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Preface

These are the proceedings of SIROCCO 2009: the 16th annual Colloquium on
Structure, Information, Communication, and Complexity. SIROCCO is devoted
to the study of the interplay and trade-offs between the efficiency of decentralized
algorithms and systems and the availability of information.

Over the years, the colloquium has become a widely recognized forum, bring-
ing together researchers interested in the fundamental principles underlying the
interplay between local knowledge and global complexity. It has a tradition of
interesting and productive scientific meetings in a relaxed and pleasant atmo-
sphere, attracting leading researchers in a variety of fields which exhibit such
interplay.

This means that SIROCCO addresses topics in areas such as distributed
computing, parallel computing, game theory, social networks, networking, mo-
bile computing, peer to peer systems, communication complexity, combinatorial
optimization, etc. Some of the topics in these areas are compact data structures,
information dissemination, informative labeling schemes, distributed scheduling,
wireless networks and scheduling of transmissions, routing, broadcasting, local-
ization, and others.

SIROCCO 2009 was held in Piran, Slovenia, on the Adriatic. There were 53
contributions submitted to SIROCCO 2009. The submissions underwent a thor-
ough refereeing process, where each submission was reviewed by four members
of the Program Committee. After in-depth discussions, the Program Commit-
tee selected 23 high-quality contributions for presentation at the colloquium and
publication in this volume. Separately, four posters were also presented (but they
are not included in these proceedings). We thank the authors of all the submitted
papers, the Program Committee members, and the external reviewers. Without
their dedication, we could not have prepared a program of such quality.

There were two invited speakers: Israel Cidon (the Technion) and Leszek A.
Gasieniec (University of Liverpool).

This year, the SIROCCO Prize for Innovation in Distributed Computing
was awarded for the first time. The prize was given to Nicola Santoro for his
overall contribution on the analysis of the labeled graph properties, which has
been shown to have a significant impact on computability and complexity in
systems of communicating entities. These contributions include the notions of
“implicit routing,” “sense of direction,” and “topological awareness.” They were
illustrated by several papers, including his 1994 SIROCCO paper.

We express our gratitude to the SIROCCO Steering Committee, and in par-
ticular to Pierre Fraigniaud for his enthusiasm and his invaluable help throughout
the preparation of this event.



VI Preface

We are in a great debt to Igor Pesek who helped in many ways, including
handling the website and EasyChair. Petra Šparl was also very instrumental in
making SIROCCO 2009 a success.

We acknowledge the use of the EasyChair system for handling the submission
of papers, managing the refereeing process, and generating these proceedings.

August 2009 Shay Kutten
Janez Žerovnik
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Zooming in on Network-on-Chip Architectures

Israel Cidon

Electrical Engineering Faculty, Technion, Israel Institute of Technology

Abstract. The aim of this talk is to expose the theoretical distributed
system community to the concept of Network-on-Chip (NoC), an emerg-
ing research field within the VLSI realm, in which networking principles
play a significant role, and new network architectures are being explored
in a new setup as well as new cost and performance models. Researchers
should find new challenges in exploring solutions to familiar problems
such as network design, routing, and quality-of-service, in unfamiliar set-
tings under new constraints. The unique characteristics of silicon chips
require new solutions to these classical problems, and define a new set of
NoC specific problems, such as automatic network design process, power
and area optimization and specialized system functionalities.

We present a new classification of chip architectures into three cate-
gories with different requirements from their NoCs. In order to stimulate
some research directions, we highlight several research problems arising
in these categories such as routing, quality-of-service, flow and conges-
tion control, and resource allocation (e.g., capacity assignment, sharing
hot-spots). We provide initial solution directions to example problems.

S. Kutten and J. Žerovnik (Eds.): SIROCCO 2009, LNCS 5869, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



On Efficient Gossiping in Radio Networks

Leszek G ↪asieniec�

Abstract. A communication network is very often modelled as a graph
of connections in which the nodes exchange information (messages) via
(un)directed links. An associated communication protocol determines the
way the messages are exchanged. Among the most popular network mod-
els are: (1) the message passing model in which a node in one round can
inform all its neighbours; (2) the telephone model also known as the
matching model where in each round edges along which the exchange
of messages is performed form a matching in the graph of connections.
More recently, due to arrival of wireless technology (3) the radio network
model attracted more attention in algorithms community. In this model,
a message transmitted by a node is destined for all neighbours of this
node. It is assumed, however, that due to interference a node can suc-
cessfully receive a message if and only if exactly one of its neighbours
transmits during this round.

The two most fundamental problems in relation to information dis-
semination are: broadcasting (one-to-all communication) and gossiping
(total information exchange). In broadcasting, the goal is to distribute
a piece of information (broadcast message) from a distinguished source
node to all other nodes in the network. In gossiping, however, each node
in the network is expected to distribute its own message to every other
node in the network. A lot of attention has been given to the broadcasting
problem that resulted in a large volume of efficient algorithmic solutions
in the models described above. However, much less is known about gos-
siping. The latter problem is more complex algorithmically (in principle
it is a simultaneous multiple-source broadcasting) thus it concerns more
advanced communication strategies. Further study on efficient gossip-
ing methods gained recently an extra motivation through an increasing
interest in, e.g., information aggregation methods that propel fundamen-
tal applications in sensor networks. Also when the use of randomisation
is permitted gossiping provides an interesting context for a distributed
version of the coupon collector problem.

This paper is a short survey on the most important developments in
efficient radio gossiping. We discuss deterministic as well as randomized
methods of communication in the context of a variety of models taking
into account knowledge in relation to the network size and topology, ori-
entation of connections and the upper bound on the size of messages.
Using this opportunity we also shed more light on several combinato-
rial structures and algorithmic solutions that emerged during studies on
efficient radio broadcasting and gossiping.

� Department of Computer Science, University of Liverpool, Ashton Street, Liverpool,
L69 3BX, UK. E-mail: {L.A.Gasieniec}@liverpool.ac.uk. This research was par-
tially funded by the Royal Society International Joint Project, IJP - 2007/R1.

S. Kutten and J. Žerovnik (Eds.): SIROCCO 2009, LNCS 5869, pp. 2–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



On Efficient Gossiping in Radio Networks 3

1 Introduction

A radio network consists of a number of communication devices, each of which
can act at a given time step either as a transmitter or as a receiver. We very
often model a radio network as a (un)directed graph G(V, E) of connections
with nodes in the set V representing communication devices. The nodes in V
are labelled by distinct integers drawn from the range [1, .., N = O(nc)], for a
constant c ≥ 1. If c = 1 we say that the labels are small, otherwise the labels are
referred to as large. Two nodes in V are connected by an edge (or an arc) in E if
they can communicate directly. Such nodes are referred to as neighbours. Nodes
located in G at larger distances must communicate via intermediate nodes. The
number of nodes |V | = n is considered to be the size of the radio network since
presence of edges in E is only virtual. Other important parameters of the graph
of connections include the maximum degree Δ and the diameter D.

The network nodes communicate with their neighbours using the radio net-
work protocol introduced in [5], where full synchronisation of network nodes
is assumed. More precisely, the nodes have individual clocks that tick at the
same rate, measuring time steps, sometimes referred to as rounds. The run-
ning time of a communication procedure refers to the number of time steps
required to accomplish a specific communication task such as broadcasting and
gossiping.

A node acting as a transmitter in a given time step sends a message which
is delivered to all of its neighbours on the conclusion of the same time step. An
important distinction at the receiving end is between a message being delivered
and being heard (decoded, properly recognised), i.e., received successfully by a
destination node. It is assumed that a node v acting as a receiver in a given step
hears a message if and only if a message from exactly one of its neighbours is
delivered at this time step. Otherwise, if messages from at least two neighbours
are delivered to v simultaneously, none of the messages is heard by v in this
step. In this case we say that a collision (caused by interference) occurred at
v. It is assumed that nodes cannot distinguish collisions from the background
noise.

In our presentation of efficient gossiping methods we will first assume that
the network topology is unknown, i.e., that initially the nodes are not aware
of the topology of connections. Such networks are referred to as ad-hoc radio
networks. In this model the decision made by a node on whether and what to
transmit or alternatively whether to receive in a given round, is based solely on
the label of the node, the messages it heard so far, and the number of the current
round. In ad-hoc radio networks due to lower bounds Ω(n log D) for deterministic
broadcasting [14] and Ω(n log n) for gossiping enforced by the minimum size of
selective families [9], the main objective is to look for communication procedures
with the time complexity almost linear in n .

In the second part of the paper we focus our attention on the model in which
a complete topology of connections is known in advance. In this model the em-
phasis is on the design of communication schedules with the time complexity
proportional to the diameter D and the maximum degree Δ of the network.
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2 Ad-Hoc Radio Networks

In this section we discuss a number of communication methods that proved to
be useful in time efficient radio gossiping in ad-hoc networks. We start with a
short review of the most important developments in radio broadcasting.

2.1 Broadcasting

One of the first non-trivial results in this model is O(D log n + log2 n)-time
randomised broadcasting procedure due Bar-Yehuda et al. [2]. Corresponding
components of the lower bound of size Ω(D log(n/D)) and Ω(log2 n) can be
found in [40] and in [1] respectively. A tight upper bound O(D log(n/D)+log2 n)
was obtained independently by Kowalski and Pelc in [38] and Czumaj and Rytter
in [15].

In deterministic broadcasting the starting point is a folklore type quadratic
time Round-Robin procedure in which each node transmits on its own periodi-
cally. The first non-trivial result on deterministic broadcasting can be found in [8]
where Chlebus et al. show how to broadcast messages in time O(n11/6). In order
to cope with simultaneous transmissions their algorithm utilises selective families
constructed on the basis of the deterministic sample introduced by Vishkin in
the context of efficient parallel string matching [46]. This upper bound was later
improved to O(n5/3 log3 n) by De Marco and Pelc in [19] and to O(n3/2√log n)
by Peleg in [43] who also pointed out the difference between small and large
labels of the network nodes. Further, Chlebus et al. in [7] developed several
broadcasting algorithms, including the one with the time complexity O(n3/2)
based on arithmetic over a finite field.

The breakthrough in deterministic radio broadcasting came in [11] where
Chrobak et al. proved existence of small selective families, referred to as k-
selectors, with a linear selectivity. The definition of k-selectors differs from the
definition of (k, m, N)−selectors introduced in [17] in the context of combina-
torial group testing problem, their meaning, however, is comparable. In fact,
one can prove that k-cover-free families [23], disjunctive codes [20], superim-
posed codes [37], and strongly selective families [14] correspond to the notion of
a (k + 1, k + 1, n)-selector. In particular, k-selectors from [11] coincide with the
definition of (2k, 3k/2 + 1, n)-selectors.

The (k, m, N)−selectors can be pictured as rectangular matrices with N
columns standing for labels from the range [1, .., N = O(nc)], and rows rep-
resenting characteristic vectors of suitably chosen subsets of {1, .., N = O(nc)}.
Definition 1 ([17]). For any integer 1 ≤ m ≤ k < N , a Boolean matrix M
with t rows and n columns is a (k, m, N)-selector if any submatrix of M obtained
by choosing k out of n arbitrary columns of M contains at least m distinct rows
of the identity matrix Ik. The integer t is the size of the (k, m, N)-selector.

Assuming that there are k nodes that compete to inform one of their neighbours
the use of a selector provides an opportunity to m of them to transmit on their
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own. In view of bounds provided in [17] and [9] we know that (k, m, N)-selectors
are of size Θ(k2 log(n/k)/(k−m+1)), for most of reasonable values of k, m and
N. More recent work on the size of selectors include [22,4].

The arrival of selectors of almost linear size in k resulted in development of
almost linear time radio broadcasting algorithms. The sequence of transmissions
performed by each node depends on the content of a logarithmic number of,
e.g., (2k, 3k/2 + 1, N)-selectors of geometrically increasing sizes where the con-
tent of selectors is evenly distributed in time. The broadcast process is split into
virtual stages, where at each stage the nodes form three groups: (1) containing
all informed nodes but with all their neighbours already informed (this group is
initially empty); (2) containing all nodes that are informed but still have some
uninformed neighbours; (3) containing uninformed nodes. Assume that at the
beginning of some stage the size of the group (2) is l and it satisfies a condition
k ≤ l ≤ 3k/2 for one of the used selectors. Note that due to the property of
(2k, 3k/2+ 1, N)-selectors either a fraction of l nodes have a chance to transmit
on their own, i.e., they will be transferred to group (1) or the size of the group
(2) grows above 2k when the selector becomes not selective enough. However
this time there must be a linear in l transfer of nodes from group (3) to group
(2). Thus in either of these cases in time O(l log2 n), where O(l log n) comes
from the size of the respective (2k, 3k/2+1, N)-selector and a multiplicative fac-
tor log n results from simultaneous use of a logarithmic number selectors, Ω(l)
transfers are obtained. Thus to accomplish broadcasting one needs at most 2n
transfers between the groups the total time complexity of the algorithm pro-
posed in [11] is O(n log2 n). Further improvements on the time complexity of
radio broadcasting can be found in [38] and [15] with times O(n log n log D) and
O(n log2 D) respectively, and in very recent work of De Marco [18] with the time
O(n log n log log n).

2.2 Gossiping

Note that the utilisation of the Round-Robin procedure provides also a solution
to the gossiping problem. Unfortunately, it works in time O(n2) and only for
small labels with N = O(n). The first non trivial attempt has been made by
Chrobak et al. in [11]. Their solution is still based on the Round-Robin principle
however the time complexity of gossiping is reduced to O(n3/2 log2 n).

Algorithm Gossip;
perform

√
n log2 n rounds of RoundRobin;

while maxv |K(v)| > 0 do
Find a node vmax, s.t., |K(vmax)| = maxv |K(v)|;.
Broadcast from vmax message K(vmax);
for each node v

K(v)← K(v)−K(vmax);.

The algorithm runs in two stages. During the first stage each message is dis-
tributed to at least

√
n log2 n nodes in the network with the help of the Round-

Robin procedure. In the second phase, during each iteration we choose a node
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vmax that contains the largest number of messages K(vmax) that have not been
broadcasted yet to all nodes in the network. The search for such a node is done
via application of the broadcasting procedure O(log n) times, in principle, per-
forming binary search in the set of nodes with |K(v)| ≤ 1. One can prove that
due to the property obtained on the conclusion of the first phase a number of
iterations during the second phase is limited to

√
n/ logn, in total resulting in

the complexity O(n3/2 log2 n). This solution was further nicely polished by Xu
in [47] who obtained O(n3/2)-time gossiping.

The first attempt to gossiping performed in directed ad-hoc radio networks
with large labels can be found in [30]. The authors show how to utilise selectors
with linear selectivity to reduce virtual degrees of nodes. This allowed to speed
up the process of pushing messages through the networks more efficiently with a
help of larger but also more selective (k, k, N)-selectors. They proposed a gossip-
ing procedure with the time complexity O(n5/3 log3 n). This result was further
improved to O(n4/3 log4 n) by G ↪asieniec et al. in [34] with a help of path selec-
tors formed of an appropriately balanced mix of selectors with different levels of
selectivity. The path selectors proved to be more efficient than (k, k, N)-selectors
in the process of pushing messages through the network with virtually reduced
degrees of nodes. Since the only known lower bound on the time complexity of
radio gossiping is Ω(n log n) (gossiping in a star with n nodes requires this time
in view of the size of selectors) the gap between the fastest currently known
algorithm [34] and the lower bound constitutes one of the most challenging open
problems in radio gossiping.

Randomised algorithms. Throughout the last decade there has been also a
considerable interest in randomised radio gossiping. The first successful attempt
was made by Chrobak et al. in [12] where they provided a nice dissemination
mechanism based on the concept of the distributed coupon collector problem
defined as follows. The network nodes stand for n bins and their messages serve
as n coupons. Each coupon is available in at least k copies located in different
bins, where K(v) is the content of bin v. During each step the bins get open at
random by choosing each bin independently with probability 1/n. If exactly one
bin v gets opened, all coupons from K(v) are collected. Otherwise, a failure is
experienced and no coupons are collected. On can prove the following lemma.

Lemma 1 ([12]). For any 0 < δ < 1, repeating the random selection of a bin
(4n/k) ln(n/δ) times results in collection of all coupons with probability ≥ 1− δ.

Algorithm Random-Gossip;
δ← ε/ logn
for i = 0, 1, . . . , log n− 1 do {Stage i}

repeat (4n/2i) ln(n/δ) times
with probability 1/n do

LtdBroadcastv(2i+1)

Note that procedure LtdBroadcastv(2i+1) provides a dissemination mecha-
nism based on selectors, as in [11], that allow to inform at least 2i+1 nodes
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in time O(2i+1 log2 n). Note also that one can adopt the following invariant.
On the conclusion of each stage i, for i = 0, .., log n − 1, each message is dis-
tributed to at least 2i+1 nodes. This is due to lemma 1 and the property of
the procedure LtdBroadcastv(2i+1). Thus on the conclusion of the algorithm
Random-Gossip all nodes get informed and the gossiping is accomplished. The
probabilities are chosen such that with probability at least 1 − ε, algorithm
Random-Gossip accomplishes gossiping in time O(n log3 n log(n/ε)). To ob-
tain a Las Vegas type algorithm one can run Random-Gossip with ε = 1/n
with the expected running time O((1 − 1/n)n log4 n + (1/n)n2) = O(n log4 n).
Further work performed by Liu and Prabhakaran in [41] and Czumaj and Rytter
in [15] lead to improvements O(n log3 n) and O(n log2 n) respectively.

Finally, note that gossiping in undirected ad-hoc radio networks is easier and it
already has an almost linear solution. G ↪asieniec et al. in [30] showed that if bidi-
rectional links are available the time complexity of radio gossiping is O(n log4 n)
leaving only a polylogarithmic gap to be closed.

Small messages. Among other interesting models studied in the context of
gossiping in ad-hoc radio networks we find work of Christersson et al. [10] on
communication with unit-size messages, where it is assumed that the messages
are limited to constant size, the connections are symmetric and the labels are
drawn from the range [1, .., O(n)]. They show that in this restricted model gos-
siping can be accomplished deterministically in time close to O(n3/2). They also
show that if messages are limited to size nt, for any 0 < t < 1/2, there is a gos-
siping algorithm with the time complexity O(n2−t). Furthermore, by adopting
known results on randomized broadcasting in symmetric ad-hoc radio networks
they derive a randomized gossiping protocol with almost linear time complexity.

Max-degree Δ and diameter D. An alternative solution with the time com-
plexity O(DΔ2 log3 n) taking into account other network parameters such as the
diameter D and the maximum in-degree Δ in the graph of connections can be
obtained using work of Clementi et al. [13]. This result was further improved
by G ↪asieniec and Lingas in [29] where they proposed two alternative gossiping
algorithms based on gradual construction of a map of connections in the network
with the time complexity O(nD1/2 log2 n) and O(DΔ3/2 log3 n).

3 Radio Networks with Known Topology

The situation changes dramatically if the network topology connections is known
in advance. In this case one can schedule nodes’ transmissions more efficiently
minimising negative effect of collisions caused by simultaneous transmissions. In
this case the main emphasis is on the design of efficient protocols with the time
complexity linear or close to linear in the diameter D. Note, however, that due to
the lower bound Ω(log2 n) from [1] the time complexity of any broadcasting and
gossiping procedure must contain also a respective summand O(log2 n). In [6],
Chlamtac and Weinstein explain how to broadcast in time O(log2 n) in bipartite
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graphs of size n. In [33], G ↪asieniec et al. define a notion of minimal covering sets.
Let B = (U ∪ L, E), be a bipartite graph with two partitions of nodes U and L
and edges in E with the endpoints in different partitions.

Definition 2 ([33]). A minimal covering set (MCS) of nodes in L is any subset
U ′ ⊆ U, s.t., all nodes in L have some neighbour in U ′ and removal of any node
in U ′ would break this condition.

Property 1. Each node in a minimal covering set has a unique neighbour in the
other partition, otherwise such a node could be removed without breaking the
covering property.

Assume that |U | = m and |L| = μ, where m + μ = n, and that all nodes in
U are already informed. We show how to use minimal covering sets to create a
broadcast schedule between two partitions of a bipartite graph B = (U ∪ L, E)
of length O(log2 n). The goal is to inform all nodes in L. We show that one can
select in time O(mμ) a subset of vertices in U that is able inform a fraction of

1
2 ln m vertices in L in one round.

The construction starts with selection of an arbitrary minimal covering set
U ′. This can be done via removal of vertices (and edges adjacent to them) from
U for as long as the covering property is not violated. At the end of this process
every node in U ′ has at least one unique neighbour in L. Two cases occur.

Case 1: if |U ′| = m ≥ μ
2 ln m , due to the property of minimal covering sets

simultaneous transmissions of all nodes in U ′ result in informing μ
2 ln m nodes in

L, otherwise

Case 2: we iterate the following process assuming that during consecutive iter-
ations the cardinality of U ′ is i, starting with i = m. Now, if (a) each node in U ′

has at least μ
2i ln m unique neighbours in L, then set U ′ can inform simultaneously

i · μ
2i ln m = μ

2 ln m nodes in L. Otherwise, (b) there is a node in U ′ that has at
most μ

2i log m unique neighbours in L. Remove this node from U ′ and remove its
unique neighbours from L.

The iteration process (Case 2) halts when, either case 2(a) occurs or exactly
one node is left in U ′. In the latter case we show that there is at least μ

2 nodes
in L, i.e., more than we need. And indeed, the total number of removed nodes
from L is bounded by

∑m
i=1

μ
2i ln m = μ

2 lnm ·∑m
i=1

1
i ≤ μ

2 ln m · ln m = μ
2 . This

concludes the proof that one can select a subset of nodes in U that is able inform
a fraction of 1

2 ln m vertices in L in one round.
The time complexity of the selection process is bounded by the number of

edges in B, i.e., by O(nμ) = O(n2). Since we ought to inform all nodes in
L one need to construct further O(log2 m) = O(log2 n) rounds of transmissions
resulting in the total time complexity O(n2 log n). We believe that our algorithm
is an interesting alternative to the algorithm presented in [6].

Another important concept used extensively in communication algorithms in
radio networks with known topology is a BFS tree with ranked nodes by Strahler
numbers [45]. All leaves in the tree receive rank 0. The rank of every internal
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node depends on the highest rank r among its children. If there is a unique child
with the highest rank r the parent adopts the same rank. Otherwise the parent
adopts the rank r + 1. One can prove that the root receives the largest rank of
size not greater than log n.

3.1 Broadcasting

It is known that the problem of finding an optimal deterministic broadcasting
schedule for any input graph is NP-hard, see [5]. The first efficient radio broad-
casting schedule with the time complexity O(D log2 n) is due to Chlamtac and
Weinstein [6], where they utilise O(log2 n)-time broadcast procedure for bipar-
tite graphs. This upper bound was later improved to O(D log n + log2 n) by
Bar-Yehuda et al. in [2] who used a probabilistic argument. An explicit deter-
ministic construction can be found in [39].

In [25] Gaber and Mansour proposed partitioning of the graph of connections
into super-levels and a system (graph structure) of clusters, s.t.,

1. each cluster has a relatively small diameter,
2. the union of the clusters covers the super-level, and
3. the clusters graph can be colored by O(log n) colors.

The clusters graph is obtained by treating each cluster as a node, and introduc-
ing an edge between two nodes if in the original graph there is some edge that
connects nodes from the corresponding clusters or if they share a neighbour.
Clusters in different super-layers are spanned by a ranked BFS tree. During
broadcasting process fast transmissions are performed along downwards paths
in the tree cutting through clusters with the same rank. Other (slow) trans-
missions, including local transmissions within clusters, are implemented with a
help of the O(log2 n)-time broadcast mechanism from [6]. This new construc-
tion supported by the randomized scheme from [2] resulted in the broadcasting
schedule of length O(D + log5n), and by the deterministic scheme from [6] in
fully constructive O(D + log6)-time broadcasting schedule. More recently, Elkin
and Kortsarz in [21] proposed an improved O(D + log4 n)-time version of the
broadcasting schedule from [25] and they showed how to broadcast messages in
planar graphs in time O(D + log3 n).

In more recent work [31] G ↪asieniec et al. proposed a more direct use of ranked
BFS spanning trees built directly on network nodes rather than clusters, re-
sulting in a deterministic broadcasting schedule of length D + O(log3n) and its
randomized counterpart of length D+O(log2n). They also proved that in planar
graphs one can broadcast messages in time 3D, i.e., in time independent from
n. An alternative deterministic construction of O(D + log2 n)-time broadcast
schedule can be found in [39]. Finally we mention two very recent results on
k-shot broadcast schedules in which network nodes are allowed to transmit at
most k times. In [27] the authors present, e.g., an almost optimal 1-shot broad-
cast schedule of length D + O(

√
n log n). In [26] Galcik et al. consider radio

broadcasting model in which interference range of nodes is likely to exceed their
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transmission ranges. They show, using an extension of the system of clusters
from [25], how to compute a 1-shot broadcasting schedule of length at most
4 ·DT + O(Δ · dI · log4 n) for networks with arbitrary topology, where dI is the
interference distance parameter.

3.2 Gossiping

A discussion on radio gossiping in known arbitrary graphs was initiated by G ↪asie-
niec et al. in their seminal paper [33]. They proved, e.g., that in any network of
size n gossiping is feasible in time at most n. The proof is based on the concept
of a 2-vertex reduction principle.

Lemma 2 (2-Vertex Reduction Principle [33]). In any undirected graph
G = (V, E) with a radius greater than 1 there exist four distinct nodes v, v′, w
and w′, such that, edges (v, v′), (w, w′) ∈ E and (v, w′)(w, v′) /∈ E and removal
of both v and w does not disconnect the remaining part of the graph.

They also provided the lower bound 	log(n− 1)
+ 2 for gossiping in any radio
network and showed that this bound can be matched from above, in specific
graph structures, for a large fraction of all integer values of n. For all other values
the upper bound �log(n−1)�+2 is established. They also proposed a modification
of the system of clusters from [25] to produce gossiping schedules of length O(D+
i+2
√

DΔ logi+1 n), for any network with the diameter D = Ω(logi+4 n), where i
is an arbitrary integer constant i ≥ 0.

This result was pruned later by G ↪asieniec et al. in [31] where they proposed
deterministic construction of a O(D + Δ log n)-time schedule based on the con-
cept of ranked BFS trees and efficient O(Δ)-time transfer (based on property
of minimum covering sets) of gossip messages between partitions of a bipartite
graph of the max-degree Δ. This is the best currently known upper bound on
gossiping in radio networks with known topology.

Small messages. An interesting variant of gossiping in radio networks was
studied by G ↪asieniec and Potapov in [32], where they assume that messages
exchanged between neighbouring nodes are limited to constant size. Under this
assumption they established the time complexity for gossiping schedules on lines
and rings of size n with lengths 3n + Θ(1) and 2n + Θ(1) respectively. They
also proposed linear time schedules for trees and proved bounds Ω(n log n) and
O(n log2 n) on the time complexity of gossiping in arbitrary graphs in this variant
of radio networks. The upper bound was later improved to O(n log n) by Manne
and Xin in [42] with a help of a probabilistic argument.

M2M multicast. The M2M (multi-to-multi) multicast problem, see [28], is a
close relative of gossiping that seats somewhere on the border of ad-hoc networks
and networks with known topology. In M2M problem it is assumed that k out of n
nodes are woken up at some particular round and they are asked to communicate
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with one another as fast as possible. While the radio network topology is known
to all nodes, it is assumed that no node is aware of the location of k − 1 other
participants. The authors provide a distributed deterministic algorithm for the
M2M multicast problem using an extension of the system of clusters from [25].
They show that if the maximum distance between any two out of k participants
is d all nodes can find each other in time O(d log2 n + k log4 n).

4 Conclusion

In this paper we gave a short introduction to radio gossiping and we discussed
several combinatorial concepts used in the context of developed efficient algo-
rithmic solutions. There are, however, a numerous variants of efficient radio gos-
siping methods that are not listed here. These include, e.g., gossiping in random
graphs with limited number of transmissions at each node [3], variants of O(D)-
time gossiping in random geometric ad-hoc networks [16], efficient randomised
gossiping in geometric sensor networks [44,24], and many, many others. This
short survey focuses mainly on core developments in radio gossiping in networks
with arbitrary topology.

Among the most interesting open problems in the field is efficient construction
of (k, m, n)-selectors. In fact, surprisingly, we still don’t know whether construc-
tion of selectors of optimal size is NP-hard or not. On one hand, we have certain
exponential constructions of optimal selectors [17] and on the other we know
how to generate their rough approximations [36,9]. Further study on more sat-
isfactory trade-offs would be highly appreciated. Another important objective
is to establish tighter bounds for deterministic and randomised gossiping in ad-
hoc (un)directed radio networks. Similarly, better understanding of gossiping in
radio networks with known topology is still needed. For example, is it possible
to design a good approximate gossiping schedule for any specific input graph
G? Finally, not much if nothing has been done in alternative models for radio
communication including SINR model [35].
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1 Universitá La Sapienza, Via Ariosto 25, I-00185 Roma, Italy
{baldoni,bonomi}@dis.uniroma1.it
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Abstract. Due to their capability to hide the complexity generated by
the messages exchanged between processes, shared objects are one of the
main abstractions provided to the developers of distributed applications.
Among all the shared objects, the register object is fundamental. Several
protocols have been proposed to build fault resilient registers on top of
message-passing system, but, unfortunately, failure are not the only chal-
lenge in modern distributed systems. New issues arise from the dynam-
icity introduced in the system by the continuous arrival and departure
of nodes (churn phenomenon). This paper addresses the construction of
a single writer/multiple readers regular register in a distributed system
affected by the continuous arrival/departure of participants. In particu-
lar, a general protocol implementing a regular register is proposed and
feasibility conditions on the arrival and departure of the processes are
given. Interestingly, the protocol is proved correct under the assumption
that the constraint on the churn is satisfied.

1 Introduction

Context and motivation. Dealing with failure has been one of the main
challenge in defining abstractions (shared memory, communication, agreement,
etc.) able to work in a distributed system. Many protocols have been designed
to allow such abstractions to behave correctly despite asynchrony and failures.
In nearly all the cases, the system is always “well defined” in the sense that
the whole set of participating processes is finite and known in advance by each
process. The system composition is modified only when a process crashes.

A new challenge is emerging due to the advent of new classes of applications
and technologies. More specifically, “modern” distributed systems are charac-
terized by the unpredictability of the system composition that is caused by the
arrival of new processes that become new members of the system or the depar-
ture of participating processes. As a consequence of such an unpredictability,
distributed computing abstraction have to deal not only with asynchrony and
failures, but also with the system dynamicity dimension. Hence, the abstractions
and protocols implementing them have to be reconsidered to take into account

S. Kutten and J. Žerovnik (Eds.): SIROCCO 2009, LNCS 5869, pp. 15–29, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



16 R. Baldoni, S. Bonomi, and M. Raynal

this new “adversary” setting. Dynamicity makes abstractions more difficult to
understand and master than in classical static distributed systems where the
set of processes is fixed once for all. The churn notion has been introduced to
capture this dynamicity feature. It is a system parameter the aim of which is to
make tractable systems whose composition evolves with time (e.g., [9,14,16]).

Although numerous protocols have been designed for dynamic distributed
message-passing systems, few papers (such as [1,2,19]) strive to present models
suited to such systems, and extremely few dynamic protocols have been proved
correct. While up to now the most common approach used to address dynamic
systems is mainly experimental, we have presented in [3] a protocol that con-
structs a register in a dynamic system the churn of which remains always con-
stant and is know by each process.

Contribution and roadmap. This paper extends our previous work in a
setting where churn and the number of processes in the system may vary. In [3],
we indeed characterize a model of churn in which the number of processes n in the
system is always constant (this means at any time the same number of processes
join and leave the system). Upon this model, we have proved that: (i) a regular
register cannot be build in an asynchronous system, (ii) a regular register can be
implemented in an eventually synchronous distributed system if at any time there
is a number of active processes greather than �n/2� and (iii) a regular register
can be implemented in a synchronous distributed system if at any time there is
at least one active process and the percentage of processes that can change at any
time is less than a constant depending on the protocol implementation. In this
paper, we first introduce a very generic model of churn, based on a joining and a
departure distributions, in which the number of processes in the system remains,
at any time, in a given range. Once the range is set, this turns out in contraints
on joining and departure distributions. Interestingly, this churn model is able to
capture the infinite arrival model presented in [20] and the constant churn model
presented in [9,3] as specific cases. Secondly, we take the implementation of a
single writer/multiple reader regular register in a synchronous system shown in
[3] and compute the additional constraints imposed by such implementation on
the churn (i.e. on the joining and on the departure distributions) in order that
the regular register be correct.

The paper introduces the system and the churn model in Section 2 and Section
3, respectively. Section 4 presents the notion of a regular register and Section 5
reports, for the sake of completeness, the implementation of such a register as
presented in [3]. Section 6 proves the constraints that have to be imposed on the
departure and the join distributions in order the register be correct. A related
work and a concluding remark sections conclude the paper.

2 System Model

The distributed system is composed, at each time, by a bounded number of
processes that communicate by exchanging messages. Processes are uniquely
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identified (with their indexes) and they may join and leave the system at any
point in time.

The system is synchronous in the following sense: the processing times of local
computations are negligible with respect to communication delays, so they are as-
sumed to be equal to 0. Contrarily,messages take time to travel to their destination
processes. Moreover we assume that processes can access a global clock1.

We assume that there exists an underling protocol, that keeps processes con-
nected each other. This protocol is implemented at the connectivity layer (the
layer at the bottom of Figure 1).

2.1 Distributed Computation

A distributed computation is formed, at each instant of time, by a subset of
processes of the distributed system. A process p, belonging to the system, that
wants to participate to the distributed computation has to execute the join()
operation. Such operation, invoked at some time t, is not instantaneous: it con-
sumes time. But, from time t, the process p can receive and process messages
sent by any other process that belongs to the system and that participate to the
computation. Processes participating to the distributed computation implements
a regular register abstraction.

A process leaves the computation in an implicit way. When it does, it leaves
the computation forever and does not longer send messages. From a practical
point of view, if a process wants to re-enter the system, it has to enter it as a
new process (i.e., with a new name).

We assume that a process does not crash during the distributed computation
(i.e. it does not crash from the time it joins the system until it leaves).

In order to formalize the set of processes that participate actively to the
computation we give the following definition.

Definition 1. A process is active from the time it returns from the join() oper-
ation until the time it leaves the system. A(t) denotes the set of processes that
are active at time t, while A([t1, t2]) denotes the set of processes that are active
during the interval [t1, t2].

2.2 Communication Primitives

Two communication primitives are used by processes belonging to the distributed
computation to communicate: point-to-point and broadcast communication as
shown in Figure 1.

Point-to-point communication. This primitive allows a process pi to send
a message to another process pj as soon as pi knows that pj has joined the
computation. The network is reliable in the sense that it does not loose, create
1 The global clock is for ease of presentation. As we are in a synchronous system, this

global clock can be implemented by synchronized local clocks.
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Connectivity Layer

Point-to-Point Broadcast

Regular Register

join() write(v) read()

send(m) receive() broadcast(m) deliver()

Fig. 1. System architecture

or modify messages. Moreover, the synchrony assumption guarantees that if pi

invokes “send m to pj” at time t, then pj receives that message by time t + δ′

(if it has not left the system by that time). In that case, the message is said to
be “sent” and “received”.

Broadcast. Processes participating to the distributed computation are
equipped with an appropriate broadcast communication sub-system that pro-
vides the processes with two operations, denoted broadcast() and deliver(). The
former allows a process to send a message to all the processes in the distributed
system, while the latter allows a process to deliver a message. Consequently, we
say that such a message is “broadcast” and “delivered”. These operations satisfy
the following property.

– Timely delivery: Let t be the time at which a process p belonging to the
distributed computation invokes broadcast(m). There is a constant δ (δ ≥ δ′)
(known by the processes) such that if p does not leave the system by time
t+ δ, then all the processes that are in the system at time t and do not leave
by time t + δ, deliver m by time t + δ.

Such a pair of broadcast operations has first been formalized in [6] in the context
of systems where process can commit crash failures. It has been extended to the
context of dynamic systems in [5].

3 Churn Model

3.1 Definitions

The dynamicity due to the continuous join and leave of nodes in the system is a
phenomenon identified under the name churn. This section introduces a general
model able to characterize such dynamicity. The model proposed here is based
mainly on the definition of two distributions (i) the join distribution λ(t) that
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defines the join of new processes to the system with respect to time and (ii) the
leave distribution μ(t) that defines the leave of processes from the system with
respect to time. Such distributions are discrete function of time:

Definition 2. (Join distribution) The join distribution λ(t) is a discrete time
function that returns the number of processes that invoke the join operation at
time t.

Definition 3. (Leave distribution) The leave distribution μ(t) is a discrete time
function that returns the number of processes that have left the system at time t.

Let t0 be the starting time of the system. We assume that at time t0 no process
joins or leaves the system then λ(t0) = 0 and μ(t0) = 0 therefore we can say that
in t0 the system is composed by a set Π0 of processes and the size of the system
is n0 (i.e. |Π0| = n0). Moreover, for any time t < t0 we say that λ(t) = μ(t) = 0.

Note that a static system is a system characterized by a join distribution and
a leave distribution that are always equal to 0 for any time t (i.e. λ(t) = μ(t) = 0
∀t).

As soon as the dynamicity introduced by the joins and the leaves appears in
the system, it is possible to observe that the size of network and its composition
can change.

Let N(t) be a discrete time function that returns the number of processes
inside the system at time t. Depending on the values of λ(t) and μ(t) we have:

Definition 4. (Node distribution) Let n0 be the number of processes in the sys-
tem at start time t0. N(t) is the number of processes within the system at time
t for every t ≥ t0 (i.e. N(t) = N(t− 1) + λ(t) − μ(t), with N(t0) = n0).

Composition of the System. The variation of the network size is not the only
effect generated by the dynamicity introduced by the join and leave of nodes.
The composition of network is also affected. As an example consider a network
of size n, and a join distribution and a leave distribution that are constant and
equal (i.e λ(ti) = μ(ti) = c, ∀i with c ≤ n ∈ N). In such a system, the dynamicity
does not affect the network size, it affect only its composition. In order to capture
this dynamicity effect, we define the leave percentage of the network in a given
interval.

Definition 5. (LeavePercentage) Let n0 be the number of processes in the system
at start time t0, let λ(t) the join distribution and μ(t) the leave distribution of
the system. Let Δt = [t, t + Δ] be a time interval. L(Δt) is the percentage of
processes that have been refreshed (i.e., that have left the system) during the

interval Δt, i.e. L(Δt) =
∑ t+Δ

τ=t μ(τ)
N(t−1) (with N(t0) = n0).

This metric allows to state a simple lemma on the composition of the system.

Lemma 1. Let Δt = [t, t + Δ] be a time interval. If there exists a process p
that is in the system at time tand does not leave for all the interval Δt then
L(Δt) < 1.
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3.2 Churn Constraint on the Upper and Lower Bounds on the
Network Size

Based on the previous definitions, this section derives the constraint that a join
distribution and a leave distribution have to satisfy in order the network size
remains in a given interval. Let n0 be the number of processes inside the system
at the start time t0 and k1, k2 be two positive integers. The aim is to model a
network affected by the dynamicity whose effect is the variation of the system
size in an interval ΔN that is defined by the upper bound n0 + k2 and the lower
bound n0 − k1 (i.e. ΔN = [n0 − k1, n0 + k2]).

Lemma 2. Let k1 and k2 be two integers such that k1, k2 ≥ 0 and let n0 be the
number of processes in the system at the starting time t0. Given the join and the
leave distribution λ(t) and μ(t), the node distribution N(t) is always comprised
inside the interval ΔN = [n0 − k1, n0 + k2] if and only if:

(c1)
∑t

τ=t0
μ(τ) ≤∑t

τ=t0
λ(τ) + k1 ∀t,

(c2)
∑t

τ=t0
μ(τ) ≥∑t

τ=t0
λ(τ) − k2 ∀t.

Proof. Due to Definition 4, we have that for each time t, N(t) = N(t − 1) +
λ(t)− μ(t) and iterating, we can express the node distribution as function of n0
as N(t) = n0+

∑t
τ=t0

λ(τ)−∑t
τ=t0

μ(τ). Constraining N(t) to be in the interval
ΔN we obtain, for every t, for the lower bound

N(t) ≥ n0 − k1

n0 +
∑t

τ=t0
λ(τ) −∑t

τ=t0
μ(τ) ≥ n0 − k1∑t

τ=t0
μ(τ) ≤∑t

τ=t0
λ(τ) + k1,

and we obtain, for every t, for the upper bound

N(t) ≤ n0 + k2

n0 +
∑t

τ=t0
λ(τ) −∑t

τ=t0
μ(τ) ≤ n0 + k2∑t

τ=t0
μ(τ) ≥∑t

τ=t0
λ(τ) − k2.

�Lemma 2

4 Regular Register

Regular register. A register is a shared object by a set of processes. Such an
object provides processes with two operation, namely read() and write(), that
allow them to read the value contained in the object or to modify such a value.
Depending on the semantic of the operations, several types of register have been
defined by Lamport [12]. A regular register can have any number of writers and
any number of readers. The writes appear as if they were executed sequentially,
this sequence complying with their real time order (i.e., if two writes w1 and w2
are concurrent, they can appear in any order, but if w1 terminates before w2
starts, w1 has to appear as being executed before w2). As far as a read operation
is concerned we have the following. If no write operation is concurrent with a
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read operation, that read operation returns the current value kept in the register.
Otherwise, the read operation returns any value written by a concurrent write
operation or the last value of the register before these concurrent writes.

Here we focus our attention on a one-writer/multi-reader regular register2.

Specification for a dynamic system. The notion of a regular register has
to be adapted to dynamic systems. We consider that a protocol implements a
regular register in a dynamic system if the following properties are satisfied.

– Liveness: If a process invokes a read or a write operation and does not leave
the system, it eventually returns from that operation.

– Safety: A read operation returns the last value written before the read invo-
cation, or a value written by a write operation concurrent with it.

Moreover, it is assumed that a process invokes the read or write operation only
after it has returned from its join() invocation [3].

5 A General Protocol for Synchronous Dynamic Systems

In this section we present, for completeness, the protocol presented in [3] imple-
menting a single writer/multireader regular register.

The principle that underlies the design of the protocol is to have fast reads
operations: a process willing to read has to do it locally. From an operational
point of view, this means that a read is not allowed to use a wait() statement, or
to send messages and wait for associated responses. Hence, albeit the proposed
protocol works in all cases, it is targeted for applications where the number of
reads outperforms the number of writes.

Local variables at a process pi. Each process pi has the following local
variables.

– Two variables denoted registeri and sni; registeri contains the local copy
of the regular register, while sni is the associated sequence number.

– A boolean activei, initialized to false , that is switched to true just after pi

has joined the system.
– Two set variables, denoted repliesi and reply toi, that are used during the

period during which pi joins the system. The local variable repliesi contains
the 3-uples < id, value, sn > that pi has received from other processes during
its join period, while reply toi contains the processes that are joining the
system concurrently with pi (as far as pi knows).

Initially, n processes compose the system. The local variables of each of these
processes pk are such that registerk contains the initial value of the regular
register3, snk = 0, activek = true, and repliesk = reply tok = ∅.
2 Actually, the protocol proposed in Section 5 works for any number of writers as long

as the writes are not concurrent. Considering a single writer makes the exposition
easier.

3 Without loss of generality, we assume that at the beginning every process pk has in
its variable registerk the value 0.
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operation join(i):
(01) registeri ← ⊥; sni ← −1; active i ← false; repliesi ← ∅; reply toi ← ∅;
(02) wait(δ);
(03) if (registeri = ⊥) then
(04) repliesi ← ∅;
(05) broadcast inquiry(i);
(06) wait(2δ);
(07) let < id, val, sn >∈ repliesi such that (∀ < −,−, sn′ >∈ repliesi : sn ≥ sn′);
(08) if (sn > sni) then sni ← sn; registeri ← val end if
(09) end if;
(10) activei ← true;
(11) for each j ∈ reply toi do send reply (< i, registeri, sni >) to pj ;
(12) return(ok).

————————————————————————————————————–
(13) when inquiry(j) is delivered:
(14) if (activei) then send reply (< i, registeri, sni >) to pj

(15) else reply toi ← reply toi ∪ {j}
(16) end if.

(17) when reply(< j, value, sn >) is received: repliesi ← repliesi ∪ {< j, value, sn >}.

Fig. 2. The join() protocol for a synchronous system (code for pi)

The join() operation. When a process pi enters the system, it first invokes
the join operation. The algorithm implementing that operation, described in
Figure 2, involves all the processes that are currently present (be them active or
not).

First pi initializes its local variables (line 01), and waits for a period of δ time
units (line 02); this waiting period is explained later. If registeri has not been up-
dated during this waiting period (line 03), pi broadcasts (with the broadcast() op-
eration) an inquiry(i) message to the processes that are in the system (line 05)
and waits for 2δ time units, i.e., the maximum round trip delay (line 06)4. When
this period terminates, pi updates its local variables registeri and sni to the
most up-to-date values it has received (lines 07-08). Then, pi becomes active
(line 10), which means that it can answer the inquiries it has received from
other processes, and does it if reply to �= ∅ (line 11). Finally, pi returns ok to
indicate the end of the join() operation (line 12).

When a process pi receives a message inquiry(j), it answers pj by send-
ing back a reply(< i, registeri, sni >) message containing its local variable
if it is active (line 14). Otherwise, pi postpones its answer until it becomes
active (line 15 and lines 10-11). Finally, when pi receives a message reply(<
j, value, sn >) from a process pj it adds the corresponding 3-uple to its set
repliesi (line 17).

4 The statement wait(2δ) can be replaced by wait(δ+δ′), which provides a more efficient
join operation; δ is the upper bound for the dissemination of the message sent by
the reliable broadcast that is a one-to-many communication primitive, while δ′ is
the upper bound for a response that is sent to a process whose id is known, using
a one-to-one communication primitive. So, wait(δ) is related to the broadcast, while
wait(δ′) is related to point-to-point communication. We use the wait(2δ) statement
to make the presentation easier.
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operation read(): return(registeri). % issued by any process pi %
————————————————————————————–
operation write(v): % issued only by the writer pw%
(01) snw ← snw + 1; registeri ← v broadcast write(v, snw);
(02) wait(δ); return(ok).

(03) when write(< val, sn >) is delivered: % at any process pi %
(04) if (sn > sni) then registeri ← val; sni ← sn end if.

Fig. 3. The read() and write() protocols for a synchronous system

The read() and write(v) operations. The algorithms for the read and write
operations associated with the regular register are described in Figure 3. The
read is purely local (i.e., fast): it consists in returning the current value of the
local variable registeri.

The write consists in disseminating the new value v (together with its sequence
number) to all the processes that are currently in the system (line 01). In order
to guarantee the correct delivery of that value, the writer is required to wait for
δ time units before terminating the write operation (line 02).

Why the wait(δ) statement at line 02 of the join() operation? To moti-
vate the wait(δ) statement at line 02, let us consider the execution of the join()
operation depicted in Figure 4(a). At time t, the processes pj , ph and pk are the
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Fig. 4. Why wait(δ) is required
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three processes composing the system, and pj is the writer. Moreover, the pro-
cess pi executes join() just after t. The value of the copies of the regular register
is 0 (square on the left of pj , ph and pk), while registeri = ⊥ (square on its
left). The ‘timely delivery” property of the broadcast invoked by the writer pj

ensures that pj and pk deliver the new value v = 1 by t+δ. But, as it entered the
system after t, there is no such a guarantee for pi. Hence, if pi does not execute
the wait(δ) statement at line 02, its execution of the lines 03-09 can provide it
with the previous value of the regular register, namely 0. If after obtaining 0,
pi issues another read it obtains again 0, while it should obtain the new value
v = 1 (because 1 is the last value written and there is no write concurrent with
this second read issued by pi).

The execution depicted in Figure 4(b) shows that this incorrect scenario can-
not occur if pi is forced to wait for δ time units before inquiring to obtain the
last value of the regular register.

6 Churn Constraints Imposed by the Protocol for
Register Correctness

Correctness of the register has to be proved by showing liveness and safety of the
implementation. Liveness follows trivially by the fact that the wait() statement
terminates in join() and write() operations. Concerning safety, as proved in [3],
the safety of the regular register specification is satisfied by the existence of at
least one active process for every period of 3δ time. This section formally proves
additional constraints (for a system whose size is limited within an interval) the
joining and departure distributions have to satisfy in order to have at least one
active process in the system at any time.

Lemma 3. Let t0 be the starting time of the system and let n0 be the number
of processes inside the system at time t0. Let

∑t
τ=t−3δ+1 μ(τ) < N(t − 3δ) ∀t,

then |A(t)| > 0 ∀t.

Proof. At time t0 the system is composed of n0 processes and each of these
process maintains the value of the register so we have that |A(t0)| = n0. By
the definition of the join and leave distribution, we have that at time t0 + 1
λ(t0 + 1) processes start the join operation and μ(t0 + 1) processes leave the
system then |A(t0 + 1)| = n0 − μ(t0 + 1). At time t0 + 2 we have that λ(t0 + 2)
more processes invoke the join and μ(t0 +2) more processes leave the system. In
the worse case, all the processes leaving the system are active hence |A(t0 +2)| ≥
n0−μ(t0 +1)−μ(t0 + 2). To be completed, a join operation needs, in the worse
case, 3δ time then until time t0 + 3δ the number of the active processes always
decrease and |A(t0 + 3δ)| ≥ n0 −

∑t0+3δ
τ=t0+1 μ(τ). At time t0 + 3δ + 1, the joins

invoked at time t0 + 1 terminate and such joining processes become active so
|A(t0+3δ+1)| ≥ n0−

∑t0+3δ+1
τ=t0+1 μ(τ)+λ(t0 +1). At time t0+3δ+2, also the join

operations invoked at time t0 +2 terminate and λ(t0 +2) more processes become
active. By iteration, for a given t, |A(t)| ≥ n0 −

∑t
τ=t0+1 μ(τ) +

∑t−3δ
τ ′=t0+1 λ(τ ′)
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= N(t − 3δ) −∑t
τ=t−3δ+1 μ(τ). Moreover, as

∑t
τ=t−3δ+1 μ(τ) < N(t − 3δ) ∀t,

we have that |A(t)| > 0 for any time t. �Lemma 3

Lemma 4. Let n0 be the number of processes inside the system at time t0.
Let t ≥ t0, let Δt = [t, t + Δ] a time interval and let

∑t+Δ
τ=t+Δ−3δ+1 μ(τ) <

N(t + Δ− 3δ) ∀t then |A(Δt)| > 0 ∀t.
Proof. Considering that processes become active, in the worse case, 3δ time
after the invocation of their join and that in every time unit there is always at
least one active process (due to Lemma 3), it follows that in every time interval
there is always at least one active process. �Lemma 4

From this two Lemmas it is possible to derive a relation between the number of
active processes and the refresh of the system.

Corollary 1. Let t ≥ t0, let Δt = [t, t + Δ] a time interval.

|A(Δt)| > 0 ⇔ L(Δt) < 1.

Proof From Lemma 3 and Lemma 4 we know that |A(Δt)| ≥ N(t + Δ −
3δ)−∑t+Δ

τ=t+Δ−3δ+1 μ(τ). In order to have at least one active process inside the
system, we have to constraint such quantity to be greater than 0 and then

N(t + Δ− 3δ)−∑t+Δ
τ=t+Δ−3δ+1 μ(τ) > 0

N(t + Δ− 3δ) >
∑t+Δ

τ=t+Δ−3δ+1 μ(τ)∑ t+Δ
τ=t+Δ−3δ+1 μ(τ)

N(t+Δ−3δ) < 1,

that is exactly the definition of L(Δt). �Corollary 1

Now we are in the position to prove the safety of the implementation of the
regular register. Informally, the following lemma states that to guarantee safety,
during the join of a process, the number of processes departing from the system
has to be strictly lesser than the ones joining the system.

Lemma 5. Safety. Let the join function λ(t), the leave function μ(t) such that∑t
τ=t−3δ+1 μ(τ) < N(t − 3δ) ∀t and consider the protocol described in Section

5. The read operation returns the last value written before the read invocation,
or a value written by a write operation concurrent with it.

Proof. The proof use the same structure as in [3] by replacing Lemma 1 of [3]
with Lemma 3 and Lemma 4. �Lemma 5

Discussion. We are going now to show how the general model proposed can
be applied to a specific case of churn and in particular we are going to show
its application to the case of the churn allowing constant network size. Having
a constant network size implies that the two thresholds k1 and k2 are equal to
zero (i.e. no fluctuation from the initial value is allowed). Moreover, the join
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distribution is the same as the leave distribution and in each time unit the same
number of processes cn0 enter and leave the system (i.e. λ(t) = μ(t) = cn0 for
every t, where c is a percentage of nodes); hence, applying Definition 4 we obtain
that N(t) = n0 for every time t. If now we apply the churn constraint defined
by Lemma 3 we have that∑t

τ=t−3δ+1 μ(τ) < N(t− 3δ)
3δn0c < n0

c < 1
3δ ,

that is exactly the same constraint found in [3].
Another consideration that we can do is how to represent the infinite arrival

model [1,17,20] using our model. In the infinite arrival model, the network size
is at any time upper bounded by a known constant C and during the life of the
system an infinite number of processes can be part of the computation. In our
model, we can represent such a scenario simply saying that k2 = C −n0 and the
join and the leave distribution are not always equal to zero. Consequence of our
translation is that a regular register can be implemented in an infinite arrival
model bounded by C if and only if the join and the leave distributions satisfy
the constraints of Lemma 4.

7 Related Work

Dynamicity Model. Dynamic systems are nowadays an open field of research
and then new models able to capture all the aspects of such dynamicity are going
to be defined. In [1,17] are presented models, namely infinite arrival models,
able to capture the evolution of the network removing the constraint of having a
predefined and constant size n. However such models do not give any indication
on how the joins or the leaves happen during time. More recently, other models
have been proposed that take into account the process behavior. This is done by
considering both probabilistic distribution [13], or deterministic distribution [9],
on the join and leave of nodes (but in both cases the value of the system size is
constant).

Churn in P2P Networks. The study of the churn phenomenon received many
attention in the last years, especially in the context of peer-to-peer (p2p) networks
with respect to the connectivity maintenance problem. The general approach to
maintain connectivity in p2p systems is by using overlay management protocols
(OMPs), that is protocols that arrange the participant peers in an overlay that
can be both structured or unstructured . In [10,11] two examples of structured
overlays are proposed by using a dynamic distributed hash table where peers may
join and leave at any time. The authors consider the worse case scenario in which
join and leave operations may happen and design a (synchronous) system having
complete visibility and able to maintain desirable properties such as a low peer
degree and a low network diameter. In particular a bound of O(logn) worst-case
joins and/or crashes per constant time interval is provided.
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We follow a similar approach, computing the bound on the churn that make
the implementation of the regular register correct and abstract the effects of the
churn at the overlay level by assuming that the network remains connected and
setting opportunely the value of the maximum transmission delay δ.

Regular Register Implementation in Dynamic Environment. To the
best of our knowledge the proposed regular register protocol is the first for
distributed systems subject to churn (as defined in Section 3). Other register
protocols have been designed for mobile ad-hoc networks, e.g., [4,18,21]. Inter-
estingly these protocols rely on a a form of deterministic broadcast, namely,
geocast which is similar to our broadcast primitive in the sense that it ensures
delivery to the processes that stay long enough in the system without leaving.

Another interesting approach is the one used in [15] where an atomic read/
write object is implemented in a dynamic asynchronous network prone to fail-
ures. In [15], the dynamicity is managed by replicating the objects and atomicity
is ensured by using quorums. In our approach, every process maintains a copy
of the object (which is not replicated) and the dynamicity is managed by a spe-
cific join procedure that allows to ”transfer” the current state of the object to
joining processes. Moreover, in [15] a quorum of processes is needed to maintain
the consistency in spite of changes while in our approach we have not such an
assumption; in fact we do not assume a number of processes that have to remain
in the system during changes but we find which are the bounds on the join and
leave distributions that make the implementation correct.

8 Conclusion

In modern distributed systems the notion of processes continuously departing
and joining the system (churn) is actually part of the system model and creates
additional unpredictability to be mastered by a distributed application. Hence,
there is the need to capture the churn of a dynamic system through tractable
realistic models in order to prove formally the correctness of distributed appli-
cations running in such environments. Churn models used till now are mainly
probabilistic based either on traces (e.g. [8]) or on node distribution (e.g. [7]).
This paper has presented a generic model for a churn notion based on determin-
istic joining and departure distributions. This model is general enough to have
the infinite arrival model and the constant size system as special cases. Based
on an implementation of a regular register presented in [3], the paper proved
the additional constraints that have to be satisfied for an implementation to be
correct despite the fact that the churn varies in a given interval.
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1 Introduction

In this paper we focus on the problem of computing efficient ordered colorings
(also known as vertex rankings) for grids and related graphs. Ordered colorings
are defined as follows:

Definition 1. An ordered coloring of G = (V, E) with k colors is a function
C : V → {1, . . . , k} such that for each simple path p in G the maximum color
assigned to vertices of p occurs in exactly one vertex of p.

The problem of computing ordered colorings is a well-known and widely studied
problem (see e.g. [9]) with many applications including VLSI design [10] and
parallel Cholesky factorization of matrices [11]. The problem is also interesting
for the Operations Research community, because it has applications in planning
efficient assembly of products in manufacturing systems [8]. In general, it seems
the vertex ranking problem can model situations where interrelated tasks have to
be accomplished fast in parallel (assembly from parts, parallel query optimization
in databases, etc.)

Another motivation for the study of ordered colorings comes from more recent
research into an area of coloring problems inspired by wireless mobile networks,
called conflict-free colorings. The study of conflict-free colorings originated in
the work of Even et al. [6] and Smorodinsky [14]. Conflict-free coloring models
frequency assignment for cellular networks. A cellular network consists of two
kinds of nodes: base stations and mobile agents. Base stations have fixed positions
and provide the backbone of the network; they are modeled by vertices in V .
Mobile agents are the clients of the network and they are served by base stations.
This is done as follows: Every base station has a fixed frequency; this is modeled
by the coloring C, i.e., colors represent frequencies. If an agent wants to establish
a link with a base station it has to tune itself to this base station’s frequency.
Since agents are mobile, they can be in the range of many different base stations.
To avoid interference, the system must assign frequencies to base stations in the
following way: For any range, there must be a base station in the range with a
frequency that is not reused by some other base station in the range. One can
solve the problem by assigning n different frequencies to the n base stations.
However, using many frequencies is expensive, and therefore, a scheme that
reuses frequencies, where possible, is preferable. Conflict-free coloring problems
have been the subject of many recent papers due to their practical and theoretical
interest (see e.g. [13,7,3,5,1]).

In the case where the ranges of the mobile agents are modeled by paths on
the graph, the conflict-free coloring problem is very closely connected to the
vertex ranking problem as defined above, since every path contains a uniquely
colored vertex (i.e., a base station with a unique and maximum frequency). In
fact, many approaches in the conflict-free coloring literature use unique max-
imum colorings (like ordered colorings) because the latter are easier to argue
about. In addition, the topologies we study in this paper are of special interest
in this setting because they can model frequency assignment in a Manhattan-
like environment,where base stations are approximately placed on a regular grid
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and this gives us additional motivation to calculate the exact ordered chromatic
number of the grid.

In general graphs, finding the exact ordered chromatic number of a graph
is NP-complete [12] and there is a O(log2 n) polynomial time approximation
algorithm [2], where n is the number of vertices. Since the problem is generally
hard, it makes sense to study specific graph topologies and the focus of this paper
is the calculation of the ordered coloring number of several grid-like families of
graphs. Our main focus are grid graphs, which can be formally defined as follows:

Definition 2. An m1 × m2 grid is a graph with vertex set {0, . . . , m1 − 1} ×
{0, . . . , m2 − 1} and edge set {{(x1, y1), (x2, y2)} | |x1 − x2|+ |y1 − y2| ≤ 1}.

In a standard drawing of the grid graph, vertex (x, y) is drawn at point (x, y)
in the plane. The grid can also be defined as the cartesian product of two paths
Pm1 × Pm2 .

It is known [9] that for general planar graphs the ordered chromatic number
is O(

√
n). Grid graphs are planar and therefore the O(

√
n) bound applies. One

might expect that, since the graph families we study have a relatively simple
and regular structure, it should be easy to calculate their ordered chromatic
numbers. This is why it is rather striking that, even though it is not hard to
show upper and lower bounds that are only a small constant multiplicative factor
apart, the exact value of these ordered chromatic numbers is not known. The
main contribution of this paper is to further improve on these upper and lower
bounds and to the best of our knowledge this is the first such attempt.

Paper organization. In the rest of this section we provide the necessary defini-
tions and some preliminary known results that will prove useful in the remainder.
In Section 2 we present our results improving the known upper bounds on the
ordered chromatic number of grids, tori and related graphs, while Section 3
deals with the lower bounds. Conclusions and open problems are presented in
Section 4.

1.1 Preliminaries

First, let us remark that Definition 1 is not the typical definition found in the
literature. Instead the more standard definition is:

Definition 3. An ordered k-coloring of a graph G is a function C : V (G) →
{1, . . . , k} such that for every pair of distinct vertices v, v′, and every path p
from v to v′, if C(v) = C(v′), there is an internal vertex v′′ of p such that
C(v) < C(v′′). The ordered chromatic number of a graph G, denoted by χo(G),
is the minimum k for which G has an ordered k-coloring.

It is not hard to show that the two definitions are equivalent (see for example [9]).
We prefer to use Definition 1 because it is closer to the definition of conflict-free
colorings. Conflict-free coloring can be seen as a relaxation of ordered coloring:



Ordered Coloring Grids and Related Graphs 33

In every path there must be a uniquely colored vertex, but its color does not
necessarily need to be the maximum occurring in the path.

A concept that will prove useful in the remainder (especially for proving lower
bounds) is that of a graph minor.

Definition 4. A graph X is a minor of Y , denoted as X � Y , if there is
a subgraph G of Y , and a sequence G0, . . . , Gk, with G0 = G and Gk = X,
such that Gi = Gi−1/ei−1, where ei−1 ∈ E(Gi−1) (i.e., edge ei−1 is contracted
in Gi−1), for i ∈ {1, . . . , k}. Edge contraction is the process of merging both
endpoints of an edge into a new vertex, which is connected to all neighbors of
the two endpoints.

It is not difficult to prove, with the help of a recoloring argument, that the
ordered chromatic number is monotone with respect to minors.

Proposition 1. If X � Y , then χo(X) ≤ χo(Y ).

In the rest of this section we provide ordered colorings for some graphs with
(relatively) few edges.

Chain. Ordered coloring of a chain is equivalent to conflict-free coloring a chain
and is better known as conflict-free coloring with respect to intervals [3]. Exactly,
1 + 	lg n
 colors are needed: For n = 2k − 1, the coloring is defined recursively
as follows: The middle vertex receives the maximum color k so the left and right
sides (with 2k−1−1 vertices each) can freely use the same colors and are colored
recursively.

Ring. To color a ring, we use the above coloring of a chain. We pick an arbitrary
vertex v and color it with a unique and maximum color. The remaining vertices
form a chain that we color with the method described above. This method colors
a ring of n vertices with 2+ 	lg(n−1)
 colors and it is not difficult to prove that
this is optimal.

Grid. To color the m ×m grid, denoted by Gm, we can use the previous idea
of the recursive coloring. We simply divide the grid in 4 equal grids of half size
and recursively color them using exactly the same colors for each. To make this
possible we should use unique colors in the middle row and column, as we did
for the middle vertex of the chain. So, we use m unique maximum colors for
the middle row and then about m

2 unique colors for the middle column (the
same above and under the middle row). This method requires about 3m colors.
However, this coloring remains proper even if we add two edges in every internal
face of the standard drawing of Gm. This indicates that 3m is not optimal and
in fact, in section 2, we improve the above upper bound.

There is also a lower bound of χo(Gm) ≥ m from [9]. Another proof (in [2])
is immediate from the fact that the treewidth and pathwidth of a graph G are at
most the minimum elimination tree height (see [11] for the definition) of G. We
provide yet another proof, based on minors:
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Proposition 2. If Gm is the m×m grid, χo(Gm) ≥ m.

Proof. By induction. Base: For m = 1, it is true, as χo(K1) = 1. For the inductive
step, consider a Hamilton path p of Gm, with m > 1. If Gm is ordered colored,
then there is a vertex v with a unique color in p (and thus in G). So, for some
v, χo(Gm) = 1 +χo(Gm− v). However, for every v, Gm−1 � Gm− v. Therefore,
from proposition 1, χo(G) ≥ 1 + χo(Gm−1) and from the inductive hypothesis,
χo(G) ≥ 1 + m− 1 = m.

In section 3, we improve the above lower bound.

2 Upper Bounds

In this and the next section we show how to color several grid-like families of
graphs. We are mainly interested in the m ×m (square) grid. In order to color
the grid efficiently we rely on separators whose removal leaves some subgraphs
of the grid to be colored. The subgraphs we will rely on are the rhombus Rx, the
wide-side triangle Tx, and the right triangle Ox. These are depicted in Figures 1,
2, and 3 and formal definitions similar to definition 2 are not hard to infer.
Another graph topology we will investigate is the torus, which is a variation
of the grid with wraparound edges added, connecting the last vertex of every
row (and column) with the first. The torus graph Ĝm can also be defined as
the cartesian product of two cycles Cm × Cm. A summary of our upper bound
results can be seen on Table 1. It is interesting that the golden ratio φ ≈ 1.618
appears in some of these bounds.

Table 1. Summary of upper bounds. The last column indicates on which upper bounds
each result is based.

graph upper bound based on
Gm 2.519 m Rm, Om

Rm 1.500 m -
Tm 1.118 m Rm

Om 1.618 m Tm

Ĝm 3.500 m Rm

As was evident in the examples of the previous section, one strategy for con-
structing an ordered coloring of a graph is to attempt to find a separator, that is,
a set of vertices whose removal disconnects the graph. The vertices of this set are
all assigned distinct colors that will be the maximum colors used in the graph.
This way, we can recursively construct a coloring for the components formed
by the deletion of the separator, since paths connecting vertices from different
components have a unique maximum vertex in the separator. The problem is
then, to find a separator that is small and divides the graph into components of
as low chromatic number as possible.
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In the proofs we give below, we partition the graphs with the help of sepa-
rators. All results are in the order of m, so without further mention we do not
include terms logarithmic on m. These terms might be introduced by constant
additive terms in a recursive bound. We are also omitting, in most cases floors
and ceilings, because we are interested in asymptotic behavior. In that sense, a
result like, for example, χo(Gm) ≤ 2.67m should be read as an asymptotic upper
bound of 2.67m± o(m).

In order to find improved upper bounds we need to find more intricate sepa-
rators than those of the last example of the previous section. The idea is to use
separators along diagonals in the grid. We will also need to find efficient color-
ings of some subgraphs that are left after we remove diagonal-like separators.
That is the reason why we first present efficient colorings for the rhombus and
the triangles.

In the figures of the following sections thicker lines indicate the selection of
separator vertices which will receive unique and maximum colors. Thinner lines
that lie on different sides of a thick line may reuse the same color range.

2.1 Rhombi and Triangles

The rhombus. The rhombus Rx is the first subgraph of the grid shown in Fig-
ure 1. It has height x. We have the following upper bound:

Proposition 3. χo(Rx) ≤ 3x/2.

Proof. Use a diagonal separator to cut the rhombus in half (x/2 unique colors
are used), then cut also the remaining parts in half with a diagonal separator
(x/4 unique colors, used in both parts). This is shown in figure 1. Therefore,
we have the recursive formula χo(Rx) ≤ x/2 + x/4 + χo(R�x/2�), which implies
χo(Rx) ≤ 3x/2.

The wide side triangle. The triangle Tx is the subgraph of the grid shown in
figure 2. Its long side has length x. First, we give a simple upper bound:

Proposition 4. χo(Tx) ≤ 7x/6 ≈ 1.167x.

x

x

Fig. 1. The rhombus subgraph Rx and its separation
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x

Fig. 2. The wide side triangle Tx and its separations

Proof. See the first separation of the wide-side triangle in Figure 2. Use a sep-
arator diagonally, parallel to one of the diagonal sides of the triangle Tx, with
2x/6 unique colors. In the two remaining parts, separate diagonally by using
separators parallel to the other diagonal side of the triangle Tx; each of those
separators uses x/6 unique colors. With one more use of x/6 unique colors, we
end up with connected components that are subgraphs of the rhombus R2x/6.
Therefore, χo(Tx) ≤ 2x/6 + x/6 + x/6 + χo(R�2x/6�), and since by proposition
3, χo(Rx) ≤ 3x/2, we have χo(Tx) ≤ 7x/6.

An improved upper bound can be obtained by the previous one, by making the
observation that the graph on the left of the thickest separator in Figure 2 is also
a wide side triangle. Thus, we may try to color it recursively in the same way.
However, this would not improve the bound because the graph that remains on
the right side uses 5x

6 colors anyway. This indicates that the thickest separator
would be better positioned if we moved it slightly to the right, since it seems
that the remaining graph on the right side requires more colors.

Suppose that we move it slightly to the right, as in the last part of Figure 2
and that the ratio of its length over the length of the long side of the triangle is w
(previously we had w = 1/3). We will optimize with respect to this w. Now, the
rhombi on the right have length x(1−2w), and the separators between them have
length x(1 − 2w)/2. From the previously shown upper bound for the rhombus,
and the fact that we need two sets of colors for the separators we conclude that
the right part needs at most 5

2x(1 − 2w) colors. Assuming that the two parts
are well balanced, the whole triangle needs at most wx+ 5

2x(1−2w) colors. The
triangle formed on the left of the separator has length 2wx, thus from the above
it needs 2w2x + 5

2 (2wx)(1 − 2w) and in order for the balancing assumption to
hold this must be equal to the number of colors used in the right part. Thus,
we have 2w2 + 5w(1 − 2w) = 5

2 (1− 2w), which implies w = 5−
√

5
8 ≈ 0.345. It is

not hard to verify that using a separator of this length all the above arguments
hold. Thus, we reach the following conclusion:

Proposition 5. χo(Tx) ≤ √5x/2 ≈ 1.118x.

The right triangle. The right triangle Ox is the subgraph of the grid shown in
figure 3. It has height x. We have the following upper bound:

Proposition 6. χo(Ox) ≤ φx =
√

5+1
2 x ≈ 1.618x.
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Proof. See figure 3. Use a separator diagonally to form two wide side triangles
whose long sides are of length x. We have the formula χo(Ox) ≤ x/2 + χo(Tx)
and since by proposition 4, χo(Tx) ≤ √5x/2, we have χo(Ox) ≤

√
5+1
2 x = φx,

where we denote by φ the golden ratio.

2.2 Grids and Tori

An 8m/3 upper bound for square grids. In the first part of figure 4, we show
how an m×m grid has to be partitioned with the help of separators to achieve
an 8m/3 upper bound.

The separators use m, m/3, and m/3 colors. After the removal of the separa-
tors, the remaining components are all subgraphs of a rhombus of height 2m/3.
By proposition 3, each remaining component can be colored with m colors. In
total, 8m/3 colors are required:

Proposition 7. χo(Gm) ≤ 8m/3 ≈ 2.6667m.

An 18m/7 upper bound for square grids. In the second part of figure 4, we show
how an m×m grid has to be partitioned with the help of separators to achieve an
18m/7 upper bound. The separators use m, 3m/7, 3m/7, m/7, and m/7 colors.
Then, we have rhombi of height 2m/7 that remain and, by proposition 3, each
rhombus can be colored with 3m/7 colors. In total, we have 18m/7 colors:

Proposition 8. χo(Gm) ≤ 18m/7 ≈ 2.5714m.

A (7+2φ)m/4 upper bound for square grids. In the third part of figure 4 we show
how an m ×m grid can be partitioned to achieve a (7 + 2φ)m/4 upper bound;
we show only the partitioning of the subgraph under the first-level separator,
since the subgraph over it is done in a symmetric way. We will show in the
following section that shrinking this particular partition gives the best currently
known result. The separators use m + m/2 + m/4 = 7m/4 unique colors. The
remaining subgraphs of the grid to be colored are rhombi of height m/2 and
right triangles of height m/2. By propositions 3 and 6 they can be colored with
3m/4 and φm/2 colors respectively. Therefore the total use of colors is 7m/4 +
max(3m/4, φm/2) = (7 + 2φ)m/4.

x

x

Fig. 3. The right triangle Ox and its separation
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Fig. 4. 8m/3, 18m/7 and (7 + 2φ)m/4 upper bounds

Fig. 5. A 18m/7 coloring extended and a (7 + 2φ)m/4 coloring shrunk

Improving the upper bounds by extending and shrinking colorings. The afore-
mentioned upper bounds may be slightly improved by extending or shrinking
the underlying grid. The reason is that, even though for the most part the grid
is partitioned into rhombi, different subgraphs are formed at its edges.

In the case of the 8m/3 and 18m/7 bounds, we can see that wide side triangles
are formed. For each of these we can use the same set of colors as for the rhombi
formed further inside the grid, but since the rhombi are of twice the size of
the triangles extending the grid to the point where the triangles use the same
number of colors as the rhombi will not increase the total number of colors used.
For example, for the 8m/3 coloring, if the coloring is extended by m

(
1√
5
− 1

3

)
in

every side (up, down, left, right), then one can color the new grid of side length
m′ ≈ 1.228m with 4(13+3

√
5)

31 m′ colors. Thus:

Proposition 9. χo(Gm) ≤ 4(13+3
√

5)
31 m ≈ 2.544m.

In the case of the (7 + 2φ)m/4 coloring, we follow the opposite approach of
shrinking the coloring. Four right triangles are formed, each using more colors
than the rhombi. Therefore, slightly shrinking the grid so that the right triangles
use the same number of colors as the rhombi improves the result. The optimal
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amount of shrinking is x =
(

1
4 − 3

8φ

)
m from each side (up, down, left, right).

The remaining grid has side m′ ≈ 0.9635m and can be colored with 6 φ+1
2φ+3m′

colors. Thus, we get our best upper bound for the square grid:

Proposition 10. χo(Gm) ≤ 6 φ+1
2φ+3m ≈ 2.519m.

Torus. An efficient coloring of the torus Ĝm is as follows: Use the two diagonals
as separators (at most 2m vertices). The remaining two connected components
are subgraphs of the rhombus Rm which can be colored with at most 3m/2
colors. Therefore, we have the following proposition.

Proposition 11. χo(Ĝm) ≤ 2m + 3m/2 = 3.5m.

Rectangular grids. Intuitively, a rectangular grid begins to resemble a chain
when one of its dimensions is much smaller than the other, i.e., m2 � m1. We
may attempt to exploit this observation in the following manner: given a grid
with m1 rows and m2 columns, pick the m1-th column, the 2m1-th column,
. . ., the (	m2/m1
 · m1)-th column. These 	m2/m1
 columns will be used as
separators, thus partitioning the graph into subgraphs of m1 ×m1 grids; each
subgraph will use the same colors. However, the column separators do not all
need distinct colors, because we can color them in a way similar to the coloring of
a chain: the middle column receives the highest colors, then we color recursively
the columns to the left and those to the right. This results to an upper bound
of χo(Gm1,m2) ≤ m1 �(1 + log(	m2/m1
))�+ χo(Gm1,m1).

Moreover, the above upper bound can be further improved slightly. Instead
of using columns as separators we may use a zig-zag line starting from the top
left corner and proceeding diagonally to the right until it hits the bottom, the
to the right and up again, and so on. This requires the same number of colors
for the separators, since we can still color them in a chain-like fashion, but now
wide-side triangles are formed (instead of grids), each of length 2m1, thus we
reach the following conclusion:

Proposition 12. χo(Gm1,m2) ≤ m1

⌈
(1 + log(

⌊
m2
m1

⌋
))
⌉

+
√

5m

The above result is close to being optimal when m2 � m1 as we will see in
the next section. However, when m2 is not much larger than m1, more careful
strategies need to be examined.

3 Lower Bounds

In the first part of this section we prove lower bounds on the ordered chromatic
number of square grids and tori. Then we move on to prove lower bounds for
rectangular grids.

An important observation is the following: suppose we are given an optimal
ordered coloring of a graph, and let c1, c2, . . . , ck be the colors used, in decreasing
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order. If ci is the first color in this order assigned to more than one vertex,
then vertices with colors c1, . . . , ci−1 must form a separator, otherwise the path
connecting the two vertices of color ci would not have a unique maximum vertex.
Thus, we can reason about a lower bound by reasoning about separators: examine
cases on the size and shape of the separator formed by the highest colors of an
optimal coloring and then, for each case, argue that the size of the separator plus
the ordered chromatic number of one of the remaining components is higher
than a desired lower bound. Moreover, it is enough to consider only minimal
separators, as shown in [4] (a separator S is minimal if for every vertex v of S,
S \ {v} is not a separator).

In order to argue that the ordered chromatic number of a remaining compo-
nent is high we will rely heavily on Proposition 1 and make use of induction.

We start with the torus lower bound, because the separators are simpler in
this case.

Proposition 13. χo(Ĝm) ≥ 3m
2 (for m ≥ 2).

Proof. By induction: For m = 2 the proposition holds.
Suppose that we are given an optimal coloring of a torus Ĝm. Since the torus

has no “sides” the separator must enclose an area of the torus. The smallest
possible such separator is a set of the form {(x− 1, y), (x, y + 1), (x, y − 1), (x +
1, y)}, i.e., four vertices enclosing a single vertex (we call this kind of separator a
cross). The length l of a separator will be max(|xi − xj |+ 1) for (xi, yi), (xj , yj)
vertices of the separator. Similarly the height of a separator is max(|yi−yj|+1).
We distinguish between two cases:

Case 1: The separator formed by the highest colors encloses more than one
vertex. Without loss of generality, suppose that the separator’s length is at least
as much as its height. Then the separator must consist of at least 2l−2 vertices.
We also know that l > 3 ⇒ l ≥ 4, otherwise the separator would enclose a single
vertex only. Removing the separator will leave two components, one of which will
have Ĝm−l as a minor. Therefore, χo(Ĝm) ≥ 2l−2+χo(Ĝm−l) ≥ 3m

2 + l
2−2 ≥ 3m

2 .
Case 2: The separator formed by the highest colors is a cross. It is not hard

to see intuitively that this cannot lead to an optimal coloring, because our goal
when using separators should probably be to balance the chromatic number of
the components that will be formed, since only the maximum one matters. To
show that this is the case, consider the following argument: let ci be the color
of vertex (x, y− 1), that is, a vertex outside the cross, but adjacent to two of its
vertices. If it is unique, then χo(Ĝm) ≥ 4 + 1 + χo(Ĝm−3), because the removal
of the cross and this unique color leaves a graph with Ĝm−3 as a minor. Thus,
χo(Ĝm) ≥ 5 + 3m

2 − 9
2 > 3m

2 . Now, if it is not unique it must be separated from
its other appearances in the graph by a separator. If the separator is not a cross,
similar reasoning as in case 1 proves the lower bound. If it is, we have two crosses
contained in a 5× 5 area. Therefore, χo(Ĝm) ≥ 8 + χo(Ĝm−5) > 3m

2 .

We continue with a 4m/3 lower bound for square grids, where the separators
might also contain vertices on the sides of the grid (i.e., vertices with degree less
than four).
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Proposition 14. For m ≥ 2, χo(Gm) ≥ 4m
3 .

Proof. Since we want to prove a 4m/3 lower bound, we consider only separators
of size |S| ≤ 4m/3. The sides of the grid are the four paths of m vertices with
x = 0, x = m− 1, y = 0, and y = m− 1, respectively. For the grid Gm we have
the following cases of minimal separators.

Case I: The separator does not contain any vertex of the sides. This case is
similar to the case of the torus. The size of the separator |S| = s ≥ 4 and Gm−S
contains a Gm−(�s/2�+1) minor. Therefore, by induction, with such a separator,
at least s + (4/3)(m− (	s/2
+ 1)) ≥ 4m/3 colors are needed (because s ≥ 4).

Case II: The separator touches at most two adjacent sides (i.e., sides that
share a common vertex) of the grid. Then, |S| = s ≥ 2 and G − S contains
a Gm−�s/2� subgraph. Therefore, by induction, with such a separator, at least
s + (4/3)(m− �s/2�) ≥ 4m/3 colors are needed (because s ≥ 2).

Case III: The separator touches two non-adjacent sides. In that case, the sep-
arator has size |S| = s ≥ m. Consider the four square grid subgraphs G�m/2−s/6�
of the grid Gm that touch the four corners of Gm. It is not difficult to see that
a separator of size s can not touch all four of the above subgraphs. Therefore,
by induction, with such a separator, at least s + 4

3�m
2 − s

6� ≥ 4m/3 colors are
needed (because s ≥ m).

Finally, we proceed to prove lower bounds for rectangular grids.

Proposition 15. χo(Gm1,2m1) ≥ 2m1

Proof. By induction. For m1 = 1 the proposition holds.
Let S be the separator formed by the highest colors. If |S| ≥ 2m1 then the

proposition trivially holds. If |S| < 2m1 then the separator can not touch both
of the far sides of the grid. Thus, its removal will give us a component having
height m1. If |S| < m1 the separator cannot touch two sides that are opposite
each other. Therefore, its removal will give a graph with Gm1−(|S|/2),2m1−|S| as
a minor and thus χo(Gm1,m2) ≥ |S|+ 2m1 − |S| = 2m1.

Finally, suppose that m1 ≤ |S| < 2m1. The separator can not span a length
of more than |S| vertices, therefore one of the components formed must have
G(2m1−|S|)/2,m1 as a minor. Thus, χo(Gm1,2m1) ≥ |S|+ 2m1 − |S| = 2m1.

Proposition 16. χo(Gm1,m2) ≥ m1

⌊
log
(

m2
m1

+ 1
)⌋

Proof. First, note that for m2 < 7m1 the proposition follows from previous
propositions. Therefore, we will only deal with the case m2 ≥ 7m1.

Let S be the separator formed by the highest colors. If S < m1 then the
removal of S must leave a component with Gm1,m2−|S| as a minor. χo(Gm1,m2) ≥
|S|+ χo(Gm1,m2−|S|) ≥ |S|+ m1

⌊
log(m2−|S|

m1
+ 1)

⌋
> m1

⌊
log(m2

m1
+ 1)

⌋
.

If m1 ≤ |S| ≤ m2 − 2m1 then, as in the previous proof, at least one
Gm1,(m2−|S|)/2 minor is formed. Thus, χo(Gm1,m2) ≥ |S|+χo(Gm1,(m2−|S|)/2) ≥
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|S| + m1

⌊
log(m2−|S|

2m1
+ 1)

⌋
. It is not hard to verify, using elementary calcu-

lus, that the latter is minimized when |S| = m1 in which case χo(Gm1,m2) ≥
m1 + m1

⌊
log(m2+m1

2m1
)
⌋

= m1

⌊
log(m2

m1
+ 1)

⌋
.

Finally, for m2 − 2m1 < |S|, let m2 = km1. Then |S| > (k − 2)m1, while
log(m2

m1
+1) = log(k+1). We have that, χo(Gm1,m2) ≥ |S| > (k−2)m1, therefore

if k − 2 > 	log(k + 1)
 the proposition holds. But we know that k ≥ 7, which
satisfies the previous inequality.

4 Open Problems

The most important problem still left open is of course the exact value of χo(Gm).
For small values of m the correct answer seems to be 2m − 1, but maybe this
is just an exception for small values of m, and asymptotics could be different
and closer to 2.5m. It would also be interesting to study lower bounds for the
rhombus and the triangle subgraphs, and then combine them to improve the
lower bound for the square grid.

Another area for future research may be the online version of the problem,
where vertices of the grid are “activated” one by one, and the coloring must
remain proper throughout the process. Relevant results in the case of chains can
be found in [1,3].
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Abstract. Gossip protocols are communication protocols in which, pe-
riodically, every node of a network exchanges information with some
other node chosen according to some (randomized) strategy. These
protocols have recently found various types of applications for the man-
agement of distributed systems. Spatial gossip protocols are gossip
protocols that use the underlying spatial structure of the network, in
particular for achieving the ”closest-first” property. This latter property
states that the closer a node is to the source of a message the more
likely it is to receive this message within a prescribed amount of time.
Spatial gossip protocols find many applications, including the propaga-
tion of alarms in sensor networks, and the location of resources in P2P
networks. We design a sub-linear spatial gossip protocol for arbitrary
graphs metric. More specifically, we prove that, for any graph metric
with maximum degree Δ, for any source s and any ball centered at s with
size b, new information is spread from s to all nodes in the ball within
O((

√
b log b log log b + Δ) log b) rounds, with high probability. Moreover,

when applied to general metrics with uniform density, the same protocol
achieves a propagation time of O(log2 b log log b) rounds.

Keywords: epidemic algorithm, information spreading, resource lo-
cation.

1 Introduction

Gossip protocols are communication protocols in which, periodically, every node
of a network exchanges information with some other node chosen according to
some (randomized) strategy. These protocols are appealing for their simplicity
and robustness, and have recently found several applications for various network
and system tasks, such as, e.g., multicast [5,9], resource location [7,8], and dis-
tributed databases management [1,6]. In essence, a gossip protocol performs as
follows. Let V be a (finite or infinite, but countable) set of nodes. The protocol
is executed by all the nodes in parallel for the purpose of broadcasting informa-
tion – hereafter called ”gossip” – among all nodes in V . More precisely, nodes
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execute infinitely the same actions, in rounds, and, at each round, every node
u ∈ V applies the following two instructions:

(1) select a node v ∈ V ;
(2) send known gossips to v;

The communication between node u and the selected node v is achieved via
some underlying point-to-point communication protocol which allows any pair
of distinct nodes to communicate in V .

Gossip protocols differ according to (1) the way each node selects the recipient
of its next point-to-point communication, and (2) the way each node chooses the
gossips to be sent to that recipient. In this paper, we restrict our attention to the
former point, in order to measure the impact of the node selection mechanism
on the efficiency of gossip protocols. Thus, for the sake of simplicity, we assume
that once the recipient v of a point-to-point communication has been selected
by u, this latter node transmits to v all the gossips learnt so far. Although this
assumption might be unrealistic in many contexts (because sending many gos-
sips obviously creates congestion), it allows us to focus on the way information
can spread solely as a function of the networking environment, and in absence of
any hypotheses regarding the nature of the gossips. In fact, there exists several
environments in which ignoring congestion created by simultaneous transmis-
sions of many different gossips is realistic. This is typically the case of alarm
spreading among nodes of a sensor network, in environments in which few nodes
are expected to be simultaneously the sources of alarms (e.g., forest fires, car
accidents, etc.).

Protocols that are oblivious to the past are usually preferred, for they are not
sensitive to any events that occurred previously. In particular, if the protocol is
oblivious, then a node recovering from a crash or a transient fault can restart
the execution of the protocol from scratch, even if all local information were
lost. Therefore, the selection of node v performed by an informed node u is
preferably the result of a mechanism that is not depending on the past. Moreover,
protocols that are also oblivious to the sources of the gossips are also preferred,
for their simplicity and efficiency. In particular, by treating all sources the same,
no information is required to be stored in the gossip packets, or at least the
examination of this information is not required to decide to which node(s) each
gossip must be forwarded.

One way to overcome the two above constraints (time obliviousness, and
source independence) is to consider randomized algorithms. In fact, currently
proposed practical gossip protocols [5] are based on randomized mechanisms,
mostly because randomization also preserves the mechanism from possible chan-
ges in the environment.

The most popular gossip protocol is uniform: at each round, every informed
node u selects the recipient v uniformly at random among all nodes in V . This
protocol is known to perform well in practice [5]. It has been formally analyzed
by Frieze and Grimmett [4], and by Pittel [10]. In particular, the former authors
have proved that a new gossip is, w.h.p., spread to all nodes in V in O(log n)
rounds, where n = |V |. This completion time is asymptotically optimal because
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the number of nodes aware of a given gossip can at most double at each round,
and thus it takes at least Ω(log n) rounds for all nodes to become aware of a
new gossip. However, it was noticed by Kempe, Kleinberg, and Demers [7] that
uniform is not appropriate to contexts in which closest nodes to the source of a
new gossip should preferably receive this gossip faster than nodes farther away.
Such a requirement occurs typically in the context of resource location [11] in
which users are aiming at finding the nearby copies of duplicated shared resources
(e.g., movies). It also occurs in the aforementioned context of alarm spreading.

Kempe et al. [7] tackled the issue of designing gossip protocols satisfying
that the closer a node is from a source, the more likely it is to receive a gossip
from that source within a prescribed amount of time. In order to measure the
distance sensitivity of a gossip protocol, they have considered its propagation
time as a function of the distance to the source, in a metric space (V, δ). In
such a metric space, we denote by V the (finite or infinite but countable) set of
points, or nodes, and by δ the distance function between nodes. Kempe et al.
have designed a gossip protocol, here called density, satisfying that, if the nodes
in V are spread with uniform density in the D-dimensional Euclidean space RD

with Lk metric, then a new gossip is spread to nodes at distance d from any
source s in O(log1+ε d) rounds, with probability at least 1 − 1

log d . By uniform
density, it is meant that there exist two positive constants β1 and β2 such that,
for any r ≥ 1, the number of nodes in any ball of radius r is at least β1r

D, and
at most β2r

D.
Protocolswhose performances are sensitive to the distances between the sources

and the recipients, are called spatial gossip protocols. In order to compare the
propagation times of different spatial gossip protocols, in possibly different met-
ric spaces (V, δ), we must take into account the fact that the number of nodes at
a given distance from a given node varies significantly from one metric space to
another, and even within the same metric space. In a metric (V, δ), it is actually
more convenient to define the propagation time as a function of the ranks of the
nodes, where the rank of node u relative to another node s is the number of nodes
whose distances from s are not larger than δ(s, u). Indeed, a gossip protocol can-
not insure that a gossip reaches a node close to the source quickly if there is a huge
number of other nodes that are even closer to that source.

So let us redefine the propagation time as a function of the node ranks. The
ball of radius d centered at s is defined as

B(s, d) = {u ∈ V, δ(s, u) ≤ d}.
For any node s and any b ≥ 1, let Ts(b) be the random variable equal to the
number of rounds it takes for a new gossip introduced at node s to reach all
nodes in the smallest ball B centered at s satisfying |B| ≥ b. We say that a
gossip protocol has propagation time f(b) for some function f if for any s ∈ V ,
Ts(b) ≤ O(f(b)) with high probability1.
1 When we write “with high probability” here, we mean with probability at least

1 − O(1/bα) for some α > 0, where α may appear in the constant of the expression
O(f(b)).
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Table 1. Time complexities of various gossip protocols: n denotes the number of nodes,
b the ball size, Δ the maximum degree, and D the diameter

Protocol Application Propagation time Completion time
uniform Arbitrary finite metric O(log n) [4, 10]
density Uniform density in (RD,Lk) O(log2+ε b) [7]
local Arbitrary graph metric O(b log b) O(Δ(D + log n)) [2]
logscale Arbitrary graph metric O((

√
b log b. log log b + Δ) log b)

Metric of uniform density O(log2 b log log b)

By definition of uniform density, the balls in the sub-metric (V,Lk) of
(RD,Lk) induced by a set V of nodes spread out with uniform density in RD have
sizes polynomial in their radius. Using this fact, one can show that the gossip
protocol in [7] has propagation time O(log2+ε b). This result yields the ques-
tion of the existence of efficient gossip protocols (that is protocols with bounded
propagation time) in arbitrary metrics, or at least in arbitrary graph metrics.
Recall that a graph metric (V, δ) is determined by an undirected unweighted
graph G = (V, E), where the distance δ(u, v) between two nodes u and v is the
length of a shortest path between u and v in G.

In graph metrics, a natural candidate for such a protocol is the one that
uses only the links of the graph: each node selects the recipient of its next
communication uniformly at random among its neighbors in the graph. We call
this protocol local. This protocol has been analyzed in detail in [2], where it
is shown that it completes in O(Δ(D + log n)) rounds, w.h.p., where Δ denotes
the maximum degree of the nodes, and D denotes the diameter of the graph. If
fact, it is not difficult to adapt results in [2] to show that the propagation time of
local is O(b log b) (see Section A in the Appendix), hence proving the existence
of a universal spatial gossip protocol. This bound is tight. Indeed, in the n-node
star (an n-node tree with n − 1 leaves an one internal node called center), a
gossip introduced at the center of the star will reach all nodes at distance 1 in
time Ω(n log n), by equivalence to the coupon collector problem.

The main objective of this paper is to design universal spatial gossip protocols
with sub-linear propagation times.

Our Results

We design a universal gossip protocol, called logscale, and prove that, in graph
metrics of maximum degree Δ, its propagation time is O((

√
b log b. log log b +

Δ) log b) rounds. The performances of this protocol compared to the previously
mentioned protocols are summarized in Table 1. logscale has a propagation
time significantly smaller than local. In finite graph metrics, it has the same
completion time (i.e., the time to inform all nodes) as local, following from
the fact that, in expectation, logscale acts as local for half of the rounds.
During the other half, every node selects the recipient of its transmission with
a probability that scales with the logarithm of the ranks. In fact, by combining
logscale with uniform (every node acts as in one protocol with probability
half, and as in the other protocol with probability half), we obtain a gossip
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protocol with the same propagation time as logscale but with the same com-
pletion time as uniform. Although designed for graph metrics, our protocol
logscale can also be applied to arbitrary metric. In metrics of uniform den-
sity (i.e., the same framework as in [8]), logscale achieves the polylogarithmic
propagation time O(log2 b log log b) rounds.

The paper is organized as follows. The gossip protocol logscale is described
in Section 2, and analyzed in Section 3. The performances of logscale in met-
rics of uniform density are presented in Section 4. Finally, Section 5 lists some
concluding remarks. (Section A in the Appendix revisits Protocol local to prove
that its propagation time O(b log b) rounds.)

2 The Gossip Protocol logscale

This section describes the protocol logscale. The only thing one needs to spec-
ify is the way a node u selects a node v at each round. This selection process
is inspired from the augmentation process in [3], in the sense that it uses a set
of balls of exponentially growing size in which nodes are selected. However, as
opposed to [3], the parameter k determining the size 2k of the considered ball is
not chosen uniformly at random in [1, logn], but is chosen with a probability de-
creasing as 1/k. Moreover, our selection process gives high weight to neighboring
nodes, as opposed to [3] which tends to ignore those neighboring nodes.

At each round, with probability 1/2, node v is selected uniformly at random
among all the neighbors of u, and, with the remaining probability 1/2, v is
selected in one ball containing 2k nodes, for some k > 0. More precisely, for
k ≥ 1, let Ck(u) be a set of 2k closest nodes from u. The set Ck(u) is not uniquely
defined because of nodes at equal distance from u, so here Ck(u) denotes one
of these sets of 2k closest nodes, chosen arbitrarily. (Note that, in finite graph
metrics, |Ck(u)| = min{n, 2k}). To select v, node u picks one k ≥ 1, and then
selects v uniformly at random in Ck(u). The choice of k is however not uniform,
and k is picked with probability

pk =
1
σ

1
k · log2(1 + k)

.

where σ is a constant normalizing factor (independent of any parameter) so
that

∑
k≥1 pk = 1. Note that choosing a larger σ would allow us to deal with

transmission failures. Nevertheless, for the sake of simplicity, we assume here
that

∑
k≥1 pk = 1. Note also that

∫ +∞
1

dx
x log2(1+x) is finite: the role of the polylog

factor is specifically to insure convergence. Replacing pk by 1
k1+ε would also work,

but would increase the propagation time.
To sum up, let us define, for any two nodes u and v, the parameter

ru(v) = min{k ≥ 1 | v ∈ Ck(u)},
and let Pr[u → v] denotes the probability that node u selects node v at a given
round. Finally, let deg(u) denote the degree of node u, i.e., the number of its
adjacent nodes (neighbors). Then the protocol works as follows.
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Protocol logscale: Set

pu,v =
1
σ

∑
k≥ru(v)

1
2k · k · log2(1 + k)

.

and set

Pr[u → v] =
{ 1

2 ( 1
deg(u) + pu,v) if u and v are neighbors,

1
2 pu,v otherwise

3 Propagation Time of logscale

In this section, we prove our main result, namely:

Theorem 1. For any graph metric (V, δ), and for any source node s ∈ V , pro-
tocol logscale satisfies that a message introduced at node s reaches all nodes
in any ball of size b centered at s in less than O((

√
b log b · log log b + Δ) log b)

steps, with high probability.

Proof. Let (V, δ) be a graph metric, let s ∈ V , and let B be a ball centered at
s, containing b = |B| nodes. We prove that, with high probability, all nodes in
B receive a gossip from s, at most O((

√
b log b. log log b + Δ) log b) rounds after

it appeared at s. Let k = �log b�. We have

Ck−1(s) ⊆ B ⊆ Ck(s).

Let us fix u ∈ Ck(s), and set

ν = �2k/2
√

k log(1 + k)�.
For any node x ∈ Ck(s), we define D(x) as the set of the ν closest nodes from x
in Ck(s), where, in case of ties, node u enters D(x) first. That is,

u /∈ D(x) ⇒ ∀w ∈ D(x), δ(s, w) < δ(s, u).

Let P = (s0, s1, . . . , s�) be a shortest path from s0 = s to s� = u. Then let i be
the smallest index such that u ∈ D(si).

Claim. The expected number of rounds of logscale before s eventually selects
a node v ∈ D(si) is at most 2σν.

Proof

Pr[s → D(si)] =
∑

v∈D(si)

Pr[s → v]

≥
∑

v∈D(si)

ps,v

2
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≥ |D(si)|
2σ

∑
j≥k

1
2jj log2(1 + j)

≥ ν

2σ2kk log2(1 + k)

=
1

2σν
.

Therefore, after an expected number of rounds 2σν, some node v ∈ D(si) has
received the gossip directly from s. This establishes the claim. �
We now bound the expected number of rounds for the gossip to reach u from the
node v ∈ D(si). Let us consider the two shortest paths P (v, si) = (v0, v1, . . . , vr)
from v0 = v to vr = si, and P (si, u) = (si, si+1, . . . , s�) from si to u = s�. In
order to analyze the expected propagation time of the message from v to u along
P (v, si) and P (si, u), we observe that if d = δ(si, u) then

B(si, d− 1) ⊆ D(si) ⊆ B(si, d + 1). (1)

The first inclusion follows from the fact that u ∈ D(si), hence all nodes at
distance less than d = δ(si, u) must be in D(si) as well by definition of the sets
D(·). To establish the second inclusion, we first note that D(si−1) ⊆ B(si−1, d)
because si−1 is at distance d + 1 from u, and u /∈ D(si−1), which implies that
no other node at distance d + 1 from si−1 can be in D(si−1). Now, B(si−1, d) ⊆
B(si, d+1). Hence D(si−1) ⊆ B(si, d+1), and thus |B(si, d+1)∩Ck(s)| ≥ �ν�.
Therefore D(si) ⊆ B(si, d+1). Let us first concentrate on the propagation time
along P (v, si) = (v0, v1, . . . , vr).

Claim. The expected number of rounds of logscale to travel from node v ∈
D(si) to si is at most 6(Δ + ν).

Proof. We use a fact observed in [2] stating that every node outside a shortest
path in a graph can be adjacent to at most 3 nodes of the path. We apply this
observation in our context as follows. Any node in D(si) can be adjacent to at
most 3 nodes of P (v, si). The problem is that some nodes outside D(si) may
also be adjacent to nodes of P (v, si). Nevertheless, by Equation 1, only nodes
v = v0, v1, and v2 may be adjacent to nodes outside D(si). Indeed, for all j ≥ 3,
we have vj ∈ B(si, d − 2) because v ∈ D(si) ⊆ B(si, d + 1). That is vj cannot
be at the frontier between D(si) and V \D(si) for j ≥ 3. Therefore,

r−1∑
j=0

deg(vj) = deg(v0) + deg(v1) + deg(v2) +
r−1∑
j=3

deg(vj)

≤ 3Δ + 3|D(si)|
≤ 3(Δ + ν).

Now, the degree of a node is equal to the expected number of rounds to travel one
more step along the path. As a consequence, the expected number of rounds for
the gossip to travel from v to si is at most twice that bound (because neighbors
are selected with probability 1

2 ), and thus at most 6(Δ + ν), as claimed. �
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Let us now concentrate on the propagation time along the path P (si, u) =
(si, si+1, . . . , s�).

Claim. The expected number of rounds of logscale to travel from si to u is
at most 2(3ν + Δ).

Proof. By Equation 1, all nodes sj for j = i, . . . , �− 2 cannot be at the frontier
between D(si) and V \D(si). As a consequence,

�−1∑
j=i

deg(sj) =
�−2∑
j=i

deg(sj) + deg(s�−1)

≤ 3|D(si)|+ Δ

≤ 3ν + Δ.

As a consequence, the expected number of rounds for the gossip to travel from
si to u is at most 2(3ν + Δ). �
Let Ts,u be random variable counting the number of round for a gossip arising
at s to reach u. From what precedes, we get that

ETs,u ≤ 2σν + 6(Δ + ν) + 2(3ν + Δ)
= (2σ + 12)ν + 8Δ.

Now, let α > 1. For i = 1, . . . , α log b, let Xi be independent random variables
identically distributed as Ts,u, and denoting the time taken by a gossip starting
from s at round 2(i− 1)ETs,u to reach u. Since, the decision taken at each node
in logscale is oblivious from the past, independent from the message source,
and independent from the decision taken at other nodes, we get that if there
exists i such that Xi ≤ 2ETs,u, then Ts,u ≤ (2α log b) ETs,u. Therefore,

Pr[Ts,u > 2 α log(b) ETs,u] ≤
α log b∏
i=1

Pr[Xi ≤ 2ETs,u].

By Markov inequality, we get Pr[Xi > 2EXi] < 1/2. Therefore,

Pr[Ts,u > 2 α log(b) ETs,u] <
1

2α log b
≤ 1

bα
.

Thus, by union-bound

Pr[∃u ∈ B, Ts,u > 2 α log(b) ETs,u] ≤ |B| 1
bα

=
1

bα−1 .

Thus
Pr[∀u ∈ B, Ts,u ≤ 2 α log(b) ETs,u] ≥ 1− 1

bα−1

which yields

Pr[∀u ∈ B, Ts,u ≤ 2 α log(b) ((2σ + 12)ν + 8Δ)] ≥ 1− 1
bα−1
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We complete the proof by noting that

ν =
⌈√

2kk log2(1 + k)
⌉
≤ O(

√
b log b log log b). ��

4 Application to Metrics with Uniform Density

Protocol logscale can also be applied to arbitrary metrics (not only graph
metrics). For the protocol to run in arbitrary metrics, one simply modifies it by
having the selection process defined by

Pr[u → v] = pu,v

for any pair of nodes u, v. (There is no more condition on whether u and v are
adjacent or not). We analyze logscale in the context of metrics of uniform
density (cf. [7]). In this paper, we use the following definition.

Definition 1. A metric (V, δ) has uniform density if there exists a constant c
such that, for any s ∈ V , and any k ≥ 1, we have: ∀u, v ∈ V, u, v ∈ Ck(s) ⇒
v ∈ Ck+c(u).

We shall prove that Protocol logscale performs faster in metrics with uniform
density than the bound of Theorem 1. Before that, we note that Definition 1
generalizes the definition of uniform density defined in [7] for sub-metrics of
(RD,Lk). Recall that this latter definition states that a metric (V, δ) consisting
of points scattered in RD has uniform density if there exist two positive constants
β1 and β2 such that, for any r ≥ 1, the number of nodes in any ball of radius r
is at least β1r

D, and at most β2r
D.

Remark. If a sub-merics of (RD,Lk) has uniform density in the sense of the
definition in [7], then it has uniform density in the sense of Definition 1.

Proof. Assume that there exist two positive constants β1 and β2 such that, for
any r ≥ 1, the number of nodes in any ball of radius r is at least β1r

D, and at
most β2r

D. W.l.o.g., one can assume that β1 ≤ 1. We prove that, for

c = 2D +
⌊
log(

β2

β1
)
⌋

we have: u, v ∈ Ck(s) implies v ∈ Ck+c(u) for any u, v and s.
Consider u, v and s such that u, v ∈ Ck(s). Let rmin be the smallest radius

such that Ck(s) ⊆ B(s, rmin).
We first analyze the ”general” case rmin > 1. Let 1 ≤ r′ < rmin be such

that rmin ≤ r′ + 1. We have |B(s, r′)| < 2k because r′ < rmin. On the other
hand, we have β1r

′D ≤ |B(s, r′)| by uniform density (in the sense of [7]). Thus

r′ ≤
(

2k

β1

)1/D

. Now, by the triangle inequality, δ(u, v) ≤ 2rmin. Thus we get:



Sub-linear Universal Spatial Gossip Protocols 53

|B(s, δ(u, v))| ≤ |B(s, 2rmin)|
≤ β2 (2rmin)D

≤ β2 2D(r′ + 1)D

≤ β2 2D

((
2k

β1

)1/D

+ 1

)D

≤ β2 22D 2k

β1
.

Combining this latter inequality with the fact that v ∈ B(s, δ(u, v)), we get that

v ∈ C�log(β2 22D 2k

β1
)�(u).

That is, v ∈ Ck+c(u).
The ”particular” case rmin ≤ 1 can be treated similarly. We have

|B(s, δ(u, v))| ≤ |B(s, 2rmin)| ≤ β2 2D.

Thus v ∈ CD+�log(β2)�(u) ⊆ Cc(u) ⊆ Cc+k(u). ��
Theorem 2. For any metric (V, δ) with uniform density, and for any source
node s ∈ V , protocol logscale satisfies that a message introduced at node s
reaches all nodes in any ball of size b centered at s in less than O(log2 b log log b)
steps, with high probability.

Proof. The proof follows the same guidelines as the analysis of protocol density

in [7]. Let s ∈ V , and t ∈ Ck(s) for some k such that k − 2 log k ≥ 2c where c is
the constant appearing in Definition 1. Let

Us = C�k/2+log k�+c(s) and Ut = C�k/2+log k�+c(t).

Fix β > 2, and let E denotes the event “there exists at least one call from Us to
Ut occurring during at least one of βk consecutive steps”.

Claim. We have Pr[E ] ≥ 1− 1
2βk .

Proof. By the uniform density hypothesis, we have Ck(s) ⊆ Ck+c(t). Therefore,
Us ⊆ Ck+c(t). Therefore, again by the density hypothesis, we get that, for any
u ∈ Us, and any v ∈ Ck+c(t), v ∈ Ck+2c(u). Thus, in particular,

∀u ∈ Us, ∀v ∈ Ut, v ∈ Ck+2c(u).

Using that property, one can bound the probability p of a call from Us to Ut.
We have

1− p =
∏

u∈Us,v∈Ut

(1− pu,v).

As in the proof of Theorem 1, one can easily check that pu,v ≥ x where

x =
1

2σ2k+2c(k + 2c) log2(1 + k + 2c)
.
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Therefore
1− p ≤ (1− x)|Us| |Ut| ≤ e−x |Us| |Ut|

and thus
1− p ≤ e−k2/(2σ(k+2c) log2(1+k+2c)).

For k big enough, we get that 1− p ≤ 1/2. As a consequence,

Pr[E ] ≥ 1− 1
2βk

as claimed. �

Now, we prove the following claim:

Claim. For any t ∈ Ck(s), t receives a message originated at s in time at most
β k g(k) with probability at least 1− g(k)

2βk where g(k) is solution of the recurrence
equation

g(k) = 1 + g(�k/2 + log k�+ c) + g(	k/2 + log k
+ 2c).

Proof. We establish the claim by induction. We consider three consecutive time
intervals:

Is = [1 , β k g(�k/2 + log k�+ c)]
I = [|Is|+ 1 , |Is|+ β k]
It = [|Is|+ |I|+ 1 , |Is|+ |I|+ β k g(	k/2 + log k
+ 2c)].

By the bound we have previously derived on the event E , we get that during the
time interval I, there exists a node u ∈ Us which calls a node in v ∈ Ut with
probability at least 1 − 1

2βk . By induction hypothesis, node u has received the
message of source s during time interval Is with probability 1− g(�k/2+log k�+c)

2βk .
Also, by induction hypothesis, as t ∈ C�k/2+log k�+2c(v), node t has received the
message of source v during time interval It with probability 1− g(�k/2+log k�+2c)

2βk .
Therefore during a time interval of duration |Is|+ |I|+ |It| = β k g(k) node t has
received a message of source s with probability

(1− 1
2βk

)(1− g(�k/2 + log k�+ c)
2βk

)(1 − g(	k/2 + log k
+ 2c)
2βk

)

and thus with probability at least 1− g(k)
2βk . �

Now, it is easy to see that g(k) ≤ O(k log k). Thus, applying the claim, we get
that for any t ∈ Ck(s), t receives a message originated at s in time at most
O(βk2 log k) with probability at least 1 − O(k log k

2βk ). The theorem follows by
applying union bound on all t’s in Ck(s). ��
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5 Conclusion

In this paper, we have proved that there exists a universal gossip protocol for
all graph metric, whose propagation time is O((

√
b log b · log log b + Δ) log b). A

natural question is whether this bound can be improved. In particular it would
be quite informative to prove or disprove the existence of a universal gossip
protocol with polylogarithmic propagation time O(logα b) for some α ≥ 1. Such
a polylogarithmic propagation time can be achieved in specific metrics, namely
those with uniform density. Another natural extension of this work would thus be
to extend the result to arbitrary metric without any assumption on the density.
In fact, even the existence of a gossip protocol with finite propagation time is
not clear in this general context: uniform has an unbounded propagation time,
and density and logscale have polylogarithmic propagation times in metrics
with uniform density, but their performances in arbitrary metrics are not known.
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Appendix

A Protocol local Revisited

In this section, we briefly revisit the protocol local analyzed in [2], and prove
that its propagation time is O(b log b).

Proposition 1. For any finite graph metric (V, δ), and for any source node
s ∈ V , protocol local satisfies that a message introduced at node s reaches all
nodes in any ball of size b centered at s in less than O(b log b) steps, with high
probability.

Proof. We use the same proof structure as in [2]. Let (V, δ) be a finite graph
metric, let s ∈ V , and let B be a ball centered at s, containing b = |B| nodes.
We prove that, using local, all nodes in B receive a gossip from s at most
O(b log b) rounds after it appeared at s, with high probability. For this, we use
again the observation in [2] stating that every node outside a shortest path
in a graph can be adjacent to at most 3 nodes of the path. Let u ∈ B, and
P = (u0, u1, . . . , u�) be a shortest path from s to u, with u0 = s and u� = u.
Any node in B \ P can be adjacent to at most 3 nodes of P . A node outside
B adjacent to P can only be adjacent to u� since otherwise it would be in B.
Therefore

�−1∑
i=0

deg(ui) ≤ 3b.

From this bound, we get that if Xu denotes the random variable equal to the
time it takes for a gossip to reach u, then EXu ≤ 3b. Now, let α > 1. For
i = 1, . . . , α log b, let Yi be independent random variables identically distributed
as Xu. Since, the decision taken at each node in local is oblivious from the
past, independent from the message source, and independent from the decision
taken at other nodes, we have

Pr[Xu ≥ 2 α log(b) EXu] ≤ Π log b
i=1 Pr[Yi ≥ 2EXu].

By Markov inequality, we get

Pr[Xu ≥ 2 α log(b) EXu] ≤
(1

2

)α log b

=
1
bα

.

Thus Pr[Xu ≥ 6 α b log b] ≤ 1/bα. By union-bound, we get that

Pr[∃u ∈ B, Xu ≥ 6 α b log b] ≤ 1
bα−1

which completes the proof. ��
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Abstract. All-Optical Label Switching (AOLS) is a new technology
that performs packet forwarding without any Optical-Electrical-Optical
(OEO) conversions. In this paper, we study the problem of routing a set
of requests in AOLS networks using GMPLS technology, with the aim
of minimizing the number of labels required to ensure the forwarding.
We first formalize the problem by associating to each routing strategy
a logical hypergraph whose hyperarcs are dipaths of the physical graph,
called tunnels in GMPLS terminology. Such a hypergraph is called a hy-
pergraph layout, to which we assign a cost function given by its physical
length plus the total number of hops traveled by the traffic. Minimizing
the cost of the design of an AOLS network can then be expressed as
finding a minimum cost hypergraph layout.

We prove hardness results for the problem, namely for general directed
networks we prove that it is NP-hard to find a C log n-approximation,
where C is a a positive constant and n is the number of nodes of the
network. For symmetric directed networks, we prove that the problem
is APX-hard. These hardness results hold even is the traffic instance
is a partial broadcast. On the other hand, we provide an O(log n)-
approximation algorithm to the problem for a general symmetric net-
work. Finally, we focus on the case where the physical network is a
path, providing a polynomial-time dynamic programming algorithm for
a bounded number of sources, thus extending the algorithm given in [1]
for a single source.

1 Introduction

All-Optical Label Switching (AOLS) [9] is an approach to route packets trans-
parently and all-optically, thus allowing a speed-up of the forwarding. This very
promising technology for the future Internet applications also brings new con-
straints and new problems. Indeed, since the forwarding functions are imple-
mented directly at the optical domain, a specific correlator (device) is needed

� This work has been partly funded by the European project IST FET AEOLUS
and the project “Optimization Models for NGI Core Network” (Polish Ministry of
Science and Higher Education, grant N517 397334).
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for each optical label processed in the node. Therefore, it is of major impor-
tance to reduce the number of employed correlators in every node, implying a
reduction in the number of labels (as referred in the rest of the paper) that are
going to be used by the traffic. Due to its flexibility as a control plane and to the
fact that it handles traffic forwarding, the Generic MultiProtocol Label Switch-
ing (GMPLS) is the most promising protocol to be applied in AOLS-driven
networks.

In GMPLS, traffic is forwarded through logical connections called Label
Switched Paths (LSPs). When GMPLS is used with packet-based network, pack-
ets are associated to LSPs by means of a label, or tag, placed on top of the header
of the packet. In this way, routers - called Label Switched Routers (LSRs) - can
distinguish and forward packets.

The GMPLS standards allow packets to carry a set of labels in their header,
conforming a stack of labels. Even though a packet may contain more than one
label, LSRs must only read the first (or top) label in the stack in order to take
forwarding decisions. This helps to reduce both the number of labels that need to
be maintained on the core LSRs and the complexity of managing data forwarding
across the backbone.

Stacking labels and label processing, in general, are standardized by the fol-
lowing set of operations that an LSR can perform over a given stack of labels:

• SWAP: replace the label at the top by a new one,
• PUSH: replace the label at the top by a new one and then push one or more

onto the stack, and
• POP: remove the label at top in the label stack.

The labels stored in the forwarding table are significant only locally at the node
and swapped all along the LSP (see Fig. 1).

Solutions deployed by GMPLS for reducing the number of labels are label
merging [4, 11, 13] (not discussed here) and label stacking [12, 15]. With label
stacking, when two or more LSPs follow the same set of links, they can be
routed together “inside” a higher-level LSP, henceforth a tunnel. In order to
setup a tunnel, multiple labels are placed in the packet’s header.

Fig. 1 represents the general operations needed to configure a tunnel with the
use of label stacking. At the entrance of the tunnel, λ PUSH are performed in
order to route the λ units of traffic through the tunnel. Then, only one operation
(either a SWAP or a POP at the end of the tunnel) is performed in all the nodes
along the tunnel, regardless of λ. In this figure, a stack of size 2 is used to route
the λ LSPs in one tunnel from node A to node E. The top label l is swapped and
replaced at each hop: by l1 at node B, by l2 at node C, and is finally popped at
node D. The λ units of traffic, at the exit of the tunnel at node E can end or
follow different paths according to their bottom label ki, for all i ∈ {1, 2, ..., w}
in the stack.

A consequence of the way in which the GMPLS operations can be configured
at LSRs is the following: traffic can enter in any node of a tunnel but can exit
in only one point, the last node of the tunnel. In other words, when some traffic
is carried by a tunnel, it follows the tunnel until its end.
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k1:PUSH l,out:AB
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Fig. 1. GMPLS operations performed at the entrance and at the exit of a tunnel

Since the number of labels used for GMPLS forwarding affects the cost of the
AOLS architecture, in this paper we mainly focus on the minimization of the
number of labels used. In our previous example, the total cost c(T ) of this tunnel
T from node A to node E in terms of number of labels is c(T ) = λ + �(T )− 1,
where λ is the number of units of traffic forwarded through this tunnel and �(T )
is its length in terms of number of hops (which is 4 on this example). We will
formally define the cost function of the problem in Section 2.

Previous work and our contribution. The label minimization problem in GM-

PLS networks has been widely studied in the literature during the last few
years [12, 15, 4, 11, 13, 14]. All these articles focus mainly on proposing and an-
alyzing heuristics to the problem, but there is a lack of theoretical results, like
computational complexity or bounds on the approximation ratio of the proposed
algorithms. For instance, in [14] the authors propose heuristics for routing a set
of demands in AOLS networks when routers have limited number of available op-
tical correlators. Very recently [1], the problem has been studied for the directed
path from a more theoretical point of view. Namely, in [1] the authors present a
polynomial-time optimal algorithm for the case when all traffic is issued from a
single source and an O(log n)-approximation algorithm with arbitrary number
of sources, where n is the number of nodes of the network.

In this article we provide the first theoretical framework for the label mini-
mization problem in general GMPLS networks. We translate the problem into
finding a set of dipaths in a directed hypergraph. With this new formulation, it
turns out that the problem is very similar to classical Virtual Path Layout (VPL)
problems originating from ATM networks. We provide hardness results and ap-
proximation algorithms for the problem in general graphs. The approximation
algorithms strongly rely on the already known algorithms for VPL problems.
Finally, we focus on the path topology, extending the dynamic programming ap-
proach presented in [1] to any bounded number of sources. If there are k sources,
the main result is an optimal algorithm with running time nO(k). That is, the
problem is polynomial in the path for any fixed number of sources.
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Organization of the paper. In Section 2 we formally state the problem in terms
of hypergraph layout and fix the notation to be used throughout the article. In
Section 3 we prove that for general directed networks it is NP-hard to find a
C log n-approximation, where C is a a positive constant and n is the number of
nodes of the network. For symmetric directed networks, we prove that the prob-
lem is APX-hard, and therefore it does not accept a PTAS unless P=NP. In
Section 4 we provide an approximation algorithm to the problem for symmetric
directed graphs with an approximation ratio O(log n), where n is the number
of nodes of the network. In Section 5 we focus on the directed path topology
and present a dynamic programming approach solving the problem in polyno-
mial time when the number of sources is fixed. Finally, Section 6 is devoted to
conclusions and further research.

2 GMPLS Logical Network Design as a Hypergraph
Layout Problem

The logical network design problem that we address can be roughly described as
follows: we are given a digraph (directed graph) G together with a set of traffic
demands (or requests) between couples of vertices in G, and we must find a set of
tunnels of minimum cost allowing to route all traffic requests. Note that usually
communication networks are symmetric digraphs (i.e. when operators set a link
on one direction, they also set the opposite link). So it is interesting to study the
symmetric case, which turns out to be computationally easier than the general
directed case. Let us now precise each one of the above terms.

A tunnel is simply a directed path (or dipath) in G, and due to the technolog-
ical constraints discussed in Section 1, traffic can enter anywhere in the tunnel
but must leave only at the end of the tunnel. To define the problem formally we
need the following notation:

• G = (V, E) is the underlying digraph (which can be symmetric or not).
• |V | = n, and vertices are numbered 1, . . . , n.
• rij is the request from i ∈ V to j ∈ V , with multiplicity mij . R is the set of

all requests.
• P (G) is the set of all simple dipaths in G.
• t stands for a tunnel, and T is the set of tunnels, that is t ∈ T ⊆ P (G).
• � is a length function on the arcs, that is � : E → �

+.
• for a tunnel t, �(t) =

∑
e∈t �(e) is its length and w(t) is the amount of traffic

it carries.

Note that a priori w(t) depends on the routing policy. The cost of a tunnel t is
then w(t) + (�(t)− 1), and the cost of a set of tunnels T is∑

t∈T

(w(t) + �(t)− 1) . (1)

Each tunnel can be seen as a directed hyperarc on the vertex set of G. This
observation naturally leads to the definition of a hypergraph layout.
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Definition 1 (Hypergraph layout). Given a graph G and a set T ⊆ P (G),
H(T ) is the directed hypergraph with V (H(T )) = V (G), and where for each
tunnel t ∈ T ⊆ P (G) there is a directed hyperarc in H(T ) connecting any vertex
of t to the end of t. H(T ) is called a hypergraph layout.

Note that a hypergraph H(T ) defines a virtual topology on G. A hypergraph
layout H(T ) is said to be feasible if for each request rij ∈ R there exists a
dipath in H(T ) from i to j. The problem can then be simply expressed as
finding a feasible hypergraph layout of minimum cost. Let us now rewrite the
cost function of Equation (1).

Given a hypergraph layout H(T ), let L(rij) be the number of hyperarcs that
request rij uses, and let dH(i, j) be the distance from vertex i to vertex j in H(T ).
Then the term

∑
t∈T w(t) of Equation (1) can be rewritten as

∑
rij∈R L(rij)·mij

and, since L(rij) ≥ dH(i, j), we conclude that in an optimal solution the routing
necessarily uses shortest dipaths in the hypergraph layout. It follows that the
cost function of Equation (1) can be rewritten w.l.o.g. as∑

t∈T

(�(t)− 1) +
∑

rij∈R

dH(i, j)mij . (2)

The cost of a solution is of bicriteria nature. The first part is the cost of the
hypergraph structure; we call it the total length of the layout. The second part
is the total distance that the traffic travels in the hypergraph; we call it the total
hop count. Both cost function parts are very much conflicting. On the one hand,
to minimize the hop count, it is enough to take a shortest tunnel connecting any
source to any destination. On the other hand, to minimize the total length of
the layout, it is enough to use a minimum arc-weighted connected hypergraph
H such that for each request rij ∈ R, vertices i and j lie on the same connected
component of H . Summarizing, the problem can be stated as follows.

Minimum Cost Hypergraph Layout: Given a digraph G with a
length function and a set R of traffic requests, find a feasible hyper-
graph layout of minimum cost, where the cost of a hypergraph layout is
defined as in Equation (2).

If G is a symmetric digraph, the problem is denoted Minimum Cost Symmet-

ric Hypergraph Layout. It makes sense also to consider the decision version
in which we are also given two positive integers CL, CH and the objective is to
decide whether there exists a layout with total length less than CL and total
hop count less than CH .

We note that the cost function of Equation (2) can be naturally generalized
to

α ·
∑
t∈T

c(t) + β ·
∑

rij∈R

dH(i, j)mij , (3)

where α and β are positive constants and c(t) is a general cost function c :
P (G) → �

+. The cost function of Equation (2) corresponds to c(t) = �(t)− 1.
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Relation with VPL problems. This layout design problem defined above is quite
similar to well studied VPL problems in ATM networks, in which one imposes a
constraint on the logical structure and then wishes to minimize either the max-
imum distance [2] or the average distance [6] traveled by the traffic. Concerning
hardness and approximation, we shall see in the sequel of the article that the
problem we study inherits most of the characteristics of the classical VPL prob-
lems studied since the 80s. It is not surprising that, even if new technologies
like GMPLS are proposed to cope with the increasing bandwidth of commu-
nication networks, the computational complexity of the problems associated to
these technologies remains essentially the same.

Nevertheless, there are two crucial differences between the GMPLS problem
that we study and the classical VPL version of ATM networks. Indeed, we have
seen that the GMPLS logical network design problem can be translated into
finding a set of dipaths in a directed hypergraph, whereas the existing models
for VPL problems deal with digraphs without multiple arcs. This feature will
be exploited in the dynamic programming approach for the path presented in
Section 5. The second difference is that the cost function we consider takes into
account the sum of the length and the hop count costs, whereas usually in VPL

problems the aim is to minimize the maximum value of either the length or the
hop count in the network. Finally, it is important to note that, if there is a single
source in the the GMPLS version (or, more generally, if the traffic instance is
such that in an optimal solution each hyperarc has exactly 2 vertices), then the
problem is basically equivalent to a classical VPL problem.

3 Hardness Results

In this section we give hardness results for the Minimum Cost Hypergraph

Layout problem. We distinguish two cases according to whether the underlying
network is symmetric or not. We focus on those cases in Sections 3.1 and 3.2.

3.1 General Case

Theorem 1. The Minimum Cost Hypergraph Layout problem cannot be
approximated within a factor C log n for some constant C > 0, even if the in-
stance is a partial broadcast, unless P = NP.

Proof: The reduction is from Minimum Set Cover
1. Raz and Safra [10] proved

that Minimum Set Cover is not approximable within a factor C log n, for
some constant C > 0, unless P = NP. To a Set Cover instance with sets
S1, S2, . . . , Sk, with Si ⊆ {a1, a2, . . . , an}, we associate the following graph:

• We start with a distinguished node s.

1 Given a finite set S and a collection C of subsets of S , the aim is to find a subcollection
C′ of C of minimum cardinality that covers all the elements of S .
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Fig. 2. Reduction in the proof of Theorem 1

• For each set Si we introduce a node vi and a directed path of length L + 1
(L is a constant to be specified later) from s to vi through L new vertices
p1

i , p
2
i , . . . , p

L
i .

• For each element aj we introduce a vertex uj and, for each vertex vi we add
the arcs (vi, uj) if aj ∈ Si.

• The requests are from s to uj , for i = 1, . . . , n.

This construction is illustrated in Fig. 2. Let OPT be the optimal cost to the
Minimum Cost Hypergraph Layout instance, and let OPTSC be the optimal
cost to the Minimum Set Cover instance.

Note that any cover defined by I ⊆ {1, 2, . . .k} induces a solution of Di-

rected Hypergraph Layout obtained as follows: we use a tunnel of cost L
connecting node s to each node vi, i ∈ I corresponding to a set taken in the cover.
Then we connect each node vi, i ∈ I to the vertices uj , j ∈ Si. Finally, if a node
uj has more than one incoming tunnel (which means that aj is covered more
than once), we remove extra ones. A solution induced by an optimal cover has
length cost L ·OPTSC , and the hop count cost is 2n, so OPT ≤ L ·OPTSC +2n.

Conversely, given a layout, the dipaths from s to vi used by some tunnel must
induce a cover, so OPT ≥ L ·OPTSC + n. Putting all together,

L ·OPTSC + n ≤ OPT ≤ L ·OPTSC + 2n.

By choosing L to be large enough, the gap for the Minimum Cost Hyper-

graph Layout problem can be made as large as in Minimum Set Cover.
Since, unless P = NP, approximating Minimum Set Cover within a factor
C log n for some constant C > 0 is NP-hard [10], our result follows. �

3.2 Symmetric Case

When the input graph G is symmetric, we can consider G as an undirected where
the edge {i, j} corresponds to the two arcs (i, j) and (j, i).
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Theorem 2. The Minimum Cost Symmetric Hypergraph Layout prob-
lem is APX-hard even if the instance is a partial broadcast. Therefore, it does
not accept a PTAS unless P=NP.

Proof: The reduction is from Minimum Steiner Tree
2, which is know to be

APX-hard [3], hence it does not accept a PTAS unless P = NP.
Given an instance (G = (V, E), S ⊆ V ) of Minimum Steiner Tree problem

on n vertices, we build an instance of Minimum Cost Symmetric Hyper-

graph Layout problem by subdividing Ω
(
n2 ·∑rij∈R mij

)
times each edge

of G and considering as request set a partial broadcast from any vertex in S to
all the others vertices in S. Note that subdividing edges is equivalent to setting
α >> β in the cost function of Equation (3). In other words, the total hop count
is negligible compared to the total length of the layout. It is then clear that any
optimal solution to the Minimum Cost Symmetric Hypergraph Layout

corresponds to a minimum cost Steiner tree in G spanning all the elements in
S. Let OPT be the optimal cost to the Minimum Cost Symmetric Hyper-

graph Layout instance, and let OPTST be the optimal cost to the Minimum

Steiner Tree instance. Let M be the number of times we have subdivided the
edges of G. Summarizing,

OPT = M ·OPTST + o(M ·OPTST ).

The existence of a PTAS for Minimum Cost Symmetric Hypergraph Lay-

out would yield a PTAS for Minimum Steiner Tree, which is impossible
unless P = NP. �

4 Approximation Algorithms

In this section we provide approximation algorithms for Minimum Cost Hy-

pergraph Layout problem. Unless said otherwise, we focus on the symmetric
version, for which the description of the algorithms is easier, although the main
ideas could be adapted to the general version with slight modifications. For the
sake of presentation, we describe our algorithms when the network is a path, a
tree, and a general graph in Sections 4.1, 4.2, and 4.3, respectively. The approx-
imation algorithm for the directed path network appeared also in [1], we include
it here for the sake of completeness.

4.1 Case of the Path

First assume that the instance is a weighted all-to-all (i.e., there is a traffic request
between each couple of nodes), and that n is a power of two (otherwise, just add
dummy vertices). Then one simply uses the following binary layout: we connect
2 Given an edge-weighted graph G = (V, E) and a subset S ⊆ V , find a connected

subgraph with minimum edge-weight containing all the vertices in S. We can assume,
by subdividing edges, that all edge-weights equal 1.
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node 1 to node n/2, node n/2 to node n, and we use recursively the binary layout
for n/2 on the subdipaths [1, n/2] and [n/2, n]. It is clear that any traffic request
can be routed in this layout with at most log n hops, and that the total length of
this layout is bounded above by log n · �([1, n]), where �([1, n]) denotes the length
of the tunnel going from node 1 to node n. Therefore the cost of this layout is log n·∑

rij∈R mij + log n · �([1, n]). Since any layout costs at least
∑

d∈D mij + �([1, n]),
this provides a log n-approximation in the all-to-all case.

Now, for a general traffic pattern, it is not always the case that �([1, n]) is a
lower bound on the total length of the layout. We define the span of an instance
as the minimum set of arcs such that any request can be routed using only those
arcs. Note that the span is indeed a set of intervals such that any traffic request
is routed within one of these intervals. Let �0 denote the length of the span.
Then any layout costs at least

∑
rij∈R mij + �0, and using the binary layout on

each interval of the span we can define a layout with total length log n · �0 and
total hop count log n ·∑rij∈R mij . Summarizing,

Proposition 1. When the network is a path, there exists a polynomial-time
approximation algorithm for Minimum Cost Hypergraph Layout problem
with an approximation ratio O(log n).

4.2 Case of the Tree

In [2] the authors studied the design of virtual layouts in ATM networks. Their
model deals with point-to-point connections in the virtual graph, whereas in
Minimum Cost Hypergraph Layout problem, a tunnel can carry more than
one request. Nevertheless, we can use the results of [2] to obtain good approxi-
mation algorithms. Namely, we are interested in the following result which estab-
lishes the trade-off between the maximum load c and the diameter of a virtual
layout allowing to route an all-to-all traffic in a general tree.

Theorem 1 (Bermond et al. [2]). In a general tree on n nodes with all-to-all
traffic, for each value of c ∈ {1, . . . , n} there exists a virtual layout allowing to
route all traffic with diameter at most 10c ·n 1

2c−1 and load at most c. In addition,
such a layout can be constructed in polynomial time.

In particular, if we set c = log n+1
2 , Theorem 1 implies that we can find in

polynomial time a layout with load O(log n) and diameter at most (5 log n+5) ·
n

1
log n = 10 logn + 10 = O(log n).
Suppose first that the instance of Minimum Cost Hypergraph Layout

problem is a weighted all-to-all traffic. It is clear that each arc must be used by
some tunnel, hence n− 1 is a lower bound on the total length of any layout. On
the other hand, the hop count is at least

∑
rij∈R mij . In the layout described

above, each arc is used at most log n+1
2 times, and therefore the total length of

this layout is O(n log n). Since the diameter is also O(log n), the total hop count
is O(log n ·∑rij∈R mij), yielding an O(log n)-approximation.

If the instance is not all-to-all, we repeat the argument of the span discussed
in Section 4.1, obtaining again an O(log n)-approximation. Summarizing,
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Proposition 2. When the network is a tree, there exists a polynomial-time ap-
proximation algorithm for Minimum Cost Hypergraph Layout problem with
an approximation ratio O(log n).

4.3 General Network

In the Minimum Generalized Steiner Network problem, we are given a
graph G = (V, E), a weight function w : E → �, a capacity function c : E → �,
and a requirement function r : V × V → �. The objective is to find a Steiner
network over G that satisfies all the requirements and obeys all the capacities,
i.e., a function f : E → � such that, for each edge e, f(e) ≤ c(e) and, for
any pair of nodes i and j, the number of edge disjoint paths between i and
j is at least r(i, j), where for each edge e, f(e) copies of e are available. We
want to minimize the cost of the network, i.e.,

∑
e∈E w(e)f(e). The problem is

approximable within O(log rmax), where rmax is the maximum requirement [7],
and within a constant factor 2 when all the requirements are equal [8]. The
directed version of the problem is approximable within O(n2/3 log1/3 n) [5].

Given an instance of Minimum Cost Hypergraph Layout in a general
network, consider the associated Minimum Generalized Steiner Network

problem where all the requirements are equal to 1 and where the edge capacities
are set to +∞. Let H be an optimal solution to this Minimum Generalized

Steiner Network instance (note that H may be disconnected). The following
easy observation will be useful: since H is the smallest subgraph of G such that
any couple source-destination lies on the same connected component, in any
solution to the Minimum Cost Hypergraph Layout problem, the number of
arcs that are used by at least one tunnel is at least |E(H)|. Using the algorithm
of [8], we can find in polynomial time a Steiner network H ′ with |E(H ′)| ≤
2|E(H)|. Since the edge capacities are set to ∞, we can assume that such a
Steiner network is a forest. The layout is then obtained by applying the algorithm
described in Section 4.2 to each connected component of H ′.

It is clear that the hop count of this layout is at most O(log n) times the
lower bound

∑
rij∈R mij . On the other hand, the total length of this layout is

O(log n · |E(H ′)|) = O(log n · |E(H)|). Since the total length of any layout is
lower-bounded by |E(H)|, the O(log n)-approximation follows. Summarizing,

Theorem 2. In a general network, there exists a polynomial-time approxima-
tion algorithm for Minimum Cost Hypergraph Layout problem with an
approximation ratio O(log n).

5 The Hypergraph Layout Problem on the Path

In this section we focus on the case when the underlying digraph is a directed
path (nodes are numbered from left to right 1, . . . , n). Our approach consists in
a dynamic programming algorithm that computes partial solutions induced on
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subdipaths of the original path. We denote by [i, j] the subpath from node i to
node j.

Loosely speaking, we use the following dynamic program: we consider a cut ver-
tex i and we look at a local solution induced on the subpath [1, i]. That is, the tun-
nels and traffic located on [1, i]. The cost of a local solution is defined as the sum
of the local tunnels cost plus the hop counts sum taken on the local traffic.

We introduce then node i+1 and the potential tunnels finishing at it. In order
to update the local solution cost, it is necessary to have enough information to
compute the hop counts once this tunnel is introduced in the solution. So for
each source s ∈ S and vertex x, we introduce h(s, x) defined as the hop count
from s to x. Each vertex is then characterized by a hop count vector h(x) whose
dimension is the number of sources. A partial solution is then fully encoded
by its local cost and the hop counts of all its nodes. It follows from the above
discussion that we can encode a partial solution by giving, for each of its hop
count vectors, the rightmost node associated to that vector. If we denote by h a
bound on the hop count (at most n) and by c a bound (at most n) on the tunnel
cost, we have (ck)hk

= ckhk

such possible table entries, where k is the number
of sources.

By making an error of ε on the two costs (length and hops), we can encode
the logarithm in base 1 + ε of those quantities, which leads to tables of size
Θ
(
(log n)k(log n)k

)
. Note that this running time is already subexponential, so

the problem is unlikely to be NP-hard to approximate within a constant factor
when the number of sources is bounded (because it is widely assumed that
algorithms solving 3-SAT require 2Θ(n) time). We shall see now how to improve
this first näıve dynamic program.

We proceed now to give all the details for one and two sources, that suffice to
get the intuition for an arbitrary number k of sources.

5.1 Case of a Single Source and the Non Crossing Property

We summarize the algorithm that appeared first in [1] (Gerstel et al. used a
similar approach in [6]). In the case of a single source, it is not difficult to see
that the tunnel structure is non crossing, i.e. two tunnels can only intersect
in an optimal solution if one is strictly inside the other [1]. Since the path is
directed, we assume w.l.o.g. that the source is located in the leftmost node of
the path. This leads to the following approach: we consider the rightmost tunnel
originating from the source and assume it ends at node i. Clearly, any tunnel
starting in [1, i− 1] and ending in [i, n] can be replaced with a tunnel starting
at i, since this new tunnel may only decrease the hop count and the length3.

This approach allows us to compute the optimal for a path with n vertices
inductively. We denote by C[i, j] the minimum cost for the requests destined to
the subdipath [i, j], in which the source is replaced by node i. Then for 2 ≤ i ≤ n,

3 This fact holds for any increasing cost function c(t) in Equation (3).



68 J.-C. Bermond et al.

C[1, i] = min
k<i

⎧⎨⎩C[1, k − 1] +

⎛⎝ ∑
e∈E([1,k])

�(e)− 1

⎞⎠+
i∑

j=k

m1j + C[k, i]

⎫⎬⎭ . (4)

Note that C[1, n] is the optimal cost of the original problem, and it can be
computed in time O(n3) [1]. In the particular case of the uniform broadcast
(that is, mij = 1 for i = 1 and 2 ≤ j ≤ n, and mij = 0 otherwise) and with a
unitary length function on the edges, a closed formula was given in [1].

5.2 Case of Two Sources

We use a dynamic program similar to the one used for the single source case,
but slightly more complicated. Let s0 be the leftmost source and let s1 be the
other. In order to solve the problem, we introduce an auxiliary problem with
pseudo-sources. A pseudo-source s is denoted by a triple (h0, h1, l), where l is
the distance from s to the subdipath that lies on the right of the rightmost
pseudo-source, and where hi indicates that from s one can reach si in hi hops,
i = 0, 1. In the induction of the dynamic program the following auxiliary problem
will appear:

• The traffic is restricted to an interval [u, v], where either u or v is an end of
the original dipath.

• There are one or two pseudo-sources located to the left of [u, v].
• If there are two pseudo-sources, they are labeled (j, j, l0) and (j + 1, j, l1),

and we denote the corresponding problem P ((j, j), (j + 1, j), l0, l1, [u, v]).
• If there is a single pseudo-source, it is labeled (j, k), and we denote the

problem P ((j, k), [u, v]).

In both cases we denote by OPT the cost of an optimal solution. Note that
P ((0, 0), [u, v]) is indeed a single source problem in which a unique source replaces
both s0 and s1. Moreover, P ((j, k), [u, v]) is equivalent to a single source problem,
since OPT (P ((j, k), [u, v]))=OPT

(
P (0, 0, [u, v]))+

∑
x∈[u,v](j ·ms0x+k·ms1x)

)
.

We now relate the two sources problem to the auxiliary problem. Consider the
rightmost tunnel having si as head and denote by Ei its end node, i = 0, 1. We
compute an optimal solution conditioned to the values Ei, i = 0, 1. There are
three cases to consider, as it is depicted in Fig. 3.

(a) E0 is left to s1. Then on the subpath [E0, n] we pick an optimal solution
with a slightly modified instance: we leave traffic requests toward s1 unchanged
and we replace the source s0 by a pseudo-source at E0 with hop count 1. On the
subpath [s0, E0 − 1] we use an optimal solution (note that in this subproblem
there is only one source).

(b) E0 is on the right of both s1 and E1. Then E0 is at distance 1 from both
sources and therefore any tunnel entering [E0 + 1, n] can be assumed to start at
E0. So the optimal solution is then obtained by using OPT ([s0, E0]).

Note that in both cases (a) and (b) the induction is valid because E0 is the
best node to start a tunnel going to its right. Indeed, starting at E0 is cheaper,
and no node closer to the sources can be reached (from the definition of E0).
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Fig. 3. Dynamic programming with two sources: cases (a), (b), and (c), respectively

(c) E1 on the right of E0. Note that E0 is a (1, 1) pseudo-source, while E1 is a
(2, 1) pseudo-source. Consider a tunnel ending in [E1 + 1, n]. The situation gets
more complicated than in the single source case, since E1 (a (2, 1) node) is not
the “best” possible node anymore. The only nodes that can beat E1 are (1, 1)
nodes, and E0 is the rightmost one. Hence we can assume that such a tunnel is
starting either at E0 or at E1. Indeed, we have two “best nodes”. So to perform
the induction we have to solve two subproblems:

(c.1) the first subproblem on [s0, E1−1], but under a condition on the location
of the rightmost tunnel from s1, i.e. OPT ([s0, E1 − 1] | (s1, E1)).

(c.2) the second subproblem in which we have two pseudo-sources E0 of type
(1, 1) and E1 of type (2, 1). So we pay OPT (P ((1, 1), (2, 1), l(E0, E1),
l(E1, E1 + 1), [E1 + 1, n])).

To complete our algorithm we need to show how to compute the dynamic pro-
gram tables inductively, i.e. to compute OPT (P ((j, j), (j + 1, j), l0, l1, [u, v])).

The two pseudo-sources tables. The induction is again on the two rightmost
nodes E0, E1, with essentially the same cases as above, except case (a), which
cannot occur since both pseudo-sources are now located outside the path.

(i) E0 is on the right of E1. Then E0 is at distance j+1 from both sources and
therefore any tunnel entering [E0 + 1, n] can be assumed to start at E0. So the
optimal solution is obtained by using OPT ([s0, E0]) for the second subproblem
and OPT (P ((j, j), (j + 1, j), l0, l1, [s0, E0 − 1])).

(ii) E0 is on the left of E1. The situation is similar to case (c). We can split the
problem into two subproblems, the first one being a two pseudo-sources problem
reduced to [u, E1− 1] with a condition on the rightmost tunnel from s0, and the
second being a single source problem on [E1 + 1, n].

Correctness & complexity. To complete the proof, we must explain how the
above induction allows to compute all the tables inductively. Here are some
explanations:

• First the induction is performed on the length of the path and when the
tables for [u, v] are computed, all the tables for strict subdipath of [u, v] are
known.
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• Second, when filling the new tables, we compute the cost in a consistent
way: we sum the cost of the first and second subproblems (found in already
computed tables) with the cost of the tunnels that are removed, plus the
hop count for traffic toward the removed node (either E0 or E1).

• As usual we keep only the best cost found when examining all the subcases
1,2,3.

• Finally, one may worry about the conditioning on the rightmost tunnel that
appears in case (c). But fortunately this never leads to a condition on an
unbounded number of tunnels, since in the induction those rightmost tunnels
either disappear or stay.

To evaluate the complexity we use a pessimistic bound on the table size,
OPT (P ((j, j), (j + 1, j), l0, l1, [u, v])). The values of l0, l1 are polynomial since
they are in bijection with the pseudo-sources locations, j ∈ [1, n]. Since [u, v] is
either an end or a head segment we can store it in space 2n. Therefore we get
size Θ(n4) for the tables, and if we add the conditioning on the rightmost tunnel
from the rightmost source we get Θ(n5).

Finally, to improve the complexity we can use classic scaling technics to get
space log n

ε

5
and approximation factor 1 + ε.

6 Conclusions and Further Research

In this paper we modeled a question raised by label minimization in GMPLS net-
works as a hypergraph layout problem. In the single commodity case we showed
the problem to be closely related to well studied VPL problems. However, the
optimization criteria (average hop count and average load) that appear in our
problem are ones of the less studied. We observed that approximation results
follow immediately from extension of the results known for fixed depth hierar-
chical facility location (equivalently, bounded depth metric Steiner trees) to the
average depth case. We also gave a general log n-approximation that is universal
(that is, it does not depend on the traffic), as well as hardness results.

In the multi-sources case, we presented a dynamic program on the path that
is polynomial when the number of sources is fixed. So finding a polynomial
algorithm in the general case on the path remains open; likely extensions of the
dynamic program to the case of trees and bounded treewidth networks remain to
be done. Last, we believe that more general approximation results can be given
for low dimension Euclidean metric graphs using the classical Arora paradigm.
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Abstract. Gossip protocols are simple, robust and scalable and have been con-
sistently applied to many (mostly wired) distributed systems. Nevertheless, most
validation in this area has been empirical so far and there is a lack of a theoret-
ical counterpart to characterize what can and cannot be computed with gossip
protocols.

Population protocols, on the other hand, benefit from a sound theoretical
framework but little empirical evaluation. In this paper, we establish a correla-
tion between population and gossip-based protocols. We propose a classification
of gossip-based protocols, based on the nature of the underlying peer sampling
service. First, we show that the class of gossip protocols, where each node relies
on an arbitrary sample, is equivalent to population protocols. Second, we show
that gossip-based protocols, relying on a more powerful peer sampling service
providing peers using a clearly identified set of other peers, are equivalent to
community protocols, a modern variant of population protocols.

Leveraging the resemblances between population and gossip protocols enables
to provide a theoretical framework for distributed systems where global behav-
iors emerge from a set of local interactions, both in wired and wireless settings.
The practical validations of gossip-protocols provide empirical evidence of quick
convergence times of such algorithms and demonstrate their practical relevance.
While existing results in each area can be immediately applied, this also leaves
the space to transfer any new results, practical or theoretical, from one domain to
the other.

1 Introduction

In analogy with rumour spreading among human beings, gossip protocols provide a scal-
able, robust and reliable substrate for many peer to peer applications [11,13,18,22,23].
They have recently received an increased attention due to their scalability and quick con-
vergence in large-scale dynamic settings. In a gossip protocol, each node in the system
periodically exchanges information with another peer sampled from the network. The
robustness of gossip protocols stems from their random flavour in the sampling. How-
ever, while there are some ad-hoc analyses available for specific protocols [11,14,16,22],
most validation in the area has been so far achieved through extensive simulations and
experimentations.

In [21], a generic practical gossip substrate has been defined. In this model, a pro-
tocol is defined by three functions: (i) the peer selection, identifying the gossip target,
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provided by a peer sampling service; (ii) the data exchanged, specifying the informa-
tion exchanged between the peers during a gossip interaction and (iii) the data process-
ing following an interaction. While this framework was initially defined to unify gossip
membership systems, it has been shown to be generic enough to be applied for the whole
spectrum of gossip protocols including reliable dissemination, distributed computation,
and overlay construction [24]. Yet, there is a lack of clear theoretical framework en-
abling reasoning about the power and limitations of this model.

On the other hand, population protocols [1] provide theoretical foundations for dis-
tributed systems in which global behavior emerges from a set of simple interactions
between their agents. Originally developed in the context of mobile tiny devices, typ-
ically sensors, in this model, agents are considered anonymous, and therefore, undis-
tinguishable. Many variants of population protocols exist [2,4,5,6,10]. Among them,
community protocols [17] augment the original model by assigning agents a unique
identifier and letting nodes remember a limited number of other identifiers. Not only
this significantly increases the computation power of the system but also provides a
way to tolerate a bounded number of byzantine failures. In the sequel, the class of pop-
ulation protocols and variants will be refered as population protocols, and the original
model as basic population protocol.

More specifically, the population protocol model consists in a finite space of agent’s
states, a finite set of inputs, a finite set of outputs and a transition function. The set of
possible node’s interactions is represented by a graph. When two agents are sufficiently
close for a sufficiently long time, they interact by exchanging their local information,
and update their state according to the transition function. For instance, if agents are
small devices embedded on animals, an interaction takes place each time two animals
are in the same radio range. The interaction patterns, orchestrated by a scheduler, are
considered as unpredictable. Yet, the scheduler is assumed to be fair i.e., it ensures
that any reachable global system state can be reached infinitely often. In the absence of
global knowledge, agents cannot usually verify that the protocol has terminated, there-
fore the model considers convergence (of the distributed output) rather than termination.

Contributions: Correlating population and gossip protocols Our contributions in this
paper stem from the observation that population and gossip protocols bear many resem-
blances. They both rely on a scheduler orchestrating the interactions between nodes.
The scheduler, fair by assumption in population protocols, specifies the node interac-
tions in a mobile environment while the scheduler is a peer sampling service in gossip
protocols providing nodes with gossip targets. Both aim at achieving an emerging global
behavior from a set of local interactions in a fully decentralized manner. The main con-
tribution of this paper is to acknowledge these similarities and leverage them in both
contexts.

On one hand, the gossip structure presented in [21] provides a practical generic
framework in the context of wired systems. Yet, this does not provide a fine-grained
classification. Works in this area have shown that the gossip protocols scale well in prac-
tice and convergence quickly. On the other hand, population protocols provide a theo-
retical framework for wireless systems. They clearly define the power and limitation
of such protocols. Population protocols show that such systems composed of anony-
mous agents ensure the convergence of a clearly defined set of functions. Community
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protocols extend this model, by adding a bounded set of identifiers. However, until now,
these models have not significant practical implication. In this paper, we present the fol-
lowing contributions:

– We establish a correlation between population and gossip protocols and introduce
a first classification of gossip protocols depending on the nature of the underlying
peer sampling service. More precisely, we identify two classes of gossip protocols:
anonymous (AGP) and non anonymous (NGP).

– We show that anonymous gossip protocols are equivalent to basic population
protocols;

– We show that non anonymous gossip protocols are equivalent to community
protocols;

– By doing so, we leverage the theoretical framework of population protocols for un-
derstanding the power and limitations of gossip protocols. Likewise, we exploit the
results obtained in the area of gossip protocols to draw conclusions on the practical-
ity of population protocols. This enables us to provide both theoretical and practical
considerations for such large-scale systems: the parallel between population and
gossip protocols can be exploited for both existing and new results, as we propose
in [9]. For instance, applying gossip experiments to population protocols enables to
show the convergence behavior of these protocols. Likewise, applying some results
from population protocols to the gossip-based protocols enable to show their com-
putability or extract some interesting bounds as the one proposed in [9], where we
provide a new result in the context of population protocol namely the optimality of
uniform distribution of interactions [8] with respect to speed of convergence. Then,
we use the equivalence property to extend it to gossip protocols. This enables us
to conclude that the random peer sampling service [21] is optimal for the speed of
convergence of gossip protocols. This is a clear illustration of how the correlation
can be exploited. For space reasons, this last point is not developed in the paper.
Details are available in [8].

2 Population vs. Gossip Protocols

2.1 Background on Population Protocols

In this section, we briefly present the basic population protocol model and the commu-
nity protocol variant, which relaxes the assumption on the anonymity of agents.

Basic population protocol The basic population protocol model, initially introduced
in [1], is composed of a collection of agents, interacting pairwise in an order determined
by a fair scheduler. Each agent has an input value and is represented by a finite state
machine. This agent can only update its state through an interaction. Updates are defined
by a transition function that describes the function f computed by the system. At each
interaction, the agents compute an output value from their current state and converge
eventually to the correct output value, depending to the inputs initially spread to the
agents.

More formally, a population protocol is composed of:
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– a complete interaction graph Λ linking a set of n ≥ 2 agents;
– a finite input alphabet Σ;
– a finite output alphabet Y ;
– a finite set of possible agent’s states Q;
– an input function ι : Σ → Q mapping inputs to states;
– an output function ω : Q → Y mapping states to outputs;
– a transition relation δ : Q×Q→ Q×Q on pairs of states.

In the following, we call (p, q) �→ (p′, q′) or (p, q, p′, q′) a transition if (p, q, p′, q′) ∈ δ.
A transition can occur between two agents’ states only if these two agents have an
interaction. The protocol is deterministic if δ is a function (i.e. at most one possible
transition for each pair in Q2).

A configuration of the system corresponds to an unordered multiset containing states
of all agents. We denote C → C′ the fact that a configuration C′ can be obtained from
C in one step (i.e. with only one transition for one existing interaction). An execution of
the protocol is a finite or infinite sequence of population configurations C0, C1, C2, . . .
such that ∀i, Ci → Ci+1.

As introduced above, the order of the interactions is unpredictable, and decided by
the scheduler. The scheduler is assumed to be fair, i.e a feasible configuration cannot
be endlessly ignored. In other words, if a configuration C appears an infinite number of
times during an execution, and there exists a step C → C′, then C′ must also appear an
infinite number of times in the execution. This ensures that any attainable configuration
is eventually reached.

Community protocols. Many variants of the last model exist. In this paper, we focus on
the community protocol [17] extension, which significantly increases the computational
power. This model augments the basic population protocol model by assigning unique
identifiers to agents. All possible identifiers and a special symbol ⊥ are grouped in an
infinite set U . The difference between basic population protocols and community pro-
tocols is the definition of the set of states: Q = B×Ud where B is the initial definition
of the population protocol’s set of states collapsed to a memory of d identifiers. As in
population protocols, algorithms cannot use any bound on the number of agents and
moreover, U is infinite. In order to maintain the population protocol spirit in this ex-
tended model, some constraints are added: only existing agent identifiers can be stored
in the d slots intended for identifiers of an agent’s state and no other structural informa-
tion about identifiers can be used by algorithms. We consider, for q ∈ Q and id ∈ U ,
that id ∈ q means that q stores id in one of its d indentifier slots. Thus, community
protocols have to verify the two following formal constraints:

– ∀(q1, q2) �→ (q′1, q
′
2) ∈ δ, id ∈ q′1 ∨ id ∈ q′2 ⇒ id ∈ q1 ∨ id ∈ q2

– For q = 〈b, u1, u2, . . . , ud〉 ∈ Q, let π̂(q) = 〈b, π(u1), π(u2), . . . , π(ud)〉 where π
a permutation of U with π(⊥) = ⊥. We assume that: ∀(q1, q2) �→ (q′1, q′2) ∈ δ :
(π̂(q1), π̂(q2)) �→ (π̂(q′1), π̂(q′2)) ∈ δ.

In short, the first assumption ensures that no transition introduce new identifiers and
the second one that identifiers can only be stored or compared for equality, but not
manipulated in any other way. Any population protocol can be viewed as a community
protocol with d = 0.



76 M. Bertier, Y. Busnel, and A.-M. Kermarrec

Finally, a population or community protocol stably computes a function f : Σ+ →
Y if ∀n ∈ N, ∀σ ∈ Σn, every fair execution with n agents initialized with the elements
of σ, eventually stabilizes to output f(σ). That means that the output value of every
agent eventually stabilizes to f(σ).

2.2 Gossip Protocols: A Practical Framework

Originally introduced for information dissemination, gossip protocols are simple, ro-
bust and scalable. Initially, epidemic-based algorithms have been proposed for database
maintenance in [11]. Since then, they have been applied in many settings in wired and
wireless systems as in [7,13,14,15,18,26,27,28].

A generic framework has been proposed in [21] to provide a generic substrate for
gossip peer sampling protocols, providing a common ground for membership systems.
In this paper, the authors explore the resulting topologies and show that the parame-
ters of the generic gossip protocols can be set to achieve random-like graph topologies
i.e. providing each node with a random sample of the network. This has been achieved
through extensive experimentations and has been recognized as a way to achieve ran-
dom peer sampling in large-scale dynamic networks.

In this framework, each peer maintains a local view of size c of the system, repre-
senting its restricted knowledge of the systems. The peer sampling service provides a
sample from that view. This framework relies on three basic functions:

SelectPeer() returns a peer from the local view. This function is used to select the
gossip target;

DataExchange() returns the data to be exchanged over a gossip communication;

DataProcessing() returns the resulting state and specifies the way the data exchanged
are processed.

Each peer runs an active and a passive threads (see Algorithm 1). The active thread
is run periodically and launches a gossip interaction. A gossip target is selected from
its local view using (SelectPeer()), data is exchanged (DataExchange()) and processed
between the two interacting peers (DataProcessing()). Concurrently, in a passive thread,
the selected node, after reception, sends its own information and also processes the
received information.

Algorithm 1. Generic Gossip Protocol
Active thread
Do once for each T time units at a random
time
begin

p = SelectPeer()
Send DataExchange(state) to p
Receive infop from p
state = DataProcessing(infop)

end

Passive thread
Do forever
begin

Receive infoq from q
Send DataExchange(state) to q
state = DataProcessing(infoq)

end
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Initially proposed in the context of protocols achieving unstructured topologies, it
turns out that this very substrate is generic enough to be used for many other
purposes [24]. For example, message dissemination [23,13] can be achieved by pa-
rameterizing the protocol as follows. (i) SelectPeer() should return a random peer; (ii)
DataExchange() should contain the message to disseminate; and (iii) DataProcess-
ing() should do nothing. Likewise, distributed computations (average, sum or quan-
tile) [20,22], gossip size estimation [12,25] or overlay construction [18,28] can be
achieved using the same protocol. This substrate provides a general framework for prac-
tical implementations of gossip protocols. Yet, to the best of our knowledge, there is no
theoretical counterpart (in the sense of a framework).

3 A Classification of Gossip Protocols

3.1 On the Power of the Peer Sampling Service

In this section, we propose a novel classification of gossip protocols stemming from the
observation that, although studied independently by two different communities, popu-
lation and gossip protocols have a lot in common. Both class of protocols rely on the
following properties:

– a fully decentralized model;
– a set of agents, having a finite storage capacity, periodically interacting in a pairwise

manner. The agents are mobile and communicate in a wireless manner in population
protocols; they are static and communicate through a dynamic network on a fixed
infrastructure in gossip protocols;

– an unpredictable order of interactions orchestrated by a fair scheduler in population
protocols modelling the agents’ mobility patterns and by a peer sampling service
serving the selectPeer() function in gossip protocols;

– a function specifying the way data is processed over an interaction: this is the tran-
sition function δ in population protocols and the DataProcessing function in gossip
protocols;

– a state exchange over an interaction: this is the state value in Q in population pro-
tocols and the DataExchanged function in gossip protocols.

Considering the gossip protocols in this light, we were able to make a parallel between
(i) the difference between the basic population and community protocols and (ii) the
requirements for peer identifiers in gossip protocols.

More specifically, gossip protocols differ from their requirement with respect to peer
anonymity. This is instantiated by the nature of the underlying peer sampling protocol.
The peer sampling service, i.e. the “black box” providing a peer with a given sample
of the network, may either return any sample for the implementation of the gossip pro-
tocol. Therefore, we introduce the following classification. Two main classes of gossip
protocols can then be defined depending on the power of the underlying peer sampling
service with respect to anonymity requirements.
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AGP: Anonymous Gossip protocols do not require being aware of the identities of any
peer for any of the three functions of the generic protocol. This is typically the case
of protocols achieving some simple distributed computations such as average computa-
tion [20,22] or system size estimations [19,25]. Gossip dissemination protocols where
each peer gossips to k nodes picked uniformly at random also fall into this category.
Such protocols only rely on a peer sampling service providing them with a sample of
the network, be it random or biased [7,23].

NGP: Non-anonymous Gossip Protocols are not oblivious to the identities of peers
they are communicating with or any other. Typically, gossip overlay construction pro-
tocols fall into this class. The identities of peers are required in the three functions
of the substrate aforementioned. Non-anonymous gossip protocols have been used to
implement overlays ranging from unstructured networks, providing random-graph like
topologies [21] to structured networks [18,23].

3.2 Between Synchronous and Asynchronous

To refine the classification, we take into account the two main models of communica-
tion channels. In a synchronous model, message delay, clock drift and time required to
execute an algorithm step are bounded and these bounds are known. On the contrary,
in an asynchronous model, there is no bound. Gossip protocols have a periodic behav-
ior, in which at each step, every agent launches an exchange with another agent. In a
synchronous system, the gossip keeps its periodic behavior, and so every agent is in the
same communication round. In an asynchronous system, the clock drift and the fact that
a time required by a gossip exchange cannot be bound infers that the periodic behavior
is lost.

3.3 On the Computational Power of Gossip Protocols

Enriching our model with the communication synchronism property, we obtain a refined
classification as the one presented earlier. We now classify gossip protocols in four
classes:

syncAGP Synchronous Communication and Anonymous Nodes;
asyncAGP Asynchronous Communication and Anonymous Nodes;
syncNGP Synchronous Communication and Non-anonymous Nodes;

asyncNGP Asynchronous Communication and Non-anonymous Nodes.

Obviously, the power of non-anonymous gossip protocols is greater than anonymous
ones as the use of node identifier enables to achieve distributed computations which
are impossible in the anonymous context (eg. exponential computation, logical overlay
construction, etc.). Thus, we have:

asyncAGP ≺ asyncNGP and syncAGP ≺ syncNGP

As far as anonymous gossip protocols are concerned, it is possible to leverage the pe-
riodicity of exchange in order to increase their computational power. For instance, it is
possible in syncAGP to establish a global time clock, thanks to the cycle structure, but
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Fig. 1. Relationship between gossip-based and population protocols

not in asyncAGP (due to the unbounded message delay). Then, it is obvious to conclude
that:

asyncAGP ≺ syncAGP

Finally, in the NGP context, we raise in Remark 1 that the identification of nodes enables
to emulate synchronous communications, such that:

asyncNGP ∼= syncNGP

This classification and the relation between all the considered models are summarized
in Figure 1. This provides a refined classification of gossip protocols based on the syn-
chronism and anonymity properties. Yet, there is no formal framework to define what
can and cannot be achieved with the susmentioned protocols. Establishing the parallel
between population and gossip protocols provides a first answer to that question.

4 Bridging the Gap between Population and Gossip Protocols

In a nutshell, in AGP, a peer sampling service provides each peer with another peer to
communicate with, regardless of its identifier. If the peer sampling service ensures that
any pairwise interaction can endlessly take place, then a protocol of AGP resembles
a basic population protocol. Inversely, a protocol from NGP requires a peer sampling
service to provide each node with a set of clearly identified peers, potentially along
with more information about each peer, where the identifier (whether it is an identifier
or an IP address) is crucial. This means that the SelectPeer or the DataProcessing use
the identifier or information attached to specific peer to achieve a given functionality.
This clearly matches the community protocol model described above. We claim that
these resemblances are actually equivalences and provide the proofs in this section as
illustrated on Figure 1.

4.1 Equivalence between Basic Population and Anonymous Asynchronous
Gossip Protocols

In this section, we prove that the basic population and anonymous asynchronous gossip
protocols (asyncAGP) are equivalent.
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Theorem 1. A predicate is computable by a basic population protocol if and only if it
can be computed by an anonymous gossip protocol via an asynchronous communication
model (asyncAGP).

Proof. In order to prove the equivalence, we consider the functions computable by ba-
sic population protocols and asyncAGP. Then, we prove in Lemmas 1 and 2 that they
belong to the same equivalence class. In fact, we prove below that the class of func-
tions computable by a basic population protocol is a subset of the ones computable by
asyncAGP, and vice-versa. ��
On one hand, consider that PP ≺ asyncAGP with the following lemma.

Lemma 1. If f is computable by a basic population protocol, then there exists a pro-
tocol from asyncAGP which can compute f .

Proof. Let P the basic population protocol computing f and defined by the 7-tuples
(Λ, Σ, Y, Q, ι, ω, δ). Consider the anonymous gossip protocol G described below. We
have to show that G simulates P .

Similarities: Each agent in Λ is hosted by a specific peer of G. Input, output and state
sets are the same in G than in P . A fortiori, both map function ι and ω remain identical
in G.

Dealing with the transition function: The G’s DataProcessing function is defined
from δ: consider two peers in the system l and r, gossiping with each other at a time
t. Let assume that l initiates the gossip exchange with r. Let pl (respectively pr) the
selected information obtained by DataExchange from l’s state (respectively r’s state).
Thus, as l calls the function during its active thread, DataProcessing returns locally
the third entry of the 4-tuple (pl, pr, p

′
l, p

′
r) ∈ δ, and the state of l becomes p′l. On the

remote peer r, a call to the function DataProcessing during its passive thread returns
the last entry of the same 4-tuple (pl, pr, p

′
l, p

′
r).

Thus, the sequence of population configurations is valid and represents the basic
population protocol P , as it only stems from the transition function δ using pairwise
interactions.

On the fairness assumption: The last assumption to verify is the fairness condition.
In asyncAGP, the scheduler is fully defined by the order of gossip exchanges, itself
defined by (i) the selectPeer function; (ii) the randomization of the gossip time and;
(iii) the asynchronous environment which, as we mentioned before, potentially leads to
gossip exchange losses. In that context, every possible finite scheduling has a non-null
probability to happen. Thus, every possible transaction between two system configu-
rations C → C′ has a non-null probability to happen. Moreover, if the asynchronism
acts against this condition, given a specific interaction, which is avoided for a while,
the probability that it continues to be avoided tends to zero. So, if the configuration C
appears an infinite number of times during an execution of P in the aforementioned
context, then C′ also appears an infinite number of times in this execution. The fairness
assumption is then verified.

Then, G simulates the basic population protocol P , which computes the function
f . Thus, for any function computable by basic population protocols, there exists an
anonymous gossip protocol, which stably computes this function. ��
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On the other hand, let’s show the inverse of Lemma 1, corresponding to the second
implication of Theorem 1: asyncAGP ≺ PP.

Lemma 2. If f is computable by a protocol from asyncAGP, then there exists a basic
population protocol which can compute f .

Proof. Let G an anonymous gossip protocol that computes a specific function f us-
ing the primitive DataExchange and DataProcessing. As presented above, in a gossip
protocol, peers are modeled by a finite-state machine.

Mapping the domain of the transition function: The domain of DataProcessing is
finite (and corresponds to the Cartesian product of DS , the set of peer states, with DE ,
the range of DataExchange). Moreover, as DataProcessing is a function, its range is
also finite by definition. Based on these sets, we define DG a specific subset of the
Cartesian product between the domain and the codomain of DataProcessing (i.e. DG
contains each ordered pair such that the first entry is in the domain of DataProcessing
and the second entry is the mapped element of this first entry by DataProcessing).
More formally,DG ⊆ (DS×DE)×DS . Thus,DG is finite and contains all the possible
transitions of peer states, based on the knowledge of a remote peer sub-state.

Design of the basic population protocol for the purpose of simulation: Consider the
following basic population protocol P , represented by the 7-uplet (Λ, Σ, Y, Q, ι, ω, δ).
Consider a complete interaction graph Λ. Let the set of agent states be identical to the
set of peer states, i.e. Q = DS . Consider that Σ and Y are the same as the input and
output sets of G, if they exist. In this case, ι and ω are the same functions than the ones
which respectively associate the input set of G to DS , and DS to the output set of G.
Conversely, if no specific input and output sets are defined in G, then Σ = Y = DS

and ι ≡ ω corresponding to the identity function. Finally, the transition function δ is
defined as follows.

∀(sl, sr, s
′
l) ∈ DG , ∃(sr, sl, s

′
r) ∈ DG such that (sl, sr, s

′
l, s

′
r) ∈ δ.

On the periodicity of the fair scheduler: Periodicity of exchange is an inherent char-
acteristic of many gossip protocols. However, the only difference between
asyncAGP and syncAGP is that asyncAGP potentially temporary jeopardize the period-
icity of exchanges, in case of arbitrary long transmission delays. Thus, as presented in
Lemma 1, no periodic assumption can be considered in an asynchronous environment.
Therefore, a fair scheduler is sufficient to lead to a correct execution of G, using the
aforementioned P .

Thus, there exists a basic population protocol P , which simulates the considered
asyncAGP G and computes the function f . Then, for any function computable by a pro-
tocol from asyncAGP, there exists a basic population protocol, which stably computes
this function. ��

4.2 Equivalence between Community Protocols and NGP

Along the same lines, we prove here the following theorem in order to prove the equiva-
lence between community and NGP protocols. In fact, we show in the proof of Lemma 4



82 M. Bertier, Y. Busnel, and A.-M. Kermarrec

that it is possible to simulate the periodicity of protocols from syncNGP using a proto-
col from asyncNGP (these two classes are then equivalent).

Theorem 2. A predicate is computable by a community protocol if and only if it can be
computed by a non-anonymous gossip protocol (NGP).

Proof. As Theorem 1, the proof of Theorem 2 is directly infered from the statements of
Lemmas 3 and 4, which show respectively both implications of this equivalence. ��

Consider the first implication of this theorem. Inspired from the equivalence between
basic population protocols and asyncAGP, the following theorem is almost trivial.

Lemma 3. For each f computable by a community protocol, there exists a NGP proto-
col which compute f .

Proof. The only difference between a basic population protocol and a community pro-
tocol consists in the definition of the set of states (i.e. Q = B × Ud) and the two
constraints on the state’s identifier part (i.e. the part belonging to Ud cannot be used
freely). Then, due to Lemma 1 and its sketch of proof, the protocol from NGP has
to be designed to simulate a given community protocol C. Then, we can still consider
the function selectPeer as a black box which provides a fair scheduler. In other hand,
functions DataExchange and DataProcessing are defined respectively on the domain
DS = B × Ud (instead of B in the anonymous gossip version) and DS ×DE .

This does not violate the definition of NGP as the additional information used here
only depends on the presence of unique identifier on agents, which is a mandatory
assumption in non anonymous gossip protocols. ��

Finally, let now show the opposite of Lemma 3, corresponding to the second part of
Theorem 2.

Lemma 4. For each f computable by a NGP protocol, there exists a community proto-
col which computes f .

Proof. Let G the given protocol from NGP. Thus, each peer in the system is aware of
its unique identifier. Consider the following community protocol C.

Preliminary assumptions on C: We assume that, in the community protocol used on C,
agents are uniquely identified, and a unique agent is assigned a specific identifier idL.
This agent is considered as the leader by all other agents. In this specific community
protocol, we assume that this leader is aware of the size of the system1 (denoted n in
the sequel). In other words, the view of a peer is modeled as the set of d− 1 identifiers
in the community protocol model (one space of the d-tuple in Ud is set aside for storing
its own identifier).

Summary of agent state requirement: In addition of the gossip peer state in DS , each
agent maintains:

1 This assumption is only expected for the synchronisation barrier. It can be relaxed using the
probabilistic clock phase mechanism proposed for population protocols in [2].



On Gossip and Populations 83

– a binary variable gcparity to memorize the current gossip cycle parity;
– a ternary variable gcprogress storing the gossip state of an agent at the corresponding

cycle. gcprogress can only take one of the three following values: (i) todo if the active
thread has not been run yet during the current gossip cycle, (ii) done if it has been
run or (iii) wait representing the inter-cycle state, as explained below (i.e. the agent
waits to pass across the synchronization barrier);

– an agent’s identifier variable idnext, which stores the identifier of the next agent to
gossip with;

– the leader agent L maintains a counter gccount used in the synchronization cycle
process.

To make a long story short, the set of agent states is defined as
Q = DS × {true, false} × {todo, done, wait} × U × [1; n]× Ud

i.e. the Cartesian product between (i) the domain of the function DataProcessing (to
represent the gossip peer state), (ii) the domain of gcparity, (iii) the domain of gcprogress,
(iv) the identifier set U for idnext, (v) the domain of gccount and finally (vi) Ud for the
view of the agent. At initialization, each agent sets gcparity to false, gcprogress to todo
and idnext to idL. Moreover, gccount is set to 0 for the leader agent L.

Simulating a gossip cycle in C: We now describe the behavior of an agent during a
gossip cycle, according to its gcprogress value. In the case that gcprogress = todo, the cor-
responding agent has not run its active thread in a given gossip round. Then, it waits
to meet its next gossip partner, corresponding to the identifier stored in idnext. For each
interaction (id1, id2), the agent corresponding to id1 verifies if gcprogress = todo. If this
is the case, it checks if id2 = idnext. Only in that case, id1 and id2 run respectively Dat-
aProcessing(q1,DataExchange(q2)) and DataProcessing(q2,DataExchange(q1))
(where q1 and q2 represents respectively the state of these agents). All the possible
transitions are included in DG introduced in the proof of Theorem 2. At the end of this
interaction, id1 and id2 have updated their own state according to the previous one (qi)
and the remote one (DataExchange(qj)). Finally, id1 sets gcprogress to done. In other
words, each agent waits until it encounters the agent with the identifier stored in idnext

to gossip with.

How to simulate the T periodicity: In order to simulate the cycle in the context of
community protocol, the T time slot can be simulated through a synchronization barrier.
In the rest of this proof, we present how to establish such a barrier and how to assign
agents to gossip cycles. So, we introduce the behavior of agents in case that gcprogress �=
todo.

Consider an agent id. After its own active gossip, the gossip state of id becomes
done. In this state, it only waits until it encounters the agent idL. During its next in-
teraction with idL, id sets its gcprogress to wait and idL increments gccount by 1. Thus,
all agents eventually stabilize to the wait state, and gccount eventually converges to n
(the number of agents in the population). At this point, all agents have reached the
synchronization barrier.

After the barrier, idL enables all agents to begin the next gossip cycle as described
hereinafter. idL switches its own gcparity to its opposite value, gcprogress to the todo value,
idnext to the returned value of selectPeer and finally gccount to 0. At this point, each
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time an agent in the wait state interacts with an agent owning the opposite value of
gcparity, will fall into the next cycle by switching gcparity, and setting gcprogress and idnext

respectively to the todo value and the returned value of selectPeer. Then, all agents
eventually leave the wait state of the last cycle, and are ready for their next gossip
exchange.

In conclusion, if G computes the function f , then the community protocol C simu-
lates the behavior of G and also computes the function f . ��

Remark 1. Both classes of non-anonymous gossip protocol are equivalent.

Proof. The last step of the latter proof lets us show that a protocol from NGP in an asyn-
chronous environment is able to simulate a syncNGP. It is obvious that asyncNGP ≺
syncNGP (for the same reason that in AGP – cf. Section 3.3). Thus, we can conclude
that asyncNGP ∼= syncNGP, and consequently, that community protocols are equiva-
lent to all protocols from NGP (asyncNGP ∪ syncNGP). ��

We then have proved all the claims presented in Figure 1.

4.3 Leveraging the Relations

The equivalences above are of the utmost importance in the area of gossip proto-
cols. They clearly define what can be computed with an anonymous gossip protocol.
They show that the functions of the Presburger arithmetic eventually converge using
an anonymous gossip protocol. They also prove that no other function can be computed
with such a protocol [1,3]. This is a new and important result in the area of gossip proto-
cols. On the other hand, the empirical results on the convergence times and practicality
of the gossip protocols can be used to evaluate the efficiency of population protocols [9].

Likewise, gossip protocols relying on a peer sampling service providing peers, with
a bounded set of identifiers, are equivalent to community protocols. This can be used
to achieve any computation of symmetric function from NSPACE(n log n) (namely
a high number of functions) and also to implement algorithms tolerating failures (and
not only benign ones).

These results can be leveraged for existing results as well as results to come in both
areas. Due to space constraint, we cannot develop these observations in this paper, but
in [9], we illustrate this claim by considering a gossip protocol and considering it from
the population protocol standpoint and the other way around.

5 Conclusion and Future Works

The main contribution of this paper is to establish a correlation between population
and gossip protocols. This parallel between two worlds, explored so far independently,
offers several extremely interesting outcomes. First it enables to provide a first clas-
sification of gossip protocols, a theoretical framework for such protocols, allowing to
specify in a formal way what can and cannot be computed by a gossip protocol depend-
ing on the nature of the underlying peer sampling service. If a gossip protocol relies on
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a peer sampling service oblivious to identifiers, it is equivalent to a population proto-
col. If the peer sampling service is identifier-aware, a gossip protocol is equivalent to
a community protocol. For example, it is now clear that the multiplication, which does
not belong to the Presburger arithmetic, cannot be achieved by an anonymous gossip
protocol.

Conversely, this equivalence enables to leverage the properties obtained empirically
on gossip protocols with respect to scalability, practicality and speed of convergence
and apply them to population protocols. Apart from exploiting the already known re-
sults, this opens the door to leverage any new result in one of these two areas as our
case studies demonstrate [9].ssip-based computations.

Part of the future work is to explore further the classes of population protocol to re-
fine our classification of gossip protocols. Quantifying formally the convergence times
of such protocols also remains an open issue.
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Abstract. We consider the problem of finding a minimalistic configu-
ration of sensors that enable a simple robot inside an initially unknown
polygon P on n vertices to reconstruct the visibility graph of P . The
robot can sense features of its environment through its sensors, and it is
allowed to move from vertex to vertex.

We aim at understanding which sensorial capabilities are sufficient
for the reconstruction of the visibility graph of P . We are able to show
that the combinatorial visibilities at every vertex do not contain enough
information even when combined with the knowledge of the exact interior
angle at each vertex. Using sensors that can put distant vertices into a
spatial relation on the other hand can in some cases enable our robot
to reconstruct the visibility graph of P . We show that this is true for a
sensor that can distinguish whether the angle between two vertices the
robot sees is convex or reflex, as long as the robot is capable of identifying
the vertex it last visited. We also show that measuring angles exactly is
enough, if the robot has a compass.

1 Introduction

We aim at finding minimalistic motor and sensory capabilities that enable simple
robots to explore an unknown environment. The exploration of environments is
an important robotic task [8]. Recently, it has also been studied in the context of
simple robots giving rise to different modelling approaches [4,10,11]. We model
robots as points in an initially unknown polygonal environment P whose number
of vertices n is assumed to be known. We allow a robot to collect sensory input
while it is located at a vertex, and to move from its current vertex to any vertex
that it sees. In the spirit of keeping robots simple, our robots in particular can-
not sense while they move. Our basic sensing capability allows each robot to see
all vertices that are visible from its current position, in counter-clockwise (ccw)
order, where a vertex is said to be visible by a robot sitting on another vertex
if the line segment connecting both vertices lies entirely in P . Vertices have no
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Foundation under grants CNS-0626954 and CCF-0514738.
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characteristics that identify them globally; they can be distinguished only in a
local sense by the relative position in ccw order when looking from some other
vertex. For a variety of configurations of additional sensory capabilities, we an-
alyze whether a robot is capable to infer the visibility graph of P . Recall that
the visibility graph consists of a vertex for each polygon vertex, with an edge
between two vertices if the polygon vertices are mutually visible. The charac-
terization of visibility graphs and their reconstruction from polygon geometry
have been studied extensively [5]. We are interested in the problem of deciding
whether a given set of sensory and motor capabilities is powerful enough to allow
a robot to reconstruct the visibility graph of its polygonal environment without
any prior knowledge of the polygon’s geometry.

An earlier study [10] assumes that robots have no notion of and no way of
measuring coordinates, distances or angles. Instead, these robots are limited
to distinguish whether any two visible vertices are neighbors on the polygon
boundary. This concept is usually referred to as combinatorial visibility and will
be defined more formally below. In a convex polygon, for instance, a robot at any
of the vertices sees all other vertices and sees that any two consecutive vertices
in cyclic order are neighbors (this is obviously not true in any other polygon).
There was hope that the knowledge of all combinatorial visibilities might be
enough for a robot to derive the visibility graph of P . In this paper, we show
that this knowledge alone is in fact not sufficient. In fact our result implies that
a robot that senses combinatorial visibilities cannot reconstruct the visibility
graph, if it only moves along the boundary. The question whether the robot is
capable of reconstructing the visibility graph, if allowed to move to any vertex
it sees remains open.

For certain robotic tasks, such as the rendezvous of two robots in an unknown
polygon, a visibility graph might not be needed, for instance if the simple poly-
gon looks non-periodic to the robot(s). For periodic-looking polygons, there was
hope that the vertices seen from a given vertex and those seen from a "peri-
odic partner" of the given vertex (details follow in Section 3) would themselves
be periodic partners; this property would have allowed a variety of tasks to be
solved. We show that this, unfortunately, is not the case.

The question arises what kind of minimal information a robot needs to make
the derivation of the visibility graph possible. We show that adding the knowl-
edge of all the inner polygon angles to the knowledge of combinatorial visibilities
is still not enough. Instead, we equip the robot with sensors that are able to put
the vertices a robot sees into a certain spatial relation only. One example of
such a sensor distinguishes whether the angle between any pair of vertices the
robot sees is convex or reflex. We show that if we add the ability of the robot to
know were it came from when moving from vertex to vertex, this simple sensor
is already sufficient. We also show that sensing exact angles is sufficient as long
as we add a compass that provides a global reference direction.

Related Work. The capabilities of robots and strategies for different robotic tasks
have been studied in a broad variety of settings [8]. Our setting of simple robots
in a polygonal environment was first introduced in [10].
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While we focus on mapping unknown environments, other robotic tasks have
been studied using simple robots. One example is the gathering problem in
the plane with multiple robots [3]. Examples in polygonal environments include
localisation problems [7] and the construction of competitive watchman tours
[6]. In contrast to our approach, the models used mostly allow robots to sense
continuously while moving.

There have also been other results in the field of mapping unknown environ-
ments, again many focus on robots that perceive their surroundings continu-
ously [9]. Mostly the aim is not to reconstruct combinatorial properties of the
surroundings, but rather the exact geometrical layout. More strongly related to
our setting is the mapping of graphs [1,2], where robots have discrete motion
and sensing capabilities similar to our model. But while this problem is more
general than the task of reconstructing the visibility graph, it was shown to be
unsolvable for general environments without the ability to mark visited vertices.

2 Notation

In this work we consider simple polygons only. We denote the n vertices of a (sim-
ple) polygon P by V ={v0, v1, · · · , vn−1}, ordered along the boundary in counter-
clockwise (ccw) order. The polygon has a set of n edges E = {e0, e1, . . . , en−1},
where ei = (vi, vi+1), i = 0, . . . , n− 1. Note that from now on all primitive oper-
ations on vertex and edge indices are modulo n. In addition we assume general
position, i.e. no three vertices are allowed to lie on a line.

Definition 1. Two vertices vi, vj ∈ V form a visible pair in P, if the line
segment vivj lies entirely within P (in particular, vi forms a visible pair with
itself for any i). We say vi and vj see each other and write vi ↔P vj. We drop
the index P and simply write ’↔’, if the corresponding polygon P is clear from
the context. We say a robot at vertex u sees vertex vi, if u↔ vi.

Definition 2. We define view(vi) of vertex vi in P, the view of vertex vi, to be
the set of vertices that vi sees in P. Formally,

view(vi) := {vj ∈ V | vi ↔ vj} .

We write viewj(vi) to denote the j-th vertex, j ≥ 0, that vi sees in ccw order,
starting at vi itself, both view0(vi) and view|view(vi)|(vi) denoting vi. The view
of a robot at vertex vr is the view of vr and we simply write view if the corre-
sponding robot and its position are clear from the context. Similarly, we write
viewi to denote viewi(vr).

When presenting algorithms for a robot we make use of a specific operation:
The operation ’move to i’ moves the robot to the vertex viewi. If the robot is
equipped with the corresponding sensor, it may also support the operation ’look
back’ in which the robot determines the index b such that viewb is the vertex
it came from during the previous move to operation. For other sensors we do
not define operations explicitly, but rather let the robot access the measured
information directly.
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In the next section we introduce “combinatorial visibility” which allows robots
to sense for every pair of vertices of the polygon P in its view, whether those
vertices are neighbors on the boundary of P . We show that the knowledge of all
combinatorial visibilities is not sufficient for the reconstruction of the visibility
graph of P , even when combined with the knowledge of the exact interior polygon
angle at every vertex.

In Section 4 we focus on sensors that can put distant vertices into spatial
relation. One such sensor is able to measure the exact angle between the lines
connecting the position of the robot with any two vertices in sight. Even when
the angle measurement is not precise and the sensor can only distinguish between
convex and reflex angles, we show that the visibility graph can be inferred, if we
allow the robot to look back. In addition, we show that measuring exact angles is
enough, if we give the robot a compass that provides a global reference direction.

3 Combinatorial Sensors

The combinatorial visibility of a vertex vi is given by a binary vector who’s j-th
element encodes whether the j-th visible vertex and the (j +1)-th visible vertex
form an edge of P or not; we call this a combinatorial visibility vector cvv(vi).
The following definitions capture this more formally. Consult Fig. 1 along with
the definitions.

Definition 3. The combinatorial visibility vector cvv(vi) ∈ {0, 1}|view(vi)| of
vertex vi ∈ V is a binary vector with the j-th element, j ≥ 0, given by

cvvj(vi) =
{

1, if (viewj(vi) , viewj+1(vi)) ∈ E,
0, else.

Note that view1(vi) = vi+1 and view|view(vi)|−1(vi) = vi−1 as every vertex
sees its neighboring vertices on the polygon boundary. Therefore cvv0(vi) =
cvv|view(vi)|−1(vi) = 1 for all vi ∈ V .

Definition 4. The combinatorial visibility sequence cvs of P lists all combina-
torial visibility vectors of the individual vertices of P in ccw order:

cvs := (cvv(v0) , . . . , cvv(vn−1)) .

Fig. 1. Illustration of a combinatorial visibility vector
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Fig. 2. Two polygons PA and PB with identical cvs and different visibility

The following result implies that a robot constrained to moving along the bound-
ary of the polygon and to sensing combinatorial visibilities can in general not
reconstruct the visibility graph of a polygon.

Theorem 1. The cvs of a polygon P does not uniquely define its visibility graph.

Proof. In Fig. 2 we present two polygons PA and PB which share the same cvs,
yet have different visibility graphs. The proof is by inspection of the polygons
together with the list of cvv’s and view sequences of the relevant vertices in Fig. 3.
Note that our construction is not in general position, however the polygons can
easily be modified accordingly without changing visibilities or cvv’s.

The idea behind the construction of the polygons is to use multiple copies of
a “pocket” of vertices (cf. Fig. 2 for an illustration). Each pocket forms a convex
curve, but the vertices connecting the pockets form reflex angles, resulting in a

vertex cvv view sequence
a
ã

1111101111011111
abcdeadeabcabcde

ãb̃c̃d̃ẽãc̃d̃ẽãb̃ãb̃c̃d̃ẽ
b

b̃
11110111101

bcdeadeabca

b̃c̃d̃ẽãc̃d̃ẽãb̃ã

c
c̃

11101111011
cdeadeabcab

c̃d̃ẽãc̃d̃ẽãb̃ãb̃
d

d̃
11011110111

deadeabcabc

d̃ẽãc̃d̃ẽãb̃ãb̃c̃

e
ẽ

10111101111
eadeabcabcd

ẽãc̃d̃ẽãb̃ãb̃c̃d̃

Fig. 3. The cvv and view sequence of every vertex within a pocket of PA and PB,
where a, b, c, d, e each refer to all four vertices at the corresponding position within
their pocket in PA and ã, b̃, c̃, d̃, ẽ refer to their counterparts in PB
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non-convex polygon P . The vertices inside a pocket thus do not see all vertices
of P , they see (apart from their own pocket) only parts of exactly two pockets.
We use the fact that the vertices have no way to distinguish what pockets they
are “looking into” and we modify the polygon PA by shifting the vertex c (cf.
Fig. 2) so that in PB the shifted vertex c̃ looks into different pockets, while not
changing the cvv of any vertex. ��
The polygons PA and PB have twenty vertices each, however we were also able
to construct similar polygons for n = 12. We were able to show that no examples
exist for n ≤ 10. We do not expect there to be examples with n < 12, we have
however not been able to prove this. We did not present the polygons with twelve
vertices as their construction is more involved.

The following theorem considers a related question about polygons with pe-
riodical cvs. We start by defining periodicity formally:

Definition 5. We say that a cvs C = (C0, C1, . . . , Cn−1) with Ci = cvv(vi) is
periodical with period p ≥ 2, if Ci = Ci+k· n

p
for all 0 ≤ i < n and all 1 ≤ k < p.

For each 0 ≤ i < n we say {vi+k·n
p
|0 ≤ k < p} are periodical partners.

The question is whether two vertices visible from periodical partners at the
same local position in a polygon with periodical cvs have to be periodical part-
ners themselves. A positive answer to this question would have an impact on
various interesting problems in the field of simple robots; for example, on a weak
version of the rendezvous problem in symmetrical polygons in which two identi-
cal, deterministic robots try to gain sight of each other. We show that it is not
the case; we even show a stronger result.

Theorem 2. There is a polygon P with a periodical cvs of period p ≥ 2 for
which we have

∃vi ∈ V ∃j ∈ {1, . . . , |view(vi)| − 1} : cvv(viewj(vi)) �= cvv
(
viewj

(
vi+ n

p

))
.

Proof. We construct a polygon P with period p = 2 with the aforementioned
property from the two polygons PA and PB in Fig. 2. The construction can
easily be generalized to p > 2.

The idea of the construction is to “glue” PA and PB together at vertices v
and ṽ of PA and PB, respectively, where v and ṽ are as depicted in Fig. 2. We
want to glue the polygons such that every two corresponding vertices w and w̃
of the two polygons form periodical partners in P . Thus, we need to glue the
polygons such that the cvv’s of corresponding vertices w and w̃ are the same. We
can then use the result of Theorem 1 which guarantees the existence of vertices
w and w̃ with the same cvv but different views. Formally, if w from PA is a
vertex vi in P and w̃ from PB is a vertex vi+n/2 in P (where n is the number of
vertices of P), there is a position j in their views such that viewj(vi) = vk and
viewj

(
vi+ n

2

)
= vl �= vk+ n

2
. Because of the structure of the two polygons, we will

have cvv(vk) �= cvv(vl) which proves the theorem.
The problem when gluing at v/ṽ is that these vertices have to be split in the

process, which makes them distinguishable from all other vertices. By inserting
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Fig. 4. Left: The concept of inserting spikes at vertices. Right: Illustration of how the
spikes are inserted at reflex vertices. We chose our modification such that the right
neighbor of the spike tip retains the visibility of the original vertex.

Fig. 5. The two polygons from Fig. 2 equipped with spikes and still with identical cvs.
The areas visible from the different spike-tips are indicated.

spikes (cf. Fig. 4) at all vertices, we can again make vertices indistinguishable
while still maintaining equal cvs’. Spikes can easily be inserted at convex vertices
such that no distant vertex is visible from the spike tip and the spike tip’s
neighbors retain the vision of the original vertex (except for seeing vertices as
gaps and seeing the spike tip). It is however not generally clear how to do that
for reflex vertices, Fig. 4 shows how this can be done with the four reflex vertices
in our case. Fig. 5 shows the spiked versions of PA and PB before gluing. Fig. 6
lists how the cvv’s change with the introduction of spikes.

Once we have spiked versions of PA and PB, we can glue them together in a
straightforward way by simply splitting the spike tip of v and ṽ and attaching
the open ends. It can easily be seen that the gluing does not break the periodicity
of the cvs of P . Fig. 7 shows the resulting polygon P . The extension to p > 2 is
easily made, as we can attach more than two copies of the two spiked polygons
around a common center. ��

Theorem 1 shows that the knowledge of the cvs is not sufficient to reconstruct the
visibility graph of a polygon. A natural question is how to extend this information
“minimally” in order to make the reconstruction possible. In the following we



94 D. Bilò et al.

vertex cvv
a1 1100101010100101010101
a2 101
a3 10101010100010101010010101010111
b1 1110101010001010101001
b2 101
b3 1010101000101010100111
c1 1110101000101010100101
c2 101
c3 1010100010101010010111
d1 1110100010101010010101
d2 101
d3 1010001010101001010111
e1 1110001010101001010101
e2 101
e3 1000101010100101010111

Fig. 6. The combinatorial visibilities of each vertex in a pocket of PA after adding
spikes (the same cvv’s arise for PB). We write v1−3 to denote the group of vertices
v1, v2, v3.

Fig. 7. The polygon with n = 120 that proves Theorem 2
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show that adding the knowledge of all interior angles of the polygon is still not
enough. We prove the following theorem.

Theorem 3. The cvs and all interior angles of a polygon P do not uniquely
determine the visibility graph of P.

Proof. Figure 8 shows a modified version of the polygons PA and PB of Fig. 2. As
one can easily check, the polygons still have the same cvs and different visibility
graphs. In addition, they also have the same set of inner angles at the vertices.
The existence of such polygons proves the theorem. ��

Fig. 8. Two polygons with identical cvs and identical interior angles but different vis-
ibility graphs. The visibilities are similar to those of PA and PB.

Note that Theorems 1 and 3 do not imply that a robot equipped with sensors
for measuring cvv’s and/or inner angles cannot reconstruct the visibility graph,
as such a robot would be able to distinguish PA and PB by moving to a vertex
of the most distant corner and inspecting its cvv. However it seems difficult for
such a robot to reconstruct the visibility graph - to prove that this indeed is not
possible remains open.

4 Geometrical Sensors

In the previous section we saw that the simple combinatorial information we
used is not enough to infer global properties of a polygon P , namely its visibility
graph. We now focus on geometrical sensors for measuring angles between distant
vertices and show two sets of capabilities that enable a robot to reconstruct the
visibility graph. We start by defining the two notions of angle sensors we consider.

Definition 6. Let vr ∈ V be the vertex of polygon P which the robot is located at.
We write angle(i, j) with i < j for the angle between the lines vrviewi and vrviewj

in ccw direction. A sensor capable of determining angle(i, j) for all i, j is called
angle sensor. The type of the angle angle(i, j) (’reflex’ or ’convex’ depending
on whether the angle is larger than π or not) is denoted by angle_type(i, j). A
sensor capable of determining angle_type(i, j) for all i, j is called angle-type
sensor.
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While it is clear that the angle sensor is stronger than the angle-type sensor,
the angle-type sensor has the advantage that it is very robust with respect to
measurement imprecision.

We have preliminary results that suggest that an angle sensor alone suffices
for the reconstruction of the visibility graph. It is however not clear whether the
angle-type sensor alone is sufficient, even when combined with the combinatorial
sensor of Section 3. For a robot equipped with an angle-type sensor that is
allowed to look back (cf. Section 2) however, we are able to prove the following
result:

Theorem 4. A robot with an angle-type sensor and with the ability to look back
can uniquely reconstruct the visibility graph of any polygon P.

Proof. We prove this by presenting an algorithm for the robot to construct the
visibility graph.

The robot moves from vertex to vertex along the boundary of P in ccw order.
At each vertex vi it iteratively identifies all visible vertices. It starts by identifying
the vertices view1, view|view|−1 which trivially have the global index i + 1, i− 1.
Further vertices can be identified as follows:

Let vk be the first visible vertex in ccw order that has not yet been identified
and vj be the previous vertex that is visible, so that j is known to the robot and
it needs to find k. The robot does this by counting all vertices “beyond” vj and
those “beyond” vk. In order to understand the notion of vertices lying beyond
some vertex vb, consider the intersection x of the ray from vi to vb with the
boundary of P . The vertices between (either in ccw order or in clockwise order)
x and vb are said to lie beyond vb. The total number of the vertices beyond vj

and vk (in ccw order and clockwise order, respectively) then simply needs to be
added to j + 1 in order to obtain k (cf. Fig. 9).

It remains to be seen how the robot situated at v counts the number of
vertices beyond another vertex with local index b. The first step is moving to
b. By looking back, the robot can identify v in its new view. Therefore it can
decide which of the now visible vertices form a reflex angle with v and are thus

Fig. 9. Visualization of the procedure for inferring the global index of vk if the previous
vertex vj has already been identified. It is enough to count the number of vertices
beyond vj and vk as those are the ones between vj and vk in ccw order.
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behind the current vertex b when looking from v. All these vertices have to be
counted as well as the number of vertices beyond them (which in turn are not
visible to b). This is done recursively, so that at the end the robot sums up all
vertices that are directly or indirectly behind b. The following listing shows the
procedure for counting the vertices behind b in pseudocode.

function beyond(b,o)
input: local index b, order o that specifies on which side of visionb to count
output: count of vertices beyond visionb w.r.t. the current position of the robot

1. count ← 0

2. move to b

3. i ← look back
4. for each j ∈ [1, . . . , |view| − 1] with (o = ccw ∧ j < i) ∨ (o = cw ∧ j > i) do
5. if type(j, i) = reflex

6. count ← count + 1 + beyond(j, ccw) + beyond(j, cw)

7. move to i

In order to prove the correctness of our algorithm, we need to show that no
vertex is counted twice when counting the vertices beyond vj and beyond vk.
The two calls of beyond() for vj and vk consider distinct sets of vertices as the
first considers those to the right of the line to vj and the second considers those
on the left of the line to vk. As vk by definition lies left of vj , there is no overlap.
We show that a single call to beyond() does not count vertices twice either: It is
obvious that the recursive calls in line 6 consider distinct sets of vertices, as one
considers only vertices on the left and the other only on the right of viewj . The
only possible overlap could be between two calls of the form beyond(x, ccw),
beyond(y, cw) with x < y. Again, because by definition viewy lies to the right of
viewx, there can be no overlap. The entire algorithm is at no point ambiguous,
so that the solution found has to be unique. ��
We can enable a robot with angle sensor to emulate the robot from Theorem 4
by giving it a compass. A compass provides the robot with a global reference
direction. The angle sensor combined with a compass can measure the global
direction to each vertex in sight.

Definition 7. Let p = (0,∞). Let vr be the position of the robot and view′ be
the view of the robot if p was a vertex of P visible to vr. A compass enables
a robot to determine the index i for which p = view′

i. When combined with an
angle sensor, a compass also provides the angles between the lines vrview′

i and
vrview′

j in ccw direction, for all indices j.

The next theorem follows immediately from Theorem 4.

Theorem 5. A robot with an angle sensor and a compass can uniquely recon-
struct the visibility graph of any polygon P.

Proof. The angle sensor can obviously emulate an angle type sensor. It therefore
suffices to show that the robot can imitate the capability of looking back and
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thus apply the strategy described in the proof of Theorem 4. Assume the robot
moves from a vertex v to a vertex u that it sees in the global direction d. From
its new location u the robot knows that v lies in direction −d. Because of general
position, the robot is guaranteed to see only v in that direction and thus the
robot is capable of uniquely identifying the vertex it came from, in other words
the robot is capable of looking back. ��
Note that the last two results do not rely on the knowledge of n and that in fact
the corresponding robots are capable of inferring n.

5 Conclusion

We have studied the problem of reconstructing the visibility graph of a poly-
gon P using simple robots. In this context, we have discussed three different
configurations of sensors for simple robots. We have proven that the two con-
figurations based on geometrical sensor enable the robot to infer the visibility
graph of a polygon while purely combinatorial knowledge, in terms of the cvs of
the polygon, does not suffice. In addition we have shown a property of symmetric
polygons which makes combinatorial visibility even weaker in that case.

It is clear that a robot with one of the two geometrical sensor configurations is
stronger than a robot equipped with the combinatorial sensor, as combinatorial
visibilities can be derived from the visibility graph. The task of finding the
weakest configuration that allows reconstructing the visibility graph remains
unsolved.

References

1. Dudek, G., Freedman, P., Hadjres, S.: Mapping in unknown graph-like worlds.
Journal of Robotic Systems 13(8), 539–559 (1998)

2. Dudek, G., Jenkins, M., Milios, E., Wilkes, D.: Robotic exploration as graph con-
struction. IEEE Transactions on Robotics and Automation 7(6), 859–865 (1991)

3. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard Tasks for Weak
Robots: The Role of Common Knowledge in Pattern Formation by Autonomous
Mobile Robots. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS,
vol. 1741, pp. 93–102. Springer, Heidelberg (1999)

4. Ganguli, A., Cortés, J., Bullo, F.: Distributed deployment of asynchronous guards
in art galleries. In: Proceedings of the American Control Conference, pp. 1416–1421
(2006)

5. Ghosh, S.K.: Visibility Algorithms in the Plane, 1st edn. Cambridge University
Press, Cambridge (2007)

6. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem.
SIAM Journal on Computing 31(2), 577–600 (2001)

7. O’Kane, J.M., LaValle, S.: Localization with limited sensing. IEEE Transactions
on Robotics 23(4), 704–716 (2007)

8. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)



Reconstructing Visibility Graphs with Simple Robots 99

9. Oommen, B., Iyengar, S., Rao, N., Kayshap, R.: Robot navigation in unknown
terrains using learned visibility graphs. Part I: The Disjoint Convex Obstacle Case.
IEEE Journal of Robotics and Automation RA-3(6), 672–681 (1987)

10. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local
visibility to global geometry. International Journal of Robotics Research 27(9),
1055–1067 (2008)

11. Yershova, A., Tovar, B., Ghrist, R., LaValle, S.: Bitbots: Simple robots solving
complex tasks. In: Proceedings of the Twentieth National Conference on Artificial
Intelligence, pp. 1336–1341 (2005)



Stability of Networks in Stretchable Graphs�
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a given graph G = (V, E, w) of |V | = n nodes, |E| = m edges, and with
a positive real weight w(e) on each edge e ∈ E. We focus on a subclass of
perturbations, that we call stretching perturbations, in which the weights
of the edges of G can be increased by at most a fixed multiplicative real
factor λ ≥ 1.

For this class of perturbations, we address the problem of computing
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We develop a general technique to solve both problems. By applying
this technique to the minimum spanning tree and the single-source short-
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1 Introduction

Let a communication network be modeled by a (either directed or undirected)
graph G = (V, E, w) of |V | = n nodes, |E| = m edges, and with a positive real
weight w(e) on each edge e ∈ E. A network communication problem Π asks for
computing a subgraph S of G such that (i) S belongs to a set F of feasible solu-
tions, and (ii) S minimizes an objective function μ(S, w) which depends on the
weights of the edges of S.1 However, in many practical situations, edge weights
in G may be susceptible to sudden changes, due to unpredictable boundary con-
ditions, and thus the question of assessing the quality of a selected solution in
the presence of such volatility arises naturally.

This is especially true in the domain of information routing, where link con-
gestion phenomena are frequent, for that the performances of a given adopted
solution might degrade rapidly. Since pursuing the efficiency of the communica-
tion system is ineludible, in an ideal situation one should be able to cope with
these undesired events by constantly using an optimal route. However, this can
be done only by spending a corresponding effort in terms of both computational
costs (to maintain dynamically an optimal solution), and execution of rerouting
operations. Therefore, to mitigate this tension between the search of optimality
and the costs to actually implement it, one should try to improve his overall
knowledge about the network itself. For instance, to avoid unnecessary compu-
tations, it would be helpful to know in advance what the affordable congestion
threshold of a given set of used links is, namely how much these links can be con-
gested until the optimality of the corresponding route is affected. Orthogonally,
to avoid rerouting, one might decide to be resilient to congestion phenomena up
to a prefixed threshold, by making use of a redundant routing network in which
a set of additional routes is superimposed to an optimal route, so that optimal
performances are guaranteed in spite of arbitrary link congestions within the se-
lected threshold. Notice that such a network might also be useful in a perspective
of reducing computational costs, since as long as link congestion does not go over
the prefixed threshold, it enables to perform the dynamic maintenance of the
optimal solution on a (small) subgraph of the underlying communication graph.
Summarizing, to appropriately tolerate congestions, it is crucial to establish a
good trade-off between the efficiency and the robustness of the system.

Problem definition and our results. Along this line of research, in this paper
we consider a scenario in which multiple link congestions at a time may occur,
though not in an arbitrary way. More precisely, given a network communication
problem Π on G, we focus on a subclass of perturbations, that we call stretching
perturbations, in which edge weights in G can be amplified at most by a fixed
multiplicative real factor λ ≥ 1. This setting is motivated from the observation
that link congestions can be physically described by means of a linear dilatation
of the corresponding edge weights, i.e., a stretching perturbation.

1 We tacitly assume that the set F does not depend on the weight function w(·), and
that μ(S, w) strictly increases as any edge of S increases its weight.
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More formally, given a real value λ ≥ 1, a vector λ̄ = 〈λ̄e1 , . . . , λ̄em〉 ∈ Rm is
called a λ-perturbation if 1 ≤ λ̄ej ≤ λ for every ej . For any such perturbation, we
denote by Gλ̄ = (V, E, wλ̄) the graph obtained from G by amplifying the weight
of each edge ej by a multiplicative factor λ̄ej , i.e., wλ̄(ej) = λ̄ej w(ej) for each
ej ∈ E. Then, given a subgraph H of G, we define the stability number of H
w.r.t. Π as the maximum value δ(H) such that, for every δ(H)-perturbation λ̄,
H contains an optimal solution for Gλ̄ w.r.t. Π . Clearly, δ(G) = +∞. Moreover,
we assume δ(H) = −∞, when H contains no optimal solution. A simple example
of the notion of stability number is shown in Figure 1. To assess the effectiveness
of a selected solution under this class of perturbations, we specifically aim to
address the following two interlaced problems:

(Q1) Given a subgraph H of G, compute δ(H).
(Q2) Given a real value λ ≥ 1, find a minimal subgraph H of G with δ(H) ≥ λ.

Besides, we will also consider the following subproblem of Q1, due to its imme-
diate practical relevance:

(Q∗
1) Compute δ(H∗), where H∗ is the subgraph of G made up by the union of
all the optimal solutions for G w.r.t. Π .

In the paper, we develop a general technique to solve the aforementioned prob-
lems. By applying this technique to the classic minimum spanning tree (MST)
problem, we obtain an O(mα(m, n)) time algorithm solving all the considered
problems, where α(·, ·) is the functional inverse of Ackermann’s function [8]. On
the other hand, for the other classic single-source shortest paths tree (SPT) prob-
lem, we show that Q1 and Q2 can be solved in O(mn(m + n log n)) time, while
Q∗

1 can be solved in O(mn) time. Finally, for the single-source single-destination
shortest path (SP) problem, if the optimal solutions of the input instance happen
to form a set of vertex-disjoint paths, then we show that Q∗

1 can be solved in
O(mn + n2 log n) time.

Related work. In their essence, our congestion tolerance problems can be re-
garded as stability problems. Indeed, stability theory studies exactly how much
and in which way the solutions of a given optimization problem can vary as a
function of small perturbations of the input data. From an algorithmic

t
2
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e2

e3

1000

1

s

Fig. 1. A simple graph in which we want to route messages from s to t via a shortest
path. The stability number of the subgraph consisting of edge e1 is 2. Augmenting such
subgraph with the edge e2 let the stability number increase to 1000.
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perspective, two main methods have been developed in the literature to deal
with uncertainty: robust optimization and sensitivity analysis.

In robust optimization, data uncertainty is expressed through a specification
of a feasible set of values for each of the input data, over which one tries to find a
compromise solution hedging against the worst instances that might arise. The
compromise should obey to a given robustness criterium, which in its turn de-
pends on the problem specification. In their comprehensive work [4], Kouvelis
and Yu defined several robustness criteria, and we refer the reader to [1] for a
recent survey on the topic. Closer to the spirit of our work is instead the other
way of dealing with uncertainty, namely that of performing the so-called sensi-
tivity analysis of an optimal solution. This is a post-optimality study initially
defined in [7], which analyzes how long the solution stays optimal in spite of
single changes in the input data. To illustrate it more concretely, let us focus
our attention again on the MST problem. Here the problem is to establish how
much the weight of each individual edge in the MST can be perturbed before the
spanning tree is no longer minimal. In his seminal paper [8], Tarjan considered
the case of a general graph G with n nodes and m edges, and solved the problem
in O(m α(m, n)) time; this result was then improved to O(m log α(m, n)) [6].
Tarjan also considered the other fundamental SPT problem, for which he sim-
ilarly provided an O(m α(m, n)) time sensitivity analysis. Later on, sensitivity
analysis has been applied to many other network optimization problems, and we
refer the reader to [3] for extensive references.

Paper organization. The paper is structured as follows. In Section 2, we explain
the general technique to solve the defined stability problems. We apply this
technique to the MST Problem in Section 3. Section 4 deals with the SPT
stability problem, while the SP problem is considered in Section 5.

2 A General Technique

In this section we introduce the concept of optimality thresholds of the edges
and we show how these values are related to the stability number of a given
subgraph. Let G = (V, E, w) be an edge-weighted either directed or undirected
graph with |V | = n, and |E| = m (we assume that w(e) > 0 for every edge
e ∈ E). In the following, given any e ∈ E, v ∈ V , we use G − e and G − v
to denote the graph obtained from G by discarding e and v (with its incident
edges), respectively. Given U ⊆ V , G−U is defined in a similar way. Finally, for
any subgraph H and edge e, H + e stands for H = (V (H), E(H) ∪ {e}).
Definition 1. The optimality threshold γ(e) of e ∈ E is defined as the mini-
mum real value λ ≥ 1 (if any) for which there exists a feasible solution S ∈ F
such that (i) S is an optimal solution for some λ-perturbation of G, and (ii)
e ∈ E(S). If such a value does not exist, then γ(e) = ∞.

Lemma 1. Let H be a proper subgraph of G containing at least an optimal
solution, then δ(H) = mine/∈E(H) γ(e).
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Proof. Let η = mine/∈E(H) γ(e), and let ẽ ∈ E \ E(H) be an edge such that
γ(ẽ) = η. The proof is by contradiction. Assume η > δ(H). Then, let us consider
a value η′ such that δ(H) < η′ < η. By definition of δ(H), there must exist an
η′-perturbation, say λ̄ such that H contains no optimal solution for Gλ̄. Then,
let S be such a solution. It is clear that S contains an edge, say e′, which does
not belong to H . This implies that γ(e′) ≤ η′ < η. This is a contradiction.

On the other hand, assume η < δ(H). By definition of η, there exists an
η-perturbation, say λ̄′, and a feasible solution S̃ such that ẽ ∈ E(S̃), and S̃ is
optimal in Gλ̄′ . Now, consider the perturbation λ̄′′ defined as follows: λ̄′′

e = λ̄′
e

if e ∈ S̃, δ(H) otherwise. Then, for each feasible solution S′ contained in H we
have:

μ(S̃, wλ̄′′ ) = μ(S̃, wλ̄′) ≤ μ(S′, wλ̄′) < μ(S′, wλ̄′′ ),

where the last inequality holds since η < δ(H). Hence, S̃ is a feasible solution
that is strictly better for Gλ̄′′ than every solution contained in H , which means
that H cannot contain an optimal solution for Gλ̄′′ . This is a contradiction since
λ̄′′ is a δ(H)-perturbation. ��
As a consequence of the above lemma, we have:

Corollary 1. There exists a polynomial-time algorithm for computing γ(e) for
every e ∈ E if and only if Q1 can be solved in polynomial time.

Proof. One direction follows immediately from Lemma 1. For the other direction
is concerned, assume that we can solve Q1 in polynomial time. Then, by using
Lemma 1, it is easy to see that for every edge e ∈ E, γ(e) = δ(G − e) if
δ(G− e) �= −∞, 1 otherwise. ��
Corollary 2. Given λ > 1, the minimal subgraph H of G with δ(H) ≥ λ is
H = (V, Eλ), where Eλ = {e ∈ E | γ(e) < λ}. In other words, if there exists a
polynomial-time algorithm for computing γ(e) for every e ∈ E, then Q2 can be
solved in polynomial time. ��

3 The Minimum Spanning Tree Stability Problem

As a simple application of the previous results, let us consider the minimum
spanning tree (MST) problem which, given a weighted undirected graph G =
(V, E, w), asks for computing a spanning tree T of G such that the cost of T ,
i.e.
∑

e∈E(T ) w(e), is minimum. We have the following:

Theorem 1. For theMSTproblem, Q1, Q2 andQ∗
1 can be solved inO(m α(m, n))

time.

Proof. It suffices to show how to compute the optimality thresholds of all edges
in O(m α(m, n)) time. We first compute an MST T of G. This can be done in
O(m α(m, n)) time [5]. It is clear that γ(e) = 1 for every e ∈ E(T ). Moreover,
observe that for each f = (x, y) ∈ E \ E(T ), we have that γ(f) = w(f)/w(ef ),
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where ef is an edge of maximum weight among the ones belonging to the (unique)
path in T joining x and y. The problem of computing ef for each non-tree edge
f is a well-known problem called the MST verification problem, which can be
solved in O(m) time [2]. ��

4 The Single-Source Shortest Path Tree Stability
Problem

Let G = (V, E, w) be a directed graph with n vertices and m edges having a
positive weight w(e) associated to each edge e ∈ E. Let s, t ∈ V be two vertices
of G. A shortest path P from s to t is an s− t (simple) path of minimum length,
where the length of a path is defined to be the sum of its edge weights. We denote
by dG(s, t) the distance from s to t in G, i.e., the total length of any shortest
s − t path in G (if no s − t path exists, then dG(s, t) = ∞). Given a path P
and two vertices u, v ∈ V (P ), we denote by P [u, v] the u− v subpath of P , and,
for any perturbation vector λ̄, we denote by w(P, λ̄) the length of P in Gλ̄, i.e.
w(P, λ̄) =

∑
e∈E(P ) λ̄ew(e). The single-source shortest paths tree problem (SPT)

asks for a directed tree T rooted at a given source vertex s ∈ V that minimizes
the overall sum of distances from the source to every vertex in the graph, i.e.,
the value

∑
v∈V dT (s, v).

This section begins with a description of a polynomial time algorithm that
computes the value γ(e) in (G, s) w.r.t. the SPT problem, where edge e = (x, y) ∈
E is given as input, and then it describes a faster algorithm to solve Q∗

1.

4.1 The Algorithm for Computing the Optimality Thresholds

The algorithm keeps track of an upper bound of γ(e) in the variable ub and refines
this value through iterative operations until it becomes exactly equal to γ(e).
During iteration i ≥ 1, the algorithm computes the graph Hi of all the shortest
s-x paths in G′, where G′ = G at the beginning of iteration 1. Graph Hi is needed
to associate the value costi(v) = dHi

(v,x)+w(e)
dG(v,y) to every vertex v ∈ V (Hi). The

value costi(v) is a lower bound of the least value λ for which there exists a λ-
perturbation λ̄ such that Gλ̄ contains a shortest s-y path passing through both
v and e. Then, the algorithm computes an s-x path Pi in Hi that minimizes
the bottleneck w.r.t. function costi, i.e., the value Bi = maxv∈V (Pi) costi(v).
The algorithm concludes iteration i by updating the value of ub with Bi, in case
Bi < ub, and by deleting from G′ all vertices whose corresponding costi values
are greater or equal to ub. The algorithm stops iterating when no s-x path in
G′ is left. For a more formal description of the algorithm see Algorithm 1, while
an example of its execution is given in Figure 2.

Let G = (V, E, w) be a graph and let s and t be two distinct vertices of G.
We say that U ⊆ V is an s-t cut of G if s, t �∈ U and no s-t path exists in the
graph G− U . We are now ready to prove the following

Proposition 1. At the end of iteration i an s-x cut of Hi has been removed
from G′.
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Algorithm 1
Require: An edge-weighted graph G = (V, E, w), weight function w : E → R+, a

source s ∈ V , and an edge e = (x, y) ∈ E.
Ensure: The optimality threshold γ(e) in G w.r.t. SPT problem with source s.
1: ub = +∞
2: G′ = G
3: i = 0
4: while there exists an s-x path in G′ do
5: i = i + 1
6: compute the structure Hi of all the s-x shortest paths in G′

7: for all v ∈ V (Hi) do

8: costi(v) =
dHi

(v,x)+w(e)

dG(v,y)

9: end for
10: compute an s-x path Pi in Hi that minimizes the bottleneck w.r.t. costi. Let

Bi = maxv∈V (Pi) costi(v)
11: ub = min{ub, Bi}
12: for all v ∈ V (Hi) do
13: if costi(v) ≥ ub then
14: G′ = G′ − v
15: end if
16: end for
17: end while
18: return ub

Proof. Let Pi be the s-x path of Hi that is computed by the algorithm at iter-
ation i and let Bi = maxv∈V (Pi) costi(v). After the execution of Line 11 of the
algorithm we have that ub ≤ Bi. As Pi is an s-x path in Hi that minimizes the
bottleneck w.r.t. costi, then every other s-x path in Hi has to contain a vertex
whose corresponding costi value is greater or equal to Bi. Therefore, at least
one vertex per s-x path in Hi has been removed from G′ after the execution of
the for-loop in Lines 12–16. Thus, the set of vertices removed from G′ at the end
of iteration i is an s-x cut of Hi. ��

Lemma 2. During the execution of Algorithm 1 we have γ(e) ≤ ub.

Proof. Let us consider any iteration i of the algorithm. Let Pi be the path from
s to x in Hi computed by the algorithm during iteration i and let Bi be its
bottleneck value w.r.t. costi. Let λ̄ be the Bi-perturbation of G where all edges
in E \E(Pi) are perturbed by Bi while edges of Pi are not perturbed. In order to
prove the claim, first notice that it is enough to show that Gλ̄ contains a shortest
path from s to y passing through edge e. Let P be any shortest s-y path in Gλ̄

and let v ∈ V (P ) be the farthest vertex from s that is also in Pi. Clearly, P [v, y]
is a shortest v-y path in Gλ̄. Moreover, it is vertex disjoint w.r.t. Pi[v, y]. Thus,
as costi(v) ≤ Bi and because Pi is a shortest s-x path in Hi, we have that

w(Pi[v, y], λ̄) = w(Pi[v, y]) = costi(v) · dG(v, y) ≤ Bi · w(P [v, y], λ̄).
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Fig. 2. An example of the execution of Algorithm 1 to compute the optimality thresh-
old of edge (x, y). On the left side, it is shown the graph G′ at the beginning of every
iteration. On the right side, the graph Hi and the costi values computed during itera-
tion i are shown. Path Pi is given by the black vertices in Hi. At the end of iteration 1,
ub = 4 and v has been removed from G′. At the end of iteration 2, ub = 3 and vertices
s, v′ have been removed from G′. The algorithm stops after two iterations as no s-x
path in G′ is left.

Therefore, P [s, v]∪Pi[v, y] is a shortest s-y path in Gλ̄ that passes through edge
e. The claim follows. ��
Lemma 3. Let P be a shortest s-y path passing through edge e in some γ(e)-
perturbation of G. Then, γ(e) ≥ maxv∈V (P )

w(P [v,y])
dG(v,y) .

Proof. Let B = maxv∈V (P )
w(P [v,y])
dG(v,y) and let v∗ be a vertex of P such that B =

w(P [v∗,y])
dG(v∗,y) . Let P ′ be a shortest v∗-y path in G and let F = E(P [v∗, y])∩E(P ′).

W.l.o.g., we can assume that P �= P ′ and thus w(F ) < dG(v∗, y). Let λ̄ be
the γ(e)-perturbation where all edges in E \ E(P ) are perturbed by γ(e) while
all other edges are not perturbed. As P is a shortest s-y path in some γ(e)-
perturbation of G, it is a shortest s-y path in Gλ̄. Therefore, P [v∗, y] is a shortest
v∗-y path in Gλ̄. As a consequence,

w(P ′, λ̄) = γ(e) · dG(v∗, y)− (γ(e)− 1)w(F ) ≥ w(P [v∗, y], λ̄) = w(P [v∗, y])

implies

γ(e) ≥ w(P [v∗, y])− w(F )
dG(v∗, y)− w(F )

.
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Now, using the fact that 0 ≤ w(F ) < dG(v∗, y), we obtain γ(e) ≥ w(P [v∗,y])
dG(v∗,y) = B,

thus proving the claim. ��

Lemma 4. Let P be a shortest s-y path passing through edge e in some γ(e)-
perturbation of G. Let i be the iteration in which the first vertex in V (P ) is
removed from G′. At the end of iteration i it is ub = γ(e).

Proof. Let v be the first vertex in V (P ) that is removed from G′ at iteration i.
Clearly, P [v, x] is a v-x path in the graph G′ at the beginning of iteration i. As
a consequence, we have that

costi(v) =
dHi(v, x) + w(e)

dG(v, y)
≤ w(P [v, x]) + w(e)

dG(v, y)
Lm.3≤ γ(e)

Lm.2≤ ub.

Since v is removed from G′ because costi(v) ≥ ub, it follows that all above
inequalities are satisfied with equality. Hence, γ(e) = ub. ��

Theorem 2. Algorithm 1 computes the value γ(e) in O(n(m + n log n))-time.

Proof. The correctness of the algorithm follows from Lemma 4. As far as the
time complexity is concerned, observe that every iteration (while-loop condition
included) takes O(m + n log n) time. Moreover, Proposition 1 implies that at
most n iterations are needed. ��

The above theorem implies the following result.

Corollary 3. For the single-source shortest paths tree problem both Q1 and
Q2 can be solved in O(nm(m + n log n))-time. ��

4.2 A Faster Algorithm for Q∗
1

In the remaining of this section, we denote by H∗ the subgraph of G made up of
the union of all the SPT’s of G rooted at s. In what follows, we develop an efficient
O(nm)-time algorithm to compute the value σ := δ(H∗). The algorithm makes
use of the ideas of Algorithm 1 together with some additional observations. In
order to be time efficient, the algorithm precomputes the following information:

1. the distances dG(s, v) from s to every other vertex v ∈ V ;
2. the set Av = {u ∈ V | ∃ a u-v path in H∗} for every vertex v ∈ V ;
3. a value ηv such that ηv = minu∈V |(u,v)∈E(H∗) dG(s, u) for every vertex v ∈ V .

Then, for each edge e = (x, y) ∈ E \ E(H∗), the algorithm computes the value
η∗ = minu∈Ax\Ay

ηu and the value τ(e) = dG(s,x)−η∗+w(e)
dG(s,y)−η∗ . If Ax \ Ay is empty,

then η∗ = 0. Finally, the algorithm computes the value mine∈E\E(H∗) τ(e) and
outputs it.

Theorem 3. There exists an O(nm)-time algorithm that computes the value σ.
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Proof. We start analyzing the time complexity of the above algorithm. From the
description of the algorithm it is easy to see that each value τ(e) can be computed
in O(n) time. Moreover, O(nm)-time is sufficient for all the information the
algorithm precomputes.

As long as correctness of the algorithm is concerned, we begin our proof with
some crucial observations. Let H ′ be a subgraph of G containing some SPT of
G rooted at s. Let λ̄ be a δ(H ′)-perturbation of G. Observe that Gλ̄ contains an
SPT rooted at s which is not a subgraph of H ′ iff there exists a shortest s-x path
in Gλ̄ that contains exactly one edge in E \ E(H ′), for some x ∈ V . Therefore,
we can state the following

Proposition 2. Let H ′ be a subgraph of G containing some SPT of G rooted
at s. The value δ(H ′) is equal to the minimum of the optimality thresholds of all
the edges e ∈ E \ E(H ′) in (H ′ + e, s) w.r.t. SPT problem. ��
As a consequence, in order to compute γ(e), it is sufficient to compute the
optimality threshold of e in H∗ + e for each edge e ∈ E \E(H∗). For the rest of
the proof assume that e = (x, y) ∈ E \ E(H∗) is fixed. First of all, observe that
all the s-x paths in H∗ + e are s-x shortest paths in G, so they are also shortest
paths in H∗ + e. Therefore, the structure H1 of all the shortest s-x paths in
H∗ + e computed by Algorithm 1 is equivalent to the structure of all the s-x
paths of G. Moreover, Proposition 1 implies that Algorithm 1 makes only one
iteration. As a consequence, the value ub returned by Algorithm 1 is the value
B1 computed during the first iteration.

To prove that B1 = τ(e), let A be the set of vertices v ∈ Ax ∩ Ay for which
a v-x path in H made up of vertices in Ax \ Ay exists. Clearly, A is an s-x cut
in H . Therefore, for every v ∈ A, B1 ≥ dH1(v,x)+w(e)

dH∗+e(v,y) = cost1(v). Let v∗ ∈ A

be a vertex such that for every v ∈ A, cost1(v∗) ≤ cost1(v). As for every
v ∈ Ax ∩ Ay it is cost1(v) = dH1(v,x)+w(e)

dH∗+e(v,y) = dG(s,x)−dG(s,v)+w(e)
dG(s,y)−dG(s,v) , then v∗ is a

vertex of A that minimizes its distance from s in G. Let P be an s-x path in
H∗ passing through vertex v∗. We claim that the bottleneck value of P w.r.t.
cost1 is given by cost1(v∗) thus proving that B1 = cost1(v∗). In fact, for every
v ∈ V (P [v∗, x]), v �= v∗, cost1(v) = 0 as dH∗+e(v, y) = ∞. Furthermore, for
every v ∈ V (P [s, v∗])

cost1(v) =
dH1(v, x) + w(e)

dH∗+e(v, y)
=

dG(v, v∗) + dG(v∗, x) + w(e)
dG(v, v∗) + dG(v∗, y)

≤ dG(v∗, x) + w(e)
dG(v∗, y)

= cost1(v∗),

as cost1(v∗) ≥ 1 and dG(v, v∗) ≥ 0.
Therefore, to prove B1 = τ(e), it is enough to prove that τ(e) = cost1(v∗),

or equivalently, that minv∈Ax\Ay
ηv = dG(s, v∗). But this is immediately true

by definition of ηv since A is an s-v cut in H∗ for every v ∈ Ax \ Ay and edge
weights are non negative. This completes the proof. ��
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5 The Shortest Path Stability Problem

Let G = (V, E, w) be an edge-weighted directed graph with |V | = n, and |E| = m
(we assume that w(e) > 0 for every edge e ∈ E), and let s, t ∈ V be two vertices
of G. The shortest path (SP) problem asks for computing a path form s to t
of minimum length. In this section we provide an efficient algorithm to solve
Q∗

1 when all the shortest s− t paths are vertex disjoint (except for the vertices
s and t). Let H be the subgraph of G induced by all these shortest paths, and
let σ denote the stability number of G (w.r.t. the SP problem with source s and
destination t), i.e. σ = δ(H).

From now on we will assume that P1, . . . , Pk are all the shortest s − t paths
in G. For the sake of simplicity, we will assume that G always contains an s− t
path P which is not a shortest path, otherwise σ = +∞.

The algorithm considers a set of non-optimal paths having a specific form (as
we will specify soon) and for each of them, say P , it computes a value θ(P ),
which is defined as follows: θ(P ) is the minimum value such that there exists a
θ(P )-perturbation λ̄ in which P is not longer than every Pi, i = 1, . . . , k, i.e.
w(P, λ̄) ≤ w(Pi, λ̄), i = 1, . . . , k. Notice that by definition of σ, the following
property holds:

Remark 1. σ ≤ θ(P ), for any non-optimal P .

Our algorithm uses a key property which is stated in the lemma below. Roughly
speaking, the main idea is that there must exist an s− t path P with θ(P ) = σ
and such that P has a very nice form, namely P consists of three pieces, two
of which (the first and the third one) are subpaths of some shortest s− t paths
in G, while the central piece is a shortest path which is vertex disjoint from
H (except for the first and the last node). An example is shown in Figure 3,
where the path P is the one passing through nodes s, u, v′, v, t and where its
central part consists of the subpath going from u to v. Moreover, notice that
in this example P [u, v] is not a shortest path in G. This shows that the vertex
disjointness property of the central piece is actually needed. More formally:

Lemma 5. There exists a non-optimal path P having θ(P ) ≤ σ and such that:

1. P = Pi[s, u] ∪ P [u, v] ∪ Pj [v, t], for some u, v ∈ V, i, j = 1, . . . , k;
2. P [u, v] is a shortest path from u to v which is vertex disjoint from H (except

for u and v).

Proof. Let us consider an edge ẽ ∈ E \ E(H) with γ(ẽ) = σ. Then, there must
exist a path P ′ which is a shortest path from s to t in some σ-perturbation of G.
Clearly, P ′ is not a shortest path in G. W.l.o.g. we can decompose P ′ as follows:
P ′ = Pi[s, u]∪ P ′[u, v] ∪ P ′[v, t] where P ′[u, v] is vertex disjoint from H (except
for u and v). Let λ̄ be the σ-perturbation defined as λ̄e = 1 if e ∈ E(P ′), σ
otherwise. Notice that w(P ′, λ̄) ≤ w(P�, λ̄) for every � = 1, . . . , k.

Then, we define a new path P = Pi[s, u] ∪ P [u, v] ∪ Pj [v, t], where P [u, v] is
a shortest path from u to v that is vertex disjoint from H and Pj is the path v
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1. The structure H of all shortest s − t paths is in bold. The

path P with θ(P ) = σ is s → u → v′ → v → t. The stability number of H is 4. To
see this, notice that if we perturb all edges but P by a value strictly greater than 4,
P becomes the only s − t shortest path (hence, σ ≤ 4). On the other hand, any other
s − t path using the edge (u, w) or the edge (w′, v) cannot become minimum without
perturbing by a factor 5 the edge (s, w) or the edge (w′, t), respectively.

belongs to. Now, let λ̄′ be the σ-perturbation defined as λ̄ except that λ̄′
e = 1

for every e ∈ E(P [u, t]). We show that θ(P ) ≤ σ by proving that the length of
P in λ̄′ is at most that of P�, for each � = 1, . . . , k.

We have that:

w(P, λ̄′) = w(Pi[s, u], λ̄′) + w(P [u, v], λ̄′) + w(Pj [v, t], λ̄′)
= w(Pi[s, u], λ̄) + w(P [u, v], λ̄′) + w(Pj [v, t], λ̄′)
≤ w(Pi[s, u], λ̄) + w(P ′[u, v], λ̄) + w(Pj [v, t], λ̄′)
= w(P ′[s, u], λ̄) + w(P ′[u, v], λ̄) + w(Pj [v, t], λ̄′)
= w(P ′[s, v], λ̄) + w(Pj [v, t], λ̄′).

(1)

As a consequence, since Pj [v, t] is a shortest path in the original graph, we have
w(Pj [v, t], λ̄′) ≤ w(P ′[v, t], λ̄), and thus w(P, λ̄′) ≤ w(P ′, λ̄) ≤ w(P�, λ̄) for every
� = 1, . . . , k. Moreover, for every � �= j, it holds that w(P�, λ̄) = w(P�, λ̄

′). Hence,
we have w(P, λ̄′) ≤ w(P�, λ̄

′) for every � �= j. On the other hand, as far as Pj

is concerned, from (1), since w(P ′[s, v], λ̄) ≤ w(Pj [s, v], λ̄) = w(Pj [s, v], λ̄′), we
have w(P, λ̄′) ≤ w(Pj , λ̄

′). ��
The algorithm to compute σ works as follows: it checks all paths of the form of
Lemma 5 and selects a path with minimum θ value among them. More precisely,
for each ordered pair of nodes u ∈ Pi and v ∈ Pj (where i and j may coincide),
the algorithm considers the path Pu,v = Pi[s, u]∪P [u, v]∪Pj[v, t], where P [u, v]
is a shortest path from u to v which is vertex disjoint from H (except for u and
v), then it computes θ(Pu,v), and finally it takes the minimum θ(Pu,v) value over
all pairs u, v.
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The correctness of the algorithm immediately follows from Lemma 5 and
Remark 1. Moreover, it is not too hard to see that:

θ(Pu,v) =

⎧⎨⎩max
{

w(Pu,v [u,t])
w(Pi[u,t]) ,

w(Pu,v [s,v])
w(Pj[s,v])

}
if i �= j;

w(Pu,v[u,v])
w(Pi[u,v]) otherwise.

We are now ready to prove the following:

Theorem 4. The shortest s− t path stability problem can be solved in O(mn +
n2 log n) time if the shortest paths from s to t are pairwise vertex disjoint.

Proof. First, we compute H in O(m + n log n) time. Then, we compute all the
lengths of the Pu,v[u, v] paths in O(mn + n2 log n) as follows. For each node v,
we compute in O(m + n logn) time a shortest vertex disjoint path from v to
every u by modifying G as follows: for each node u, we delete all the edges in
E(H) outgoing from u, and then we run Dijkstra’s algorithm to find a shortest
path tree rooted at v in the obtained graph. Finally, we can compute θ(Pu,v) in
constant time. Since the number of paths to be considered are at most n2, the
claim follows. ��
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Abstract. A population protocol is one of distributed computing models for
passively-mobile systems, where a number of agents change their states by pair-
wise interactions between two agents. In this paper, we investigate the solvabil-
ity of the self-stabilizing leader election in population protocols without any
kind of oracles. We identify the necessary and sufficient condition to solve the
self-stabilizing leader election in population protocols from the aspects of local
memory complexity and fairness assumptions. This paper shows that under the
assumption of global fairness, no protocol using only n − 1 states can solve the
self-stabilizing leader election in complete interaction graphs, where n is the num-
ber of agents in the system. To prove this impossibility, we introduce a novel proof
technique, called closed-set argument. In addition, we propose a self-stabilizing
leader election protocol using n states that works even under the unfairness as-
sumption. This protocol requires the exact knowledge about the number of agents
in the system. We also show that such knowledge is necessary to construct any
self-stabilizing leader election protocol.

1 Introduction

A passively-mobile system is a collection of agents that move in a certain region but
have no control over how they move. Since the communication range of each agent
is quite small compared to the size of the region, two agents can communicate only
when they are sufficiently close to each other. Passive mobility appears in many real
systems. A representative example is a network of smart sensors attached to cars or
animals. In addition, a certain kind of natural computing, such as synthesis of chemical
materials and complex biosystems, can be included in passively-mobile systems by
regarding chemical interactions as communications. While these systems are different
in the view of applications, all of them aim to a common goal, that is, how to organize
and manipulate computing entities that are uncontrollable in the sense of mobility. Then,
it is reasonable to think about some common principles underlying them. Revealing
such principles from the aspect of theoretical computer science is an interesting and
worthwhile challenge.
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Recently, as a model for such passively-mobile systems, population protocols are in-
troduced [1,2,7]. A population protocol consists of a number of agents, to which some
program (protocol) is deployed. Following the deployed protocol, each agent changes
its state by pairwise interactions to other agents (that is, two agents come closer to
each other in the region and update their states by exchanging information). Typically,
the capability of each agent is limited. It is often assumed that each agent has only
constant-space memory and no identifier. A population protocol is a good abstraction
that captures the feature of passively-mobile systems in spite of its mathematical sim-
plicity. [3,4,5,6,8,10].

Population protocols are originated by Angluin et al. [1], which investigates a class
of predicates that can be computed autonomously over population protocols. Its primary
result is that any predicate in semilinear class (which includes the comparison, modulo
and threshold predicates) can be computed on population protocols by proposing a pro-
tocol that stably computes any semilinear predicate. In the following paper [4], it is
also shown that any computable predicate by population protocols belongs to semilin-
ear, that is, semilinear is the necessary and sufficient class of the predicates that can be
computed on population protocols of all-pairs interaction graphs (complete interaction
graphs).

The protocols proposed in the above paper are assumed to start from a properly-
formed system configuration. In this sense, it is not a self-stabilizing protocol: Self-
stabilization is one of the desirable properties of distributed computations, which en-
sures that the system necessarily converges to the desired behavior regardless of its
initial configuration. Self-stabilization on population protocols is considered in a num-
ber of previous papers [2,9,11], which have investigated the solvability of the self-
stabilizing leader election (SS-LE) problems under some kinds of assumptions. The
general model of population protocols introduces an interaction graph, which speci-
fies the possibility of communication between two agents. The above papers show the
solvability and unsolvability of SS-LE for specific classes of interaction graphs such as
complete graphs, rings, rooted trees, directed acyclic graphs, and so on. Unfortunately,
it is easily shown that SS-LE is almost impossible in general. Thus, the above papers
also consider some additional (but reasonable) assumptions to make SS-LE solvable by
introducing several notions extending the computational power of population protocols:
global fairness and leader detector oracle Ω?. Intuitively, global fairness guarantees
the occurrence of any possible transition and thus it prevents livelock caused by some
looped execution. The leader detector oracle is an abstracted virtual device that informs
the existence and inexistence of a leader to all the agents in the system. Both of the
assumptions give some additional computational power to population protocols, which
is sufficient to solve SS-LE in some cases, but insufficient in some other cases. How-
ever, the complete characterization of system assumptions making SS-LE solvable is
unknown. Currently, only a few results about the solvability of SS-LE on the complete
interaction graphs are known:

1. Assuming global fairness and the oracle Ω?, there exists an SS-LE protocol where
each agent uses only one bit of memory [11].

2. Under the assumption of unfairness and no oracle, no uniform protocol can solve
SS-LE, where ”uniform protocol” means the one that works correctly on the system
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with arbitrary number of agents (that is, uniform protocols do not use any informa-
tion about the total number of agents) [2].

3. Without Ω?, any protocol using only one bit of memory cannot solve SS-LE even
if we assume global fairness [9].

In this paper, we also investigate the solvability of SS-LE on population protocols. In
particular, we are interested in self-stabilizing leader election protocols in complete
interaction graphs without oracles. The primary contribution of our work is to identify
the necessary and sufficient conditions such that SS-LE becomes solvable from the
aspects of local memory space and fairness assumptions. More precisely, this paper
shows the following three results:

1. Without oracles, there is no deterministic or probabilistic SS-LE protocol using
only n − 1 states of memory even if we assume global fairness, where n is the
number of agents in the system.

2. There exists an SS-LE protocol that uses n states (�log2 n� bits) of memory and
correctly works under the unfairness assumption.

3. Even if we assume global fairness, without oracles, there is no uniform SS-LE
protocol in the strong sense. That is, any SS-LE protocol working correctly on the
population of n agents does not work correctly on the population of n − 1 agents.

The third result implies that the upper bound for the number of agents is not sufficient
knowledge to design SS-LE protocols, and thus it justifies the fact that the exact value
of n is necessary to construct the protocol shown in the second possibility result. It
should be also noted that the first impossibility result is quite nontrivial and interesting.
Global fairness is reasonable but sufficiently strong so that it can break essential ideas
leading previous impossibility results. Actually, under the global fairness assumption,
we cannot apply many of existing techniques to prove the impossibility. In this paper,
we resolve such difficulty by introducing a novel proof technique based on closed sets.
Our key idea is to identify the set of states that never creates the leader state. While this
paper utilizes this technique to show the impossibility of SS-LE, we believe that it can
be applied to more broader cases, including other problems and other graph classes, to
prove the impossibility under the global fairness assumption. Moreover, we can show
that the three results are all correct for both the traditional two-way protocol and the
one-way protocol (the two-way protocol allows that two agents can change both of
their states in the interaction, but the one-way one does not). That is, the impossibility
result holds in the stronger two-way protocol and the possibility result even holds in the
weaker one-way protocol.

1.1 Related Work

Leader election on population protocols are first introduced in [3]. In [2], a non-uniform
population protocol is given to solve the self-stabilizing leader election problem in di-
rected rings of odd size under the assumption of global fairness. The authors also show
that there is no uniform self-stabilizing leader election protocol for any non-simple class
of interaction graphs, where a class C is non-simple if any graph in C can be partitioned
into two subgraphs belonging to C.
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In [11], Fischer and Jiang introduce eventual leader detector Ω? to realize uniform
self-stabilizing leader election protocols. They give a uniform SS-LE protocol for com-
plete graphs under the weaker fairness assumption than global one (it is called local
fairness and the most usual assumption of fairness) using only 1 bit of memory, and a
uniform self-stabilizing leader election protocol for directed rings under the assumption
of global fairness. It is also shown that there exists no uniform self-stabilizing leader
election protocol for directed rings under the local fairness assumption. All the above
results are obtained with the help of Ω?.

Canepa and Gradinariu [9] investigates the feasibility of one-bit protocols: They give
a uniform one-bit SS-LE protocol for rooted trees and acyclic graphs with only one sink-
node. Also they give a probabilistic protocol for arbitrary graphs under local fairness.
Moreover, they prove Ω? is necessary to realize uniform one-bit SS-LE protocols for
any class of interaction graphs. All the results in the paper are under the assumption of
using 1 bit of memory and with the help of Ω?.

2 Model and Definitions

We introduce the formal definitions of population-protocol considered in this paper.
A population consists of n agents, which can change their own states by interacting

with each other. In the general model of population protocols, all pairs of agents do
not necessarily have direct interactions. The possibility of direct interactions between
two agents is specified by interaction graphs: An interaction graph G=(V, E) is a simple
directed graph where each vertex, labeled by v1, v2, v3, · · ·, corresponds to each agent.
The edge from vi to v j implies that the agent corresponding to vi can interact to the
agent for v j, where vi is the initiator and v j is the responder. Throughout this paper, we
assume that the interaction graph is complete. That is, any pair of agents is possible to
interact with each other. For convenience, we use undirected complete graphs for the
bidirectional completed graphs in what follows.

A protocol P = (Q, δ) is a pair of a finite set Q of states and a transition function
δ that maps each pair of states Q × Q to a nonempty subset of Q × Q. The transition
function, and the protocol, is deterministic if δ(p, q) always contains just one pair of
states. Otherwise the protocol is called a nondeterministic protocol. For convenience, in
this paper, we only consider deterministic protocols, and thus we simplify the definition
of a transition function to a mapping δ : Q × Q → Q × Q (i.e., the states after each
transition is uniquely determined). If the two agents involved in an interaction can learn
the states of each other and change their states depending on the state of the other, we
call the protocol a two-way one. By contrast, if the initiator has no chance to change
its state and only the responder can change its state after an interaction, we call the
protocol a one-way one. In the one-way protocol, for any transition r : (p, q)→ (p′, q′),
p′ = p for any p ∈ Q. Notice that a transition does not necessarily cause either of the
nodes to change its state. That is, a transition (p, q) → (p, q) is possible. We define
silent transitions as ones that do not change any state. The transition that is not silent is
said to be active.

From the definition of the two-way and the one-way protocols, it is obviously that the
one-way protocol is a special case of the two-way one. Thus the computational power
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of the one-way protocol is not stronger than the computational power of the two-way
one. More precisely, the one-way protocol is also correct for the two-way one, and an
unsolvable problem for the two-way protocol is still unsolvable for the one-way protocol.

Formally, a configuration C is an n-tuple (q1, q2, q3, · · · , qn) of states where each
entry qk corresponds to the state of the agent vk. The state of an agent vk at the con-
figuration C is denoted by C(vk). Letting C be a configuration, and r be a transition
that maps (p, q) to (p′, q′), we say that r is enabled in C if there exists an edge (vi, v j)
such that C(vi) = p and C(v j) = q. Then, we say that C can go to C′ via r, denoted by

C
r→ C′, if C′ is the configuration that is obtained by changing the states of vi and v j to

p′ and q′, respectively. We simply say that C can go to C′, denoted C → C′, if C
r→ C′

holds for some transition r. We define executions in population protocols as follows:

Definition 1 (Execution). Letting P = (Q, δ) be a protocol, an execution of P is an
infinite sequence of configurations and transitions C0, r0,C1, r1, · · · satisfying

1. for each i, ri is a transition of δ and Ci
ri→ Ci+1, i = 0, 1, · · · holds , and

2. ri is active for infinitely many i unless all the enabled transitions are silent.

Notice that the second condition ensures the progress of protocols (i.e., it excludes the
meaningless executions such that only silent transitions appear).

2.1 Fairness Assumption

Fairness is an assumption that restricts the behavior of systems. Formally, it is defined
as a constraint for executions. In this paper, we introduce the following fairness assump-
tions [11]:

Definition 2 (Global fairness assumption G). An execution E = C0, r0,C1, r1, · · · is
globally fair: for every C and C′ such that C → C′, if C = Ci for infinitely many i, then
Ci = C and Ci+1 = C′ for infinitely many i.

Intuitively, global fairness guarantees the possibility of the occurrence of any possi-
ble execution and thus it prevents the occurrence of livelock caused by some looped
execution.

By contrast to global fairness, the assumption called local fairness is usually used.
The local fairness only guarantees that each transition can be taken infinitely often is
actually taken infinitely often.

In addition to the above, we also define unfairness assumption U, which requires no
assumption to executions. Given a protocol P and a fairness assumption X ∈ {G,U}, we
define EX(P) be the set of all executions of P satisfying the fairness assumption X.

2.2 Self-stabilization, Legitimate Configurations

Self-Stabilizing protocols guarantee the convergence to their desired behavior starting
from any initial configuration. In this paper, we consider the self-stabilizing leader elec-
tion over populations, which requires that the system eventually reach a legitimate con-
figuration, where exactly one process keeps a special state, called leader state, and no
other leader state is generated in any following execution. Formally, the self-stabilizing
leader election problem is defined as follows:
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Definition 3 (Self-stabilizing leader election). A protocol P solves the self-stabilizing
leader election under the fairness assumption X if there is one special state s and any
execution E in EX(P) satisfies that there exist some i and vk such that for any j ≥ i and
h � k , C j(vk) = s and C j(vh) � s hold.

3 Impossibility of Self-stabilizing Leader Election Using n − 1
States

In this section, we will show that without the help ofΩ?, any self-stabilizing leader elec-
tion two-way protocol is impossible in a complete network graph under global fairness
using only distinct n − 1 states.

3.1 Difficulty of Proving Impossibility under Global Fairness

In this subsection, we explain why it is a quite nontrivial and difficult task to prove
impossibility under global fairness. We show that existing techniques used to prove the
impossibility do not work under the global fairness assumption.

Roughly speaking, most of existing impossibility proofs for SS-LE are roughly di-
vided into two types: One is the argument by illegal loop, and the other one is that by
partition. We explain the details for both of them:

Illegal loop argument: The key idea of the illegal loop argument is to find a looped
execution including a non-legitimate configuration. The infinite execution repeating the
loop never converges to legitimate configurations, which contradicts the self-
stabilization property. This kind of arguments is widely used in almost all areas of
distributed computation. However, it cannot be applied to prove the impossibility un-
der global fairness because the global fairness assumption does not allow the system
to periodically repeat the same behavior: If the system does such looped behavior, any
configuration in the loop appears infinitely often. Then, under global fairness, it is nec-
essarily guaranteed that the system could escape from the looped execution if there
exists a transition which can lead the system to exit from the looped execution.

Partition argument: Partition argument is the technique using the fact that it is difficult
to break a certain kind of symmetry. The basic idea of the partition argument is to divide
a given n-node interaction graph into two same subgraphs with size n/2 (in general, di-
vision to three or more subgraphs can be considered). By their symmetry, it is possible
to show the existence of the execution that converges to the configuration where the two
subgraphs independently and separately elect a leader respectively. Thus, it contradicts
the uniqueness of leaders. However, this argument can be applied only to the case of
uniform protocols because non-uniform protocols do not guarantee to elect one leader
in the divided subgraph (that is, it is not guaranteed that the protocol works correctly
on n/2 agents). Moreover, to make an execution where two subgraphs independently
elect a leader respectively, we have to prohibit the interactions between the two sub-
graphs. However, if some interaction is enabled on an edge that joints two subgraphs
infinitely often, it must occur necessarily under global fairness. We cannot eliminate the
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possibility that such interaction breaks the symmetry, and the system converges to the
legitimate configuration.

To circumvent the problems which the above two arguments hold, in the following
subsection, we newly introduce a proof technique based on closed sets. Intuitively, the
closed set argument finds a set of states such that the interactions between any pair of
two states in the set create no state out of the set. The key of our proof is to find a closed
set excluding the leader state and obtain a contradiction.

3.2 Impossibility Using n− 1 States

First, we introduce several notions necessary for the following proofs.
For convenience of the proof for the impossibility, we extend the definition of a

configuration. A configuration C is an n-tuple of states of agents or ⊥, where ⊥ is a
special value that masks the state of the corresponding agent. For example, C = (⊥
, q2, q3, · · · , qn) is also a configuration. The size of a configuration C is the number
of non-⊥ values appearing in C, and it is denoted by |C|. A subconfiguration C′ of a
configuration C is an n-tuple obtained by replacing several entries in C by ⊥. For ex-
ample, letting C = (a, b, d, e) be a configuration, C′1 = (a,⊥, d, e), C′2 = (⊥,⊥, d,⊥),
and C′3 = (⊥, b, d,⊥) are subconfigurations of C whose sizes are 3, 1, and 2, respec-
tively. In addition, C′2 is also a subconfiguration of C′1 and C′2 itself, but C′3 is not a
subconfiguration of C′1.

A trace is a sequence of transitions. We say a trace T = r1, r2, · · · , ri is applicable
to a configuration C0 if there exists a sequence of configurations C0,C1, · · · ,Ci such

that C0
r1→ C1

r2→ C2
r3→ · · · ri→ Ci. We define the length of a trace T as the number i

of transitions appearing in T . For a configuration C and a trace T applicable to C, we
define σT (C) as the configuration resulted by applying T to C. If C′ = σT (C) holds, we

often use the notation C
T→ C′.

A configuration C′ is reachable from a configuration C, denoted by C
∗→ C′, if there

exists a trace T such that C
T→ C′. We say a configuration C can generate state p, if

there is a configuration C′ that is reachable from C and contains p. See Figure 1. For
a set G of states, if a configuration C cannot generate any state in G, we say C cannot
generate G. Letting P = (Q, δ) be a population protocol, a subset G of Q is called a
closed set of P if for any transition r : (p, q)→ (p′, q′) in δ, p, q ∈ G implies p′, q′ ∈ G.

Fig. 1. A configuration C can generate state p
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We first show three fundamental lemmas obtained from the above definitions.

Lemma 1. Let C′ be a subconfiguration of C. If a trace T is applicable to C′, it is also
applicable to C, and σT (C′) is a subconfiguration of σT (C).

Proof. Let t be the length of T (i.e., the number of transitions appearing in T ). The
lemma is proved by the induction on the length of T .

(Basis) t = 1 : Let r : (p, q) → (p′, q′) be a transition appearing in T . Then, clearly,
if r is enabled in C′, it is also enabled in C. This implies that T is applicable to C. Let
u and v be the initiator and responder of the transition r, since both σT (C′) and σT (C)
are the configurations obtained from C′ and C by replacing the states of u and v by p′
and q′ respectively. Thus, σT (C′) is a subconfiguration of σT (C).

(Inductive Step): Suppose that the lemma holds for any trace with length t − 1 or
less. Then, we split the trace T into two traces T1 and T2 (T1 is a prefix of T and T2 is the
remaining part). Then, since the length of T1 is less than t, by the induction hypothesis,
we can conclude T1 is applicable to C and σT1 (C′) is a subconfiguration of σT1 (C). It
is clear that T2 is applicable to σT1 (C′) because T is applicable to C′. Thus, again by
the induction hypothesis, T2 (whose length is less than t) is applicable to σT1 (C) and
σT2 (σT1 (C′)) is a subconfiguration of σT2 (σT1(C)). This implies the lemma holds. ��

Lemma 2. If a configuration C cannot generate a set of states G, then for any config-

uration C′ such that C
∗→ C′, C′ cannot generate G.

Proof. Suppose for contradiction that C′ can generate a state p in G. Then, there exists a

configuration D such that C′
∗→ D and p ∈ D. Since C

∗→ C′ holds, we obtain C
∗→ D,

which contradicts the fact that C cannot generate G. ��

Lemma 3. If a configuration C cannot generate a set of states G, any subconfiguration
of C cannot generate G.

Proof. Suppose for contradiction that a subconfiguration C′ of C can generate a state
p in G. Then, there exists a trace T such that σT (C′) includes the state p. By Lemma
1, T is also applicable to C and σT (C′) is a subconfiguration of σT (C). This implies p
belongs to σT (C), which is contradiction. ��

The following lemmas are the keys of our impossibility result.

Lemma 4. Let G (|G| < n−1) be a set of states, and C (|C| > 0) be a configuration that
cannot generate G. Then, either of the following conditions holds:

1: The complement of G (denoted by Ḡ) is closed.
2: There exist a configuration C′ and a superset G′ of G such that |C| − 1 ≤ |C′| and
|G| + 1 = |G′| hold, and C′ cannot generate G′.

Proof. We prove this lemma by showing that the condition 2 necessarily holds if the
complement of G is not closed. Assuming that Ḡ is not closed, there exists a transition
r : (p, q)→ (p′, q′) such that p, q � G and at least one of p′ and q′ ∈ G (because if such
a transition does not exist, any interaction of two states in Ḡ results in two states in Ḡ,
which implies that Ḡ is closed). Then we consider the following two cases:
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1. One of p and q cannot be generated by C: Without loss of generality, we assume
that C cannot generate p. Then, C cannot generate {p} ∪ G. Therefore, we obtain
C′ = C and G′ = G ∪ {p} satisfying the condition 2.

2. Both of p and q can be generated by C: Since C can generate p, there exists a

configuration D such that C
∗→ D and p ∈ D. We consider the subconfiguration D′

that is obtained by replacing the entry of p in D by ⊥. Then, if we can show that
D′ cannot generate q, the lemma is proved by letting C′ = D′ and G = G ∪ {q}.
In the following, we show it actually holds: Suppose for contradiction that D′ can
generate q. Then, there exists a trace T that makes D′ reach a configuration with
q. By Lemma 1, T is also applicable to D, and σT (D) includes both p and q. This
implies that C can reach the configuration σT (D) that includes both p and q. Then,
It is clear that C can generate both p′ and q′ because the transition r is enabled in
the configuration σT (D). However, either of p′ or q′ belongs to G and thus it is
contradict to that C cannot generate G. ��

Lemma 5. Any self-stabilizing leader election protocol P has no closed set excluding
its leader state.

Proof. Suppose for contradiction that P has a closed set H which excludes its leader
state in P. Consider an initial configuration C whose states are all in H. Since H is
closed, so C can only generate the states in H. Because the leader state is not in H, C
cannot generate a leader state. This implies that any execution starting from C cannot
reach a configuration with leader. It is contradiction. ��
By using the above two lemmas, we can show the impossibility of self-stabilizing leader
election using only n − 1 states.

Theorem 1. There is no self-stabilizing leader election protocol that uses only n − 1
states.

Proof. We assume for contradiction that a self-stabilizing leader election protocol P
which uses only distinct n−1 states. The n−1 states of the protocol P are denoted by Q =
{s0, s1, s2, · · · , sn−2}, where s0 is the leader state. The set of all transitions constituting
P is denoted by δP.

Letting C be a legitimate configuration, that is, exactly one leader exists in it and
another leader is not newly created in any following execution. This implies that the
subconfiguration C′ which obtained by masking the leader state s0 in C cannot generate
the leader state s0. Thus, letting C0 = C′ and G0 = {s0}, C0 cannot generate G0, and
it holds that |C0| = n − 1 and |G0| = 1. By Lemma 5, there is no closed set excluding
s0 in P. Thus, the complement of G0 is not closed. Then, by Lemma 4, we can obtain
a configuration C1 and a superset G1 of G0 satisfying that |C1| ≥ |C0| − 1 = n − 2,
|G1| = |G0| + 1, and C1 cannot generate G1. Similarly, we can also obtain Ci+1 and Gi+1

from Ci and Gi by applying Lemma 4 repeatedly. Finally, after applying the lemma n−2
times, we have a configuration Cn−2 and a set Gn−2 satisfying |Cn−2| ≥ 1, |Gn−2| = n − 1
and Cn−2 cannot generate Gn−2. See Figure 2. Then, Gn−2 is equivalent to Q, and thus
Cn−2 cannot generate any state. However, Cn−2 is not empty, which implies a state sx

(0 ≤ x ≤ n − 2) in Cn−2 can be generated by Cn−2. This is contradiction. ��
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Fig. 2. Prove the theorem by contradiction

Since the one-way protocol is a special case of the two-way one, the impossibility re-
sult holds even for the one-way protocol. And any impossibility result for the two-way
protocol also holds in the one-way one.

Remarks 1. Noting that our proof does not request any constraint to the transition
function. That means the impossibility result also holds for a probabilistic protocol.
Thus, our impossibility result can be extended as follows: Without oracles, there is no
deterministic or probabilistic SS-LE protocol using only n − 1 states of memory even if
we assume global fairness.

4 Leader Election Protocol Using n States

In this section, we will show a self-stabilizing leader election one-way protocol which
uses distinct n states. The n states of the protocol are denoted by Q= {s0, s1, s2, · · · , sn−1},
where s0 is the leader state. The proposed protocol is quite simple: When two agents with
the same state interact, the responder will increment the subscript of its state (modulo n).
That is, when the state of the responder is si, it will changed to be si+1, i = 0, 1, · · · , n−2,
exceptionally, sn−1 will be changed to s0.

Protocol 1 (si, si)→ (si, s(i+1) mod n), (i = 0, 1, · · · , n − 1)

In what follows, we show that the above protocol correctly elects a unique leader. First,
we introduce several notions necessary for the proofs. Throughout this section, we use
another representation of each configuration C = (m0(C),m1(C), · · · ,mn−1(C)), where
mk(C) (0 ≤ k < n) is the number of agents having the state sk in C. We also define #0(C)
to be the number of mk(C) (k = 0, 1, · · · , n − 1) such that mk(C) = 0 holds.
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Lemma 6. A configuration C with #0(C) = 0 is a legitimate configuration.

Proof. From the definition of #0(C), we know #0(C) = 0 means: for every sk (k =
0, 1, · · · , n−1), there exists an agent whose state is sk in C. Because the number of agents
equals to the number of states, so the states of every agents are different. Therefore, in
any following execution, there is only one leader state s0 in the configuration and the
state of each agent will not be changed. ��
The correctness of the protocol is proved by the argument based on monotonically-
decreasing function, which is a standard technique for proving the correctness of self-
stabilizing protocols. We first define the distance between two states.

Definition 4 (Distance Function). For any configuration C, the distance dk, j(C) from
the state sk to s j is defined as follows:

dk, j(C) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 (m j(C) � 0 or k = j)
( j − k)(mk(C) − 1) (0 ≤ k < j)
( j + n − k)(mk(C) − 1) ( j < k ≤ n)

The total distance d j(C) of state s j in C is the sum of the distances from any state to s j,
that is, d j(C) = Σn−1

k=0 dk, j(C).

From the definition, a pair of different states (sk, s j) can have a non-zero distance only
if m j(C) = 0 and mk(C) > 1. That is, if the distance from sk to s j for a configuration
C is non-zero, no agent has the state s j and two or more agents necessarily have sk.
Then, the value dk, j(C) means how many interactions are necessary to create an agent
with the state s j from an agent having sk in C. The distance dk, j(C) is obtained by
multiplying the surplus number of agents having the state sk by such the necessary
number of interactions.

The following lemmas show that if the total distance of some state becomes zero, it
remains zero in any following execution.

Lemma 7. If mk(C) > 0 (0 ≤ k < n) holds in a configuration C, then mk(C′) > 0 in C′

holds for any configuration C′ such that C
∗→ C′.

Proof. Any active interaction of the Protocol 1 reduces the number of mk(C) by exactly
one for some k. In addition, to enable the interaction that reducing mk(C), it is necessary
that at least two agents have state sk. So no interaction reduces mk(C) from 1 to 0. This
implies that mk(C) never becomes zero after it becomes more than zero. ��

Lemma 8. Let E be any unfair execution of Protocol 1, (i.e., E ∈ EU(1)). If m j(C) = 0
holds for some j in a configuration C which appears in E, a configuration C′ such that
m j(C′) > 0 is reachable from C in E.

Proof. Clearly, in C′, the total distance of the state s j is zero. In addition, for any con-
figuration C′′, if m j(C′′) = 0, two or more agents have the same state in C′′, which
implies that as long as no agent has the state s j, some active interaction eventually
occurs (notice that it holds even under the unfairness assumption). Thus, it is suffi-
cient to show that any active interaction decreases the total distance of s j by one. Let
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two agents having state sk interact at a configuration C1, and C2 be the resultant con-
figuration of the interaction. Then, except for i = k, k + 1, di, j(C1) = di, j(C2) nec-
essarily holds because mi(C1) = mi(C2) holds for any i other than k and k + 1. In
addition, by the transition, the number of agents with sk decreases by one, and the num-
ber of agents with sk+1 increases by one. Thus, by simple calculation, we can obtain
dk, j(C1) + dk+1, j(C1) = dk, j(C2) + dk+1, j(C2) + 1. This implies that d j(C1) = d j(C2) + 1
holds, which means any active interaction decreases the total distance of s j by one and
eventually m j(C) will increase from 0 to 1. ��
By the above two lemmas, we know that if m j(C) = 0, eventually there exists a config-
uration C′ which is reachable from C such that m j(C′) > 0. And there is no execution
can reduce m j(C) > 0 to 0. Because the number of agents is the same as the number of
distinct states, so we can show the following corollary.

Corollary 1. For any execution E = C0, r0,C1, r1,C2, · · · ∈ EU(1), there exists i such
that #0(C j) = 0 holds for any j ≥ i.

Corollary 1 and Lemma 6 directly imply the correctness of the protocol, and we can get
the following theorem.

Theorem 2. Protocol 1 is a self-stabilizing leader election one-way protocol working
correctly under the unfairness assumption, and an arbitrary configuration converges to
a legitimate configuration in Θ(n2) active interactions.

5 No Single Protocol for Complete Graphs with Difference Sizes

In Section 4, we give a protocol using n states to solve the self-stabilizing leader election
in a complete graph of size n. In this section, we will show that there does not exist
any single protocol to solve the self-stabilizing leader election in complete graphs with
different sizes.

Theorem 3. LettingB be a protocol which can solve the self-stabilizing leader election
in complete graphs with size n, then B cannot work correctly in complete graphs with
size n − 1.

Proof. Consider the legitimate configuration C of a complete graph with size n. Since a
new leader will not be created, so the subconfiguration D which obtained by masking
the leader state in C where |D| = n − 1, cannot generate the leader state. So consider an
initial configuration C′ = D − {⊥} (a configuration of a complete graph with size n − 1
and whose entries are the non-⊥ entries in D), from which the leader state will not be
generated when using protocolB. Noting that C′ is an initial configuration of a complete
graph with size n−1, and from such the initial configuration, the legitimate configuration
will never be reached. Hence, B cannot elect a leader correctly in complete graphs with
size n − 1. ��
The above theorem also shows that even the upper bound for n is not sufficient knowl-
edge to realize any SS-LE protocol.
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6 Conclusion

In this paper, we have shown the necessary and sufficient conditions to the solvability of
the SS-LE in population protocols having no oracles and of complete interaction graphs.
The conditions are characterized by local memory space and fairness assumptions. To
prove the impossibility under global fairness, we introduce a new proof technique using
closed sets.
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topological implications remain unclear). The dynamic properties highlighted in
such a way make the fair comparison of algorithm requirements rather compli-
cated and often ambiguous.

Our work aims at providing general formalisms and methods for studying fun-
damental properties of dynamic networks, and more particularly their impact on
distributed systems. As an illustrative example, let us consider the broadcast-
ing of an information within the dynamic network depicted by Figure 1. The
possibility to complete the broadcast in this scenario clearly depends on which
node is the initial emitter: a and b may succeed, while c cannot. Why? How
can we formulate this intuitive property that the topology evolution must have
with regard to the emitter and other nodes? How can we formally prove it as a
necessary condition to obtain broadcast completion? While rather simple, such
a characterization might be difficult to obtain with usual graph formalisms and
computation models.

a b c a b c a b c

beginning movement end

Fig. 1. A basic dynamic scenario, where a node (b) moves during the execution

This paper introduces a theoretical framework dedicated to such kind of anal-
yses. This framework is intended to serve as a general basis for studying fun-
damental properties of distributed algorithms in dynamic networks. Contrary
to the work in [AAD+06], where the authors first make a strong topological
assumption (all pairs of nodes repeatedly meet during the execution) and then
characterize the solvable problems in this context, we consider the exact opposite
approach by studying, for a given solution (i.e., algorithm), the necessary and/or
sufficient conditions it requires on the topology. To the best of our knowledge,
this is the first attempt in such a direction.

The strength of the proposed framework lies in its basic components, which
are an appropriate combinatorial model to represent dynamic topologies (evolv-
ing graphs [Fer04]), and a very high-level interaction model to describe dis-
tributed operations (local computations, with the associated formalism of graph
relabellings [LMS99]). The next section is devoted to the presentation of these
existing components. In Section 3 we combine them to set up the new anal-
ysis framework. This framework is then applied in Section 4 to the analysis
of three basic algorithms (one propagation and two enumeration algorithms),
whose intuitively apparent properties are here formally characterized. Based on
the analysis results, Section 5 shows how algorithms can be compared on the
basis of their topological requirements, and reciprocally how dynamic networks
can be classified according to the algorithms they support. Finally, we discuss
the possibility to check automatically the inclusion of a given network trace to
one of the classes. Section 6 concludes with some avenues for further research.
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2 Related Work

We describe here the formalisms and theoretical tools that compose the proposed
analysis framework: Local Computations to abstract the communication model,
Graph Relabelling Systems to describe local computation algorithms, and Evolv-
ing Graphs to express properties on dynamic topologies. Their comprehension
is required to ensure a clear understanding of the following sections, where they
are combined together.

2.1 Abstracting Communications through Local Computations and
Graph Relabellings

Distributed algorithms can be expressed using a variety of communication mod-
els (e.g. mailbox, shared memory, and message passing). Whereas a vast major-
ity of algorithms is designed in one of these models (predominantly the message
passing model), the very fact that one of them is chosen implies that the obtained
results (e.g. positive or negative characterizations and associated proofs) are lim-
ited to the scope of this model. This problem of diversity among formalisms and
results, already pointed out twenty years ago in [Lyn89], led researchers to con-
sider higher abstractions when studying fundamental properties of distributed
systems.

Local computations and Graph relabellings were jointly proposed in this per-
spective in [LMS99]. These theoretical tools allow to represent a distributed
algorithm as a set of local interaction rules that are independent from the effec-
tive communications. Within the formalism of graph relabellings, the network is
represented by graph whose vertices and edges are associated with labels that
represent the algorithmic state of the corresponding nodes and links. An interac-
tion rule is then defined as a transition pattern (preconditions, actions), where
preconditions and actions relate to the label values. Since these interactions are
local, each transition pattern must involve a limited and connected subset of
vertices and edges. Figure 2 shows different scopes for the transition patterns,
which are not necessarily the same for preconditions and actions.

More formally, let the network topology be represented by a finite undirected
loopless graph G = (VG, EG), with VG representing the set of nodes and EG

(a) (b) (c) (d)

Fig. 2. Different powers of local computations; the scope of preconditions is depicted
in white (on left sides), while the scope of actions is depicted in black (on right sides).
The dashed elements represent entities (vertices or edges) that are considered by pre-
conditions but remain unaffected by actions. The reader is referred to [CMZ06] for a
comparative study of some of these models.
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representing the set of communication links between them. Two vertices u and
v are said neighbors if and only if they share a common edge {u, v} in EG. Let
λ : VG ∪ EG → L∗ be a mapping that associates every vertex and edge from G
with one or several labels from an alphabet L (which denotes all the possible
states these elements can take). The state of a given vertex v, resp. edge e, at
a given time t is thus denoted by λt(v), resp. λt(e). The whole labelled graph is
represented by the pair (G, λ), noted G.

According to [LMS99], a complete algorithm can be given by a triplet {L, I, P},
where I is the set of initial states, and P is a set of relabelling rules (transition
patterns) representing the distributed interactions. The Algorithm 1 below (A1
for short), gives the example of a one-rule algorithm that represents the general
broadcasting scheme discussed in the introduction. We assume here that the label
I (resp. N) stands for the state informed (resp. non-informed). Propagating
the information thus consists in repeating this single rule, starting from the
emitter vertex, until all vertices are labelled I.1

Algorithm 1. A propagation algorithm coded by a single relabelling rule (r1).
initial states: {I, N} (I for the initial emitter, N for all other vertices)

alphabet: {I, N}

preconditions(r1): λ(v0) = I ∧ λ(v1) = N

actions(r1): λ(v1) := I

graphical notation :

I N I I

Remark 1. Although the three algorithm examples provided in this paper con-
sider pairwise interactions (and more specifically the model depicted on Fig-
ure 2(c)), the concepts and discussions developed in Sections 3 and 5 are not
dedicated to it. Note that models such as those of Fig. 2(b) and 2(b) reflect well
a wireless computing environment where nodes update their states according to
those of their neighbors.

Regarding the organization of collaborations between nodes, it is important to
note that the algorithm specification does not stipulate how the nodes must
collaborate, i.e., the way they select each other to perform a common compu-
tation step. From the abstraction level of local computations, this underlying
synchronization is seen as an implementation choice, which implies that local
computation algorithms may not be deterministic at this level. As discussed
later on, characterizing sufficient conditions will require additional assumptions
on this underlying layer (which is not the case for necessary conditions).

2.2 Expressing Dynamic Network Properties Using Evolving
Graphs

In a different context, evolving graphs [Fer04] have been proposed as a combi-
natorial model for dynamic networks. The initial purpose of this model was to
1 Detecting such a final state is not part of the given algorithm. The reader interested

in termination detection as a distributed problem is referred to [GMMS02].
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provide a suitable representation of fixed schedule dynamic networks (FSDNs),
in order to compute optimized communication schemes such as shortest, fastest
and foremost paths. In such a context, the evolution of the network was known
beforehand. In the present work, we propose to use evolving graphs for a differ-
ent purpose, namely to express topological properties in dynamic networks. It is
important to keep in mind that the analyzed algorithms are never supposed to
know the evolution of the network ahead of time.

An evolving graph is a structure in which the changing connectivity of a dy-
namic network is recorded (see Figure 3). More formally, let ST = t0, t1, ..., tn
be a sequence of dates in T (usually R+). Except for t0 and tn, all these
dates correspond to a topological event that modifies the network. Let SG =
G0, G1, ..., Gn−1 be the corresponding sequence of graphs, with each Gi the graph
corresponding to the period [ti, ti+1[. Finally, let us denote by G (alone) the union
graph of all Gi, called the underlying graph. Then the triplet G = (G,SG,ST)
is the corresponding evolving graph. As shown in Figure 3, this graph can be
represented by the underlying graph G whose edges and vertices (only edges
here) are associated with their presence interval indices. Henceforth, we will use
the notations VG and EG to denote V (G) and E(G), the sets of all vertices and
edges that exist at some point of the network life. Note that whereas used as
undirected in this paper, evolving graphs were initially introduced as directed,
and considered also bandwidth restrictions on edges, which is not used here.

Further definitions on evolving graphs (given an evolving graph G = (G,SG,ST)).
Predecessor of a date: for any date d in T[ti,ti+1[, with ti, ti+1 ∈ ST, we say that
ti is the predecessor of d in ST, and we note pred(d) = ti.
Journey: given a sequence of couples J = {(e1, σ1), ..., (ei, σi), ..., (ek, σk)} com-
posed of edges from EG and dates from the continuous domain T, J is called
a journey if and only if σ1, σ2, ..., σk is non-decreasing and for all i in 1..k,
ei ∈ E(Gpred(σi)), that is, the edge ei exists at time σi. Less formally, a journey

period t0 → t1 period t1 → t2 period t2 → t3 period t3 → t4
a

b

c

d

e a

b

c

d

e a

b

c

d

e a

b

c

d

e

G0 G1 G2 G3

↓ corresponding evolving graph (graphical representation) ↓

a

b

c

d

e

1
, 2

0

2,
3

0

0,
1

0, 1, 2

2, 3

G =

Fig. 3. Example of an evolving graph covering a period of time from t0 to t4
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can be thought of as a path over-time from one vertex to another. A journey
from a vertex u to a vertex v is noted J(u,v).
Discrete Journey: a discrete journey is a journey so that every date of the
sequence σ1, ..., σk is in ST, instead of T. It allows to represent in a single entity all
the possible journeys occurring on the same sequence of edges during the same
sequence of intervals. This also allows to consider such entities as subgraphs
of the evolving graph G, and to note J ⊆ G. The point is that every normal
journey {(e1, σ1), ..., (ei, σi), ..., (ek, σk)} can be associated with a discrete journey
{(e1, pred(σ1)), ..., (ei, pred(σi)), ..., (ek, pred(σk))} ⊆ G, and every discrete journey
implies an infinity of normal journeys for the corresponding edges and intervals.
Strictness of a discrete journey: a discrete journey is said strict, noted Jstrict,
if its sequence of dates σ1, σ2, ..., σk is strictly increasing.

To give a few examples on the graph of Figure 3,
-J(a,e)={(ac, σ1 ∈ [t0, t1[), (ce, σ2 ∈ [t2, t3[)} is a normal journey from a to e ;
-Jstrict(a,e)={(ac, 0), (ce, 2)} is a discrete (and strict) journey from a to e ;
-J(a,e)={(ac, 0), (cd, 0), (de, 3)} is a discrete (non-strict) journey from a to e ;
-Jstrict(a,e)={(ac, 0), (cd, 1), (de, 3)} is a discrete (and strict) journey from a to e.

Note that journeys are naturally oriented, in the sense that a journey from
one vertex to another does not imply the existence of a journey in the reverse
direction (e.g. from e to a). From this point on, unless said explicitly, we will
only consider discrete journeys, and denote them by the sole term journey.

3 The Proposed Analysis Framework

As a recall of the previous section, the algorithmic state of the network is given
by a labelling on the corresponding graph G, then noted G. As another recall,
we denote by Gi the graph covering the period [ti, ti+1[ in the evolving graph
G = (G,SG,ST), with Gi ∈ SG and ti, ti+1 ∈ ST . Note that the notation G was
used here with two different meanings: the first as the generic letter to represent
the network, the second to denote the underlying graph of G. Both notations are
kept in the following, while preventing the text from ambiguities.

3.1 Putting the Pieces Together: Relabellings over Evolving Graphs

For an evolving graph G = (G,SG,ST) and a given date index i | ti ∈ ST, we
denote by Gi the labelled graph (Gi, λti+ε) representing the network state just
after the topological event of date ti, and by Gi[ the labelled graph (Gi−1, λti−ε)
representing the network state just before it. We note,

Eventti(Gi[) = Gi .

A number of distributed operations can occur between two consecutive events.
Hence, for a given algorithm A and two consecutive dates ti, ti+1 ∈ ST , we
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time

start

t0

G0 G1[

R[t0,t1[

︷ ︸︸ ︷G0

Evt1

t1

G1 G2[

R[t1,t2[

︷ ︸︸ ︷G1

Evt2

t2

Evtlast−1

tlast−1

Glast−1 Glast[

R[tlast−1,tlast[

︷ ︸︸ ︷Gtlast−1

end

tlast

. . .

. . .

Fig. 4. Graph Relabellings and Evolving Graphs - Combined formalism

denote by RA[ti,ti+1[ the relabelling sequence induced by A on the graph Gi

during the period [ti, ti+1[, and have,

RA[ti,ti+1[(Gi) = Gi+1[ .

For the sake of simplicity, we authorize the notation ri(u, v) ∈ RA[t,t′ [ to denote
the fact that a rule ri is applied on the edge (u, v) during [t, t′[. A complete exe-
cution sequence from t0 to tlast is given by an alternated sequence of relabelling
steps and topological events, noted,

X=RA[tlast−1,tlast[◦Eventtlast−1
◦..◦Eventti

◦RA[ti−1,ti[
◦..◦Eventt1

◦RA[t0,t1[(G0)

The combined formalism is summed up on Figure 4. As mentioned at the end
of Section 2.1, the execution of a local computation algorithm is not necessarily
deterministic, and may depend on the way nodes select one another at a lower
level. Hence, we denote by XA/G the set of all possible execution sequences of
an algorithm A over an evolving graph G.

3.2 Characterizing the Topological Assumptions of an Algorithm

Below are some proposed methods and additional concepts to characterize the
requirement of an algorithm in terms of topology dynamics. More precisely,
we use the new combined formalism to define the notions of topology-related
necessary and sufficient conditions, and discuss how they can be proved.

Objectives of an algorithm. Given an algorithm A and a labelled graph G,
the state one desires to reach can be given by a logic formula P on the labels
of vertices and/or edges. In the case of the propagation scheme (Algorithm 1
Section 2.1), this could be that all nodes are informed,

P1(G) = ∀v ∈ V (G), λ(v) = I ,

Now, if the objective (noted O) is to reach such state at some point, then it can
be simply expressed as P to be satisfied on the very last labelled graph of G (e.g.
OA1 = P1(Glast) in the example). Whereas not covered in the examples, one
could also consider algorithms whose objectives are to maintain a state (e.g. self-
stabilizing algorithms), and express it for example as OA = ∀Gi ∈ SG,P(Gi+1[).
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Necessary conditions. Given an algorithmA, its objective OA, an evolving graph
G and an evolving graph property CN . The property CN is a (topology-related)
necessary condition for OA if and only if

∀G,¬CN (G) =⇒ ¬OA

Proving this result comes to prove that ∀G,¬ CN (G) =⇒ �X ∈ XA/G | P(Glast).

Sufficient conditions. Symmetrically, an evolving graph property CS is a (topology-
related) sufficient condition forA if and only if

∀G, CS(G) =⇒ OA

Proving this result comes to prove that ∀G, CS(G) =⇒ ∀X ∈ XA/G ,P(Glast).

Discussion. No topology of any kind can guarantee, alone, that the nodes will
effectively communicate and collaborate with each other. Hence, the characteri-
zation of any sufficient condition necessarily requires to make additional assump-
tions on the collaboration of nodes. We propose below a generic such assumption
for the pairwise interaction model (depicted on Figure 2(c)). This assumption
may or may not be considered as realistic depending on the expected rate of
topological changes.

Progression Hypothesis 1 (PH1). For every given time interval [ti, ti+1[, with
ti in S\{tlast}

T
, every vertex will be able to apply at least one relabelling rule with

each of its neighbors, provided the rule preconditions are already satisfied at time
ti (and still satisfied at the time the rule is applied).

4 First Applications of the Proposed Framework

This section illustrates the proposed framework by the analysis of three basic
algorithms, namely the propagation algorithm previously given, and two enumer-
ation algorithms (one centralized, the other decentralized). The results obtained
here are used in the next section to highlight some implications of this work.

4.1 Analysis of the Propagation Algorithm

We want to prove that the existence of a journey (resp. strict journey) between
the emitter and every other node is a necessary (resp. sufficient) condition to
achieve OA1 (complete the propagation). The point here is to show how these
intuitive conditions can be formally established.

Condition 1. ∀v ∈ V
\{emitter}
G ,∃J(emitter,v) ⊆ G

(It exists a journey between the emitter and every other vertex).

Lemma 1. ∀v ∈ VG | λt0(v) = N,∀σ ∈ T[t0,tlast[, λσ(v) = I =⇒ ∃u ∈ V
\{v}
G , σ′ ∈

T[t0,σ[ | λσ′(u) = I,∃J(u,v) ⊆ G
(If a non-emitter vertex has the information at some point, it implies the existence of
an incoming journey from a vertex that had the information before)
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Proof. ∀v ∈ VG | λt0(v) = N,∀σ ∈ T[t0,tlast[, (λσ(v) = I =⇒ ∃v′ ∈ V
\v
G | r1(v′,v) ∈

RA1[t0,σ[) (If a non-emitter vertex has the information at some point, then it has
applied rule r1 with another vertex)
=⇒ ∃v′ ∈ V

\v
G , σ′ ∈ T[t0,σ[ | λσ′(v′) = I, (v′, v) ∈ E(Gpred(σ′))

(An edge existed at a previous date between this vertex and a vertex labelled I)
By repetition, =⇒ ∃v′′ ∈ V

\v
G , σ′′ ∈ T[t0,σ[ | λσ′′(v′′) = I,∃J(v′′,v) ⊆ G

(A journey existed from a node that had the information to the considered node) �

Proposition 1. Condition 1 (C1) is a necessary condition on G to allow Algorithm 1
(A1) to reach its objective OA1 .

Proof. (using Lemma 1). Following from Lemma 1 and the initial states (I for the
emitter, N for all other vertices), we have OA1 =⇒ C1, and then ¬C1 =⇒ ¬OA1 �

Condition 2. ∀v ∈ V
\{emitter}
G ,∃Jstrict(emitter,v) ⊆ G

Proposition 2. Assuming the progression hypothesis (PH1, defined in the previous
section), Condition 2 (C2) is sufficient on G to guarantee that A1 will reach OA1 .

Proof. (1): By PH1, ∀ti ∈ S\(tlast)
T

,∀(u, u′) ∈ E(Gi),(λti(u) = I =⇒ λti+1(u
′) = I)

By iteration on (1): ∀u, v ∈ VG, (∃Jstrict(u,v) ⊆ G) =⇒ (λt0(u)=I =⇒ λtlast(v)=I)
Now, because λt0(emitter) = I , we have C2(G) =⇒ ∀X ∈ XA/G ,P1(Glast) �

4.2 Analysis of a Centralized Enumeration Algorithm

Like the propagation algorithm, the distributed algorithm presented below as-
sumes that one distinguished vertex is given a different initial state. This vertex,
called the counter, is in charge of counting all the vertices it meets during the
execution (its successive neighbors in the changing topology). Hence, the counter
vertex has two labels (C, i), meaning that it is the counter (C), and that it has
already counted i vertices (initially 1, i.e., itself). The other vertices are labelled
either F or N , depending on whether they have already been counted or not,
respectively. The counting rule is given by r1 in Algorithm 2, below.

Algorithm 2. Enumeration algorithm with a pre-selected counter.

initial states: {(C, 1), N} ((C, 1) for the counter, N for all other vertices)
alphabet: {C, N, F, N∗}
rule r1:

C, i N C, i + 1 F

Objective of the algorithm. Under the assumption of a fixed number of vertices,
the algorithm reaches the desired state when all vertices are counted, which
corresponds to the fact that no more vertices are labelled N :

P2 = ∀v ∈ V (G), λ(v) �= N
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The objective of Algorithm 2 is then to satisfy this property at the end of the
execution (OA2 = P2(Glast)). We want to prove here that the existence of an
edge at some point of the execution between the counter node and every other
node is a necessary and sufficient condition.

Condition 3. ∀v ∈ V
\{counter}
G ,∃ti ∈ ST | (counter, v) ∈ E(Gi), or equivalently with

the notion of underlying graph, ∀v ∈ V
\{counter}
G , (counter, v) ∈ EG

Proposition 3. For a given evolving graph G representing the topological evolutions
that take place during the execution of A2, Condition 3 (C3) is a necessary condition
on G to allow A2 to reach its objective OA2 .

Proof. ¬C3(G) =⇒ ∃v ∈ V
\{counter}
G | (counter, v) /∈ E(G)

=⇒ ∃v ∈ V
\{counter}
G | ∀ti ∈ S\{tlast}

T
, r1(counter, v) /∈ RA2[ti,ti+1[

=⇒ ∃v ∈ V
\{counter}
G | ∀X ∈ XA2/G, λtlast(v) = N

=⇒ �X ∈ XA2/G | P2(Glast) =⇒ ¬OA2 �

Proposition 4. Assuming the progression hypothesis (PH1), C3 is also a sufficient
condition on G to guarantee that A2 will reach its objective OA2 .

Proof. C3(G) =⇒ ∀v ∈ V
\{counter}
G ,∃ti ∈ ST | (counter, v) ∈ E(Gi)

by PH1, =⇒ ∀v ∈ V
\{counter}
G ,∃ti ∈ ST | r1(counter, v) ∈ RA2[ti,ti+1[

=⇒ ∀v ∈ V
\{counter}
G , λtlast(v) �= N

=⇒ ∀X ∈ XA2/G,P2(Glast) =⇒ OA2 �

4.3 Analysis of a Decentralized Enumeration Algorithm

Contrary to the previous algorithm, Algorithm 3 below does not require a dis-
tinguished initial state for any vertex. Indeed, all vertices are initialized with the
same labels (C, 1), meaning that they are all initially counters that have already
included themselves into the count. Then, depending on the topological evolu-
tions, the counters opportunistically merge by pairs (rule r1) in Algorithm A3.
In the optimal case, at the end of the execution, only one node remains labelled
C and its second label gives the total number of vertices in the graph. A similar
counting principle has been used in [AAD+06] to monitor a flock of birds for
fever, with the role of counters being played by sensors that have measured a
high temperature level.

Algorithm 3. Decentralized enumeration algorithm.

initial states: {(C, 1)} (for all vertices); alphabet: {C, F, N∗}
rule r1:

C, i C, j C, i + j F
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Objective of the algorithm. Under the assumption of a fixed number of
vertices, this algorithm reaches the desired state when exactly one vertex remains
labelled C:

P3 = ∃u ∈ VG | ∀v ∈ V
\{u}
G , λ(u) = C, λ(v) �= C, and OA3 = P3(Glast)

For the sake of simplicity, we introduce one additional definition: the destination
set of a vertex v in an evolving graph G is the set of all the vertices that can be
reached from v by a journey, noted DestG(v). Note that v ∈ DestG(v) through
an empty journey. We want to prove here that the existence of a journey from
every vertex to at least one common destination vertex is a necessary condition
for this algorithm.

Condition 4. ∃v ∈ VG | ∀u ∈ VG , v ∈ DestG(u)

Lemma 2. ∀u ∈ VG | λti(u) = C,∃u′ ∈ DestG(u) | λtj≥i
(u′) = C

(Whatever the C-labelled vertex considered at some point, there will be at a later point
of the execution at least one vertex labelled C among its destination vertices)

Proof. (by contradiction). The application of r1 is the only operation that can suppress
a counter, while preserving the other counter in the pair. If Lemma 2 was false, then
it would imply either that both counters have been discarded by r1 at some point, or
that the relabelling sequence has occurred from a C-labelled vertex towards a vertex
that is outside of its destination set. Both are impossible. �

Proposition 5. Condition 4 (C4) is necessary for A3 to reach its objective OA3 .

Proof. (using Lemma 2). ¬C4(G) =⇒ �v ∈ VG | ∀u ∈ VG , v ∈ DestG(u)
(no vertices are destination for all the others).
=⇒ ∀v ∈ VG | λtlast(v) = C,∃u ∈ VG | v /∈ DestG(u)
(Whatever the final counter, there is a vertex that could not reach it by a journey).
Now, thanks to Lemma 2, =⇒ ∀v ∈ VG | λtlast(v) = C,∃v′ ∈ V

\{v}
G | λtlast(v

′) = C
(There are at least two final counters).
=⇒ ¬P3(Glast) =⇒ ¬OA3 �

The characterization of a sufficient condition for A3 is left open. We believe such
a condition exists, but would be satisfied on a very few specific graphs.

5 Applications of the Analysis Results

This section presents some applications of the new framework. In particular, we
show how the previously characterized conditions can be used to define evolving
graph classes, some of which are included in others. This leads to a de facto
classification of dynamic networks according to the algorithms they support.
The relations between classes can be used in turn to compare algorithms on the
basis of their topological requirements. Finally, we propose a method to check a
given network trace for inclusion in each introduced class.
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5.1 From Conditions to Graph Classes

From C1 = ∀v ∈ V
\{emitter}
G ,∃J(emitter,v) ⊆ G, we derive two classes of evolving

graphs. F1 is the class in which at least one vertex can reach all the others
by a journey. If an evolving graph does not belong to this class, then there is
no chance for A1 to succeed whatever the initial emitter. F2 is the class where
every vertex can reach all the others by a journey. If an evolving graph does not
belong to this class, then at least one vertex, if chosen as an initial emitter, is
guaranteed to fail to inform all the others using A1.

From C2 = ∀v ∈ V
\{emitter}
G ,∃Jstrict(emitter,v) ⊆ G, we derive two classes of

evolving graphs. F3 is the class in which at least one vertex can reach all the
others by a strict journey. If an evolving graph belongs to this class, then there is
at least one vertex that could, for sure, inform all the others using A1 (assuming
the progression hypothesis). F4 is the class of evolving graphs in which every
vertex can reach all the others by a strict journey. If an evolving graph belongs
to this class, then the success of A1 is guaranteed for any vertex as initial emitter
(again, if the progression hypothesis is assumed).

From C3 = ∀v ∈ V
\{counter}
G , (counter, v) ∈ EG, we derive two classes of graphs.

F5 is the class of evolving graphs in which at least one vertex shares, at some
point of the execution, an edge with every other vertex. If an evolving graph does
not belong to this class, then there is no chance of success for A2, whatever the
vertex chosen for counter. Here, if we assume the progression hypothesis, then
F5 is also a class in which the success of the algorithm can be guaranteed for
one specific vertex as counter. F6 is the class of evolving graphs in which every
vertex shares an edge with every other vertex at some point of the execution.
If an evolving graph does not belong to this class, then there exists at least one
vertex for which, if it is chosen as the counter, the failure of A2 is guaranteed.
Again, if we consider the progression hypothesis, then F6 becomes a class in
which the success is guaranteed whatever the counter.

Finally, from C4 = ∃v ∈ VG | ∀u ∈ VG , v ∈ DestG(u), we derive the class F7,
which is the class of graphs such that at least one vertex can be reached from
all the others by a journey. If a graph does not belong to this class, then there
is absolutely no chance of success for A3.

5.2 Relations between Classes

Since all implies at least one, we have: F2 ⊆ F1, F4 ⊆ F3, and F6 ⊆ F5. Since a
strict journey is a journey, we have: F3 ⊆ F1, and F4 ⊆ F2. Since an edge is a
(strict) journey, we have: F5 ⊆ F3, F6 ⊆ F4, and F5 ⊆ F7. Finally, the existence
of a journey between all pairs of vertices (F2) implies that each vertex can be
reached by all the others, which implies in turn that at least one vertex can be
reach by all the others (F7). We then have: F2 ⊆ F7. Although we have used here
a non-strict inclusion (⊆), the inclusions described above are strict (⊂). This can
be easily proved by finding for each inclusion a graph that belongs to the parent
class but is outside the child class. Figure 5 summarizes all these relations.
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F1 : ∃u ∈ VG | ∀v ∈ V
\{u}
G , ∃J(u,v) ⊆ G

F2 : ∀u, v ∈ VG ,∃J(u,v) ⊆ G
F3 : ∃u ∈ VG | ∀v ∈ V

\{u}
G , ∃Jstrict(u,v) ⊆ G

F4 : ∀u, v ∈ VG ,∃Jstrict(u,v) ⊆ G
F5 : ∃u ∈ VG | ∀v ∈ V

\{u}
G , (u, v) ∈ EG

F6 : ∀u, v ∈ VG , (u, v) ∈ EG
F7 : ∃u ∈ VG | ∀v ∈ V

\{u}
G , u ∈ DestG(v)

F6 F4

F5

F2

F3

F7

F1

Fig. 5. A first classification of dynamic networks, based on evolving graph properties
that result from the analysis of three distributed algorithms (arrows denote inclusion)

5.3 Comparison of Algorithms According to Topological
Assumptions

Let us consider the two enumeration algorithms given in Section 4. To have any
chance of success, A2 requires the evolving graph to be in F5 (and a fortunate
choice of counter) or in F6 (for possibly any vertex as counter). On the other
hand, A3 requires the evolving graph to be in F7. Now, both classes F5 (directly)
and F6 (transitively) are included in F7. As a consequence, there are some topo-
logical scenarios (i.e., G ∈ F7

\F5) for which A2 has no chance of success, while
A3 has some. Such observation allows to claim that A3 is more general than A2
with respect to its topological requirements. Hence, two algorithms can be fairly
(and formally) compared on the basis of their topological requirements. In the
particular case of these two enumeration algorithms, however, the claim could
be balanced by the fact that a sufficient condition is known for A2, while no one
is known for A3. The choice for the right algorithm may thus depend on the
target mobility context: if this context is expected to induce topological scenar-
ios in F5 or F6, then A2 could be preferred, otherwise A3 should be considered.
More generally, it is however important to realize that a large gap may exist be-
tween necessary and sufficient topology-related conditions, and other topological
properties (resp. evolving graph classes) could offer intermediate probabilities of
success, which was not investigated for the given algorithms in this initial work.

5.4 Checking Network Traces for Inclusion in the Classes

We consider here the problem of checking automatically whether a given evolving
graph belongs to one of the classes listed before. While having potentially a large
scope of applications, this could allow in particular to help decide which algo-
rithm is relevant to a given mobility context, by checking how the corresponding
topological traces distribute over the classes. Below is a sketch of solution for
each class met so far. The point is that all solutions can rely on common static
graph properties, provided a few transformations. The transitive closure of an
evolving graph G is the graph H = (V, AH), where AH = {(vi, vj) : ∃J(vi,vj) ⊆ G)}.
A transitive closure is by nature a directed graph, as illustrated in Figure 6,
since journeys are oriented entities. As explained in [BF03], the computation
of transitive closures can be done efficiently (in O(|VG |.|EG |.(log|ST|.log|VG |)), by
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Fig. 6. Example of transitive closure of an evolving graph

building the tree of shortest journeys for each node in the network. We ex-
tend this notion to the case of strict journeys, with Hstrict = (V, AHstrict), where
AHstrict = {(vi, vj) : ∃Jstrict(vi,vj) ⊆ G)}.

Given an evolving graph G, its underlying graph G, its transitive closure H ,
and the transitive closure of its strict journeys Hstrict, the inclusion of G in each
class can be checked as follows:

– G ∈ F1 ⇐⇒ H contains an out-dominating set of size 1.
– G ∈ F2 ⇐⇒ H is a complete graph.
– G ∈ F3 ⇐⇒ Hstrict contains an out-dominating set of size 1.
– G ∈ F4 ⇐⇒ Hstrict is a complete graph.
– G ∈ F5 ⇐⇒ G contains a dominating set of size 1.
– G ∈ F6 ⇐⇒ G is a complete graph.
– G ∈ F7 ⇐⇒ H contains an in-dominating set of size 1.

We expect most of the future classes to be possibly checked with similar ap-
proaches. This is however not a certainty.

6 Conclusion

This paper introduced a set of tools and methods dedicated to the analysis
of distributed algorithms in dynamic networks. This new framework allows to
characterize assumptions that a given algorithm requires in terms of topological
evolution during its execution. It was illustrated by the analysis of three basic
algorithms, and the analysis results were used to highlight potential implications
of this work, including the possibility to compare algorithms on the basis of
their topological requirements, and a sketch of classification of dynamic networks
according to the corresponding properties. The problem of checking whether a
given evolving graph belongs to the introduced classes was finally discussed.

Analyzing the requirement of algorithms is not a novel approach. It appears
however that no proper transposition was previously done in the context of
dynamic networks, where the usual practice is to liken dynamic topologies to
static graphs. This is particularly striking in the recent field of population pro-
tocols [AAER07], where a common assumption is that all pairs of nodes interact
repeatedly. In the light of the classification shown is this paper, such scenar-
ios actually represent a subset of the most specific class among those discussed
(namely, F6). We think the framework proposed here could help characterize
weaker assumptions for most population protocols.
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The algorithms studied in this paper are simple. An interesting question for
further research is whether the framework will scale to more complex algorithms,
which remains unclear at this stage. We hope it could suit the study of common
problems such as electing, naming, or building spanning structures (note that
electing and naming may not have identical assumptions in a dynamic context).
Another prospect is to investigate how intermediate properties could be explored
between necessary and sufficient conditions, for example to guarantee a desired
probability of success. Finally, as more properties are characterized and the
classification grows, new insights may follow in the study of mobility models,
based on checking generated traces for inclusion in the classes. Ultimately, this
could answer questions like what kind of problems can be solved within a given
mobility model, such as the well-known random way point model [BRS03], or in
more realistic pedestrian and vehicular contexts.
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Abstract. Stabilizing algorithms can automatically recover their spec-
ifications from an arbitrary configuration in finite time. They are there-
fore well-suited for dynamic and failure prone environments. A silent
algorithm always reaches a terminal configuration in a finite time. The
spanning-tree construction is a fundamental task in distributed systems
which forms the basis for many other network algorithms (like Token
Circulation, Routing or Propagation of Information with Feedback). In
this paper we present a silent stabilizing algorithm working in n2 steps
(where n is the number of processors in the network) with a distributed
daemon, without any fairness assumptions. This complexity is totally in-
dependent of the initial values present in the network. So, this improves
all the previous results of the literature.

Keywords: Distributed systems, Fault-tolerance, Silent algorithms,
Spanning-tree construction, Stabilization.

1 Introduction

A distributed system consists of processors (or nodes) that are pairwise con-
nected by communication channels (or links). Using these links, processors are
able to exchange information. Programming distributed systems can be real-
ized using distributed algorithms. A distributed algorithm is a collection of local
algorithms, one for each node in the network [1].

Stabilization is a nice approach to designing distributed systems that tolerate
transient failures. This notion first appears in the distributed system area with
the concept of self-stabilization defined by Dijkstra in 1974 [2]: a self-stabilizing
algorithm, regardless of its initial state, is guaranteed to converge into the in-
tended behavior in finite time. In 1999, another kind of stabilization, called
snap-stabilization, was introduced by Bui et al [3]: starting from any configura-
tion, a snap-stabilizing algorithm always behaves according to the specifications
of the problem to be solved.

In distributed systems, a spanning tree is a basic tool for many complex
distributed protocols. The network is formalized as a graph G = (V, E) where
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V is the set of network nodes (vertices) and E is the set of communication
links (edges) between network nodes (E is a subset of V 2). Some definitions of
spanning tree can be found in the literature [4,5], let us briefly recall one of
them: A graph G′ = (V ′, E′) is a spanning tree of a graph G = (V, E) if and
only if the three following conditions hold: G′ is a subgraph of G (i.e. V ′ = V
and E′ ⊆ E), G′ is a connected graph (i.e. for any pair of vertices (x, y) there
exists a path between x and y) and |E′| = |V | − 1.

Spanning trees are often a tool for involved distributed algorithms like routing,
token circulation or broadcasting messages in the networks. These algorithms ei-
ther consider spanning tree as a preexistent virtual topology where computation
can be done or include spanning tree construction as a subroutine of the algo-
rithm. Messages driven protocol is the best example of the first type of algorithms
since they consider that the routing table was computed before emission of the
first message. The second type, can be found in [6] for token circulation or in [7]
for broadcasting.

Related Work. The first self-stabilizing spanning tree construction algorithms
were published in the early 1990s. One of the first papers are due to Dolev Israeli
and Moran [8]. In 1991, Chen, Yu, and Huang give another distributed algorithm
[9] for this problem. This algorithm was improved in [10]. More recently, we can
notice some interesting algorithms for spanning trees construction used to solve
either Propagation of Information with Feedback [11,12,7], or detection of cut
sets [13,14]. Kosowski and Kuszner give a very nice algorithm in 2005 [15] and
more recently Burman and Kutten [16] give a very nice solution in the message
passing model. A very good survey can be found in [17].

Some of these algorithms are optimal in terms of rounds, but the authors do not
compute the number of steps their algorithm requires during the computation.

Motivations. Roughly speaking, the complexity in terms of rounds gives inter-
esting informations about the behavior of the low-speed processors, while the
complexity in terms of steps gives an interesting information about the behavior
of the whole network and so about the high-speed processors. So we need to know
both complexities to get a good appreciation of the behavior of the algorithm in
terms of loads of processors and bandwidth.

Contributions. In this paper we describe a stabilizing algorithm for spanning
tree construction running in Θ(|V |) rounds and Θ(|V |2) steps of computation.
It improves the best previous algorithm of Kosowski and Kuszner [15] that runs
in Θ(|V |2Diam(G)) 1 steps of computation (where Diam denotes the diameter
of the graph). It improves the algorithm of Chen, Yu, and Huang [9] that runs in
Ω(Max|V |2)(where Max denotes the maximal value of the integer variable in the
initial configuration), the famous Min + 1 algorithm that run in Ω(Max|V |2)2,
1 This complexity is for a version of [15] which explicitly gives the span-

ning tree as an output. An examples can be found at: http://www.laria.u-
picardie.fr/̃ cournier/MaxPlusUn.pdf

2 See: http://www.laria.u-picardie.fr/˜cournier/MinPlusUn.pdf
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the algorithm of Datta, Larmore, and Vemula [18] that runs in Ω(|V |3), and
the algorithm of Arora and Gouda [19] (Ω(Max2)). Since the complexity of the
algorithm remains independent of the value Max our algorithm is also more
flexible since we never need a good approximation of the size of the network to
initialize Max.

Outline of the paper. In Section 2 we formalize the programming model to be
considered. We then give an algorithm for unbounded variables (see Section 3).
In Section 4 we formally prove this first algorithm. We then conclude in the last
section.

2 Preliminaries

We consider an asynchronous network G = (V, E) of |V | processors connected by
bi-directional links according to an arbitrary topology. For an arbitrary processor
p, p.Neig denotes the set of neighbors of processor p. In this paper, we will
deal with connected network. We assume the local shared memory model of
communication. The program of every processor consists of a set of locally shared
variables (henceforth, referred to as variables) and a finite set of actions. A
processor can only write to its own variables, and read its own variables and
variables owned by the neighboring processors.

Each action is of the following form: < label >:: < guard >−→< statement >.
The guard of an action in the program of p is a boolean expression involving the
variables of p and its neighbors. The statement of an action of p updates one or
more variables of p. An action can be executed only if its guard evaluates to true.
We assume that the actions are atomically executed, meaning, the evaluation of a
guard and the execution of the corresponding statement of an action, if executed,
are done in one atomic step. The label is just a name given to the rule; this name
will be useful to denote a particular action of an algorithm.

The state of a processor is defined by the value of its variables. The state of
a system is the product of the states of all processors (∈ V ). We will refer to
the state of a processor and system as a (local) state and (global) configuration,
respectively. A processor p is said to be enabled in Configuration γ if there exists
at least an action A such that the guard of A is true in γ. We say that processor
p executes a disable action between configurations γi and γi+1 if p was enabled
in γi and not enabled in γi+1, but did not execute any action between these
two configurations. (The disable action represents the following situation: At
least one neighbor of p changed its state between γi and γi+1, and this change
effectively made the guard of all actions of p false.) Similarly, an action A is said
to be enabled (in γ) at p if the guard of A is true at p (in γ). A computation
step is a transition between two configurations where the transition contains at
least one action and at most one action per processor. The distributed daemon
(respectively central daemon) implies that during a computation step, if one or
more processors are enabled, then the daemon chooses at least one (respectively
exactly one) of these enabled processors to execute an action.
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In order to compute the time complexity measure, we use the definition of
round [20]. This definition captures the execution rate of the slowest processor
in any computation. Given a computation e, the first round of e (let us call it
e′) is the minimal prefix of e containing the execution of one action (an action
of the protocol or the disable action) of every continuously enabled processor
from the first configuration. Let e′′ be the suffix of e, i.e., e = e′e′′. Then second
round of e is the first round of e′′, and so on.

A silent algorithm is a distributed algorithm where any execution reaches
a terminal configuration (a terminal configuration is a configuration where no
processor is enabled).

3 The Algorithm

3.1 Algorithm Outlines

In this first approach we provide a semi uniform algorithm, in which each node
has three local variables Par, L and EA. Semi-uniformity means that exactly
one of the nodes, called the root, needs to be distinguished. We will denote this
node by r. Our algorithm uses this node r as the root of the spanning tree.

For a node x we will denote by x.Par (respectively x.L and x.EA) the local
variable Par (respectively L and EA) of the node x. By extension x.Par.L
denotes the Variable L of the parent of the node x.

For a node x, the interpretation of the variables Par and L is as follow.
The variable x.Par is the parent of x in the spanning tree, since r is the root
of the spanning tree we introduce a special constant value r.Par = ⊥. The
variable x.L is the height of the node x in the spanning tree, since r is the root
of the spanning tree r.L = 0 is a constant value. Of course, since we describe
a stabilizing algorithm, we cannot assume any particular value for these two
variables. But, we can notice there is a strong constraint between them: For
any node x �= r the level of the parent of x must be equal to the level of x
minus 1. And more formally : (x �= r) ⇒ (x.L = x.Par.L + 1) (1) This simple
constraint induces that for any configuration γ, we can build a covering forest
Fγ = (V, Eγ”), where Eγ” = {(x, y) ∈ E|(x �= r) ∧ x.Par = y ∧ x.L = y.L + 1}.
In this forest let us call abnormal root any node x such that x �= r and the edge
(x, x.Par) �∈ Eγ”. Every abnormal root x can detect that it must execute an
action since (x.L �= x.Par.L + 1). Generally, algorithms try to find immediately
a new parent for the node x. This strategy, may lead to the execution of a great
number of moves during the stabilization. To improve this strategy we chose
to create a new variable dedicated to Error Administration (EA). For a node
x �= r, this variable x.EA can take 4 values : C (Clean), EB (Error Broadcast),
EF (Error Feedback) and WT (Waiting for a Tree). Since the root r does not
meet any error, r.EA = C is a constant. A node x �= r verifies x.EA = C
when it satisfies (1) and x.Par.EA = C. When an abnormal root x executes
an action, it sets the value of its x.EA variable to EB. This value will be top
down propagated on the whole tree rooted by x. When a leaf of the tree receives
this value it will change it to EF . This EF value will be bottom up propagated
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from the leaf to the root of the subtree. When x received the value EF , x can
claim that for any node y, if y is in the tree rooted by x, y.EA �= C. Then x will
propagate the information WT . This value will be top down propagated on the
whole tree rooted by x. Then the only nodes authorized to change the value of
their Par and L variables are the nodes y such that y.EA = WT . Of course, if
a node y choses a node z as its new parent, z.EA = C. As a consequence, when
a node x is able to choose a new parent y, we can claim that x and y are not
in the same tree of the forest F . Since we want to realize a deterministic choice
of a parent on a node x �= r, we assume that the neighborhood of the node x
(x.Neig) is locally ordered by an arbitrary total order 'p. Each of these orders
is totally independent and does not need to induce any property of G.

Algorithm 1 page 145, is an implementation of the principles previously
described.

Input: p.Neig : set of (locally) ordered neighbors
Constants: p.L = 0; p.Par = ⊥; p.EA = C; if p = r

Variables : when p �= r
p.L : a natural integer;

p.Par ∈ p.Neig;
p.EA ∈ {C, EB,EF, WT}

Macros:
p.Potential = {q ∈ p.Neig|q.EA = C}
p.MinPot = {q ∈ p.Potential|∀t ∈ p.Potential, q.L ≤ t.L}

p.Ch = t where t is the minimal element of p.MinPot with respect to �p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Algorithm for p �= r
Predicates:
PED(p) ≡ p.EA = C ∧ (p.L �= p.Par.L + 1 ∨ p.Par.EA �= C)
PEC(p) ≡ p.EA = EB ∧ ∀q ∈ p.Neig, ((q.Par = p ⇒ q.EA �= C)

∧((q.Par = p ∧ q.EA = EB) ⇒ p.L ≥ q.L))
PEE(p) ≡ p.EA = EF ∧ (p.Par.EA = EF ⇒ p.Par.L ≥ p.L)

∧∀q ∈ p.Neig, (q.EA �= EB ∧ (q.Par = p ⇒ q.EA ∈ {EF, WT}))
PTC(p) ≡ p.EA = WT ∧ p.MinPot �= ∅ ∧ ∀q ∈ p.Neig, (q.EA ∈ {C, WT}

∧(q.Par = p ⇒ q.EA �= C))
Actions:
EDA :: PED(p) → p.EA ← EB;
ECA :: PEC(p) → p.EA ← EF ;
EEA :: PEE(p) → p.EA ← WT ;
TCA :: PTC(p) → p.Par ← p.Ch; p.L ← p.Ch.L + 1; p.EA ← C

Algorithm 1. A polynomial algorithm.

4 Proof Outline of Algorithm 1

The proof of the algorithm will be split into 2 parts. First we prove that any
terminal configuration induces a spanning tree of the network G = (V, E) (see
section 4.2). We then prove in section 4.3 that any execution of Algorithm 1
reaches a terminal configuration in at most Θ(|V |) rounds and Θ(|V |2) steps of
computation.
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4.1 Definitions and Notations

In the sequel, γ.p.v denotes the local variable v of the node p in the configuration
γ. We now define a particular subnetwork of G.

Definition 1. Let G = (V, E) be a network and γ be any configuration of Algo-
rithm 1 for the network G. G′

γ = (V ′
γ , E′

γ) is the directed sub-network of G such
that :

1. V ′
γ = V ;

2. ∀(x, y) ∈ V 2, (x, y) ∈ E′
γ if and only if the 4 following conditions hold :

(a) (x, y) ∈ E; (b) γ.x.Par = y; (c) γ.x.L = γ.y.L + 1;
(d) γ.x.EA �= y.EA⇒ ((x.EA = C∧y.EA = EB)∨(x.EA = EF∧y.EA �=

C)).

We can notice that G′
γ is an antisymmetric relation. Furthermore, by transitiv-

ity, Definition 1(c) implies G′
γ does not contains cycles, and we can claim the

following property.

Property 1. Let G = (V, E) be a network and γ be any configuration of Algo-
rithm 1 for the network G. G′

γ is a covering forest of G.

In the sequel we will denote by Fγ be the covering forest of G in configuration
γ. Let Fγ = {T 0

γ , . . . , T t
γ} the covering forest of G. Without lost of generality we

can assume that r ∈ T 0
γ . Since G′

γ does not contain any cycle, for each tree T i
γ

there exists exactly one node denoted ri
γ in T i

γ such that ri
γ .Par �∈ T i

γ , and of
course r = r0

γ .

Remark 1. Let G = (V, E) be a network and γ be any configuration of Algorithm
1 for the network G. Let Fγ = {T 0

γ , . . . , T t
γ} be the covering forest associated

with γ. By construction, the four following assumptions hold:
1. ∀i, γ.ri

γ .EA = C implies ∀q ∈ T i
γ , γ.q.EA = C;

2. ∀i, γ.ri
γ .EA = EB implies ∀q ∈ T i

γ , γ.q.EA �= WT ;
3. ∀i, γ.ri

γ .EA = EF implies ∀q ∈ T i
γ , γ.q.EA = EF ;

4. ∀i, γ.ri
γ .EA = WT implies ∀q ∈ T i

γ , γ.q.EA ∈ {EF, WT }.

4.2 Terminal Configurations of Algorithm 1

First we characterize some terminal configurations of the algorithm.

Property 2. Let γ be a global configuration such that for every node p, γ.p.EA =
C (C1) and p �= r ⇒ γ.p.L = γ.p.Par.L + 1 (C2). We can then claim:

1. γ is a terminal configuration of Algorithm 1;
2. Fγ induces a spanning tree of the network.

Proof. First, let us prove that γ is a terminal configuration of Algorithm 1. Let
p �= r be an arbitrary node of the network3. Using C1 the predicates PEC(p),
PEE(p) and PTC(p) cannot be satisfied. Furthermore using (C2) and (C1) the
3 The case p = r is obvious since there is no action for the root.
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predicate PED(p) cannot be satisfied. So p is disabled. Second, let us prove that
γ induces a covering tree of the network. Let us represent our network by G =
(V, E). Let Fγ = (V, E′) be the covering forest of G (see Definition 1). Using (C1),
every node p satisfies γ.p.EA = C. So for an arbitrary node p, let μ = p0 . . . pk

be a maximal elementary path such that p0 = p and ∀i, 0 ≤ i < k, pi.Par = pi+1.
Under these assumptions pk = r. Suppose the contrary (pk �= r), there exists a
node q such that γ.pk.Par = q, since μ is a maximal elementary path, there exists
some j such that q = pj. Using (C2) and pk.Par = q = pj implies pj.L < pk.L
and using the same condition (C2) upon μ, pj .L > pj+1.L > . . . > pk.L, a
contradiction.

As a consequence, Fγ is a connected forest containing exactly |V | − 1 edges
and by definition (see [4]) Fγ is a spanning tree of G.

Now we must prove that any terminal configuration has to satisfy Property 2.
This is the aim of the following properties.

Property 3. Let γ be a global configuration such that there exists a node p which
satisfies p.EA ∈ {EB, EF}, then γ is not a terminal configuration.

Proof. Let us suppose the contrary, let γ be a terminal configuration containing
a node p such that p.EA ∈ {EB, EF}, since r.EA = C is a constant p �= r. So
we must study the two following cases:
Case 1 p.EA = EB: let q be a node such that γ.q.EB with a maximal level (i.e.
∀u ∈ V , γ.u.EA = EB yields γ.q.L ≥ γ.u.L). If q does not satisfies γ.PEC(q)
then there exists a neighbor v of q such that γ.v.EA = C and γ.v.Par = q. Then,
v satisfies γ.PED(v) and γ is not a terminal configuration. A contradiction.
Case 2 p.EA = EF : First we notice that if there exists a node t such that
γ.t.EA = EB then using Case 1, γ is not a terminal configuration. So, in the
other cases, let q be a node such that γ.q.EF with a minimal level(i.e. ∀u ∈ V ,
γ.u.EA = EF yields γ.q.L ≤ γ.u.L). If q does not satisfies γ.PEE(q) then there
exists a neighbor v of q such that γ.v.EA = C and γ.v.Par = q. Then, v satisfies
γ.PED(v) and γ is not a terminal configuration. A contradiction.

Property 4. Let G be a network and γ be a global configuration of the algorithm,
such that there exists a node p which satisfies p.EA = WT , then γ is not a
terminal configuration.

Proof. Using Property 3, we can focus on global configurations γ such that each
node p satisfies p.EA ∈ {C, WT }. Let t be any node such that t.EA = WT 4.
Let μ = (p0 = r, . . . , pk = t) be any elementary path from r to t. Since the
network is connected, such a path μ always exists. Let 1 ≤ i ≤ k be the lowest
integer such that γ.pi.EA = WT , since r.EA = C and t.EA = WT such a node
always exists. Then γ.pi−1.EA = C so either pi satisfies the predicate PTC(pi)
or there exists z ∈ Neigpi such that z.EA = C and z.Par = pi and in this case
z satisfies PED(z). In both cases, γ is not a terminal configuration.

4 t �= r since r.EA = C is a constant of the algorithm.
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These two properties yield that any terminal configuration only contains nodes
p such that p.EA = C. Now we have to verify that any terminal configuration
satisfies the two conditions of Property 2.

Property 5. Let γ be a terminal configuration of the algorithm on a connected
network G, the two following conditions hold: 1. ∀p, p.EA = C; 2. ∀p �= r,
p.L = p.Par.L + 1.

Proof. Using Properties 3 and 4, we can focus on global configurations γ such
that each node p satisfies p.EA = C. But in such a configuration, if there exists
some nodes p �= r such that p.L �= p.Par.L + 1 then p satisfies the predicate
PED(p) and γ is not a terminal configuration.

Theorem 1 flows from Properties 5 and 2.

Theorem 1. Let G be a network, if Algorithm 1 reaches a terminal configura-
tion, a spanning tree of G has been computed.

But Theorem 1 does not yield that for every execution Algorithm 1 will reach a
terminal configuration. We will prove this fact in the next section.

4.3 Convergence and Time of Stabilization

Basic properties of the forest First let us prove that for any execution
starting in an arbitrary configuration γ, T 0

γ cannot loose any node during an
execution.

Lemma 1. Let γ1 and γ2 be two consecutive configurations of an execution E
of Algorithm 1, then T 0

γ1
is a subtree of T 0

γ2
.

Proof. Let γ be an arbitrary configuration. Since r.EA = C, using Remark 1
q ∈ T 0

γ yields γ.q.EA = C. Furthermore, using Definition 1 and Property 1
γ.q.Par = y implies y ∈ T 0

γ and γ.q.L = γ.y.L + 1. So, q is not enabled in
configuration γ. So, between two consecutive configurations γ1 and γ2 the nodes
in T 0

γ1
cannot perform an action so we can claim T 0

γ1
is a subtree of T 0

γ2
.

Let us study the evolution of a tree T �= T 0 of a forest F during an execution.

Lemma 2. Let γ1 and γ2 be two consecutive configurations of an execution e
of Algorithm 1 and xy be an edge of Fγ1 then either xy is an edge of Fγ2 or in
configuration γ1, x.EA = y.EA = WT .

Proof. First we can notice that if neither x nor y executes an action between
these two configurations, (x, y) remains an edge of Fγ2 . So we will only focus on
cases where at least one of this two nodes executes an action. Let us study the
four following cases:
Case 1 : γ1.x.EA = C. In this case, since (x, y) is an edge of Fγ1 , y.EA ∈
{C, EB} then either γ1.y.EA = C and y executes the EDA action (x does not
satisfies the predicate PED(x)) or γ1.y.EA = EB and x executes the EDA
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action (y does not satisfies the predicate PEC(x)). In both cases (x, y) remains
an edge of Fγ2 ;
Case 2 : γ1.x.EA = EB. In this case, since (x, y) is an edge of Fγ1 , γ1.y.EA =
EB and y does not satisfy the predicate PEC(y). As a consequence, x executes
the ECA action and (x, y) remains an edge of Fγ2 ;
Case 3 : γ1.x.EA = EF . In this case, since (x, y) is an edge of Fγ1 , y.EA �= C
then either γ1.y.EA = EF and y executes the EEA action (x does not satisfies
the predicate PEE(x)) or γ1.y.EA = WT and x executes the EEA action (y
does not satisfies the predicate PTC(y)) or γ1.y.EA = EB in this case x is not
enabled and y executes the ECA action. In all cases (x, y) remains an edge of
Fγ2 ;
Case 4 : γ1.x.EA = WT . By construction of Fγ1 we can claim x.EA = WT
yields y.EA = WT .

In all cases the lemma holds.

The following corollaries follow directly from Lemma 2:

Corollary 1. Let γ1 and γ2 be two consecutive configurations of an execution
e of Algorithm 1 and T i

γ1
be any tree of Fγ1 such that rT i

γ1
.EA ∈ {C, EB, EF}

then there exists a tree T j
γ2

of Fγ2 such that T i
γ1

is a subtree of T j
γ2

.

Corollary 2. Let γ1 and γ2 be two consecutive configurations of an execution e
of Algorithm 1 and T i

γ1
be any tree of Fγ1 . If for every tree T of Fγ2 , T i

γ1
is not

a subtree of T then γ1.r
i
γ1

.EA = WT .
Furthermore, if there exists a tree T of Fγ2 such that T �= T i

γ1
and T is a

subtree of T i
γ1

, then in configuration γ2, rT .EA = WT .

Convergence and time of stabilization part 1: Number of rounds. In
this section we show that Algorithm 1 stabilizes and its stabilization time is
upper bounded by 4|V | rounds.

Theorem 2. Algorithm 1 reaches a terminal configuration (Thus computes a
spanning tree see Theorem 1) in at most 4|V | rounds and more generally in
Θ(|V |) rounds.

Proof Outline. A complete proof is given in appendix5. The main idea of the
proof is that when a node p in a configuration γ may set its Parent variable to
another value, γ.p.EA = WT . Let T be the tree of Fγ containing the node p.
Using Remark 1 and Corollary 1 we can claim the two following assumptions:

1. q ∈ T and q.EA = C yields no node of T is able to change its variable Par;
2. q ∈ T and q.EA = WT yields any node x ∈ T satisfies x.EA �= C.

So when a node may leave its tree T , no node is able to hook on T . This is the
crucial point of the proof. Then a simple induction proves that after at most |V |
rounds we can claim that x.EA = C implies x ∈ T 0. A second simple induction
shows that after at most 2|V | rounds we can claim that any nodes x satisfies

5 Appendix can be found at: http://www.laria.u-picardie.fr/̃cournier/ApSirocco.pdf
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x.EA �= EB. The third one shows that after at most 3|V | rounds we can claim
that any nodes x satisfies x.EA �= EF . Then it will take at most |V | more rounds
to hook each node x such that x.EA = WT on T 0. �

Stabilization and time of stabilization part 2: Number of steps. We
now compute the number of steps required by the algorithm to reach a terminal
configuration. To compute this number of steps we will associate a weight to
any configuration (Definition 2). Then we will show that this weight strictly
decreases for any execution using a central daemon (Property 6). We then extend
this result to a distributed daemon(Corollary 3).

Definition 2. Let γ be an arbitrary configuration of Algorithm 1 and Fγ =
{T 0

γ , . . . , T k
γ } its associated forest. For any tree T of the forest Fγ let us denote

by nC
T : the number of nodes x in T such that x.EA = C (In the same way we

can define nEB
T , nEF

T and nWT
T ), furthermore let r(T ) be the root of T . So, we

can give a weight w(T ) to each tree T of the forest Fγ .
- w(T 0

γ ) = 0 (since r(T 0
γ ) is the root of our network);

- w(T ) = 2nEF
T + nWT

T when r(T ).EA ∈ {EF, WT };
- w(T ) = 4nC

T + 3nEB
T + 2nEF

T + 5(|V | − (|T | + |T 0
γ |)) when T �= T0 and

r(T ).EA ∈ {C, EB}.
And by extension, the weight W (Fγ) of the forest F in configuration γ is:
W (Fγ) =

∑k
i=0 w(T i

γ).

The following remark gives an upper bound for the weight of any forest.

Remark 2. Let γ be an arbitrary configuration of Algorithm 1 and Fγ its associ-
ated forest. Then 0 ≤ W (Fγ) < 5|V |2. Furthermore, any terminal configuration
γ satisfies W (Fγ) = 0.

Proof. First we can notice that the weight of a tree T is lower than 5|V | and
greater than or equal to 0. Since there is at most |V | trees in the forest F ,
0 ≤ W (F ) < 5|V |2. Since in any terminal configuration each node is in T 0

γ (see
Theorem 1), W (Fγ) = 0.

Furthermore, we can notice that the weight of a forest is totally independent
from the values of variables L. In the following we will prove that this weight
will strictly decrease during any execution. To do that we will show that any
application of any action induces a reduction of the weight of the forest. In-
tuitively, a node in a dead tree6 will execute at most two actions before it is
inserted in another alive tree. On the other hand an alive tree cannot loose any
node before it becomes a dead tree, furthermore any node in an alive tree can
do at most 4 actions (5 with the insertion in the tree). So in worst case the
algorithm stabilizes in O(|V |2) steps.

Property 6. Let γ1 and γ2 be two consecutive configurations of an execution
using a central daemon then W (Fγ1) > W (Fγ2).

6 A tree T is a dead tree if and only if r(T ).EA ∈ {EF, WT} otherwise T is alive.
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Proof Outline. Let γ be a configuration and x an enabled node. One can
easily verify that the execution of an action by x induces a configuration with a
lower weight. A complete proof is given in appendix. �
This property implies that the algorithm stabilizes using a central demon. But
the case of a distributed demon is a little bit more complicated. A way to prove
the result is to show that any step of the algorithm using a distributed demon
can be simulated by a central demon. To do this we just need to prove that for
any group of actions that can be done in one step by a distributed demon, could
be executed sequentially by a central demon also.

In order to prove this assertion, we need to define a partial order. First we
need to define the following total order for the value of the variable EA: WT <
EF < EB < C. This total order will be used to define a partial order on the
nodes of the network in a configuration.

Definition 3. Let Q = {x1, . . . , xk} be a set of enabled processor. For any ele-
ments xi and xj we will say that xi ≤p xj if and only if one of the 3 following
conditions holds:

- i = j;
- xi.EA < xj .EA;
- xi.EA = xj .EA = WT and xi.Ch.L > xj .Ch.L where p.Ch is the node

which can be chosen by p as its new parent during the execution of the TCA
action.

Let Wγ be the set of all enabled processors in configuration γ and Qγ ⊆ Wγ be
the choice of the daemon in this configuration. Then a central daemon can always
executes sequentially the actions of Qγ in the order of any linear extension of
our partial order ≤p.

Property 7. Let γ be any state of the algorithm, Wγ be the set of all enabled
processors in configuration γ and Qγ be any subset of Wγ . If Qγ transforms
configuration γ in configuration U in one step then a central demon can also
transform configuration γ in configuration U by choosing the nodes in the order
of any linear extension of (Qγ ,≤p) (where ≤p is the order of Definition 3).

Proof Outline. A complete proof is given in the appendix. The idea of the
proof is the following. Let γ1 and γ2 be two arbitrary consecutive configurations
of Algorithm 1 using a distributed daemon. Let Qγ1 be the set of processors that
execute during this step of computation. So let p be a minimal processor of Qγ1

with respect of ≤p. So we can assume that γ′ is the configuration deduced from
γ1 when p is the only processor that executes an action. Then we just need to
verify that Wγ′ contains Qγ1−{p}. So step by step a central daemon can choose
the minimal element of the set to realize the same computation. �

Corollary 3. For any execution of Algorithm 1 the weight of state strictly de-
creases at each step of the execution.

Proof. This is a direct consequence of Property 6 and Property 7.
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So we can give our main result.

Theorem 3. Algorithm 1 reaches a terminal configuration (thus compute a
spanning tree) in at most 5|V |2 steps.

Proof. This is a direct consequence of Corollary 3 and Remark 2.

5 Concluding Remarks

In this paper a stabilizing algorithm running in quadratic time to construct a
spanning tree has been presented, the complexity is independent from the initial
values present in the variables. Furthermore since our algorithm is silent, it can
be easily implemented in the message passing model and could be useful for
energy efficient protocols in sensor networks.
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Abstract. In this paper, we study the spatial node stationary distribu-
tion of two variations of the Random Waypoint (in short, RWP) mobility
model. In particular, differently from the RWP mobility model, that con-
nects source to destination points by straight lines, our models make use
of Manhattan or (more realistically) Bezier paths. We provide analytical
results for the spatial node stationary distribution for the two Manhattan
based RWP mobility models and experimental evidence that the Bezier
based models do not significantly differ from the Manhattan ones. This
implies that Manhattan based RWP models can be considered a good
approximation of the more realistic Bezier ones. As a case study, we ex-
ploit our results about one of the two Manhattan based RWP models
to derive an upper bound on the transmission range of the nodes of a
MANET, moving according to this model, that with high probability
guarantees the connectivity of the communication graph.

1 Introduction

The Random WayPoint (in short, RWP) mobility model [12] is one of the most
commonly used models for evaluating the performance of a communication pro-
tocol and/or application based on a mobile wireless ad hoc network (in short,
MANET). According to this model, each node moves itself by selecting a random
destination point T (within a specified movement region, which is typically a
square) and a random speed value v (usually chosen uniformly within a spec-
ified interval), and by travelling from its current position S to T at constant
speed v along the segment joining S to T (for a survey on mobility models for
MANET research, see [5]).

Due to its simplicity, the RWP model has been widely analyzed in the literature,
from both an experimental and a theoretical point of view. In particular, in the
last few years several papers studied and tried to estimate the spatial node sta-
tionary distribution of the model [4,3,13,14]. Obtaining an exact closed formula
for this distribution might turn out to be very useful in order to derive analytical
results concerning, for instance, some topological properties of the communica-
tion graph of a MANET and the performance of specific protocols that depend on

S. Kutten and J. Žerovnik (Eds.): SIROCCO 2009, LNCS 5869, pp. 154–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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these properties. As an example, one could determine upper and lower bounds
on the transmission range of the nodes of the MANET, moving according to the
RWP model, that with high probability guarantees the connectivity of the commu-
nication graph (similarly to what has been done in the case of static networks
in [8]), once the nodes have reached the spatial stationary distribution. More
ambitiously, one could also determine upper and lower bounds on the comple-
tion time of specific information spreading protocols (such as the flooding one)
as a function of the number of nodes and of the transmission range (similarly to
what has been done in the case of geometric random graphs in [6,7]).

As far as we know, two main approaches have been used in the literature in
order to compute a closed formula for the RWP spatial node stationary distri-
bution. The first one is based on relatively simple geometric probability argu-
ments [4,3,13]: however, this approach led to the necessity of computing very
difficult integrals and, for this reason, allowed the authors to obtain only ap-
proximations of the exact formula (even though quite good ones). The second
approach [14], instead, produces an exact formula by using a more sophisticated
tool, that is, the Palm calculus which is a set of formulas that relate time aver-
ages to event averages [1] and which is not widely used or even known in applied
areas.

In this paper we introduce and analyze a variation of the RWP model in which,
once the source and the destination points, and the speed value have been chosen,
the path followed by a node while moving from the source point to the destination
one is one of the two Manhattan 2-segment paths connecting the two points (note
that following a Manhattan path can be considered, in several contexts, more
realistic than traveling through the rectilinear segment joining the source and
the destination points). Clearly, a selection rule is needed in order to choose
the path to be followed. In this paper we will consider two different selection
rules: either the path is randomly chosen out of the two possible ones (in this
case, the model is called random Manhattan RWP or, in short, rMRWP), or the
path maximizing its minimum distance from the center of the movement square
region is chosen (in this case, the model is called peripheral Manhattan RWP or, in
short, pMRWP). By focusing on these two mobility models, we gain the following
two advantages.

– By applying relatively simple geometric probability arguments similar to the
ones used in [4,3,13], we can derive exact closed formulas for the spatial node
stationary distributions of both the rMRWP and the pMRWP model. These for-
mulas will allow us to compute an upper bound on the transmission range
required for guaranteeing, with high probability, the connectivity of the com-
munication graphs, once the network has reached the stationary distribution
(this bound, in turn, can be used within frameworks for efficient broadcasting
in which connectivity is one condition for guaranteeing full coverage [15]).

– The two models allow us to simulate two different mobility patterns: one
that (similarly to the RWP model) induces a congestion of nodes in the center
of the movement square region, and one in which nodes concentrate on a
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Fig. 1. The spatial node stationary distribution of the pMRWP (on the left) and of the
corresponding model based on Bezier curves (on the right). The z-axis reports the
f(x, y) value.
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Fig. 2. The spatial node stationary distribution of the rMRWP (on the left) and of the
corresponding model based on Bezier curves (on the right). The z-axis reports the
f(x, y) value.

peripheral ring surrounding the center of the region (hence, capturing traffic
characteristics of some huge urban area, such as the Roman one).

S

TC Even though passing through a right angle at constant speed
might be considered unrealistic, we claim that our results are
not only interesting from a theoretical point of view but also
useful from a practical point of view. To support this latter
statement, indeed, we have performed extensive simulation
experiments in order to compute the spatial node stationary
distribution in the case in which a node follows one of the

two quadratic Bezier curves [9] whose control point is the crossing point of the
corresponding Manhattan path (see the figure on the left). As it can be seen
from Figures 1 and 2, the distribution computed by simulations and the one
deriving from our theoretical results are quite close. In other words, the rMRWP
and the pMRWP mobility models can be considered as a good approximation of
the corresponding mobility models based on the Bezier curves.

The paper is organized as follows. After providing, in the rest of this section,
the necessary formal definitions, Sections 2 and 3 are devoted to the analytical
study of the spatial node stationary distribution of the rMRWP and the pMRWP
models. In particular, in Sections 2 we describe our general approach to the
problem, while in Section 3 we derive the explicit closed formulas for the spatial
node stationary distribution of the two models. Successively, in Section 4 we
exploit our analytical results on the pMRWP model to derive an upper bound on
the transmission range to be assigned to the nodes of a MANET, moving according
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to the pMRWP model, in order to guarantee with high probability the connectivity
of its communication graph. Finally, we conclude in Section 5.

1.1 Formal Definitions

Let S = (xS , yS) and T = (xT , yT ) be two points in the squareQ = [0, 2a]×[0, 2a]
of center Z = (a, a). The Manhattan paths from S to T are mhv(S, T ) and
mvh(S, T ), where mhv(S, T ) is the horizontal path from S to H = (xT , yS)
followed by the vertical path from H to T , and mvh(S, T ) is the vertical path
from S to V = (xS , yT ) followed by the horizontal path from V to T .

The mobility models studied in this paper are all derived by the Random
Waypoint mobility model. Each node is initially positioned at a point S, ran-
domly chosen within Q. Successively, the node chooses a random destination
point T ∈ Q, and a random speed value v ∈ [vmin, vmax] with vmin > 0. Then,

– in the rMRWP mobility model the node travels at constant speed v along a
path randomly chosen between mhv(S, T ) and mvh(S, T );

– in the pMRWP mobility model travels at constant speed v along the Manhattan
path from S to T which maximizes the minimum distance from Z.

Once the destination point T is reached, the node immediately starts the trav-
eling process again.1

2 The General Approach

In this section, we briefly describe the approach that will be followed while de-
riving the explicit formula for the spatial node stationary distribution of the
Manhattan based mobility models. Observe that, since nodes move indepen-
dently, we can limit ourselves to analyze the movement of a single node.

For any p and q with 0 ≤ p, q ≤ 2a, let R be the rectangle [0, q]× [0, p], and let
F = (q, p) be the top right vertex of R. Moreover, let X be the random variable
describing the location of the node, and let T and Tq,p be the two random vari-
ables describing, respectively, the time spent by the node while moving between
the source and the destination point and the time spent within R while moving
between the two points. As proved in [3],

P (X ∈ R) =
E[Tq,p]
E[T ]

.

Since the speed value is chosen randomly in the interval [vmin, vmax] with vmin >

0, we have that E[Tq,p]
E[T ] = E[Lq,p]

E[L] , where E[Lq,p] denotes the expected length of

1 In the RWP mobility model it is also assumed that, once a node reaches its destination,
it stays there for a pause time tp, randomly chosen within a specified interval. In
this paper, we assume that tp = 0: the case in which tp > 0 can be dealt similarly
to what has been done in [4].
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the intersection between the node path and R during one movement period and
E[L] denotes the expected length of the node path during one movement period.
In other words, the problem of computing the cumulative distribution function2

(in short, cdf) P (X ∈ R) has been reduced to the problem of computing the
values E[Lq,p] and E[L]. This will be our task in the next section.

Let σ denote the random variable describing the location of a node at the
beginning of its movement period and τ denote the random variable describing
the location of the same node at the end of the same movement period. The
computation of E[Lq,p] will be performed by distinguishing the three cases in
which (i) both σ and τ are contained in R or (ii) σ is contained in R while τ is
outside of R (or vice versa) or (iii) both σ and τ are outside of R. Hence,

E[Lq,p] =
∫

S∈Q

∫
T∈Q

f(S)f(T )l(S, T,R)dSdT

=
1

16a4

(∫
S∈R

∫
T∈R

l(S, T,R)dSdT +
∫

S∈R

∫
T �∈R

l(S, T,R)dSdT

+
∫

S �∈R

∫
T∈R

l(S, T,R)dSdT +
∫

S �∈R

∫
T �∈R

l(S, T,R)dSdT

)
where f denotes the probability density function3 (in short, pdf) of a point’s
location and l(S, T,R) denotes the expected length of the intersection between
the chosen path from S to T and R. Since E[L] = 4

3a (see [10]), we get

P (X ∈ R) =
3

64a5 (Γ1 + Γ2 + Γ3 + Γ4) , (1)

where Γi is the i-th integral of the previous equation.

3 Manhattan Path Based Random Waypoint Mobility
Models

In this section, we will make use of the following notation: given two points
α = (xα, yα) and β = (xβ , yβ), Δα,β

x = xα − xβ and Δα,β
y = yα − yβ. Let

π(S, T,R) be a predicate that will be used to describe the (relative) positions of
S and T with respect to R. We denote by λ(π(S, T,R)) the expected length of
the intersection between the chosen Manhattan path and R, that is, l(S, T,R),
whenever π(S, T,R) is true.

2 The cumulative distribution function completely describes the probability distribu-
tion of a random variable: in our case, for every two real numbers q and p with
0 ≤ q, p ≤ 2a, the cumulative distribution function of X is given by P (X ∈ R) =
P (xX ≤ q ∧ yX ≤ p).

3 The probability density function of a random variable is a function which describes
the density of probability at each point in the sample space: it is well-known that
this function is the derivative of the cdf.
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Fig. 3. The second and the third cases of the rMRWP mobility model

3.1 The Spatial Node Distribution of the Random Manhattan
RWP Model

Computing Γ1: S, T ∈ R. This case corresponds to computing the sum of
the Manhattan distances between any pair of points within a rectangle: by using
the results of [10], we have that Γ1 = p2q2 p+q

3 .

Computing Γ2 (or Γ3): S ∈ R and T �∈ R (or vice versa). Due to
symmetry reasons, we can limit ourselves to the case in which S ∈ R and T �∈ R.
According to the left part of Figure 3, it is easy to compute λ(S ∈ R∧ T �∈ R):
for example, if T is above S and on its left, then λ(S ∈ R ∧ T �∈ R ∧ xT ≤
xS ∧ yT ≥ p) =

(ΔS,T
x +ΔF,S

y )+ΔF,S
y

2 = ΔS,T
x

2 + ΔF,S
y . We can deal with the other

four cases similarly (see the figure). Hence,

Γ2 =
∫ q

0

∫ p

0

[∫ xs

0

∫ 2a

p

(
xs − xt

2
+ p− ys

)
dytdxtdysdxs

+
∫ q

xs

∫ 2a

p

(
xt − xs

2
+ p− ys

)
dytdxtdysdxs

+
∫ 2a

q

∫ 2a

p

q − xs + p− ys

2
dytdxtdysdxs

+
∫ 2a

q

∫ p

ys

(
yt − ys

2
+ q − xs

)
dytdxtdysdxs

+
∫ 2a

q

∫ ys

0

(
ys − yt

2
+ q − xs

)
dytdxtdysdxs

]
.

After having evaluated the above integral, we obtain

Γ2 = Γ3 = a2p2q − 1
6
ap3q + a2pq2 + ap2q2 − 5p3q2

12
− 1

6
apq3 − 5p2q3

12
.

Computing Γ4: S, T �∈ R. Observe that only two situations giving raise to a
non empty intersection with R may occur: either S is in the region above R and
T is in the region at its right or vice versa. Since the two cases are symmetric, we
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can limit ourselves to analyze only the first one (see the right part of Figure 3).
Clearly, for any such pair of points S and T ,

λ(xS ≤ q ∧ yS ≥ p ∧ xT ≥ q ∧ yT ≤ p) =
(ΔF,S

x + ΔF,T
y ) + 0

2

=
ΔF,S

x + ΔF,T
y

2
.

Hence,

Γ4 =
∫ q

0

∫ 2a

p

∫ 2a

q

∫ p

0

q − xs + p− yt

2
dytdxtdysdxs.

After having evaluated the above integral and doubled the result, we obtain

Γ4 =
1
2
(2a− p)p(2a− q)q(p + q).

The spatial node distribution. After performing a normalization (that is,
for the sake of simplicity, after setting a = 1), by applying Equation (1) we get

P (X ∈ R) =
1
16

pq
(
3p− p2 + 3q − q2) .

The pdf can be finally obtained by computing the derivative of the cdf (in doing
so, for the sake of readability, we replace q and p with x and y, respectively).
We have that

f(x, y) =
3
16
(
2x− x2 + 2y − y2) .

The left part of Figure 2 shows the behavior of f(x, y). Observe how the central
part of the domain square is visited more often due to the border effect of the
model [2] (similarly to the standard RWP model).

3.2 The Spatial Node Distribution of the Peripheral MRWP Model

Due to the symmetry of the mobility model we consider, in this section we can
limit ourselves to compute E(Lq,p) for a > q > p. Indeed, once we have computed
the cdf and, hence, the pdf fa>q>p(x, y) relative to this case, we derive the global
pdf in the following way:

f(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fa>q>p(y, x) if 0 ≤ x ≤ a and x ≤ y ≤ a,
fa>q>p(x, y) if 0 ≤ x ≤ a and 0 ≤ y ≤ x,
fa>q>p(2a− x, y) if a ≤ x ≤ 2a and 0 ≤ y ≤ 2a− x,
fa>q>p(y, 2a− x) if a ≤ x ≤ 2a and 2a− x ≤ y ≤ a,
f(x, 2a− y) if 0 ≤ x ≤ 2a and a ≤ y ≤ 2a.

(2)

Computing Γ1: S, T ∈ R. This case is identical to the corresponding case of
the analysis of the rMRWP model: hence, Γ1 = p2q2 p+q

3 .
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Fig. 4. The second case of the pMRWP model: S in R and T outside of R

Computing Γ2 (or Γ3): S ∈ R and T �∈ R (or vice versa). Once again, ,
we can limit ourselves to the case in which S ∈ R and T �∈ R. Let us partition the
domain square into Q1 = [0, a]× [0, a], Q2 = [a, 2a]× [0, a], Q3 = [a, 2a]× [a, 2a]
and Q4 = [0, a]×[a, 2a]. Since a > q > p, both F and S certainly belong to Q1. If
T ∈ Q1 ∪Q2 ∪Q4, then the Manhattan path between S and T which maximizes
the minimum distance from Z can be easily computed (see Figure 4(a)): for
example, if T is above S and on its left, then the path which maximizes the
minimum distance from Z is mhv(S, T ), and λ(S ∈ R ∧ xT ≤ xS ∧ yT ≥ p) =
ΔS,T

x + ΔF,S
y . Similarly we can deal with the other six cases:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(S ∈ R ∧ xT ≤ xS ∧ yT ≥ p) = ΔS,T
x + ΔF,S

y ,
λ(S ∈ R ∧ xS ≤ xT ≤ a ∧ a ≤ yT ≤ 2a) = ΔF,S

y ,

λ(S ∈ R ∧ xS ≤ xT ≤ q ∧ p ≤ yT ≤ a) = ΔT,S
x

2 + ΔF,S
y ,

λ(S ∈ R ∧ q ≤ xT ≤ a ∧ p ≤ yT ≤ a) = ΔF,S
x +ΔF,S

y

2 ,
λ(S ∈ R ∧ a ≤ xT ∧ yS ≤ yT ≤ a) = ΔF,S

x ,

λ(S ∈ R ∧ q ≤ xT ≤ a ∧ yS ≤ yT ≤ p) = ΔF,S
x +

ΔT,S
y

2 ,
λ(S ∈ R ∧ q ≤ xT ∧ yT ≤ yS ≤ p) = ΔS,T

y + ΔF,S
x .

It then remains to analyze the case in which T ∈ Q3. To this aim, we have to
solve the inequality

π1(S, T ) = min{ΔZ,S
x , ΔT,Z

y } < min{ΔZ,S
y , ΔT,Z

x }
subject to the following constraints (see Figure 4(b)):

π2(S, T,R) = (p ≤ q ≤ a) ∧ (xs ≤ q) ∧ (ys ≤ p) ∧ (a ≤ xT ) ∧ (a ≤ yT ).

Indeed, when T satisfies the above system of linear inequalities, then the Man-
hattan path between S and T which maximizes the minimum distance from Z
is mhv(S, T ). By solving such system, we get (see Figure 4(c))
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Fig. 5. The third case of the pMRWP model: both S and T outside of R

π1(S, T ) ∧ π2(S,T,R) =⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[(0 < xS < p) ∧ (0 < yS < xS) ∧ (a < xT ≤ 2a − xS) ∧ (a < yT < xT )]
∨

[(0 < xS < p) ∧ (0 < yS < xS) ∧ (2a − xS < xT < 2a) ∧ (a < yT < 2a)]
∨

[(0 < xS < p) ∧ (xS < yS < p) ∧ (a < xT ≤ 2a − yS) ∧ (a < yT < xT )]
∨

[(0 < xS < p) ∧ (xS < yS < p) ∧ (2a − yS < xT < 2a) ∧ (a < yT < 2a − yS)]
∨

[(p < xS < q) ∧ (0 < yS < p) ∧ (a < xT ≤ 2a − xS) ∧ (a < yT < xT )]
∨

[(p < xS < q) ∧ (0 < yS < p) ∧ (2a − xS < xT < 2a) ∧ (a < yT < 2a)] .

Hence, λ(π1(S, T ) ∧ π2(S, T,R)) = ΔF,S
x , while λ(¬π1(S, T ) ∧ π2(S, T,R)) =

ΔF,S
y .
In conclusion, Γ2 (and, hence, Γ3) is computed by integrating these values of

λ(·) in the corresponding regions. In particular, we obtain that

Γ2 = Γ3

=
1
12

pq
(
9a2(p + q)− 6pq(p + q) + 2a

(
p2 + 3pq + q2))

+
1

120
p
(
9p4 − 20p3q + 5

(
6a2q2 + q4))+

1
60

p2 (2p3 + 15a2q − 5q3)
=

1
120

p
(
13p4 − 20p3q + 20p2(a− 3q)q + 10pq

(
12a2 + 6aq − 7q2)

+ 5q2 (24a2 + 4aq + q2)) .
Computing Γ4: S, T �∈ R. Similarly to the analysis of the rMRWP model, only
two situations may occur: either S is in the region above R and T is in the
region at its right or vice versa. Since the two cases are symmetric, we can limit
ourselves to analyze only the first one. To this aim let us consider Figure 5.
If S is contained in R1 and T is contained in R2 (see Figure 5(a)), then the
Manhattan path between S and T which maximizes the minimum distance from
Z is mvh(S, T ) and λ(S ∈ R1 ∧ T ∈ R2) = ΔF,S

x + ΔF,T
y . The same holds in the

case in which S is contained in R3 and T is contained in R4 (see Figure 5(b)).
It remains to analyze the case in which S is contained in R3 and T is contained
in R5 (see Figure 5(c)). Similarly to what we have done while computing Γ2, we
have to solve the following system:
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π3(S, T ) = min{ΔZ,S

x , ΔZ,T
y } > min{ΔS,Z

y , ΔT,Z
x },

π4(S, T,R) = (xS ≤ q) ∧ (a ≤ yS) ∧ (a ≤ xT ) ∧ (yT ≤ p).

Indeed, when T satisfies the above system of linear inequalities, the Manhat-
tan path between S and T which maximizes the minimum distance from Z is
mvh(S, T ) and λ(π3(S, T ) ∧ π4(S, T,R)) = ΔF,S

x + ΔF,T
y , while λ(¬π3(S, T ) ∧

π4(S, T,R)) = 0.
In conclusion, Γ4 is computed by integrating these values of λ(·) in the corre-

sponding regions. By doubling the result, we obtain that

Γ4 =
1
30

p
(
p4 − 10p3q + 30p2q(−2a + q) + 20pq

(
6a2 − 6aq + q2)

−5q2 (−24a2 + 12aq + q2)) .
The spatial node distribution. After performing the normalization, by sum-
ming up the values Γ1, Γ2, Γ3 and Γ4 previously computed, by applying Equa-
tion (1), we obtain the cdf in the case in which 0 ≤ q ≤ a and 0 ≤ p ≤ q. In
particular, we have that in this case

P (X ∈ R) =
1

256
p
(−q4 + 3p4 − 2q3(10 + p) + 4q2 (18− 9p + p2)

−4qp
(−18 + 5p + 2p2)) .

The pdf fa>q>p(x, y) can be obtained by computing the derivative of the cdf
(once again, for the sake of readability, we replace q and p with x and y, respec-
tively). We have that

fa>q>p(x, y) =
1
64
(−x3 − 3x2(5 + y) + y

(
36− 15y − 8y2)

+6x
(
6− 6y + y2))

Finally, by using Equation (2), we can derive the global pdf f(x, y) in the entire
square region Q.

4 Connectivity in the Peripheral Model

In this section, we exploit our analytical results on the pMRWP model to derive
the transmission range to be assigned to the nodes of a MANET, moving according
to this model, in order to guarantee its connectivity with high probability (note
that similar results can be obtained in the case of the rMRWP model). To this
aim we will follow the same approach which has been used in the case of (static)
geometric random graphs (see, for example, [11]).

Let n be the number of nodes, and let r(n) = γ
( lnn

n

)1/3
be the transmission

range of the nodes of the MANET (the value of γ will be specified later). By
tessellating the square Q into k2 square cells of size z = 2/k, with k =

√
5/r(n),

it is not difficult to prove that, in order to guarantee the connectivity of the
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communication graph,4 it suffices to choose γ so that, with high probability,
every cell is not empty. For any cell C of Q, let Xi(C) be the random variable
whose value is 1 if node i is in C and 0 otherwise. Moreover, let X(C) = X1(C)+
. . . + Xn(C) be the random variable describing the total number of nodes in C.
By looking at the analytical expression of the pdf relative to the pMRWP model
derived in the previous section (and as it clearly appears by observing the left
part of Figure 1), it follows that only the cell in the center of Q (that is, the cell
containing Z) and the cells at its corners have to be analyzed. Let Cc and Cb

be, respectively, the cell in the center of Q and one of the cells at its corners.
Then5,

P [Xi(Cc) = 1] = 8
∫ 1

1− z
2

∫ x

1− z
2

fX(x, y)dxdy =
41
64

z3 + z4 5z − 110
512

and

P [Xi(Cb) = 1] = 2
∫ z

0

∫ x

0
fX(x, y)dxdy =

1
32
(
36z3 − z5 − 19z4) .

It is easy to verify that, since z ≤ 1, P [Xi(Cc) = 1] ≤ P [Xi(Cb) = 1]. Moreover,

P [Xi(Cc) = 1] =
41
64

z3 + z4 5z − 110
512

=
41
64

z3 + z3
(

z
5z − 110

512

)
≥ 41

64
z3 − z3 105

512
=

223
128

z3.

If we set c = 223
128 and α = ncz3, then, for all cells C in Q, μ(C) ≥ α. Let D be

the event “The communication graph is not connected”: then, by observing that
α > 1 and by applying the Chernoff bound, we have that

P [D] ≤
∑

all C

P [X(C) < 1] <
∑

all C

μ(C)e1−μ(C) ≤ k2αe1−α

<
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)
e
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=
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(
c
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)
e

n
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.

By setting γ > 1.62 we have that cγ3

53/2 > 2
3 , which implies that the communication

graph is connected with high probability.
4 The communication graph induced by the n nodes and the range r(n) is the graph

of n nodes such that an edge connecting a pair of nodes exists if and only if their
distance is at most r.

5 Observe that the worst case happens when the cell in Cc is centered in Z.
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Fig. 6. The spatial node stationary distribution of the pMRWP model (left), of the
rMRWPmodel (center), and of the classic RWP model (right)

5 Conclusion and Further Research

In this paper, we have analyzed the spatial node stationary distribution of two
Manhattan path based variations of the RWP mobility model: in Figure 6 we
compare the spatial node stationary distribution of these two models with the
one of the standard RWP model. We have then applied these analytical results
to the computation of an upper bound on the transmission range guaranteeing
the connectivity of the communication graph of a MANET, whose nodes move
according to the peripheral model.

From a mobility model point of view, it would be interesting to see whether
the geometric probability arguments that we have used for the analysis of the
rMRWP and the pMRWP models can be applied to the RWP model. Even though quite
complicated integrals might arise, we believe it would be worth deeply analyzing
this approach. From an algorithmic point of view, instead, an interesting open
question concerns the possibility of obtaining analytical results about the com-
pletion time of specific information spreading protocols based on MANETs whose
nodes move according to one of the mobility models analyzed in this paper. Fi-
nally, it would be interesting to compute a lower bound on the transmission range
guaranteeing the connectivity of the communication graph and to see whether
it matches our upper bound.
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This problem is unsolvable if the local port numbers are set arbitrar-
ily, see [1]. However, surprisingly small periods can be achieved when
assigning carefully the local port numbers. Dobrev et al. [2] described
an algorithm for assigning port numbers, and an oblivious agent (i.e.,
an agent with no persistent memory) using it, such that the agent ex-
plores all graphs of size n within period 10n. Providing the agent with a
constant number of memory bits, the optimal length of the period was
proved in [3] to be no more than 3.75n (using a different assignment of
the port numbers). In this paper, we improve both these bounds. More
precisely, we show a period of length at most 4 1

3
n for oblivious agents,

and a period of length at most 3.5n for agents with constant memory.
Finally, we give the first non-trivial lower bound, 2.8n, on the period
length for the oblivious case.

1 Introduction

Efficient search in unknown or unmapped environments is one of the fundamen-
tal problems in algorithmics. Its applications range from robot navigation in haz-
ardous environments to rigorous exploration (and, e.g., indexing) of data available
on the Internet. Due to a strong need to design simple and cost effective agents as
well as to design exploration algorithms that are suitable for rigorous mathemat-
ical analysis, it is of practical importance to limit the local memory of agents.

We consider the task of graph exploration by a mobile entity equipped with
small (constant number of bits) memory. The mobile entity may be, e.g., an
autonomous piece of software navigating through an underlying graph of con-
nections of a computer network. The mobile entity is expected to visit all nodes
in the graph in a periodic manner. For the sake of simplicity, we call the mobile
entity an agent and model it as a finite state automaton. The task of periodic
traversal of all nodes of a network is particularly useful in network maintenance,
where the status of every node has to be checked regularly.

We consider here undirected graphs that are anonymous, i.e., the nodes in the
graph are neither labelled nor colored. To enable the agent to distinguish the
different edges incident to a node, edges at a node v are assigned port numbers
in {1, . . . , dv} in a one-to-one manner, where dv is the degree of node v.

We model agents as Mealy automata. The Mealy automaton has a finite num-
ber of states and a transition function f governing the actions of the agent. If the
automaton enters a node v of degree dv through port i in state s, it switches to
state s′ and exits the node through port i′, where (s′, i′) = f(s, i, dv). The mem-
ory size of an agent is related to its number of states; more precisely it equals the
number of bits needed to encode these states. For example, an oblivious agent
has a single state, or, equivalently, zero bits of persistent memory. Note that in
this model the size of the agent memory represents the amount of information
that the agent can remember while moving between nodes in the graph. This does
not restrict computations made on a node and thus the transition function can
be any deterministic function. Additional memory needed for computations can
be seen as provided temporarily by the hosting node. Nevertheless, our agent
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algorithms perform very simple tests and operations on the non-constant inputs
i and d, namely equality tests and incrementations.

Periodic graph exploration requires that the agent has to visit every node
infinitely many times in a periodic manner. In this paper, we are interested
in minimising the length of the exploration period. In other words, we want
to minimise the maximum number of edge traversals performed by the agent
between two consecutive visits of a generic node, while the agent enters this
node in the same state through the same port.

Cohen et al. [4] showed that putting two bits of advice at each node allows
to explore all graphs by an agent with constant memory, by a periodic traversal
of length O(m), where m is the number of edges. In the general adversarial
setting (where the adversary can set the port numbers in a misleading order), the
exploration problem is unsolvable, even restricted to cubic planar graphs [5]. On
the other hand, even if nodes are not marked in any way but if port numbers are
carefully assigned (still satisfying the condition that at each node v, port numbers
from 1 to dv are used), then a simple agent, even oblivious, can perform periodic
graph exploration within period of length O(n). Using appropriate assignment
of the local port numbers, the best known period achieved by an oblivious agent
is 10n [2] whereas the best known period achieved by an agent with constant
memory is 3.75n [3].

1.1 Related Work

Graph exploration by robots has recently attracted growing attention. The un-
known environment in which the robots operate is often modelled as a graph,
assuming that the robots may only move along its edges. The graph setting is
available in two different forms.

In [6, 7, 8, 9, 10], the robot explores strongly connected directed graphs and
it can move only in one pre-specified direction along each edge. In [11, 12, 4,
13, 14, 15, 16], the explored graph is undirected and the agent can traverse
edges in both directions. Also, two alternative efficiency measures are adopted
in most papers devoted to graph exploration, namely, the time of completing
the task [6, 11, 7, 8, 12, 9, 13], or the number of memory bits (states in the
automaton) available to the agent.

In this paper, we are interested in robots characterised by very low memory
utilisation. In fact, the robots are allowed to use only a constant number of
memory bits. This restriction permits modelling robots as finite state automata.
Budach [1] proved that no finite automaton can explore all graphs. Rollik [5]
showed later that even a finite team of finite automata cannot explore all planar
cubic graphs. This result is improved in [17], where Cook and Rackoff introduce
a powerful tool, called the JAG, for Jumping Automaton for Graphs. A JAG is
a finite team of finite automata that permanently cooperate and that can use
teleportation to move from their current location to the location of any other
automaton. However, even JAGs cannot explore all graphs [17].
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2 Preliminaries

2.1 Notation and Basic Definitions

Let G = (V, E) be a simple, connected, undirected graph. We denote by
−→
G the

symmetric directed graph obtained from G by replacing each undirected edge
{u, v} by two directed edges in opposite directions – the directed edge from u
to v denoted by (u, v) and the directed edge from v to u denoted by (v, u). For
each directed edge (u, v) or (v, u) we say that the undirected edge {u, v} ∈ G is
its underlying edge. For any node v of a directed graph the out-degree of v is the
number of directed edges leaving v, the in-degree of v is the number of directed
edges incoming to v, and the cumulative degree of v is the sum of its out-degree
and its in-degree.

Directed cycles constructed by our algorithm traverse some edges in G once
and some other edges twice in opposite directions. However, at early stages,
our algorithm for oblivious agents is solely interested in whether the edge is
unidirectional or bidirectional, indifferently of the direction. To alleviate the
presentation (despite some abuse of notation), in this context, an edge that is
traversed once when deprived of its direction is called a single edge. Similarly,
an edge that is traversed twice is called a two-way edge, and it is understood
to be composed of two single edges (in opposite directions). Hence we extend
the notion of single and two-way edges to general directed graphs in which the
direction of edges is removed. In particular, we say that two remote nodes s
and t are connected by a two-way path, if there is a finite sequence of vertices
v1, v2, . . . , vk, where each pair vi and vi+1 is connected by a two-way edge, and
s = v1 and t = vk. We call a directed graph

−→
K two-way connected if for any pair of

nodes there is a two-way path connecting them. Note that two-way connectivity
implies strong connectivity but not the opposite.

2.2 Three-Layer Partition

The three-layer partition is a new graph decomposition method that we use in
constructing periodic tours efficiently in both the oblivious and the constant-
memory cases.

For any set of nodes X we call the neighborhood of X the set of their neighbors
in graph G (excluding nodes in X) and we denote it by NG(X). One of the main
components of the constructions of our technique are backbone trees of G, that
is, connected cycle-free subgraphs of G. We say that a node v is saturated in a
backbone tree T of G if all edges incident to v in G are also present in T .

A three-layer partition of a graph G = (V, E) is a 4-tuple (X, Y, Z, TB) such
that (1) the three sets X , Y and Z form a partition of V , (2) Y = NG(X) and
Z = NG(Y ) \ X , (3) TB is a tree of node-set X ∪ Y where all nodes in X are
saturated. We call X the top layer, Y the middle layer, and Z the bottom layer
of the partition. Any edge of G between two nodes in Y will be called horizontal.

During execution of procedure 3L-Partition the nodes in V are dynamically
partitioned into sets X, Y, Z, P and R with temporary contents, where X is
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the set of saturated nodes, Y = NG(X) contains nodes at distance 1 from X ,
Z = NG(Y ) \X contains nodes at distance 2 from X , P = NG(Z) \ Y contains
nodes at distance 3 from X and R = V \ (X ∪ Y ∪ Z ∪ P ) contains all the
remaining nodes in V .

Procedure. 3L-Partition(in : G = (V, E); out : X, Y, Z, TB);
(1) X = Y = Z = P = ∅; R = V ; TB = ∅;
(2) select an arbitrary node v ∈ R;
(3) loop

(a) X = X ∪ {v}; (insert into X newly selected node);
(b) update contents of sets Y, Z, P and R (on the basis of new X);
(c) saturate the newly inserted node v to X (i.e., insert all new

edges in TB);
(d) if the new node v in X was selected from P then insert in TB

an arbitrary horizontal edge (on middle level) to connect
the newly formed star rooted in v with the rest of TB.

(e) if any new node v ∈ Y can be saturated then
select v for saturation;

else-if any new node v ∈ Z can be saturated then
select v for saturation;

else-if P is non-empty then
select a new v from P for saturation arbitrarily;

else exit-loop;
end-loop

(4) output (X, Y, Z, TB)

Figure 1 below shows a representative example of the output from the 3L-
Partition procedure.

middle layer Y

bottom layer Z

top layer X

Fig. 1. Three-layer partition. Solid lines and black nodes belong to the backbone tree
TB. Dashed lines represent horizontal edges outside TB . Dotted lines are incident to
nodes from Z.

Lemma 1. Procedure 3L-Partition computes a three-layer partition for any
connected graph G.

Lemma 2. The three-layer partition has the following properties:
(1) each node in Y has an incident horizontal edge outside of TB;
(2) each node in Z has at least two neighbors in Y .
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Proof. To prove property (1) assume, by contradiction, that there exists a node
u ∈ Y that has no horizontal edges outside of TB. Observe that in this case u can
be saturated , i.e., u may be moved to X, inserting into TB all remaining edges
incident to u. Indeed, since before u was saturated all such edges lead only to
nodes in Z their insertion does not form cycles. Thus property (1) holds. Finally,
assume there is a node w in Z with no more than one incident edge leading to
level Y. Also in this case we can saturate w since all edges incident to w form a
star that shares at most one node with TB. Thus, no cycle is created, which in
turn proves property (2). ��
Lemma 3. For any graph G = (V, E) a three-layer partition may be computed
in O(|E|) time.

2.3 RH-Traversability and Witness Cycles

In this section we discuss the conditions for the oblivious periodic traversals.
Given a port number assignment algorithm and an agent algorithm, it is possible,
for a given degree d, to permute all port numbers incident to each degree-d node
of a graph G according to some fixed permutation σ, and to modify the transition
function f of the agent accordingly, so that the agent behaves exactly the same
as before in G. The new transition function f ′ is in this case given by the formula
f ′ = σ ◦ f ◦ σ−1 and the two agent algorithms are said to be equivalent.

More precisely, two agent algorithms described by their respective transition
functions f and f ′ are equivalent if for any d > 0 there exists a permutation σ
on {1, . . . , d} such that f ′ = σ ◦ f ◦ σ−1.

The most common algorithm used for oblivious agents is the Right-Hand-
on-the-Wall algorithm. This algorithm is specified by the transition function
f : (s, i, d) �→ (s, (i mod d)+1). Differently speaking, if the agent enters a degree-
d node v by port number i, it will exit v through port number (i mod d) + 1.

The following lemma states that any couple consisting of a port number as-
signment algorithm and an oblivious agent algorithm, and solving the periodic
graph exploration problem, can be expressed by using the Right-Hand-on-the-
Wall algorithm as the agent algorithm. We will thus focus on this algorithm in
all subsequent parts referring to oblivious agents.

Lemma 4. Any agent algorithm enabling an oblivious agent to explore all graphs
(even all stars) is equivalent to the Right-Hand-on-the-Wall algorithm.

Graph traversal according to the Right-Hand-on-the-Wall algorithm has been
called right-hand traversals or shortly RH-traversals, see [2]. Similarly, cyclic
paths formed in the graph according to the right-hand rule are called RH-cycles.
The aim of our first oblivious-case algorithm is to find a short RH-traversal of
the graph, i.e., to find a cycle

−→
C in

−→
G containing all nodes of

−→
G and satisfying

the right-hand rule: If e1 = (u, v) and e2 = (v, w) are two successive edges of−→
C then e2 is the successor of e1 in the port numbering of v. We call such a
cycle a witness cycle for G, and the corresponding port numbering a witness
port numbering.
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Given graph
−→
G we first design

−→
H , a spanning subgraph of

−→
G that contains

all edges of a short witness cycle
−→
C of

−→
G . Then we look for the port numbering

of each node in
−→
H to obtain

−→
C . The characterisation of such a graph

−→
H is not

trivial, however it is easy to characterise graphs which are unions of RH-cycles.

Definition 5. A node v ∈ −→
G is RH-traversable in

−→
H if there exists a port

numbering πv such that, for each edge (u, v) ∈ −→H incoming to v via an underlying
edge e there exists an outgoing edge (v, w) ∈ −→H leaving v via the underlying edge
e′, such that e′ is the successor of e in the port numbering of v.

We call such ordering a witness ordering for v.

Let
−→
H be a spanning subgraph of

−→
G . For each node v, denote by bv, iv and ov

the number of two-way edges incident to v used in
−→
H, only incoming and only

outgoing edges, respectively. The following lemma characterises the nodes of a
graph being a union of RH-cycles.

Lemma 6. A node v is RH-traversable if and only if bv = dv or iv = ov > 0.

Proof. (⇒) The definition of RH-traversability implies iv = ov.
(⇐) If bv = dv, i.e., all edges incident to v are used in two directions, any
ordering of the edges is acceptable. Otherwise (bv �= dv,) choose a port numbering
in which outgoing edges that contribute to two-way edges are arranged in one
block followed by an outgoing edge. All remaining directed edges are placed in a
separate block, in which edges alternate directions and the last (incoming) edge
precedes the block of all two-way edges. ��
We easily obtain the following:

Corollary 7. A spanning subgraph
−→
H of

−→
G is a union of RH-cycles if and only

if each node v has an even number of single edges incident to v in
−→
H , and, in

case no single edge is incident to v in
−→
H , all two-way edges incident to v in

−→
G

must be also present in
−→
H .

In the rest of this section we introduce several operations on cycles, and the
conditions under which these operations will result in a witness cycle.

Consider a subgraph
−→
H of G that has only RH-traversable nodes. Observe

that any port numbering implies a partitioning of
−→
H into a set of RH-cycles.

Take any ordering γ of this set of cycles. We define two rules which transform
one set of cycles to another. The first rule, Merge3, takes as an input three
cycles incident to a node and merges them to form a single one. The second
rule, EatSmall, breaks a non-simple cycle into two sub-cycles and transfers one
of them to another cycle.

1. Rule Merge3: Let v be a node incident to at least three different cycles
C1, C2 and C3. Let x1, x2 and x3 be the underlying edges at v containing
incoming edges for cycles C1, C2 and C3, respectively (x1, x2 and x3 can be
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Fig. 2. (a) Applying rule Merge3; (b) applying rule EatSmall

a single edge or a two-way edge in
−→
H ). Suppose w.l.o.g., that x2 is between

x1 and x3 in cyclic port numbering of v. The port numbering which makes
the successor of x2 become the successor of x1, the successor of x3 become
the successor of x2 and the successor of x1 become the successor of x3 and
keeps the relative order of the remaining edges the same (see Figure 2(a))
connects the cycles C1, C2 and C3 into a single cycle C3, while remaining a
witness port numbering for v (due to the original port numbering).

2. Rule EatSmall: Let C1 be the smallest cycle in ordering γ such that
– there is a node v that appears in C1 at least twice
– there is also another cycle C2 incident to v
– γ(C1) < γ(C2)

Let x and y be underlying edges at v containing incoming edges for C1 and
C2, respectively; let z be the underlying edge containing the incoming edge
by which C1 returns to v after leaving via the successor of x. If z is the
successor of y, choose a different x. Modify the ordering of the edges in v
as follows: (1) the successor of x becomes the new successor of y, (2) the
old successor of y becomes the new successor of z, (3) the old successor of z
becomes the new successor of x and (4) the order of the other edges remains
unchanged – see Figure 2(b).

Lemma 8. Let
−→
K be a two-way connected spanning subgraph of G with all nodes

RH-traversable in
−→
K . Consider the set of RH-cycles generated by some witness

port numbering of its nodes, with C∗ being the largest cycle according to some
ordering γ. If neither Merge3 nor EatSmall can be applied to the nodes of C∗

then C∗ is a witness cycle.

Proof. Suppose, by contradiction, that C∗ does not span all the nodes in G. Let
V ′ be the set of nodes of G not traversed by C∗. Since

−→
K is two-way connected

there exist two nodes u, v ∈ G, such that v belongs to C∗ and u ∈ V ′, and
the directed edges (u, v) and (v, u) belong to

−→
K . Edges (u, v) and (v, u) cannot

belong to different cycles of
−→
K because Merge3 would be applicable. Hence (u, v)

and (v, u) must both belong to the same cycle C′. However (u, v) and (v, u)
cannot be consecutive edges of C′ because this would imply dv = 1 which is
not the case, since v also belongs to C∗. Hence C′ must visit v at least twice.
However, since C∗ is the largest cycle we have γ(C′) < γ(C∗) and the conditions



More Efficient Periodic Traversal in Anonymous Undirected Graphs 175

of applicability of rule EatSmall are satisfied with C1 = C′ and C2 = C∗. This
is the contradiction proving the claim of the lemma. ��

3 Oblivious Periodic Traversal

In this section we describe the algorithm that constructs a short witness cycle
for graph G. This witness cycle will allow an oblivious agent (i.e., one with
no persistent memory) to perform the periodic traversal of G. According to
Lemma 8 it is sufficient to construct a spanning subgraph

−→
K of G which is

two-way connected, such that, each node of G is RH-traversable in
−→
K . We will

present first a restricted case of a terse set of RH-cycles, when it is possible
to construct a spanning tree of G with no saturated node. In this case we can
construct a witness cycle of size 2n. In the case of arbitrary graphs, we need
a more involved argument, which will lead to a witness cycle of size 4 1

3n. We
conclude this section with the presentation of a lower bound of 2.8n.

3.1 Terse Set of RH-Cycles

Suppose that we have a graph G, which has a spanning tree T with no satu-
rated node. This happens for large and non-trivial classes of graphs, including
two-connected graphs, graphs admitting two disjoint spanning trees, and many
others. For those graphs we present an algorithm that finds a shorter witness
cycle than one that we can find for arbitrary graphs. The idea of the algorithm
is to first construct a spanning subgraph of G,

−→
K of size 2n, which contains

only RH-traversable nodes (cf. algorithm TerseCycles). Then we apply a port
numbering which partitions

−→
K into a set of RH-cycles that can then be merged

into a single witness cycle (cf. Corollary 10).

Algorithm. TerseCycles:
1: Find T – a spanning subgraph of G with no saturated nodes;
2:
−→
K ← T ; {each edge in T is a two-way edge in

−→
K}

3: For each node v ∈ −→K add to
−→
K a single edge from G \ T ; {the single edges

form a collection of stars S}
4: Restore-Parity(

−→
K, T, root(T ));

Procedure Restore-Parity has to assure that the number of single edges in-
cident to each node is even. The procedure visits each node v of the tree T in
the bottom-up manner and counts all single edges incident to v. If this number
is odd, the two-way edge leading to the parent is reduced to a single edge (with
the direction to be specified later). The procedure terminates when the parity
of all children of the root in the spanning tree is restored. Note also that the
cumulative degree of the root must be even since the cumulative degree of all
nodes in S is even. Note also that no decision about the direction of single edges
is made yet.
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Procedure. RestoreParity(directed graph
−→
K, tree T, node v): integer;

1: Pv = (number of single edges in
−→
K \ T ) (mod 2);

2: if v is not a leaf in T then
3: for each node cv ∈ T being a child of v do
4: Pv ← (Pv + RestoreParity(

−→
K, T, cv)) (mod 2);

5: end for
6: end if
7: if Pv = 1 then
8: reduce the two-way edge (P, parent(P )) to single;
9: end if

10: return Pv;

Lemma 9. After the completion of procedure TerseCycles every node of
−→
K

is RH-traversable.

Proof. Every node is either saturated or it has at least two single edges incident
to it. ��
Corollary 10. For any graph G admitting a spanning tree T , such that none of
the nodes is saturated (i.e., G\T spans all nodes of G) it is possible to construct
a witness cycle of length at most 2n.

Corollary 10 gives small witness cycles for a large class of graphs. It should be
noted for 3-regular graphs, finding a spanning tree having no saturated nodes
corresponds to finding a Hamiltonian path, a problem known to be NP-hard
even in this restricted setting [18].

3.2 Construction of Witness Cycles in Arbitrary Graphs

The construction of witness cycles is based on the following approach. First
select a spanning tree T of graph G composed of two-way edges. Let Gi, for
i = 1, 2, . . . , k be the connected components of G \ T , having, respectively, ni

nodes. For each such component we apply procedure 3L-Partition, obtaining
three sets Xi, Yi and Zi and a backbone tree Ti. We then add single edges incident
to the nodes of sets Yi and Zi, and we apply the procedure RestoreParity to
each component Gi. We do this in such a way that the total number of edges
in Gi is smaller than 2 1

3n. For the union of graphs T ∪ G1 ∪ G2 ∪ · · · ∪ Gk we
take a port numbering that generates a set of cycles. The port numbering and
orientation of edges in the union of graphs is obtained as follows. First we remove
temporarily all two-way edges from the union. The remaining set of single edges
is partitioned into a collection of simple cycles, where edges in each cycle have
a consistent orientation. Further we reinstate all two-way edges in the union,
such that each two-way edge is now represented as two arcs with the opposite
direction. Finally we provide port numbers at each node of the union, such that
it is consistent with the RH-traversability condition, see Lemma 6. We apply
rules Merge3 and EatSmall to this set of cycles until neither rule can be applied.
The set of cycles obtained will contain a witness cycle, using Lemma 8.
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Algorithm. FindWitnessCycle;
1: Find a spanning tree T of graph G {two-way edges}
2: for each connected component Gi of G \ T do
3: 3L-Partition(Gi, Xi, Yi, Zi, Ti);
4: Form set Pi by selecting for each node in Zi two edges leading to Yi; {single

edges};
5: Form a set of independent stars Si spanning all nodes in Yi that are not

incident to Pi; {single edges};
6: RestoreParity(Gi ∪ Pi ∪ Si, Ti, root(Ti));
7: end for
8:
−→
K ← T ∪G1 ∪G2 ∪ · · · ∪Gk;

9: Take any port numbering and produce a set C of RH-cycles induced by it;
10: Apply repeatedly Merge3 or, if not possible, EatSmall to C until neither rule

can be applied;
11: return the witness cycle of C;

Theorem 11. For any n-node graph algorithm FindWitnessCycle returns a
witness cycle of size at most 4 1

3n− 4.

Theorem 12. The algorithm FindWitnessCycle terminates in O(|E|) time.

3.3 Lower Bound

We have shown in the previous section that for any n-node graph we can con-
struct a witness cycle of length at most 4 1

3n− 4. In this section we complement
this result with the lower bound 2.8n:

Theorem 13. For any non-negative integers n, k and l such that, n = 5k + l
and l < 5, there exists an n-node graph for which any witness cycle is of length
14k + 2l.

Proof. Consider first a single diamond graph G′, see the left part of Figure 3.
Without loss of generality, we can assume that we start the traversal through
(v, x). Consider the successor of (x, u). Also, without loss of generality, we can
take (u, y) as the successor. Now there is only one feasible successor of (y, v)
and that is (v, z). All other edges violate either RH-traversability ((v, y)) or
leave z unvisited. Similarly, the only possible successor of (z, u) is (u, x) ((u, y)
has already been traversed with a different predecessor, and (u, z) violates RH-
traversability), of (x, v) is (v, y) and of (y, u) is (u, z). Therefore, each edge of
G′ must be used in both directions.

Consider now a chain of diamond graphs from the right side of Figure 3,
starting the graph traversal at node v0. From the fact that each edge in the
witness cycle is traversed at most twice (one time in each direction) it follows
that when returning from vi to ui−1, all nodes in Gi (as well as in all Gj ,
for j > i) must have been visited. Note that from RH-traversability it follows
that the successor of (ui−1, vi) cannot be the same (in reverse direction) as the
predecessor of (vi, ui−1), and similarly the successor of (vi, ui−1) cannot be the
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Fig. 3. The lower bound based on diamond graphs

same as the predecessor of (ui−1, vi). In turn this means that the analogous
arguments (as used in G′) apply also to each Gi, therefore all edges of G must
be traversed in both directions.

The theorem now follows directly for n = 5k. If n is not a multiple of 5, an extra
path of l nodes can be added to uk to satisfy the claim of the theorem. ��

4 Periodic Traversal with Constant Memory

In this section we focus on the construction of a tour in arbitrary undirected
graphs to be traversed by an agent equipped with a constant memory. The use
of the constant amount of memory allows the agent to change its behavior be-
tween a small number of (internal) states for its operation, i.e., the agent has a
deterministic transition function and can change from one state to another ac-
cording to pre-defined rules. As in the case of oblivious agents, we do not impose
restrictions on the amount of local memory it might have available for use at any
vertex, but this local memory is temporary and is lost when an agent leaves the
vertex. The main idea of the periodic graph traversal mechanism proposed in
[19], and further developed in [3], is to visit all nodes in the graph while travers-
ing along an Euler tour of a (particularly chosen) spanning tree (together with
a few additional, specially chosen, edges). Due to space constraints, we refer the
reader to [3] for more background and details on the mechanism the agent uses
to perform the exploration. In what follows, we concentrate on the new con-
struction of the spanning tree (with additional edges) that the agent uses for its
exploration.

Recall that the nodes of the input graph can be partitioned into three sets
X, Y and Z where all nodes in X and Y are spanned by a backbone tree, see
Section 2.2. The spanning tree T is obtained from the backbone tree by con-
necting every node in Z to one of its neighbors in Y. Recall also that every node
v ∈ X is saturated, i.e., all edges incident to v in G belong also to the spanning
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Fig. 4. Fragment of the spanning tree with the root located to the right of w1 and w2

tree. Every node in Y that lies on a path in T between two nodes in X is called
a bonding node. The remaining nodes in Y are called local.

Initial port labeling. When the spanning tree T is formed, we pick one of its
leaves as the root r where the two ports located on the tree edge incident to
r are set to 1. Initially, for any node v the port leading to the parent is set to
1 and ports leading to the i children of v are set to 2, . . . , i + 1, such that the
subtree of v rooted in child j is at least as large as the subtree rooted in child
j′, for all 2 ≤ j < j′ ≤ i + 1. All other ports are set arbitrarily using distinct
values from the range i+2, . . . , dv, where dv is the degree of v. Later, we modify
the allocation of ports at certain leaves of the spanning tree located in Z. In
particular we change labels at all children having no other leaf-siblings in T of
bonding nodes (see, e.g., node w1 in Figure 4), as well as at single children of
local nodes, but only if the local node is the last child of a node in X that has
children on its own (see, e.g., node w2 in Figure 4).

Port swap operation. Recall that every leaf w located at the level Z has also
an incident edge e outside of T that leads to some node v in Y (property 2 of the
three-layer partition). When we swap port numbers at w, we set to 2 the port
on the tree edge leading to the parent of w. We call such edge a sham penalty
edge since it now pretends to be a penalty edge while, in fact, it connects w to
its parent in the spanning tree T . We also set to 1 the port number on the lower
end of e. All other port numbers at w (if there are more incident edges to w)
are set arbitrarily. After the port swap operation at w is accomplished we also
have to ensure that the edge e will never be examined by the agent, otherwise it
would be wrongly interpreted as a legal tree edge, where v would be recognised
as the parent of w. In order to avoid this problem we also set ports at v with
greater care. Note that v has also an incident horizontal edge e′ outside of T
(property 1 of the three-layer partition). Assume that the node v has i children
in T . Thus if we set to i+ 2 the port on e′ (recall that port 1 leads to the parent
of v and ports 2, .., i + 1 lead to its children) the port on e will have value larger
than i+ 2 and e will never be accessed by the agent. Finally note that the agent
may wake up in the node with a sham penalty edge incident to it. For this reason
we introduce an extra state to the finite state automaton A governing moves of
the agent in [3] to form a new automaton A+. While being in the wake up state
the agent moves across the edge accessible via port 1 in order to start regular
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performance (specified in [3]) in a node that is not incident to the lower end of
a sham penalty edge.

Lemma 14. The new port labeling provides a mechanism to visit all nodes in the
graph in a periodic manner by the agent equipped with a finite state automaton
A+.

Theorem 15. For any undirected graph G with n nodes, it is possible to compute
a port labeling such that an agent equipped with a finite state automaton A+ can
visit all nodes in G in a periodic manner with a tour length that is no longer
than 3 1

2n− 2.

Note that in the model with implicit labels, one port at each node has to be
distinguished in order to break symmetry in a periodic order of ports. This is to
take advantage of the extra memory provided to the agent.

5 Conclusion

Further studies on trade-offs between the length of the periodic tour and the
memory of a mobile entity are needed. The only known lower bound 2n − 2
holds independently of the size of the available memory, and it refers to trees.
This still leaves a substantial gap in view of our new 3.5n upper bound. Another
alternative would be to look for as good as possible tour for a given graph, for
example, in a form of an approximate solution. Indeed, for an arbitrary graph,
finding the shortest tour may correspond to discovering a Hamiltonian cycle in
the graph, which is NP-hard.

Acknowledgements. Many thanks go to Adrian Kosowski, Rastislav Kralovic,
and Alfredo Navarra for a number of valuable discussions on the main themes
of this work.
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Abstract. We consider the problem of cooperative network exploration
by agents under the assumption that there is a harmful host present in
the network that destroys the incoming agents without outside trace –
the so-called black hole search problem.

Many variants of this problem have been studied, with various assump-
tions about the timing, agents’ knowledge about the topology, means of
inter-agent communication, amount of writable memory in vertices, and
other parameters. However, all this research considered undirected graphs
only, and relied to some extent on the ability of an agent to mark an edge
as safe immediately after having traversed it.

In this paper we study directed graphs where this technique does not
apply, and show that the consequence is an exponential gap: While in
undirected graphs Δ+1 agents are always sufficient, in the directed case
at least 2Δ agents are needed in the worst case, where Δ is in-degree of
the black hole. This lower bound holds also in the case of synchronous
agents. Furthermore, we ask the question What structural information
is sufficient to close this gap? and show that in planar graphs with a
planar embedding known to the agents, 2Δ+1 agents are sufficient, and
2Δ agents are necessary.

1 Introduction

Consider a set of mobile agents roaming in an environment represented by a
graph. In the graph exploration problems the common goal of the agents is to
extract some unknown information about the graph by collecting local infor-
mation from particular vertices and communicating the partial results among
themselves. Perhaps the oldest problem from this class is the problem of graph
exploration by a finite automaton (see e.g. [7,8,20,25] and references therein)
where a single agent is modeled by a finite state machine, and the goal is to
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traverse the whole graph. Numerous other problems and variants have been con-
sidered for teams of agents, often with the requirement to minimize the agents’
memory (e.g. [1,2,3,4,10,18,21,22,23,28,30]).

More recently, graph exploration problems in faulty networks came into con-
sideration, motivated partially by the software-engineering paradigm of mobile
computations [26], where pieces of code belonging to a user are transmitted over
the network and executed on other hosts. This approach has been proven efficient
from the point of view of network performance, however there are many issues
(also involving security aspects) to be addressed [17,24,29,31]. One of them is
the existence of malicious hosts that do not execute agents properly but try to
use them to actually harm the agents’ owner.

Graph exploration problems in faulty networks introduce an adversary of var-
ious kinds to the network that makes the collective effort of the agents harder.
The best understood problem in this family is the so called black hole search
problem [9,11,12,13,14,15,16,27], in which the network contains one (or more)
malicious hosts called black holes, which destroy incoming agents without any
trace. The goal of the agents is to locate the position(s) of the black hole(s),
or at least to find a safe spanner: a connected subgraph containing all vertices
except black holes.

The black hole search problem has been studied in numerous variants with
agents of different capabilities, and on different networks. The main task is to un-
derstand how the interplay between the network structure, and agent’s power and
knowledge influence the solvability and complexity of the problem. In particular,
the models include synchronous, semi-synchronous or asynchronous agents; with
different means of communication (face-to-face, white-board, pebbles); anony-
mous or non-anonymous; with complete map of the network, partial topological
information, or in unknown network, etc. The main complexity measure is the
number of agents necessary to locate the black hole, and a secondary measure
is the overall number of moves in order the reach the goal.

While there are results about exploration of directed graphs (e.g. [4,5,6,19]),
to the best of our knowledge all previous results concerning the exploration prob-
lems in faulty graphs in general, and the black hole search problem in particular,
have considered undirected graphs only. The technique of cautious walk [12,15]
has been frequently relied upon in order to minimize the number of agents en-
tering the black hole: If an agent wants to traverse an edge, it first marks the
edge as dangerous. No other agent enters a dangerous edge, thus ensuring that
at most Δ agents enter the black hole, where Δ is the degree of the black hole.
If the exploring agent realizes that the endpoint of the edge is safe, it returns
back and marks the edge as safe, allowing other agents to traverse it.

In this paper we consider the black hole search problem in directed graphs.
In this setting the cautious walk technique can not be applied, and some agents
must enter potentially dangerous arcs. In fact, we show that the number of such
agents can be quite high and as a consequence 2Δ agents are needed in the
worst case in order to locate the black hole. The next question we tackle is:
What kind of structural information is sufficient to close this exponential gap
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between the directed and undirected case? We show that in planar graphs with
a planar embedding known by the agents, 2Δ + 1 agents are sufficient to locate
the black hole, and 2Δ agents are needed in the worst case.

The structure of the paper is as follows: In Section 2 we specify the model and
introduce the problem. Section 3 contains the lower bound and related discussion
for general directed networks, while in Section 4 the upper and lower bounds for
the planar graphs with given planar embedding are presented. In the conclusion
Section 5 we discuss related open problems and future research directions.

2 Model and Problem Statement

2.1 Framework

The network is modeled as a simple strongly connected directed graph G con-
sisting of n nodes. The vertices are endowed with local orientation – each node
can distinguish incident edges (communication ports) by means of locally dis-
tinct port labels. No assumption is made about global consistency of these port
labels.

Operating in this network is a set of mobile agents. The agents can move from
node to a neighbouring node in G, have computing capabilities and bounded
storage (polynomial in n). All agents start at the same node, called home base.
The agents are asynchronous – their computation and movement steps take
unpredictable, but finite time. Each node has a bounded amount of storage
(polynomial in n) called white-board. The agents communicate only by reading
and writing on the white-boards; access to a white-board is gained fairly in
mutual exclusion. We assume the agents have distinct IDs; notice however that,
since the white-boards are accessed in mutual exclusion and the agents start
from the same home base, distinct IDs can be easily constructed (by having a
counter at the home-base; each agent upon wake-up takes the counter’s value as
its ID and increments the counter).

2.2 Black Hole Search

One node of the network is a black hole (BH). Any agent that enters the black
hole is destroyed; no observable trace of such destruction is available to the other
agents. We denote the in-degree of the black hole as Δ.

The black hole search problem is to find the location of the black hole. At
least one agents has to survive and terminate. In the moment of termination,
each edge is marked as either ”safe” or ”dangerous”; we require that the ”safe”
arcs induce a strongly connected spanning subgraph of G−{BH}. Furthermore,
eventually all arcs not leading to the black hole are marked as ”safe” (weak
termination).

In order to ensure that the black hole search is solvable, we assume that
G − {BH} is strongly connected, and n is known by the agents (otherwise the
agents cannot explore the whole graph, or even if they can, they do not know
they did it and it is time to terminate).
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The complexity measure we are interested in is the number of agents needed/
sufficient to locate the black hole.

3 Arbitrary Graphs

The agents exploring a directed graph are in a significantly different situation
from the undirected case. Since the techniques based on cautious walk cannot
be used, agents may be left in a situation when they have to enter a potentially
dangerous arc without the option to wait for potential survivors to mark the arc
as safe. The following theorem shows the fatal consequences of this forced choice:
If Δ arcs lead to the black hole, as many as 2Δ − 1 agents may be killed in a
directed graph. This is in contrast to the undirected case, where Δ + 1 agents
are always sufficient [12].

Theorem 1. Consider an algorithm A for locating a black hole in arbitrary
directed graphs. For any Δ ≥ 1, and any n > Δ there exists an n-vertex graph
G with a black hole of in-degree Δ such that there is an execution of A on G in
which at least 2Δ agents are needed for A to locate the black hole.

Proof: For given Δ ≥ 1, and n > Δ, consider the family GΔ,n of graphs consisting
of a directed cycle of n − 1 vertices 1, 2, . . . , n − 1, and another vertex 0 with
additional arcs (1, 0), (2, 0), . . . , (Δ, 0). All outgoing arcs are labelled either 1 or
2 (see Figure 1 for an example).

0

1 2 3 4 Δ
1

1 1

1 1

1
2

2 2

2 2

2

n− 1

Fig. 1. An example graph from GΔ,n. Vertex 0 is the black hole.

Let 0 be the black hole, and 1 be the home base. Consider any algorithm A
that locates the black hole on all graphs from GΔ,n. In order to do so, an agent
must return to the home base. In the following analysis we show that 2Δ agents
are necessary to ensure this.

First, we prove the following claim using contradiction: There is a graph G ∈
GΔ,n, and an execution of A on G such that for each vertex 1 ≤ i ≤ Δ at least
half of the agents leaving from i go to the black hole. Let us assume the claim
does not hold, and let k < Δ be the maximal number for which there is a graph
G ∈ GΔ,n, and an execution of A on G such that for each vertex 1 ≤ i ≤ k
the claim holds. As we stop the analysis the moment at the first agent returns
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to the home base, all agents leaving vertex k ⊕ 11 are distinct. By assumption
the majority of them goes to k ⊕ 2. Let G′ be obtained from G by flipping the
labels on arcs outgoing from k ⊕ 1; as G and G′ are undistinguishable to A, in
G′ the majority of agents from k⊕ 1 goes to black hole – contradiction with the
assumption that k is the largest number for which the claim holds.

Hence (by backwards induction), in order for one agent to leave vertex Δ,
there must be at least 2Δ−i distinct agents crossing the arc from i to i + 1; in
particular at least 2Δ−1 agents must leave from vertex 1 to vertex 2 (or back to
1 is Δ equals 1). Since at least half of the agents leaving vertex 1 go to the black
hole, the necessary number of agents at 1 is at least 2Δ. �

Note that the above arguments apply also in the case the agents are synchronous.
The lower bound suggests the following approach for the upper bound:
Each vertex v maintains on each of its outgoing arcs a counter counting the

number of agents that left it via this arc. An agent arriving at v departs via the
arc with the lowest counter.

As the graph is strongly connected after removing the black hole, each vertex
with an arc to the black hole has also at least one other incident arc and therefore
at most half of the agents that enter it will enter at the black hole.

BH

homebase

Fig. 2. In the naive algorithm, Ω(2n) agents can enter the black hole even for Δ = 1

Unfortunately, this simple idea does not lead to an efficient algorithm, as the
agents can return to the same vertex and have more chances to take the arc
into the black hole (see Figure 2) – in fact, even if Δ = 1, using this algorithm
O(2n) agents will enter the black hole. It is possible to analyze (and somewhat
enhance) this algorithm for arbitrary networks and Δ, however such approach
is unsatisfactory as the number of agents needed depends on n, not on Δ.

Intuitively, agents can not die in parts of the graph that are not connected to
the black hole; with sufficiently clever algorithm, the size of these parts should
not influence the number of agents needed. Hence, our conjecture is:

Conjecture 1. The number of agents sufficient to locate the black hole depends
only on the in-degree of the black hole, and not on the size of the graph.

4 Planar Graphs

In the previous section we showed that, in general, exponentially more agents
may enter the black hole in directed graphs than in undirected. It is therefore
1 We use dontation a ⊕ i to mean i-th vertex from a along the cycle.
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a natural question to ask whether there is some topological information that, if
given to the agents, improves their survival rate. In this section we show that
for planar directed graphs knowing a planar embedding is sufficient to reduce
the number of destroyed agents to O(Δ). Note that since the exponential lower
bound from previous section uses planar graphs, the knowledge of the planar
embedding is crucial for reducing the number of agents needed.

We consider directed planar graphs with the planar embedding encoded in
the arc-labels as follows: in each vertex, the incident arcs (both incoming and
outgoing) are labeled clockwise with consecutive integers. Moreover, for each
incident arc there is a flag distinguishing whether the arc is outgoing or incoming.

For the upper bound we assume the agents have distinct IDs (recall that
those can be assigned in the home base using the mutual exclusion access to the
whiteboard there). Analogously, unique vertex ID’s can be given to vertices as
well: The first agent A(with ID iA and carrying a counter cA) entering a vertex
set the ID of that vertex to be the pair (iA, cA) and increments the counter cA.

Theorem 2. There is an algorithm that locates the black hole in planar digraphs
with known planar embedding using 2Δ + 1 agents.

The basic structure of the algorithm is to maintain a safe area – a strongly
connected subgraph including the homebase and not containing the black hole.
At the beginning of the algorithm the safe area consists of the homebase only.
Subsequently, agents traverse parts of the graph, and upon return to the safe
area add the newly traversed parts to it. Since the access to the whiteboard in
any vertex (and, in particular, in homebase) is guarded by a fair mutex, it is
possible to implement all changes to the safe area atomically: an agent which is
about to change any information in the safe area first waits to get access to the
homebase, then sets a flag there preventing any other agent from concurrently
changing the safe area. For the rest of the arguments, when speaking about a
state of the safe area, we shall not consider intermediate states when an agent
is updating the information.

Agents may be in three states: exploring some parts of the graph outside safe
area, waiting in the homebase, or queueing to get the access to the homebase
after return from an exploration. However, the latter is for all purposes identical
to still traversing the corresponding arcs.

In the exploration phase agents need to store some private data in the visited
vertices. These data is always signed with agent’s ID, so parallel explorations
of multiple agents do not interfere. Apart from that, some public data may be
stored in the vertices: each vertex in the safe area is marked as such, with an
arc pointing towards the homebase. Moreover, there is a map of the safe area
in the home-base and a list of outgoing arcs from the homebase together with
information about which agents traversed them.

The exploration itself is performed by means of leftmost and rightmost traver-
sals. Intuitively, these correspond to walks in a dungeon with the left/right hand
always touching the wall (the arcs correspond to one-way tunnels, and vertices
correspond to halls with the outgoing tunnel entrances cyclically ordered accord-
ing to the planar embedding) until returning back to the safe area.
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The main idea of the algorithm is captured in the following lemma:

Lemma 1. Let A be the safe area and e be an arc outgoing from A. If e does
not lead to the black hole then either the leftmost or the rightmost traversal along
e reaches A without entering the black hole.

Proof: Consider an arc e not leading into the black hole. As G−{BH} is strongly
connected, there must be a path π leading back to A. This path together with
A divides the plane into two parts. Suppose w.l.o.g. that the black hole is in the
right-hand part.

The leftmost traversal starting along e cannot enter the black hole without
first entering A. Otherwise, it would have to cross π, which would contradict the
fact that it is a leftmost traversal. �

The leftmost and rightmost traversals are implemented as follows: During the
traversal, the agent marks (in its private area) vertices it visited. Moreover, in
each visited vertex, there is a list of arcs used by this traversal and, particu-
larly, the most recently used arc is distinguished. The detailed description of the
leftmost traversal’s implementation follows:
The rightmost traversal is implemented analogously.

The exploring agent performs a left- or rightmost traversal until the safe area
is reached (or the agent enters the black hole) with the following exception:

– If, in a vertex v, the traversal would require to traverse an arc already tra-
versed by an agent performing the same (leftmost/rightmost) type of traver-
sal, then wait until the vertex becomes part of the safe area, and then act
as if entering the safe area.

Let us call a vertex waiting according to this rule a blocked vertex. Note that
this rule ensures that at most two agents (one performing leftmost traversal and
one performing rightmost traversal) can enter the black hole via any given arc.

Algorithm 1. Leftmost traversal along arc e from a node u

1: mark e as “last used” arc
2: traverse e, let v be the vertex on the other side of e
3: if v is marked as visited then
4: traverse the cycle formed by the arcs marked as “last used”, let v′ be the last

vertex having an unmarked outgoing arc
5: go to v′, let e′ be the last used outgoing arc, let g be the (clockwise) next

outgoing unmarked arc
6: mark e′ as “used”
7: do leftmost traversal along g from v′

8: else
9: mark v as visited

10: let g be the first outgoing arc (clockwise) after e
11: do leftmost traversal along g from v
12: end if
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e BH

A

π

Fig. 3. Leftmost traversal from e cannot enter the black hole

In particular, since the algorithm uses 2Δ + 1 agents, it is guaranteed that not
all agents enter the black hole and therefore the only way the algorithm could
possibly fail is by entering a deadlock.

We shall call an arc that has never been traversed by an agent unexplored, an
arc that has been traversed by one agent partially explored, and an arc traversed
by two agents explored.

The overall algorithm of an agent is as follows:

Algorithm 2. Algorithm of an agent
1: while safe area has less than n − 1 vertices do
2: wait for an unexplored or partially explored arc e from (some safe) vertex v to

be available; if there are more available arcs, use the priority rules below to
choose one

3: if e is unexplored then let direction be left, else let direction be the direction
of the traversal that has not yet been performed along e

4: update the list of traversed arcs in the homebase
5: go to v, perform the direction traversal along e until the safe area is reached

again
6: end while

The priority rules for selecting an outgoing arc are as follows:

1. If returning from an exploration that started over some partially explored
arc e, let X be the other agent that traversed e. (Obviously, X used the
opposite-direction traversal. Note that it may be the case that no such agent
exists.) If there is a partially explored arc traversed by X outgoing from the
currently safe area, choose this arc. If an agent selects an arc according to
this rule, we say that it has paired with the agent X .

2. Otherwise, if there is any partially explored arc outgoing from the safe area,
select one.

3. Else select an unexplored arc.
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Lemma 2. Any agent performing a leftmost (rightmost) traversal that does not
lead to the black hole eventually reaches the safe area.

Proof: Consider an agent A1 performing a leftmost traversal (the argument for
rightmost traversal is analogous) such that A1 does not reach the safe area. As
A1 will not enter the black hole, the only possibility preventing it from reaching
the safe area is if it is blocked, due to an agent A2 performing leftmost traversal
that has already traversed the next arc e on A1’s path. Since the rest of the
traversal is uniquely defined by the arc e, A2 will not enter the black hole either.
Using induction on the length of the traversal it can be argued that A2 eventually
reaches the safe area, and v becomes a part of it. Hence, A1 will eventually reach
the safe area, too. �

Now we are ready to finish the proof of the main theorem:
Proof: (of Theorem 2) Each iteration of the loop of the main algorithm increases
the safe area, and from the algorithm it follows that at most 2Δ agents enter
the black hole. Hence it is sufficient to prove that no agent waits forever.

Consider, for the sake of contradiction, a deadlocked situation. There are two
reasons why an agent may be waiting: either it is blocked, or it is waiting in the
homebase because no arcs are available for exploration.

First consider the situation with only waiting agents, i.e. each agent has either
entered the black hole or is waiting in the homebase. Since no arc is available, all
arcs outgoing from the safe area have been traversed by two agents. Moreover,
since the graph with the black hole removed is strongly connected, and the
algorithm has not finished yet, at least one outgoing arc e does not lead to the
black hole. By Lemma 1, at least one of the traversals along e does no lead to
black hole, and by Lemma 2 the corresponding agent would have reached the
safe area, making e part of the safe area, not an outgoing arc – contradiction.

Let us now consider the situation where at least one agent A is blocked, i.e. is
waiting due to the next edge of its traversal having been traversed by an agent B
doing traversal in the same direction. By Lemma 2 A’s (and B’s) traversal must
lead to the black hole, otherwise A (B) would eventually unblock and reach the
safe area.

Consider, without loss of generality, that first B left the safe area along arc e1,
and later A left the (possibly expanded) safe area via arc e2. Let e′1 be the arc
of B’s traversal that was outgoing from the safe area at the moment A left; the
situation is as on Figure 4. First note that either e′1 or e2 is explored in the final
configuration: indeed, if neither is explored, then at the moment A decided on
the arc to leave the safe area, e′1 was partially explored and e2 was unexplored
– contradicting the rule to prefer partially explored arc to an unexplored one.

Again, without loss of generality let us suppose that e2 is the explored one,
and let X be the other agent having traversed it. Since e2 does not end in
the black hole and A’s traversal does lead to the black hole, by Lemma 1 X ’s
traversal does not lead to the black hole. Therefore, by Lemma 2 X returned
to the safe area at some time t. At that time, there was an arc e′′ from A’s
traversal outgoing from the safe area (which again might have expanded). Due
to the priority rules, if e′′ was not explored in time t, X selected it (and hence
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e2
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e′1

e
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BH

A

B

Fig. 4. Situation with blocked agents: First, agent B left the safe area along e1, then
later A left the (increased) safe area via e2, and e′1 was outgoing from the safe area at
that time. B had in the meantime entered the black hole, and A is waiting in v.

made it explored). In any case, we can repeat the argument with e′′ taking the
role of e2, and finally argue by induction that v is a part of the safe area in the
final configuration. However, then A is not blocked in v. �

The above algorithm does no rely on the knowledge of Δ, and the knowledge of n
is used only to evaluate the termination criteria. With Δ known to the agents and
some proper care, the algorithm can be improved to using 2Δ agents. However,
it cannot be improved further as the following theorem shows:

Theorem 3. Consider an algorithm A that locates a black hole in directed pla-
nar graphs. For any Δ there exists a graph G with a black hole of in-degree Δ
such that there is an execution of A on G in which at least 2Δ− 1 agents enter
the black hole.

Proof: For any given Δ ≥ 1, consider the following class of embedded planar
graphs GΔ: a G ∈ GΔ has a distinguished vertex t, and contains a directed cycle s
of length 2Δ+1. Each vertex of s has one incident arc, in addition to those from
the cycle, such that the clockwise sequence of these arcs is e0, e1, . . . , e2Δ where
arcs with odd indices are outgoing and arcs with even indices are incoming.
Outgoing arcs e2i+1 lead either to t or to an intermediate vertex vi. Each vi has
two outgoing arcs: left, and right. One of them leads to t, and the other one
returns back to s via one of the links e2i−1, e2i+1 in such a way as to maintain
planarity. If both the right link of vi and the left link of vi+1 return to s via
e2i+1, they are connected via a vertex with in-degree two and out-degree one.
All arcs e2i that would otherwise be left disconnected are leading from vertex t.
See Figure 5 for an example of a graph G.
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s

Fig. 5. An example graph G ∈ GΔ. The direction of arcs comprising s is omitted.

Consider the scenario where the homebase of the agents is in s, and t is the
black hole. Indeed, any graph G ∈ GΔ is strongly connected after removing
t. Further consider an adversary that delays the agents on links ei as long as
possible (i.e. while there are agents travelling along s). There must be a situation
in which there are no more agents travelling in s, and only active agents are on
links ei. The situation percieved by the agents at this point is the same for
all graphs from GΔ: the sequence of incoming and outgoing arcs. Hence, before
some agents return, any algorithm must behave identically on all graphs from GΔ

with one exception: the graph with no v-vertices has 2Δ+2 vertices; since agents
know n, Δ, the algorithm finishes as soon as an agent returns to homebase. In
the sequel, we exclude this graph from consideration.

Any algorithm A starts by a number K of agents (that is the same for all
graphs from GΔ) leaving s, while other agents may remain waiting for the return
of some of them. We prove that if K < 2Δ then there is a graph G ∈ GΔ such
that all the exploring agents enter the black hole.

The graph is constructed as follows: first consider all arcs e2i+1 with at least two
agents traversing them, and connect them directly to t. The remaining outgoing
arcs lead to v-vertices. Since at most one agent arrives to each v-vertex it is possible
to choose the orientation of the v-vertex’s outgoing arcs in such a way that the
agent enters the black hole. Note that as K < 2Δ, not all outgoing arcs can be
used by at least two agents and there will be at least one v-vertex. �

5 Conclusion and Open Problems

We have shown that in the case of directed graphs, the cost (in the terms of the
number of agents needed) of black hole search can be as high as exponential in
the in-degree Δ of the black hole; furthermore this bound holds also in the case
of synchronous agents. This is a rather striking difference from the undirected
case where Δ + 1 agents always suffice.
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The main open problem here is whether the number of agents sufficient in the
directed case is a function of only Δ and does not depend on the network size
n. Our conjecture is that this is indeed the case, although the proof has eluded
us so far.

Another research direction is to investigate how does the available structural
information impact the number of agents needed for black hole location. We have
made initial exploration, showing that giving a planar embedding of the planar
graphs suffices to reduce the number of necessary agents to 2Δ+1, and providing
also a rather tight lower bound. Nevertheless, this area is mostly unexplored. For
example, how much can Sense of Direction help here? What is the impact of having
full topological knowledge? What is the weakest additional information sufficient
to reduce the number of needed agents to a polynomial in Δ?
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Abstract. We consider a team of k identical, oblivious, semi-synchro-
nous mobile robots that are able to sense (i.e., view) their environment,
yet are unable to communicate, and evolve on a constrained path. Previ-
ous results in this weak scenario show that initial symmetry yields high
lower bounds when problems are to be solved by deterministic robots.

In this paper, we initiate research on probabilistic bounds and solu-
tions in this context, and focus on the exploration problem of anonymous
unoriented rings of any size. It is known that Θ(log n) robots are nec-
essary and sufficient to solve the problem with k deterministic robots,
provided that k and n are coprime. By contrast, we show that four iden-
tical probabilistic robots are necessary and sufficient to solve the same
problem, also removing the coprime constraint. Our positive results are
constructive.

1 Introduction

We consider autonomous robots that are endowed with visibility sensors (but
that are otherwise unable to communicate) and motion actuators. Those robots
must collaborate to solve a collective task, namely exploration, despite being
limited with respect to input from the environment, asymmetry, memory, etc.
In this context, the exploration tasks requires every possible location to be visited
by at least one robot, with the additional constraint that all robots stop moving
after task completion.

Robots operate in cycles that comprise look, compute, and move phases. The
look phase consists in taking a snapshot of the other robots positions using its
visibility sensors. In the compute phase a robot computes a target destination
based on the previous observation. The move phase simply consists in moving
toward the computed destination using motion actuators.

The robots that we consider here have weak capacities: they are anonymous
(they execute the same protocol and have no mean to distinguish themselves
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from the others), oblivious (they have no memory that is persistent between two
cycles), and have no compass whatsoever (they are unable to agree on a common
direction or orientation).

Related works. The vast majority of literature on coordinated distributed robots
considers that those robots are evolving in a continuous two-dimentional Euclid-
ian space and use visual sensors with perfect accuracy that permit to locate other
robots with infinite precision, e.g., [1,2,3,4,5,6].

Several works investigate restricting the capabilities of both visibility sensors
and motion actuators of the robots, in order to circumvent the many impossibil-
ity results that appear in the general continuous model. In [7,8], robots visibility
sensors are supposed to be accurate within a constant range, and sense noth-
ing beyond this range. In [8,9], the space allowed for the motion actuator was
reduced to a one-dimentional continuous one: a ring in [8], an infinite path in [9].

A recent trend was to shift from the classical continuous model to the dis-
crete model. In the discrete model, space is partitioned into a finite number
of locations. This setting is conveniently represented by a graph, where nodes
represent locations that can be sensed, and where edges represent the possibility
for a robot to move from one location to the other. Thus, the discrete model
restricts both sensing and actuating capabilities of every robot. For each loca-
tion, a robot is able to sense if the location is empty or if robots are positioned
on it (instead of sensing the exact position of a robot). Also, a robot is not able
to move from a position to another unless there is explicit indication to do so
(i.e., the two locations are connected by an edge in the representing graph).
The discrete model permits to simplify many robot protocols by reasoning on
finite structures (i.e., graphs) rather than on infinite ones. However, as noted in
most related papers [10,11,12,13], this simplicity comes with the cost of extra
symmetry possibilities, especially when the authorized paths are also symmetric
(indeed, techniques to break formation such as those of [5] cannot be used in the
discrete model).

Assuming visibility capabilities, the two main problems that have been studied
in the discrete robot model are gathering [10,11] and exploration [12,13]. For
gathering, both breaking symmetry [10] and preserving symmetry are meaningful
approaches. For exploration, the fact that robots need to stop after exploring all
locations requires robots to “remember” how much of the graph was explored,
i.e., be able to distinguish between various stages of the exploration process
since robots have no persistent memory. As configurations can be distinguished
only by robot positions, the main complexity measure is then the number of
robots that are needed to explore a given graph. The vast number of symmetric
situations induces a large number of required robots. For tree networks, [13]
shows that Ω(n) robots are necessary for most n-sized tree, and that sublinear
robot complexity (actually Θ(log n/ log log n)) is possible only if the maximum
degree of the tree is 3. In uniform rings, [12] proves that the necessary and
sufficient number of robots is Θ(log n), although it proposes an algorithm that
works with an additional assumption: the number k of robots and the size n of
the ring are coprime. Note that all previous approaches in the discrete model are
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deterministic, i.e., if a robot is presented twice the same situation, its behavior
is the same in both cases.

Our contribution. In this paper, we consider the semi-synchronous model in-
troduced in [14]. It is straighforward to see that the necessary conditions and
bounds exposed in [12] for the deterministic exploration still hold in the semi-
synchronous model. Here we propose to adopt a probabilistic approach to lift
constraints and to obtain tigher bounds. By constrast with the deterministic
approach, we show that four identical probabilistic robots are necessary and
sufficient to solve the exploration problem in any anonymous unoriented ring of
size n > 8, also removing the coprime constraint between the number of robots
and the size of the ring. Our negative result show that for any ring of size at
least four, there cannot exist any protocol with three robots in our setting, even
if they are allowed to make use of probabilistic primitives. Our positive results
are constructive, as we present a randomized protocol with four robots for any
ring of size more than eight.

Outline. The remaining of the paper is divided as follows. Section 2 presents the
system model that we use throughout the paper. Section 3 provides evidence that
no three probabilistic robots can explore every ring, while Section 4 presents our
protocol with four robots. Section 5 gives some concluding remarks.

For space consideration, several technical proofs are omitted, see the technical
report for details ([15], http://hal.inria.fr/inria-00360305/fr/).

2 Model

Distributed System. We consider systems of autonomous mobile entities called
agents or robots evolving into a graph. We assume that the graph is a ring of
n nodes, u0,. . . , un−1, i.e., ui is connected to both ui−1 and ui+1 — every
computation over indices is assumed to be modulus n. The indices are used for
notation purposes only: the nodes are anonymous and the ring is unoriented,
i.e., given two neighboring nodes u, v, there is no kind of explicit or implicit
labelling allowing to determine whether u is on the right or on the left of v.
Operating in the ring are k ≤ n anonymous robots.

A protocol is a collection of k programs, one operating on each robot. The
program of a robot consists in executing Look-Compute-Move cycles infinitely
many times. That is, the robot first observes its environment (Look phase).
Based on its observation, a robot then (probabilistically or deterministically)
decides — according to its program — to move or stay idle (Compute phase).
When a robot decides a move, it moves to its destination during the Move phase.

The robots do not communicate in an explicit way; however they see the po-
sition of the other robots and can acquire knowledge from this information. We
assume that the robots cannot remember any previous observation nor compu-
tation performed in any previous step. Such robots are said to be oblivious (or
memoryless). The robots are also uniform and anonymous, i.e, they all have

http://hal.inria.fr/inria-00360305/fr/
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the same program using no local parameter (such that an identity) allowing to
differentiate any of them.

Computations. We consider a semi-synchronous model similar to the one in [14].
In this model, time is represented by an infinite sequence of instants 0, 1, 2, . . . At
every instant t ≥ 0, a non-empty subset of robots is activated to execute a cycle.
The execution of each cycle is assumed to be atomic: Every robot that is activated
at instant t instantaneously executes a full cycle between t and t + 1. Atomicity
guarantees that at any instant the robots are on some nodes of the ring but not on
edges. Hence, during a Look phase, a robot sees no robot on edges.

We assume that during the Look phase, every robot can perceive whether sev-
eral robots are located on the same node or not. This ability is called Multiplicity
Detection. We shall indicate by di(t) the multiplicity of robots present in node
ui at instant t. More precisely di(t) = j indicates that there are j robots in node
ui at instant t. If di(t) ≥ 2, then we say that there is a tower in ui at instant
t (or simply there is a tower in ui when it is clear from the context). We say a
node ui is free at instant t (or simply free when it is clear from the context) if
di(t) = 0. Conversely, we say that ui is occupied at instant t (or simply occupied
when it is clear from the context) if di(t) �= 0.

Given an arbitrary orientation of the ring and a node ui, γ+i(t) (respectively,
γ−i(t)) denotes the sequence 〈di(t)di+1(t) . . . di+n−1(t)〉 (resp., 〈di(t)di−1(t) . . .
di−(n−1)(t)〉). The sequence γ−i(t) is called mirror of γ+i(t) and conversely. Since
the ring is unoriented, agreement on only one of the two sequences γ+i(t) and
γ−i(t)) is impossible. The (unordered) pair {γ+i(t), γ−i(t)} is called the view of
node ui at instant t (we omit “at instant t” when it clear from the context). The
view of ui is said to be symmetric if and only if γ+i(t) = γ−i(t). Otherwise, the
view of ui is said to be asymmetric.

By convention, we state that the configuration of the system at instant t is
γ+0(t). Any configuration from which there is a probability 0 that a robot moves
is said to be terminal. Let γ = 〈x0x1 . . . xn−1〉 be a configuration. The config-
uration 〈xixi+1 . . . xi+n−1〉 is obtained by rotating γ of i ∈ [0 . . . n − 1]. Two
configurations γ and γ′ are said to be indistinguishable if and only if γ′ can be
obtained by rotating γ or its mirror. Two configurations that are not indistin-
guishable are said to be distinguishable. We designate by initial configurations
the configurations from which the system can start at instant 0.

During the Look phase of some cycle, it may happen that both edges incident
to a node v currently occupied by the robot look identical in the snapshot, i.e., v
lies on a symmetric axis of the configuration. In this case, if the robot decides to
move, it may traverse any of the two edges. We assume the worst case decision
in such cases, i.e., that the decision to traverse one of these two edges is taken
by an adversary.

We call computation any infinite sequence of configurations γ0, . . . , γt, γt+1,
. . . such that (1) γ0 is a possible initial configuration and (2) for every instant
t ≥ 0, γt+1 is obtained from γt after some robots (at least one) execute a cycle.
Any transition γt, γt+1 is called a step of the computation. A computation c
terminates if c contains a terminal configuration.
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A scheduler is a predicate on computations, that is, a scheduler defines a set
of admissible computations, such that every computation in this set satisfies the
scheduler predicate. Here we assume a distributed fair scheduler. Distributed
means that, at every instant, any non-empty subset of robots can be activated.
Fair means that every robot is activated infinitively often during a computation.
A particular case of distributed fair scheduler is the sequential fair scheduler:
at every instant, one robot is activated and every robot is activated infinitively
often during a computation. In the following, we call sequential computation any
computation that satisfies the sequential fair scheduler predicate.

Problem to be solved. We consider the exploration problem, where k robots col-
lectively explore a n-sized ring before stopping moving forever. More formally, a
protocol P deterministically (resp. probabilistically) solves the exploration prob-
lem if and only if every computation c of P starting from a towerless configuration
satisfies:

1. c terminates in finite time (resp. with expected finite time).
2. Every node is visited by at least one robot during c.

The previous definition implies that every initial configuration of the system in
the problem we consider is towerless. Using probabilistic solutions, termination
is not certain, however the overall probability of non-terminating computations
is 0.

3 Negative Result

In this section, we show that the exploration problem is impossible to solve in
our settings (i.e., oblivious robots, anonymous ring, distributed scheduler, . . . )
if there is less than four robots, even in a probabilistic manner (Corollary 2).
The proof is made in two steps:

– The first step is based on the fact that obliviousness constraints any explo-
ration protocol to construct an implicit memory using the configurations.
We show that if the scheduler behaves sequentially, then in any case except
one, it is not possible to particularize enough configurations to memorize
which nodes have been visited (Theorem 1 and Lemma 4).

– The second step consists in excluding the last case (Theorem 2).

If n > k, any terminal configuration should be distinguishable from any possible
initial (towerless) configuration. Hence, follows:

Remark 1. If n > k, any terminal configuration of any exploration protocol
contains at least one tower.

Lemmas 1 to 3 proven below are technical results that lead to Corollary 1. The
latter exhibits the minimal size of a subset of particular configurations required
to solve the exploration problem.
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Definition 1 (MRP). Let s be a sequence of configurations. The minimal rel-
evant prefix of s, notedMRP(s), is the maximal subsequence of s where no two
consecutive configurations are identical.

Lemma 1. Let P be any (probabilistic or deterministic) exploration protocol for
k robots in a ring of n > k nodes. For every sequential computation c of P that
terminates, MRP(c) has at least n− k + 1 configurations containing a tower.

Proof. Assume, by the contradiction, that there is a sequential computation c of
P that terminates and such thatMRP(c) has less than n−k+1 configurations
containing a tower.

Take the last configuration α without tower which appear in computation c
and all remaining configurations (all of them contains towers) that follow in c and
form c′. As α could be an initial configuration and c is an admissible sequential
computation that terminates, c′ is also an admissible sequential computation of
P that terminates. Notice thatMRP(c′) has at most n− k + 1 configurations.
Since c′ is sequential, going from configuration α to a configuration with towers,
no new nodes are explored (the same happens when remaining at the same
configuration with towers). Hence the total number of nodes explored upon the
termination of c′ is at most k (the ones that are initially visited) + n − k − 1
(the ones that are dynamically visited) = n − 1: c′ terminates before all nodes
are visited, a contradiction.

Lemma 2. Let P be any (probabilistic or deterministic) exploration protocol for
k robots in a ring of n > k nodes. For every sequential computation c of P that
terminates,MRP(c) has at least n− k + 1 configurations containing a tower of
less than k robots.

Proof. Assume, by the contradiction, that there is a sequential computation c of
P that terminates and such thatMRP(c) has less than n−k+1 configurations
containing a tower of less than k robots.

Take the last configuration α without tower which appear in computation c
and all remaining configurations (all of them contains towers) that follow in c and
form c′. As α could be an initial configuration and c is an admissible sequential
computation that terminates, c′ is also an admissible sequential computation of
P that terminates.
MRP(c′) is constituted of a configuration with no tower followed by at least

n − k + 1 configurations containing a tower by Lemma 1 and n− k new nodes
(remember that k nodes are already visited in the initial configuration) must be
visited before c′ reaches its terminal configuration.

Consider a step αα′ in c′.

– If α = α′, then no node is visited during the step.
– If α �= α′, then there are three possible cases:

1. α contains no towers. In this case, α is the initial configuration and α′

contains a tower. As only one robot moves in αα′ to create a tower (c′

is sequential), no node is visited during this step.
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2. α contains a tower and α′ contains a tower of k robots. As c′ is sequential
and all robots are located at the same node in α′, one robot moves to an
already occupied node in αα′ and no node is visited during this step.

3. α contains a tower and α′ contains a tower of less than k robots. In this
case, at most one node is visited in αα′ because c′ is sequential.

To sum up, only the steps from a configuration containing a tower to a configura-
tion containing a tower of less than k robots allow to visit at most one node each
time. Now, inMRP(c′) there are less than n−k+1 configurations containing a
tower of less than k robots and the first of these configurations appearing into c′

is consecutive to a step starting from the initial configuration. Hence, less than
n−k nodes are dynamically visited during c′ and, as exactly k nodes are visited
in the initial configuration, less than n nodes are visited when c′ terminates, a
contradiction.

Lemma 3. Let P be any (probabilistic or deterministic) exploration protocol for
k robots in a ring of n > k nodes. For every sequential computation c of P that
terminates,MRP(c) has at least n− k + 1 configurations containing a tower of
less than k robots and any two of them are distinguishable.

Proof. Consider any sequential computation c of P that terminates.
By Lemma 2, MRP(c) has x configurations containing a tower of less than

k robots where x ≥ n− k + 1.
We first show that (**) if c contains at least two different configurations hav-

ing a tower of less than k robots that are indistinguishable, then there exists a
sequential computation c′ that terminates and such that MRP(c′) has x′ con-
figurations containing a tower of less than k robots where x′ < x. Assume that
there are two different indistinguishable configurations γ and γ′ in c having a
tower of less than k robots. Without loss of generality, assume that γ occurs at
time t in c and γ′ occurs at time t′ > t in c. Consider the two following cases:

1. γ′ can be obtained by applying a rotation of i to γ. Let p be the
prefix of c from instant 0 to instant t. Let s be the suffix of c starting at
instant t′ + 1. Let s′ be the sequence obtained by applying a rotation of
−i to the configurations of s. As the ring and the robots are anonymous,
ps′ is an admissible sequential computation that terminates. Moreover, by
constructionMRP(ps′) has x′ configurations containing a tower of less than
k robots where x′ < x. Hence (**) is verified in this case.

2. γ′ can be obtained by applying a rotation of i to the mirror of
γ. We can prove (**) in this case by slightly modifying the proof of the
previous case: we have just to apply the rotation of −i to the mirrors of the
configurations of s.

By (**), ifMRP(c) contains less than n− k + 1 distinguishable configurations
with a tower of less than k robots, it is possible to (recursively) construct an
admissible computation c′ of P that terminates such thatMRP(c′) has less than
n−k+1 configurations containing a tower of less than k robots, a contradiction
to Lemma 2. Hence, the lemma holds.
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From Lemma 3, we can deduce the following corollary:

Corollary 1. Considering any (probabilistic or deterministic) exploration pro-
tocol for k robots in a ring of n > k nodes, there exists a subset S of at least
n− k + 1 configurations such that:

1. Any two different configurations in S are distinguishable, and
2. In every configuration in S, there is a tower of less than k robots.

Theorem 1. ∀k, 0 ≤ k < 3, ∀n > k, there is no exploration protocol (even
probabilistic) of a n-size ring with k robots.

Proof. First, for k = 0, the theorem is trivially verified. Consider then the case
k = 1 and k = 2: with one robot it is impossible to construct a configuration
with one tower; with two robots it is impossible to construct a configuration
with one tower of less than k robots (k = 2). Hence, for k = 1 and k = 2, the
theorem is a direct consequence of Corollary 1.

Lemma 4. ∀n > 4, there is no exploration protocol (even probabilistic) of a
n-size ring with three robots.

Proof. With three robots, the size of the maximal set of distinguishable config-
urations containing a tower of less than three robots is 	n/2
. By Corollary 1,
we have then the following inequality:

	n/2
 ≥ n− k + 1

From this inequality, we can deduce that n must be less of equal than four and
we are done.

From this point on, we know that, assuming k < 4, Corollary 1 prevents the
existence of any exploration protocol in any case except one: k = 3 and n =
4 (Theorem 1 and Lemma 4). Actually, assuming that the scheduler is se-
quential is not sufficient to show the impossibility in this latter case: Indeed,
there is an exploration protocol for k = 3 and n = 4 if we assume a sequen-
tial scheduler. This latter protocol can be found in the technical report ([15],
http://hal.inria.fr/inria-00360305/fr/).

The theorem below is obtained by showing the impossibility for k = 3 and
n = 4 using a (non-sequential) distributed scheduler.

Theorem 2. There is no exploration protocol (even probabilistic) of a n-size
ring with three robots for every n > 3.

Proof Outline. Lemma 4 excludes the existence of any exploration protocol
for three robots in a ring of n > 4 nodes. Hence, to show this theorem, we just
have to show that there is no exploration protocol for three robots working in a
ring of four nodes.

The remainder of the proof consists in a combinatorial study of all possible
protocols for k = 3 robots and n = 4 nodes. In each case, we show that the
protocol leads to one of the following contradiction:

http://hal.inria.fr/inria-00360305/fr/
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– Either, the adversarial choices of the scheduler allow to construct an admis-
sible computation that never terminates with probability 1.

– Or, for every possible terminal configuration (i.e., any configuration contain-
ing a tower, see Remark 1), there is an admissible computation that reaches
the terminal configuration without visiting all nodes. �

From Theorems 1 and 2, we can deduce the following corollary:

Corollary 2. ∀k, 0 ≤ k < 4, ∀n > k, there is no exploration protocol (even
probabilistic) of a n-size ring with k robots.

4 Positive Result

In this section, we propose a probabilistic exploration protocol for k = 4 robots
in a ring of n > 8 nodes. We first define some useful terms in Subsection 4.1.
We then give the general principle of the protocol in Subsection 4.2. Finally, we
detail and prove the protocol in Subsection 4.3.

4.1 Definitions

Below, we define some terms that characterize the configurations.
We call segment any maximal non-empty elementary path of occupied nodes.

The length of a segment is the number of nodes that compose it. We call
x-segment any segment of length x. In the segment s = ui, . . . , uk (k ≥ i) the
nodes ui and uk are termed as the extremities of s. An isolated node is a node
belonging to a 1-segment.

We call hole any maximal non-empty elementary path of free nodes. The
length of a hole is the number of nodes that compose it. We call x-hole any hole
of length x. In the hole h = ui, . . . , uk (k ≥ i) the nodes ui and uk are termed as
the extremities of h. We call neighbor of an hole any node that does not belong
to the hole but is neighbor of one of its extremities. In this case, we also say
that the hole is a neighboring hole of the node. By extension, any robot that is
located at a neighboring node of a hole is also referred to as a neighbor of the
hole.

We call arrow a maximal elementary path ui, . . . , uk of length at least four
such that (i) ui and uk are occupied by one robot, (ii) ∀j ∈ [i + 1 . . . k − 2], uj

is free, and (iii) there is a tower of two robots in uk−1. The node ui is called
the arrow tail and the node uk is called the arrow head. The size of an arrow
is the number of free nodes that compose it, i.e., it is the length of the arrow
path minus 3. Note that the minimal size of an arrow is 1 and the maximal size
is n− 3. Note also that when there is an arrow in a configuration, the arrow is
unique. An arrow is said to be primary if its size is 1. An arrow is said to be
final if its size is n− 3.

Figure 1 illustrates the notion of arrows: In Configuration (i) the arrow is
formed by the path u4, u5, u0, u1; the arrow is primary; the node u4 is the tail
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and the node u1 is the head. In Configuration (ii), there is a final arrow (the
path u2, u3, u4, u5, u0, u1). Finally, the size of the arrow in Configuration (iii)
(the path u3, u4, u5, u0, u1) is 2.

4.2 Overview of the Solution

Our protocol (Algorithm 1) proceeds in three distinct phases:

– Phase I: Starting from a configuration without tower, the robots move along
the ring in such a way that (i) they never form any tower and (2) form a
unique segment (a 4-segment) in finite expected time.

– Phase II: Starting from a configuration with a unique segment, the four
robots form a primary arrow in finite expected time. The 4-segment is main-
tained until the primary arrow is formed.

– Phase III: Starting from a configuration where the four robots form a pri-
mary arrow, the arrow tail deterministically moves toward the arrow head
in such way that the length of the arrow never decreases. The protocol ter-
minates when robots form a final arrow. At the termination, all nodes have
been visited.

Note that the protocol we propose is probabilistic. As a matter of fact, as long
as possible the robots move deterministically. However, we use randomization to
break the symmetry in some cases: When the system is in a symmetric config-
uration, the scheduler may choose to synchronously activate some processes in
such way that the system stays in a symmetric configuration. To break the sym-
metry despite the choice of the scheduler, we proceed as follows: The activated
robots toss a coin (with a uniform probability) during their Compute phase.
If they win the toss, they decide to move, otherwise they decide to stay idle.
In this case, we say that the robots try to move. Conversely, when a process
deterministically decides to move in its Compute phase, we simply say that the
process moves.
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Algorithm 1. The protocol.
1: if the four robots do not form a final arrow then
2: if the configuration contains neither an arrow nor a 4-segment then
3: Execute Procedure Phase I;
4: else
5: if the configuration contains a 4-segment then
6: Execute Procedure Phase II;
7: else /∗ the configuration contains an arrow ∗/
8: Execute Procedure Phase III;

4.3 Detailed Description of the Solution

Phase I. Phase I is described in Algorithm 2. The aim of this phase is to even-
tually form a 4-segment without creating any tower during the process. Roughly
speaking, in asymmetric configurations, robots moves determiniscally (Lines 4,
10, 27, 31). By contrast, in symmetric configurations, robots moves probabilisti-
cally using Try to move (Lines 16 and 22). Note that in all cases, we prevent the
tower formation by applying the following constraint: a robot can move through
a neighboring hole H only if its length is at least 2 or if the other neighboring
robot cannot move through H. Hence, we obtain the following lemma:

Lemma 5. If the configuration at instant t contains neither a 4-segment nor a
tower, then the configuration at instant t + 1 contains no tower.

The probabilistic convergence to a 4-segment is guaranteed by the fact that in
a symmetric configuration, the moving robots move probabilistically. Thanks to
that, the symmetries are eventually broken and the system reaches an asymmet-
ric configuration from which the robots deterministically move until forming a
4-segment. Hence, we obtain the lemma below:

Lemma 6. Starting from any initial (towerless) configuration, the system rea-
ches in finite expected time a configuration containing a 4-segment.

Phase II. Phase II is described in Algorithm 3: Starting from a configuration
where there is a 4-segment on nodes ui, ui+1, ui+2, ui+3, the system eventually
reaches a configuration where a primary arrow is formed on nodes ui, ui+1, ui+2,
ui+3. To that goal, we proceed as follows: Let R1 and R2 be the robots located
at the nodes ui+1 and ui+2 of the 4-segment. R1 and R2 try to move to ui+2
and ui+1, respectively. Eventually only one of these robots moves and we are
done. Hence, we have the two lemmas below:

Lemma 7. Let γ be a configuration containing a 4-segment ui, ui+1, ui+2, ui+3.
If γ is the configuration at instant t, then the configuration at instant t + 1 is
either identical to γ or the configuration containing the primary arrow ui, ui+1,
ui+2, ui+3.

Lemma 8. From a configuration containing a 4-segment, the system reaches a
configuration containing a primary arrow in finite expected time.
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Algorithm 2. Procedure Phase I.
1: if the configuration contains a 3-segment then
2: begin
3: if I am the isolated robot then
4: Move toward the 3-segment through the shortest hole;
5: end
6: else
7: if the configuration contains a unique 2-segment then /∗ Two robots are isolated ∗/
8: begin
9: if I am at the closest distance from the 2-segment then
10: Move toward the 2-segment through the hole having me and an extremity of the

2-segment as neighbors;
11: end
12: else
13: if the configuration contains (exactly) two 2-segments then
14: begin
15: if I am a neighbor of a longuest hole then
16: Try to move toward the other 2-segment through my neighboring hole;
17: end
18: else /∗ the four robots are isolated ∗/
19: begin
20: Let lmax be the length of the longuest hole;
21: if every robot is neighbor of a lmax-hole then
22: Try to move through a neighboring lmax-hole;
23: else
24: if 3 robots are neighbors of a lmax-hole then
25: begin
26: if I am neighbor of only one lmax-hole then
27: Move toward the robot that is neighbor of no lmax-hole through my short-

est neighboring hole;
28: end
29: else /∗ 2 robots are neighbors of the unique lmax-hole ∗/
30: if I am neighbor of the unique lmax-hole then
31: Move through my shortest neighboring hole;
32: end

Algorithm 3. Procedure Phase II.
1: if I am not located at an extremity of the 4-segment then
2: Try to move toward my neighboring node that is not an extremity of the 4-segment;

Algorithm 4. Procedure Phase III.
1: if I am the arrow tail then
2: Move toward the arrow head through the hole having me and the arrow head as neighbor;

Phase III. Phase III is described in Algorithm 4. This phase is fully deterministic:
This phase begins when there is a primary arrow. Let H be the hole between
the tail and the head of arrow at the beginning of the phase. From the previous
phase, we know that all nodes forming the primary arrow are already visited. So,
the unvisited nodes can only be on H and the phase just consists in traversing
H. To that goal, the robot located at the arrow tail traversesH. When it is done,
the system is in a terminal configuration containing a final arrow and all nodes
have been visited. Hence, we can conclude with the following theorem:

Theorem 3. Algorithm 1 is a probabilistic exploration protocol for 4 robots in
a ring of n > 8 nodes.
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5 Conclusion

We considered a semi-synchronous model of computation. In this model, we pro-
vided evidence that for the exploration problem in uniform rings, randomization
could shift complexity from Θ(log n) to Θ(1). While applying randomization to
other problem instances is an interesting topic for further research, we would
like to point out immediate open questions raised by our work:

1. Though we were able to provide a general algorithm for any n (strictly)
greater than eight, it seems that ad hoc solutions have to be designed when
n is between five and eight (inclusive).

2. Our protocol is optimal with respect to the number of robots. However, the
efficiency (in terms of exploring time) is only proved to be finite. Actually
computing the convergence time from our proof argument is feasible, but it
would be more interesting to study how the number of robots relates to the
time complexity of exploration, as it seems natural that more robots will
explore the ring faster.

3. It is worth investigating if our results can be extended to the (full) asyn-
chronous model.
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2. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather memory-less mobile robots with limited visibility. TAAS 4(1) (2009)

3. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

4. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3), 412–
447 (2008)
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Abstract. We deal with the well studied allocation problem of assigning
n balls to n bins so that the maximum number of balls assigned to
the same bin is minimized. We focus on randomized, constant-round,
distributed, asynchronous algorithms for this problem.

Adler et al. [1] presented lower bounds and upper bounds for this
problem. A similar lower bound appears in Berenbrink et al. [2]. The
lower bound is based on a topological assumption. Our first contribution
is the observation that the topological assumption does not hold for two
algorithms presented by Adler et al. [1]. We amend this situation by
presenting direct proofs of the lower bound for these two algorithms.

We present an algorithm in which a ball that was not allocated in the
first round retries with a new choice in the second round. We present tight
bounds on the maximum load obtained by our algorithm. The analysis
is based on analyzing the expectation and transforming it to a bound
with high probability using martingale tail inequalities.

Finally, we present a 3-round heuristic with a single synchronization
point. We conducted experiments that demonstrate its advantage over
parallel algorithms for 106 ≤ n ≤ 108 balls and bins. In fact, the obtained
maximum load meets the best results for sequential algorithms.

Keywords: static randomized parallel allocation, load balancing, balls
and bins, martingales.

1 Introduction

Azar et al. [3] considered the problem of allocating balls to bins in a balanced
way. For simplicity, suppose that the number of balls equals the number of bins,
and is denoted by n. If each ball selects a bin uniformly and independently
at random, then with high probability (w.h.p.)1 the maximum load of a bin is
Θ(ln n/ ln lnn) (see Thm. 2). Azar et al. proved that, if balls choose two random
bins and each ball is sequentially placed in a bin that is less loaded among the
two, then w.h.p. the maximum load is only ln lnn/ ln 2 + Θ(1).

This surprising improvement in the maximum load has spurred a lot of interest
in randomized load balancing in various settings. Adler et al. [1] studied parallel,
distributed, asynchronous, load-balancing algorithms. They presented bounds of
Θ( r
√

ln n/ ln lnn) for parallel load balancing using r rounds of communication.
1 We say that an event X occurs with high probability if Pr (X) ≥ 1 − O

(
1
n

)
.
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Another parallel algorithm with the same asymptotic bounds was presented by
Stemann [4] with a single synchronization point. Berenbrink et al. [2] generalized
to r ≤ log log n communication rounds and to weighted balls.

1.1 The Model for Parallel Randomized Load Balancing Algorithms

We overview the model of parallel load balancing from Adler et al. [1]. There are
n balls and n bins. In the beginning, each ball chooses d (a constant number)
bins independently and uniformly at random (i.u.r).

The communication graph is a bipartite graph between balls and bins. Each
ball is connected by edges to the d bins it has chosen. Messages are sent only
along edges in the communication graph. Communication proceeds in rounds.
Each round consists of messages from balls to bins and responses from bins to
balls. We assume that each node (i.e., ball or bin) may simultaneously send
messages to all its neighbors. In the last round, each ball commits to one of the
d bins that it has chosen initially.

Adler et al. were interested in asynchronous algorithms. This means that a
node may wait for a message only if the message is guaranteed to be sent to it.
In particular, arrival of messages may be delayed so that messages from later
rounds may precede messages from earlier rounds.

Finally, the model requires symmetry which we formalize as follows. For every
execution σ of the algorithm, and for any permutation π of the balls and bins
(i.e. renaming), the corresponding execution π(σ) is a valid execution of the
algorithm.

1.2 Previous Algorithms

The greedy algorithm. The greedy algorithm for load balancing presented
in [3] is a sequential algorithm. Each ball, in its turn, chooses d bins uniformly
and independently at random. The ball queries each of these bins for its current
load (i.e., the number of balls that are assigned to it). The ball is placed in a bin
with the minimum load. Azar et al. [3] proved that w.h.p. the maximum load at
the end of this process is ln lnn/ lnd + Θ(1).

The parallel greedy algorithm: pgreedy. Adler et al. [1] presented and
investigated algorithm pgreedy described below. Adler et. al [1] proved that
w.h.p. the maximum load achieved by pgreedy is O(

√
ln n/ ln lnn). They also

proved a matching lower bound. For simplicity, we present the version in which
each ball chooses d = 2 bins. We denote the balls by b ∈ [1..n] and the bins by
u ∈ [1..n]. The algorithm works as follows:

1. Each ball b chooses two bins u1(b) and u2(b) independently and uniformly
at random. The ball b sends requests to bins u1(b) and u2(b).

2. Upon receiving a request from ball b, bin u responds to ball b by reporting
the number of requests it has received so far. We denote this number by
hu(b), and refer to it as the height of ball b in bin u.
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3. After receiving its heights from u1(b) and u2(b), ball b sends a commit to
the bin that assigned a lower height. (Tie-breaking rules are not addressed
in [1].)

The threshold algorithm: threshold. The algorithm threshold studied
by Adler et al. [1] works differently. Two parameters define the algorithm: a
threshold parameter T bounds the number of balls that may be assigned to
each bin in each round, and r bounds the number of rounds. Initially, all balls
are unaccepted. In each round, each unaccepted ball chooses independently and
uniformly a single random bin. Each bin accepts the first T balls that have
chosen it. The other balls, if any, receive a rejection.

Note that, although described “in rounds”, algorithm threshold can work
completely asynchronously as distinct rounds may run simultaneously. Adler et
al. prove that, the number of unaccepted balls decreases rapidly, and thus, if r is
constant, then setting T = O( r

√
ln n/ ln lnn) requires w.h.p. at most r rounds.

They also proved a maximum load of Θ(r) for T = 1 and r = log log n rounds.

1.3 Lower Bounds

In [1,2] a lower bound of Ω( r
√

ln n/ ln lnn) was proved for the maximum load
obtained by parallel randomized load balancing algorithms, where r denotes the
number of rounds and n denotes the number of bins and balls. This lower bound
holds for a constant d and r ≤ log log n.

The lower bound uses a random (hyper)graph, called the access graph, that
represents the choices of the balls. A structure called a witness tree is proved to
exist in the access graph with constant probability [1,5].

The lower bound is based on a topological assumption (see Assumption 1) that
the final commitment of a ball is based only on the topology of the neighborhood
of radius (r − 1) in the access graph (see Sect. 2 for details).

1.4 Contributions

Gaps in applying the lower bound. Although in [1] it is stated that the
topological assumption holds for algorithm threshold, we show that the topo-
logical assumption does not hold for algorithms pgreedy and threshold. The
reason the assumption does not hold is that the commitment is based on in-
formation not included in the topology of the access graph (e.g., heights and
round numbers). Since the lower bound in [1,2] is based on the topological as-
sumption, and since it natural to design algorithms that violate this assumption,
the question of proving general lower bounds for the maximum load in parallel
randomized load balancing is reopened.

Lower bounding pgreedy and threshold. We show how the witness tree

technique can be used to prove the Ω( r

√
ln n

ln ln n ) lower bound for the pgreedy

and threshold algorithms. These proofs are not based on the topological as-
sumption as in [1,2]. Instead, it is proved that high load is obtained with at least
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constant probability conditioned on the existence of a witness tree in the access
graph. The proofs hold with respect to a rather weak oblivious adversary that
randomly permutes the arrival order of the messages in each round.

Allocation with retries. We introduce an algorithm, called retry, that par-
allelizes two rounds of the threshold algorithm and avoids sending heights and
assigning priorities to the choices. A ball that is not accepted in the first round,
randomly chooses a new bin in the second round and commits to it. We refer to
such an incident as a retry. We note that using retries violates the topological
assumption. We prove that the maximum load obtained by algorithm retry is
Θ(
√

ln n/ ln lnn).
Our analysis method is of separate interest. It is based on analyzing the ex-

pected number of retries and proving that the number of retries is concentrated
around the expected value. This technique yields both upper and lower bounds.
We remark that the lower bound can be proved similarly to the lower bound we
prove for the threshold algorithm.

A practical algorithm and its simulation. The gap between the load of
the greedy algorithm (i.e., log2 log2 n) and the load of a 2-round algorithm such
as pgreedy (i.e.,

√
log2 n/ log2 log2 n) becomes noticeable only for very large

values of n (e.g., n > 21024). This raises the need for conducting experiments
(i.e., simulations) with smaller values of n (e.g., n ∈ [106, 8 · 106

]
) since the

asymptotic analysis does not yield results for such values of n. Concentration
results (such as Lemmas 3 & 7) that characterize such random processes further
justify simulations.

We designed an algorithm, called H-retry, with 3 rounds and a single syn-
chronization point in which a lot of non-topological information is communi-
cated. Our experiments show that for 106 ≤ n ≤ 8 ·106 balls, the maximum load
is 3-4. This meets the best sequential results of Azar et al. [3] and Voecking [6],
and beats previous results (load 4-5) reported for parallel algorithms [1].

Organization. In Sect. 2 we overview the general lower bound proved in [1,2].
We show that the topological assumption does not hold for the pgreedy and
threshold algorithms. In Sect. 3 we prove lower bounds for the pgreedy and
threshold algorithms. In Sect. 4 we present an algorithm with retires and
analyze its performance. In Sect. 5 we present an heuristic and compare its
performance by simulations.

2 Reopening the Lower Bound

Adler et al. [1] and Berenbrink et al. [2] proved a lower bound on the maximum
load achieved by randomized parallel balls and bins algorithms. If each ball
selects a constant number of random bins, the lower bound states that, with
constant probability, the maximum load is Ω( r

√
ln n/ ln lnn), where: (i) r denotes

the number of communication rounds and (ii) n denotes both the number of bins
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and the number of balls. The lower bound is based on a reduction to a random
(hyper)-graph model.

For simplicity, we focus on the case that each ball chooses two bins inde-
pendently and uniformly at random (i.u.r.). An access graph G over the bins is
associated with the random choices of the balls. For each ball b, the edge e(b)
connects the pair of bins (u1(b), u2(b)) chosen by b. Note that the access graph
may have self-loops (if a ball chooses the same bin twice) and parallel edges (if
two balls choose the same pair of bins).

The neighborhood Nr(b) of e(b) in G is the set of vertices and edges that can
be reached from an endpoint of e(b) by a path that contains at most r−1 edges.

In [1], a ball b is said to be confused if Nr(b)\{e(b)} consists of two isomorphic
trees rooted at the endpoints of e(b). In [2], it is additionally required that these
two rooted trees are complete trees of degree T and height r − 1. A monotonic-
ity assumption is made in [2] stating that deleting balls does not increase the
maximum load, hence, edges in Nr(b) \ {e(b)} that do not belong to one of the
trees may be deleted.

Adler et al. [1] denoted a complete rooted tree of degree T and height r by
a (T, r)-tree. The analysis of the lower bound in [1,2] is based on the following
theorem.

Theorem 1 ([1,5]). Let r ≤ log log n and T = O( r
√

ln n/ ln lnn). The access
graph G contains a (T, r)-tree with probability at least 1/2.

The analysis is based on the observation that if an edge e(b) is incident to the
root of a (T, r)-tree, then ball b is confused. The analysis proceeds by proving
that the root of such a tree is likely to have a load at least T/2. This argument
is based on the the assumption (formalized below) that a confused ball breaks
the symmetry by committing to a bin with a fair coin flip.

Assumption 1. The decision of a ball b is based only on the topology of Nr(b)
and on random bits. Moreover, if both “sides” of the neighborhood Nr(b) are
isomorphic complete rooted trees, then the ball b commits to an endpoint of e(b)
by flipping a fair coin.

We emphasize that topology does not include names of balls and bins, and there-
fore these names do not affect the decisions (this is formalized by the symmetry
requirement).

Interestingly, both the pgreedy and threshold algorithms introduced and
analyzed in [1] do not satisfy this assumption.

Proposition 1. Algorithms pgreedy and threshold do not satisfy Assump-
tion 1.

Proof. In algorithm pgreedy each bin sends back a height to a requesting ball.
In terms of the access graph, each vertex (i.e., bin) consecutively numbers the
edges incident to it. A ball (possibly confused) commits to the bin that returned
the lower height. Part (I) in Fig. 1 depicts a confused ball b that commits to a
bin deterministically.
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Fig. 1. Two violations of Assumption 1: (I) A confused ball b in pgreedy chooses bin
v since the height of b in v is 2. (II) A confused ball b in threshold chooses bin u
because it is the first round’s choice.

In algorithm threshold each ball sends a request together with its round
number. Hence the edges of the access graph can be viewed as directed arcs
(e.g, the tail of the arc is the bin chosen in round 1, and the head is the bin
chosen in round 2). Algorithm threshold gives preference to the first round
over the second round. Part (II) in Fig. 1 depicts a confused ball b that chooses
a destination bin deterministically.

We remark that the C-Load Collision synchronous protocol [4,2] satisfies As-
sumption 1. Namely, less information is forwarded by the parties in the protocol,
and hence, the lower bound holds for it.

Corollary 1. The proof of the lower bound in [1] does not apply to algorithms
pgreedy and threshold.

3 A Lower Bound for pgreedy and threshold

Lower bound pgreedy. Although Algorithm pgreedy does not satisfy As-
sumption 1, we use Theorem 1 to prove a lower bound for algorithm pgreedy.
Since pgreedy is a two-round algorithm, the witness tree is a (T, 2)-tree τ in
the access graph G.

Lemma 1. Let 9 ≤ T = O(
√

ln n/ ln lnn). The maximum load of the pgreedy

algorithm under an oblivious adversary is T/4− 1 with constant probability.

Proof. By Theorem 1 the access graph G contains a (T, 2)-tree τ with probability
at least 1/2. Conditioned on the existence of τ , we prove that root ρ of τ has
load T/4−1 with probability at least 1/3. Fix a ball b whose edge e(b) is incident
to the root, namely e(b) = (ρ, v). Consider the heights hρ and hv given to the
requests of the ball b. The ball b commits to the root if hρ < hv. Under an
oblivious adversary, the heights of balls that request the same bin are a random
permutation (with uniform distribution). Since both the root and v are of degree
T , the probability that hρ < hv equals 1/2− 1/(2T ). Therefore, by linearity of
expectation, the expected load of the root is at least T/2 − 1/2. The lemma
follows from Markov’s bound applied to T minus the load of the root.
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Lower Bound threshold. Although Algorithm threshold does not sat-
isfy Assumption 1, we use Theorem 1 to prove a lower bound for algorithm
threshold. We first focus on a two-round version with threshold T , and as-
sume that the access graph contains a (T, 2)-tree τ . Let v1, . . . , vT denotes the
children of the root of τ .

Proposition 2. The probability that at least T/2 balls are accepted by bin vi in
the first round is at least 1/2.

Proof. Each ball incident to vi is randomly oriented, and the number of balls
accepted by vi in the first round equals the out-degree of vi. With probability
at least 1/2, the out-degree of vi is at least T/2.

Proposition 3. The probability that one of the bins v1, . . . , vT accepts at least
T/2 balls in the first round is at least 1− 2−T .

Proof. The loads of the bins v1, . . . , vT are independent since the sets of balls
incident to each bin are disjoint. The proposition follows from Proposition 2.

threshold: the case of r > 2 rounds. Assume that the access graph contains
a (T, r)-tree τ . Let v1, . . . , vT ·(T−1)r−2 denote the parents of the leaves of τ . The
following proposition follows from Hoeffding’s Inequality.

Proposition 4. The probability that at least T/(2r) balls are accepted by bin vi

in the first round is at least 1− e−T/(2r2).

Proposition 5. The probability that one of the bins v1, . . . , vT ·(T−1)r−2 accepts
at least T/(2r) balls in the first round is at least 1− e−T 2·(T−1)r−2/(2r2).

The following corollary assumes an oblivious adversary.

Corollary 2. Let r ≤ log log n and T = O( r
√

ln n/ ln lnn). With constant prob-
ability, the maximum load obtained by algorithm threshold with r rounds and
threshold T is T/2r.

4 A Tight Analysis of an Algorithm with Retries

In this sect. we consider an algorithm, called retry, that does not forward
height information or associate preferences to the first two choices of each ball. To
compensate for this limitation, rejected balls retry a third bin. Algorithm retry

can be viewed as an attempt to parallelize the two rounds of the threshold

algorithm. That is, all balls participate in the two rounds, and doubly rejected
balls are given a third chance. Alternatively, retry can be viewed as an attempt
to avoid forwarding heights (as in pgreedy).

Organization. We begin by introducing the retry algorithm. Bounds on the
number of rejected replicas and doubly rejected balls are proved in Sect. 4.2 and
4.3, respectively. The tight bound on the maximum load is proved in Sect. 4.4.
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4.1 Algorithm retry: Description

Each ball is replicated twice, and each replica chooses a random bin. The algo-
rithm is parametrized by a threshold T . Each bin accepts at most T replicas.
A ball is doubly rejected if both its replicas are rejected. A doubly rejected ball
chooses i.u.r. a new bin and commits to it.

Algorithm 1. retry(threshold T, number of balls & bins n):

1. Round 1:
(a) Each ball b generates two replicas. Each replica b′ chooses i.u.r. a bin

u(b′) and sends a request to the bin.
(b) Upon receiving a request from replica b′, if T replicas have been already

accepted, then replica b′ is rejected (i.e., a reject message is sent to ball
b). Otherwise, the replica is accepted (i.e., an accept message is sent to
ball b).

2. Round 2:
(a) Each ball that receives two reject messages chooses i.u.r. a bin u(b) and

sends a commit message to b. (A commit message cannot be rejected. A
ball that receives two accept messages may send a withdrawal message to
one of the accepting bins.)

Note that Algorithm retry is nonadaptive, as the bin choices (including the
commit request) may be chosen before any communication takes place.

4.2 Analyzing the Number of Rejected Replicas

We begin by bounding the expected number of rejected replicas (Lemma 2).
In the proof, we use linearity of expectation, Poisson approximations of the
binomial distribution inequalities, and bound the tail of a Poisson distribution
by a geometric series. The following lemma quantifies the intuition that the load
in each bin is a Poisson random variable. Thus, the expected number of rejected
replicas is approximately n · Pr (load(bin) > T ) ≈ n · 2T+1

(T+1)! .

Notation. Suppose that m ball replicas are tossed into n bins i.u.r., and let
Xi denote the number replicas in bin i. The number of replicas rejected by
bin i equals Xi − T . Let f(X) denote the number of rejected replicas. Then,
f(X) =

∑n
i=1 max (Xi − T, 0). See Fig. 2 for a depiction of the bin loads when

2n replicas are i.u.r. tossed in n bins, for n = 8 · 106.

Lemma 2. If the threshold T satisfies 6 ≤ T ≤ √n, then

e−5n · 2T+1

(T + 1)!
≤ E [f (X)] ≤ 2n · 2T+1

(T + 1)!
.

The following lemma states that the number of rejected replicas is concentrated
around its expected value. The proof introduces a Doob martingale and applies
the Azuma-Hoeffding inequality with the Lipschitz condition (similarly to the
analysis of the number of empty bins in [7]).
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Lemma 3. Pr (|f (X)− E [f (X)]| ≥ ε) ≤ 2 · e−ε2/n.

Proof. We denote the replicas by 1 ≤ β ≤ 2n. Let ξβ denote the bin of replica β.
The random variables {ξβ}2n

β=1 are independent and uniformly distributed. De-

fine f̃ so that f̃ (ξ) = f (X). Let Z0 = E
[
f̃ (ξ)

]
and Zk = E

[
f̃ (ξ) | ξ1, ξ2, ..., ξk

]
.

The sequence Z0, Z1, ... is a Doob martingale [7].
Note that Z2n = E

[
f̃ (ξ) | ξ1, ξ2, ..., ξ2n

]
= f̃ (ξ). The function f̃ satisfies the

Lipschitz condition with bound c = 1. We apply the Azuma-Hoeffding inequality
with the Lipschitz condition, namely, Pr (|Z2n − Z0| ≥ ε) ≤ 2 · e−ε2/n, and the
lemma follows.

Corollary 3. Pr
(
(f (X)− E [f (X)])2 ≥ γ

)
≤ 2 · e−γ/n.

We use Coro. 3 to prove a linear bound on the variance of the number of rejected
replicas. This bound is a multiplicative constant above the variance of the sum
n independent binomial B(2n, 1/n) random variables.

Lemma 4. V ar (f (X)) ≤ 4n.

4.3 Analyzing the Number of Doubly Rejected Balls

Let Y denote random variable that equals the number of doubly rejected balls.
The following lemma bounds the expected number of doubly rejected balls. We
use a conditioning on the number of rejected replicas and Lemma 4 to show that
the expected number of doubly rejected balls is Θ

( 1
n · E2[f(X)]

)
. To simplify

notation let H(n) �=
√

ln n/ ln lnn.

Lemma 5. E
2[f(X)]

4n − 1 ≤ E [Y ] ≤ E
2[f(X)]

4n + 1.

Lemma 6. If ln lnn ≤ T ≤ H(n), then, for n sufficiently large, Ω(n3/4·ln ln n
lnn ) <

E [Y ] < n
ln n .

The following lemma shows that the number of doubly rejected balls is concen-
trated around its expected value. The proof is similar to the proof of Lemma 3.

Lemma 7. Pr (|Y − E [Y ]| ≥ ε) ≤ 2 · e−ε2/n.

Corollary 4. Let ln lnn ≤ T ≤ H(n). The following equations hold with prob-
ability at least 1− 2

n :

1. |Y − E [Y ]| ≤ √n ln n .

2. Y = Θ
(

1
n · E [f (X)]2

)
(if n is sufficiently large).

3. Y < (1 + o(1)) · n
ln n (if n is sufficiently large).
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4.4 Putting It All Together

The maximum load obtained by Algorithm retry is attributed to two factors:
at most T replicas accepted in the first round and the load caused by the retries
of the double rejected balls.

Theorem 2 ([8,9]). If m balls i.u.r. each choose one ball out of n, then w.h.p.

the maximum load equals Θ

(
ln n

ln(1+ n
m ·ln n) + m

n

)
.

By Theorem 2, if T ≤ ln n
ln ln n , then w.h.p. at least one bin accepts T replicas. The

load caused by the retires of the doubly rejected balls is bounded again using
Theorem 2. These two factors are balanced below to minimize the asymptotic
maximum load (see Fig. 2 for a depiction of the trade-off).
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Fig. 2. (I) The distribution of bin loads in an experiment with n = 8 · 106 bins and
16 · 106 ball replicas. The x-axis depicts the bins in descending load order. The y-axis
depicts the load of each bin. The leftmost bar represents bins with load 5 or higher. (II)
The trade-off between the threshold T and the additional load caused by the retries in
Step 2a. The x-axis denotes T , and the y-axis denotes the value of T and 1/(T ln(T )).

Theorem 3. Let ln lnn ≤ T ≤ H(n), then w.h.p. the maximum load obtained
by Algorithm retry is Θ

(
T + lnn

T ·ln T

)
.

Proof. Let Li denote the maximum load incurred by round i, and let L denote
the final maximum load. By Theorem 2, w.h.p. L1 = T . We now prove that
L2 = Θ

( ln n
T ·lnT

)
.

Corollary 4, and Lemma 2 imply that:

Y = Θ

(
1
n
· E [f (X)]2

)
= Θ

(
n ·
(

2T+1

(T + 1)!

)2
)

. (1)

By Coro. 4 w.h.p. Y < (1 + o(1)) · n
ln n . By Theorem 2 w.h.p. L2 = Θ

(
lnn

ln(n/Y )

)
.

Plugging in Eq. 1 gives L2 = Θ
( lnn

T ·ln T

)
, as required. The upper bound now

follows since L ≤ L1 + L2. The lower bound follows from L ≥ max{L1, L2} ≥
(L1 + L2)/2, and the theorem follows.
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Corollary 5. Let ln lnn ≤ T ≤ H(n), then the maximum load obtained by
Algorithm retry is minimized for T = Θ (H(n)), and for T = Θ (H(n)) the
maximum load is w.h.p. Θ (H(n)).

Lemma 8. If T < ln lnn or H(n) < T , then w.h.p. the maximum load obtained
by Algorithm retry is Ω (H(n)).

Proof. If T < ln lnn then the number of doubly rejected balls (e.g. Y ) increases,
thus increasing the additional load that Step 2a incurs.

If H(n) < T , then by Theorem 2 w.h.p. the maximum load in the first round
is at least min

{
T, ln n

ln ln n

}
. Since lnn

ln ln n = H2(n), w.h.p. the maximum load is
Ω(H(n)).

5 Algorithm H-retry

Description. The algorithm is a 3-round algorithm and has a threshold pa-
rameter T . The first round is identical to pgreedy. In the second round, each
ball forwards the heights of one replica to the bin of the other replica. Namely,
replica heights are forwarded between bins at distance 2 in the access graph.

A synchronization point is defined at this stage, namely, each bin must receive
all its requests and the heights of the siblings of the replicas requesting the bin.
Let binu denote the set of replicas that requested bin u. Each bin now partitions
its set binu into 3 parts, Au, SDu, EDu, where Au is the set of accepted replicas,
SDu is the set of rejected replicas due to safe deletes, and EDu is the set of
rejected replicas due to excess deletes.

The subset SDu is defined as follows. For each replica b′ ∈ binu, let b′′ denote
its sibling replica. Let δb′

�= h(b′) − h(b′′). Note that δb′ equals the difference
between the local height of replica b′ and the height of its sibling. Let |bini|
denote the cardinality of bini. Sort the replicas in binu in ascending height
order. The set SDu consists of the suffix of binu containing max{0, |binu| − T }
replicas. (SDu is empty if |binu| ≤ T .)

The subset EDu is defined as follows. Note that, if |binu \ SDu| > T , then
every replica b′ ∈ binu \ SDu satisfies δb′ ≤ 0. Sort the replicas in binu \ SDu in
descending δb′ order. Break ties by smallest height first. The set EDu consists of
the prefix of binu \ SDu consisting of max{0, |binu \ SDu| − T } replicas. (EDu

is empty if |binu \ SDu| ≤ T .)
The subset Au consists of the remaining replicas, namely Au = binu \ (SDu∪

EDu). Each bin u sends reject messages to all balls whose replicas are in SDu ∪
EDu and accept message to balls whose replicas are in Au.

In the third round, upon receiving accept/reject messages for both replicas,
each ball proceeds as follows. If both siblings are accepted, then the ball sends
a withdraw message to the bin with the higher load (break ties arbitrarily). If
both replicas were rejected, then the ball retries by i.u.r. choosing two random
bins. These bins accept only if accepting the new ball does not overload the bin.

Discussion. Algorithm H-retry satisfies the requirements of the model de-
scribed in Sect. 1.1, except for having one synchronization point.
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Table 1. Results for bin load frequencies, number of retries, and rejection frequencies
in 50 trials per four values of n ranging from 1 million to 8 million. For each bin load,
the frequencies obtained in the trials is presented by the median and half the difference
between the maximum and minimum frequency.

0 1 2 3 4 0 1 2 3 >=4

201975.5 601483.5 191069.5 5485 0 38

±512 ±1028.5 ±608 ±129 ±0 ±10.5

404052.5 1202875.5 382162.5 10985.5 0 76

±784.5 ±1434 ±721.5 ±255.5 ±0 ±31

808048.5 2405691.5 764304.5 21931.5 0 149

±1089.5 ±2131 ±998 ±259.5 ±0 ±27

1616149.5 4811338.5 1528371 43972.5 0 310

±1387.5 ±2758 ±1466 ±397 ±0 ±44.5

1596627.5 4840281 1529629 33367.5 87 0

±1379 ±2671.5 ±1487.5 ±394.5 ±21.5 ±1
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Our experiments are, of course, synchronous. This leads to a “layering” phe-
nomenon since two siblings are more likely to receive the same height. One could
shuffle the heights in the simulation and obtain slightly better results. We did
not shuffle heights, so the layering phenomenon had a slight adverse effect.

There are a many other ways to deal with doubly rejected balls. First, since
they are so few, one could simply have each such ball choose a random bin. Since
there are so few such balls, they incur only a constant additional load. This is
perhaps the simplest solution. A second option is to reserve a small portion of
the bins for retries so that in the first round the reserved bins are not chosen.

Duplicate siblings due to retries can be removed by adding a fourth round.
Namely, in the second half of the third round send accept and reject messages
so a ball can send withdraw messages in round 4 to eliminate duplicates. We
emphasize that the complications caused by retries are due to very few balls,
hence, it is not clear that these issues are of practical interest.

Experimental results. We conducted experiments for 106 ≤ n ≤ 8 · 106. For
each n, the results for 50 trials are presented in Table 1. The value of the thresh-
old was T = 3 in all cases, except for n = 8 · 106, where we also used T = 4
(last row). The frequencies of the bin loads are presented. For example, a load
of zero means the bin is empty. For each load, the range of frequencies in the
experiments is given by the median and half the difference between the maxi-
mum and the minimum frequency. Note that the load frequencies are sharply
concentrated. The column labeled #Retries contains the number of balls that are
doubly rejected, and therefore, required a retry. Note that the number of doubly
rejected balls roughly doubles as n doubles and is also sharply concentrated. The
frequencies of the number of doubly-rejected balls that remain rejected at the
end appear in the last 4 columns. We never encountered more than 5 balls that
were not finally accepted.

Our experiments show that, even for 8 million balls, only a handful of balls
are finally rejected. One could reassign them, if needed, using an extra round.
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Alternatively, one could use three choices in the retry stage instead of two or
simply accept the retries while increasing the maximum load only by one with
high probability.
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Abstract. We study the problem of exploring a simple grid polygon
using a mobile robot. The robot starts from a location which is adjacent
to the boundary of the polygon, and after exploring all the squares, has to
return to its starting location. The robot is equipped with memory, but
has no prior knowledge of the explored terrain. The view of the terrain
is restricted to the four squares directly adjacent to the robot’s current
location. The performance of the exploration strategy is measured in
terms of the competitive ratio, with respect to the length of the optimal
path for an exploration with complete knowledge of the terrain.

We propose a new exploration strategy which achieves a competitive
ratio of 5/4, whereas the previously best approach [Icking, Kamphans,
Klein, and Langetepe; Proc. COCOON’05 ] has a competitive ratio of
4/3. The analysis for our algorithm is tight. Moreover, we show that no
exploration strategy is ever better than 20/17-competitive, thus improv-
ing the previous lower bound of 7/6.

Keywords: Exploration problem, Path planning, Mobile robot, Grid
polygon, Competitive ratio.

1 Introduction

In this paper we investigate one of the basic path planning problems for a mobile
robot, namely that of exploring the area of an unknown polygon. This type of geo-
metric problem has received a lot of attention, both in a continuous and a discrete
setting. In the continuous variant, sometimes referred to as the milling problem [2]
or the mobile robot covering problem [5], the robot has non-zero spacial dimensions
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and moves along a continuous trajectory, with the goal of covering each point of
the explored environment at least once. Herein, we focus on the discrete variant of
the problem, defined for polygons composed of unit cells; this can in fact also be
regarded as a special case of a graph exploration problem.

The explored environment is assumed to be a simple two-dimensional orthog-
onal polygon with integer coordinates. The environment is divided into unit
squares (called cells), with coordinates of corners belonging to the integer grid.
The robot is always assumed to occupy the whole of a single cell. The robot’s
motion is restricted to one of four directions: East, West, North or South. Time
is measured in discrete steps, and in one step, the robot can only move from one
cell to a cell which is directly adjacent along a side (at a distance of one). The
task of the robot is to perform an exploration of all the cells of the polygon and
return to the cell of its initial location. The robot can only proceed through cells
which are located within the explored polygon, and the starting cell is assumed
to be adjacent to the boundary of the polygon.

In such a scenario, one can define different limitations to the robot’s capa-
bilities: its knowledge of the polygon, memory, ability to leave markers in the
terrain. In this paper we assume that the robot is equipped with sufficient mem-
ory and processing power, but has no prior knowledge of the explored polygon.
Upon entering a cell and before deciding on the next move, the robot has only a
sense of the direction of its current heading (a compass), and a local view of the
surroundings, indicating which of the four cells directly adjacent to its current
location belong to the polygon. Thus, the next move in the exploration has to
be computed based on the fragment of the map of the terrain which the robot
has already discovered; in some way, the behaviour of the robot resembles an
on-line algorithm. Our goal is to design the best possible strategy for the robot,
and to compare it to the optimal strategy for the off-line version of the problem,
i.e., the scenario in which the robot is initially given a map of the entire terrain,
together with a marker representing its initial location.

Related work. The off-line version of the problem can be rephrased in terms of
the unweighted Travelling Salesman Problem (TSP) on a special class of graphs.
The input graph is then some (planar) subgraph of the two-dimensional grid,
with nodes defined as cells of the polygon and edges connecting each cell with the
four cells neighbouring along a side. This problem was shown to be NP-hard for
polygons with holes by Itai, Papadimitriou and Szwarcfiter [12]; the hardness of
the problem for polygons without holes remains an open question. On the other
hand, since the considered TSP instance is planar and has a natural metric, the
problem admits a Polynomial-Time Approximation Scheme, using the techniques
of Arora [3], Grigni, Koutsoupias, and Papadimitriou [8], or Mitchell [14]. These
results hold regardless of whether the polygon is allowed to have holes or not.
The case without holes also admits some simple and efficient approximation
algorithms, for example the linear-time 6/5-approximation of Arkin, Fekete, and
Mitchell [2].

For the case of a robot having only a local view of the adjacent cells, a simple
exploration is achieved by performing a DFS exploration of the cells. In general,
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Table 1. Bounds on the cover length of an unknown polygon for a robot with local
view (SOPT – length of the optimal cover path with full knowledge of the polygon,
C – polygon area, B – number of boundary cells, E – perimeter of the polygon, W –
sinuosity of the polygon [13], H – number of holes, c – an additive constant)

Type of polygon Upper bound Ref. Lower bound Ref.

With holes 2C − 2 DFS 2SOPT − c [5, 10]

B + C SpiralSTC [5]

C + 1
2
E + W + 3H − 2 CellExplore [10]

Without holes 4
3

SOPT SmartDFS [11] 7
6

SOPT − c [11]

5
4

SOPT Thm. 2 20
17

SOPT − c Thm. 3

such a route is a 2-competitive solution to the TSP problem, since it traverses
twice each of the edges of the spanning tree of the cell graph. In fact, for polygons
with holes such an approach is essentially the best possible: it is known [5, 10]
that there does not exist a strategy which achieves a competitive ratio better
than 2. However, some strategies for covering polygons with holes were con-
structed by Gabriel and Rimon [5], and Icking et al. [10]. In these approaches,
the length of the exploration is bounded in terms of the number of holes, area,
perimeter, and certain other parameters of the polygon (see Table 1); hence, in
some cases the performance of these strategies is better than that of DFS. For
the case when the covered polygon has no holes, Icking et al. [11] put forward a
modification of the DFS approach which they called SmartDFS. SmartDFS was
shown in [11] to be a 4/3-competitive algorithm, and it was also proved that
there does not exist an approach to the covering problem which is better than
7/6-competitive.

Recently, Herrmann, Kamphans, and Langetepe [9] have investigated the
related problem of exploration with local view of polygons on the triangular
and hexagonal grids, i.e., in settings where a cell is a triangle or a hexagon.
They showed that there does not exist an algorithm which is better than 7/6-
competitive for a triangular polygon, and better than 13/11-competitive for a
hexagonal polygon. They also proposed a modified variant of SmartDFS for
hexagonal and triangular polygons. The corresponding off-line versions of the
problem, for a robot with full knowledge of the map in a triangular or hexagonal
grid polygon, are known to be NP-hard [1, 7].

Contribution and outline of the paper. The paper is organised as follows.
In Section 2 we propose a new strategy with local view for exploring orthogonal
grid polygons without holes, and prove that it achieves a competitive ratio of
5/4, thus improving the ratio of 4/3 achieved by the SmartDFS approach. We
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×

Fig. 1. (a) Discovered and visited cells. (b) Interior and boundary cells. The unique
split cell is marked with a cross (×) .

show that the analysis of the competitive ratio of our algorithm is tight. In
Section 3 we provide a new lower bound of 20/17 on the competitive ratio of any
exploration algorithm with local view for the studied class of polygons. Some
concluding remarks are made in Section 4.

Notation. We divide the polygon P and the surrounding plane into unit squares
(cells). Each cell of the polygon is either not adjacent to the boundary of the
polygon, or has at least one corner lying on the boundary. This divides the set
of cells of the polygon into two disjoint sets: the skeleton (interior cells) and the
boundary cells (Fig. 1(b)). We call a cell discovered if at least one of its neighbors
has already been visited by the robot (Fig. 1(a)).

We will say that a cell x ⊂ P is a split cell of a simple polygon P , if cell x is
encountered more than once in a cyclic enumeration (clockwise traversal) of the
boundary cells of the polygon; see Fig. 1(b) for an example. Note that P\x is
a union of simple polygons; we will call the minimal number of disjoint simple
polygons which cover polygon P\x the multiplicity of the split cell x. We define
the split number of the polygon as T = T2 + 2T3 + 3T4, where Ti is the number
of split cells with multiplicity i, for i = 2, 3, 4.

The total number of cells of the polygon P is denoted by C(P ), or simply C
if this does not lead to misunderstanding. We denote the length of the optimal
length of a solution which can be achieved by a robot with full knowledge (a
map) by SOPT, and the length of the robot’s path computed by algorithm A
by SA. We say that exploration algorithm A is α-competitive if there exists a
constant c such that for any polygon P we have SA(P ) ≤ αSOPT(P ) + c.

Throughout the paper we will assume that the robot is located in a corner
cell of the polygon, and that the initial heading of the robot is such that the
cell behind it and the cell directly to the left are outside the polygon, and the
cell in front of the robot is within the polygon. It is straightforward to show
that for the considered algorithms the starting cell can be moved to an arbitrary
cell adjacent to the boundary, without affecting the competitive ratio (only the
additive constant c).
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2 A 5/4-Competitive Algorithm

Our approach to the problem relies on an extensive modification of the Depth
First Search (DFS) strategy. A slightly extended implementation of DFS could
work as follows: the robot maintains a stack of unvisited cells. At every step, it
adds to unvisited the cells which are adjacent to the robot’s location. Visited cells
are purged from the unvisited stack, and the robot then proceeds along the short-
est path to the top-most cell of the stack, if the stack is non-empty. If the stack is
empty, this means that the whole polygon has been explored, and the robot re-
turns to its starting location. This is also the general idea behind the SmartDFS
approach put forward in [11]. In fact, such an exploration strategy is shown to
achieve a competitive ratio of 4/3, as long as the adjacent cells are pushed onto
the unvisited stack in the following order: first the cell to the right, then the cell
in front of, and finally the cell to the left of the robot (with respect to its current
heading). Intuitively, the robot will thus traverse the unvisited boundary cells of
the polygon in the clockwise direction, as long as this is possible, and when some
sub-polygon consisting of unvisited cells has been completely surrounded by the
robot’s path, the robot first embarks upon a sub-exploration of this polygon. A
worst-case example for SmartDFS is an exploration of the rectangular polygon
of dimensions 3×n [11] in which this strategy will, in particular, visit twice n−3
of the cells belonging to the skeleton of the polygon.

In order to avoid such a problem and to achieve a competitive ratio of 5/4,
in our strategy, we modify the DFS approach by adding a special rule set for
handling situations in which the polygon intuitively “narrows down to a width
of 3”. The proposed strategy will behave differently from SmartDFS when one of
the cells adjacent to the robot’s location is identified as either a so-called dead-
end or a bottle-neck, and such cells will be visited first. Both these notions are
formally defined below (see Fig. 2 for a simple example displaying the general
idea of the modifications).

Definition 1. A cell c is called a dead-end at a given step of exploration if all
of the following conditions are jointly fulfilled:

– Cell c has not yet been visited by the robot and it is adjacent along a side to
the cell where the robot is currently located.

– Exactly 3 of the cells adjacent to c along a side have already been visited by
the robot.

– There does not exist any cell c′ outside of polygon P , such that c′ has already
been discovered by the robot and c′ is adjacent to c along a side or across a
corner.

Definition 2. A cell c is called a bottle-neck at a given step of exploration if
all of the following conditions are jointly fulfilled:

– Cell c has not yet been visited by the robot and it is adjacent along a side to
the cell where the robot is currently located.

– The union of the set of already explored cells and cell c surrounds all the
sides of the outline of some polygon P ′ ⊂ P , such that P ′ consists of unvisited
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Fig. 2. Differences between our approach (Algorithm A) and SmartDFS [11] when
handling: (a) dead-ends, (b) bottle-necks

cells, only, and P ′ contains the cell adjacent to c along the right side of c (for
directions as understood when entering c from the robot’s current location).

– There does not exist any cell c′ outside of polygon P ′, such that c′ has already
been discovered by the robot and c′ is adjacent to c along a side.

– The cell located directly in front of the robot’s location (with respect to its
current heading) is located within the polygon.

Observe that the definitions of a dead-end and a bottle-neck are such that the
robot can always verify whether a given cell is a dead-end or a bottle-neck, based
only on its current local view and its history of exploration.

2.1 The Algorithm

Our approach is defined precisely as follows. Throughout execution, the robot
maintains a stack of cells called unvisited (as in DFS) and an additional stack
called priority, used to implement the modified rules applied when encountering
a dead-end or a bottle-neck. Both these stacks are initially empty. At each step
of exploration, the precise procedure applied by the robot is given in the form
of Algorithm A. In the pseudocode, the rules marked with the symbol (*) de-
note those, which are an extension with respect to the standard DFS approach.
The robot terminates exploration when it re-enters its initial location, and the
unvisited stack is empty.

2.2 Analysis of the Competitive Ratio

Observe that for any polygon, the optimal length of the off-line cover path fulfills
the bound SOPT ≥ C + T . This is because in any exploration, each of the C
cells of the polygon has to be visited at least once, and each of the split cells
has to be visited more times, depending on the multiplicity of the split cell.
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Algorithm A. Procedure for determining the next move of the robot.

At each time step do:

1. Update the stacks of unvisited and priority cells:
– Push on top of the unvisited stack the 3 adjacent cells which are directly to

the right of the robot, in front of the robot, and to the left of the robot (with
respect to its current heading), in precisely that order, i.e., with the left cell
coming topmost.

– Search through the unvisited stack and purge from it all those cells, which have
already been visited by the robot.

– (*) Search through the priority stack and purge from it all those cells, which
have already been visited by the robot.

2. Set the destination of the robot:
– (*) If the priority stack is non-empty, then set: destination := top of the priority

stack.
– If the priority stack is empty, then:

• If the unvisited stack is non-empty, then set: destination := top of the
unvisited stack.

• Otherwise, set: destination := initial location of the robot
3. (*) If the current location of the robot is adjacent to a dead-end or a bottle-neck,

then alter the destination of the robot:
– Push the current destination on top of the stack of priority cells.
– Set destination := location of the adjacent dead-end/bottle-neck. If there is

more than one dead-end or bottle-neck directly adjacent to the robot, we give
preference to the one to the right of the robot, then the one in front of the
robot, finally the one to the left of the robot.

4. Perform a move of the robot:
– If the current destination is not a bottle-neck, move the robot to an adjacent

cell which is closer to the destination than the robot’s current location (with
respect to the shortest path metric within the set of cells already discovered by
the robot). If more than one such cell exists, break ties by arbitrarily choosing
a cell which has not yet been visited.

– (*) Otherwise, move the robot to its destination in the minimum number of
steps, so as to cover on the way the entire sub-polygon P ′ (the unvisited
sub-polygon surrounded by previously visited cells and the bottle-neck cell
destination). The optimal route can always be determined, since the boundary
of the covered sub-polygon is known.

Hence, we confine ourselves to bounding the length of path SA with respect to
(C + T ). More precisely, to prove that the approach given by Algorithm A has
a competitive ratio of 5/4, we will establish the following theorem.

Theorem 1. For any polygon P of area C > 2, we have SA ≤ 5C+5T−3
4 .

Proof. First, observe that until a bottle-neck or dead-end are encountered, the
algorithm always progresses along the boundary of the polygon. Thus we obtain
a class of “narrow” polygons which are traversed optimally by Algorithm A.
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Lemma 1. If Algorithm A does not encounter any bottle-necks or dead-ends for
polygon P , then SA = C + T .

To prove the theorem, let us now assume that P is a counter-example for our
claim, i.e., a polygon such that SA(P ) > 5C(P )+5T (P )−3

4 , which is minimal in
the following sense: out of all counter-examples, P has the minimal area of its
skeleton, and of all such polygons, it has the minimal area C(P ). We will show
through a sequence of lemmas that polygon P does not exist.

First, relying on the observation that a polygon with an empty skeleton cannot
contain a 3 × 3 polygon as a sub-polygon, we obtain that P must have a non-
empty skeleton; we omit the proof.

Lemma 2. For any polygon P , such that the skeleton of the polygon P is empty
and C > 2, Algorithm A covers P in SA ≤ 5C+5T−3

4 steps.

Consequently, we may assume that the skeleton of P is non-empty. Now, we
consider the structure of the boundary cells of any polygon P . For a boundary
cell c, let dist(c) ≥ 1 denote the length of the shortest path from c to a nearest
cell of the skeleton of P , according to the metric in which cells adjacent along
sides or across corners are at a distance of 1 from each other (i.e., boundary cells
adjacent to the skeleton along a side or across a corner have dist(c) = 1).

Note that the set of boundary cells of a polygon has an empty skeleton. We now
observe that for our minimal counter-example P , the polygon cannot contain any
boundary cells with dist(c) > 2. The proof uses simple local arguments (similar
to those in the proof of Lemma 2) to show that otherwise there would exist a
smaller counter-example P ′ to our claim; we again omit the details from this
extended abstract.

Lemma 3. For the minimal counter-example P , any boundary cell c fulfills
dist(c) ≤ 2.

We now proceed to the main part of the proof. Taking into account the above
lemma and the fact that there exists only a finite number of polygons having a
given skeleton, subject to the condition dist(c) ≤ 2 for any boundary cell c, we
will now analyze the structure of polygon P by characterizing its skeleton, only.

A skeleton of a polygon will be called elementary if it forms a connected region
of the plane (possibly across corners) and consists of at most 5 cells. There exist
exactly 83 elementary skeletons which are distinct up to isometry. Taking into
account Lemma 3, by an exhaustive computer search, we verify the following
claim.

Lemma 4. The minimal counter-example P does not have an elementary
skeleton.

To complete the proof of the theorem, we now show that there does not exist a
minimum counter-example P which has a non-elementary skeleton. First, observe
that if polygon P had no dead-ends and no bottle-necks, then it would not
be a valid counter-example by Lemma 1. Likewise, supposing that P had no
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bottle-necks, and the only dead-ends which appeared in the exploration were
traversed as shown in Fig. 3(a). Then, we immediately obtain SA(P ) ≤ 7

6C(P )+
T (P ), and once again P is not a valid counter-example. Hence, at some point
during the exploration we must encounter a bottle-neck or a dead-end which is
traversed differently than those from Fig. 3(a). Now, we apply a local replacement
argument to show that the claim of the theorem holds for P if it holds for all
polygons with a skeleton smaller than that of P . The part of the polygon in
which we apply the replacement is determined by the earliest step during the
exploration of P , at which any one of the following events occurs:

(1) A dead-end is encountered, and it is traversed differently than that shown
in Fig. 3(a).

(2) A bottle-neck is encountered.
(3) A cell a is encountered, such that a is adjacent across a corner to the robot’s

location, and a is a split cell with respect to the set of unvisited cells of the
polygon, see Fig. 3(b).

The proof is completed by analysing each of the Cases (1), (2), and (3); due to
space constraints, we confine ourselves to a brief discussions of Case (1).

We can assume that P is a polygon with a skeleton size of n, and that the skele-
ton of P is not elementary. Then, next to the encountered dead-end (traversed
differently than in Fig. 3(a)), the skeleton of polygon P must either include one
of endings shown in Fig. 4, or else be disconnected.

We now attempt to cut off a part of polygon P to obtain a new polygon P ′,
in such a way that the robot’s tour within P ′ is the same as within P , except
for a local modification. By an analysis of all possible cases, it can be shown
that when considering an ending of the skeleton, we distinguish 20 types of local
modifications which can be applied; 4 examples of such modifications are shown
in Fig. 5. If the skeleton is disconnected, and these modifications cannot be
applied, then one of the modifications from Fig. 6 can be applied instead.
Let us now compute the value of the following expression

Δ = ΔS − 5
4
(ΔC + ΔT ) (1)

where: ΔS = SA(P )− SA(P ′), ΔC = C(P )− C(P ′), ΔT = T (P )− T (P ′).

P

a

K1

Fig. 3. Situations encountered during exploration: (a) special kinds of dead-ends,
(b) split cell a of the set of unvisited cells (across a corner)
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Fig. 4. Possible endings of the skeleton. Solid lines denote the outline of the skeleton.

ΔS = 4

ΔC = 4

ΔT = 0

Δ = −1

ΔS = 6

ΔC = 5

ΔT = 0
Δ = − 1

4

ΔS = 6

ΔC = 4

ΔT = 1
Δ = − 1

4

ΔS = 6

ΔC = 5

ΔT = 0
Δ = − 1

4

ΔS = 6

ΔC = 4

ΔT = 1
Δ = − 1

4

Fig. 5. Examples of reductions of endings of the polygon skeleton. Polygon P is shown
in odd columns, the outcome P ′ of the modification is shown in even columns.

ΔS = 6

ΔC = 5

ΔT = 0
Δ = − 1

4

ΔS = 8

ΔC = 6

ΔT = 1
Δ = − 3

4

ΔS = 8

ΔC = 7

ΔT = 0
Δ = − 3

4

ΔS = 6

ΔC = 6

ΔT = −1

Δ = − 1
4

ΔS = 6

ΔC = 5

ΔT = 0
Δ = − 1

4

Fig. 6. Reductions for a disconnected skeleton of the polygon. Polygon P is shown in
odd columns, the outcome P ′ of the modification is shown in even columns.
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Fig. 7. A tight example for the competitive ratio: (a) The exploration performed by
Algorithm A. (b) The optimal off-line covering path. The exploration starts from the
cell marked with the circle.

Since P ′ has a smaller skeleton than P , and P was by assumption the minimal
counter-example to the claim, we have:

SA(P ′) ≤ 5C(P ′) + 5T (P ′)− 3
4

. (2)

Consequently:

SA(P )≤SA(P ′)+
5
4
(ΔC+ΔT )≤ 5

4
C(P )− 3

4
+

5
4
T (P ) =

5C(P ) + 5T (P )− 3
4

,

hence, P is not a counter-example to the claim.
Cases (2) and (3) are handled through a slightly different local replacement

technique, which additionally relies on a decomposition of P into two polygons
along a cut-line close to the encountered bottle-neck (or split cell). ��

2.3 A Tight Example

Theorem 2. The competitive ratio of Algorithm A is exactly 5/4.

Proof. The tight example is obtained by exploring the polygon shown in Fig. 7.
The length of the optimal off-line tour is SOPT = C + 2, and the length of
robot’s tour computed by Algorithm A is SA = 5C−4

4 . The ratio of these two
values precisely corresponds to the competitive ratio of the algorithm:

SA

SOPT
=

5C − 4
4C + 8

−→C→∞
5
4
.

��

3 Lower Bound on the Competitive Ratio

Icking et al. [11] have shown that no exploration strategy of an orthogonal poly-
gon is better than 7

6 -competitive. We obtain a tighter bound by substantially
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extending their construction of the family of polygons which serves as a counter-
example.

Theorem 3. Let A be an exploration algorithm using a local view. If A is α-
competitive, then α ≥ 20

17 .

Proof. To prove the theorem, we construct a family of polygons P in such a
way that, for any exploration algorithm E, there exists a polygon P ∈ P of
arbitrarily large area C(P ), such that SE(P ) ≥ 20

17SOPT(P )− 2.
The considered family P is built up by connecting into a “chain” the ele-

mentary polygons from sets Q, R, S, shown in Fig. 8. More precisely, we put
P =

⋃
n≥1 Pn, and elements of the family Pn, for all n ≥ 1 are constructed from

exactly n polygons from Q∪R∪ S according to the approach described below.
For P ∈ Pn, we will write P = (P1, P2, . . . , Pn), where we have Pi ∈ Q ∪R∪ S,
and the following rules are applied:

– We have P = P1 ∪ P2 ∪ · · · ∪ Pn.
– The intersection Pi ∩ Pj is non-empty only for polygons adjacent in the

sequence, i.e., when |i− j| ≤ 1.
– The intersection Pi∩Pi+1, for all 1 ≤ i < n, consists of exactly two adjacent

cells of each of these polygons, as shaded in Fig. 8, located next to their
North-East and South-West corners, respectively. Note that not every two
polygons Pi, Pi+1 ∈ Q ∪ R ∪ S can be put together so as to fulfill this
condition.

– The following additional rules are fulfilled: P1 ∈ Q. Moreover, for all 1 ≤ i <
n, we have Pi+1 ∈ Q if and only if Pi ∈ S.

Given any algorithm E, for any n ≥ 1 we now construct by means of E a
sub-optimal robot’s route τ = (c0, c1, c2, . . . , cS) covering some polygon P =
(P1, P2, . . . , Pn) ∈ Pn; the details of the discussion are omitted due to space
constraints. Here, ct denotes the location of the robot after t steps of exploration,
S is the length of the route, and cS = c0. Let Si denote the length of route τ when
restricted to the cells belonging to polygon Pi, i.e., the subsequence of τ obtained
by removing all cells from outside Pi and then compacting identical adjacent
elements. By the construction of polygon P , we have: S ≥ 2 +

∑
1≤i≤n(Si − 2).

Moreover, the property of the constructed route τ is such that Si > SOPT(Pi),
with the minimal possible value of Si for different types of polygons Pi ∈ Q∪R∪S
listed in Fig. 8. Taking into account that for any polygon P ∈ Pn we have
SOPT(P ) = 2 +

∑
1≤i≤n(SOPT(Pi)− 2), we obtain:

S

SOPT(P )
≥

∑
1≤i≤n(Si − 2)∑

1≤i≤n(SOPT(Pi)− 2)
−O(1/n).

By finding the minimum possible value of the above expression for the values
stated in Fig. 8, subject to the constraint that not more than n/2 of the poly-
gons Pi belong to S (by the construction of family Pn), we obtain the bound

S
SOPT(P ) ≥ 20

17 − O(1/n). Such a bound is in fact asymptotically tight when we
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Q

R

S

SOPT (Pi) Si

Fig. 8. Construction of polygons for the lower bound: (a) Sets of polygons Q, R, S .
Sets R and S also contain the respective polygons reflected with respect to the line
North-East / South-West. (b) Example of a polygon belonging to P4.
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have, for odd values of i, that Pi ∈ Q ∪ R with Si = 28 and SOPT(Pi) = 24,
whereas for even values of i, Pi ∈ S with Si = 16 and SOPT(Pi) = 14. Note that:
(28−2)+(16−2)
(24−2)+(14−2) = 20

17 . This completes the proof of the theorem. ��

4 Final Remarks

We have presented a new exploration strategy for a robot with limited view in
a grid polygons, having an improved competitive ratio of 5/4. The strategy from
Algorithm A requires memory which is linear with respect to the input size. More-
over, by modifying the final step of the algorithm so that the sub-exploration of
the cut-off polygon using a recursive call to Algorithm A, rather than by the op-
timal off-line approach, one can also implement the local actions of the robot in
polynomial time, without affecting the competitive ratio of the algorithm.

It would be interesting to ask about the effect of additional restrictions on
the memory of the robot on the competitive ratio of the approach. In the wider
context of graph exploration, explorations with bounded memory have been the
topic of intensive study [4,6,15]. For our problem, it is easy to see that Θ(log C)
memory is necessary and sufficient to cover the polygon and to terminate at
the starting location after O(C) steps, where C is the area of the polygon. This
is because the location of the robot can be identified by using coordinates of
size Θ(log C), whereas exploration of a single column of the polygon, as well
as traversal along its boundary, require at most constant memory. It would be
interesting to study the trade-off between the amount of allowed memory and the
precise value of the competitive ratio of the strategy. One may also ask about
competitive strategies in which the robot has extremely limited memory, but
is allowed to leave and detect pebbles on the cell of its location and the cells
adjacent to it.

Finally, we note that the lower bound on the competitive ratio shown in
Section 3 holds for any exploration algorithm in the considered scenario, but
it only describes the worst-case performance of algorithms. It is possible that
there exist randomized algorithms with a competitive ratio better than 20/17 in
expectation; we leave this as a topic for future study.
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Abstract. We present a self-stabilizing algorithm for the distance-2 col-
oring problem that uses a constant number of variables on each node and
that stabilizes in O(Δ2m) moves using at most Δ2 + 1 colors, where Δ
is the maximum degree in the graph and m is the number of edges in
the graph. The analysis holds true both for the sequential and the dis-
tributed adversarial daemon model. This should be compared with the
previous best self-stabilizing algorithm for this problem which stabilizes
in O(nm) moves under the sequential adversarial daemon and in O(n3m)
time steps for the distributed adversarial daemon and which uses O(δi)
variables on each node i, where δi is the degree of node i.

1 Introduction

The problem of preventing potential interference when assigning frequencies to
processes can be modeled as a graph coloring problem where nodes that are
sufficiently close must have different colors. As frequencies (colors) are a scarce
resource, it is also desirable to use as few colors as possible. A number of different
objective functions and models have been studied for this problem; see [1] for a
recent survey. In the current paper we study one such problem, that of assigning
colors to nodes so that two nodes that are within distance two of each other
are assigned different colors. We present and analyse an efficient self-stabilizing
algorithm for this problem. The remainder of this section briefly surveys previous
work on self-stabilizing coloring algorithms and then shows how the current
paper extends and improves on that body of knowledge.

In 1993 Ghosh and Karaata [4] presented an algorithm for coloring planar
graphs using at most 6 colors by transforming the graph into a directed acyclic
graph, and assuming that all nodes have unique identifiers. This result was later
improved to work with bounded variable values and without identifiers by Huang
et al. [9] and finally was generalized to a wider class of graphs by Goddard et
al. [5].

Also in 1993, Sur and Srimani [14] gave an algorithm for exact coloring of
bipartite graphs. The algorithm assumes that a specific node is a root and then
colors nodes based on the distance from the root. For this algorithm only finite
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stabilization was shown and there was no bound on the number of moves. This
work was later extended by Kosowski and Kuszner [10] who presented a self-
stabilizing algorithm that colors bipartite graphs using exactly two colors and
using a polynomial number of moves. Their algorithm also relies on a distin-
guished root.

Shukla et al. [11] offered randomized self-stabilizing algorithms for coloring of
anonymous chains and oriented rings. In [12] the same authors developed self-
stabilizing algorithms for two-coloring several classes of bipartite graphs, namely
complete odd-degree bipartite graphs and tree graphs.

The first self-stabilizing coloring algorithms for general graphs were given by
Gradinariu and Tixeuil [7] in 2000. They presented three different algorithms
based on a greedy assignment technique. These algorithms use at most Δ + 1
colors and stabilize in O(nΔ) moves, where Δ is the maximum node degree in
the graph. It is assumed that each node has knowledge of Δ. This result was
later improved by Hedetniemi et al. [8] who gave two algorithms for coloring
arbitrary graphs, respectively, also using Δ + 1 colors. The moves complexity of
these algorithms is O(n) and O(m), where the latter algorithm also guarantees
that each node is assigned the smallest available color within its neighborhood.

Other types of coloring problems have also been studied using the self-
stabilizing paradigm. For instance, [13] gives a self-stabilizing algorithm that
tries to achieve a node coloring where the sum of the colors assigned to each
node is minimum. [15] presents a self-stabilizing Δ + 4 edge coloring algorithm
for planar graphs in anonymous networks, while [2] describes a self-stabilizing
algorithm for edge coloring general graphs.

In this paper we consider self-stabilizing algorithms for the distance-2 coloring
problem. That is, one wants to assign colors to the nodes in such a way that each
node receives a color different from its neighbors within distance 2 (i.e. different
from all of the nodes neighbors and its neighbors’ neighbors).

In [6] Gradinariu and Johnen describe a self-stabilizing algorithm for the prob-
lem of unique naming. This is essentially the same problem as is studied here in
that it asks for an assignment of labels to nodes such that no two nodes who are
distance-2 neighbors have the same label. They present a randomized scheme
where the expected number of moves by each node is one. However, the scheme
requires that every node knows n, the number of nodes in the network, and it
assigns colors in the range [1, 2n2].

In [3] Gairing et al. introduce a general mechanism for allowing a node to
obtain information at distance-2 from it. The idea is based on each node copying
the states of its neighbors and thus making this information available to its own
neighbors. It is shown how a distance-2 coloring can be obtained in O(nm)
moves under the sequential daemon model and in O(n3m) time steps under the
distributed daemon model. In these algorithms the color of each node can easily
be chosen in the range [1, δ2i + 1] where δ2i denotes the number of distance-
2 neighbors of node i. We note that the algorithm requires that each node i
maintain O(δi) variables where δi is the number of neighbors of i.
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In the current paper we present a self-stabilizing algorithm for the distance-2
coloring problem that uses at most Δ2 + 1 colors. The algorithm stabilizes in
O(Δ2m) moves under the sequential daemon and also uses the same number
of time steps for the distributed daemon model. For a fair daemon (sequential
or distributed) our algorithm requires O(Δm) rounds to stabilize. In addition,
each node is only required to maintain a constant number of variables. Thus
our algorithm improves the time step complexity for the distributed adversarial
daemon by at least a factor of n and depending on how Δ2 compares with n the
algorithm might also improve the moves complexity for the sequential adversar-
ial daemon. For instance, for a graph where the degree of each node is at most a
constant, our algorithm improves the moves complexity by a factor of n for the
sequential adversarial daemon and by a factor of n3 for the distributed adversar-
ial daemon. Moreover, our algorithm improves the overall memory consumption
from O(m) down to O(n) variables.

The rest of this paper is organized as follows. In Section 2 we give a short
introduction to the self-stabilizing model. In Section 3 we present and motivate
our algorithm. In Section 4 we show that any stable configuration of the al-
gorithm also gives a valid distance-2 coloring and in Section 5 we analyze the
complexity of the algorithm. Finally, we conclude in Section 6.

2 Model

A system consists of a set of processes where two adjacent processes can com-
municate with each other. The communication relation is typically represented
by a graph G = (V, E) where |V | = n and |E| = m. Each process corresponds
to a node in V and two nodes i and j are adjacent if and only if (i, j) ∈ E.
We assume that each node has a unique identifier. In the following we will not
distinguish between a node and its identifier.

The set of neighbors of a node i ∈ V is denoted by N(i) and N [i] = N(i)∪{i}.
Similarly we define N2(i) as the set of neighbors of node i within distance 2 of
i and N2[i] = N2(i) ∪ {i}. Let δi = |N(i)| and Δ = maxi∈V δi.

A node maintains a set of local variables which make up the local state of the
node. Each variable ranges over a fixed domain of values. Every node executes the
same algorithm, which consists of one or more rules. A rule has the form name
: if guard then command. A guard is a boolean predicate over the variables of
both the node and those of its neighbors. A command is a sequence of statements
assigning new values to the variables of the node.

An assignment of a value to every variable of each node from its corresponding
domain defines a configuration of the system. A rule is enabled in some configu-
ration if the guard is true with the current assignment of values to variables. A
node is eligible if it has at least one enabled rule. A computation is a maximal
sequence of configurations such that for each configuration si, the next config-
uration si+1 is obtained by executing the command of at least one rule that is
enabled in si. (A node that executes such a rule makes a move or a step). A
configuration is defined as stable if there are no eligible nodes in the system.
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A daemon is a predicate on executions. We distinguish several kinds of dae-
mons: the sequential daemon makes the system move from one configuration to
the next by executing exactly one enabled rule, while the distributed daemon
achieves this by executing any non-empty subset of enabled rules. Note that a
sequential daemon is an instance of the distributed daemon. Also, a daemon is
fair if any rule that is continuously enabled is eventually executed, and adver-
sarial if it may execute any enabled rule at every step. Again, the adversarial
daemon is more general than the fair daemon.

A system is self-stabilizing for a given specification if in finite time it converges
to a stable configuration that conforms to this specification, independent of its
initial configuration and without external intervention.

We consider two measures for evaluating complexity of self-stabilizing pro-
grams. A step is the minimum unit of time such that a process can perform any
of its moves. For a sequential daemon exactly one process executes one eligi-
ble rule during each step, while for a distributed daemon there can be several
processes that each makes one simultaneous move during a given step. Thus,
the step complexity measures the maximum number of steps that are needed to
reach a configuration that conforms to the specification (i.e. a legitimate config-
uration) for all possible starting configurations. The round complexity considers
that executions are observed in rounds: a round is the smallest sub-sequence of
an execution in which every process that was eligible at the beginning of the
round either makes a move or has its guard(s) disabled since the beginning of
the round. Note that both of these types of analysis focus on communication
and not on computation, as it is assumed that a process can perform any type
of necessary local computation during one move.

3 The Algorithm

In the following we motivate and describe the new algorithm. We begin by com-
paring the algorithm with previous self-stabilizing coloring algorithms. In doing
so, we examine how coloring conflicts at distance-1 and distance-2 are handled.

For coloring conflicts between neighboring nodes any self-stabilizing algorithm
must avoid the possibility of two adjacent nodes repeatedly changing their colors
to the same color in a lockstep fashion. With a sequential daemon this is straight
forward to handle [8]. For a distributed daemon one can solve this by using a
randomized scheme if the network is anonymous [7], or if the nodes have unique
identifiers by using the relative values of the identifiers to break ties [7].

For coloring conflicts between nodes at distance-2 there are two issues to
consider: how to discover a coloring conflict and then how to resolve it. Even for
a sequential daemon, resolving a conflict can be difficult, as information does
not propagate immediately between distance-2 neighbors.

Gairing et al. [3] let each node maintain a local copy of the colors of its
neighbors. Thus a node i has direct access to the colors of the nodes in N2[i]
and can itself discover any coloring conflicts that it is involved in. A node that
wants to change its color must then obtain permission from all of its distance
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one neighbors before doing so. This is achieved by using pointers. In this way no
two nodes at distance two from each other can change color at the same time.

In the algorithm by Gradinariu and Johnen [6] coloring conflicts are detected
by a node i that discovers that it has two neighbors with the same color (one
“neighbor” may in fact be i itself). The node i then sets a flag value equal to
the conflicting color. This signals that any node in N [i] using this color should
recolor itself. Nodes that are affected by this then choose a new color randomly
from a predetermined interval.

In our algorithm we combine ideas from both [3] and [6]. A coloring conflict
is detected by any node that is adjacent to the conflicting nodes. This node will
then signal to exactly one of the conflicting nodes i that it should change its
color. When i sees the signal it will put up a flag requesting to change its color.
However, i can only recolor itself once all of its neighbors have acknowledged the
flag by themselves pointing to i. In this way no other node in N2[i] can change
its color at the same time as i. To select the appropriate color we use a novel
deterministic scheme where i will perform a linear search starting from color 1
until it finds a valid color. Each possible color that i considers must either be
accepted or rejected by the neighbors of i. If any neighbor rejects the suggested
color, i will try the next possible color and repeat until it finds a color that is
accepted by all of its neighbors.

A recoloring can either take place because of a distance-1 or a distance-2
coloring conflict. In addition we also force recoloring if the color of a node is
higher than a reasonable upper bound on the size of its distance-2 neighborhood.
This assures that the final coloring never uses more than Δ2 + 1 colors.

The following list gives the variables that are available on each node i.

– dist1degi, the size of |N [i]|.
– dist2degi, an upper bound on the number of nodes in N2[i]. Every node

should get a color in the range [1, dist2degi].
– ci, the color of node i.
– flagi, true if node i wants to change its color, otherwise false.
– pi, a pointer to a node j ∈ N [i], signalling that j should change its color. If

no such node exists then pi = null.
– si, the current color of pi.
– ti, a color that pi could change to.
– coloringi, true if node i is in the process of recoloring itself. This requires

that pj = i for all j ∈ N [i].

Next, we describe two functions that are used by the algorithm. Here node i is
the calling processor and in the NextColor function q ∈ N [i].

NextColor(i, q) is used by node i for calculating which color node q could have.
The function returns both the current color of q and the smallest color ≥ cq,
that q can have without causing any coloring conflicts with nodes in N [i]−{q}.

NextColor(i, q):
w = min{a : a ≥ cq ∧ (∀z ∈ N [i] − {q} : a �= cz)}
return (cq, w)
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CorrectPointer(i) is used for determining the next node in N [i] that should
change its color (or at least have it verified). A node j ∈ N [i] needs to attempt
a recoloring if either flagj = true or if ∃k ∈ N [i] − {j} such that cj = ck. If
there are several candidates the one with the lowest ID is chosen. The function
returns a triplet (q, cq, w) where q is the next node in N [i] that should attempt
a recoloring and w is the smallest color ≥ cq that does not cause a conflict with
nodes in N [i]− {q}.

CorrectPointer(i):
q = min{ j ∈ N [i] : (flagj = true ∨ ∃k ∈ N [i] − {j} : (cj = ck))}
if q �= null
then return (q, NextColor(i, q))
return (null, null, null)

Before formally specifying the algorithm, we give the intuition for each rule.

Distance-1: Set dist1degi to the size of N [i].
Distance-2: Set dist2degi to an upper bound on the size of N2[i]. Note that
this rule double counts two nodes in N(i) if they are themselves neighbors or if
they have a common neighbor.
Reset: Set coloringi to false if it is incorrectly true. It could be that either
coloringi was incorrectly true in an initial configuration or that i has to abandon
an attempt to recolor itself. This is detected if some node j ∈ N [i] does not point
to i (i.e. pj �= i) or if flagi �= true.
Notify neighbor: Set pi to point to the lowest numbered node j ∈ N [i] that
either wants to recolor itself (i.e. flagj = true) or needs to recolor itself because
it has a color that conflicts with some node in N [i]. Also, set ti to a suggested
new color for pi = j and set si = cj to indicate that the values have been set
in response to the current value of cj. Note that once a node j has started to
recolor itself, as indicated by coloringj = true, no node i that is pointing to j
can change its pointer-value. That is, pi must continue to point to j as long as
j is recoloring itself.
Respond to color: If the neighbor pi is recoloring itself and has changed its
color, acknowledge the color change in si and if the color si conflicts with a color
in N [i], use ti to suggest the next higher possible color for pi to use. Recall that if
the node pi is recoloring itself (indicated by coloringpi = true) then the node pi

will cycle through possible colors. For each such color, node i must acknowledge
the color change (by setting si to the new color) and signalling if it accepts the
new color (by setting ti = cpj ) or if pi should change to a higher color (ti > cpj ).
Need new color: If i needs to recolor, set flagi = true, signalling a request to
recolor. If a node j ∈ N [i] is pointing to i (pj = i) while both acknowledging the
current color of i (sj = ci) and requesting that i change its color (tj > ci), then
node i must perform a recoloring. Node i signals to its neighbors that it wants
to do so by setting flagi = true. Alternatively, if i has dist2degi < ci then it
should also set flagi = true to indicate that it needs to change its color. Note
that the only place that i can later set flagi = false is in the Done recoloring
method.
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Start recoloring: If every node in N [i] agrees that i is the next to recolor, i
begins the recoloring process by setting coloringi = true and starting with color
1. A node can only start to recolor itself when it has set flagi = true and each
node j ∈ N [i] is pointing to it (pj = i), while at the same time acknowledging
the current color of i (by setting sj = ci). The node i then sets coloringi = true,
locking all other nodes in N [i] from changing their p-values until i has completed
the recoloring.
Change color: If all neighbors have acknowledged the current color ci and at
least one neighbor knows of a conflict with ci, then change i’s color. Whenever
node i has proposed a new color it must wait for this to be acknowledged by
all nodes in N [i] (sj = ci). If at least one j ∈ N [i] indicates that there is a
conflict with the current color choice (by setting tj > ci) then i must try the
next possible color (i.e., the maximum color over all tj values).
Done recoloring: If all neighbors have acknowledged the current color ci and
no neighbor knows of a conflict with ci, set flagi = false and coloringi = false,
indicating that i has completed its recoloring process. Note that in this case there
is no distance-2 conflict with ci. Note also that this is the only routine that sets
flagi to false.

The rules are executed in the given order, meaning that a rule is never exe-
cuted unless all the previous rules cannot be executed.

Algorithm 1
Distance-1:

if dist1degi �= |N [i]|
then dist1degi = |N [i]|

Distance-2:
if dist2degi �= (

∑
j∈N(i) dist1degj) − dist1degi + 2

then dist2degi = (
∑

j∈N(i) dist1degj) − dist1degi + 2

Reset:
if (coloringi = true) and ((∃j ∈ N [i] : pj �= i) or flagi = false)
then coloringi = false

Notify neighbor:
if (pi = null or coloringpi = false) and ((pi, si, ti) �= CorrectPointer(i))
then (pi, si, ti) = CorrectPointer(i)

Respond to color:
if (pi �= null) and (coloringpi = true) and ((si, ti) �= NextColor(i, pi))
then (si, ti) = NextColor(i, pi)

Need new color:
if (flagi = false) and ((∃j ∈ N [i] : (pj = i ∧ sj = ci ∧ tj > ci)) ∨

(1 ≤ dist2degi < ci))
then flagi = true

Start recoloring:
if (flagi = true) and (∀j ∈ N [i] : (pj = i ∧ sj = ci)) and (coloringi = false)
then coloringi = true

ci = 1
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Change color:
if (coloringi = true) and (∀j ∈ N [i] : (pj = i ∧ sj = ci)) and (∃j ∈ N [i] : tj > ci)
then ci = max{tj : j ∈ N [i]}

Done recoloring:
if (coloringi = true) and (∀j ∈ N [i] : (pj = i ∧ sj = ci ∧ tj = ci))
then coloringi = false

flagi = false

Figure 1 shows a possible execution of Algorithm 1. The initial graph consists
of four nodes i, j, k, and l where i > k and with colors as shown in Figure 1a. We
assume that the Distance-1, Distance-2, and Reset rules have stabilized before
our example starts. Since ci = ck node j will first execute a Notify neighbor move
and set pj = k, sj = 2, and tj = 3. This will force node k to execute a Need new
color move and set flagk = true. This will again be followed by nodes k and l
executing Notify neighbor moves giving the configuration shown in Figure 1b. At
this point all nodes in N [k] are pointing to k, each with an s-value equal to ck.
Since tj > ck it follows that k now can execute a Start recoloring move, setting
coloringk = true and ck = 1. From this point no node in N [k] can change its
p-value until coloringk = false.

All three nodes in N [k] are now ready to respond to the current value of
ck through Respond to color moves. In doing so both nodes j and k will set
their t-values > ck since both of them can see that cj = ck. This will give the
configuration in Figure 1c.

Now k will execute two Change color moves, each followed by all nodes in
N [k] acknowledging the change in color by executing a Respond to color move.
This will first increase the value of ck to 3 (Figure 1d) and then to 4 (Figure
1e). At this point there are no conflicts between ck and the nodes in N2(i). This
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Fig. 1. A possible execution of Algorithm 1
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is indicated by the fact that all t-values in N [k] are equal to ck. Thus node k
can execute a Done recoloring move which will again be followed by each node
in N [k] executing a Notify neighbor move to set their p, s, and t values to null,
finally giving the coloring shown in Figure 1f.

4 Correct Stabilization

In this section we show that when Algorithm 1 is stable the ci values define a legal
distance-2 coloring where no node has a color that is larger than δiΔ+1 ≤ Δ2+1.
We start by showing that each node has an effective bound on the size of N2[i].

Lemma 1. In a stable configuration every node i has dist2degi ≤ δiΔ + 1.

Proof. Note first that in a stable configuration it follows from the Distance-1
rule that every node must have dist1degi = δi + 1 ≤ Δ + 1. The Distance-2 rule
then implies that dist2degi = (Σj∈N(i)dist1degj)−dist1degi+2 = (Σj∈N(i)(δj +
1))− δi + 1 ≤ δiΔ + 1. �

Since, for any node i, we have that |N2[i]| ≤ δiΔ + 1, it follows that it is
possible to achieve a legal distance-2 coloring where i has a color in the range
[1, δiΔ + 1]. To see this, it is sufficient to note that there must be a color in
the range [1, |N2[i]|] not used by the nodes in N2(i). This color can always be
assigned to node i.

Next, we show that when the algorithm is stable no node is actively trying to
change color.

Lemma 2. In any stable configuration, coloringi = false for every node i.

Proof. If there exists a node i with coloringi = true, then every node j ∈ N [i]
must have pj = i, otherwise i could execute a Reset coloring move. Similarly,
there must be at least one node j ∈ N [i] with sj �= ci or tj �= ci (or both);
otherwise i could execute a Done recoloring move. A node j ∈ N [i] where sj �= ci

is eligible for a Respond to color move, since ci is NextColor(j, i)’s first return
value. Thus we may assume that some j has tj �= ci. If tj < ci then again node
j is eligible for a Respond to color move, while if tj > ci then i is eligible for a
Change color move. This is a contradiction. It follows that coloringi = false in
a stable configuration. �

Lemma 3. In any stable configuration the following statements are true for
every node i: (i) flagi = false, (ii) For every pair of distinct nodes j, k ∈
N [i], cj �= ck, and (iii) ci ≤ dist2degi.

Proof. This proof is omitted due to space limitations.

We can now state the main result of this section.

Theorem 1. In a stable configuration the c values define a legal distance-2 col-
oring where every node i satisfies ci ≤ δiΔ + 1.

Proof. This follows directly from Lemmas 1 and 3. �
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5 Step Complexity

In this section we derive and prove a bound on the number of time steps needed
for Algorithm 1 to stabilize, given an arbitrary initial configuration. The analysis
assumes a distributed adversarial daemon. This means that in each time step a
non-empty subset of eligible nodes makes one move each.

Table 1 is a summary of upper bounds on the number of time steps that might
include a move of each type (i.e., each rule) before stabilization. The last column
in the table references the result that proves the number of steps. The results
and proofs follow the table.

Lemma 4. There can be at most 2(m + n) time steps containing Distance-1 or
Distance-2 moves.

Proof. Each node can at most make one Distance-1 move. After this move a
node can make one initial Distance-2 move and then only after each node in
j ∈ N(i) changes its dist1degj value. Thus a node i can at most make a total
of δi + 2 Distance-1 and Distance-2 moves. Since

∑
i∈V (δi + 2) = 2n + 2m we

get that the total number of Distance-1 and Distance-2 moves is bounded by
2(m + n). �

Lemma 5. There can be at most n time steps containing Reset moves that start
with coloring = true and flag = false.

Proof. Each node i can make one such initial Reset move. Any subsequent Reset
move must follow a Start recoloring move and come before any Done recoloring

Table 1. Summary of Step Complexity

Move # Steps (Upper Bound) Complexity Proof
Distance-1 n = O(m) Lemma 4
Distance-2 n + 2m = O(m) Lemma 4
Reset 0 = O(1) Lemma 5
coloring = false

Reset n = O(m) Lemma 5
coloring = true
flag = false

Reset n + 8mΔ = O(Δm) Lemma 9
coloring = true
flag = true

Notify neighbor 9n + 16m = O(m) Lemma 12
Respond to color 4n + 14m(Δ2 + Δ + 1) = O(Δ2m) Lemma 14
Need new color 3n = O(m) Lemma 11
Start recoloring 5n + 8mΔ = O(Δm) Lemma 10
Change color 4n + 8mΔ = O(Δm) Lemma 13
Done recoloring 4n = O(m) Corollary 2
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move, since this is the only occasion when coloringi = true. However, Start
recoloring is only executed when flagi = true and the only move that can set
flagi = false is Done recoloring, which also sets coloringi = false. Thus any
subsequent Reset move cannot be triggered by flagi = false. �

Before investigating the step complexity of the remaining rules, we examine how
each move can or cannot cause a transition between different states of a node i.
The states we are interested in depend on the possible values of coloringi and
flagi. Figure 2 shows the state transition diagram. Note that four rules are not
shown in the figure since they do not impact the analysis: Distance-1, Distance-2,
Respond to color, and Notify neighbor.

The transitions in Figure 2 are defined by the predicates and commands of
the rules. If coloringi = true while flagi = false then i will execute a Reset
move and set coloringi = false. From this configuration the only move that
can affect the values of coloringi and flagi is a Need new color move that sets
flagi = true. From that state the only possible move is Start recoloring, which
sets coloringi = true. From the configuration coloringi = true and flagi = true
node i can execute a number of Change color moves, but these do not change the
values of either coloringi or flagi. It is possible that i executes a Reset move,
setting coloringi = false, if some j ∈ N [i] has pj �= i. The other possibility is
that i executes a Done recoloring move and sets coloringi = false and flagi =
false. In addition to these moves, i can also execute a Distance-1, a Distance-2,
a Notify neighbor, or a Respond to color move. These do not affect coloringi and
flagi and are not shown in Figure 2.

A recoloring sequence by node i consists of a sequence of moves beginning
with Start recoloring (the transition from state D to state C) and ending with
Done recoloring (the transition from state C to state B). Note that i can abort
an initiated recoloring sequence by executing a Reset move and transitioning
from state C back to state D. This can only happen if some j ∈ N(i) executes
a Notify neighbor move, which will then set pj �= i, during the same step that

coloring = true
flag     = false

coloring = false
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Fig. 2. States of Algorithm 1 with respect to coloring and flag values
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i executes the initial Start recoloring move. Otherwise pj = i will remain true
as long as coloringi = true. If i does not abort, we call the recoloring sequence
complete. A complete recoloring sequence is correct if i has been assigned a color
r ≤ δiΔ + 1 not used by any node in N2(i) when the recoloring sequence ends.

We now consider a complete recoloring sequence α executed by a node i where
α is not the first complete recoloring sequence executed by i. Let g be the time
step when i enters α by executing a Start recoloring move and let h be the
time step when i executes its first Change color or Done recoloring move in α,
whichever comes first. Also, for a particular j ∈ N [i], let f be the last time step
prior to g when j executes a Notify neighbor move. Note that j sets pj = i in
time step f . Then f < g < h and pj = i will remain true for at least the time
span [f, g−1] and also after time step h−1. In the same manner coloringi = true
in the time span [g, h] (and possibly longer).

Our next result considers the values that tj can take on prior to time step h.

Lemma 6. Let g be the time step when node i executes the Start recoloring
move in a non-initial complete recoloring sequence α, and let h be the earliest
time step in α that i executes a Change color or Done recoloring move. For any
particular j ∈ N [i], let f be the last time step prior to g when j executes a Notify
neighbor move.

After time step h− 1 and before time step h: for every j ∈ N [i] the following
are true: pj = i, sj = ci, and either tj = 1 or tj is equal to the lowest or second
lowest unused color in N [j]− {i}.
Proof. This proof is omitted due to space limitations.

Now we have established the different possible values that each tj for j ∈ N [i]
can have just after time step h−1. The next two results are needed to make sure
that i starts to select a new color once i has executed a Start recoloring move.

Corollary 1. Let g be the time step when node i executes the Start recoloring
move in a non-initial complete recoloring sequence α, and let h be the earliest
time step in α that i executes a Change color or Done recoloring move.

If the Need new color move by i that set flagi = true prior to i entering
α was caused by dist2degi < ci then for each j ∈ N [i] the value of tj will be
pointing to the lowest unused color in N [j]− {i} after time step h− 1.

Proof. The Need new color rule requires that 1 ≤ dist2degi < ci. Thus since
1 < ci the value of ci will be reduced to 1 when i executes a Start Recoloring
move in time step g. �

Lemma 7. Let g be the time step when node i executes the Start recoloring
move in a non-initial complete recoloring sequence α, and let h be the earliest
time step in α that i executes a Change color or Done recoloring move.

If the Need new color move by i that set flagi = true prior to i entering α
was not caused by dist2degi < ci then there must be some j ∈ N [i] that has
tj > 1 after time step h− 1.
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Proof. Since i exited the previous recoloring sequence with every j ∈ N [i] satis-
fying tj = ci at the time step in which the Done recoloring move was executed,
there must exist some node j ∈ N [i] that executed a Notify neighbor move and
set pj = i, sj = ci, and tj > ci prior to i executing the Need new color move
to enter α. At the time j executed the Notify neighbor move, there must have
existed at least one node k ∈ N [j]−{i} such that ck = ci and i < k. Note that k
cannot have changed color between this point and time step h, because pj �= k.
(As long as ci = ck CorrectPointer(j) will never set pj = k in Notify neighbor
since i < k.) Thus we can conclude that the coloring conflict between i and k
still exists after time step h − 1. From this it follows that when pj was last set
to i the value of tj must have been set to a value greater than ci. �
We can now show that α must be correct.

Lemma 8. Let α be a recoloring sequence for node i. When i exits α there is
no node in N2(i) with the same color as i and ci ≤ δiΔ + 1.

Proof. This proof is omitted due to space limitations.

Note that every node j ∈ N [i] must execute at least one Respond to color move
before i executes a Done recoloring move. Thus the value of dist1degj for each
j ∈ N [i] must be correct when i exits α. Similarly, dist2degi must be correct
when i exits α.

We have now shown that every complete recoloring sequence (except maybe
the first) will result in a node i having a distinct color among all the nodes
in N2[i]. However, there is a possibility that i does not complete a recoloring
sequence and this may result in a coloring conflict. But as the proof of the
following result shows, the non-complete recoloring sequences can be subsumed
in the complete recoloring sequences.

Theorem 2. No node will perform more than three complete recoloring se-
quences.

Proof. From Lemma 8 it follows that a non-initial complete recoloring sequence
by a node i will result in ci being unique relative to the colors used by the nodes
in N2(i). An incomplete recoloring sequence by i will result in i executing a
Reset move with ci = 1. Thus if i has received a legal color such that ci > 1,
then no node in N2(i) will receive the same color as i.

Now assume a node i has executed its second complete recoloring sequence.
If ci > 1 then no node k ∈ N2(i) can exit a subsequent recoloring sequence with
ck = ci. But if k, where i < k, performs a Reset move right after executing a
Start recoloring move and if ci = 1 then we get ci = ck. This would force i to
perform a new recoloring sequence which would result in ci > 1 (since k cannot
change color until i has done so) and thus no further recoloring sequences would
be needed by i. �
Now that we have shown that each node can execute at most three complete
recoloring sequences it is fairly straight forward to count the number of different
moves each node can make. The following results state these counts without
showing the straight-forward proofs, in the interest of saving space.
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Corollary 2. There can be at most 4n time steps containing Done recoloring
moves.

Lemma 9. There can be at most n + 8mΔ time steps containing Reset moves
that start with coloring = true and flag = true.

Lemma 10. There can be at most 5n + 8mΔ time steps containing Start recol-
oring moves.

Lemma 11. There can be at most 3n time steps containing Need new color
moves.

Lemma 12. There can be at most 9n+16m time steps containing Notify neigh-
bor moves.

Lemma 13. There can be at most 4n+8mΔ time steps containing Change color
moves.

Lemma 14. There can be at most 4n+14m(Δ2 +Δ+1) time steps containing
Respond to color moves.

Theorem 3. Algorithm 1 stabilizes after O(Δ2m) time steps.

Proof. The result follows directly from Lemmas 4, 5, 9, 10, 11, 12, 13, 14 and
Corollary 2. See Table 1 for a summary. �

We note that the same time step analysis holds for a sequential adversarial
daemon. The main difference between a distributed and sequential adversarial
daemon is that with the sequential one, we can show that any node that has
gone through at least two complete recoloring sequences will end up with the
lowest color not used by any node in N2(i), as opposed to the second lowest for
the distributed daemon. However, in both cases one cannot guarantee that each
node has been assigned the lowest available color in a stable solution, as there
might be nodes that do not change color during the execution of the algorithm.

The analysis for a fair daemon (sequential or distributed) is not much different
from the one presented here and gives a round complexity of O(Δm). Although
we omit the details due to space considerations it is not hard to see that when
a node i has executed a Change color move, all nodes in N [i] can respond to
this in one round. Thus the complexity of the Respond to color moves, which are
the most frequent moves, are lowered from O(Δ2m) moves for the adversarial
daemon to O(Δm) rounds for the fair daemon. To see that this is also a lower
bound it is sufficient to consider a complete graph where every node starts with
the same initial color.

6 Concluding Remarks

We note that Algorithm 1 can easily be modified to solve various other restricted
coloring problems. For instance, colors could be selected from a finite list of
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available colors (a so called list coloring) or it could be required that |ci−cj | > a
when i and j are distance-2 neighbors, where a is some positive constant.

However, Algorithm 1 cannot in its current form produce a Grundy coloring
(i.e. where each node i has the lowest available color in N2(i)) as it cannot detect
available free colors that are smaller than the current (correct) color. One solution
to this could be to let each node set flagi = true with some small probability.

We also note that although we require that every node has a unique identifier,
it is not hard to show that it suffices that each identifier is unique within distance-
2 for the algorithm to run correctly.
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4 WMS, AGH University of Science and Technology, Cracow, Poland

Abstract. Efficient algorithms for computing routing tables should take
advantage of the particular properties arising in large scale networks.
There are in fact at least two properties that any routing scheme must
consider: low (logarithmic) diameter and high clustering coefficient.

High clustering coefficient implies the existence of few large induced
cycles. Therefore, we propose a routing scheme that computes short
routes in the class of k-chordal graphs, i.e., graphs with no chordless
cycles of length more than k. We study the tradeoff between the length
of routes and the time complexity for computing them. In the class of
k-chordal graphs, our routing scheme achieves an additive stretch of at
most k−1, i.e., for all pairs of nodes, the length of the route never exceeds
their distance plus k − 1.

In order to compute the routing tables of any n-node graph with diam-
eter D we propose a distributed algorithm which uses O(log n)-bit mes-
sages and takes O(D) time. We then propose a slightly modified version
of the algorithm for computing routing tables in time O(min{ΔD, n}),
where Δ is the the maximum degree of the graph. Using these tables, our
routing scheme achieves a better additive stretch of 1 in chordal graphs
(notice that chordal graphs are 3-chordal graphs). The routing scheme
uses addresses of size log n bits and local memory of size 2(d − 1) log n
bits in a node of degree d.

Keywords: Routing scheme, stretch, chordal graph, distributed algo-
rithm.

1 Introduction

In any distributed communication network it is important to deliver messages
between pairs of processors. Routing schemes are employed for this purpose.
A routing scheme is a distributed algorithm that directs traffic in a network.
More precisely, any source node must be able to route messages to any destina-
tion node, given the destination’s network identifier. When investigating routing
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schemes, several complexity measures arise. On one hand, it is desirable to use as
short paths as possible for routing messages. The efficiency of a routing scheme
is measured in terms of its multiplicative stretch factor (resp., additive stretch
factor), i.e., the maximum ratio (resp., difference) between the length of a route
computed by the scheme and that of a shortest path connecting the same pair
of nodes. On the other hand, as the amount of storage at each processor is lim-
ited, the routing information stored in the processors’ local memory, the routing
tables, must not require too much space with respect to the size of the network.
Last but not least, because of the dynamic character of networks, it is important
to be able to compute the routing information in an efficient distributed way.
While many works propose good tradeoffs between the stretch and the size of
routing tables, the algorithms that compute those tables are often impractica-
ble because they are centralized algorithms or because of their time-complexity.
Indeed, in the context of large scale networks like social networks or Internet,
even polynomial time algorithms are inefficient. In this paper, we focus on the
tradeoff between the length of the computed routes and the time complexity of
the computation of routing tables.

One way to design efficient algorithms in large scale networks consists in taking
advantage of their specific properties. In particular, they are known to have
low (logarithmic) diameter and to have high clustering coefficient. Therefore,
their chordality (the length of the longest induced cycle) is somehow limited
(e.g., see [Fra05]). That is why, in this paper, we focus on the class of k-chordal
graphs. A graph G is called k-chordal if it does not contain induced cycles longer
than k. A 3-chordal graph is simply called chordal. This class of graphs received
particular interest in the context of compact routing. Dourisboure and Gavoille
proposed routing tables of at most log3 n/ log log n bits per node, computable in
time O(m+n log2 n), that give a routing scheme with additive stretch 2�k/2	 in
the class of k-chordal graphs [DG02]. Also, Dourisboure proposed routing tables
computable in polynomial time, of at most log2(n) bits, but that give an additive
stretch k + 1 [Dou05]. Using a Lexicographic Breadth-First Search (Lex-BFS)
ordering (resp., BFS ordering) of the vertices, Dragan designed a O(n2)-time
algorithm to approximate the distance up to an additive constant of 1 (resp.,
up to k − 1) between all pairs of nodes of any n-node chordal graph (resp., k-
chordal graph) [Dra05]. All these time results consider the centralized model of
computation.

In this paper we propose a simpler routing scheme which, in particular, can
be quickly computed in a distributed way and achieves good additive stretch for
k-chordal graphs. However, the simplicity comes at a price of O(log n) bits per
port needed to store the routing tables.

Distributed Model. An interconnection network is modeled by a simple undi-
rected connected n-node graph G = (V, E). In the following, D denotes the
diameter of G and Δ denotes its maximum degree. The processors (nodes) are
autonomous computing entities with distinct identifiers of size log n bits. We
consider an all-port, full-duplex, O(log n) bounded message size, synchronous
communication model. That is, any processor is able to send (resp., receive)
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different messages of size O(log n) to (resp., from) each of its neighbors in one
communication step; links (edges) are bidirectional.

Our results. We present a simple routing scheme using a relabeling of the
vertices based on a particular BFS-tree. Using a Strong BFS-tree, our algorithm
achieves an additive stretch k − 1 in the class of k-chordal graphs, and using
a Maximum Neighborhood BFS-tree (Max-BFS-tree), it achieves an additive
stretch 1 in the class of chordal graphs. It uses addresses of size log n bits and
local memory of size 2(d−1) log n bits per node of degree d. More precisely, each
node must store an interval (2 log n bits) per port, except for one port.

The stretches we achieve equal the best ones obtained in previous works. But
our algorithm is a (simple) distributed one. It uses messages of size O(log n) bits.
It computes a relabeling of the vertices and the routing tables in time O(D) when
a Strong BFS-tree is used, and in time O(min{ΔD, n}) when a Max-BFS-tree
is used.

In the class of chordal graphs, our results simplify those of Dragan since a
Lex-BFS ordering is more constrained than a Max-BFS ordering. In particular,
the design of a distributed algorithm that computes a Lex-BFS ordering of the
vertices of any n-node graph G in time o(n) is an open problem even if G has
small diameter and maximum degree.

Related work. Two kinds of routing schemes have been studied. In the name-
independent model, the designer of the routing scheme has no control over the
node names (see, e.g., [PU89, GP96, GG01]). Here we focus on labeled routing,
where the designer of the routing scheme is free to name the nodes with labels
containing some information about the topology of the network, the location of
the nodes in the network, etc. In this context, a routing scheme with multiplica-
tive stretch 4k− 5, k ≥ 2, and using Õ(n1/k) bits per node1 in arbitrary graphs
is designed in [TZ01]. In the case of trees, optimal labeled routing schemes us-
ing Õ(1) bits per node have been proposed in [FG01, TZ01]. In [FG01], it is
shown that any optimal routing scheme using addresses of log n bits requires
Ω(
√

n) bits of local memory-space. Several network classes have been studied,
like planar graphs [Tho04], graphs with bounded doubling dimension [AGGM06],
graphs excluding a minor [AG06], etc.

A particular labeled routing scheme is interval routing. Defined in [SK85],
interval routing has received particular interest [Gav00]. In such a scheme, the
nodes of the network are labeled using integers, and outgoing arcs in a node
are labeled with a set of intervals. The set of all the intervals associated to all
the outgoing edges of a node forms a partition of the name range. The routing
scheme consists in sending the message through the unique outgoing arc labeled
by an interval containing the destination’s label. The complexity measure is
the maximum number of intervals used in the label of an outgoing arc. An
asymptotically tight complexity of n/4 intervals per arc in an n-node network
is given in [GP99]. Moreover, almost all networks support an optimal interval

1 The notation Õ() indicates complexity similar to O() up to polylogarithmic factors.
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routing scheme using at most 2 intervals per outgoing link [GP01]. Specific graph
classes have been studied in this context (e.g., k-trees [NN98]).

2 Generalities on BFS-Orderings and BFS-Trees

In the following, G = (V, E) denotes a connected n-node graph. Let H =
(V (H), E(H)) be a subgraph of G, i.e., V (H) ⊆ V and E(H) ⊆ {{u, v} ∈
E | u, v ∈ V (H)}. dH(x, y) denotes the distance in H between x, y ∈ V (H).
NH(x) denotes the neighborhood of x ∈ V (H) in H . The length |P | of a path
P is its number of edges. A vertex v ∈ V is simplicial if its neighborhood in-
duces a clique. An ordering {v1, · · · , vn} on the vertices of G is called a perfect
elimination ordering (PEO) if, for any 1 ≤ i ≤ n, vi is simplicial in Gi, where
Gi is the graph induced by {vi, · · · , vn}. In the context of a vertex ordering, we
denote w < v if w has a smaller index in this ordering. Note that in a PEO, if
z < w < v, {z, w} ∈ E and {z, v} ∈ E, then {w, v} ∈ E.

Theorem 1. [FG65] A graph is chordal iff it admits a PEO.

Let r ∈ V . A Breadth-First Search (BFS) ordering of G rooted at r is an ordering
of its vertices such that r is the greatest vertex and, for any u, v ∈ V (G) \ {r},
v < u implies that the greatest neighbor of u is greater than or equal to the
greatest neighbor of v. A Maximal Neighborhood Breadth-First Search (MaxBFS)
ordering of G rooted at r is a BFS ordering of its vertices with the following
additional constraint: for any u, v ∈ V (G)\{r} with the same greatest neighbor,
v < u implies that the number of neighbors of u greater than u is at least the
number of neighbors of v greater than u. The following theorem will be widely
used.

Theorem 2. [BKS05, CK] A graph G is chordal if and only if any MaxBFS
ordering is a PEO.

Given an ordering O of the vertices of G, the spanning tree defined by O is the
spanning tree obtained by choosing for each vertex, but the root, its greatest
neighbor as the parent. Such a tree defined by a BFS ordering (resp., by a
MaxBFS ordering) will be called a Strong BFS-tree2 (resp., MaxBFS-tree). Such
a tree is rooted at the greatest vertex in the ordering.

3 Routing Scheme Using Strong BFS and MaxBFS

This section is devoted to presenting a simple routing scheme based on Strong
BFS-trees. We prove that this scheme achieves a good additive stretch in k-
chordal graphs, and an improvement of this routing scheme is provided for
chordal graphs.
2 The name BFS-tree is often used in distributed computing literature to denote any

shortest paths tree. To emphasize the particular properties of BFS-trees that are
used in this work, the authors decided to add ”Strong” in the name, even though
the BFS-trees found in many textbooks are Strong BFS-trees in this sense.



256 N. Nisse, I. Rapaport, and K. Suchan

First, let us present some notation. Let T be a spanning tree of a graph G.
Given x, y ∈ V , Tx→y denotes the path in T between x and y. When T is
defined by some BFS ordering, for any v, w ∈ V , v > w denotes that v has
a bigger index than w in this ordering. When T is rooted at r ∈ V (T ), its
vertices are partitioned into layers: the layer �(v) of a vertex v corresponds to
dG(v, r). Note that {u, v} ∈ E ⇒ |�(u) − �(v)| ≤ 1. In this paper we consider
rooted trees, so we may say that two vertices are in the same branch if their least
common ancestor is equal to one of them. Finally, given a routing scheme R on
G, Str(R, xy) denotes the difference between the length of the path computed
by R and the distance in G between x and y. The (additive) stretch Str(R) of
R in G corresponds to maxx,y∈V Str(R, xy).

3.1 General Routing Scheme

Let G be a graph and T be any Strong BFS-tree of G. Roughly, the routing
scheme we propose proceeds as follows to send a message from any source x ∈
V (G) to any destination y ∈ V (G). The message follows the path from x to y
in T , but if at some step the message can go through an edge e ∈ E(G) \ E(T )
that leads to the branch of T containing y, then it will use this shortcut. More
formally, our routing scheme R(G, T ) is defined as follows.

If x = y, stop.
If there exists w ∈ NG(x) ancestor of y in T ,

choose such a vertex w minimizing dT (w, y);
Otherwise, choose the parent of x in T .

For instance, Figure 1 represents 3 graphs where the spanning trees are de-
picted with bold edges. In Figure 1(a), a message from 1 to 2 will follow the
path {1, 4, 6, 7, 5, 2}. In Figure 1(c), the same message will follow {1, 4, 5, 2}. Let
us make some simple remarks.

1. The routing scheme R(G, T ) is well defined. Indeed, the message will even-
tually reach its destination since its distance to y in T is strictly decreasing
at each step. Note that even if T is an arbitrary rooted spanning tree of G,
the distance from y in T may increase at most once, if the message is passed
from a descendant of y to an ancestor at a larger distance from y.

2. Once a spanning tree T rooted at an r ∈ V (G) has been defined, this scheme
can be efficiently implemented. It is sufficient to label the vertices such that
any rooted subtree of T corresponds to a single interval. For any u ∈ V (G)
and any neighbor v of u but its parent, u stores the interval corresponding
to the subtree of T rooted at v. Then, the routing function chooses the port
corresponding to the inclusion-minimal interval containing the destination’s
address, and it chooses the parent of the current location if no such interval
exists. Note that this is not a standard interval routing scheme as defined in
[SK85] because some intervals may be contained in others.
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Fig. 1. Lemmata 3 and 4 give optimal bounds

3. Since we assume that T is a BFS-tree, it is easy to see that the route com-
puted by the routing scheme R(G, T ) between two arbitrary nodes contains
at most one edge that is not an edge of T . Indeed, after having taken such
a shortcut, the message reaches y by following the path in T , which is a
shortest path in G since T is a BFS-tree.

This section is devoted to proving the following theorem.

Theorem 3. Let k ≥ 3 and let G be a k-chordal graph.

– Let T be any Strong BFS-tree of G. Then Str(R(G, T )) ≤ k − 1.
– Let k = 3 and let T be any MaxBFS-tree of G. Then Str(R(G, T )) ≤ 1.
– Both bounds are tight.

3.2 Stretch in k-Chordal Graphs

Let k ≥ 3 and let G be a k-chordal graph and T be a (rooted) Strong BFS-tree of
G. Let x, y ∈ V be an arbitrary source and destination, respectively. The proof
is a case by case analysis to bound Str(R(G, T ), xy). Let Rxy be the route from
x to y computed by R(G, T ). In the following, we compare the length of Rxy

with the length of some shortest path between x and y in G. Several parts of the
following discussion are depicted in Figure 2, where bold lines represent edges,
thin lines represent paths belonging to T and dotted lines represent paths with
edges not necessarily belonging to T .

Restriction w.l.o.g. In this subsection, we prove that it is sufficient to consider
x and y with a smallest common ancestor r0 such that there is a shortest path
P between x and y in G with no internal vertices of P in V (Tr0→y)∪ V (Tx→r0).

If x is an ancestor or a descendant of y, Rxy is the path between x and y
in T . Since T is a BFS-tree, this is a shortest path. From now on, we assume
that x and y have a least common ancestor r0 ∈ V (G) distinct from x and
y. By definition of R(G, T ), Rxy either passes through r0, or it uses an edge
{e, f} ∈ E(G) \ E(T ) with e ∈ V (Tx→r0) \ {r0} and f ∈ V (Tr0→y) \ {r0}. I.e.,
the route Rxy from x to y is either Tx→e ∪ {e, f} ∪ Tf→y, or Tx→r0 ∪ Tr0→y.
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First, we need a technical lemma that shows that the roles of x and y are
somehow symmetric.

Lemma 1. Str(R(G, T ), xy) = Str(R(G, T ), yx).

Proof. Let Ryx be the route computed by R(G, T ) from y to x. If Rxy passes
through r0, then Ryx does so, and Rxy = Ryx. If Rxy �= Ryx, then Ryx must
contain an edge {e′, f ′} ∈ E(G) \ E(T ) other than {e, f} (see Fig. 2(a)), and
e′ ∈ V (Te→r0) \ {e} and f ′ ∈ V (Tr0→f ) \ {f}. Because T is a Strong BFS-tree,
e′ is the parent of e and f is the parent of f ′. Indeed, dG(r0, f) < dG(r0, f

′) ≤
dG(r0, e

′) + 1 ≤ dG(r0, e) ≤ dG(r0, f) + 1. To conclude, if Rxy �= Ryx, Rxy =
Tx→e ∪ {e, f} ∪ {f, f ′} ∪ Tf ′→y, and Ryx = Ty→f ′ ∪ {f ′, e′} ∪ {e′, e} ∪ Te→x.

Let P0 be any shortest path in G between x and y. Let y′ be the first vertex
of P0 in V (Tr0→y), and x′ be the last vertex of P0, before y′, in V (Tx→r0). Let
P ′ be the subpath of P0 between x′ and y′. Because T is a Strong BFS-tree,
P = Tx→x′ ∪P ′ ∪ Ty′→y is a shortest path between x and y in G. The following
technical lemma restricts our investigation to the case when P has no internal
vertices in V (Tr0→y) ∪ V (Tx→r0).

Lemma 2. Str(R(G, T ), xy) = 0, or Str(R(G, T ), xy) = Str(R(G, T ), x′y′).

Proof. If x′ = y′ = r0, then it is easy to see that |P | = |Rxy|. By definition,
x′ and y′ must be both equal to or different from r0. Therefore, let us assume
both are different from r0. Recall that Rxy = Tx→e ∪ {e, f} ∪ Tf→y, or Rxy =
Tx→r0∪Tr0→y. In the second case, we set e = f = r0. The proof is a case analysis
according to the relative positions of x′ and e in Tx→r0 , and of y′ and f in Tr0→y.

If Tx→e ⊆ Tx→x′ and Tf→y ⊆ Ty′→y, then Str(R(G, T ), xy) = 0 because
|P ′| ≥ 1.

Let us assume that Tx→x′ ⊂ Tx→e and Tf→y ⊂ Ty′→y. This case is illustrated
in Figure 2(b). Note that in this case e �= f , therefore {e, f} ∈ E(G). Let
a = |Tx→e| − |Tx→x′ | > 0, and let b = |Ty′→y| − |Tf→y| > 0. We study the layers
of x, x′, y and y′ to prove that Str(R(G, T ), xy) = 0. Let L = �(e) be the layer
of e. Then, �(x′) = L + a. Because {e, f} ∈ E(G) and T is a Strong BFS-tree,
L−1 ≤ �(f) ≤ L+1. Therefore, L−1− b ≤ �(y′) ≤ L+1− b. However, because
T is a Strong BFS-tree and P ′ is a shortest path between x′ and y′, we must
have �(x′) ≤ �(y′) + |P ′|. Thus, �(x′) ≤ L + 1 − b + |P ′|. Finally, we get that
a + b − 1 ≤ |P ′|. Since b > 0, then a ≤ |P ′|. To conclude, let us observe that
|Rxy| = |Tx→x′| + a + 1 + |Ty′→y | − b = |P | − |P ′| + a + 1 − b ≤ |P |. Hence,
Str(R(G, T ), xy) = 0.

If Ty→y′ ⊂ Tf→y and Te→x ⊂ Tx′→x, it can be proven in a similar way that
Str(R(G, T ), yx) = 0. By Lemma 1, we get that Str(R(G, T ), xy) = 0.

Finally, if Tx→x′ ⊆ Tx→e and Ty′→y ⊆ Tf→y, the route computed by R(G, T )
from x′ to y′ is clearly Tx′→e ∪ {e, f} ∪ Tf→y′ . Moreover, Str(R(G, T ), xy) =
|Tx′→e ∪ {e, f} ∪ Tf→y′ | − |P ′| = Str(R(G, T ), x′y′).
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Fig. 2. Illustrations of the bounds of Str(R(G, T ), xy)

Whenever route and shortest path are vertex disjoint It remains to consider the
case when x and y have a smallest common ancestor r0 such that there is an
xy-shortest path P in G with no internal vertices of P in V (Tr0→y) ∪ V (Tx→r0)
(cf. Figures 2(c), 2(d) 2(e)). Basically, the proof proceeds by considering the
distances in the cycle Tx→r0 ∪ Ty→r0 ∪ P and finding convenient chords in it.

Claim. If r0 /∈ NG(P ), there exist u in Tx→r0 , and v in Ty→r0 , such that u, v ∈
NG(P ). Moreover, if G is chordal, u and v may be chosen adjacent: {u, v} ∈
E(G) \ E(T ).

Proof. Since r0 /∈ NG(P ), let C be the connected component of G \NG(P ) that
contains r0. Let N = NG(C). Clearly, N ⊆ NG(P ) and there exists an inclusion-
minimal separator S ⊆ N separating r0 from x and y. Let u (resp., v) be a
vertex of S in the path between x (resp., y) and r0 in T (see Fig. 2(c)). If G
is chordal, S induces a clique since S is a minimal separator [Gol04], therefore
{u, v} ∈ E(G). Finally, {u, v} /∈ E(T ) because the opposite would imply that u
or v is the smallest common ancestor of x and y, i.e., r0 ∈ {u, v}, a contradiction
since u, v ∈ S.

Lemma 3. Let k ≥ 3. Let G be a k-chordal graph and let T be a spanning tree
defined by any BFS ordering. Then, for any x, y ∈ V (G), Str(R(G, T ), xy) ≤
k − 1.

Proof. By the previous subsection, it remains to prove the following case: r0 is
the smallest common ancestor of x and y, and some shortest path P between
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x and y has no internal vertex in Tx→r0 ∪ Tr0→y. Recall that, if the route Rxy

computed by R(G, T ) takes a shortcut, this edge is denoted {e, f}. There are
two cases to be considered.

We first assume that r0 is not in the neighborhood of P , NG(P ) (cf., Fig-
ure 2(d)).

Let us choose u and v as defined in Claim 3.2 and such that dG(r0, u) +
dG(v, r0) is minimum. Let u′ ∈ NG(u) ∩ P and v′ ∈ NG(v) ∩ P such that
dG(u′, v′) is minimum. Let P = P1 ∪ P2 ∪ P3, where P1 is the subpath of P
between x and u′, P2 is the subpath of P between u′ and v′, and P3 is the
subpath of P between v′ and y. In the following we assume that u′ is between
v′ and x in P . Otherwise, the proof is similar by setting P1 is the subpath of
P between x and v′, P2 is the subpath of P between v′ and u′, and P3 is the
subpath of P between u′ and y.

Because T is a Strong BFS-tree, |Tx→u| ≤ 1 + |P1| and |Tv→y| ≤ 1 + |P3|.

– First, let us assume that e ∈ Tr0→u and f ∈ Tv→r0 (possibly e = f = r0).
In particular, this means that there are no edges between a vertex in Te→u

and Tv→f but {e, f}. Therefore, by the choice of u, u′, v, v′, the cycle C =
{u, u′} ∪ P2 ∪ {v′, v} ∪ Tv→f ∪ {e, f} ∪ Te→u has no chord. Thus, |C| =
3 + |P2|+ |Tv→f |+ |Te→u| ≤ k.
It follows that |Rxy| = |Tx→u| + |Tu→e| + 1 + |Tf→v| + |Tv→y| ≤ k − |P2|+
|P1|+ |P3|.
If |P2| > 0, |Rxy| − |P | = Str(R(G, T ), xy) ≤ k − 1.
Therefore, let us consider the case when |P2| = 0, i.e., u′ = v′. We first
consider the case when u > v (in the BFS ordering defining T ). We aim at
proving that |Tv→y| ≤ |P3|. For purpose of contradiction, let us assume that
|Tv→y| = |P3|+ 1. Let w1 be the child of v in Tv→y. For any 1 ≤ i ≤ |P3|+1
and let ui be the ith vertex on the path P3 (u′ = u1), and let wi be the
ith vertex on the path Tw1→y. Note that, because |Tw1→y| = |P3|, u|P3|+1 =
w|P3|+1 = y. Because u′ is adjacent to u and u > v, it follows that u′ > w1.
By a trivial induction on i ≤ |P3|, we get that, for any 1 ≤ i ≤ |P3|, ui > wi.
Moreover, w|P3| and u|P3| are in the same layer, they are both adjacent to y
and u|P3| > w|P3|. Hence, {w|P3|, y} cannot belong to T , a contradiction.
Therefore, |Tv→y| ≤ |P3|. Hence, |Rxy| = |Tx→u| + |Tu→e| + 1 + |Tf→v| +
|Tv→y| ≤ k − |P2|+ |P1|+ |P3| − 1 = k + |P1|+ |P3| − 1 ≤ |P |+ k − 1.
Now, let us consider the case when u < v. We prove that Ryx (the computed
route from y to x) has length at most |P | + k − 1. By Lemma 1, it proves
that |Rxy| ≤ |P |+ k − 1. If Ryx = Rxy, the proof is similar to the previous
one (by symmetry). Therefore, let us assume that Ryx �= Rxy. By Lemma 1,
Ryx uses a shortcut {e′, f ′} ∈ E(G) \ E(T ) such that e′ is the parent of e
and f ′ is a child of f . If e′ ∈ Tr0→u and f ′ ∈ Tv→r0 , again, the proof is
similar to the previous one by symmetry. Hence, the only remaining case is
e′ ∈ Tr0→u \ {u}, f ′ is the child of v = f (because of the relative positions
of e, e′, f, f ′, u, v). This case is similar (by symmetry) to the case treated in
the third item of this proof.
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– Second, let us assume that e ∈ Tx→u \ {u} and f ∈ Tv→y In this case,
|Rxy| = |Tx→e|+1+ |Tf→y| ≤ |Tx→u|+ |Tv→y| ≤ 2+ |P1|+ |P3| ≤ |P |+k−1
(because k ≥ 3).
The case e ∈ Tx→u and f ∈ Tv→y \ {v} is symmetric. Indeed, in this case,
consider {e′, f ′} the shortcut used by Ryx. By Lemma 1, f ′ ∈ Ty→v \{v} and
e ∈ Tx→u. Hence, applying the same proof to Ryx, |Rxy| = |Ryx| ≤ |P |+k−1.

– Finally, let us assume that e ∈ Tx→u \ {u} and f ∈ Tv→r0 \ {v} (cf., Fig-
ure 2(d)). In this case, let us study the layers of e, f and y.
First, �(e) = �(u)+|Tu→x|−|Te→x|. Because {e, f} ∈ E(G) and T is a Strong
BFS-tree, �(e)− 1 ≤ �(f) ≤ �(e)+ 1. Besides, �(y) = �(f)+ |Tf→v|+ |Tv→y|,
and, because P2 ∪ P3 is a shortest path, �(y) ≤ �(u′) + |P2| + |P3| ≤ �(u) +
1 + |P2|+ |P3|.
Therefore, �(u)+1+|P2|+|P3| ≥ �(u)+|Tu→x|−|Te→x|−1+|Tf→v|+|Tv→y|.
Hence, 2 + |P2|+ |P3| ≥ |Tu→x| − |Te→x|+ |Tf→v|+ |Tv→y|.
Now, |Rxy| = |Te→x|+1+|Tf→v|+|Tv→y | ≤ |P2|+|P3|−|Tu→x|+2|Te→x|+3 =
|P2|+|P3|+|Tu→x|−2(|Tu→x|−|Te→x|)+3 ≤ |P1|+|P2|+|P3|+2 ≤ |P |+k−1.
Again, the case e ∈ Tu→r0 \ {u} and f ∈ Tv→y \ {v} is symmetric.

To conclude, let us assume that r0 ∈ NG(P ) (cf., Figure 2(e)). Let z ∈ NP (r0).
Let P = P1 ∪ P2 where P1 is the subpath of P between x and z, and P2 is the
subpath of P between z and y. Because T is a Strong BFS-tree, |Tx→r0 | ≤ 1+|P1|
and |Tr0→y| ≤ 1 + |P2|. Therefore, |Rxy| ≤ |Tx→r0|+ |Tr0→y| ≤ |P1|+ |P2|+ 2 ≤
|P |+ k − 1 (because k ≥ 3).

It is important to note that the previous result is valid whatever Strong BFS-
tree is used. However, it is easy to observe that the inequality given by Lemma 3
is optimal. Indeed, Figure 1(b) represents a k-chordal graph with k = 2p + 2
(p ≥ 1) and a Strong BFS-tree T (that actually is a MaxBFS-tree) such that
Str(R(G, T ))) = 2p + 1 = k − 1: a message from 1 to 2 will pass through the
edge {3p + 3, 3p + 4}.

Lemma 3 gives that, for any chordal graph G and for any Strong BFS-tree T ,
Str(R(G, T )) ≤ 2. The following lemma proves that we can improve a bit the
stretch in case of a chordal graph by using a “better” BFS-tree, i.e., a MaxBFS-
tree.

Lemma 4. Let G be a chordal graph and let T be a spanning tree defined by
any MaxBFS ordering. Then, for any x, y ∈ V (G), Str(R(G, T ), xy) ≤ 1.

Sketch of the Proof. Due to lack of space, the proof is sketched and the full
proof can be found in [NSR]. Again, it only remains to consider the case when
r0 is the smallest common ancestor of x and y, and some x-y-shortest path P in
G has no internal vertex in Tx→r0 ∪ Tr0→y.

If r0 /∈ NG(P ) (cf., Figure 2(c)), let u and v be defined as in Claim 3.2.
{u, v} ∈ E(G) because G is chordal. Hence, we prove that u and v have a
common neighbor z in P . If z ∈ {x, y}, we prove that either |Tv→y| ≤ |P | or x
is adjacent to the child of v in Tv→y, and in both cases Str(R(G, T ), xy) ≤ 1.
Otherwise, let P1 be the subpath of P between x and z, and let P2 be the
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subpath of P between z and y. By symmetry, w.l.o.g., assume u > v (otherwise,
the same proof holds for Ryx). Because u > v, we have |Tv→y| ≤ |P2|. Finally,
we prove that either |Tx→u| ≤ |P1|, or |Tx→u| = |P1|+1 and v is adjacent to the
child w of u in Tu→x. Indeed, if |Tx→u| = |P1|+ 1, we prove that {w, z} ∈ E(G)
(by chordality) and u > v > w > z. {v, w} ∈ E(G) follows because we consider
a MaxBFS ordering and by Theorem 2. It is then easy to conclude because
|Rxy| ≤ |Tx→u|+ 1 + |Tv→y|.

If r0 ∈ NG(P ), the proof shows that either |Tx→r0 | < |P1| + 1 or |Tr0→y| <
|P2|+ 1. ��

It is easy to observe that the inequality given by Lemma 4 is optimal. Indeed,
consider Figure 1(c) and the route between 1 and 2. The above discussion and
lemmata prove Theorem 3.

4 Distributed Algorithm

In this section, we present a simple distributed algorithm that computes the
routing tables sufficient for the execution of the routing scheme described in the
previous section. For space restrictions, let us give just an informal description.
The algorithm consist of three phases. The first two of them aim at building a
Strong BFS-tree T . Then, during the third phase each vertex x is assigned an
integral label P (x) that corresponds to its position in a DFS postorder traversal
of T . It is easy to check that it gives a Strong BFS-ordering of G. Moreover,
x learns I(x), the interval corresponding to the labels of its descendants in T
(including x). P (x) is used as the identifier of x in the routing scheme. At each
vertex y, for every neighbor x of y (except for the parent of y), the edge yx is
labeled with I(x). Let us describe the algorithm in detail.

1st Phase. The first phase chooses an arbitrary vertex r ∈ V (G) as the root
and gives to each vertex its layer, i.e. its distance from r. Moreover, each vertex
informs its neighbors of its own layer. This trivially takes at most D+1 steps by
broadcasting a counter initially set to 1 by the root. Now, if each vertex chooses
an arbitrary neighbor in the lower layer as the parent, the obtained graph is a
BFS-tree. However, as soon as Strong BFS-trees or MaxBFS-tree are concerned,
not any neighbor in the lower layer can be chosen as the parent.

2nd Phase. The second phase aims at determining an appropriate parent for
each vertex. For this purpose, we assign an ordering on the vertices based on the
following labeling: the root receives an empty label and any vertex v ∈ V (G)
in the layer i ≥ 1 will eventually have a full label label(v), where label(v) is a
sequence of i integers that consists of the full label of its parent u concatenated
with the integer p that indicates that v is the pth child of u. The labels will be
constructed gradually, in a way that each vertex will be aware of the current
(partial) labels of its neighbors. Notice that the lexicographic ordering of full
labels gives the inverse of the Strong BFS-ordering (or MaxBFS-ordering) under
construction. Transforming it into integer numbers ranging from n down to 1
can be easily computed once we have fixed T and ordered the children of each
node (see the third phase).
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To see how the algorithm assigns full labels, let us assume that, at some step,
each vertex in layers up to i− 1 has received his full label as defined previously.
Moreover, assume that each vertex in layer i knows the full labels of its neighbors
in layer i− 1 and the partial labels of its neighbors in layer i. In particular, each
vertex v in layer i knows its neighbor in layer i − 1 with the smallest label in
the lexicographical ordering. So v can choose this node as its parent and inform
all its neighbors of its choice. Once each vertex in layer i has chosen a parent,
the vertices in layer i − 1 establish an ordering on their children: any vertex u
in layer i− 1 sends an integer pv to its child v so that v knows it is the pth

v child
of u (see below). This implies that the induction condition holds for layers i and
i + 1. Notice that at layers 0 and 1 the condition trivially holds, since layer 0
contains a single vertex, the root r, with an empty label.

Spreading of labels. Let us describe how to spread the labels of the vertices
efficiently. For any i ≥ 1, each vertex v in the layer i maintains a subset PP (v)
(for potential parent) of its neighbors in layer i−1 that initially contains all these
neighbors. Once a vertex v in layer i has received a label with integer pv (that
corresponds to its position among its siblings), it transmits the pair (i, pv) to all
its neighbors. Once a vertex v in the layer j > i has received such a message (i, p)
from all of its neighbors u in PP (v), it keeps in PP (v) the vertices that have
the smallest p. Then, v transmits the corresponding pair to all its neighbors.
Moreover, receiving such a message from any neighbor u′, v adds p to the locally
stored (partial) label of u′. Proceeding in this way, once any vertex v in layer i
has received a label, any vertex in layer i + 1 knows its potential parents, i.e.,
its neighbors in PP (v), and the corresponding label.

Ordering of children in Strong BFS-tree. Once each vertex in layer i has
chosen a parent, the vertices in layer i − 1 establish an ordering on their chil-
dren. If we want to obtain a Strong BFS-tree without additional properties, any
ordering is valid. Therefore, each vertex in the layer i− 1 arbitrarily orders its
children and sends them their position in this ordering. Then, each vertex in
layer i has a full label. This takes one step per layer, i.e., this takes time O(D)
in total.

Ordering of children in MaxBFS-tree. In this case, each vertex in layer
i − 1 will order its children according to the number of neighbors with smaller
labels they have. In other words, each vertex in layer i − 1 orders its children
according to the number of their neighbors that will have larger numbers in the
final ordering. Notice that as soon as the vertices of layer i have chosen their
parent and broadcasted them to their neighbors, a vertex v in layer i only needs
to learn its position in the ordering relatively to its siblings in T . Therefore,
children of different vertices from layer i− 1 can be ordered in parallel.

A vertex u in layer i − 1 orders its children as follows. Let us assume u has
already ordered its first p neighbors (p ≥ 0). These neighbors of u have full
label while remaining neighbors of u only have partial label. Vertex u chooses its
p + 1th child v as the one with the greatest number of neighbors that either have
a parent greater than u or that are siblings of v with a full label. v receives p+1
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from u and completes its label (that becomes full). Then, v informs its siblings
that it has received a full label, and each child of u updates the number of its
neighbors that already have full label. In this way, u orders its d(u) children in
O(d(u)) time. So, in total, this step is executed in O(Δ) time per layer. Therefore,
in at most O(min{ΔD, n}) steps, any vertex has chosen a unique vertex as its
parent and the tree T rooted in r is well defined.

3rd Phase. The third phase consists in assigning to each vertex v his position in
the ordering and the interval of positions of vertices that belong to Tv, the subtree
of T rooted in v. It is easy to do so by two stages, the first one consisting in
propagation of messages from the leaves toward the root and the second one from
the root toward the leaves. During the first stage, the leaves of T send 1 to their
parents, and any vertex u with children v1, · · · , vr receives from vi (1 ≤ i ≤ r)
the number �i of vertices belonging to the subtree of T rooted in vi and sends to
its parent 1+

∑
i≤r �i. During the second stage, the root is assigned the position

n and the interval [1, . . . , |V (G)|]; each vertex v takes the last position in the
interval it has received and partitions the rest into subintervals corresponding to
each of its children. It is easy to check that the resulting ordering corresponds
to a DFS postorder traversal of T . This phase takes at most 2D steps. The
discussion of this section can be summarized with the following theorem.

Theorem 4. In any n-node network G with diameter D and maximum degree
Δ, the distributed protocol described above computes routing tables of O(Δ log n)
bits per node, for the execution of the routing scheme R(G, T ). Our protocol
is executed in time O(D) with O(logn)-bit messages if the desired tree T is an
arbitrary Strong BFS-tree, and in time O(min{ΔD, n}) if T is a MaxBFS-tree.

5 Open Problems

Many questions remain open in this study. In particular, is it possible to design
a routing scheme achieving same stretch and time-complexity but using smaller
routing tables? Which stretch can we achieve when few large cycles are allowed?
Routing schemes in dynamic networks, i.e., when nodes are free to leave or to
arrive in the network at any time, are needed. Fault-tolerant and self stabilizing
algorithms to compute routing tables would be appreciated.
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Abstract. The aim of a Software Transactional Memory (STM) is to discharge
the programmers from the management of synchronization in multiprocess pro-
grams that access concurrent objects. To that end, a STM system provides the
programmer with the concept of a transaction. The job of the programmer is to
design each process the application is made up of as a sequence of transactions.
A transaction is a piece of code that accesses concurrent objects, but contains no
explicit synchronization statement. It is the job of the underlying STM system to
provide the illusion that each transaction appears as being executed atomically.
Of course, for efficiency, a STM system has to allow transactions to execute con-
currently. Consequently, due to the underlying STM concurrency management, a
transaction commits or aborts.

This paper first presents a new STM consistency condition, called virtual
world consistency. This condition states that no transaction reads object values
from an inconsistent global state. It is similar to opacity for the committed trans-
actions but weaker for the aborted transactions. More precisely, it states that
(1) the committed transactions can be totally ordered, and (2) the values read
by each aborted transaction are consistent with respect to its causal past only.
Hence, virtual world consistency is weaker than opacity while keeping its spirit.
Then, assuming the objects shared by the processes are atomic read/write objects,
the paper presents a STM protocol that ensures virtual world consistency (while
guaranteeing the invisibility of the read operations). From an operational point
of view, this protocol is based on a vector-clock mechanism. Finally, the paper
considers the case where the shared objects are regular read/write objects. It also
shows how the protocol can easily be weakened while still providing an STM
system that satisfies causal consistency, a condition strictly weaker than virtual
world consistency.

Keywords: Atomic object, Causal past, Commit/abort, Concurrency control,
Consistency condition, Consistent global state, Lock, Read-from relation, Reg-
ular Read/write object, Serializability, Shared memory, Software transactional
memory, Vector clock, Transaction.

1 Introduction

The challenging advent of multicore architectures. The speed of light has a limit. When
combined with other physical and architectural demands, this physical constraint places
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limits on processor clocks: their speed cannot be further be incremented. Hence, soft-
ware performance can no longer be obtained by increasing CPU clock frequencies. To
face this new challenge, (since a few years ago) manufacturers have investigated and
are producing what they call multicore architectures, i.e., architectures in which each
chip is made up of several processors that share a common memory. This constitutes
what is called “the multicore revolution” [12].

The main challenge associated with multicore architectures is “how to exploit their
power?” Of course, the old (classical) “multi-process programming” (multi-threading)
methods are an answer to this question. Basically, these methods provide the program-
mers with the concept of a lock. According to the abstraction level considered, this lock
can be a semaphore object, a monitor object, or more generally the base synchronization
object provided by the underlying programming language.

Unfortunately, traditional lock-based solutions have inherent drawbacks. On one
side, if the set of data whose accesses are controlled by a single lock is too large (large
grain), the parallelism can be drastically reduced. On another side, the solutions where
a lock is associated with each datum (fine grain), are error-prone (possible presence of
subtle deadlocks), difficult to design, master and prove correct. In other words, provid-
ing the application programmers with locks is far from being the panacea when one has
to produce correct and efficient multi-process (multi-thread) programs. Interestingly
enough, multicore architectures have (in some sense) rang the revival of concurrent
programming.

The Software Transactional Memory approach. The concept of Software Transactional
Memory (STM) is an answer to the previous challenge. The notion of transactional
memory has first been proposed (fifteen years ago) by Herlihy and Moss to implement
concurrent data structures [13]. It has then been implemented in software by Shavit and
Touitou [24], and has recently gained a great momentum as a promising alternative to
locks in concurrent programming, e.g., [9,11].

Transactional memory abstracts the complexity associated with concurrent accesses
to shared data by replacing locking with atomic execution units (called transactions).
In that way, the programmer has to focus where atomicity is required and not on the
way it has to be realized. The aim of a STM system is consequently to discharge the
programmer from the direct management of synchronization entailed by accesses to
concurrent objects.

More generally, STM is a middleware approach that provides the programmers with
the transaction concept (this concept is close but different from the notion of transac-
tions encountered in databases [9]). More precisely, a process is designed as (or de-
composed into) a sequence of transactions, each transaction being a piece of code that,
while accessing any number of shared objects, always appears as being executed atom-
ically. The job of the programmer is only to define the units of computation that are the
transactions. He does not have to worry about the fact that the objects can be concur-
rently accessed by transactions. Except when he defines the beginning and the end of
a transaction, the programmer is not concerned by synchronization. It is the job of the
STM system to ensure that transactions execute as if they were atomic.

Of course, a solution in which a single transaction executes at a time trivially imple-
ments transaction atomicity but is irrelevant from an efficiency point of view. So, a STM
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system has to do “its best” to execute as many transactions per time unit as possible.
Similarly to a scheduler, a STM system is an on-line algorithm that does not know the
future. If the STM is not trivial (i.e., it allows several transactions that access the same
objects in a conflicting manner to run concurrently), this intrinsic limitation can direct
it to abort some transactions in order to ensure both transaction atomicity and object
consistency. From a programming point of view, an aborted transaction has no effect
(it is up to the process that issued an aborted transaction to re-issue it or not; usually, a
transaction that is restarted is considered as a new transaction).

Content of the paper and roadmap. This paper is made up of 5 sections and has
three contributions. Section 2 presents the computation model and the first contribu-
tion, namely, a new consistency condition, called virtual world consistency. Differently
from serializability but similarly to opacity, this condition (1) takes into account both
the committed transactions and the aborted transactions, but (2) is strictly weaker than
opacity (and can consequently allow more transactions to commit). Intuitively, both
opacity and virtual world consistency requires that every transaction (whatever its fate,
commit or abort) reads object values from a consistent global state. They differ in what
each considers as a consistent global state.

The second contribution, namely, a STM protocol that satisfies virtual world consis-
tency, is presented in Section 3. Among its noteworthy features, this protocol allows
invisible read operations (i.e., when a transaction reads an object, it is not required to
write control information into the shared memory to inform the other transactions on
possible read/write conflicts). From an operational point of view, the protocol does not
use a global logical clock, but a distributed vector clock with one entry per object. So,
the protocol is targeted for applications that manipulate few shared objects.

Then, Section 4 addresses the versatility of the proposed STM protocol (third contri-
bution). It shows that the simple suppression of a consistency check provides a protocol
that ensures the causal consistency condition. It also shows that, with minimal mod-
ification, the protocol may ensure virtual world consistency under the use of regular
instead of the stronger atomic objects shared. Finally, Section 5 concludes the paper.

2 A STM Computation Model

2.1 Why a Consistency Condition Has to Take into Account the Aborted
Transactions

The classical consistency criterion for database transactions is serializability [21]
(sometimes strengthened in “strict serializability”, as implemented when using the 2-
phase locking mechanism). The serializability consistency criterion involves only the
transactions that commit. Said differently, a transaction that aborts is not prevented from
accessing an inconsistent state before aborting. Differently from database transactions
that are usually produced by SQL queries, in a STM system the code encapsulated in
a transaction is not restricted to particular patterns. Consequently a transaction always
has to operate on a consistent state. To be more explicit, let us consider the following
example where a transaction contains the statement x ← a/(b − c) (where a, b and c
are integer data), and let us assume that b − c is different from 0 in all the consistent
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states (intuitively, a consistent state is a global state that, considering only the commit-
ted transactions, could have existed at some real time instant). If the values of b and c
read by a transaction come from different states, it is possible that the transaction ob-
tains values such as b = c (and b = c defines an inconsistent state). If this occurs, the
transaction throws an exception that has to be handled by the process that invoked the
corresponding transaction. (Even worse undesirable behaviors can be obtained when
reading values from inconsistent states. This occurs for example when an inconsistent
state provides a transaction with values that generate infinite loops.) Such bad behaviors
have to be prevented in STM systems: whatever its fate (commit or abort) a transaction
has to always see a consistent state of the data it accesses. The aborted transactions have
to be harmless. This observation has first been stated in [8].

2.2 From Opacity to Virtual World Consistency

Opacity. Informally suggested in [8], and formally introduced and investigated in [10],
the opacity consistency condition requires that no transaction reads values from an in-
consistent global state where, considering only the committed transactions, a consistent
global state is defined as the state of the shared memory at some real time instant. Opac-
ity is the same as strict serializability when we consider all the committed transactions,
plus an appropriate read prefix for each aborted transaction.

More precisely, let us associate with each aborted transaction T its execution prefix
(called read prefix) that contains all its read operations until T aborts (if the abort is
entailed by a read, this read is not included in the prefix). An execution of a set of
transactions satisfies the opacity condition if all the committed transactions plus the
read prefix of each aborted transaction appear as if they have been executed one after
the other (this is a “witness sequential execution”), this witness sequential execution
being in agreement with the real time occurrence order of each transaction. (Examples
of protocols implementing the opacity property – each with different additional features
– can be found in [8,15,16,23].)

Virtual world consistency. This consistency condition is weaker than opacity while
keeping its spirit. It states that (1) no transaction (committed or aborted) reads values
from an inconsistent global state, (2) the consistent global states read by the committed
transactions are mutually consistent (in the sense that they can be totally ordered) but (3)
while the global state read by each aborted transaction is consistent from its individual
point of view, the global states read by any two aborted transactions are not required
to be mutually consistent. Said differently, virtual world consistency requires that (1)
all the committed transactions be serializable [21] (so they all have the same “witness
sequential execution”) or linearizable [14] (if we want this witness execution to also
respect real time) and (2) each aborted transaction (reduced to a read prefix as explained
previously) reads values that are consistent with respect to its causal past only1. As two
aborted transactions can have different causal pasts, each can read from a global state

1 The notion of causal past of a transaction is analogous to the notion of causal past encountered
in message-passing [5,26]. See [18] for a formal definition and a parallel between transaction
systems and message-passing systems.
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that is consistent from its causal past point of view, but these two global states can be
mutually inconsistent as aborted transactions have not necessarily the same causal past
(hence the name virtual world consistency). This consistency condition can benefit lots
of STM applications as, from its local point of view, a transaction cannot differentiate
it from opacity.

The formal definition of virtual world consistency is based on a partial order on
the committed transactions and a partial order on the whole set of transactions (where
each aborted transactions is reduced to an appropriate read prefix). To be precise and
unambiguous, this definition requires a few pages. Due to page limitation, the condition
is explained here informally with a simple example. The reader is referred to [18] for
the formal definition. Let us consider the transaction execution depicted on Figure 1.
There are two processes: p1 has sequentially issued T 1

1 , T 2
1 , T ′

1 and T 3
1 , while p2 has

issued T 1
2 , T 2

2 , T ′
2 and T 3

2 . The transactions associated with a black dot have committed,
while the ones with a grey square have aborted. From a dependency point of view, each
transaction issued by a process depends on its previous committed transactions (process
order relation2), and on committed transactions issued by the other process as defined
by the read-from relation due to the accesses to the shared objects, (e.g., the label y
on the dependency edge from T 1

2 to T ′
1 means that T ′

1 has read fro y a value written
by T 1

2 ). Differently, since an aborted transaction does not write shared objects, there is
no dependency edges originating from it. The causal past of the aborted transactions
T ′

1 and T ′
2 are indicated on the figure (left of the corresponding dotted lines). Virtual

world consistency requires the following: (1) the committed transactions are serializable
(or strict serializable if we want the witness sequence to respect the additional real
time order constraint), and (2) each aborted transaction reads values from a state that
is consistent with respect to its causal past (as an example, the values read by T ′

1 are
consistent wrt the dependencies as indicated on Figure 1).

That consistency condition actually extends to STM systems the notions of consis-
tent cut, causal past, and consistent global state encountered in asynchronous message-
passing systems [5,6,7,26]. In these systems, two different processes can simultaneously
compute two global states such that each global state is consistent with respect to the
causal past of the invoking process, but these global states are mutually inconsistent
from the point of view of an external omniscient sequential observer (i.e., they cannot

2 A process issues a new transaction only when its previous transaction has completed (by com-
mitting or aborting). This defines the process order relation [18].
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be serialized). The “read-from” relation linking transactions is the STM equivalent of
the “message” relation that defines the flow of information exchange in message-passing
systems. The “process order relation” is the same as in message-passing systems.

In addition to the fact that it can allow more transactions to commit than opacity,
one of the main interests of virtual world consistency lies in the fact that it prevents bad
phenomena (as described in Section 2.1) from occurring without requiring all the trans-
actions (committed or aborted) to agree on the same witness execution. Let us assume
that, when executed alone and it reads a consistent state of the objects, each transac-
tion behaves correctly (e.g. it does not entail a division by 0, does not enter an infinite
loop, etc.). As, due to the virtual world consistency condition, no transaction (commit-
ted or aborted) reads from an inconsistent state, it cannot behave incorrectly despite
concurrency; it can only be aborted. This is a first class requirement for transactional
memories.

2.3 The STM System Interface

The STM system provides the transactions with four operations denoted beginT (),
X.readT (), X.writeT (), and try to commitT (), where T is a transaction, and X a
shared base object.

– beginT () is invoked by T when it starts. It initializes local control variables.
– X.readT () is invoked by the transaction T to read the base object X . That operation

returns a value of X or the control value abort. If abort is returned, the invoking
transaction is aborted (in that case, the corresponding read does not belong to the
read prefix associated with T ).

– X.writeT (v) is invoked by the transaction T to update X to the new value v. That
operation returns the control value ok or the control value abort. In the proposed
protocol it always returns ok.

– If a transaction attains its last statement (as defined by the user, which means it has
not been aborted before) it executes the operation try to commitT (). That opera-
tion decides the fate of T by returning commit or abort. (Let us notice, a transac-
tion T that invokes try to commitT () has not been aborted during an invocation of
X.readT ().)

2.4 The Incremental Read + Deferred Update Model

In this transaction system model, each transaction T uses a local working space. When
T invokes X.readT () for the first time, it reads the value of X from the shared memory
and copies it into its local working space. Later X.readT () invocations (if any) use this
copy. So, if T reads X and then Y , these reads are done incrementally, and the state of
the shared memory may have changed in between. One usually says that the transaction
T computes an incremental snapshot3.

3 The incremental approach to compute a snapshot reads asynchronously (separately) one object
after the other. Differently, in [2,4,17], the whole set of the base objects to be atomically read
is globally defined at the time of the snapshot invocation.
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When T invokes X.writeT (v), it writes v into its working space (and does not access
the shared memory). Finally, if T is not aborted while it is executing try to commitT (),
it copies the values written (if any) from its local working space to the shared memory.
(A similar deferred update model is used in some database transaction systems.)

2.5 Processes and Atomic Base Objects

The system is made up of an arbitrary number of processes and m base shared ob-
jects. The processes are denoted pi, pj , etc., while the objects are denoted X, Y, . . .,
where each id X is such that X ∈ {1, · · · , m}. Each process consists of a sequence of
transactions (that are not known in advance).

Each of the m base objects is an atomic read/write object [20]. This means that
the read and write operations issued on such an object X appear as if they have been
executed sequentially, and this “witness sequence” is legal (a read returns the value
written by the closest write that precedes it in this sequence) and respects the real time
occurrence order on the operations on X (if op1(X) is terminated before op2(X) starts,
op1 appears before op2 in the witness sequence).

3 A STM Protocol When the Base Objects Are Atomic

3.1 The STM Algorithm: Control Variables

On a base object side. Each base atomic object X is made up of two fields: X.value
which contains its value, and a vector X.depend[1..m] that tracks value dependencies.
More precisely, X.depend[X ] is the sequence number of the current value of X , while
X.depend[Y ] (Y �= X) is the sequence number of the value of Y on which the current
value of X depends. (A sequence number can be seen as a logical date associated with
an object.) Moreover a lock is associated with every base object.

On a process side. A process issues transactions sequentially. So, when a process pi

issues a new transaction, that transaction has to work with object values that are not
older than the ones used by the previous transactions issued by pi. To that end, pi

manages a local vector p dependi[1..m] such that p dependi[X ] contains the sequence
number of the last value of X that (directly or indirectly) is known by pi.

In addition to the previous array whose scope is the lifetime of the corresponding
process, a process pi manages local variables whose scope is the one of its current
transaction T . Those are:
- An array t dependT [1..m] that is used instead of p dependi[1..m] during the execu-
tion of T . This is necessary because p dependi[1..m] must not be modified if T aborts,
- A set lrsT (resp., lwsT ) that is the read set (resp., write set) of the transaction T cur-
rently executed by pi,
- Finally, for every object X accessed by T , pi keeps a local copy that is denoted
lc(X).
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3.2 The STM Algorithm

The code of the STM system for a process pi is described in Figure 2. It consists the al-
gorithms that implement the four operations of the STM interface (Section 2.3), namely,
beginT (), X.readT (), X.writeT (), and try to commitT (), where T is a transaction is-
sued by a process pi and X a base object. When it is returned, the control value abort
is tagged 1 or 2 to indicate the cause of the abort to the corresponding transaction.

The operation beginT (). This operation is a simple initialization of the local control
variables associated with the current transaction T . Let us notice that t dependT is
initialized to p dependi to take into account the causal dependencies on the values
previously accessed by pi. This is due to the fact that a process pi issues its transactions
one after the other and the next one inherits the causal dependencies created by the
previous ones.

The operation X.readT (). This operation returns a value of X or the control value
abort (in which case T is aborted). If (due to a previous read of X) there is a local
copy, its value is returned (lines 01 and 07).

operation begin
T
(): lrsT ← ∅; lwsT ← ∅; t dependT ← p dependi .

===================================================================
operation X.readT ():
(01) if (there is no local copy of X) then
(02) allocate local space -denoted lc(X)- for a local copy of X; lc(X) ← X;
(03) lrsT ← lrsT ∪ {X}; t dependT [X] ← lc(X ).depend [X];
(04) if (∃Y ∈ lrsT : t dependT [Y ] < lc(X ).depend [Y ]) then return(abort, 1) end if;
(05) for each Y �∈ lrsT do t dependT [Y ] ← max(t dependT [Y ], lc(X).depend [Y ]) end for
(06) end if;
(07) return (lc(X).value).

===================================================================
operation X.writeT (v):
(08) if (there is no local copy of X) then allocate local space lc(X) to store v end if;
(09) lc(X).value ← v; lwsT ← lwsT ∪ {X};return (ok).

===================================================================
operation try to commit

T
():

(10) let ConsistencyCheckT be the predicate (∀ Z ∈ lrsT : t dependT [Z] = Z.depend [Z]);
(11) lock all the objects in lrsT ∪ lwsT ;
(12) if (lrsT �= ∅) then

if (¬ConsistencyCheckT ) then release all the locks; return(abort, 2) end if end if;
(13) if (lwsT �= ∅) then for each X ∈ lwsT do t dependT [X] ← X.depend [X] + 1 end for;
(14) for each X ∈ lwsT do X ← (lc(X ).value, t dependT ) end for
(15) end if;
(16) release all the locks;
(17) p dependi ← t dependT ;
(18) return(commit).

Fig. 2. A STM algorithm that satisfies virtual world consistency
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If X.readT () is its first read of X , pi first builds a copy lc(X) from the shared memory
(line 02), and updates accordingly its local control variables lrsT and t dependT [X ]
(line 03).

As the reads are incremental (pi does not read in one atomic action all the base
objects it wants to read), pi has to check that the value lc(X).value it has just obtained
from the shared memory and the values it has previously read can belong to a consistent
global state. If it is not the case, pi has to abort T , line 04. Let Y be an object that has
been previously read by T . Let us observe that the sequence number of the value of Y
read by T is kept in t dependT [Y ]. If the value of X just read by T depends on a more
recent value of Y , the values of X and Y are mutually inconsistent. This is exactly what
is captured by the predicate ∃Y ∈ lrsT : t dependT [Y ] < lc(X ).depend [Y ]) (line 04).
If this predicate is true, pi aborts T . Otherwise, pi first updates t dependT [1..m] (line
05) to take into account the new dependencies (if any) created by this reading of X , and
finally returns the value obtained from X (line 07).

A X.readT () operation is visible if the issuing transaction T has to write on shared
memory to inform the other transactions on its read of X . Otherwise it is invisible.

Property 1. All the X.readT () operations are invisible.

Property 2. If (abort, 1) is returned to a transaction T , this is because T executes an
operation X.readT (), and the abort is due to the fact that, while the values previously
read by T belong to a consistent global state (also called “consistent snapshot”), the
addition of the value of X obtained from the shared memory would make this snapshot
inconsistent.

In the case of Property 2, the read prefix associated with the aborted transaction T
contains the values read before the operation X.readT (), and does not contain the value
read from X .

The operation X.writeT (v). The algorithm implementing that operation is very simple.
If there is no local copy for the object X , one is created (line08). Then, the value v is
written into that copy and the control variable lwsT is updated (line 09).

Property 3. No X.writeT () operation can entail the abort of a transaction.

The operation try to commitT (). The transaction T locks all the objects it has accessed
(they are the objects in lrsT ∪ lwsT , line 11). The locking is done according to a
canonical order to prevent deadlocks. If it is a read-only transaction (that has read more
than one object), it can be committed if its incremental snapshot is still valid, i.e., the
values it has read from the shared memory have not yet been overwritten. This is exactly
what is captured by the predicate ConsistencyCheckT (defined at line 10 and used at
line 12). If this predicate is true, the transaction appears as if it was atomically executed
just before the predicate evaluation. The transaction is then committed. If the predicate
is false, there is no way to know if the transaction could be correctly serialized with
respect to the committed transactions; it is consequently aborted (line 12).

If the transaction T is write-only (i.e., lrsT = ∅, line 12), due to the locks on the
objects of lwsT , the transaction T can atomically write their new values into the shared
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memory (line 14). Before these writes, T has to update the sequence number of each
object X it writes so that the dependency vectors (vector timestamps) have correct
values (line 13).

If the transaction T is neither read-only, nor write-only, it can be committed only if
all its read and write operations could have been executed atomically. As just seen, the
locks ensure that the writes appear as being executed atomically. To check if both reads
and the writes of T can appear as being executed atomically, the predicate
ConsistencyCheckT is evaluated, and this evaluation is done after the locks on the
objects in lrsT ∪ lwsT have been acquired. If it is evaluated to true, the transaction ap-
pears as being executed atomically after the locks have been acquired and consequently
the transaction T can be committed. Otherwise it is aborted (line 12).

Let us finally observe that, if a transaction is committed (line 18), the dependency
vector of the process pi has to be updated accordingly (line 17) to take into account the
new dependencies created by the newly committed transaction T .

Property 4. If (abort, 2) is returned to a read-only transaction T , the values it has in-
crementally read define a consistent snapshot, but this snapshot cannot be serialized
(with certainty) with respect to the committed transactions.

Property 5. If (abort, 2) is returned to a read/write transaction T , the values it has
incrementally read define a consistent snapshot, but this snapshot and the writes into
the shared memory cannot appear as being executed atomically.

In the case of the properties 4 and 5, all the read operations issued by the aborted
transaction T belong to its read prefix, and this read prefix is consistent with respect to
the causal past of T .

Property 6. A write-only transaction cannot be aborted.

Definition 1. T 1 and T 2 are independent if (lrsT1 ∪ lwsT1) ∩ (lrsT2 ∪ lwsT2) = ∅.
Property 7. Concurrent transactions that are independent can commit independently.

Remark. A simple modification of the previous protocol provides us with the following
additional property: a read-only transaction T that reads a single object X is never
aborted. T is then only made up of X.readT (), and this operation is implemented as
follows:

if (there is no local copy of X) then
allocate local space -denoted lc(X)- for a local copy of X ;
lock(X); lc(X)← X ; unlock(X)

end if;
return(lc(X).value).

3.3 Properties of the Protocol

Proof. The previous section has stated a few properties whose aim is to give a better
intuition of what the algorithms described in Figure 2 do and how they do it. The proof
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that they satisfy the virtual consistency condition requires a formal statement of that
condition. Due to page limitation this formal statement and the corresponding proof
cannot appear in the paper. The reader can consult [19] where are presented a formal
definition of the virtual consistency condition and a proof of the algorithms. The com-
mitted transactions can be linearized, and the appropriate read prefixes of each aborted
transaction are consistent wrt their causal past.

Cost. It is easy to see that the following values are upper bounds on the number of
shared memory accesses issued by a transaction:

– 2|lrsT | if T is read-only (lines 02 and 12),
– 2|lwsT | if T is write-only (lines 13 and 14), and
– 2|lrsT |+ 2|lwtT | if T is a read/write transaction.

There is the additional cost due to locking/unlocking of base objects (lines 12 and 16).
For the objects that are written this cost can be eliminated by placing the lock inside
the object and (as in TL2 [8]) aborting a transaction when it accesses an object that is
locked.

4 Versatility Dimension of Protocol

4.1 From Virtual World Consistency to Causal Consistency

Causally consistent transactions. The concept of causal consistency for read/write ob-
jects has been introduced in [1] under the name causal memory. It has then been ex-
tended to transactions in [22] where only the committed transactions are considered. As
for virtual world consistency, we extend here causal consistency to include the appro-
priate prefixes of the aborted transactions.

Intuitively, given an execution of a set of transactions issued by sequential processes,
causal consistency allows each process to see its own “witness sequential execution” as
long as these witness sequential executions respect the causal dependencies defined by
the “read-from” and “process order” relations.

More precisely, let C be the set of all the committed transactions that write base
objects (whatever the issuing processes). For each process pi, let Ri be the set of its
committed read-only transactions plus its aborted transactions reduced to their read
prefix (as defined previously in the paper). Causal consistency requires that, for each
process pi, there is a “witness sequential execution” involving only the transactions in
C ∪ Ri. Let us notice that all these witness sequential executions share the constraint
imposed by the “read-from” and “process order” relations as exhibited in C.

Adapting the protocol. The base protocol described in Figure 2 can be adapted very
easily (weakened) to implement causal consistency. The single modification consists in
adding the statement “if lwsT = ∅ then return(commit) end if” just before line 11.

This modification does not alter the protocol for the aborted transactions whose abort
is tagged 1 (line 04). As we have seen, the read prefix of such a transaction defines a
consistent snapshot of the values previously read. It is now the same for a read-only
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transaction that does not abort at line 04. This is because the lines 11-16 are used to
ensure that the consistent snapshot of the values read by the read-only transaction T
belongs to the witness sequential execution including all the committed transactions.
But, causal consistency does not impose this strong requirement: the values read by
a read-only transaction have only to be mutually consistent (and consequently such a
transaction can never return (abort, 2) when one is interested in the causal consistency
condition).

This shows that causal consistency weakens virtual world consistency by allowing
a read-only transaction to commit as long as its snapshot of read values is consistent
(as the prefix of an aborted transaction), without requiring that this snapshot be totally
ordered with respect to all the committed transactions. The snapshot has only to be
consistent with respect to the causal past of the read-only transaction.

4.2 From Atomic Objects to Regular Objects

Regular read/write object. A single writer regular read/write object [20] has one writer
and any number of readers. Regular objects with multiple writers and multiple readers
have been investigated in [25] where three different regularity definitions are presented.
Here we consider that the writes appear as being executed sequentially, this sequence
complying with their real time order (i.e., if two writes w1 and w2 are concurrent they
can appear in any order, but if w1 terminates before w2 starts, w1 has to appear as being
executed before w2).

As far as a read operation is concerned we have the following. If no write op-
eration is concurrent with a read operation, that read operation returns the current
value kept in the object. Otherwise, the read operation returns any value written by
a concurrent write operation or the last value of the object before these concurrent
writes. A regular object can exhibit what is called a new/old inversion. The figure
on the right depicts two write operations w1 and w2 and two read operations r1 and
r2 that are concurrent (r1 is concurrent with w1 and
w2, while r2 is concurrent with w2 only). According
to the definition of regularity, it is possible that r1
returns the value written by w2 while r2 returns the
value written by w1.

w1 w2

r2r1

An atomic read/write object is a regular read/write object without new/old inversion.
This means that an atomic read/write object is such that all its read and write operations
appear as if they have been executed sequentially, this total order respecting the real
time order of the operations.

Adapting the protocol. If the base objects are regular, we have to prevent new/old in-
version so that they appear as if they were atomic. This can be obtained by adding a
statement and modifying a predicate. More precisely the following modifications allow
us to replace the base atomic read/write objects by weaker regular read/write objects.

– Line 03 is enriched by a test that prevents from reading an old value. That line
becomes (the new statement is the if statement):
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lrsT ← lrsT ∪ {X};
if (t dependT [X ] > lc(X).dependT [X ]) then return(abort, 3) end if;
t dependT [X ]← lc(X ).depend [X ].

– ConsistencyCheckT becomes (∀ Z ∈ lrsT : t dependT [Z] ≥ Z.depend [Z]).

The meaning of the result (abort, 3) returned in the if ... end if statement is the follow-
ing. First, the transaction T has previously read an object (say Y ) the value of which
depends on the value of X whose sequence number is sn = t dependT [X ]. The se-
quence number sn′ of X just read by T (sn′ = lc(X).dependT [X ])) is such that
sn′ < sn. This witnesses a new/old inversion involving the “early” read of X – issued
by some by some T ′ – that obtained the new value of X to produce the value of Y ,
and the “late” read of X by T that obtained a previous value of X . While this behavior
is impossible when the base objects are atomic, it can happen in concurrency patterns
when the base objects X, Y, . . . are only regular.

Property 8. If the invocation of X.readT () by T returns (abort, 3), the abort is due to
a new/old inversion.

4.3 When the Base Objects Are Neither Atomic Nor Regular

When the base objects are neither atomic nor regular, there is a very simple way to
enrich the protocol of Figure 2 to make it work correctly. In order to make a base object
X atomic, it is sufficient to use the lock associated with that object and replace the read
of X from the shared memory at line 02 by “lock(X); lc(X)← X ; unlock(X)”.

5 Conclusion

This paper has presented a new consistency condition called virtual world consistency
[18], that is weaker than opacity while keeping its spirit. It has then presented a STM
protocol with invisible read operations that implements this condition. This protocol,
that is based on vector clocks that capture the causal dependencies among the values of
the objects, presents an interesting versatility feature. The suppression of a consistency
test provides a protocol satisfying the causal consistency condition (that is weaker than
virtual world consistency), while the appropriate addition of a simple consistency test
allows us to replace the base atomic objects by (weaker) regular objects.

The proposed STM protocol is targeted for applications where the processes share a
“reasonable” number of base objects. This is in order to have small size vector clocks.
When the application processes share a large number of objects, it is possible to have
small size vector clocks by requiring sets of objects to share the same entry of the vector
clock as it is done in the “plausible vector clock” approach [27]. In that case, no causal
dependency is lost, but additional “false” dependencies can be witnessed by a vector
clock. This is due to the fact that several objects share the same entry of the vector
clock. The benefit of using such vector clocks the size k of which is bounded and much
smaller than m (the number of shared objects) has a price: due to the false additional
dependencies, more transactions can be aborted. (Let us remark that the objects that
share the same vector clock entry have also to share the same lock.)



A STM Protocol for Virtual World Consistency 279

Finally, let us notice that both the virtual world consistency condition and the as-
sociated vector clock-based protocol offer an additional insight on STM systems, that
participate in providing a better understanding of their underlying basic principles [3].
Moreover, as the TL2 protocol [8],is based on a scalar clock, it would be be interesting
to investigate if the proposed protocol and TL2 could be derived from a more general
framework, with scalar clock being the appropriate mechanism for opacity, and vector
clock the appropriate mechanism for virtual world consistency. Finally, evaluating the
proposed STM system on a realistic benchmark constitutes an interesting direction of a
more applied fundamental research.
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Abstract. One of the basic problems in optical networks is assigning
wavelengths to (namely, coloring of) a given set of lightpaths so as to
minimize the number of ADM switches. In this paper we present a con-
nection between maximum matching in complete multipartite graphs and
ADM minimization in star networks. A tight 2/3 competitive ratio for
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finding a coloring that minimizes the number of ADMs.

Keywords: Online Matching, Multi-Partite Graphs, Wavelength As-
signment, Wavelength Division Multiplexing (WDM), Optical Networks,
Add-Drop Multiplexer (ADM).

1 Introduction

Optical wavelength-division multiplexing (WDM) is today the most promising
technology that enables us to deal with the enormous growth of traffic in commu-
nication networks, like the Internet. A communication between a pair of nodes is
done via a lightpath, which is assigned a certain wavelength. In graph-theoretic
terms, a lightpath is a simple path in the network, with a color assigned to it.

Given a WDM network G = (V, E) comprising optical nodes and a set of full-
duplex lightpaths P = {p1, p2, ..., pN} of G, the wavelength assignment (WLA)
task is to assign a wavelength to each lightpath pi. Recent studies in optical
networks dealt with the issue of assigning colors to lightpaths, so that every two
lightpaths that share an edge get different colors.

When the various parameters comprising the switching mechanism in these
networks became clearer the focus of studies shifted, and today many studies
concentrate on the total hardware cost. The key point here is that each lightpath
uses two Add-Drop Multiplexers (ADMs), one at each endpoint. If two adjacent
lightpaths, i.e. lightpaths sharing a common endpoint, are assigned the same
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S. Kutten and J. Žerovnik (Eds.): SIROCCO 2009, LNCS 5869, pp. 281–294, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



282 M. Shalom, P.W.H. Wong, and S. Zaks

wavelength, then they can use the same ADM. Because ADMs are designed to
be used mainly in ring and path networks in which the degree of a node is at
most two, an ADM may be shared by at most two lightpaths. The total cost
considered is the total number of ADMs. Lightpaths sharing ADMs in a common
endpoint can be considered as concatenated, so that they form longer paths or
cycles. These paths/cycles do not use any edge e ∈ E twice, for otherwise they
cannot use the same wavelength which is a necessary condition to share ADMs.

Minimizing the number of ADMs in optical networks is a main research topic
in recent studies. The problem was introduced in [GLS98] for the ring topology.
An approximation algorithm for the ring topology with approximation ratio of
3
2 was presented in [CW02], and was improved in [SZ04],[EL04],[EL09] to 10

7 + ε,
10
7 , and 98

69 respectively. The off-line version of the Minimum ADM problem can
be solved optimally for trees [ZCXG03].

The motivation for the on-line problem stems from the need to utilize the
cost of use of the optical network. We assume that the switching equipment
is installed in the network. Once a lightpath arrives, we need to assign it two
ADMs, and our target is to determine which wavelength to assign to it so that
we minimize the cost, measured by the total number of ADMs used.

An on-line algorithm with competitive ratio of 7
4 for any network topology

was presented in [SWZ07]. It was shown that this algorithm has an optimal 7
4

competitive ratio for a ring topology, and an optimal 3
2 competitive ratio for a

path topology.
In this paper we present a connection between matchings in complete multi-

partite graphs and ADM minimization in star networks. Online bipartite maxi-
mum matching problem was introduced in [KVV90] and a (1−1/e)-competitive
randomized algorithm was proposed , which is optimal [GM08, BM08]. The
greedy algorithm is 1/2-competitive and is optimal for deterministic online al-
gorithms. The problem has found applications in other related problems (e.g.,
[ANR02], [AR05], [AC06]). The problem has also been studied for general
weighted graphs in [KP93] where a 1/3-competitive deterministic algorithm
is given. In [Sit96], a formula for the cardinality of the maximum matching in
complete multipartite graph is given. To the best of our knowledge, there is no
work on online maximum matching in multipartite graphs.

We show a tight bound of 2/3 for the competitive ratio of deterministic algo-
rithms for this maximum matching problem, implying a tight 10/9 competitive
ratio for the ADM minimization problem.

In Section 2 we describe both problems. The lower bound and upper bound
for the competitive ratio are presented in Sections 3 and 4, respectively. We
conclude and discuss further research directions in Section 5.

2 Preliminaries

2.1 The ADM Minimization Problem

An instance α of the problem is a pair α = (G, P ) where G = (V, E) is an
undirected graph and P is a multi-set of simple paths in G. In an on-line instance,
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the graph G is known in advance and the set P of paths is given on-line. In this
case we denote P = {p1, p2, ..., pN} where pi is the i-th path of the input and
Pi = {pj ∈ P |j ≤ i} consists of the first i paths of the input.

A valid chain (resp. cycle) is a path (resp.cycle) formed by the concatenation
of distinct paths pi0 , pi1 , ... ∈ P that do not have an edge in common. A solution
S of an instance α = (G, P ) is a partition of P into valid chains and cycles.

The cost of a valid chain (resp. cycle) containing k paths is k + 1 (resp. k)
ADMs. The cost cost(S) of a solution S is the sum of the costs of its valid chains
and cycles. The objective is to find a solution S such that cost(S) is minimum.

Let OPT be an optimal off-line algorithm. An online algorithm A to a mini-
mization problem is said to be c-competitive (for c ≥ 1) if there exists some b ≥ 0
such that for any input I, A(I) ≤ c×OPT (I) + b, where A(I) and OPT (I) de-
note the cost of the output of A and OPT , respectively, on input I. Similarly,
for a maximization problem A is said to be c-competitive (for c ≤ 1) if there
exists some b ≥ 0 such that for any input I, A(I) ≥ c×OPT (I)− b.

2.2 The Star Topology and the d-PARTMM Problem

Let G be a star with d edges, namely G = (V, E), V = {0, 1, ..., d} , E =
{e1, ..., ed} and ∀1 ≤ i ≤ d, ei = (0, i). In this case paths in P are of length
either 1 or 2. Let p ∈ P be a path of length 2 with endpoints i and j. For a
path p′ to be concatenated to p, one of its endpoints should be either i or j. In
this case p and p′ would share one of the edges ei, ej . Therefore paths of length
2 constitute valid chains of size 1 in every solution, and each such path costs 2
ADMs. We therefore assume w.l.o.g. that all the paths are of length 1.

Two paths p, p′ of length 1 have always a common endpoint 0. Let i (resp. j)
be the other endpoint of p (resp. p′). They can form a valid chain if and only
if i �= j. In this case the cost of the valid chain is 3, or in other words 3/2 per
path, whereas a path constituting a valid chain costs 2. Therefore our goal is
to maximize the number of valid chains of size 2, that is equivalent to find a
maximum matching in a complete d-partite graph. This problem will be called
the d-PARTMM problem throughout the paper.

The following lemma is proven in [Sit96], we give a sketch of proof for com-
pleteness.

Lemma 2.1. Let G = (V, E) be a complete d-partite graph with N nodes (V is
partitioned into parts V1, V2, · · · , Vd). G contains a matching of size �N

2 	 if and
only if |Vi| ≤ �N

2 � for every i.

Sketch of Proof: The ‘only if’ part is obvious. The ‘if’ part is proved by
induction on N . Assume w.l.o.g. that V1 and V2 are the two largest sets among
V1, V2, · · · , Vd. The induction step stems from the observation that, by matching
any node v ∈ V1 with any node v′ ∈ V2, and deleting these two nodes from G,
results in a complete bipartite graph G′ of N − 2 nodes (and sets V1−{v}, V2−
{v′}, V3, · · · , Vd). The proof follows by the inductive hypothesis. �

A d-partite graph having a matching of size �N
2 	 will be called balanced.
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In an on-line instance, the input consists of d empty parts that are initially
empty. The nodes of the graph are revealed one at a time where each node is an
element of some part. For each node pi of the input, an on-line algorithm has
to decide to which node pj(j < i) to match it, or to leave it unmatched. As the
graph is a complete d-partite graph pj is eligible if and only if it is unmatched
and it is not in the same part as pi. Once two nodes are matched, the decision
cannot be revoked. An on-line instance will be called completely balanced if every
prefix of it is balanced.

When d = 2, the on-line problem can be solved optimally by the greedy
algorithm, which matches to each pi an unmatched node pj in the other part of
the graph as long as such a pj exists. In the rest of our work we assume d ≥ 3.

We conclude this section with the following claim that relates the perfor-
mances of any solution with respect to these two problems.

Lemma 2.2. A solution to the d-PARTMM problem is a c-approximation (0 ≤
c ≤ 1), if and only if the corresponding solution to the Minimum ADM problem
is a 4−c

3 -approximation, with the same additive term.

Proof. Let MM be the size of a maximum d-partite matching, and let M be
the size of a d-partite matching that constitutes c-approximation. There exists
a constant b ≥ 0, such that M ≥ cMM − b. Let S∗ be an optimal solution
to the Minimum ADM problem and S be a solution corresponding to the c-
approximation.

cost(S∗) = 2 |P | −MM

cost(S) = 2 |P | −M ≤ 2 |P | − cMM + b =
2 |P | − cMM

2 |P | −MM
cost(S∗) + b

=
2− c(MM/ |P |)
2−MM/ |P | cost(S∗) + b.

As 0 ≤ c ≤ 1, the coefficient of cost(S∗) is a non decreasing function of MM/ |P |.
Considering that MM/ |P | ≤ 1/2 we conclude

cost(S) ≤ 2− c/2
2− 1/2

cost(S∗) + b =
4− c

3
cost(S∗) + b.

On the other hand let S be a c′ = 4−c
3 approximation to the Minimum ADM

problem and M the size of d-partite matching that it induces. There is a constant
b′ such that

cost(S) ≤ c′ · cost(S∗) + b′

2 |P | −M ≤ c′(2 |P | −MM) + b′

M ≥ c′MM + (1− c′)2 |P | − b′ ≥ c′MM + (1− c′)4MM − b′

= (4− 3c′)MM − b′ = cMM − b′.

��
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3 Lower Bound

Lemma 3.1. For any c > 2
3 and d ≥ 3 there is no c-competitive deterministic

on-line algorithm for the d-PARTMM problem.

Proof. Assume, by contradiction that there is a
( 2

3 + ε
)
-competitive determinis-

tic on-line algorithm ALG for some ε > 0. Then there is a constant b ≥ 0, such
that for any online instance I

ALG(I) ≥
(

2
3

+ ε

)
OPT (I)− b

where ALG(I) is the size of the matching returned by the algorithm and OPT (I)
is the size of the maximum matching.

For any non-negative integer k, consider the instance I containing 2k nodes,
such that k of them are in V1 and k of them are in V2. Obviously OPT (I) = k,
then

ALG(I) ≥
(

2
3

+ ε

)
k − b =

2
3
k + εk − b

and ALG leaves k − ALG(I) unmatched nodes at each one of V1 and V2. Let
I ′ be the online instance which is obtained by appending to I, 2k nodes from
part 3. In this phase ALG can not do better than matching the 2(k −ALG(I))
unmatched nodes to the nodes of V3. Therefore

ALG(I ′) ≤ ALG(I) + 2(k −ALG(I)) = 2k −ALG(I) ≤ 4
3
k − εk + b. (1)

On the other hand OPT (I ′) = 2k. Then

ALG(I ′) ≥
(

2
3

+ ε

)
OPT (I ′)− b =

(
2
3

+ ε

)
2k − b (2)

Combining (1) and (2) we get(
2
3

+ ε

)
2k − b ≤ 4

3
k − εk + b

2εk − b ≤ −εk + b

k ≤ 2b
3ε

For any input I with k bigger than the right hand side we reach a contradiction. ��

By applying Lemma 2.2 for c = 2
3 , and using Lemma 3.1, we have thus proved:

Theorem 1. For any c < 10
9 , there is no c-competitive deterministic on-line

algorithm for the Minimum ADM problem in star networks.
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4 Upper Bound

4.1 Eliminating Unbalanced Instances

The following lemma shows that the difficult instances of the d-PARTMM prob-
lem are the completely balanced instances.

Lemma 4.1. There is a c-competitive deterministic algorithm for thed-PARTMM
problem, if and only if there is a c-competitive deterministic algorithm for it when
the instances are restricted to be completely balanced.

Sketch of Proof: The ‘only if’ part is immediate. We now show the ‘if’ part. Let
ALG be a c-competitive deterministic on-line algorithm for completely balanced
instances, where 0 ≤ c ≤ 1. We claim that the following algorithm ALG′ is
c-competitive for all instances.

ALG′

Initialization:
U ← ∅

On input pi do: //I = {p1, ..., pi}
B ← I \ U
If B is completely balanced then

follow the decision of ALG on input B
else{// There is exactly one part h with more than �B

2 	 nodes of B
If pi is in h then

leave pi unmatched
else{

choose an arbitrary unmatched node pj ∈ U (*)
match pi to pj

}
U ← U � {pi}

}
First note that any instance I which is not completely balanced has prefixes
which are not balanced. Each such prefix has one part h which is the “heav-
iest” part containing more than half of the nodes. As the instance is initially
balanced it can be uniquely divided into intervals B1, U1, B2, U2, ... which are
alternately balanced and unbalanced. Each unbalanced interval Ui has a corre-
sponding ”heaviest” part hi.

We describe in detail how the intervals Ui are determined. Consider a step
during which the input became unbalanced. This happens necessarily after some
odd step 2si − 1 with si nodes in hi. After this step si + 1 nodes out of 2si

are in hi. Now consider the first step that the input becomes balanced again. It
happens necessarily after some even step 2ei with 2ei− 2 nodes in hi. After this
step ei nodes out of 2ei − 1 are in hi. In this case Ui is the interval from 2si to
2ei − 1 during which the input contained 2ei − 2si nodes out of which ei − si

are in hi. As 2ei − 1 is the first step that this happens, at any time between
these two steps any node not in hi can be matched to a node in hi in line (*) of
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ALG’. Moreover the nodes of Ui admit a perfect matching where each edge of
the matching has an adjacent node in hi. If we remove the sub-instance Ui from
the input we remain with the instance until step 2si− 1 which is balanced. Note
that an intervals Bi may possibly be empty.

If the instance terminates with an unbalanced interval, i.e. the instance is
unbalanced, then for the last unbalanced interval Ul, more than half of the nodes
revealed during Ul, say x + δ of them, are in hl where x is the total number of
nodes in the other parts. If the instance is balanced let δ = 0. Let B = B1, B2, ...
and U = U1, U2, ..., Ul−1.

Then ALG′ returns |Ui|
2 matchings at each interval Ui, i < l. And for Ul it

returns x matchings. On the other hand ALG ”sees” only the sub-instance B
that is completely balanced. Therefore for some constant b, it returns at least
c ·OPT (B) + b matchings. We conclude

ALG′(I) = ALG(B) +
∑
i<l

|Ui|
2

+ x ≥ c ·OPT (B) + b +
|U |
2

+ x

≥ c

(
OPT (B) +

|U |
2

+ x

)
+ b.

On the other hand

OPT (I) ≤
⌊ |I| − δ

2

⌋
=
⌊ |B ∪ U |

2

⌋
+x =

⌊ |B|
2

⌋
+
|U |
2

+x = OPT (B)+
|U |
2

+x.

We conclude that ALG′ is c-competitive. �

4.2 Algorithm MATCHBYRATIO

In this section we present the algorithm MATCHBY RATIO(α, d) for com-
pletely balanced instances, where 0 < α ≤ 2/3 and d is the number of parts of
the graph. We prove that for any α in this interval the algorithm is α-competitive.

Algorithm MATCHBYRATIO is designed with the lower bound proof in
mind. It depends on some constant 0 < α ≤ 2/3 and the number of parts d
(we justify the dependency on d in Section 5).

In the preprocessing step, it calculates a value β depending on d. The algo-
rithm attempts to maintain the number of the matchings to be close to α times
the optimum (with an additive offset of β). Each time it falls behind this thresh-
old it adds one matching to the output. One node of the matching is the current
input node by definition of the problem. We call this node the matching node.
The other node is chosen arbitrarily from the part having the biggest ratio of
unmatched nodes (ratio of number of unmatched nodes to total number of nodes
in the part). This node is called the matched node.

The following pseudo-code of the algorithm will be helpful in the analy-
sis. The algorithm partitions the nodes into three sets: U is the set of un-
matched nodes, MG is the set of matching nodes, and MD is the set of matched
nodes.
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MATCHBY RATIO(α, d)
Initialization:

Calculate β as a function of d // See analysis (Theorem 2)
U ← ∅
MG← ∅
MD← ∅

On input pi do: //I = {p1, ..., pi}
opt← OPT (I) // = � i

2	)
if |MG| < �α · opt− β	 then { // (**)

Let h be the part containing pi

choose an arbitrary unmatched node pj from part h′ �= h having a
maximal ratio of unmatched nodes

if there is no such node then FAIL (*)
output the edge (pi, pj)
U ← U \ {pj}
MD←MD ∪ {pj}
MG←MG ∪ {pi}
} else {

U ← U ∪ {pi}
}

By the description of the algorithm, it is clearly α-competitive unless it fails in
the line marked by (*). It remains to prove that this does not happen if α ≤ 2/3.

We begin by introducing some notation. Ui (resp. MDi, MGi) is the value of
the set U (resp. MD, MG) after step i of the algorithm, in other words after it

has processed pi. Let also Mi
def
= MGi�MDi and Ti

def
= Mi�Ui. P is the set of

all the input nodes. We denote by P1, ..., Pd the parts of the multipartite graph,
clearly P = �d

h=1Ph. For any subset Q of P , Xi(Q)
def
= Xi∩Q where X stands for

any one of U, MD, MG, M or T . Whenever X is the name of a set, its lowercase
counterpart x denotes its size. For instance mgi(Ph) is the number of matching
nodes of Ph after input pi is processed by the algorithm. For a nonempty subset
Q of P we define its unmatched ratio as ρi(Q)

def
= ui(Q)

ti(Q) .
A basic property of the algorithm is that the sizes ui, mi, ... do not depend

on the input and are functions of i only. However their subdivision, i.e. the sizes
ui(Ph), mi(Ph), ... depend on the input.

Lemma 4.2. For all steps 1 ≤ i ≤ j, in which the condition in line (**) is true,
we have

αi− 2β + 2− 2α ≤ mi < αi− 2β + 2 (3)
(1− α)i + 2β − 2 < ui ≤ (1− α)i + 2β − 2 + 2α (4)

and

|mj −mi − α(j − i)| < 2α

|uj − ui − (1 − α)(j − i)| < 2α.
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Proof. Omitted. ��
We assume by contradiction that the algorithm fails, and then use backward
analysis to reach a contradiction. Under the failure assumption we define recur-
sively the following two finite sequences:

i0 is the step during which the algorithm failed and H0 is the part containing
the input at step i0. Formally,
H0 = Ph, where pi0 ∈ Ph.

For any k > 0:
ik is the last step before ik−1 that a matching is added to the output and

none of its nodes are in Hk−1. If such a step does not exist then ik is undefined
and ik−1 terminates the sequence, otherwise:

Hk = Hk−1 ∪ Ph where p′ ∈ Ph and p′ is the matched node at step ik.
Note that a matching or a failure may occur only at even steps, because α� i

2	
does not increase at odd steps. Therefore ik is even for all k. Note also that the
length of the sequence is at most d − 1, because each time a part of the graph
is added to H , and at least one part (i.e. the part of the matching node) is left
out.

Lemma 4.3. For any d ≥ 3 and any α < 1/2, MATCHBY RATIO(α, d) does
not FAIL if β ≥ 1.

Proof. Assume by contradiction that the algorithm fails at some step, and let
i0 be the step before the failure. By definition H0 is the part of the graph
containing the input node at this step. All the unmatched nodes should be in
H0, because otherwise the algorithm would pick an unmatched node from P \H0
and construct a matching, thus would not fail. Therefore we have

ui0(H0) = ui0 > (1 − α)i0 + 2β − 2 ≥ (1− α)i0 > i0/2.

On the other hand as the instance is balanced we have ui0(H0) ≤ ti0(H0) ≤
�i0/2� = i0/2, a contradiction. ��
Lemma 4.4. If α ≤ 2/3 and β > d then

uik
(Hk) ≥ 2(1− α)tik

(Hk) + 2β − 2− k ≥ 2(1− α)tik
(Hk).

Proof. The second inequality follows from β > d, k < d and d ≥ 3. We will prove
the first inequality by induction on k.

k = 0: The proof is similar to the proof of Lemma 4.3:

ui0(H0) = ui0 > (1−α)i0+2β−2 = (1−α)ti0 +2β−2 ≥ 2(1−α)ti0(H0)+2β−2

where the last inequality holds because the instance is balanced.
k > 0: Recall that ik < ik−1 and both even. For readability we denote m = ik

and n = ik−1. We will analyze the change in the sizes of the sets U, MG, MD,
etc... from step m + 1 to step n.
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Fig. 1. The scenario discussed in the proof of Lemma 4.4

Consult Figure 1 for the following discussion. Solid edges are matchings that
were output until step m and dotted edges are matchings that were output from
step m + 1 to step n. A black node is a matching node, and a white node is
a matched node. An unmatched node is drawn with a solid border if it was
input until step m, and with a dotted border otherwise. The figure shows all
the possibilities of matchings and all the possibilities of unmatched nodes. The
letters on the nodes (resp. edges) are the number of such nodes (resp. edges).

First note that m is the last step during which two elements of Hk−1 =P \Hk−1
are matched to each other. Therefore z′=z′′=0 and the set sizes are as follows:

mdm(Hk−1) = y + w

mgm(Hk−1) = x + w

mm(Hk−1) = x + y + 2w

um(Hk−1) = a + u + t′

tm(Hk−1) = x + y + 2w + a + u + t′

mdn(Hk−1) = y + w + a + f + t + t′

mgn(Hk−1) = x + w + b + c + t + t′

mn(Hk−1) = x + y + 2w + a + b + c + f + 2t + 2t′

un(Hk−1) = u + b′

tn(Hk−1) = x + y + 2w + a + b + c + f + u + b′ + 2t + 2t′

mgn −mgm = a + b + c + f + t + t′

tn − tm = a′ + b′ + a + b + 2c + 2f + 2t + t′
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Claim. b′−a−t′
b+c+f+b′+2t+t′ ≤ 2(1− α) + α

n−m .

Proof.

b′ − a− t′

b + c + f + b′ + 2t + t′
≤ b′ − a + t

b + c + f + b′ + 2t + t′

≤ a′ + b′ + c + f + t

a′ + b′ + a + b + 2c + 2f + 2t + t′
. (5)

The second inequality above holds by the following observation. If b′ − a + t ≤
0 then the left hand side is non-positive and the right hand side is positive,
therefore the inequality holds. Otherwise b′ − a + t > 0 and the left hand side
is a fraction with value of at most 1. Increasing the value of both nominator
and denominator by the same value increases the fraction. Note that the right
hand side is obtained from the left hand side by adding a + a′ + c + f to both
nominator and denominator.

On the other hand we have

a′ + b′ + c + f + t

a′ + b′ + a + b + 2c + 2f + 2t + t′
=

(tn − tm)− (mgn −mgm)
tn − tm

=
(n−m)− (mgn −mgm)

n−m
<

(n−m)− (α
2 (n−m)− α)

n−m

=
(
1− α

2

)
+

α

n−m
≤ 2(1− α) +

α

n−m
. (6)

Note that the last inequality holds because α ≤ 2/3. By combining (5) and (6)
we get the claim. ��

By the inductive assumption we have

un(Hk−1) ≥ 2(1− α)tn(Hk−1) + 2β − 2− (k − 1),

and by the above claim

b′ − a− t′ ≤ 2(1− α)(b + c + f + b′ + 2t + t′) + α
(b + c + f + b′ + 2t + t′)

n−m

< 2(1− α)(b + c + f + b′ + 2t + t′) + 1.

We combine to get

um(Hk−1) = un(Hk−1)− (b′ − a− t′)
> 2(1− α)tn(Hk−1) + 2β − 2− (k − 1)
−2(1− α)(b + c + f + b′ + 2t + t′)− 1

= 2(1− α)tm(Hk−1) + 2β − 2− k > 2(1− α)tm(Hk−1).

Therefore ρm(Hk−1) > 2(1−α). Now recall that in step m the algorithm matched
two nodes, both not from Hk−1. Let Ph be the part of the graph containing the
matched node. By the behavior of the algorithm this means that the unmatched
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ratio of Ph is at least as much as each one of the parts of Hk−1, thus at least as
much as entire Hk−1, therefore ρm(Ph) ≥ ρm(Hk−1) > 2(1 − α), i.e. um(Ph) >
2(1− α)tm(Ph). Combining with the above, we get:

um(Hk) = um(Hk−1) + um(Ph)
> 2(1− α)tm(Hk−1) + 2β − 2− k + 2(1− α)tm(Ph)
= 2(1− α)tm(Hk) + 2β − 2− k.

��
Lemma 4.5. For any d ≥ 3 and 1/2 ≤ α ≤ 2/3, MATCHBY RATIO(α, d)
does not FAIL if β > 3

2d + 3.

Proof. If the algorithm fails, the sequences i0, i1, ..., il and the H0, H1, ..., Hl are
defined, where l ≤ d − 2. Let Hl = P \ Hl. By the definition of the sequence
H and the fact that Hl is the last item of the sequence no matching can have
both nodes in Hl. Such a matching would cause part of Hl to be added to Hl,
to form Hl+1. In other words all the matchings contain at least one node in Hl.
Therefore

mil
(Hl) ≤ mil

(Hl).

α and β satisfy the conditions of Lemma 4.4, by which we have

uil
(Hl) ≥ 2(1− α)til

(Hl) + δ = 2(1− α)mil
(Hl) + 2(1− α)uil

(Hl) + δ

1
3
uil

(Hl) ≥ (2α− 1)uil
(Hl) ≥ 2(1− α)mil

(Hl) + δ ≥ 2
3
mil

(Hl) + δ

uil
(Hl) ≥ 2mil

(Hl) + 3δ.

for δ = 2β − 2− k. We conclude

uil
≥ uil

(Hl) ≥ 2mil
(Hl) + 3δ ≥ mil

(Hl) + mil
(Hl) + 3δ = mil

+ 3δ

uil
−mil

≥ 3δ.

Recalling that α ≥ 1/2 we get from (3) and (4)

uil
−mil

≤ (1− 2α)il + 4β + 4α− 4 ≤ 4β + 4α− 4 ≤ 4β.

Therefore
4β ≥ 3δ = 6β − 6− 3k

2β ≤ 3k + 6 ≤ 3d + 6

contradicting our assumption. ��
Combining Lemma 4.3 and Lemma 4.5 we get

Theorem 2. For any d ≥ 3 and any α ≤ 2/3, MATCHBY RATIO(α, d) does
not FAIL if β > 3

2d + 3.

Corollary 4.1. MATCHBY RATIO(2/3, d) is a 2/3-competitive algorithm for
the d− PARTMM problem, with an additive term of 3

2d + 3.
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5 Conclusion and Possible Improvements

In this paper, we have shown an interesting connection between maximum match-
ings in complete multipartite graphs and ADM minimization in star networks.
We show a tight 2/3 competitive ratio for finding a maximum matching, im-
plying a tight 10/9 competitive ratio for finding a coloring that minimizes the
number of ADMs.

The algorithm used in the upper bound is 2/3-competitive with an additive
term β that depends on the number of parts d of the graph, which is supposed to
be known in advance. Actually this is the situation for the ADM minimization
problem in which the star network (and therefore d) is given in advance. On the
other hand our algorithm is usable also when d is not known a priori by a slight
modification. We start with the assumption d = 3 and increment the value of
d each time the first node of some part is revealed, and adjust β accordingly.
In this case β = O(d) is unbounded and depends on the on-line input. However
this does not constitute a problem if d is o(N).

An open question is to improve the competitive ratio by randomized algo-
rithms. It is also interesting to consider other topologies like trees. We believe
the result in star networks may be a starting point for the investigation of the
more general tree networks.

Another important extension is to consider the ADM minimization problem
when grooming is allowed; in graph-theoretic terms, this amounts to coloring
the paths so that at most g of them are crossing any edge, and where each
ADM can serve up to g paths that come from at most two of its adjacent edges
(see [GRS98, ZM03]). Another direction of extension is to the case where more
involved switching functions are under consideration.
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Abstract. A self-stabilizing protocol guarantees that starting from an
arbitrary initial configuration, a system eventually comes to satisfy its
specification and keeps the specification forever. Although self-stabilizing
protocols show excellent fault-tolerance against any transient faults (e.g.
memory crash), designing self-stabilizing protocols is difficult and, what
is worse, might be impossible due to the severe requirements. To circum-
vent the difficulty and impossibility, we introduce a novel notion of loose-
stabilization, that relaxes the closure requirement of self-stabilization;
starting from an arbitrary configuration, a system comes to satisfy its
specification in a relatively short time, and it keeps the specification
for a long time, though not forever. To show effectiveness and feasi-
bility of this new concept, we present a probabilistic loosely-stabilizing
leader election protocol in the Probabilistic Population Protocol (PPP)
model of complete networks. Starting from any configuration, the proto-
col elects a unique leader within O(nN log n) expected steps and keeps
the unique leader for Ω(NeN) expected steps, where n is the network
size (not known to the protocol) and N is a known upper bound of n.
This result proves that introduction of the loose-stabilization circumvents
the already-known impossibility result; the self-stabilizing leader election
problem in the PPP model of complete networks cannot be solved with-
out the knowledge of the exact network size.

1 Introduction

A distributed system is a collection of autonomous computational entities (pro-
cesses) connected by communication links. Fault tolerance of distributed systems
has attracted more and more attention since distributed systems are prone to
faults. A self-stabilizing system [7] has a desirable property that, even when any
transient fault (e.g. memory crash) hits the system, it can autonomously recover
from the fault. The notion of self-stabilization is described as follows: (i) start-
ing from an arbitrary initial configuration, a system eventually reaches a safe
configuration (convergence), and (ii) once a system reaches a safe configuration,

S. Kutten and J. Žerovnik (Eds.): SIROCCO 2009, LNCS 5869, pp. 295–308, 2010.
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then it keeps its specification forever (closure). Although self-stabilizing systems
provide excellent fault-tolerance as mentioned above, designing self-stabilizing
protocols is difficult and, what is worse, might be impossible due to the severe
requirements of self-stabilization.

To circumvent the difficulty and impossibility, many researchers have tried to
relax the severe requirement of self-stabilization and proposed a lot of variants.
Probabilistic self-stabilization [10] guarantees convergence to a safe configuration
with probability 1 starting from an arbitrary configuration. Quasi-stabilization
[11] guarantees convergence to a safe configuration only when all processes in the
system start with the program counters of value 0. Weak-stabilization [9] guaran-
tees that starting from an arbitrary configuration, there exists an execution that
reaches a safe configuration. Devismes et al. [6] investigated the relations among
self, probabilistic and weak stabilization. A notable characteristic common to all
the above variants is that they relax only the convergence requirement but not
the closure requirement of self-stabilization.

In this paper, we adopt Probabilistic Population Protocol (PPP) model [2,3] as
a distributed system model. The population protocol model [1,2,3,4,5,8] is one of
the abstract models that represent wireless sensor networks of anonymous mobile
sensing devices. In this model, two devices communicate with each other only
when they come sufficiently close to each other (we call this event an interaction).
For example, population protocol model can represent a flock of birds such that
each bird is equipped with a sensing device of small transmission range. In
such a sensor network, each device can communicate with another device only
when the corresponding birds come sufficiently close to each other. The PPP
model is a population protocol model with the assumption that any interaction
occurs uniformly at random. This assumption is used partly for evaluating time
complexity of protocols. We need this assumption because the measure of time
is crucial in the concept of loose-stabilization we introduce later.

Self-stabilizing leader election in population protocol model of complete net-
works is an important problem and has been considered by several papers. An-
gluin et al. [4] prove that this problem is unsolvable if we can use no information
about the network size, in other words, if a protocol must work on the complete
networks of finite but any arbitrary size.1 Cai et al. [5] prove that the exact
information of the network size is necessary (and sufficient) to solve the problem.
In other words, for any two distinct positive integers n and n′, there exists no
self-stabilizing leader election protocol that works on both the complete network
of size n and the one of size n′. Fischer and Jiang [8] use external entity (a kind
of failure detector) to solve the problem with no knowledge of the network size.
All of these results can be applied for PPP model. For example, in PPP model
of complete networks, a probabilistic stabilizing leader election protocol exists if
and only if the protocol knows the exact network size.

1 They prove this impossibility for a certain kind of class of topology. By this result,
the impossibility holds for, for example, complete networks, directed line networks,
and connected networks with a certain degree bound and so on.
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1.1 Our Contribution

To circumvent difficulty and impossibility in designing self-stabilizing protocols,
we introduce a novel notion of loose-stabilization, which relaxes the closure re-
quirement of self-stabilization. To the best of our knowledge, this is the first
trial to relax the closure requirement and not the convergence requirement. In-
tuitively, the notion of loose-stabilization is described as follows: (i) starting from
an arbitrary configuration, a system reaches a loosely-safe configuration within
a short time (convergence), and (ii) once a system reaches a loosely-safe config-
uration, then it keeps its specification for a long time (loose-closure). In other
words, we relax the closure requirement by allowing a system to deviate from
its specification even after a loosely-safe configuration but only after a long pe-
riod satisfying the specification. The requirement of fast convergence is added to
guarantee that most of the system running time should satisfy the specification.
Actually, the loose-stabilization is practically equivalent to self-stabilization if
the specification is kept for a significantly long time (e.g. exponential order with
the network size) after the loosely-safe configuration.

Several definitions for the above notion can be formulated, and in this paper,
we give a concrete definition of probabilistic loose-stabilization, which ensures
fast convergence and a long period of closure in terms of expected time.

To show effectiveness and feasibility of loose-stabilization, we present a proba-
bilistic loosely-stabilizing leader election protocol in the PPP model of complete
networks. The protocol uses the knowledge of an upper bound, say N , of the
network size: the protocol works correctly on the networks of any size less than
or equals to N . Starting from an arbitrary configuration, the protocol elects
a unique leader within O(nN log n) expected steps, and then, keeps the unique
leader for Ω(NeN ) expected steps where n is the actual network size. This result
discloses an evidence that introduction of the loose-stabilization can circumvent
impossibility results on self-stabilization; the self-stabilizing leader election in
the PPP model of complete networks cannot be solved even in a probabilistic
way without knowledge of the exact network size (as mentioned above). Our pro-
tocol uses O(log N) space per device while prior papers on population protocols
usually do not allow each devices to use more than constant space (with respect
to n). However, the importance of our protocol is never impaired by this fact
because the above impossibility holds even if each device can use infinite space.

2 Preliminaries

In this section, we give the definition of probabilistic population protocol model
and define the concept of probabilistic loose-stabilization. We use some defini-
tions in [2],[4].

A population consists of a collection of finite state sensing devices called
agents. Each agent has its own state and updates the state by communication
with other agents in pairs, called interactions. We represent a population by sim-
ple directed graph G(V, E): vertex set V = {0, 1, . . . , n− 1} (n ≥ 2) represents a
set of agents, and edge set E ⊆ V × V represents a set of possible interactions.
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If (u, v) ∈ E, agents u and v can interact with each other in such a way that u
serves as an initiator and v serves as a responder. In this paper, we assume that
a population G(V, E) is a complete graph, i.e. (u, v) ∈ E holds for any distinct
agents u, v ∈ V .

A protocol P (Q, Y, O, δ) consists of a finite set of states Q, a finite set of
output symbols Y , an output function O : Q → Y , and a transition function
δ : Q×Q→ Q×Q. The output of an agent is determined by O: when the state of
an agent is p ∈ Q, the output of the agent is O(p). When an interaction between
two agents happens, δ determines the next states of the two agents after the
interaction. For agent u with state p and agent v with state q, δ(p, q) = (p′, q′)
represents that the states of u and v after the interaction (u, v) are p′ and q′

respectively.
A configuration is a mapping C : V → Q that specifies the states of all agents

in a population. The output of a configuration C is defined as a composite
function O ◦C : V → Y , denoted by O(C). Let C and D be configurations, and
let u and v be distinct agents. We say that C changes to D by an interaction
r = (u, v), denoted by C

r→ D, if we have (D(u), D(v)) = δ(C(u), C(v)) and
D(w) = C(w) for all w ∈ V except u and v.2 We denote by Call(P ) the set of
all configurations of P .

An interaction sequence γ = (u0, v0), (u1, v1), . . . is an infinite sequence of
interactions. For each t ≥ 0, we denote ut and vt by γ1(t) and γ2(t) respectively,
and denote (ut, vt) by γ(t). We call γ(t) the interaction at time t in γ. We say
that agent v joins in interaction γ(t) when v ∈ {γ1(t), γ2(t)}.

Given an interaction sequence γ and an initial configuration C0, the execution
ΞP (C0, γ) of a protocol P is uniquely defined as ΞP (C0, γ) = C0, C1, . . . s.t. ∀t ≥
0, Ct

γ(t)→ Ct+1.
A scheduler determines which interaction happens at each time t (t ≥ 0).

In this paper, we consider a uniformly random scheduler: the interaction at
each time is chosen at random, independently and uniformly from all possible
interactions. We represent the choice of this scheduler by the interaction sequence
Γ : each Γ (t) is a random variable such that Pr(Γ (t) = (u, v)) = 1

|E| for any
arbitrary interactions (u, v) ∈ E and for any integer t ≥ 0.

2.1 Behavior

In this section, we define behavior to describe the specification of a problem.
A trace T on population G(V, E) is a finite or infinite sequence of assignments
from V to Z, where Z is a set of symbols. We call Z the alphabet of T . If Z = Q
for protocol P (Q, Y, O, δ) then we say that T is a configuration trace of P .3 Let
T = C0, C1, . . . be a finite or infinite configuration trace of P . The output trace
of T for P is OTP (T ) = O(C0), O(C1), . . . .
2 This definition implies that interactions between two agents happen sequentially,

that is, exactly one pair of agents interact at any time.
3 Note that a configuration trace of P (Q, Y, O, δ) is also a configuration trace of

P ′(Q′, Y ′, O′, δ′) if Q = Q′.
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For a finite trace T = λ0, λ1, . . . , λl−1, we define the length of T as |T | = l. For
an infinite trace T ′, we define |T ′| =∞. Let T = λ0, λ1, . . . be a finite or infinite
trace. The sub-trace Tx,y (0 ≤ x ≤ y ≤ |T | − 1) 4 is a sequence of assignments
Tx,y = λx, λx+1, . . . , λy. The prefix of T , T0,l (0 ≤ l ≤ |T | − 1) is denoted by
Tpre(l).

A behavior B(Z) on population G(V, E) is a set of traces on G that have
an identical alphabet Z. (We use the notation B if Z is clear from context.)
We define a problem as a behavior that specifies the set of all legitimate output
traces for the problem. Let B(Y ) be a behavior and let T be a configuration
trace of P (Q, Y, O, δ). Trace T is legitimate for the problem defined by B iff
OTP (T ) ∈ B. We say that a behavior B is canonical if Tx,y ∈ B for any trace
T ∈ B and any x, y (0 ≤ x ≤ y ≤ |T | − 1).

Definition 1 (Leader Election Problem). We denote by le the set of all
assignment ω : V → {F, L} such that for some vl ∈ V, ω(vl) = L and for
all v �= vl, ω(v) = F . The leader election behavior LE({F, L}) on population
G(V, E) is the set of all traces T = ω, ω, . . . (1 ≤ |T | ≤ ∞) such that ω belongs
to le.

Informally, LE requires that any legitimate execution of a protocol for leader
election has one static leader agent with the output symbol L and n − 1 non-
leader (follower) agents with the output symbol F through its all configuration.
Clearly, LE is canonical.

2.2 Probabilistic Loose-Stabilization

In this section, we define the notion of probabilistic loose-stabilization.
Let P (Q, Y, O, δ) be a protocol and B(Y ) be a canonical behavior. Let T =

D0, D1, . . . be a finite or infinite configuration trace of P . If there exists an
integer t (t ≥ 0) such that OTP (Tpre(t)) ∈ B and OTP (Tpre(t + 1)) /∈ B, the
maintenance trace MTP (T, B) is defined by Tpre(t). If such t does not exist,
we define MTP (T, B) as follows: if OT (Tpre(0)) ∈ B then MTP (T, B) = T ,
otherwise MTP (T, B) = ε, where ε is the empty trace (|ε| = 0). Let C0 be
a configuration of P . We denote E[|MTP (ΞP (C0, Γ ), B)|] by EMTP (C0, B).
Intuitively, when an execution of P starts from C0, the execution satisfies the
specification defined by B during EMT P (C0, B) expected interactions.

Let C be a set of configurations of P . If there exists an integer t such that
Di /∈ C for all i (i = 0, 1, . . . , t) and Dt+1 ∈ C, the convergence trace CTP (T, C)
is defined by Tpre(t). If such t does not exist, we define CTP (T, C) as fol-
lows: if D0 ∈ C then CTP (T, C) = ε, otherwise CTP (T, C) = T . We denote
E[|CTP (ΞP (C0, Γ ), C)|] by ECTP (C0, C). Intuitively, when an execution of P
starts from C0, the execution reaches a configuration of C within ECTP (C0, C)
expected interactions.

Definition 2 (Probabilistic Loose-stabilization). Let α and β be real
numbers. A protocol P (Q, Y, O, δ) is (α, β)-probabilistic loosely-stabilizing for a
4 Note that y can be ∞ if |T | = ∞. We interpret ∞− 1 as ∞.
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canonical behavior B(Y ) and a nonempty set of configurations S if the following
equations hold:

max
C∈Call(P )

ECTP (C,S) ≤ α,

min
C∈S

EMTP (C, B) ≥ β.

We say that a configuration C of P is a β-loosely-safe configuration for P and B
when EMTP (C, B) ≥ β. Clearly, S in the above definition consists of β-loosely-
safe configurations for P and B.

Intuitively, a (α, β)-probabilistic loosely-stabilizing protocol is quite useful if
β is sufficiently large (e.g. exponential order with n) and α is relatively small
(e.g. low polynomial order with n).

3 Probabilistic Loosely-Stabilizing Leader Election

3.1 The Proposed Protocol

In this section, we present a leader election protocol PLE (Q, {F, L}, O, δ) work-
ing with the knowledge of an upper bound N of the network size n. The pro-
tocol has a design parameter s. When s is adequately set depending on N , it
is (O(nN log n), Ω(NeN ))-probabilistic loosely-stabilizing for behavior LE and
a set of configurations Shalf that we shall define later (Theorem 2).

Each agent has one leader bit and a timer that takes an integer value in [0, s],
i.e. Q = {−, l}× {0, 1, . . . , s}. We define the output function O as follows: if the
leader bit of an agent is l, then the output of the agent is L, otherwise F . We
call an agent with the leader bit l (−) a leader (non-leader, respectively). We
describe the transition function δ by pattern rules in Fig. 1. Given any pair of
states (p, q), the pair of the next states δ(p, q) is defined as follows: (i) if (p, q)
matches the left side of exactly one rule, δ(p, q) is determined by the right side
of the rule, and (ii) if there are two or more matched rules, δ(p, q) is determined
by the right side of the matched rule with the smallest rule number. The symbol
∗ means “don’t care”, that is, ∗ matches any value of the timer. Note that this
five rules are collectively exhaustive.

If two leaders interact, one remains a leader and the other becomes a non-
leader (R1). If a leader and a non-leader interact, the leader bits of the both

R1. ((l, ∗), (l, ∗)) → ((l, s), (−, s))
R2. ((l, ∗), (−, ∗)) → ((l, s), (−, s))
R3. ((−, ∗), (l, ∗)) → ((−, s), (l, s))
R4. ((−, 0), (−, 0)) → ((l, s), (−, s))
R5. ((−, i), (−, j)) → ((−, f), (−, f)) (0 ≤ i, j ≤ s, f = max(i, j) − 1)

Fig. 1. the transition function δ of PLE
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agents do not change (R2, R3). In every interaction in which one or two leaders
join, the timers of both the agents are reset to the full value s (R1, R2, and R3).
We call this event timer reset. A new leader is created only when two non-leaders
with timer value 0 interact (R4). We call this event timeout. If two non-leaders
interact where either or both agents have non-zero timer, then at least one of
the two agents decrements its timer value by 1 (R5). R5 plays another role of
propagating the higher timer value: intuitively, when two non-leaders interact,
the timer of a lower value is set to the other (higher) value (minus 1).

In a configuration containing at least one leader, timeout rarely happens be-
cause of frequent occurrences of timer reset and propagations of higher timer
value. On the other hand, in a configuration containing no leader, timeout hap-
pens in a relatively short time because of no possibility of timer reset. Hence,
starting from any configuration, removing leaders by R1 or creating a leader by
R4 eventually bring the population to a configuration with exactly one leader.
The following two properties hold clearly: (i) once a configuration with one or
more leaders is reached, the number of leaders cannot become 0 thereafter, and
(ii) once a unique leader is elected, PLE keeps the unique leader until the next
timeout happens.

We define Shalf as the set of all configurations in which there exists exactly one
leader and the timer value of every agent is greater than or equal to s

2 . From the
above explanation for PLE , one can intuitively observe following two properties:
starting from any configuration, the population reaches a configuration in Shalf
within a relatively short time (convergence), and once a configuration in Shalf is
reached, the specification (the unique and static leader) is kept for a extremely
long time (loose-closure). In the rest of Sect. 3, we show rigorously how fast
PLE converges to a loosely-safe configuration, and how long PLE maintains the
behavior of leader election after a loosely-safe configuration is reached.

3.2 Epidemic and Virtual Agents

In this section, we introduce the notion of epidemic (presented in [3]) and virtual
agents for the proof in Sect. 3.3.

We define Lone as the set of all configurations in which there exists exactly
one leader in the population. Let C0 be a configuration in Lone, and let vl ∈ V
be the unique leader in C0. Let γ be an interaction sequence. The epidemic
function IC0,γ(t) (t = 0, 1, . . . ) that returns a set of agents is defined as follows:
IC0,γ(0) = {vl}, and IC0,γ(t) = IC0,γ(t− 1) ∩ AddC0,γ(t) for any t ≥ 1 where

AddC0,γ(t) =

{
{γ1(t− 1), γ2(t− 1)} if IC0,γ(t− 1) ∩ {γ1(t− 1), γ2(t− 1)}
∅ otherwise .

We say that, if v ∈ IC0,γ(t), v is infected at time t in the epidemic starting from
C0 under γ, otherwise v is infection-free at time t in that epidemic. At time 0,
only vl is infected. An infection-free agent becomes infected when it interacts
with an infected agent. Once an agent becomes infected, it remains infected
thereafter.
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In the following, we define the virtual agent VAC0,γ(v) of each agent v ∈ V .
We assume that all agents eventually become infected, that is, IC0,γ(t′) = V
holds for some t′ ≥ 0. The virtual agent VAC0,γ(v) is not defined if no such
t′ exists for C0 and γ. Let vl be the unique leader in C0 and v be any agent
other than vl. The infected time TC0,γ(v) of v is an integer i ≥ 0 that satisfies
v /∈ IC0,γ(i) and v ∈ IC0,γ(i + 1). The parent of v, denoted by PC0,γ(v), is
the agent that infects v. It is formally defined as agent u such that {u} =
{γ1(TC0,γ(v)), γ2(TC0,γ(v))} \ {v}. We define agent P k

C0,γ(v) (k ≥ 0) as follows:
P 0

C0,γ(v) = v, and P k
C0,γ(v) = PC0,γ(P k−1

C0,γ(v)) for k ≥ 1. Intuitively, P k
C0,γ(v) is

v’s ancestor k generations back. Obviously, there exists an integer m ≥ 0 such
that Pm

C0,γ(v) = vl. For each 0 ≤ i ≤ m, let wi be Pm−i
C0,γ (v). Note that w0 = vl and

wm = v. The infecting path of v is defined as vl = w0 → w1 → · · · → wm = v. Let
ti (1 ≤ i ≤ m) be TC0,γ(wi). The virtual agent VAC0,γ(v) is a virtual entity that
migrates from vl to v through the infecting path of v. This notion is formalized
as the location of the virtual agent LC0,γ(v, t) (t ≥ 0),which is defined as follows:

LC0,γ(v, t) =

⎧⎪⎨⎪⎩
vl (0 ≤ t ≤ t1)
wi (ti + 1 ≤ t ≤ ti+1, 1 ≤ i ≤ m− 1)
v (t ≥ tm + 1 = TC0,γ(v) + 1).

For the leader agent vl, we define LC0,γ(vl, t) = vl for any t ≥ 0.
Let v be an agent in V .5 For simplicity, we denote the virtual agent VAC0,γ(v)

by v′ here. We say that the virtual agent v′ joins in interaction γ(t) if agent
LC0,γ(v, t) joins in γ(t), and we define indicator variable VJC0,γ(v, t) for any t ≥
0 as follows: if v′ joins in γ(t), then VJC0,γ(v, t) = 1, otherwise VJC0,γ(v, t) = 0.
The number of virtual interactions of v, denoted by VI C0,γ(v, t), is defined as∑t−1

i=0 VJC0,γ(v, i). Intuitively, VI C0,γ(v, t) is the number of interactions in which
v′ joins between time 0 and time t− 1.

In the rest of this section, we prove two lemmas. Informally, these two lem-
mas assure that the virtual agent v′ brings an large timer value to v with high
probability when v′ reaches v through the infecting path of v. For state p, we
denote the second element (timer) of p by p.time.

Lemma 1. Let C0 be a configuration in Lone and let γ be an interaction se-
quence. Let ΞPLE (C0, γ) = C0, C1, . . . . The following predicate holds for any
agent v ∈ V and any t ≥ 0:

IC0,γ(t) = V ⇒ Ct(v).time ≥ s−VI C0,γ(v, t).

Proof Sketch. Assume IC0,γ(t) = V . Let vl be the unique leader in C0 and
tfirst be the first time at which vl have interaction, i.e. tfirst = min{i ≥ 0 |
vl ∈ {γ1(i), γ2(i)}}. Then, it is easily shown by induction with respect to i that
Ci(LC0,γ(v, i)).time ≥ s − VI C0,γ(v, i) holds for any integer i ≥ tfirst + 1 (we
omit the proof). Since IC0,γ(t) = V , t ≥ tfirst + 1 and v = LC0,γ(v, t) clearly
hold. Hence, we have Ct(v).time = Ct(LC0,γ(v, t)).time ≥ s−VIC0,γ(v, t). ��
5 Note that v can be vl.
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The following lemma probabilistically bounds the number of virtual interactions
of each agent by a certain binomial distribution. Recall that random variable
Γ is the interaction sequence that represents the choice of uniformly random
scheduler.

Lemma 2. Let C0 be a configuration in Lone and let X(i) be a binomial random
variable such that X(i) ∼ B(i, 4

n ) for integer i ≥ 0. Pr(VI C0,Γ (v, t) ≥ j + n −
1 | IC0,Γ (t) = V ) ≤ Pr(X(t) ≥ j) holds for any v ∈ V and any integers t ≥ n
and j ≥ 0.

Proof. Assume IC0Γ (t) = V and let vl ∈ V be the unique leader in C0. We
define the infecting time set IT as

⋃
v∈V \{vl}{TC0,Γ (v)}, and the non-infecting

time set NIT as {0, 1, . . . , t− 1} \ IT . Let v be any agent in V , and let NVI =∑
t′∈NIT VJC0,Γ (v, t′). Since |IT | = n− 1, the inequality VI C0,Γ (v, t) ≤ NVI +

n − 1 immediately follows. Therefore, it is sufficient for our proof to show
Pr(NVI ≥ j | IC0,Γ (t) = V ) ≤ Pr(X(t) ≥ j).

Let t′ be any integer in [0, t − 1] and let m = |IC0,Γ (t′)|. If t′ ∈ NIT , the
interaction Γ (t′) must be an interaction such that both agents Γ1(t′) and Γ2(t′)
belong to IC0,Γ (t′) or the both agents belong to V \ IC0,Γ (t′). Thus, letting
0C2 = 1C2 = 0, we have

Pr(VJ C0,Γ (v, t′) = 1 | IC0,Γ (t) = V ∧ t′ ∈ NIT ∧ LC0,Γ (v, t′) ∈ IC0,Γ (t′))

=
m− 1

mC2 +n−m C2
,

Pr(VJ C0,Γ (v, t′) = 1 | IC0,Γ (t) = V ∧ t′ ∈ NIT ∧ LC0,Γ (v, t′) /∈ IC0,Γ (t′))

=
n−m− 1

mC2 +n−m C2
.

These inequalities lead Pr(VJC0,Γ (v, t′) = 1 | IC0,Γ (t) = V ∧ t′ ∈ NIT ) ≤ 4
n

because m−1
mC2+n−mC2

≤ 4
n and n−m−1

mC2+n−mC2
≤ 4

n hold (We omit the proofs of
them).

Note that this upper bound 4
n of the probability is independent from any

interaction at any time other than t′. Hence, for any set S of t− n + 1 distinct
integers in [0, t− 1], we have

Pr

( ∑
t′∈NIT

VJC0,Γ (v, t′) ≥ j | IC0,Γ (t) = V ∧ NIT = S

)
≤ Pr(X(t− n + 1) ≥ j) .

Therefore, following inequality holds and so does the lemma.

Pr(NVI ≥ j | IC0,Γ (t) = V ) = Pr

( ∑
t′∈NIT

VJC0,Γ (v, t′) ≥ j | IC0,Γ (t) = V

)
≤ Pr(X(t− n + 1) ≥ j)
≤ Pr(X(t) ≥ j) .

��
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3.3 Analysis and Proofs

Assume that we set design parameter s so that s is multiple of 96 and s ≥
max(3n, 96(2 lnn+ln 24)). In this section, we prove that under this assumption,
PLE is (O(ns log n), Ω(ses/96))-probabilistic loosely-stabilizing for LE and Shalf .
To claim it, we prove the following two expressions:

max
C∈Call(PLE )

ECTPLE (C,Shalf) ∈ O(ns log n), (1)

min
C∈Shalf

EMT PLE (C,LE ) ∈ Ω
(
s · exp

( s

96

))
. (2)

First, we prove (2). In the following, we denote Call(PLE ) by Call for simplicity.

Lemma 3. Equation (2) holds if the following equation holds for any configu-
ration C0 in Shalf :

Pr
(
(ΞPLE (C0, Γ ))pre

(ns

48

)
∈ LE ∧ Cns

48
∈ Shalf

)
≥ 1− 2n · exp

(
− s

96

)
, (3)

where ΞPLE (C0, Γ ) = C0, C1, . . . , Cns
48

, . . . .

Proof. Assume that (3) holds for any configuration in Shalf . Then the inequality
EMTPLE (C0,LE ) ≥ (1 − 2n · exp(−s/96))(ns

48 + minC∈Shalf EMTPLE (C,LE )))
clearly holds for any configuration C0 ∈ Shalf . Hence, we have

min
C∈Shalf

EMT PLE (C,LE )

≥
(
1− 2n · exp

(
− s

96

))(ns

48
+ min

C∈Shalf
EMT PLE (C,LE )

)
.

Solving this inequality gives us (2). ��
In the following, we show that (3) holds for any configuration C0 ∈ Shalf . Firstly,
we prove the probability of Cns

48
∈ Shalf is sufficiently close to 1 (Lemma 4,5 and

Corollary 1). Secondly, we prove that the probability of (ΞPLE (C0, Γ ))pre(ns
48 ) ∈

LE is sufficiently close to 1 (Lemma 6 and Corollary 2).

Lemma 4. Let C0 be a configuration in Lone. The following inequality holds:

Pr
(

max
v∈V

VI C0,Γ

(
v,

ns

48

)
≤ s

2
| IC0,Γ

(ns

48

)
= V

)
≥ 1− n · exp

(
− s

36

)
. (4)

Proof. Applying Chernoff bounds, Pr(Y ≥ (1+δ)E[Y ]) ≤ exp(−δ2E[Y ]/3) holds
for any binomial random variable Y and any real number δ (0 ≤ δ ≤ 1) [12,
(4.2)]. Let X be an binomial variable such that X ∼ B(ns

48 , 4
n ). It follows from

the above inequality that Pr(X ≥ s
6 ) = Pr(X ≥ (1 + 1) · E[X ]) ≤ exp(−s/36).

Let v be any agent. By Lemma 2 and the assumption s ≥ 3n, we have

Pr
(
VIC0,Γ

(
v,

ns

48

)
≥ s

2
| IC0,Γ

(ns

48

)
= V

)
≤Pr

(
VIC0,Γ

(
v,

ns

48

)
≥ s

6
+ n− 1 | IC0,Γ

(ns

48

)
= V

)
∵ s

2
≥ s

6
+ n− 1

≤Pr
(
X ≥ s

6

)
≤ exp

(
− s

36

)
.

We obtain (4) by summing up all above probabilities with respect to v ∈ V . ��
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Lemma 5. Pr(IC0,Γ

(
ns
48

)
= V ) ≥ 1− n · exp

(− s
96

)
holds for any configuration

C0 in Lone.

Proof. For each k (2 ≤ k ≤ n), we define T (k) as integer t such that |IC0,Γ (t−
1)| = k − 1 and |IC0,Γ (t)| = k, and define T (1) = 0. Intuitively, T (k) is the
first time at which there exists k infected agents in the population. Let Xpre =
T (�n+1

2 �) and Xpost = T (n)−T (n−�n+1
2 �+ 1). Angluin et al. found in [3] that

T (k) and T (n) − T (n − k + 1) have the same probability distribution for any
k (1 ≤ k ≤ n). Hence, so do Xpre and Xpost. And, Xpre + Xpost ≥ T (n) holds
because �n+1

2 � ≥ n − �n+1
2 � + 1. We denote T (n − �n+1

2 � + 1) by Thalf and let
Xv = max(TC0,Γ (v) − Thalf , 0) for any agent v. Informally, Xv is the number
of interactions that occurs between time Thalf and the time at which agent v
becomes infected. Consider the case v /∈ IC0,Γ (Thalf). At any time t ≥ Thalf , at
least n−�n+1

2 �+1 (≥ n
2 ) agents are infected. Therefore, each interaction at time

t ≥ Thalf infects v with the probability of at least 1
nC2
· n

2 ≥ 1
n , and hence, we

have Pr(Xv > ns
96 ) ≤ (1 − 1

n )ns/96 ≤ exp(− s
96 ). Since the number of infection-

free agent at time Thalf is at most n
2 , Pr(Xpost > ns

96 ) ≤ Pr(
∨

v∈V (Xv ≥ ns
96 )) ≤∑

v∈V Pr(Xv ≥ ns
96 ) ≤ n

2 · exp(− s
96 ). By the equivalence of the distribution of

Xpre and Xpost, we have

Pr
(
IC0,Γ

(ns

48

)
�= V

)
=Pr

(
T (n) >

ns

48

)
≤Pr

(
Xpre >

ns

96

)
+Pr

(
Xpost >

ns

96

)
≤ n · exp

(
− s

96

)
.

��

We define Lhalf to be the set of all configurations in which there exists at least
one leader and the timer value of every agent is greater than or equal to s

2 .
Note that Shalf = Lhalf ∩Lone. The following corollary is directly obtained from
Lemmas 1, 4, and 5.

Corollary 1. Let C0 be a configuration in Lone and let ΞPLE (C0, Γ ) = C0, C1,
. . . , Cns

48
, . . . . Then, Pr(Cns

48
∈ Lhalf) ≥ 1 − n · exp(−s/36) − n · exp(−s/96)

holds.

We define RJ γ(v, t) for any v ∈ V and any t ≥ 0 as follows: if v joins in γ(t),
RJ γ(v, t) = 1, otherwise RJ γ(v, t) = 0. The number of real interactions of v is
defined by RI γ(v, t) =

∑t−1
i=0 RJ γ(v, t). Intuitively, RI γ(v, t) is the number of

interactions in which v joins between time 0 and time t− 1.

Lemma 6. Pr(maxv∈V RIΓ (v, ns
48 ) ≤ s

2 ) ≥ 1− n · exp(−s/4) holds.

Proof. For any integer t ≥ 0 and any agent v ∈ V , the probability that v
joins in Γ (t) is 2

n . Hence, RIΓ

(
v, ns

48

) ∼ B(ns
48 , 2

n ). Applying Chernoff bounds,
Pr(Y ≥ R) ≤ 2−R holds for any binomial random variable Y and any real
number R ≥ 6 · E[Y ] [12, (4.3)]. Since s

2 ≥ 6E[RIΓ (v, ns
48 )] and ln 2 ≥ 1

2 , we
obtain
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Pr
(

max
v∈V

RI Γ

(
v,

ns

48

)
≥ s

2

)
≤
∑
v∈V

Pr
(
RI Γ

(
v,

ns

48

)
≥ s

2

)
≤ n · 2−s/2 ≤ n · exp

(
−s ln 2

2

)
≤ n · exp

(
−s

4

)
.

��
Corollary 2. Pr((ΞPLE (C0, Γ ))pre(ns

48 ) ∈ LE ) ≥ 1−n · exp(−s/4) holds for any
configuration C0 in Shalf .

Proof. Recall that an execution of PLE staring from a configuration in Lone
keeps its unique leader until next timeout happens (Sect. 3.1). Since C0 ∈ Shalf ,
timeout happens by time ns

48 − 1 only when some agent joins in at least s
2 + 1

interactions between time 0 and time ns
48 − 1. Therefore, the corollary follows

from Lemma 6. ��
Theorem 1. Shalf is a set of Ω(ses/96)-loosely-safe configurations for LE and
PLE , i.e. (2) holds.

Proof. By the assumption s ≥ 96(2 lnn + ln 24), s ≥ 96 holds, and then,
exp(− s

4 )+ exp(− s
36 ) ≤ exp(− s

96 ) holds. Hence, exp(− s
4 )+ exp(− s

36 )+ exp(− s
96 )

≤ 2 exp(− s
96 ) follows. Therefore, (3) holds for any configuration C0 ∈ Shalf from

Corollaries 1 and 2. Hence, we have (2) by Lemma 3. ��
Next, we show (1) to complete our proof. We denote by L the set of all configu-
rations in which there exists at least one leader. The following inequality clearly
holds:

max
C∈Call

ECTPLE (C,Shalf)

≤ max
C∈Call

ECTPLE (C,L) + max
C∈L

ECTPLE (C,Lhalf) + max
C∈Lhalf

ECTPLE (C,Shalf).

(5)

Therefore, it suffices to show that each term in the right side of (5) belongs to
O(ns log n). We can show that the following three lemmas hold, though we omit
the proofs of Lemma 8 and Lemma 9 due to the lack of space.

Lemma 7. maxC∈Call ECTPLE (C,L) belongs to O(ns log n).

Proof. We define ν(C, i) (0 ≤ i ≤ s) as the number of agents with timer value
i in configuration C, i.e. ν(C, i) = |{v ∈ V | C(v).time = i}|. For any integer
i, j (0 ≤ i ≤ s, 1 ≤ j ≤ n) we denote by Wi,j the set of all configurations
in which there exists no leader, the maximum timer value of all agents is i,
and ν(C, i) = j holds.6 For any set of configurations X ∈ Call, we denote the
complement set Call \ X by X . Note that L =

⋃s
i=0
⋃n

j=1Wi,j .
Let wi,j be maxC∈Wi,j ECTPLE (C,Wi,j). By the definition of PLE , no interac-

tion increments the maximum timer value of all agents as long as there exists no
6 Note that W0,j = ∅ for any integer j (1 ≤ j < n)
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leader in the population. Therefore, once an execution of PLE reaches a configu-
rations inWi,j from a configuration inWi,j , the execution cannot reach any con-
figuration in Wi,j thereafter. Hence, the inequality maxC∈Call ECT PLE (C,L) ≤
w0,n +

∑s
i=1
∑n

j=1 wi,j holds.
Let i, j be integers such that 1 ≤ i ≤ s, 1 ≤ j ≤ n. When an interac-

tion involving an agent with timer value i happens, a configuration C in Wi,j

changes to a configuration in Wi,j . Hence, by one interaction, a configuration
in Wi,j changes to a configuration in Wi,j with the probability of at least
j(j−1)+2j(n−j)

n(n−1) = j(2n−j−1)
n(n−1) , from which wi,j ≤ n(n−1)

j(2n−j−1) follows. Since a−1
b−1 ≤ a

b

holds for any integer a, b (1 ≤ a ≤ b), we have

wi,j ≤ n(n− 1)
j(2n− j − 1)

≤ n2

j(2n− j)
= 1 +

(n− j)2

j(2n− j)
≤ 1 +

n− j

j
=

n

j
.

Clearly, w0,n is 1 with the probability 1. Therefore, we obtain

max
C∈Call

ECTPLE (C,L) ≤ w0,n +
s∑

i=1

n∑
j=1

wi,j ≤ 1 + ns ·H(n) ∈ O(ns log n) ,

where H is the harmonic function. ��
Lemma 8. maxC∈L ECTPLE (C,Lhalf) belongs to O(ns).

Lemma 9. maxC∈Lhalf ECTPLE (C,Shalf) belongs to O(ns).

Thus, we obtain (1) from Lemmas 7, 8, 9 and (5). The following theorem is
directly derived from Thorem 1 and (1).

Theorem 2. PLE is (O(ns log n), Ω(ses/96))-probabilistic loosely-stabilizing for
behavior LE and Shalf if s ≥ max(3n, 96(2 lnn + ln 24)) holds.

Recall that PLE knows an upper bound N of n. When we set s to be
max(96N, 96(2 lnN + ln 24)), PLE realize (O(nN log n), Ω(NeN ))-probabilistic
loose-stabilization for behavior LE and Shalf . That is, PLE realizes fast conver-
gence to a loosely-safe configuration (low polynomial order time) and extremely
long maintenance of its specification (exponential order time).

4 Conclusion

In this paper, we introduced a novel concept of loose-stabilization and presented
a probabilistic loosely-stabilizing leader election protocol in the PPP model of
complete networks. This protocol assumes that each device (agent) knows an
upper bound of the network size. Starting from an arbitrary configuration, the
protocol reaches a loosely-safe configuration within O(nN log n) expected steps,
and then, it keeps a unique leader for Ω(NeN ) expected steps, where n is the
actual network size and N is a known upper bound of n. This protocol has
practical significance from the following reason: the protocol can be practically
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considered to attain self-stabilization because of exponentially long time of keep-
ing a unique leader while the self-stabilizing leader election in the PPP model
of complete networks is impossible without the knowledge of the exact network
size [5].

Our future work is to apply the notion of loose-stabilization to other problems
that are known unsolvable or too costly in a self-stabilizing fashion.
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Abstract. We consider the convergence problem of autonomous mobile
robots with inaccurate sensors, which may return the erroneous location
of other robots. In this paper, we newly introduce a uniform error model,
which is a restricted variant of the original observation-error model pro-
posed by Cohen and Peleg [4]. The degree of an observation error is char-
acterized by distance errors and angle errors. While the original model
(non-uniform model) allows that two or more points can have different
error degrees, the uniform error model assumes that the same amount
of error degree is incurred to all observed points in a single observation.
The main focus of our study is to reveal how much such uniformity ex-
pands the feasibility of the convergence. In the non-uniform error model,
it has been shown that no algorithm can achieve the convergence if the
maximum error angle is more than or equal to π/3. This paper shows
that the convergence problem is solvable under the uniform error if the
maximum error angle is less than π/2. We also prove that there is no
convergence algorithm for the maximum error angle more than or equal
to π/2 even in the uniform error model, which implies the optimality of
our algorithm in the sense of angle errors.

Keywords: Convergence problem, Observation error, Uniform-error
model, smallest enclosing circle.

1 Introduction

1.1 Background

In recent years, cooperations among a large number of autonomous mobile robots
have received much attention. In particular, the algorithmic issues of autonomous
mobile robots are actively studied in the literature of the distributed computing.
In most of algorithmic studies about autonomous mobile robots, a robot is mod-
eled as a point in a plane, and its capability is quite limited: It is usually assumed
that robots are oblivious (no memory to record past situations) and anonymous
(no IDs to distinguish two robots). Furthermore, they have no explicit direct
means of communication. Typically, the communication between two robots is

S. Kutten and J. Žerovnik (Eds.): SIROCCO 2009, LNCS 5869, pp. 309–322, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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done in the implicit way that each robot observes the environment, which in-
cludes the position of other robots in terms of observer’s local coordinate system.
A theoretical interest of autonomous mobile robots is to reveal what kinds of
coordination tasks can be accomplished by exchanging only such positional or
geographic information.

Gathering and convergence problems are popular and fundamental coordina-
tion tasks for autonomous mobile robots. In short, given a set of robots with
arbitrary initial locations, gathering must make all robots meet in finite time at
a point that is not predefined. The convergence problem is a weaker variant of
the gathering problem. It requires the distance between any two robots converges
to zero (i.e., for every ε > 0, there exists a time tε after which any two robots
have a distance within ε). Both problems have been actively studied before,
and a number of possibility/impossibility results under different assumptions
are shown [10,6,9,7,8,5,2]. Especially, it is known that the difference of obser-
vation capability is strongly related to the solvability of those problems. The
gathering problem is first discussed in [10], which proves that it is impossible
to achieve gathering of two oblivious autonomous robots that have no common
sense of orientation under the semi-synchronous model. This result is expanded
to the general number of robots by Prencipe [8]. These impossibility results are
one of reasons to make us focus on the convergence problem. The convergence
problem is also considered in several papers [4,3,1]. Since, as we mentioned, the
convergence problem is weaker than the gathering, most of those studies assume
weaker models in the sense of observation capability. Recently, as such a weaker
model, Cohen and Peleg introduced the robot model where each robot suffers
observation errors. If a robot A observes another robot B, A may see B at the
position which is slightly different from the actual location of B. More precisely,
if B is located at (r cosφ, r sinφ) on A’s coordinate system, an observation by
A may return the coordinate (r(1 + ε) cos(φ + θ), r(1 + ε) sin(φ + θ)) as the
B’s location (namely, ε and θ represent the error ratio about distance and di-
rection respectively). For both of ε and θ, their absolute bounds ε0 and θ0 are
assumed. They show that if the maximum angle error θ0 can be greater than
π/3, it is impossible to achieve to convergence, and propose a convergence algo-
rithm for any maximum distance error ε0 and maximum angle error θ0 satisfying
0.2 >

√
2(1− ε0)(1 − cos θ0 + ε20).

1.2 Our Results

This paper also considers the convergence problem under a similar inaccurate
sensor model. The main focus of our study is the uniformity of observation errors:
In the original model, the error ratio can be different for each robot. For example,
if a robot A observes two other robots B and C, the returning coordinates of
B and C can include different amounts of errors. The uniformity of observation
error assumes that all coordinates returned by one observation include the same
amount of error (but two distinct observations can have the different error ratio
even if they are performed by a same robot.) Our interest is to answer the
question how the uniformity assumption enhances the capability of robots in
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Table 1. Summary and comparison of our results

Model Maximum distance Maximum angle Possibility of
error ε0 error θ0 convergence

Non-uniform error Any ε0 θ0 ≥ π/3 No
model ([4]) 0.2 >

√
2(1 − ε0)(1 − cos θ0 + ε20) Yes

Other Open
Uniform error 0 ≤ ε0 < 1 θ0 < π/2 Yes(Section 4)

model (This paper) ε0 ≥ 1 θ0 < π/2 Open
Any ε0 θ0 ≥ π/2 No(Section 3)

respect to task solvability. Interestingly, we can show that the assumption relaxes
the bound on the error ratio for which the convergence task can be solved. More
precisely, assuming uniform error ratio to inaccurate sensor models, we can solve
the convergence problem if the maximum distance error ratio is less than one,
and the maximum angle error is less than π/2. We present the summary of our
result, which includes the comparison to the previous paper, in Table 1.

1.3 Organization

The following is the organization of this paper. In Section 2 we define the robot
model and the uniform error model. In Section 3 we present the impossibility
result that robots cannot converge when maximum angle error is more than
or equal to π/2. In Section 4 we present a convergence algorithm for the uni-
form error model with the maximum distance error ratio less than one and the
maximum angle error less than π/2, and prove its correctness.

2 The Robot Model

The robot model of this paper is an extension from that proposed by Suzuki and
Yamashita [10] such that each robot suffers observation errors. The following is
a concise outline of our model.

– Each robot is a point without volume that moves freely in 2-D space.
– Robots are anonymous, that is, each robot cannot be distinguished from

others by ids, their physical appearances, and so on.
– Robots are oblivious. That is, they cannot remember the history of their

executions.
– We only consider uniform algorithms. That is, all robots execute the same

algorithm.
– Robots have no direct communication device. Each robot observes a config-

uration of all robots by its own local coordinate system.
– As the timing model, we adopt the semi-synchronous model. At each time

unit, a subset of all robots (determined by the scheduler) performs movement
synchronously.
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– An observation of a robot is inaccurate. An observation result may include
wrong locations of robots. An observation error is characterized by distance
errors and angle errors. We assume the maximum distance error ε0 the max-
imum angle error θ0. All robots know the value of ε0 and θ0 as information
about the accuracy of their observations. We also assume the uniformity of
observation errors, which implies all observed robots necessarily have the
same amount of distance/angle error in a single observation.

In the following subsections, we present the details of our model.

2.1 The System Model

The system consists of n robots S = {s0, s1, · · · , sn−1}. Each robot is modeled
as a point on the two-dimensional Euclidean plane, and works based on discrete
time 0, 1, 2 · · ·. Each robot has its own local coordinate system whose origin is the
current position of the robot. A location of all other robots in an observation result
is called local coordinates. In contrast, to define the positions of robots consistently,
we introduce the global coordinate system on the plane. The coordinate of each
robot on the global coordinate system is called global coordinate. Notice that the
global coordinate system is introduced only for ease of explanations, and thus each
robot cannot be aware of them. In what follows, any coordinate is represented by
two-dimensional vectors, which is described by bold-faced characters.

Each robot is either active or inactive at each time. An active robot first
observes the locations of all other robots, and computes a destination from the
observation result. Since each robot is oblivious and uniform, the destination is
computed only from the observation result by a common algorithm. In this sense,
an algorithm is formally defined as a deterministic function f that maps a set of
coordinates (i.e. the positions of all robots) to a coordinate (i,e, the destination).
After the computation, the robot moves toward the computed destination on the
local coordinate system. We assume that it is guaranteed that any movement
is necessarily completed within one time unit. That is, if a robot is active at t,
its location at t + 1 is the destination computed at t. The set of active robots
at each time is determined by the scheduler. Throughout this paper, we assume
fair scheduler. It ensures that at least one robot is activated in each time and
each robot is activated infinitely often.

Each robot observes the locations of all robots in terms of its local coordi-
nate system. There is no assumption about the direction and unit scale of local
coordinate systems. That is, each local coordinate system can have a different
direction and unit distance. In this paper, it is assumed that each robot suf-
fers observation error, which allows the locations of robots observed by another
robot to be different from their actual locations. The detail of observation-error
models is explained in the following subsection.

2.2 Observation Error

The observation error is characterized by maximum distance error ε0 and max-
imum angle error θ0. We explain the influence that these error factors give by
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Fig. 1. Observation error

showing an example: Consider a situation where a robot s1 observes s2. Let V
be the vector representing the location of a robot s2 in terms of s1’s coordination
system, and v be the vector representing the location of s2 in s1’s observation
result. (See Fig.1.) Then each error factor is explained as follows:

Distance error
Any observed distance is affected by at most ±ε0 fraction of the actual
distance. That is, the observation result satisfies |V|(1− ε0) < |v| < |V|(1+
ε0).

Angle error
Any observed angle has an additive error within ±θ0. That is, letting angle
formed by v and V be θ, cos θ ≥ cos θ0 is satisfied.

2.3 Uniformity of Observation Error

In this subsection, we define the non-uniform error model and the uniform error
model.

Non-uniform error model
If a robot observes other two or more robots, the observation result can
involve different distance/angle errors for each observed robot. An example
is shown in Fig.2.a. In this example, robot s0 observes all other robots, and
the observation error occurs differently for two robots s1 and s2 : Distance
error ratio ε1 and angle error θ1 is associated with robot s1 and ε2 and θ2
with robot s2.

Uniform error model
In a single observation, the same observation error is associated with all
observed robots (see Fig.2.b), but it is allowed that two different observations
have different observation errors.

Notice that even in the uniform-error model, it is possible that two observations
by one robot at different timings, and two observations by two robots at the
same timing, can have different observation errors.
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a. Non-uniform error
model b. Uniform error model

Fig. 2. An example of observations in two each error model

3 Impossibility Result

This section provides the impossibility of the convergence when θ0 ≥ π/2.

Theorem 1. For any number of robots, if θ0 ≥ π/2, no algorithm can achieve
the convergence.

Proof. Suppose for contradiction an algorithm A that achieves the convergence
for n robots (n ≥ 2) and θ0 ≥ π/2. We start the proof from the initial con-
figuration where all robots are evenly located on a circle. The y-axis of their
local coordinate systems are directed to the center of the circle. (See Fig.3). The
proof idea is that to find an execution where all robots move to the outside of
the circle and form an evenly-located circle again after the movement. Then, by
repeating the same execution, the diameter of the circle grows infinitely, which
implies the impossibility of convergence.

To construct the desired execution, we first consider the execution where only
one robot is activated with no-error observation. Let si be the activated robot.
If si moves to the outside of the circle, we obtain the desired execution by acti-
vating all robots simultaneously because, by symmetricity of the configuration,
all robots symmetrically move. This implies that they form an evenly-located
circle after the movement. On the other hand, If si moves to the inside of the
circle, we consider an execution where all robots are simultaneously activated
but equally suffer angle observation error π/2. Then, the observation result of
each robot is rotated by π/2, and thus the destination point is also rotated by
π/2. As a consequence, in this execution, all robots symmetrically move toward
the outside of the circle. ��
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Fig. 3. Initial configuration Fig. 4. Symmetric outside movement by
robots

4 Convergence Algorithm

4.1 Outline of Algorithm

In this section, we show that a set of robots executing Algorithm Conv-SEC
converge under the assumption of the uniform error model with θ0 < π/2 and
0 ≤ ε0 < 1. The pseudo-code of Algorithm Conv-SEC shown in the Figure 5.
The key idea of the algorithm make robots move toward the center of the smallest-
enclosing circle (SEC), which is the minimum-diameter circle containing all posi-
tions of robots. At each time, each active robot computes the center of SEC from
the observation result (note that for any set of points, its smallest enclosing circle
is uniquely determined and it can be computed in polynomial time). Then, if a
robot stays on the boundary of SEC, it moves toward the center of SEC with dis-
tance (d cos θ0/(1 + ε0)), where d is the observed distance between the robot and
the center. Notice that the computed center is not equal to the actual center: Be-
cause of the observation error, the robot does not move toward the actual center.
Then, long-distance movement, that is length d, may cause the robot to go out of
the actual SEC. (See Fig.6.) The movement with length d cos θ0/(1 + ε0) ensures
robots do not go out of the actual SEC. (See, Fig.7.)

Code for Robot si:
1: Observe the locations of all other robots
2: Compute the center of SEC from the observation result
3: if si is on the computed SEC then
4: move toward the center of SEC by distance d cos θ0/(1 + ε0)

(d is the distance between si and the computed center)
5: endif

Fig. 5. Algorithm Conv-SEC
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Fig. 6. The movement with length
d

Fig. 7. The movement with length
d cos θ0/(1 + ε0)

4.2 Correctness Proof

For two points p and q, let dis(p,q) be the distance between them in terms of
the global coordinate system. (i.e., dis(p,q) = |p − q|.) The global coordinate
of robot si at time t is denoted by si(t). The actual center of SEC at time t is
denoted by C(t). Letting t be a time when a robot si is active, ci(t) denotes the
global coordinate of the center of SEC computed by robot si at t. For simplicity,
we also introduce the following notations:

– di(t) = dis(ci(t), si(t))
– Di(t) = dis(C(t), si(t))
– D′

i(t) = dis(C(t), si(t + 1))

The displacement of the center of actual SEC during [t, t + 1] (in terms of the
global coordinate system) is denoted by Δ(t), i.e., Δ(t) = dis(C(t),C(t + 1)).
The radius of SEC at time t is denoted by R(t). (See, Fig.8.)

It should be noted that in the uniform error model, any observation result is
a homothetic transformation of the actual robot locations, whose magnification
is between (1 − ε0) and (1 + ε0). This implies that we can obtain the following
corollary.

Proposition 1. (1− ε0)Di(t) ≤ di(t) ≤ (1 + ε0)Di(t).

By the nature of the algorithm, it is clear that the diameter of SEC is non-
increasing. However, it is not so trivial to prove that the distance certainly
converges to zero. The difficulty of the proof is the movement of the center of
SEC, which prevents the monotonic decrease of the distance between the center
and each robot. This fact implies the necessity of a little more complicated
argument: The key idea of our proof is to show that any movement necessarily
decreases either the diameter of SEC, or the sum of the distances between the
center and robots.
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Fig. 8. Notations used in the proof

Lemma 1. There is a constant α (0 ≤ α < 1) that is independent of t and
satisfies D′

i(t) ≤ αDi(t) for any time t when a robot on the boundary of SEC is
activated.

Proof. Let θi be the angle error which si suffers at t. Since the distance traveled
by si is di(t)

1+ε0
cos θ0, by applying the law of cosines to the triangle C(t)si(t)si

(t + 1), we can obtain the following equation:

D′2
i (t) = D2

i (t) +
(

di(t)
1 + ε0

)2

cos2 θ0 − 2Di(t)
di(t)
1 + ε0

cos θ0 cos θi.

This equation can be transformed into the following inequality (the detail is
shown in Appendix 1):

D′
i(t) ≤ Di(t)

√
1 +

(3ε0 + 1) (ε0 − 1)
(1 + ε0)

2 cos2 θ0.

Since 0 ≤ ε0 < 1, the term of square root is less than one (see Appendix 2), and
thus the lemma holds. ��
Lemma 2. R(t + 1) ≤√R2(t) −Δ2(t), for all times t ≥ 0.

Proof. Lemma 1 implies that the destination of any movement is necessarily
inside of the actual SEC. Thus, the radius of SEC is non-increasing. In addition,
it is clear that the SEC at t (denoted by SECt) necessarily intersects that at
t + 1 (denoted by SECt+1). Thus, the following four cases are possible:

1. SECt and SECt+1 have exactly one intersecting point and SECt does not
contain SECt+1: All robots stay at their (unique) intersecting point, which
implies R(t + 1) = 0.
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2. SECt and SECt+1 are identical: We can obtain R(t + 1)=
√

R2(t) −Δ2(t)=
R(t) because Δ(t) = 0.

3. The boundaries of SECt and SECt+1 have two intersecting points: Let X1

and X2 be the two intersecting points, and Z be the intersecting point of the
lines X1X2 and C(t)C(t+1). Letting L be the line passing through C(t+1)
and orthogonal to C(t)C(t+1), we define Y1 and Y2 as two intersecting
points of L and the boundary of SECt+1. Notice that the segment Y1Y2 is
the diameter of SECt+1. We further divide this case into the following two
sub-cases:
(a) dis(Z,C(t)) < Δ(t). (Fig.9)

we show by contradiction that this case never occurs. Suppose
dis(Z,C(t)) < Δ(t) for contradiction. The circle C centered at Z and
having diameter dis(X1,X2) contains the intersecting area of SECt and
SECt+1, and thus it encloses all robot locations at t + 1. Since Y1Y2

is the diameter of SECt+1 and dis(Z,C(t)) < Δ(t) holds, the length
of X1X2 is smaller than R(t + 1). This contradicts to the fact that the
SECt+1 has the smallest diameter.

(b) dis(Z,C(t)) ≥ Δ(t). (Fig.10)
Let Y′

1 and Y′
2 be the two intersecting points of the line Y1Y2 and the

boundary of SECt. Then, R(t+1)=dis(Y1,C(t)) ≤ dis(Y′
1,C(t+1))=√

R2(t)−Δ2(t) holds.
4. SECt contains SECt+1: This proof is the completely same as that for the

case 3(b). (Fig.11)

From the above, the lemma holds for any cases. ��

Lemma 3. There exist two constants β and γ (0 < β, γ < 1, dependent on n
but not on t) such that either of the followings holds for any time t when a robot
si changes its position:

– R(t + 1) ≤ βR(t).
–
∑

i Di(t + 1) ≤ γ
∑

i Di(t).

Fig. 9. dis(Z, C(t)) < Δ(t) Fig. 10. dis(Z, C(t)) ≥ Δ(t)
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Fig. 11. The SEC at time t + 1 exists in the SEC at time t

Proof. Let S′(t) is the set of robots moving at time t. By the triangle inequality,
dis(P,C(t)) + Δ(t) ≥ dis(P,C(t + 1)) holds for any point P. Combining this
inequality with Lemma 1, we obtain αDi(t) + Δ(t) ≥ Di(t + 1). It follows the
inequality below: ∑

i

Di(t + 1)

≤
∑

i/∈S′(t)

(Di(t) + Δ(t)) +
∑

i∈S′(t)

(αDi(t) + Δ(t))

=
∑

i

Di(t) + nΔ(t)− (1− α)
∑

i∈S′(t)

Di(t).

Since only the robots on the boundary of SEC can move,
∑

i∈S′(t) Di(t) =
|S′(t)|R(t) holds for any t, and thus we have

∑
i Di(t + 1) ≤∑i Di(t)+nΔ(t)−

(1− α)|S′(t)|R(t). Then we consider the following two cases:

1. nΔ(t)− (1 − α)|S′(t)|R(t) > α−1
2n

∑
i Di(t).

In this case, we can obtain inequality Δ(t) >
2(1−α)|S′(t)|R(t)+ (α−1)

n

∑
i Di(t)

2n .
Moreover,

∑
i Di(t) ≤ nR(t) clearly holds. Thus, we have

Δ(t) > (1 − α)
2|S′(t)|R(t) −R(t)

2n

= (1 − α)R(t)
2|S′(t)| − 1

2n
.

From Lemma 2, we obtain

R(t + 1) <

√
R2(t)−

(
(1− α)R(t)

2|S′(t)| − 1
2n

)2

= R(t)

√
1−
(

(2|S′(t)| − 1)(1− α)
2n

)2

.

Since 1 ≤ |S′(t)| ≤ n, R(t + 1) < R(t)
√

1− ( 1−α
2n

)2 holds. The term of the
square root is smaller than one because 0 ≤ α < 1. Thus, the lemma holds.
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2. nΔ(t)− (1 − α)|S′(t)|R(t) ≤ α−1
2n

∑
i Di(t).

Then, we can obtain∑
i

Di(t + 1) ≤
∑

i

Di(t) +
α− 1
2n

∑
i

Di(t) =
2n− 1 + α

2n

∑
i

Di(t).

This implies γ = (2n− (1− α))/2n, and thus the lemma holds. ��

Theorem 2. In the uniform error model satisfying θ0 < π/2 and 0 ≤ ε0 < 1,
algorithm Conv-SEC can converge all robots into a point.

Proof. From Lemma 3, when a robot changes its position, either the radius of
SEC or the sum of the distances between the center of SEC and all robots is
decreased by a constant fraction (not depending on t). It implies that at least one
of them converges to zero during infinite executions. Thus, the distance between
any two robots converges to zero. ��

5 Conclusion

In this paper, we newly introduced the notion of uniformity in observation er-
ror of autonomous mobile robots, and investigated the impact of uniformity to
the solvability of the convergence problem. We showed that in the uniform er-
ror model with the maximum angle error ε0 ≥ π/2, no algorithm can achieve
the converge. In addition, assuming the semi-synchronous model and uniform
observation error with 0 ≤ ε0 < 1 and θ0 < π/2, we proposed a convergence
algorithm correctly working for any number of robots. This algorithm is optimal
in the sense of its allowable error angle.
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Appendix 1

The omitted expression transformation in Lemma 1.

D′2
i (t)

= D2
i (t) +

(
di(t)
1 + ε0

)2

cos2 θ0 − 2Di(t)
di(t)
1 + ε0

cos θ0 cos θi

≤ D2
i (t) +

(
di(t)
1 + ε0

)2

cos2 θ0 − 2Di(t)
di(t)
1 + ε0

cos2 θ0

= D2
i (t) +

((
di(t)
1 + ε0

)2

− 2Di(t)
(

di(t)
1 + ε0

))
cos2 θ0

= D2
i (t) +

((
di(t)
1 + ε0

)
−Di(t)

)2

cos2 θ0 −D2
i (t) cos2 θ0

≤ D2
i (t) +

(
1− ε0
1 + ε0

Di(t)−Di(t)
)2

cos2 θ0 −D2
i (t) cos2 θ0

= D2
i (t)

(
1 +
(

1− ε0
1 + ε0

− 1
)2

cos2 θ0 − cos2 θ0

)

= D2
i (t)

(
1 +

3ε20 − 2ε0 − 1

(1 + ε0)
2 cos2 θ0

)

= D2
i (t)

(
1 +

(3ε0 + 1) (ε0 − 1)
(1 + ε0)

2 cos2 θ0

)
. ��
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Appendix 2

The omitted proof for 0 ≤ 1 + (3ε0+1)(ε0−1)
(1+ε0)2

cos2 θ0 < 1.

The differential of the term (3ε0+1)(ε0−1)
(1+ε0)2

with respect to ε0 is as follows:

(6ε0 − 2) (1 + ε0)
2 − (3ε20 − 2ε0 − 1

)
2 (ε0 + 1)

(1 + ε0)
4 =

8ε0

(1 + ε0)
3

The term 8ε0
(1+ε0)3 is nonnegative for 0 ≤ ε0 < 1. It shows that (3ε0+1)(ε0−1)

(1+ε0)2
is

nondecreasing. Hence, its minimum value is −1 for ε0 = 0 and the minimum is
zero for ε0 = 1. Since 0 < cos2 θ0 ≤ 1 holds for θ0 < π/2, we consequently have
0 ≤ 1 + (3ε0+1)(ε0−1)

(1+ε0)2
cos2 θ0 < 1. ��
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Abstract. We present a randomized distributed maximal independent
set (MIS) algorithm for arbitrary graphs of size n that halts in time
O(log n) with probability 1 − o(n−1), each message containing 1 bit:
thus its bit complexity per channel is O(log n) (the bit complexity is
the number of bits we need to solve a distributed task, it measures the
communication complexity). We assume that the graph is anonymous:
unique identities are not available to distinguish the processes; we only
assume that each vertex distinguishes between its neighbours by locally
known channel names. Furthermore we do not assume that the size (or
an upper bound on the size) of the graph is known. This algorithm is
optimal (modulo a multiplicative constant) for the bit complexity and
improves the best previous randomized distributed MIS algorithms (de-
duced from the randomized PRAM algorithm due to Luby [Lub86]) for
general graphs which is O(log2 n) per channel (it halts in time O(log n)
and the size of each message is log n). This result is based on a powerful
and general technique for converting unrealistic exchanges of messages
containing real numbers drawn at random on each vertex of a network
into exchanges of bits. Then we consider a natural question: what is the
impact of a vertex inclusion in the MIS on distant vertices? We prove that
this impact vanishes rapidly as the distance grows for bounded-degree
vertices. We provide a counter-example that shows this result does not
hold in general. We prove also that these results remain valid for Luby’s
algorithm presented by Lynch [Lyn96] and by Wattenhofer [Wat07]. This
question remains open for the variant given by Peleg [Pel00].

1 Introduction

1.1 The Problem

Let G = (V, E) be a simple connected undirected graph. An independent set of
G is a subset I of V such that no two members of I are adjacent. An independent
set I is maximal if any vertex of G is in I or adjacent to a vertex of I.
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In this paper we discuss how greedy selection for the computation of a max-
imal independent set (MIS) in a network of processors can be accomplished by
exchange of messages between adjacent processors. The distributed complexity
(time and bit) of computing an MIS is of fundamental interest for the study and
the analysis of distributed computing. The computation of an MIS is a building
block for many distributed algorithms: topology control, routing, coloring. Thus
an MIS provides an initial clustering which can be used as an initial structure.
Furthermore an MIS induces a set of processors which can operate in parallel.
A presentation and results concerning the MIS problem can be found in [Lyn96]
(Chapter 4, p. 71-76) and in [Pel00] (Chapter 8).

1.2 The Model

The Network. We consider the standard message passing model for distributed
computing. The communication model consists of a point-to-point communica-
tion network described by a simple connected undirected graph G = (V, E)
where the vertices V represent network processors and the edges represent bidi-
rectional communication channels. Processes communicate by message passing:
a process sends a message to another by depositing the message in the corre-
sponding channel. We assume the system synchronous and synchronous wake-up
of processors: processors have access to a global clock and all processors start
the algorithm at the same time.

Time Complexity. A round (cycle) of each processor is composed of the fol-
lowing three steps: 1. Send messages to (some of) the neighbours, 2. Receive
messages from (some of) the neighbours, 3. Perform some local computation. As
usual (see for example Peleg [Pel00]) the time complexity is the maximum pos-
sible number of rounds needed until every node has completed its computation.

Bit Complexity. As is explained by Santoro in [San07] (Chapter 6) (see also
[Gho06], Chapter 3) the cost of a synchronous distributed algorithm is both
time and bits. By definition, the bit complexity of a distributed algorithm (per
channel) is the total number of bits exchanged (per channel) during its execution.
Thus it is considered as a finer measure of communication complexity and it has
been studied for breaking and achieving symmetry or for coloring in [BMW94,
KOSS06, DMR08]. Dinitz et al. explain in [DMR08] that it may be viewed as a
natural extension of communication complexity (introduced by Yao [Yao79]) to
the analysis of tasks in a distributed setting. An introduction to this area can
be found in Kushilevitz and Nisan [KN99].

Network and Processes Knowledge. The network is anonymous: unique
identities are not available to distinguish the processes. We do not assume any
global knowledge of the network, not even its size or an upper bound on its
size. The processors do not require any position or distance information. Each
processor knows from which channel it receives a message. An important fact (see
[Pel00] P. 93) due to the initial symmetry is: there is no deterministic distributed
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algorithm for arbitrary anonymous graphs for computing an MIS assuming all
vertices wake up simultaneously.

1.3 Our Contribution

As for a number of randomized algorithms for MIS, our algorithms work in the
following way. They operate in synchronous rounds grouped into phases. At the
end of each phase, some vertices join the MIS and some others know they will
never be in the MIS: these two sets of vertices erase themselves from the graph.

One of the main contributions of this paper is the development of a powerful
and general technique for converting unrealistic exchanges of messages containing
real numbers drawn at random on each vertex inqto efficient exchanges of bits,
drawn at random on each vertex, and we apply this technique to the computation
of an MIS.

First we consider in Section 2 the model of exchange of messages containing
real numbers and we deduce a very simple randomized algorithm (Algorithm A)
for the computation of an MIS. We derive logarithmic bounds on the number
of exchanges required; one such bound on the average and another which holds
with probability 1− o(n−1); we deduce that Algorithm A computes an MIS for
arbitrary graphs of size n in time O(log n) with probability 1− o(n−1).

Then we discuss in Section 3 how, in the model of exchange of single bit
messages, the real number exchanges can be simulated in finite time (Algorithm
B) and we show logarithmic bounds on the number of bits used to complete
all the real exchanges and finally Algorithm B computes an MIS for arbitrary
graphs of size n in time O(log2 n) with probability 1− o(n−1).

In Section 4 we show how the simulated real number exchanges can be over-
lapped (Algorithm C), in this way we prove Theorem 3:

There exists a randomized distributed MIS algorithm for arbitrary graphs of
size n that halts in time O(log n) with probability 1 − o(n−1), each message
containing 1 bit.

We conclude that the bit complexity per channel of algorithm C is O(log n).
Algorithm C is optimal for the bit complexity as a direct consequence of two

results. First, Kothapalli et al. show in [KOSS06] that if only one bit can be sent
along each edge in a round, then every distributed vertex colouring algorithm
(in which every node has the same initial state and initially only knows its own
edges) needs at least Ω(log n) rounds with high probability1 (w.h.p. for short) to
colour the cycle of size n with any finite number of colours. Second, Wattenhofer
in [Wat07] (p.36) shows that a colouring algorithm can be obtained from an
MIS algorithm. The colouring algorithm ([Wat07] Algorithm 18) has the same
(time and bit) complexity as the MIS algorithm, up to a multiplicative constant,
for any family of graphs of bounded degree and in particular for the family of
rings.

A fundamental question about distributed computation is: What can (or can-
not) be computed locally? (see [NS95, KMW04]). In the context of randomized

1 With high probability means with probability 1 − o(n−1).
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distributed algorithms, we may consider a linked natural question: what is the
impact of a vertex inclusion in the MIS on distant vertices?

We prove in Section 5 that this impact vanishes rapidly as the distance grows
for bounded-degree vertices. We provide a counter-example that shows this re-
sult does not hold in general. We prove also that these results remain valid for
Luby’s algorithms presented by Lynch [Lyn96] and by Wattenhofer [Wat07] and
described in the next subsection. This question remains open for the variant
given by Peleg [Pel00].

Remark 1. Proofs are omitted due to lack of space.

1.4 Related Works: Comparisons and Comments

The computation of an MIS has been the object of extensive research on par-
allel and distributed complexity [ABI86, Lub86, AGLP89, Lin92]; Karp and
Widgerson [KW84] have proved that the MIS problem is in NC. Some links with
distributed graph coloring and some recent results on this problem can be found
in [KW06]. The complexity of some special classes of graphs such as growth-
bounded graphs is studied in [KMNW05]. Results have been obtained also for
radio networks [MW05].

A major contribution is due to Luby [Lub86]: he presented a randomized
PRAM algorithm which requires a linear number of processors and runs in
O(log2 n). He assumes that the number of vertices is known. The main idea
is to obtain for each vertex a local total order or a local election which breaks
the local symmetry and then each vertex can decide locally whether it joins the
MIS or not.

In the context of distributed computation, a first application of this idea
corresponds to algorithm A of this paper and to the presentation of Luby’s
algorithm (called LubyMIS) given by Lynch [Lyn96] (Chapter 4, p. 71-76). In this
presentation, the knowledge of the size n of the network is used to enable each
vertex to make a random choice of an integer from {0, . . . , n4} using the uniform
distribution. The analysis of this presentation may be summarised by (Theorem
4.9, p. 76): With probability one, LubyMIS eventually terminates. Moreover, the
expected number of rounds until termination is O(log n). Each message contains
O(log n) bits thus the bit complexity per channel is O(log2 n).

A variant of Luby’s algorithm is presented in [Pel00] (Chapter 8) which allows
a simpler analysis. The local election is done in the following way: at each phase,
each vertex v computes the maximal vertex degree of its 2-neighbourhood D(v)
(vertices at distance 1 or 2) and then draws uniformly at random a bit with
probability depending on D(v). If v draws 1 and every neighbour draws 0 then v
joins the MIS. Peleg shows that this algorithm halts in time O(log2 n) with prob-
ability 1−o(n−1). It needs messages containing log n bits thus the bit complexity
per channel is O(log3 n).

Wattenhofer [Wat07] presents and analyses another distributed implementa-
tion of Luby’s algorithm. Each vertex needs at each phase the knowledge of the
degrees of its neighbours, and marks itself with probability 1/(2d(v)), where d(v)
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is the current degree of v. If no higher degree neighbour of v is also marked then
v joins the MIS. If a higher degree neighbour of v is marked v unmarks itself. If
the neighbours have the same degree ties are broken arbitrarily. This algorithm
terminates in expected O(log n) time and the size of messages is log n : its bit
complexity per channel is O(log2 n).

Alon et al. [ABI86] presents a parallel randomized algorithm to find an MIS,
its expected time on a PRAM is O(log n). As for the previous one, each vertex
needs at each phase the degrees of its neighbours: its bit complexity is O(log2 n).

As is explained in [San07] (p. 18), the knowledge of vertices in distributed
computing is fundamental. For example, there exists a deterministic election
algorithm for an anonymous network minimal for the covering relation if the
size or a bound on the size is known and no such algorithm exists if the size
(or a bound) is not known. In the same way, it is shown that it is possible
to break the symmetry in anonymous networks but that it is not possible to
detect termination unless the network size is known. About the computation of
the network size one can cite the following impossibility result for anonymous
networks. There exists no process-terminating algorithm for computing the size
that is correct with probability r > 0. ([Tel00], Chapter 9).

The table below summarises the comparison between the various MIS algo-
rithms and Algorithm C of this paper.

Knowledge Time Message size
(number of bits)

Bit complexity
(per channel)

Luby (Lynch) Size of the graph O(log n) log n O(log2 n)
Luby (Peleg) Maximum de-

gree in 2-
Neighbourhood

O(log2 n) log n O(log3 n)

Luby (Watten-
hofer)

Maximum of
neighbours degrees

O(log n) log n O(log2 n)

Alon, Babai
and Itai

Maximum of
neighbours degrees

O(log n) log n O(log2 n)

Algorithm C no knowledge O(log n) 1 O(log n)

Notation. In this paper, as usual, Pr(e) denotes the probability of the event e
and E(X) the expected value of the random variable (r.v.) X.

2 Exchange of Real Numbers

The first distributed algorithm, denoted A, is very simple. It is composed of
phases. At each phase each processor u still in the graph generates a random
variable x(u) and a processor is included in the independent set if its x is a local
minimum, i.e., x(u) < x(v) for each neighbour v of u. (Algorithm 1 describes
a phase of Algorithm A) It is convenient to take the random variables to be
uniformly distributed on [0, 1).
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When all local minima have been included in the independent set, each sur-
viving processor (not included in the MIS and not definitely excluded from the
MIS) generates a new random variable and again local minima are included in
the independent set. The algorithm halts when there is no surviving processor.

The outcome of an MIS computation is defined on each vertex u by a special
variable η(u). A vertex u joining the MIS sets η(u) to 1 and a vertex u not
joining the MIS sets η(u) to 0; initially η(u) = −1.

For each vertex v of the graph: Not-In-MIS-set(v) and In-MIS-set(v) are
sets of vertices, initially Not-In-MIS-set(v) = ∅, In-MIS-set(v) = ∅.

Draw uniformly at random a real x(u);
Send x(u) to all neighbours w;
Receive x(w) from all neighbours w;

4: if (x(u) < x(w) for each neigbour of u) then
Set η(u) = 1;
Send In-MIS to each neighbour;

end if
8: Receive a message mess(w) from all neighbours w;

Put w in In-MIS-set(u) for each neighbour w such that (mess(w)=In-MIS);
if mess(w) = In-MIS for at least one neighbour w then

Set η(u) = 0;
12: Send Not-In-MIS to all neighbours;

end if
Receive a message mess(w) from all neighbours w;
Put w in Not-In-MIS-set(u) for each neighbour w such that
(mess(w) = Not-In-MIS);

16: Erase from neighbours of u in the graph each vertex w in In-MIS-set(u) or in
Not-In-MIS-set(u);

Algorithm 1. A phase of Algorithm A

We have the following lemma:

Lemma 1. In any phase, the expected number of edges removed from the re-
maining graph G is at least half the number of edges in G.

Proof. We say that a vertex u preemptively removes a neighbour v if x(u) is less
than x(v) and x(w) for all other neighbours w of u and v. If this is the case,
then u will be included in the independent set and so v and all edges (v, w)
incident on v will be removed from the graph. We say that the edges (v, w) are
preemptively removed. If the degrees are d(u) and d(v), the probability that u
preemptively removes v is at least 1/(d(u)+d(v)). The average number of edges
preemptively removed is thus at least (

∑
(u,v)∈E( d(v)

d(u)+d(v) + d(u)
d(u)+d(v)))/2 since

d(v) are removed if u removes v and d(u) are removed if v removes u and an
edge (v, w) can only be preemptively removed twice, once by the removal of v
and once by that of w. The sum is (

∑
(u,v)∈E 1)/2, that is half the number of

edges.
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Remark 2. We introduce the notion of “to be preemptively removed” for the
proof of this lemma and thanks to this analysis, a vertex does not need in the
sequel of this paper to know the maximal vertex degree of its 2-neighbourhood.

We then obtain :

Corollary 1. There are constants k1 and K1 such that for any graph G = (V, E)
of n vertices the number of phases to remove all edges from G is less than k1 log n
on average, and less than K1 log n with probability 1− o(n−1).

These results are summarised by:

Theorem 1. Algorithm A computes an MIS for arbitrary graphs of size n in
time O(log n) with probability 1− o(n−1).

3 Exchange of Bits in Phases

The main idea. In this section we present and analyse an algorithm which sim-
ulates exchanges of real numbers by exchanges of bits which define real numbers,
most significant first.

3.1 Description of the Algorithm

We consider a more realistic algorithm, denoted B, in which processors exchange
messages of finite size; in fact we consider only messages of a fixed finite set of
types: one bit 0 or 1 of Data, In-MIS,Not-In-MIS, and Ineligible (when a vertex
v sends this message it means that until the end of the current phase v cannot
be in the MIS).

At the start of a phase, a processor knows which neighbours are still in
the graph and initialises a set of active neighbours to all of these. The status of a
vertex may be Eligible: the vertex may be included in the independent set during
this phase, or Ineligible: the vertex cannot be included in the independent set
during this phase. All processors still in the graph are initially Eligible.

One phase of exchange of real numbers is replaced by a phase com-
posed of a sequence of rounds. Each round is composed of send, receive and
internal actions. A message is one of these types. The Data messages send the
bits of a real number, most significant first. The other messages permit a proces-
sor to stop sending Data when the real numbers are known accurately enough
for further bits to be irrelevant to whether any processor has a local minimum
(the exact simulation of the order induced by real numbers implies that dur-
ing the course of a phase, two neighbours exchange bits as long as they have
not determined whether one of them is or is not a local minimum even if other
information implies that one of them is no longer eligible).

In each round each processor u generates one random bit and sends it to each
active neighbour v and then does the following:
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– If its bit was 0 and it received 1 from each active neighbour, it is a local
minimum. It sets η(u) to 1 and it sends In-MIS to all neighbours and takes
no further part in this or later phases.

– If its bit was different from that received from v, it removes v from its list
of active neighbours for this phase (the symmetry is broken; now the order
relation between the two vertices is known thus they do not need to exchange
more bits).

– If its bit was 1 and it received 0 from a neighbour, it is not a local minimum.
Its status, for this phase, becomes Ineligible and it sends Ineligible to every
active neighbour and removes from its active list all ineligible neighbours.

– If it receives In-MIS from any neighbour, it sets η(u) to 0 and it sends Not-
In-MIS to all other neighbours. It takes no part in subsequent phases but
continues to generate and send bits as long as it has active neighbours.

– If it receives Not-In-MIS from a neighbour v, it notes that v is not eligible
and will be removed from the graph after this phase. If it is itself ineligible,
it removes v from its active list.

– If it receives Ineligible from a neighbour v, it notes that v is not eligible in
this phase and, if it is itself ineligible, removes v from its active list.

– If it is ineligible and has no eligible active neighbours it is the end of the
current phase. It takes no part in this phase and is ready to start another
phase if η(u) = −1.

Initially, for each vertex v of the graph: η(v) = −1; and active-set(v), Not-In-
MIS-set(v) and In-MIS-set(v) are sets of vertices. At the beginning of each
phase, for each vertex v such that η(v) = −1 : status(v) = Eligible, active-set(v)
contains the set of neighbours w of v satisfying η(w) = −1, and Not-In-MIS-
set(v) = ∅, In-MIS-set(v) = ∅ and Ineligible-set(v) = ∅.

It follows from this:

Remark 3. After an exchange of bits and all consequent other messages, u and
v consider each other as active neighbours if and only if they have generated
exactly the same sequence of bits so far in this phase and one of them is still
eligible.

This is precisely the condition that they still need to exchange more bits to
decide whether one of them is a local minimum.

3.2 Analysis of the Algorithm

Lemma 2. In any round of exchange of bits, any processor u has probability at
least 1/4 of entering one of the following states (if it has not already done so):
In-MIS, Not-In-MIS and End-of -phase.

Then:

Corollary 2. There exist constants k2 and K2 such that the maximum number
of Data bits generated by any processor u in all phases is less than k2 log n on
average and less than K2 log n with probability 1− o(n−2).
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while (η(v) �= 1 and η(v) �= 0 and active-set(v) is not empty) do
Draw uniformly at random a bit b(v);
Send b(v) to all active neighbours w;

4: Receive b(w) from all active neighbours w;
if b(v) = 0 then

if all active neighbours w have drawn b(w) = 1 then
Set η(v) = 1;

8: Send In-MIS to each neighbour;
end if

else
if there is at least one active neighbour w which has drawn b(w) = 0 then

12: Set status(v) = Ineligible;
Send Ineligible to each active neighbour;

end if
end if

16: Receive a message mess(w) from all active neighbours w;
Put w in Ineligible-set(v) for each neighbour w such that
(mess(w) = Ineligible);
Put w in In-MIS-set(v) for each neighbour w such that
(mess(w) = In-MIS);
if mess(w) = In-MIS for at least one neighbour w then

20: Set η(v) = 0;
Send Not-In-MIS to all neighbours;

end if
Receive a message mess(w) from all active neighbours w;

24: Put w in Not-In-MIS-set(v) for each neighbour w such that
(mess(w) = Not-In-MIS);
if status(v) = Ineligible then

Remove w from active-set(v) for each neighbour w in Not-In-MIS-set(v)
or in In-MIS-set(v) or in Ineligible-set(v) and for each neighbour w such
that b(v) �= b(w);

end if
28: end while

Erase from neighbours of v in the graph each vertex w in In-MIS-set(v) or in
Not-In-MIS-set(v);

Algorithm 2. A phase of Algorithm B

Yielding:

Corollary 3. There exists k3 such that the maximum number of Data bits gen-
erated by any processor is less than k3 log n on average and with probability
1− o(n−1).

These results are summarised by:

Theorem 2. Algorithm B computes an MIS for arbitrary graphs of size n in
time O(log2n) with probability 1− o(n−1).
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4 Exchange of Bits with Desynchronised Phases between
Adjacent Edges

We present a method of simulating Algorithm B by means of 1-bit messages
sent along edges between neighbouring vertices, obtaining a new algorithm: Al-
gorithm C. The maximum number of messages sent and received by any vertex
will be O(log n) on average and with high (1− o(n−1)) probability.

The main idea. Algorithm B simulates exchange of real numbers by exchange
of bits. The exchange of bits is centralised on the vertex: the vertex exchanges
bits (corresponding to a real number) with neighbours until the symmetry is
broken: at each round a vertex sends the same bit to all its neighbours. In this
section, the main idea is, for each vertex u, a desynchronisation between edges
incident on u: the vertex u exchanges bits with a given neighbour v until the
symmetry is broken between u and v. If, in a round, u breaks the symmetry with
v1 and does not break the symmetry with v2 then u considers that a phase with
v1 is completed and starts, in anticipation, a new phase with v1 and it continues
the previous phase with v2. When a bit is drawn by anticipation, it is memorized
to be used later by another edge when it accomplishes the same round in the
same phase. Thus, in the same round, the vertex u may send the bit b1 to the
vertex v1 corresponding to the phase t1 and the bit b2 to v2 corresponding to
the phase t2 with t1 �= t2.

Remark 4. The fundamental fact is that each round has probability 1/2 of break-
ing the symmetry over an edge.

General description of the algorithm on each vertex. Each vertex runs
two processes in interleaved fashion, alternating one round of process calc win
and one round of calc mis. The process calc win computes for each pair of
neighbouring vertices and for each phase, which of the two has the smaller value
in the phase. The process calc mis uses this information to find the MIS com-
puted by the algorithm and eventually to halt the first process.

From time to time a vertex running calc mis will decide that it is to be
removed from the graph and signal this fact to its neighbours. Any reference to
the neighbours of a vertex is to be understood to mean those neighbours from
whom no such signal has yet been received.

With the same notation defined previously, initially, for each vertex u of the
graph: η(u) = −1; and active-set(v), Not-In-MIS-set(v) and In-MIS-set(v)
are sets of vertices. The variable active-set(u) contains the set of neighbours v
of u satisfying η(v) = −1.

while (η(u) �= 1 and η(u) �= 0 and active-set(u) is not empty) do
1 round of calc win;
1 round of calc mis

4: end while
Algorithm 3. Algorithm C
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4.1 Variables of Algorithm C
For each process u, the following variables are available:

– for each neighbour v of u, phaseu(v) is a non negative integer, it is the
number of the current phase between u and v; initially phaseu(v) is equal
to 1; by symmetry we have: phaseu(v) = phasev(u);

– for each neighbour v of u, bitu(v) is a non negative integer which denotes the
number of the bit which will be sent by u to v in the current phase; initially,
bitu(v) is equal to 1;

– Xu is a two dimensional array (notionally infinite), for each neighbour v of
u and for an integer j Xu[phaseu(v), j] is a bit;

– for each neighbour v of u and for each number t of a phase winu(v)(t) is a
boolean which will be true if in phase t the symmetry is broken for the edge
between u and v and u has the smaller value.

Let u be a vertex and let v be a neighbour of u; let t be the number of a phase;
we denote by xu(v, t) the word defined by the bits sent by u to v since the
beginning of the phase t. The length of the phase t is denoted by �(t), it is equal
to Max{|x(v, t)| | v is a neighbour of u}, where |x(v, t)| is the length of the word
x(v, t), initially, �(t) = 0.

Let u be a vertex, the phase t is active if there exists an active neighbour v
of u such that t = phaseu(v) and xu(v, t) = xv(u, t).

4.2 Computing the win Bits: Process calc win

At the beginning of a round of calc win, the process u draws uniformly at ran-
dom a new bit b(t) for each active phase t on u, and puts it in X, i.e., X [t, l(t)+
1] := b(t). For each neighbour v, u will find b(v) = X [phaseu(v), bitu(v)], send
b(v) to v and receive the bit b(u) from v. If b(v) = b(u) then it is necessary to
look at succeeding bits to distinguish xu(v, phaseu(v)) and xv(u, phasev(u)) of
phase phaseu(v) = phasev(u) thus u does bitu(v) := bitu(v) + 1. Else the result
is recorded and the next phase can be considered; thus u does:
(1) winu(v)(phaseu(v)) := (b(v) = 0); (2) phaseu(v) := phaseu(v) + 1; and (3)
bitu(v) := 1.

4.3 Computing the MIS: Process calc mis

For a vertex u, the computations for a phase t in which u is active take place in
three stages. Initially u knows which neighbours v are active in the phase and it
waits until it knows all its winu(v)(t) variables for them. Then it knows whether
it is included in the MIS in the phase and sends an appropriate 1-bit in message
to each v. In the second stage it waits until it has received an in message from
each v. Then it knows whether it is excluded from the graph in the phase and
sends an appropriate 1-bit out message to each v. In the final stage it waits until
it has received an out message from each v. Then it knows which neighbours are
active at the start of phase t+1. It updates η(u) and its set of active neighbours
and it is ready to start phase t + 1 if it is still active.
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4.4 Analysis of Algorithm C
Remark 5. We know that on average and with high probability, T the number of
phases is at most k1 log n. We conclude that after a number O(log n) of rounds
all values winu(v)(t) of all vertices with t ≤ T have been computed since each
round has probability 1/2 of success on each edge (u, v). (Taking K log n rounds
with K sufficiently large will give probability o(n−3) of not having reached T for
each edge (u, v) so that the probability that it happens for some edge is o(n−1)).

Now we give the main result of this section:

Theorem 3. The randomized distributed MIS Algorithm C for arbitrary graphs
of size n halts in time O(log n) with probability 1 − o(n−1), each message con-
taining 1 bit.

Finally:

Corollary 4. The bit complexity per channel of Algorithm C is O(log n).

5 Asymptotic Independence of Choices in MIS for
Distant Vertices

5.1 Algorithm C
Clearly the choice of a vertex inhibits that of the neighbouring ones and favours
those at distance 2. A natural question would be: what is the impact of a vertex
inclusion in the MIS on distant vertices? It is tempting to conjecture that the
correlation vanishes rapidly as the distance grows. In the sequel we state this
assertion for bounded-degree vertices. A counter-example is provided in a full
version of the paper and shows that it does not hold in general.

Proposition 1. Let u and v be two vertices at distance l in G. We suppose that
they have finite fixed degrees. Let Pr(v|u) denote the probability that v is chosen
conditioned by u having been chosen and Pr(v) the probability of the same event
without conditioning. Then, as l → ∞, Pr(v|u) = Pr(v) + O(δl), for some δ,
with |δ| < 1.

Remark 6. It is easy to see that Proposition 1 holds under the weaker assumption
that the degrees remain negligible with respect to the distance. However, the
following example shows that the asymptotic independence of distant vertices
does not hold in general.

Example 1. Consider the following graph G with two vertices u and v at distance
l = 4l′ + 1: the vertices are {ui,j, vi,j |i = 0, · · · , 2l′, j = 1, · · · , l3i} (u is u0,1
and v is v0,1); the edges are (ui,j , ui,k), (vi,j , vi,k), (ui,j , ui+1,k), (vi,j , vi+1,k) and
(u2l′,j, v2l′,k) for every i, j, k for which these vertices exist.

We call the normal history of the algorithm on G that in which:



An Optimal Bit Complexity Randomized Distributed MIS Algorithm 335

– in phase 1, only one vertex is chosen, namely a u2l′,j or v2l′,j; (we consider
the case that it is a u2l′,j). This eliminates from the graph all vertices u2l′,k,
v2l′,k and u2l′−1,k (and no others).

– in phase i, (1 < i < l′), two vertices are chosen, one u2(l′−i),j and one
v2(l′−i)+1,k. This eliminates from the graph all vertices u2(l′−i),m, u2(l′−i)−1,m,
v2(l′−i)+1,m and v2(l′−i),m (and no others).

– in phase l′, u and one vertex v1,j are chosen eliminating all other vertices.

In the first phase, it is impossible that both a u2l′,j and a v2l′,k are chosen because
they are all neighbours. The possibility of any vertex ui,j or vi,j being chosen
in any phase other than according to the normal history is less than l−3(i+1)

provided the normal history has been followed in previous phases because all its
neighbours in level i+1 are still present. Summing over all i and j and all phases
we find that the probability of any behaviour other than the normal history is
O(l−1). If the normal history is followed, either u or v but not both is chosen and
by symmetry, each has the same probability. Thus Pr(v) = Pr(u) = 1/2+O(l−1)
but Pr(u and v) = O(l−1).

The authors do not know at present any weaker condition under which the
asymptotic independence of choices holds for distant vertices.

Remark 7. It is also possible to extend Proposition 1 for sets of independent
vertices. Let U1 and U2 be two non empty sets of paiwise independent vertices
of finite degrees. Let l denote the smallest distance between a member of U1
and a member of U2. Let us denote by Pr(U1) the probability that all members
of U1 are chosen in the MIS and by Pr(U1|U2) the probability of the same
event conditioned the event that all members of U2 are. Then, as l → ∞ :
Pr(U1|U2) = Pr(U1) + O(δl), for some δ, with |δ| < 1.

5.2 Luby’s Algorithms

The above result will remain valid for any algorithm which obeys two conditions:

1. The behaviour of the agorithm is local: in each phase the actions at a vertex
depend only on the decisions within a ball of fixed radius and affect only
vertices within this same ball.

2. Bounding of the probability of removal: a vertex of initial degree d has prob-
ability at least ε/d of being removed from the graph in each phase until its
removal.

The second condition is called a lower bounding property. In this subsection, we
prove that Luby’s algorithms presented by Lynch and by Wattenhofer satisfy a
lower bounding property and thus Proposition 1 remains valid.

Lemma 3. The Luby (Lynch) algorithm satisfies a lower bounding property for
ε = 1/3.

Lemma 4. The Luby (Wattenhofer) algorithm satisfies a lower bounding prop-
erty for ε = 1/4.
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