increase the number of resources recruited to the parallel matching,
in such a way the contract can be ensured again. In this case, the recruitment
of a new processing resource induces a physical redistribution of the database
among the resources. This redistribution is completely implemented/managed
by the behavioural skeleton AM.

In order to implement our BIS application, we used a data parallel (DP)
behavioural skeleton. Referring to Fig. 3 (right), the DP skeleton is a composite
component which includes an autonomic behaviour controller (ABC) and an
autonomic manager (AM). The AM periodically evaluates certain monitored
properties of the skeleton to ensure that a given QoS contract is satisfied. If
this is not the case, it triggers appropriate reconfiguration operations provided
by the ABC. To apply the DP skeleton for our application scenario, it must
be parameterized with a worker component and a QoS contract. The worker
component, here named IDMatcher, implements the actual fingerprint matching
functionality and the skeleton allocates one instance of this worker component

106 T. Weigold et al.

per node. The QoS contract consists of a set of rules interpreted by the JBoss
Drools rule engine.

For our BIS prototype we chose to implement a QoS contract requiring to
keep the partition size of the workers constant, independently of the size of the
database presented to the BS through port D. The contract is provided before
starting the computation through the non functional server port attached to
the BS AM. The AM, in this case, adds or removes workers from the BS in case
the partition size exceeds or is less than the value supplied by the user within
the contract provided through the non functional BS ports.

Before identification requests can be processed, the identity DB is distributed
across the worker components using port D. As a consequence, the DB is parti-
tioned on the inner W components. The identity DB holds information such as
name, address, and fingerprints of all enrolled (known) people.

Once the skeleton has been initialized, identification requests can be submitted
via the second port provided by the BS, port S, the so-called broadcast port.
Fingerprints of a person to be identified are broadcasted via this port to all
worker components and each worker matches them against its partition of the
DB. Results are returned synchronously via method return values.

If the AM triggers reconfiguration via the ABC, for example, to increase
the number of worker components, the AM collects all DB partitions from the
workers, modifies the number of workers, and finally redistributes the DB to the
workers. This way the DB is redistributed during each reconfiguration operation.

The submission of the contract through non functional interfaces, the DB
through BS port D, and the fingerprints to be matched through port S are
all interactions with the GCM BS triggered by ePVM processes via the GCM
adapter.

4.4 Deployment and Component Creation

When the BIS application is started, activation of the GCM deployment descrip-
tor is triggered by the process engine as indicated in Fig. 5, activity 1.1. The
GCM framework then defines virtual nodes, creates a mapping to real nodes,
and starts JVMs on all of them. The DP skeleton uses virtual nodes listed in the
descriptor for allocating worker components. Afterwards, when the initialization
process reaches activity 2, the GCM component system is created according to
the ADL files of the BS.

4.5 Application Monitoring

Monitoring is one of the core features of every process engine and it is an impor-
tant argument for using one when building an application. The ePVM engine
supports monitoring processes by registering monitor objects for one or more
process definitions. Furthermore, it can be specified which events shall be mon-
itored. Available are a number of standard events such as a process instance
being created, a message being processed, or a process becoming idle. Further-
more, custom events can be defined such that more fine-grained monitoring can

Autonomic Grid Components 107

be implemented, for example, multiple events can be trigged while a single mes-
sage is processed.

In the BIS application, a monitor object is used to track the progress of ePVM
process instances, for example, while the system initialization process is executed
(c.f. Fig. 5). The monitor object is triggered by the process engine whenever
activities start or finish and it updates the GUI to reflect the state of the system.
Furthermore, it is desired to monitor the GCM component system with the goal
to visualize AM actions and the number of workers used in the DP skeleton. A
system administator could observe this and, if required, trigger reconfiguration
or add resources manually. For monitoring the skeleton, functionality provided
by the GCM framework can be used. However, monitoring in GCM is based
on a pull model where information about components and their states can be
retrieved on request. On the contrary, the ePVM approach can be considered a
push model where a monitor is registered and receives events. To integrate GCM
monitoring with the event-driven paradigm applied in ePVM some adaptation is
necessary. A first solution is to create a dedicated ePVM process which regularly
retrieves information about the component system via the GCM API and creates
events for the monitor object. A second solution is to instrument the component
implementation to actively send events to an ePVM process. The first approach is
more generic with respect to distribution, as the GCM framework handles remote
method invocations required to query for component states automatically. The
second approach is more efficient, as communication only takes place if an event
to be monitored occurs. However, a component might not be able to easily
communicate with the process engine if it is running on a remote machine, since
the process engine itself is not a GCM component. In the BIS we used the first
approach to implement monitoring the number of workers, as the workers are
typically distributed. For monitoring AM actions, we use the second approach
exploiting the fact that in our deployments the AM is always co-located with
the process engine such that no remote communication is necessary.

In general, the requirement to monitor actions within the DP skeleton to some
extend is contradictory to the idea of autonomic components. On one hand the
goal of using the DP skeleton is to take advantage of its built-in functionality
without taking care of the implementation details. On the other hand, we still
want to be able to monitor certain internal details such as reconfiguration op-
erations and the number of workers. From the perspective of the process-driven
applications paradigm all important actions which shall be monitored should be
centrally controlled by the process-engine. However, in real-world applications a
trade-off between central process control and autonomy must be made.

4.6 Automatic Futures vs. Message Passing

When integrating process-engines and distributed computing frameworks, it
is very important to be aware of their communication and synchronization
paradigms. The GCM framework is based on Java RMI and implements the
concept of automatic futures [19]. This means that method invocations always
return immediately, whereas results which are not yet available are represented

108 T. Weigold et al.

by so-called future objects. Program execution is then blocked automatically
if a future object is being accessed as long as the value represented is not yet
available. The goal is to ease parallel programming by hiding synchronization
details within a meta object protocol implemented in GCM. The ePVM process
engine, however, uses message passing for communication and synchronization
between concurrent control flows. If these two paradigms are interweaved, as it
is the case in the BIS application, process flows can easily become distorted. For
example, if a process definition assigns two activities to be carried out sequen-
tially (c.f. activity 2 and 3 in Fig. 5), it must be ensured that no more future
objects resulting from the first activity exist before the second is triggered.

This issue becomes obvious when an identification process is triggered within
the BIS. In this case, an ePVM process sends a message to the GCM adapter
including fingerprints of a person to be identified. The GCM adapter forwards
this information to the component system by invoking the broadcast interface of
the DP skeleton (port S, Fig. 3). This interface is a so-called collective interface,
which turns one method invocation into N method invocations on all the bound
IDMatcher components to broadcast the identification request. The return value
is a list of result objects, one from each IDMatcher component. When the interface
is invoked, it immediately returns a list of future objects, which at the beginning
are all unavailable and then by-and-by become available as the IDMatcher com-
ponents return their results. It is important that the GCM adapter waits for the
futures to become available and generates messages to be returned to the ePVM
process instance accordingly. It must not report the identification as completed
before all futures are available. Effectively, the GCM adapter retracts automatic
synchronization in order to make the actual progress visible to the process engine,
which must to be informed whenever an IDMatcher component has searched its
part of the DB. Obviously, converting from one paradigm into the other must be
handled with care as the semantics of the process definitions can be broken due
to delayed synchronization within GCM.

4.7 Integrated Development

On one hand, the advanced features offered by both technologies, the process
engine and the GCM framework, significantly reduce the development effort re-
quired for the BIS. On the other hand, it requires handling a large number
of different development artefacts including plain Java code, JavaScript process
definitions, XML deployment descriptors and ADL definitions, and JBoss Drools
rule files. As the process engine does not mandate the use of high-level modelling
tools, developers can use the Java/JavaScript toolset of their choice. For GCM
development, the Grid IDE (GIDE) [20] is available, which consists of a set of
plugins to the famous Eclipse development environment. It also includes support
for graphical GCM component composition and ADL code generation. Conse-
quently, all artefacts can be developed within Eclipse with appropriate plugins
installed. This reduces the complexity to a manageable level, such that once the
knowledge about both technologies is available, integration work can be carried
out smoothly.

Autonomic Grid Components 109

5 Results, Experiences, and Lessons Learned

The primary result of this work is the fully functional prototype of the BIS
application, which acts as a use case demo for the process engine as well as for the
GCM framework. Additional results have been gained by critically evaluating the
application and experimenting with it. Firstly, it has been successfully deployed
on various hardware platforms ranging from one multicore PC to heterogeneous
sets of clusters as provided by the Grid5000 project [21]. Switching hardware
platforms did not require changing a single line of functional code, only the
infrastructure part of the XML deployment descriptor required modification.
The strict separation of concerns and the autonomic functionality implemented
within the GCM framework have turned out to be the main factors leading to this
flexibility. The former ensures that resources are never directly referenced in the
source code while the latter provides autonomic adaptation to the performance
properties of the hardware in use.

Secondly, functionality and autonomic behaviour of the application has been
verified using Grid5000. The BIS has been started using 50 workers (one per
node), a DB holding 50000 identities (approx. 400 MB), and a QoS contract man-
dating a partition size of 1000 identities/worker. At runtime, the contract has
been updated to 800 (± 10%) identities/worker. Thereupon, the AM has success-
fully detected 7 contract violations and each time reconfigured the DP skeleton
by adding one additional worker until a partition size of 877 identities/worker
was reached at 57 workers/nodes. During this experiment, every reconfiguration
operation took about 9 seconds in which the complete DB has been redistributed
(from the node hosting the whole database to the nodes hosting the workers of
the data parallel BS) by the ABC. When identification requests where issued
during reconfiguration, they where queued automatically by the skeleton and
processed as soon as reconfiguration was completed. For the given DB size, each
identification request required around 10 seconds to be processed. This means
that each reconfiguration operation roughly decreases the throughput of the BIS
by one identification for any given timeframe. Therefore, if the BIS is used in
a very dynamic environment requiring frequent reconfiguration, the number of
occurrences of reconfigurations may be sensibly reduced by adopting more ag-
gressive parallelism degree variation policies, in such a way the overall overhead
is reduced. Such more aggressive policies at the moment consist in varying the
constant Δw that defines the number of workers to be added/removed when
reconfiguring the parallelism degree of a BS. In the BS/GCM framework we
are currently investigating the possibility to use a kind of exponential backoff
increase/decrease protocol. All those cases, of course, rely on the possiblity to
effectively monitor the increase/decrease achieved in the BS performance as a
consequence of the parallelism degree adaptation.

Finally, evaluating the application’s source code, including the deployment
descriptor required to run on 50 nodes of Grid5000, unveiled the source code
breakdown illustrated in Fig. 6. The functional code mainly includes the host
processes (c.f. Fig. 4) providing DB access, the GUI functionality, and the in-
terfacing to the GCM components. Its absolute size is about 2500 lines of code,

110 T. Weigold et al.

Fig. 6. BIS source code breakdown

which is very small considering the the overall functionality provided by the
application. This is due to the fact that the GCM framework provides all the
functionality for distribution and autonomicity. Implementing this functional-
ity from scratch not using GCM would have been significantly more effort. In
particular, adding autonomic control to an application is virtually effortless if
a matching behavioural skeleton is available. Only the QoS contract must be
provided and a few non-functional interfaces used by the controller must be im-
plemented within the worker component. In case of the BIS application, only
about 200 lines of code where necessary for that. Furthermore, it is to be noted
that more than a quarter of the source code (27%) consists of code interpreted
at runtime. This code, including the deployment descriptor, the process defini-
tions, the QoS contract, and the GCM component definitions, contains the main
control logic and infrastructure definition of the application. As a result, the
application can be adapted significantly without recompilation - a very impor-
tant property required for operation in today’s dynamic business environments.
Hard-coding this part of the application would clearly decrese the applications
flexibilty as achieved through the combination of GCM and ePVM.

During application development, we have made a number of experiences with
regards to the integration of process technology and the GCM framework. The
interfacing between the two technologies went rather smoothly, since the ePVM
engine is available as a Java library and it does not dictate the use of Web
services. Also, the DP skeleton fits well to the given biometric identification
problem. However, application monitoring turned out to be challenging. One
must be aware that the idea behind components is hiding complexity and this
can be a problem if component internals need to be monitored. The GCM frame-
work supports querying the state of a component system, however, it does not

Autonomic Grid Components 111

support monitoring activities within components, for example, reconfiguration
within a BS. Solving this problem by instrumenting component implementations
(c.f. Sec. 4.5) requires comprehensive knowledge of the GCM framework. Fur-
thermore, the monitoring support of GCM follows a pull model while process
engines are mostly event driven. Joining the two paradigms in a sensible way
requires an extra effort and can have a performance impact. For example, reg-
ularly traversing component hierarchies to detect newly created components is
not very efficient.

Another lesson we have learned is that the two different synchronization
paradigms applied in GCM and ePVM can interfere if not handled with care.
The concept of automatic futures implemented in the GCM framework follows
the wait-by-necessity idea. This means that unavailable results are replaced by
future objects such that synchronization is delayed as long as possible. Therefore,
it must be carefully checked if results of activities within a process flow include
one or more future objects before the next activity of a sequence is triggered,
otherwise the process semantics can easily become distorted. In other words, if
a GCM component returns an object it does not necessarily mean that all the
related operations have completed.

Finally, we realized that working with the advanced features of both frame-
works, ePVM and GCM, requires working with a large number of different devel-
opment artefacts and acquiring related skills. The GIDE eases this to some ex-
tend and provides a jump start into GCM. Nevertheless, combining process tech-
nology with GCM allows producing extremely flexible and complex distributed
applications with minimum effort.

6 Conclusions

Process-driven application development is increasingly gaining attention in the
business environment. At the same time, software development frameworks for
the Grid/Cloud are raising interest in the course of the Cloud computing wave.
In this paper we have considered combining the two approaches to produce
a process-driven distributed biometric identification system. In discussing the
application we have made the following contributions:

– We provided a brief overview of the GCM framework, its support for auto-
nomic components and behavioural skeletons, and the ePVM process engine.

– We described the architectural design and implementation of the process-
driven biometric identification system utilizing the DP autonomic behavioural
skeleton available in GCM.

– We presented the results, experiences, and lessons learned while integrating
both technologies, the process engine and the GCM framework.

We believe that this use case application demonstrates that combining process
technology and autonomic Grid/Cloud components represents a powerful ap-
proach for developing flexible distributed applications with minimum effort. Ob-
viously, the application could have been developed without using GCM and

112 T. Weigold et al.

ePVM. However, the development effort would have been much higher and the
resulting application would have been less flexible due to the hard-coded appli-
cation logic and autonomic strategy.

References

1. zur Muehlen, M.: Process-driven management information systems - combining
data warehouses and workflow technology. In: Proc. of the 4th Intl. Conference on
Electronic Commerce Research (ICECR-4), Dallas, TX, USA, pp. 550–556 (2001)

2. Bukovics, B.: Pro WF: Windows Workflow in.NET 3.0. Apress (2007)
3. Faura, M.V., Baeyens, T.: The Process Virtual Machine (2007),

http://www.onjava.com/pub/a/onjava/2007/05/07/

the-process-virtual-machine.html

4. Weigold, T., Kramp, T., Buhler, P.: ePVM - an embeddable Process Virtual Ma-
chine. In: Proc. of the 31st Intl. Computer Software and Applications Conference
(COMPSAC), Beijing, China, pp. 557–564 (2007)

5. CoreGRID NoE deliverable series, Institute on Programming Model: Deliver-
able D.PM.04 – Basic Features of the Grid Component Model (assessed) (2007),
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf

6. GridCOMP Project: Grid Programming with Components, An Advanced Compo-
nent Platform for an Effective Invisible Grid (2008), http://gridcomp.ercim.org

7. Weigold, T., Buhler, P., Thiyagalingam, J., Basukoski, A., Getov, V.: Advanced
grid programming with components: A biometric identification case study. In: Proc.
of the 32nd Intl. Computer Software and Applications Conference (COMPSAC),
Turku, Finland, pp. 401–408. IEEE, Los Alamitos (2008)

8. ObjectWeb Consortium: The Fractal Component Model, Technical Specification
(2003)

9. Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker,
S., Smolinski, B.: Toward a common component architecture for high performance
scientific computing. In: Proc. of the 8th Intl. Symposium on High Performance
Distributed Computing, HPDC 1999 (1999)

10. CoreGRID NoE: Home page of the Institute on Programming model (2009 - last
accessed), http://www.coregrid.net/mambo/content/blogcategory/13/292/

11. CoreGRID NoE: Home page (2009 - last accessed), http://www.coregrid.net
12. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal

parallel programming. Parallel Computing 30, 389–406 (2004)
13. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-

puter 36, 41–50 (2003)
14. Danelutto, M.: QoS in parallel programming through application managers. In:

Proc. of Intl. Euromicro PDP: Parallel Distributed and network-based Processing,
Lugano, Switzerland, pp. 282–289. IEEE, Los Alamitos (2005)

15. Aldinucci, M., Danelutto, M.: Algorithmic skeletons meeting grids. Parallel Com-
puting 32, 449–462 (2006)

16. Aldinucci, M., Campa, S., Danelutto, M., Dazzi, P., Kilpatrick, P., Laforenza,
D., Tonellotto, N.: Behavioural skeletons for component autonomic management
on grids. In: CoreGRID Workshop on Grid Programming Model, Grid and P2P
Systems Architecture, Grid Systems, Tools and Environments, Heraklion, Crete,
Greece (2007)

http://www.onjava.com/pub/a/onjava/2007/05/07/the-process-virtual-machine.html
http://www.onjava.com/pub/a/onjava/2007/05/07/the-process-virtual-machine.html
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://gridcomp.ercim.org
http://www.coregrid.net/mambo/content/blogcategory/13/292/
http://www.coregrid.net

Autonomic Grid Components 113

17. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Towards hierarchical management of
autonomic components: a case study. In: El Baz, D., Tom Gross, F.S. (eds.) Proc.
of Intl. Euromicro PDP 2009: Parallel Distributed and network-based Processing,
Weimar, Germany, pp. 3–10. IEEE, Los Alamitos (2009)

18. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of non-
functional concerns in distributed and parallel application programming. In: Proc.
of Intl. Parallel & Distributed Processing Symposium (IPDPS), Rome, Italy, pp.
1–12. IEEE, Los Alamitos (2009)

19. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer, Heidelberg
(2005)

20. Basukoski, A., Getov, V., Thiyagalingam, J., Isaiadis, S.: Component-based devel-
opment environment for grid systems: Design and implementation. In: Danelutto,
M., Frangopoulou, P., Getov, V. (eds.) Making Grids Work. CoreGRID, pp. 119–
128. Springer, Heidelberg (2008)

21. The Grid5000 Project: An infrastructure distributed in 9 sites around France, for
research in large-scale parallel and distributed systems (2008),
http://www.grid5000.fr

http://www.grid5000.fr

Using a Teleo-Reactive Programming Style to
Develop Self-healing Applications

James Hawthorne and Richard Anthony

Dept. Computer Science,
The University of Greenwich, London, UK
{J.Hawthorne,R.J.Anthony}@gre.ac.uk

Abstract. A well designed traditional software system is capable of
recognising and either avoiding or recovering from a number of expected
events. However, during the design phase it is not possible to envision
and thus equip the software to handle all events or perturbations that
can occur; this limits the extent of adaptability that can be achieved.
Alternatively a goal-oriented system has the potential to steer around
generic classes of problems without the need to specifically identify these.

This paper presents a teleo-reactive approach for the development of
robust adaptive and autonomic software where the focus is on high level
goals rather than the low level actions and behaviour of software systems.
With this approach we maintain focus on the business objectives of the
system rather than the underlying mechanisms.

An extensible software framework is presented, with an example ap-
plication which shows how unexpected events can be dealt with in a
natural way.

Keywords: Robust software, Goal-based systems, Software frameworks,
Error recovery, Context awareness, Self-healing.

1 Introduction

The process involved in achieving a goal for a human or other living creature is
very different to the way in which a goal is achieved in a computer programming
language. The level of robustness in a computer program is determined by soft-
ware developers, in the sense that errors can be prevented or caught by a system
of try-catch exception blocks or if-else statements. However, the programmer
must explicitly implement these techniques and it is very easy to miss some er-
rors or catch and deal with one error only to fail to deal with that same error
if it reoccurs whilst dealing with it at a different level in the code; also there is
the decision as to which error to deal with at the point they are detected, and
which need to be thrown up to some higher level handler.

In short, there are many ways for many types of errors to cause failure and it
is almost impossible for a programmer to deal with them all (some of which were
not even known at design time) using these built-in techniques. The problem is
that the types of standard techniques and methods available to programmers
offer a quite un-natural way of producing robust systems.

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 114–129, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Using a Teleo-Reactive Programming Style 115

Consider how humans achieve a goal; for example, loading the dish washer.
We have several items to load into the dish washer and we know that if the dish
washer door is closed we must first open it. So opening the dish washer could be
considered a sub-goal towards the main goal of loading the dish washer.

Next, we consider if there are items already in the machine so we must take the
clean ones out first. We must then put the heavier items in the bottom sturdier
drawer and the lighter items in the top drawer but your partner unintentionally
puts a large plate in the top drawer which means you now have to take out that
plate and put it in the bottom drawer before continuing to load the rest in. You
are then about to place a cup in the dish washer but your partner does this task
before you get a chance to pick up the cup. This means that you are no longer
concerned with that cup, so continue with the other items. Humans continue to
monitor the situation like this so that we can prioritize tasks in this way. We
continue until the goal of loading the dish washer is complete and all the items
are loaded.

As another example, you can hear someone calling your name behind you, but
you do not exactly know their position. If you continue to look round you will
eventually see the person and can respond. You know the general direction of
this person but there is no discrete instruction, like rotate 167 degrees as there
might be in a computer program. We just continue to rotate until the goal “Can
see person” is met.

Within this human process there are many low level decisions made and many
possible variations on the actual sequence of turning and looking, yet this seem-
ingly straightforward task (with all its inbuilt contextual adaptation) is very
difficult to express using traditional procedural or object oriented code - even if
well structured.

Teleo-reactive (T-R) programming [1] was initially developed for the robotics
domain but the techniques involved produce systems which react and resolve
problems in a more natural way, similar to how humans head towards a goal
(with continuous context aware micro-adaptation). With T-R programs, a sys-
tem heads towards a goal without knowing how to get there precisely. The basic
methods involved in these programs produce more robust code which can grace-
fully recover from errors or unexpected events.

From the users point of view this gives the impression of self-healing. Though
faulty code is not strictly replaced with ‘fixed’ code, the program will continue
to run after an unexpected event or error occurs. T-R programs effectively ‘fall
back’ to an earlier stage and work back to this point. The term ‘Self-healing’
is used in this work to mean a recovery and continuation from an unexpected
event, rather than a physical fix or replacement of faulty logic. A more in-depth
description of how this works is provided in section 3.

T-R programs have been shown to be highly effective in building robotic
agents, but in higher level systems it has not been extensively tested. A Java
based software framework variation of a T-R system and example implementa-
tion have been built to allow exploration of the feasibility and benefit of using
T-R programs in higher level systems. The example implementation described in

116 J. Hawthorne and R. Anthony

this paper shows how we can write software without the need to know precisely
how individual goals will complete and that we do not need to know exactly
what errors will occur to deal with them.

In fact, we find that to some extent, low level error handling is replaced by
higher level goal tracking logic. This is important because goal tracking seems to
be a lot more intuitive for humans to express accurately than exhaustive error
identification and handling. Thus we propose this should be the foremost aspect
during software development.

The rest of the paper is organized as follows. Section 2 discusses similar work,
including work which achieves similar results to our own with different methods
and techniques. We also highlight some of the varied domains in which T-R
programs have been applied. Section 3 gives an overview of the components of
our framework and how to apply them. We also demonstrate the difficulty of
achieving similar results with traditional approaches. Section 4 shows the levels
of design involved in the construction of programs using our framework. We show
some of the design features and the simplicity of our framework. We then extend
the framework to produce a simple example in section 5, show some of the ways
we can extend the framework in section 6 and conclude in section 7.

2 Related Work

In our framework and in T-R programs in general, the focus is on goals as the
most influential part of a program. Maintaining focus on these high-level aims is
essential in delivering a valid product. Goal-oriented requirements analysis and
reasoning is the main subject of [2] who use the Tropos methodology [3,4] to
make goal analysis more complete, developing a formal model for this aim. The
authors have developed a goal reasoning tool, which allows algorithms for forward
and backward reasoning to be run on goal models. The backward reasoning in
Tropos [3,4] is used to analyse the goal models to find the minimum cost goal
that could guarantee the achievement of top level goals. This could be important
for our framework as we try to guarantee goal achievements.

[5] places a high degree of importance on high level goals with the focus on
functional and non-functional goals, such as performance and quality of service.
We have mainly been targeting functional goals although our framework could
be used to address non-functional issues as well. The authors of [5] also focus
on how to generate these goals in the first place, saying that many goals can
be obtained simply by asking HOW and WHY questions to obtain parent and
sub-goals. Simple Use Case diagrams described in [6] are a good way to obtain
and focus on initial goals.

The current work on self-healing systems has largely been directed towards en-
abling learning and dynamic updates to find better fitting solutions to problems.
This is a logical method because the main goal of autonomics is to reduce the
reliance on human assistance. However, many of these models and architectures
offer very heavyweight solutions to self-healing or only offer a finite selection of
alternative models.

Using a Teleo-Reactive Programming Style 117

As an example [7] uses a large number of connected components to support
adaptation. The required changes are simulated to verify the proposed changes. If
successful, the changes are merged using an architectural ‘diff’ tool. [8] also uses a
complex model of interconnected components to monitor, analyse, perform adap-
tation etc. The model is ‘externalized’ from the running system providing a way
to monitor and understand the system in a high level way. This is quite similar to
many meta-modelling approaches where the level of abstraction allows changes to
be made without the need to know the precise details of the program code.

In contrast to these self-healing systems, [9] uses case and rule based reasoning
to make a correct decision about how to proceed in the case of problem events.
Storing and retrieving a solution from the case-based-reasoning (CBR) system if
it has previously been encountered, or contacting the domain expert if not. They
use the example of diagnosing a faulty printer. However, many printer problems
require human intervention such as adding more paper to the tray or replacing
an ink cartridge and in many situations the system asks the user some questions
to help it find the fault. In several cases a technician is called to make the fix.
Although this technique could be useful for these ‘non-automated’ problems, self-
healing is usually applied to software oriented errors and the recovery from them.

2.1 Teleo-Reactive Programs

T-R programs developed by Nilson [1] are designed for autonomous control of
mobile agents. T-R programs continually accept feedback from the environment,
performing actions based on this current state. A T-R program is structured
with a hierarchical list of condition and action pairs with each action fulfilling or
partly fulfilling the condition of immediately higher precedence. An action will
end execution if it ceases to be the highest true condition, either because the
action has fulfilled the next condition or some other circumstance has caused
this case. Figure 1 is a graphical representation of this production rule structure
as shown in Nilsson’s work.

This structure directs a design so that the top level condition (the goal condi-
tion) of a program is worked towards and will eventually be satisfied. The robot

�� � ��

�� � ��

� � �

�� � ��

� � �

�� � ��

Fig. 1. Condition-Action production rule list. Ki are conditions and ai are actions.
Condition-Action rules are evaluated from the top down, with the higher rule taking
precedence over a lower one.

118 J. Hawthorne and R. Anthony

example shown in [1] and block stacking example applet shown at [10] further
illustrates this technique.

The author of [11] has produced a reasoning framework, supporting verifi-
cation of T-R programs. This is especially important in the case of safety and
mission-critical software, but it does increase the complexity in developing T-R
programs, unnecessarily in many cases as the system is quite robust in the first
instance.

Basing their approach on T-R programs, [12] have designed GRUE, an ar-
chitecture for controlling game characters (agents). With GRUE the agents are
able to react to competing goals with conflicting requirements. GRUE is able
to generate new goals in response to the changing current situation and allows
multiple actions to be run in parallel in pursuit of several simultaneous goals,
thus producing more convincing and believable game agents. The work supports
the idea that the T-R approach not only allows programs to be written more
naturally, but also produces more natural behaviour from agents.

3 Method

The example application presented in section 5 was created from a base frame-
work. This framework is a generic architecture designed to make it simple to
design applications using the methods of T-R programs and gain self-healing
benefits. The example extends the actions and conditions in this base frame-
work as required for the specific program needs. Each action must evaluate its
condition and obtain a positive result before it is permitted to execute. The
actions of the program should build on one another. That is, an action, once
executed, should complete or go some way to completing part of the condition
of the next action. This action may be executed more than once before the next
condition is satisfied. Once this next condition is evaluated to ‘true’ its asso-
ciated action can be executed. This action builds towards completing the next
condition, and so on until the program is complete.

One important difference between our framework and regular T-R programs is
that a condition which fails for whatever reason will return ‘false’ when queried.
Designing code this way, produces self-healing behaviour; for example, a condi-
tion which fails for whatever reason will produce a negative evaluation and the
program will be forced to ‘drop’ to a lower level. If the lower condition fails, the
program will drop back further, until a true condition can be evaluated. Evaluat-
ing these conditions and executing the corresponding actions in order will ‘build’
the program back up to the original failing condition. On this next attempt, the
condition should be ‘true’. If not, it will continue with the previous action until
it is. In the same way, if a higher priority condition becomes ‘true’, then there
is no longer a need to perform the previous steps and the program will continue
from the highest priority ‘true’ condition-action pair.

This method is a more natural way to produce code that is aligned closely
with the way humans solve problems. We continually monitor the ‘state of play’
to determine what our next move should be. We will not simply fail if we meet a

Using a Teleo-Reactive Programming Style 119

problem. If we need to complete a goal, we often perform a simpler action first,
which makes the more complex action easier to address when we meet it again.
The TR approach is similar but it is important to understand how this method
works in order to effectively use the framework.

Following are short descriptions of the framework elements and classes.

3.1 Goals

In the framework there is no specific type (class) ‘goal’, but the highest priority
condition is effectively the goal, i.e. all the lower prioritized actions work directly
or indirectly towards it which marks the end of the program. Another way to
view goals is that each T-R program is itself a goal and each T-R program
consists of actions and conditions as shown in section 4.2.

We should make clear that the goals should be described in a high level
manner, for example a condition ‘Has connected client’ in the server side of
a network application can be treated as a simple boolean condition, but the
underlying code to perform this query may be complex and technical. The check
might involve sending small packets back and forth to verify that a connected
client is still ‘alive’ or we might just be checking a list of clients which were
previously connected and presumed to be still connected. In the later case, more
errors are possible later as there is no ‘pre-emptive’ checking as in the first case. In
which case a well designed T-R program will recover. The T-R approach supports
functional division of logic and modular development, for example there could
be two levels of programmers for the application, non-technical ones to write the
T-R program in terms of high level goals and technical ones to provide the low
level implementation.

3.2 Conditions

Conditions are linked tightly to actions. An action will only be executed when
the associated condition is true. The action directly preceding should work to
‘complete’ this condition. As an example, a condition could check that a link to
some external database is established before its action to gather some records
is executed. The previous action would work towards establishing that link and
therefore the action to gather records will not be executed until the connection
is established.

A condition will return false if an error occurs whilst it is processing. This
prevents the program from failing when an error is encountered. In this case
the T-R program ‘drops’ to a lower condition and it is likely that the previous
action will be re-performed. If we knew exactly what the error was then we could
deal with it directly but to catch and deal with all errors we must perform some
broader scoped operations. In short, we do not need to know what the error is to
be able to recover from it, but the recovery process might need to go back more
levels than is strictly necessary. An analogy would be to replace your car engine
because there is an unusual noise coming from it. It would fix the unknown
problem that we might not be able to fix ourselves, but it is a big change just

120 J. Hawthorne and R. Anthony

to fix a possibly small problem (fan belt just need tightening perhaps). A T-R
program of finer granularity would likely be able to perform simpler actions to
recover from an unexpected event.

3.3 Actions

Actions in a T-R program are performed only when the corresponding condition
is true. Actions are arranged within a T-R program in order of ‘closeness’ to a
goal condition. This way a T-R program builds towards this goal.

Actions will gracefully exit if an error occurs. In such cases, the program will
be evaluated again from the top condition down. It may be the case that the
error is a rare event and the action will likely succeed when met again. It may
also be the case that the action took a relatively long time to complete and the
condition which was true before execution is no longer true (a resource is no
longer available perhaps). In this case the previous action will likely restore the
resource and the action can ‘try again’.

It is important to state that actions could and should have simple names
but the function of which can be quite involved and complex and could even
be constructed with other TR programs. For example, an action called ‘Draw
Circle’ in a graphics application might make several low and high-level calls
to a graphics object and driver to perform the action and we should take this
approach to naming and constructing actions when writing a TR program.

3.4 Contrast

Here we consider methods (available in most programming languages) for dealing
with and avoiding errors. The simplest alternative method to avoiding errors
would be a simple conditional statement. Consider a situation where we want
to write some output to a stream, but we realize that if the stream has not yet
been initialized it could cause problems:

if (printStream != null)

printStream.write("Hello World!!");

The if statement avoids using the print stream if it has not yet been initialized.
This is fine if that were the only possible error in the system, but this is very
unlikely to be the case. As we recognize some other possible errors, we add these
to our checks and end up with a large ball of spaghetti code, an untraceable
structure consisting of nested if-else statements. Alternatively we could use an
exception handler to catch any error within the try block. Something like this:

try{

printStream.write("Hello World!!");

}

catch(Exception e){ \\ignore error }

The problem of not initializing the stream before we use it and any other
problems would be handled and in this case they would be ignored. This might

Using a Teleo-Reactive Programming Style 121

catch problems, but it does not implicitly fix or recover from the problem. We
can add extra code within the catch block to reinitialize the print stream, but
again the problem is only solved for one instance of one type of problem and
there is no guarantee that this, now fixed code, will ever be accessed again. The
next steps after the handler might cause the stream to become uninitialized, but
because this code is no longer within the try-catch block, the error is no longer
caught. It would be difficult and time consuming to write exception handlers
at every point in the code where an error is possible (and clearly the fact that
so much commercial software is released with ‘bugs’ is evidence that even very
large software houses are unable to develop code to explicitly handle all possible
faults).

Another problem with traditional approaches is that it is easy to assume that
the problem, handled once is no longer a concern. This requires the handler
to be either duplicated or called from all places the problem could occur (one
of the authors previously worked at a software house who released products
typically containing hundreds of ‘known’ bugs - on the basis that most of these
had very minor impact and were ‘unlikely’ to occur, being triggered during very
specific sequences of events, and were thus very costly to track down and fully
eradicate). In contrast, the T-R approach deals with an error whenever and
wherever it occurs at any level of seriousness and for as many times as it arises.

Figure 2(a) highlights the problem in procedural languages of dealing with
an event which the programmer had never thought of as a possibility (if the
event is not envisioned how can it be dealt with?). What usually happens is the
program ‘crashes’ and the programmer(s) spend some time finding the cause of
the problem. The ‘bug’ is usually fixed but the fix may have caused another
error (perhaps more serious than the first) at some other point in the code and
it is likely that there are still many more errors to be revealed.

(a) Typical procedural program-
ming language execution.

(b) TR program execution.

Fig. 2. Comparison of typical event and error handling processes in procedural and
TR code execution

122 J. Hawthorne and R. Anthony

In contrast figure 2(b) shows that a TR style program executes each stage only
when its condition is met. The program will not execute a stage if its condition
is not fulfilled and will instead return to a previous step, perhaps executing
previously performed code until the condition has been satisfied. The same steps
are performed in the case of an unexpected event. Possible unexpected events
are indicated in the diagram by the labels on the right and possible roll-backs
are indicated by the arrows to the left of figure 2(b).

4 Design

There are effectively two stages of design when using the T-R method and frame-
work. The first is the T-R program part and the second is the more familiar
program structure design.

4.1 Teleo-Reactive Program Design

This part of design is the most important part, because it describes the flow of
execution of the program. The design of the structure should be more obvious
once this part is complete, although it is likely that this part of design will be
modified through iterations of the system design phase.

There are some guidelines to follow when designing this part of the program
which should make this phase a bit easier. Essentially we need to decide what
actions and conditions there should be and in what order. The first condition
should be the TRUE condition and the last condition should represent the goal.

The TRUE condition will always return ‘true’ and thus its action will al-
ways execute if there are no higher priority ‘true’ conditions. This means that
if no other action is possible, the action associated will execute until one of the
higher priority actions are possible. The TRUE condition provides a place where
execution can begin, a definite starting position.

The final goal condition should be the state which all other actions are working
towards. Here is an example where a delivery company uses GPS to track its
delivery van and display the status of the van on a web site for customers to
view (the software is running on a computer in the van depot):

Has van returned to depot −→ Nil

Has DB link ∧ Has van status −→ Write van status to DB

Has van status −→ Get DB link

Has van link ∧ T imer expired −→ Get van status

T −→ Establish van link

Now imagine we are at the stage where we about to write the van status to
the database, but the ‘Has van status’ condition is no longer true for whatever
reason. The program may ‘drop back’ to establishing the link to the van and
getting its state again. From this point it can work back to the point of writing
to the database, thus the program self-heals.

Using a Teleo-Reactive Programming Style 123

The framework allows each T-R program to be run as a thread so in this case
the T-R program would have as many instances as there are vans to track, each
running in the background, leaving the main program free for more important
tasks. We can be confident that each instance will work unsupervised because
we know errors will be handled. This is why confidence in this part of design
is so important. This is important for autonomics applications, where programs
need to handle themselves resulting in little maintenance for the programmer
after deployment, and only low levels of external supervisory input are needed.

4.2 Program Structure Design

The framework has been designed to allow the concepts discussed in this paper
to be realized and even integrated into current systems as easily as possible.
Programmers are required only to extend the types Action and Conditional as
shown in figure 3. It is important to recognize that the onus currently resides
with the programmer to produce actions and conditions which can complete at
least some of the time, given the expected state and context. The framework
robustly handles events and errors, however, an action or condition which never
completes will always cause a ‘deadlock’ situation and the T-R program will
never progress past this point. In section 6 we discuss how future iterations of
the framework might reduce or remove the chances of this problem occurring.

TRProg

+addCondition(: Conditional)
+testCondition(: Conditional)

+addAction(: Action)
+runAction(: Action)

+singlePass()

+run()

AndCondition

++testCondition(: TRProg) : boolean

OrCondition

+testCondition(: TRProg) : boolean

Conditional

+testCondition(: TRProg) : boolean

NotCondition

+testCondition(: TRProg) : boolean

Action

+Action(Conditional)
+run()
...

Nil

+run()

Runnable

+run()

TRProg is also a type of
Action meaning entire suites
can be executed in the same
way as a normal Action. This
makes the system very
scalable.

-contains

0..*

1

1

1
-contains

0..*

1

Fig. 3. Main framework presented as a UML class diagram

124 J. Hawthorne and R. Anthony

The design allows for easy modifications and extensions to be made to the
framework without affecting current implementations. For example future ver-
sions of the framework could prohibit an Action which causes a deadlock from
ever being added to the T-R program (See section 6).

The TRProg type is used as the main controlling class of the framework.
This type contains an ordered list of Actions and an unordered list of Condi-
tionals. Actions are executed in the order they appear in the list if its associated
Conditional type returns TRUE. If not, the TRProg will ‘try’ the next Action.
Conditionals are automatically added when the Action is added to TRProg un-
less the Conditional instance is already listed.

As can be seen in figure 3, TRProg extends the Runnable interface, meaning
a TRProg can be run as a background thread. This can be useful to enable a
T-R program to asynchronously run in the background performing some vitally
robust task while your main thread of execution continues unaffected.

The figure also shows that the TRProg is itself a type of Action, meaning that
an Action in the list could be an entire TRProg type, containing a different set
of Actions. The TRProg may also call itself in a recursive fashion.

Actions that have been extended are required to implement the Run() method.
If its condition evaluates to true, the code in this method is executed. The
provided Nil Action is an empty action and is usually associated with the top
level goal condition, i.e. if the goal condition is reached, perform no action.

When an action is constructed it must accept exactly one Conditional argu-
ment. However, this single conditional can contain many sub-conditionals when
layers of And, Or and Not types are nested.

Conditionals contain the testCondition() method which must be implemented
in extensions. This testCondition() method returns a boolean literal indicating
whether the condition is true or false. A conditional also returns false when,
during evaluation within the TRProg class, an error is encountered.

5 Example

The example presented here is a simple simulation of a file sending application
presented from the point of view of the server side. The example extends the
framework to simulate a simple protocol which we assume has little or no error
handling abilities. The program contains several condition-action pairs leading
to its main goal. For the sake of simplicity the file is always the same and is
fixed length, with the aim being to send the file to the currently connected
client. The example demonstrates how unexpected events such as random client
disconnection and noisy communications are recovered from. This example is
not designed as an accurate representation of networking components, it only
serves to highlight some of the features and benefits of the approach. Figure 4(b)
shows the example in mid-execution with one of the four clients connected.

Using a Teleo-Reactive Programming Style 125

IsF ileComplete −→ Nil

IsF ivePacketsSent −→ ChangePacketSize

IsConnected −→ SendNextPacket

IsAccepting ∧ IsWaiting −→ Connect

T −→ Accept

(a) Alternative T-R state view

(b) ‘True’ conditions will be shown in green. ‘False’ conditions will be shown in red

Fig. 4. Screenshot from the example program

5.1 T-R Elements

The goal of the example is the same as the top level condition, to finish sending
the file to the connected client. With the file sent the program does nothing until
the top level condition turns false again. Figure 4(a) shows an alternative view
of the ‘Teleo-Reactive Program State’ section from the example.

The conditions in the example are:

– T - As this is always true its action will always execute if no higher prece-
dence condition is true.

– IsAccepting - The example simulates a socket which accepts incoming con-
nection attempts. This condition returns the accepting state of the socket.

– IsWaiting - This condition reports whether there is a client in the waiting
state.

– IsConnected - The client is connected after it is moved from waiting to the
connected state.

– IsFivePacketsSent - Returns true when a multiple of 5 packets has been
sent to the connected client.

126 J. Hawthorne and R. Anthony

– IsFileComplete - True once the whole file has been transferred to the
connected client.

The actions in the example are:

– Accept - Simply turns the accepting state of the socket to on.
– Connect - Any waiting client is connected and the Accepting state is switched

off.
– Send Next Packet - A packet is sent to the connected client at the current

packet size.
– Change Packet Size - The packet size is adjusted using a simple algorithm

based on statistics from the previous packet sending attempt.
– Nil - Performs no action.

5.2 Controls

The simulation GUI controls enable the user to set a run speed by changing the
run speed slider and clicking the ‘Continuous Program Run’ button. This sets
the simulation to perform a full pass through its action list every X seconds. The
‘Single Step Program’ button performs a single pass at each press and turns off
automatic running.

The program state area gives visual feedback on the current progress in the
T-R program. In the GUI a ‘true’ condition is coloured green, whilst a ‘false’
condition is coloured red. The action associated with the highest precedence
‘true’ condition is executed and will continue to execute at each pass while it
remains so.

There are four possible clients that can be connected to the file sending ser-
vice. Clicking on one of these four names followed by ‘Connect’ performs the
connection attempt.

The ‘Introduce Problems’ controls are used to inject ‘unexpected’ conditions.
This includes a random disconnection of a connected client and the introduction
of degraded communication. The level of degradation is set with the slider and
‘Set Error Rate’ button.

5.3 Working through the Example

In this test, we make a connection and begin sending the file to this client in
blocks. We demonstrate how the program copes with the unexpected events of
disconnection and changing quality of service. This simple example is intended
to illustrate the benefits and robustness of the approach.

When the example application is started the only ‘true’ condition is the first
‘T’ condition. On the first pass, the accept action will be executed, making the
‘IsAccepting’ condition ‘true’. This will be the only executed action on subse-
quent passes until a higher precedence condition evaluates to ‘true’. If we now
connect one of the clients, the ‘IsWaiting’ condition becomes ‘true’. The condi-
tions for the action ‘Connect’ are now completely satisfied and takes precedence

Using a Teleo-Reactive Programming Style 127

over any lower actions. Its execution on the next pass will connect the waiting
client, stop the socket from accepting connections, and cause ‘IsConnected’ to
return ‘true’. The service will continue to send packets to the client unless a
higher precedence condition becomes ‘true’.

There are a variety of ways in which the connection to the client can be lost.
Clicking ‘Disconnect Connected Client’ causes the only ‘true’ condition to be ‘T’
again. The program will then work back to the point where the problem occurred
and continue sending packets until the entire file is sent. The file send is resumed
at the point where the last successful packet was sent. If another client connects
before the fist client, they must wait until this client disconnects.

Every multiple of five packet sending attempts the service has the opportunity
to adjust the packet size to suit the current communication quality and keep the
service running at optimal levels. By changing the error rate in the simulation we
can show how this works. The packet size will increase or decrease as appropriate.
Once the ‘IsFileComplete’ condition is satisfied no other action will be performed
and the goal is complete.

It was simple to add self-optimising behaviour to the program, which is demon-
strated by the changing packet size program function. We had not intended to
implement self-optimization within the first version of the example, but it turned
out to be very simple to add this function. Using our framework, constructing
the application was remarkably easy, and with future iterations of the frame-
work (adding further robustness and inherent validation checking), this will be
an easier task.

A more elaborate example scenario could be chosen with the opportunity
to introduce a greater variety of problems and some of further features of the
framework such as ease of reuse and recursion. However, the example is simple
enough to demonstrate the main advantages which a more complex scenario
might have blurred.

6 Future Work

A possible way to extend the framework is in use of policies to specify and
possibly dynamically replace high level goals. A more advanced method of use
of policies in T-R agent control is in [13] where situation graphs determine good
policies for groups of cloned T-R agents. It is claimed that the use of situation
graphs enables policies to be evaluated taking into account objective states and
not just perceptions, yielding a high degree of discrimination.

We are interested in further applications of the framework in the develop-
ment of autonomic and self managing systems [14,15] where the system needs
to continually adjust its behaviour to suit its operating circumstances. It is far
easier to describe these systems by their high level goals than by their actual
behaviour at any given moment, and thus we suggest that T-R programs have
great potential for this domain.

T-R programs also provide a lot of opportunity for automatic learning tech-
niques and much of the work based on T-R programs has been addressing this

128 J. Hawthorne and R. Anthony

issue. For example [16,17]. Automatic learning of new goals and dynamic adap-
tation would reduce human reliance and this is another direction for future work
on the framework we would be interested in pursuing.

In our view and from an autonomic viewpoint beneficial adaptations should,
where possible, be transparent to the framework user. Automatic validation tech-
niques could be incorporated to inform the programmer of the problem at the
point where an action is added to the program, perhaps using simulation of T-R
programs. This is a logical progression for the framework and would provide
further guarantees about the level of robustness and reduce or eliminate the
possibility of a dead/live-lock situation.

7 Conclusion

T-R programs were originally invented for the robotics domain and for agent
control. This work shows how T-R programs can be effectively applied at a higher
level and with many benefits over more traditional approaches. This method of
programming focuses on goals as a driving factor and produces code more closely
associated with a thought process. This in turn produces more natural behaviour
and increases the potential for adaptability.

The T-R framework makes it simple to produce programs that use this tech-
nique as we demonstrated with our example scenario. T-R programs can form
the main structure of a program with additional T-R programs called hierarchi-
cally. Or a T-R program could be used on a subsection where the program is
started as a background asynchronous thread.

This initial work demonstrates the viability of the approach to program-
ming high level software systems and we have illustrated how this approach
contribute’s to robust program design and self-healing capabilities. At this early
stage in development the framework has been shown to be very effective in recov-
ering from errors and using natural goal progression to improve system design.
We believe that the complex models and architectures in some other self-healing
approaches are not necessary and in many cases these methods are limited in
the number and types of errors which can be handled.

References

1. Nilsson, N.J.: Teleo-reactive programs for agent control. Journal of Artificial Intel-
ligence Research 1, 139–158 (1994)

2. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-oriented requirements analysis
and reasoning in the tropos methodology. Engineering Applications of Artificial
Intelligence 18(2), 159–171 (2005)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

4. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information
systems engineering: the tropos project. Inf. Syst. 27(6), 365–389 (2002)

Using a Teleo-Reactive Programming Style 129

5. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
RE 2001: Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering, pp. 249–262. IEEE Computer Society, Washington (2001)

6. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley Longman Publishing Co., Inc., Boston (2004)

7. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards architecture-based self-
healing systems. In: WOSS 2002: Proceedings of the first workshop on Self-healing
systems, pp. 21–26. ACM, New York (2002)

8. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In:
WOSS 2002: Proceedings of the first workshop on Self-healing systems, pp. 27–
32. ACM, New York (2002)

9. Hassan, S., Mcsherry, D., Bustard, D.: Autonomic self healing and recovery in-
formed by environment knowledge. Artif. Intell. Rev. 26, 89–101 (2006)

10. Nilsson, N.J.: Teleo-reactive programs web site
http://robotics.stanford.edu/users/nilsson/trweb/tr.html (last accessed
2009)

11. Hayes, I.J.: Towards reasoning about teleo-reactive programs for robust real-time
systems. In: SERENE 2008: Proceedings of the 2008 RISE/EFTS Joint Interna-
tional Workshop on Software Engineering for Resilient Systems, pp. 87–94. ACM,
New York (2008)

12. Gordon, E., Logan, B.: Game over: You have been beaten by a GRUE. In: Fu, D.,
Henke, S., Orkin, J. (eds.) Challenges in Game Artificial Intelligence, Technical
Report. Papers from the 2004 AAAI Workshop, pp. 16–21. AAAI Press, Menlo
Park (2004)

13. Broda, K., Hogger, C.: Determining and verifying good policies for cloned teleo-
reactive agents. Int. Journal of Computer Systems Science and Engineering 20(4),
249–258 (2005)

14. Kephart, J.: Research challenges of autonomic computing. In: International Con-
ference on Software Engineering (ICSE), pp. 15–22. ACM, New York (2005)

15. Sterritt, R., Parashar, M., Tianfield, H., Unland, R.: A concise introduction to
autonomic computing. Advanced Engineering Informatics 19(3), 181–187 (2005)

16. Kochenderfer, M.J.: Evolving hierarchical and recursive teleo-reactive programs
through genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K.,
Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 83–92. Springer,
Heidelberg (2003)

17. Choi, D., Langley, P.: Learning teleoreactive logic programs from problem solving.
In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 51–68.
Springer, Heidelberg (2005)

http://robotics.stanford.edu/users/nilsson/trweb/tr.html

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 130–143, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Sensor Selection for IT Infrastructure Monitoring

Gergely János Paljak, Imre Kocsis, Zoltán Égel, Dániel Tóth, and András Pataricza

Department of Measurement and Information Systems
Budapest University of Technology and Economics
Magyar tudósok krt. 2, H-1117 Budapest, Hungary
paljakg@sauron.inf.mit.bme.hu,

{ikocsis,egel,dtoth,pataric}@mit.bme.hu

Abstract. Supervisory control is the main means to assure a high level perform-
ance and availability of large IT infrastructures. Applied control theory is used in
physical and virtualization based clustering, autonomic-, self-healing and cloud
computing, but similar problems arise in any distributed environment.

The selection of a compact, but sufficiently characteristic set of control vari-
ables is one of the core problems both for design and run-time complexity.
Most results in the literature are based on a single algorithm for variable selec-
tion, but our measurements indicate that no single algorithm can generate faith-
ful estimates for all the different operational domains.

We propose to use a combination of different model extraction techniques
on benchmark-like data logs. The main advantages of this multi-paradigm ap-
proach are twofold: it provides good parameter estimators for predictive control
in a simple way; and supports the identification of the actual operational do-
main facilitating context-aware adaptive control, diagnostics and repair.

Keywords: Autonomic computing, control theory, signal processing, artificial
intelligence, benchmarking, performance and performability control.

1 Introduction

Modern system management aims at guaranteeing a high service level in terms of all
operational aspects, primarily of performance and availability by applying a feedback
control loop scheme. Feedback control in autonomic computing continuously monitors
the service level and upon an unwanted deviance triggers optimization/health mainte-
nance actions according to a predefined control policy.

Trustworthy autonomic performability management necessitates establishing a for-
mal relationship between certain monitored and influenced attributes of a system even
for rough granular control; for fine granular approaches utilizing classic control theory
it is even more so (for some examples, see [1]). However, when first principles based
modeling is infeasible – what is rather the rule, than the exception for IT systems in
general – a prerequisite of system identification is establishing the set of underlying
attributes for the model. While this naturally occuring task of autonomic performability
control design seems to be quite neglected, it is by no means a trivial one. This paper
proposes an AI inspired approach to address this requirement.

 Sensor Selection for IT Infrastructure Monitoring 131

A monitored configuration consists of the application and its runtime platform in-
strumented with additional sensor and actuator agents Sensors report on the run and
health state of the application and its run time platform The monitoring node processes
these sensor values and initiates active diagnostic probing, repair actions, like dynamic
allocation or reallocation of resources or even a reconfiguration of the application
deployment in the system to be executed by actuator agents.

The monitoring scheme covers on the one hand functional and extra-functional dis-
crete state change events (like beginning or termination of a job or detection of an error
manifestation, respectively) and on the other hand platform, application, component
and system service level quantitative performance and dependability measures.

While this overall control algorithm problem appears in a general form in all large
scale systems and the principle of our approach remains valid for this more general
context, we confine our subsequent discussion to datacenter-like infrastructures (and
cloud environments).

Large IT infrastructures and even the monitoring functions are large-scale distrib-
uted systems. The objects of the control in server farms and clouds, the applications,
their deployment with the monitoring and control agents and the local control functions
in the application nodes are all distributed. The control functionality has typically a
hierarchical structure composed of domain and system controller nodes processing the
raw sensor data and preprocessed data from the subordinate monitor nodes.

A monitoring and supervisory control node

• collects the raw information directly incoming from the sensors and the potential
preprocessed data from subordinate monitoring nodes,

• correlates the events, estimates the metrics and,
• identifies (and possibly predicts) the situation,
• compares them with those in an anticipated use case (e.g. prediction of a poten-

tial overload of a particular resource or diagnoses fault in a component) based on
estimates,

• decides on the reactions to be executed by the actuators according to a predefined
control policy usually formulated in a rule-based manner.

The candidate actions triggered by the actuator agent deployed into the moni-
tored infrastructure consist of tuning the resources available for the individual
application tasks (priority reassignment in multitasking, modification of the re-
source arbitration in virtualization) or structural reconfiguration (dropping non-
critical tasks, task replication and/or migration).

The prevailing industrial approach is still dominated by the former age of manual con-
trol for configuring system supervision. It deploys and activates a very wide set of
sensor agents onto the platform under control, as the operator may select the relevant
ones and simply ignore all the others. On the processing side, some application and
infrastructure specific, quite ad-hoc thresholds and simple empirical rules are provided,
aiming primarily at defining “normal” operational intervals on a per metric basis and
raising an “out of range” type of alarm in the case of a deviance.

However, the automated identification (prediction), diagnosis and reaction on prob-
lems needs precisely formulated rules of metric aggregation and correlation.

Over-instrumentation, i.e. monitoring too many metrics of a system poses signifi-
cant problems, as a large number of threshold estimation, quantification, aggregation,

132 G.J. Paljak et al.

situation identification and diagnostic rules exclude reliable manual design and main-
tenance, especially in evolving applications. On the other hand monitoring too many
metrics also causes unnecessary performance overhead on the monitored systems, and
data collection nodes especially in case of historic data collection.

Under-instrumentation, i.e. the improper reduction of the set of monitored metrics,
on the other hand can significantly compromise the capabilities of supervision, mani-
festing in large reaction times to workload changes, significantly reduced availability
due to late error detection and diagnosis.

Heuristic manual control based monitoring does not scale well for large, heteroge-
neous IT systems from many aspects; as emphasized by industry initiatives as IBM
Autonomic Computing [2] or the evolving “cloud computing”. Such systems increas-
ingly employ almost fully automated structural reconfiguration and other adaptive
techniques borrowed from control theory to guarantee the performance and depend-
ability of services.

Consequently, a theoretically well-founded approach is needed for selecting a
minimal or sufficiently small set of metrics and associated points of measurement out
of the technically measurable ones, which characterizes the system “adequately”. Se-
lecting such a metric set is certainly only the precursor to setting up e.g. diagnostic
rules. More precisely, given a control objective metric (e.g. throughput of a particular
service as an influenced attribute), we seek a corresponding, near-minimal subset of
metrics and an appropriate approximation function delivering enough information to
assure the fulfillment of the control objective.

We illustrate the core problem and our approach by a simple example of curve
approximation:

Given a series of observations y co-recorded with all the parameters potentially
forming its cause, we have to select the principal factors in an estimator of this objec-
tive function sufficiently closely matching it.

After selecting the set of independent variables for the estimator, we have to select a
single function or a family of functions for a best fit estimator (for the sake of simplic-
ity we assume that a single independent variable is sufficient to create a faithful estima-
tor of the observation series in Figure 1.). Here the “best fit” is measured by means of
an approximation error metrics quantifying the deviance of the estimator from the
observation.

Given the set of independent variables, one option is to use a single function for
curve fitting (curve 1 and 2 in Figure 1.) An additional degree of freedom is given
when a family of functions is offered for fitting instead of a single one. Here the accu-
racy of the approximation can be further improved by piecewise fitting, i.e. by select-
ing a particular function for a given interval resulting in the best match (the partially
linear/non-linear/linear curve 3 in Figure 1.).

The online approximation delivers as byproduct the identification of the best matching
estimator function in addition to the expected value of the objective variable, as well.

As the splitting of the domain of the independent variable corresponds to the differ-
ent operation domains, the information on the best fitting function identifies the actual
state at a rough granular level at the resolution of the operational domain. An adaptive
control policy may fine granular evaluation of the causal variables for diagnostics after
the appearance of degradation, as indicated by the best fit of the corresponding non-
linear approximation function of a phenomenological variable.

 Sensor Selection for IT Infrastructure Monitoring 133

Fig. 1. Curve fitting examples with respect to the objective function in black

This paper proposes to combine linear estimators with the powerful minimum-
Redundancy-Maximum-Relevance (mRMR) nonlinear feature selection scheme for the
selection of such a small set of metrics that still adequately characterizes an objective
metric.

Measurements on a testbed implementing an industrial OLTP performance bench-
mark equipped with a fully instrumented, commercial enterprise system monitoring
product were used for the experimental validation of the approach.

The remainder of this paper is organized as follows. We first briefly describe prior
research underlying our experiment and introduce existing approaches and then discuss
monitoring instrumentation issues. Section 4 describes the test-bed, subject of our
investigations that are described in Section 5. Section 6 highlights the most important
results which we then evaluate and conclude.

The experiment was partially funded by the AMBER EU FP7 project, “Assessing,
Measuring and Benchmarking Resilience” [3].

2 Related Work

Evaluating large amounts of measured metrics by statistical methods and methods
from artificial intelligence can be effectively utilized to improve enterprise systems’
dependability by allowing fault detection [4, 5] and the forecasting of the system’s
behavior [6, 7]. Unfortunately, the dimensional problem of such approaches has not
been sufficiently addressed by the community. Either simple, linear methods are used
either in forward selection or backward elimination fashion or a wrapper approach [8]
is utilized that requires the presence of a learning algorithm and thus the speed of the
process is significantly reduced while results are dependent on their further usage.
Munawar et al. [9] are suggesting a Mutual Information based method and show that
non-linear correlations exist between metrics and those can be effectively utilized to
enhance fault diagnosis.

134 G.J. Paljak et al.

Our approach applies all the measures offered by the large set of sensors in indus-
trial tools (e.g. IBM Tivoli Monitoring) in a benchmark-like experiment. The set of the
measures to be monitored in the operational environment will be reduced by intelligent
log analysis to those few ones which sufficiently characterize the system by themselves
for fast reaction or early error detection. We use the systematic, well-tunable mRMR
algorithm for variable selection. It is also based on mutual information and has been
shown to scale well for large problem spaces [10, 11].

There are numerous approaches to utilize the data obtained this way. [12] shows an
entropy based – like mutual information in case of mRMR – fault detection method
that is dependent on the window size and thus may not always be sufficient for early
fault-detection. [13] presents collected data from a web server under overload and
builds time series ARMA (autoregressive moving average) models to detect aging, and
estimate resource exhaustion times. [14] presents a way of on-line discovery of quanti-
tative models, based on linear least-squares regression and shows its application for a
database system. However, no established investigation is known that would validate
these approaches across different operational domains and evaluate their performance.

3 Instrumentation Support of Metric Selection

We apply the mRMR feature selection scheme for multi-tiered online transaction proc-
essing systems. All major components of the system (operating system instances, mid-
dleware, server software, network interfaces and components) are instrumented with
sensors in the initial data log acquisition phase.

Commercial off-the-shelf monitoring products offer a large selection of candidate
sensor agents out-of-the-box for each major component type. IT infrastructure compo-
nents and services have typically the option to be associated with a wide set of metrics
and emitted events delivered in a raw form by the instrumentation of the controlled
node.

Local metrics measured by the sensor agents and derived metrics used in the control
nodes can be grouped jointly, independently of their source into two main classes:

• Phenomenological metrics deliver the measured or derived results in an im-
plementation independent form in the terms of some standard (logic) units
(for instance the average transaction time in a database).

Such metrics are typically used to characterize the extra-functional char-
acteristics of the services delivered by the individual software components
and applications, computing nodes and the entire system.

As the objective of the feedback control is keeping the overall service
level characteristics within the range allowed by the specification (frequently
expressed in the form of an SLA), these are the primary control variables at
the topmost level of control.

• Causal metrics are able to “look inside” the component internals (for instance
buffer pool attributes for the version x of type y of a database). The main ad-
vantage of their use is the high level of observability and controllability pro-
vided at a price of high maintenance and version control costs originating in
the strong implementation platform dependence.

 Sensor Selection for IT Infrastructure Monitoring 135

Their typical use is on the one hand the reduction of error latency in critical applica-
tions, as monitoring and checking the internal state may detect an error in a component
prior of the degradation of the services delivered by it; on the other hand they are used
in fine granular diagnostics.

The components of the target system are treated as providing either a “resource ser-
vice” or a “request-response” service for other components. These two service types
have some associated metrics that are meaningful in all cases, regardless of the specific
service provided or its implementation. The former category is typically associated
with quantitative metrics that are utilization aggregates, originating from the behavior
of multiple clients. The latter case can be characterized by workload (faultload) and
output performability metrics.

As a rule of thumb, all these “implementation independent” metrics (arguably of a
phenomenological nature) should be recorded for each component. This guideline is to
ensure that there is a uniform set of metrics that applies for all components, comprising
at least a black-box characterization of all the individual system components.

Additionally, in most cases the COTS instrumentation of the components offers in-
sight into the internals of the component implementation supporting a much earlier
problem detection and actual fault diagnosis, like their manifestation in the services.
However, our approach should not solely rely on these, as the behavioral coverage they
provide is quite hard to reliably assess.

As part of the necessary system instrumentation, the examined objective metrics
forming the core factors of the service level agreement offered to the end user are also
to be chosen and their measurement implemented. For OLTP systems, service response
time and throughput are the most natural choices for selecting sensors for managing
service performability, which is our current focus.

4 Experimental Setup

Our experimental testbed is a small, three-tier virtualized server architecture having
two additional nodes: one for workload generation, the other for monitoring and proc-
essing the captured data (Figure 2.). The infrastructure contains 6 virtual servers, each
of them running the CentOS 5 GNU/Linux distribution with Apache, Tomcat, MySQL
and Sequoia (a database clustering middleware) installed, respectively. All servers are
deployed on a single VMware ESX host.

The environment runs an implementation of the TPC-W standard benchmark [14].
The workload used in the experiment is the TPC-W “Shopping Mix”.

Two objective metrics were chosen: response time and throughput, using Web In-
teraction Response Time (WIRT) and Web Interactions Per Second (WIPS) metrics of
the TPC-W specification for exact definition.

IBM Tivoli Monitoring 6.1 (ITM) is used for monitoring purposes. ITM is a central-
ized, agent-based monitoring solution: central monitoring server(s) collect measurement
data and event notifications provided by monitoring agents running on the supervised
hosts. On a single host multiple agents may be deployed, as every platform and soft-
ware component covered by the product is supported by a separate agent. Numerous
platforms, software components and devices that are not supported by the product

136 G.J. Paljak et al.

Fig. 2. Architecture of the experimental setup

out-of-the box (or by product extensions) have agents freely available on the Tivoli
Open Process Automation Library (OPAL) site. Most of these utilize the Tivoli Uni-
versal Agent, a special agent type with the purpose of enabling the development of
custom sensors against documented interfaces. Altogether over 1000 metrics were
measured by the agents, with a sampling interval of 30 seconds.

A Java importer has been implemented for in-MATLAB execution that queries data
samples from the central ITM server and transforms them to MATLAB-format time
series for further processing.

5 Experimental Methodology

As our goal is early fault-detection and pro-active prevention we opted for the regres-
sion of the selected objective metrics i.e. throughput and response time. First of all,
we have to reduce the number of sensors/metrics considered in order to avoid over-
instrumentation and to simplify the regression problem.

Dimension reduction is the generic term for methods that aim at reducing the number
of considered variables in the mathematical model of a given problem. The dimension
of the task at hand is the number of variables to be measured for some further action.
The problem is well-known in the statistical and machine-learning communities who
were the pioneers facing the problem of high-dimensional datasets. Here the impact of a
given variable can frequently not be determined on sole human expertise; all and any of
them can be “important” for the understanding of the examined process/system.

 Sensor Selection for IT Infrastructure Monitoring 137

Fig. 3. Experimental methodology

Dimension reduction methods are traditionally divided into two groups: feature se-
lection- and feature extraction approaches. Feature selection aims at finding a subset
of the measured variables while feature extraction is applying a projection of the mul-
tidimensional problem space into a space of fewer dimensions thus resulting in aggre-
gate measures that did not exist in the measured environment [16, 17].

So the dimension of the problem – i.e. the number of attributes processed – shall be
reduced. A selection of few attributes is required: finding those that mostly influence
system-level metrics (e.g. throughput, response time) and thus enable the construction
of a control algorithm with relatively unambiguous rules. As a basic approach we
implemented a greedy forward selection method that uses linear regression as an
evaluative measure in the incremental process. We also selected the relatively new
mRMR algorithm [18], a feature-selection method to identify candidates that are
likely to have influence on high-level performance metrics for its high accuracy and
fast speed [19], presenting a promising approach to grab a descriptive set of metrics
considering various aspects of the system.

mRMR is based on the concept of mutual information, that for two probabilistic
variables yx, , can be calculated as:

dxdy
)y(p)x(p

)y,x(p
log)y,x(p)y;x(I ∫∫= (1)

In our case we want to select a set of variables, S , so that the mutual information be-
tween each element of S and the objective metric c is maximal (maximum relevance):

),c,S(Rmax ∑
∈

=
Sx

i

i

)c;x(I
S

1
R (2)

and the redundancy is minimal inside S , which means the mutual information be-
tween the elements is minimal:

),(min Sr ∑
∈

=
Sxx

ji

ji

xxI
S

r
,

2
);(

1
 (3)

138 G.J. Paljak et al.

We intend to find those attributes that have the highest mutual information against an
objective metric, and keep the mutual information low among the set of the identified
attributes in order to find signs of distinct performance issues.

In practice an iterative algorithm optimizes the following condition:

⎥
⎦

⎤
⎢
⎣

⎡

−
− ∑

−

−
∈

−∈
1mi

1mj
Sx

ijjSXx)x;x(I
1m

1
)c;x(Imax (4)

where Sm = , the size of S in the current iteration and 1−mS being the set of metrics

selected prior to the current iteration.

So the algorithm in the first step selects the variable Xx ∈ with the greatest mutual
information with respect to the objective metric. In the second step it selects the vari-
able xXy −∈ with the smallest mutual information with respect to x while maxi-

mizing the 2S subset’s mutual information according to the objective metric c. It

carries on iteratively until the pre-determined number of variables is reached.
Please note that calculating the mutual information for a set of time series is a very

computation intensive task. The mRMR algorithm is incremental, gradually selecting
the target variables by choosing the next best fitting one for extending the variable set.
This way, it is only optimal in a local sense for each iteration step but does not ensure
global optimality.

As for the regression part we decided to utilize two different methods: linear regres-
sion that aims at approximating the objective metric as the weighted sum of the se-
lected variables and two-layer feed-forward neural network that works similarly but
has non-linear capabilities. Traditionally the linear regression equation is as follows:

)()()(
1

ttXwtY
K

i
ii ε+=∑

=

Assuming that we selected K variables X the method computes the weights w to calcu-
late the objective value Y in the given time t with error ε(t).In case of prediction, the
right hand side is shifted back in time and thus the result is estimated based on the
available values of the past i.e. using the values (t-k), k = 1..N.

6 Experimental Results

In order to gain an insight into the setups internal relations, we stressed the system with
different load scenarios, including normal and extreme loads and some abrupt changes
as well and then evaluated the acquired time-series with the methods introduced above.

First we examined the available features and those selected. Calculating the correla-
tion matrix we find a lot of high coefficients, clearly confirming the base assumptions
in [20] of lower dimensions. On the other hand it is also suggests that due to that and
the large number of measured metrics we are unlikely to find matchings in the individ-
ual scenarios between the features selected by mRMR and those by the greedy algo-
rithm. However, that is not the case. By selecting 50 features we find that 17% of them
are present in both cases and in general the simpler the case (practically: the lower the

 Sensor Selection for IT Infrastructure Monitoring 139

load) the more matches are present. Finally, the approaches tend to select the same
metrics (although with different ranks) across different load scenarios (around 40% of
the selected metrics) thus highlighting those that should be considered under most
circumstances.

To evaluate the methodology we selected 6 different load scenarios, performed the
feature selection and executed the approximation with constantly growing number of
features. A typical curve is depicted in Figure 4. while the Mean Square Error results
are shown in Table 1. where ‘R’ stands for Linear Regression, ‘N’ for Neural Network,
‘F’ for the Forward Selection and M for the mRMR feature selection respectively.

Table 1.

 MSE - RF MSE - RM MSE - NF MSE – NM
LOW 0.0233 0.0326 1e-30 1e-4
MID 0.0510 0.0887 1.86e-4 1e-29

HIGH 0.2361 0.3139 1e-25 1e-26
VHIGH 0.9309 1.0020 0.7746 0.8111
DROP 0.2806 0.4990 0.0227 0.0516
STEP 0.1908 0.2300 0.0961 0.1818

Fig. 4. MSE as the function of selected features

The overall results seem to show that despite the successes of using mRMR in bio-
informatics applications, it is inappropriate in our case where a simple greedy algo-
rithm can outperform it.

If we take a closer look at the targeted throughput (see Figure 5.), our objective met-
ric, we can discover the intervals where the system begins to saturate. Note the abrupt
falls in performance at time instants 33, 74, 110 and 170. Those are the typical times
indicating that non-linear phenomenon like resource pooling, swapping and caching do
occur and the mutual information based non-linear capabilities of mRMR come in
handy.

140 G.J. Paljak et al.

Fig. 5. The ‘Throughput’ objective metric in the MID scenario

Considering this we can assume the following about the system:

• NORMAL operational states can be adequately approximated by means of
linear methods, providing good approximations in a simple and computation-
ally inexpensive way.

• DEGRADATION system states however can be more effectively treated by
non-linear means that can provide their earlier detection and thus a more time
for pro-active actuation.

• SATURATION (over-loaded) system states can also be approximated by lin-
ear methods as the systems performance will be mainly influenced by its
physical parameters and limits rather than the internal relations of its metrics.

7 Conclusion and Future Work

The most important conclusion of our work is that no single approach is sufficient
for system management and early diagnostics, but a combination of the approaches
best fitting to the individual qualitatively different operational domains is needed for
this purpose. Related efforts [12, 13, 14] all seem to lack this consideration and
while [13, 14] show convincing results their impact is limited to the normal and
saturated operation states, disregarding degradation, and thus seem insufficient from
the pro-active actuation’s point of view. [12] on the other hand may lack the benefit
of early diagnosis in some cases where linear methods could raise alarm in a more
prescient way.

All of the solutions above exploit implicitly some mutual interdependency between
the operation domain and the best fitting function. However, our measurements indi-
cate that the behavior of a system is so much different in the individual operational
domains that a homogenous approach using a single kind of function fails to faithfully
approximate it.

 Sensor Selection for IT Infrastructure Monitoring 141

The solution should be a heterogeneous monitoring and control system that utilizes
linear and non-linear methods in parallel and switches them according to the current
system behavior (Figure 6.).

An additional benefit of this approach is that the growing error between the estimate
delivered by the model in use and the observed value indicates simultaneously the
necessity of a switchover from one approximation function to another one and corre-
spondingly detects a transition in the operation domain.

Fig. 6. Blockscheme

While our measurements validated the soundness of the multi approximate based
approach further questions are raised for checking the practical usefulness:

• As in each case in benchmark-based methods, the representativeness of the
benchmark scenarios and measurement setup drastically influence the re-
sults, thus determine whether they can be used in a generalized form under
all circumstances.

• This approach is expected to scale well with respect to the number of at-
tributes to be processed. Still, a monolithic approach for large systems
seems to be disadvantageous. The two main arguments supporting hierar-
chical modeling and feature selection are the following.

On the one hand, it is reasonable to believe that the number of distinct
“operating points” – the sets of significant variables as the function of sys-
tem state, current load and time – will become so big that it becomes un-
practical for system management design. To counter this, systems can be
subdivided into a hierarchy of subsystems so that a higher level (and the
feature selection of that) sees only specific, service access related attrib-
utes of the subsystems.

On the other hand, in sizeable heterogeneous, distributed systems the
compensation and repair mechanisms usually operate on multiple levels of
granularity; thus, a hierarchical approach with intra-subsystem feature se-
lection is also of paramount importance, not only for localized early warn-
ing, but also to support decisions of compensation or repair.

142 G.J. Paljak et al.

Refinement and experimental validation of the hierarchical approach
sketched above shall be performed.

• Our measurements indicated that the linear approximation fits well to the
normal operation mode and saturation, mRMR is flexible enough to sup-
port a good match to the behavior in the degradation phase. Further ex-
periments are needed to identify the best fitting functions for abrupt
changes in the system, like those caused by critical resource faults.

• The number of sufficient features should be determined in a methodical
way, e.g. using the Lipschitz-index [21] or some other approach. Here the
robustness of the control and its impacts has to be assessed both in the
terms of selecting a low number of input variables and the sensitivity to
errors in the parameter estimation (this second question is a traditional
topic in control theory).

In this paper, we have shown in a methodology experiment that the mRMR feature
selection scheme combined with linear approximation can be employed for selecting
the few, “most significant” quantitative aspects of a system for the purpose of supervi-
sory instrumentation.

We also have to address the question that how can be the results systematically used
for configuring simple rule-based supervision and even more importantly, helping the
design of autonomic control schemes.

References

[1] Diao, Y., Hellerstein, J.L., Kaiser, G., Parekh, S., Phung, D.: Self-managing systems: A
control theory foundation. Engineering of Computer-Based Systems, 441–448 (April
2005)

[2] IBM Autonomic Computing Initiative,
 http://www.research.ibm.com/autonomic/

[3] Assessing, Measuring and Benchmarking Resilience, FP7 ICT CA 216295,
http://amber.dei.uc.pt/

[4] Cohen, M., Goldszmidt, T., Kelly, J., Symons, J., Chase, J.S.: Correlating instrumentation
data to system states: A building block for automated diagnosis and control. In: Proc. 6th
USENIX OSDI, San Francisco, CA (December 2004)

[5] Zhang, S., Cohen, I., Goldszmidt, M., Symons, J., Fox, A.: Ensembles of models for
automated diagnosis of system performance problems. Technical Report HPL-2005-3,
Hewlett-Packard (January 2005)

[6] Powers, R., Goldszmidt, M., Cohen, I.: Short term performance forecasting in enterprise
systems. In: ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (Au-
gust 2005)

[7] Hoffmann, G.A., Trivedi, K.S., Malek, M.: A best practice guide to resource forecasting
for computing systems. IEEE Transactions on Reliability 56, 615–628 (2007)

[8] Kohavi, R., John, G.: The wrapper approach. In: Liu, H., Motoda, H. (eds.) Feature Extrac-
tion, Construction and Selection: A Data Mining Perspective. Springer, Heidelberg (1998)

[9] Jiang, M., Munawar, M.A., Reidemeister, T., Ward, P.A.S.: Information-theoretic model-
ing for tracking the health of complex software systems. In: Proceedings of the 2008 con-
ference of the center for advanced studies on collaborative research: meeting of minds.
ACM, New York (2008)

 Sensor Selection for IT Infrastructure Monitoring 143

[10] Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expres-
sion data. In: Proceedings of the Computational Systems Bioinformatics Conference, pp.
523–529 (2003)

[11] Zhou, J., Peng, H.: Automatic recognition and annotation of gene expression patterns of
fly embryos. Bioinformatics 23(5), 589–596 (2007)

[12] Jiang, M., Munawar, M.A., Reidemeister, T., Ward, P.A.S.: Automatic Fault Detection
and Diagnosis in Complex Software Systems by Information-Theoretic Monitoring. Will
appear in IEEE International Conference on Dependable Systems and Networks (2009)

[13] Grottke, M., Lie, L., Vaidyanathan, K., Trivedi, K.: Analysis of software aging in a web
server. IEEE Trans. Reliability 55(3), 411–420 (2006)

[14] Keller, A., Diao, Y., Eskesen, F., Froehlich, S., Hellerstein, J.I., Surendra, M., Spain-
hower, L.F.: Generic On-Line Discovery of Quantitative Models. IEEE Transactions on
Network and Service Management 1(1), 39–48 (2004)

[15] TPC-W official page, http://www.tpc.org/tpcw/default.asp
[16] Fodor, I.K.: A survey of dimension reduction techniques”. Technical Report UCRL-ID-

148494, Lawrence Livermore National Laboratory, Center for Applied Scientific Com-
puting (2002)

[17] Molina, L., Belanche, L., Nebot, A.: Feature selection algorithms: a survey and experi-
mental evaluation. In: International conference on data mining, Maebashi City, Japan
(2002)

[18] Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27, 1226–1238 (2005)

[19] Li, S., Zhu, Y., Feng, J., Ai, P., Chen, X.: Comparative Study of Three Feature Selection
Methods for Regional Land Cover Classification Using MODIS Data. In: Proceedings of
the 2008 Congress on Image and Signal Processing, vol. 4 (2008)

[20] Chen, H., Jiang, G., Yoshihira, K.: Monitoring High-Dimensional Data for Failure Detec-
tion and Localization in Large-Scale Computing Systems. IEEE Trans. Knowl. Data Eng.
(TKDE) 20 (2008)

[21] He, X., Asada, H.: A new method for identifying orders of input–output models for
nonlinear dynamic systems. In: Proc. Autom. Contr. Conf., pp. 2520–2523 (1993)

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 144–159, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Context-Aware Self-optimization in Multiparty
Converged Mobile Environments

Josephine Antoniou1, Christophoros Christophorou1, Augusto Neto2,3,
Susana Sargento2, Filipe Cabral Pinto4, Nuno Filipe Carapeto4, Telma Mota4,

Jose Simoes5, and Andreas Pitsillides1

1 University of Cyprus,
75 Kallipoleos Str., 1678 Nicosia Cyprus

{josephin,christophoros.andreas.pitsillides}@cs.ucy.ac.cy
2 Instituto de Telecomunicações, Univerity of Aveiro,

Campus Universitario Santiago, Aveiro, Portugal
susana@ua.pt, augusto@av.it.pt

3 Universidade Federal de Goiás, Instituto de Informatica
Bloco IMF I, sala 239, Campus II – Samambaia, Goiânia, Brazil

augusto@inf.ufg.br
4 PT Inovação, Rua Engenheiro José Ferreira Pinto Basto, 3830 Aveiro, Portugal
{filipe-c-pinto,nuno-f-carapeto,telma}@ptinovacao.pt

5 Fraunhofer FOKUS, Kaiserin-Augusta-Allee, 31, 10589 Berlin, Germany
jose.simoes@fokus.fraunhofer.de

Abstract. The increase of networking complexity requires the design of new
performance optimization schemes for delivering different types of sessions to
users under different conditions. In this scope, special attention is given to
multi-homed environments, where mobile devices cross areas with overlapping
access technologies (Wi-Fi, 3G, WiMax). In such scenario, efficient multiparty
delivery depends upon the grouping operation (creation of a set of users to re-
ceive a given session), which must be done based on several parameters. We
propose sub-grouping of content-based service groups, so that the same service
session can be delivered using different codings of the same content, to adapt to
the current network, users, session and environment context. The context-aware
information is used to improve the sub-grouping process. This paper aims to de-
scribe these sub-grouping techniques, in particular how they improve network
performance and user experience in the future Internet, in the scope of cognitive
autonomic networks.

Keywords: Context-awareness, self-optimization, multiparty, sub-grouping,
convergence, session & network management.

1 Introduction

Increasing demands in group-based multimedia sessions and market forces are fuel-
ling the design of the future Internet, which is expected to fundamentally change the
networking landscape in the upcoming years. In order to preserve profitability while

 Context-Aware Self-optimization in Multiparty Converged Mobile Environments 145

increasing revenues, network/service providers must optimize costs and provide new
sessions operating in a mixture of access technologies, which is not trivial and de-
mands complex control. Attention must be given to group-based multimedia sessions,
since the strong requirements on Quality of Service (QoS) must be fulfilled simulta-
neously for all group users and be kept during the entire session lifetime.

These requirements increased interest of the research community in cognitive and
autonomic/self-managed networks. Main functional components of such networks in-
clude self-configuration and context-awareness, deploying auto-learning implemented
by means of network-aware middleware distributed across network components. Bene-
fits of cognitive autonomic networks include, but are not limited to, network perform-
ance optimization, automatic and seamless reconfiguration, fast and efficient resilience,
etc. Applications and devices are able to exploit such adaptations while being agnostic
of underlying reconfigurations, in accordance with the seamless service provision para-
digm. The proposed architecture plans to support automatic and seamless session recon-
figuration, through self-management, recognizing context and acting on it to sub-group
users. Context refers to information collected dynamically over time, describing the
user, its environment and the network’s current state.

In terms of group-based sessions, efficiency of session setup requires a correct
definition of user groups. Nowadays, most mobile devices are produced with multi-
homed capabilities, and it is common to cross areas where there exists overlapping of
different network access technologies, such as Wi-Fi, 3G and WiMax. The efficiency
of the grouping operation (creation of a set of users to receive a given session) may
depend on parameters, such as access technology, since for instance, 3G networks
have lower bandwidth capabilities than Wi-Fi and WiMax networks. Thus, sub-
grouping could be performed and the same service session could be delivered with
different throughput (e.g., using different codings of the same content) to adapt to the
current network capabilities. In addition to network traffic, other types of context
should also be used to improve sub-grouping, such as noise, terminal location and
speed, user’s priority and network preferences, user’s terminal capabilities, quality of
received signal etc. Moreover, history context can also be used for the improving sub-
grouping. For example, previously received context can be compared with current
context for patterns to be located. Using some intelligence, forecasts of undesirable
events are possible and sub-groups may be created so that such events are avoided.

The FP7 Context Casting (C-CAST) project [1] proposes such innovative sub-
grouping process to enable context-awareness and consequently self-optimization in
multiparty, converged mobile environments. This paper describes these sub-grouping
techniques, in particular how they improve network performance in the future Internet,
in the scope of cognitive autonomic networks. Related work is presented in Section 1.1.
Section 2 overviews context-aware multicasting (C-CAST), introducing sub-grouping.
Sections 3 and 4 diverge into self-management through sub-grouping as designed at the
session and network layers. Section 5 presents how context is used by the content, and
finally Section 6 offers conclusions and directions for future work.

1.1 Related Work

Personalized sessions can be influenced by varying context, allowing users access ses-
sions based on their location, preferences, profile and capabilities [2]. In next generation

146 J. Antoniou et al.

networks, multiple access networks coexist, thus, access selection using context-based
algorithms is necessary to enable the optimization of both terminal and network [3].
Although many proposals base the decision process on radio signal properties (e.g. [4]),
this is only one of the many criteria in such selection schemes. Some proposals suggest
context-aware decisions [3]. Moreover, the majority of related work focuses entirely on
network selection algorithms, not concerning other important mechanisms crucial to
support the decisions e.g. QoS management, to enable the complete network re-
configuration triggered by context. This lack of high-level perspective is addressed in
more recent proposals, [5]. We consider the support of context-aware selection, in a
multicast environment, where the group membership is a main issue, but being flexible
enough to support any parameter envisioned.

The integration of class-based QoS and IP multicast is promising, since the former
allows a scalable QoS approach while the latter saves bandwidth [6]. However, this is
not trivial [7], e.g. while QoS achieves scalability by pushing unavoidable complexity
to edges routers, IP multicast operates on a per-flow basis throughout the network.
Also, dynamic addition of new group members may affect existing traffic [8].

On the session layer, most of the solutions proposed use the Session Initiation Proto-
col (SIP) as the main signalling protocol, e.g. in MPLS-based next generation networks
[9], or as an enabler for session mobility in converged networks [10], integrating QoS
management and mobility management as the basis for overall session management.
Enabling session management mechanisms with context-aware information, the ap-
proach of [11] exploits strategies involving the use of contextual information, strong
process migration, context-sensitive binding, and location agnostic communication
protocols for “follow-me” sessions. Although interesting, these do not cover QoS and
efficient multiparty delivery systems.

Finally, much effort has been put recently on the autonomic network concepts [12],
where autonomic processes can perceive network conditions, plan, decide, and act on
these conditions. They can learn from the impact of former adaptations and accord-
ingly make future decisions, while considering end-to-end goals. Autonomic networks
are promising for wireless networks, which are highly dynamic and complex to man-
age. Our approach is towards the autonomic concept by enabling the dynamic optimi-
zation of the use of the network taking into account also the history and instantaneous
context of the users, network, sessions and environment.

2 Context-Aware Multiparty Service Provision

This section presents the overall context-aware multiparty architecture, able to sup-
port context from the user, network, sessions and surrounding environment in future
multiparty mobile communications. We also show how the context can influence
grouping and sub-grouping of users at different levels from the environment and user-
levels, to the session and network-layers.

2.1 System Architecture

Figure 1 depicts the context-aware multiparty reference architecture. It aims at provid-
ing an end-to-end context-aware communication framework specifically for intelligent

 Context-Aware Self-optimization in Multiparty Converged Mobile Environments 147

multicast/broadcast services. The three main parts comprise: the context and group
management service enablers, with reasoning and grouping users based on context;
content adaptation and delivery based on context; and context information collection
through sensors, context distribution and context aware multiparty transport.

Fig. 1. Context-Aware Multicasting Reference Architecture

In this paper we focus on the multiparty delivery layers and how they support ses-
sion delivery through efficient network mechanisms, both supporting context infor-
mation and grouping/sub-grouping of users based on the different sources of context
information. In the following paragraphs we briefly describe the main entities of the
multiparty delivery process.

Context Providers (CxP) – They obtain contexts from sensors and networks, map
them to information in an interpretable manner and deliver this information to the
several components.

IP Transport (IPT) – It controls the integrated QoS and IP multicast enforcement in
the nodes along a communication path for the efficient delivery of multiparty sessions
to groups of users, with QoS-guaranteed over the time, able to build delivery trees in
heterogeneous environments. The performance limitations of existing proposals moti-
vated the design of IPT with support to distributed per-class resource control. For
scalability, network edges coordinate resource allocations, and interior routers remain
simple by reacting only upon both signalling and network events (e.g., link failures,
re-routing or mobility), where these events can be local or triggered by context
changes.

Multiparty Transport Overlay (MTO) – It provides a generic, scalable, and effi-
cient transport service for group communications by applying the overlay paradigm at
the transport layer. It hides the heterogeneity of underlying networks in terms of IP
multicast capabilities or IPv4/v6 support, enabling the dynamic creation of an overlay
tree at the transport level, between the source and the group members.

148 J. Antoniou et al.

Network Management (NM) – It performs context-aware decision of the best con-
nection of multimode terminals in heterogeneous networks. It makes use of user,
environment, network and session context, to drive intelligent network selection, in
terms of communication path, terminal interface and access technologies (Network
Use Management – NUM). Moreover, it is expected to achieve more efficient re-
source utilization, as well as more uniform distribution of data load, while fulfilling
the QoS required by sessions and experienced by the users (Network Management
Enabler – NME). For instance, the Wi-Fi incoming interface of a terminal should be
changed to the WiMax during congestion periods, or after terminal mobility to an area
without Wi-Fi coverage area. Associated with MTO, Network Management (NM)
allows generalized transport by assigning MTO trees and controlling packet transport
along them. Thus, end-to-end multiparty content transport over network segments
with different transport technologies (i.e., unicast and multicast) is deployed with
context-driven self-organization and seamless resilience support.

Session Management (SM) – It manages user-to-content and content-to-user rela-
tionships, through session control. It is intelligently designed to enable the use of
context information for session control, using the SIP, in terms of network-specific,
environment-specific and user-specific contexts, without in fact knowing the actual
network, environment or service details (through Session Management Enabler –
SME - and Session Use Management – SUM).

Mobility Controller – It applies the decisions issued by the NUM related to the net-
work interface to be used in the terminal, for vertical handover decisions.

2.2 Context-Based Sub-grouping

In this context-aware architecture, grouping and sub-grouping of users in the same
session does not only depend on the desired content (performed at higher layers, such
as the service and application ones), but also, due to the variety of context informa-
tion, it is also performed at Session and Network levels, supported by the session-
related and network-related context. As an example of session-related context, due to
session context on availability of codecs support in the terminals, users may need to
be sub-grouped in different sessions with different codecs but with the same content.
As an example of network-context, due to the context information, the best access
technologies for the users in the same group may be different, since user context and
environment is also taken into account. The different networks may have different
guarantees, which may require the content to be delivered with different quality and
codecs, hence requiring users sub-grouping.

The Session Management is the element that accepts context information through
requests or triggers and answers by creating/modifying/terminating the sub-group
sessions. Once it determines the matching between available content formats and user
capabilities in terms of supported content formats, resulting in candidate files per user
in the service group, it is responsible of first inviting the users to a session and to
invite the content provider to deliver the content to these users.

When some context changes, and this change is relevant to the way the service is
consumed, the session management should be capable to adapt the user’s session

 Context-Aware Self-optimization in Multiparty Converged Mobile Environments 149

accordingly (move a user to a different sub-group, or eventually create or delete sub-
groups). The trigger can have different sources (network conditions change, device
change, handovers, etc).

The Session Management should be able to notify the Network Management to
modify sub-groups/sessions based on the above notifications. This might make the
Session Management terminate the SIP and Media session both with the client and the
content provider. It should also be able to modify sessions based on notifications
coming from other components, through changes in context. According to the trigger,
when only sub-groups are affected, it is important to modify the multiparty session as
well. Therefore, it will communicate all changes to the Network Management to adapt
the trees (and the correspondent overlays) accordingly, and possibly change the net-
work and technology to the new sub-groups.

On the network side, each of the created sub-groups represents a multicast delivery
tree or, in case of a single user, a unicast connection, that requires network resources.
The network Context Provider improves the network operator view about network
resource usage, to optimize network resource management and QoS. It is then possi-
ble for the network to provide different QoS levels to the members of a group that
consume identical content, but experience various network contexts. This is the proc-
ess of network level sub-grouping.

The Network Management is triggered through network level context, or by the
Session Management to adapt the network and users in the network. It performs an
optimization process whose output is the decision of the networks/technologies to be
used by the several users. If the users in the same group change the attached network,
and the levels of QoS cannot be fulfilled in the networks of a group, sub-grouping is
performed at network level, and different QoS, and possibly different codecs, will be
assigned to the different sub-groups. For some cases, where not all the users or links
have the required multicast capabilities, overlay nodes are enabled to abstract the
grouping decision of these considerations. Moreover the sub-grouping flexibility
allows, for instance, in the same session, two users to receive the same audio, but
different video streams with different codecs or rates, just depending on the available
resources or preferences. In this case both would be in the same audio sub-group, but
in different video sub-groups.

Sections 3 and 4 will deeply describe the context-aware sub-grouping processes,
both from the session and network sides.

3 Enabling Context-Awareness at the Session Level

3.1 Session Management Overview

Session Management is the entity in the core of a multicast-enabled, converged mobile
architecture that provides the necessary signalling to deliver a specific content to its
consumers and can handle different types of events regarding session control, specifi-
cally: session establishment, session renegotiation (upon a given trigger or change),
session termination and session mobility. Session management may thus participate in
dynamic changes such as switching between different content, and is closely interlinked
with media delivery; the two functionalities achieve cooperatively a system delivery of

150 J. Antoniou et al.

the appropriate content for a given user (or group of users) and act as an intermediary
platform between the content provider and the content consumer.

This work extends the session management functionality to consider context trig-
gers in the creation, modification and teardown of sessions. Context-aware Session
Management is a key functionality of the converged system. Specifically, the session
management deals with context that is relevant in order to select the right content for
its consumers. Therefore, the first step for enabling context-awareness in the multi-
cast-enabled, converged network is to recognize and use content-related context such
as user capabilities and preferences regarding content support (content for-
mats/codings). Such context may be categorized as Device Context (e.g. supported
coding options) and User Context (e.g. user preferences). Thus, the Session Manage-
ment entity will eventually be able to:

• Recognize a context trigger for session setup
• Recognize a context trigger for session renegotiation
• Recognize a context trigger for session termination
• Recognize a context trigger for session mobility
• Make additional requests for context when necessary to the appropriate func-

tional entity within the system architecture.

3.2 Context-Aware Session Management

The context-awareness in the Session Management entity comes from the recognition
of context as triggers or the capability to receive any context requested, e.g. for initiat-
ing a context-aware session. Therefore, the Session Management entity has the func-
tionalities described in the subsequent paragraphs (based on interfaces with other
system functional entities), necessary to enable this awareness of context information:

Primarily, the Session Management needs to interact with the entity responsible for
identifying the service groups, i.e. the groups of users that will receive the same con-
tent. Through this interface the Session Management must receive identification for
the service group, together with separate identifications for the individual users that
comprise the particular group.

Consequently, the Session Management must be able to interact with the entity re-
sponsible for Content Processing and Delivery. The Session Management sends the
group identification received in the step described above, to the Content Processing
and Delivery entity, and the identification is used by this entity to collect some gen-
eral content information for the group e.g. whether the content that will be received
by the particular group is video or audio, as well as some more specific information,
e.g. the coding(s) and bitrate(s) in which the particular content is available. Thus, the
Session Management entity acquires descriptive information on the content that will
be transmitted to the group.

Once the content description has been acquired, the Session Management needs to
check which of the available content codings the users are capable (device context) and
willing (user context) to support. Device and User context information is collected at a
broker system entity, i.e. an entity in the converged architecture that accumulates all
context information received from various context producing entities (for instance the
user terminals in this case). The Context Broker entity contains the required device and
user context, therefore the Session Management entity requests for each user in the

 Context-Aware Self-optimization in Multiparty Converged Mobile Environments 151

service group its capabilities and preferences, including coding options sup-
ported/preferred by the user device (e.g. resolution, coding options supported).

Once this particular context information is obtained per user, the Session Manage-
ment entity can match the content codings/formats in which the content is available,
i.e. received from the Content Processing and Delivery (CtPD) entity, to the content
codings/formats that each of the group users is capable or willing to support. This
matching will results in a list of particular content codings per each user, which may
be viewed as an initial refinement of the original service group to sub-groups of users
according to the supported content. This is the first step of the sub-grouping process.
The sub-grouping will continue in the network where further refinements will addi-
tionally consider network and environment context (e.g. current QoS capabilities
based on user location and current network load).

The sub-grouping is initiated in the Session Management entity but is further re-
fined and concluded in the Network Management entity, since network and environ-
ment context are more appropriately collected at that system level. Consequently, the
Session Management entity must support interface functionality to exchange informa-
tion with the Network Management entity. Over this interface the Session Manage-
ment entity will send the list of users and their supported content codings (once the
matching of content availabilities and content capabilities is performed), and will
receive the finalized context-based sub-grouping of the original service group by
which only one content coding will be selected for each user in the original service
group. This will enable a context-aware session for each multicast sub-group to be
setup. Furthermore, in the case that context changes at any level, the session is modi-
fied accordingly, since the system allows the context information to be propagated
through to the content. However, we focus on the session setup procedure and provide
in the next session details on the signal flows.

3.3 Initiating a Context-Aware Session

In this section, we describe the session initiation in such a converged architecture, focus-
ing on the Session Management functionalities as described above. In the subsequent
discussion, the Session Management functional entity is separated in two functional
modules: The Session Management Enabler (SME) and the Session Use Management
(SUM). In terms of functionality the SME is the Session Management functional module
that accepts context information through requests or triggers and responds by creat-
ing/modifying/terminating the sub-group sessions. In other words, it handles the inter-
faces between the SME and the entity providing the identification of the original service
groups, the entity responsible for matching a group context to the appropriate content, the
SME and Network Management, the entity that knows the network, the SME and the
Context Broker entity, where all context information subsides, as well as the SME and
CtPD, the content processing and delivery entity. Finally, the SME needs to interact with
the SUM, which is the sub-module responsible for handling the SIP-specific tasks of the
Session Manager, such as inviting the users and the Media Delivery Function to sessions.
Once the Core Entity of the SME determines the matching between available content
formats and user capabilities in terms of supporting content formats, resulting in candi-
date files per user in the service group, SUM takes over, which is responsible of first
inviting the users to a session and to invite the CtPD to deliver the content to these users.

152 J. Antoniou et al.

Fig. 2. Session Management related messages in session initiation

Figure 2 illustrates the messages exchanged during session initiation that are rele-
vant to Session Management (both the SME and SUM). SME receives group identifi-
cation and immediately requests group content information from the CtPD. For each
group user the terminal capabilities and user preferences are collected from the Con-
text Management System and particularly from the Context Broker entity. The match-
ing between this information results in a list of users and corresponding available
content codings, which is sent to the Network Management to proceed with more
refined sub-grouping. The returned user list has one coding per user, with all users
that support the same content coding to form a subgroup. Then, the SME interacts
with the SUM to open a new session for each subgroup by inviting the users that
belong to that sub-group to join the session, and by inviting the Media Delivery func-
tion (part of the CtPD) to deliver the particular content coding for that sub-group.

4 Enabling Context Awareness at the Network Level

4.1 Network Management Overview

The Network Management component is the element that provides intelligent network
selection according to the user, network and environment context, allowing the termi-
nals to always be best connected and be able to receive multiparty content sessions
with satisfactory QoS. It uses different context information to keep multimode termi-
nals always “best” connected, making use of context, to drive intelligent network
selection, in terms of communication path, terminal interface and access technologies.
The Network Management assumes complex and heterogeneous scenarios, where
dynamic network events (link failures, handovers and traffic conditions) take place
randomly. Such network dynamics and complexity require a new concept of network
architecture to efficiently support for the users’ sub-groups.

 Context-Aware Self-optimization in Multiparty Converged Mobile Environments 153

4.2 Context-Aware Network Management

This section describes the Network Management element in detail, which is divided in
Network Management Enabler (NME) and Network Use Management (NUM), with
different functionalities and roles in terms of context usage and sub-grouping.

The NME is the module responsible for the group management at network level. It
splits the service groups into several network-based sub-groups according to user,
network, operator policies, and a large set of context information. It receives requests
from the Session Management, for resource setup, modification and teardown for
session groups, i.e. service groups refined according to content availabilities matched
with user capabilities. Once the NME receives a request, it triggers the network selec-
tion process for an intelligent access technology selection (using network, user and
environment context dynamically obtained). Following, it is requested to NUM the
selection of the best available communication paths, be them multicast or unicast
which can provide sufficient resources throughout the network and support some of
the network interfaces. With the possible end-to-end paths, the best network inter-
faces, the user and operator preferences and a set of context NME disposes the users
in different sub-groups. This process is extendable to cope with new sets of context
information that can refine the sub-groups. Each subgroup will reflect a specific uni-
cast/multicast with a unique (to that content) quality of service. Furthermore these
mechanisms were defined to cope and deal with updates and modification due to
network problems or context changes. Once the sub-groups are created and provi-
sioned by the underlaying modules, this information is returned to the Session Man-
agement entity with the respective addresses and ports and selected coding for each
sub-group.

The NUM is the module responsible to manage network resource allocation func-
tions. It encompasses the network selection, aiming at providing intelligent Radio
Access Technology (RAT) selection based on context-aware information to groups of
users, as well as selection of communication path, which is done based on network
information. The network selection function deploys intelligent context-aware RAT
selection for the users of a group, both at the session setup and also during the ses-
sion. By taking into account both the history context information and the instant net-
working and environment context of the users (noise, interference, signal strength,
signal strength alteration rate, speed, location, etc), as well as the overall network
conditions (QoS capabilities, multicast capabilities, available capacity, current load of
RATs, etc), the RAT selection algorithm estimates all possible transmission arrange-
ments that can be used to distribute the multiparty session content to the users. After-
wards, NUM selects among them, based on pre-defined rules, the most efficient one
(i.e. the one that enhances the overall network capacity and performance while at the
same time fulfill the QoS requirements in all respects). These rules/constrains are
dynamically defined by the NUM, using some intelligence, based on history and in-
stantaneous context information of both, network and users. These rules aim to pre-
vent NUM from selecting a transmission arrangement that might result in undesirable
events like, congestion in the Network, overloading of certain RATs, users’ QoS
degradation etc. After deciding the transmission arrangement that will be used (i.e.
per-user’s RAT and content coding), NUM triggers the NME to control the network

154 J. Antoniou et al.

resources, also informing each terminal about the selected interface from which mul-
tiparty content will be provided (i.e. Wi-Fi, WiMAX, UMTS, LTE, DVB, etc.). The
network selection process will also provide support during the multiparty sessions
transport, i.e. users of on-going sessions can receive multiparty content from a differ-
ent network interface, due to changing network conditions or even handovers (with
the support of the mobility controller).

NUM is also responsible for selecting the best communication path within the net-
work. It receives requests from the NME to decide on the best path for the multiparty
connection. To do that, NUM maps the QoS requirement of the multiparty session
into an available class of service, also taking into account all the network status when
selecting the path (NetworkQoSCxP). In this sense, it deploys admission control op-
erations along the network communication path. Afterwards, it returns them to the
NME which finally takes the decision of enforcing the reservation. Consequently,
NUM receives the enforcement order and commits the resource reservation by trig-
gering each router to enforce both QoS and multicast. QoS enforcement consists in
indicating amount of bandwidth and class of service for resource reservation, and
Multicast enforcement comprises populating the Multicast Routing Information Base
(MRIB) with the information about nodes of the selected communication path. At the
end, NME is informed about the success of the operation.

4.3 Grouping as a Part of Network Management

Whenever SME triggers NME with a new request, it contains the users that were
selected to receive the same content and the codings in which it is available. SME
matches these to the user terminal capabilities and sends to NME. This starts the sub-
grouping process in NME that is composed by three different steps. Firstly, network
selection is performed to determine, based on the instantaneous context of the net-
work (i.e. RATs’ current load, RATs’ available capacity, RATs’ QoS cababilities
etc.) and of the users (RATs within reach, signal quality received, speed, etc.) and by
considering the constrains set by NUM, the interfaces and the content codings that are
more appropriate. This event takes into consideration all the access network context
and might trigger an interface and IP address update.

Secondly, NME will decide on the multicast groups based on the user’s and opera-
tor’s context. Plus it chooses the optimal way to group the users based on optimiza-
tion policies that can maximize the quality experienced by the user or the price he
pays. Lastly NME wills send this result and updated interfaces to NUM and check for
available paths between the source and users that respect the QoS constraints and
optimize the resource allocation. This process is partially cyclic and may require some
sub-iterations or adaptations of a decision previously taken. Still it allows the separa-
tion and simplification of processes towards the autonomy of the system. Afterwards,
each of the multicast subgroups will trigger the resource reservation and multicast
routing. In the end NME pushes the SME and SUM to invite all the users to the
multicast groups and the content provider to start streaming. The process is depicted
in Figure 3.

 Context-Aware Self-optimization in Multiparty Converged Mobile Environments 155

Fig. 3. Network Management related messages in session initiation

4.3.1 Network Role in Context-Aware Group Modification
The group modification capabilities are one of the strengths of this architecture since
it is able to adapt to various environment changes. Network conditions can change
rapidly and is virtually impossible to predict those changes. Thus the architecture
must be prepared to adapt quickly. It is able to fast detect changes, and evaluate their
impact on the architecture, by usually enforcing a modification of the group or sub-
group of users receiving the same content. Actually three major triggering points were
considered, updates to the group constitution, modifications on the network elements
which may influence the experienced QoS and the mobility of users.

By assuming these different triggering possibilities, two levels of group modifica-
tion must be considered. Group Session Modification, which represents the ability of
users to join or leave the group session. This is initiated at SME and propagates
through to the Network Management and other modules similarly to session initiation.
The removal of users can reduce size or even terminate an existing sub-group. The
addition of users has to take into consideration that the stream is already progressing
and the content will only be viewed from that point forward. This is only considered
when the new user viewing experience is not compromised by joining an already
streaming context.

The second level is related with the Sub-Group Modification which only affects the
actual QoS of a set of users and allows them to be switched between sub-groups. The
actual session group is preserved and only the concerned sub-groups are updated.
Whenever this happens, some users get “promoted” (or “demoted”) to a group with
different quality of service. This can be triggered by the implemented IPT resilience
mechanisms, where the network conditions are significantly altered: a link or a router
may go offline or back online, the QoS conditions may be altered, the access network

156 J. Antoniou et al.

Fig. 4. Network Management in session modification

may become overloaded, or the terminal may be forced to move into a different net-
work with different conditions. Eventually, session mobility between terminals with
different characteristics and updates of operator policies will also trigger sub-group
modifications. The process is depicted in Figure 4.

5 Propagating Context to Content

In the previous sections we presented how context-awareness was enabled at the session
and network levels, describing the proceedings on how sub-groups are formed, the us-
age of context information in this process and further describing mechanisms activated
in order to assure QoS across the whole transport and network layers. In this section we
describe the mechanisms involved in delivering the correct media types to the right
users and explain the importance of this process in the overall value chain of the content
to context management and distribution. In order to better understand the relevant flows,
Section 5.1 presents a use case that motivates this work, where one user is capable of
receiving different media types (audio, video, text, etc.) and consequently is inserted
into different sub-groups according to a myriad of context information. Section 5.2
explains the importance of this behavior and the impact on the Quality of Experience
(QoE) for the end user.

5.1 Motivation: Same User, Different Media Types, Different Sub-groups

Although the sub-grouping is mainly done in the Network Management functional
entity, the Session Manager is the entity responsible for managing the content-to-user
and user-to-content relationships. Therefore, based on the sub-grouping information
provided from the Network Manager, the Session Manager must initiate SIP sessions
towards the end users as well as the CtPD entity (Media Delivery Function). Despite
the complexity of this process, by using SIP, the session establishment, renegotiation,

 Context-Aware Self-optimization in Multiparty Converged Mobile Environments 157

termination and mobility becomes quite straightforward. After receiving the notifica-
tion from Network Management, Session Management needs to parse the message in
order to initiate its back-to-back user agent (B2BUA) function.

Although all users will be receiving the same content, the media types may vary
according to their preferences, needs or current conditions, allowing each user to
receive its own personalized stream. Moreover, note that a subset of the users might
belong to the same sub-group concerning one media type and different sub-groups in
others. Assume the example depicted in Figure 5: i.e. that while doing the parsing, it
is possible to identify two videos, three text and two audio sub-groups.

Fig. 5. Example of different media per user for the same content

After identifying the required sub-groups for a specific content (group with similar
context) the Session Management entity initiates the session establishment process
with the CtPD. On the other hand, Figure 6 shows a sequence flow from the messages
between the Session Management entity and the CtPD concerning all sub-groups
session initiation and corresponding session establishment. Simultaneously, Session
Management triggers the session initiation towards the end user.

When this message reaches the user terminal, according to the network capabilities,
the behavior may vary. If the terminal/network is multicast capable, the device will
send a JOIN message towards the multicast addresses included in the initial INVITE
message. If the device only supports unicast connections, it will answer the request

Fig. 6. Sequence Flow between Session Management and CtPD

158 J. Antoniou et al.

with a 200 OK message containing the ports it will be expecting media from. Conse-
quently the Session Management entity will forward this information towards the
Network Management entity, which will have the responsibility of updating the over-
lay leaf node with this information.

After the session is established towards the end user, Session Management acti-
vates the CtPD delivery process, which consists in creating unicast sessions with the
overlay source nodes on the overlay trees. This step activates the media transmission
across the entire multicast overlay trees. Consequently, the media flows are estab-
lished, finalizing the process of context to content propagation.

5.2 The Importance of Sub-grouping

The importance of personalization in multiparty multimedia services strongly moti-
vates content providers, operators and other players to adapt the user experience of
these services. Often, adaptation raises scalability and performance concerns, which
need to be addressed efficiently. Creating different sub-groups for different media
types, allows users to receive the multimedia content that is most suitable to them, not
only according to their personal, device and environmental contexts but also consider-
ing the current network context information. This compromise allows both users and
operators to achieve an optimal point in what concerns personalization vs. scalability.
Furthermore, this will boost the user perceived QoE as the sub-grouping mechanisms
allow personalization, contextualization and adaptation of content/services, facilitat-
ing further interactivity and mobility tasks. By simultaneously allowing, the operators
to optimize and save network resources, services become cheaper and consequently
more attractive to the end user.

6 Conclusions and Future Work

In this paper we present an innovative way to achieve self-optimization through con-
text-awareness in multiparty converged mobile system. This is achieved through the
dynamic re-definition of service groups (sub-grouping) in a converged architecture. A
general overview of the sub-grouping process was given with reference to the C-
CAST system architecture, in order to place the proposed innovation within a system
scope. Subsequently, the focus shifted to particular aspects of the sub-grouping proc-
ess and the use of the reference architecture in this process; in particular, we have
shown how the process begins at the session level, is refined at the network level, and
is finally propagated at the service level to the content. As a result, the content re-
ceived by each defined sub-group has been adapted to the users’ preferences, situa-
tions and contexts on the one hand, and on their network capabilities on the other
hand, improving both network resource usage and user experience.

This architecture is currently being implemented. More specifically, the elements
required to perform and enforce sub-grouping both on the session and network level
are being implemented: context providers, session and network management, multi-
party transport overlay and IP Transport. The interfaces between the elements are also
defined and currently in implementation.

 Context-Aware Self-optimization in Multiparty Converged Mobile Environments 159

Future work aims, within the scope of the C-CAST project, to finish implementa-
tion of the sub-grouping mechanism in order to collect relevant performance meas-
ures. Furthermore, specific sub-modules participating in this self-optimization process
will be individually enhanced and evaluated.

References

1. ICT-2007-216462 C-CAST (Context Casting) project, http://www.ict-ccast.eu
2. Sigrid, B., Poi, M., Tore, U.: A simple architecture for delivering context information to

mobile users. In: Workshop on Infrastructure for Smart Devices - How to Make Ubiquity
an Actuality, Bristol (2000)

3. Jesus, V., Sargento, S., Aguiar, R.L.: Any-constraint personalized network selection. In:
Personal, Indoor and Mobile Radio Communications Symposium, pp. 1–6. IEEE Press,
Cannes (2008)

4. Pahlavan, K., Krishnamurthy, P., Hatami, A., Ylianttila, M., Makela, J.P., Pichna, R.,
Vallstron, J.: Handoff in hybrid mobile data networks. Personal Communications 7, 34–
47 (2000)

5. Chen, Y., Yang, Y.: A new 4G architecture providing multimode terminals always best
connected services. Wireless Communications 14, 36–41 (2007)

6. Yang, B., Mohapatra, P.: DiffServ-aware multicasting Source. Transactions of the High
Speed Networks Journal 13, 37–57 (2004)

7. Bless, R., Wehrle, K.: IP Multicast in Differentiated Services (DS) Networks. IETF RFC
3754 (April 2004)

8. Bless, R., Nichols, K., Wehrle, K.: A Lower Effort Per-Domain Behavior (PDB) for Dif-
ferentiated Services. IETF RFC 3662 (December 2003)

9. Kwon, Y., Park, H.J., Choi, S.G., Lee, H.S.: P2MP Session Management Scheme using
SIP in MPLS-based Next Generation Network. Opt. Internet and Next Gen. Net., Jeju, 3–
185 (2006)

10. Oberle, K., Wahl, S., Sitek, A.: Enhanced Methods for SIP based Session Mobility in a
Converged Network. In: 16th IST Mobile and Wireless Communications Summit, Buda-
pest (2007)

11. Handorean, R., Sen, R., Hackmann, G., Roman, G.C.: Context Aware Session Manage-
ment for Services in Ad Hoc Networks. In: Intl. Conf. on Services Computing, Orlando,
pp. 113–120 (2005)

12. Thomas, R., Friend, D., Dasilva, L., Mackenzie, A.: Cognitive networks: adaptation and
learning to achieve end-to-end performance objectives. IEEE Communications Maga-
zine 44, 51–57 (2006)

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 160–175, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Context Discovery in Mobile Environments: A Particle
Swarm Optimization Approach

Christos Anagnostopoulos and Stathes Hadjiefthymiades

Department of Informatics and Telecommunications, University of Athens, Greece
{bleu,shadj}@di.uoa.gr

Abstract. We introduce a novel application of Particle Swarm Optimization in
the mobile computing domain. We focus on context aware applications and in-
vestigate the context discovery problem in dynamic environments. Specifically,
we investigate those scenarios where nodes with context aware applications are
trying to (physically) locate up-to-date context, captured by other nodes. We es-
tablish the concept of context quality (an ageing framework deprecates contex-
tual information thus leading to low quality). Nodes with low quality context
cannot capture such information by themselves but are in need for “fresh” con-
text in order to feed their application. We assess the performance of the pro-
posed algorithm through simulations. Our findings are quite promising for the
mobile computing domain and context awareness in specific. We assess two
different strategies for the PSO-based context discovery framework.

Keywords: Context-awareness, context-discovery, distributed systems, swarm
intelligence, particle swarm optimization.

1 Introduction

Mobile and distributed computing has become increasingly popular during the last
years. Many mobile applications exhibit self-organization in dynamic environments
adopted from multi-agent, or swarm, research. The basic paradigm behind swarm sys-
tems is that tasks can be more efficiently dispatched through the use of multiple, simple
autonomous agents instead of a single, sophisticated one. Such systems are much more
adaptive, scalable and robust than those based on a single, highly capable, agent.

A swarm system can generally be defined as a decentralized group (swarm) of
autonomous agents (particles) that are simple with limited processing capabilities. Parti-
cles must cooperate intelligently to achieve common tasks. We investigate a mechanism
that exploits the collaborative behavior of the agents in order to deal with the Context
Discovery Problem (CDP). Specifically, in CDP an agent (e.g., mobile node) needs to
discover, locate and track the source that generates the required contextual information
– context (e.g., environmental parameters like temperature, humidity, situations like fire
outbreak) for the executing context-aware, mobile application (e.g., the control of a
group of robots).

Swarm Intelligence (SI) introduces a powerful new paradigm for building fully dis-
tributed systems in which overall system functionality is attained by the interaction of

Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach 161

individual agents with each other and with their environment. Such agents coordinate
using decentralized control and self-organization. Swarm systems are intrinsically
highly parallel and exhibit high levels of robustness and reliability:

1. A SI-driven distributed system does not have hierarchical command and control
structure and thus no single failure point or vulnerability. Agents are often very
simple and the overall swarm is intrinsically fault-tolerant since it consists of a
number of identical units operating (sensing context) and cooperating (sharing
context) in parallel. In contrast, a conventional complex distributed system re-
quires considerable design effort to achieve fault tolerance.

2. The key central concept in a swarm system is the simplicity of the agents -an
agent can be a mobile phone carrying sensors. Simply increasing the number of
agents assigned to a task (e.g., sensing context) does not necessarily improve the
system’s performance (i.e., efficiency and reliability). Agents collaborate by ex-
changing useful information in order to obtain the required context.

3. In a totally distributed environment agents collaborate for discovering context
with certain validity (e.g., related to time and/or space constraints). Context peri-
odically turns obsolete and has to be regularly determined and discovered. More-
over, the resources of simple agents are limited in terms of (1) memory; agents
remember the history of their operation up to a certain extent, (2) sensing capa-
bilities; for agents moving around, the sensing radius can be small enough rela-
tively to the coverage area once possible neighboring agents can provide analo-
gous local information, and (3) communication resources; communication among
agents is intended solely to convey information on the swarm.

The above-mentioned points lead to the question: “Is the SI paradigm suitable for
application in the CDP?” The aim of this paper is to address that question.

Many research efforts have examined multi-agent systems inspired by biology,
e.g., flocking models [1, 2], emphasizing in fault tolerance [3], cooperative hunting
[4] and ant colony optimization [5] for solving problems in distributed environments.
Below we report some typical applications: ‘covering’ (explore enemy terrain), ‘pa-
trolling’ (guarding a museum against theft), ‘self-assembling’ (reconfigurable robots),
‘localization’ (improvement of positioning accuracy) and ‘environment manipulation’
(transportation control). In addition, significant research effort has been invested in
the design of swarm system for searching areas, either known or unknown, which is
most relevant to our work. Specifically, in most previous works the targets, i.e., nodes
with valuable information (e.g., sensor nodes) are assumed to be static. However, only
a few works examine a swarm system in dynamic environments dealing with the mo-
bility of agents [6, 7, 8] and with information validity constraints. One of the first
studies in the application of PSO to dynamic environments came from [21]. The work
in [9] considers dynamic targets but does not deal with certain validity issues as re-
quired in the CDP. A significant SI adaptive mechanism to detect and respond to dy-
namic systems is reported in [23]. The involved agents in such mechanism cannot be
fully applied to mobile nodes as long as the inherent communication load and effi-
ciency are not taken into consideration, especially when dealing with real context-
aware applications. Therefore, we adopt same ideas from [23] regarding the response
strategies to various changes. To the best of our knowledge, there is no prior work

162 C. Anagnostopoulos and S. Hadjiefthymiades

based on SI in order to deal with the CDP. This motivated us to define, model and
propose a solution (algorithm and strategies) for the CDP.

The structure of the paper is as follows: Section 2 presents the basic idea of SI,
while in Section 3 we introduce certain issues for the CDP. In Section 4 we propose
an algorithm for the CDP adopting concepts from SI. We assess our algorithm in Sec-
tion 5 and Section 6 concludes the article.

2 Swarm Intelligence

The Particle Swarm Optimization (PSO) incorporates swarm behaviors observed in
flocks of birds, swarms of bees, or human social behavior, from which the idea is taken
[10]. The main strength of PSO is its fast convergence, which compares favorably with
many global optimization algorithms (e.g., Genetic Algorithms and Simulated Anneal-
ing). The PSO model consists of a swarm of N particles, which are initialized with a
population of random candidate solutions (particles). They move iteratively through a d-
dimension problem space ℜd to search new optima. f: ℜd→ ℜ is a fitness function that
takes a particle's solution in ℜd and maps it to a single decision metric; the CDP deals
with the geometrical space of two dimensions, i.e., d = 2, as will be discussed bellow.
Each particle indexed by i has a position represented by a vector xi ∈ ℜd and a velocity
represented by a vector vi ∈ ℜd, i=1, …, N. Each particle “remembers” its own best
position so far in a vector xi# = [xij#]. The best position vector among the swarm so far
is then stored in a vector x* = [xj*]. During the iteration (time) t, the velocity update is
performed as in Eq(1). The new position is then determined by the sum of the previous
position and the new velocity in Eq(2).

uij(t + 1) = wuij(t) + c1r1(xij
#(t) - xij(t)) + c2r2(xj

*(t) - xij(t)) (1)

xij(t + 1) = xij(t) + uij(t + 1) (2)

w is an inertia factor. The r1, r2 random numbers are used to maintain the diversity of
the population and are uniformly distributed in the interval [0, 1] for the jth dimension
of the ith particle. c1 and c2 are positive constants called self-recognition and social
component, respectively. They interpret how much the particle is directed towards
good positions. That is, c1 and c2 indicate how much the particle's private knowledge
and swarm’s knowledge on the best solution is affected, respectively. The time inter-
val between velocity updates is often taken to be unit, thus, omitted (the Equation (2)
is dimensionality inconsistent). From Equation (1), a particle decides where to move
at the next time considering its own experience, which is the memory of its best past
position and the experience of the most successful particle in the swarm (or in a
neighboring part of swarm). The inertia w regulates the trade-off between the global
(wide-ranging) and local (nearby) exploration abilities of the swarm. A large inertia
weight facilitates global exploration, i.e., searching new areas, while a small value
facilitates local exploration, i.e., fine-tuning the current search area –exploitation [18].

The PSO algorithm is presented in Algorithm 1. The end criterion (line 2) may
be the maximum number of iterations, the number of iterations without improve-
ment, or the minimum objective function error between the obtained objective func-
tion and the best fitness value w.r.t. a pre-fixed anticipated threshold. Particles are

Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach 163

started at random positions with zero initial velocities and search in parallel. What
is needed is some attraction, if not to the absolutely best position known, at least
towards a position close to the particle where the fitness is better than the fitness a
particle has currently determined. All particles exploit at least one good position
already found by some particle(s) in the swarm (line 7). Hence, particles adjust their
own position and velocity based on this good position (line 9). Often, the position
that is exploited is the best position yet found by any particle (line 5). In this case,
all particles know the currently best position found and are attracted to this position.
This, obviously, requires communication between particles and some sort of collec-
tive memory to the current global best (gbest). The x* vector in Equation (1) repre-
sents the gbest position of the swarm (line 5).

Algorithm 1. Particle Swarm Optimization Algorithm

1 Initialize randomly the positions and zero velocities.
2 While (the end criterion is not met) Do
3 t ← t + 1;
4 Calculate the fitness value f of each particle;
5 x* = argminN

i=1{f(x*(t -1)), f(x1(t)), …, f(xi(t)), …, f(xN(t))};
6 For i = 1: N
7 xi

#() = argminN
i = 1{f(xi

#(t -1)), f(xi(t))};
8 For j = 1:d
9 Update the jth dimension of vi and xi w.r.t. (1), (2);

 Next j
10
11

 Next i
 End While

Alternatively, a particle i can experience an attraction back to the best place yet

found by it. The personal best (pbest) position for particle i results in its independent
exploration without any input of the other particles. The pbest position for the ith par-
ticle is xi

(line 7).
An idea for triggering a particle to direct to an attracted area is to balance the move-

ment between the gbest and pbest positions by defining a local neighborhood around it.
All Ni particles within an actual physical distance form the neighborhood of the ith par-
ticle. Each particle in Ni shares its fitness value with all other particles in that neighbor-
hood. Hence, neighboring particles experience an attraction to the local best (lbest). The
problem with lbest (not so critical as in gbest) is that, neighborhoods need to be calcu-
lated frequently and, thus, the computational cost for this operation has to be considered.
The particles adjust their current velocity based on current pbest and prior knowledge
derived from gbest and lbest. Based on gbest, particles have to communicate with the
whole swarm for locating and maintaining information on the global best solution. In
this case the best particle acts as an attractor pulling all the particles towards it. Eventu-
ally, all particles will converge to this position. Based on lbest, particles are required to
check for any better solution appeared in adjacent particles.

In order to avoid the inherent communication cost in CDP due to the information
exchange among particles for estimating gbest and the premature convergence ob-
tained from gbest, we relate the social component c2 in (1) to the lbest approach, i.e.,
the x* vector in (1) represents the lbest position of a given particle. c2 indicates the

164 C. Anagnostopoulos and S. Hadjiefthymiades

willingness of a particle to be attracted by any probable neighbor. We also adopt ran-
dom relative weights for combining lbest and pbest. The continuous movement to-
ward a position of better fitness (w.r.t. pbest) biases the selection of particles with
even better fitness than the existing one. The discovery process, which is based on
pbest, dramatically improves the average fitness of the positions explored. Evidently,
this may result in exploration stopping at a local optimum. But, with a number of dif-
ferent local neighborhoods in use, there is a very good probability that the whole
swarm will not get so trapped, and that any trapped particle will escape, especially if
the lbest approach is also simultaneously in use. We adopt both approaches together
with r1, r2 factors to set the relative influences of each.

3 The Context Discovery Problem

We firstly define the notions of context and quality of context and then map the pa-
rameters of the CDP into PSO.

3.1 Context Representation and Quality of Context

Context refers to the current values of specific parameters that represent the activity /
situation of an entity and environmental state [11]. Let Y = [Y1, …, Ym] be a m-
dimensional vector of parameters, which assumes values yl in the domain Dom(Yl), l
= 1, …, m. A parameter Yl is considered instantiated if at time t some yl value is as-
signed to Yl. Context y is the instantiated Y, i.e., y = [y1, …, ym]. For each instantiated
Yl, a function v: Yl × T → [0, a), a > 0, is defined denoting whether the value yl is
valid at time t after the Yl instantiation; T is the time index and a is a real positive
number. The value yl is valid at time t for a context-aware application that is executed
on node i if v(yl, t) < θil for a given threshold θil ∈ (0, a), which is application specific.
A value of θil close to a means that yl is not valid for the ith node. v can be any in-
creasing function F with time t, i.e., v = F(t). For simplicity reasons we can assume
that F is the identity function (i.e., v = t). The value a is set w.r.t. application specifi-
cation. For instance, in our case a is the maximum time from the sensing time of Yl in
which its value is not deprecated. A value of θil close to 0 means that yl is of high im-
portance. The indicator v increases over time from the sensing time of yl. Hence, a
value of v denotes the freshness of yl, i.e., yl refers to either an up-to-date (fresh) or
obsolete measure. It should be noted that, v refers only to the temporal validity of a
value. Evidently, other validity functions can be defined referring to quality indicators
like spatial scope (value is usable within certain geographical boundaries), the source
credibility, the reliability of the measurement, and other objective or subjective indi-
cators [12].

We introduce the quality of context indicator g: Y × T → [0, a) for context y at
time t denoting whether the values of the parameters of y are valid or not with respect
to a certain threshold. The value of g is the minimum indicator of the values, that is
g(y, t) = minl=1

m{v(yl, t)} with threshold θiy = minl=1
m{θil}. A value of θiy close to a

denotes invalid context, i.e., obsolete context, while a value of θiy close to 0 denotes
fresh context. Context y turns obsolete once some parameter turns also obsolete.

Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach 165

Each node i attempts to maximize the time period Δt in which g(y, t + Δt) < θiy for
some t. That is, each node attempts to maintain fresh context as much time as possi-
ble. It is worth noting that a node i evaluates the quality of y differently from a node j,
i.e., gi(y, t) ≠ gj(y, t). This means that, y may be of value for node i but not for node j
at the same time. Without loss of generality we assume that all nodes evaluate the
quality of context with the same θiy. That is, all nodes assess context with the same
criteria / quality indicators. This does not imply that all nodes obtain context of the
same quality. Instead, all nodes are interested in the same quality of context. This
does not undermine the generality of the problem. In fact, if there are groups of nodes
that assess context differently then groups of nodes will be formed and, consequently,
each group will assess context with the same θiy.

3.2 Mapping Swarm Intelligence to Context Discovery

Let us assume discrete time and consider a square terrain of dimension L. Consider a
group of N mobile nodes that maps to a swarm of particles and a set of M mobile
sources (i.e., sensors that sense context) that correspond to the possible solutions in
PSO. Each source regularly generates fresh context meaning that each source meas-
ures context with a given frequency-sensing rate q. Each sensed value is time stamped
at the source. Every node needs to move to an area with at least a source that carries
fresh context. Alternatively, a node attempts to locate areas where other nodes carry
fresh context or context of better quality than the context currently available in them.
In addition, a node does not know the existence of a source in a certain area and the
swarm does not know the number of sources. This evidently denotes that the nodes
continue searching until all sources are located or all nodes carries fresh context.
However, the nodes have to adopt a mechanism in order to maintain context as fresh
as possible as long as the validity fades over time.

The considered CDP is a 2-dimensional problem space in PSO (d = 2). It refers to
the 2D location information (longitude and latitude) of the sources / nodes that carry
fresh context. The exact 2D location information of a node is not known. Hence, we
assume that all nodes are capable of detecting any neighboring node in a region with
given transmission range equal to R. The physical presence of a node in a neighbor-
hood can be detected thus such node is assumed to be located in the corresponding
neighborhood. Moreover, a node i moves towards to a neighboring node j, which car-
ries fresher context than node i.

The value of gi(y, t) denotes the willingness of node i to seek for fresh, or at least
of better quality (more up-to-date) context than the existing context. The quality of
context indicator gi(y, t) resembles the fitness function f in PSO. A node i attempts to:

 minimize the value of gi(y, t) at time t, and,
 maximize the duration in which it maintains fresh context,

 i.e., gi(y, t) < θy.

It should be noted that gi(y, t) depends on time once the indicators for each parameter
increase over time (w.r.t. sensing time). This means that a node i has to regularly update
its fitness by dynamically adjusting its decision regarding the next movement w.r.t.
pbest and lbest. Let us calculate the pbest and lbest so that node i decides in which di-
rection to move. Let Ni be the indices of the neighboring nodes of node i at time t. The

166 C. Anagnostopoulos and S. Hadjiefthymiades

xi
vector at time t is the position xj of the neighbor j, which carries fresher context y

than that of node i and the freshest context among all neighbors of node i, i.e.,

xi
= xj: j = argminl ∈ {Ni}{gl(y, t) ∧ (gi(y, t) > gl(y, t))}.

xi
is currently the best position found at time t to which the node i adjust its next

movement at time t + 1 assuming the pbest fitness value gi
#(y) = gj(y, t). The vector

(xi
- xi)

 refers to the self-recognition vector for node i that is attracted by the node j.
Furthermore, the node i can exploit its past knowledge. Based on pbest the node i

locates the current best node j and moves towards it with a factor r1
.c1. In addition,

node i exploits the average fitness of all neighbors at time t that is

() () { }iNktg
N

tg iki i
i

Ni
−∈= ∑ =

,,
1

,
..1

yy

The proposed gNi(y, t) value refers to a local fitness of the neighborhood of node i.
Node i can obtain a clear view of its neighborhood meaning that: if gNi(y, t) < θiy (i.e.,
fresh context) then the node i might not decide to move far away from this neighbor-
hood hoping that it will probably be within an area where nodes carry fresh context.
Similarly to gi

#(y), we define the lbest gi
*(y) indicator that is an estimate for the fresh-

ness of y at time t obtained by the neighborhood of node i. If it holds true that gNi(y, t)
< gi

*(y) then the lbest xi
* is the current xi of node i at time t and the lbest fitness value

gi
*(y) equals to gNi(y, t). However, it may hold true that gNi(y, t) > gi(y, t) but this does

not imply that there might not be a neighboring node j that carries more fresh context
than node i. In this case, the lbest position is not updated contrary to the pbest posi-
tion. Instead, the node i adjusts its next movement by combining a movement towards
the current pbest xi

and previous lbest xi
*. Based on the gi

*(y) and gi
#(y) indicators,

the node i self-controls its decision on the next movement at time t + 1. The vector
(xi

* - xi)
 refers to the social vector component for node i denoting the attraction of

node i to its neighborhood. Moreover, gi
*(y) increases over time thus node i has to

regularly update and check lbest. That is because as long as a previous neighborhood
has maintained fresh context as a whole, at the next time the lbest position may not refer
to the same neighborhood even with the same value of gNi(y, t). The node i sim ply

Table 1. Mapping Between CDP & PSO

PSO concepts Time variant CDP concepts
swarm of N particles no no group of N mobile nodes
Particle i - - node i
problem space no yes context y
global optimum
solution xi

no yes source positioned at xi

local optimum
solution xi

no yes node with fresh context
positioned at xi

number of optima no no number of sources M
Fitness f no yes quality of context gi(y, t)
pbest xi

no yes position of neighboring node j that
maximizes gj(y, t)

lbest xi
* no yes position of node i whose

 neighborhood maximizes gNi(y, t)

,

Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach 167

stores the previously visited lbest position assigned to gi
*(y). Hence, the node i has the

option to move towards to a previous visited position as a last resort.
Table 1 depicts the mapping between CDP and PSO. It should be noted that the fit-

ness function f in PSO depends only on the solution vector xi and is not time dependent.
The same holds true for the pbest and lbest positions in PSO. In CDP the corresponding
fitness gi(y, t) depends on time t as long as the invalidity of y increases over time. Fur-
thermore, the gi

#(y) and gi
*(y) indicators increase over time as well.

4 The Proposed Algorithm

We propose an algorithm in which nodes search for areas where better quality of con-
text is obtained. In other words nodes attempt to find, locate and / or follow neighbor-
ing nodes (targets) that carry context of high value. The dynamic behavior of a mobile
system means that the system changes state in a repeated manner. In our case the
changes occur frequently, that is, both the location of a leader and the value of the
optimum (context validity) vary1 [22]. We propose several strategies for the CDP in
order to (i) experiment with the required time for finding and maintaining high quality
context, (ii) reduce the inherent network load that is used to automatically detecting
and tracking various changes of the context validity and (iii) effectively respond to a
wide variety of changes in context validity. The network load derives from the inter-
communication among nodes. In addition, several constraints that refer to the tempo-
ral validity of context are taken into account. Therefore, the best solution of CDP is
time dependent (context turns obsolete over time).

The proposed behaviors indicate the intention of a node in discovering and main-
taining fresh context based on its mobility and other characteristics explained below.
Specifically, a node transits between three states in order to discover context. In each
state, the node decides on certain actions. A state ki of node i can be Obsolete (O),
Partially satisfied (P), or Satisfied (S) as depicted in Figure 1. In state O, a node either
carries obsolete context (or is in need of) i.e., gi(y, t) > θy. In the S state, a node carries
fresh context i.e., gi(y, t) < θy. If context y turns obsolete then node i transits into O. In
the P state, a node chooses to carry less obsolete context than the existing context as
long as this is the current best solution it achieves (local optimum). This means that
the node i has found a neighbor j with fresher context i.e., gi(y, t) > gj(y, t) > θy. The
node i escapes from the P state once another node k, which carries more fresh context,
is located i.e., gi(y, t) > θy > gk(y, t). We assume that all nodes adopt the same thresh-
old for assessing the quality of context (θiy = θy = θ, i = 1, …, N).

4.1 Foraging for Context

A node i in state O initiates a foraging process for context acting as follows: The node
i moves randomly (vi ~ U(vmin, vmax)) in the swarm and intercommunicates with
neighbors till to be attracted by a neighbor j. The node j is then called leader. The
leader j either carries objectively fresh context i.e., gj(y, t) < θy or carries context that
is more fresh than the context carried by node i i.e., gi(y, t) > gj(y, t) > θy (see obsolete
state in Figure 1). In the former case, the node i transits directly to state S. In the latter

1 This dynamic environment refers to Type III environment ([18]).

168 C. Anagnostopoulos and S. Hadjiefthymiades

case, the node j does not carry context of the exact quality that node i expects but such
context is preferable than that of node i. Hence, node i can either follow node j hoping
that it approaches areas (neighborhoods) with more fresh context -thus transiting to P
state- or, alternatively, ignores such opportunity and continues moving at random -
thus remaining at state O. In state P, node i settles with lower quality of context. This
does not imply that node i stops communicating with other neighbors while moving.
Instead, it continues exchanging information related to context quality with the pur-
pose of locating another leader with more fresh context. The P state is an intermediary
state between the O and S states (see partially satisfied state in Figure 1). The node is
moving among neighborhoods carrying context of better quality and continues explor-
ing areas. This policy reflects the idea of exploring the solution space even if a solu-
tion has already been reached (possibly a local optimum).

Node i attempts to retain fresh context for as long as possible. However, the v(yl, t)
indicator for a sensed parameter Yl increases over time t until that value turns obsolete
after some Δt, i.e., v(yl, t + Δt) > θl. Hence, Yl has to be regularly determined / sensed,
with frequency at least 1/Δt. In order for the node i to obtain up-to-date context y, it
follows leaders or sources that regularly generate objectively fresh context.

move randomly

check neighborhood {Ni}

gi(y) > θ

follow leader j

gi(y)>gj(y)> θ

behavior

gj(y)<θ<gi(y)

move randomly

gi(y) < θ

gi(y) < θ

gi(y) > θ

check neighborhood {Ni}

gi(y) < θ

gi(y) > θ

start

gi(y) > θ

independent

dependent

gk(y) < gi(y) < θ

follow leader k
satisfied

legend

obsolete
partially
satisfied

Fig. 1. A state transition in CDP

It should be noted that a localization system is needed in order to determine the so-
lutions xi

and xi*, and the way node i is directed to its leader. Specifically, a node i
carried by an agent (possbily a human) is directed to its leader once a GIS application
displays directional information of the leader obtained, for instance, by a compass-
based mechanism [16] (or other techniques, e.g., the time-of-flight technique that
adopts radio frequency and ultrasound signal to determine the distance between nodes
[15]). However, a non-human node i (e.g., a robot), without localization mechanisms,
can “blindly” follow its leader by adjusting its direction / velocity through small im-
provement steps w.r.t. the signal quality [14]. Imagine for example a WLAN user
trying to determine the best signal quality in a certain room by stepping around without
knowing the exact location of the access point. This local-searching blind technique is
not as efficient as the previously discussed method [17].

Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach 169

4.2 Maintaining Fresh Context

A node i, in S state, acts as follows (see the satisfied state in Figure 1): it either con-
tinues communicating with leaders (dependent behavior) or re-starts moving at ran-
dom (independent behavior) with vi ~ U(vmin, vmax). In the former behavior, it is likely
that node i constantly follows leaders (a.k.a. tracking optima [19]). The advantage of
such behavior is that: in case node i’s context turns obsolete, node i will easier find
some leader provided that the latter might be yet reachable (or not far away). By
adopting the independent behavior node i has no information in which direction to
move towards once context turns obsolete.

Once a neighbor node k, of a node i, in S state obtains better context y (i.e., θy >
gj(y, t) > gk(y, t)) then node i may choose to abandon the existing leader and follow
the new leader node k. Specifically, by adopting the dependent behavior, the node i
communicates with neighbors with the intention of finding a node k that carries more
fresh context than the objectively fresh obtained context. Hence, the node i switches
constantly between among leaders. In addition, the node i never transits to state O
since its leader is a source (global optimum). However, the main objective in CDP is
to enable nodes to minimize the communication load and discover as many sources
and leaders as possible escaping from local optima. If all nodes adopted the dependent
behavior then they would attach to sources resulting in large communication effort for
the sources (sources would have to communicate with a large number of nodes) but
carrying objectively fresh context. It is of high importance to take into account the
inherent efficiency for both behaviors.

4.3 The CDP Algorithm

A node i in state O either transits only to state S once a leader with objectively fresh con-
text is found or transits to the immediate state P once a leader with better context is
found. As long as a leader carries objectively fresh context then node i transits from state
P to S. In state S node i adopts either the independent or the dependent behavior. In this
paper, we present the CDP algorithm in Algorithm 2, in which node i, in state O, transits
to states P and/or S, and, in state S, it adopts the dependent behavior. Initially, all N nodes
in the swarm are in state O and are randomly distributed in a given terrain with random
velocities in [vmin, vmax]. The inertia w is used to controlling the exploration and exploita-
tion abilities of the swarm and eliminating the need for velocity clamping (i.e., if |vi| >
|vmax| then |vi| = |vmax|). The inertia is very important to ensure convergent behavior; large
values for w facilitate exploration with increased diversity while small values promote
local exploitation. We adopt a dynamically changing inertia values, i.e., an initially value
decreases nonlinearly to a small value allowing for a shorter exploration time (due to
context validity rate) with more time spent on refining optima [20]. That is,

() ()()()
4.0

4.0
1

0

0

+
−−

=+
t

tttw
tw

w(0) = 0.9, to is the maximum number of iterations. In case a node transits to state O then
it re-sets w to its initial value. The randomly moving M sources generate context with
sensing rate q (in samples/second, Hz) and the thresholds θl = a for the properties Yl are
set. The c1 and c2 constants denote how much the lbest and pbest solutions influence the
movement of the node; usually c1 = c2 = 2 ([18]). The r1, r2 are two random vectors with

170 C. Anagnostopoulos and S. Hadjiefthymiades

each component be a uniform random number in [0, 1]. In each iteration, a node i in O,
or P, adjusts its movement (lines 18, 19) w.r.t. pbest and lbest (lines 20-28) once interac-
tive communication takes place. If the node i in S adopts:

 dependent behavior then it adjusts its movement w.r.t lines 21-28,
 independent behavior then it randomly moves with vi in [vmin, vmax] (omit lines 17-28).

The end-criterion of the algorithm can be the number of iterations, the time needed to
find fresh context a given portion of nodes, or energy consumption constraints. In our
case the end-criterion is time dependent since the validity of context depends on the
sensing rate q. Nodes adopting the independent behavior stop searching as long as
they obtain fresh context and re-start foraging once context turns obsolete. The end-
criterion for the dependent behavior is the minimum mean value g+(t) for the fitness
function g. We require that g+(t) be as low as possible w.r.t. the a threshold that is,
maximize d(t) = (g+(t) - a)2. The d(t) value denotes how much fresh is context. In
other words, it reflects the portion of time needed for context to turn obsolete as long
as g+(t) is greater than a. For instance, let two nodes, i and j, carry context y with gi(y)
= a/2 and gj(y) = a/4. Objectively, both nodes carry fresh context w.r.t. a. Therefore,
node j carries fresher context than node i since node j will carry fresh context for
longer time than node i. The convergence g+(to) value denotes a state in which some
nodes obtain fresh context for t ≥ to and depends highly on a: a high value of a de-
notes a little time for context to turn obsolete. In that case, the nodes may stay for a
long in S state. On the contrary, a low value of a (i.e., nodes are interested only for
up-to-date context) results in values of g+(t) close to a; context turns obsolete with a
high rate. It is of high interest to examine the efficiency of each behavior.

Algorithm 2. The Context Discovery Problem Algorithm

1. Set c1, c2, N, M, q
2. Set random xi(t), threshold iy = y, t 0
3. For i = 1: N
4. vi(t) ~ U(vmin, vmax), ki O
5. gi

*(y) (g1(y, t) + … + g|Ni|(y, t)) / |Ni |
6. xi

* xi(t)
7. gi

#(y) maxl{gl(y, t)}), l {Ni} {i}
8. xi

xe: e = argmaxl{gl(y, t)}),
l {Ni} {i}, leaderi e

9. Next i
10. While (the end criterion is not met) Do
11. t t + 1;
12. For i = 1: N
13. Calculate gi(y, t)
14. Validate gi

*(y), gi
#(y) //increase validity

indicators
15. Next i

16. For i = 1: N
17. Set random unary vectors r1, r2

18. xi(t) xi(t – 1) + vi(t)
19. vi(t) vi(t – 1) + c1r1 (xi

* - xi(t-1)) + c2r2 (xi
- xi(t-1))

20. gNi(y, t) (g1(y, t) + … + g|Ni|(y, t)) / |Ni |
21. If gi

*(y) < gNi(y, t) Then
22. xi

* xi(t)
23. gi

*(y) gNi(y, t)
24. End
25. If gi

#(y) < maxl{gl(y, t)}), l {Ni} Then
26. xi

xe: e = argmaxl{gl(y, t)}), l {Ni}, leaderi e
27. gi

#(y) maxl{gl(y, t)}), l {Ni}
28. End
29. If gi

#(y) < gi(y) < y Then ki O
30. If gi(y) < gi

#(y) < y Then ki P
31. If y < gi

#(y) Then ki S
32. Next i
33. End While

5 Performance Evaluation

In this section we assess the proposed behavior for the CDP. Our objective is to en-
able nodes to discover and maintain fresh context. However, the fact of locating

Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach 171

sources and leaders in an attempt to carry fresh context is at the expense of the inher-
ent network load due to communication of nodes. We define as efficiency e(t) of a
certain behavior the portion of nodes n(t) being in state S out of the communication
load l(t) among neighboring nodes exchanging information about context quality, i.e.,
e(t) = n(t) / l(t). We require that e(t) assumes high values minimizing the load l(t) and
maximizing n(t) w.r.t. the adopted behavior.

The parameters of our simulations are: a swarm of N = 100 nodes, M = 2 sources, a
= 100 time units, a terrain of L = 100 spatial units, transmission range R = 0.01L, the
random waypoint model for mobility behavior in [vmin, vmax] = [0.1, 2] ([13]), and
1000 runs of the algorithm. Context turns obsolete every a time units and is sensed by
the sources with q ranging from (2/a) Hz to 1Hz. We require that g+(t) be lower than a
as time passes or, at least, lower than a between consequent intervals of a time units.

Figure 2 depicts the g+(t) value (in time units –t.u.) when all nodes in the swarm
adopt the dependent behavior for different values of q. It is observed that all nodes
rapidly locate leaders and then carry fresh context denoting CDP algorithm conver-
gence. The g+(t) value converges to g+(to) ranging from 14.633t.u. to 40.882t.u. for q
ranging from 1Hz to 0.02Hz, respectively. It is worth noting that, for q = 1Hz, the
g+(to) is 14.633t.u. i.e., 14.633% of the validity threshold a indicating that most nodes
can process context for 85.367% of the sensing time before it turns obsolete. More-
over, as q assumes low values (e.g., 0.02Hz), which means that the sources sense con-
text every 50t.u., the value of g+(t) swings around the 40.882t.u. This indicates that,
nodes locate sources whose context turns obsolete after 50t.u. For that reason, the
g+(t) value for such nodes exhibits that behavior. On the other hand, once q assumes
high values (e.g., 1Hz), the sources constantly carry up-to-date context. Consequently,
nodes that locate sources carry fresh context (g+(t) converges). The achieved maxi-
mum value for d(to) is 0.6952.104 for q = 1Hz, as depicted in Figure 3, compared to
0.3854.104 w.r.t. independent behavior, as discussed later. Evidently, by adopting the
dependent behavior, a large portion of the swarm follows leaders and/or sources carry-
ing objectively fresh context. However, such behavior requires that nodes communicate

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

Iteration (time t in t.u.)

E
vo

lu
tio

n
of

 th
e

co
nt

ex
t v

al
id

ity
 in

di
ca

to
r

g+
(t

)
fo

r
th

e
in

de
pe

nd
en

t b
eh

av
io

r

f requency rate q = 0.02Hz
frequency rate q = 0.05Hz
frequency rate q = 1Hz

Validity threshold (a)

Fig. 2. The g+(t) value of the dependent behavior for sensing rate q = 0.02Hz, q = 0.05Hz and
q = 1Hz

172 C. Anagnostopoulos and S. Hadjiefthymiades

continuously in order to locate sources and leaders with more fresh context even if
nodes are in state S for maximizing d(t). That leads to additional communication load
thus keeping the efficiency to 50% as depicted in Figure 4. Specifically, Figure 4 de-
picts the value of ed(t) for the dependent behavior for q = 1Hz. Obviously, the inher-
ent communication load of such behavior is high since a large portion of nodes at-
tempts to carry fresh context.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Iteration (time t in t.u.)

T
he

 fr
es

hn
es

s
d(

t)
 o

f c
on

te
xt

 fo
r

bo
th

 b
eh

av
io

rs

Dependent behavior for q = 1Hz
Independent behavior for q = 1Hz

Fig. 3. The d(t) value of the dependent and independent behavior with sensing rate q = 1Hz

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration (time t in t.u.) Logarithmic scale

E
ffi

ci
en

cy
 v

al
ue

 e
(t

)
fo

r
bo

th
 b

eh
av

io
rs

 w
ith

 q
 =

 1
H

z

Efficiency value for dependent behavior
Efficiency value for independent behavior

Fig. 4. The values of ed(t) and ei(t) efficiency in logarithmic scale for q = 1Hz

Figure 5 depicts the g+(t) value of nodes adopting the independent behavior. We il-
lustrate g+(t) for sensing rates q = 1Hz, q = 0.05Hz and q = 0.02Hz. Evidently, nodes
seek for fresh context only when the existing context turns obsolete. This is indicated
by the sharp bend of g+(t) between intervals of a time units for q = 1Hz. The periodic
behavior of g+(t) reflects the idea of the independent behavior denoting that a node is
about to seek for context only when needed. Hence, between intervals of a time units

Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach 173

nodes that are in S state save energy as long as they do not exchange information with
others. When context turns obsolete, nodes re-start foraging but having the pbest solu-
tion as a candidate starting point. This means that, each time context turns obsolete
nodes adjust its movement based on the last known pbest solution. Hence, they start
moving “blindly” as long as their first direction might be the pbest position indicating
“prolific” neighborhood. For that reason, the maximum value of g+(t) is close to a in
each “period” as depicted in Figure 5. Moreover, the g+(t) value ranges from 40 t.u. to
100 t.u. compared to the convergence value of g+(to) = 14.633t.u. in case of the de-
pendent behavior for q = 1Hz. It is worth noting that the value of gi

*(y) for pbest must
denote valid context, otherwise node i has to move entirely at random. Moreover,
consider the g+(t) value having q = 2/a = 0.02Hz. Specifically, g+(t) assumes the
minimum value every (a/2) = 50 t.u., which is greater than the minimum value of g+(t)
achieved for q = 1Hz every at.u. In the former case nodes re-start foraging sooner
than in the latter case (practically two times more), thus, the adoption of the pbest
solution seems more prolific. For that reason, g+(t) assumes higher minimum values in
the former case even though the sensing rate is lower. In such cases, the adoption of
the pbest solution is of high importance.

0 100 200 300 400 500 600 700 800 900 1000
20

40

60

80

100

120

140

160

180

200

Iteration (time t in t.u.)

E
vo

lu
tio

n
of

 th
e

co
nt

ex
t v

al
id

ity
 in

di
ca

to
r

g+
(t

)
fo

r
th

e
in

de
pe

nd
en

t b
eh

av
io

r

frequency rate q = 0.02Hz
frequency rate q = 0.05Hz
frequency rate q = 1Hz

Validity threshold (a)

Fig. 5. The g+(t) value of the independent behavior for sensing rates q = 1Hz, q = 0.05Hz and q
= 0.02Hz

Figure 3 depicts also the d(t) value for the independent behavior. The d(t) assumes
the maximum value (therefore lower than in the case of the dependent behavior) only
when a large portion of nodes carry fresh context. In addition, d(t) assumes zero value
regularly every a time units denoting the time that all nodes carry obsolete context.
The mean value of d(t) is 0.3854.104, that is 44.56% lower than the convergence value
of d(to) in the case of the dependent behavior (for the same sensing rate q = 1Hz).
Hence, the adoption of the independent behavior for CDP results in 44.56% lower
quality of context than that achieved by dependent behavior.

By adopting the independent behavior we can achieve high values of efficiency
ei(t) during intervals in which nodes carry fresh context. This is due to the fact that in
such intervals nodes stop communicating with each other thus reducing the load l(t).

174 C. Anagnostopoulos and S. Hadjiefthymiades

However, when context turns obsolete then ei(t) assumes a very low value (mean
value lower than 0.1) as long as a large portion of nodes do not carry fresh context
thus reducing n(t). In Figure 4 the behavior of ei(t) for sensing rate q = 1Hz is also
illustrated. We can observe that ei(t) ranges from 0.069 (mean value) to 0.93 (mean
value) compared to the convergence value of ed(t) = 0.5.

Each behavior can be applied on a context-aware application considering the spe-
cific requirements of the application. Once the application needs critically up-to-date
context then the adoption of the dependent behavior is preferable. On the other hand,
once we are interested in saving energy then nodes can adopt the independent behav-
ior. However, a hybrid scheme combining both behaviors can be adopted. For in-
stance, a portion of nodes can adopt the independent behavior for reducing energy
consumption and the rest nodes adopt the dependent behavior maintaining up-to-date
information. Another combination refers to the adoption of the dependent behavior
for rapidly locating sources and leaders followed by the adoption of the independent
behavior till context turns obsolete.

6 Conclusions

PSO is a simple algorithm with a wide application range on different optimization
problems. We deal with the CDP by adopting the decentralized control and self-
organization of SI. We provide the mapping between PSO and CDP, and study how
SI-inspired computing can facilitate context discovery. We introduce the time-variant
context quality indicator g that refers to the fitness function f in PSO. Hence, each
particle-node attempts to carry and maintain fresh context w.r.t. the g indicator. We
propose the independent and dependent foraging behaviors (strategies) for mobile
nodes The use of such behaviors in conjunction to the local fitness of the
neighborhood enables node to discover sources and/or leaders that provide up-to-date
contextual information. The proposed algorithm for the CDP supports such behaviors
provided that context turns obsolete over time in a dynamic environment. We
evaluated the efficiency and the effectiveness of each behavior. The adoption of each
behavior relies on the context-aware application itself: for critically up-to-date context
constrained applications the dependent behavior is preferable while, once energy
savings are of high importance then the independent behavior exhibits satisfactory
results. Our simulation results indicate the applicability of SI in context discovery and
the proposed foraging behaviors provide useful tools in mobile computing. In
addition, the adoption of SI for transmission range / power adjustment, so that
context-aware nodes control their energy consumption, is a future work that can be
considered in the CDP.

References

1. Deneubourg, J., Goss, S., Sandini, G., Ferrari, F., Dario, P.: Self-Organizing Collection
and Transport of Objects in Unpredictable Environments. In: Symposium on Flexible
Automation, pp. 1093–1098 (1990)

2. Drogoul, A., Ferber, J.: From Tom Thumb to the Dockers: Some Experiments With For-
aging Robots. In: 2nd Int. Conference on Simulation of Adaptive Behavior, pp. 451–459
(1992)

Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach 175

3. Parker, L.E.: ALLIANCE: An Architecture for Fault-Tolerant Multi-Robot Cooperation.
IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)

4. LaVille, S.M., Lin, D., Guibas, L.J., Latombe, J.C., Motwani, R.: Finding an Unpredict-
able Target in a Workspace with Objects. In: IEEE Int. Conf. on Robotics and Automa-
tion, pp. 737–742 (1997)

5. Dorigo, M., Gambardella, L.M.: Ant Colony Systems: A Cooperative Learning Approach
to the Traveling Salesman Problem. IEEE Trans. on Evolutionary Computation 1(1), 53–
66 (1997)

6. Pasino, K., Polycarpou, M., Jacques, D., Pachter, M., Liu, Y., Yang, Y., Flint, M., Baum, M.:
Cooperative Control for Autonomous Air Vehicles. In: Murphy, R., Pardalos, P. (eds.) Co-
operative Control and Optimization. Kluwer Academics Publishers, Boston (2002)

7. Polycarpou, M., Yang, Y., Pasino, K.: A Cooperative Search Framework for Distributed
Agents. In: IEEE Int. Symposium on Intelligent Control, pp. 1–6 (2001)

8. Stone, L.D.: Theory of Optimal Search. Academic Press, New York (1975)
9. Vincent, P., Rubin, I.: A Framework and Analysis for Cooperative Search Using UAV

Swarms. In: ACM Symposium on Applied Computing (2004)
10. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann Publishers, Inc., San

Francisco (2001)
11. Anagnostopoulos, C., Tsounis, A., Hadjiefthymiades, S.: Context Awareness in Mobile

Computing Environments, Special Issue on Advances in Wireless Communications Enabling
Technologies for 4G. Wireless Personal Communication Journal 2(3), 454–464 (2007)

12. Anagnostopoulos, C., Sekkas, O., Hadjiefthymiades, S.: Context Fusion: Dealing with
Sensor Reliability. In: IEEE Int. Workshop on Information Fusion and Dissemination in
Wireless Sensor Networks - IEEE Int. Conference on Mobile Ad-hoc and Sensor Sys-
tems, pp. 1–7 (2007)

13. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the random
waypoint mobility model. ACM/Kluwer Wireless Networks: Special Issue on Modeling
and Analysis of Mobile Networks 10(5) (September 2004)

14. Matthias, O., Hanspeter, A.: Biomimetic robot navigation. Robotics and Autonomous
Systems 30(1-2), 133–153 (2000)

15. Savvides, A., Han, C., Srivastava, M.: Dynamic Fine-grained Localization in Ad-hoc
Networks of Sensors. In: ACM Mobicom, July 2001, pp. 166–179 (2001)

16. Anjum, F., Mouchtaris, P.: Security for Wireless Ad Hoc Networks. Wiley-Interscience,
Hoboken (2007)

17. Zhao, F., Guibas, L.: Wireless Sensor Networks - An Information Processing Approach.
Elsevier Science, Amsterdam (2004)

18. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley, Chich-
ester (2007)

19. Eberhart, R.C., Shi, Y.: Tracking and Optimizing Dynamic Systems with Particle
Swarms. In: IEEE Cong. on Evolutionary Computation, vol. 1, pp. 94–100 (2001)

20. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-Distance-Ration based Particle
Swarm Optimization. In: IEEE Symp. Swarm Intelligence, pp. 174–181 (2003)

21. Carlishe, A., Dozier, G.: Adapting Particle Swarm Optimization to Dynamic Environ-
ments. In: Intl. Conf. Artificial Intelligence, pp. 429–434 (2000)

22. Hu, X., Eberhart, R.C.: Tracking Dynamic Systems with PSO: Where’s the Cheese? In:
Proc. Workshop on Particle Swarm Optimization, pp. 80–83 (2001)

23. Hu, X., Eberhart, R.: Adaptive Particle Swarm Optimization: Detection and Response to
Dynamic Systems. In: IEEE Congress on Evolutionary Computation, USA, pp. 1666–
1670 (2002)

Consequences of Social and Institutional Setups
for Occurrence Reporting in Air Traffic

Organizations

Alexei Sharpanskykh

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

sharp@cs.vu.nl

Abstract. Deficient safety occurrence reporting by air traffic controllers
is an important issue in many air traffic organizations. To understand
the reasons for not reporting, practitioners formulated a number of hy-
potheses, which are difficult to verify manually. To perform automated,
formally-based verification of the hypotheses an agent-based modeling
and simulation approach is proposed in this paper. This approach allows
modeling both institutional (prescriptive) aspects of the formal organi-
zation and social behavior of organizational actors. To our knowledge,
agent-based organization modeling has not been attempted in air traffic
previously. Using such an approach four hypotheses related to conse-
quences of controller team composition in particular organizational con-
texts were examined.

Keywords: Agent-based simulation, organization modeling, formal
analysis, air traffic.

1 Introduction

One of the safety problems, which air navigation service providers (ANSP) face,
is that many safety occurrences happened during air and ground operations are
not reported by air traffic controllers. An example of a ground occurrence is
’taxiing aircraft initiates to cross due to misunderstanding in communication’.
Knowledge about occurrences is particularly useful for timely identification of
safety problems.

To understand the reasons for such a behavior of controllers a number of hy-
potheses have been formulated by professionals in air traffic control that concern
particular controller types. In [6] the following types of controllers that prevail
in controller teams are distinguished: (1) rule-dependent : controllers who show
strict adherence to formal regulations; (2) peer-dependent : controllers whose be-
haviour depends strongly on the behaviour and opinions of their peers. Following
the discussions from [6,1] and based on the interviews with safety professionals
from an existing ANSP, the following four hypotheses related to occurrence re-
porting and to the considered types of controllers have been identified:

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 176–191, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Consequences of Social and Institutional Setups 177

Hypothesis 1 : Reprimands provided to controllers for safety occurrences, in
which they were involved, serve the purpose of improvement of the reporting
quality.
Hypothesis 2 : The rule-dependent controllers demonstrate more uniform
reporting behavior over time than the peer-dependent controllers of the same
team.
Hypothesis 3 : Teams with majority of peer-dependent members report
poorly in the absence of reprimands in ANSPs with low actual commitment
to safety.
Hypothesis 4 : To neutralize negative effects of peer influence on reporting,
a mixed composition of teams with comparable numbers of controllers
of both types is useful.

Hypotheses over safety occurrence reporting were attempted to be verified using
conventional analysis techniques in air traffic control, which are based predomi-
nantly on fault/event trees used for sequential cause-effect reasoning for accident
causation [2]. However, such trees do not capture complex, non-linear dependen-
cies and dynamics inherent in ANSPs. Agent-based modeling has been proposed
as a means to assess safety risks of and identify safety issues in air traffic oper-
ations in a complex ANSP [8,12,13]. However, existing agent-based approaches
known to us model air traffic systems without considering the organizational
layer, often with a simplified representation of agents (i.e., without or with a
very simple internal (or cognitive) structure), cf. [12,13]. Disregarding significant
knowledge about formal and informal organization structures of an ANSP may
lead to mediocre analysis results, when actual causes of issues remain uniden-
tified. Furthermore, a large number of existing agent-based approaches aim at
efficient air traffic management (planning, scheduling), which is not the type of
research questions pursued in this research.

To incorporate organizational aspects in agent-based safety analysis of an
ANSP, an approach is proposed in this paper that allows modeling both in-
stitutional (prescriptive) aspects of an ANSP and proactive social behavior of
organizational agents. To define the prescriptive aspects the general organization
modeling framework from [10] was used, which has formal foundations precisely
defined based on the order-sorted predicate logic. In this framework formal orga-
nizations are considered from three interrelated perspectives: the performance-
oriented, the process-oriented, and the organization-oriented. The behavior of
organizational agents was modeled from external and internal perspectives. From
the external perspective interaction of an agent with other agents and with the
environment by observation, communication and performing actions was mod-
eled. From the internal perspective the behavior of an agent was modeled by
direct causal relations between internal (or cognitive) agents states, based on
which an externally observable behavioral pattern is generated. In particular,
the internal dynamics of a decision making process of a controller agent whether
to report an observed occurrence is considered in the paper.

The developed model of the formal organization extended with a specification
of the agents was used to perform simulation of safety occurrence reporting in

178 A. Sharpanskykh

an ANSP. The four hypotheses formulated above were tested on the obtained
simulation results. Previously an approach for validation of models using the
framework from [10] has been developed [11]. Using this validation approach,
models developed for verifying hypotheses can be validated.

The paper is organized as follows. In Section 2 the developed model for for-
mal reporting is given. A specification of the organizational agents is described
in Section 3. The simulation setup and the hypotheses verification results are
described in Section 4. One of the steps of statistical validation of the model
sensitivity analysis -is considered in Section 5. Finally, Section 6 concludes the
paper.

2 Modeling Formal Reporting in an ANSP

For modeling the formal reporting in an ANSP the modeling framework and
methodology from [10] was used, which comprises a sequence of organization
design steps. To design the model, data obtained from a real ANSP were used.
For a more detailed description with formal details see [15].

Step 1. The identification of the organizational roles. A role is a (sub-)set of func-
tionalities of an organization, which are abstracted from specific agents who ful-
fill them. Each role can be composed by several other roles, until the necessary
detailed level of aggregation is achieved. The environment is modeled as a special
role. In this study roles are identified at three aggregation levels, among them (see
Fig. 1 and 2): ANSP (level 1), Tower Control Unit (level 2), Controller (level 3),
Controller Supervisor (level 3), Safety Investigation Unit (level 2), Safety Inves-
tigator (level 3). Furthermore, role instances may be specified, which besides the
inherited characteristics and behavior of the role may possess additional charac-
teristics. For example, two instances of Controller role were defined for each sector
of the airport with the characteristics and behavior of Controller role.

Step 2. The specification of the interactions between the roles. Relations between
roles are represented by interaction and interlevel links. An interaction link is an
information channel between two roles at the same aggregation level. An inter-
level link connects a composite role with one of its subroles to enable information
transfer between aggregation levels. For the considered example some of the iden-
tified interaction relations are given in Fig. 1 and 2. To formalize interactions,
for each role an interaction ontology is introduced. An ontology is a signature or
a vocabulary that comprises sets of sorts (or types), sorted constants, functions
and predicates. In particular, to specify communications, interaction ontologies
of roles include the predicate:

communicated from to : ROLE × ROLE × MSG TY PE × CONTENT

Here the first argument denotes the role-source of information, the second the
role-recipient of information, the third argument denoted the types of the commu-
nication (which may be one of the following observe, inform, request, decision,
readback) and the fourth the content of the communication. The sort ROLE

Consequences of Social and Institutional Setups 179

Air Navigation Service Provider

Safety Investigation Unit

Operation
Management Team

ATC Executive
Management

Operation
Assessment Unit

Operation
Design Unit

Tower Control Unit

Controllers
supervision team

interaction link

interlevel link

Fig. 1. Interaction relations in ANSP role considered at the aggregation level 2

Controller
Supervisor

Tower Control Unit

Controller

Fig. 2. Interaction relations in Tower Control Unit role considered at the aggregation
level 3

is a composite sort that comprises all subsorts of the roles of particular types
(e.g., CONTROLLER). The sort CONTENT is also the composite sort that
comprises all names of terms that are used as the communication content. Such
terms are constructed from sorted constants, variables and functions in the stan-
dard predicate logic way. For example, communication by role controller1 to
role controller supervisor about occurrence1 is formalized as communicated
from to(controller1, controller supervisor, inform, occurrence1).

Note that an agent who eventually will be allocated to a role will take over all
interaction relations defined for this role. Moreover, an agent may be involved in
other (informal) interaction relations with other agents defined in a specification
of the agents behaviour (considered in Section 3).

Step 3. The identification of the requirements for the roles. The requirements
on knowledge, skills and personal traits of the agent implementing a role at the
lowest aggregation level are identified.

Step 4. The identification of the organizational performance indicators and goals.
A performance indicator (PI)is a quantitative or qualitative indicator that reflects

180 A. Sharpanskykh

the state/progressof the company or individual. Goals are objectives that describe
a desired state or development and are defined as expressions overPIs. PI evaluated
in this paper is the reporting quality (ratio reported/observed occurrences) and the
corresponding goal isG1 ’It is required tomaintain reportingquality> 0.75’.A goal
can be refined into subgoals forming a hierarchy. Goals are related to roles: e.g., G1
is attributed to ANSPs Tower Control Unit role.

Step 5. The specification of the resources. In this step organisational resource
types and resources are identified, and characteristics for them are provided,
such as: name, category: discrete or continuous, measurement unit, expiration
duration: the time interval during which a resource type can be used; location;
sharing: some processes may share resources. Examples of resource types are:
airport’s diagram, aircraft, incident classification database, clearance to cross a
runway, an incident investigation report.

Step 6. The identification of the tasks and workflows. A task represents a func-
tion performed in an organization and is characterized by name, maximal and
minimal duration. Each task should contribute to the satisfaction of one or more
organizational goals. For example, task ’Create a notification report’ contributes
to goal G1 defined at step 4. Tasks use, produce and consume resources: e.g., task
’Investigation of an occurrence’ uses a notification report and produces a final
occurrence assessment report. Workflows describe temporal ordering of tasks in
particular scenarios. Fig.3 describes formal occurrence reporting initiated by a
controller. For each task from the workflow responsibility relations on roles were
defined. In the following the workflow is considered briefly.

Create a
notification report

Investigation of
an occurrence

Begin
begin_or(or1)

Report
occurrence?

Yes

Preliminary processing
of a notification report

begin_or(or3)
Decision
positive?

Making decision about
the investigation

necessity

Discussion of the
intermediate occurrence

investigation results

Distribute the final
assessment

report

end_or
(or4)

No

Yes

end_or
(or3)

No

End

Making decision
on the occurrence

reporting

Update an interim
safety occurrence
assessment report

Implementation of
safety

recommendations

begin_or(or4)
Recommenda-
tions endorsed?

Yes

end_or
(or1)

No

Preliminary
assessment of
an occurrence

Fig. 3. The workflow for the formal occurrence reporting

After a controller decides to report an observed occurrence, s/he creates a
notification report, which is provided to the Safety Investigation Unit (SIU).
Different aspects of responsibility relations are distinguished: e.g., Controller
role is responsible for execution of and decision making with respect to task
Create a notification report, Controller Supervisor is responsible for monitoring
and consulting for this task. Depending on the occurrence severity and the col-
lected information about similar occurrences, SIU makes the decision whether

Consequences of Social and Institutional Setups 181

Table 1. Organizational reprimand policies used in simulation

Low severity repr(1,A) = 1
Average severity repr(1,A) = 1; repr(1,B) = 0.5
High severity repr(1,A) = 1; repr(1,B) = 0.5;

repr(2, C) = 0.2; repr(4, other) = 0.1

to initiate a detailed investigation. During the investigation accumulated or-
ganizational knowledge about safety related issues is used. As the investigation
result, a final occurrence assessment report is produced, which is provided to the
controller-reporter as a feedback. Furthermore, often final reports contain rec-
ommendations for safety improvement, which are required to be implemented
by ANSP (e.g., provision of training, improvement of procedures).

Step 7. The identification of domain-specific constraints. Constraints restrain the
allocation and behavior of agents. In particular, a prerequisite for the allocation
of an agent to a role is the existence of a mapping between the capabilities and
traits of the agent and the role requirements. Furthermore, the ANSPs reprimand
policies related to reporting were formalized as constraints using function repr
that maps the number of occurrences of some type to a reprimand value [0, 1].
Table 1 lists three reprimand policies with the increasing severity of personal
consequences used in simulation.

3 Modeling of Agents

First general agent modeling aspects are presented in Section 3.1, then a decision
making model of an agent is considered in Section 3.2.

3.1 Modeling Internal States and Interaction

Agent models are formally grounded in order-sorted predicate logic with finite
sorts. More specifically, the static properties of a model are expressed using
the traditional sorted first-order predicate logic, whereas dynamic aspects are
specified using the Temporal Trace Language (TTL) [10], a variant of the order-
sorted predicate logic. In TTL, the dynamics of a system are represented by a
temporally ordered sequence of states. Each state is characterized by a unique
time point and a set of state properties that hold, specified using the predicate
at : STATE PROPERTY × TIME. Dynamic properties are defined in TTL
as transition relations between state properties. For example, the property that
for all time points if an agent ag believes that action a is rewarded with r, then
ag will eventually perform a, is formalized in TTL as:

∀t : TIME [at(internal(ag, belief(reward for action(r, a))), t)
→ ∃t1 & t1 > t & at(output(ag, performed action(a)), t1)]

The behavior of an agent can be considered from external and internal perspec-
tives. From the external perspective the behavior can be specified by temporal

182 A. Sharpanskykh

correlations between agents input and output states, corresponding to interaction
with other agents and with the environment. An agent perceives information by
observation and generates output in the form of communication or actions.

From the internal perspective the behavior is characterized by a specification
of direct causal relations between internal states of the agent, based on which an
externally observable behavioral pattern is generated. Such types of specification
are called causal networks. In the following different types of internal states of
agents are considered that form such causal networks, used further in decision
making.

It is assumed that agents create time-labeled internal representations (beliefs)
about their input and output states, which may persist over time:

∀ag : AGENT ∀p : STATE PROPERTY ∀t : TIME at(input(ag, p), t)

→ at(internal(ag, belief(p, t), t + 1))

Information about observed safety occurrences is stored by agents as beliefs:
e.g., belief(observed occurrence with(ot : OCCURRENCE TY PE, ag :
AGENT)), t : TIME). Besides beliefs about single states, an agent forms beliefs
about dependencies between its own states, observed states of the environment,
and observed states of other agents (such as expectancies and instrumentalities
from the following section):

belief(occurs after(p1 : STATE PROPERTY, p2 : STATE PROPERTY,
t1 : TIME, t2 : TIME), t : TIME), which expresses that state property p2
holds t′ (t1 < t′ < t2) time points after p1 holds.

In social science behavior of individuals is considered as goal-driven. It is also
recognized that individual goals are based on needs. Different types of needs are
distinguished: (1) extrinsic needs (n1) associated with biological comfort and
material rewards; (2) social interaction needs that refer to the desire for social
approval and affiliation; in particular own group approval (n2) and management
approval (n3); (3) intrinsic needs that concern the desires for self-development
and self-actualization; in particular contribution to organizational safety-related
goals (n4) and self-esteem, self-confidence and self-actualization needs (n5). Dif-
ferent needs have different priorities and minimal acceptable satisfaction levels
for individuals in different cultures. To distinguish different types of controllers
investigated in this paper, the cultural classification framework by Hofstede [4]
was used. The following indexes from the framework were considered: individu-
alism(IDV) is the degree to which individuals are integrated into groups; power
distance index (PDI) is the extent to which the less powerful members of an
organization accept and expect that power is distributed unequally; and uncer-
tainty avoidance index (UAI) deals with individuals tolerance for uncertainty
and ambiguity. The indexes for individuals from the Western European culture
adapted from [4] were changed to reflect the features of peer-dependent (low
IDV) and rule-dependent (high UAI) agents (see Table 2).

The knowledge of an agent w.r.t. the ATC task is dependent on the adequacy
of the mental models for this task, which depends on the sufficiency and timeliness

Consequences of Social and Institutional Setups 183

Table 2. The ranges for the uniformly distributed individual cultural characteristics
and minimal acceptable satisfaction values of needs used in simulation

Agent type IDV PDI UAI min(n1) min(n2) min(n3) min(n4) min(n5)

peer-dependent [0.3, 0.5] [0.3, 0.5] [0.4, 0.6] 1 0.8 0.5 0.7 0.9
rule-dependent [0.7, 0.9] [0.3, 0.5] [0.7, 0.9] 1 0.5 0.7 0.7 0.9

of training provided to the controller and the adequacy of knowledge about safety-
related issues. Such knowledge is contained in reports resulted from safety-related
activities: final occurrence assessment reports resulted from occurrence investiga-
tions and monthly safety overview reports. Many factors influence the quality of
such reports, for specific details we refer to [15]. Thus, the maturity level of a con-
troller agent (e5) is calculated as:

e5 = w22 · e19 + w23 · e20 + w24 · e21 + w25 · e10 + w26 · e42 + w27 · e43,

here e19 ∈ [0, 1] is the agent’s self-confidence w.r.t. the ATC task (depends
on the number of occurrences with the controller); e20 ∈ [0, 1] is the agent’s
commitment to perform the ATC task; e21 ∈ [0, 1] is the agents development
level of skills for the ATC task; e10 ∈ [0, 1] is the indicator for sufficiency and
timeliness of training for changes; e42 ∈ [0, 1] is the average quality of the final
occurrence assessment reports received by the agent; e43 ∈ [0, 1] is the average
quality of the received monthly safety overview reports, w22−w27 are the weights
(sum up to 1).

The agent’s commitment to safety is also influenced by the perceived commit-
ment to safety of other team members and by how much the priority of safety in
enforced and supported by management. An agent evaluates the managements
commitment to safety by considering factors that reflect the managements ef-
fort in contribution to safety (investment in personnel and technical systems,
training, safety arrangements).

In such a way, the commitment value is calculated based on a feedback loop: the
agent’s commitment influences the team commitment, but also the commitment
of the team members and of the management influence the agents commitment:

e6 = w1 · e1 + w2 · e2 + w3 · e3 + w4 · e5,

here e1 ∈ [0, 1] is the priority of safety-related goals in the role description, e2 ∈
[0, 1] is the perception of the commitment to safety of management, e3 ∈ [0, 1]
is the perception of the average commitment to safety of the team, e5 ∈ [0, 1]
is the controller’s maturity level w.r.t. the task; w1 − w4 are the weights (1 in
total). For rule-dependent agents w1 > w3 and w2 > w3 and for peer-dependent
agents w3 > w2 and w3 > w1.

3.2 Modeling Decision Making of a Controller Agent

Reporting quality analyzed in this paper is determined based on the decisions
of controllers agents whether to report observed occurrences. To model decision

184 A. Sharpanskykh

making of agents a refined version of the expectancy theory by Vroom [7] has been
used. Some advantages of the expectancy theory are: (a) it can be formalized; (b) it
allows incorporating the organizational context; (c) it has received good empirical
support. According to this theory, when a human evaluates alternative possibili-
ties to act, s/he explicitly or implicitly makes estimations for the following factors:
valence, expectancy and instrumentality. In Fig. 4 and 5 the decision making mod-
els for reporting and not reporting an occurrence are shown.

Expectancy refers to the individual’s belief about the likelihood that a partic-
ular act will be followed by a particular outcome (called a first-level outcome).
For example, E12 refers to the agent’s belief of how likely that reporting of an
occurrence will be followed by an administrative reprimand. Instrumentality is
a belief concerning the likelihood of a first level outcome resulting into a partic-
ular second level outcome; its value varies between -1 and +1. Instrumentality
takes negative values when a second-level outcome does not follow a first-level
outcome. A second level outcome represents a desired (or avoided) by an agent
state of affairs that is reflected in the agent’s needs. For example, I32 refers to
the belief about the likelihood that own group appreciation of the action results
in own group approval. In the proposed approach the original expectancy model
is refined by considering specific types of individual needs, described in section
3.1 Valence refers to the strength of the individual’s desire for an outcome or
state of affairs. Values of expectancies, instrumentalities and valences change
over time, in particular due to individual and organizational learning.

In the Vrooms model the force on an individual to perform an act is defined
as:

Report an
occurrence Own group approval

Contribution to
organizational safety-

related goals

Self-esteem, self-
confidence, and self-
actualization needs

Administrative reprimand

Improvement of safety

Material reward Extrinsic needs

E12

E13

E14

E15

I21

I32

V1

V2

V5

V4

Social interaction needs

Own group appreciation of
the action

Management approval V3

Management appreciation of
the action

E16

I43

I51

Intrinsic needs

I64

I65

I35

I45

Decrease of own professional
status in own group

Decrease of own professional
status in management’s

opinion

E17
I72

I75

E18

I83

I85

First level outcome Second level outcome

Fig. 4. Decision making model for reporting an occurrence. Here E’s are expectancies,
I’s are instrumentalities and V’s are valences.

Consequences of Social and Institutional Setups 185

Not report an
occurrence Own group approval

Contribution to
organizational safety-

related goals

Self-esteem, self-
confidence and self-
actualization needs

Harmful consequence to
safety

Extrinsic needs

E22

V1

V2

V5

V4

Social interaction needs

Own group disapproval of the
action

Management approval V3Management disapproval of
the action

E25

I22

I25

I43

Intrinsic needs

I54

I55

I13

Administrative reprimand
E26 I61

Decrease of own professional
status in own group

Decrease of own professional
status in management’s

opinion

E24

E23

E21

I32

I45

I35

I15

First level outcome Second level outcome

Fig. 5. Decision making model for not reporting an occurrence. Here E’s are expectan-
cies, I’s are instrumentalities and V’s are valences.

Fi =
n∑

j=1

Eij ·
m∑

k=1

Vik · Ijk

Here Eij is the strength of the expectancy that act i will be followed by outcome
j; Vik is the valence of the second level outcome k; Ijk is perceived instrumentality
of outcome j for the attainment of outcome k.

The agent’s decision making consists in the evaluation of the forces for two
alternatives: to report and to not report. The agent chooses to perform the
alternative with a greater force. In the following the basis for calculation of the
variables of the decision making model for reporting is discussed. The precise,
elaborated details of the mathematical model can be found in [15].

The factors E15, E12, I51 and I21 are defined based on the ANSP’s formal
reprimand/reward policies (see Table 1). In particular, E12 = 1 for an observed
occurrence, which completes a set of occurrences, for which a reprimand is de-
fined; E12 = 0 for all other observed occurrences. The values of E13 and I32
depend largely on the average commitment of the team of controllers to safety,
and E18 and I43 depend on the management commitment to safety (considered
in section 3.1).

With each set of occurrences, in which a controller agent was involved during
an evaluation period (e.g., a month), the measure of severity is associated, cal-
culated as the sum of the severities of the occurrences from the set. The factors
E17, E18, I72, I43 depend mostly on the severity of the set of occurrences of
the controller known to his/her team and known to the management. E16 is

186 A. Sharpanskykh

based on the agent’s beliefs about the dependencies between previous reporting
of similar occurrences and improvement of safety that followed.

I35 and I75 are based on the agent’s IDV index, which indicates the degree
of importance of team’s opinions for the agent (e.g., high for peer-dependent
agents, low for rule-dependent agents). I45 and I85 are based on the agent’s
PDI index. Furthermore, also the values of the basis valences (the degrees of im-
portance of particular needs taken alone, see Fig.2) of a controller agent depend
on its indexes:

v1b = 1 v2b = 1 − IDV v3b = 0.7 · PDI + 0.3 · UAI v4b = 0.3 + 0.7 · UAI

The values of valences change over time depending on the degree of satisfaction
of the agent’s needs: the more a need is satisfied, the less its valence:

v(need) =

{
vb · min accept(need)

sat(need)
, sat(need) ≥ min accept(need)

vb + vb · min accept(need)−sat(need)
minaccept(need)

sat(need) < min accept(need)

here sat(need) is the current satisfaction value of a need.

4 Simulation Results

To test the hypotheses formulated previously 6 types of ANSPs have been con-
sidered (see Table 3). The informal descriptions of the ANSPs were formalized
using the modeling framework from Section 2. The simulated organizations were
populated with 48 controller agents distributed over 6 airport sectors, working in
4 shifts, 12 hours per day (12 controllers per shift; 2 per sector). The simulation
has been done in the Matlab environment.

Many evidences exist (cf [1]) that due to a strict selection procedure and sim-
ilarity of training, controllers have highly developed ATC skills which was also
specified in the simulation model. Three types of controller teams were consid-
ered for each ANSP type: (a) with majority of peer-dependent members (75%);
(b) with equal numbers of peer- and rule-dependent members; (c) with majority

Table 3. ANSP types used in simulation

Organizational aspect Settings 1/2 Settings 3/4 Settings 5/6

Formal commitment to safety high high low
Investment in personnel average high low
Quality of technical systems average high low
Formal support for confidentiality of re-
porting

average high low

Quality of management of safety activities low high low
Personal consequences of occurrences high/low high/low high/low
Influence of a controller on organizational
safety arrangements

low high low

Quality of identification of occurrences high/average high/average high/average

Consequences of Social and Institutional Setups 187

Table 4. The average reporting quality obtained from the simulations for each ANSP
setting

Setting # 1 2 3 4 5 6

more rule-dependent 0.78 0.7 0.78 0.86 0.43 0.35
more peer-dependent 0.74 0.48 0.77 0.87 0.34 0.22
equal number 0.78 0.64 0.78 0.88 0.4 0.27

Table 5. The variances of reporting quality obtained from the simulations for each
ANSP setting

Setting # 1 2 3 4 5 6

more rule-dependent 5e-3 2e-3 5e-3 5e-3 3e-3 7e-3
more peer-dependent 4e-3 3e-3 7e-3 3e-3 3e-3 2e-3
equal number 6e-3 3e-3 6e-3 8e-3 3e-3 4e-3

of rule-dependent members (75%). Different types of occurrences happened ran-
domly in the environment with the frequencies provided by a real ANSP. 1000
simulations of each type have been performed. The obtained average reporting
quality is given in Tables 4 and 5. As follows from the obtained results, the
hypothesis 1 which states that reprimands serve the purpose of improvement of
reporting quality was confirmed for settings 1 (in comparison with 2) and 5 (in
comparison with 6). However, in setting 3 quite an opposite effect was observed:
reprimands and close control in the ANSPs committed to safety cause a notable
decrease in the reporting quality (in comparison with 4).

To verify the hypothesis 2 that rule-dependent controllers demonstrate more
uniform reporting behavior over time than peer-dependent controllers, the mean
and standard deviation values of the reporting force for the teams of types (a)
and (c) were calculated. The obtained results show that the difference between
the standard deviation values of the forces for the teams of types (a) and (c)
for all settings was 7% (of the team’s (a) value) at most. This finding may be
explained by a high coherence of the teams of type (a), in which the attitude
towards reporting (i.e., reporting force) stabilizes quickly due to intensive obser-
vation/interaction of/between the team members. In the teams of type (c) the
homogeneous reporting behavior is achieved by rule adherence of most of the
team members. Thus, although the standard deviation was less for the team of
type (c) in all settings, the hypothesis 2 is supported weakly.

The hypothesis 3, which states that in ANSPs with low actual commitment to
safety in the absence of reprimands, teams of type (a) may not report often, has
been confirmed strongly by the simulation results. As can be seen from Table 4
the reporting quality dropped from 0.74 in the setting 1 to 0.48 in the setting 2
and from 0.34 in the setting 5 to 0.22 in the setting 6.

The hypothesis 4 that to neutralize negative effects of peer influence, mixing
composition of teams may be proposed is also supported by the simulation re-
sults. From Table 4 it can be seen that the reporting quality of the teams of type

188 A. Sharpanskykh

(b) is never worse and for some settings is much better than of the teams of type
(a). Furthermore, as can be seen from Table 4 such an increase in reporting de-
pends non-linearly on the number of rule-dependent agents; this is a joint effect
of the organizational context and the non-linear behavior of the agents situated
in this context.

5 Sensitivity Analysis

The validity of the results of automated checking of hypotheses depends on
the validity of the model used. One of the tools used commonly for statistical
validation of simulation models is sensitivity analysis [5,9,14]. By sensitivity
analysis one can identify the most important factors of a model that influence
particular outputs of the model. Then, the validity of the significance of the
identified factors for the models outputs may be checked by performing face
validation with domain experts and/or based on available domain knowledge.

The simulation model considered in this paper has one measured output the
average occurrence reporting quality in the ANSP. Using sensitivity analysis
the degree of influence of the input factors of the model given in Table 6 on
the average occurrence reporting quality in the ANSP was investigated. To this
end two sensitivity analysis techniques were used: Monte-Carlo filtering [14] and
factor fixing [9].

Table 6. The input factors of the ANSP model

Factor Description

e1 Priority of safety-related goals in the role description
e4 Influence of a controller on safety activities
e7 Sufficiency of the amount of safety investigators
e8 Sufficiency of the amount of controllers
e9 Availability of up-to-date technical systems for controllers
e10 Sufficiency and timeliness of training for changes
e11 Regularity of safety meetings
e12 Developed and implemented SMS
e14 Level of development of managerial skills of the controller supervisor
e19 Initial value of the self-confidence of a controller
e20 Commitment to perform ATC task
e21 Development level of skills for ATC task
e25 Sufficiency of the number of maintenance personal
e26 Quality of formal procedures for system checks and repairs
e35 Intensity of informal interactions in the team of controllers
e36 Quality of the formal safety occurrence assessment procedure
e40 Quality of the communication channel between controllers and safety investi-

gators
e44 Average commitment of the agents involved in the safety analysis
e71 Formal support for confidentiality of reporting

Consequences of Social and Institutional Setups 189

Monte-Carlo filtering is often applied if a definition for ’good’ or ’acceptable’
model outcome can be given, e.g., through a set of constraints. In the consid-
ered model, the acceptable reporting quality is considered to be > 0.8. The aim
of the Monte Carlo filtering is to perform multiple model evaluations with the
input factors randomly chosen from suitable ranges and then split the output
values into two subsets: those considered as ’acceptable’ and those considered as
’unacceptable’, depending on whether they lead to acceptable or unacceptable
outputs. All factors in Table 6 have range (0, 1]. The Smirnov test is applied
to each input factor to test whether the distributions of the ’acceptable’ and
’unacceptable’ values can be regarded as significantly different [9]. The higher
the Smirnov test value for an input factor, the higher its influence on the model
output, and hence the higher the sensitivity of output due to changes in the in-
put. In detail, the Monte Carlo filtering method is implemented by the following
two steps.

Step 1: MC simulations: 1000 Monte Carlo simulations were performed.
For each input factor xi two sets of values were determined: xi|B, containing
all values of xi from the simulations that produced the desired organizational
behaviour, and xi|B, containing all xi values that did not produce the desired
behaviour.

Step 2: Smirnov test: The Smirnov two sample test was performed for each
input factor independently. The test statistics are defined by

d(xi) = supY ||FB(xi|B) − FB(xi|B)||,

where FB and FB are marginal cumulative probability distribution functions
calculated for the sets xi|B and xi|B, respectively, and where Y is the output.

A low level of d(xi) supports the null-hypothesis H0 : FB(xi|B) = FB(xi|B),
meaning that the input factor xi is not important, whereas a high level of d(xi)
implies the rejection of H0 meaning that xi is a key factor.

It is determined at what significance level α, the value of d(xi) implies the
rejection of H0, where α is the probability of rejecting H0 when it is true. In
the sensitivity analysis, we used the classification High / Medium / Low for the
importance of each factor:

– If α ≤ 0.01, then the importance of the corresponding factor xi is considered
High;

– If 0.01 < α ≤ 0.1, then the importance of the corresponding factor is con-
sidered Medium;

– If α > 0.1, then the importance of the corresponding factor is considered
Low.

The Monte Carlo filtering method provides a measure of the sensitivity of the
model output with respect to variations in the input factors. A limitation is
that it captures only first-order effects and it does not detect interactions among
factors. To solve this problem, variance-based global sensitivity analysis tech-
niques can be used. Such techniques are able to capture interaction (correlation)
between input factors by decomposing the variance of the output. One of such

190 A. Sharpanskykh

Table 7. Importance of input factors classified by categories High and Medium for
three types of controller teams

Importance High Medium

more rule-dependent e1, e4, e7, e8, e9, e10, e12, e14, e71 e11, e20, e21
more peer-dependent e1, e4, e7, e8, e9, e10, e12, e14, e35 e11, e20, e21
equal number e1, e4, e7, e8, e9, e10, e12, e14 e11, e20, e21

techniques - the factor fixing [9] was used in this study. By this technique one
is able to identify input factors recognized as insignificant by the Monte Carlo
filtering approach, but which nevertheless should be considered as significant
due to their interaction with other input factors.

The results of the sensitivity analysis for the simulation model considered in
this paper are given in Table 7.

The factors e1, e7, e8, e9, e10, e12 were identified as highly influential for the
quality of occurrence reporting by domain experts. The factor e4 is particularly
important for high-quality reporting in a Western European ANSP, as argued
in the literature [1,6]. Although the factor e14 was recognized as relevant, the
degree of its influence on occurrence reporting was difficult to judge for the
experts. A high importance of e71 for occurrence reporting in teams with most
rule-dependent members can be explained by the rule adherence of the members.
The factor e35 gains a high importance for teams with most peer-dependent
members due to high importance of informal interactions in such teams.

Thus, none of the identified factors of high importance was identified as irrel-
evant or incorrect by domain experts and in the literature.

6 Conclusions

Many existing ANSPs face the problem that many safety occurrences observed
by controllers are not reported. Practitioners in air traffic formulated hypotheses
in the attempt to understand the reasons for such behavior. However, most
of these hypotheses are difficult to verify manually due to a high complexity
and temporal interdependency of institutional and social factors that should be
taken into account. To address this issue an approach based on formal agent-
based modeling and simulation has been proposed. Four hypotheses related to
consequences of team composition in particular organizational contexts were
examined. Two of these hypotheses were supported strongly by the simulation
results, for one hypothesis only a weak support was found, and one hypothesis
was partially supported, for particular types of organizational contexts only.

The validity of the results of automated checking of hypotheses depends on
the validity of the model used. In general, to prove that a developed simulation
model is valid, a number of validation steps should be performed [5]. In this
paper the results of an important statistical validation step - sensitivity analysis
are presented. The identified important factors influencing the average quality of

Consequences of Social and Institutional Setups 191

occurrence reporting in an ANSP were recognized as highly relevant by domain
experts and the literature.

However, sensitivity analysis alone is not sufficient to ensure the validity of a
model. Previously, an approach for validation of agent-based organization models
in air traffic based on questionnaires was developed [11]. Such an approach can
be followed for simulation models similar to the one considered in the paper,
when relevant questionnaire data are available.

References

1. Ek, A., Akselsson, R., Arvidsson, M., Johansson, C.R.: Safety culture in Swedish
air traffic control. Safety Science 45(7), 791–811 (2007)

2. Eurocontrol: Air navigation system safety assessment methodology.
SAF.ET1.ST03.1000-MAN-01, edition 2.0 (2004)

3. Hersey, P., Blanchard, K.H., Johnson, D.E.: Management of Organizational Be-
havior: Leading Human Resources (2001)

4. Hofstede, G.: Cultures and Organizations. McGraw-Hill, New York (2005)
5. Kleijnen, J.P.C.: Verification and validation of simulation models. European Jour-

nal of Operational Research 82(1), 145–162 (1995)
6. Patankar, M.S., Brown, J.P., Treadwell, M.D.: Safety ethics. Ashgate (2005)
7. Pinder, C.C.: Work motivation in organizational behavior. Prentice-Hall, NJ (1998)
8. Pritchett, A.R., Lee, S., Goldsman, D.: Hybrid-System Simulation for National

Airspace System Safety Analysis. AIAA Journal of Aircraft 38(5), 835–840 (2001)
9. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,

Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley-
Interscience, Hoboken (2008)

10. Sharpanskykh, A.: On Computer-Aided Methods for Modeling and Analysis of
Organizations. PhD thesis, Vrije Universiteit Amsterdam (2008)

11. Sharpanskykh, A., Stroeve, S.H.: Safety modelling and analysis of organizational
processes in air traffic – Deliverable D5: Validation plan. NLR, report NLR-CR-
2008-653 (2008)

12. Stroeve, S.H., Blom, H.A.P., Van der Park, M.N.J.: Multi-agent situation awareness
error evolution in accident risk modelling. In: 5th ATM R & D Seminar (2003)

13. Tumer, K., Agogino, A.: Distributed agent-based air traffic flow management. In:
AAMAS 2007, pp. 342–349. ACM Press, New York (2007)

14. Young, P.C.: Data-based mechanistic modelling, generalised sensitivity and domi-
nant mode analysis. Comput. Phys. Commun. 117, 113–129 (1999)

15. Appendix, http://www.few.vu.nl/~sharp/app.pdf

http://www.few.vu.nl/~sharp/app.pdf

Can Space Applications Benefit from Intelligent Agents?

Blesson Varghese1 and Gerard McKee2

1 Active Robotics Laboratory, School of Systems Engineering, University of Reading,
Whiteknights Campus, Reading, Berkshire, UK, RG6 6AY

b.varghese@student.reading.ac.uk
2 School of Systems Engineering, University of Reading, Whiteknights Campus, Reading,

Berkshire, UK, RG6 6AY
g.t.mckee@reading.ac.uk

Abstract. The work reported in this paper proposes a Swarm-Array computing
approach based on ’Intelligent Agents’ to apply autonomic computing concepts
to parallel computing systems and build reliable systems for space applications.
Swarm-array computing is a swarm robotics inspired, novel computing approach
considered as a path to achieve autonomy in parallel computing systems. In the
intelligent agent approach, a task to be executed on parallel computing cores is
considered as a swarm of autonomous agents. A task is carried to a comput-
ing core by carrier agents and can be seamlessly transferred between cores in
the event of a predicted failure, thereby achieving self-* objectives of autonomic
computing. The approach is validated on a multi-agent simulator.

1 Introduction

Autonomic computing has recently emerged as a domain of interest to computing re-
searchers worldwide. What is autonomic computing, and what are its inspiration and
vision? What are its distinct perspectives? What are the autonomic approaches? What
needs to be focused ahead? These are the few questions answered in this section, before
commencing discussions on Intelligent Agents and their feasibility in Swarm-Array
Computing, the primary focus of this paper.

What is autonomic computing, and what are its inspiration and vision? With the ad-
vancements of computing techniques, biologically inspired computing has emerged as a
major domain in computing. Many computing paradigms, namely amorphous comput-
ing, evolutionary computing and organic computing have emerged as a result of being
inspired from natural phenomenon. Autonomic computing is one such biologically in-
spired computing paradigm based on the autonomic human nervous system [1].

Autonomic computing is a visionary paradigm for developing large scale distributed
systems, reducing cost of ownership and reallocating management responsibilities from
administrators to the computing system itself [2] - [9]. Autonomic computing paves the
necessary foundation autonomic computing principles have paved necessary founda-
tions towards self-managing systems.

Self-managing [10] systems are characterized by four objectives and four attributes.
The objectives and attributes that contribute to self-management are not independent

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 192–202, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Can Space Applications Benefit from Intelligent Agents? 193

functions. The objectives considered are [1, 11, 12]: (a) Self-configuration, (b) Self-
healing, (c) Self-optimizing and (d) Self-protecting. The attributes considered are [1,
11, 12]: (a) Self-awareness, (b) Self-situated, (c) Self-monitoring and (d) Self-adjusting.

What are the perspectives of autonomic computing? There are mainly two perspec-
tives, namely business and research oriented perspectives that provide a bird’s-eye view
of the paradigm. Firstly, from a business oriented perspective, autonomic computing
was proposed by IBM for better management of increasingly complex computing sys-
tems and reduce the total cost of ownership of systems today, hence aiming to reallocate
management responsibilities from administrators to the computing systems itself based
on high-level policies [2] - [9].

Secondly, the research oriented perspective primarily focuses on the worms-eye
view, laying necessary foundations for the newly emerging computing paradigm. There
are two categories of ongoing research in the area of autonomic computing. Firstly, re-
search describing approaches and technologies related to autonomic computing [10].
The aim of the approaches is to achieve autonomy without specifying the technology
to be implemented [2]. Any existing technology capable of achieving autonomy (in any
degree) can be used in the approaches. Secondly, research attempting to develop auto-
nomic computing as a unified project [10]. The research lays emphasis on the means
to achieve autonomy and initiatives are taken to define a set of standard practices and
methods as the path towards autonomy.

What are the autonomic computing approaches? Autonomic computing researchers
have adopted six different approaches, namely emergence-based, component/service-
based, control theoretic based, artificial intelligence, swarm intelligence and agent
based approaches to achieve self-managing systems.

The emergence based approach for distributed systems considers complex behaviours
of simple entities with simple behaviours without global knowledge [13]. Intelligent
behaviour is thus repercussions of interactions and coordination between entities. One
major challenge in emergence based approaches is on how to achieve global coher-
ent behaviour [14]. Autonomic computing research on emergence based approaches is
reported in [13] - [16].

The component/service based approach for distributed systems employ service-
oriented architectures. With advancements in software engineering practices, compo-
nent/service based approaches are also implemented in many web based services. The
autonomic element of the autonomic system is a component whose interfaces, be-
haviours and design patterns aim to achieve self-management. These approaches are
being developed for large scale networked systems including grids. Autonomic com-
puting research on component/service based approaches is reported in [17] - [20].

The control theoretic based approach aims to apply control theory for developing
autonomic computing systems. The building blocks of control theory such as refer-
ence input, control input, control error, controller, disturbance input, measured output,
noise input, target system and transducer are used to model computing systems and fur-
ther used to study properties like stability, short settling times, and accurate regulation.
Using a defined set of control theory methodologies, the objectives of a control sys-
tem namely regulatory control, disturbance rejection and optimization can be achieved.
These objectives are closely associated with the objectives of autonomic computing.

194 B. Varghese and G. McKee

Research on control theoretic based approaches applied to autonomic computing is re-
ported in [21] - [23].

The artificial intelligence based approaches aim for automated decision making and
the design of rational agents. The concept of autonomy is realized by maximizing an
agent’s objective based on perception and action in the agent’s environment with the
aid of information from sensors and in-built knowledge. Work on artificial intelligence
approaches for autonomic computing is reported in [24, 25].

The swarm intelligence based approaches focuses on designing algorithms and dis-
tributed problem solving devices inspired by collective behaviour of swarm units that
arise from local interactions with their environment [26, 27]. The algorithms considered
are population-based stochastic methods executed on distributed processors. Autonomic
computing research on swarm intelligence approaches is reported in [28] - [30].

The agent based approaches for distributed systems is a generic technique adopted
to implement emergence, component/service, artificial intelligence or swarm intelli-
gence based approaches. The agents act as autonomic elements or entities that perform
distributed task. The domain of software engineering considers agents to facilitate au-
tonomy and hence have a profound impact on achieving the objectives of autonomic
computing. Research work based on multi-agents supporting autonomic computing are
reported in [6] [31] - [36].

What needs to be focused ahead? The focus of researchers in autonomic computing
should be towards two directions. Firstly, researchers ought to aim towards applying
autonomic computing concepts to parallel computing systems. This focus is essential
since most distributed computing systems are closely associated with the parallel com-
puting paradigm. The benefits of autonomy in computing systems, namely reducing
cost of ownership and reallocating management responsibilities to the system itself are
also relevant to parallel computing systems. It is surprising that only few researchers
have applied autonomic computing concepts to parallel computing systems in the ap-
proaches above.

Secondly, autonomic computing researchers ought to focus towards implementing
the approaches for building reliable systems. One potential area of application that de-
mands reliable systems is space applications. Space crafts employ FPGAs, a special
purpose parallel computing system that are subject to malfunctioning or failures of
hardware due to ’Single Event Upsets’ (SEUs), caused by radiation on moving out of
the protection of the atmosphere [37] - [39]. One solution to overcome this problem
is to employ reconfigurable FPGAs. However, there are many overheads in using such
technology and hardware reconfiguration is challenging in space environments. In other
words, replacement or servicing of hardware is an extremely limited option in space en-
vironments. On the other hand software changes can be accomplished. In such cases,
autonomic computing approaches can come to play.

How can a bridge be built between autonomic computing approaches and parallel
computing systems? How can autonomic computing approaches be extended towards
building reliable systems for space applications? The work reported in this paper is moti-
vated towards bridging this gap by proposing swarm-array computing, a novel technique
to achieve autonomy for distributed parallel computing systems and experimenting the
feasibility of a proposed approach on FPGAs that can be useful for space applications.

Can Space Applications Benefit from Intelligent Agents? 195

The remainder of the paper is organized as follows. Section 2 introduces swarm-
array computing. Section 3 investigates the feasibility of the proposed approach by
simulations. Section 4 concludes the paper and considers future work.

2 Swarm-Array Computing

Swarm-array computing is a swarm robotics inspired approach and is proposed as a
path to achieve autonomy. The development of the swarm-array computing approach is
from the foundations of parallel and autonomic computing paradigms. The constitution
of the swarm-array computing approach can be separated into four constituents. Three
approaches are proposed that bind the swarm-array computing constituents together.
The four constituents and the three approaches are considered in the following sub
sections.

2.1 Constituents

There are four prime constituents that make up the constitution of swarm-array comput-
ing. They are the computing system, the problem/task, the swarms and the landscape
considered in this section.

Firstly, the computing systems which are available for parallel computing are multi-
core processors, clusters, grids, field programmable gate arrays (FPGA), general pur-
pose graphics processing units (GPGPU), application-specific integrated circuit (ASIC)
and vector processors. With the objective of exploring swarm-array computing, FPGAs
are selected as an experimental platform for the proposed approaches.

FPGAs are a technology under investigation in which the cores of the computing
system are not geographically distributed. The cores in close proximity can be config-
ured to achieve a regular grid or a two dimensional lattice structure. Another reason of
choice to look into FPGAs is its flexibility for implementing reconfigurable computing.

The cores of the computing system can be considered as a set of autonomous agents,
interacting with each other and coordinating the execution of tasks. In this case, a pro-
cessing core is similar to an organism whose function is to execute a task. The focus
towards autonomy is laid on the parallel computing cores abstracted onto intelligent
cores. The set of intelligent cores hence transform the parallel computing system into
an intelligent swarm. The intelligent cores hence form a swarm-array. A parallel task to
be executed resides within a queue and is scheduled onto different cores by the sched-
uler. The swarm of cores collectively executes the task.

The intelligent cores described above are an abstract view of the hardware cores.
But then the question on what intelligence can be achieved on the set of cores needs
to be addressed. Intelligence of the cores is achieved in two different ways. Firstly, by
monitoring local neighbours. Independent of what the cores are executing, the cores can
monitor each other. Each core can ask the question of ’are you alive’ to its neighbours
and gain information. Secondly, by adjusting to core failures. If a core fails, the process
which was executed on the core needs to be shifted to another core where resources pre-
viously accessed can be utilized. Once a process has been shifted, all data dependencies
need to be re-established.

196 B. Varghese and G. McKee

To shift a process from one core to another, there is a requirement of storing data
associated and state of the executing process, referred to as checkpointing. This can be
achieved by a process monitoring each core or by swarm carrier agents that can store
the state of an executing process. The checkpointing method suggested is decentralized
and distributed across the computing system. Hence, though a core failure may occur,
a process can seamlessly be transferred onto another core. In effect, awareness and
optimizing features of the self-ware properties are achieved.

Secondly, the problem/task to be executed on the parallel computing cores that can
be considered as a swarm of autonomous agents. To achieve this, a single task needs
to be decomposed and the sub tasks need to be mapped onto swarm agents. The agent
and the sub-problems are independent of each other; in other words, the swarm agents
are only carriers of the sub-tasks or are a wrapper around the sub-tasks. The swarm
displaces itself across the parallel computing cores or the environment. The goal would
be to find an area accessible to resources required for executing the sub tasks within the
environment. In this case, a swarm agent is similar to an organism whose function is to
execute on a core. The focus towards autonomy is laid on the executing task abstracted
onto intelligent agents. The intelligent agents hence form a swarm-array.

The intelligent agents described above are an abstract view of the sub-tasks to be
executed on the hardware cores. Intelligence of the carrier agents is demonstrated in
two ways. Firstly, the capabilities of the carrier swarm agents to identify and move to
the right location to execute a task. In this case, the agents need to be aware of their
environments and which cores can execute the task. Secondly, the prediction of some
type of core failures can be inferred by consistent monitoring of power consumption and
heat dissipation of the cores. If the core on which a sub-task being executed is predicted
to fail, then the carrier agents shift from one core to another gracefully without causing
an interruption to execution, hence making the system more fault-tolerant and reliable.
An agent can shift from one core to another by being aware of which cores in the nearest
vicinity of the currently executing core are available.

Thirdly, a combination of the intelligent cores and intelligent swarm agents leads to
intelligent swarms. The intelligent cores and intelligent agents form a multi-dimensional
swarm-array. The arena in which the swarms interact with each other is termed as
landscape.

Fourthly, the landscape that is a representation of the arena of cores and agents that
are interacting with each other in the parallel computing system. At any given instance,
the landscape can define the current state of the computing system. Computing cores
that have failed and are predicted to fail are holes in the environment and obstacles to
be avoided by the swarms.

A landscape is modelled from three different perspectives which is the basis for the
swarm-array computing approaches discussed in the next section. Firstly, a landscape
comprising dynamic cores (are autonomous) and static agents (are not autonomous) can
be considered. In this case, the landscape is affected by the intelligent cores. Secondly, a
landscape comprising of static cores and dynamic agents can be considered. In this case,
the landscape is affected by the mobility of the intelligent agents. Thirdly, a landscape
comprising of dynamic cores and dynamic agents can be considered. In this case, the
landscape is affected by the intelligent cores and mobility of the carrier agents.

Can Space Applications Benefit from Intelligent Agents? 197

2.2 Approaches

At this point it is appropriate to consider how the constitution of swarm-array computing
fits together? To answer this question, three approaches that combine the constituents
of swarm-array computing are proposed.

In the first approach, only the intelligent cores are considered to be autonomous
swarm agents and form the landscape. A parallel task to be executed resides within a
queue and is scheduled onto the cores by a scheduler. The intelligent cores interact with
each other as considered in section 2.1 to transfer tasks from one core to another at the
event of a hardware failure.

In the second approach, only the intelligent swarm agents are considered to be au-
tonomous and form the landscape. A parallel task to be executed resides in a queue,
which is mapped onto carrier swarm agents by the scheduler. The carrier swarm displace
through the cores to find an appropriate area to cluster and execute the task. The intelli-
gent agents interact with each other as considered in Section 2.1 to achieve mobility and
successful execution of a task. Figure 1 describes the approach diagrammatically. In the
third approach, both the intelligent cores and intelligent agents are considered to form
the landscape. Hence, the approach is called a combinative approach. A parallel task
to be executed resides in a queue, which is mapped onto swarm agents by a scheduler.
The swarm agents can shift through the landscape utilizing their own intelligence, or
the swarm of cores could transfer tasks from core to core in the landscape. The land-
scape is affected by the mobility of intelligent agents on the cores and intelligent cores
collectively executing a task by accommodating the intelligent agent.

However, in this paper the major focus is the second approach and is only considered
for experimental studies. The feasibility of the first method is reported in [40].

Fig. 1. Second Approach in Swarm-array computing

198 B. Varghese and G. McKee

3 Simulation Studies

Simulation studies were pursued to validate and visualize the proposed approach in
swarm-array Computing. Since FPGA cores are considered in this paper and the ap-
proach proposed in this paper considers executing cores as agents; hence a multi-agent
simulator is employed. This section is organized into describing the simulation environ-
ment, experimental platform and model and simulation results.

3.1 Simulation Environment

The feasibility of the proposed swarm-array computing approach was validated on the
SeSAm (Shell for Simulated Agent Systems) simulator. The SeSAm simulator envi-
ronment supports the modelling of complex agent-based models and their visualization
[41, 42].

The environment has provisions for modelling agents, the world and simulation runs.
Agents are characterized by a reasoning engine and a set of state variables. The reason-
ing engine defines the behaviour of the agent, and is implemented in the form of an
activity diagram, similar to a UML-based activity diagram. The state variables of the
agent specify the state of an agent. Rules that define activities and conditions can be vi-
sually modelled without the knowledge of a programming language. The building block
of such rules is primitives that are pre-defined. Complex constructs such as functions
and data-types can be user-defined.

The world provides knowledge about the surroundings the agent is thriving. A world
is also characterized by variables and behaviours. The modelling of the world defines
the external influences that can affect the agent Hence, variables associated with a world
class can be used as parameters that define global behaviours. This in turn leads to the
control over agent generation, distribution and destruction.

Simulation runs are defined by simulation elements that contribute to the agent-based
model being constructed. The simulation elements include situations, analysis lists, sim-
ulations and experiments. Situations are configurations of the world with pre-positioned
agents to start a simulation run. Analysis lists define means to study agents and their
behaviour with respect to time. Simulations are combinations of a situation, a set of
analysis items and a simulation run; or in other words a complete definition of a single
simulation run. Experiments are used when a combination of single simulation runs are
required to be defined.

3.2 Experimental Platform and Model

As considered in Section 2.1 and 2.2, the swarm-array computing approach needs to
consider the computing platform, the problem/task and the landscapes. The parallel
computing platform considered in the studies reported in this paper is FPGAs and is
modelled in SeSAm. The hardware cores are arranged in a 5 X 5 regular grid structure.
The model assumes serial bus connectivity between individual cores. Hence, a task
scheduled on a core can be transferred onto any other core in the regular grid.

The breakdown of any given task to subtasks is not considered within the problem
domain of swarm-array computing. The simulation is initialized with sub-tasks sched-
uled to a few cores in the grid. Each subtask carrying agent consistently monitors the

Can Space Applications Benefit from Intelligent Agents? 199

Fig. 2. Sequence of eight simulation screenshots (a) - (h) of a simulation run from initialization
on the SeSAm multi-agent simulator. Figure shows how the carrier agents carrying sub-tasks are
seamlessly transferred to a new core when executing cores fail.

hardware cores. This is possible by sensory information (in our model, temperature is
sensed consistently) passed onto the carrier agent. In the event of a predicted failure, the
carrier agent displaces itself to another core in the computing system. The behaviour of
the individual cores varies randomly in the simulation. For example, the temperature
of the FPGA core changes during simulation. If the temperature of a core exceeds a
predefined threshold, the subtask being executed on the core is transferred by the car-
rier agent to another available core that is not predicted to fail. During the event of a
transfer or reassignment, a record of the status of execution of the subtask maintained
by the carrier agent also gets transferred to the new core. If more than one sub-task
is executed on a core predicted to fail, each sub-task may be transferred to different
cores.

3.3 Simulation Results

Figure 2 is a series of screenshots of a random simulation run developed on SeSAm for
eight consecutive time steps from initialization. The figure shows the executing cores as
rectangular blocks in pale blue colour. When a core is predicted to fail, i.e., temperature
increases beyond a threshold, the core is displayed in red. The subtasks wrapped by
the carrier agents are shown as blue filled circles that occupy a random position on a
core. As discussed above, when a core is predicted to fail, the subtask executing on the
core predicted to fail gets seamlessly transferred to a core capable of processing at that
instant.

The simulation studies are in accordance with the expectation and hence are a pre-
liminary confirmation of the feasibility of the proposed approach in swarm-array com-
puting. Though some assumptions and minor approximations are made, the approach is
an opening for applying autonomic concepts to parallel computing platforms.

200 B. Varghese and G. McKee

4 Conclusion

In this paper, a swarm-array computing approach based on intelligent agents that act
as carriers of tasks has been explored. Foundational concepts that define swarm-array
computing are introduced. The feasibility of the proposed approach is validated on a
multi-agent simulator. Though only preliminary results are produced in this paper, the
approach gives ground for expectation that autonomic computing concepts can be ap-
plied to parallel computing systems and build reliable systems for space applications.

Future work will aim to study the third proposed approach or the combinative ap-
proach in swarm-array computing. Efforts will be made towards implementing the ap-
proaches in real time and exploring in depth the fundamental concepts associated with
the constituents of swarm-array computing.

References

1. Hinchey, M.G., Sterritt, R.: 99% (Biological) Inspiration. In: Proceedings of the 4th IEEE
International Workshop on Engineering of Autonomic and Autonomous Systems, pp. 187–
195 (2007)

2. Lin, P., MacArthur, A., et al.: Defining Autonomic Computing: A Software Engineering
Perspective. In: Proceedings of the Australian Software Engineering Conference, pp. 88–97
(2005)

3. Sterritt, R., Hinchey, M.: Autonomic Computing - Panacea or Poppycock? In: Proceedings
of the 12th IEEE International Conference and Workshops on the Engineering of Computer-
Based Systems, pp. 535–539 (2005)

4. Sterritt, R., Bustard, D.: Autonomic Computing - a Means of Achieving Dependability? In:
Proceedings of the 10th IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems, pp. 247–251 (2003)

5. Nami, M.R., Sharifi, M.: Autonomic Computing a New Approach. In: Proceedings of the 1st
Asia International Conference on Modelling and Simulation, pp. 352–357 (2007)

6. Jarrett, M., Seviora, R.: Constructing an Autonomic Computing Infrastructure using Cougaar.
In: Proceedings of the 3rd IEEE International Workshop on Engineering of Autonomic and
Autonomous Systems, pp. 119–128 (2006)

7. Lightstone, S.: Foundations of Autonomic Computing Development. In: Proceedings of the
4th IEEE Workshop on Engineering of Autonomic and Autonomous Systems (2007)

8. Gentsch, W., Iano, K., et al.: Self-Adaptable Autonomic Computing Systems: An Industry
View. In: Proceedings of the 16th IEEE International Workshop on Database and Expert
Systems Applications (2005)

9. Cybenko, G., Berk, V.H., et al.: Practical Autonomic Computing. In: Proceedings of the 30th
IEEE Annual International Computer Software and Applications Conference (2006)

10. Nami, M.R., Bertels, K.: A Survey of Autonomic Computing Systems. In: Proceedinbgs of
the 3rd International Conference on Autonomic and Autonomous Systems, pp. 26–30 (2007)

11. Marshall, T., Dai, Y.S.: Reliability Improvement and Models in Autonomic Computing. In:
Proceedings of the 11th International Conference on Parallel and Distributed Systems, pp.
468–472 (2005)

12. King, T.M., Babich, D., et al.: Towards Self-Testing in Autonomic Computing Systems. In:
Proceedings of the 8th International Symposium on Autonomous Decentralized Systems, pp.
51–58 (2007)

13. Anthony, R.J.: Emergence: a Paradigm for Robust and Scalable distributed applications. In:
Proceedings of the International Conference on Autonomic Computing, pp. 132–139 (2004)

Can Space Applications Benefit from Intelligent Agents? 201

14. De Wolf, T., Holvoet, T.: Emergence as a general architecture for distributed autonomic com-
puting. K. U. Leuven, Department of Computer Science, Report CW 384 (2004)

15. Saffre, F., Halloy, J., et al.: Self-Organized Service Orchestration Through Collective Differ-
entiation. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1237–1246 (2006)

16. Champrasert, P., Lee, C., et al.: SymbioticSphere: Towards an Autonomic Grid Network
System. In: Proceedings of the IEEE International Conference on Cluster Computing, pp.
1–2 (2005)

17. Zeid, A., Gurguis, S.: Towards Autonomic Web Services. In: Proceedings of the 3rd
ACS/IEEE International Conference on Computer Systems and Applications (2005)

18. Almeida, J., Almeida, V., et al.: Resource Management in the Service Oriented Architecture.
In: Proceedings of the IEEE International Conference on Autonomic Computing, pp. 84–92
(2006)

19. White, S.R., Hanson, J.E., et al.: An Architectural Approach to Autonomic Computing. In:
Proceedings of the IEEE International Conference on Autonomic Computing (2004)

20. Parashar, M., Li, Z., et al.: Enabling Autonomic Grid Applications: Requirements, Models
and Infrastructure. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S.,
van Moorsel, A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, pp. 273–290.
Springer, Heidelberg (2005)

21. Diao, Y., Hellerstein, J.L., et al.: Self-Managing Systems: A Control Theory Foundation. In:
Proceedings of the 12th IEEE International Conference and Workshops on the Engineering
of Computer-Based Systems, pp. 441–448 (2005)

22. Abdelwahed, S., Kandasamy, N., et al.: Online Control for Self-Management in Comput-
ing Systems. In: Proceedings of the 10th IEEE Real-Time and Embedded Technology and
Applications Symposium, Toronto, Canada (2004)

23. Zhu, Q., Lin, L., et al.: Characterizing Maintainability concerns in Autonomic Element De-
sign. In: Proceedings of the IEEE International Conference on Software Maintenance, pp.
197–206 (2008)

24. Kephart, J.O., Walsh, W.E.: An Artificial Intelligence Perspective on Autonomic Computing
Policies. In: Proceedings of the 5th IEEE International Workshop on Policies for Distributed
Systems and Networks, pp. 3–12 (2004)

25. Peddemors, A., Niemegeers, I., et al.: A System Perspective on Cognition for Autonomic
Computing and Communication. In: Proceedings of the 16th International Workshop on
Database and Expert Systems Application (2005)

26. Hinchey, M.G., Sterritt, R., et al.: Swarms and Swarm Intelligence. IEEE Computer 40(4),
111–113 (2007)

27. Kennedy, J., Eberhart, R.C., et al.: Swarm Intelligence. Morgan Kaufmann Publishers, San
Francisco (2001)

28. Wang, J., d’Auriol, B.J., et al.: A Swarm Intelligence inspired Autonomic Routing Scenario
in Ubiquitous Sensor Networks. In: Proceedings of the International Conference on Multi-
media and Ubiquitous Engineering, pp. 745–750 (2007)

29. Hinchey, M., Dai, Y.S., et al.: Modeling for NASA Autonomous Nano-Technology Swarm
Missions and Model-Driven Autonomic Computing. In: Proceedings of the 21st International
Conference on Advanced Information Networking and Applications, pp. 250–257 (2007)

30. Carrasco, L.M.F., Marin, H.T., et al.: On the Path Towards Autonomic Computing: Combin-
ing Swarm Intelligence and Excitable Media Models. In: Proceedings of the 7th Mexican
International Conference on Artificial Intelligence, pp. 192–198 (2008)

31. De Wolf, T., Holovet, T., et al.: Towards Autonomic Computing: Agent-Based Modelling,
Dynamical Systems Analysis, and Decentralised Control. In: Proceedings of the IEEE Inter-
national Conference on Industrial Informatics, pp. 470–479 (2003)

32. Bonino, D., Bosca, A., et al.: An Agent based Autonomic Semantic Platform. In: Proceedings
of the International Conference on Autonomic Computing, pp. 189–196 (2004)

202 B. Varghese and G. McKee

33. Tianfield, H.: Multi-agent Autonomic Architecture and its Application in e-Medicine. In:
Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology
(2003)

34. Pour, G.: Prospects for Expanding Telehealth: Multi-Agent Autonomic Architectures. In:
Proceedings of the International Conference on Computational Intelligence for Modelling
and Automation, and International Conference on Intelligent Agents, Web Technologies and
Internet Commerce (2006)

35. Guo, H., Gao, J., et al.: A Self-Organized Model of Agent-Enabling Autonomic Computing
for Grid Environment. In: Proceedings of the 6th World Congress on Intelligent Control and
Automation, pp. 2623–2627 (2006)

36. Hu, J., Gao, J., et al.: Multi-Agent System based Autonomic Computing Environment. In:
Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 105–
110 (2004)

37. O’Bryan, M.V., Poivey, C., et al.: Compendium of Single Event Effects Results for Candi-
date Spacecraft Electronics for NASA. In: Proceedings of the IEEE Radiation Effects Data
Workshop, pp. 19–25 (2006)

38. Johnson, E., Wirthlin, M.J., et al.: Single-Event Upset Simulation on an FPGA. In: Pro-
ceedings of the International Conference on Engineering of Reconfigurable Systems and
Algorithms, USA (2002)

39. Habinc, S.: Suitability of Reprogrammable FPGAs in Space Applications. Feasibility
Report for the European Space Agency by Gaisler Research under ESA contract No.
15102/01/NL/FM(SC) CCN-3 (2002)

40. Varghese, B., McKee, G.T.: Towards Self-ware via Swarm-Array Computing. In: Proceed-
ings of the International Conference on Computational Intelligence and Cognitive Informat-
ics, Paris, France (2009)

41. Klugl, F., Herrler, R., et al.: SeSAm: Implementation of Agent-Based Simulation Using
Visual Programming. In: Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, Japan, pp. 1439–1440 (2006)

42. SeSAm website, http://www.simsesam.de

http://www.simsesam.de

A Generic Agent Organisation Framework for
Autonomic Systems

Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings

School of Electronics and Computer Science
University of Southampton, Southampton, UK

{rck05r,nmg,nrj}@ecs.soton.ac.uk

Abstract. Autonomic computing is being advocated as a tool for man-
aging large, complex computing systems. Specifically, self-organisation
provides a suitable approach for developing such autonomic systems
by incorporating self-management and adaptation properties into large-
scale distributed systems. To aid in this development, this paper de-
tails a generic problem-solving agent organisation framework that can
act as a modelling and simulation platform for autonomic systems. Our
framework describes a set of service-providing agents accomplishing tasks
through social interactions in dynamically changing organisations. We
particularly focus on the organisational structure as it can be used as the
basis for the design, development and evaluation of generic algorithms
for self-organisation and other approaches towards autonomic systems.

Keywords: Organisation, Autonomic Systems, Organisation Model.

1 Introduction

Autonomic systems are envisaged as self-managing, distributed computing sys-
tems containing several service-providing components interacting with each other
over large networks to accomplish complex tasks. The features of such systems
are that they are robust, decentralised, adapting to changing environments and
self-organising. Within this, a central concern that needs to be focused on is the
interactions between the various computing entities involved. In particular, the
interactions within the system are critical for it to achieve its system-wide goals
as the tasks tend to be too complex to be accomplished by any single component
or entity alone. Given this, and taking inspiration from self-organisation prin-
ciples, the development of effective autonomic systems involves, to a significant
extent, adapting local interactions towards achieving a better performance glob-
ally [18]. By so doing, the system can robustly reconfigure itself to the changing
requirements and environmental conditions. Therefore, the self-management as-
pect of the system requires that the individual components of the system are
allowed the freedom to adapt their local interactions with other components. In
particular, adapting these interactions is necessary because, purely changing the
internal characteristics of the components will not be sufficient for improving
performance as most of the tasks and goals involve multiple components and
interactions across them.

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 203–219, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

204 R. Kota, N. Gibbins, and N.R. Jennings

For example, consider the interconnected network of a university as a form
of an autonomic grid system. Being a university, it contains various labs with
their own specialised computing systems, as part of the overlaying network of
the university. That is, there might be a graphics lab containing computers with
some high end graphics cards for rendering rich intensive images. Similarly, some
computers in the geography lab might contain various GIS maps and related soft-
ware. Also, there will be complex computing tasks that need several computers
(possibly situated in different labs) providing specialised services for their ac-
complishment. A task might need statistical analysers from the mathematics
department for analysing data available from the sociology department in order
to predict natural resource, like water and wood, usage as needed by the institute
on environmental conservation. Thus, the computers on the university network,
need to interact with one another to perform these complex tasks. Moreover, as
these individual computers are controlled by different people in different labs,
the respective loads on them, at any time, cannot be known or predicted. Also,
some might go offline, some might be upgraded and so on. Hence, the computers
need to continuously adapt their interactions with others in the network to keep
up with the changes and, also optimise the overall performance.

Now, these social interactions of the components can be quite reactive and
not guided by definite regulations or they can be structured using an explicitly
depicted network or organisation. That is, the individual components of the
system will be modelled as autonomous agents participating in an organisation
and the interactions between the components are governed by the structure of
this organisation. In such a context, regulating the interactions in the system
through the organisation structure will aid in the design of adaptation techniques
by suitably representing the recurring interactions between the components. For
example, consider the autonomic system being used to maintain the computing
systems in a university, as discussed earlier. Now, given the large number of
computers or components in the system, one computer can hope to maintain
links with just a limited number of those in the network. Now, say a computer
in the geography lab regularly needs computers with good graphics capabilities
for rendering its maps. It has to choose between maintaining links with just one
computer or with many in the graphics lab. The former case will lead to less
processing at the geography computer during allocation but might lead to delays
in task completion when that particular graphics computer is busy. In contrast,
the latter case will require more processing at the geography computer every
time it has to allocate a task,but might help in getting quicker outputs once the
task is allocated. Now, if provided with the structure, the geography computer
can smartly choose how many graphics computers to maintain links with by
evaluating the possible delays that might occur when accessing most of the
graphics computers indirectly and compare that with the resources saved at itself
in terms of processing cycles per each allocation task. Once the social interactions
are explicitly depicted by the organisation structure, designers seeking to embed
adaptation into the system can then use and focus on this organisation as a whole
rather than working on each of the individual components separately. Thus, the

A Generic Agent Organisation Framework for Autonomic Systems 205

organisation model will provide a better overview of the global performance of
the system without compromising on the individuality of the constituent entities.

In summary, we argue that a formally modelled organisational representation
of the components will help in managing their social interactions [22], and at the
same time, provide insights into possible avenues for self-organisation and adap-
tation towards improving global behaviour. More specifically, we contend that
depicting the distributed computing systems, including the service providers,
their social interactions and the task environment, using an abstract organisa-
tion framework will provide a suitable platform to develop and test techniques
attempting to bring about autonomicity into the system.

Against this background, we seek to develop a problem-solving agent organi-
sation model that serves as a fitting abstract representation of such distributed
computing systems. Our model will provide an appropriate simulation framework
for distributed systems by modelling the task environment, the computational
entities and their interactions along with their performance evaluation mea-
sures. Such a platform can then be used for developing and evaluating generic
approaches designed for autonomic systems. In this context, by problem-solving
agent organisations we refer to those containing some service-providing agents
that receive inputs, perform tasks and return results. We chose to use problem-
solving agent organisations because they can be decentralised with autonomous
and independent agents which accomplish tasks by providing services and col-
laborating with each other through social interactions governed by the organi-
sation’s structure. Thus, it models the salient features of distributed computing
systems and, at the same time, contains the flexibility required to make them
autonomic. Following the reasons detailed above, the focus of the model is on the
inter-agent interactions; that is, the organisation structure and its effect on the
system. Moreover, we also present an evaluation mechanism for the performance
of the organisation based on the tasks or goals achieved by it. This method
is developed such that the critical role played by the organisation structure
on the performance is made explicit and clear. Therefore, any designer of self-
organisation techniques, especially those focusing on the structure or network,
will be able to see their method in action and evaluate its performance before
being transported and put in the actual domain specific autonomic systems.

In more detail, our organisation models a set of service-providing, resource
constrained agents facing a dynamic stream of tasks requiring combinations of
services with some ordering. The agents only posses local views and need to
interact with each other to accomplish the tasks. These interactions are governed
by the relations existing between the agents (organisation structure) and affect
task allocation and organisation’s performance. Finally, keeping in mind the
development of adaptation techniques based on the structure, we also provide a
method of representing the costs and resources involved in reorganisation.

In the next section (Sec. 2), we discuss the current literature in our context.
Then in Sec. 3, we present our organisation framework together with the task
environment, agents, organisational characteristics and performance measures.
We illustrate our model with an example in Sec. 4 and conclude in Sec. 5.

206 R. Kota, N. Gibbins, and N.R. Jennings

2 Related Work

As we are seeking to develop an organisation framework that suitably represents
distributed computing systems, it should provide an abstract representation of
the components of the system, their social interactions and the tasks that they
perform along with the environment that they are based in. Correspondingly, or-
ganisation modelling involves modelling the task environment, the organisational
characteristics (structure and norms), the agents and the performance measures.
In the following, we study the current literature in each of these aspects.

2.1 Modelling Tasks

The tasks faced by the organisation can be atomic or made up of two or more
tasks (or subtasks) which, in turn, may be composed of other tasks. The tasks
may have dependencies among them, resulting in a temporal ordering of the
tasks in the organisation. In this context, [19] identifies three kinds of such
dependencies— pooled, sequential and reciprocal. Two or more tasks whose re-
sults are jointly required to execute another task are said to be in a pooled
dependency relation with each other. A sequential dependency exists between
tasks if they have to be performed in a particular sequence. Finally, a reciprocal
dependency exists if the tasks are mutually dependent on each other and have
to be executed at the same time. However, the tasks dependencies as suggested
by Thompson have subsequently been interpreted in different ways in different
models. In particular, [11] model the task dependencies in their ‘Virtual Design
Team (VDT)’ closely following Thompson’s model. In fact, they even extend the
sequential and reciprocal dependencies by classifying each of them into different
types. In contrast, in the PCANS model, [13] demonstrate that both pooled and
reciprocal dependencies, as described by Thompson, can be derived from sequen-
tial dependencies. Thus, their representation enables the designer to model just
a single dependency type. For our present requirements, we just require a simple
task model containing dependencies, and hence we will use the PCANS model.

2.2 Modelling Organisational Characteristics

Approaches towards organisational design in multi-agent systems can be con-
sidered to be either agent-centric or organisation-centric [14]. The former focus
on the social characteristics of agents like joint intentions, social commitment,
collective goals and so on. Therefore, the organisation is a result of the social
behaviour of the agents and is not created explicitly by the designer. On the
other hand, in organisation-centric approaches, the focus of design is the organ-
isation which has some rules or norms which the agents must follow. Thus, the
organisational characteristics are imposed on the agents. As we are primarily
interested in problem-solving agent organisations, we only study organisations
in multi-agent systems whose design is modelled explicitly.

In this context, the OperA and OMII frameworks [2,21] formally specify agent
societies on the basis of social, interaction, normative and communication struc-
tures. However, in both of these frameworks, the agents are not permitted to

A Generic Agent Organisation Framework for Autonomic Systems 207

modify the pre-designed organisational characteristics. Hence, they do not pro-
vide a suitable platform for self-organisation. Islander [16] also uses a similar
approach by expecting the designer to pre-design the roles and the possible inter-
actions between them thus delivering fixed patterns of behaviour for the agents
to follow. Thus, this too is not flexible enough to incorporate reorganisation.

A more useful and simpler model developed by [3] provides a meta-model
to describe organisations based on agents, groups and roles (AGR). While their
model mainly pertains to groups of agents and intra-group dynamics (which does
not apply to our requirements), they model organisation structure as defining
the possible interactions between the groups. This interpretation of the structure
matches our purpose and lies behind our model as well. A somewhat similar
approach is followed by Moise [8], which considers an organisation structure as
a graph defined by a set of roles, a set of different types of links and a set of
groups. An agent playing a role must obey some permitted behaviours comprising
the role. Organisation links are arcs between roles and represent the interactions
between them. These links can be of three types— communication, authority and
acquaintance. However, the links have a context associated with them and are
valid within that context only. We seek an organisation structure that is not so
specific or bounded. Nevertheless, some of the ideas used in this model, especially
those relating to the organisation structure will be used while developing our
model. A slightly different approach is followed by the Virtual Design Team
(VDT) framework [11]. Its purpose is to develop a computational model of real-
life project organisations. It does not use the agent-role paradigm. Instead, the
agents are fixed to their duties and are called actors. The organisation structure
is composed of a control structure and a communication structure. Evidently,
VDT attempts to model a problem-solving organisation, and therefore, very
relevant for our requirements. However, it lacks flexibility in the organisation
structure, as it only permits purely hierarchical organisations. Therefore, we do
not directly use the whole VDT model but only some parts of it.

In contrast to the above models, mathematical approaches have been developed
for creating organisations [10,17]. However, they produce an instantiated organi-
sation according to complex and elaborate specification of organisational require-
ments but not the generic model we need. In a more relevant work, [15] aim at
an organisation framework that is flexible enough for self-organisation. However,
they take a strictly emergent view of self-organisation and focus mainly on the
social delegation aspects in agent organisations. Furthermore, their method spec-
ifies a set of organisation models, and the participating agents choose, whether or
not, to join such organisations. Therefore, it does not inherently aid the develop-
ment of problem-solving agent organisations. Another work [20] follows a norm
based approach for modelling hierarchical organisations in which every role has
a position profile associated with it. This profile is specified by positional norms
and an agent can take up a role by changing its own set of norms to conform to
these positional norms. However, the model requires that all positions and norms
are specified at the outset itself thereby not allowing for the flexibility in the in-
teractions as sought by us.

208 R. Kota, N. Gibbins, and N.R. Jennings

2.3 Modelling Agents

An overview of modelling agents in the context of organisations is presented by
[1]. From this, it is apparent that the modelling of agents varies across differ-
ent organisation models. In particular, agents may be homogeneous or belong
to different classes, be cooperative or competitive. Their abilities may be rep-
resented as a simple vector or as a complex combination of skills, strategies,
preferences and so on. Against this background, while all the organisation design
approaches described above, with the exception of VDT, leave the agent devel-
opment to the designer, VDT models the members of the organisation called
actors in great detail. The main characteristics of the actors are attention al-
location (determines the decision making behaviour of how the actor chooses
among several task alternatives) and information processing (determines the
skills, capacity and other processing characteristics). This design of agents will
be partly used in our organisation model as it meets our requirements for mod-
elling agents in the context of problem-solving organisations. Another concept
that we will use is obtained from [6] where the agents are required to perform
task assignment but can only address one request per time-step. Thus, we will
also make use of this concept of agents possessing limited computational capaci-
ties so that the efficiency of the agents plays a prominent role in the performance
of the organisation, thereby, reflecting the real-life scenarios where the compo-
nents of the autonomic systems often possess small and limited computational
power.

2.4 Evaluating an Organisation’s Effectiveness

Organisation characteristics play a major role in the performance of the organi-
sation [5]. Therefore, there are a number of existing methods for evaluating an
organisation’s characteristics based on parameters like robustness of the struc-
ture, connectivity and degree of decentralisation [9,7]. However, these measures
are independent of the tasks being handled by the system and thus, fail to
capture the suitability of the organisation according to the environment it is
situated in. A contrasting criterion is to measure the performance of the or-
ganisation on the basis of how well it performs its tasks [4]. We believe this
provides a good indication of the organisation’s efficiency during run-time. In
this context, in VDT, the measure of the performance of the organisation is
on the basis of the load on the organisation. The load on the organisation is
represented in units of work volume, thereby providing a common calibration
for different tasks. The total work volume of a task depends partly on the task
specification and partly on the organisational characteristics. Therefore, the re-
sultant load on the organisation is a function of the tasks and the organisational
characteristics and acts as a performance indicator. Therefore, the approach
chosen by VDT is more suitable for our requirements and will be taken into
account.

A Generic Agent Organisation Framework for Autonomic Systems 209

3 The Agent Organisation Framework

We describe our organisation framework by first detailing the task environment.
Then we describe the agents and the organisation structure, before discussing
the performance evaluation mechanism.

3.1 Task Representation

The task environment contains a continuous dynamic stream of tasks that are
to be executed by the organisation. A task can be presented to the organisation
at any point of time and the processing of the task must start immediately from
that time-step. Thus, the organisation of agents is presented with a dynamic
incoming stream of tasks that they should accomplish. In detail, the organisation
of agents provides a set of services which is denoted by S. Every task requires
a subset of this set of services. Services are the skills or specialised actions that
the agents are capable of. We model the tasks as work flows composed of a set
of several service instances (SIs) in a precedence order, thereby representing a
complex job as expected in autonomic systems. We define a service instance sii
to be a 2-tuple: 〈si, pi〉 where si ∈ S (i.e. si is a member of the services set S),
pi ∈ N denotes the amount of computation required.

Following the PCANS model of task representation (see Sec. 2.1), we only
consider sequential dependencies between the service instances. Thus, the SIs of
a task need to be executed following a precedence order or dependency structure.
This dependency structure is modelled as a tree in which the task execution
begins at the root node and flows to the subsequent nodes. The task is deemed
complete when all its SIs have been executed in the order, terminating at the
leaf nodes. The complete set of tasks is denoted by W and contains individual
tasks wi which are presented to the organisation over time.

3.2 Organisation Representation

Since, we aim to model the agent organisation to represent a distributed comput-
ing system, our organisation framework consists of a set of computational agents
representing the individual components. An agent is an independent computa-
tional entity that can provide one or more services. We model our agents by
simplifying the agent model used by VDT (see Sec. 2.3) and consider only the
information processing characteristics of the agents by overlooking the attention
allocation characteristic. The attention allocation characteristic enables an agent
to schedule its allocated tasks. The task scheduling algorithms at an agent will
depend on the system that is being represented. However, this aspect is inter-
nal to an agent and independent of the organisational dynamics which is our
primary focus. Therefore, we do not need to model this aspect.

In more detail, the agents are associated with particular sets of services (like
say, in the example home-management system, a controller manages the heating
system and can also access the internet for communication, thus containing two
services in its service set). These sets can be overlapping, that is two or more

210 R. Kota, N. Gibbins, and N.R. Jennings

agents may provide the same service. Also, building on the agent model used
by Gershenson (see Sec. 2.3), every agent also has a computational capacity
associated with it. The computational load on an agent (explained later), in a
time-step, cannot exceed this capacity. This modelling of resource constrained
agents is necessary because, generally the components of an autonomic system
are small embedded devices with low computational power. Formally, let A be
the set of agents in the organisation. Every element in this set is a tuple of the
form:- ax = 〈Sx, Lx〉 where the first field, Sx ∈ S denotes a set of services that
belong to the complete service set S and Lx ∈ N denotes the capacity. The
agents, their service sets and their capacities may change during the lifetime of
the organisation.

The other features of an agent organisation, in general, are its structure and
norms. The structure of an organisation represents the relationships between
the agents in the organisation, while the norms govern the kind of interactions
and messages possible between the agents. However, since we are developing
a problem-solving organisation, the agents are all internal to the organisation
and share the same goals. Moreover, all the agents will be designed in the same
way, and therefore, their interaction protocol will be similar and can be in-
ternally specified. Therefore, an explicit definition of norms is not required to
regulate their interactions. Thus, in our model, the relationships between the
agents (denoted by the structure) also determine the interactions between the
agents. Formally, an organisation is defined as consisting of a set of agents and
a set of organisational links. It can be represented by a 2-tuple of the form:-
ORG = 〈A, G〉 where A, as stated above, is the set of agents, G is the set of
directed links between the agents (will be described later in this section).

As mentioned previously, the organisation is presented with a continuous
stream of tasks which are completed by the agents through their services. Tasks
come in at random time-steps and the processing of a task starts as soon as it en-
ters the system. Task processing begins with the assignment of the first SI (root
node). The agent that executes a particular SI is, then, also responsible for the
allocation of the subsequent dependent SIs (as specified by the task structure)
to agents capable of those services. Thus, the agents have to perform two kinds
of actions: (i) execution and (ii) allocation. Moreover, every action has a load
associated with it. The load incurred for the execution of a SI is equal to the
computational amount specified in its description, while the load due to alloca-
tion (called management load) depends on the relations of that agent (will be
explained later). As every agent has a limited computational capacity, an agent
will perform the required actions in a single time-step, as long as the cumulative
load (for the time-step) on the agent is less than its capacity. If the load reaches
the capacity and there are actions still to be performed, these remaining actions
will be deferred to the next time-step and so on. We allow the agents to perform
more than one action in a time-step to de-couple the time-step of the simulation
with the real-time aspect of the actual computing systems. Thus, the time-step
of the model places no restrictions whatsoever and can represent one or several
processor cycles in the actual system.

A Generic Agent Organisation Framework for Autonomic Systems 211

As stated earlier, agents need to interact with one another for the allocation
of SIs. The interactions between the agents are regulated by the structure of
the organisation. Inspired from the Moise approach (see Sec. 2.2), we adopt
the organisational links paradigm to represent the structure. However, unlike in
Moise, the links in our case are not task-specific because we do not assume that
the agents will be aware of all the tasks at the outset itself. Moreover, instead of
using several graphs to represent particular aspects, we use an organisation graph
(G) to represent the structure. The nodes in the graph represent the agents of
the organisation while the links represent the relations existing between them.
Thus, the structure of the organisation is based on the relations between the
agents that influence their interactions.

In more detail, we classify the relationships that can exist between agents
into four types — (i) stranger (not knowing the presence), (ii) acquaintance
(knowing the presence, but no interaction), (iii) peer (low frequency of inter-
action) and (iv) superior-subordinate (high frequency of interaction). The
superior-subordinate relation can also be called the authority relation and de-
pict the authority held by the superior agent over the subordinate agent in the
context of the organisation. The peer relation will be present between agents
who are considered equal in authority with respect to each other and is useful
to cut across the hierarchy. Also, the relations are mutual between the agents,
that is for any relation existing between two agents, both the concerned agents
respect it. The type of relation present between two agents determines the infor-
mation that they hold about each other and the interactions possible between
them. The information that an agent holds about its relations is:

1. The set of services provided by each of its peers (Sy of each peer ay)
2. The accumulated set of services provided by each of its subordinates. The

accumulated service set of an agent is the union of its own service set and
the accumulated service sets of its subordinates, recursively. Thus, the agent
is aware of the services that can be obtained from the sub-graph of agents
rooted at its subordinates though it might not know exactly which agent is
capable of the service. ASx denotes the accumulated service set of agent ax.

Whenever an agent finishes the execution of a particular SI, it has to allocate
each of the subsequent dependent SIs to other agents (this may include itself).
The mechanism for allocating SIs to other agents is also mainly influenced by
the agents’ relations. The decision mechanism of an agent is as follows:

– When an agent needs to allocate a SI, it will execute the SI if it is capable
of the service and has no waiting tasks (capacity is not completely used up)

– Otherwise, it will try to assign it to one of its subordinates containing the
service in its accumulated service set. This involves the agent traversing
through the accumulated service sets (ASx) of all its subordinates and then
choosing one subordinate from among the suitable ones. If the agent finds
no suitable subordinate (no subordinate or their subordinates are capable of
the service) and it is capable of the service itself (but did not initially assign
to self because its capacity is filled), then it will add the SI to its waiting
queue for execution.

212 R. Kota, N. Gibbins, and N.R. Jennings

– If neither itself nor its subordinates are capable of the service, then the agent
tries to assign it one of its peers by traversing through their service sets and
choosing from among the suitable ones (those capable of the service).

– If none of the peers are capable of the service either, then the agent will
pass it back to one of its superiors (who will then have to find some other
subordinates or peers to execute the service).

Therefore, an agent mostly delegates SIs to its subordinates and seldom to its
peers. Thus, the structure of the organisation influences the allocation of the SIs
among the agents. Moreover, the number of relations of an agent contributes to
the management load that it incurs for its allocation actions, since an agent will
have to sift through its relations while allocating a SI. One unit of management
load is added to the load on the agent every time it considers an agent for
an allocation (mathematically modelled in Sec. 3.3). Therefore, an agent with
many relations will incur more management load per allocation action than an
agent with fewer relations. Also, a subordinate will tend to cause management
load more often than a peer because an agent will search its peers only after
searching through its subordinates and not finding a capable agent. Generally,
it is expected that an agent will interact more frequently with its subordinates
and superiors than its peers. This process of assigning a SI to an agent requires
sending and receiving messages to/from that agent. Thus, task allocation also
requires inter-agent communication which adds to the cost of the organisation.

In summary, the authority relations impose the hierarchical structure in the
organisation, while the peer relations enable the otherwise disconnected agents
to interact directly. It is important to note that while we present only these
kinds of relations, the model allows the flexibility to depict more relation types
in a similar fashion. Thus, the set of the relation types presented here can be
expanded or contracted depending on the domain that is to be represented by the
organisation model. Using this model, we abstract away the complex interaction
problems relating to issues like service negotiation, trust and coordination. We
do so, so that the model keeps the focus on the essence of self-organisation and
autonomicity and isolates its impact on system performance.

Formally denoting the structure, every link gi belonging to G is of form:-
gi = 〈ax, ay, typei〉 where ax and ay are agents that the link originates and
terminates at respectively and typei denotes the type of link and can take any of
the values in the set {Acqt, Supr, Peer} to denote the type of relation existing
between the two agents. The absence of a link between two agents means that
they are strangers.

3.3 Organisation Performance Evaluation

The performance of a computing system denotes how well it performs its tasks.
In terms of an agent organisation, the performance measure can be abstracted
to the profit obtained by it. In our model, the profit is simply the sum of the
rewards gained from the completion of tasks when the incurred costs have been
subtracted. In more detail, the cost of the organisation is based on the amount

A Generic Agent Organisation Framework for Autonomic Systems 213

of resources consumed by the agents. In our case, this translates to the cost
of sending messages (communication) and the cost of any reorganisation taking
place within the organisation. Thus, the cost of the organisation is:

costORG = C.
∑

ax∈A

cx + D.d (1)

where C is the communication cost coefficient representing the cost of sending
one message between two agents and D is the reorganisation cost coefficient
representing the cost of changing a relation. cx is the number of messages sent
by agent ax and d is the number of relations changed in the organisation.

As stated earlier, agents have limited capacities and their computational load
cannot increase beyond this capacity. Since, an agent might perform three kinds
of actions in a time-step (task execution, task allocation, adaptation), the load
on an agent is the summation of the computational resources used by the three
actions and can be represented by three terms. Thus, the load lx on agent ax in
a given time-step is:

lx =
∑

sii∈WxE

pi + M
∑

sij∈WxF

mj,x + R.rx (2)

– pi is the amount of computation expended by ax for executing SI sii.
– mj,x is the number of relations considered by ax while allocating SI sij .
– WxE is the set of SIs (possibly belonging to many tasks) executed by ax.
– WxF is the set of SIs being allocated by ax.
– M is the ‘management load’ coefficient denoting the computation expended

by an agent to consider one of its relations while allocating a single SI.
– R is the ‘reorganisation load’ coefficient, denoting the amount of computa-

tional units consumed by an agent while reasoning about adapting a relation.
– rx is the number of agents considered by ax for adaptation, in that time-step.

In this way, M and mj,x, together represent the computational load for task
allocation that is affected by the relations possessed by the agent, thereby pro-
viding a simple and explicit method of denoting the effect of the organisation
structure on the individual agents. Similarly, R and rx are used to represent
the load caused by reasoning about adaptation (if any). Thus, the coefficient R
denotes the amount of resources at the agent that are diverted for adaptation
rather than performing tasks and help in deciding about when to reason about
adaptation (meta-reasoning).

Since, the load lx of ax cannot exceed its capacity Lx, any excess SIs will
be waiting for their turn, thus delaying the completion time of the tasks. The
rewards obtained by the organisation depend on the speed of completion of tasks.
In particular, a task w completed on time accrues the maximum reward bw which
is the sum of the computation amounts of all its SIs:

bw =
|siw|∑
i=0

pi (3)

214 R. Kota, N. Gibbins, and N.R. Jennings

where siw is its set of SIs. For delayed tasks, this reward degrades linearly with
the extra time taken until it reaches 0:

rewardw = bw − (ttaken
w − treqd

w) (4)

where ttaken
w represents the actual time taken for completing the task, while treqd

w

is the minimum time needed. Thus, the total reward obtained by the organisation
is the sum of the rewards of the individual tasks completed by the organisation:

rewardORG =
∑

w∈W

rewardw (5)

where W is the set of all tasks. The organisation’s performance is measured as:

profitORG = rewardORG − costORG (6)

Thus, for higher profits, the reward should be maximised, while the cost needs to
be minimised. Both of these are affected by the allocation of tasks between the
agents which, in turn, is influenced by the organisation structure. It is important
to note that the agents only have a local view of the organisation. They are not
aware of all the tasks coming in to the organisation (only those SIs allocated to
them and the immediately dependent SIs of those allocated SIs) and neither are
they aware of the load on the other agents. In spite of this incomplete informa-
tion, they need to cooperate with each other to maximise the organisation profit
through faster allocation and execution of tasks. Therefore, by modelling both
the decentralisation and individual agent load along with inter-agent dependence
and global profit, this evaluation mechanism suitably models the requirements
faced by a designer while developing autonomic systems. In the same vein, rea-
soning and adapting the organisation also take up resources (as denoted by R
and D) in our model, thus reflecting real-life scenarios.

4 Applying the Agent Organisation Framework

We illustrate our framework by using it to depict an autonomic system in charge
of the university grid network system as outlined in Sec. 1. First, to illustrate
our task model, consider a sample task possibly faced by this system. Assume
that a project involves producing a predictive model of a given city. Such a task
will involve analysing the GIS data of the required city, obtaining the population
density of the city over the past years and then using some kind of statistical
analysers on this data to estimate the population distribution in the future.
It will also involve predicting the changes to the city transport system using
the GIS information on this estimated population, and alongside render the
map of the city graphically. In more detail, let us assume that the first part
of this task will be to obtain the geographical data of the city and analyse it.
In terms of our model, this can be designated as SI geo map needing service
gis-analyser with computation 20 (very intensive job). After this, let us say
that the subsequent sub-tasks are obtaining the historical population data of

A Generic Agent Organisation Framework for Autonomic Systems 215

the city and rendering the city-map graphically. These will form SIs get census
and draw city requiring services census-data (getting and cleaning the census
information from the archives) and graphics (graphically modelling to result in
an image). Finally, execution of get census might reveal that further statistical
analysis is required to properly predict the population growth in the future and
also that the growth caused by immigration depends on the transport incoming
to the city. These can be designated as analyse census and transport flow requiring
services stat-analyser and gis-analyser (as the transport network of the
city can be obtained by analysing the GIS data) respectively. Also, note that
the computation required for geo map is much higher than that required for
transport flow even though both SIs need the same service. The task structure
for this scenario, including the SIs and the dependencies is shown in Fig. 1(a).
Representing this task formally:

get census(census-data,3)

draw city(graphics,12)

transport flow(gis-analyser,11)

analyse census(stat-analyser,9)

geo map(gis-analyser,20)

leaf node SIs

(a) Task structure

peer peer

() services of self

{ } accm. sets of subrs

[] services of peers

acqt acqt

subrsupr

(gis-analyser){{census-data},{gis-analyser,graphics,stat-analyser}}[]

[gis-analyser,graphics]
(census-data){} {gis-analyser,graphics}[]

geo2

geo1

socl stat
(stat-analyser)

(gis-analyser,graphics){}[census-data]

(b) Organisation structure

Fig. 1. Representation of an example task and organisation

In the same vein, consider a sample agent organisation to represent the au-
tonomic system. Taking a limited view, let us focus on only four agents in this
organisation— geo1 and geo2(two computers in the geography department), socl
(a computer in the sociology department) and stat (an analyser in the statistics
department). The services provided by the agents are basically their capabil-
ities in terms of hardware, software and data accessible to them. Therefore,
let us assume that geo1 provides service gis-analyser. Similarly socl provides
census-data, which is the population data of various places in all the past years,
and stat provides stat-analyser service. However, geo2 is capable of provid-
ing both gis-analyser (just like geo1) and graphics (because it also contains
high end graphics cards for rendering maps). Given this, let us look at the pos-
sible structure of the organisation. Let socl and geo2 have a peer relationship.
Also, assume geo1 has two subordinates — socl and stat (because, say, often
GIS based jobs are followed by either census information or statistical analysis).

216 R. Kota, N. Gibbins, and N.R. Jennings

stat, in turn, has geo2 as a subordinate. Moreover, while socl and stat are ac-
quaintances of each other, geo2 and geo1 are not aware of each other. The G for
this organisation contains 5 organisational links:

G = {〈geo1, socl, Supr〉, 〈geo1, stat, Supr〉, 〈stat, geo2, Supr〉,
〈socl, geo2, P eer〉, 〈socl, stat, Acqt〉}

For this organisation, the organisation graph is shown in Fig. 1(b). The absence
of an arrow between two agents means that they are strangers. In addition, the
information possessed by the agents about the services provided by their relations
is also shown. For example, the accumulated service set (AccmSet) of agent
geo1, in turn, contains three sets representing its own service (gis-analyser),
AccmSet of its subordinate socl (census-data) and of its other subordinate stat
(gis-analyser,graphics,stat-analyser).

As an illustration of the allocation process, consider the sample organisation
in Figure 1(b) executing the task shown in Figure 1(a). The allocation of SIs
across the agents occurs as shown in Figure 2(a). In detail, we assume that the
task arrives at agent geo1. Hence, geo1 checks that it is capable of geo map (as
it is capable of service gis-analyser and has available capacity) and therefore,
allocates geo map to itself. After execution, geo1 needs to allocate the two de-
pendencies of geo map which are get census and draw city to capable agents. For
allocating get census, it checks the accumulated service sets of its two subordi-
nates (socl and stat) and allocates to socl (because it is the only one capable
of service census-data). Similarly, it allocates draw city to stat because this
subordinate contains service graphics in its accumulated service set. However,
stat has to reallocate draw city to its subordinate geo2 which is actually capable
of that service. Similarly, after socl executes get census, it needs to allocate the
two dependencies (transport flow and analyse census) to appropriate agents. So,
socl allocates transport flow to its peer geo2 as it has no subordinates. It also

get
census

analyse census

geo map

socl

geo2

transport
flow

draw
city

stat

geo1

(a) Before Adaptation

transport

geo map

get
census

stat

city

socl

analyse
census

flow

draw

geo2

geo1

(b) After Adaptation

get
census

geo2

stat

draw
city

socl

geo1

analyse
census

transport
flow

geo map

(c) After Failure

Fig. 2. Allocation of the task in Fig. 1(a) in the organisation

A Generic Agent Organisation Framework for Autonomic Systems 217

hands back analyse census to its superior geo1 as it has found no subordinates or
peers with that service (stat-analyser). geo1 then assigns analyse census to its
subordinate stat (capable of stat-analyser) which then proceeds to execute it.

Thus, the structure of the organisation influences the allocation of service in-
stances among the agents. Therefore, an efficient structure can lead to better and
faster allocation of tasks. We see that in Figure 2(a), the allocation of draw city
and analyse census was indirect and needed intermediary agents (stat and geo1
respectively). Now, suppose on the basis of some adaptation method (such as
that detailed in [12]), the agents modify their relations to form the structure
as shown in Figure 2(b). That is, geo1 and geo2 decide to form a superior-
subordinate relation and so do socl and stat. Meanwhile stat ends up becoming
only an acquaintance of geo1 and geo2 as they decide to change the previously
existing authority relations. With this new structure, the allocation of the SIs
turns out to be much more efficient as all the allocations end up being direct
one-step process. Therefore, they take shorter time because intermediary agents
are not involved. Moreover, this allocation process requires less computation and
communication because, for any SI, only a single agent performs the allocation
and sends only one message. Compared to previous structure, this decreases the
load on geo1 and stat without putting extra load on other agents.

Now, let us suppose that after some time has passed, geo2 is reconfigured
(perhaps, the OS is reinstalled) such that it is no longer able to to provide
gis-analyser. In such a scenario, socl will no longer be able to delegate trans-
port flow to geo2 and will be handing back the SI to its superior geo1. socl does
so only after unsuccessfully considering its own subordinates and peers for al-
location, thus causing more load onto itself and also taking more time. Under
these changed circumstances, socl and geo1 should realise that it is better to
change their current relation into a peer relation so that socl can delegate to
geo1 quicker. Reversing the existing superior-subordinate relation will not be as
useful because geo1 also needs to continue delegating SIs like get census to socl.
Hence, these two agents change their relation as shown in Fig. 2(c).

In this way, the performance of the organisation can be improved by modifying
the organisation structure through changes to the agent relationships. This will
involve changes to the organisation graph G.

With this example and the sample adaptation scenarios, we see that adap-
tation of the structure plays an important role in the performance of the or-
ganisation. Furthermore, we illustrated that our framework not only provides
a well-suited platform to represent autonomic systems, but also gives insights
into possible avenues for self-organisation and permits the agents to perform the
required adaptation. Here, while we showed how a more efficient structure can
lead to the better allocation of a task, we should note that the organisation is
performing several tasks at any given time and that the structure is common
to all these possibly dissimilar tasks. Given this, the adaptation method should
be such that the agents are able to identify which set of relations will be most
suitable for their current context on the basis of the kind of tasks facing them
in addition to their own service sets and allocation patterns.

218 R. Kota, N. Gibbins, and N.R. Jennings

5 Conclusions

In this paper, we introduced an abstract organisation framework for depicting
distributed computing systems to aid in the development of autonomic systems.
We presented our model by detailing our representation of the task environment
and the organisation along with a performance evaluation system. The tasks
are made up of service instances, each of which specifies the particular service
and the computation required. The organisation consists of agents providing
services and having computational capacities. The structure of the organisation
manifests the relationships between the agents and regulates their interactions.
Any two agents in the organisation could be strangers, acquaintances, peers or
superior-subordinate. The relations of the agents determine what service infor-
mation is held by the agents about the other agents and how to allocate service
instances to them. We also presented the coefficients that affect the environment
(communication cost, management load, reorganisation load) and the functions
for calculating the organisation’s cost and reward, thus enabling us to evaluate
the profit obtained by it when placed in a dynamic task environment.

Our organisation framework provides a simulation platform that can be used
by designers to implement and test their adaptation techniques before porting
them to real and domain-specific systems. In particular, we designed our model
such that the agents, though generic, realistically represent the components that
would compose autonomic systems. The organisation is decentralised and agents
possess local views and limited capacities like any large distributed computing
system. Nevertheless, the agents interact with each other based on the organisa-
tion structure, which also influences the task allocations and thereby the organi-
sational performance. This presents a suitable environment for self-organisation,
which we have illustrated by using it to represent an intelligent and adapting,
autonomous home-management system. In this context, our framework provides
sufficient flexibility for the agents to modify their characteristics and social in-
teractions, that is, manage themselves, just as expected in autonomic systems.
Furthermore, we also provided the reorganisation cost (D) and load coefficients
(R) to represent the price of adaptation. Thus, we have presented a suitable or-
ganisation framework that can be used as a platform for developing adaptation
techniques, especially focusing on the agents’ social interactions.

References

1. Carley, K.M., Gasser, L.: Computational organization theory. In: Multiagent Sys-
tems: A Modern Approach to Distributed Artificial Intelligence, pp. 299–330. MIT
Press, Cambridge (1999)

2. Dignum, V.: A model for organizational interaction: based on agents, founded in
logic. Ph.D. thesis, Proefschrift Universiteit Utrecht (2003)

3. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organi-
zational view of multiagent systems. In: Proc. of 4th Intl. Workshop on Agent
Oriented Software Engineering, Melbourne, Australia, pp. 214–230 (2003)

4. Fox, M.S.: An organizational view of distributed systems, pp. 140–150. Morgan
Kaufmann Publishers Inc., San Francisco (1988)

A Generic Agent Organisation Framework for Autonomic Systems 219

5. Galbraith, J.R.: Organization Design. Addison-Wesley, Reading (1977)
6. Gershenson, C.: Design and control of self-organizing systems. Ph.D. thesis, Vrije

Universiteit Brussel (2007)
7. Grossi, D., Dignum, F., Dignum, V., Dastani, M., Royakkers, L.: Structural eval-

uation of agent organizations. In: Proc. of the 5th AAMAS (2006)
8. Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: Moise: An organizational

model for multi-agent systems. In: Proc. of the 7th Ibero-American Conf. on AI
(IBERAMIA-SBIA 2000), pp. 156–165 (2000)

9. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review 19(4), 281–316 (2005)

10. Horling, B., Lesser, V.: Using quantitative models to search for appropriate orga-
nizational designs. In: Autonomous Agents and Multi-Agent Systems (2008)

11. Jin, Y., Levitt, R.E.: The virtual design team: A computational model of project
organizations. Computational & Mathematical Organization Theory (1996)

12. Kota, R., Gibbins, N., Jennings, N.R.: Self-organising agent organisations. In: The
Eighth International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), pp. 797–804 (2009)

13. Krackhardt, D., Carley, K.M.: A pcans model of structure in organizations. In:
Proc. of Intl. Symp. on Command and Control Research and Technology (1998)

14. Lematre, C., Excelente, C.B.: Multi-agent organization approach. In: Proc. of 2nd
Ibero-American Workshop on DAI and MAS, Toledo, Spain (1998)

15. Schillo, M., Bettina Fley, M.F., Hillebrandt, F., Hinck, D.: Self-organization in
multiagent systems: from agent interaction to agent organization. In: Proc. of Intl.
Workshop on Modeling Artificial Societies and Hybrid Organizations (2002)

16. Sierra, C., Rodriguez-Aguilar, J.A., Noriega, P., Esteva, M., Arcos, J.L.: Engi-
neering multi-agent systems as electronic institutions. UPGRADE The European
Journal for the Informatics Professional V(4), 33–39 (2004)

17. Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 16(2), 151–185 (2008)

18. Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A., Whalley, I., Kephart,
J.O., White, S.R.: A multi-agent systems approach to autonomic computing. In:
Proc. of 3rd AAMAS (2004)

19. Thompson, J.D.: Organizations in Action: Social Science Bases in Administrative
Theory. McGraw-Hill, New York (1967)

20. Montealegre Vázquez, L.E., López y López, F.: An agent-based model for hierar-
chical organizations. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O.,
Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386,
pp. 194–211. Springer, Heidelberg (2007)

21. Vazquez-Salceda, J., Dignum, V., Dignum, F.: Organizing multiagent systems. Au-
tonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

22. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methdol. 12(3) (2003)

Metareasoning and Social Evaluations in Cognitive
Agents

Isaac Pinyol and Jordi Sabater-Mir

IIIA - Artificial Intelligence Research Institute
CSIC - Spanish National Research Council

Bellaterra, Barcelona, Spain
{ipinyol,jsabater}@iiia.csic.es

Abstract. Reputation mechanisms have been recognized one of the key tech-
nologies when designing multi-agent systems. They are specially relevant in
complex open environments, becoming a non-centralized mechanism to control
interactions among agents. Cognitive agents tackling such complex societies must
use reputation information not only for selecting partners to interact with, but also
in metareasoning processes to change reasoning rules. This is the focus of this
paper. We argue about the necessity to allow, as a cognitive systems designers,
certain degree of freedom in the reasoning rules of the agents. We also describes
cognitive approaches of agency that support this idea. Furthermore, taking as a
base the computational reputation model Repage, and its integration in a BDI ar-
chitecture, we use the previous ideas to specify metarules and processes to modify
at run-time the reasoning paths of the agent. In concrete we propose a metarule to
update the link between Repage and the belief base, and a metarule and a process
to update an axiom incorporated in the belief logic of the agent. Regarding this
last issue we also provide empirical results that show the evolution of agents that
use it.

Keywords: Reputation, Trust, Cognitive Agents, Metareasoning, BDI agents.

1 Introduction

Reputation mechanisms have been recognized one of the key technologies when design-
ing multi-agent systems (MAS) [1]. In this relatively new paradigm, reputation models
have been adapted to confront the increasing complexity that open multi-agent envi-
ronments bring. Thus, the figure of agents endowed with their own private reputation
model takes special relevance as a non-centralized mechanism to control interactions
among agents. Following this line, cognitive agents using cognitive reputation models
arise as one of the most complete and generic approaches when facing very complex
societies. Usually, cognitive agent’s architectures, like BDI (Belief, Desire, Intention),
follow logic-based reasoning mechanisms, providing then a high flexibility and theo-
retically well-founded reasoning.

Repage [2] is a reputation system based on a cognitive theory of reputation that
has been used in logical BDI reasoning processes [3] (BDI+Repage), offering then an
integrated reasoning framework. Even when this work faces the field of computational

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 220–235, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Metareasoning and Social Evaluations in Cognitive Agents 221

reputation models, the focus is not on the model itself, but on the integration of the
information that it provides with the other elements of the agent. Following this line,
a very important aspect of cognitive agents is the capacity to reason about their own
reasoning processes. These metareasoning processes act at all levels in the agents’ mind.
However, we are interested in the aspects related to reputation information.

In this concrete work we justify the use of metarules and metaprocesses in cognitive
agents and provide mechanisms to specify them. We apply these ideas to some rules
and axioms of the BDI+Repage model. In concrete, we propose a specification that al-
lows the modification at run-time of the rule that relates reputation information with
logic belief formulas, and also of an axiom rule integrated in the logical belief based of
the agent. Regarding this last point we provide both a metareasoning process to update
such axiom, and empirical results of an implementation we develop of the BDI+Repage
model placed in a replication of a simple market, populated by buyers, sellers and infor-
mant agents. To detail our work, in section 2 we introduce a cognitive theory of agency
to justify the use of metarules and metareasoning when modeling cognitive agents. In
section 3 we explain the agent model, and in section 4 we provide the tools to specify
metareasoning rules and processes. In the same section we apply them to some reason-
ing rules of the BDI+Repage model. In section 5 we present empirical results to show
how the dynamic modification of axioms can produce good results in the agents’ level of
satisfaction. Finally in section 6 we conclude our analysis and present the future work.

2 Reasoning and Metareasoning: A Cognitive Approach

In this section we briefly get in touch with the cognitive theory that supports the work
done in this paper. The theory developed by Castelfranchi and Paglieri [4] is quite
generic and focuses on the dynamics of goals processing and its relation with the be-
liefs of the agent. Although the specific topic of the paper relies on describing which
typology of beliefs participates in each stage of goal dynamics, we are very interested
in the concepts of belief-supporting goals and belief-supporting beliefs that are pointed
out by the theory. The authors argue that goals and beliefs have a supported structure
of beliefs, i.e., beliefs from which a given goal or belief is activated. Moreover, such
structure can be explicitly represented also as beliefs, achieving then a metabelief level.

In our work we are specially interested in the idea of belief-supporting beliefs which
has been deeply studied in [5]. When such belief structures are explicitly represented as
beliefs, the authors named them reasons. Thus, a given belief has a set of reasons that
continuously supports it. Because of this explicit representation, agents can also reason
about them, achieving then a metareasoning process that also relies on beliefs.

Reasons are important because allow the agent to justify herself why the set of be-
liefs and goals are activated, but also to justify her beliefs to other agents. This last issue
has been extensively studied in the field of argumentation [6]. Reasons are also impor-
tant because they allow the agents to review their own reasoning process, by starting
metareasoning processes that change the reasoning paths.

A logical perspective is a good starting point for the explanation of more technical
details. Lets consider a propositional logic in which proposition p holds. If formula
p → q also holds, then for sure q will hold. From the logical view this reasoning has

222 I. Pinyol and J. Sabater-Mir

been produced by modus ponents by two explicit formulas (p and p → q). If we are
talking about the beliefs of an agent, the belief on q (Bq) is justified by the beliefs Bp
and B(p → q). Notice that if the agent realizes that p was not the case, then q must
be withdrawn. This is the typical belief revision process. However, the agent may also
realize that it is not the case that p → q. Thus, q should be also withdrawn. However,
from a cognitive point of view this situation is quite different than the first one, since
the formula p → q is a reason, an explicit belief saying that from p can be deduced q.
Therefore, a reasoning concerning the truth of p → q could be seen as a metareasoning.
It could be argued that the truth of p also affects the reasoning process, but the object
of the reasoning is not a representation of an explicit reasoning step, as it is in the other
case. See figure Figure 4 for a graphical representation of the structure.

Fig. 1. The generic belief-supporing beliefs structure with explicit representation of a deduction
step

The point of the discussion is that logics offers a nice way to construct trees of
supporting formulas, through logical reasoning, but in the general case, the links can
be modified by the same agent due to other beliefs. As a designers of cognitive agents
architectures, we must deal with these concepts to consider real autonomous agents. In
this paper we extend a BDI agent architecture that incorporates reputation information
[3] by allowing a partial update of the rules that govern the reasoning process, focusing
on the belief-supporting beliefs, letting for future work the relationship between desires
and intentions. Next section provides the description of the BDI+Repage model.

3 A Multicontext BDI Agent with Repage System

The model of agent we present in this section is a BDI model in which Repage reputa-
tion system is also incorporated. To explain it is necessary first to get in touch with the
Repage reputation model, and the cognitive theory of reputation that supports it.

3.1 Preliminaries: Social Evaluations, Image and Reputation

Repage [2] is a computational system designed to be part of the agents architecture and
based on a cognitive theory of reputation [7]. It provides social evaluations as image
and reputation. A social evaluation is a generic term used to encapsulate the information
resulting from the evaluation that an agent (evaluator) might make about another agent’s

Metareasoning and Social Evaluations in Cognitive Agents 223

(target’s) performance regarding some skill, standard or norm (object of the evaluation).
The object of the evaluation relies on which property of the target agents is evaluated.
The value of the evaluation indicates how good or bad the performance resulted to be.

A social evaluation in Repage has three elements: a target agent, a role and a prob-
ability distribution over a set of labels. The target agent is the agent being evaluated.
The role is the object of the evaluation and the probability distribution the value of the
evaluation. The evaluator is the agent making the social evaluation.

The role uniquely identifies a kind of transaction and the classification of the possi-
ble outcomes. The current implementation of Repage considers five abstract linguistic
labels for this classification: Very bad, Bad, Neutral, Good, Very good(VB, B, N, G, VG
from now on), and assigns a probabilistic value to each label, however, we generalize
it considering a finite number of labels w1, w2 The meaning of each label must be
contextualized depending on the role. For instance, we can represent a Repage image
predicate as imgi(j, seller,[0.4, 0.2, 0.2, 0.1, 0.1]). This indicates that agent i holds
an image predicate about agent j in the role of seller, and the value of the evaluation
is [0.4, 0.2, 0.2, 0.1, 0.1]. This value reflects a probability distribution over the labels
VB, B, N, G, VG. Then, it means that agent i believes that in the transaction of buying,
when agent j acts as a seller, there is a probability of 0.4 to achieve a V B result (in
the context of this transaction, this may mean a very low quality of the product), with a
probability of 0.2 a B result, etc. For reputation predicates, it is the same as image, but
instead, the agent believes that the evaluation is said by all or most of the agents in the
group. We refer to [2] for details on the calculus and the internal architecture.

In the next subsection we detail the BDI model, starting from the basic framework
of multicontext systems.

3.2 The Multi-Context BDI Model

Multi-context systems (MCS) provide a framework that allows several distinct theoret-
ical components to be specified together with the mechanisms that link them together
[8]. These systems are composed of a set of contexts (or units), and a set of bridge rules.
Each context can be seen as a logic and a set of formulas written in that logic. Bridge
rules are the mechanisms with which to infer information from one context to another.
Each bridge rule has a set of antecedents (preconditions) and a consequent. The conse-
quent is a formula that becomes true in the specific context when each antecedent holds
in its respective context.

The specification of our BDI agent as a multi-context system is inspired by the mod-
els presented in [9,10]. It is formalized with the tuple Ag = 〈{BC, DC, IC, PC,
CC, RC}, �br〉. These correspond to Belief, Desire, Intention, Planner, Communi-
cation and Repage contexts respectively. The set of bridge rules �br incorporates the
rules 1, 2, 3, 4, P, Q and B, the bridge rules AI and AR shown in Figure 3, and rule B.
Figure 2 shows a graphical representation of this multi-context specification. In the next
subsections we briefly explain each context and bridge rule.

3.3 Belief Context (BC)

This context contains the beliefs of the agent. For this we use BC-logic [11], a prob-
abilistic dynamic belief logic with a set of special modal operators. We are specially

224 I. Pinyol and J. Sabater-Mir

Fig. 2. The Repage context embedded in a multi-context BDI agent. Circles represent context and
arrows represent bridge rules.

interested in the operators Bi and S, the first expressing what is believed by agent i,
and the latter, what has been said by all the agents in the group respectively. The dy-
namic aspect of this logic is introduced by defining a set Π of actions. Then, for α ∈ Π
and ϕ ∈ BC, formulas like [α]ϕ indicate that after the execution of α, the formula ϕ
holds.

This logic incorporates specific axioms to reason about the probabilities of formulas
by means of the operator Pr and constants p such that p ∈ [0, 1]

⋂
IQ. It follows that for

formulas ϕ ∈ BC, the expression p ≤ Prϕ indicates that the probability of holding ϕ
is higher or equal to p. This logic is based on the Logic of Knowledge and Probability
introduced by Fagin and Halpern in [12].

BC-logic allows expressions like Bi(p ≤ Pr([α]ϕ)). This indicates that agent i
believes that the probability of holding ϕ after the execution of action α is at least p.
Thereby, the formula S(p ≤ Pr([α]ϕ)) expresses the same but in terms of what all
agents have said. To simplify the notation, we will write expressions like Bi(p ≤ Prϕ)
as (Biϕ, p), and S(p ≤ Prϕ) as (Sϕ, p).

This logic allows us to express image information in terms of beliefs Biϕ, and rep-
utation information in terms of beliefs about what is said, BiSϕ (see section 3.8). By
grounding image and reputation into simple elements, we endow the agent with a pow-
erful tool to reason over these concepts.

The complete syntax, semantics and axiomatization of BC-logic can be found at
[11]. The belief operator follows the standard K, D, 4 and 5 axioms of modal logic,
while operator S has its owns. The most interesting axioms are those that describe the
interaction between S and Bi. These are closely related to the concept of trust that
Demolombe in [13] defined regarding agents as information sources. The relationship
of the two operators implies a relation between image and reputation at the belief level
[11]. For instance, if for every ϕ the formula Bi((Sϕ → ϕ), p) holds (trust axiom),
then agent i believes that what all agents say is really true with a probability p. The trust
axiom has big implications in the relation between image and reputation information at
the belief level [11].

3.4 Desire Context (DC)

This context deals with the desires of the agent. Like the BDI model described by Rao
and Georgeff in [14], they are attitudes that are explicitly represented and that reflect the

Metareasoning and Social Evaluations in Cognitive Agents 225

general objectives of the agent. We consider that desires are graded, and for that, we use
the multi-valued logic (DC-logic) based on the Lukasiewicz logic described in [10].

DC-logic includes two fuzzy modal operators1: D+
i and D−

i . The intended meaning
of D+

i ϕ is that the formula ϕ is desired by agent i, and its truth degree, from 0 (min-
imum) to 1 (maximum), represents the level of satisfaction if ϕ holds. The intended
meaning of D−

i ϕ is that ϕ is negatively desired, and the truth degree represents de level
of disgust if ϕ holds. Also, DC-logic includes truth constants r where r ∈ [0, 1]

⋂
IQ,

and the connectives & and ⇒ corresponding to the Lukasiewicz conjunction and impli-
cation respectively.

3.5 Intention Context (IC)

This context describes the intentions of the agent. Like in the Rao and Georgeff’s BDI
model [14], intentions are explicitly represented, but in our case generated from beliefs
and desires. Also, we consider that intentions are graded, and for this we use the IC-
logic defined in [10].

Similar to DC-logic, IC-logic defines the fuzzy modal operator Iiϕ, indicating that
agent i has the intention to achieve ϕ, and its truth degree (from 0 to 1) represents a
measure of the trade-off between the benefit and counter-effects of achieving ϕ. Fur-
thermore, IC-logic is defined in terms of a Lukasiewicz logic in the same way as DC-
logic. Also, formulas like r ⇒ Iiϕ will be written as (Iiϕ, r).

3.6 Planner Context (PC) and Communication Context (CC)

The logic in the Planner context is a first-order logic restricted to Horn clauses. In this
first approach, this context only holds the special predicate action, which defines a
primitive action together with its precondition. We look forward to introducing plans as
a set of actions in the future. Communication context is a functional context as well, and
its logic is also a first-order logic restricted to Horn clauses with the special predicates
does (to perform actions), and recij (to notify that agent i has received a communica-
tion from agent j).

3.7 Repage Context (RC)

The Repage context contains the Repage model. We can assume that Repage predicates
are specified in first-order logic restricted to Horn clauses, where the special predicates
Img and Rep are defined. We write them as imgi (j, r, [Vw1 ,Vw2 ,. . .]) and repi (j, r,
[Vw1 ,Vw2 ,. . .]), corresponding to the Image and Reputation of agent j playing the role
r, from the point of view of i.

When in Repage the role and its labeled weights are defined, the role uniquely identi-
fies which kind of transaction is part of, and each wk identifies a predicate. To simplify,
we can assume that the transaction identified by a role is summarized in a single action.
To state this, we presuppose the definition of a mapping Rr between each role r and its

1 The original logic in [10] does not contain the reference to the agent. We include it to remark
the desires of agent i.

226 I. Pinyol and J. Sabater-Mir

action. In a similar way, we assume a mapping Tr,wk
between each role r and label wk

to a predicate.
We illustrate this with an example: In a typical market, the transaction of buying

certain product involves two agents, one playing the role of buyer and the other playing
the role of seller. From the point of view of the buyer, if she wants to evaluate other
agents that play the role of seller, she knows that the associated action is buy. So,
Rseller maps to buy. In the same way, the agent must know the meaning of each label
wk of Repage. Then, we can define that Tseller,w1 is veryBadProduct, Tseller,w2 is
okProduct, etc.

In this mapping, the Repage predicate imgi(j, seller, [0.2, 0.3, . . .]) indicates that
agent i believes that there is a probability of 0.2 that after executing the action Rseller

(buy) with agent j as a seller, she will obtain a Tseller,w1 (veryBadProduct); with
0.3 that she will obtain Tseller,w2 (OKproduct), etc. With reputation predicates it is
similar, but the concept is quite different. In this case it indicates that agent i believes
that the corresponding evaluation is said by the agents in the group.

3.8 Bridge Rules

Bridge rules AI and AR (see Figure 3) are in charge of generating the correspond-
ing beliefs from images and reputations respectively. Notice that given a Repage social
evaluation, these bridge rules generate one belief for each weight wk. Both bridge rules
use the belief operator (Bi) over certain formula, but meanwhile rule AI states a knowl-
edge that agent i believes as true, AR states a knowledge that agent i believes to be said.
They follow the definition of image and reputation we have given in the Repage context
in section 3.7.

The detail of the following rules can be found at [3]. Rules 1,2,3,4 perform the actual
BDI reasoning. Bridge rules 1 and 2 transform generic desires to more concrete and
realistic desires. To do this, these bridge rules merge generic desires from DC (with
absolute values of satisfaction or disgust) with the information contained in BC, which
includes the probability to achieve the desire by executing certain action. The result is
a desire whose gradation has changed, becoming more realistic. This is calculated by
the function g. If we define it as the product of both values, we obtain an expected level
of satisfaction/disgust. Notice that we require that the belief information implies the
achievement of the desired predicate.

AI :

RC : imgi(j, r, [Vw1 , Vw2 , . . .])
BC : (Bi([Rr(j)]Tr,w1 , Vw1))
BC : (Bi([Rr(j)]Tr,w2 , Vw2))

. . .

AR:

RC : repi(j, r, [Vw1 , Vw2 , . . .])
BC : (Bi(S([Rr(j)]Tr,w1 , Vw1)))
BC : (Bi(S([Rr(j)]Tr,w2 , Vw2)))

. . .

Fig. 3. The bridge rules AI and AR (see Figure 2). They translate Image and Reputation predi-
cates respectively into beliefs expressions in BC.

Metareasoning and Social Evaluations in Cognitive Agents 227

Bridge rule 3 generates intentions. It takes into account both the expected level of
satisfaction and the cost of the action. At the same time, executing an action to achieve
certain formula can generate undesirable counter-effects. Thus, bridge rule 3 also takes
into account the possible negative desires that can be reached by executing this action.
In this bridge rule, for each positive realistic desire (D+), we must include all negative
desires (D−) that can result from the same action. In this way we have the value of the
positive desire (δ+) and the sum of all negative desires (δ−) that can be achieved by
executing the same action. The strength of the intention that is created is defined by a
function f . Different f functions would model different behaviors. In our examples we
use the following definition: f(δ+, δ−) = max(0, δ+ − δ−).

Finally, bridge rule 4 instantiates a unique intention (the one with maximum degree)
and generates the corresponding action in the communication context.

4 The Metalevel Specification

In this section we specify a possible metalevel reasoning regarding the trust axiom of
the BC-logic and the bridge rules AI and AR. For this task we take ideas from the
specification of dynamic protocols [15] in the frame of open multiagent organizations.
Here, the specification of interaction protocols is described as a set of rules specified
at the design time. However, when facing open systems, often environmental or social
conditions for instance, may carry the necessity to modify such protocols at run-time.
These modifications must be product of a dialog, as a metaprotocol, among the partici-
pants. In [15], the author presents an infrastructure to allow agents the modification of
a subset of rules. It considers a k-level infrastructure, where at level 0, the main rules of
the protocol are specified with certain degrees of freedom (Dof). At level 1, a metapro-
tocol can be specified to allow the discussion about how to change the protocol of level
0. More levels can be specified following the idea that at level i the protocol allows the
discussion of the degrees of freedom of level i − 1.

4.1 DoF for Reasoning Rules

We apply the same DoF principle to some axioms and bridge rules of our BDI+Repage
architecture. Instead of using belief revisions techniques, we encourage the use of DoF
to update parts of rules that govern a reasoning process, not only for preserving consis-
tencies, but also for adaptation. Belief revision processes rely on crisp logic and look
for the smallest subset of formulas to keep a logical theory consistent when a formula
is added in the theory. For our needs this vision is limited because only faces logical
theories and because is used to avoid inconsistencies.

By using degrees of freedom, we bound the space of states by constraining what
can be modified and what not. Thus, a main reasoning structure remains constant, but
not static. In the case of logic-based BDI agents, this is very clear. For instance, the
original model that Rao and Georgeff presented [14] states some basic and untouchable
axioms to ensure several properties of the logical reasoning, but also considers other
set of axioms that when included in the logic, model totally different behaviors. A clear
example is the relation between the three main attitudes: beliefs, desires and intentions.

228 I. Pinyol and J. Sabater-Mir

They define a typology of agents, the main ones being realist, strong realist and weak
realist agents.

This is one of the advantages of using BDI models. The flexibility they achieve. By
simply adding or erasing some axioms we can model an infinity of agents. However,
when facing autonomous agents that must deal with open environments, we need some
more flexibility. In Rao and Georgeff’s BDI model, could an agent move from a strong
realism to weak realism at run-time? From a technical point of view it is just a matter
of changing two axioms. From a logical point of view, this process is outside the logic,
and must be done at a meareasoning level. The possibility to update or modify some
axioms is supported by the cognitive theory presented in the introduction of this paper,
in which real autonomous agents should be aware of the way they reason. Due to that,
agents can think about how they think and act in consequence (see section 2 for more
details).

Notice that in the model of Rao and Georgeff the switch between strong realism
and weak realism implies the totally substitution of a set of axioms for another set.
This is the most extreme scenario in which the DoF involves the whole rule, because
of the nature of the logic, which is crisp. More complex and expressive logics, like
the BC-logic presented in the previous section, can deal with probabilities, which can
be incorporated in the axioms to somehow tune their strength in the reasoning process,
for instance. In a similar way, brige rules, which in fact are outside the logic, can be
also tune by similar elements.

In the following sections we show how a similar formalism used for the DoF of
dynamic protocols can be used to specify a metareasoning model for our BDI+Repage
model.

4.2 A Metalevel Specification for the Rules AI and AR

In this subsection we focus on the relationship between the Repage model and the Belief
context. This relation is statically specified by the rules AI and AR. As we mentioned,
these rules are responsible for translating Image and Reputation predicates into atomic
beliefs. Following the specifications of the Repage reputation model and the underlying
theory, these rules are a very accurate formalism to generate the belief that in a more
atomic way represent the information provided by the reputation model. However such
transformation may carry out the logical inconsistency on the belief theory. This is
the case when the Trust axiom is present and we have very contradictory information
between an image and a reputation predicate of a given agent in a given role.

These inconsistencies always refer to probabilistic issues. To illustrate this, we can
assume that the trust predicate is present in the belief context as Bi(Sϕ → ϕ). Then, it
may occur that rules AI and AR have generated the following beliefs:

Bi([buy(alice)]V eryBad, 0.9) (1)

Bi([buy(alice)]V eryGood, 0.1) (2)

BiS([buy(alice)]V eryBad, 0.5) (3)

BiS([buy(alice)]V eryGood, 0.5) (4)

Metareasoning and Social Evaluations in Cognitive Agents 229

Due to the trust axiom, the formulas 3 and 4 imply the following formulas:

Bi([buy(alice)]V eryBad, 0.5) (5)

Bi([buy(alice)]V eryGood, 0.5) (6)

Notice that formula 1 implies formula 5, and formula 6 implies formula 2. The inconsis-
tency relies on that propositions veryBad and veryGood should be mutually disjoint.
Then, how is it possible to belief that with a probability higher that 0.9 after execution
of the action buy(alice) we will obtain a very bad product, and with a probability higher
that 0.5 we will obtain a very good product?

To solve this kind of situations we provide the agent with the capability to modify
its bridge rules. To do so, we define one degree of freedom at each one of the rules AI

and AR. By doing this we are specifying metarules (M(AI), M(AR)), which map to a
family of different AI and AR rules:

M(AI):

RC : imgi(j, r, [Vw1 , Vw2 , . . .])
BC : (Bi(pr([Rr(j)]Tr,w1 , Vw1)) = Xj,r,1)
BC : (Bi(pr([Rr(j)]Tr,w2 , Vw2) = Xj,r,2))

. . .

M(AR):

RC : repi(j, r, [Vw1 , Vw2 , . . .])
BC : (Bi(pr(S([Rr(j)]Tr,w1 , Vw1)) = Yj,r,1))
BC : (Bi(pr(S([Rr(j)]Tr,w2 , Vw2)) = Yj,r,2))

. . .

Notice that if we set the default value of Xj,r,1 and Yj,r,1 to 1, we have exactly the
original rules AI and AR, since in BC-logic, ϕ ↔ pr(ϕ) = 1. The process by which
the agent decides which value to take is a metareasoning process. Different heuristics
can be used to perform such task. What it is clear is that such heuristics is a process that
depends on a set of beliefs (Trust axiom and the beliefs that refer to the same agent and
role must be part of the inputs of such process).

4.3 A Metalevel Specification for the Trust Axiom

In a similar way, the generic trust axiom that relates what is said with what is believed
can be modified, and in fact, it is crucial for the adaptation of the agent. On the one
side, if no trust axiom is present in the theory, formulas like BiSϕ will never become
Biϕ. On the other side, if the trust axiom is present, BiSϕ would imply Biϕ. However,
we also talk about graded trust, Bi(pr(Sϕ → ϕ) = g), and the effects on the formulas
like BiSϕ and Bi(S(pr(ϕ) ≥ p))2. Different values of g model different behaviors of
the agent. Thus, we can consider this g as a DoF of the axiom. We can write the meta
axiom M(Trust) as

Bi(pr(Sϕ → ϕ) = Z)

2 It can be proved that if the graded trust axiom is present, and the formula Bi(S(pr(ϕ) ≥ p))
holds, then it can be deduced Bi(pr(ϕ) ≥ p · g) [11].

230 I. Pinyol and J. Sabater-Mir

As well, different heuristics as metaprocesses can be considered for the update of the
DoF. In section 5 we consider an heuristics for this axiom and show how agents behavior
changes during time.

Notice that the inclusion of such axiom with a Z higher that 0 may cause inconsis-
tencies in the theory, as we explained in the previous subsection. Because of that, this
process can start another process to update the values of Xj,r,p and Yj,r,p agent j, role
r and weight p.

4.4 Processes Description

Figure 4 shows a graphical representation of the metarules dependences. Circles M1
and M2 represent processes:

– M1: This process is in charge for deciding the DoFZ , which belongs to M(Trust).
In the experimental section we state how this concrete process could be performed.
In any case, the graphical representation shows that this process is fed by the actual
instantiation of the trust axiom (which is only characterized by the DoF variable
Z), and information from the Repage context. The output of the process is a new
value for Z (in the graphic is shown as Z ′).

– M2: This process only receives the current instantiation of the Trust predicate,
characterized by Z . As we argued, this value is the only that can produced incon-
sistencies in the theory of BC-Context. As output, it provides new values from the
DoF Xj,r,p and Yj,r,p, for each different agent j, role r and weight p. Thus, the
number of different instantiated rules is computed by |Ag| · |R| · |W |. This means
that potentially, each agent in each role can have a different inference rule from
Repage to BC-Context.

We leave the exploration of the metaprocess M2 for future work. Instead, we focus on
M1, providing a possible mechanism to compute Z .

Fig. 4. The metalevel specification. Dot lines specify the metalevel reasoning. Notice that all them
come from the belief context.

5 Experimentation

In this section we propose a concrete solution for the M1 process, to update the trust
axiom represented by the metarule

Metareasoning and Social Evaluations in Cognitive Agents 231

Bi(pr(Sϕ → ϕ) = Z)

As previously shown, this axiom plays a crucial role in the relationship between image
and reputation predicates. Different values of the degree of freedom produce a typology
of agents. When Z is 0, the agent only takes into account image information. When Z is
1, reputation information is as valuable as image information in terms of the impact that
the information has in the mind of the agent. Previous work on cognitive theories and
simulation of image and reputation dynamics [16,7] reveals that the amount of reputation
information that circulates in a society is a lot higher than image-based information, due
to the implicit commitment that sending image information carries out.

However, even when reputation information is mostly inaccurate, open societies per-
form better when reputation information is allowed in the system, and also are more
robust with respect to certain level of cheating information3. This indicates that agents
face mostly inaccurate information but that they need to use it to face real uncertain and
unpredictable scenarios.

These studies are very helpful when defining a process to decide Z . Our trust axiom
is in fact a predicate that indicates how much information that circulates in the society
can be considered true. In the way we have defined rules AI and AR, settings of Z tend-
ing to 0 could be useful when the number of cheaters is considerably big, meanwhile
settings of Z close to 1 would be helpful in the opposite way.

5.1 Scenario and Simulation Settings

We replicate a simple market where in the society we have a set of buyer, seller and
informant agents. In this scenario, all sellers offer the same product, which has a certain
quality going from 0 (minimum) to 100 (maximum). Also, a delivery time expressed
in weeks is associated with the seller. These agents are completely reactive and sell
the products on demand. Buyers are BDI agents following the model described in this
paper. Therefore, the main goals of the agents are described in terms of graded desires.

The set of informant agents send out reputation information about the sellers. We
control the experiment by setting a percentage of informants that spread bad reputation,
the number of sellers and the distribution of qualities and delivery times.

The performance of the buyers is evaluated by the level of satisfaction obtained after
their decision. As we mentioned, buyer agents state their preferences by a set of graded
desires. These desires can be positive or negative, and each one of them has a grade. Af-
ter an action is performed, the agent receives the fulfillment of the interaction, obtaining
the real quality of the product and the delivery time. This information is compared with
the objectives of the agent. The level of satisfaction of the agent is calculated by sum-
ming the grades of positive achieved desires and subtracting the grades of the achieved
negative desires.

At each turn buyers need to perform an action. In this case, they need to buy a product
to some of the available sellers. To simulate the fact that reputation information is more
present than image information, at each turn all informants send reputation information

3 More that 50% of cheaters in a society still produces a benefit in the overall performance when
reputation is allowed.

232 I. Pinyol and J. Sabater-Mir

to the buyers. In this experiments we do not consider image communications. Therefore,
image information is only calculated through direct experience. In this sense, at each
turn one direct experience is contrasted with N reputation communications from the
informants (where N > 1).

In the specification, we are considering the evolution of a single buyer with 10 sell-
ers and 5 informants. We execute 10 times each experiment and consider the average
level of satisfaction for each turn. We state a distribution of qualities and delivery times
in such a way that the best qualities and best delivery times are very scarce. If these
properties are the norm, the society does not need the exchange of information, since a
random choice from the buyer would get already a very good seller4

5.2 Static Experiments

It is easy to show the effects of a fix trust axiom in different situations. Figure 5 shows
the accumulated average level of satisfaction obtained by a buyer at each turn in an
environment where all informants are honest, and when all informants are liars, consid-
ering Z = 0 and Z = 1. Since when Z = 0 reputation information is not taken into
account, the performance in this case does not depend on the quality of the reputation
information.

The graphic shows that when Z = 1, in the case of a scenario with honest informants,
the level of satisfaction obtained by the agent considerable increases with respect to the
case in which Z = 0. Assuming normality in the data, from the turn 10, the difference
is already statistically significant with a 95% of confidence (p value≤ 0.05), and from
the turn 20 on, the difference becomes significant with a 99% of confidence (p value≤
0.01).

Also, when Z = 1 and in the scenario all informants spread false reputation, the
performance of the buyer decreases considerably with respect to the case in which Z =
0. In fact, from the very first turns, the difference becomes already significant with a
confidence of 99%.

Fig. 5. Level of satisfaction obtained after

4 We use the JASON platform [17], which offers to logic-based agents (prolog-like) a multia-
gent communication layer. The source code, together with the exact parameters and the set of
desires used to run the experiments can be found at
http://www.iiia.csic.es/∼ipinyol/sourceABSS09.zip

Metareasoning and Social Evaluations in Cognitive Agents 233

These results are quite obvious. Since image information is only created from direct
experiences (1 at each turn) and reputation information through communicated reputa-
tion (5 at each turn) if the communicated information corresponds to the reality and the
agent believes what circulates in the society (Z = 1) the buyer should discover faster
which are the sellers that accomplish her objectives. As well, if reputation information
if mostly false, and the agent believes it, for a long time the buyer would not be able to
fulfill her objectives.

5.3 Dynamic Adaptation Experiments

The main idea behind the updating of Z is that in scenarios where mostly false repu-
tation information circulates Z should be tend to 0. On the contrary, scenarios where
reputation information is mostly accurate, Z should tend to 1. In this very preliminary
paper, we study the effects of an adaptation strategy in the same situations tested in the
previous extreme experiments.

The strategy is very simple, but effective. As described in the theoretical part of the
paper, metarules can be updated from the beliefs that the agent hold. In our case, we
theorize that a good metaprocess for updating Z is aggregate the differences for each
agent and role of the image and reputation information hold in the Repage system. So,
if most of the image information coincide with reputation information (about the same
agent/role), the Z value should increase from the current value (in certain proportion).
On the contrary, it should decrease. This algorithm contains the parameter Increment,
which could be also considered as another degree of freedom.for the sake of simplicity
we consider it as a constant value.

Figure 6 shows the performance obtained in both scenarios. It can be observed how
the final performance tends to the theoretical optimum in each situation. In both sce-
narios there is no statistical significant difference between the performance and the
theoretical optimum, with p values higher than 0.2 with most of the points of the graph.

Fig. 6. Level of satisfaction obtained with agents using adaptation in a scenario with 100% of
liars (left) and 0% of liars (right). Dot line represents the theoretical best possible performance.

The adaptation process can be clearly observed with the performance of a single
execution. Figure 7 shows a typical pattern (usually the period where the level of sat-
isfaction is so low is much shorted. For this reason the final average of 10 executions
does not show it) in which after a while, the agent is able increase her level of goal
achievement.

234 I. Pinyol and J. Sabater-Mir

Fig. 7. Performance of a single agent with adaptation in a scenario without liars

6 Conclusions and Future Work

After reading the paper it should be clear the importance of allowing degrees of freedom
in the reasoning processes of autonomous agents. As mentioned in the cognitive theory
presented by Castelfranchi and Paglieri in [4], cognitive agents are aware of the reasons
from which certain information if believed, and because of that, they are able to reason
about how they reason, and change it if necessary. Thus, we strongly believe that real
autonomous agents should be designed taking into account certain degree of granularity.
Cognitive designs should be aware that the path that an agent follows to arrive at certain
conclusion is as important as the conclusion itself. Therefore, ways to reason about such
paths and the capability to modify them should be taken into account, not only for the
agent itself, but also for possible explanations to other agents, like in argumentation.

We also encourage the use of logical approaches in the design of cognitive systems.
The advantage of such systems is that with a finite set of rules a whole deduction tree can
be created, implicitly providing supporting sets. This big advantage has an important
counter effect: the static nature of the axiomatization. At a metareasoning level though,
similar to belief revision process, certain set of axioms (those which define typology
of agents, not that structurally guarantee certain logical properties) can me updated,
changing then the whole reasoning tree. We show a possible method to do it in this
paper. However, this needs a deeper study in the future.

Getting into the concrete scenario that we faced, it should also be clear that repu-
tation and image information can totally participate in metareasoning processes. We
proposed a method in which bridge rules and axioms can be specified as metarules fol-
lowing the idea of degrees of freedom introduced in [15]. We let for future work the
proper formalities of the proposed design method. Also, regarding the actual design of
BDI+Repage model we plan to provide alternative metaprocesses to update the trust
predicate and the relation with the other metarules M(AI) and M(AR).

Acknowledgments

This work was supported by the projects AEI (TIN2006-15662-C02-01), AT (CON-
SOLIDER CSD2007-0022, INGENIO 2010), LiquidPub (STREP FP7-213360),
RepBDI (Intramural 200850I136) and by the Generalitat de Catalunya under the grant
2005-SGR-00093.

Metareasoning and Social Evaluations in Cognitive Agents 235

References

1. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as Inter-
action (A Roadmap for Agent Based Computing). AgentLink (2005)

2. Sabater-Mir, J., Paolucci, M., Conte, R.: Repage: Reputation and image among limited au-
tonomous partners. JASSS 9(2) (2006)

3. Pinyol, I., Sabater-Mir, J.: Pragmatic-strategic reputation-based decisions in BDI agents. In:
Proc. of the AAMAS 2009, Budapest, Hungary, pp. 1001–1008 (2009)

4. Castelfranchi, C., Paglieri, F.: The role of beliefs in goal dynamics: Prolegomena to a con-
structive theory of intentions. Synthese 155, 237–263 (2007)

5. Paglieri, F.: Belief dynamics: From formal models to cognitive architectures, and back again.
PhD dissertation (2006)

6. Prakken, H.: Formal systems for persuasion dialogue. Knowl. Eng. Rev. 21(2), 163–188
(2006)

7. Conte, R., Paolucci, M.: Reputation in artificial societies: Social beliefs for social order.
Kluwer Academic Publishers, Dordrecht (2002)

8. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logic (or: How we can do without
modal logics). Journal of AI 65, 29–70 (1994)

9. Parsons, S., Sierra, C., Jennings, N.: Agents that reason and negotiate by arguing. Journal of
Logic and Computation 8(3), 261–292 (1998)

10. Casali, A., Godo, L., Sierra, C.: Graded BDI models for agent architectures. In: Leite, J.,
Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 126–143. Springer, Heidelberg
(2005)

11. Pinyol, I., Sabater-Mir, J., Dellunde, P.: Probabilistic dynamic belief logic for image and
reputation. In: Proc. of the CCIA 2008, Empuries, Spain (2008)

12. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41(2), 340–367
(1994)

13. Demolombe, R.: To trust information sources: a proposal for a modal logical framework.
Trust and deception in virtual societies, 111–124 (2001)

14. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: Allen, J.,
Fikes, R., Sandewall, E. (eds.) Proc. of KR 1991, pp. 473–484. Morgan Kaufmann Publishers
Inc., San Francisco (1991)

15. Artikis, A.: Dynamic protocols for open agent systems. In: Proc. of the AAMAS 2009, Bu-
dapest, Hungary, pp. 97–104 (2009)

16. Pinyol, I., Paolucci, M., Sabater-Mir, J., Conte, R.: Beyond accuracy. Reputation for partner
selection with lies and retaliation. In: Antunes, L., Paolucci, M., Norling, E. (eds.) MABS
2007. LNCS (LNAI), vol. 5003, pp. 128–140. Springer, Heidelberg (2008)

17. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak Using Jason. John Wiley and Sons, Ltd., Chichester (2007)

Experiments on the Acquisition of the Semantics
and Grammatical Constructions Required for
Communicating Propositional Logic Sentences

Josefina Sierra1,� and Josefina Santibáñez2

1 Software Department, Technical University of Catalonia, Spain
jsierra@lsi.upc.edu

2 Education Department, University of La Rioja, Spain
josefina.santibanez@unirioja.es

Abstract. We describe some experiments which simulate a grounded
approach to language acquisition in which a population of autonomous
agents without prior linguistic knowledge tries to construct at the same
time a conceptualisation of its environment and a shared language. The
conceptualisation and language acquisition processes in each individual
agent are based on general purpose cognitive capacities, such as cat-
egorisation, discrimination, evaluation and induction. The emergence
of a shared language in the population results from a process of self-
organisation of a particular type of linguistic interaction which takes
place among the agents in the population.

The experiments, which extend previous work by addressing the prob-
lem of the acquisition of both the semantics and the syntax of proposi-
tional logic, show that at the end of the simulation runs the agents build
different conceptualisations and different grammars. However, these con-
ceptualisations and grammars are compatible enough to guarantee the
unambiguous communication of propositional logic sentences.

Furthermore the categorisers of the perceptually grounded and logical
categories built during the conceptualisation and language acquisition
processes can be used for some forms of common sense reasoning, such as
determining whether a sentence is a tautology, a contradiction, a common
sense axiom or a merely satisfiable formula.

Keywords: Language acquisition, logical categories, induction,
self-organisation.

1 Introduction

This paper addresses the problem of the acquisition of both the semantics and
the syntax (i.e., lexicon and grammatical constructions) required for construct-
ing and communicating concepts of the same complexity as propositional logic
formulas. It describes some experiments in which a population of autonomous
� Partially supported by the MICINN SESAAME-BAR (TIN2008-06582-C03-01) and

DGICYT MOISES-BAR (TIN2005-08832-C03-03) projects.

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 236–251, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Acquisition of the Semantics and Syntax of Propositional Logic 237

agents without prior linguistic knowledge constructs at the same time a concep-
tualisation of its environment and a shared language. The experiments show that
at the end of the simulation runs the agents build different conceptualisations
and different grammars. However these conceptualisations and grammars are
compatible enough to guarantee the unambiguous communication of meanings
of the same complexity as propositional logic formulas.

The research presented in this paper builds up on previous work on the ac-
quisition of the semantics of logical connectives [1] by addressing the problem of
the acquisition of both the semantics and the syntax of propositional logic. In [1]
a grounded approach to the acquisition of logical categories (i.e., the semantics
of logical connectives) based on the discrimination of a ”subset of objects” from
the rest of the objects in a given context is described. Logical categories are con-
structed by the agents identifying subsets of the range of the truth evaluation
process (i.e., sets of Boolean pairs or Boolean values) which result from evaluat-
ing a pair of perceptually grounded categories or a single category on a subset
of objects. Discrimination is performed characterising a ”subset of objects” by
a logical formula constructed from perceptually grounded categories which is
satisfied by the objects in the subset and not satisfied by the rest of the objects
in the context.

The complementary problem of the acquisition of the syntax of propositional
logic by a population of autonomous agents without prior linguistic knowledge
has been addressed independently as well. In [2] an approach to the acquisition
of the syntax of propositional logic based on general purpose cognitive capacities,
such as invention, adoption and induction, and on self-organisation principles is
proposed. The experiments described in [2] show that a shared language (i.e.,
a lexicon and a grammar) expressive enough to allow the communication of
meanings of the same complexity as propositional logic formulas can emerge
in a population of autonomous agents without prior linguistic knowledge. This
shared language, although simple, has some interesting properties found in nat-
ural languages such as recursion, syntactic categories for propositional sentences
and connectives, and partial word order for marking the scope of each connective.

The acquisition of the syntax of subsets of logic has been addressed as well
by other authors. In particular [3,4,5] study the emergence of case-based and re-
cursive communication systems in populations of agents without prior linguistic
knowledge. However none of these works deals with the problem of the acquisi-
tion of both the semantics and the syntax of logic.

The experiments described in this paper extend therefore previous work by
using a linguistic interaction (the evaluation game) in which the agents must first
conceptualise the topic (a subset of objects) using the mechanisms proposed in
[1] for the acquisition of logical categories, and then construct a shared language
(a lexicon and a grammar) using the invention, adoption, induction and self-
organisation mechanisms proposed in [2].

The rest of the paper is organised as follows. Firstly we describe the mecha-
nisms the agents use in order to conceptualise sensory information. Secondly we
consider the process of truth evaluation and explain how logical categories can be

238 J. Sierra and J. Santibáñez

discovered by identifying sets of outcomes of the truth evaluation process. Then
we focus on the construction and emergence of a shared communication lan-
guage describing the main steps of the evaluation game: conceptualisation, ver-
balising, interpretation, induction and coordination. Next we present the results
of some experiments in which three agents without prior linguistic knowledge
build a conceptualisation and a shared language that allows them to construct
and communicate meanings of the same complexity as propositional logic for-
mulas. Finally we consider the issue of common sense reasoning and summarise
the main ideas we tried to put forward in this paper.

2 Conceptualisation: Basic Definitions

We assume an experimental setting similar to that proposed in The Talking
Heads Experiment [6]: A set of robotic agents playing language games with each
other about scenes perceived through their cameras on a white board in front
of them. Figure 1 shows a typical configuration of the white board with several
geometric figures pasted on it.

Firstly we describe how the agents conceptualise the sensory information they
obtain by looking at the white board and trying to characterise subsets of objects
pasted on it.

Sensory Channels. The agents look at one area of the white board by cap-
turing an image of that area with their cameras. They segment the image into
coherent units in order to identify the objects which constitute the context of a
language game, and use some sensory channels to gather information about each
segment, such as its horizontal and vertical position, or its light intensity. In the
experiments described in this paper we only use three sensory channels: (1) H(o),
which computes the horizontal position of an object o; (2) V(o), which computes
its vertical position; and (3) L(o), which computes its light intensity. The values
returned by the sensory channels are scaled with respect to the area of the white
board captured by the agents cameras so that its range is the interval (0.0 1.0).

Perceptually Grounded Categories. The data returned by the sensory chan-
nels are values from a continuous domain. To be the basis of a natural language
conceptualisation, these values must be transformed into a discrete domain. One
form of categorisation consists in dividing up each domain of output values of a
particular sensory channel into regions and assigning a category to each region
[6]. For example, the range of the H channel can be cut into two halves leading
to the categories [left] (0.0 < H(x) < 0.5) and [right] (0.5 < H(x) < 1.0). Object
3 in figure 1 has the value H(O3)=0.8 and would therefore be categorised as
[right].

Perceptually Grounded Categorisers. At the same time the agents build
categories in order to conceptualise sensory information, they construct as well
cognitive procedures (called categorisers) which allow them to check whether
these categories hold or not for a given object.

Acquisition of the Semantics and Syntax of Propositional Logic 239

2 3

1

2

Fig. 1. The area of the white board captured by the agents cameras (i.e., the context
of the language game) is the lower right rectangle

Categorisers give grounded meanings [7] to categories (i.e., symbolic represen-
tations) by establishing explicit connections between them and reality (external
input processed by sensory channels). These connections are learned playing lan-
guage games [8,6] and allow the agents to check whether a category holds or not
for a given object. Most importantly they provide information on the sensory
and cognitive processes an agent must go through in order to evaluate a given
category.

The behaviour of the categorisers associated with the perceptually grounded
categories used in this paper can be described by linear constraints1. For exam-
ple, the behaviour of the categoriser associated with the category [left] can be
described as follows: [left]C(x) ≡ 0.0<H(x)<0.5.

2.1 Logical Categories

We consider now the process of truth evaluation and describe how logical cate-
gories can be constructed by identifying sets of outcomes of the truth evaluation
process. Logical categories are important because they allow the generation of
structured units of meaning, which correspond to logical formulas, and they set
the basis for deductive reasoning.

Evaluation Channel. The evaluation channel (denoted by E) is a cognitive
process capable of finding the categorisers of a tuple of categories, applying them
to an object, and observing their output. If c = (c1, . . . , cn) is a category tuple
and o is an object, E(c, o) is a tuple of Boolean values (v1, . . . , vn), where each
vi is the result of applying cC

i (the categoriser of ci) to object o. For example,
E(([down], [right]), O1)= (0, 0), because O1 (object 1 in figure 1) is neither on
the lower part nor on the right part of the white board area captured by the
agents’ cameras.
1 We use the notation [cat]C to refer to the categoriser that is capable of determining

whether category [cat] holds or not for a given object.

240 J. Sierra and J. Santibáñez

Logical Categories and Formulas. Although the evaluation channel can
be applied to category tuples of any arity, we consider only unary and binary
category tuples. The range of the evaluation channel for single categories is the
set of Boolean values {0, 1}, and its range for category pairs is the set of Boolean
pairs {(0,0), (0,1), (1,0), (1,1)}. By considering all the subsets of these ranges the
agents can represent all the Boolean functions of one and two arguments, which
correspond to the meanings of all the connectives of propositional logic (i.e.,
¬,∧,∨,→ and ↔), plus the meanings of other connectives (such as neither or
exclusive disjunction) found in natural languages. For example, the propositional
formula c1 ∨ c2 is true for an object o if the result of evaluating the pair of
categories (c1, c2) on object o is a Boolean pair which belongs to the subset of
Boolean pairs {(1, 1), (1, 0), (0, 1)}.

The sixteen Boolean functions of two arguments which can be constructed
using this method are summarised in the following ten connectives in the internal
representation of logical categories used by the agents: and, nand, or, nor, if, nif,
oif, noif, iff and xor. Where and, or, if and iff have the standard interpretation
(∧,∨,→ and ↔), and the formulas (A nand B), (A nor B), (A nif B), (A oif B),
(A noif B) and (A xor B) are equivalent to ¬(A∧B), ¬(A∨B), ¬(A→B), (B→
A), ¬(B→A) and ¬(A↔B), respectively.

The agents construct logical categories by identifying subsets of the range
of the evaluation channel. The evaluation game creates situations in which the
agents discover subsets of the range of the evaluation channel, and use them to
distinguish a subset of objects from the rest of the objects in a given context.
The representation of logical categories as subsets of Boolean tuples is equivalent
to the truth tables used for defining the semantics of logical connectives.

Logical categories describe properties of propositions, therefore it is natural to
apply them to perceptually grounded categories in order to construct structured
units of meaning. For example, the formula [not, down] can be constructed by
applying the logical category [not] (i.e., ¬) to the category [down]. The formula
[or, up, right] can be constructed similarly by applying the logical category [or]
to the categories [up] and [right]2.

If we consider perceptually grounded categories as propositions, we can ob-
serve that the set of concepts that can be constructed by the agents corresponds
to the set of formulas of propositional logic, because: (1) a perceptually grounded
category is a formula; and (2) if l is an n-ary logical category and F is a list
(tuple) of n formulas, then [l|F] is a formula3.

Logical Categorisers. The categorisers of logical categories are cognitive pro-
cesses that allow determining whether a logical category holds or not for a tu-
ple of categories and an object. As we have explained above, logical categories
can be associated with subsets of the range of the evaluation channel. The be-
haviour of their categorisers can be described therefore by constraints of the form
2 Notice that we use prefix, Lisp like notation for representing propositional formulas.

Thus the list [or, up, right] corresponds to the formula up ∨ right.
3 Where l is a logical category, F is a list of formulas and | is the standard list

construction operator.

Acquisition of the Semantics and Syntax of Propositional Logic 241

E(c, o) ∈ Sl, where l is a logical category, Sl is the subset of the range of the
evaluation channel for which l holds, E is the evaluation channel, c is a tuple of
categories, and o is an object. For example, the constraint E((c1, c2), o)∈{(1, 1)}
describes the behaviour of the categoriser of the logical category [and] (i.e.,
c1 ∧ c2).

The evaluation channel can be naturally extended to evaluate arbitrary propo-
sitional logic formulas using the categorisers of logical and perceptually grounded
categories. The following is an inductive definition of the evaluation channel
E(A, o) for an arbitrary formula A of propositional logic:

1. If A is a perceptually grounded category [cat], then E(A, o) = [cat]C(o).
2. If A is a propositional formula of the form [l|F], where l is a logical category,

F is a list of formulas and Sl is the subset of the range of the evaluation
channel for which l holds, then E(A, o) = 1 if E(F, o) ∈ Sl, and 0 otherwise.

3 Language Acquisition

Language acquisition is seen as a collective process by which a population of au-
tonomous agents without prior linguistic knowledge constructs a shared language
which allows them to communicate some set of meanings. In order to reach such
an agreement the agents interact with each other playing language games. In a
typical experiment thousands of language games are played by pairs of agents
randomly chosen from a population.

In this paper we use a particular type of language game called the evaluation
game [2]. The goal of the experiments is to observe the evolution of: (1) the
communicative success4; (2) the internal grammars constructed by the individual
agents; and (3) the external language used by the population. The main steps
of the evaluation game, which is played by two agents (a speaker and a hearer),
can be summarised as follows.

1. Conceptualisation. Firstly the speaker looks at one area of the white board
and directs the attention of the hearer to the same area. The objects in that area
constitute the context of the language game. Both speaker and hearer use their
sensory channels to gather information about each object in the context and
store that information so that they can use it in subsequent stages of the game.
Then the speaker picks up a subset of the objects in the context which we will call
the topic of the language game. The rest of the objects in the context constitute
the background.

The speaker tries to find a unary or binary tuple of categories which distin-
guishes the topic from the background, i.e., a tuple of categories such that its
evaluation on the topic is different from its evaluation on any object in the back-
ground. If the speaker cannot find a discriminating tuple of categories, the game
fails. Otherwise it tries to find a logical category that is associated with the subset
4 The communicative success is the average of successful language games in the last

ten language games played by the agents.

242 J. Sierra and J. Santibáñez

of Boolean values or Boolean pairs resulting from evaluating the topic on that cat-
egory tuple. If it does not have any logical category associated with this subset,
it creates a new one. The formula constructed by applying this logical category
to the discriminating category tuple constitutes a conceptualisation of the topic,
because it characterises the topic as the set of objects in the context which satisfy
that formula.

In general an agent can build several conceptualisations for the same topic.
For example, if the context contains objects 1, 2 and 3 in figure 1, and the topic
is the subset consisting of objects 1 and 2, the formulas [iff, up, left] and [xor,
up, right] could be used as conceptualisations of the topic in an evaluation game.

2. Verbalising. The speaker chooses a conceptualisation (i.e., a discriminat-
ing formula) for the topic, generates a sentence that expresses this formula and
communicates that sentence to the hearer. If the speaker can generate sentences
for several conceptualisations of the topic, it tries to maximise the probability of
being understood by other agents selecting the conceptualisation whose associ-
ated sentence has the highest score. The algorithm for computing the score of a
sentence from the scores of the grammar rules used in its generation is explained
in detail in [2].

The agents in the population start with an empty lexicon and grammar.
Therefore they cannot generate sentences for most formulas at the early stages
of a simulation run. In order to allow language to get off the ground, the agents
are allowed to invent new sentences for those meanings they cannot express us-
ing their lexicon and grammar. As the agents play language games they learn
associations between expressions and meanings, and induce linguistic knowledge
from such associations in the form of grammar rules and lexical entries. Once the
agents can generate sentences for expressing a particular formula, they select the
sentence with the highest score that verbalises a conceptualisation of the topic,
and communicate that sentence to the hearer.

3. Interpretation. The hearer tries to interpret the sentence communicated
by the speaker. If it can parse the sentence using its lexicon and grammar, it
extracts a formula (a meaning) and uses that formula to identify the topic.

At the early stages of a simulation run the hearers cannot usually parse the
sentences communicated by the speakers, since they have no prior linguistic
knowledge. In this case the speaker points to the topic, the hearer conceptualises
the topic using a logical formula, and adopts an association between that formula
and the sentence used by the speaker. Notice that the conceptualisations of
speaker and hearer may be different, because different formulas can be used to
conceptualise the same topic.

At later stages of a simulation run it usually happens that the grammars and
lexicons of speaker and hearer are not consistent, because each agent constructs
its own grammar from the linguistic interactions it participates in, and it is very
unlikely that speaker and hearer share the same history of linguistic interactions
unless the population consists only of these two agents. In this case the hearer
may be able to parse the sentence communicated by the speaker, but its inter-
pretation of that sentence might be different from the meaning the speaker had

Acquisition of the Semantics and Syntax of Propositional Logic 243

in mind. The strategy used to coordinate the grammars of speaker and hearer
when this happens is to decrease the score of the rules used by the speaker and
the hearer in the processes of generation and parsing, respectively, and allow the
hearer to adopt an association between its conceptualisation of the topic and
the sentence used by the speaker.

Induction. Besides inventing expressions and adopting associations between
sentences and meanings, the agents can use some induction mechanisms to ex-
tract generalisations from the grammar rules they have learnt so far. The in-
duction mechanisms used in this paper are based on the rules of simplification
and chunk in [5], although we have extended them so that they can be applied
to grammar rules which have scores attached to them following the ideas of
[9]. The induction rules are applied whenever the agents invent or adopt a new
association to avoid redundancy and increase generality in their grammars.

Instead of giving a formal definition of the induction rules used in the experi-
ments, which can be found in [2], we give an example of their application. We use
Definite Clause Grammar for representing the internal grammars constructed by
the individual agents. Non-terminals have two arguments attached to them. The
first argument conveys semantic information and the second is a score in the
interval [0, 1] which estimates the usefulness of the grammar rule in previous
communication. Suppose an agent’s grammar contains the following rules.

s(light, S) → clair, {S is 0.70} (1)

s(right, S) → droit, {S is 0.25} (2)

s([and, light, right], S) → etclairdroit, {S is 0.01} (3)

s([or, light, right], S) → ouclairdroit, {S is 0.01} (4)

The induction rule of simplification, applied to 3 and 2, allows generalising
grammar rule 3 replacing it with 5. In this case simplification assumes that the
second argument of the logical category and can be any meaning which can be
expressed by a ’sentence’, because according to rule 2 the syntactic category of
the expression ’droit’ is s (i.e., sentence).

s([and,light,B], S) → etclair, s(B,R), {S is R·0.01} (5)

Simplification, applied to rules 5 and 1, can be used to generalise rule 5 again
replacing it with 6. Rule 4 can be generalised as well replacing it with rule 7.

s([and,A,B], S) → et, s(A,Q), s(B,R), {S is Q·R·0.01} (6)

s([or,A,B], S) → ou, s(A,Q), s(B,R), {S is Q·R·0.01} (7)

The induction rule of chunk replaces a pair of grammar rules such as 6 and 7
by a single rule 8 which is more general, because it makes abstraction of their
common structure introducing a syntactic category c2 for binary connectives.
Rules 9 and 10 state that the expressions et and ou belong to the syntactic
category c2.

s([C,A,B], S) → c2(C,P), s(A,Q), s(B,R), {S is P ·Q·R·0.01} (8)

c2(and, S) → et, {S is 0.01} (9)

c2(or, S) → ou, {S is 0.01} (10)

244 J. Sierra and J. Santibáñez

4. Coordination. The speaker points to the topic so that the hearer can iden-
tify the subset of objects it had in mind, and the hearer communicates the
outcome of the evaluation game to the speaker. The game is successful if the
hearer can parse the sentence communicated by the speaker, and its interpreta-
tion of that sentence identifies the topic (the subset of objects the speaker had
in mind) correctly. Otherwise the evaluation game fails. Depending on the out-
come of the evaluation game, speaker and hearer take different actions. We have
explained some of them already (invention and adoption), but they can adapt
their grammars as well adjusting the scores of their grammar rules in order to
communicate more successfully in future language games.

Coordination of the agents’ grammars is necessary, because different agents
can invent different expressions to refer to the same perceptually grounded or
logical categories, and because the invention process uses random order to con-
catenate the expressions associated with the components of a given formula. In
order to understand each other, the agents must use a common vocabulary and
must order the constituents of compound sentences in sufficiently similar ways
as to avoid ambiguous interpretations.

The following self-organisation mechanisms help to coordinate the agents’
grammars in such a way that they prefer using the grammar rules which are used
more often by other agents [6,4].

We consider the case in which the speaker can generate a sentence to express
the formula it has chosen as its conceptualisation of the topic using the rules
in its grammar. If the speaker can generate several sentences to express that
formula, it chooses the sentence with the highest score. The rest of the sentences
are called competing sentences.

Suppose the hearer can interpret the sentence communicated by the speaker. If
the hearer can obtain several formulas (meanings) for that sentence, the meaning
with the highest score is selected. The rest of the meanings are called competing
meanings.

If the topic identified by the hearer is the subset of objects the speaker had in
mind, the evaluation game succeeds and both agents adjust the scores of the
rules in their grammars. The speaker increases the scores of the grammar rules
it used for generating the sentence communicated to the hearer and decreases
the scores of the grammar rules it used for generating competing sentences. The
hearer increases the scores of the grammar rules it used for obtaining the meaning
which identified the topic the speaker had in mind and decreases the scores of
the rules it used for obtaining competing meanings. This way the grammar rules
that have been used successfully get reinforced, and the rules that have been
used for generating competing sentences or competing meanings are inhibited.

If the topic identified by the hearer is different from the subset of objects
the speaker had in mind, the evaluation game fails and both agents decrease
the scores of the grammar rules they used for generating and interpreting the
sentence used by the speaker, respectively. This way the grammar rules that
have been used without success are inhibited.

Acquisition of the Semantics and Syntax of Propositional Logic 245

The scores of grammar rules are updated as follows. The rule’s original score
S is replaced with the result of evaluating expression 11 if the score is increased,
and expression 12 if the score is decreased.

minimum(1, S + 0.1) (11)
maximum(0, S − 0.1) (12)

4 Experiments

We describe the results of some experiments in which three agents try to con-
struct at the same time a conceptualisation and a shared language which allow
them to discriminate and communicate about subsets of objects pasted on a
white board in front of them. In particular, the agents characterise such subsets
of objects constructing logical formulas which are true for the objects in the sub-
set and false for the rest of the objects in the context. Such formulas, which are
communicated using a shared language, express facts about the relative spatial
location and brightness of the objects in the subset with respect to the rest of
the objects in the context. These experiments have been implemented using the
Ciao Prolog system [10].

Figure 2 shows the evolution of the communicative success for a population
of three agents. The communicative success is the average of successful language
games in the last ten language games played by the agents. Firstly the agents
play 700 evaluation games about subsets of objects which can be discriminated
using only a single category or the negation of a perceptually grounded category.
In this part of the simulation the population reaches a communicative success
of 94% after playing 100 games and keeps it over that figure till the end of
this part of the simulation. Next the agents play 6000 evaluation games about
subsets of objects which require the use of perceptually grounded categories as
well as unary and binary logical categories for their discrimination. In this part
of the simulation the population reaches a communicative success of 100% after
playing 3600 evaluation games and keeps it till the end of the second part of
the simulation. The data shown in the figure correspond to the average of ten
independent simulation runs with different random seeds.

We analyse now the conceptualisations and grammars built by the agents at
the end of a particular simulation run. As we shall see the conceptualisations and
grammars constructed by the individual agents are different, however they are
compatible enough to guarantee the unambiguous communication of meanings
of the same complexity as propositional logic formulas.

Table 1 shows the lexicon constructed by each agent in order to refer to
perceptually grounded categories. We can observe that all the agents constructed
the perceptually grounded categories (up, down, right, left, light and dark) and
that all of them prefer the same expressions for referring to such categories.

We can observe in table 2 that all the agents constructed the logical category
not. They all have a recursive grammar rule for expressing formulas constructed
using negation and they use the same expression (ci) for referring to the logical

246 J. Sierra and J. Santibáñez

Fig. 2. Evolution of the communicative success for a population of three agents. Firstly
the agents play 700 evaluation games which only require the use of perceptually
grounded categories and negation for discrimination. Then they play 6000 evaluation
games which require the use of all the perceptually grounded and logical categories for
discrimination.

Table 1. Lexicon built by each agent to refer to perceptually grounded categories

Lexicon a1 Lexicon a2 Lexicon a3

s(up,1) → n s(up,1) → n s(up,1) → n
s(down,1) → b s(down,1) → b s(down,1) → b
s(right,1) → w s(right,1) → w s(right,1) → w
s(left,1) → dgq s(left,1) → dgq s(left,1) → dgq
s(light,1) → fdy s(light,1) → fdy s(light,1) → fdy
s(dark,1) → qyp s(dark,1) → qyp s(dark,1) → qyp

category not. There is a difference however: Agents a2 and a3 use a generic gram-
mar rule based on a syntactic category for unary connectives, whereas agent a1
uses a specific grammar rule for expressing formulas constructed using negation.

We can also see in table 2 that all the agents constructed logical categories
for all the commutative connectives (and, nand, or, nor, xor and iff), and
that they use the same expressions (ybd, d, j, sbr, wg and q, respectively) for
referring to such connectives.

Although in this particular simulation run all the agents use the same type of
grammatical constructions to express formulas constructed using commutative
connectives, this is not always the case. In a different simulation run agent a1

Acquisition of the Semantics and Syntax of Propositional Logic 247

Table 2. Grammars built by the individual agents, including grammatical construc-
tions, syntactic categories and lexicons for logical categories

Grammar a1

s([not,X],Q) → ci, s(X,P), {Q is P · 1}
s([X,Y,Z],T) → c1(X,P), s(Y,Q), s(Z,R), {T is P · Q · R · 1}
c1(and,R) → ybd, {R is 1}
c1(nor,R) → sbr, {R is 1}
c1(xor,R) → wg, {R is 1}
c1(iff,R) → q, {R is 1}
c1(if,R) → jdgq, {R is 1}
c1(or,R) → j, {R is 1}

s([X,Y,Z],T) → c2(X,P), s(Z,Q), s(Y,R), {T is P · Q · R · 1}
c2(noif,R) → oi, {R is 1}
c2(nand,R) → d, {R is 1}

Grammar a2

s([X,Y],R) → c1(X,P), s(Y,Q), {R is P · Q · 1}
c1(not,R) → ci, {R is 1}

s([X,Y,Z],T) → c2(X,P), s(Y,Q), s(Z,R), {T is P · Q · R · 1}
c2(nif,R) → oi, {R is 1}
c2(and,R) → ybd, {R is 1}
c2(nor,R) → sbr, {R is 1}
c2(xor,R) → wg, {R is 1}
c2(iff,R) → q, {R is 1}
c2(if,R) → jdgq, {R is 1}
c2(or,R) → j, {R is 1}

s([X,Y,Z],T) → c3(X,P), s(Z,Q), s(Y,R), {T is P · Q · R · 1}
c3(nand,R) → d, {R is 1}

Grammar a3

s([X,Y],R) → c1(X,P), s(Y,Q), {R is P · Q · 1}
c1(not,R) → ci, {R is 1}

s([X,Y,Z],T) → c2(X,P), s(Y,Q), s(Z,R), {T is P · Q · R · 1}
c2(nif,R) → oi, {R is 1}
c2(and,R) → ybd, {R is 1}
c2(nor,R) → sbr, {R is 1}
c2(xor,R) → wg, {R is 1}
c2(iff,R) → q, {R is 1}
c2(if,R) → jdgq, {R is 1}
c2(or,R) → j, {R is 1}

s([X,Y,Z],T) → c3(X,P), s(Z,Q), s(Y,R), {T is P · Q · R · 1}
c3(nand,R) → d, {R is 1}

used a grammar rule for expressing formulas constructed using nor (the negation
of a disjunction) which placed the expression associated with the first argument
of nor in the third position of the sentence, whereas agents a2 and a3 used a
grammar rule which placed the same expression in the second position of the
sentence. However, given that the expression associated with the connective of
a logical formula is always placed in the first position of a sentence by the

248 J. Sierra and J. Santibáñez

induction algorithm, the agents have no difficulty in understanding each other.
Because the difference in the positions in the sentence of the expressions associ-
ated with the arguments of the connective can only generate an interpretation
which corresponds to a formula which uses the same connective and which in-
verts the order of the arguments of such a connective with respect to the formula
intended by the speaker. But such a formula is logically equivalent to the one
intended by the speaker, because we are assuming that it is constructed using a
commutative connective.

The results for non-commutative connectives are different however. All
the agents constructed the logical category if, which corresponds to implication,
and all of them use the same expression (jdgq) for referring to such a logical
category. They also use the same grammatical construction for expressing impli-
cations, i.e., they all place the expression associated with the antecedent of an
implication in the second position of the sentence, and the expression associated
with the consequent in the third position.

Agents a2 and a3 constructed the logical category nif, whereas agent a1 does
not have a grammar rule for expressing such a logical category. Instead of that,
agent a1 constructed the logical category noif and a grammar rule that allows
it to understand correctly the sentences generated by a2 and a3 in order to
communicate formulas of the form [nif, A, B]. That is, whenever a2 and a3 try
to communicate a formula of the form [nif, A, B], i.e., ¬(A→B), they use the
grammar rules

s([X,Y,Z],T) → c2(X,P), s(Y,Q), s(Z,R), {T is P · Q · R · 1}
c2(nif,R) → oi, {R is 1}

to generate a sentence. This sentence is parsed by a1 using the grammar rules

s([X,Y,Z],T) → c2(X,P), s(Z,Q), s(Y,R), {T is P · Q · R · 1}
c2(noif,R) → oi, {R is 1}

interpreting the formula [noif, B, A], i.e., ¬(B←A), which is logically equivalent
to the formula intended by the speaker. This is so because the grammar rules
used by a1 not only use the same expression for referring to the logical connective
noif than a2 and a3 for referring to nif, but they also reverse the order of the
expressions associated with the arguments of the connective in the sentence.

On the other hand, given that the formulas [nif, A, B] and [noif, B, A] are
logically equivalent, agent a1 will not be prevented from characterising any sub-
set of objects because of the lack of the logical category nif. Since it will always
prefer to conceptualise the topic using the second formula. The same holds for
agents a2 and a3 with respect to the logical category noif.

Finally none of the agents constructed the logical category oif nor grammar
rules for expressing formulas constructed using such a logical category. But this
does not prevent them from characterising any subset of objects, because [oif,
A, B] is logically equivalent to [if, B, A] and all the agents have grammar rules
for expressing implications.

Acquisition of the Semantics and Syntax of Propositional Logic 249

5 Intuitive Reasoning

During the processes of conceptualisation and grounded language acquisition the
agents build categorisers for perceptually grounded categories (such as up, down,
right, left, light and dark) and for logical categories (and, nand, or, nor, if, nif,
oif, noif, iff or xor). These categorisers allow them to evaluate logical formulas
constructed from perceptually grounded categories.

Intuitive reasoning is a process by which the agents discover relationships
that hold among the categorisers of perceptually grounded categories and logical
categories. For example, an agent may discover that the formula up →¬down
is always true, because the categoriser of down returns false for a given object
whenever the categoriser of up returns true for the same object.

It may work as a process of constraint satisfaction in natural agents, by which
they try to discover whether there is any combination of values of their sensory
channels that satisfies a given formula. It is not clear to us how this process
of constraint satisfaction can be implemented in natural agents. It may be the
result of a simulation process by which the agents generate possible combina-
tions of values of their sensory channels and check whether they satisfy a given
formula. Or it may be grounded on the impossibility of firing simultaneously
some categorisers due to the way they are implemented by physically connected
neural networks.

In particular intuitive reasoning can be used to perform the following inference
tasks which constitute the basis of the logical approach to formalising common
sense knowledge and reasoning [11].

1. Using the categorisers of logical categories an agent can determine whether
a given formula is a tautology (it is always true because of the meaning of its
logical symbols) or an inconsistency (it is always false for the same reason).

2. Using the categorisers of logical and perceptually grounded categories an
agent can discover that a given formula is a common sense axiom, i.e., it is
always true because of the meaning of the perceptually grounded categories
it involves. The formula up → ¬down, discussed above, is a good example of
a common sense axiom. Similarly it can discover that a particular formula
(such as up ∧ down) is always false, because of the meaning of categories it
involves. It can determine as well that certain formulas (such as up ↔ left)
are merely satisfiable, but that they are not true under all circumstances.

3. Finally the categorisers of logical and perceptually grounded categories can
be used as well to discover domain dependent axioms. These are logical for-
mulas that are not necessarily true, but which always hold in the particular
domain of knowledge or environment the agent interacts with during its de-
velopment history. This is the case of formula up ∧ light → left, which is
not necessarily true, but it is always true for every subset of objects of the
white board shown in figure 1.

The process of determining whether a formula is a tautology, an inconsistency
or a common sense axiom by intuitive reasoning can be implemented using con-
straint satisfaction algorithms, if the behaviour of the categorisers of perceptually

250 J. Sierra and J. Santibáñez

grounded and logical categories can be described by constraints. It can also be
proved that intuitive reasoning is closed under the operator of logical consequence
if the behaviour of the categorisers of perceptually grounded categories can be
described by linear constraints. That is, if a formula is a logical consequence of
a number of common sense axioms which can be discovered using intuitive rea-
soning, it must also be possible to prove that such a formula is always true using
intuitive reasoning. This is a consequence of the fact that the linear constraints
describing the behaviour of the categorisers of perceptually grounded categories
constitute a logical model, in the sense of model theory semantics [11], of the set
of common sense axioms that can be discovered using intuitive reasoning.

6 Conclusions

We have described some experiments which simulate a grounded approach to
language acquisition, in which a population of autonomous agents without prior
linguistic knowledge tries to construct at the same time a conceptualisation of
its environment and a shared language.

These experiments extend previous work by using a linguistic interaction (the
evaluation game) in which the agents must first conceptualise the topic (a subset
of objects) using the mechanisms proposed in [1] for the acquisition of logical
categories, and then construct a shared language (a lexicon and a grammar) using
the invention, adoption, induction and self-organisation mechanisms proposed in
[2] for the acquisition of the syntax of propositional logic.

The results of the experiments show that at the end of the simulation runs the
agents build different conceptualisations and different grammars. However these
conceptualisations and grammars are compatible enough to guarantee the un-
ambiguous communication of meanings of the same complexity as propositional
logic formulas.

We have also seen that the categorisers of the perceptually grounded and
logical categories built during the conceptualisation and language acquisition
processes can be used for some forms of common sense reasoning, such as deter-
mining whether a sentence is a tautology, a contradiction, a common sense axiom
or a merely satisfiable formula – all this in a very restricted domain. However
this form of intuitive reasoning requires the agents to be conscious of the fact
that they use certain categorisers and of the behaviour of such categorisers.

References

1. Sierra, J.: Grounded models as a basis for intuitive and deductive reasoning: The
acquisition of logical categories. In: Proceedings of the European Conference on
Artificial Intelligence, pp. 93–97. IOS Press, Amsterdam (2002)

2. Sierra, J., Santibáñez, J.: The acquisition of linguistic competence for communi-
cating propositional logic sentences. In: Artikis, A., O’Hare, G.M.P., Stathis, K.,
Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI), vol. 4995, pp. 175–192. Springer,
Heidelberg (2008)

Acquisition of the Semantics and Syntax of Propositional Logic 251

3. Steels, L.: The origins of syntax in visually grounded robotic agents. Artificial
Intelligence 103(1-2), 133–156 (1998)

4. Batali, J.: The negotiation and acquisition of recursive grammars as a result of
competition among exemplars. In: Linguistic Evolution through Language Acqui-
sition, pp. 111–172. Cambridge University Press, Cambridge (2002)

5. Kirby, S.: Learning, bottlenecks and the evolution of recursive syntax. In: Linguistic
Evolution through Language Acquisition: Formal and Computational Models, pp.
96–109. Cambridge University Press, Cambridge (2002)

6. Steels, L.: The Talking Heads Experiment. Special Pre-edition for LABORATO-
RIUM. Antwerpen (1999)

7. Harnad, S.: The symbol grounding problem. Physica D (42), 335–346 (1990)
8. Wittgenstein, L.: Philosophical Investigations. Macmillan, New York (1953)
9. Vogt, P.: The emergence of compositional structures in perceptually grounded lan-

guage games. Artificial Intelligence 167(1-2), 206–242 (2005)
10. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., Puebla,

G.: The Ciao Prolog system. reference manual. Technical Report CLIP3/97.1,
School of Computer Science, Technical University of Madrid, UPM (1997),
http://www.clip.dia.fi.upm.es/

11. McCarthy, J.: Formalizing Common Sense. Papers by John McCarthy. Edited by
Vladimir Lifschitz. Ablex, Greenwich (1990)

http://www.clip.dia.fi.upm.es/

A.V. Vasilakos et al. (Eds.): AUTONOMICS 2009, LNICST 23, pp. 252–267, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

An Autonomic Computing Architecture
for Self-* Web Services

Walid Chainbi1, Haithem Mezni2, and Khaled Ghedira3

1 Sousse National School of Engineers/LI3 Sousse, Tunisia
Walid.Chainbi@gmail.com

2 Jendouba University Campus/LI3 Jendouba, Tunisia
haithem.mezni@fsjegj.rnu.tn

3 Institut Supérieur de Gestion de Tunis/LI3 Tunis, Tunisia
Khaled.Ghedira@isg.rnu.tn

Abstract. Adaptation in Web services has gained a significant attention and be-
comes a key feature of Web services. Indeed, in a dynamic environment such as
the Web, it's imperative to design an effective system which can continuously
adapt itself to the changes (service failure, changing of QoS offering, etc.).
However, current Web service standards and technologies don’t provide a suit-
able architecture in which all aspects of self-adaptability can be designed.
Moreover, Web Services lack ability to adapt to the changing environment
without human intervention. In this paper, we propose an autonomic computing
approach for Web services’ self-adaptation. More precisely, Web services are
considered as autonomic systems, that is, systems that have self-* properties.
An agent-based approach is also proposed to deal with the achievement of Web
services self-adaptation.

Keywords: Web service, autonomic computing systems, self*-properties.

1 Introduction

With the rapid growth of communication and information technologies, adaptation has
gained a significant attention as it becomes a key feature of Web services allowing them
to operate and evolve in highly dynamic environments. A flexible and adaptive Web
service should be able to adequately react to various changes in these environments to
satisfy the new requirements and demands.

When executing Web services, network configurations and QoS offerings may
change, new service providers and business relationships may emerge and existing
ones may be modified or terminated. The challenge, therefore, is to design robust and
responsive systems that address these changes effectively while continually trying to
optimize the operations of a service provider.

So, while we obviously need effective methodologies to adapt web services to a
dynamically changing environment, we also need elegant principles that would give
web services the ability to continue seeking opportunities to improve their behavior
and to meet user needs. To meet these goals, we propose an autonomic computing
architecture for self-adaptive web services. More precisely, we consider Web services
as autonomic computing systems.

 An Autonomic Computing Architecture for Self-* Web Services 253

Autonomic computing is to design and build computing systems that can manage
themselves [1]. These systems are sets of called autonomic elements whose interaction
produces the self-management capabilities. Such capabilities include: self-configuration,
self-healing, self-optimization, and self-protection [2].

• Self-configuration by adapting automatically to the dynamically changing envi-
ronment.

• Self-optimization by continually seeking opportunities to improve performance
and efficiency.

• Self-healing by discovering, diagnosing and reacting to disruptions such as re-
pairing service failure.

• Self-protection by defending against malicious attacks or cascading failures.

Other instantiations of self-managing mechanisms have been also adopted namely
autonomy of maintenance by Chainbi [3], and system adaptation and complexity
hiding by Tianfield and Unland [4].

The rest of this paper is organized as follows: section 2 gives a background mate-
rial on autonomic computing and shows how autonomic computing capabilities may
be applied in Web services. In section 3, we describe our solution for self-* Web
services. Section 4 deals with a case study. In section 5, we compare the proposed
study to related work. Section 6 presents some hints justifying the possible implemen-
tation of the presented autonomic architecture via an agent-based approach. Section 6
compares the proposed study to related work. The last section presents the conclusion
and the future work.

2 Autonomic Computing and Web Services

2.1 Autonomic Computing

Autonomic Computing is started by IBM in 2001 and is inspired by the human body’s
autonomic nervous system [2]. It is a solution which proposes to reallocate many of
the management responsibilities from administrators to the system itself.

Autonomic computing deals with the design and the construction of computing
systems that posses inherent self-managing capabilities. Such systems are then con-
sidered as autonomic computing systems. Each autonomic system is a collection of
autonomic elements – individual systems constituents that contain resources and de-
liver services to humans and other autonomic elements. It involves two parts: a man-
aged system, and an autonomic manager. A managed system is what the autonomic
manager is controlling. An autonomic manager is a component that endows the basic
system with self-managing mechanisms such as self-configuration, self-optimization,
self-healing, and self-protection.

The autonomic computing architecture starts from the premise that implementing
self-managing attributes involves an intelligent control loop [2] (see figure 1). This
loop enables the system to be self-*, and is dissected into three parts that share
knowledge:

254 W. Chainbi, H. Mezni, and K. Ghedira

Fig. 1. A control loop (adapted from [4])

• The measure part provides the mechanisms that collect, aggregate, filter, and
report details (e.g., metrics) collected from the controlled process.

• The decision part provides the mechanisms to produce the action needed to
achieve goals and at the same time respect the constraints.

• The actuation part provides the mechanisms that control the execution of actions.

With this characterization in place, the integration of autonomic computing may be
envisioned by two ways, namely (a) embedding the autonomic manager into the Web
service, and (b) using autonomic managers as an external layer which provides the
autonomic behavior for the Web service. The latter approach treats the Web service as
a "black box" surrounded by autonomic managers controlling the state of the Web
services and performing actions each of which can configure, optimize, heal, or cor-
rect the Web service. This approach requires the development of specific interfaces
facilitating the interaction between the autonomic manager part and the managed part
of the Web service. In this paper, we adopt the latter approach because it seems to be
more appropriate since it separates the monitoring problem from the application
specification. Accordingly, it ensures separation of concerns in the development proc-
ess. Hence, the proposed architecture clearly separates the business logic of a Web
service from its adaptation functionality.

2.2 Self-* Properties in Web Services

We define self-adaptive Web services as Web services supporting the autonomic com-
puting properties which are often referred to as self-* properties, and are the followings.

• Self-configuration: a Web service may be a set of interacting Web services
which in turn may interact with external applications with different interfaces
and protocols. A new component Web service has to incorporate itself seam-
lessly and the rest of the system will adapt itself to its presence. For example,
when a new Web service is introduced into a composite Web service, it will
automatically learn about and take into account the composition and the con-
figuration of the Web service, so that it can process services mismatches be-
tween interfaces and protocols by taking mediation actions.

 An Autonomic Computing Architecture for Self-* Web Services 255

• Self-healing: In case of problems such as service failure or QoS violation, a
Web service has to perform recovery actions including retry execution, substi-
tute candidate service, etc.

• Self-optimization: Web services have to continually seek opportunities to im-
prove their own performance and efficiency. For example, a component Web
service may be substituted with another one guaranteeing a better QoS and tak-
ing into account runtime execution context and other constraints.

• Self-protection: Web services can interact with other services or Web applica-
tions. They have to identify and detect intrusions and defend themselves against
attacks (e.g., message alteration or disclosure, availability attacks, etc.) by de-
fining and integrating some security policies.

It is important to note that these capabilities may be heavily interrelated with one
another in the Web service adaptation. For example, consider a system that fails to
invocate a component Web service. The adaptation process starts by detecting and
diagnosing the failure. Then the recovery action is to substitute this component Web
service (i.e., self-healing action). The system selects the suitable service based on
current state of the environment (i.e., self-optimization action). If the substituted and
the substituting services interfaces don’t match, some mediation actions have to be
taken (i.e., self-configuration action).

3 Autonomic Web Service Architecture

Dealing with self-* in a Web service means simply that the Web service act without
the direct intervention of any other external agent (including but not limited to, a
human) in order to meet self-* properties. Accordingly, autonomy is required for Web
services to self-* themselves to the different events occurring in their environment.
Autonomy is also necessary for an autonomic computing system. Indeed, system self-
* has to be carried out without requiring the user’s consciousness [4].

With this characterization in place, the match process in favor of an autonomic
computing system solution is straightforward. A Web service is the system to be
managed, and an autonomic manager is required to endow the Web-service with self-
* capabilities such as self-configuration, self-healing, self-optimization, and self-
protection. Figure 2 represents an autonomic Web service architecture.

Fig. 2. An autonomic Web service architecture

256 W. Chainbi, H. Mezni, and K. Ghedira

An autonomic Web services environment may combine a variety of managed re-
sources including autonomic Web services, processes, etc. These resources have dif-
ferent requirements and architectures which need autonomic managers with different
capabilities allowing Web services to be self-*.

In case of executing a composite Web service, the management tasks of the com-
ponent services are shared between a set of autonomic managers. The topology of the
autonomic system is specified as a correlation between autonomic managers which
perform many tasks such as managing the executing Web service, interacting with
registries to select suitable web services or coordinate the work of other autonomic
managers. The autonomic managers’ work is orchestrated by a special autonomic
manager which is responsible for the coordination of the basic Web services auto-
nomic managers. Note that the autonomic manager coordinating the set of services'
autonomic managers can be considered as a managed resource in case the associated
composite Web service is used as a component service in another process. Figure 3
shows the structure of such a system.

Fig. 3. An autonomic Web service system architecture

An autonomic manager has to interact with its external environment to be able to
manage Web services efficiently. External environment includes registries and other
autonomic managers. Interaction with registries enable autonomic managers to send a
substitution request of a Web service, to select best available Web services for a new
composition, to get new Web services opportunities, etc. Autonomic managers may
also interact with registries (independently of the managed Web services) when de-
tecting any change in the state of the environment, such as emergence of new nodes,
termination of existing ones, etc. Such interaction allows autonomic managers to be

 An Autonomic Computing Architecture for Self-* Web Services 257

aware of the available resources for the adaptation process of the executing Web ser-
vice or for a future management task.

Autonomic managers may also interact between each others to send information or
to perform adaptation. For example, if a Web service’s autonomic manager fails to
adapt its managed Web service, it may send a request to its coordinating autonomic
manager to execute adaptation actions at the composite service level (i.e., adaptation
of the whole Web service). The same information’s flow may occur between two
coordinating autonomic managers in case the managed composite service is com-
posed of some complex Web services.

4 Example of an Adaptation Scenario

The structure of the autonomic Web service system may change in run time to satisfy
a self*-property. Figure 4 shows an example of adaptation scenario where a basic
Web service is substituted by a composite Web service.

Using the search for music scenario, we show how an executing Web service may
be adapted to meet the user needs and we show how the autonomic system is able to
adjust its specification according to the changing conditions. In this scenario, the
client wishes to listen to music and to download songs in the rm format while reading
lyrics and information about the artist. Figure 5 shows the sequence diagram related
to the adaptation scenario.

Fig. 4. Example of adaptation scenario

Consider the FindMusic Web service invoked by a user to look for a song. The
service takes as inputs the song’s title or the performer’s name. Then, it shows the
results according to the user’s request. Since the user searches songs with a particular
format, he may specify this format in the song’s parameters. After selecting the de-
sired song, the Web service proposes to play or to download the song. While listen-
ing, users have the possibility to read lyrics and artist information.

258 W. Chainbi, H. Mezni, and K. Ghedira

Fig. 5. Sequence diagram of the adaptation scenario

When starting the execution, the FindMusic Web service is associated to an auto-
nomic manager, which performs the monitoring task and interaction with the external
environment such as requesting registries to look for new opportunities or to execute
adaptation actions.

The adaptation process starts when the autonomic system detects an event trigger-
ing a self-* action. Such an event may be an invocation failure of the FindMusic Web
service. Therefore, the autonomic Web service system takes some recovery actions
such as retrying execution. If the execution fails again then the autonomic system
triggers a recovery action in order to replace this component with another one such as
a composite Web service. The autonomic system interacts with Web services regis-
tries to perform the selection of the suitable service according to objectives of the
failed FindMusic service.

 An Autonomic Computing Architecture for Self-* Web Services 259

Let the selected service be a composite web service, where the components are the
SeekMp3 Web service, the MusicConverter Web service and the Lyrics Web service.
These Web services interact to satisfy user requests. The SeekMp3 service receives
the song title or artist name and returns a result which is a set of songs with different
formats. Then MusicConverter service, based on the preferred format, is invoked to
convert input files (results returned by the SeekMp3 service) to the desired format.
The Lyrics service uses the song’s title to return lyrics of the song and information
about the corresponding artist. Finally, outputs of the MusicConverter Web service
and the Lyrics Web service (songs in rm format, lyrics and artist’s information) are
returned to the user.

The selected composite Web service is made up with three autonomic managers for
managing the basic services and an autonomic manager for coordinating services’
autonomic managers. The autonomic manager, responsible for monitoring the failed
FindMusic service, is replaced by these autonomic managers that will manage the
substituting composite service. Analysis and design of autonomic Web services is out
of the scope of this paper which main content deal with an autonomic architecture to
self-* Web services. Some hints are given in section 6.

Note that the desired service (that will substitute the failed FindMusic service) may
be unavailable or may not exist. The autonomic system, then, has to interact with the
registries to look for possible actions such as composing the substituting service. In
case of replacing a composite web service by a basic one, the set of autonomic man-
agers associated to the composite service are replaced by a single autonomic manager
to manage the substituting basic service.

From a functional perspective, the substituting service meets the user needs and of-
fers the same functionality of the failed FindMusic service. Rarely does service’
WSDL interfaces match exactly. In our scenario, SeakMp3 and MusicConverter ser-
vices interfaces don’t match. This requires taking some mediation actions to translate
between the two service-interface signatures, so that interoperability can be made
effective. For this, associated autonomic managers, based on their self-configuration
capabilities, should interact to generate an adapter (e.g. a service) that mediates the
interactions among the two SeakMp3 and MusicConverter services.

Once the autonomic system is established, it continuously monitors the executing
Web service to detect problems while trying to improve its performance. In our work,
Web services self-optimization behavior is a combination of monitoring, selection and
substitution capabilities. Self-optimization may occur in case of emergence of a new
Web service with the same functionality and with a better quality. Regarding our
executing Web service, possible optimization actions are: substituting one of the
component services (SeakMp3, MusicConverter or Lyrics) or substituting the whole
executing composite Web service.

Each autonomic manager must continuously try to improve the whole executing
Web service performance by interacting with registries to get services opportunities.
Indeed, each Web service’s autonomic manager receives opportunities from registries
and decides about substituting its associated Web service. In the same way, the coor-
dinating autonomic manager should also interact with registries to look for a better
Web service that may replace the whole executing web service.

Suppose that a change in the execution environment occurs (emergence of new
Web services similar to the SeakMp3 service). The autonomic manager associated to

260 W. Chainbi, H. Mezni, and K. Ghedira

the SeakMp3 service receives the ranked candidate services list from registries and
decide to replace the SeakMp3 service with the basic AllMusic service. Then, it analy-
ses the new specification of the executing composite Web service to look for any
change. Since the SeakMp3 Web service is replaced with a basic one, the autonomic
manager decides that no changes have occurred in the service specification and keeps
the current autonomic system specification.

Consider now, that the MusicConverter service is no longer available. The associ-
ated autonomic manager handles adaptation accordingly. For this, it implements a set
of recovery actions that allows substituting the MusicConverter service. If no candi-
date service is available for substituting, the autonomic manager tries to apply another
appropriate recovery action to let the execution successfully terminate. To that end,
the autonomic manager features several recovery actions. Possible solutions are (a)
composing a new Web service with the same functionality of the failed MusicCon-
verter service or (b) replacing the whole executing composite service. In case of
adopting the first solution, the autonomic manager uses its automatic service discov-
ery and composition capabilities to interact with registries and perform the necessary
repair actions. It may also choose the second solution and looks for assistance from its
coordinating autonomic manager. This is by informing the coordinating autonomic
manager about the detected problem (MusicConverter unavailability) and about the
new information collected after trying to execute repair actions (unavailability of
substituting services). So, based on information sent by the MusicConverter auto-
nomic manager, and after interacting with registries, the self-healing behavior of the
coordinating autonomic manager is to substitute the whole executing composite Web
service with another one having the same goals. For this, the coordinating autonomic
manager contacts the registries to get a set of candidate services similar to the desired
one (the whole Web service) and selects the best available service: the MusicClub
Web service. Once the MusicClub service starts to execute, the autonomic system
adjust itself according to the new specification of the executing Web service by instanti-
ating new autonomic managers or deactivating existing ones. In case of replacing the
composite Web service by a basic one, the set of autonomic managers associated to the
composite service are replaced by a single autonomic manager to manage the substitut-
ing basic service.

5 Related Work

The main purposes of service adaptation vary from ensuring interoperability to ser-
vice recovery and optimization and context management. Some approaches address
the problem of interoperability due to interfaces and protocols heterogeneity. Recov-
ery deals with techniques for detecting problems in services interaction and searching
alternative solutions. Optimization is about discovering and selecting the suitable
Web service with respect to QoS offerings and user needs. Finally, solutions for con-
text change aim to optimize the service function of their execution context. Here are
some works on service adaptation:

The WS-Diamond Project [5] aims at the development of a framework for self-
healing Web services, that is, services able to self monitor, to self-diagnose the causes
of a failure, and to self-recover from functional and non-functional failures. In [6], the

 An Autonomic Computing Architecture for Self-* Web Services 261

solution for self-healing of BPEL processes is based on Dynamo, a monitoring
framework, together with an AOP extension to ActiveBPEL, and a monitoring and
recovery subsystem that uses Drools ECA rules.

In [7], a methodology and a tool for learning the repair strategies of WS to auto-
matically select repair actions are proposed. The methodology is able to incrementally
learn its knowledge of repairs, as faults are repaired. Thus, it is at runtime possible to
achieve adaptability according to the current fault features and to the history of the
previously performed repair actions. In [8], the authors propose a methodology for the
automated generation of adaptors capable of solving behavioral mismatches between
BPEL processes. [9] introduces PAWS, a framework for flexible and adaptive execu-
tion of managed WS-based business processes. In the framework, several modules for
service adaptation (mediation engine, optimization and self-healing) are integrated in
a coherent way.

In [10], the authors developed a staged approach for adaptive Web service compo-
sition and execution (A-WSCE) that cleanly separates the functional and non-
functional requirements of a new service, and enables different environmental
changes to be absorbed at different stages of composition and execution.

In [11], the authors are focusing on run-time adaptation of non-functional features
of a composite Web service by modifying the non-functional features of its compo-
nent. The aspect oriented programming technology is used for specifying and relating
non-functional properties of the Web services as aspects at both levels of component
and composite services.

While current approaches address significant subsets of adaptation requirements,
they have some drawbacks including the degree of automation, few techniques for
capturing non-functional properties, etc. The autonomic approach presented in this
paper deals with the different facets of adaptation since its purpose is the design and
the construction of Web services that posses inherent self-* capabilities.

Furthermore, there is no existing approach addressing the adaptation cross all the
functional layers of the service based systems (i.e., the business process layer, the
service composition layer, and the service infrastructure layer) since all the ap-
proaches address only a particular functional layer. For example, [10] and [11] deal
with the infrastructural layer whether the composition layer was dealt with in [8] and
[9]. In addition, existing approaches try to integrate a maximum of requirements in
order to have a complete framework. For this purpose, our main concern is to propose
a general autonomic architecture that provides self-* capabilities and meets the most
important adaptation requirements without affecting services consistency and by pre-
serving the robustness of the applications. Moreover, none of the existing approaches
have studied the complexity in the implementation, that is, hiding the complexity
from user and how much the adaptation is complex at any time of the application
lifetime. Autonomic computing provides self-adaptation while keeping its complexity
hidden from the user [4].

In our work, considering Web services as autonomic systems, offers many advan-
tages. First, unlike existing approaches, the management task is shared between a set
of autonomic managers, each of them is associated to a Web service. This leads to an
effective monitoring and consequently to a high degree of adaptation.

262 W. Chainbi, H. Mezni, and K. Ghedira

6 Implementation Issues

In this section, we deal with the technical machinery to achieve the self-adaptation.
We adopt an agent-based solution for the autonomic Web-service system. The inte-
gration of agent-based computing into the framework of autonomic computing may
be envisioned by two ways, namely (a) integrating the autonomic cycle into the sys-
tem, thus in a certain sense embedding the autonomic manager into the managed
system and adopting an agent solution for the whole, and (b) using agents as an exter-
nal layer which provides the autonomic behavior. We propose to adopt an agent solu-
tion for the whole namely the managed part of the Web service and the manager part.
Consequently, the interaction between the managed and the managing parts of the
system become easier. This is mainly due to the homogeneity of the adopted solution
(an agent is the unit of design).

In any design process, finding the right models for viewing the problem is a main
concern. In general, there will be multiple candidates and the difficult task is picking
the most appropriate one. Next, we analyze the high degree of match between the
characteristics of agent systems and those of autonomic systems [3].

6.1 Behavioral Match

The match process argument in favor of an agent based solution can be expressed by
the fact that an agent is able to deal with the aforementioned actions related to the
control loop (see figure 1 §2.1). The term agent in computing covers a wide range of
behavior and functionality. In general, an agent is an active computational entity that
can perceive (through sensors), reason about, and initiate activities (through effectors)
in his environment [12]. Normally, an agent has a repertoire of actions available to
him. This set of possible actions represents his ability to modify his environment. The
types of actions an agent can perform at a point of time include:

• Physical actions are interactions between agents and the spatial environment.
• Communicative actions are interactions between agents. They can be emission

or reception actions.
• Private actions are internal functions of an agent. They correspond to an agent

exploiting his internal computational resources.
• Decision action can generate communicative, physical and private actions. A

decision action can also update the agent's beliefs.

Fig. 6. An ongoing interaction between an agent and his environment

AGENT

ENVIRONMENT

Sensor input

Action output

 An Autonomic Computing Architecture for Self-* Web Services 263

An action may be classified as either configuration, optimization, healing, or pro-
tection action depending on the reason of its execution. For example, substituting a
candidate service is a physical action which can be optimization action if it is in-
tended to guarantee a better QoS. It can be as well considered as a healing action in
case of service failure.

6.2 Complexity Management

Computing systems consisting of software, hardware and communication infrastruc-
ture have become ever increasingly complex. If autonomic computing paradigm is to
be engineered for such complex systems, hierarchical control architectures are con-
sidered as a key technology to rely upon [4, 13, 14]. In such case, a hierarchy of con-
trol loops is required to endow the whole system of self-managing mechanisms. Each
level of control loop, achieving correspondingly, one of the different control goals
which collectively constitute the overall control objectives of the system. Conse-
quently, a multi-agent system solution is envisioned to deal with the self-* capabilities
within an autonomic computing system.

For example, numerous autonomic managers in a composite Web service system
must work together to deliver autonomic computing to achieve common goals. This is
the case of a composite Web service which needs to work with the autonomic manag-
ers of the elementary Web services, registries in order for the Web service infrastruc-
ture as a whole to become a self-* system.

The argument in favor of a multi-agent system solution can also be described in
terms of the ability of such systems to deal with complexity management. Previously,
Booch identified three techniques for tackling complexity in software: decomposition,
abstraction and organization [15].

• Decomposition: the process of dividing large problems into smaller, more man-
ageable chunks each of which can then be dealt with in relative isolation.

• Abstraction: the process of defining a simplified model of the system that em-
phasizes some of the details or properties, while suppressing others.

• Organization: the process of identifying and managing the interrelationships be-
tween the various problem solving components. This helps designers tackle
complexity in two ways. Firstly, by enabling a number of basic components to
be grouped together and treated as a higher-level unit of analysis (e.g., the indi-
vidual components of a subsystem can be treated as a single coherent unit by the
parent system). Secondly, by providing a means of describing the high-level re-
lationships between various units (e.g., a number of components may cooperate
to provide a particular functionality).

Next, we deal with each technique in turn.

• Agent-oriented decomposition is an effective way of partitioning the problem
space of a complex system: the agent-oriented approach advocates decomposing
problems in terms of autonomous agents that can engage in flexible, high-level
interactions. Decomposing a problem in such a way helps the process of engi-
neering complex systems in two main ways. Firstly, it is simply a natural repre-
sentation for complex systems that are invariably distributed and that invariably
have multiple loci of control. This decentralization, in turn, reduces the system’s

264 W. Chainbi, H. Mezni, and K. Ghedira

control complexity and results in a lower degree of coupling between compo-
nents. The fact that agents are active entities means they know for themselves
when they should be acting and when they should update their state. Such self-
awareness reduces control complexity since the system’s control know-how is
taken from a centralized repository and localized inside each individual problem
solving component [12]. Secondly, since decisions about what actions should be
performed are devolved to autonomous entities, selection can be based on the
local situation of the problem solver. This means that the agent can attempt to
achieve its individual objectives without being forced to perform potentially dis-
tracting actions simply because they are requested by some external entity. The
fact that agents make decision about the nature and scope of interactions at run-
time makes the engineering of complex systems easier. Indeed, the system’s in-
herent complexity means it is impossible to know a priori about all potential
links: interactions will occur at unpredictable times, for unpredictable reasons,
between unpredictable components. For this reason, it is futile to try and predict
or analyze all the possibilities at design time. Rather, it is more realistic to en-
dow the components with the ability to make decisions about the nature and
scope of their interactions at run-time. Thus agents are specifically designed to
deal with unanticipated requests and they can spontaneously generate requests
for assistance whenever appropriate.

• The key abstractions of agent-oriented mindset are a natural means of modeling
complex systems: In the case of a complex system, the problem to be characterized
consists of subsystems, subsystems components, interactions and organizational re-
lationships. Taking each in turn: firstly, there is a strong degree of correspondence
between the notions of subsystems and agent organizations. They both involve a
number of constituent components that act and interact according to their role
within the larger enterprise. Secondly, the interplay between the subsystems and
between their constituent components is most naturally viewed in terms of high
level social interactions (e.g., agent systems are described in terms of "cooperating
to achieve common objectives" or "negotiating to resolve conflicts"). Thirdly,
complex systems involve changing webs of relationships between their various
components. They also require collections of components to be treated as a single
conceptual unit when viewed from a different level of abstraction. On both levels,
the agent-oriented mindset again provides suitable abstractions. A rich set of struc-
tures is typically available for explicitly representing and managing organizational
relationships such as roles (see [16, 17] for example). Interaction protocols exist for
forming new groupings and disbanding unwanted ones (e.g., Sandholm's work
[18]). Finally, structures are available for modeling collectives (e.g., teams [19]).

• The agent-oriented philosophy for dealing with organizational relationships is
appropriate for complex systems: organizational constructs are first-class enti-
ties in agent systems. Thus explicit representations are made of organizational
relationships and structures. Moreover, agent-based systems have the concomi-
tant computational mechanisms for flexibly forming, maintaining and disband-
ing organizations. This representational power enables agent-oriented systems
to exploit two facets of the nature of complex systems. Firstly, the notion of
primitive component can be varied according to the needs of the observer. Thus,
at one level, entire subsystems can be viewed as singletons, alternatively, teams

 An Autonomic Computing Architecture for Self-* Web Services 265

or collections of agents can be viewed as primitive components, and so on until
the system eventually bottoms out. Secondly, such structures provide a variety
of stable intermediate forms that, as already indicated, are essential for the rapid
development of complex systems. Their availability means individual agents or
organizational groupings can be developed in relative isolation and then added
into the system in an incremental manner. This, in turn, ensures there is a
smooth growth in functionality.

6.3 Pragmatic Reasons

Autonomic computing denotes a move from the pursuit of high speed, powerful com-
puting capacity to the pursuit of self-managing mechanisms of computing systems.
Indeed, today's computing and information infrastructure have reached a level of
complexity that is far beyond the capacity of human system administration. For in-
stance, follow the evolution of computers from single machines to modular systems to
personal computers networked with larger machines. Along with that growth has
came increasingly sophisticated architectures governed by software whose complexity
now routinely demands tens of millions of lines of codes. The internet adds yet an-
other layer of complexity by allowing us to connect this world of computers and
computing systems with telecommunications networks. In the process, the systems
have become increasingly difficult to manage, and ultimately, to use. Inspired by the
functioning of the human nervous system which frees our conscious brain from the
burden of dealing with some vital functions (such as governing our heart rate and
body temperature), autonomic computing is considered as a promising solution to
such problems.

As yet, however there is not a successful solution to autonomic computing which
can be applied on a significant scale. So far a mature solution has not yet appeared. In
part, this is due mainly to the youth of this paradigm and the absence of adequate
tools, but our experience suggests that the absence of tools that allow system com-
plexity to be effectively managed is a greater obstacle.

Agent technology is one of the most dynamic and exciting areas in computer sci-
ence today. Many observers believe that agents represent the most important new
paradigm for software development since object-orientation. Agent technology has
found currency in diverse applications domains including ambient intelligence; grid
computing where multi-agent system approaches enable efficient use of the resources
of high-performance computing infrastructure in science, engineering, medical and
commercial applications; electronic business, where agent-based approaches support
the automation of information-gathering activities and purchase transactions over the
internet; the semantic web, where agents are needed both to provide services, and to
make best use of the resources available, often in cooperation with others ; and others
including resource management, military and manufacturing applications [20].

Agent paradigm has achieved a respectable degree of maturity and there is a wide-
spread acceptance of its advantages: a relatively large community of computer-
scientists which is familiar with its use now exists. A substantial progress has been
made in recent years in providing a theoretical and practical understanding of many
aspects of agents and multi-agent systems [21].

266 W. Chainbi, H. Mezni, and K. Ghedira

7 Conclusion and Future Work

In this paper we adopt autonomic computing paradigm to propose an approach for
self-adaptive web services. The basic idea is to consider web services as autonomic
systems, that is, systems able to manage and adapt themselves to the changing envi-
ronment according to a set of goals and policies. As a result, autonomic web services
can recover from failure, optimize their performance, configure themselves, etc. with-
out any human intervention. An autonomic distributed architecture is proposed where
each component service is associated with one or a set of specific autonomic
manager(s). We have also presented in this paper the main reasons to consider agent
technology as a suitable candidate to deal with the technical machinery achieving
self-adaptation within a Web services system.

Motivated by the fact that self-adaptation systems are recently considered as the
trend of the new systems, and by the justified claim that agent-based computing has
the potential to be integrated into the framework of autonomic computing we will
show, in our future work, how software agents may be used to deal with autonomic
Web services systems. More precisely, we envision to develop an agent-based archi-
tecture for an autonomic Web services system. An adaptive version of the Search for
Music scenario, presented in this paper, is currently being implemented by using an
agent based approach.

References

1. Ganek, A.G., Corbi, T.A.: The Dawning of the Autonomic Computing Era. J. IBM Sys-
tems 42(1), 5–18 (2003)

2. IBM Group.: An Architectural Blueprint for Autonomic Computing, http://www-
03.ibm.com/autonomic/pdfs/AC

3. Chainbi, W.: Agent Technology for Autonomic Computing. J. Transactions on Systems
Science and Applications 1(3), 238–249 (2006)

4. Tianfield, H., Unland, R.: Towards Autonomic Computing Systems. J. Engineering Appli-
cations of Artificial Intelligence 17(7), 689–699 (2004)

5. Console, L., Fugini, M.: The WS-Diamond Team: WS-DIAMOND: an Approach to Web
Services - DIAgnosability, MONitoring and Diagnosis. In: e-Challenges Conference, The
Hague (2007)

6. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL Processes with Dynamo and the
JBoss Rule Engine. In: International Workshop on Engineering of Software Services for
Pervasive Environments (ESSPE 2007), pp. 11–20 (2007)

7. Pernici, B., Rosati, A.M.: Automatic Learning of Repair Strategies for Web Services. In:
5th European Conference on Web Services (ECOWS 2007), pp. 119–128 (2007)

8. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: International Con-
ference on Service Oriented Computing (2006)

9. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A Framework for
Executing Adaptive Web-Service Processes. J. IEEE Software 24(6), 39–46 (2007)

10. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in Web Service
Composition and Execution. In: International Conference on Web Services, pp. 549–557
(2006)

 An Autonomic Computing Architecture for Self-* Web Services 267

11. Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R.: Run-Time Adaptation
of Non-functional Properties of Composite Web Services Using Aspect-Oriented Pro-
gramming. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 546–557. Springer, Heidelberg (2007)

12. Jennings, N.: On Agent-based Software Engineering. J. Artificial Intelligence 117(2), 277–
296 (2000)

13. Albus, J.S., Meystel, A.M.: Engineering of Mind: an Introduction to the Science of Intelli-
gent Systems. Wiley, New York (2001)

14. Tianfield, H.: Formalized Analysis of Structural Characteristics of Large Complex Sys-
tems. J. IEEE Transactions on Systems, Man and Cybernetics. Part A: Systems and Hu-
mans 31(6), 59–572 (2001)

15. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-Wesley,
Reading (1994)

16. Baejis, C., Demazeau, Y.: Organizations in Multi-Agent Systems. Journées DAI, Toulouse
(1996)

17. Fox, M.S.: An Organizational View of Distributed Systems. J. IEEE Transactions on Sys-
tems, Man and Cybernetics 11(1), 70–80 (1981)

18. Sandholm, T.: Distributed Rational Decision Making. Multi-Agent Systems. MIT Press,
Cambridge (1985)

19. Tambe, M.: Toward Flexible Teamwork. J. Artificial Intelligence Research 7, 83–124
(1997)

20. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next Generation Com-
puting. In: AgentLink II (2003)

21. D’inverno, M., Luck, M.: Understanding Agent Systems, 2nd edn. Springer, Heidelberg
(2004)

Author Index

Aldinucci, Marco 96
Ali, Azad 79
Alnuweiri, Hussein 17
Anagnostopoulos, Christos 64, 160
Anagnostopoulos, Theodoros 64
Anthony, Richard 114
Antoniou, Josephine 144

Beraldi, Roberto 17
Bertolli, Carlo 32
Buono, Daniele 32

Carapeto, Nuno Filipe 144
Chainbi, Walid 252
Christophorou, Christophoros 144
Coupaye, Thierry 48

Danelutto, Marco 96

Égel, Zoltán 130
Etchevers, Xavier 48

Ferreira, João 1

Getov, Vladimir 96
Ghedira, Khaled 252
Gibbins, Nicholas 203

Hadjiefthymiades, Stathes 64, 160
Hawthorne, James 114

Jennings, Nicholas R. 203

Khelil, Abdelmajid 79
Kocsis, Imre 130
Kota, Ramachandra 203

Leitão, João 1

McKee, Gerard 192
Mencagli, Gabriele 32
Mezni, Haithem 252
Mota, Telma 144

Neto, Augusto 144

Paljak, Gergely János 130
Pataricza, András 130
Pinto, Filipe Cabral 144
Pinyol, Isaac 220
Pitsillides, Andreas 144

Rodrigues, Luis 1

Sabater-Mir, Jordi 220
Santibáñez, Josefina 236
Sargento, Susana 144
Shaikh, Faisal Karim 79
Sharpanskykh, Alexei 176
Sierra, Josefina 236
Simoes, Jose 144
Suri, Neeraj 79

Tóth, Dániel 130

Vachet, Guy 48
Vanneschi, Marco 32
Varghese, Blesson 192

Weigold, Thomas 96

	Title Page
	Preface
	Organization
	Table of Contents
	Autonomics 2009
	A-OSGi: A Framework to Support the Construction of Autonomic OSGi-Based Applications
	Introduction
	Related Work
	OSGi Platform
	MAPE-K Control Loop
	OSGi Monitoring

	The A-OSGi Framework
	Implementation of A-OSGi
	Underlying Technologies
	MAC Implementation
	EC Implementation
	KC Implementation
	PEI Implementation
	Framework Modifications

	Evaluation
	Using A-OSGi
	Performance
	Other Policies

	Conclusions
	References

	A Network-Coding Based Event Diffusion Protocol for Wireless Mesh Networks
	Introduction
	Contribution of the Work

	Background
	Event Dissemination with Network Coding

	Proposed Protocol
	Basic Data Structure and Assumption
	Protocol Description
	Pull Phase

	Evaluation
	Protocol Tuning
	Performance on a Grid

	Conclusions
	References

	Expressing Adaptivity and Context Awareness in the ASSISTANT Programming Model
	Introduction
	Related Work
	A Flood Management Application
	Defining Parallel Versions
	The ASSIST Model
	Parallel Programs in ASSIST
	Experiments

	The ASSISTANT Programming Model
	Programming Adaptivity for the Flood Application in ASSISTANT
	Conclusions
	References

	Experiences in Benchmarking of Autonomic Systems
	Introduction
	Background
	Models and Metrics
	Benchmarking Methodologies and Tools

	Assessment Methodology and Process
	Methodology
	Qualitative Assessment
	Quantitative Assessment
	Economical Assessment (Return on Investment)

	Experimental Results
	Qualitative Assessment
	Quantitative Assessment
	Discussion

	Conclusion
	References

	An Online Adaptive Model for Location Prediction
	Introduction
	Machine Learning Models
	Offline kMeans
	Online kMeans
	Adaptive Resonance Theory

	Context Representation
	Mobility Prediction Model
	Prediction Evaluation
	Convergence of $C-T$ and $C-nT$
	Precision of $C-T$ and $C-nT$

	Comparison with Other Models
	Prior Work
	Conclusions
	References

	MPM: Map Based Predictive Monitoring for Wireless Sensor Networks
	Introduction
	Related Work
	Preliminaries
	System Model
	Requirements on the MPM
	Definitions

	Predictive Monitoring: The MPM Approach
	The Segmentation Phase
	The Data Collection Phase
	The Prediction Phase
	The Event Detection Phase

	Case Study: MPM Adaptation for Predicting Network Partition
	Problem Formulation
	The Segmentation Phase
	The Data Collection Phase
	The Prediction Phase
	The Event (Holes/Partition) Detection Phase

	Evaluation – Viability of Our Approach
	Evaluation Metrics
	Simulation Settings
	Simulation Results
	Discussion

	Conclusion and Future Directions
	References

	Integrating Autonomic Grid Components and Process-Driven Business Applications
	Introduction
	The GCM Framework
	Behavioural Skeletons

	The ePVM Process Engine
	Process-Driven Distributed Biometric Identification
	Application Architecture
	Process-Engine/GCM Interfacing
	Using Autonomic GCM Components
	Deployment and Component Creation
	Application Monitoring
	Automatic Futures vs. Message Passing
	Integrated Development

	Results, Experiences, and Lessons Learned
	Conclusions
	References

	Using a Teleo-Reactive Programming Style to Develop Self-healing Applications
	Introduction
	Related Work
	Teleo-Reactive Programs

	Method
	Goals
	Conditions
	Actions
	Contrast

	Design
	Teleo-Reactive Program Design
	Program Structure Design

	Example
	T-R Elements
	Controls
	Working through the Example

	Future Work
	Conclusion
	References

	Sensor Selection for IT Infrastructure Monitoring
	Introduction
	Related Work
	Instrumentation Support of Metric Selection
	Experimental Setup
	Experimental Methodology
	Experimental Results
	Conclusion and Future Work
	References

	Context-Aware Self-optimization in Multiparty Converged Mobile Environments
	Introduction
	Related Work

	Context-Aware Multiparty Service Provision
	System Architecture
	Context-Based Sub-grouping

	Enabling Context-Awareness at the Session Level
	Session Management Overview
	Context-Aware Session Management
	Initiating a Context-Aware Session

	Enabling Context Awareness at the Network Level
	Network Management Overview
	Context-Aware Network Management
	Grouping as a Part of Network Management

	Propagating Context to Content
	Motivation: Same User, Different Media Types, Different Sub-groups
	The Importance of Sub-grouping

	Conclusions and Future Work
	References

	Context Discovery in Mobile Environments: A Particle Swarm Optimization Approach
	Introduction
	Swarm Intelligence
	The Context Discovery Problem
	Context Representation and Quality of Context
	Mapping Swarm Intelligence to Context Discovery

	The Proposed Algorithm
	Foraging for Context
	Maintaining Fresh Context
	The CDP Algorithm

	Performance Evaluation
	Conclusions
	References

	ABSS@AS 2009 Workshop
	Consequences of Social and Institutional Setups for Occurrence Reporting in Air Traffic Organizations
	Introduction
	Modeling Formal Reporting in an ANSP
	Modeling of Agents
	Modeling Internal States and Interaction
	Modeling Decision Making of a Controller Agent

	Simulation Results
	Sensitivity Analysis
	Conclusions
	References

	Can Space Applications Benefit from Intelligent Agents?
	Introduction
	Swarm-Array Computing
	Constituents
	Approaches

	Simulation Studies
	Simulation Environment
	Experimental Platform and Model
	Simulation Results

	Conclusion
	References

	A Generic Agent Organisation Framework for Autonomic Systems
	Introduction
	Related Work
	Modelling Tasks
	Modelling Organisational Characteristics
	Modelling Agents
	Evaluating an Organisation's Effectiveness

	The Agent Organisation Framework
	Task Representation
	Organisation Representation
	Organisation Performance Evaluation

	Applying the Agent Organisation Framework
	Conclusions
	References

	Metareasoning and Social Evaluations in Cognitive Agents
	Introduction
	Reasoning and Metareasoning: A Cognitive Approach
	A Multicontext BDI Agent with Repage System
	Preliminaries: Social Evaluations, Image and Reputation
	The Multi-Context BDI Model
	Belief Context (BC)
	Desire Context (DC)
	Intention Context (IC)
	Planner Context (PC) and Communication Context (CC)
	Repage Context (RC)
	Bridge Rules

	The Metalevel Specification
	DoF for Reasoning Rules
	A Metalevel Specification for the Rules A_{I} and A_{R}
	A Metalevel Specification for the Trust Axiom
	Processes Description

	Experimentation
	Scenario and Simulation Settings
	Static Experiments
	Dynamic Adaptation Experiments

	Conclusions and Future Work
	References

	Experiments on the Acquisition of the Semantics and Grammatical Constructions Required for Communicating Propositional Logic Sentences
	Introduction
	Conceptualisation: Basic Definitions
	Sensory Channels.
	Logical Categories

	Language Acquisition
	Experiments
	Intuitive Reasoning
	Conclusions
	References

	An Autonomic Computing Architecture for Self-* Web Services
	Introduction
	Autonomic Computing and Web Services
	Autonomic Computing
	Self-* Properties in Web Services

	Autonomic Web Service Architecture
	Example of an Adaptation Scenario
	Related Work
	Implementation Issues
	Behavioral Match
	Complexity Management
	Pragmatic Reasons

	Conclusion and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

