

Lecture Notes in Computer Science 5115
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jean-Raymond Abrial Uwe Glässer (Eds.)

Rigorous Methods
for Software Construction
and Analysis

Essays Dedicated to Egon Börger
on the Occasion of His 60th Birthday

13

Volume Editors

Jean-Raymond Abrial
Marseille, France
E-mail: jrabrial@neuf.fr

Uwe Glässer
Simon Fraser University
School of Computing Science
Burnaby, BC, Canada V5A 1S6
E-mail: glaesser@cs.sfu.ca

The illustration appearing on the cover of this book is the work
of Daniel Rozenberg (DADARA).

Library of Congress Control Number: 2009942153

CR Subject Classification (1998): F.1, F.2.1-2, F.4.1, F.3, D.2.4, D.2-3, I.2.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11446-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11446-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12821952 06/3180 5 4 3 2 1 0

Preface

Egon Börger

Tribute to Egon Börger on
the Occasion of his 60th Birthday

Jean-Raymond Abrial1 and Uwe Glässer2

1 jrabrial@neuf.fr
2 glaesser@cs.sfu.ca

Egon Börger was born on May 13, 1946, in Westfalia (Germany). After the clas-
sic baccalauréat, from 1965-1971 he studied philosophy, logic and mathematics
at the Sorbonne (Paris, France), Institut Supérieur de Philosophie de Louvain
(Belgium), Université de Louvain and Universität Münster (Germany), where
he got his doctoral degree and in 1976 his “Habilitation” in mathematics. The
themes of his doctoral dissertation, Reduction classes in Krom and Horn formu-
lae, and of his “Habilitationsschrift,” A simple method for determining the degree
of unsolvability of decision problems for combinatorial systems, have their root
in the computational view of mathematical logic held at the time at the Institute
for Logic and Foundations of Mathematics at the University of Münster, a tra-
dition going back to (among others) Leibniz, Ackermann, Gödel, Post, Turing,
Kleene, and associated in Münster with the names of the founder of the insti-
tute, Heinrich Scholz, and his followers Hans Hermes, Gisbert Hasenjäger and
Dieter Rödding. This heritage determined the focus of Börger’s logical investi-
gations in what nowadays is called computability and computational complexity
theory and his early interest in applying methods from logic to solve problems
in computer science.

Thus, it does not come as a surprise that from 1972 to 1976 Börger followed
Edoardo Caianello’s call to help create the computer science department at the
Università di Salerno (Italy), where he developed the curriculum for and taught
the courses on Algorithms, Computational Complexity Theory, Semantics and
Logic. After a short period (1976-1978) as Dozent of Mathematical Logic at
the University of Münster, Börger became Professor for Theoretical Computer
Science at the University of Dortmund (Germany), where he wrote his book on
Computability, Complexity, Logic [1], which went through numerous editions,
for over a decade became the main reference book for courses on the subject in
German universities, and has been translated into English and Italian. Börger
spent the academic year 1982–1983 as professor at the then new computer science
department of the Università di Udine (Italy), and in 1985 accepted a computer
science chair at the Università di Pisa (Italy), which he has held since then,
rejecting various offers from other universities.

Through editing books and organizing workshops, summer schools, confer-
ences, including various seminars at the Mathematical Research Institute in
Oberwolfach and at Schloss Dagstuhl, Börger has been committed since the
late 1970s to promoting a concrete interaction between logicians and computer

VIII Tribute to Egon Börger on the Occasion of his 60th Birthday

scientists, based upon his conviction that the major challenges for contemporary
logic are to be found in applying logical methods in computer science. To provide
an institutional basis for such an interaction, in 1986–1987 he founded together
with his colleagues Michael Richter and Hans Kleine Büning the series of annual
Computer Science Logic workshops. In their sixth edition, in San Miniato near
Pisa, these meetings became the Annual Conference of the European Association
for Computer Science Logic (http://www.eacsl.org/). The EACSL was founded
on Börger’s initiative on July 14, 1992, by 37 computer scientists and logicians
from 14 countries gathered in a Dagstuhl Seminar on Computer Science Logic
Börger had organized together with his colleagues Richter, Kleine Büning, and
Yuri Gurevich. From 1992 to 1997 Börger acted as first EACSL President.

Börger’s research activities in logic and complexity theory in the years
1969–1989 culminated in the book on The Classical Decision Problem [2], for
which he wrote the first half, the one on the classification of undecidable classes
of first-order logic formulae, co-authored by Erich Grädel who wrote the chap-
ters on the complexity of the decidable classes, except for the section on the
Shelah class that was written by Gurevich. The years 1986–1989 brought a shift
of interest. They were characterized by a close cooperation between Börger and
Gurevich on the eventual definition, by Gurevich in 1993 [3], of the notion of
Abstract State Machines (ASMs)1. The idea grew out of Gurevich’s founda-
tional concern about sharpening Turing’s thesis by a model of computation that
explicitly recognizes the finiteness of computers, a theoretical effort that was
crowned by success in 2000 when on the basis of three natural axioms Gurevich
succeeded to prove that “Sequential Abstract State Machines capture sequential
algorithms” [5].

Börger’s interest was triggered by an attempt to use ASMs to model the logic
programming language Prolog. During his sabbatical from 1989 to 1990, spent
at the IBM Scientific Center Heidelberg (Germany), in particular through his
work in the ISO Prolog standardization committee, he recognized the poten-
tial of ASMs for building and verifying complex software-based systems in an
effectively controllable manner, namely, by stepwise refinement of application-
domain-focussed abstract ground models to executable code. Since then, he sys-
tematically pushed experiments to apply ASMs to real life, in particular indus-
trial software-based systems. He triggered and led the effort of an international
group of researchers which developed what is now known as the ASM method
for high-level system design and analysis. He did this through multiple activi-
ties: through his own research and publications carried out at numerous research
departments in Europe and the USA, through the supervision of PhD students
in various European countries, through the definition and realization (including
tool development) of academic and industrial pilot projects for building ver-
ifiable software in areas ranging from programming language implementation
over train control to business processes [during sabbaticals at IBM 1989–1990,

1 Details of the historical development can be found in the AsmBook [4, Ch.9].

Tribute to Egon Börger on the Occasion of his 60th Birthday IX

Siemens Corporate Research and Development (Munich 1996, 1999), Microsoft
Research (Redmond 2000), SAP Research (Karlsruhe, 2005)], through over 500
colloquium and conference talks worldwide and through the organization of:

– Seminars, e.g., the following Schloss Dagstuhl seminars:
• Methods for Semantics and Specification, organized with Jean-Raymond

Abrial (Paris), Hans Langmaack (University of Kiel, Germany), June 5–
9, 1995. This seminar became known as the Steam-Boiler Seminar and
resulted in a Springer LNCS State-of-the-Art Survey [6].

• Practical Methods for Code Documentation and Inspection, organized
with Paul Joannou (Ontario Hydro, Toronto, Canada), Dave Parnas
(McMaster University, Canada), May 12–16, 1997.

• Requirements Capture/Documentation/Validation, organized with Bärbel
Hörger (Daimler-Benz Research, Germany), Dave Parnas (McMaster
University, Canada), Dieter Rombach (Universität Kaiserslautern,
Germany), June 14–18, 1999.

• Theory and Applications of Abstract State Machines, organized with An-
dreas Blass (University of Michigan at Ann Arbor), Yuri Gurevich (Mi-
crosoft Research Redmond), March 4–8, 2002.

– Schools, e.g., the following summer schools:
• Informatica Matematica, organized with Neil Jones (DIKU, University

of Copenhague), Scuola Matematica Interuniversitaria, Cortona (Italy)
July 9–30, 1989.

• Specification and Validation Methods for Programming Languages and
Systems, organized with Alfredo Ferro (University of Catania), Lipari
(Sicily), June 21–July 3, 1993. See [7].

• Architecture Design and Validation Methods, organized with Ferro (Uni-
versity of Catania), Lipari (Sicily) June 23–July 5, 1997. See [8].

• Formal Methods for Engineering of Software, organized with Furio Hon-
sell and Simone Martine (both University of Udine), CISM, Udine (Italy),
September 24–28, 2001.

• Software Technology, organized with Ferro (University of Catania), Li-
pari (Sicily) July 1–13, 2002.

• Advances in Software Engineering, organized with Ferro (University of
Catania), Lipari (Sicily), July 8–21, 2007. See [9].

– Workshops, including the series of (bi-)annual international ASM workshops.
This series was started in 1993 at the IFIP World Computer Congress [10,
Stream C] in Hamburg (Germany). Börger proposed at this Dagstuhl semi-
nar, whose results are reported in this volume, to merge the regular meetings
of the three major state-based formal method user groups, ASMs, B, and
Z. This led to the establishment of the ABZ Conferences, the first of which
took place in 2008 in London (UK) [11], to be followed by the next one in
2010 in Québec (Canada).

This list shows some of the altogether 25 books and special journal issues
Börger edited and of over 30 international conferences, workshops, and schools

X Tribute to Egon Börger on the Occasion of his 60th Birthday

he organized in logic (1969–1989) and computer science (since 1990). His pub-
lications comprise over 100 research papers in logic (27) and computer science
(89) and over 40 papers of technical expository or of epistemological charac-
ter, written in English, German, French, and Italian. His major publications on
ASMs are a book on the method [4] and a book on a characteristic application
of the method to Java and its JVM implementation. The latter book exhibits all
the main features of the ASM method, namely, (a) building an abstract ground
model (read: a precise definition) that can be justified to faithfully formalize the
language and machine requirements in SUN’s manuals, (b) horizontal and verti-
cal refinements leading from the ground model to executable code, (c) validation
(by executing the models), and (d) verification (by mathematically proving or
model checking properties of interest of the models, such as type safety, compiler
correctness, and completness, etc.) [12].

In recognition of his pioneering work in logic and its applications in com-
puter science, Börger was awarded the prestigious Humboldt Research Award in
2007–2008.

References

1. Börger, E.: Computability, Complexity, Logic (English translation of “Berechen-
barkeit, Komplexität, Logik” from 1985. Vieweg-Verlag). Studies in Logic and the
Foundations of Mathematics, vol. 128. North-Holland, Amsterdam (1989)

2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, Heidelberg (1997); Second printing in “Universi-
text”. Springer, Heidelberg (2001)

3. Gurevich, Y.: Evolving algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specifica-
tion and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

4. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

5. Gurevich, Y.: Sequential Abstract State Machines capture sequential algorithms.
ACM Trans. Computational Logic 1, 77–111 (2000)

6. Abrial, J.R., Börger, E., Langmaack, H. (eds.): Formal Methods for Industrial
Applications. Specifying and Programming the Steam Boiler Control. LNCS,
vol. 1165. Springer, Heidelberg (1996)

7. Börger, E. (ed.): Specification and Validation Methods. Oxford University Press,
Oxford (1995)

8. Börger, E. (ed.): Architecture Design and Validation Methods. Springer, Heidelberg
(2000)

9. Börger, E., Cisternino, A. (eds.): Advances in Software Engineering. LNCS,
vol. 5316. Springer, Heidelberg (2008)

10. Pehrson, B., Simon, I.: Technology/foundations. In: IFIP 13th World Computer
Congress 1994. Elsevier, Amsterdam (1994)

11. Börger, E., Bowen, J., Butler, M., Boca, P. (eds.): ABZ 2008. LNCS, vol. 5238.
Springer, Heidelberg (2008)

12. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

Rigorous Methods for Software Construction
and Analysis

Dagstuhl Seminar 06191
May 7–12, 2006

We survey here the key objectives and the structure of the Dagstuhl Seminar
06191, which was organized as a Festkolloquium on the occasion of Egon Börger’s
60th birthday, in May 2006 in Schloss Dagstuhl, Germany.

Focusing on applied formal methods, the final seminar program covered a
wide range of applied research spanning from theoretical and methodological
foundations to practical applications of Abstract State Machines, B, and beyond,
emphasizing universal methods and tools that, regardless of their application
orientation, are still committed to the ideal of mathematical rigor.

Two overarching themes were:

– The persistent demand to foster further cross-fertilization between academic
research and industrial development in the quest for innovative methods and
tools to critically evaluate their potential in the light of new challenges as
posed by new technological developments and paradigms in software engi-
neering.

– The ever-present question of convergence of methods, clarifying their com-
monalities and differences to better understand how to combine related ap-
proaches for accomplishing the various tasks in modeling, simulation, and
verification of complex hardware/software systems.

In total, 54 participants from 14 different countries and four different conti-
nents attended the seminar. In 12 sessions, comprising a total of 35 presentations,
34 technical ones and one about fellowships and awards of the Alexander von
Humboldt Foundation, the following central topics, among other topics, were
addressed:

– Methodological foundations of requirements specification and verification
– Characterization of specification languages and their logical foundations
– Advanced tool environments and systematic integration of tools
– Machine-assisted validation and verification
– Distributed algorithms and concurrent protocols
– Novel applications in public safety, security, and privacy
– Industrial case studies and experience reports
– The role of formal methods in computer science education

The technical talks were either 30, 45, or 60 minutes and often resulted in
lively and fruitful discussions which were continued informally during the breaks.
After-dinner sessions were the norm, even on Wednesday after returning from
an afternoon excursion to the charming historic town of Trier.

XII Rigorous Methods for Software Construction and Analysis

Overall the program was fairly balanced. Roughly,

– One third of the talks were related to Abstract State Machines
– One third of the talks were related to B
– One third to other formal methods and software engineering contexts

Rather than a strict grouping of talks according to research communities,
technical content, and other standard criteria, the organizers deliberately chose
a mixed program with the intention to stimulate interactions across research
communities and also between industry and academia. This strategy turned out
to be successful, as was evident from the impressive attendance of basically all
the sessions with only very few exceptions.

Over the course of the seminar, a number of spontaneous requests for addi-
tional talks were brought forward. While not all of them could be accommodated
due to given schedule restrictions, such dynamics provided further evidence of
the inspiring and open atmosphere that also helped forge new collaborations.
Notably, there was a concrete proposal for organizing a joint working conference
on ASM, B, and Z in London in 2008.

Last but not least, the tremendous hospitality of Schloss Dagstuhl made
the participants feel comfortable and helped create a pleasant atmosphere that
allowed everyone to fully concentrate on research contributions for more than
12 hours a day. The organizers would like to express their sincere appreciation
for all the support and specifically thank the terrific Dagstuhl staff for the their
role in making this seminar so successful.

For the dissemination of results, revised and refereed versions of major con-
tributions to the seminar were collected and published by Springer as an LNCS
Festschrift.

October 2009 Jean-Raymond Abrial
Uwe Glässer

Referees

J.R. Abrial
R. Banach
J. P. Bowen
M. Butler
D. Cansell
A. Cavarra
A. Cisterino
N. Evans
R. Farahbod
V. Gervasi
U. Glässer
S. Hallerstede

T.S. Hoang
M. Leuschel
F. Mehta
D. Mery
P. Müller
W. Müller
M.-L. Potet
A. Prinz
S. Rastkar
E. Riccobene
D. Runje
J. N. Ruskiewicz

G. Schellhorn
K.-D. Schewe
S. Schneider
C. Snook
K. Stenzel
B. Thalheim
H. Treharne
M. Vajihollahi
L. Voisin
Ch. Wallace
J. Woodcock

Table of Contents

Relaxing Restrictions on Invariant Composition in the B Method by
Ownership Control a la Spec# . 1

Sylvain Boulmé and Marie-Laure Potet

Designing Old and New Distributed Algorithms by Replaying an
Incremental Proof-Based Development . 17

Dominique Cansell and Dominique Méry

Ten Reasons to Metamodel ASMs . 33
Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

An ASM-Characterization of a Class of Distributed Algorithms 50
Andreas Glausch and Wolfgang Reisig

Using Abstract State Machines for the Design of Multi-level Transaction
Schedulers . 65

Markus Kirchberg, Klaus-Dieter Schewe, and Jane Zhao

Validating and Animating Higher-Order Recursive Functions in B 78
Michael Leuschel, Dominique Cansell, and Michael Butler

A Systematic Verification Approach for Mondex Electronic Purses
Using ASMs . 93

Gerhard Schellhorn, Holger Grandy, Dominik Haneberg,
Nina Moebius, and Wolfgang Reif

Management of UML Clusters . 111
Peggy Schmidt and Bernhard Thalheim

A Step towards Merging xUML and CSP ‖ B . 130
Helen Treharne, Steve Schneider, Neil Grant, Neil Evans, and
Wilson Ifill

CoreASM Plug-In Architecture . 147
Roozbeh Farahbod, Vincenzo Gervasi, Uwe Glässer, and George Ma

JASMine: Accessing Java Code from CoreASM . 170
Vincenzo Gervasi and Roozbeh Farahbod

A Modular Verification Methodology for C# Delegates 187
Peter Müller and Joseph N. Ruskiewicz

XVI Table of Contents

On the Evolution of OCL for Capturing Structural Constraints in
Modelling Languages . 204

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

Ten Commandments Ten Years On: Lessons for ASM, B, Z and
VSR-net . 219

Jonathan P. Bowen and Michael G. Hinchey

Author Index . 235

Relaxing Restrictions on Invariant Composition
in the B Method

by Ownership Control a la Spec#

Sylvain Boulmé and Marie-Laure Potet

Verimag, Grenoble, France
Sylvain.Boulme@imag.fr,

Marie-Laure.Potet@imag.fr

Abstract. This paper deals with modular verification of component in-
variants in the B Method. On the one hand, B imposes severe architecture
restrictions that ensure soundness of component compositions with a few
additional proof obligations. On the other hand, in the context of the ver-
ification of object oriented programs, Spec# proposes a more expressive
approach, but at the price of more complex specifications, and more nu-
merous proof obligations. In this paper, we investigate an intermediate
solution combining the advantages of both approaches.

1 Introduction

A project (or a development) in the B Method is constituted of several com-
ponents, layered in abstract machine, refinements and implementation. A major
feature of this component language is that each component can be developed and
proved independently. Architecture restrictions of B ensure that composition of
components is free: it only needs a few additional proofs. This is one of the keys
that make the B Method scalable for large industrial applications.

In particular, at the level of invariants, this property is ensured because the in-
variant of a component can not be violated outside of its own operations. Hence,
the users of a component M can assume the invariant of M without proving it.
This invariant is established by the proofs obligations induced by the definition
of M , independently of other components. In particular, when the invariant of
M constrains variables of a component N , the preservation of M ’s invariant
is established under the implicit assumption that no third component calls an
operation of N that modifies variables of N (which may violate the invariant of
M). This assumption is correct because of severe architecture restrictions.

In summary, B users can compose components without reproving their invari-
ants, but they must deal with important architecture restrictions that ensure
the soundness of reasonings involving invariants. Moreover, understanding how
these restrictions ensure soundness is not trivial.

In [BP07], we have proposed a very simple (meta)model of invariant compo-
sition, inspired by Spec# approach. This model is based on a dynamic notion

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 S. Boulmé and M.-L. Potet

of ownership that characterizes which components can constrain other compo-
nents through an invariant. Technically, invariant violations are monitored using
a ghost variable associated to each component and called component status. The
consistency of assumptions about invariants, with respect to the ownership de-
pendencies, is controlled by proof obligations involving these component status.
Hence, in [BP07], we show that B (without refinement) can be understood as
a particular instance of this model. Moreover, this model inspired us an exten-
sion of B which authorizes more architectures and provides a better control on
the initialization process of components. A little case study in [BP07] illustrates
these features.

This paper shows that in our model, the proof obligations involving component
status can mostly be discharged by a dedicated static analyzer. This allows
us to adapt the extension proposed in [BP07] as a conservative extension of
B: an extension such that current developments in B (without refinement) are
still valid without new proof obligations. This paper is organized as follows.
Section 2 recalls some notions of the B Method and some of its restrictions.
Section 3 introduces our model as a simple adaptation of Spec# for B. Section
4 sketches our extension of B and illustrates its expressive power on a small
example. Section 5 details how this extension is made conservative. The main
idea is to consider component status as a type information and to replace proof
obligations involving these variables by type inference. Hence, thanks to this
static analysis, annotations about component status have not to be inserted
manually and are checked automatically.

2 A Brief Presentation of the B Method

At first, we recall some basic notions about the B Method. The core language
of B specifications is based on three formalisms: data are specified using set
theory, properties are first order predicates and the behavioral part is specified by
Generalized Substitutions. Generalized Substitutions are defined by the Weakest
Precondition (WP) semantics, introduced by E.W. Dijkstra [Dij76], and denoted
here by [S]R. Hence, “[x := e] R” is the substitution of free occurrences of x in
R by e and we have:

[x := e || y := f] R ⇔ [z := f][x := e][y := z] R

with x, y and z three distinct variables and z being free in R and e. Here are
some WP other useful definition examples:

[P | S] R ⇔ P ∧ [S] R pre-conditioned substitution
[S1 ; S2] R ⇔ [S1] [S2] R sequential substitution
[S1 [] S2] R ⇔ ([S1]R) ∧ ([S2]R) bounded choice substitution

pre P then S end is the syntactic form for P | S.
Generalized substitutions are equivalently characterized by two predicates,

trm(S) and prd(S), that respectively express the required condition for substitu-
tion S to terminate, and the relation between before and after states (denoted

Relaxing Restrictions on Invariant Composition in the B Method 3

respectively by v and v′). Weakest precondition calculus includes termination:
we have [S]R ⇒ trm(S), for any R.

Definition 1 (trm and prd predicates).
trm(S) ⇔ [S]true prd(S) ⇔ ¬[S]¬(v′ = v)

2.1 Abstract Machine

As proposed by C. Morgan [MG90], B components correspond to the standard
notion of state machines which define an initial state and a set of operations,
acting on internal state variables. Moreover, an invariant is attached to an ab-
stract machine: this is a property which must hold in observables states, i.e.
states before and after operations calls. Roughly, an abstract machine has the
following shape.

machine M
variables v
invariant I
initialization U
operations

o← nom op(i) =̂
pre P then S end ;

. . .
end

M is the component name, v a list
of variable names, I a property on
variables v, and U a generalized
substitution. In the operation def-
inition, i (resp. o) denotes the list
of input (resp. output) parameters,
P is the precondition on v and i,
and S is a generalized substitution
which describes how v and o are up-
dated.

Proof obligations attached to machine M consist in showing that I is an
inductive property of component M :

Definition 2 (Invariant proof obligations).
(1) [U]I initialization
(2) I ∧ P ⇒ [S]I operations

2.2 Invariants Composition

Abstract machines are combined through a few primitives. Here, we consider
only clause includes, such that if M includes N , then M can be defined
using any N operations and M invariant can constrain N variables. See [BP07]
for considerations about clause sees.

The first feature underlying invariant composition in the B Method is invariant
preservation by encapsulated substitutions. A substitution S is an encapsulated
substitution relative to a given component M if and only if variables of M are
not directly assigned in S, but only through calls to M operations. Thus, any
encapsulated substitution relative to M preserves, by construction, invariant of
M (see [Pot02]). The second feature underlying invariant composition is a set
of restrictions on component composition which prevent users from combining
operations that constrain shared variables in inconsistent ways. Let us illustrate
these restrictions on the following example. In this simplified example, we use
abusively a sequence at the level of abstract machines, whereas such a sequence
could only happen in a refinement:

4 S. Boulmé and M.-L. Potet

machine Resource
variables x
invariant x ∈ N

initialization x := 0
operations

incr =̂ x := x + 1
end

machine User
includes Resource
invariant even(x)
operations

incr2 =̂
begin incr ; incr end

end

Here, the following rule applies: a component M can call operations of a compo-
nent N that modifies the state of N only if M includes N transitively. Moreover,
syntactic restrictions ensure that includes dependency relation is a tree: it con-
tains no cycle, and each machine can be included only once. These restrictions
ensure that a component containing one of these sequences is syntactically in-
correct:

(1) init ; incr2 ; incr ; incr2 ;
(2) init ; incr2 ; incr ; incr ; incr2 ;

Indeed, these sequences are rejected by B because they combine modifying op-
erations of Resource and User . The rejection of sequence 1 prevents the second
call of operation incr2 to occur in a state where invariant of User is broken. But,
sequence 2 is rejected although each operation-call happens in a state where the
invariant attached to each operation definition is valid. In practical experiments,
these restrictions make the design of architectures difficult [BB99, Hab01]. Ac-
tually, components can share variables only in a very limited way: at most one
writer with several readers.

3 Adapting Spec# Approach for Modules a la B

The Spec# approach [BDF+04, LM04] proposes a flexible methodology for
modular verification of objects invariants, which is based on a dynamic notion
of ownership. An ownership relation describes which objects can constrain other
objects, i.e. which object has an invariant depending on the value of another
object. It is imposed that this relation is dynamically a forest (e.g. a set of
disjoint trees). This permits the generation of proof obligations ensuring that
an object is not modified while it is constrained by the invariant of an other
object. Dynamic ownership of an object can be transfered during execution,
introducing some flexibility with respect to B restrictions. We directly present
our adaptation of the Spec# approach in the framework of B components and
generalized substitutions style.

3.1 Dependencies between Components and Admissible Invariants

In this section, we assume that architectures of components are structured by
a binary relation between components, noted owns and called static ownership.
This relation is assumed to have no cycle (its transitive closure owns+ is ir-
reflexive). It is related to the notion of admissible invariants (invariants that are

Relaxing Restrictions on Invariant Composition in the B Method 5

syntactically correct): all the free variables appearing in an admissible invariant
must be declared in a component of owns∗({M}) (the image of M through the
reflexive and transitive closure of owns). In other words, if M.Inv denotes the
invariant of component M and M.Var the variables declared in M , then for all
syntactically correct M , we assume that free(M.Inv) ⊆

⋃
(M,N)∈owns∗ N.Var.

We use owns to give a hierarchical structure to validity of invariants: if the
invariant of a component M can be safely assumed, then all the invariants com-
ponents in owns∗({M}) can also be safely assumed. Concretely, each component
N is implicitly extended by a ghost variable N.st, belonging to {invalid, valid,
committed}. Hence, N.Inv can be safely assumed if and only if N.st �= invalid.

A component M is a dynamic owner of a component N if and only if (M, N) ∈
owns and M.st �= invalid. The semantics of this ghost variable is the following:

– if N.st = invalid, then its invariant may be violated. Moreover, N has no
dynamic owner. Hence, any modification on N variables is authorized.

– if N.st = valid, then its invariant is established, and it has no dynamic
owner.

– if N.st = committed, then its invariant is established, and it has a single
dynamic owner.

This semantics is formally expressed by the following definition.

Definition 3 (Status meta-invariants). All components M and N have to
verify the following meta-invariants:

MI1 M.st �= invalid ⇒ M.Inv

MI2 M.st �= invalid∧ (M, N) ∈ owns ⇒ N.st = committed

MI3 M.st �= invalid ∧ owns({M}) ∩ owns({N}) �= ∅ ∧ M �= N
⇒ N.st = invalid

Let MI be MI1 ∧ MI2 ∧ MI3.

The first meta-invariant states that a component invariant can be safely assumed
if its status is different from invalid. Meta-invariant MI2 imposes that when
a component invariant is not invalid then components transitively owned by
this component have to be declared as committed. Finally MI3 ensures that
each component has at most one unique dynamic owner.

3.2 Extending the Language of Generalized Substitution

Assignment substitution. In our language, assignment substitution is precon-
ditioned, but it can occur outside of the component where the assigned variable
is bound (there is a priori no variable encapsulation). We have:

subst trm prd

N.Var := e N.st = invalid N.st′ = N.st ∧ N.Var′ = e

Meta-invariants of definition 3 are preserved by this substitution, see [BP07].

6 S. Boulmé and M.-L. Potet

Substitutions pack(M) and unpack(M). Substitutions are extended with
two new commands pack(M) and unpack(M). The former requires the estab-
lishment of M invariant and the latter allows violation of M invariant. Status
variables can only be modified via these commands. They can be invoked in M
or outside of M . They are formally defined by:

subst trm prd

pack(M) ∀N.((M,N)∈owns⇒N.st=valid)
∧M.st = invalid
∧M.Inv

∀N.((M,N)∈owns⇒N.st′=committed)
∀N.(M �=N∧ (M,N) �∈owns ⇒N.st′=N.st)
∧M.st′ = valid
∧M.Var′ = M.Var

unpack(M) M.st = valid ∀N.((M,N)∈owns⇒N.st′=valid)
∀N.(M �=N∧ (M,N) �∈owns ⇒N.st′=N.st)
∧M.st′ = invalid
∧M.Var′ = M.Var

Control of dynamic ownership appears in these commands. The precondition
of pack(M) imposes that the components statically owned by M have no dy-
namic owners, then pack(M) makes M the dynamic owner of all the components
that it statically owns. Of course, unpack(M) has the reverse effect. Here, let us
note that the precondition of unpack(M) imposes that M has itself no dynamic
owner. In other words, if we want to unpack a component N , for instance in
order to modify it through a preconditioned assignment, we are first obliged to
unpack its dynamic owner (and so on recursively). It is easy to prove that meta-
invariants MI1, MI2 and MI3 are preserved by pack and unpack substitutions.

Finally for each substitution S built from preconditioned assignment, pack
and unpack new commands and other standard B substitutions (except assign-
ment substitution) we have:

Proposition 1 (Meta-invariants preservation). MI ∧ trm(S) ⇒ [S]MI

3.3 Revisiting Example 2.2

In example 2.2 the couple (User ,Resource) must belong to the ownership re-
lation owns because variables of the component Resource are constrained by
the invariant part of the component User . Operations incr and incr2 are now
described in the following way:

incr =̂ pre Resource.st = valid
then unpack(Resource) ; x := x + 1 ; pack(Resource) end

incr2 =̂ pre User .st = valid ∧ Resource.st = committed
then unpack(User) ; incr ; incr ; pack(User) end

Starting in a state such that User .st = valid and Resource.st = committed, we
can now label the sequence 2 of section 2.2 with pack and unpack substitutions
such that termination of this sequence is provable:

incr2 ; unpack(User) ; incr ; incr ; pack(User) ; incr2

Relaxing Restrictions on Invariant Composition in the B Method 7

4 A Component Approach

In a component approach, proofs are established at the level of operation defini-
tions. All operations pre P then S end, where status variables can occur free
in P and where S can perform unpack and pack must satisfy:

MI ∧ P ⇒ trm(S)
In other words, preservation of components invariants must be expressed explic-
itly through unpack and pack command.

4.1 Several Forms for Definitions of Operations

In [BP07] we have given a systematic encoding of B operations and architecture
rules in the Spec# approach. For instance, an interface operation of a component
M is an operation which preserves the invariant of M . For instance, in B, the
owns relation is assimilated to the includes clause. If we do not take into
account clauses sees, interface operations are of the form :

modifying pre P ∧ M.st = valid
case then unpack(M) ; S ; pack(M) end

read-only pre P ∧ M.st �= invalid
case then S end

4.2 Initialization and Reinitialization Process

In the B Method, all local initializations are implicitely combined to build a
global initialization step. Because more sharing is now admitted, we make ex-
plicit the initialization process in using operations which establish invariants (on
the contrary to interface operations which preserve invariant). At last, initial-
izations can be invoked in any place, in order to reinitialize variables. Let U
be the initialization substitution of component M . Several form of initialization
operations are possible:

case 1 pre M.st = invalid then U ; pack(M) end

case 2 pre M.st = invalid ∧ N.st �= invalid
then U ; pack(M) end

case 3 pre M.st = invalid ∧ N.st = invalid
then N.init ; U ; pack(M) end

Case 1 corresponds to initialization of a stand-alone machine. Case 2 corresponds
to an initialization depending on another initialization, like when M sees N in B.
Case 3 corresponds to an initialization performing another initialization, N.init .
Case 3 implicitly happens in B when M includes N : in particular, the elaboration
of M invariant involves initial values of N .

8 S. Boulmé and M.-L. Potet

machine Resource
variables x
invariant x ∈ N ∧ even(x)
initialization init =̂ x := 0
operation r ← access =̂ begin x := x + 2; r := x end

end

machine MainUser
variables u1

invariant u1 ∈ N

initialization

restart =̂
u1 := access

operation

. . .

end

machine AuxUser
variables u2

invariant u2 ∈ N ∧ 2× u2 = x
initialization

restart =̂
u2 := access/2

operation

. . .

end

machine Sched
invariant u1 = x
initialization init =̂

Resource .init ;
MainUser .restart ;

operation step =̂
...; /* calling some operations of MainUser */
AuxUser .restart ;
...; /* calling some operations of AuxUser */
unpack(AuxUser) ;
MainUser .restart

end

owns

owns

owns

Fig. 1. An example with two writers

Relaxing Restrictions on Invariant Composition in the B Method 9

4.3 An Example with Two Writers

We now study a four component architecture (see figure 1): a component Resource
is shared between two components MainUser and AuxUser which are both used in
Sched . Moreover, component AuxUser constrains Resource in its invariant
whereas MainUser does not. Actually, Sched links in its invariant variables of
MainUser to variables of Resource. This architecture can not be expressed in B be-
cause MainUser and AuxUser modify concurrently the variable of Resource. Let
us now explain the differences between simple arrows and arrows labeled by owns.
Simple arrows correspond here to pairs (M, N) such that M can call operations of
N , read or write variables of N but does not constrain N in its invariant. Here, if
simple arrows were replaced by owns-arrows, then MainUser and AuxUser could
not be valid in the same time (because Resource can only have a single dynamic
owner) and thus, Sched could never be packed.

In figure 1, initializations of component M perform implicitly a pack(M),
and operations of M are implicitly bracketed by substitutions unpack(M) and
pack(M). Moreover, preconditions on status have been omitted. For instance,
the operation Aux.restart should be:

pre Resource.st = valid ∧ AuxUser .st = invalid
then u2 := access/2 ; pack(AuxUser) end

Finally, let us remark that the command unpack(AuxUser) is needed in
Sched .step because, after AuxUser .restart , component Resource is committed.
If the unpack substitution was omitted, the proof obligations relative to termi-
nation of the operation step would be false.

5 Static Analysis and Proof Obligations

The approach described in section 4 presents some important drawbacks. First,
proof obligations are polluted with conditions on component status, which are
mostly trivial. More dramatically, the user has to provide the preconditions on
component status: this task is tedious and error prone. Indeed, the user can
give a precondition P on component status such that P ∧ MI2 ∧ MI3 is not
satisfiable. Such a bad configuration can be discovered only at the end of the
proof process, while attempting to prove the precondition of an operation call,
whereas it may be the consequence of a bad architectural design.

To circumvent these drawbacks, we propose to check the consistency of com-
ponent status using a static analysis, instead of proof obligations. Moreover,
this static analysis infers preconditions over component status in operations and
rejects operations which are suspected to have an unsound precondition. We
benefit here from the fact that, in B, on the contrary to Spec#, there is no alias
on component names. The next sections introduce our status static analysis and
how it is used in practice.

5.1 Introduction to Our Static Analysis

Actually, the design of such a static analysis needs to restrict the expressive
power of our language. Here, we require that if a substitution is a branch (a

10 S. Boulmé and M.-L. Potet

choice, an if-then-else, a while-loop), then all branches perform the same
observational transformation on the status variables. For instance, if a
branch is skip, others branches can only perform well-bracketed unpack/pack or
pack/unpack. This is the main abstraction of our analysis.

Concretely, each substitution will be abstracted to a status type P ! A where P

is a conjunction of atomic status clauses about st variables and A is a multiple
affectation about st variables.

Definition 4 (Syntax of status types). A status type is noted P ! A where:

– A is called a status affectation, and is either skip or M.st := v || A1, where
component name M does not appear in A1, and v is invalid, valid or
committed.

– P is called a status precondition, and is either True or M.st ∈ St ∧ P1,
where component name M does not appear in P1 and St belongs to the
following partially ordered set:

{valid,committed}

{invalid} {valid} {committed}

The syntax chosen here suggests that status types P ! A can be interpreted itself
as a preconditioned substitution P | A, working on variable st of components.
We use this interpretation to express the equality between status types, and
more generally the correctness of our type system. Indeed, equality between
status types is defined from the equality between substitutions [Abr96], under
the hypothesis of the meta-invariants MI2 and MI3.

Definition 5 (equality between status types under MI2 ∧ MI3).
P1 ! A1 = P2 ! A2 if and only if

(MI2 ∧ MI3 ∧ P1) | A1 = (MI2 ∧ MI3 ∧ P2) | A2

Due to the particular syntax of status preconditions, these propositions hold:

Proposition 2. For a given architecture and two status preconditions P1 and
P2, it is decidable to check whether (MI2 ∧ MI3 ∧ P1) ⇒ P2 is a tautology.

Proposition 3 (decidability of status precondition soundness). For a
given architecture and a given status precondition P, it is decidable to check
whether MI2 ∧ MI3 ∧ P is satisfiable.

Then, the equality between status affectations is established using a normalized
form, through the following function Simplify:

Simplify(skip, P) = skip
Simplify(M.st := v || A, P) = Simplify(A, P)

if MI2 ∧ MI3 ∧ P ⇒ M.st ∈ {v}
Simplify(M.st := v || A, P) = M.st := v || Simplify(A, P)

otherwise
Hence, we deduce from prop 2 and from the following proposition that equality
between status type is decidable:

Relaxing Restrictions on Invariant Composition in the B Method 11

Proposition 4 (equality between status types under MI2 ∧ MI3).
P1 ! A1 = P2 ! A2 if and only if
– MI2 ∧ MI3 ∧ P1 ⇒ P2 and MI2 ∧ MI3 ∧ P2 ⇒ P1
– and, Simplify(A1, P1) = Simplify(A2, P2) modulo associativity and com-

mutativity and ||.

Now, we illustrate the expected behavior of our typing rules on a few examples.

Example 1 (Basic typing of sequences). Assuming 3 components A, B, C such
that A owns B and B owns C, then :
– substitution unpack(A) ; B.x := e must be rejected. Indeed, status pre-

condition of B.x := e is B.st ∈ {invalid} whereas status affectation of
unpack(A) is A.st := invalid || B.st := valid.

– substitution unpack(A) ; unpack(B) must be abstracted to:
A.st ∈ {valid} ! (A.st := invalid||B.st := invalid||C.st := valid)

Example 2 (Typing approximations in branches). Assuming a component A own-
ing nothing, then :
– substitution skip [] (unpack(A) ; pack(A)) must be abstracted to:

A.st ∈ {valid} ! skip
– substitution skip [] unpack(A) is rejected because the two branches perform

incompatible observational effects on status.

5.2 Inference Rules of Our Static Analysis

As component status is now a typing information, we need to restrict a bit the
language of substitutions. Substitutions can contain pack and unpack occur-
rences but formulae in preconditions or in guards can not reference component
status. However, in order to allow the user to express preconditions over compo-
nent status, we introduce a new substitution, called status precondition substi-
tution and written P ! S where P is a precondition status and S a substitution.
For the weakest-precondition calculus, P ! S is interpreted as P | S.

We now define the relation S � P ! A, meaning that S is abstracted to P ! A

by our static analyzer.

Rules AFFECT, UNPACK and PACK

AFFECT
M.x := e � M.st ∈ {invalid} ! skip

P ≡ M.st ∈ {valid}
A ≡ M.st := invalid || (||N∈owns({M})N.st := valid)

UNPACK
unpack(M) � P ! A

P ≡ M.st ∈ {invalid} ∧ (
∧

N∈owns({M}) N.st ∈ {valid})
A ≡ M.st := valid || (||N∈owns[{M}]N.st := committed)

PACK
pack(M) � P ! A

12 S. Boulmé and M.-L. Potet

Rule SEQ. The sequence rule checks that status types can be sequentialized.
When this is not the case, this rule is not applicable.

S1 �P1 ! A1 S2 �P2 ! A2 [A1]P2 �P3 P1
 P3 �P A1; A2 �A
SEQ

S1; S2 � P ! Simplify(A, P)

Notation [A]P1 � P2 means that there exists P2 such that P2 ⇔ [A]P1. The
result of [A]P1 is undefined if a status variable M.st is set by a value which is
not compatible with P1. FV (P) denotes the set of components names appearing
in P.

[skip]P � P

[A]P1 � P2 M �∈ FV (P1)
[M.st := v || A]P1 � P2

v ∈ St [A]P1 � P2

[M.st := v || A](M.st ∈ St ∧ P1) � P2

Notation P1
 P2 � P3 means that there exists P3 such that P3 ⇔ P1 ∧ P2. The
result of P1
 P2 is undefined if P1 and P2 constrain some status variables in a
contradictory way.

True
 P � P

P1
 P2 � P3 M �∈ FV (P2)
(M.st ∈ St ∧ P1)
 P2 � M.st ∈ St ∧ P3

St1 ∩ St2 � St3 P1
 P2 � P3

(M.st ∈ St1 ∧ P1)
 (M.st ∈ St2 ∧ P2) � (M.st ∈ St3) ∧ P3

Finally, the sequence of two status affectations, noted A1; A2 is defined below:

skip ; A � A

A1 ; A2 � A3 M �∈ FV (A2)
(M.st := v || A1) ; A2 � M.st := v || A3

A1 ; A2 � A3

(M.st := v1 || A1) ; (M.st := v2 || A2) � M.st := v2 || A3

Rule CHOICE. As explained previously, for the choice both branches are
required to produce the same observational effects under the hypothesis of the
current precondition (and MI2 ∧ MI3).

S1 � P1 ! A1 S2 � P2 ! A2 P1
 P2 � P P ! A1 = P ! A2
CHOICE

S1 [] S2 � P ! Simplify(A1, P)

Rules PRE, GUARD and ANY. Furthermore, preconditions and guards,
which are not allowed to express properties about component status anymore,
are just skipped by the static analysis.

S � P ! A
PRE

Q | S � P ! A

S � P ! A
GUARD

Q =⇒ S � P ! A

S � P ! A
ANY

@z · S � P ! A

Rule ST PRE For status precondition substitution, we simply consider the
conjunction of the inferred precondition and the precondition given by the user.
If the preconditions are not compatible then the whole substitution is rejected.

Relaxing Restrictions on Invariant Composition in the B Method 13

S � P2 ! A P1
 P2 � P
ST PRE

P1 ! S � P ! Simplify(A, P)

5.3 Correctness of the Typing Rules

Our static analysis aims to discard from proof obligations the reasoning about
the status of components. Hence, the previous weakest-precondition calculus
is now split in two parts: one part is our static analysis, and the other part
is a new weakest-precondition calculus, written [S]†R, which does not perform
substitution of st variables. The definition of [S]†R is similar to [S]R except for:

[unpack(M)]†R = R
[pack(M)]†R = M.Inv ∧ R
[P ! S]†R = R

The correctness of the typing rules expresses that the cooperation of the type
system and the new weakest-precondition calculus replace the previous weakest-
precondition calculus.

Proposition 5 (correctness of the typing rules). If S � P ! A, then:
P ∧ MI ∧ [S]†[A]R ⇒ [S]R

5.4 The Typing Algorithm and Its Application

In conclusion, let us detail how our methodology is improved by using the static
analysis. For an operation of the form P | S,

1. we first infer the status type of S. The typing algorithm proceeds by induc-
tion over the syntactic structure of S. If the inference fails, then the operation
is rejected because it may be inconsistent about component status.

2. then, we check that P is sound for the considered architecture (according to
proposition 3). If this is not the case, then the operation is also rejected.

3. at last, section 4 indicates that we must prove: (MI ∧P ∧ P) ⇒ trm(S). We
recall here that invariant proof obligations are now embedded in substitu-
tions through pack substitutions. Let ISat(P) be defined by:

ISat(P) =
∧

M / (MI2∧MI3∧P)⇒M.st∈{valid,committed} M.Inv
This formula on component variables is the conjunction of all invariants
that are deduced from MI ∧ P. It is computable by proposition 2. Using
proposition 5, the previous proof obligation is a consequence of the following
one:

(P ∧ ISat(P)) ⇒ [S]†True
Hence, this discharges the user to reason about component status.

5.5 Revisiting Example of Section 4.3

We use our typing rules to check that example of figure 1 is accepted (as ex-
plained section 4.1, we consider that initializations are implicitly ended by pack,

14 S. Boulmé and M.-L. Potet

and that interface operations are implicitly bracketed by unpack/pack). More-
over, termination proof obligations can also be discharged as expected. For in-
stance, given the operations:

r ← Resource.access =̂
begin unpack(Resource) ; x := x + 2 ; r := x ; pack(Resource) ; end

AuxUser .restart =̂
begin u2 := access/2 ; pack(AuxUser) end

Using structural rules, the derived status types are:
– Resource.access � Resource.st ∈ {valid} ! skip
– AuxUser .restart

� Resource.st ∈ {valid} ∧ AuxUser .st ∈ {invalid}
! AuxUser .st := valid || Resource.st := {committed}

Finally, the proof of termination for AuxUser .restart imposes to prove
[x := x + 2 ; u2 := x/2]†(u2 ∈ N ∧ 2 × u2 = x)

under the precondition Resource.st ∈ {valid} ∧ AuxUser .st ∈ {invalid}.
Using the definition of [S]† and the ISat operation we have to prove:

even(x) ⇒ ((x + 2)/2 ∈ N ∧ 2 × ((x + 2)/2) = x + 2)
This is true, using the fact that / is euclidean division.

6 Conclusion and Perspectives

In conclusion, this paper proposes an extension of B (without refinement) which
authorizes more architectures and provides a better control on the initialization
process of components. In B, given two components M and N such that M uses
N , all operations of M share the same constraint on the use of N . With our
extension, each operation of M may have its own constraint on N .

Our extension is conservative in the sense that proof obligations generated
for current developments in B (without refinement) correspond to current proof
obligations. It is inspired by the Spec# methodology, but adapted for B and uses
a dedicated static analysis that discharges completely the user to reason about
component status. Of course, our methodology does not eliminate architectural
unsoundness. As in current B, when the user is faced to such an unsoundness, he
or she must correct it. Here, corrections may consist in adding unpack commands,
or rewriting invariants, or reconsidering some part of the architecture.

However, this extension will present a practical interest only when it will sup-
port refinement. Here, Spec# may still inspire us: the treatment of (behavioral)
subtyping may help for algorithmic refinement and the treatment of model fields
may help for data refinement [LM06].

As discussed in the conclusion of [BP07], our extension of B allows multiple
writers. However, reasonings are preserved by refinement only when all ownership
transfers between successive writers are performed via a reinitialization operation
(as in example of section 4.3). Hence, this approach seems complementary with
a rely-guarantee approach (see [BN04, NB04]).

Relaxing Restrictions on Invariant Composition in the B Method 15

References

[Abr96] Abrial, J.R.: The B-Book. Cambridge University Press, Cambridge (1996)
[Ba99] Behm, P., et al.: Météor: A successful application of B in a large project.

In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 369–387. Springer, Heidelberg (1999)

[BA05] Badeau, F., Amelot, A.: Using B as a High Level Programming Language
in an Industrial Project: Roissy VAL. In: Treharne, H., King, S., Hen-
son, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 334–354.
Springer, Heidelberg (2005)

[BB99] Büchi, M., Back, R.: Compositional Symmetric Sharing in B. In: Wing,
J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, p.
431. Springer, Heidelberg (1999)

[BBP+03] Bert, D., Boulmé, S., Potet, M.-L., Requet, A., Voisin, L.: Adaptable
Translator of B Specifications to Embedded C programs. In: Araki, K.,
Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805. Springer,
Heidelberg (2003)

[BDF+04] Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Ver-
ification of object-oriented programs with invariants. Journal of Object
Technology 3(6), 27–56 (2004)

[BN04] Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invari-
ants over shared state. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125,
pp. 54–84. Springer, Heidelberg (2004)

[BP07] Boulmé, S., Potet, M.-L.: Interpreting invariant composition in the B
method using the spec# ownership relation: A way to explain and relax
B restrictions. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS,
vol. 4355, pp. 4–18. Springer, Heidelberg (2006)

[Cle02] ClearSy. Le Langage B. Manuel de reference, version 1.8.5. ClearSy (2002)
[Dij76] Dijkstra, E.W.: A discipline of Programming. Prentice-Hall, Englewood

Cliffs (1976)
[GP85] Gries, D., Prins, J.: A New Notion of Encapsulation. In: Proc. of Sym-

posium on Languages Issues in Programming Environments, SIGLPAN
(1985)

[Hab01] Habrias, H.: Spécification formelle avec B. Hermès Science Publications
(2001)

[Hoa72] Hoare, C.A.R.: Proof of correctness of data representations. Acta Infor-
matica 1, 271–281 (1972)

[LM04] Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In:
Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–516. Springer,
Heidelberg (2004)

[LM06] Leino, K.R.M., Müller, P.: A verification methodology for model fields.
In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 115–130. Springer,
Heidelberg (2006)

[LR98] Lanet, J.-L., Requet, A.: Formal Proof of Smart Card Applets Correct-
ness. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS,
vol. 1820. Springer, Heidelberg (2000)

[MG90] Morgan, C., Gardiner, P.H.B.: Data Refinement by Calculation. Acta
Informatica 27(6), 481–503 (1990)

[MPHL06] Müller, P., Poetzsch-Heffer, A., Leavens, G.T.: Modular Invariants for
Layered Object Structures. Science of Computer Programming (2006)

16 S. Boulmé and M.-L. Potet

[NB04] Naumann, D.A., Barnett, M.: Towards imperative modules: Reasoning
about invariants and sharing of mutable state. In: LICS 2004, pp. 313–
323. IEEE Computer Society Press, Los Alamitos (2004)

[Pot02] Potet, M.-L.: Spécifications et développements formels: Etude des aspects
compositionnels dans la méthode B. Habilitation à diriger des recherches,
Institut National Polytechnique de Grenoble, décembre 5 (2002)

[SL00] Sabatier, D., Lartigue, P.: The Use of the B method for the Design and the
Validation of the Transaction Mechanism for smart Card Applications.
Formal Methods in System Design 17(3), 245–272 (2000)

Designing Old and New Distributed Algorithms
by Replaying an Incremental Proof-Based

Development

Dominique Cansell2 and Dominique Méry1,�

1 Nancy-Université, Université Henri Poincaré Nancy1 & LORIA
2 Université de Metz & LORIA

Abstract. The paper reports on practical experience with the event B
method, when developing case studies, especially distributed algorithms,
which are very complex to verify in practice. Using the event B method,
we develop a famous distributed algorithm, namely the leader election
protocol for an acyclic network, generally known as the IEEE 1394. The
algorithm exists and the refinement helps us to model it entirely in an
elegant way. The final model is very close to the real algorithm. Only
the termination proof is missing, since it is a probabilistic algorithm, as
well as the contention resolution, which is solved at a global abstract
level. Modelling is clearly fundamental and complex; it should be carried
out by persons able to use refinement and to manage abstractions or
more precisely abstract models and proofs. Advantages of such an incre-
mental development are multiple what we quote here and that will be
explained in detail. We replay the development to improve the proof pro-
cess and we obtain new distributed algorithms solving the leader election
protocol problem. Two strategies are used to build the new algorithms;
a first strategy is called the contention resolution; a second strategy is
called the contention prevention and is based on a priority among possi-
ble nodes of the network. The two resulting algorithms are cheaper than
the original IEEE 1394 protocol and neither acknowledgement, nor con-
firmation is required. We show how the techniques of localisation help in
deriving the final distributed algorithm. The paper is an extended ver-
sion of the complete development of the two new algorithms and it aims
to emphasize methodological aspects related to the event B development.

Keywords: Formal method, B event-based method, refinement,safety,
proofs, distributed systems.

1 Introduction

1.1 Playing with Proof-Based Developments

This paper shows how we re-use a previous incremental proof-based development
of a distributed algorithm [3] to discover two other simpler correct-by-construction
� Work of Dominique Cansell and Dominique Méry are supported by grant No. ANR-

06-SETI-015-03 awarded by the Agence Nationale de la Recherche.

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 17–32, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

18 D. Cansell and D. Méry

distributed algorithms: the resulting algorithm does not exist. Abstract models of
the previous development express a context that leads us to the emergence of a
simple idea using refinement and a tool which yields a new correct solution by
construction. Our methodology uses the event B method and the Click’n’Prove
tool [2], which together become a true laboratory for replaying developments.

The case study is the IEEE 1394 leader election protocol [3] in an acyclic
graph. We start the new modelling from the two first models which explain the
goal of the algorithm: election of a leader by submission. The real algorithm
uses several messages between two nodes of the graph: a submission message is
sent by a node x to a node y; when y has received the submission message, an
acknowledgement message is sent by y to x, which sends a confirmation message
to y. Our new algorithms use only the submission messages.

1.2 Modelling, Design and Verification of Distributed Algorithms

A distributed system is a set of processors able to interact with each other.
Three principal paradigms of interaction are known: Message Passing, Shared
Memory, and Local Computations. In all three paradigms the processors are rep-
resented by nodes (vertices) and the interaction links are represented by edges
(arcs) of a graph. In models based on communication, the processors interact
through ‘atomic’ communication primitives: messages can be sent and received
along the communication links (channels), or read/write operations can be ex-
ecuted on special storage registers associated with the communication links. In
local calculi, interactions between nodes are described by graph rewriting rules.
Different (sub) models of this kind can represent various forms of system ar-
chitecture on different levels of abstraction and with different levels of detail in
contact synchronisation.

The existence and description of distributed algorithms to solve a particu-
lar class of problems depends on the underlying network properties, including
modes of communication and synchronisation of neighbour nodes, the identity or
anonymity of processors, the initial states of the processors, or even knowledge
about the topology of the network as a whole. Classical theoretical frameworks
and notations, such as CSP, turn out to be cumbersome in describing certain
distributed algorithms; they do not always reveal their characteristics and lim-
itations and do not always support the formal proof of essential properties.
In fact, CSP is a model for parallel and distributed computing based on the
rendez-vous mechanism; it expresses concrete aspects. However, it is not a fea-
ture specific to CSP and distributed solutions are generally expressed in a too
concrete programming language. Abstraction makes the design of distributed
systems easier.

Many models related to local computation systems have been already in-
troduced, as defined by Rosenstiehl et al. [15], Angluin [4], Yamashita and
Kameda [11]. In [15] a synchronous model is considered, where vertices rep-
resent (identical) deterministic finite automata. The basic computation step is
to compute the next state of each processor according to its state and the states of

Designing Old and New Distributed Algorithms 19

its neighbours. In [4] an asynchronous model is considered. A basic computation
step means that two adjacent vertices exchange their labels and then compute
new labels. In [11], an asynchronous model is studied where a basic computation
step means that a processor either changes its state and sends a message or it
receives a message. In [7], networks are directed graphs coloured on their arcs;
each processor changes its state depending on its previous state and on the
states of its in-neighbours. All these models are concerned with local and global
properties of networks and graphs.

In this context, the verification and design of distributed algorithms need to
discover how the original algorithm has been designed; generally, verification
techniques are based on the construction of abstractions of current distributed
systems. In the case of distributed systems or algorithms, it is clear that the
local states are elements of a global state and each site or each node has only a
local view. Distributed systems are modelled using techniques based on non de-
terminism and fairness constraints. For instance, the I/O automata of Lynch [13]
or TLA+ [12] are two good examples of formalisms for expressing distributed
systems or algorithms; the event B methodology provides concepts and tools
for designing distributed algorithms by starting from very centralized views or
models and then by introducing distribution.

1.3 Proof-Based Development for Distributed Algorithms

Proof-based development methods [1,5] integrate formal proof techniques in the
development of software systems. The main idea is to start with a very abstract
model of the system under development. Details are gradually added to this first
model by building a sequence of more concrete ones. The relationship between
two successive models in this sequence is that of refinement [1,5]. The essence of
the refinement relationship is that it preserves already proved system properties
including safety properties and termination.

A development gives rise to a number of, so-called, proof obligations, which
guarantee its correctness. Such proof obligations are discharged by the proof tool
using automatic and interactive proof procedures supported by a proof engine [2].

At the most abstract level it is obligatory to describe the static properties of
a model’s data by means of an “invariant” predicate. This gives rise to proof
obligations relating to the consistency of the model. They are required to ensure
that data properties which are claimed to be invariant are preserved by the
events or operations of the model. Each refinement step is associated with a
further invariant which relates the data of the more concrete model to that of the
abstract model and states any additional invariant properties of the (possibly
richer) concrete data model. These invariants, so-called gluing invariants are
used in the formulation of the refinement proof obligations.

The goal of a B development is to obtain a proved model. Since the develop-
ment process leads to a large number of proof obligations, mastering the proof
complexity is a crucial issue. Even if a proof tool is available, its effective power is

20 D. Cansell and D. Méry

limited by classical results over logical theories and we must distribute the com-
plexity of proofs over the components of the current development: this can be
achieved by refinement. Refinement has the potential to decrease the complexity
of the proof process whilst allowing for traceability of requirements.

B Models rarely need to make assumptions about the size of a system being
modelled, e.g. the number of nodes in a network. This is in contrast to model
checking approaches [10]. The price to pay is to face possibly complex math-
ematical theories and difficult proofs. The re-use of developed models and the
structuring mechanisms available in B help to decrease the complexity. Where B
has been exercised on known difficult problems, the result has often been a sim-
pler proof development than has been achieved by users of other more monolithic
techniques [14]; we have redeveloped the distributed algorithm [8] by proof-based
refinement.

1.4 Summary of the Paper

Section 2 presents the event B method for developing distributed algorithms.
Section 3 analyses the leader election problem and gives details on the two first
common models of the development. In Section 4, we present the application
of two stategies for addressing the question of the contention; the first class of
solutions correspond to the contention resolution strategy and the second class
of solutions is based on the avoidance of contention using priority counters. The
two new algorithms are obtained from each class and do not require acknowl-
edgements. Section 5 provides a sketch of the localisation techniques. Finally,
section 6 concludes the paper.

2 Proof-Based Developments of Distributed Algorithms
in Event B

Using the event B method, we have developed a famous distributed algorithm
- the leader election protocol in an acyclic network namely the IEEE 1394 pro-
tocol. The complete development provides a sequence of B models, which give
a progressive description of the final algorithm. The main result is the effective
development of a complete algorithm with a documentation validated by proofs.
B models provide explanations of the principles of the election; the final B model
was very close to the real protocol. The proof of invariants was made easier by
the use of the refinement and by applying the principle of the parachutist who
is approaching a target and who is discovering the reality of the target. Only
the termination proof is not given, since the termination of the algorithm is
probabilistic; we are currently analysing the refinement of B models to intro-
duce concepts related to time constraints that are mentioned in the final version
of the IEEE 1394. This analysis is out of the scope of this paper. Modelling is
a tough activity and must be led by experts using refinement and abstraction.

Designing Old and New Distributed Algorithms 21

Advantages of such an incremental proof-based development are quoted here and
are as follows:

– a progressive comprehension of the algorithmic process, because we used the
refinement to introduce details of the algorithm in a gradual way.

– a discovery of errors of modelling detected and corrected via the proof.
– the presentation in a progressive way of such an algorithm allows our stu-

dents and our colleagues to understand our development more easily and a
posteriori. Our explanations are made easier by abstract descriptions.

– this can be achieved as explanations can be given to the customer, a priori,
when a model is being constructed.

– evidence, that it is easier to prove abstract models. For technical refinements
related to localisations, some proof obligations may no longer be automat-
ically discharged because there are too many assumptions. In general this
evidence is often technical and comprehensible. However, in general, our
students manage to discharge automatic proof obligations and lightly inter-
active proof obligations: generally, only one remains unproved and is the
most tricky one.

The IEEE 1394 case study enabled us to state a methodology of development
for distributed algorithms and we reuse the first two models of the develop-
ment [3]:

– The starting phase is an abstract model - called the one-shot model - and
it expresses the specification of the problem to solve. It has only one event,
which is modelling the execution of the whole computation process; the event
defines a pre/post specification in the event B modelling language. The event
is a computation relation and does not express any execution model.

– A second phase of modelling gradually introduces the essence of the algo-
rithm, namely the submission; the first refinement produces a refinement
model based on an induction principle over a tree structure. This refinement
model includes two events; one event corresponds to a refined version of
the election, the second event models the induction step helping the tree-
like structure to converge to a unique tree-like structure with a unique root
node. The induction step is based on a submission principle - a node x sends
a submission message to a node y and accepts the principle of submission
(slave/master). We note that this is the most difficult proof to carry out
in an interactive way and we claim that this proof would have been very
difficult in a more concrete model.

– A third phase adds the management of messages between nodes; a node may
send message to its neighbours and may receive messages from its neigh-
bours. The network is still abstract and the information is still global. New
events are defined to model the submission messages, the acknowledgement
messages and the confirmation messages.

– A fourth phase localises global data and global variables; the knowledge per
node is effectively local. The decision of localisation is taken late, since the
technical proofs are easier in the lower abstract levels. If the localisation is

22 D. Cansell and D. Méry

not possible, it may be possible that the algorithmic principles introduced in
the previous refinement steps do not allow a distribution of data and actions.
A solution would be to improve the previous refinement models.

The first phase is a very crucial step; the underlying mathematical theory should
be precisely defined. In the IEEE 1394 case study, the definitions of trees, graphs,
induction over trees, etc should have been stated in the set-theoretical language;
the problem has been stated in the mathematical theory and theorems, such as
the existence of a spanning tree for any acyclic graph. Many properties for data
structures are generally proved in algorithmic books and should be integrated
in a safe way; the proof tool helps us to discharge the proofs of these properties.
The effort involved in these proofs, is important; it will be done only one time
and will be integrated into a library of proved theories.

When the algorithm exists, the last model should be close to the algorithm;
it helps us in our refinement steps; it allows us to understand how the algorithm
is working and to extract at an abstract view of the algorithm. The main ad-
vantage of an incremental development is not to construct the final algorithm,
but the incremental development collects much information about the algorithm
that solves the problem and about the mathematical properties related to that
problem.

It is possible to modify proved models or to start a new development from any
model; for instance, the IEEE 1394 protocol leader election solves contention by
a mechanism based on the choice of a timeout delay. In our first development,
we decided to choose the higher node in the two competing nodes. This choice
of refinement led to a new algorithm which is possible and correct with respect
to the requirements. Another consideration is the complexity of the proof; is
it possible to write a simpler proof of the property that is difficult to prove?
How can we simply prove that the last step of the algorithm determines the
leader among two possible candidates rather that allow two pairs of nodes in
the network compete for the leadership? Can we find a more efficient algorithm?
For instance, the efficiency of a distributed algorithm is based on the number of
messages which are required for a given task. The analysis of the proved models
shows us that a new invariant simplifies the interactive proofs. We present the
first two models of the development [3].

3 Analysis of the Leader Election Problem

3.1 Formalizing the Leader Election Problem in Event B

This first step is crucial in the event B development. It aims to state the leader
election problem in a event B model, which expresses the properties of data
structures and the existence of a solution. The data structures used are undi-
rected acyclic graph. The solution exists if there is a directed spanning tree for
each node considered as a root. The initial model is called ELECTION 1 and
simply gathers definitions:

Designing Old and New Distributed Algorithms 23

definitions

tree (r, N, t) =̂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r ∈ N
t ∈ N − {r} → N

∀q ·

⎛⎜⎜⎜⎜⎝
q ⊆ N ∧
r ∈ q ∧
t−1 [q] ⊆ q

=⇒
N ⊆ q

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
spanning (r, t, g, N) =̂ tree (r, N, t) ∧ t ⊆ g

– N stands for the set of nodes in the graph.
– t is a relation conforms to g; it defines a tree over g.
– r is the root of the tree defined by t.

and properties as follows:
N is the (finite) set of nodes and g is a symmetric and irreflexive graph such

that each node x is the root of a unique spanning tree f(x) of the graph.

properties

g ⊆ N × N
g = g−1

id (N) ∩ g = ∅
f ∈ N → (N �→ N)
∀(r, t) · (r ∈ N ∧ t ∈ N �→ N =⇒ t = f(r) ⇔ spanning (r, t, g, N))

f states that a unique spanning tree for g can be assigned to each node; f
is a total function over N defining the tree assigned to a given node. The first
abstract model only has the event elect1 which expresses the election of l and
builds the spanning tree s in one shot:

elect1 =̂ any x where x ∈ N then l, s := x, f(x) end

3.2 First Algorithmic Model of the Leader Election Problem

The second model introduces the submission algorithm. A node x who has been
asked to be the leader by each neighbour, is in fact the leader of the global
network. The new refined event elect2 has a guard checking the condition of the
election. The event progress2 can be triggered, when each neighbour of a given
node x has asked him to be the leader, but if one neighbour y of x has not asked;
the node x becomes the child of y. The progress is ensured by the convergence
of the current forest towards a spanning tree, which exists by properties of the
mathematical structure.

24 D. Cansell and D. Méry

The leader election problem is characterized by definitions of acyclic undi-
rected graphs and the event elect1 which expresses the proved [3] existence of a
directed spanning tree for each node. The next goal is to refine the current model
ELECTION 1 to obtain a model ELECTION 2 which is more algorithmic than
ELECTION 1 .

This refinement introduces the essence of the algorithm: the process of election
is based on submission. The submission is atomic: two nodes x and y, where x
has accepted the submission of all its neighbours except y, gives its submission
to y and y accepts the submission. The model ELECTION 2 introduces a new
event which simulates the progressive computation of the directed spanning tree;
the process models an inductive step and provides a simple expression of the
convergence of a forest toward a tree. The model ELECTION 2 has an event
progress2 which helps the process to reach the tree. The guard is true for two
nodes x and y, when x is the root of the forest and y is a neighbour of x under
the relation defining the underlying graph structure. Its effect is to add the link
which makes the node x the child of y in t. When x has accepted the submission
of all its neighbours, the event elect2 can be triggered.

progress2 =̂
any x, y where

x �→ y ∈ g ∧
x /∈ dom (t) ∧
y /∈ dom (t) ∧
g[{x}] = t−1[{x}] ∪ {y}

then

t := t ∪ {x �→ y}
end

elect2 =̂
any x where

x ∈ N ∧
g[{x}] = t−1[{x}]

then

l, s := x, t
end

The difficulty is in proving the refinement of the event elect1 by the event
elect2. The problem is to prove that, when each neighbour of a node x is its
child, then the resulting structure t is a spanning tree for g rooted by x: f(x)
returns the tree t. The invariant expresses the fact that the set of spanning trees
converge towards a spanning tree.

t ∈ N �→ N
t ∩ t−1 = ∅
dom (t) � (t ∪ t−1) = dom (t) � g

The invariant states that t is a partial function over N (t is intended to
model the functional relation called be the child of); t is asymmetric. The third
sentence expresses the progression of the process and the fact that only one edge
is chosen for the tree t (either x to y or y to x); moreover, t is g up-to the
reverse. The property x /∈ dom(t) is required and is proven automatically by
the automatic prover (predicate prover). The next difficult step is the proof of
N ⊆ {n|n ∈ N − {x} ∧ n �→ f(x)(n) ∈ t} ∪ {x} which is discharged using
the induction principle over the spanning tree rooted by x; f(x) and t are in

Designing Old and New Distributed Algorithms 25

fact equal on N − {x} and x is not in their domain; hence, f(x) and t are equal
on N .

The proof summary of the first model is 12 proof obligations generated by the
tool and 5 proved by interaction.

The next proof is to show that there are at most two nodes x and y such that
x and y are neighbours and are not yet in the tree t under construction: if y
(resp. x) requests to x to be its child (y �→ x ∈ g and x /∈ dom(t)), then y �→ x is
appended to the set t, which is f(x) and symmetric for x and y. One concludes
that t ⊆ f(x) and t ⊆ f(y). Both properties x /∈ dom(t) and y /∈ dom(t) are
discharged. The idea is to propose an invariant expressing this fact:

∀ x · (x ∈ N − dom (t) =⇒ t ⊆ f(x))

In fact, the additional invariant tells us simply that a spanning tree always exists
and that each node not in the domain of t is a candidate for the leadership and
that node may become the leader. The leadership can be constrained by a vari-
able attached to each node. A boolean variable, called root, forbids (freezes) the
submission to the current node. Only one node should have a local variable root
set to true, if one wants to avoid the deadlock. Consequently, if a node wants to
be the leader, he/she can decide to wait requests from his/her neighbours; how-
ever, if two nodes are using the same strategy, the global system will deadlock.
The refinement proof is based on the property dom(t) = N − {x}, whose proof
is divided into the following steps:

1. x /∈ dom(t): automatically discharged by the predicate prover.
2. N ⊆ dom(t) ∪ {x}: the proof is based on the induction principle over

the spanning tree rooted by x f(x); the universally quantified variable is
instantiated by dom(t) ∪ {x}. After this instantiation, the predicate prover
automatically discharges the waiting goal.

This proof summary of the first refinement is 10 proof obligations generated by
the tool, two of which require interaction. The proof of the two last nodes is
based on:

∀ (x, y) ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x �→ y ∈ g ∧
x /∈ dom (t) ∧
y /∈ dom (t) ∧
g[{x}] = t−1[{x}] ∪ {y} ∧
g[{y}] = t−1[{y}] ∪ {x}

=⇒
dom (t) = N − {x, y}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The property is proved using the same induction principle over spanning trees
f(x) and f(y); the universally quantified variable is instantiated by dom(t) ∪
{x, y}. The current state of the development refers to a first model expressing
the one-shot election ELECTION 1 and a second model ELECTION 2 refining

26 D. Cansell and D. Méry

NEW_PRORITY

ELECTION2

ELECTION1

ACK NO_ACK

IEEE1394 PRIORITY NEW_IEEE1394

Fig. 1. Proof-based development for the leader election problem

ELECTION 1 (see the figure 1). Deadlock-freeness is proved by adding the con-
dition that at least one event is triggered; the graph is connected and only two
nodes can be in contention. In fact, the global process is a set of trees converging
to a tree.

The next step is crucial, since it prepares the distribution of models by in-
troducing messages. The localisation of variables should be delayed as far as
possible, while refining models: proofs are generally less complex on abstract
models. Before we give the next refinements, we should recall that the first proof-
based development of the IEEE 1394 leader election protocol [3] was based on a
description using a C-like programming language, where we had misunderstood
how the contention problem was solved. The contention problem is either solved,
or avoided:

– avoidance of contention is ensured by a mechanism of priority between nodes;
since at most two nodes may be in contention, we elect the node with the
highest priority to be the leader; the solution requires a total ordering over
nodes and the identification of each plugged component: refinement model
PRIORITY(see [9] for details of the development).

– resolution of contention is solved by a probabilistic mechanism; when two
nodes are in contention, both go back to the state before sending a message to
the other node, as long as the contention state is happening; there may exist
an infinite sequence of contention states but under probabilistic assumption,
the contention is solved: IEEE1394 [3].

Both solutions use acknowledgements and we have located both solutions under
the node ACK. We now show that acknowldgement messages can be removed

Designing Old and New Distributed Algorithms 27

and we can partially replay both designs of algorithm and derive two new so-
lutions without acknowledgements (see, in the figure 1, the two solutions under
the node NO ACK).

4 The Leader Election Protocol without
Acknowledgement

The development of the two new distributed algorithms shares events, which are
independant on the contention problem. In order to improve the presentation, the
first subsection describes events not related to the contention management; the
second subsection addresses the contention resolution and the use of unnamed
nodes; the last subsection derives a solution without acknowledgement and is
based on the priority counters for avoiding the contention.

4.1 Contention-Free Development Part

In our initial work [3], we introduced events for managing messages during the
second refinement. Since messages were followed by one acknowledgement (ack),
we should also model confirmations (t). We discovered that there were confirma-
tions, when we localised the graph and the variables. The call for the workshop
dedicated to the protocol IEEE 1394 asked whether confirmations were neces-
sary. At that time, we answered yes. The current work answers no, because we
can assert that acknowledgements, and then confirmations, are not required. On
the other hand, we can not remove the sending of messages. The event progress
is introduced and the node x sends a message to y; the reader will notice that
the message is sent only, if x did not yet accept the submission of y (y �→ x /∈ t)
and that x did not send yet its message (x /∈ dom (m)):

send msg3 =̂
any x, y where

x �→ y ∈ g ∧
g[{x}] = t−1[{x}] ∪ {y} ∧
y �→ x /∈ t ∧
x /∈ dom (m)

then

m := m ∪ {x �→ y}
end

progress3 =̂
any x, y where

x �→ y ∈ m − t ∧
y /∈ dom (m)

then

t := t ∪ {x �→ y}
end

The abstract event progress expresses that a node y, whose neighbour x has
asked to be its child, has got the message and has accepted the parenthood of
x. In the previous version, the node y receives the message of x (x �→ y ∈ m))
and y did not yet accept it (x �→ y /∈ t); y can also be in the situation of sending
a request itself and it did not send a message (y /∈ dom (m)). Invariants are
based on invariants of our previous work, but are much simpler and are simpler
because ack and t are not in our models.

28 D. Cansell and D. Méry

The first three lines express typing information and inclusion properties: mes-
sages follow the route of the graph. The fourth line expresses that, if x has sent
a message to y (x �→ y ∈ m), then x is in a submission status and x accepts that
y is its parent (g[{x}] = t−1[{x}] ∪ {y}).

m ∈ N �→ N
t ⊆ m
m ⊆ g
∀ (x, y) ·

(
x �→ y ∈ m =⇒ g[{x}] = t−1[{x}] ∪ {y}

)
4.2 Contention Resolution

x �→ y ∈ m − t
y ∈ dom (m)

The guard of progress3 is not validated,
when x has sent a message to y and
when y has sent a message.

The current events arenot enough for reacting to this state and the currentmodel
is completed by a new event contention3, which discovers the contention status and
which reacts to the previous guard. We have now two new events for managing
contention: contention3 discovers the contention and solve contention3 solves the
contention. A contention channel called c is used to control the contention status.

contention3 =̂
any x, y where

x �→ y ∈ m − (t ∪ c) ∧
y ∈ dom (m)

then

c := c ∪ {x �→ y}
end

solve contention3 =̂
any x, y where

x ∈ N ∧ y ∈ N ∧
c = {x �→ y, y �→ x}

then

m := m − c ‖
c := ∅

end

In the new invariant, if x has sent a message to y and if y has sent a message
y ∈ dom (m), then y has sent its message to x (no other choice) and this message
was not yet confirmed (y �→ x ∈ m − t). It includes properties satisfied by the
variable c.

∀ (x, y) ·

⎛⎜⎜⎝
x �→ y ∈ m − (t ∪ c)
y ∈ dom (m)

=⇒
y �→ x ∈ m − t

⎞⎟⎟⎠
c ⊆ m
t ∩ c = ∅
∀ (x, y) · (x �→ y ∈ c =⇒ y �→ x ∈ m − t)

The proof summary of the new refinement is: 33 proof obligations are generated
by the tool and no interaction is necessary. At this point, we know that

Designing Old and New Distributed Algorithms 29

confirmations are not necessary and confirmations can not be justified by lossy
channels. The number of messages is three times less than in the first develop-
ment. As long as a node which has sent a message, does not get a message from
another node, there is no contention; if there is a problem on the protocol, the
timeout mechanism allows us to reinitialise the protocol for a new election. The
current model is called NEW IEEE1394 and it can be refined to localise variables.

4.3 Contention Prevention

Another way to deal with the contention problem is to use a priority technique,
which will avoid the contention. The solution was discovered after a misunder-
standing of the IEEE 1394 initial solution and we did not know it. In fact, the
solution was mentionned by N. Lynch [13] and was first proposed by D. An-
luin [4].

When two nodes are in contention (and at most two nodes can be in con-
tention, proved mechanically and formally), each node can not send an acknowl-
edgement to the other node; one of them should not be able to send this ack
and the other one must do it. The main idea is to introduce a unique counter
called ctr and it means that each node is uniquely identified and must be iden-
tifiable. The assumption is that there is a mechanism for naming. ctr is a total
injection from Nodes into natural numbers. In a real network, one can assume
that equipment might be uniquely identified by an unique address, for instance,
but it is not the general rule.

The new event is called avoid solve cnt3. Like for send ack3, it adds the pair
x �→ y to t.

avoid solve cnt =
any x, y where

x �→ y ∈ m − t ∧ y ∈ dom (m) ∧ ctr(x) < ctr(y)
then

t := t ∪ {x �→ y}
end

The two differences with the guard of event progress3 concern the condition
y ∈ dom (m), which is true in avoid solve cnt and false in progress3 and the guard
ctr(x) < ctr(y) is added to the event avoid solve cnt. Since ctr is an injection,
both nodes x and y can not be triggered concurrently. The proof of the invariant
requires the following additional invariant:

∀ (x, y) ·
((

x �→ y ∈ t ∧
y �→ x ∈ m

)
=⇒ ctr(x) < ctr(y)

)

The proof summary of the current refinement is: 13 proof obligations are
generated by the tool and no interaction is necessary. The current model is
called NEW PRIORITY and it can be refined to localise variables.

30 D. Cansell and D. Méry

5 Localisation of Events and Data

The final step is to localise information on the events and the data. For instance,
we have localised the graph g by the constants n (for neighbour) and the variable
t with the variable b like in our previous work [3]. The gluing invariant is required
to localise information. For instance, the event elect is a refined version of the
initial event of the model ELECTION 1 and the guard is expressed using n(x)
and b(x) which are related to the definition of g and t by the gluing property
(for n) and by the gluing invariant (for b).

n ∈ N → P(N)

∀x · (x ∈ N =⇒ n(x) = g[{x}])

b ∈ N → P(N)

∀x · (x ∈ N =⇒ b(x) = t−1[{x}])

elect =̂
any x where

x ∈ N ∧
n(x) = b(x)

then

l := x
end

The final refinement of NEW IEEE1394 leads to the modelling of wires. For
each node, the variable D specifies the state (high or low) of the wire be-
tween neighbours. If y ∈ dom(D(x)), then there exists a wire between x and
y. D(x)(y) = low if x does not accepted the submisson from y. Variable B is
a function with gives the state of a node. This state allows us to determine if
the node has sent a message. We have substituted variables d (resp. bm) by D
(resp. by B). M stands for the messages, which are effectively moving in the real
network, since we have the property m = M ∪ t ∪ c. We have introduced this
model in several refinement steps.

d(x) = n(x) − b(x)
r(x) = card(d(x))
D ∈ N → (N �→ {low, high})
∀x · (x ∈ N =⇒ dom (D(x)) = n(x))
∀x · (x ∈ N =⇒ d(x) = D(x)−1[{low}])

B ∈ N → {low, high})
bm = dom(m)
bm = B−1[{high}]

send msg9 =̂
any x, y where

x ∈ N ∧
B(x) = low ∧
y ∈ D(x)−1[{low}] ∧
r(x) = 1

then

M := M ∪ {x �→ y} ‖
B(x) := high

end

progress9 =̂
any x, y where

x �→ y ∈ M ∧
B(y) = low

then

D(y)(x) := high ‖
r(y) := r(y) − 1 ‖
M := M − {x �→ y}

end

The proof summary of the fourth refinement is: 20 (9+11) proof obligations
are generated by the tool and 7 (3+4) among them require interaction. We

Designing Old and New Distributed Algorithms 31

do not give the complete set of events of the last models but note that the
localisation is systematic, as long as information of each node contain localisable
information.

6 Conclusion and Future Work

The current work is a general presentation of work on the leader election prob-
lem in a distributed environment. We have used the development of the
classical leader election protocol of the IEEE 1394 and we propose an
improvement of the classical solution. Two new algorithms are developed in-
crementally by replaying previous developments and we show that acknowledge-
ments are not needed in the leader election protocol. We have shown that a
proof-based development can be easily reused to improve and/or discover new
distributed algorithms. The new algorithm is still working like a submission
algorithm but the traffic of messages is simpler. We replay from our previ-
ous development starting from the model which introduces messages. The call
for the workshop dedicated to the protocol IEEE 1394 asked whether con-
firmations were necessary. At that time, we answered yes. The current work
answers no, because we can assert that neither acknowledgements, nor confir-
mations are required. On the other hand, we can not remove the sending of
messages.

Proof summary for the first three models of the four leader election algorithms
is given in the array as follows:

Models Number of
proof obliga-
tions

Number of
interactive
steps

ELECTION 1 2 1
ELECTION 2 10 2

IEEE1394 41 0
PRIORITY 31 2

NEW IEEE1394 33 0
NEW PRIORITY 13 0

TOTAL 120 5

The localisation refinement requires the same proof obligations as those in the
initial development in [3] and in [9] for PRIORITY. Future work will apply the
incremental development on other distributed algorithms.

Acknowledgments. We thank J.-R. Abrial for his fruitful advices and com-
ments. Rosemary Monahan reads and annotates a current version; she adds
english language in our text; thanks for your advices. Finally, a referee gives a
very detailed report on our paper and allows us to improve the understanding
of the final version; we thank you.

32 D. Cansell and D. Méry

References

1. Abrial, J.-R.: The B book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R., Cansell, D.: Click’n prove: Interactive proofs within set theory. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 1–24. Springer,
Heidelberg (2003)

3. Abrial, J.-R., Cansell, D., Méry, D.: A Mechanically Proved and Incremental Devel-
opment of IEEE 1394 Tree Identify Protocol. Formal Aspects of Computing 14(3),
215–227 (2003)

4. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the 12th Symposium on theory of computing, pp. 82–93 (1980)

5. Back, R.: On correct refinement of programs. Journal of Computer and System
Sciences 23(1), 49–68 (1979)

6. Bjørner, D., Henson, M.C. (eds.): Logics of Specification Languages. EATCS Text-
book in Computer Science. Springer, Heidelberg (2007)

7. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Pro-
ceedings of the 18th ACM Symposium on principles of distributed computing, pp.
181–188 (1999)

8. Cansell, D., Méry, D.: Formal and incremental construction of distributed algo-
rithms: On the distributed reference counting algorithm. Theoretical Computer
Science (2006)

9. Cansell, D., Méry, D.: The event-B Modelling Method: Concepts and Case Studies,
pp. 33–140. Springer, Heidelberg (2007); See [6]

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

11. Kameda, T., Yamashita, M.: Computing on anonymous networks: Part i - char-
acterizing the solvable cases. IEEE Transactions on parallel and distributed sys-
tems 7(1), 69–89 (1996)

12. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Reading (2002)

13. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Fran-
cisco (1996)

14. Moreau, L., Duprat, J.: A Construction of Distributed Reference Counting. Acta
Informatica 37, 563–595 (2001)

15. Rosenstiehl, P., Fiksel, J.-R., Holliger, A.: Intelligent graphs. In: Read, R. (ed.)
Graph theory and computing, pp. 219–265. Academic Press, New York (1972)

Ten Reasons to Metamodel ASMs

Angelo Gargantini1, Elvinia Riccobene2, and Patrizia Scandurra1

1 Dip. di Ingegneria dell’Informazione e Metodi Matematici,
Università degli Studi di Bergamo, Italy

angelo.gargantini@unibg.it, patrizia.scandurra@unibg.it
2 Dip. di Tecnologie dell’Informazione, Università degli Studi di Milano, Italy

elvinia.riccobene@unimi.it

Abstract. Model-Driven Engineering (or MDE) is an emerging approach
for system development which refers to the systematic use of models as
primary engineering artifacts throughout the engineering lifecycle. MDE
puts emphasis on bridges between different working contexts and on the
integration of bodies of knowledge differently developed. We discuss the
mutual advantages that the integration of MDE and Abstract State Ma-
chines (ASMs) would provide: MDE can gain rigour and preciseness, while
ASMs get a standard abstract notation and a general framework for a wide
tool interoperability.

Introduction

Model-driven Engineering (MDE) [12] is an emerging approach for software de-
velopment and analysis where models play the fundamental role of first-class ar-
tifacts. Metamodelling is a key concept of the MDE paradigm and it is intended
as a modular and layered way to endow a language or a formalism with an ab-
stract notation, so separating the abstract syntax and semantics of the language
constructs from their different concrete notations. Furthermore, metamodelling
allows to settle a “global framework” to enable otherwise dissimilar languages
(of possibly different domains, the so called Domain-specific languages) to be
used in an interoperable manner in different technical spaces, namely working
contexts with a set of associated concepts, knowledge, tools, skills, and possi-
bilities. Indeed, it allows to establish precise bridges (or projections) among the
metamodels of these different domain-specific languages to automatically exe-
cute model transformations.

To achieve the goal of a global interoperability and merging of bodies of
knowledge with rigor and preciseness, an integration of the MDE paradigm with
formal methods is necessary [23].

This is a position paper mainly aimed at explaining the feasibility and the
advantages of the proposed integration in the context of the Abstract State
Machines (or ASMs).

We strongly believe that applying the MDE approach to ASMs is worthwhile
at least for the following ten reasons, later discussed: (R1) to have a standard
abstract notation as unified representation of ASM concepts independent of any

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 33–49, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

34 A. Gargantini, E. Riccobene, and P. Scandurra

particular implementation platform; (R2) to have a graphical representation of
ASMs also useful for teaching purposes; (R3) to have an interchange format
among ASM tools; (R4) to have standard libraries and APIs to use in new or
existing tools and programs; (R5) to automatically derive a family of languages,
visual/textual notations and their parsers; (R6) to allow tool interoperability;
(R7) to help the integration of existing tools; (R8) to help the development of new
tools; (R9) to export ASMs to other environments and permit the integration
with other specialized external notations and tools (for instance for property
verification and testing); and last but not least, (R10) to complement the MDE
with a formal approach.

The overall goal of our project is to develop a unified abstract notation for
ASM and a general framework for a wide interoperability and integration of
tools around ASMs. We started by defining the AsmM, a metamodel for ASMs,
in [28,10]. We have, therefore, developed the ASMETA framework [10] as an
instantiation of the metamodelling framework for ASMs, to create and handle
ASM models exploiting the advantages offered by the metamodelling approach
and its related facilities (in terms of derivatives, libraries, APIs, etc.). ASMETA
provides a global infrastructure for interoperability of ASM application tools
(new and existing ones) including ASM model editors, ASM model repositories,
ASM model validators, ASM model verifiers, ASM simulators, ASM-to-Any code
generators, etc.

Each reason stated above may not suffice to justify the effort of developing a
complex metamodel as AsmM, but we hope that all together will convince even
the most skeptical reader that the application of the MDE approach to ASMs
is worthwhile. Note that not only ASMs would benefit from this approach: we
expect that new synergies arise and that the cooperative interaction among
ASMs and MDE creates an enhanced combined effect - as outlined in R10.

R.1 To Have a Standard Abstract Notation

The success of the ASM as a system engineering method able to guide the
development of hardware and software systems, from requirements capture to
their implementation, is nowadays widely acknowledged [14]. The increasing
application of the ASMs for academic and industrial projects has caused a
rapid development of tools for ASM model analysis, namely simulation, prop-
erty verification, and test generation. Among these tools we can cite Asm-
Gofer [43], AsmL [8], Xasm [50], TASM [45], ASM workbench [15,49], CoreASM
[18], ATGT [11] and other tools based on model checkers and theorem provers
[25,49,26,42,20].

To encode ASM models, each tool uses a different syntax strictly depending
on the implementation environment (C for XASM, Gofer for AsmGofer, .NET
for AsmL, etc.), adopts a different internal representation of ASM models, and
provides proprietary constructs which extend the basic mathematical concepts
of ASMs. There is no agreement around a common standard ASM language.
The result is that a practitioner willing to use an ASM tool needs to know its

Ten Reasons to Metamodel ASMs 35

own syntax and that most ASM researchers still use their own ASM notation,
normally not defined by a grammar but in terms of mathematical concepts.
Moreover, due to the lack of abstractness of the tool languages, the process
of encoding ASM models is not always straightforward and natural, and one
needs to map mathematical concepts, like ASM states (namely universes and
functions defined on them), into types and structures provided by the target
language.

To achieve the goals of developing a unified abstract notation for ASM, a
notation independent from any specific implementation syntax and allowing a
more direct encoding of the ASM mathematical concepts and constructs, and
tackling the problem of ASM tool interoperability and integration, we exploited
the metamodelling approach suggested by the MDE.

According to the MDE terminology, a metamodel defines the abstract syntax
of a language, i.e. the structure of the language, separated from its concrete
notation. A metamodel-based abstract syntax definition has the great advan-
tage of being suitable to derive from the same metamodel (through mappings
or projections) different alternative concrete notations, textual or graphical or
both, for various scopes like graphical rendering, model interchange, standard
encoding in programming languages, and so on. Therefore, a metamodel could
serve as standard representation of a formal notation, establishing a common
terminology to discriminate pertinent elements to be discussed, and therefore,
helps to communicate understandings, especially if – as in the case of ASMs – the
formal method is still evolving and the community is too much heterogeneous to
easily come to an agreement on an unique textual notation. Note that the goal
of achieving a standrad and lean syntax for ASM specifications is shared with
the CoreASM project [18].

In [10,28], a complete metamodel for ASMs is presented. As MDE framework,
we adopted the OMG’s metamodelling platform. The AsmM (Abstract State
Machines Metamodel) results into class diagrams developed using the MOF (the
OMG’s metalanguage to define metamodels) modelling constructs (classes, pack-
ages, associations). We developed the metamodel in a modular and bottom-up
way. We started separating the ASM static part represented by the state, namely
domains, functions and terms, from the dynamic part represented by the transi-
tion system, namely the ASM rules. Then, we proceeded to model Basic ASMs,
Turbo ASMs, and Multi-Agent (Sync/Async) ASMs, so reflecting the natural
classification of abstract state machines.

The complete metamodel is organized in one package called ASMETA, which
is further divided into four packages as shown in Fig. 1. Each package covers
different aspects of ASMs. The dashed gray ovals in Fig. 1 denote the packages
representing the notions of State and Transition System, respectively.

The Structure package defines the architectural constructs (modules and
machines) required to specify the backbone of an ASM model. The Definitions
package contains all basic constructs (functions, domains, constraints, rule
declarations, etc..) which characterize algebraic specifications. The Terms

36 A. Gargantini, E. Riccobene, and P. Scandurra

Fig. 1. Package structure of the ASM Metamodel

package provides all kinds of syntactic expressions which can be evaluated in a
state of an ASM. The TransitionRules package contains all possibl transition
rules schemes of Basic and Turbo ASMs. All transition rules derived from ba-
sic and turbo ones (e.g. the case-rule and the while-rule) are contained in the
DerivedTransitionRules package.

Each class of the metamodel is equipped with a set of relevant constraints,
OCL (version 2.0 [34]) invariants written to fix how to meaningfully connect
an instance of a construct to other instances, whenever this cannot be directly
derived from the class diagrams. All OCL constraints have been syntactically
checked by using the OCL checker OCLE [36].

In order to make AsmM able to support the languages of existing ASM tools,
we have enriched the metamodel with particular forms of domains, special terms
and derived rule schemes taken from these languages (see [28] for details). We
have borrowed some extended terms including conditional terms and comprehen-
sion terms from ASM-SL, maps, sets and sequences from AsmL. Named rules
with parameters (RuleDeclaration) appear in ASM-SL, while the concepts of
submachine computation, iteration, and recursion, modelled in the AsmM re-
spectively by the classes SeqRule and IterateRule, can be found in XASM as
well as in AsmL (with an Object Oriented style, though). The agent represen-
tation in the AsmM is similar to the agents of AsmGofer, although Agents is
an abstract domain in our metamodel, while Agent is a integer domain in As-
mGofer. In Sect. R.9, we clarify how the metamodel is able to capture all all
forseeable features of a possible ASM language; therefore, AsmM can be used as
standad reference syntax.

R.2 To Have a Graphical Abstract Notation

People often claim that formal methods are too difficult to put in practice due
to their mathematical-based foundation. In this direction an abstract and visual

Ten Reasons to Metamodel ASMs 37

Fig. 2. Backbone

representation1, like the one provided by a MOF-compliant metamodel, delivers
a more readable view of the modelling primitives offered by a formal method, es-
pecially for people, like students, who do not deal well with mathematics but are
familiar with the standard MOF/UML. Therefore, the AsmM can be considered
a complementary approach to [14] for the presentation of ASMs.

We here give evidence of how the metamodel can be useful to introduce ASMs.
We present only a very small fragment of the AsmM whose complete description
can be found in [28,10].

Fig. 2 shows the backbone of a basic ASM. An instance of the root class Asm
represents an entire ASM specification. According to the working definition given
in [14], a basic ASM has a name and is defined by a Header (to establish the
signature), a Body (to define domains, functions, and rules), a main rule, and a
set of initial states (instances of the Initialization class). Executing a basic
ASM means executing its main rule starting from one specified initial state, i.e.
the one denoted by the association end defaultInitialState.

The composite relationships between the class Asm (the whole) and its com-
ponent classes (the parts) assures that each part is included in at most one Asm
instance.

An ASM without a main rule and without a set of initial states (see the
multiplicity of association ends mainRule and initialState) is called module2

which is useful to syntactically structure large specifications.
The Header (see Fig. 3) consists of some import clauses and an optional

export clause to specify the names which are imported from or exported to
other ASMs (or ASM modules), and of its signature containing the declara-
tions of the ASM domains and functions. Every ASM is allowed to use only
identifiers (for domains, functions and transition rules) which are defined within
its signature or imported from other ASMs or ASM modules.

The initialization of an ASM consists of a set of initial states. The class
Initialization (not described here, see [28,10] for details) models the notion

1 It should be noted that the visual representation for the (abstract) syntax of the
language has not to be confused with a possible graphical notation for ASM speci-
fications, which we refer to in Sect. R.5.

2 This definition of module differs slightly from the module concept outlined in Chap.
2 of [14]; but, it has been accorded with the authors.

38 A. Gargantini, E. Riccobene, and P. Scandurra

Fig. 3. Header

Fig. 4. Body

of an initial state. All possible initial states are linked (see Fig. 2) to an ASM
by the association end initialState and one initial state is elected as default
(see the association end defaultInitialState).

The Body (see Fig. 4) of an ASM consists of (static) domain and (static/de-
rived) function definitions according to domain and function declarations in
the signature of the ASM. It also contains declarations of transition rules
and definitions of axioms for constraints one wants to assume for some domains,
functions, and transition rules of the ASM.

R.3 To Have an Interchange Format

The interoperability among ASM tools can be (at least partially) achieved by a
common interchange format. The work in [7] represents the first and the only
attempt in this respect; it was based on the use of a pure XML format and
unfortunately it has never been completed.

Whenever a language or formalism is specified in terms of a MOF-compliant
metamodel, the MOF enables a standard way to generate an XMI (XML Meta-
data Interchange) [34] interchange format for models in that language. The main
purpose of XMI is to provide an easy interchange of data and metadata between

Ten Reasons to Metamodel ASMs 39

modelling tools and metadata repositories in distributed heterogeneous envi-
ronments. The XMI format is not for human consumption and it is not to be
confused with the “concrete syntax” used by modelers to write their models.
It has to be intended, instead, as an effective hard code to be automatically
generated for interchanging purposes only.

To tackle the problem of ASM tool interoperability, we exploit the mecha-
nism of deriving a specific XMI format from the metamodel. format, given as
XML document type definition file (commonly named DTD), has been gen-
erated automatically from the AsmM in the MDR framework. First, we have
drawn the AsmM with the Poseidon UML tool (v. 4.2) and saved it in the UML-
XMI format. Then, we have converted it to the MOF 1.4 XMI by means of the
UML2MOF transformation tool provided by the Netbeans MDR project. Fi-
nally, we have loaded the MOF model in the MDR framework of Netbeans and
according to the rules specified by the MOF 1.4 to XMI 1.2 mapping specification
[51], the DTD for AsmM models was generated.

In Section R.6 we discuss the role of the ASM-XMI format for interchanging
ASM models among tools.

R.4 To Have Standard Libraries

Applications and tools endowed with MOF-compliant metamodels, can have
their Java Metadata Interface (JMI) [32] automatically generated. The JMI
standard is based on the MOF 1.4 specification and defines a Java applica-
tion program interface (API) for the creation, storage, access and manipulation
of metadata in a MOF-based instance repository.

From the AsmM in the MDR framework we also automatically generate a
JMI library for AsmM models (see [28] for more details). JMI can be used in
client programs written in Java which want to manipulate ASM models (to read
model structure, to modify parts of the specification and create new elements),
as well as by tool developers to speed up the creation of new tools supporting
ASMs. In Sections R.6, R.7, R.8 we show how the JMI can be useful for tool
interoperability, integration of existing tools, and development of new tools.

Besides the XMI and JMI libraries already discussed, other libraries can
be developed from MOF-compliant metamodels to provide additional facilities.
Among them, we mention CMI (CORBA Metadata Interface) [17] for bridging
with the middleware CORBA space.

R.5 To Derive Concrete Notations and Their Parsers

A MOF-compliant metamodel allows to derive different alternative concrete no-
tations, textual or graphical. Initially, we investigated the use of tools like HUTN
(Human Usable Textual Notation) [31] or Anti- Yacc [19] which are capable of
generating text grammars from specific MOF-based repositories. Nevertheless,
we decided not to use them since they do not permit a detailed customization
of the generated language and they provide concrete notations merely suitable

40 A. Gargantini, E. Riccobene, and P. Scandurra

for object-oriented languages. There are better MOF-to-grammar tools now, like
xText [22] of OpenArchitectureWare or TCS of AMMA [3], which we may con-
sider to adopt in the future.

In [27] we define general rules on how to derive a context-free EBNF (Ex-
tended Backus-Naur Form) grammar from a MOF-compliant metamodel, and
we use these mapping rules to define an EBNF grammar from the AsmM for an
ASM textual notation. The resulting language, called AsmetaL3, is completely
independent from any specific platform and allows a natural and straightforward
encoding of ASM models. We design AsmM without any specific implementation
platform in mind. The language derived from it does not contain any platform-
dependent concept. Instead, the language of CoreASM explicitly contains direc-
tives for importing plug-ins written in Java, and the AsmL permits the use of
the Microsoft .NET library.

In [27], we also provide guidance on how to assemble a JavaCC file given
in input to the JavaCC parser generator [2] to automatically produce a parser
for the EBNF grammar of the AsmetaL. This parser is more than a grammar
checker: it is able to process ASM models written in AsmetaL, to check for their
consistency w.r.t. the OCL constraints of the metamodel, and to create instances
of the AsmM in a MDR MOF repository through the use of the AsmM-JMIs.

The complete AsmetaL grammar is reported in [28] and is also available in
[10] together with the AsmetaL parser.

We have validated the metamodel and the AsmetaL notation to asses their
usability and capability to encode ASM models. To this purpose, we have asked
to a non ASM expert to port some specifications from [14] and other ASM case
studies to AsmetaL. The task was completed within three man-months.

Up to now we have about 140 ASM specifications encoded in AsmetaL and
available in [10]. We are strongly confident that AsmetaL satisfies all the desired
requirements of expressivity, abstractness and easiness of use.

Note that concrete notations derived from metamodels can be also graphical.
For instance, the Eclipse Graphical Modeling Framework (GMF) [4] provides a
generative component and runtime infrastructure for developing graphical edi-
tors based on Eclipse Modelling Framework (EMF) [1] and the eclipse Graphical
Editing Framework (GEF). The GMF follows a novel approach which suggests
to derive modelling tools, like graphical model editors, from metamodels [35].

R.6 To Allow Tool Interoperability

The existing ASM tools for model validation and verification, have been devel-
oped by encoding an ASM formal model into the language of the implementation
environment and exploiting the computation engine and validation/verification
algorithms and techniques of the implementation system to compute ASM runs
and prove properties. Since each tool usually covers well only one aspect of the
whole system development process, at different steps modelers and practitioners
3 A preliminary version of the AsmetaL language can be found in [41], under the name

of AsmM-CS (AsmM Concrete Syntax).

Ten Reasons to Metamodel ASMs 41

would like to switch tools to make the best of them while reusing information
already entered about their models. However, ASM tools are loosely coupled
and have syntaxes strictly depending on the implementation environment. This
makes the integration of tools hard to accomplish and prevents ASMs from being
used in an efficient and tool supported manner during the software development
life-cycle. Therefore, a way to support tools interoperabilty is of great interest
for the ASM community and can be achieved by the combination of standards
like MOF, XMI (R.3), and JMIs (R.4).

Basically, all ASM artifacts/tools can be classified in: generated, based, and in-
tegrated. Generated artifacts/tools are derivatives obtained (semi-)automatically
by applying to the AsmM metamodel appropriate projections from MOF to the
technical spaces Javaware, XMLware, and grammarware. Based artifacts/tools
are those developed exploiting the AsmM metamodel and related derivatives.
Finally, integrated artifacts/tools are external and existing tools that are con-
nected to the ASM metamodelling environment.

Fig. 5 shows a scenario of interoperability among ASM tools as suggested by
our approach. Generated/based tools (like Tool A in the figure) can access ASM
models through the APIs (like the AsmM JMIs) in a MOF repository (like the
SUN MDR [5]) where ASM models reside. They can also exchange ASM models
in the XML/XMI standard format: a XMI reader and writer provided by MDR
can be used to load/save an ASM model from/into a XML file.

Integrated tools can interoperate in different ways. Some tools (like Tool B
in the figure) can exchange ASM models in the XML/XMI standard format
and verify their validity with respect to the given AsmM XMI DTD. Tool
providers only need supply their tools with appropriate plug-ins capable of
importing and/or exporting the XMI format for the AsmM (by using XMI

Fig. 5. ASM model interchange through XMI and APIs

42 A. Gargantini, E. Riccobene, and P. Scandurra

readers/writers). Other tools (like Tool C in the figure) may keep their input
data formats: in this case walkers must be developed to translate ASM mod-
els from the repository to the tool proprietary formats. Mixed approaches are
also possible, as the one adopted in modifying the ATGT tool, as explained in
Section R.7.

A modeler can also start writing her/his ASM specification in AsmetaL and
then, through the connection to the repository provided by the parser, transform
it, for example, into the XMI interchange format.

R.7 To Help the Integration of Existing Tools

We here discuss how we modified the ATGT tool [11] in order to make it AsmM-
compliant. ATGT takes an ASM specification (written using the AsmGofer
syntax) and produces a set of test predicates, translates the original ASM spec-
ification to Promela (the language of the model checker SPIN used to generate
tests), and generates a set of test sequences by exploiting the counter example
generation of the model checker.

ATGT is written in Java. It already (see Fig. 6) has its own parser for As-
mGofer files, which reads a specification and builds an internal representation
of the model in terms of Java objects. The tool functionalities are delegated to
three components (Test predicate generator, Tests generator, ASM to Promela)
which read the data of the loaded ASM specification and perform their tasks.

In our approach, ATGT keeps its own data structures to represent the ASM
models and other information necessary for the services it provides. In this way
we do not modify the three most critical components, which continue to process
data in the old representation.

To make ATGT capable of reading AsmM models, we first added a new com-
ponent, the JMI/XMI reader, which is automatically derived from the metamodel
by using MDR Netbeans. This JMI/XMI reader parses a XMI file containing the
ASM specification the user wants to load and produces the JMI objects repre-
senting the loaded ASM. Then we added a module, called JMI queries, which
queries those JMI objects and builds the equivalent model in terms of ATGT
internal data. The JMI queries are very similar to the AsmGofer parser already

Fig. 6. Adapting ATGT to the AsmM

Ten Reasons to Metamodel ASMs 43

in ATGT, except that they read the information about the ASM model from
JMI data instead of a file.

Although we did not exploit the power of the metamodel inside ATGT and
we simply made ATGT AsmM-compliant, the result is worthwhile and the effort
is limited: adding this new feature to ATGT required about two man-months.
If we started today from scratch to develop ATGT, we would use directly JMI
to represent ASM models, since JMI offers a stable and clean interface that is
derived from the metamodel (see Sect. R.4). The use of JMI would avoid the
burden of writing internal libraries for representing ASM models. For this reason,
we have started working on making the internal representation of ASM models
that ATGT adopts equivalent to the JMI, in order to eventually integrate JMI
directly in ATGT (work in progress in Fig. 6).

Further advances in the MDE direction [13] would be replacing the ASM to
Promela and the AsmGofer parser components by model transformations from
the AsmM (as pivot metamodel, see Sect. R.9) to Promela metamodel and from
Gofer metamodel to the AsmM, provided that such metamodels for Promela and
Gofer (linked to their concrete syntax) exist.

R.8 To Help the Development of New Tools

MDE helps developers to build new tools by providing an interchange format
(R.3), standard libraries (R.4) and several possible maps to concrete syntaxes
and parsers (R.5). By exploiting these technologies, a developer who is interested
in developing a new tool for ASMs, does not need to write a parser, an internal
representation of ASMs and an interchange format (if he/she wishes to export,
import files from other tools). In particular, the development of a grammar can
be very time consuming and error prone - specially if one wants to be able to
read complete ASM specifications. Internal representations of ASMs are normally
bound to the parser which is being defined, and a small change in the parser
may require an update of the internal libraries and refactoring of the code. All
these tasks can require a good deal of time and effort, although they are not
relevant for the particular technique or algorithm being developed. In the MDE
approach, the developer needs to understand the metamodel (for example by
reading its graphical representation - R.2) and then focus on the functionalities
he/she intend to support with the new tool.

For instance, we have developed a general-purpose ASM simulation engine
[29,10], called AsmetaS, to make AsmM models executable. This tool is an ex-
ample of Tool A (see Fig. 5) since essentially it is an interpreter which navigates
through the MOF repository where ASM models are instantiated (as instances
of the AsmM metamodel) to make its computations. We do not have to deal
with basic functionalities such as parsing, abstract syntax trees, type checking,
etc., since they are already provided by the MOF-environment. We have focused
the development on those classes necessary to simulate an ASM, and the con-
struction of the update set has required only the definition of the class UpdateSet
representing an update set and the class UpdateSetBuilder building an update

44 A. Gargantini, E. Riccobene, and P. Scandurra

set. UpdateSetBuilder introduces a method UpdateSet m(R r) which, for every
class R representing a rule, builds the update set for the rule r of class R.

The architecture of this interpreter is very simple and consists in only 20
classes. It also allows a modular and incremental development. A first prototype
(available at [10]) has been developed in only three man months and is able
to interpret basic, turbo without submachine calls, and synchronous multiagent
ASMs.

R.9 To Integrate ASMs with Other Notations/Tools

In the MDE direction, AsmM can be seen as the pivot metamodel toward a
systematic integration among ASM tools and between ASMs and external tools.

According to the view presented in [13], a pivot metamodel of a given for-
malism or language L is intended as a platform-independent modelling language
which abstracts a certain number of general concepts about L. The integration
among tools supporting L can be achieved by providing, for the notation L′ (a
dialect of L) of each tool TL, a metamodel – seen as a platform-specific modelling
language – and model transformations to the pivot and from the pivot to the L′-
metamodel. Hence, the metamodel of the notation Li of a tool T i

L can be linked
to the metamodel of the notation Lj of another tool T j

L by the composition of
the two transformations from Li-metamodel to the pivot and from the pivot to
the Lj-metamodel. In this way, the interoperability between tools T i

L and T j
L is

achieved by translating PSM (Platform-specific Model) models written in Li to
Lj and vice versa.

In the ASM context, AsmM can be adopted as pivot metamodel and would
allow the integration among ASM tools at the level of metamodels. For example,
if we take AsmGofer as tool T i

L and AsmL as tool T j
L and we had defined the

corresponding metamodels together with precise transformation bridges from/to
AsmM, we may map an AsmGofer-PSM into an AsmL-PSM.

Similarly, one can integrate the language L or one of its tools TL with a tool
using a notation M by providing a bridge between the pivot metamodel of L to
the metamodel of M . In the ASM context, the AsmM may allow the integration
between ASMs and tools like the model checkers Spin or SMV, provided that
the metamodels for their notations exist.

For most notations M , however, the metamodel does not exists, and M is
simply pure text. In this case the bridge must be built between the metamodel
of L and a textual notation, and this can be done by using MOF-to-grammar
tools, like xText [22] of OpenArchitectureWare or TCS of AMMA [3]. In the ASM
context, we may “compile” ASM models into a programming language, like Java,
by applying a AsmM-to-Java transformation to the input ASM model.

R.10 To Complement the MDE with a Formal Approach

In the previous sections, we have discussed some advantages that ASMs can
gain from MDE. We believe that the MDE paradigm can also gain rigor and

Ten Reasons to Metamodel ASMs 45

preciseness from the integration with ASMs as formal method. The semantics
specification of domain-specific modeling languages (defined in terms of a meta-
model), for example, is an open problem in the MDE approach. The OMG meta-
modelling framework provides, by means of metamodels and UML profiles (UML
metamodel extensions for a particular application domain), standard techniques
to define the abstract syntax and static semantics (the OCL constraints) of a
Domain-specific language. However, it lacks of any standard and rigorous sup-
port to provide the dynamic (operational) semantics, which is usually given in
natural language. This lack has several negative consequences, as confirmed by
existing work in literature which aims at formalizing the UML semantics.

Techniques and approaches to the precise and pragmatic definition of behav-
ioral semantics for domain-specific languages are still under development. One
promising method, called semantic anchoring relies on the use of well-defined
semantic units of simple, well-understood constructs (like a finite state machine)
and on the use of model transformations that map higher level modeling con-
structs into configured semantic units. This approach has been followed, for
example, by the authors in [16,46], where AsmL is used as a common semantic
framework to define the semantic domain of Domain-specific languages.

We believe that any formalism proposed as semantic framework must address
the following important characteristics: (i) it should be formal and powerful
enough to rigorously define the operational semantics of complex real languages,
(ii) it should be executable in order to validate the metamodels’ semantics, (iii) it
should be endowed with a metamodel-based definition conforming to the meta-
modelling framework in order to allow the applicability of model transformation
tools, and (iv) it should be able to work at high levels of abstraction. According
to these requirements, the ASM formalism seems to be a good candidate.

Similarly to the approach in [16], we propose ASMs as semantic framework
to define the (operational) semantics of metamodel-based languages. The key
idea is a smooth integration of the AsmM metamodel with the OMG framework
in order to provide a means to rigorously define the operational semantics of
metamodel-based languages and, in particular, of UML extensions (profiles),
in a way which permits us to uniformly link abstract syntax, expressed in the
MOF metalanguage, and detailed semantics, expressed in ASMs (here promoted
as metalanguage, too) of languages.

In practice, this integration may be done as shown in Fig. 7. At the meta-
metamodel level, the MOF core constructs i.e., the Infrastructure Library, have
to be mapped into ASM concepts. This may be done by defining a set of trans-
formation rules, TMOFToASM, from the Infrastructure Library metamodel to the
AsmM metamodel.

At the metamodel level, a metamodel or a UML profile LMOF of a given lan-
guage L is translated by TMOFToASM to a ground ASM-compliant metamodel
L1

AsmM of L made of multi-sorted first-order structures, i.e. sets with relations,
functions and constraints, representing classes and associations of the source
LMOF metamodel. L1

AsmM needs to be complemented with the semantic as-
pects of the language L. The computational model which reflects the operational

46 A. Gargantini, E. Riccobene, and P. Scandurra

Fig. 7. An integrated framework for metamodel-based language specification

semantics of L, say L2
AsmM, is defined through ASM transition rules. The static

structures of the ASM signature L1
AsmM is further refined and enriched with

dynamic aspects, e.g., designating some specific entities to be ASM agents,
and introducing new functions, which, however, may be present in the origi-
nal metamodel expressed in terms of OCL query/operations. We say LAsmM =
L1

AsmM + L2
AsmM the final result of this modelling activity.

Note that, the process of applying the TMOFToASM can be fully automatized
by means of a transformation engine like the ATL in the AMMA platform [3],
Xactium XMF Mosaic [6], etc. However, a certain human effort is still required
to capture in terms of ASM transition rules the behavioural aspects of the given
language.

We have applied the proposed methodology to a UML profile for the SystemC
language [39] - as part of the definition of a model-based SoC (System-on-chip)
design flow for embedded systems [21,40] - to define the operational semantics
of the SystemC Process State Machines, an extension of the UML statecharts
used to model the reactive behaviour of the SystemC processes.

Although the proposed approach has been first identified and tested for the
OMG’s framework, it could be easily extended and applied to other metamod-
elling frameworks.

Related Work

Concerning the definition of a concrete language for ASMs, other previous pro-
posals exist. The Abstract State Machine Language (AsmL) [8] developed by
the Foundation Software Engineering group at Microsoft is the greatest effort
in this respect. AsmL is a rich executable specification language, based on the
theory of ASMs, expression- and object- oriented, and fully integrated into the

Ten Reasons to Metamodel ASMs 47

.NET framework and Microsoft development tools. However, AsmL does not
provide a semantic structure targeted for the ASM method. “One can see it as
a fusion of the Abstract State Machine paradigm and the .NET type system,
influenced to an extent by other specification languages like VDM or Z” [52].
Adopting a terminology currently used, AsmL is a platform-specific modeling
language for the .NET type system. A similar consideration can be made also
for the AsmGofer language [43]. An AsmGofer specification can be thought, in
fact, as a PSM (platform-specific model) for the Gofer environment.

Other specific languages for the ASMs, no longer maintained, are ASM-SL
[15], which adopts a functional style being developed in ML and which has
inspired us in the language of terms, and XASM [50] which is integrated in
Montages, an environment generally used for defining semantics and grammar
of programming languages. Recently other simulation environments for ASMs
have been developed, including the CoreAsm [18], an extensible execution en-
gine developed in Java, and TASM (Timed ASMs) [45], an encoding of Timed
Automata in ASMs.

Concerning the metamodeling technique for language engineering, we can
mention the official metamodels supported by the OMG [37] for MOF itself,
for UML [47], for OCL, etc. Academic communities like the Graph Transforma-
tion community [30,44,48] and the Petri Net community [38], have also started
to settle their tools on general metamodels and XML-based formats. A meta-
model for the ITU language SDL-2000 has been also developed [24]. Recently, a
metamodel for the AsmL language is available in the XMI format at [9] as part
of a zoo of metamodels defined by using the KM3 meta-language [33]. However,
this metamodel is not appropriately documented or described elsewhere, so this
prevent us to evaluate it for our purposes.

References

1. Eclipse Modeling Framework, http://www.eclipse.org/emf/
2. Java Compiler Compiler, https://javacc.dev.java.net/
3. The AMMA Platform, http://www.sciences.univ-nantes.fr/lina/atl/
4. The Eclipse Graphical Modeling Framework, http://www.eclipse.org/gmf/
5. The, M.D.R. (Model Driven Repository) for NetBeans,

http://mdr.netbeans.org/
6. The Xactium XMF Mosaic, http://www.modelbased.net/www.xactium.com/
7. Anlauff, M., Del Castillo, G., Huggins, J., Janneck, J., Schmid, J., Schulte, W.:

The ASM-Interchange Format XML Document Type Definition (ASM-DTD),
http://www.first.gmd.de/~ma/asmdtd.html

8. The ASML Language, http://research.microsoft.com/foundations/AsmL/
9. The AsmL metamodel in the Atlantic Zoo (2006),

http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/#AsmL
10. The Abstract State Machine Metamodel and its tool set, http://asmeta.sf.net/
11. ATGT: ASM tests generation tool,

http://cs.unibg.it/gargantini/project/atgt/
12. Bézivin, J.: On the Unification Power of Models. Software and System Modeling

(SoSym) 4(2), 171–188 (2005)

http://www.eclipse.org/emf/
https://javacc.dev.java.net/
http://www.sciences.univ-nantes.fr/lina/atl/
http://www.eclipse.org/gmf/
http://mdr.netbeans.org/
http://www.modelbased.net/www.xactium.com/
http://www.first.gmd.de/~ma/asmdtd.html
http://research.microsoft.com/foundations/AsmL/
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/#AsmL
http://asmeta.sf.net/
http://cs.unibg.it/gargantini/project/atgt/

48 A. Gargantini, E. Riccobene, and P. Scandurra

13. Bézivin, J., Bruneliére, H., Jouault, F.J., Kurtev, I.: Model Engineering Support
for Tool Interoperability. In: The 4th Workshop in Software Model Engineering
(WiSME 2005), Montego Bay, Jamaica (2005)

14. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

15. Del Castillo, G.: The ASM Workbench - A Tool Environment for Computer-Aided
Analysis and Validation of Abstract State Machine Models Tool Demonstration. In:
Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 578–581. Springer,
Heidelberg (2001)

16. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with
model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

17. OMG, CORBA, http://www.corba.org/
18. The CoreASM Project, http://www.coreasm.org/
19. Hearnden, D., Raymond, K., Steel, J.: Anti-Yacc: MOF-to-text. In: Proc. of EDOC,

pp. 200–211 (2002)
20. Dold, A.: A Formal Representation of Abstract State Machines Using PVS. Verifix

Technical Report Ulm/6.2, Universitat Ulm (July 1998)
21. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: A SoC Design Methodology

Based on a UML 2.0 Profile for SystemC. In: Proc. of Design Automation and Test
in Europe (DATE 2005). IEEE, Los Alamitos (2005)

22. Efftinge, S.: oAW xText - A framework for textual DSLs. In: Workshop on Modeling
Symposium at Eclipse Summit (2006)

23. Mens, T., et al.: Challenges in software evolution. In: International Workshop on
Principles of Software Evolution, IWPSE 2005 (2005)

24. Fischer, J., Piefel, M., Scheidgen, M.: A Metamodel for SDL-2000 in the Context
of Metamodelling ULF. In: Fourth SDL And MSC Workshop (SAM 2004), pp.
208–223 (2004)

25. Gargantini, A., Riccobene, E.: Encoding Abstract State Machines in PVS. In:
Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000. LNCS,
vol. 1912, pp. 303–322. Springer, Heidelberg (2000)

26. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to Generate Tests from
ASM Specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003)

27. Gargantini, A., Riccobene, E., Scandurra, P.: Deriving a textual notation from
a metamodel: an experience on bridging Modelware and Grammarware. In:
3M4MDA 2006 workshop at the European Conference on MDA (2006)

28. Gargantini, A., Riccobene, E., Scandurra, P.: Metamodelling a Formal Method:
Applying MDE to Abstract State Machines. Technical Report 97, DTI Dept., Uni-
versity of Milan (2006)

29. Gargantini, A., Riccobene, E., Scandurra, P.: A Metamodel-based Simulator for
ASMs. In: 14th International ASM Workshop, Grimstad, Norway, June 7-9 (2007)

30. Holt, R., Schürr, A., Sim, S.E., Winter, A.: Graph eXchange Language,
http://www.gupro.de/GXL/index.html

31. OMG, Human-Usable Textual Notation, v1.0. Document formal/04-08-01,
http://www.uml.org/

32. Java Metadata Interface Specification, Version 1.0. (2002),
http://java.sun.com/products/jmi/

33. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

http://www.corba.org/
http://www.coreasm.org/
http://www.gupro.de/GXL/index.html
http://www.uml.org/
http://java.sun.com/products/jmi/

Ten Reasons to Metamodel ASMs 49

34. OMG. The Model Driven Architecture (MDA), http://www.omg.org/mda/
35. Nytun, J.P., Prinz, A., Tveit, M.S.: Automatic generation of modelling tools. In:

Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 268–283.
Springer, Heidelberg (2006)

36. OCL Environment (OCLE), http://lci.cs.ubbcluj.ro/ocle
37. The Object Managment Group (OMG), http://www.omg.org
38. Petri Net Markup Laguage (PNML),

http://www.informatik.hu-berlin.de/top/pnml
39. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: A UML 2.0 profile for Sys-

temC: toward high-level SoC design. In: EMSOFT 2005: Proceedings of the 5th
ACM international conference on Embedded software, pp. 138–141. ACM, New
York (2005)

40. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: A model-driven design envi-
ronment for embedded systems. In: Proc. of the 43rd annual Conference on Design
Automation (DAC 2006), pp. 915–918. ACM Press, New York (2006)

41. Scandurra, P., Gargantini, A., Genovese, C., Genovese, T., Riccobene, E.: A Con-
crete Syntax derived from the Abstract State Machine Metamodel. In: 12th Inter-
national Workshop on Abstract State Machines (ASM 2005), Paris, France, March
8-11 (2005)

42. Schellhorn, G., Ahrendt, W.: Reasoning about Abstract State Machines: The WAM
Case Study. Journal of Universal Computer Science 3(4), 377–413 (1997)

43. Schmid, J.: AsmGofer, http://www.tydo.de/AsmGofer
44. Taentzer, G.: Towards common exchange formats for graphs and graph transforma-

tion systems. In: Padberg, J. (ed.) UNIGRA 2001: Uniform Approaches to Graph-
ical Process Specification Techniques, satellite workshop of ETAPS (2001)

45. The Timed Abstract State Machine (TASM) Language and Toolset,
http://esl.mit.edu/html/tasm.html

46. Thibodeaux, R.: The Specification of Architectural Languages with Abstract State
Machines. In: 14th International ASM Workshop, Grimstad, Norway, June 7-9
(2007)

47. OMG. The Unified Modeling Language (UML), http://www.uml.org
48. Varró, D., Varró, G., Pataricza, A.: Towards an XMI–based model interchange

format for graph transformation systems. Technical report, Budapest University
of Technology and Economics, Dept. of Measurement and Information Systems
(September 2000)

49. Winter, K.: Model Checking for Abstract State Machines. Journal of Universal
Computer Science (J.UCS) 3(5), 689–701 (1997)

50. XASM: The Open Source ASM Language, http://www.xasm.org
51. OMG, XMI Specification, v1.2,

http://www.omg.org/cgi-bin/doc?formal/2002-01-01
52. Gurevich, Y., Rossman, B., Schulte, W.: Semantic Essence of AsmL. Microsoft

Research Technical Report MSR-TR-2004-27 (March 2004)

http://www.omg.org/mda/
http://lci.cs.ubbcluj.ro/ocle
http://www.omg.org
http://www.informatik.hu-berlin.de/top/pnml
http://www.tydo.de/AsmGofer
http://esl.mit.edu/html/tasm.html
http://www.uml.org
http://www.xasm.org
http://www.omg.org/cgi-bin/doc?formal/2002-01-01

An ASM-Characterization of a Class of
Distributed Algorithms

Andreas Glausch and Wolfgang Reisig

Humboldt-Universität zu Berlin
Institut für Informatik

{glausch,reisig}@informatik.hu-berlin.de

Abstract. Conventional computation models restrict to particular data
structures to represent states of a computation, e.g. natural numbers,
sequences, stacks, etc. Gurevich’s Abstract State Machines (ASMs) take
a more liberal position: any first-order structure may serve as a state.
In [7] Gurevich characterizes the expressive power of sequential ASMs:
he defines the class of sequential algorithms by means of only a few,
amazingly general requirements and proves this class to be equivalent to
sequential ASMs.

In this paper we generalize Gurevich’s result to distributed algorithms:
we define a class of distributed algorithms by likewise general require-
ments and show that this class is covered by a distributed computation
model based on sequential ASMs.

1 Introduction

Conventional computation models include a distinguished notion of states. For
example, a state of a Turing machine is captured by the head position, the in-
ternal control state, and the tape inscription. Another example is the λ-calculus
where each state is represented by a λ-expression. In both cases the representa-
tion of states is based on a restricted set of data structures: alphabets, natural
numbers, and sequences over alphabets.

Gurevich’s Abstract State Machines (ASMs) [6] feature a more liberal repre-
sentation of states: each state is a structure, a notion well known from first-order
logic. As usual, a structure comprises a nonempty set U (its universe) together
with finitely many functions defined over U , each with a fixed arity. No addi-
tional properties are required: any structure may serve as a state of an ASM. For
example, a state may include uncomputable functions or real-valued functions
such as sin and log.

As a consequence, a computation of an ASM may a priori employ math-
ematical concepts such as real numbers, vectors, graphs, geometrical objects,
etc. (Of course, this also holds for classical data structures such as stacks, lists,
and queues.) Conventional computation models such as Turing machines usu-
ally require a particular encoding in order to represent such concepts, if possible
at all.

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 50–64, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An ASM-Characterization of a Class of Distributed Algorithms 51

The freedom to include arbitrary data structures as part of the state of an
ASM allows for a natural and flexible modeling of the states of a system. For this
reason ASMs have been extended to a successfully applied design and analysis
methodology [4]. By use of stepwise refinement and composition of ASMs, large-
scale systems from real-world have been modeled and analyzed formally. For
example, the operational semantics of the SDL-2000 standard officially is defined
by an ASM model [9], and the correctness and completeness of a Java standard
compiler has been proven based on a formal ASM model [13].

2 Scope and Contribution of This Paper

Classically, ASMs employ a simple pseudo-code like syntax to describe state
changes [6]. Gurevich revealed that ASMs may also be characterized indepen-
dently of any concrete syntax: In [7] Gurevich defines the class of sequential
algorithms and proves this class to be equivalent to the class of sequential ASMs
(c.f. also [12]). Blass, Gurevich, and others identified further, more general classes
of algorithms – including nondeterministic, parallel, and interactive versions
– and showed that each class is equivalent to a corresponding class of ASMs
[1,2,3,8].

In this paper we contribute to this work by a corresponding result for dis-
tributed algorithms : we define a class of distributed algorithms by five simple
and general requirements and show that this class is equivalent to a distributed
computation model based on ASMs.

Distributed algorithms significantly differ from the aforementioned variants
of algorithms: a sequential/nondeterminstic/parallel/interactive algorithm com-
putes for each state S a successor state S′, i.e. state changes occur sequentially
ordered and may involve the complete state S. By contrast, a distributed algo-
rithm performs concurrent and locally bounded changes of the state. In order to
represent such state changes we adapt the idea of actions with locally limited
cause and effect, and the notion of distributed runs, in the tradition of Petri [10],
Pratt [14], and Gurevich [6]: a distributed run is a set of action occurrences,
partially ordered by causal dependencies.

The variant of distributed algorithms examined in this paper still has some
limitations. For the sake of simplicity, we restrict attention to communication
via a shared state, and do not consider message passing explicitly. Furthermore,
we do not consider dynamic instantiation or disposing of agents. The main con-
tribution of this paper is a first step towards an ASM-based theory of distributed
algorithms, leaving much room for generalizations.

The rest of this paper is organized as follows: Section 3 recalls elementary
notions on structures and introduces the general framework of actions and dis-
tributed runs. Section 4 defines the notion of distributed algorithms. Section 5
introduces distributed ASMs, an operational computation model for distributed
algorithms. Finally, we show in Sect. 6 that distributed ASMs are expressive
enough to capture every distributed algorithm as discussed in Sect. 4.

52 A. Glausch and W. Reisig

3 The Basic Framework

In this section we motivate and exemplify the basic notions employed in the
rest of this paper. We recall some basic notions on structures, and introduce the
concept of actions and distributed runs.

As usual, a signature Σ is used to address the functions of a structure: Σ
consists of finitely many functions symbols f1, . . . , fk and determines for each
fi an arity ni ∈ �. A structure S consisting of the functions f1, . . . , fn is a
Σ-structure if the arity of fi is ni for i = 1, . . . , n, i.e. the arities of the symbols
in Σ and the arities of the functions in S coincide. In this case the function fi

is the interpretation of the symbol fi in S, denoted by fiS .
As already indicated in the introduction, each state of an ASM is a structure.

We therefore use the notions structure and state interchangeably. As a running
example throughout this paper we consider the following structure Q, with uni-
verse U = {1, 2, 3}, consisting of two 0-ary functions aQ and bQ, and two unary
functions incQ and valQ:

aQ = 1 bQ = 2
incQ(1) = 2
incQ(2) = 3
incQ(3) = 1

valQ(1) = 1
valQ(2) = 2
valQ(3) = 3.

We represent a signature by a sequence of function symbols followed by a
sequence of their respective arities. Obviously, the signature of Q is ΣQ =
(a, b, inc, val, 0, 0, 1, 1).

In order to represent distributed computation on a Σ-structure S, we require
means to describe locally bounded and concurrent changes of S. It turns out
useful not to consider S as a monolithic entity but as a set of Σ-molecules, each
of which consisting of a location and a value. A location of S consists of a n-
ary function symbol f and a n-ary argument tuple ā over the universe of S. For
example (val, [1]) is a location of the structure Q (we enclose the argument tuple
in square brackets for the sake of readability). Obviously, each location (f, ā) of
S defines a unique value v = fS(ā). The triple (f, ā, v) is a Σ-molecule of S
(or simply molecule if this causes no confusion). For example, (val, [1], 1) is a
molecule of the structure Q. Intuitively, this molecule states that “the function
denoted by val maps the argument tuple [1] to the value 1”.

A structure S is completely described by its set of molecules. For example,
the above structure Q is represented by the following set of molecules:

Q = { (a, [], 1), (b, [], 2),
(inc, [1], 2), (inc, [2], 3), (inc, [3], 1),
(val, [1], 1), (val, [2], 2), (val, [3], 3) }.

Calling them “updates”, Gurevich employed molecules already in [6] to describe
differences between structures.

A structure S is changed locally by applying an action which replaces some of
the molecules of S. For example, the above structure Q can be changed by replac-
ing the molecules (a, [], 1) and (b, [], 2) by the molecules (a, [], 2) and (b, [], 3). This

An ASM-Characterization of a Class of Distributed Algorithms 53

yields another structure Q′, interpreting the symbols a and b by 2 and 3, respec-
tively. We apply the graphical notation of Petri nets and outline this action by

(,[],1)a

(,[],2)b

(,[],2)a

(,[],3)b .

In general, a Σ-action (or simply action if Σ is clear from the context) is a
pair a = (ain, aout), where ain and aout are sets of Σ-molecules such that

–
the locations of the molecules in ain and aout coincide,

(1)

–
both ain and aout are consistent : a set of molecules is consistent if it
does not contain two different molecules with the same location.

(2)

Hence, an action a only modifies the values of the molecules, but not their locations
(1), and both ain and aout determine at most one value for each location (2).

An action a then performs a step S
a−→ S′ by replacing the molecules ain by

the molecules aout, thus changing the state S to a new state S′. More precisely,
for two states S and S′ we write S

a−→ S′ to denote that

–
ain ⊆ S,

(3)

–
S′ = (S \ ain) ∪ aout,

(4)

–
S and S′ have the same universe.

(5)

That is, ain constitutes the local cause of a (3), whereas aout constitutes the local
effect of a (4). Furthermore, actions are required to preserve the universe of the
state (5).

Two actions replacing disjoint molecules do not interfere with each other, and
may therefore be applied concurrently. This implies the notion of distributed run:
a distributed run is a partially ordered set of action occurrences. We represent
this partial order by an inscribed occurrence net, a notion well known from the
theory of Petri nets (see [11]). Figure 1 outlines an example of a distributed
run R: each square (called transition) represents the occurrence of one action

(,[1],2)inc

(,[1],1)val

(,[2],3)inc

(,[2],2)val

(,[3],1)inc

(,[3],3)val

(,[],1)a

(,[],2)b

(,[1],2)inc

(,[1],2)val

(,[],2)a

(,[3],2)val

(,[],1)b

(,[1],1)val

(,[2],3)inc

(,[2],3)val

(,[3],1)inc

(,[1],2)inc

(,[1],2)val

(,[],1)a

(,[3],3)val

(,[],3)b

(,[3],1)inc

Fig. 1. The distributed run R

54 A. Glausch and W. Reisig

replacing the molecules attached to the incoming arcs by the molecules attached
to the outgoing arcs. An important property of occurrence nets is that each
molecule is attached to at most one incoming and at most one outgoing arc.
Consequently, each molecule is accessed resp. modified by at most one action,
i.e. molecules cannot be accessed or modified concurrently. The transitive closure
of the arcs then induces a partial order on the transitions, i.e. a partial order on
the action occurrences.

In Fig. 1, the rounded rectangles inscribed by the molecules are called places.
Observe that the leftmost places in R hold the molecules of the structure Q,
which is the initial state of this run. Further (global) states of this run are
identified by the notion of cut. A cut C is a maximal set of unordered places
of R such that only finitely many transitions precede the places in C. Figure
2 shows three different cuts, C1, C2, and C3, each of which represented by a
dashed line. The inscriptions of the places in a cut C then always constitute a
Σ-structure S, as exemplified in Fig. 2. This structure S is the global state of
the run after the occurrence of all actions preceding the places in C. Note that
the cuts C1 and C2 in Fig. 2 represent a step, as only a single action occurs
between C1 and C2.

(,[1],2)inc

(,[1],1)val

(,[2],3)inc

(,[2],2)val

(,[3],1)inc

(,[3],3)val

(,[],1)a

(,[],2)b

(,[1],2)inc

(,[1],2)val

(,[],2)a

(,[3],2)val

(,[],1)b

(,[1],1)val

(,[2],3)inc

(,[2],3)val

(,[3],1)inc

(,[1],2)inc

(,[1],2)val

(,[],1)a

(,[3],3)val

(,[],3)b

(,[3],1)inc

C
1

C
2

C
3

Fig. 2. Three different cuts C1, C2, and C3 of the distributed run R

In general, a distributed run over a signature Σ is an occurrence net with
places inscribed by molecules such that

– the molecules at the places without an incoming arc constitute a Σ-structure
S0, (the initial state of the run)

– all molecules contain only elements of the universe of S0,
– each transition t represents an action a: the places at the incoming/outgoing

arcs of t are inscribed by the molecules in ain/aout.

Due to lack of space, we skip the (somewhat technical) formal definition of
distributed runs and cuts, and rely on their intuitive graphical notation as shown
in Fig. 1. For the technical details, we refer to [5].

An ASM-Characterization of a Class of Distributed Algorithms 55

4 Distributed Algorithms

Based on the framework introduced in the previous section, this section defines
the class of distributed algorithms by five requirements which are fairly general,
nevertheless simple and intuitive. We briefly discuss the reasonability for each of
these requirements. In addition, for the ASM expert, we briefly present for each
requirement its relationship to Gurevich’s original requirements to sequential
algorithms [7].

4.1 A State of a Distributed Algorithm Is a Structure

As emphasized by Tarski already, mathematical structures are general enough
to faithfully describe any static mathematical entity on any level of abstraction.
Consequently, it is legitimate to assume that every state of an algorithm can
also be described naturally by a structure. As an algorithm should always have
a finite representation, a single signature (with a finite set of symbols) suffices
for all states. Furthermore, in a computational framework, it is common to mark
some of the states as initial. This leads to the following first requirement:

Requirement D1 (state requirement). Adistributed algorithmD determines
a non-empty set SD of states and a non-empty set ID ⊆ SD of initial states. All
states in SD are structures over the same signature ΣD.

This requirement reflects Gurevich’s abstract state requirement, where each state
of a sequential algorithm is required to be a Σ-structure.

4.2 Distributed Algorithms Perform Actions

According to common intuition about distributed computing, state changes in
a distributed algorithm occur locally bounded and occasionally concurrent. The
concept of actions as introduced in Sect. 3 captures such state changes in a
natural and general way. Therefore, the state changes of a distributed algorithm
D can always be described naturally by a set AD of actions.

Of course, applying an action of D to a state of D should always yield a state
of D again. Furthermore, for technical reasons, we require every action of D be
executable in at least one state of D.

Requirement D2 (action requirement). A distributed algorithm D deter-
mines a set AD of actions over signature ΣD such that for each action a ∈ AD

holds:

– if S ∈ SD and S
a−→ S′ then S′ ∈ SD,

– there is a state S ∈ SD such that S
a−→ S′.

For a state S ∈ SD and an action a ∈ AD, S
a−→ S′ is a step of D. A distributed

run of D is a distributed run R (see Sect. 3) such that the initial state of R is
an initial state of D and each action occurring in R is an action of D.

56 A. Glausch and W. Reisig

Requirement D2 is an adaption of Gurevich’s sequential time requirement,
which demands each sequential algorithm to determine a set of global steps,
represented as a next-state function τ . We replace global steps by local actions
here.

4.3 Distributed Algorithms Respect Isomorphism

As usual, a bijective mapping i : UR → US between the universes of two Σ-
structures R and S is an isomorphism between R and S (written i : R → S)
iff i(fR(u1, . . . , un)) = fS(i(u1), . . . , i(un)) for all n-ary function symbols f in
Σ and all u1, . . . , un ∈ UR. Isomorphic structures only differ in the concrete
representation of the elements of the universe, whereas the functions of both
structures are essentially the same.

For an algorithm the concrete representation of elements should be inessential.
For example, the Euclidean algorithm computes the greatest common divisor
regardless whether the integers are represented by transistor states on a chip
or by ink on a paper. In general, a distributed algorithm should not distinguish
isomorphic states, i.e. should behave “isomorphic” at isomorphic states.

More precisely, if an action a can occur in a state R isomorphic to a state S,
a corresponding isomorphic action can occur in S. To formalize this, we extend
any isomorphism i : R → S canonically to molecules, sets of molecules, and
actions. The third requirement then reads:

Requirement D3 (isomorphism requirement). The sets of states SD and
ID of a distributed algorithm D both are closed under isomorphism. Furthermore,
if R

a−→ R′ is a step of D and i : R → S is an isomorphism, then there exists

also a step S
i(a)−−→ S′ of D.

This requirement is an adoption of a part of Gurevich’s abstract state require-
ment which demands the next-state function τ to map isomorphic states to
isomorphic next-states.

4.4 Actions of Distributed Algorithms Operate Autonomously

The next requirement can be formulated simply and intuitively convincing: each
action a of a distributed algorithm only uses elements that a has access to, i.e.
a operates autonomously on data. In other words, an action of a distributed
algorithm does not obtain elements from nowhere.

It remains to clarify the above meaning of use and have access. In technical
terms, an action a uses an element x if x occurs in an argument tuple in one
of the molecules of a (where it is used to access a location), or if x occurs as a
value in one of the molecules in aout (where it is used as a newly assigned value).
As the locations of ain and aout are identical, we define: a uses x iff there is a
molecule (f, [u1, . . . , un], v) ∈ aout such that x ∈ {u1, . . . , un, v}.

Furthermore, a has access to the value of a molecule m ∈ ain if a has access to
the elements in the argument tuple of m. This leads to the following inductive
definition:

An ASM-Characterization of a Class of Distributed Algorithms 57

– for each each molecule (x, [], v) ∈ ain, a has access to v,
– if a has access to u1, . . . , un and (f, [u1, . . . , un], v) ∈ ain for n ≥ 1, then a

has access to v.

The fourth requirement is now quite obvious:

Requirement D4 (autonomicity requirement). For each action a of a dis-
tributed algorithm D, a has access to each element that is used by a.

As D4 relies heavily on the notion of action introduced in this paper, there
is no direct counterpart in Gurevich’s requirements. However, D4 can be seen
as a part of the bounded exploration requirement where ground terms are used
to characterize the next-state function of sequential algorithms: the inductive
evaluation of ground terms corresponds to the above, inductive definition of
“having access to”.

4.5 Actions of Distributed Algorithms Are Bounded

A real-world processor (e.g., a computer, an organization, or a human being)
executing an algorithm can obviously perform only a bounded amount of work in
each step. For this reason it is quite natural to require the actions of a distributed
algorithm to be bounded in size. This idea leads to the fifth and last requirement:

Requirement D5 (bounded-actions requirement). For a distributed algo-
rithm D there exists a constant c ∈ � such that for each action a of D holds
|ain| ≤ c (which is equivalent to |aout| ≤ c).

Similar to D4, this requirement can be seen as a part of Gurevich’s bounded
exploration requirement which demands the next-state function τ to be charac-
terized by a finite (hence, a bounded) set of ground terms.

We do not demand any further requirements: we call any entity satisfying the
Requirements D1–D5 a distributed algorithm.

5 Distributed Abstract State Machines

In the previous section we introduced the class of distributed algorithms in a
purely semantical and declarative way. But usually algorithms are represented
in an explicit and syntactical form, e.g. by program code or by natural language.
This gives rise to the question whether a given distributed algorithm can be
represented in a syntactical way at all. In this section we answer this questions
positively by presenting the computation model of distributed ASMs, which is
based on sequential ASMs [6].

The version of distributed ASMs we introduce here is a special case of the
version presented in the Lipari Guide [6]. There, a distributed ASM includes
a set of agents, each of which is executing an ASM program. The agent set
may grow and shrink during computation, thus allowing dynamic instantiation
and disposing of agents. By contrast, we consider only a fixed set of agents,

58 A. Glausch and W. Reisig

where each agent is identified by the program it executes. Furthermore, in [6]
Gurevich introduces a highly general notion of distributed run, which allows
several agents to access the same location of a state concurrently. As discussed
in Sect. 3, concurrent access is not possible in our version of distributed runs.

Despite those restrictions, our version of distributed ASMs is justified by the
following fact: Any distributed algorithm as discussed in the previous section
can be represented by one of our distributed ASMs. We will prove this fact in
the upcoming Sect. 6.

5.1 Assignment Statements

As usual, a signature Σ yields Σ-terms : each 0-ary symbol from Σ is a Σ-term,
and for an n-ary symbol f ∈ Σ and given Σ-terms t1, . . . , tn, the symbol sequence
f(t1, . . . , tn) is a Σ-term, too. Such terms are evaluated by a Σ-structure S in
the usual way: for each 0-ary symbol a, the element aS denotes the evaluation
of a in S, and for a term f(t1, . . . , tn), its evaluation in S is defined inductively
by f(t1, . . . , tn)S =def fS(t1S , . . . , tnS).

Terms are used to form assignment statements. A simple example built from
signature ΣQ is the statement val(a):=inc(b). Executing this assignment state-
ment in state Q updates the value of function valQ at argument aQ = 1 by the
value of inc(b)Q = 3, i.e. replaces the molecule (val, [1], 1) by the molecule
(val, [1], 3).

The general form of an assignment statement α is t:=t′, where t, t′ are Σ-
terms. Applied to a state S, α updates the location specified by t by the value
of t′. More precisely, for t = f(t1, . . . , tn), the location of t in S is

locS(t) =def (f, [t1S , . . . , tnS]).

Then α replaces the molecule set αold
S by by the molecule set αnew

S , with

αold
S =def { (locS(t), tS) }

αnew
S =def { (locS(t), t′S) }.

That is, αold
S and αnew

S contain the modified molecule before and after executing
the assignment statement α, respectively.

5.2 Assignment Statements Generate Actions

Given an assignment statement α and a corresponding state S, it is tempting to
regard (αold

S , αnew
S) as the action executed by α in state S. Unfortunately, this

does not work, as this action would only consider the molecules modified by α,
but not the molecules accessed by α.

In the distributed case, accessed molecules are significant: two assignment
statements obviously cannot be executed concurrently if one of them modifies
a location accessed by the other one. As a simple example, consider the two
assignment statements a:=b and b:=a.

An ASM-Characterization of a Class of Distributed Algorithms 59

Hence, the action generated by α needs to consider all molecules involved, i.e.
all molecules that are modified or accessed. To formalize this idea, for a Σ-term
t = f(t1, . . . , tn) and a Σ-structure S, we define the set of involved molecules tinS
inductively as

tinS =def t1
in
S ∪ · · · ∪ tn

in
S ∪ { (locS(t), tS) }.

For an assignment statement α : t:=t′, the set of involved molecules then is
defined as

αin
S =def tinS ∪ t′inS .

More precisely, the set αin
S contains all involved molecules before the execution

of α. Correspondingly, the set

αout
S =def (αin

S \ αold
S) ∪ αnew

S .

contains all involved molecules after the execution of α. Notice the different
meanings of the superscripts: in and out denote all involved molecules before and
after the execution of α, whereas old and new denote only the modified molecules
before and after the execution of α.

The notion of action of α now is quite obvious: for a given state S, the action
of α in state S is defined by αS =def (αin

S , αout
S). As an example, executing the

assignment statement val(a):=inc(b) in state Q yields the action

(,[],1)a

(,[],2)b

(,[],1)a

(,[],2)b

(,[2],3)inc

(,[1],1)val

(,[2],3)inc

(,[1],3)val .

5.3 Guarded Assignment Statements

An assignment statement α may furthermore be guarded by a Boolean expression
β. In that way, α is executed only in states that satisfy β.

In technical terms, a Boolean expression β consists of several term equations
of the form t1=t2 connected by the usual Boolean connectives ¬, ∧, and ∨. For a
given state S, the truth value of β is computed in the obvious way, where S |= β
denotes that β holds in S. For an assignment statement α, if β then α is a
guarded assignment statement, γ. For technical convenience, every assignment
statement as introduced in the previous subsections is conceived as a guarded
assignment statement whose guard holds in every state.

In addition to an ordinary assignment statement, a guarded assignment state-
ment γ involves further molecules to evaluate the truth value of the guard β.
Formally, let T β denote the set of all terms occurring in β. For a state S satisfying
β, the action of γ then is defined by γS =def (γin

S , γout
S) with

γin
S =def αin

S ∪
⋃

t∈T β

tinS , γout
S =def (γin

S \ αold
S) ∪ αnew

S .

60 A. Glausch and W. Reisig

5.4 Sequential ASM Programs

Guarded assignment statements can be executed in parallel. In general, a finite,
non-empty set of guarded assignment statements Γ = {γ1, . . . , γn} is a sequential
ASM program. At a given state S, Γ executes simultaneously all assignment
statements whose guards hold in S. More precisely, Γ replaces the molecules

Γ old
S =def

⋃
{ αold

S | (if β then α) ∈ Γ and S |= β }

by the molecules

Γ new
S =def

⋃
{ αnew

S | (if β then α) ∈ Γ and S |= β }.

Note that Γ new
S may be inconsistent, i.e. may contain two different molecules

with the same location. For example, executing the sequential ASM program
Γ = {f(x):=u, f(y):=v} in a state S with xS = yS and uS �= vS yields an
inconsistent Γ new

S . As an inconsistent set of molecules cannot update a state, Γ
executes no action in that case.

For a state S such that Γ new
S is non-empty (i.e. at least one guard is satisfied)

and consistent, Γ performs the action ΓS =def (Γ in
S , Γ out

S) with

Γ in
S =def

⋃
γ∈Γ

γin
S , Γ out

S =def (Γ in
S \ Γ old

S) ∪ Γ new
S .

In this case, ΓS is called an action of Γ . The set of all actions of Γ is denoted
by AΓ .

As an important property, no two actions from AΓ can be executed concur-
rently. The reason is that all actions in AΓ share the locations of the 0-ary
function symbols occurring in Γ . As a consequence, the actions of a sequential
ASM program Γ always occur totally ordered in a distributed run.

5.5 Distributed Abstract State Machines

In this section we finally introduce distributed ASMs. A distributed ASM Δ spec-
ifies a set of sequential ASM programs, the components of Δ. These components
concurrently change the state of Δ by performing actions as introduced above.
More precisely, a distributed ASM Δ consist of

– a signature ΣΔ,
– a non-empty set SΔ of ΣΔ-structures closed under isomorphism (the states

of Δ),
– a non-empty set IΔ ⊆ SΔ closed under isomorphism (the initial states of Δ),
– a finite, non-empty set PΔ of sequential ASM programs (the components of

Δ), all built over signature ΣΔ.

Based on the notions introduced so far, the operational semantics of Δ is easy
to define: the actions of Δ are constituted by the actions of the components of
Δ, i.e. the set of actions of Δ is defined as

AΔ =def

⋃
Γ∈PΔ

AΓ .

An ASM-Characterization of a Class of Distributed Algorithms 61

A distributed run of Δ then is a distributed run R such that the initial state of
R is an initial state of Δ and every action occurring in R is an action of Δ.

As an example, consider the following two sequential ASM programs built
over signature ΣQ:

A = { val(a):=inc(val(a)) , a:=inc(a) },

B = { if (b=val(b)) then b:=inc(b) }.

Intuitively, A subsequently increases the values of the function val, with a as
the argument counter, whereas B increases the counter b as long as the values
of b and val(b) coincide.

Figure 3 shows a distributed run of the components A and B at the initial
state Q. For the sake of clarity, each occurring action is inscribed by the program
causing the action.

(,[1],2)inc

(,[1],1)val

(,[2],3)inc

(,[2],2)val

(,[3],1)inc

(,[3],3)val

(,[],1)a

(,[],2)b

(,[1],2)inc

(,[1],2)val

(,[],2)a

(,[],3)b

(,[2],3)inc

(,[2],2)val

(,[3],1)inc

(,[3],3)val

(,[],1)b

(,[],3)a

(,[2],3)inc

(,[2],3)val

(,[],1)a

(,[3],1)inc

(,[3],1)val

A

A

A

B

B

Fig. 3. A distributed run of the components A and B

6 The Distributed ASM Theorem

In this section we present the main result of this paper: every distributed al-
gorithm as introduced in Sect. 4 can be represented by a distributed ASM as
introduced in Sect. 5. More precisely, the following theorem holds:

Theorem 1. Let D be a distributed algorithm according to D1–D5. Then there
exists a distributed ASM Δ such that the distributed runs of D and Δ coincide.

The reverse of Theorem 1 also holds: it is easy to prove that every distributed
ASM constitutes a distributed algorithm by verifying the requirements D1–D5.
Hence, the expressive power of distributed algorithms and distributed ASMs
coincide.

In the rest of this paper we outline the proof of Theorem 1. We present
the most important lemmata and provide for each lemma an idea of the proof.
Additionally, we show for each of the requirements D1–D5 its applications in the
course of the proof. A much more detailed proof of Theorem 1 (based on slightly
different notations) is given in [5].

62 A. Glausch and W. Reisig

The main idea of the proof is the following: according to D2, a distributed
algorithm D specifies a set of actions AD. We then decompose AD into finitely
many equivalence classes and represent each of these classes by a sequential ASM
program.

The equivalence relation that decomposes AD is action isomorphism: two
actions a and b are isomorphic if b can be derived from a by bijectively replacing
the elements of a. Formally, the set of elements of an action a is defined as

E(a) =def { u1, . . . , un, v | (f, [u1, . . . , un], v) ∈ ain ∪ aout }.

For two actions a and b, extend every bijective function p : E(a) → E(b) canon-
ically to the molecules of a and to a itself. Then p(a) denotes the action derived
from a by replacing all elements according to p. The function p then is an action
isomorphism from a to b iff p(a) = b. In case there is an action isomorphism from
a to b, a and b are isomorphic, written a ∼= b. We denote by [a] =def { b | b ∼= a }
the isomorphism class of a.

The relation ∼= is an equivalence relation between actions, i.e. ∼= decomposes
AD into disjoint subsets. Furthermore, the following lemma holds:

Lemma 1. Let D be a distributed algorithm. Then∼=decomposes AD into finitely
many disjoint subsets.

Idea of proof. This lemma holds due to D5: for each action a ∈ AD, |ain| and
|aout| are bounded by a constant c ∈ �. As a consequence, there exists a finite
set M such that every action a ∈ AD is isomorphic to an action aM whose
molecules contain only elements from M . But as M is finite, there can be only
finitely many different actions aM . As each equivalence class of AD is represented
by an action aM , AD contains only finitely many equivalence classes.
�

The next lemma states that AD is closed under action isomorphism: for each
action a of D, each action b isomorphic to a is also an action of D.

Lemma 2. Let D be a distributed algorithm and let a ∈ AD. Then [a] ⊆ AD.

Idea of proof. According to D2, there is a step R
a−→ R′ of D. Let b be an action

isomorphic to a with an action isomorphism p : a → b. Based on p, a state S
and an isomorphism i : R → S can be constructed such that p ⊆ i. According to

D3, there is a step S
i(a)−−→ S′ of D. As i(a) = p(a) = b, b is an action of D.
�

The following lemma states that the molecules of an action a ∈ AD may be
characterized by a finite set of terms T .

Lemma 3. Let S
a−→ S′ be a step of D. Then there exists a finite set T of

Σ-terms such that

– ain =
⋃

t∈T tinS ,
– for each molecule (l, v) ∈ aout there are terms tl, tv ∈ T such that locS(tl) = l

and tvS = v.

An ASM-Characterization of a Class of Distributed Algorithms 63

Idea of proof. According to D4, for every molecule (f, [u1, . . . , un], v) ∈ aout, a
has access to the elements u1, . . . , un and v. Then, for each x ∈ {u1, . . . , un, v},
a term tx along the inductive definition of “having access to” is constructed such
that txS = x. The set of all terms constructed in this way then constitutes T .

Let (l, v) ∈ aout with l = (f, [u1, . . . , un]). Then for the term
tl =def f(t

u1 , . . . , tun) holds locS(tl) = l, and for the term tv holds tvS = v.
�

Based on the set T of terms obtained in Lemma 3, a sequential ASM program
Γ is constructed which performs all actions in the isomorphism class of a:

Lemma 4. Let a be an action of D. Then there exists a sequential ASM program
Γ such that AΓ = [a].

Idea of proof. Let S
a−→ S′ be a step of D and let T be as in Lemma 3. By use

of Lemma 3, for each molecule (l, v) ∈ aout construct the assignment statement
tl:=tv. The set of all assignment statements obtained in this way is an ASM
program Γ 0 with Γ 0

S = a. The demanded ASM program Γ is constructed from
Γ 0 by guarding the assignment statements in Γ 0 by the Boolean expression∧

t,t′∈T,tS=t′S
(t = t′)∧

∧
t,t′∈T,tS �=t′S

¬(t = t′). Due to this guard, Γ only executes
actions isomorphic to a.
�

The previous lemmata then are composed in the main proof of Theorem 1:

Idea of proof (of Theorem 1). According to Lemma 1, the equivalence relation
∼= decomposes AD into finitely many disjoint subsets C1, . . . , Cn. According to
Lemma 2, each Ci is closed under isomorphism. Then, according to Lemma 4,
for each Ci there exists a sequential ASM program Γi such that Ci = AΓi . For
the distributed ASM Δ with SΔ = SD, IΔ = ID, and PΔ = {Γ1, . . . , Γn} then
holds

AD = C1 ∪ · · · ∪ Cn = AΓ1 ∪ · · · ∪ AΓn = AΔ.

As all states, initial states, and actions of D and Δ coincide, the distributed runs
of D and Δ are the same.
�

7 Conclusion

The theory of ASMs suggests a comprehensive and quite general approach to
the notion of “algorithm”. A number of variants of ASMs have been identi-
fied, among them sequential, interactive, parallel, and distributed versions. The
deeper understanding of all such classes of ASMs requires a characterization
of their expressive power. This has been achieved for many of them, including
sequential, parallel, and interactive versions.

In this paper we characterized a class of distributed algorithms with bounded
actions. As suggested by Gurevich in [6], and in the tradition of Petri and Pratt,
we define distributed runs as sets of action occurrences, partially ordered by
causal dependencies. We furthermore showed that this class of distributed algo-
rithm is captured by the operational computation model of distributed ASMs,
which is based on sequential ASMs [7].

64 A. Glausch and W. Reisig

We intend to extend the result of this paper to more general variants of
distributed ASMs. As discussed in Sect. 5, in [6] a version of distributed ASMs is
introduced which offers advanced features such as concurrent access to locations
and dynamic instantiation of new agents. We will examine how the requirements
D1 – D5 can be generalized in order to capture those features.

References

1. Blass, A., Gurevich, Y.: Abstract State Machines Capture Parallel Algorithms.
ACM Trans. Comput. Logic 4(4), 578–651 (2003)

2. Blass, A., Gurevich, Y.: Ordinary Interactive Small-Step Algorithms, parts I, II,
III. ACM Trans. Comput. Logic (2006)

3. Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B.: General Interactive Small
Step Algorithms. Technical Report MSR-TR-2005-113, Microsoft Research (Au-
gust 2006)

4. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

5. Glausch., A., Reisig, W.: Distributed Abstract State Machines and Their Expres-
sive Power, Humboldt-Universität zu, Berlin. Informatik-Berichte, vol. 196 (2006),
http://www.informatik.hu-berlin.de/top/download/publications/

GlauschR2006 hub tr196.pdf

6. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specifi-
cation and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

7. Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic 1(1), 77–111 (2000)

8. Gurevich, Y., Yavorskaya, T.: On Bounded Exploration and Bounded Nondeter-
minism. Technical Report MSR-TR-2006-07, Microsoft Research (January 2006)

9. ITU-T. SDL Formal Semantics Definition. ITU-T Recommendation Z.100 Annex
F, International Telecommunication Union (November 2000)

10. Petri, C.A.: Non-Sequential Processes. Interner Bericht ISF–77–5, Gesellschaft für
Mathematik und Datenverarbeitung (1977)

11. Reisig, W.: Petri Nets: An Introduction. Springer-Verlag New York, Inc., New York
(1985)

12. Reisig, W.: On Gurevich’s Theorem on Sequential Algorithms. Acta Informat-
ica 39(5), 273–305 (2003)

13. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

14. Pratt, V.: Modeling Concurrency with Partial Orders. Int. J. of Parallel Program-
ming 15(1), 33–71 (1986)

http://www.informatik.hu-berlin.de/top/download/publications/GlauschR2006_hub_tr196.pdf
http://www.informatik.hu-berlin.de/top/download/publications/GlauschR2006_hub_tr196.pdf

Using Abstract State Machines for the Design of
Multi-level Transaction Schedulers

Markus Kirchberg1, Klaus-Dieter Schewe2, and Jane Zhao2

1 Institute for Infocomm Research (I2R), A*STAR, Singapore
mkirchberg@i2r.a-star.edu.sg

2 Information Science Research Centre, Palmerston North, New Zealand
kdschewe@acm.org, janeqzhao@hotmail.com

Abstract. Multi-level transactions have been suggested as an approach
to increase transaction throughput in databases. The central idea is to
enable some low-level conflicts to be ignored by taking higher-level ap-
plication semantics into account. In this paper, we approach the formal
specification of a multi-level transaction scheduler using Abstract State
Machines. We are particularly interested in showing that concrete pro-
tocols for multi-level transaction processing arise as refinements of an
abstract ground model specification. Furthermore, we are interested in
the proof of desirable properties of such schedulers such as the correct-
ness and if possible also completeness with respect to serialisability, and
the recoverability of the accepted schedules. For this we investigate a
two-phase locking and a hybrid protocol.

1 Introduction

Transaction processing is an important component of any database management
system, as it enables concurrent access to databases by multiple users. In most
applications thousands of transactions have to be processed each second. So,
transaction throughput is important for the performance of these systems.

The commonly adopted transaction model only looks at sequences of read
and write operations on database “objects” [6]. In most cases these objects are
physical pages, but also a finer granularity, e.g. records or even record fields,
could be considered. A schedule, i.e. an interleaving of sequences that stem from
different transactions, can be accepted, if it is equivalent to a serial one using any
order of the involved transactions. The most common notion of equivalence of
schedules requires that conflicting operations, i.e. operations on the same object,
one of which is a write, from different transactions appear in the same order in
equivalent schedules.

A lot of research has been undertaken over decades to enhance this simple
model of “flat” transactions to increase transaction throughput, of course with-
out violating the serialisability request. An important improvement is offered
by the model of multi-level transactions [1], which is based on the idea of ig-
noring some low-level conflicts by taking higher-level application semantics into
account. In other words, a transaction is defined via operations on various lev-
els, e.g. pages, records and fields, and conflicts are defined on each level. Then

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 65–77, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

66 M. Kirchberg, K.-D. Schewe, and J. Zhao

it may happen that low-level operations are in a conflict, whereas their parent
operations are not, in which case the low-level conflict can be ignored.

Many concurrency control protocols have been suggested for the multi-level
transaction model [10,16] including generalisations of locking protocols and hy-
brid protocols that combine optimistic with locking strategies [14]. Moreover,
the model has been promoted as part of a general architecture for distributed
object bases [9]. Nevertheless, it has not yet been widely adopted in practical
database management systems. This may reflect some problems with the defi-
nition of high-level objects as such, which is rather vague in the original model,
and unknown performance issues. The work in [8] is one of the few dealing with
an in-depth analysis of the performance of multi-level concurrency control pro-
tocols. It supports the vague observation made in [14] that locking protocols
eat up the envisioned advantages of the model, whereas for optimistic or hybrid
protocols the cases, where the model can be winningly applied, still have to be
figured out.

That is, it is necessary to further investigate concurrency control protocols for
multi-level transactions. The problem is that protocols are usually developed in
an ad-hoc way. Desirable properties such as correctness with respect to serialis-
ability, recoverability or strictness are repeatedly verified, if at all. It would be
better, if such properties became part of a formal system specification, so that
there is no need to verify them again for refinements of protocols. We therefore
think it is a good idea to start from a high-level formal specification of a multi-
level transaction scheduler that is then subject to a refinement process leading
to the specification of a concrete protocol.

We propose to use Abstract State Machines (ASMs) [4] for this purpose be-
cause of their explicit support of a methodology consisting of building an initial
“ground model” [2] and applying refinements [3] to it without being forced into
detailed verification at all levels. Furthermore, ASMs have already been applied
in various areas including database recovery [7], data warehouses [18], and gen-
eral database transactions [12], i.e. areas that are closely related to the one we
are interested in. In [11] it has been argued that for databases it may be ad-
vantageous not to rely on the basic ASM method, but to employ a typed ASMs
as defined in [5] or [17] instead. This, however, applies to database applications,
whereas for internal aspects of database management systems such as the con-
currency control component untyped ASMs are sufficient.

In this paper, we present initial results of applying ASMs to the specifica-
tion of multi-level concurrency control protocols. We start by defining an ASM
ground model in Section 2. This amounts to just specifying the multi-level trans-
action model and the task of the scheduler to accept or reject commit-requests.
We enhance this model by defining quality criteria for serialisability and re-
coverability in Section 3, before we start looking at refinements that lead to
concrete concurrency control protocols. Our refinements will be fairly standard
in the sense of the work in [4,13]. Basically, we will only exploit (1, n)-refinements
that result from adding new rules, conservative extensions, and pre-post exten-
sions. We first discuss the standard strict two-phase locking protocol str-2PL in

Using ASMs for the Design of Multi-level Transaction Schedulers 67

Section 4, before approaching the hybrid FoPL protocol in Section 5. In both
cases we use refinements of the ASM ground model. In the case of the hybrid
protocol we can further refine the specification by permitting lazy aborts, which
leads to the FoPL+-protocol. This protocol is indeed not only correct, but also
complete. We summarise our conclusions in Section 6 emphasising also further
refinements dealing with operations that absorb each other or early aborts.

2 ASM Ground Model for Multi-level Transaction
Processing

The basic operation of a transaction scheduler is simply to read incoming opera-
tions and to schedule them. In general, the read involves checking that the opera-
tion is well-defined and belongs to a transaction, thus it also involves maintaining
transaction and operation tables. The scheduling involves checking, whether the
operation can be executed or has to be aborted. Furthermore, the schedule, i.e.
the sequence of the accepted operations, has to be cleaned in case of aborts and
transactions successfully leaving the system.

Thus, in terms of ASMs we start with four nullary functions in the signature:

next(0) monitored new(0) dynamic new op(0) controlled tid(0) dynamic

If new is defined, then this indicates that a new operation or transaction has
arrived that awaits scheduling. In this case the value of next will be this new
operation. In addition, in case of a top-level transaction, the value of tid will be
set to the transaction identifier. If the operation is well-defined, the flag new op
will be set, and scheduling will be started. That is, next is controlled only by
the environment, i.e. the run-time database system, and thus has been modelled
by a monitored function. On the other hand, new op is completely controlled by
the scheduler, so it is modelled as a controlled function, while new is controlled
by both the scheduler and the environment.

Then the main rule of a transaction scheduler ASM takes the following simple
form:

main = if new �= ⊥
then (add op(next) ‖ new := ⊥) ;

if new op �= ⊥
then schedule(next) ;

execute(next)
endif

endif

2.1 Multi-level Transactions

According to [14] an n-level system consists of n levels Li = (Di, Fi) (i =
0, . . . , n − 1), where Di is a set of objects and Fi a set of operators . An Li-
operation is an element of Oi = Fi × Di. Therefore, we model operations and
objects in our scheduler ASM by two static functions:

68 M. Kirchberg, K.-D. Schewe, and J. Zhao

ops(2) static obj (2) static

Then ops(
, n) = 1 means that there is an operator with the name n on level

. Analogously, obj (
, o) = 1 means that there is an object with the name o on
level
.

Let us now look closer at the incoming operations and how they are handled
by the scheduler, more precisely by the rule add op used above. For this we adopt
the definitions of index tree and n-level-transaction from [14]. An index tree of
depth n is a finite subset I ⊆ (N−{0})∗ such that ε ∈ I, α(k +1) ∈ I ⇒ αk ∈ I,
and α ∈ I ∧ |α| < n ⇔ α1 ∈ I for all α ∈ (N − {0})∗ and k ∈ N hold. Here,
as a syntactic convention, we used small Greek letters α, β, μ, ν, . . . for number
sequences and small Latin letters i, j, k,
, . . . for the numbers in these sequences.

An n-level-transaction Tj consists of an index tree I of depth n, a mapping
which assigns to each non-empty α ∈ I an Ln−|α|-operation, denoted as ojα,
and partial orders <

(j)
i (called L

(j)
i -precedence relation) on each O

(j)
i = {ojα |

|α| + i = n}, such that ojαk <
(j)
i ojα� ⇒ k <
 holds. Furthermore, ojα <

(j)
i ojβ

holds iff ojαk <
(j)
i−1 ojβ� holds for all k and
.

Therefore, in our specification we model operations by triples (α, n, o), where
α is a unique identifying number sequence for the operation, n is the operator
name, and o is the object the operation is applied to. In particular, the value
next is bound to will always have this form. In case of a top-level transaction
we get α = ε, so we create a transaction number using the controlled function
last tno(0), which contains the last assigned transaction number. For all other
operations we assume that we already get the unifying number sequence, which
of course could be determined from identifiers of the operation itself and its
parent. To simplify our model, we use two unary static functions parent and
index, which will produce the identifying sequence of the parent operation and
the index, i.e. k for the k’th child of the parent. Furthermore, we will need the
functions

level(3) derived max level(0) static

Obviously, the latter one defines the number of levels used, while the former one
is defined by

level(α, n, o)=

{
max level if α = ε

level (β, n′, o′) − 1 if ∃i, n′, o′.α = βi ∧ ops table(β, n′, o′) �= ⊥

Then the multi-level transactions that are in the system and the operations
involved in them can be modelled by three controlled functions

ops table(3) controlled precedence(4) controlled trans table(2) controlled

Obviously, ops table(α, n, o) is defined iff (α, n, o) is an operation in the system
with components as just defined, precedence(i, j, α, β) is defined iff opα <

(j)
i opβ

holds for the operations with the identifying sequences α and β, respectively,

Using ASMs for the Design of Multi-level Transaction Schedulers 69

and trans table(j, id) is defined iff the top-level transaction with number j has
the identifier id.

With these preliminaries the rule add op used in the main rule is defined as
follows:

add op(op) = if op = (ε, ⊥, ⊥) ∧ tid �= ⊥
then last tno := last tno + 1 ;

(ops table(last tno,⊥, ⊥) := 1 ‖ tid := ⊥ ‖
trans table(tid ,last tno) := 1 ‖ new op := 1)

elsif ∃α, n, o . op = (α, n, o) ∧α �= ⊥∧
ops(level(op),n) = 1 ∧ obj (level(op),o) = 1 ∧
∃np, op. ops table(parent(α),np, op) �= ⊥ ∧
(index (α) �= 1 ⇒ ∃ns, os.

ops table(parent(α)	(index (α)-1),ns, os) �= ⊥)
then let α = π1(op) ∧ n = π2(op) ∧ o = π3(op)

in begin
(ops table(α, n, o) := 1 ‖ new op := 1) ;

check prec(α, n, o)
end

else new op := ⊥
endif

Here the called rule check prec will define the precedence relations leading to a
total order on level 0 and partial orders on all other levels. We dispense with the
straightforward details of this rule. Note that the addition of rule add op could
already be considered a (1, n)-refinement.

2.2 Multi-level Schedules

The execution of concurrent transactions is described by an n-level-schedule.
According to [14] for a set On = {T1, . . . , Tk} of n-level-transactions let Oi =⋃k

j=1 O
(j)
i be the set of all Li-operations in these transactions (0 ≤ i < n).

Then a (complete) n-level-schedule on On is given by a partial order <0 on O0

containing all L
(j)
0 -precedence relations. Then <0 induces a partial order <i on

each level by

oμ <i+1 oν ⇔ ∀oμk ∈ act(oμ).∀oν� ∈ act(oν). oμk <i oν�.

As schedules are built-up by incoming operations, we need the notion of a partial
schedule. For this, following [14], we define a prefix of an n-level-transaction Tj

to consist of subsets P
(j)
i ⊆ O

(j)
i (i = 0, . . . , n) such that

– ojα <
(j)
i ojβ ∧ ojβ ∈ P

(j)
i ⇒ ojα ∈ P

(j)
i and

– ojα ∈ P
(j)
i ⇒ oparent(jα) ∈ P

(j)
i+1

hold, whenever the involved operations are defined. As the selection of sub-
sets for a prefix defines an underlying subtree of the index-tree, we may treat

70 M. Kirchberg, K.-D. Schewe, and J. Zhao

prefixes as if they were (complete) transactions. Thus, we may define sched-
ules on the basis of prefixes, so we obtain partial n-level-schedules, for which
we write (Pn, . . . , P0, <0). Here Pn = {P1, . . . , Pk} is a set of n-level-prefixes,

Pi =
k⋃

j=1
P

(j)
i and <0 is a partial order on P0 containing all L

(j)
0 -precedence rela-

tions restricted to P0. If all Pj are transactions, we obtain a complete schedule.
On these grounds, the scheduling of incoming operations via the schedule rule

used in the main rule is quite straightforward. We only need another controlled
function g-precedence(3) with g-precedence(i, α, β) being defined iff oα <i oβ

holds. So, the schedule rule simply has to create these “global” precedence
relations:

schedule(α, n, o) =
if level(α, n, o) = 0
then forall β, n′, o′

with ops table(β, n′, o′) �= ⊥∧ level(β, n′, o′) = 0
do g-precedence(0, β, α) := 1
enddo

elsif n = ‘commit’ ∨ n = ‘abort’
then let β = parent(α) ∧i = level(α, n, o)

in begin
choose n′, o′

with ops table(β, n′, o′) �= ⊥
do forall γ, n′′, o′′

with (ops table(γ, n′′, o′′) �= ⊥∧
level(γ, n′′, o′′) = i + 1∧
∀k,
. (∃n1, o1. ops table(γk, n1, o1) �= ⊥∧

∃n2, o2. ops table(β
, n2, o2) �= ⊥)
⇒ g-precedence(i + 1, γk, β
) �= ⊥))

g-precedence(i, γ, β) := 1
enddo

enddo
end

endif

Again, the definition of rule schedule can be considered to constitute a simple
(1, n)-refinement.

Of course, scheduling of transactions means to permit only schedules that
satisfy certain quality criteria. We will discuss these criteria in the next section.
Then we will refine the schedule rule, which can be done in a preemptive or
an optimistic way. Roughly, the difference is that preemptive scheduling checks
conditions before the operation is added to the schedule, while optimistic schedul-
ing checks conditions at commit-time, i.e. after completion of a transaction. In
both cases the violation of the check conditions leads to abortion, which may be
relaxed to waiting. We will not discuss details of abortion here.

Using ASMs for the Design of Multi-level Transaction Schedulers 71

3 Serialisability and Recoverability

A consequence of atomicity of transactions is the request that schedules must be
serialisable, i.e. equivalent to a serial schedule, in which transactions would be
executed one after another. Different notions of equivalence exist, the most com-
mon one – for reasons of decidability and efficiency – being conflict-serialisability,
which defines schedules to be equivalent iff conflicting operations appear in the
same order in the schedules.

In the model of multi-level transactions conflicts are defined by using level-
specific, symmetric conflict relations CON i ⊆ Oi × Oi. Non-conflicting oper-
ations should commute, and conflicts can only occur on the same object, i.e.
((op1, x), (op2, y)) ∈ CON i ⇒ x = y, so conflict relations are de facto defined on
operators rather than operations. In terms of ASMs, it thus suffices to provide
two functions

op-con(3) static con(5) derived

with op-con(i, n, n′) being defined iff the Li-operators n, n′ ∈ Fi are conflicting,
and con(i, n, o, n′, o′) being defined iff op-con(i, n, n′) and o = o′ ∈ Di hold.

Furthermore, these conflict relations must satisfy a natural conformity condi-
tion, which simply requests that whenever operations oα and oβ conflict, then
there must exist children oαk and oβ
 on the next lower level that also conflict
each other. On these grounds, we can define

ojμ →i oj′ν ⇔ j �= j′ ∧ (ojμ, oj′ν) ∈ CON i ∧ ojμ <i oj′ν

for oμ, oν ∈ Oi.
Then according to [14] two n-level-schedules are conflict-equivalent iff their

associated relations →i coincide for all i = 0, . . . , n−1. An n-level schedule which
is conflict-equivalent to a serial one, is called serialisable. A partial schedule is
serialisable iff it can be extended to a complete serialisable schedule.

Serialisability determines which schedules should not be accepted. It does,
however, not yet help to decide, whether a transaction can be committed, i.e.
successfully completed. Even if the partial schedule at hand is serialisable, a
completed transaction cannot be simply taken away from it, because we simply
have no control over the completion, which depends on the incoming operations.
This could be mended by requiring that the completed transaction is the first
in the equivalent serial schedule, but this would rule out too many schedules.
What we require instead is recoverability, i.e. a transaction can only commit, if
no later abort of another transaction would require the transaction at hand to
be aborted as well. In other words, a committed transaction is considered to be
final forever, and no failure should be possible.

For multi-level transactions recoverability has been formalised in [14] by means
of marked schedules. A partial schedule S = (Pn, . . . , P0, <0) is turned into a

marked schedule by a partial mapping m :
n⋃

i=0
Pi � {c, a} such that the following

hold:

72 M. Kirchberg, K.-D. Schewe, and J. Zhao

– If m(o′) is defined for all successors o′ of o ∈ Pi, then m(o) must also be
defined.

– Whenever m(o) = c and o′ is a successor of o, then we also have m(o′) = c.
Whenever m(o) = a holds, there must exist some successor o′ with m(o′) = a.

– Whenever o′ <i o holds, then m(o′) = c must hold.

Furthermore, we need the notion of strong dependence of operations: oj′ν(x)
strongly depends on ojμ(x) (notation: ojμ(x) �i oj′ν(x)) iff ojμ(x) →i oj′ν(x)
holds and the effect of the sequence ojμ(x); oj′ν(x) (on the database) differs from
the effect of oj′ν(x).

Then, according to [14] a schedule (On, . . . , O0, <0) is recoverable on level Li

iff for all prefixes S, all markings m of S and all j �= j′

ojμk �i−1 oj′ν� ∧ m(oj′ν) = c ⇒ m(ojμ) = c

holds. Recoverability does not exclude cascading aborts, so recovery may still be
a complex task. We dispense, however, with discussing the stronger notions of
cascade-freeness or even strictness.

4 The str-2PL-Refinement

Each concurrency control protocol should result as a refinement of the scheduling
rule defined in Section 2. Let us start with discussing the common two-phase
locking protocol (2PL) in its strict version (str-2PL). Locking protocols work
preemptively, i.e. before an operation is scheduled, it must acquire a lock on
the object it wants to access. Thus, following [14] for each Li-operator op ∈ Fi

we define a specific lock lockop. Then, each Li-operation opμk(x) may only be
executed after setting a lock, namely lockop, on the object x. In addition, we
associate with this lock the identifying number sequence μ of its parent oμ. After
its commit, oμ must release all its locks. An Li-object x may hold several locks
at a time, provided the associated operations do not conflict with each other,
i.e. if lockop1 and lockop2 are locks on object x ∈ Di issued by the Li-operations
oμk and oν�, respectively, then these locks are incompatible iff oμk →i oν� or
oν� →i oμk holds.

Thus, an operation may only set a lock on x, if this is not incompatible with
any existing lock on x. Otherwise, the operation has to be aborted or must
wait until all incompatible locks on x are released. In 2PL we have a growing
phase, in which all locks are acquired, but none can be released, followed by a
shrinking phase in which existing locks will be released, but no new lock can be
acquired. In str-2PL no lock will be released before commit or abort. So, the
str-2PL-refinement of the main rule will be

main = if new �= ⊥
then (add op(next) ‖ new := ⊥) ;

if new op �= ⊥
then schedule(next) ;

Using ASMs for the Design of Multi-level Transaction Schedulers 73

acquire lock(next) ;
if lock table(next) �= ⊥
then execute(next)
else wait or abort(next)
endif

endif
endif

In doing so, we actually combine two (1, n)-refinements. First, we apply a wrap-
ping refinement – in general, this means to replace a rule 〈old〉 by an extended
rule of the form 〈pre〉;〈old〉;〈post〉 – to the execute rule. In fact, we only add
a preprocessing rule acquire lock. In a second step we apply a conservative ex-
tension – in general, this means to replace a rule 〈old〉 by a conditional rule if
〈condition〉 then 〈old〉 else 〈new〉 endif – to the execute rule. Such refinements
were discussed intensively in [4,3,13].

We dispense with discussing details of the wait or abort rule. If waiting is
possible, the operation will arrive as a new operation again later, while abortion
leads to a set of complex actions. So, we can concentrate on the acquire lock
rule, for which we need the ternary controlled function lock table. Then the rule
takes the following form:

acquire lock(α, n, o) =
let i = level(α, n, o)
in begin

if ∀β, n′. (lock table(β, n′, o) �= ⊥ ⇒ (first(α) = first(β)
∨ con(i, n′, o, n, o) �= ⊥∨ g-precedence(i, β, α) �= ⊥))

then lock table(α, n, o) := 1
endif

end

Furthermore, we have to refine the schedule rule in a way that a commit-
operation releases all locks. As there is nothing more to do in case of commit,
this is straightforward. As shown in [14, Thm.1 & Prop.1] schedules accepted by
str-2PL are always recoverable and serialisable. We dispense with repeating the
proofs here.

5 The Basic FoPL-Refinement

The hybrid FoPL-protocol introduced in [14] is an alternative to str-2PL that
does not require locks. In the tradition of optimistic concurrency control, FoPL
consists of three phases: propagation, validation and execution. In the propa-
gation phase the operations at the various levels Li are executed. In addition,
flaglists for the objects are built up that will later be used to decide, whether an
operation commits or aborts. The task of the validation phase is to perform this
decision. The flaglists are used to detect, whether the interleaved execution of
the operations has lead to a situation that forces an abort or not. Finally, in the

74 M. Kirchberg, K.-D. Schewe, and J. Zhao

execution phase the commit or abort is executed. The commit-case is the easier
one, as it suffices to remove flags from flaglists, while the abort-case requires
additional efforts for rollback.

So, the refinement of the main rule originating from propagation is simply to
set flags before scheduling, i.e. the main rule becomes:

main = if new �= ⊥
then (add op(next) ‖ new := ⊥) ;

if new op �= ⊥
then set flag(next) ;

schedule(next) ;
if n �= ‘end’
then execute(next)
else choose β, np, op

with β = parent(π1(next))∧
ops table(β, np, op) �= ⊥

do validate(β, np, op) ;
if successful(β) �= ⊥
then commit(β)
else wait or abort(β, np, op)
endif

enddo
endif

endif
endif

The kind of refinement we applied in this case is again a combination of a
simple wrapping with a conservatibve extension. In fact, we added set flag as
preprocessing rule to schedule, then added a condition to the execute rule with
an extensive rule for the else-case.

As an Li-operation oμ is implemented by means of its children on level Li−1,
we mark the objects in Di−1 that are accessed by oμ. For a successor oμk of oμ

defined by the operation (op, o) we use the flag (op, μ) on o. Flags are organised
in flaglists for all objects o, which are built dynamically extending <i−1.

In terms of ASMs, we simply need a 4-ary controlled function flag to specify
the set flag rule:

set flag(α, n, o) = choose k
with k ≥ 0 ∧ ∀
, n′, β.(flag(o,
, n′, β) �= ⊥ ⇒
 < k)∧

(∃n′, β.flag(o, k − 1, n′, β) �= ⊥ ∨ k = 0)
do choose β

with β = parent(α)
do flag(o, k, n, β) := 1
enddo

enddo

Validation of an Li-operation oμ first has to check, whether all flags of successor
operations that implement oμ are still set – flags may have been removed from a

Using ASMs for the Design of Multi-level Transaction Schedulers 75

flaglist by another operation. For the flaglists of all objects o ∈ Di−1 that were
accessed by one of these operations during the propagation phase, exclusive locks
will be requested and kept until the end of the commit-phase. If at least one flag
is missing, the operation oμ must be aborted. Otherwise the protocol checks,
whether oμ was successful. This is the case, if none of the objects accessed by oμ

was accessed earlier by some other conflicting operation oν . This can be detected
from the flaglists.

According to [14] this can be formalised as follows: An Li-operation oμ is
blocked on an object o ∈ Di−1 iff there are flags (op1, ν) and (op2, μ) in its flaglist
with ν �= μ such that (op1, ν) precedes (op2, μ) and ((op1, o), (op2, o)) ∈ CON i−1
holds. An Li-operation oμ is successful iff it is not blocked on any object o that
it accesses.

In terms of ASMs, we have to specify the validate rule used in the refined
main rule above. This rule uses the unary controlled function successful :

validate(α, n, o) =
successful(α) := 1 ;
forall β, nc, oc

with ∃k.β = αk ∧ ops table(β, nc, oc) �= ⊥
do set lock(oc, α) ;

if ¬∃
.flag(oc,
, nc, α) �= ⊥
then successful(α) := ⊥
else choose k

with flag(oc, k, nc, α) �= ⊥
do if ∃γ,
, n′

c.(
 < k ∧ γ �= α∧
flag(oc,
, n

′
c, γ) �= ⊥∧

con(level(β, nc, oc),n′
c, oc, nc, oc) �= ⊥)

then successful(α) := ⊥
endif

enddo
endif

enddo

As the actual commit in the commit-phase mainly amounts to removing flags,
we can dispense with the straightforward details. On the other hand, wait and
abort rules will require some sophisticated refinements.

6 Conclusion

In this paper, we approached the specification of multi-level concurrency control
protocols using Abstract State Machines (ASMs). First of all, this is of course an
exercise in the application of ASMs in an important area of database systems,
and it is no surprise that this could be achieved without any difficulty. It is also
not surprising that the ground model specification and its refinements towards a
locking and a hybrid protocol can be used to prove important characteristics of

76 M. Kirchberg, K.-D. Schewe, and J. Zhao

protocols such as recoverability and serialisability of the accepted schedules. In
this sense we simply translated the work done in [14] to the framework of ASMs.

What is more important is that the development of the specifications fol-
low a uniform pattern. Both protocol specifications arise as refinements of a
very general specification, which does not specify more that the very basics of
transaction scheduling. This suggests the refinement-based ASM-method as a
promising approach to develop various other protocols, where each refinement
step is motivated by a desirable property of the schedules. In particular, the
basic refinement steps that we outlined in this paper were motivated by the
requirement to accept only serialisable schedules, in which all transactions are
recoverable. This goal has been achieved in a systematic way.

The refinement-based specification of the protocols is, however, not yet com-
pleted. We left out the important aspect of abortion, which in itself leads to
complex specifications. We will complement our work elsewhere. Furthermore,
we left out other possible refinements of the protocols, e.g. waiting strategies in
case immediate aborts are not desired. In case of locking protocols this involves
the whole area of deadlock detection, while for the hybrid FoPL protocol even
completeness can be verified, i.e. all serialisable schedules will be accepted, if the
basic protocol is refined by a waiting strategy.

In [14] further refinements of the FoPL protocol were discussed. These com-
prise early aborts in case a flag is removed, which requires communication among
transactions. It further comprises partial abortion, which amounts to support
restarting transactions, and the support of absorbing operations. All these pro-
tocol extensions lead to further refinement of our ASMs, thus remain within the
outlined framework. They further lead directly to verifiable properties of the
accepted schedules. In view of the work in [15] it is further possible to extend
the work towards distributed concurrency control.

All this together demonstrates the strength of the ASM method. The spec-
ifications are easy to obtain, and the refinements are achieved systematically.
While our study has been placed in an application area, where the theoretical
results are known, the easiness and flexibility of the approach suggests to apply
the method also to other problem areas.

In continuation of the work reported in this paper, we intend to complete
this study adding details of the indicated further refinements. We further intend
to complete the verification work also with respect to properties that have not
yet been covered by previous work, e.g. characterising the benefits of the subtle
protocol refinements.

References

1. Beeri, C., Bernstein, P.A., Goodman, N.: A model for concurrency in nested trans-
actions systems. Journal of the ACM 36(2), 230–269 (1989)

2. Börger, E.: The ASM ground model method as a foundation for requirements
engineering. In: Verification: Theory and Practice, pp. 145–160 (2003)

3. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15, 237–
257 (2003)

Using ASMs for the Design of Multi-level Transaction Schedulers 77

4. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003)
5. Del Castillo, G., Gurevich, Y., Stroetmann, K.: Typed abstract state machines

(1998), http://research.microsoft.com/~gurevich/Opera/137.pdf
6. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan

Kaufmann Publishing, San Francisco (1993)
7. Gurevich, J., Sopokar, N., Wallace, C.: Formalizing database recovery. Journal of

Universal Computer Science 3(4), 320–340 (1997)
8. Kirchberg, M., Schewe, K.-D.: A comparison of multi-level concurrency control

protocols. In: Orlowska, M.E., Roddick, J.F. (eds.) Database Technologies: Pro-
ceedings of the 12th Austalasian Database Conference (ADC 2001). Australian
Computer Science Communications, vol. 23(2), pp. 153–160. IEEE Computer So-
ciety, Los Alamitos (2001)

9. Kirchberg, M., Schewe, K.-D., Tretiakov, A., Wang, R.: A multi-level architec-
ture for distributed object bases. Data and Knowledge Engineering 60(1), 150–184
(2007)

10. Lewis, P.M., Bernstein, A.J., Kifer, M.: Databases and Transaction Processing: An
Application-Oriented Approach. Addison-Wesley, Reading (2001)

11. Link, S., Schewe, K.-D., Zhao, J.: Refinements in typed abstract state machines.
In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 310–321.
Springer, Heidelberg (2007)

12. Prinz, A., Thalheim, B.: Operational semantics of transactions. In: Schewe, K.-D.,
Zhou, X. (eds.) Database Technologies 2003: Fourteenth Australasian Database
Conference. Conferences in Research and Practice of Information Technology,
vol. 17, pp. 169–179 (2003)

13. Schellhorn, G.: ASM refinement and generalizations of forward simulation in data
refinement: a comparison. Theoretical Computer Science 336(2-3), 403–435 (2005)

14. Schewe, K.-D., Ripke, T., Drechsler, S.: Hybrid concurrency control and recovery
for multi-level transactions. Acta Cybernetica 14(3), 419–453 (2000)

15. Speer, J., Kirchberg, M.: D-ARIES: A distributed version of the ARIES recovery
algorithm. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) Proceedings
of the 9th East-European Conference on Advances in Databases and Information
Systems (ADBIS), pp. 13–30. Tallinn University of Technology Press (2005)

16. Weikum, G.: Principles and realization strategies of multilevel transaction man-
agement. ACM Transactions on Database Systems 16(1), 132–180 (1991)

17. Zamulin, A.V.: Typed Gurevich machines revisited. Joint Bulletin of NCC and IIS
on Computer Science 5, 1–26 (1997)

18. Zhao, J., Ma, H.: ASM-based design of data warehouses and on-line analytical
processing systems. Journal of Systems and Software 79, 613–629 (2006)

http://research.microsoft.com/~gurevich/Opera/137.pdf

Validating and Animating Higher-Order
Recursive Functions in B

Michael Leuschel1, Dominique Cansell2, and Michael Butler3

1 Institut für Informatik, Universität Düsseldorf
leuschel@cs.uni-duesseldorf.de

2 LORIA, Nancy
cansell@loria.fr

3 School of Electronics and Computer Science, University of Southampton
mjb@ecs.soton.ac.uk

Abstract. ProB is an animation and model checking tool for the B
Method, which can deal with many interesting specifications. Some spec-
ifications, however, contain complicated functions which cannot be repre-
sented explicitly by a tool. We present a scheme with which higher-order
recursive functions can be encoded in B, and establish soundness of this
scheme. We then describe a symbolic representation for such functions.
This representation enables ProB to successfully animate and model
check a new class of relevant specifications, where animation is espe-
cially important due to the involved nature of the specification.

Keywords: B-Method, Tool Support, Model Checking, Animation, Logic
Programming, Constraints.1

1 Introduction

The B-method, originally devised by J.-R. Abrial [1], is a theory and method-
ology for formal development of computer systems. It is used by industries in a
range of critical domains. B specifications are structured into abstract machines.
The state of an abstract machines is represented by variables and correctness
conditions can be expressed in the invariant, which is specified in predicate logic
augmented with set theory and arithmetic. In addition to variables, B machines
may also contain constants, which must satisfy conditions expressed in the “prop-
erties” clause. Operations of a machine are specified as generalised substitutions,
which allow deterministic and non-deterministic state transitions to be specified.

There are two main proof activities in B: consistency checking, which is used
to show that the operations of a machine preserve the invariant, and refinement
checking, which is used to show that one machine is a valid refinement of another.
These activities are supported by tools, such as Atelier-B, B4Free, and the B-
toolkit.

In addition to the proof activities it is increasingly being realised that val-
idation of the initial specification is important to avoid deriving a “correct”
1 This research is being carried out as part of the EU funded research project IST

511599 RODIN (Rigourous Open Development Environment for Complex Systems).

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 78–92, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Validating and Animating Higher-Order Recursive Functions in B 79

implementation of an incorrect specification. This validation can come in the
form of animation, e.g., to check that certain functionality is present in the
specification. Another useful tool is model checking [6], whereby the specifica-
tion can be systematically checked for certain temporal properties. In previous
work [9], we have presented the ProB animator and model checker to support
those activities. The tool can also be used to complement proof activities, as it
supports automated consistency checking of B machines and has been recently
extended for automated refinement checking [10].

Motivation. The ProB tool has been successfully applied to various academic
and industrial examples (e.g., a Volvo vehicle function [9]). ProB can deal with
B’s data structures, such as relations, functions and sequences as well as set
comprehensions and lambda abstractions. ProB can also handle constants and
the first step of animating or model checking a B model then consists of finding
values for the constants which satisfy the PROPERTIES clause. To avoid näıve
enumeration of possible values for the constants, ProB uses various mechanisms
to propagate (partial) information about the possible values of the constants.
Still, in the end, the constants will be represented explicitly inside ProB. This
is not a problem for some models: for example, the railway model in [4] based on a
requirements document from Siemens Transportation Systems, can be animated
and model checked: the constants represent, amongst others, the underlying rail
network topology. Some specifications, however, contain complicated functions or
sets which cannot be represented explicitly. Take the following recursive function
over sequences of sequences, coming from an industrial case study [12]:

removeDuplicates = {ss,rs | ss: seq(seq(PLACE)) & rs:seq(seq(PLACE))

& (ss=<> => rs=<>) &

(card(ss)=1 => rs=ss) &

(card(ss)>1 => (#(s1,s2).(s1:seq(PLACE) & s1=first(ss)

& s2:seq(PLACE) & s2=ss(2) &

(last(s1)= first(s2) =>

rs = front(s1) -> removeDuplicates(tail(ss)))

& (last(s1)/=first(s2) =>

rs = s1 -> removeDuplicates(tail(ss)))

)))}

& removeDuplicates: seq(seq(PLACE)) --> seq(seq(PLACE))

Intuitively, the above function takes a sequence of sequences and removes du-
plicates (i.e., the last element of a sequence is identical to the first element of
the next sequence). This is represented as a recursive function, and is part of a
larger algorithm.

Validating such specifications is especially important, since they are particu-
larly error prone and may contain crucial computational aspects of a software
system. Such specifications also pose a major challenge to animation and model
checking. Indeed, completely expanding these functions or sets is prohibitively
expensive or even impossible. Supposing that card(PLACE) = p and supposing
that we set a maximum length m for sequences, the above function contains

80 M. Leuschel, D. Cansell, and M. Butler

qm+1−1
q−1 maplets, where q = pm+1−1

p−1 . With p = 3 and m = 4 this gives rise to
216, 145, 205 pairs which need to be pre-computed. Assuming that every maplet
requires 25 bytes of storage on average, we obtain a memory requirement of over
one Gigabyte; and with p = 4, m = 4 we exceed 315 Gigabytes.

In this paper we try to overcome this problem, and enable ProB to animate
and model check such specifications by using a symbolic representation. The
main contributions of the paper are as follows:

– A method and implementation to symbolically store set comprehensions and
lambda abstractions within an animator and model checker, without having
to expand them into an explicit form.

– A sound scheme whereby recursive higher-order functions can be encoded in
B, along with proof obligations to ensure well-definedness.

– A method and implementation to animate and model check specifications
containing such functions. The central idea is to extend the above symbolic
form with a way to encode the recursion. Only when a recursive function is
actually applied to some arguments, is the symbolic form evaluated (for that
particular argument).
We also provide some empirical results as well as some possible applications
of our technique.

2 Symbolic Representation of Sets of Values

We will first study how to represent non-recursive functions (and more generally
set comprehensions) symbolically.

ProB and Explicit Value Representation. ProB uses an explicit repre-
sentation for the values of machine variables, constants, etc. The following table
shows how the basic B’s data structures are encoded by the ProB Kernel:

B Type B value Prolog encoding
INTEGER 5 int(5)

BOOL TRUE term(bool(1))
element of a SET S C fd(3,’S’)

pair (*) 2
→ 5 (int(2),int(5))
set (POW) {2, 5} [int(2), int(5)]

For example, the set comprehension {x | x ∈ 1..3} gets expanded into {1, 2, 3}
(or in the Prolog representation: [int(1),int(2),int(3)]). The lambda ab-
straction λx.(x ∈ 1..3 | x ∗ x) gets expanded into the set of pairs {1 �→ 2, 2 �→
4, 3 �→ 9}. Note that internally, a lambda abstraction is simply translated into a
set comprehension and then expanded. E.g., λx.(x ∈ 1..3 | x ∗ x) gets translated
into {x, res | x ∈ 1..3 ∧ res = x ∗ x}.

Symbolic Values. In this paper we introduce an additional symbolic repre-
sentation for set comprehensions (and thus also lambda abstractions). The idea
is that under certain circumstances a set comprehension is not expanded out
but kept symbolically. Some of the B operators inside the ProB kernel are then

Validating and Animating Higher-Order Recursive Functions in B 81

extended to deal with those symbolic representations. Suppose for example that
the properties of a B machine contains the predicate s = {x | x ∗ x ∈ 1..99} and
that at some point we wish to evaluate the predicate 9 ∈ s. This can simply be
done by replacing x inside the set comprehension by the value 9 and then check-
ing the predicate inside the set comprehension, i.e., in this case 9 ∗ 9 ∈ 1..99.
Similarly, if the properties (or an initialisation or an operation body) contain
the predicate sqr = λx.(x : INTEGER | x ∗ x) and if at some point we need to
evaluate sqr(8), we need to replace the parameter x with the actual value 8 and
compute the body 8 ∗ 8 of the lambda abstraction. Other operators, however,
may require the complete set of values and hence require the expansion of the
set comprehension, e.g., if we encounter s ∩ 8..10 �= ∅ we need to expand s to
check if it has a value in common with 8..10.

Closures. Which form should the symbolic representation take? Naively, one
may think that to represent a set like {y | P} with y being of type INTEGER, we
could just store the arguments, the types of the arguments, and a representation
’P’ of P inside a Prolog term such as: symbolic_set([y],[INTEGER],’P’). A
similar scheme could be used for lambda expressions, by translating them into
a set comprehension first.

There is, however, one problem with this approach, which the following ex-
ample illustrates:

MACHINE FunPlus

VARIABLES x, fun

INVARIANT x:INTEGER & fun: INTEGER --> INTEGER

INITIALISATION x:=0 || fun:= %y.(y:INTEGER|0)

OPERATIONS

Inc = x := x+1;

Set_fun_plus_x = fun := %y.(y:INTEGER| x+y);

cc <-- ApplyFun(y) = PRE y:INTEGER THEN cc := fun(y) END

END

Assume that we start out by executing the operation Set fun plus x. Here the
variable fun would be given the value symbolic set([y,res],[INTEGER,INTEGER],

’res=x+y’). After applying the Inc operation, the variable x is updated, which
would implicitly change the function fun represented by our symbolic set! This is
of course incorrect, as in the above B machine Inc does not change the function
fun.

The solution lies with the closure concept, familiar from programming lan-
guage implementation (see, e.g., [15]) in general and functional programming
in particular. It is used when procedures or functions can be used as values. A
closure of a function combines the source code of the function together with the
current values of the global variables it refers to. This is also called environment
capture, as the environment is packaged up together with the function.

In prob this is achieved by compiling a set comprehension or lambda ab-
straction into a closure; where all references to machine variables are compiled
into the code. This is achieved by replacing a reference to a variable x by a

82 M. Leuschel, D. Cansell, and M. Butler

special construct value(V) where V is the value of x at the point of construction
of the lambda abstraction or set comprehension. Thus, the symbolic represen-
tation of %y.(y:INTEGER|x+y), supposing that x has the value 2, would be:
closure([y,res], [INTEGER,INTEGER], ’res=value(int(2))+y’). The value indi-
cates to the ProB kernel that this is not an expression that needs to be inter-
preted (it is already in the internal representation).2

Implementation. We have implemented the symbolic representation inside
ProB’s kernel. Several operators were extended to directly work on this sym-
bolic representation: equality (=), set membership (∈), and function application
(f(.)). If a symbolic representation is used with any other B operator the sym-
bolic closure is expanded into an explicit form (where the expansion is delayed
until all the free variables of the set comprehension have been given a value). We
plan to extend the kernel for further operators; but for the case studies so far, ex-
tending the above operators was sufficient. The user can set a boolean preference
value to indicate whether set comprehensions and lambda abstractions should
be stored symbolically if possible. In future we plan to add a more fine-grained
control, whereby each individual set comprehension can be treated differently
(indeed, in some cases it is more efficient to expand a symbolic representation
once and for all).

We have also applied the same scheme for certain other expressions which
are likely to yield big sets: Cartesian products (A × B), powerset constructions
(P(A)), sets of relations (A ↔ B) and sets of functions (A �→ B, A → B, . . .).
Those expressions are usually used for typing and rarely need to be expanded
out. For example, given a predicate r ∈ P(NAT ↔ NAT) and a value of 3
for MAXINT 3 the set P(NAT ↔ NAT) has a cardinality of 224∗4

= 265536,
and even with MAXINT of just 2 we have a cardinality of 2512 ≈ 1.34 ∗ 10154.
Thus, P(NAT ↔NAT) cannot possibly be stored explicitly, while it is relatively
straightforward to check if a given relation r is a member of the set. A separate
user preference indicates whether the symbolic representation should be applied
for those type expressions (but there should be little need to switch off the
symbolic representation for those expressions).

Correctness. By storing a set comprehension {x1, . . . xn | P} symbolically
inside an animator or model checker for B, we implicitly assume two things:

1. that the set comprehension exists,
2. that only a single value for the set comprehension exists

In this section we do not yet study recursion, i.e., we assume that the predicate
P makes no reference to the set itself (i.e., we do not yet consider definitions
of the form s = {x | x ∈ s} or s = {x | x �∈ s}). Without recursion, the

2 Also, if the value of x is not yet known by the kernel then the value constructor will
contain a Prolog variable, which will be instantiated as soon as x becomes known
(e.g., through enumeration or through evaluation of some other predicate).

3 NAT represents the implementable natural numbers from 0 to MAXINT .

Validating and Animating Higher-Order Recursive Functions in B 83

set comprehension must exist, but it could of course be empty. For example,
{x | x ∈ INT ∧ 1 = 2} is equal to the empty set. Also, there can only be a
single solution, otherwise we would have found values for the comprehension
parameters for which P is both true and false; this cannot be.

Hence, in the non-recursive case, the correctness of our approach is unprob-
lematic. However, some interesting real-life specifications require recursive defi-
nitions, and we tackle those in the following sections.

3 Defining Recursive Functions in B

3.1 The Problems with Recursive Set Comprehensions

In the previous section we have assumed that set comprehensions are not re-
cursive, i.e., that the truth value of the predicate P inside {x1, . . . , xk | P}
does not depend on the set itself. Let us examine what happens if we drop this
restriction. Take for example the two cases: st = {x | x ∈ N ∧ x ∈ st} and
sf = {x | x ∈ N∧x �∈ sf }. The predicates x ∈ N∧x ∈ st and x ∈ N∧x ∈ sf both
depend on the values represented by the set comprehensions themselves. In the
first case this means that there are multiple solutions for the equation (st can
be any set of natural numbers) while in the second case there is no solution for
sf . Assigning a single symbolic representation to st would hide non-determinism
in the animator and model checker. More seriously, however, assigning a sym-
bolic representation to sf , even though there is no solution for it, would lead to
unsoundness of the animator and model checker.

Note that the set comprehensions {x | x ∈ N∧x ∈ st} and {x | x ∈ N∧x �∈ sf }
on their own are not a problem: these expressions have a single value (for any
given value of the free variables st and sf). The problem only arises when treating
the equations st = {x | x ∈ N∧x ∈ st} and sf = {x | x ∈ N∧x �∈ sf }: we can no
longer simply assign the symbolic closure computed for the set comprehension
to st and sf respectively. Our solution to this problem is as follows:

– identify cases where we can guarantee that a recursive set comprehension
has a single solution,

– in those cases, provide a special treatment for recursive set comprehensions
and unroll them on demand.

3.2 How to Define Recursive Functions in B

The most common use of recursive definitions is to define constant functions
(i.e., the function is a B constant defined in the PROPERTIES clause) which
perform computations required by the specification. We will restrict ourselves to
such cases in this paper. We will present a way to formally write down such re-
cursive functions in B such that they are well defined in B and can be animated
and validated by ProB. We will illustrate this using the well-known Factorial

84 M. Leuschel, D. Cansell, and M. Butler

function (see, e.g., [5]), trying to define a constant factorial which can be used
to compute the factorial of a natural number.

Let us first attempt to use lambda abstractions. Unfortunately, in B, these
are not well suited to define recursive functions. Indeed—unlike Z—B has no if-
then-else expression4 and hence no way to provide a base case for the recursion.
Hence, one can use a lambda abstraction only as a part of the function definition:

PROPERTIES

factorial: NATURAL --> NATURAL1 &

factorial = {0|->1} \/ %x.(NATURAL1 | x* factorial(x-1))

While this is a possible way to define the factorial function, it is not particularly
elegant and well suited for proof. Furthermore, from an implementation point
of view, this style would require us to extend set union to be able to combine
(recursive) symbolic closures. We have chosen not to pursue this approach. An
alternative specification style is to use universal quantification to express the
various cases of the function:

PROPERTIES

factorial: NATURAL --> NATURAL1 & factorial(0) = 1 &

!x.(NATURAL1 => factorial(x) = x* factorial(x-1))

This is already more elegant, and better suited for proof using the B prover tools.
However, the definition of the factorial function is “scattered” among different
conjuncts of the PROPERTIES clause. It is not obvious how one could translate
that into a symbolic closure representation.

Fortunately, it turns out that a set comprehension allows for an elegant spec-
ification of the function:

PROPERTIES

factorial: NATURAL --> NATURAL1 &

factorial = {x,y| x:NATURAL & y:NATURAL &

(x=0 => y=1) &

(x>0 => (y=x* factorial(x-1))) }

The advantage over the previous scheme is that the definition of the factorial
function now resides within a single set comprehension.5 This will enable us to
provide techniques to detect such recursive function definitions and then provide
a special symbolic representation for them.

We will of course need to make sure that the recursion is well-founded and
progresses towards the base case. Otherwise, we can get a specification like f ∈
N → N ∧ f = {x, y | x ∈ N ∧ y ∈ N ∧ y = f(x + 1)} which has multiple solutions
(something which we do not want; see the end of Sect. 2). In the above definition
of factorial we can find a variant (x) which ensures that the recursion must
terminate.
4 It only has an if-then-else generalised substitution which cannot be used inside a

lambda expressions.
5 The form is less convenient for proof; we return to this issue later.

Validating and Animating Higher-Order Recursive Functions in B 85

There is, however, still one problematic issue with the above solution: the
soundness of the recursive definition of the function relies on the preceding dec-
laration fact ∈ N → N1. Without it, we have in principle no guarantee that, for
the recursive call fact(x − 1), the function is actually defined for x − 1 and that
it actually is a function (and not just a relation; see also [3]).

Thus, a more rigourous definition of the function is as follows:

MODEL Factorial

CONSTANTS factorial

PROPERTIES

factorial : NATURAL <-> NATURAL &

factorial =

{ x,y | x: NATURAL & y: NATURAL &

(x=0 => y=1) &

(x>0 & x-1:dom(factorial) => #z.(x-1|->z:factorial& y=x*z))}

END

It turns out that from this model, we can completely prove within B4Free, the
following theorems:

THEOREMS

!P.(P <: NATURAL & 0 : P & succ[P] <: P => NATURAL <: P);

dom(factorial)=NATURAL;

factorial : NATURAL --> NATURAL1;

factorial(0)=1 & !x.(x: NATURAL1 => factorial(x)=x*factorial(x-1));

factorial = { x,y | x: NATURAL & y: NATURAL &

(x=0 => y=1) &

(x>0 => y=x*factorial(x-1))}

The first theorem establishes the induction principle over natural numbers; it
can be proven by contradiction. We then proceed to prove that the domain of the
factorial is the set of natural numbers and that we have defined a total function.
(There is thus no need to declare factorial to be a total function; this follows
mathematically from the way the function is defined.) From that we can further
deduce two alternate formalisations of the factorial function: one well suited for
proof with the B prover tools and one close to a functional programming style
and well suited for animation. We have thus established full correctness of our
initial description as a set comprehension.

The crucial proof is for the theorem factorial: NATURAL --> NATURAL1 (i.e.,
factorial is a total function). B4free splits this into two subsidiary predicates
dom(factorial) = NATURAL (factorial is total) and factorial:NATURAL +->
NATURAL1 (factorial is a partial function). Both predicates are proved by in-
duction as in [5]. To prove the totality of factorial we have instantiated the in-
ductive theorem with dom(factorial) and to prove the partial functionality of
factorial we have instantiated the inductive theorem with the set
{n | n : NATURAL & 0..n <| factorial : 0..n --> NATURAL1}.

Remark that we prove also the totality between 0..n for convenience reasons,
otherwise we need to consider (for the inductive step) two cases:
n:dom(factorial) and n/:dom(factorial).

86 M. Leuschel, D. Cansell, and M. Butler

3.3 A General Scheme

Inspired by the factorial example, we now proceed to present a general scheme
for defining recursive functions in B. To ensure well-foundedness, we will require
a variant which for simplicity we will assume to be of type natural. In our general
scheme, a recursive function with n arguments and N cases is defined as follows:

f = {x1, . . . , xn, out | x1 ∈ T1 ∧ . . . ∧ xn ∈ Tn ∧ P (x1, . . . , xn) ∧ out ∈ Tn+1∧

(Cond1 ⇒ out = Exp1) ∧
. . . ∧

(CondN ⇒ out = ExpN)}
In this scheme each Cond i has free variables included in {x1, . . . , xn} and where
Expi can also make reference to f . The scheme must include a variant function
V ∈ T1 × . . .Tn → N.

We introduce the following abbreviation:

ArgType ≡ x1 ∈ T 1 ∧ . . . xn ∈ Tn ∧ P (x1, . . . , xn)

Below we will formalise the conditions under which this scheme ensures that f
defines a total function over T1 × . . . Tn.

We first ensure that for any input value in T1× . . .Tn we have one and exactly
one condition Cond i that is true:

1. ∀(x1, . . . , xn).(ArgType ⇒ (Cond1 ∨ . . .CondN))
2. for any i �= j: ∀(x1, . . . , xn).(ArgType ⇒ ¬(Cond i ∧ Cond j))

The variant must always be a natural number and must always be decreased by
each recursive reference:

3. ∀(x1, . . . , xn).(ArgType ⇒ V (x1, . . . , xn) ≥ 0)
4. for any i ∈ 1..N and for any recursive call f(e1, . . . , en) inside Expi:

∀(x1, . . . , xn).(ArgType ∧ Cond i ⇒ 0 ≤ V (e1, . . . , en) < V (x1, . . . , xn)).

More precisely the conditions will ensure that

A. Each (x1, . . . , xn) is in the domain of f :

∀(x1, . . . , xn).(ArgType ⇒ (x1, . . . , xn) ∈ dom(f))

B. Each (x1, . . . , xn) is mapped to at most one range value:

∀(x1, . . . , xn, y1, y2).(ArgType ∧ (x1, . . . , xn) �→ y1 ∈ f ∧ (x1, . . . , xn) �→
y2 ∈ f ⇒ y1 = y2)

The proof of A and B is by general induction over the range of variant func-
tion V , that is, assuming that the property holds for all (x′

1, . . . , x
′
n) where

V (x′
1, . . . , x

′
n) < V (x1, . . . , xn) show that it holds for (x1, . . . , xn).

Validating and Animating Higher-Order Recursive Functions in B 87

4 Implementation: Recursive Closures

We now show how the implementation scheme of Sect. 2 can be adapted to
deal with recursive set comprehensions. For this we introduce a second symbolic
representation, namely for recursive closures.

The first part of our implementation is the extension in the ProB kernel of
the equality Prolog predicate. This Prolog predicate gets called whenever an
equality between two B objects needs to be checked. If none of the objects is a
symbolic closure then the check proceeds as usual [9]. If both objects are closures,
then they are both expanded and checked for equality. Let us now assume that
one of the objects is a closure C, as explained in Sect. 2, while the other (say f)
is not. (This situation would arise for the predicate f = {x1, . . . , xn | P}, unless
f was already given a symbolic closure by some preceding predicate.) There are
now three cases for f :

– f has some value associated with it (or is partially instantiated); in this
case the closure for the set comprehension gets expanded and the equality
is checked as usual.

– f is unconstrained (i.e., apart from the type, nothing is known about f) but
does not appear in P : in this case f is now set to be equal to the symbolic
closure C.

– f is unconstrained and does appear in P : in this case we have a recursive
set comprehension. There two sub-cases:

• The equality f = {x1, . . . , xn | P} does not conform to the scheme
outlined in Sect. 3.3. In this case the Prolog predicate needs to delay
until f is completely known, at which point the set comprehension can
be expanded and the equality checked.

• Otherwise we generate a new identifier ID to identify the recursive func-
tion and replace all occurences of f inside the C with rec(ID), yielding
C′. The variable or constant f now gets as value the symbolic represen-
tation recursive closure(ID,C′).

The equality predicate is also the only place which can lead to the generation of
a new recursive closure. For our factorial constant above we would thus get
as symbolic representation:

recursive_closure(1, closure([x,y],[INTEGER,INTEGER],

’x:NATURAL & y:NATURAL & (x=0 => y=1) &

(x>0 => y=x*value(rec(1))(x-1))’))

These recursive closures are then unrolled on demand. More precisely, when a re-
cursive closure τ = recursive closure(i,C) is examined (e.g., by the function
application Prolog predicate) it is converted into the closure C′ = C[τ/rec(i)],
i.e. C where all rec(i) have been replaced by τ .

For example, unrolling the above recursive closure yields:

88 M. Leuschel, D. Cansell, and M. Butler

closure([x,y],[INTEGER,INTEGER],

’x:NATURAL & y:NATURAL & (x=0 => y=1) &

(x>0 => y=x*value(recursive_closure(1,...))(x-1))’))

If the first argument is 0 then no further unrolling is required, but if x > 0 the
inner recursive closure will be unrolled, etc., until we reach the base case of the
recursion.

Note that this way to handle recursion is related to the fix operator sometimes
used in process algebras (see, e.g., [11]).

New Syntax

The introduction of a new syntax for recursive functions can provide both an
effective way to animate recursive functions as well as a convenient way to prove
properties with and about them. This would require extending the ProB parser
and then either convert the syntax into a form suitable for proving or suitable
for ProB for animating and model checking. A possible syntax for the factorial
function could be:

FUNCTIONS

y <-- factorial(x) = WHERE x:NAT & y:NAT THEN

CASE x=0 THEN y=1

CASE x>0 THEN y=fact(x-1)

VARIANT x

END

We have not yet finalised the new syntax, and in the remainder of the paper
we carry out our experimentation with the set comprehension style suitable for
animation.

5 Higher-Order Functional Programming Examples in B

So far we have shown that first-order recursive functions can be encoded within
B, and animated and validated by ProB. As it turns out, our scheme is actually
powerful enough to animate higher-order recursive functions. In other words,
we have actually developed a scheme to enable higher-order functional “pro-
gramming” inside B specifications. In this section we provide a few examples to
illustrate this point.

Mutual Recursion. Before examining higher-order functions, let us first dis-
cuss the issue of mutual recursion. The examples so far contained a single re-
cursive function. Does our scheme also work for several mutually recursive func-
tions? The answer to this question is affirmative: the proof obligations need to
be adapted to handle multiple functions (in a straightforward fashion), but the
implementation scheme is already suited to handle such functions.

Take the following artificial example, splitting the factorial function into two
mutually recursive functions:

Validating and Animating Higher-Order Recursive Functions in B 89

CONSTANTS fact1,fact2

PROPERTIES

fact1: INT --> INT &

fact1 = {x,y | x:NAT & y:NAT &

(x=0 => y=1) & (x>0 => (y=x*fact2(x-1))) } &

fact2: INT --> INT &

fact2 = {x,y | x:NAT & y:NAT &

(x=0 => y=1) & (x>0 => (y=x*fact1(x-1))) }

In this case, fact1 will be stored as a standard closure (calling fact2) and
fact2 will be a recursive closure with no reference to fact1. Note that we can
also deal with the problematic example discussed in [8].

Higher-Order Functional Programming. Some higher-order programming
is actually already built into B: to map a function f over a sequence s we simply
need to use the relational composition (s; f), as s is a function from 1..size(s)
to ran(s). In general, however, this is not so easy. Below we show how we can
specify the well-known “foldr” higher-order function, which takes a base value
and a function f and maps it over a sequence to compute a single value. In the
FoldMul operation we use this higher-order function to compute the product of
the elements of a sequence.

MACHINE SeqFoldr

CONSTANTS mul, foldr

PROPERTIES

mul: (NATURAL*NATURAL)<->NATURAL &

mul = {i,j,res | i:NATURAL & j:NATURAL & res:NATURAL & res=i*j} &

foldr:(((NATURAL*NATURAL)<->NATURAL)*NATURAL*seq(NATURAL))<->NATURAL &

foldr =

{ f,base,i,res | i:seq(NATURAL) & base:NATURAL &

res: NATURAL & f:(NATURAL*NATURAL)-->NATURAL &

(i=<> => res=base) &

(size(i)>0 => res = f(first(i),foldr(f,base,tail(i))))

}

VARIABLES ss

INVARIANT ss: seq(NATURAL)

INITIALISATION ss := <>

OPERATIONS

Add(nn) = PRE nn:NATURAL THEN ss := ss <- nn END;

FoldMul = BEGIN ss := foldr(mul,1,ss) -> ss END

END

We can easily show that foldr satisfies our proof obligations, if we choose size(i)
as the variant:

1. ∀(f, i).(i ∈ seq(N) ∧ f ∈ N × N → N ⇒ (i = 〈〉 ∨ size(i) > 0))
2. ∀(f, i).(i ∈ seq(N) ∧ f ∈ N × N → N ⇒ ¬(i = 〈〉 ∧ size(i) > 0))
3. ∀(f, i).(i ∈ seq(N) ∧ f ∈ N × N → N ⇒ size(i) ≥ 0)
4. ∀(f, i).(i ∈ seq(N) ∧ f ∈ N × N → N ∧ size(i) > 0 ⇒ size(tail(i)) < size(i))

90 M. Leuschel, D. Cansell, and M. Butler

One difference with functional programming still persists though: foldr is usu-
ally defined to be a polymorphic function, i.e., the type of the elements of the
list is not hardcoded like in our B machine. To overcome this, one has to define
foldr within a separate machine, whose argument is the type of the elements of
the list. Unfortunately, the machine parameters are not visible inside the PROP-
ERTIES clause; hence we actually need to make foldr a variable (which is not
very convenient):

MODEL Foldr(TYP)

VARIABLES foldr

INVARIANT foldr : (((TYP* TYP)--> TYP)*TYP*seq(TYP)) --> TYP

INITIALISATION

foldr : (foldr = { f,b,i,res |

i:seq(TYP) & res:TYP & f:(TYP* TYP)--> TYP & b:TYP &

(i=<> => res=b) &

(size(i)>0 => res = f(first(i), foldr(f,b,tail(i)))) })

END

6 Empirical Results

The experiments were all run on a multiprocessor system with 4 AMD Opteron
870 Dual Core 2 GHz processors, running SUSE Linux 10.1, SICStus Prolog
3.12.7 (x86 64-linux-glibc2.3) and ProB version 1.2.4.6

The first experiment consisted in running the previously discussed factorial
function. The results are presented in the upper half of Table 1. Note that ProB

does check the function arguments (to see if they are a natural number) at every
function application. Also, note that without our new symbolic approach, the
present formalisation cannot be animated (even for small values of n). However,
using the axiomatic formalisation from Sect. 3.2 (using universal quantification)
it is possible, provided we limit the domain of the function. It then takes 0.85
sec to compute factorial for 0..100 using classical ProB. (For functions such as
SeqFoldr as seen earlier, it is of course impossible to precompute the function.)

In order to measure a specification requiring a large number of recursive calls
we have used the näıve recursive definition for computing the Fibonacci numbers:
fib = {x,z| x:NATURAL & z:NATURAL & (x=0 => z=1) & (x=1 => z=1) & (x>1 =>

(z=fib(x-1)+fib(x-2))) }. The results are summarised in the same Table 1.
For Fib(20) we have 21891 (2 × fib(20)− 1, see, e.g., [13]) calls to the Fibonacci
function. This corresponds to 3357 calls per second. For a programming language
this would of course be very slow (even though ProB works with big integers);
but for animation purposes this is actually quite reasonable (also given the fact
that the typing predicates are repeatedly evaluated). However, there is definitely
scope for improvement. Possibly with the use of partial evaluation [7] and more
sophisticated implementation techniques, a big improvement in speed should
be possible. Still, in its current form the tool can be used to animate a wide
range of specifications with recursive functions. In particular, ProB has been
6 Note that neither SICStus Prolog nor ProB take advantage of multiple processors.

Validating and Animating Higher-Order Recursive Functions in B 91

Table 1. Empirical Results

n factorial(n) Time Function calls per sec
5 120 0.00 sec -
10 3,628,800 0.00 sec -
20 2,432,902,008,176,640,000 0.02 sec 1000
100 see footnote7 0.06 sec 1667

n fib(n) Time Function calls per sec
5 8 0.01 sec 1500
10 89 0.10 sec 1770
15 987 0.67 sec 1999
20 10946 6.52 sec 3357

successfully applied to an industrial case study (cf. Section 1) which was hitherto
impossible to animate or model check, and was able to detect an error in the
original specification [12].

7 Related Work and Conclusion

While there are various other animators for B and Z, to our knowledge, none of
them can handle recursive functions.

In [2] authors explain how we can specify higher order expression and theorems
using B and how we can prove such theorems using B tools. The second work [5]
is more related to our work. The factorial function is also defined first like the
smallest relation which satisfies factorial’s properties and then the proof of the
functionality of factorial is done using B4free as in our work. This definition is
not suited for animation but some algorithms to compute the factorial function
are given. These algorithms are developed using B and the refinement. These are
correct by construction. The first abstract model computes factorial(n) in one
shot. The first refinement computes a finite subset of the factorial function
like in dynamic programming The last refinement computes factorial(n) using
the well known loop from 1 to n. Another related work is [14], which presents
a framework to reconcile axiomatic and model-based specifications. As such it
is related to our desire at the end of Sect. 4 to present two different views of
a specification: one suitable for proving and one suitable for animation. In the
context of higher-order logic and Isabelle/HOL, [8] presents a method to reason
about recursive functions.

In summary, we have presented a scheme to define higher-order recursive
functions in B and have shown how we can animate and model check them
using extensions to the ProB toolset. We have carried out various experiments,
showing the practicality of the approach.

7 For factorial(100) the result computed by ProB is:
933262154439441526816992388562667004907159682643816214685929638952175999932299156089

41463976156518286253697920827223758251185210916864000000000000000000000000.

92 M. Leuschel, D. Cansell, and M. Butler

Acknowledgements. We would like to thank Daniel Plagge and Jens Bendis-
posto for very useful comments and discussions. We would also like to thank the
anonymous referees for their insightful suggestions and pointers to related work.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R., Cansell, D., Laffitte, G.: Higher-order mathematics in B. In: Bert,

D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS,
vol. 2272, pp. 370–393. Springer, Heidelberg (2002)

3. Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In:
Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002.
LNCS, vol. 2272, pp. 242–269. Springer, Heidelberg (2002)

4. Butler, M.: A system-based approach to the formal development of embedded
controllers for a railway. Design Automation for Embedded Systems 6(4), 355–366
(2002)

5. Cansell, D., Méry, D.: Foundations of the B method. Computing and informat-
ics 22(3–4), 221–256 (2003)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

7. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs (1993)

8. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 589–603. Springer,
Heidelberg (2006)

9. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

10. Leuschel, M., Butler, M.: Automatic refinement checking for B. In: Lau, K.-K.,
Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 345–359. Springer, Heidelberg
(2005)

11. Massart, T., Devillers, R.: Equality of agent expressions is preserved under an
extension of the universe of actions. Formal Aspects of Computing 5(1), 79–88
(1993)

12. Plagge, D., Leuschel, M.: Validating Z Specifications using the ProB Animator and
Model Checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007)

13. Robertson, J.S.: How many recursive calls does a recursive function make? SIGCSE
Bull. 31(2), 60–61 (1999)

14. Robinson, K.: Reconciling axiomatic and model-based specifications using the B
method. In: Bowen, J.P., Dunne, S., Galloway, A., King, S. (eds.) B 2000, ZUM
2000, and ZB 2000. LNCS, vol. 1878, pp. 95–106. Springer, Heidelberg (2000)

15. Roy, P.V., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press, Cambridge (2004)

A Systematic Verification Approach for Mondex
Electronic Purses Using ASMs

Gerhard Schellhorn, Holger Grandy, Dominik Haneberg, Nina Moebius,
and Wolfgang Reif

Lehrstuhl für Softwaretechnik und Programmiersprachen,
Universität Augsburg, D-86135 Augsburg, Germany

{schellhorn,grandy,haneberg,moebius,reif}@informatik.uni-augsburg.de

Abstract. In previous work we solved the challenge to mechanically
verify the Mondex challenge about the specification and refinement of an
electronic purse, using the given data refinement framework. In this paper
we show that using ASM refinement and generalized forward simulations
instead of the original approach allows to find a more systematic proof.
Our technique of past and future invariants and simulations avoids the
need to define a lot of properties for intermediate states during protocol
runs. The new proof can be better automated in KIV. The systematic
development of a generalized forward simulation uncovered a weakness
of the protocol that could be exploited in a denial of service attack. We
show a modification of the protocol that avoids this weakness, and that
is even slightly easier to verify.

1 Introduction

Mondex smart cards implement an electronic purse. They have become famous
for having been the target of the first ITSEC evaluation of the highest level E6,
which requires formal specification and verification.

Such formal specifications were given in [SCW00] using the Z specification
language. Two models of electronic purses were defined: an abstract one which
models the transfer of money between purses as elementary transactions, and a
concrete level that implements money transfer using a communication protocol
that can cope with lost messages using a suitable logging of failed transfers.
To mechanize the security and refinement proofs in [SCW00] has been recently
proposed as a challenge for theorem provers (see [Woo06] for more information
on the challenge and its relation to ’Grand Challenge 6’).

In [SGHR06a] we have solved the challenge: we have tried to repeat the case
study as faithful as possible by formalizing the underlying data refinement theory
given in [CSW02] and by using the original backward simulation and invariant. A
detailed description of this verification (including the extra protocol for archiving
exception logs) is contained in [HSGR07].

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 93–110, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

94 G. Schellhorn et al.

When we solved the original challenge, we found that the backward simulation
and in particular the invariant needed for the concrete level1 looked rather ad
hoc and specific to Mondex. All corrections that were necessary for the backward
simulation proof were due to this invariant: two properties had to be added, one
was redundant (for details see [SGHR06a] and the technical report [SGHR06b]).
Much more work than the 4 weeks we needed to do the mechanical verification
surely was necessary to develop this invariant by incrementally adding properties.

Therefore, in this paper we show how to develop a simulation relation and
an invariant systematically. We do this using Abstract State Machines (ASM,
[BS03]) as our specification language. In [SGHR06a] we have already given ASMs
for Mondex, and shown that the proof for the main backward simulation con-
dition for this ASM is the same as the one for data refinement, but with a lot
of technical overhead removed. Therefore we feel justified to use the simplified
version here.

Using ASMs naturally leads to the use of ASM refinement ([BR95], [Sch01],
[Bör03], [Sch05]) and (generalized) forward simulations.

This paper is organized as follows: Section 2 introduces the ASMs used in
the case study, and gives an informal idea why the refinement is correct. Sec-
tion 3 develops a forward simulation for Mondex systematically using two core
ideas of ASM refinement: focussing the simulation relation on states of interests,
which in this case naturally are those future states where all protocols have com-
pleted, and localizing invariants to individual purses. We show that the main
proof obligation, a commuting diagram for a local invariant can be verified fully
automatically in KIV.

Development of a systematic invariant for the concrete level turned out to be
much harder than the development of a simulation relation. The main reason
is that the protocol is vulnerable to a certain kind of denial of service attack
described in Section 4. Although the attack does not violate the security prop-
erties defined in [SCW00] (no money is lost), it came into sharp focus when
we applied ASM techniques to develop an invariant in Section 5. We use lazy
development for the invariant and show that the main proof only requires a few
KIV interactions.

Finally, Section 6 gives related work and Section 7 concludes. Unfortunately,
the space limitations of this paper prohibit to give full formal definitions of the
simulation relation and the invariant. They can be found in the technical report
[SGH+06] and the Web presentation [KIV].

2 The ASM Specifications of Mondex

In this section we describe the specifications of the smart cards involved in the
Mondex case study. To have a self-contained paper, we repeat here a slightly
1 Formally, the verification of an invariant is encoded in [SCW00] as a second refine-

ment of a between level, that assumes an invariant (the properties of BetweenWorld,
section 5.3 and the auxiliary properties of purses, section 4.6) to a concrete level,
that does not.

A Systematic Verification Approach for Mondex Electronic Purses 95

modified version of the description given in [SGHR06a]. The changes are purely
cosmetic to have shorter formulas in the proof obligations. Detailed information
on how the ASMs given here were derived from the original Z specification of
[SCW00] are given in [HSGR07].

The specification is given on two levels: an abstract level, which defines an
atomic transaction for transferring money, and a concrete level, which defines the
protocol. Both levels are defined using abstract state machines (ASMs, [Gur95],
[BS03]) and algebraic specifications as used in KIV [RSSB98].

2.1 The Abstract Level

The abstract specification of a purse consists of a function abalance from purse
names to their current balance. Since the transfer of money from one purse to
another may fail (i.e. the card being pulled abruptly from the card reader, or for
internal reasons like lack of memory), the state of an abstract purse also must
log the amount of money that has been lost in such failed transfers.

In the formalism of ASMs this means that the abstract state astate consists
of two dynamic functions abalance : name → IN and lost : name → IN.

Purses may be faked, so we have a finite number of names which satisfy a
predicate authentic. How authenticity is checked (using secret keys, pins etc.) is
left open on both levels of the specification, so the predicate is left
unspecified.

Transfer of money between purses is done with the ASM rule ASTEP#2:

ASTEP#
choose from, to, value, fail?
with authentic(from) ∧ authentic(to) ∧ from �= to ∧ value ≤ abalance(from)
in if ¬ fail? then TRANSFEROK#

else TRANSFERFAIL#
ifnone skip //do nothing, if there is no authentic pair of purses

TRANSFEROK#
abalance(from) := abalance(from) − value
abalance(to) := abalance(to) + value

TRANSFERFAIL#
abalance(from) := abalance(from) − value
lost(from) := lost(from) + value

The rule chooses two authentic, different names from and to, and an amount value
which should be transfered from the from purse to the to purse. The from card
must have enough money left for the transfer (value ≤ abalance(from)). Addition-
ally, a boolean value fail? indicates whether the actual transaction will complete
regularly or will nondeterministically fail for internal reasons. If the step com-
pletes normally, the rule TRANSFEROK# subtracts value from the from purse
and adds it to the to purse in one step. Otherwise, the rule TRANSFERFAIL#

2 By convention, rule names end with a # sign to distinguish them from predicates.

96 G. Schellhorn et al.

subtracts the money from the from purse and logs it in the lost(from) state
function instead.

2.2 The Concrete Level

On the concrete level transferring money is done using a protocol with 5 steps.
To execute the protocol, each purse needs a status that indicates how far it has
progressed executing the protocol. The possible states a purse may be in are
given by the enumeration status = idle | epr | epv | epa. Purses not participating
in any transfer are in the idle state. To avoid replay attacks each purse stores a
sequence number nextSeqNo that is used in the next transaction. This number
is incremented at the start of every protocol run. During the run of the protocol
each purse stores the current payment details in a dynamic function pdAuth of

to : Purse from : Purse

balance :=
balance − value

balance :=
balance + value

STARTFROM#

REQ#

STARTTO#

VAL#

ACK#

idle

epr

epa

idle

epv

idle
startFrom

startTo

req req

valval

ack ack

term : Terminal

getName+SeqNo
getName+SeqNo

name, SeqNo

name, SeqNo

idle

Fig. 1. An overview of the Mondex protocol

A Systematic Verification Approach for Mondex Electronic Purses 97

type PayDetails. These are tuples consisting of the names of the from and to purse,
the sequence numbers they use and the amount of money that is transferred. In
KIV we define a free data type

PayDetails = mkpd(.from :name; .fromno :nat; .to :name; .tono :nat; .value :nat)

with postfix selectors, so that pd.from is the name of the from purse stored
in payment details pd. The state of a purse finally contains a log exLog of
failed transfers represented by their payment details. The protocol is executed
by sending messages between the purses. The ether collects all messages that
are currently available. A purse receives a message by selecting a message from
the ether. Since the environment of the card is assumed to be hostile the mes-
sage received may be any message that has already been sent, not just one
that is directed to the card. The state of the concrete ASM, abbreviated cstate
below, is

balance : name → IN exLog : name → set(PayDetails)
state : name → status ether : set(message)
pdAuth : name → PayDetails

An overview of the protocol on the concrete level is shown as an UML sequence
chart in Fig. 1. The message getName+SeqNo (shown by dashed lines) is needed
in a real implementation of the Mondex scenario, since the terminal must be
able to get the information about card names and their sequence numbers. This
information is used in the following protocol steps. For the specification of Mon-
dex, those messages are not modelled, even the terminal itself is not modelled
explicitly. Instead, all messages needed to start a protocol run are assumed to
be initially contained in a set of messages available to the purses, called the
ether.

The protocol is started with startFrom(msgna, value, msgno) and startTo(
msgna, value, msgno) messages which are sent to the from and to purses respec-
tively, by the interface device. These two messages are assumed to be always
available, so the initial ether already contains every such message. The argu-
ments msgna and msgno of startFrom(msgna, value, msgno) are assumed to be
the name and nextSeqNo of the to purse, where value is the amount of value
transfered. Similarly, for startTo(msgna, value, msgno), msgna and msgno are
the corresponding data of the from purse. The messages req(pdAuth(name)),
val(pdAuth(name)) and ack(pdAuth(name)) are responsible for the actual money
transfer. After receiving a req, the from purse withdraws money from its inter-
nal balance balance. After receiving the corresponding val, the to purse deposits
money on its internal balance. The ack message is used to acknowledge a suc-
cessful transfer between from and to. We now describe the ASM rule CSTEP#,
which executes all the protocol steps, and the individual protocol steps in de-
tail:

CSTEP#
choose msg, receiver fail? with msg ∈ ether ∧ authentic(receiver)

in LCSTEP#

98 G. Schellhorn et al.

LCSTEP#
if isOKstartFrom(msg) ∧ ¬ fail? then STARTFROM#
else if isOKstartTo(msg) ∧ ¬ fail? then STARTTO#
else if msg = req(pdAuth(receiver)) ∧ state(receiver) = epr ∧ ¬ fail?

then REQ#
else if msg = val(pdAuth(receiver)) ∧ state(receiver) = epv ∧ ¬ fail?

then VAL#
else if msg = ack(pdAuth(receiver)) ∧ state(receiver) = epa ∧ ¬ fail?

then ACK#
else ABORT#

where

isOKstartFrom(msg)
:↔ isStartFrom(msg) ∧ state(receiver) = idle ∧ authentic(msg.msgna)

∧ receiver �= msg.msgna ∧ msg.value ≤ balance(receiver)

isOKstartTo(msg)
:↔ isStartTo(msg) ∧ state(receiver) = idle

∧ authentic(msg.msgna) ∧ receiver �= msg.msgna

The ASM rule CSTEP# chooses an authentic receiver receiver for some message
msg from ether. Additionally the purse may fail (e.g. for internal reasons), de-
noted by the flag fail?. The rule LCSTEP# executes the different protocol steps.
It checks whether the incoming message is wellformed regarding to the current
internal state. For example, when the purse is in state epr (“expecting request”),
it will only accept messages of the form req(pdAuth(receiver)). Every other mes-
sage received in epr will result in an ABORT# operation, which resets the purse
state and logs the current transaction as faulty if necessary (see below).

On receiving a startFrom message msg from ether, the purse receiver3 first
checks whether it is in the idle state, and if the message is syntactically correct.
This means it must be of the right message type (isStartTo(msg)), and the con-
tained card name satisfies authentic. Additionally, the transmitted msg.msgna
(the name of the other purse) must be different from receiver. Finally receiver
must have enough money stored (msg.value ≤ balance(receiver)) for the transac-
tion to take place. Then, receiver executes the following step:

STARTFROM#
choose n with nextSeqNo(receiver) < n in
in pdAuth(receiver) := mkpd(receiver, nextSeqNo(receiver),

msg.msgna, msg.msgno, msg.value)
state(receiver) := epr
nextSeqNo(receiver) := n seq
SENDMSG#(⊥)

The purse stores the requested transfer in its pdAuth component, using its cur-
rent nextSeqNo number as one component and proceeds to the epr state. Thereby

3 Receiver is always a purse receiving a message. This can be a from purse sending
money as well as a to purse receiving money and should not be confused with the
latter.

A Systematic Verification Approach for Mondex Electronic Purses 99

it becomes the from purse of the current transaction. nextSeqNo(receiver) is
incremented, which makes the old value unavailable for further transactions.
An empty output message ⊥ is generated that will be added to the ether (see
SENDMSG# below).

The action of a purse receiving a startTo message in idle state is similar except
that it enters epv state (“expecting value”) and becomes the to purse of the
transaction. Additionally it sends a request message to the from purse.

STARTTO#
choose n with nextSeqNo(receiver) < n
in pdAuth(receiver) := mkpd(msgna, msgno, receiver,

nextSeqNo(receiver), value)
state(receiver) := epv
nextSeqNo(receiver) := n seq
SENDMSG#(req(pdAuth(receiver)))

The request req(pdAuth(receiver)) contains the payment details of the current
transaction. Although this is not modeled, the message is assumed to be securely
encrypted. Since an attacker can therefore never guess this message before it is
sent, it is assumed that the initial ether does not contain any request messages.
When the from purse receives the request in state epr, it executes REQ#.

REQ#
balance(receiver) := balance(receiver) − pdAuth(receiver).value
state(receiver) := epa
SENDMSG#(val(pdAuth(receiver)))

The message is checked to be consistent with the current transaction stored in
pdAuth and if this is the case the money is sent with an encrypted value message
val(pdAuth(receiver)). The state changes to epa (“expecting acknowledge”). On
receiving the value the to purse executes VAL#.

VAL#
balance(receiver) := balance(receiver) + pdAuth(receiver).value
state(receiver) := idle
SENDMSG#(ack(pdAuth(receiver)))

This rule adds the money to its balance, sends an encrypted acknowledge mes-
sage back and finishes the transaction by going back to state idle. When this
acknowledge message is received, the from purse finishes similarly.

ACK#
state(receiver) := idle
SENDMSG#(⊥)

Finally a rule for adding the sent messages to the ether is needed. Additionally
the ether is assumed to lose messages randomly (due to an attacker or technical
reasons like power failure). Both is now done in the rule SENDMSG# used in all
the rules above.

SENDMSG#(outmsg)
choose ether′ with ether′ ⊆ ether ∪ {outmsg} in ether := ether′

100 G. Schellhorn et al.

If a purse is sent an illegal message ⊥ or a message for which it is not in the
correct state, the current transaction is aborted by

ABORT#
choose n with nextSeqNo(receiver) ≤ n
in LOGIFNEEDED#

state(receiver) := idle
nextSeqNo(receiver) := n
SENDMSG#(⊥)

LOGIFNEEDED#
if state(receiver) = epa ∨ state(receiver) = epv
then exLog(receiver) := exLog(receiver) ∪ {pdAuth(receiver)}

This action logs if money is lost due to aborting a transaction. The idea is that
the lost money of the abstract level can be recovered if both the from and to
purses have a log of the failed transaction. Logging takes place if either the purse
is a to purse in the critical state epv, or a from purse in the critical state epa. Note
that aborting in states idle and epr requires no exception log. Logging achieves,
that in states where all purses are currently idle, balances and the lost money
are related by

abalance(na) = balance(na)
∧ lost(na) = Σ (fromLogged(na) ∩ toLogged) (1)

where

fromLogged(na) := {pd : pd ∈ exlog(na) ∧ pd.from = na},
toLogged(na) := {pd : pd ∈ exlog(na) ∧ pd.to = na} and
toLogged :=

⋃
na toLogged(na)

and where Σ takes the sum of all values of a set of payment details. For future
use, fromLogged :=

⋃
na fromLogged(na).

3 Systematic Development of a Forward Simulation

One of the key ideas of ASM refinement (and also verification of ASM invariants)
is not to consider all intermediate states of runs of the ASM but to focus on
states of interest and to define properties ϕ only for these. In general, there is a
choice to use future or past states. Either we can say:

– Future: From every state a state of interest that will satisfy ϕ is reachable
via some ASM rule applications

– Past: Every state is reachable from some state of interest that satisfies ϕ

Applied to Mondex the states of interest are states where a purse with name
na does not participate in a protocol, i.e. where state(na) = idle. For the devel-
opment of the simulation relation, we will consider future states of interest, in
section 5 we will develop the invariant based on past states of interest.

A Systematic Verification Approach for Mondex Electronic Purses 101

There are two problems we have to solve. First, what is the simulation relation
for states of interest? This question was already answered by formula (1) at the
end of the previous section. Second, we have to show how a state of interest is
reachable from any state. For the concrete level this is easy: simply call ABORT#
for all purses. To have an equivalent state on the abstract level we must execute
failing transactions for all those purses where money will be lost on the concrete
level by executing ABORT#. This money, which is currently in transit, can be
characterized by the set of relevant payment details. This set was already central
to the correctness consideration of the original Mondex case study [SCW00]. It
is called maybelost, and is defined as

maybelost := (fromInEpa ∩ toInEpv) ∪ (fromInEpa ∩ toLogged)
∪ (fromLogged ∩ toInEpv)

where
fromInEpa = {pdAuth(na) : authentic(na) ∧ state(na) = epa}
toInEpv = {pdAuth(na) : authentic(na) ∧ state(na) = epv}

The definition is based on the idea that money is lost in ABORT# iff a new pair
of matching exception logs is created, which happens if either both purses log,
or one logs and the other has already logged.

Putting everything together we get the following formula of Dynamic Logic
[HKT00]:

〈forall authentic(na) do ABORT#(na; cstate);
forall pd ∈ maybelost do

TRANSFERFAIL#(pd.from, pd.to, pd.value; abalance, lost)〉
(abalance = balance

∧ lost = λ na. Σ(fromLogged(na) ∩ toLogged))

Since 〈α〉ϕ means that there is a terminating execution of α after which ϕ holds,
this says informally: After executing the necessary ABORT# steps to get to an
idle state, and the necessary TRANSFERFAIL# steps to get to a corresponding
abstract state we have the simple correspondence of balances and lost vs. exLog’s
as stated in Section 2.

This is already all that is required to define the simulation relation. To effi-
ciently prove it, we simplify it: the only relevant state modification of ABORT#
is that of the exception log, and TRANSFERFAIL# only modifies abalance and
lost of the from purse. We also apply the idea to localize the simulation relation
to one individual purse with name na. We get the following definition of the
simulation relation ACINV and its localized version LACINV:

ACINV(astate, cstate)
:↔ ∀ authentic(na).LACINV(na, astate, cstate)

LACINV(na, astate, cstate)
:↔ 〈exLog′(na) := exLog(na) ∪ if state(na) = epv ∨ state(na) = epa

then {pdAuth(na)} else ∅〉
(abalance(na) = balance(na) + intransit(na, exLog′(na), state, pdAuth)
∧ lost(na) = lostafterabort(na, exLog′(na), exLog)))

102 G. Schellhorn et al.

where intransit (money that is in transit) and lostafterabort (money that will
be added to lost when all purses abort) are defined recursively over the set of
payment details:

intransit(na, ∅, state, pdAuth) = lostafterabort(na, ∅, exLog) := 0
intransit(na, pds ∪̇ {pd}, state, pdAuth)

:= intransit(na, pds, state, pdAuth)
+ if pd.from = na ∧ state(pd.to) = epv ∧ pdAuth(pd.to) = pd

then pd.value else 0
lostafterabort(na, pds ∪̇ {pd}, exLog)

:= lostafterabort(na, pds, exLog)
+ if pd.from = na ∧ pd ∈ exLog(pd.to) then pd.value else 0

This definition is simpler to use than the original (backward) simulation of
[SCW00], which uses and has to expand maybelost: the definitions of intransit
and lostafterabort can be directly used as rewrite rules.

The main proof obligation of ASM refinement is expressed in Dynamic Logic
and assumes an additional (yet unknown) invariant CINV(cstate) of the concrete
level:

CINV(cstate) ∧ ACINV(astate, cstate)
→ 〈|CSTEP#(cstate)|〉 〈ASTEP#(astate)∨ skip〉 ACINV(astate, cstate) (2)

〈|α|〉 ϕ means “all applications of ASM rule α terminate and yield a state for which
ϕ holds”, so the formula reads: given two states astate and cstate for which the
simulation relation ACINV and the invariant CINV hold, every execution of the
concrete step must terminate, and there must be either a terminating abstract
step or a stutter step (which step is necessary, may depend on the final state
of the concrete step), such that the two states reached satisfy ACINV again.
Informally the proof obligation characterizes a commuting diagram with one
concrete step and zero or one abstract steps.

The proof obligation can be localized by replacing ACINV with LACINV for some
purse na, and the generic CSTEP# with LCSTEP# for some purse receiver (where
receiver and na may be different or the same). For this localized setting we can
replace the nondeterministic choice between TRANSFEROK#, TRANSFERFAIL#
(within ASTEP#) and skip with a deterministic statement by the following rea-
soning: our simulation relation says, that “after executing ABORT#’s we reach a
concrete state of interest related to some abstract state”. Therefore, only when ex-
ecuting ABORT#’s before and after CSTEP# leads to a different state of interest,
an abstract transition must be executed. There are three cases where this is true:

– If receiver is a to purse that successfully receives a value in VAL#, an
ABORT# before the operation will cause the money to be lost, but has
no effect after the operation. Therefore a TRANSFEROK# is necessary.

– If receiver is a to purse that aborts in epv, when the from purse already
has sent money (i.e. is in state epa or has logged the payment details) then

A Systematic Verification Approach for Mondex Electronic Purses 103

the money will be lost by this action (the ABORT# of the to purse before
the step has the effect to lose money, executing another ABORT# after the
ABORT# has no effect).

– If receiver is a from purse that accepts a request in REQ#, sending a value
to a to purse which has already aborted, then the ABORT# before the step
will not create an exception log, while executing ABORT# afterwards will
create the second exception log needed for money to be lost. Therefore this
case requires a TRANSFERFAIL# to be executed too.

Altogether, we get a proof obligation (the full formula is in [SGH+06]) that has
no quantified formulas (and no nondeterministic programs, which would also
lead to instantiating quantifiers), so the proof is fully automatic by symbolic ex-
ecution of the involved programs. Compared to the 197 interactions needed for
the original backward simulation proof in [SGHR06a] this is a vast improvement
(especially when considering that the proof of the main lemma has to be iter-
ated on corrections). The proof was developed in about a week, once the right
approach had been found (see the remarks at the end of Section 5).

The proof ends in premises of the form CINV → ϕ which give requirements
for the invariant of the concrete level that we will develop in Section 5. We close
these premises automatically by defining around 40 rewrite rules. Some of them
are inter-derivable leaving a basic set of 26 rewrite rules. Our development of the
invariant of CINV is lazy in the sense that it is done after the main simulation
proof, guided by the requirement that the rewrite rules must be provable from
the definition.

4 A Denial of Service Attack

In the next section we will derive an invariant systematically that satisfies the
requirements from the end of the last section. Like for the simulation relation,
we tried to localize the invariant to individual purses. Several attempts to do
this did not work, basically because we did not understand that the protocol
allows a particular kind of denial of service attack.

The attack does not violate the original security requirements “no money lost”
and “all money accounted” of [SCW00], our proofs show that they are correct and
preserved by the refinement. But the attack shows that the protocol violates the
property that an attacker should not be able to systematically create exception
logs. This section describes the relevant scenario and the global property it makes
necessary for the invariant.

The scenario is as follows: we assume an attacker that has a faked card and
knows the freely available (via getName+SeqNo) name and current sequence
number of some purse called from that is used in startTo.

Now, without the from purse involved in any way, on the next connection to a
to purse the attacker can pose as from purse: he will answer the getName+SeqNo
request of the terminal with from and a future sequence number n of the from purse.
The terminal will then start a protocol with a startTo(from, n, value)message to the

104 G. Schellhorn et al.

to purse, which will send a request message back. Since to does not receive a value
message as response, it has no choice but to abort the protocol.

Repeating the attack several times, the to purse will create an exception log
each time. This will fill up the limited amount of space reserved for exception logs
quickly: in reality, only a very small number of exception logs is allowed. Since
exception logs can also be created by accidents (power failures or an impatient
card holder pulling his card too early out of the card reader) the original Mondex
specification in [SCW00] has an additional protocol, where the customer shows
his card at the bank and gets his exception logs moved from the card to a central
archive of the bank4. Therefore the fact, that an attacker can systematically (and
not accidentally) create exception logs on the to purse can be seen as a mere
inconvenience, since the to purse does not lose money.

But the scenario can be taken one step further: if the attacker connects to
several to purses as described above, each time posing as the from purse he can
collect the request messages he receives (although he can not decrypt them!).

In a second stage he then connects to the from purse, this time posing as one
of the various to purses: he can send startFroms and all the collected request
messages from the to purses to the from purse (provided he has used suitable
sequence numbers in the first stage). This will cause the from purse to lose an
arbitrary amount of money immediately and to write exception logs. Although
money is then recoverable at the bank5, and all security properties are kept intact
by the attack (the attacker just damages the from purse, he does not benefit) we
think this behavior is undesirable. The owner of the from purse must go to the
bank and force every to purse to do the same: the bank will only have evidence
to give the money back when it detects matching pairs of exception logs. The
motivation for the owners of to purses will be low to do that, since they have not
lost any money. They will not notice that the exception log their purse carries
does some damage to a from purse, they did not even communicate with.

In our verification the scenario showed up as as the following property: any
purse na in idle state must expect req(pd) messages with na = pd.from and fu-
ture sequence numbers pd.fromno in the ether. All those messages may be used
in future protocol runs, that may fail since pd has already been logged by the
to purse pd.to. Note that future request messages are the only ones that may be
relevant for a purse in idle state (i.e. in a state of interest): all other encrypted
messages contain past sequence numbers. The property of future sequence num-
bers in requests is recorded in the invariant CINV of the protocol that we will
develop in the next section.

A proposal to remedy the situation is to send an encrypted startTo message
only as a response to startFrom. This would not allow an attacker to create
exception logs without having both purses available at the same time (or by

4 Archiving of exception logs at a bank is considered in our contribution to [JW07].
Proofs are available in the Web presentation [KIV]. Since the protocol is small and
independent of the main protocol for money transfer it is not considered in the
formalization here.

5 Michael Butlers case study in [JW07] explicitly considers such a recovery step.

A Systematic Verification Approach for Mondex Electronic Purses 105

pulling out one card in front of his owner). Another solution would be to force
purses to respond to a challenge from the terminal to prove, that they are in-
deed the authentic purses with the correct name. The second solution depends
on the authenticity of terminals and requires to include them explicitly in the
formal model. Therefore we prefer the first solution, which requires three small
modifications for the ASM:

– The last line of the STARFROM# rule (see Section 2) now sets outmsg to
startTo(pdAuth(receiver)) instead of ⊥.

– This startTo message is assumed to be encrypted, so the initial ether no
longer contains startTo messages.

– Since STARTTO# now receives a startTo message (in msg) with full payment
details, it simply sets pdAuth(receiver) := msg.pd.

The modifications required to replay those parts of the proofs of the previous
section, where STARTFROM# or STARTTO# are considered. Replay worked
without any problem and required about an hour of work.

5 Systematic Development of an Invariant

Like for the simulation relation, the basic idea for the development is again to
focus on states of interest, i.e. idle states, and to use local invariants for purses.
Our local invariant LCINV will use the last past idle state to say

“the current state cstate of the purse named na is the result of executing
some steps of the protocol starting from an idle state oldcstate”

Which steps have been executed can be determined from state(na): for idle state
no steps have been done, so oldcstate = cstate. If the state is epr then the purse
has successfully executed (i.e. okstartFrom ∧ ¬ fail? holds) a STARTFROM#.
Similar clauses result for state(na) = epv, epa. Formally LCINV is:

LCINV(na, oldcstate, cstate)
:↔ case state(na) of

idle : oldcstate = cstate
epr : isOKstartFrom(msg) ∧ ¬ fail?

∧ 〈STARTFROM#(msg, na; oldcstate)#〉 (oldcstate = cstate)
epv : isOKstartTo(msg) ∧ ¬ fail? ∧

∧ 〈STARTTO#(msg, na; oldcstate)#〉 (oldcstate = cstate)
epa : isOKstartFrom ∧ ¬ fail?

∧ 〈STARTFROM#(msg, na; oldcstate);
REQ#(msg, na; oldcstate)〉 (oldcstate = cstate)

Using this local approach has the advantage, that LCINV is trivially invariant for
all steps into the protocol (STARTFROM#, STARTTO# and REQ#). In these
steps oldcstate stays the same before and after the step. For the steps finishing
a protocol run oldcstate after the step is chosen to be the final state of the

106 G. Schellhorn et al.

step. Therefore, for these steps we will prove properties of full protocol runs of
one purse: e.g. executing an ACK# in state epa yields a proof obligation that
considers a full execution STARTFROM#; REQ#; ACK# of a from purse. In
essence we will have to verify a “big” diagram consisting of one abstract step
and 3 concrete steps.

Compared to the original invariant effort can be concentrated to get the in-
variant right for full protocol runs. There is no need to explicitly define properties
of intermediate protocol states.

The approach works for the local state of purses. It is not sufficient for the
(global) ether. Two things are necessary for the ether. First, the global invariant
is necessary, that we already derived in the last section. Second, for each inter-
mediate state of a purse we need to characterize, whether its communication
partner already has sent a response. This can be done abstracting from Mondex
protocol to any protocol that sends messages forth and back. Finally, we have
to characterize states of interest. All we need for them is that state(na) = idle
(of course) and that exception logs have sequence numbers in the past. Again,
due to the scenario of the previous section, exception logs in exLog(na) with
pd.from = na may have future to. Formal definitions of the resulting properties
and the resulting full definition of the invariant CINV are given in [SGH+06].

To verify that CINV is a global invariant for CSTEP# we again reduce this
property to lemmas about the local invariant. In this case we need two lemmas:
one for the case where the purse na of the local invariant is the same as the
receiver receiver of the message, and one where it is different.

The proofs are nearly fully automatic: 5 interactions are required. Compared
to the original proof, which had 71 interactions, this is again a significant im-
provement. Working out the proof, once the right approach was found, took
around 2 weeks. The main effort was to find the right approach to solve the
problem. Several weeks were spent trying to find out, why purely local invari-
ants always failed to work, to figure out the worst-case scenario of the previous
section, and to find the global property of requests with future sequence numbers.

Summarizing, to work out the full case study using ASM refinement required
about 2 person months of work. Changing the ASM to avoid the attack of the
previous section makes the proof easier, since the global property of future re-
quests becomes obsolete. Since no other significant change is required, it took
only some hours to redo the proofs for the modified protocol.

6 Related Work

Prior to our work [BJPS06] showed that it is possible to define a forward simu-
lation for the Mondex scenario restricted to exactly one from and one to purse.
This work also suggested using generalized forward simulations. Although the
complexity of interleaving protocol runs is absent in this scenario, and some of
the reasoning of the paper is informal, this work was rather influential for ours.
It is interesting to see that, when restricted to the scenario with two purses our
forward simulation differs slightly from theirs: While in ours a transition from

A Systematic Verification Approach for Mondex Electronic Purses 107

epr to epa implements TRANSFERFAIL#, when the to purse has already logged,
in their refinement it implements skip and the failed transfer only happens for
the subsequent ABORT#. An analysis of the different possibilities to define sim-
ulations has been done in [BS07]. This paper also gives a formal account of future
and past invariants within an algebraic setting.

Parallel to our work in [SGHR06a], several other groups have successfully for-
malized and verified the Mondex case study. Their results shall all be published
in [JW07]: [RJ06] demonstrates that Alloy and bounded model checking can find
all the problems we found, and one more in the proof structure we did not use.
The RAISE development in [HGS06] shows an interesting alternative to develop
the protocol: it starts with a send and receive instead of a transfer operation
(our ASTEP#). The RAISE case study develops the communication protocol
with two refinements using a variant of forward simulation. This development
has a rather well structured invariant, and many of the formulas used in this
development are quite close to the ones we use. There are also differences: the
formalism used is purely algebraic, and many properties are defined for inter-
mediate states. Nevertheless, proving the Mondex refinement in two steps, one
that splits money transfer into send and receive, and another that develops the
protocol, could be an improvement for our development too.

The idea of splitting the refinement into smaller steps is taken to its extreme
by Michael Butler’s group: their development splits the original development
into 9 very small refinements, that could be verified in very short time and with
very good automation using the B4free tool. Although the final protocol still
differs from the Mondex protocol (a startTrans action is required, that prohibits
some protocol interleavings), the idea of deriving a protocol by introducing a
generic transaction concept is remarkable.

A large part of the proof of the Mondex refinement has also been done by
David Crocker using the resolution based prover Perfect Developer.

[WF06] use the original Z specification and the original proofs within the Z-
Eves tool. By avoiding any translation into another formalism, their approach
found some small problems, that no one else could find.

Our idea of using local invariants is a common idea in ASM refinement, it is
used e.g. as the core idea in [BM96], which verifies a refinements from sequential
to pipelined execution instruction of instructions of the DLX processor using
localized invariants for each pipeline stage. The idea is also not specific to ASM
refinement, it can be found in other refinement notions, e.g. in work that relates
promotion in Z specifications and data refinement.

Our use of states of interest on the other hand seems rather particular to
ASM refinement. It was used informally in [BR95] for the compilation of Prolog
to WAM, in our formal proofs to verify them [SA98], and was a key notion in the
formalization of ASM refinement [Sch01]. The term states of interest itself was
coined in [Bör03]. The only related refinement notion outside of ASM refinement
we are aware of is coupled refinement [DW03], which uses past states of interest
(as shown in [Sch05]).

108 G. Schellhorn et al.

Recently, states of interest were also used in [HGRS07] to analyze security
protocols. The idea is to focus on states after all possible attacks have been
tried.

7 Conclusion

In this paper we have shown how techniques of ASM refinement, namely focusing
on states of interest and defining local invariants, can be used to systematically
define a simulation and an invariant for the Mondex refinement.

Our technique has resulted in a simple forward simulation for the Mondex
case study that can be verified with a very high degree of automation.

The systematic definition of an invariant has led us to discover a weakness
of the protocol with respect to a denial of service attack. Verifying a modified
version of the protocol that avoids the attack could be done in a few hours,
and it should be debated, whether the weakness is serious enough to change the
protocol as suggested.

Although this largely remains future work, we hope that the techniques we
used are also applicable for a wider range of security protocols. A first result
in this direction is that they can be used in security proofs on an abstract
cryptography level [HGRS06].

Our work is part of the more ambitious goal to develop verified JavaCard
code for Mondex: a refinement of the communication protocol to a protocol
using abstract cryptography has been verified, and is described in [HSGR07].
We are currently working on a refinement to Java Code.

Acknowledgement. Gerhard Schellhorn would like to thank Jim Woodcock for
his kind invitations to the Mondex workshops.

References

[BJPS06] Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the purse:
The balance enquiry quandary, and generalised and (1,1) forward refine-
ments. Fundamenta Informaticae 77 (2006)

[BM96] Börger, E., Mazzanti, S.: A Practical Method for Rigorously Controllable
Hardware Design. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.) ZUM
1997. LNCS, vol. 1212, pp. 151–187. Springer, Heidelberg (1997)

[Bör03] Börger, E.: The ASM Refinement Method. Formal Aspects of Comput-
ing 15(1–2), 237–257 (2003)

[BR95] Börger, E., Rosenzweig, D.: The WAM—definition and compiler correct-
ness. In: Beierle, C., Plümer, L. (eds.) Logic Programming: Formal Meth-
ods and Practical Applications. Studies in Computer Science and Artifi-
cial Intelligence, vol. 11, pp. 20–90. North-Holland, Amsterdam (1995)

[BS03] Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-
Level System Design and Analysis. Springer, Heidelberg (2003)

[BS07] Banach, R., Schellhorn, G.: On the refinement of atomic actions. In:
Prooceedings of the REFINE Workshop at IFM 2007, Oxford (2007) (to
appear in ENTCS)

A Systematic Verification Approach for Mondex Electronic Purses 109

[CSW02] Cooper, D., Stepney, S., Woodcock, J.: Derivation of Z Refinement
Proof Rules: forwards and backwards rules incorporating input/output
refinement. Technical Report YCS-2002-347, University of York (2002),
http://www-users.cs.york.ac.uk/~susan/bib/ss/z/zrules.htm

[DW03] Derrick, J., Wehrheim, H.: Using Coupled Simulations in Non-atomic
Refinement. In: Bert, D., Bowen, J.P., King, S. (eds.) ZB 2003. LNCS,
vol. 2651, pp. 127–147. Springer, Heidelberg (2003)

[Gur95] Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.)
Specification and Validation Methods, pp. 9–36. Oxford University Press,
Oxford (1995)

[HGRS06] Haneberg, D., Grandy, H., Reif, W., Schellhorn, G.: Verifying Smart Card
Applications: An ASM Approach. Technical Report 2006-08, Universität
Augsburg (2006)

[HGRS07] Haneberg, D., Grandy, H., Reif, W., Schellhorn, G.: Verifying Smart Card
Applications: An ASM Approach. In: Davies, J., Gibbons, J. (eds.) IFM
2007. LNCS, vol. 4591, pp. 313–332. Springer, Heidelberg (2007)

[HGS06] Haxthausen, A.E., George, C., Schütz, M.: Specification and Proof of the
Mondex Electronic Purse. In: Reed, M., Xin, C., Liu, Z. (eds.) Proceed-
ings of 1st Asian Working Conference on Verified Software, AWCVS 2006,
UNU-IIST Reports 348, Macau (November 2006)

[HKT00] Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge
(2000)

[HSGR07] Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mon-
dex Electronic Purses with KIV: From Transactions to a Security Proto-
col. Formal Aspects of Computing (2007) (to appear, older version avail-
able as Techn. Report 2006-32 at [KIV])

[JW07] Jones, C., Woodcock, J. (eds.): Formal Aspects of Computing. Springer,
Heidelberg (2007) (to appear)

[KIV] Web presentation of the mondex case study in KIV,
http://www.informatik.uni-augsburg.de/swt/projects/mondex.html

[RJ06] Ramananadro, T., Jackson, D.: Mondex, an electronic purse: specifica-
tion and refinement checks with the alloy model-finding method (2006),
http://www.eleves.ens.fr/home/ramanana/work/mondex/

[RSSB98] Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifica-
tions and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.)
Automated Deduction—A Basis for Applications, volume II: Systems and
Implementation Techniques: Interactive Theorem Proving, ch. 1, pp. 13–
39. Kluwer Academic Publishers, Dordrecht (1998)

[SA98] Schellhorn, G., Ahrendt, W.: The WAM Case Study: Verifying Com-
piler Correctness for Prolog with KIV. In: Bibel, W., Schmitt, P. (eds.)
Automated Deduction—A Basis for Applications, pp. 165–194. Kluwer
Academic Publishers, Dordrecht (1998)

[Sch01] Schellhorn, G.: Verification of ASM Refinements Using Generalized For-
ward Simulation. Journal of Universal Computer Science (J.UCS) 7(11),
952–979 (2001), http://www.jucs.org

[Sch05] Schellhorn, G.: ASM Refinement and Generalizations of Forward Simula-
tion in Data Refinement: A Comparison. Journal of Theoretical Computer
Science 336(2-3), 403–435 (2005)

http://www-users.cs.york.ac.uk/~susan/bib/ss/z/zrules.htm
http://www.informatik.uni-augsburg.de/swt/projects/mondex.html
http://www.eleves.ens.fr/home/ramanana/work/mondex/
http://www.jucs.org

110 G. Schellhorn et al.

[SCW00] Stepney, S., Cooper, D., Woodcock, J.: AN ELECTRONIC PURSE Spec-
ification, Refinement, and Proof. Technical monograph PRG-126, Oxford
University Computing Laboratory (July 2000),
http://www-users.cs.york.ac.uk/~susan/bib/ss/z/monog.htm

[SGH+06] Schellhorn, G., Grandy, H., Haneberg, D., Moebius, N., Reif, W.: A
systematic verification Approach for Mondex Electronic Purses using
ASMs. Technical Report 2006-27, Universität Augsburg (2006),
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/

publications/

[SGHR06a] Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex Chal-
lenge: Machine Checked Proofs for an Electronic Purse. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 16–31.
Springer, Heidelberg (2006)

[SGHR06b] Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex Chal-
lenge: Machine Checked Proofs for an Electronic Purse. Technical Report
2006-2, Universität Augsburg (2006)

[WF06] Woodcock, J., Freitas, L.: Z/eves and the mondex electronic purse. In:
Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS,
vol. 4281, pp. 14–34. Springer, Heidelberg (2006)

[Woo06] Woodcock, J.: First steps in the verified software grand challenge. IEEE
Computer 39(10), 57–64 (2006)

http://www-users.cs.york.ac.uk/~susan/bib/ss/z/monog.htm
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/

Management of UML Clusters

Peggy Schmidt and Bernhard Thalheim

Christian-Albrechts-University Kiel, Computer Science Institute, 24098 Kiel,
Germany

pescthalheim@is.informatik.uni-kiel.de

Abstract. Software engineering uses UML diagrams as a standard tech-
nique for specification and development of software. Various UML dia-
grams are used for specification of different aspects of the application.
Their interpretation, extension, revision and integration becomes awful
difficult if developers use the full freedom of UML, apply their own se-
mantics and do not agree an common parts. We propose an approach
that limits this freedom to the necessary extend. Developers have the
full freedom on parts of the specification that is independent from others
and are committed to fulfill contracts on parts of the specification that
is also used by other developers.

Due to a lack of semantics the integration of various UML diagrams
is often left to the intuition of software engineers, which bears the risk of
UML-based software development becoming error-prone. In this paper we
propose the use of Abstract State Machines (ASMs) as a means to sup-
port the integration of UML diagrams by means of invertible translations
of UML clusters, i.e. sets of UML diagrams together with constraints de-
fined on them, into easily understandable ASM specifications. In doing
so, the rigorous semantics of ASMs induces an unambiguous semantics
for the UML clusters. These translations themselves can be formalised
by ASM specifications thereby automating the translation process. Fur-
thermore, the evolution of UML clusters is guarded by contracts, which
can again by specified by ASMs.

1 Introduction

Research has been conducted in software engineering for more than forty years.
Ideas which have been studied include support for different levels of abstrac-
tion, information hiding, and reasoning with local computations. The goal of
software engineering is to create high-quality software. Enterprises are becoming
increasingly complex in the information age. To realize the building of com-
plex information systems it is essential to resolve such problems as high level
specification and target planning at the concept level. Software engineering has
produced an enormous amount of notation and methodology that aims to handle
the software process.

1.1 Software Engineering and Software Specification

Software engineering is thus the practical application of scientific knowledge in the
design and construction of computer programs and the associated documentation

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 111–129, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

112 P. Schmidt and B. Thalheim

required to develop, operate, and maintain them [Boe76]. UML diagrams are ubiq-
uitous in software engineering, forming the cornerstones of modelling techniques.
UML intentionally leaves open semantics and formalisations of UML diagrams.
This variety of understanding makes the management of UML a mental challenge
for large projects and in the context of team development. The pUML (precise
UML) initiative [pUM07] tries to add some mathematical rigor to UML but is
not yet supported by tools.

Problem 1. Adding mathematical rigor to representations: Each work product in
software engineering should have an operational semantics. This semantics should
allow the development of a (small) logical theory on the basis of which properties
of specifications can be proven, validated or verified.

Software products are typically developed in large team whose members are
locally developing products. The completion of the development task and the
quality [ISO01] is treated in very different ways. The final goal of the software
development process is however an integrated and well-behaved product.

Problem 2. Integrated development of different representations: UML diagrams are
used to specify different views of the same software. They must be used consis-
tently in an integrated form. Their integration must be made explicit.

Software engineering has focused in the past mainly on development processes
such as requirements engineering, conceptual system specification, implementa-
tion, maintenance, testing, introduction, and deployment. Whereas the latter
processes are interwoven the first three processes are more or less sequential.
Each development step changes one or two of the development products and
leaves the others out.

Problem 3. Flexible change management: Any change to one of the develop-
ment products must take into consideration the changes required by the current
changes in other software products.

Software engineering products are documents such as UML diagrams. They are
revised and changed during the development process. We need a mechanism that
supports the evolution of software specification products and reasoning their
properties quality. UML provides a way of communicating between developer
and user, and is well accepted in research as well as in industry. UML collects
a federation of different models with different views and scope for the product.
UML issues a rich set of pictorial and graphical notations. Currently UML is
comprised of miscellaneous notations with no formal meaning. The problems of
UML include a large number of diagram types and a consequent underspecifica-
tion of their semantics. There are, however, main differences in the semantics of
these diagrams and in the way these diagrams are used.

Problem 4. Evolution of different representations: Changes within any UML doc-
ument, must either be refinements of previous diagrams or explicit revisions of
such diagrams. These changes must be enforced for other diagrams as well when-
ever those are concerned too.

Management of UML Clusters 113

We claim that these four problems can be solved on the basis of abstract state
machines (ASM). ASM [BS03] were introduced as a general mathematical
framework for systems specification and implementation. This framework sup-
ports rough, sketchy specification as well as detailed, fine-grained specification.
Both types of specifications can be seen as a machine. The behaviour of these
machines can be simulated.

The different specifications vary in their level of detail. We want, however, that
one specification can be considered to be a refinement [Bör03] or a revision of the
other one. A refinement is generally defined (1) by a structural scope of interest
for both machines, (2) by an equivalence relation on states of both structural
scopes of interest, (3) by a behavioural scope of interest called a computational
segment, and (4) by a partial equivalence relation between the behavioural scope
of interest. We require that these equivalence relations allow any behaviour of
one machine to seen or understood as a behaviour of the other machine.

1.2 Requirements for Management of UML Specifications

UML diagrams are typically developed either by hand using drawing tools or with
support of UML tools such as Rational Rose. The interpretation of the diagrams
is often fuzzy and may be hidden within the assumptions of the tools. The
UML standard has left this interpretation to the developers and implementers.
Therefore we must provide a very flexible framework that allows interpretations
to be injected at a later stage. These diagrams are intertwined and depend on
each other based on agreement. We thus must cope with the coexistence of these
diagrams. They allow a specific view on the system that is under development.

The development process has typically four dimensions. The integration di-
mension of a set of diagrams is concerned with the incorporation of several
diagrams depending on the overlap and viewpoints supported by the diagram.
The abstraction layer dimension considers relations among different abstract
views on the product, e.g., the realisation of the analysis diagrams by the sys-
tem specification. The evolution dimension adds complexity to the development
process by modifying existing diagrams to new diagrams or initiating the de-
velopment of new diagrams. For example, first a use case diagram is specified
and second the state-chart diagram under consideration of the use case diagram.
The collaboration dimension must take care on the steps that developers may
apply while working in a development team. It is not surprising that only the
first dimension is partially supported by tools. UML tools are harmed by the
lack of a general formal framework of each of the UML diagrams and by the
resulting lacking support for integration of diagrams. The integration and the
abstraction layer dimensions have not got a satisfying treatment inside UML.
The survey [EB04] covers around 4 dozen papers. Constraint examples consid-
ered are typically rather trivial. The main kind of constraints are constraints on
well-formedness and on existence. Moreover, very few research has been carried
out on the evolution dimension and the collaboration dimension.

At the same time a large body of knowledge is available for formal foun-
dation of each of the UML diagrams. We prefer the ASM research that has

114 P. Schmidt and B. Thalheim

resulted in a formal basis of the most important UML diagrams such as class
diagrams [Obe01], statecharts [BCR00b], use case diagrams [BGS+03], and ac-
tivity diagrams [BCR00a]. We thus may assume that each of the diagrams can
be embedded into their ASM. The consistency of these ASM interpretations has
not yet got a satisfying solution.

1.3 Organisation of the Paper

Section 2 introduces UML diagram clusters and contracts that allow to manage
UML diagram clusters. The explicit formulation of clusters and of contracts is
novel and has not been considered in the past. Section 3 describes the support of
UML clusters by an ASM specifications. We give examples for the transforma-
tion UML-Diagrams into ASM specifications and for the check of consistency
between UML clusters in Section 3 and 4. Section 4 demonstrates the potential
of our method by applying it to collaborative development of software within a
team of developers. Section 5 summarizes the paper.

2 UML Diagram Clusters

The software-development process yields a partially ordered set of UML models
that should be consistent. Their semantics should be precisely defined. At the
same time it must however defined in a very flexible way and is going to be
refined through UML diagram set transformation. The problem thus arises of
how to understand and how to check consistency among diagrams and between
different versions.

2.1 Algebraic UML Systems for Kinds of UML Diagrams

Signatures S define the kind of UML diagrams. Typically, signatures describe the
base canon that is used within the abstract syntax. Most signatures are given by
the specification of the sorts or domains, of the (dynamic) predicates and func-
tions and by formal grammars for inductive construction of complex elements.
These grammatical rules may lead to syntactically different but semantically
equivalent expressions. Therefore, we use an equivalence relation for expressing
the same meaning. Typically, equivalences can be defined on the basis of an
equality system.

A UML diagram may be defined as a labelled graph GS of certain signature
S with a set of integrity constraints or well-formedness rules. These rules are
expressed either in the OCL well-formedness rules which extend the syntactic
rules given in the meta-language or in first-order predicate logic. The nodes cor-
respond to main elements of signature S and edges correspond to their relations.
Labels are used for providing additional information on the nodes and edges.

For instance, a statechart diagram is given by a set of states and their transi-
tions. A initial/ final state has at least one outgoing / incoming transition and
no incoming / outgoing transition. Attribute and operation identifiers in class

Management of UML Clusters 115

diagrams may required to be unique. We may also use general constraints such as
the unique name assumption that requires names to be unique within a diagram.

Such conditions can be considered to be constraints that specify well-formed-
ness ΣWellFormed

S
of diagrams. This set also includes any equivalence of interest

for the given kind of diagrams.
In general, we may weaken requirements to well-formedness for the interme-

diate steps in a development process. For instance, the assignment of public,
private and the specification of operations can be delayed. Additionally, UML
intentionally leaves open semantics of diagrams. For instance, a number the op-
tions for semantical interpretation of statecharts is discussed in [BCR00b]. At
least four different decisions for semantics of UML statecharts must be made
before a statechart diagram interpretation can be generated: (a) event handling
(whether an event is considered to be a releasable and dispatched event); (b)
concurrency treatment for transitions in compound states; (c) environment for
generation of state completion; (d) selection and handling of transitions.

A similar variety of interpretations can be observed for class diagrams, activity
diagrams, and interaction diagrams. The clarification of class diagram semantics
may either be based on semantics of object-oriented databases [ST93, Obe01]
or on proposals made by the pUML (precise UML) initiative [pUM07]. The
interpretation of use diagrams we use is based on the SiteLang language [DT01]
that has been developed for specification of user behaviour within information-
intensive web systems.

Since interpretations do not have a Church-Rosser property and one choice for
interpretation of one construct may restrict the application of an interpretation
of another construct we restrict our consideration to the semantics integration
assumption: Given a kind of UML diagrams defined over a signature S. Restric-
tions and equivalences applied to this kind of diagrams are not contradicting.
If this assumption is applicable then we may assume that all diagrams of the
given kind may have a strongest and a weakest interpretation (final and free
interpretation) defined by the conjunction or the disjunction of all restrictions,
respectively. The interpretations form a lattice of hierarchically ordered equa-
tionally partial heterogeneous structures or algebras [Mal70, Rei84].

This approach may be combined with the theory of institutions and the
CASL approaches [BST02] to algebraic UML systems. Institutions provide a
set of signatures, a set of formulas defined on these signatures and a set of
model classes for the signatures. Model classes are related by a satisfaction re-
lation that define whether a model M of some signature S satisfies a formula α
from LS .

We assume now that the signature is fixed for one kind of UML diagrams.
The different interpretations possible form a lattice L(ΣWellFormed

S
) of subsets

of ΣWellFormed
S

with the set ΣWellFormed
S

as the largest element and a subset of
ΣWellFormed

S
as the smallest element that is considered the lowest standard for

well-formedness of diagrams. Additionally, modification operations must be spec-
ified for UML diagrams. These operations may be considered as specialisations
of typical graph and schema editing operations known for database schemata

116 P. Schmidt and B. Thalheim

[Tha00]. Some of these operations can contingent others, i.e. can be used to en-
hance the other operations in such a way that constraints are becoming fulfilled if
these operations are applied. Some of these operations can also be compensating
operation that allow to undo other operations.

An algebraic UML system ({GS}, L(ΣWellFormed
S

), OS) of signature S is given
by all labelled graphs {GS} on signature S, a lattice L(ΣWellFormed

S
) of sets of

constraints, and by modification and development operations OS that can be
used for the development of diagrams of signature S.

2.2 Contracted Development of UML Diagrams

Consistency of sets can be specified through a set of logical formulas that are
specified in an appropriate language. For instance, database applications use
integrity constraints which specify which states of the database are desirable
and which states are forbidden. UML diagrams can be considered as a set of
abstract objects. The meaning of these objects is the illustration of different
viewpoints and properties of a program. The UML meta-language provides a
framework for description of objects that are represented by a UML diagram.
These objects typically have complex structures and are well-formed according
to the requirements of the UML standard [HKKR05]. A set of UML diagrams
describe an application. Therefore, UML diagrams must also obey consistency
constraints. Typically, these consistency constraints are not explicitly specified.
The explicit specification and the sophisticated treatment of these constraints
contributes to the solution of the four problems discussed in Section 1.1. We
base our approach on a four-layer treatment in contracted development:

1. Declaration of constraints that are applied to a singleton diagram or to sets
of coexisting diagrams;

2. Description of enforcement mechanisms (when must the constraint checked,
how the constraint is checked, what to do if the constraint is violated, what
mechanism can be used to trigger the constraint) that support constraint
validity during development, change, and evolution of UML diagrams;

3. Description of change and evolution steps that can be applied for refinement
or modification of sets of UML diagrams based on scopes of constraints and
operational use of constraints;

4. Support by tools or workbenches that maintain validity of constraints.

The third layer may also consider the development of UML diagrams within
development teams. In this case, team members are supported by approaches to
collaboration, e.g. explicit services and exchange frames [ST07].

A contract ςContract consists of a declaration of constraints, of a description
of the enforcement mechanism and of a prescription of modification steps that
transform a consistent set of diagrams into a consistent set of diagrams.
A contract may include obligations, permissions and sanctions. Therefore,

– contracts declare correctness of a set of diagrams, separate exceptional states
from normal states for these sets, and forbid meaningless sets of diagrams,

Management of UML Clusters 117

– contracts enable the direct manipulation of the set of diagrams as transpar-
ently as possible and offer the required feedback in the case of invalidation
of constraints based on echo back, visualisation of implications, on deferred
validation, instant projection and hypothetical compilation, and

– contracts consider mechanisms that address the long term integrity of di-
agram sets by forecasting confirmation, by anticipating changes made in a
team, by providing a mechanism for adjusting and confirming correctness,
and by specifying diagnostic queries for inspection of diagram sets.

A typical constraint on a set of diagrams is the existence constraint
ECstates(SC,CT)

1 : StateChart(States) ⊆ ClassDiagram(πX(RulingClass))
where RulingClass is a class defined in the class diagram and πX(Y) is the
projection function. The constraint requires that states in statecharts must by
defined by attributes of the ruling class in a class diagram. Changes to states
are thus restricted. We declare

State′ �∈ ClassDiagram(πX(RulingClass)) −→
F modify(StateChart(State, State′)),

O cascade(modify(ClassDiagram(RulingClass,X)), modify(StateChart(State)))
where modify denotes any diagram modification operation applicable to the
signature of the diagram, cascade denotes an obligation to apply a second action
if the first action has been completed and F, P, O are the deontic operators forbid,
permit, oblige. Furthermore, we assume

do(A1, modify(ClassDiagram(RulingClass, X)) −→
do(notify(A2, modify(ClassDiagram(RulingClass,X)))

for any two agents A1 and A2 where A1 the right to modify class diagrams and
A2 has the right to read the statechart.
For instance, in the running example we require that the states IsBorrowed,
IsReturned are definable for the class Book, i.e.

StateChart({IsBorrowed, IsReturned}) ⊆ ClassDiagram(πLendingState(Book)) .

Contracts typically follow a number of norms that are given by laws, regula-
tions or agreements among the parties involved. Our treatment generalise this
understanding. Parties involved into a contract are either singleton diagrams or
team members involved in a development project. A contract may be extended
by the following information: roles of the parties that are involved; relationships
between contracting parties; begin and end of contract; the status of contracts;
a contract monitoring facility that performs checking of the fulfillment of obliga-
tions and compliance monitoring; a contract notification component that sends
various contract notifications to the roles involved in contract management; other
components and facilities to support contract negotiations, enforcement and also
dynamic configurations of the system to reflect new business rules and structures.

2.3 Coexistence of UML Diagrams and UML Clusters

During UML-based system specification a number of UML diagrams is used for
description of different viewpoints in different levels of detail on the application.
UML does not provide mechanisms for support of coexistence of diagrams beyond

118 P. Schmidt and B. Thalheim

the UML meta-model, the Object Constraints Language OCL [HKKR05] and
rules developed within the precise UML initiative. Coexistence of diagrams must
be handled within all four dimensions: integration, abstraction layer, evolution
and collaboration.

The development of UML diagrams is performed by agent (or actors) that
obtain rights to apply (do) modification and development operations and can
be obliged to apply these operations during their work. Rights are ordered. For
instance, an agent that can modify diagrams have typically the right to read
these diagrams.

Beside well-formedness we might also consider any kind of constraint over
diagrams of signature S. For instance, hierarchies in class diagrams must be
acyclic. States in statecharts must uniquely determine the node in the statechart.
Therefore, we define a diagram type TS = (S, ΣS) by the signature of the diagram
and by constraints ΣS ∈ L(ΣWellFormed

S
) applicable to all diagrams defined over

this type .
Constraints in UML clusters can be categorised into

existence constraints S1[E] ⊆ Exp(S2) that bind the utilisation of one ele-
ment set E in a diagram of signature S1 to the existence of this element or
of an expression that declares this element within a diagram of signature S2,

visibility constraints E ⊆ Public(Exp(S2)) for E ⊆ Exp(S1) that require
that expressions used in one diagrams must be visible on the other diagram,

cardinality constraints cardS1 = (m1, n1) −→ cardS2 = (m2, n2) that restrict
the multiplicity of elements in one diagram is bind by the multiplicity of
elements in another diagram,

refinement constraints e = E for elements e in a diagram of signature S1
and expressions E ∈ Exp(S2) that restrict the refinement of diagrams of
signature S1 by diagrams of signature S2 and

evolution constraints that specify the consistency of different versions of the
same application.

For instance, a link between a sender and receiver in a sequence diagram must be
based on the existence of a corresponding association in the class diagram. All el-
ements in a sequence diagram require that the corresponding classes, attributes,
operations and references are visible in the class diagram. Since messages in
sequence diagrams can initiate creation or deletion of object the cardinality of
these object sets must be consistent with the cardinality constraints specified for
the class diagram. Use cases in a use case diagram can be refined by an entire
activity diagram.

A UML cluster type CT = (TS1 , ..., TSn , ΣS1,...,Sn) is given by UML types TSi

defined on a set S1, ..., Sn of signatures and a set ΣS1,...,Sn of constraints on these
signatures. A UML cluster C on a cluster type CT consists of UML diagrams
(D1, ..., Dn) of type TSi that obey ΣS1,...,Sn . The contract on CT thus consists
of the constraints ΣS1 ∪ ... ∪ ΣSn ∪ ΣS1,...,Sn, a description of the enforcement
mechanisms for any operation that can be used for modification of one UML
diagram, and a set of consistent evolution transformations.

Management of UML Clusters 119

The evolution steps may be very complex. We may either use a transaction
approach that accept only those modification step sequences which are correct
or may develop modification operations which are correct. We prefer the second
approach and aim in development of atomic steps. These steps must obey the
contract. Therefore we also need compensation and contingent operations that
compensate the operation or that continue the operation in the case that the
step has led to a cluster which is not consistent. The final result of evolution
steps is typically a UML cluster. Currently, all approaches prioritise one dia-
gram signature and consider the corresponding diagram to be the final product
supported by the other diagrams.

3 ASM-Based UML Clusters

3.1 ASM Basis for UML Clusters

The coexistence of UML diagrams can be either supported on the basis of al-
gorithms that check contracts, e.g., [Tsi00], or map the consistency to certain
logics or check consistency on the basis of operational semantics. Most ap-
proaches develop algorithms for certain classes of constraints. Any new class
of constraints must thus be supported by new algorithms. Some few approaches
map constraints to certain logics such as description logics, e.g. [SMSJ03]. Un-
fortunately [Tha00], description logics are already insufficient for handling of
cardinality constraints. We prefer operational semantics. We map UML dia-
grams to an ASM based on the mappings that have already been given in
[BGS+03, BCR00b, BCR00a, Obe01]. This mapping achieves an integration of
all diagrams. We therefore use an operational consistency paradigm based on
the requirement that a UML cluster has a common semantic interpretation.

For instance, the transformation of class diagrams to ASM is based on the
theory of object-oriented databases [ST93, ST99] and [Obe01]. We use the lay-
ering in Section 2.3. Let us assume that a number of static domains such as
Name, AttrName, OpName, AssocName, ... are given. The signature of class
diagrams is given by
ASMClassTypeSystem

T CT ={τ1, ..., τnT }, ACT ={A1, ..., AnA}, OCT ={o1, ..., onO} ECT ={e1, ..., enE}
name : T CT → Name
attrT : T CT ×ACT → AttrName× V isibility ×AttrDataType

operationT CT
: T CT ×OCT → OpName× V isibility × ParamList×MethDataType

associationT CT
: T CT × T CT × ECT → AssocName× AssocKind

association_attr_sourceT
CT

: T CT × T CT × ECT → Role× Card× V isibility

association_attr_sourceT
CT

: T CT × T CT × ECT → Role× Card× V isibility

....
The entire translation process results in an ASMSpec

C specification of the cluster.
This specification also reflects all constraints in the cluster. For instance, we use
constraints expressing well-formedness of diagrams. Let us consider a constraint
which requires that names of associations uniquely determine the kind of the
association (normal, generalisation, ...)

120 P. Schmidt and B. Thalheim

constraint WFCT
F D1 : ∀ τ1 ∀ τ2 ∈ T CT ∀ ζ1 ∀ ζ2 ∈ ECT

(associationT CT
(τ1, τ2, ζ1) �= undef ∧ associationT CT

(τ1, τ2, ζ2) �= undef

associationT CT
(τ1, τ2, ζ1)=(an1, ak1)∧ associationT CT

(τ1, τ2, ζ2)=(an2, ak2)
∧ an1 = an2) −→ ak1 = ak2 .

We notice that a number of different transformation styles can be applied. We
used for the example above an object-preserving transformation that concen-
trates the translation to nodes and edges of the graph. Instead we might use full
unnesting that generates a function for each component of the graph. Another
style uses objects such as attributes, operations, etc. on their own and associate
them with the corresponding class through a function. We use the unique name
assumption and assign a unique namespace to each diagram.

Constraints can be transformed to ASM rules, e.g. the constraint above to
WFCT

F D1 =
foreach τ1, τ2 ∈ T CT, ζ1, ζ2 ∈ ECT do

let (an1, ak1) = associationT CT
(τ1, τ2, ζ1) in

let (an2, ak2) = associationT CT
(τ1, τ2, ζ2) in

if an1 = an2 ∧ an1 �= undef ∧ ak1 �= undef ∧ ak2 �= undef ∧ ak1 �= ak2 then
reaction(ζ1, ζ2) := contract_reaction(WFF D1)

where we assume that contract_reaction is a function set on initialisation.

3.2 ASM-Based Contract Management

An ASMSpec
C specification is enhanced by assumptions ASMAssum and guaran-

tees ASMGuaran, i.e., ASMContract = (ASMAssum,ASMGuaran). Guarantees can
be seen as the smallest common divisor. They are going to be supported by the
environment ASMSpec

Environment if it behaves according to ASMA. Assumptions
may also represent requirements of ASMSpec

C to the environment. We assume
that the assumptions imply the guarantees, i.e., any consistent with ASMAssum

specification obeys the guarantees.
The abstract state machines ASMContract handles the fulfillment of contracts.

The generation process of these machines is demonstrated in Section 4.
The management of contracts is based on three steps [KN02]: registration,

contract negotiation and contract execution.

Registration Two agents are involved into the registration phase and use the role
of acting addressee and the role of reacting counter-party. They identify their
need to be engaged in a change of ASMSpec under the supervision of the
contract manager (ASMContract). Within the next step they may agree in
principle on issues or open a negotiation. These agreements will determine
the type of service required from the contract manager. The purpose of the
contract will be negotiated in the following phase. The type of service is
expressed as a Contract Template and put forward by the authority to the
two contracting agents.

Contract negotiation: This step manages the domain-specific content of the con-
tract following the template agreed upon in the registration phase. Issues
determined to be important in the registration phase can be negotiated, for

Management of UML Clusters 121

example, for a decomposition step applied to a class and resulting in sev-
eral classes within a UML class diagram. In general, a contract specifies the
collaboration of agents whenever changes applied to ASMSpec specifications
(e.g., ASMClstrT, ASMClstr, or ASMPrgrm) . We distinguish between obliga-
tions for the acting and the reacting agent, permissions given by the reacting
agent to the acting agent, and sanctions applied to the ASMContract to the
acting agent or to the reacting agent.

Contract execution: The fully negotiated contract is executed by the three agents
under the supervision of the ASMContract. The bound contract contains dec-
larations of obligations, permissions and sanctions of each party following the
template used. These declarations will lead to the execution of the contract.

Contracts describe constraints that the ASMSpec must satisfy before using the
service as well as the constraints that are guaranteed by the service when used.
The Activation defines preconditions for obligations, permissions or sanctions.
Finalization assumes that the activation is true. If the activation and
finalization conditions are met, then the service permissions must be pre-
served.

A development contract may contain additional constraints. For example, the
following ASMContract specifies that all methods in a statechart of a cluster have
to exists in the class diagram of this cluster, i.e. the existence constraint

ECmeth(SC,CT)
1 : StateChart(Methods) ⊆ ClassDiagram(Methods)

is transformed to the generalised rule
IntegrityConstraintTest ⇔
OSC ⊆ OCT ∧ {δτclass diagram , δτstatechart}
 C

and to the rule
ECmeth(SC,CT)

1 =
foreach o ∈ OSC do

if o �∈ OCT then
reaction:= contract_reaction(ECmeth(SC,CT)

1)

3.3 Supporting Management by Contract Templates

The contract specifies the coherance within and between UML diagram clusters
and supports propagation of modifications throughout the cluster. The con-
tract states which constraints remain to be valid after a modification. Contracts
may include specific styles and pattern for the treatment of modifications. For
instance, contracts may be based on the ACID paradigm, i.e. any modifica-
tion set is either completely applied to the cluster or rolled back, can be ap-
plied in isolation from other modification sets and is then persistent for the
cluster. If contracts can generically be defined then contract templates can be
defined. A contract template is a contract with parameters for the UML dia-
grams. The template is instantiated to the machine ASMContract that manages
contracts.

122 P. Schmidt and B. Thalheim

4 Development of Clusters and Contracts

We may easily extend the approach to cope with several clusters. In this case
we have to solve two problems at the same time:

◦ coexistence of diagrams within one cluster based on the cluster constraints
and

◦ collaboration of developers that develop diagrams within different clusters.

The result of a collaboration should be a cluster that is commonly agreed between
the agents. Diagrams should be mapped to an ASMPrgrm specification. Any
modification can only be applied to a diagram in the cluster if the contract is
preserved by the ASMPrgrm.

We use an ASMContract for management of deployment of the ASMClstr and
ASMPrgrm specifications based on three services: generating a ASMPrgrm spec-
ification from a ASMClstr, decomposition of classes inside an ASMPrgrm, and
collaboration of two UML diagram clusters.

4.1 Example: Library Support System

We illustrate the approach on the basis of a small example for a library support
system. We shall use this example to demonstrate the power of our approach.

In Figure 1 two UML diagram clusters C1 and C2 are depicted. The first one
uses a use case and a class diagramm. The second one considers a start chart
and a view on the class diagram of the first cluster. The use cases in Figure 1 are
borrow and return a book from the library. The class diagram in the first cluster
C1 uses the classes Book, the Person, Log4BorrowingABook. The statechart
diagram models the different states. In our example one can borrow a book only
if the book is available (isReturned).

Book@Employee

isBorrowed(δτstate
2)isReturned(δτstate

1)
borrow()δτmethod

1

return()δτmethod
2

Book
BookID

Use Cases: Lending of Books

Return Borrow

Log4BorrowingABook δτclass
1

dueDate
borrow()δτmethod

1
return()δτmethod

2

Person
PID

C2

C1

Fig. 1. Two diagram clusters developed for the Library application

Management of UML Clusters 123

The UML clusters developed so far can be transformed into an ASMC1
and

ASMC2
. The transformation depends on the transformation style. For instance,

one transformation style requires that each method of a class is transformed into
a dynamic function. The translation style we used above transforms methods into
domains.

The transformation of UML diagrams to programs or ASM can be based on
translation profiles or styles similar to those developed by diagramming tech-
niques for databases [Tha00]. The transformation result of cluster C1 may be
based on style A:

Signature ofASMProgram, styleA

Log4BorrowingABookID = {1, .., n}
. . .
Method = {borrow, return}
LendingState = {IsBorrowed, IsReturned}
book : Log4BorrowingABookID → BookID
person : Log4BorrowingABookID → PID
dueDate : Log4BorrowingABookID → Date
method_m: Log4BorrowingABookID → String

MainRule

for each o ∈ BorrowedBook do
if method(o) == borrowBook then

Initialize()
...

We may also apply another style style B. It results in the following:

Signature ofASMProgram, styleB

. . .
log4BorrowingABook: Log4BorrowingABookID ×BookID × PID

×DueDate→ Bool

MainRule

for each o ∈ Log4BorrowingABook do...

In the current example style A is used for both clusters since the contract requires
that the style for transformation must be fixed. We get the ASM in Figure 2.

4.2 Collaborative Development and Collaboration Contracts

The collaboration contract ςContractC1,C2
.Coll is based on an equality system EC1,C2 that

relates expressions in C1 to expressions in C2. A simple case of such equality
systems all expressions are basic elements of the cluster. In this case, we may
introduce directed equalities. These equalities propose a preference which of the
notions is going to be used for the integrated cluster C12. At the same time,
we can use inequalities for those basic elements that cannot be related to each
other. The practicality of equality logics for schema integration has already been
shown for database schemata in [Ves05]. It can be enhanced by cooperating views
[FRT05, Tha00] which are used for database collaboration.

124 P. Schmidt and B. Thalheim

Signature ofASMProgram, styleA
aM

student : Log4BorrowBookByStudentID → int
book : Log4BorrowBookByStudentID → int
dueDate : Log4BorrowBookByStudentID → Date

MainRule

foreach o ∈ Log4BorrBookStud do
if method(o) == borrow() then

Initialize()
if method(o) == borrow() then

// Code is generated from the state-chart
if Actor(o) == Student then1

// precondition
if ctl_state(o) == undef ∨ ctl_state(o) == isReturned then2

let o = new (Log4BorrBookStud())3
book(o) = param_book4
Student(o) = param_Student5
Duedate(o) = param_Duedate6
// postcondition
ctl_state(o) := isBorrowed7
ctl_stateIsBorrowed(o) := isNotOD8

if method(o) == return then
if Actor == Student then

// precondition
if ctl_state(o) == isBorrowed then9

return() // postcondition10
ctl_state(o) := isReturned11

if Date > DueDate(o) then
// precondition
if ctl_state(o) == isNotOD then12

ctl_stateIsBorrowed(o) := isOD13

Fig. 2. The ASM specification after generation

The equality system EC1,C2 is now the basis for an extended contract. The
contracts of the clusters C1, C2 can be enhanced by the equality system, the
agreements on enforcement for equalities provided by EC1,C2 and the modifica-
tions that can be applied to C1 or C2. This contract part is called collaboration
contract ςContractC1,C2

.Coll . It defines what each agent in the development process of their
clusters C1, C2 should do.

The collaboration contract can also be represented by a contract of the union
of the two clusters. UML clusters may contain several UML diagrams of the
same kind. Therefore, we can use the same approach for cluster development
and for collaborative development of several clusters. Contracts can directly be
transformed to corresponding rules of the cluster management ASMCluster.

Management of UML Clusters 125

For instance, the condition c ∈ ςContractC1,C2
.Coll

An agent is permitted to modify a cluster as long as the agent changes only those
shared parts in a UML diagram cluster that do not change the input-output-
behavior of any associated ASMPrgrm.
is supported by the following rule for activities of agents a to cluster Ci:

PermissionForModification (a, Ci,old, Ci,new)
if typeOfEvent(event(a)) == Modification ∧

owner(Ci,old) == a ∧ owner(Ci,new) == a
then // Activation

if stateOfEvent(event(a)) == tryToCommitModification ∧
inputState(ASM(Ci,old)) == inputState(ASM(Ci,new)) ∧
outputState(ASM(Ci,old)) == outputState(ASM(Ci,new))

then stateOfEvent(event(a)) := permitted // Execution
if stateOfEvent(event(a)) == permitted // Finalisation
then CommitModification(Ci,old, Ci,new)

stateOfEvent(event(a)) := completed

We use basic functions stateOfEvent(e), typeOfEvent(e) for events, event(a)
for agents, owner(C) for clusters, a number of derived functions such as the
functions inputState(ASM), outputState(ASM), and the transition rules

CommitModification(Cold, Cnew) and Negotiate(a, Cold, Cnew).
The transition rule Change(Cold, Cnew) can only by applied if the permission for
this modification is given to an agent.

At the same time if a shared part is affected by the modification then a
negotiation process must start.

ObligationsImposedByModification (a, Ci,old, Ci,new)
if typeOfEvent(event(a)) == Modification ∧

owner(Ci,old) == a ∧ owner(Ci,new) == a
then // Activation

if stateOfEvent(event(a)) == tryToCommitModification ∧
inputState(ASM(Ci,old)) == inputState(ASM(Ci,new)) ∧
outputState(ASM(Ci,old)) �= outputState(ASM(Ci,new))

then Negotiate(a, Ci,old, Ci,new) // Execution
stateOfEvent(event(a)) := negotiate

if stateOfEvent(event(a)) == negotiate ∧
stateOfNegotiation(a) = completed

then CommitModification(Ci,old, Ci,new) // Finalisation
stateOfEvent(event(a)) := completed

In a similar form we develop sanctions for the case of the violation of a contract.
The most liberal sanction is the delivery of a copy to the agent that has been
inconsistently modifying the cluster. The collaboration with other agents is then
interrupted until the cluster copy is again associated with others by a contract.

We may generalise this approach to contract managers as discussed in Section
3.2. The rules above may be generalised to

PermissionForModification (a, Ci,old, Ci,new, ςContract) and
ObligationsImposedByModification (a, Ci,old, Ci,new, ςContract).

126 P. Schmidt and B. Thalheim

4.3 Support for Change Management

The constraint ECstates(SC,CT)
1 requires that states used in a statechart must be

states of the ruling class. Let us now assume that one agent decides to decompose
a ruling class. For instance, it becomes known that the lending process for a
student is different from that lending process of an employee. Employees can
borrow a book for an unlimited period. The student must return the book at least
by the the deadline. We thus are going to modify cluster C2. People considered
are either students or employees.

Since the class Person is split into two classes the statechart diagram in
C2 is going to be modified. The new classes inherit the attributes of the old
class Log4BorrowingABook . This change is performed according to the rules
for collaboration discussed in Section 4.2 The result is given in Figure 3. Fi-
nally, the statechart diagram is harmonised with the Log4BorrBookEmp and
Log4BorrBookStud classes. The integrated ASMPrgrm

ASMProgram
styleAaM

is obtained as a re-

sult of these operations.
This example shows now that our framework prohibits from developing in-

consistent clusters.

Book
BookID

Use Cases: Lending of Books

Return Borrow

Student
PID

Log4BorrBookStud
dueDate
borrow()
return()

Log4BorrBookEmp
dueDate
borrow()
return()

Employee
PID

Book@Student

isBorrowed

isNotOD isOD
[Duedate > Date]

isReturned
[Actor = Student]/borrow()

return()

Book@Employee

isReturned

isBorrowed

borrow()
return() C2

C1

Fig. 3. Diagram clusters after modification (separation of class BorrowingABook)

5 Conclusion

Software is typically a complex product that has been developed by a team. The
development process is often similar to the work of an artisan. Intermediate prod-
ucts are typically rather informal and may be contradictious. The final product
is a program that has a well-defined semantics. Large software systems can be
simplified tremendously if techniques of modular modelling such as design by

Management of UML Clusters 127

UML diagram clusters are used. Modular modelling is an abstraction technique
based on principles of hiding and encapsulation. Design by UML diagram clus-
ters and its corresponding ASM allows to consider parts of the software systems
in a separate fashion. Software reuse has been considered but never reached the
maturity for application engineering.

It is important to provide a consistent and unambiguous semantics for software
specification within the team context, so that all team members have the same
interpretation of the specification. The fact that UML lacks a precise semantics
is a serious disadvantage of UML-based methodologies.

UML might use semantic variation points [CJ05] for support of intentional
degrees of freedom for interpretation of the metamodel semantics. Semantic vari-
ation points are used for a family of languages sharing commonalities and some
variabilities that one can customize for a given application domain. This UML
approach does, however, neither solve the consistency problem nor the problems
1 to 4.

UML suffers typically from the non-integrated development of different UML
diagram types. Currently some of the diagrams such as use cases and state-
chart diagrams are associated by mappings. These mappings are however not
refinements [BS03] in the sense of the ASM approach, for example, changes in
state-chart diagrams do not result in changes of use case diagrams. Often dia-
grams are not associated at all, see, for instance, the lacking association between
class diagrams and use case diagrams in Figure 1.

This paper contributes to consistency management of clusters of UML dia-
grams. Our solution has a number of advantages:

Faithful coexistence of UML diagrams: As long as we have been choosing
faithful representations of the ASMPrgrm by a number of UML diagrams
we may bind any change of one of the UML diagrams by ASMContract. The
main aim of these contracts is to support consistency among these diagrams.

Contract-based refinement of specifications: Whenever a refinement is
applied to the specification then the refinement is only committed if all con-
tract conditions are satisfied. Otherwise we apply an enforcement method
such as cascading refinement or default refinement/modification to other
parts of the specification, such as rejection of the current refinement or such
as the derivation of obligations for later refinement steps.

Co-evolution of UML diagram clusters: UMLdevelopmentmethodologies
often use a number of diagrams at the same time. Their integrated evolution
has not been satisfactorily solved so far. A solution cannot be envisioned due to
open semantics of UML diagrams. We use ASM specifications as the backing
specification and demonstrate how UML diagrams can co-evolved and coexist.

The main achievement of our approach is consistency management during the
development process. Developers can use the large variety of UML diagrams.
Utilization of such varieties of UML diagrams is often required by industrial
partners at the moment and is thus a convincing argument in favor for UML.

128 P. Schmidt and B. Thalheim

Acknowledgement. We thank Egon Börger and Klaus-Dieter Schewe for their
comments, discussions, and advices.

References

[BCR00a] Börger, E., Cavarra, A., Riccobene, E.: An ASM semantics for UML ac-
tivity diagrams. In: AMAST, pp. 293–308 (2000)

[BCR00b] Börger, E., Cavarra, A., Riccobene, E.: Modeling the dynamics of UML
state machines. In: Abstract State Machines, pp. 223–241 (2000)

[BGS+03] Barnett, M., Grieskamp, W., Schulte, W., Tillmann, N., Veanes, M.: Val-
idating use-cases with the AsmL test tool. In: QSIC, pp. 238–246 (2003)

[Boe76] Boehm, B.W.: Software engineering. IEEE Trans. Computers 25(12),
1226–1241 (1976)

[Bör03] Börger, E.: The ASM refinement method. Formal Aspects of Comput-
ing 15, 237–257 (2003)

[BS03] Börger, E., Stärk, R.: Abstract state machines - A method for high-level
system design and analysis. Springer, Berlin (2003)

[BST02] Bidoit, M., Sannella, D., Tarlecki, A.: Architectural specifications in
CASL. Formal Asp. Comput. 13(3-5), 252–273 (2002)

[CJ05] Chauvel, F., Jézéquel, J.-M.: Code generation from UML models with
semantic variation points. In: Briand, L.C., Williams, C. (eds.) MoDELS
2005. LNCS, vol. 3713, pp. 54–68. Springer, Heidelberg (2005)

[DT01] Düsterhöft, A., Thalheim, B.: Conceptual modeling of internet sites. In:
Kunii, H.S., Jajodia, S., Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224,
pp. 179–192. Springer, Heidelberg (2001)

[EB04] Elaasar, M., Briand, L.: An overview on UML consistency management.
Technical Report SCE-04-018, Ottawa University (2004)

[FRT05] Fiedler, G., Raak, T., Thalheim, B.: Database collaboration instead of
integration. In: APCCM 2005 (2005)

[HKKR05] Hitz, M., Kappel, G., Kapsammer, E., Retschitzegger, W.: UML @ Work,
2nd edn. dpunkt, Heidelberg (2005)

[ISO01] ISO/IEC. 9126-1 (Software engineering - product quality - part 1: Quality
model). ISO/IEC JTC1/SC7 N2519 (2001)

[KN02] Kollingbaum, M., Norman, T.: Supervised interaction - create a web of
trust for contracting agents in electronic environments. In: Proc. of the
First International Joint Conference on Autonomous Agents and Multi-
Agent Systems, pp. 272–279. ACM Press, New York (2002)

[Mal70] Malzew, A.I.: Algebraic systems. Nauka, Moscow (1970)
[Obe01] Ober, I.: An ASM Semantics of UML Derived from the Meta-model and

Incorporating Actions. PhD thesis, Polytechnique de Toulouse (2001)
[pUM07] The precise UML group (2007), http://www.cs.york.ac.uk/puml/
[Rei84] Reichel, H.: Structural induction on partial algebras. Mathematical re-

search, vol. 18. Akademie-Verlag, Berlin (1984)
[SMSJ03] Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using de-

scription logic to maintain consistency between UML models. In: Stevens,
P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340.
Springer, Heidelberg (2003)

[ST93] Schewe, K.-D., Thalheim, B.: Fundamental concepts of object oriented
databases. Acta Cybernetica 11(4), 49–81 (1993)

http://www.cs.york.ac.uk/puml/

Management of UML Clusters 129

[ST99] Schewe, K.-D., Thalheim, B.: Towards a theory of consistency enforce-
ment. Acta informatica 36, 97–141 (1999)

[ST07] Schewe, K.-D., Thalheim, B.: Development of collaboration frameworks
for web information systems. In: IJCAI 2007 (20th Int. Joint Conf on
Artificial Intelligence, Section EMC 2007 (Evolutionary models of collab-
oration), Hyderabad, pp. 27–32 (2007)

[Tha00] Thalheim, B.: Entity-relationship modeling – Foundations of database
technology. Springer, Berlin (2000)

[Tsi00] Tsiolakis, A.: Consistency analysis of UML class and sequence diagrams
using attributed graph grammars. Technical Report 2000/3, Technical
University of Berlin, Computer Science (2000)

[Ves05] Vestenicky, V.: Schema integration as view cooperation. PhD thesis,
Charles University Prague, Computer Science (2005)

A Step towards Merging xUML and CSP ‖ B

Helen Treharne1, Steve Schneider1, Neil Grant2, Neil Evans2, and Wilson Ifill2

1 Department of Computing, University of Surrey
2 AWE, Aldermaston, Reading
H.Treharne@surrey.ac.uk

Abstract. Much research work has been done on linking UML and for-
mal methods but few have focused on using formal methods to check
the integrity of the UML models so that the models can be verified. In
this paper we focus on executable UML and on the issues related to
concurrent state machines. We show that one integrated formal methods
approach, CSP ‖ B, has the potential to be tailored to support reasoning
about concurrent state machines and in turn expose any weaknesses in
the UML model. We identify future avenues of research so that a sys-
tem methodology based on executable UML can be enhanced by formal
reasoning.

1 Introduction

Much research work has been undertaken on examining the relationship between
formal methods and informal notations, ranging from linking formal methods
with object-oriented paradigms, statecharts, control diagrams and the unified
modeling language (UML) [12]. We believe that the research associating formal
methods and UML typically falls into two categories. Firstly, there have been
attempts to provide a formal semantics for UML and its various versions. The
underpinning has either been targeted at the UML meta level or at the level
of the various UML diagrams themselves, mainly class diagrams, sequence di-
agrams, and state diagrams. For example, the B-Method [1] has been used to
provide a formal description of the class meta model [10]. There are many exam-
ples that provide formal representations for one or more of the UML diagrams.
For instance, the recent work of Faitelson et. al [7] focuses on using predicates to
describe the associations in class diagrams and Börger et al. [3,4] have concen-
trated on formalising UML state machines using ASM. The approach presented
in this paper falls into this category.

Secondly, UML has often been used to provide a graphical front end for formal
notations. This is clearly appealing for formal methods researchers wishing to
communicate their ideas in a widely accessible way. For example UML-B [13] uses
UML and the B method as an action and constraint language with the goal of
deriving a B formal specification. However, in this particular approach the UML
notation used does not adhere to UML 2.0 or any accepted subset of it. The
UML-like notation used is often an abuse of the standard UML notation. There
is significant merit in using graphical notations to describe a formal specification

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 130–146, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Step towards Merging xUML and CSP ‖ B 131

because it provides a way of clearly describing the overall architecture and the
key interaction between components, provided it is not projected as providing a
formal underpinning of UML.

There is already a plethora of different approaches attempting to integrate
UML and formal methods but none of them focus on using a formal model to
provide feedback on the corresponding informal model. Our main motivation
is to develop an approach in which the formal representation of a UML model
can be used to verify the integrity of the model and assess whether the model
is capturing desirable behaviour. We have chosen to focus on state machines
and class diagrams and restrict ourselves to using a subset of UML referred to
as Executable UML (xUML) [11] since this is one of the preferred methods of
our industrial collaborators, AWE. The longer term aim of the collaboration is
to merge xUML and formal methods into an integrated systems development
methodology. Currently, an xUML model is validated by review and by running
simulations on its executable model. In order to develop our methodology we
must address issues such as concurrency and sharing of common objects which
are prevalent but informally defined in the xUML semantics. In the paper we
define a precise model representing the underlying concurrency semantics of an
xUML state machine. Furthermore, we believe that the general principles that
emerge from the case study presented are a step forward to addressing the above
issues.

We use CSP ‖ B [16] as the basis for our formal representation. It is an ap-
proach that has been developed to integrate the state-based method B [1] and the
process algebra CSP [9]. The approach has focused on identifying compositional
verification techniques so that a specification can be verified in smaller parts.
We have developed several examples [5,6] which demonstrate the applicability of
our compositional techniques. In this paper we extend the scope of CSP ‖ B and
identify a new style of specification which lends itself as a formal representation
of state machines. Then, by applying the compositional verification techniques
we can reason about the state machines of particular xUML models.

The rest of the paper is structured as follows: Section 2 introduces CSP ‖ B
and the necessary notation to support the case study, Section 3 introduces the
UML subset that we use, Sections 4 and 5 present the case study and its formal
representation, Section 6 summarises the verification of the case study model,
and Section 7 identifies further work that needs to be done in order to con-
tinue to make progress towards integrating CSP ‖ B into a systems development
methodology.

2 Notation

We identify some preliminary notation relevant to CSP ‖ B. A detailed intro-
duction to CSP operators and the traces model is given in [15]. Similarly, [1]
provides details of the B Method. Both CSP and B are supported by industrial
tools: FDR [8] is the model checker for CSP and the B-Toolkit [14] is one of the
tools available to support the B-Method.

132 H. Treharne et al.

Synchronisation/
Machine events

Key:

CSPCSP
processprocess

BB association
machinemachine machine

events read access

Fig. 1. CSP ‖ B architecture

The CSP ‖ B approach can be used to specify a complex system which is made
up of two separate specifications: a number of CSP process descriptions and a
collection of B machines (see Figure 1). Our aim when using CSP‖B is to factor
out “data-rich” aspects of a system into B machines so that the CSP descriptions
focus on control flow and interaction patterns. A machine in B is a specification
construct which encapsulates some variables and provides operations that query
and manipulate those variables. For the purposes of this paper we can think of
the B operations as methods of UML classes. A B operation takes the form PRE
P THEN S END where P is a predicate and S represents the statements that
update the variables. The invariant of a machine captures the constraints on its
variables.

The CSP unit of interaction is an event which processes perform and on
which they may synchronise. Events can be unstructured (such as enter) or
are generally of the form of a channel name and some values that are passed
along that channel. Thus, the occurrence of addToQueue.hs1.stopMonitor can
be understood as passing the values hs1 and stopMonitor along the channel
addToQueue (provided hs1 and stopMonitor are of the appropriate type). The
occurrence of events is atomic. A sequence of events is referred to as a trace.

Processes can be constructed from the following syntax: process c?x !v → P(x)
binds an input value to x and outputs a value v along channel c, and having
accepted x , it will behave as process P(x). The ! is abbreviated with a dot(.)
when appropriate. In order for a CSP process to interact with a B machine c?x !v
can be considered as a special kind of event, one which communicates with the
B Machine. This event corresponds to the B operation x ←− c(v), where the
output value v from the CSP description corresponds to the input parameter of
the operation, and the input value x corresponds to the output of the operation.
The B parameters can be identified as being input or output by matching with
the corresponding ! and ? in the CSP. There is also prefix choice, i : I → P(i)
which provides a choice over the events in the set I as a prefix to the behaviour
of P(i). The external choice, P1 � P2, is initially prepared to behave either as P1
or as P2, with the choice being made on the occurrence of the first event. P(i) is
a process name where i is an expression. We also allow indexed external choice
where �i∈I Pi is an external choice between any finite number of processes.

A Step towards Merging xUML and CSP ‖ B 133

CSP provides a number of parallel composition operators which can be used
to combine processes. In this paper we will use the following:

– the parallel composition operator, P1[| {A} |]P2, executes P1 and P2 concur-
rently, requiring that they synchronise on events in the set A.

– the indexed form of interleaving |||i Pi allows us to construct combinations
of similar processes which act independently.

In this paper we use a let within clause in order to localise some of the CSP
definitions so that the CSP descriptions are more modular.

In Section 6 we use CSP traces refinement to examine various behaviours of
concurrent state machines in an xUML model. In CSP a process Q is a trace
refinement of another process P if all possible sequences of events which Q can
perform are also possible for P . This relationship is written P �T Q . If we
consider P to be a property which determines allowable behaviour, then we can
think of a successful refinement check, i.e. P �T Q , as saying that Q is a safe
model; implicitly no wrong events will be allowed. Conversely, we can also use P
to describe what should not be possible. Then if P �T Q is a check that passes
it means that Q will not exhibit any undesirable behaviour. If the P �T Q is a
check that fails it means that Q is capable of engaging in undesirable behaviour.

The CSP‖B approach supports compositional verification enabling us to fo-
cus on the CSP descriptions and B descriptions in isolation. Theoretical results
in [16] allow us to deduce results about the system as a whole from the individu-
ally verified parts. The benefit of this is that we can apply CSP verification tools
and B tools to appropriate parts of the abstract model without ever having to
consider the model as one large specification during its verification. In this paper
we conduct trace refinement checks on the CSP descriptions in FDR and then
deduce that the result of the check holds for both the CSP and B descriptions.

3 Executable UML Overview

Executable UML (xUML) [11] is a coherent subset of UML that has been devel-
oped so that it is possible to define execution semantics without ambiguity whilst
leaving the possibility for targeting the models of systems to different types of
implementation languages, including C, Ada and VHDL. xUML includes an Ac-
tion Specification Language (ASL) which provides all the necessary conditional
logic and primitive actions to manipulate the UML object model. One of the
benefits of using ASL is the ability to describe a system independently from
its runtime platform. Typically, there are six parts to an xUML model which
describe a system:

1. Use Case Diagrams capture the requirements of the system,
2. Domain Models partition the system into separate parts,
3. Sequence Diagrams define the interfaces of the various domains,
4. Class Diagrams specify the classes in each domain,

134 H. Treharne et al.

myB = this −> R1
entry/ entry/

generate S1: exampleSignal to myB

entry/ entry/
B .state1

B .state2A.state2

A.state1

exampleSignal

Fig. 2. Two state machines

BA

BA

0..1 0..1R1

exampleSignal

Fig. 3. Example Class and Collaboration Diagram

5. Collaboration Diagrams define the class interfaces,
6. State Machines specify the behaviour of each class.

In this paper we focus on class diagrams and state machines. The novelty of our
approach is the ability to analyse a collection of state models within a system
when they are composed concurrently.

3.1 State Machine Overview

Figure 2 illustrates two state machines (without creation and deletion states).
The state machines are related to the two classes in Figure 3. The relationship
R1 represents the association between class A and B . Clearly there is a relation-
ship between diagrams in an xUML model. From Figure 3 we can see that the
association, R1, and the signal, exampleSignal, on the collaboration diagram are
being used in the definition of the state machines in Figure 2.

In general, a state machine comprises a creation transition, a creation state,
any number of intermediate states, signals, a deletion transition, and a deletion
state. Each state can have an entry action which enables the definition of a
sequence of ASL commands. Actions are executed upon receipt of a signal or
as a result of object creation or deletion. In the entry action of A.state2, in
Figure 2, myB is a local variable representing the instance handle associated
with B’s state machine. The first assignment of the entry action assigns a value
to myB . This instance handle can be found by navigating from this through R1
(this -> R1 in the figure), where this refers to the instance handle of the object
associated with A.

The generation of a signal is also defined as part of the entry action. Sig-
nals enable the transition between states. It is possible to send a signal to

A Step towards Merging xUML and CSP ‖ B 135

a specified object using the “generate <<signalId>>: <<signalname>> to
<<instancehandle>>” construct. For example, exampleSignal sends a signal to
myB which we have already shown to be a valid instance handle. If B’s state
machine is in B.state1 and has done its entry action then the processing of the
exampleSignal allows us to move from B.state1 to B.state2.

3.2 Concurrency Models

An xUML model of a system must allow for the most general level of concurrency
that could exist at runtime without which any analysis of the system may not
reveal potentially unexpected behaviour. In xUML three different concurrency
models have been identified [11]: simultaneous operation, interleaved operation,
and sequential operation. In this paper we focus on simultaneous operation be-
cause it is the most general of the models which allows objects to execute their
entry actions concurrently. It means that we can analyse whether the most com-
plex interaction possible within a system should be permitted. Consider a set of
three objects, A, B , and C , each with an associated state machine. Suppose in
A’s state machine a signal is sent to both B and C . The simultaneous operation
model means that the ASL commands in B and C ’s actions could be running at
the same time. Similarly, if A is in the middle of processing its entry action and
sends a signal to B then B can also begin processing its entry action. Thus, A
and B ’s actions are allowed to run at the same time.

In order to provide an accurate representation of the underlying communica-
tion mechanism for processing signals we must consider signals in more depth.

3.3 Modelling Signals

When a signal is generated by an instance then its destination instance is stated
in the ASL statement. The destination instance will process the signal, which
could be another instance in the model or the instance that generated the signal.
The latter is referred to as a self-directed signals and is labelled: “generate
<<signalId>>: <<signalname>> to this”. All signals can carry parameters.

Note that a signal does not interrupt the processing of an entry action by an
instance; this is the case in all three concurrency models identified in Section 3.2.
Rather a signal is queued and processed once that instance is ready. If more than
one signal is received by a particular instance, from instances other than itself,
they are queued and processed in the order in which they are received.

Self-directed signals are queued in a similar way to other signals. However,
they differ because any self-directed signal which is already queued will always
be processed by an instance before any signal from other instances. Once all the
self-directed signals are processed then the state model for a particular instance
will be in a position to deal with any outstanding signals received from other
instances. Without this xUML constraint many more combinations of signal
ordering would exist.

In xUML models (self-directed) timeout signals can also be generated. Time-
out signals do not take precedence over other self-directed signals, and they are

136 H. Treharne et al.

SignalQueues(i) =
let Q(tr1, tr2)=

if (#tr1 + #tr2 ≥ CAPACITY)
then if (tr1 == 〈〉)

then removeFromQueue.i !head(tr2)→ Q(tr1, tail(tr2))
else removeFromQueue.i !head(tr1)→ Q(tail(tr1), tr2)

else
if (tr1 == 〈〉)
then if (tr2== 〈〉) then

addToSelfQueue.i?sig → Q(〈sig〉, 〈〉)
� addToQueue.i?sig → Q(〈〉, 〈sig〉)

else
addToSelfQueue.i?sig → Q(〈sig〉, tr2)
� addToQueue.i?sig → Q(〈〉, tr2 � 〈sig〉)
� removeFromQueue.i !head(tr2)→ Q(〈〉, tail(tr2))

else
addToSelfQueue.i?sig → Q(tr1 � 〈sig〉, tr2)
� addToQueue.i?sig → Q(tr1, tr2 � 〈sig〉)
� removeFromQueue.i !head(tr1)→ Q(tail(tr1), tr2)

within Q(〈〉, 〈〉)
CAPACITY = 2

Fig. 4. Signal Queues for one instance

treated in exactly the same way as signals from other instances. This is important
so that the model does not provide a way of being able to subvert the ordering
of signal communication between instances. The syntax for timeout signals is
slightly different: “generate <<signalId>>:Set Timer(...,this)”.

4 Modelling Signal Queues in CSP

From the above informal description of signal ordering and processing we clearly
need to maintain two queues for each instance: one that processes self-directed
signals (tr1) and another that processes general signals (tr2), as shown in Fig-
ure 4. Both tr1 and tr2 are modelled as sequences in CSP.

Initially, no signals are queued and as a consequence the queueing process,
SignalQueues(i), for an arbitrary instance i initialises both queues to empty
sequences (〈〉). One of the most interesting cases in the evolution of the process
is where the queues are not full and the self-directed signals queue is not empty.
Then the allowable behaviour of an instance i is to accept a further signal, along
either channel addToSelfQueue or addToQueue, and append it to the appropriate
queue (tr1 � 〈sig〉 or tr2 � 〈sig〉 respectively). The notion of adding a signal to a
queue is the formalisation of the ASL “generate SigId: sig to i” construct.
The SignalQueues process also allows the processing of the signal at the head of
the self-directed queue by communicating signal information (head(tr1)) along
the channel removeFromQueue.

A Step towards Merging xUML and CSP ‖ B 137

We can use the removeFromQueue channel for both queues because the con-
ditional branching within the process Q will guarantee that the correct signal
is processed. In Section 5.1, we shall see that a communication along the re-
moveFromQueue channel represents processing a signal and subsequently the
triggering of the entry action of a particular state.

The SignalQueues process is a general representation for processing signals.
The only tailoring needed to apply it to a particular model is to define the
values to be passed along the channels, and those values would be the signal
names referenced in the state machines.

5 Case Study

A heating controller system is made up of two xUML classes, HeatedSpace and
HeatingPeriod, as shown in Figure 5. An instance of HeatedSpace models a room
that is being heated and has two attributes, the current room temperature and
the desired room temperature. The HeatingPeriod represents the concept of an
interval of time and the desired temperature during that time. The system sup-
ports many instances of each class. Each HeatingPeriod instance can be uniquely
identified with a HeatedSpace instance. Each class is associated with a state
machine namely HeatingPeriodStateMachine or HeatedSpaceStateMachine, illus-
trated in Figures 6 and 7 respectively.

The HeatingPeriodStateMachine is described in terms of three states and in-
cludes the notion of a creation state. A deletion state is omitted for reasons of
space. The state machines of the heating period instances toggle between two
states Pending and Current sending signals, startMonitor() and stopMonitor(),
to their associated heated space instances to indicate when the heating period
interval becomes active and inactive.

The HeatedSpaceStateMachine aims to maintain the temperature of the room
at the desired temperature of the heating period. It involves three main states but
many more transitions. The creation and deletion states have been omitted from
the diagram. Therefore, in our system we will assume a statically populated set of
heated space instances. Initially, a heated space instance is in the NotMonitored
state. Upon receipt of a startMonitor() signal it moves into the AboveTemp state
and executes the state’s entry action. It compares the current room temperature
with the desired room temperature and if it is too cold, it generates a self-
directed signal tooCold() and calls an external method, heatOn to turn on the

1 0..*R1

currentTemp
desiredTemp

desiredTemp

HeatedSpace HeatingPeriod

Fig. 5. Classes for Heating System Example

138 H. Treharne et al.

create
entry/

link ...
this.desiredTemp = vv

entry/
Pending

Current
entry/

timeout()

timeout()

theHeatedSpace = this −> R1
generate HP1:stopMonitor() to theHeatedSpace
generate TIM1:Set_Timer(...,this)

generate HP2:startMonitor() to theHeatedSpace
theHeatedSpace = this −> R1

dt = this.desiredTemp
theHeatedSpace.desiredTemp = dt
generate TIM1:Set_Timer(...,this)

Fig. 6. Heating Period State Machine

entry/
NotMonitored

BelowTemp
entry/

if this.currentTemp > this.desiredTemp then

heatOff[]
else
generateTIM2:Set_Timer(...,this)

generate HS2:tooHot() to this

generate TIM2:Set_Timer(...,this)

stopMonitor()

startMonitor()

startMonitor()

timeout()

timeout()

entry/
AboveTemp

if this.currentTemp < this.desiredTemp then
generate HS1:tooCold() to this
heatOn[]

else

startMonitor()

stopMonitor()

stopMonitor()

tooCold()

tooHot()

Fig. 7. Heated Space State Machine

heater, otherwise if it is too hot, it generates a timeout() signal so that it can
re-execute the entry action later on.

The BelowTemp state executes its entry action upon receipt of a tooCold(),
startMonitor() or a timeout() signal. The current room temperature is compared
with the desired room temperature and this time if it is too hot, it generates a
self-directed signal tooHot() and calls an external method, heatOff, to turn off
the heater, otherwise a timer is set and a timeout signal is generated.

5.1 What Shall We Model Formally?

We are interested in examining the inter-relationships between signals and states
and whether there are any ambiguities in the heating system. Therefore, CSP is
used to model an instance’s state machine as a parameterised recursive process
which captures the behaviour of the entry actions and signal interactions.

A Step towards Merging xUML and CSP ‖ B 139

HP Ctrl(hp) =
let HP StartEntry =�v∈NAT setDesiredTemp.hp!v → link .hp?hs → HP StartState

HP StartState = HP PendingEntry
HP PendingEntry =navigateToR1.hp?hs →

addToQueue.hs!stopMonitor →
addToQueue.hp!timeout → HP PendingState

HP PendingState =(removeFromQueue.hp!timeout → HP CurrentEntry)
�

(state.hp!pendingState → HP PendingState)
HP CurrentEntry = navigateToR1.hp?hs →

addToQueue.hs!startMonitor →
getDesiredTemp.hp?dt →
setDesiredTemp.hs!dt →
addToQueue.hp!timeout → HP CurrentState

HP CurrentState = (removeFromQueue.hp!timeout → HP PendingEntry)
�

(state.hp!currentState → HP CurrentState)
within HP StartEntry

Fig. 8. Heating Period Controller

Within the entry actions of these instances the values of their attributes are
queried and modified by using method calls. The calls are modelled in the CSP
but are handled by B components. The B components form part of a formal
representation of an xUML model in order to provide an appropriate model of
attributes and methods.

Modelling a Heating Period State Machine. The HeatingPeriod controller
process, defined in Figure 8, is a parameterised process for a heating period in-
stance. The parameter hp represents the heating period instance handle. Within
the process definition there are two process equations for each state: one entry
process and one state process (HP StartEntry and HP StartState respectively).
Event sequences in HP StartEntry, HP PendingEntry and HP CurrentEntry
are those representing the ASL entry actions. In the HP PendingEntry pro-
cess we note that the event navigate.hp?hs determines which heated space the
hp instance is related to, and this information is stored within a B
component.

A B machine is defined to capture the relationship between instances. In our
example we define a variable R1 in a machine called AssocB and we capture the
relationship identified in Figure 5 in its invariant as follows:

R1 : heatingPeriodInstances → heatedSpaceInstances

where the function corresponds to the multiplicity between a heating period and
a particular heated space. The heatingPeriodInstances and heatedSpaceInstances
variables represent the sets of instances of the HeatingPeriod and HeatedSpace
classes. They are defined in their own respective machines: HeatingPeriodB

140 H. Treharne et al.

and HeatedSpaceB . The navigate operation queries the value of R1
as follows:

hs ←− navigate (hp) =̂
PRE hp ∈ heatingPeriodInstances
THEN

hs := R1 (hp)
END

Once an entry action has been completed we can proceed to an appropriate
state process in which we must be prepared to respond to particular signals. For
example, in the HP PendingState and HP CurrentState processes, the event
removeFromQueue.hp!timeout represents the process performing a timeout sig-
nal. In the HP StartState we proceed immediately to perform events in the
HP PendingEntry process. Typically, in an xUML model we would have to re-
spond to an external stimulus in order to move from the creation state to the
next state. This example has simplified the details related to creation and dele-
tion so that we can concentrate on analysing the complex interactions between
the intermediate states of multiple instances in Section 6.

Notice also that once an instance is in a given state, we use the channel state
to communicate that we are in that particular state. For example, the event
state.hp1!pendingState reports that the first heating period instance, hp1, is in
the Pending state of its state machine. These state events are used in the analysis
in order to track which state a state machine is in currently.

Modelling a Heated Space State Machine. The formalisation of the Heat-
edSpaceStateMachine, represented by the HS Ctrl parameterised process, fol-
lows a similar pattern to that of the HP Ctrl process. Figure 9 contains the
interesting process definitions: HS AboveTempEntry, HS AboveTempState and
HS BelowTempEntry. When the HS AboveTempEntry process evolves its be-
haviour to the HS AboveTempState process the model must be prepared to re-
spond to several different signals. Communications along the removeFromQueue
channel indicate processing a signal. For example, performing the event remove-
FromQueue.hs1!stopMonitor represents the stop monitor signal being processed
by the first heated space instance, hs1, and we will be referring to this event
again in Section 6.

In the process expressions we retrieve the current and desired temperature of
the room, hs , by communicating values along the getCurrentTemp and getDe-
siredTemp channels. These communications relate to B operations which return
the attribute values. The getCurrentTemp operation is defined in the
HeatedSpaceB machine as follows:

currentTemp ←− getCurrentTemp (hs) =̂
PRE hs ∈ heatedSpaceInstances
THEN

currentTemp := currentTempB (hs)
END

A Step towards Merging xUML and CSP ‖ B 141

HS AboveTempEntry =
getCurrentTemp.hs?currentTemp → getDesiredTemp.hs?desiredTemp →
(if (currentTemp < desiredTemp) then

addToSelfQueue.hs!tooCold → heatOn → HS AboveTempState
else

addToQueue.hs!timeout → HS AboveTempState)

HS AboveTempState =
(removeFromQueue.hs!stopMonitor → HS NotMonitoredEntry)
�

(removeFromQueue.hs!tooCold → HS BelowTempEntry)
�

(removeFromQueue.hs!timeout → HS AboveTempEntry)
�

(removeFromQueue.hs!startMonitor → HS AboveTempEntry)
�

(state.hs!aboveTempState → HS AboveTempState)

HS BelowTempEntry =
getCurrentTemp.hs?currentTemp → getDesiredTemp.hs?desiredTemp →
(if (currentTemp > desiredTemp) then

addToSelfQueue.hs!tooHot → heatOff → HS BelowTempState
else

addToQueue.hs!timeout → HS BelowTempState)

Fig. 9. Fragment of Heated Space Controller

The currentTempB variable in the B machine retrieves the attribute value for
a particular instance. The values from the B operations are compared and the
heater is either switched on, represented by performing the heatOn event, or off,
represented by performing the heatOff event.

Modelling Combinations of State Machines. We need to compose the de-
scriptions of all the possible instances together so that we have a simultaneous
concurrent model of the instances of the heating system. Note that each instance
is an independent process but they can communicate with each other via signals.
In Figure 10 we define, using CSP, a collection of independent heating period
instances and a collection of independent heated space instances, and these col-
lections synchronise with the collection of signal queues. The resulting process,
SYSTEM Ctrls , is a partial description of the behaviour of the state machines.
To complete the description we include the B formal model of the instances (in-
cluding their attributes and methods) and their association constraints. This is
illustrated in Figure 11 and in terms of a CSP ‖ B model this would be expressed
as:

SYSTEM Ctrls ‖ HeatedSpaceB ‖ HeatingPeriodB ‖ AssocB

where HeatedSpaceB and HeatingPeriodB are the B encapsulation of the formal
description of the instances of the heating system, and AssocB is a representation
of the associations between the instances.

142 H. Treharne et al.

SYSTEM Ctrls = ((|||
hp∈PERIODS

HP Ctrl(hp)) ||| (|||
hs∈SPACES

HS Ctrl(hs)))

[| {| addToSelfQueue, addToQueue, removeFromQueue |} |]
(|||

i∈union(SPACES ,PERIODS)
SignalQueues(i))

Fig. 10. Full Heating System Description

CSP

Processes

B
MachinesHeatingPeriodB HeatedSpaceBAssocB

|||HP Ctrl(hp) |||HS Ctrl(hs)|||SignalQueues(i)

Fig. 11. Architecture of Heating System

6 Analysis

Our analysis focuses on two kinds of properties. Firstly, we check whether a signal
is possible when the xUML model is in specific concurrent states. It enables us
to highlight any undesirable behaviour within the model. Secondly, we analyse
the integrity of attribute values when the xUML is in specific concurrent states.
It ensures that the system is modifying and accessing its state safely. This is
important if the xUML model allows the use of shared attributes to ensure that
updates are controlled.

We discussed in Section 2 that a property can be shown to be refined by a
model using CSP. Therefore, we demonstrate that the SYSTEM Ctrls process is
a refinement of certain desired properties. We perform the analysis by examining
the controllers in isolation but the theoretical foundations of CSP ‖ B ensure
that the results of the analysis apply to the whole CSP ‖ B specification. Since
the CSP ‖ B specification is a formal model of the xUML state machines and
classes, the analysis in turn provides results about the xUML model itself.

The SIGNAL PROPERTY process captures the first kind of property, and
is defined in Appendix A. It states that a particular signal c should not be pos-
sible when the system is in a particular pair of states a and b. Each refinement
check related to this property is performed twice: once when we consider a single
heating period (hp1) and a single related heated space (hs1) and also when we
consider two heating periods (hp1 and hp2) and a single related heated space
(hs1). We refer to these checks as Single Instance and Multiple Instance checks
respectively. We must carry out these refinement checks on a variety of instanti-
ations which satisfy the association constraints of the class diagram so that we
consider the impact of different instance combinations on the model’s behaviour.

One pair of states in the heating system is (Current,BelowTemp) and
stopMonitor() is a signal within the model. If the signal can be processed from
that pair of states then the system exhibits undesirable behaviour because it
could lead to the heater being switched on and the system not monitoring this.

A Step towards Merging xUML and CSP ‖ B 143

Therefore, we need to verify that this signal is not allowed to be processed by
the heating system when in this particular pair of states using the following:

SIGNAL PROPERTY (hp1.currentState, hs1.belowTempState,
removeFromQueue.hs1.stopMonitor)
T SYSTEM Ctrls

The Single Instance check passes but the Multiple Instance check fails giving rise
to undesirable behaviour. This behaviour occurs because the heating periods hp1
and hp2 overlap. Currently, the xUML model does not explicitly state whether
this should be allowed or not, and therefore the formal analysis has revealed a
potential problem which would need to be addressed in the xUML model.

It will of course be important to perform a suite of checks in a systematic
way based on different combinations of states and signals. Appendix A.1 gives
further examples related to the first property.

An example of the second kind of property, identified above, is that the desired
temperature of an active heating period instance is the same as the desired
temperature of the heated space instance. For example, if the heating period
instance hp1 is related to a heated space instance hs1 and hp1 is active, i.e.
in CurrentState, then the desired temperature of those instances must not
be different. We again used a CSP refinement check to analyse this property
and noted that the system can evolve to a behaviour in which the instance
states are different The reason for this undesirable behaviour was again due to
the behaviour of overlapping heating periods within the model. Each heating
period sets the desired temperature of the heated space by direct assignment of
the attribute of the heated space instance. Therefore, when two heating period
instances make assignments only the most recent one is recorded resulting in a
potential inconsistency of the temperature values.

7 Discussion

The work presented in this paper is exploratory work for an industrial project.
We discussed how to develop a formal model from xUML state machines and
class diagrams based on a running example. Further work is needed in order to
identify general transformation patterns from xUML to CSP ‖ B. Whilst devel-
oping the example we achieved a better understanding of the xUML concurrency
models which were previously undocumented. Our signals queueing model has
formalised how signals are processed and clarifies the fact that timeouts do not
have to be serviced immediately.

The purpose of building the formal model was to be able to conduct rigorous
analysis in order to provide confidence in the consistency of the xUML model
and/or to reveal potential problems. Our analysis of the case study revealed that
the xUML model did not prohibit overlapping heating periods but did not handle
them adequately. Our future work will address how to feed this information back
into the xUML model in a rigorous way.

The formal analysis was based on examining combinations of concurrent states
from the state machines. Clearly identifying these combinations by hand will not

144 H. Treharne et al.

be acceptable in practice and therefore we need to explore how to automate their
creation. We also need to investigate how the required properties of an xUML
model can be automatically generated as CSP processes in order to be used in
CSP refinement checks. Analysing system behaviour from concurrent states is
not possible within the xUML tools available.

In our analysis we relied upon an abstraction of the timing details of the state
machines. The HUGO/RT tool [2] automatically converts timed state machines
into corresponding timed automata which can then be model checked using the
UPPAAL tool. The HUGO/RT tool takes the XMI output from UML editors
as its input. More hierarchical structures are permitted in the state machines
supported by HUGO/RT but the computation being performed within a state
is simplified.

In this paper we have focused on analysing the interactions that exist in a
model. A further benefit of having a formal model is that we may be able to
analyse for missing signals that are required to ensure that the xUML model
is consistent. For example, we may be able to use deadlock freedom checks to
verify that all generated signals are processed. It may also be possible to reason
about possible inconsistencies in the associations of a class diagram.

Acknowledgements. The authors are grateful to AWE for funding this ex-
ploratory work. Thanks also to Ian Wilkie and Chris Raistrick for discussions
on xUML. The reviewers also provided valuable feedback.

References

1. Abrial, J.-R.: The B Book: Assigning Programs to Meanings. CUP, Cambridge
(1996)

2. Knapp, A., Merz, S., Rauh, C.: Model Checking Timed UML State Machines
and Collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS,
vol. 2469, pp. 395–416. Springer, Heidelberg (2002)

3. Börger, E., Cavarra, A., Riccobene, E.: On formalizing UML state machines using
ASM. Information & Software Technology 46(5), 287–292 (2004)

4. Cavarra, A., Riccobene, E., Scandurra, P.: A framework to Simulate UML Models:
Moving from a Semi-formal to a Formal Environment. In: Proceedings of the 2004
ACM Symposium on Applied Computing (SAC), pp. 1519–1523 (2004)

5. Evans, N., Treharne, H.: Investigating a File Transfer Protocol Using CSP and B.
SoSym Journal (2005)

6. Evans, N., Treharne, H., Laleau, R., Frappier, M.: How to Verify Dynamic Prop-
erties of Information Systems. In: 2nd International Conference on Software Engi-
neering and Formal Methods. IEEE, China (2004)

7. Faitelson, D., Welch, J., Davies, J.: From predicates to programs: the semantics of
a method language. In: Proceedings of SBMF 2005. Electronic Notes in Theoretical
Computer Science (2005)

8. Formal Systems (Europe) Ltd.: FDR2 User Manual (2003)
9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)

A Step towards Merging xUML and CSP ‖ B 145

10. Laleau, R., Polack, F.: Coming and going from UML to B: a proposal to support
traceability in rigorous IS development. In: Bert, D., Bowen, J.P., Henson, M.C.,
Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 517–534. Springer,
Heidelberg (2002)

11. Raistrick, C., Francis, P., Wright, J., Carter, C., Wilkie, I.: Model Driven Archi-
tecture with Executable UML. Cambridge University Press, Cambridge (2004)

12. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison-Wesley, Reading (1998)

13. Snook, C., Butler, M.: UML-B: Formal modelling and design aided by UML. ACM
Transactions on Software Engineering and Methodology (2006)

14. Neilson, D., Sorensen, I.H.: The B-Technologies: a system for computer aided pro-
gramming. B-Core (UK) Ltd (1999), http://www.b-core.com

15. Schneider, S.: Concurrent and Real-Time Systems: the CSP Approach. Wiley,
Chichester (1999)

16. Schneider, S., Treharne, H.: CSP Theorems for Communicating B machines. FACS
17(4) (2004)

A Detailed Explanation of the Analysis Performed

SIGNAL PROPERTY (a, b, c) =
(state?x → if (x == a) then SP(a, b, c)

else SIGNAL PROPERTY (a, b, c))
�

(y : (Σ − {| state |})→ SIGNAL PROPERTY (a, b, c))

SP(a, b, c) =
(state?x → if (x == b) then SP1(a, b, c)

else SIGNAL PROPERTY (a, b, c))
�

(y : (Σ − {| state |})→ SIGNAL PROPERTY (a, b, c))

SP1(a, b, c) = y : (Σ − {c})→ SIGNAL PROPERTY (a, b, c)

The process checks that if the first state has been observed, state.a, then it
monitors whether the second state is observed, state.b. If it is observed then the
signal event, represented by c, must not be allowed to occur. In all other cases
any event from the set of all events in the system, Σ, is allowed to be observed
apart from those which simply report the state of the system.

A.1 Analysis of Property 1

In order to carry out a full analysis we identify a combination of states. This is a
Cartesian product of the names of the states in the heating period state machine
and heated space machine (from Figures 6 and 7 respectively):

{Pending, Current} ∗ {NotMonitored, AboveTemp, BelowTemp}

For each particular pair of states, we focus on one of the states and a signal that
is possible for that state, and ask whether it is desirable for a particular signal to

http://www.b-core.com

146 H. Treharne et al.

Table 1. Verifying desirable behaviour of SYSTEM Ctrls

Test Single Instance N states N transitions Multiple Instances N states N transitions
1 PASSED 182 641 PASSED 1,827 9,383
2 PASSED 399 1339 PASSED 11,946 55,617
3 PASSED 727 6,982 PASSED 6,545 32,188
4 PASSED 653 5,642 FAIL 5,304 26,367

be allowed in that pair of states. If it is desirable behaviour then we need to check
that the signal is possible when the model is populated with multiple instances.
Conversely, if it is not desirable behaviour then we need to check that this signal
is not possible when the model is populated with multiple instances. We assess
whether allowing a particular signal is desirable or undesirable behaviour of a
model for each pair of concurrent states.

Table 1 summarises an example set of tests that assess the behaviour of the
heating system model. The tests are split into both Single Instance checks and
Multiple Instance checks. The first pair of tests are related to self-directed signals
whilst the second pair are related to signals to be processed that are generated
by other instances. Tests 1 and 2 are related to testing the tooCold() signal in
the Current state but in different pairs of concurrent states. Test 1 considers
the pair (Current, BelowTemp) and shows that the signal is not possible in
that state. Test 2 considers the pair (Current, AboveTemp) and shows that the
signal is possible in that state. Appropriate refinement checks were applied in
both cases and their success confirms that the model behaves as expected.

Tests 3 and 4 focus on verifying whether the xUML model contains undesir-
able behaviour in relation to processing other signals. They are related to the
stopMonitor() signal in the BelowTemp state but in different pairs of concurrent
states. We have already discussed the results from Test 4 in Section 6. Test 3
considers the pair (Pending, BelowTemp) and allowing the signal in this state
is considered as allowable behaviour. Therefore, the refinement check:

not(SIGNAL PROPERTY (hp1.pendingState, hs1.belowTempState,
removeFromQueue.hs1.stopMonitor)
T SYSTEM Ctrls)

was performed which states that if the model is in the two states then the
stopMonitor() signal is possible because it can be processed when the heating
system is in this pair of concurrent states. Note, it is easier to write the desired
property, captured in the process SIGNAL PROPERTY , in terms of what is
not possible and so we negate the result in order to achieve the result required
for our analysis. Test 3 passes in both sub-tests which means that the xUML
model exhibits the desired behaviour when processing the stopMonitor() signal
in this combination of states. Test 3 also gives us confidence that stopMonitor()
signal is appropriate in other parts of the model.

CoreASM Plug-In Architecture

R. Farahbod1, V. Gervasi2, U. Glässer1, and G. Ma1

1 Computing Science, Simon Fraser University, Burnaby, B.C., Canada
2 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. Abstract State Machines are known for their versatility in
modeling of algorithms, architectures, languages, protocols, and virtu-
ally all kinds of sequential, parallel, and distributed systems. CoreASM
is a novel executable ASM language which emphasizes freedom of exper-
imentation and supports the evolutionary nature of design as a product
of creativity. The CoreASM engine, the heart of the CoreASM tool suite,
is based on an extensible architecture which supports various extensions
through plug-ins. In this paper, we explore the plug-in architecture of
the CoreASM engine and demonstrate its potentials by looking into two
implemented plug-ins.

1 Introduction

CoreASM [1] is a lean, executable specification language together with a support-
ing tool environment for high-level design, experimental validation and formal
verification (where appropriate) of Abstract State Machine (ASM) [2] models.1

The CoreASM language focuses on the early phases of the software design
process, emphasizing freedom of experimentation and the evolutionary nature
of design being a creative activity. It encourages rapid prototyping of abstract
machine models for testing and design space exploration facilitating agile soft-
ware development [3]. By minimizing the need for encoding in mapping the
problem space to a formal model, it allows writing highly abstract and con-
cise specifications—starting with mathematically-oriented, abstract and untyped
models, gradually refining them down to more concrete versions with a degree
of detail and precision as needed.

The CoreASM environment consists of a platform-independent engine for ex-
ecuting the language and a GUI for interactive visualization and control of sim-
ulation runs. The engine comes with a sophisticated and well defined inter-
face, called Control API, thereby enabling future development and integration
of complementary tools, e.g., for symbolic model checking and automated test
generation. The design of CoreASM is novel and the underlying principles are
unprecedented among the existing executable ASM languages [1,4].

The purpose of this paper is to elucidate and illustrate the central role and
the characteristic features of the CoreASM plug-in architecture as the conceptual
foundation of the extensibility framework. The design is streamlined towards

1 CoreASM is an Open Source project and is readily available at www.coreasm.org.

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 147–169, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

148 R. Farahbod et al.

flexible extensibility of the language definition and underlying execution engine.
This aspect deserves special attention, as it has not been addressed in detail in
any of our previous papers [1,5,6].

In principle, there are three basic dimensions being considered for extending
and altering CoreASM by means of plug-ins mechanisms, respectively related
to: (i) data structures, (ii) control structures, and (iii) the execution model.
The possibility of conveniently extending data structures as needed is the most
prominent one, extensively discussed in the theoretical ASM literature, e.g. in
[7,8], where the concept of background refers to an implicitly given part of an
abstract machine state, assuming that it provides whatever standard means are
normally supposed to be available in a given application context [7]:

“A realistic description of algorithms would involve quite a rich back-
ground, including numbers, sets, multisets, maps, sequences, and the
like, since all these things are generally taken to be available when de-
signing algorithms.”

Control structures can be extended with respect to both new syntactic con-
structs that are semantically meaningful and those that do provide syntactic
sugar only (i.e., the semantics of which could also be expressed by means of
in-language transformations). Finally, the need for altering or extending the ex-
ecution model is justified by pragmatic considerations. The execution model
refers to dynamic features of CoreASM, including scheduling policies, exception
handling, and instrumentation of program execution for analytical purposes.

In Section 2 we present the basic components of the CoreASM engine, explore
the execution lifecycle of the engine and its control state model, and discuss the
micro-kernel approach to the design of the engine. In Section 3 we look into
the extensibility mechanism of the engine and introduce the CoreASM Plug-in
Framework, and conclude this section by introducing two recently developed
plug-ins of the engine. Section 4 discusses related work, both in terms of ASM
execution engines and of extensible architectures. Section 5 concludes the paper.

2 CoreASM Architecture

The CoreASM engine consists of four basic modules: Parser, Interpreter, Sched-
uler, and Abstract Storage (Figure 1) [1]. The latter three jointly perform asyn-
chronous execution cycles of the engine to simulate an ASM run. The engine
interacts with the environment through a component, called Control API, that
acts as an interface between the engine and its environment and provides an
API for various operations such as loading a CoreASM specification, starting an
ASM run, or performing a single execution step.

The architecture of the CoreASM engine is partitioned along two dimensions.
The first one identifies the four main modules and their relationships. The sec-
ond dimension distinguishes between what is in the kernel of the system—thus
implicitly defining the extreme bare bones ASM model—and what is instead
provided by plug-ins extending the engine (see Section 3).

CoreASM Plug-In Architecture 149

Fig. 1. Overall Architecture of CoreASM

In the following subsections, we look into the main components of the engine,
explain its control state model, and discuss the microkernel design.

2.1 CoreASM Engine

Inside the engine, the parser, when reading a CoreASM specification, generates
for each individual program an annotated parse tree as input for the interpreter.
Each node of a parse tree potentially has a reference to the plug-in that defines
the corresponding syntax.

The interpreter evaluates programs and rules, possibly calling upon plug-ins to
perform expression evaluation or to interpret certain rules. By traversing a parse
tree, it generates a multiset of update instructions, each of which represents either
an update, or an arbitrary instruction to be processed at a later stage by means
of plug-ins that generate the actual updates2. The interpreter interacts with the
abstract storage to retrieve data from the current state and to incrementally
create the update set that, once it is complete and consistent, will produce the
next state.

The abstract storage maintains a representation of the current state of the
machine that is being simulated. A state is modeled as a map from locations to
values (elements) from a universe Element. Additionally, it provides auxiliary
information on the locations in the current state, such as the range and domain
of functions or the background to which a particular value belongs.

The scheduler orchestrates the individual computation steps of an ASM run.
In a sequential run, upon receiving a STEP command from the Control API, it
invokes the interpreter and then waits for the interpreter to finish the evaluation
of the program. Next, it instructs the abstract storage to aggregate the update
instructions and fire the resulting update set (if consistent). It then notifies the
environment through the Control API of the results.
2 Where no confusion can arise, in the following we use the generic term “updates” to

refer both to actual updates and to update instructions.

150 R. Farahbod et al.

In a partially ordered run [2], the scheduler also controls the concurrent exe-
cution of ASM agents. At the beginning of each computation step, it chooses a
subset of agents which will actively participate in the computation of the next
update set. The scheduler directly interacts with the abstract storage to retrieve
the current set of agents, to assign the current executing agent, and to collect the
update set generated by the interpretation of all the agents’ programs. Updates
are then fired and the environment is notified as in case of the sequential run.

2.2 Engine Life-Cycle

Overall, the process of executing a CoreASM specification on the engine consists
of three macro-steps, each of which includes a number of micro-steps as follows:

1. Initializing the engine (Figure 2)
(a) Initializing the kernel
(b) Loading the plug-ins library catalog
(c) Loading and activating the essential plug-ins (core plug-ins)

2. Loading a CoreASM specification (Figure 3)
(a) Parsing the specification header
(b) Loading further needed plug-ins as declared in the header
(c) Parsing the specification body
(d) Initializing the abstract storage
(e) Setting up the initial state

3. Execution of the specification
(a) Execute a single step
(b) If termination condition not met, repeat from 3a

At the end of the execution of each step, the resulting state is optionally made
available by the abstract storage module for inspection through the Control API.
The termination condition can be set through the user interface of the CoreASM
engine, choosing between a number of possibilities (e.g., a given number of steps
are executed; no updates are generated; the state does not change after a step;
an interrupt signal is sent through the user interface).

Fig. 2. Control State ASM of Initializing CoreASM Engine

CoreASM Plug-In Architecture 151

Fig. 3. Control State ASM of Loading a CoreASM Specification

Figures 2-4 abstractly specify the execution process (described informally at
the beginning of this section) in terms of a variant of control state ASMs [2,
Sect. 2.2.6]:3

Engine Initialization. The execution starts in the Idle state of the Control API
module (Figure 2), waiting for a control command (e.g., init, load, or step) from
the environment, which could be an interactive GUI or a debugger, to start the
corresponding task. Receiving an init command (Figure 2) will change the engine
state to Initializing Kernel. In this state, the engine initializes its kernel, loads
the plug-in catalog, and finally loads the core plug-ins.

Loading Specification. Upon receiving a load command (Figure 3) the engine
will load a new specification. It first parses the specification header to get the
list of plug-ins that must be loaded. The required plug-ins are then loaded and
the rest of the specification is parsed. To prepare the engine for its first step, the
abstract storage is initialized and an initial state is created.

Executing Specification. The control state ASM of Figure 4 (presented in 4 parts
for clarity) models the execution of a single CoreASM step. A step command
triggers the start of a computation step (see Figure 4(a)) and changes the control
state to Starting Step which transfers the control flow to the scheduler.

The scheduler retrieves the current set of agents from the abstract storage and
initializes the selected set of agents to an empty set. If no agent is available to
perform a computation, the step is considered complete; otherwise, the scheduler
(through SelectAgents) chooses a set of agents to execute in the current step.
The scheduler then chooses an agent from this set and changes the state to
Initializing SELF (in the abstract storage, Figure 4(c)) which assigns the chosen
agent as the value of self. After the execution of the agent, the computed updates
are accumulated by the AccumulateUpdates rule and control is moved back to
Choosing Agent until the programs of all the selected agents have been executed.
3 We refer the reader to [4] for the actual ASM rules.

152 R. Farahbod et al.

Scheduler

Step
Failed

Idle

Step
Succeeded

stepCommand Starting Step

NotifyFailure

NotifySuccess

CONTROL API

(a) Control API Module

(b) Scheduler

Control API

Scheduler

Scheduler

Initializing
SELF

Initiating
Execution

Aggregation

Step
Succeeded

consistent(updateSet)

Update
Failed

SetChosenAgent GetChosenProgram

AggregateUpdates

FireUpdateSet

True

False

ABSTRACT STORAGE

(c) Abstract Storage

Scheduler

parent(pos) = undef Program

Execution
Choosing

Next Agent ExecuteTree True

False

INTERPRETER

(d) Interpreter

Fig. 4. Control State ASM of a STEP command

CoreASM Plug-In Architecture 153

The program of the chosen agent is executed in the Program Execution state
of the interpreter (Figure 4(d)). During the execution, computed update in-
structions are accumulated, and when all selected agents have performed their
computation, control moves to the Aggregation state in the abstract storage. In
this phase, the final update set is computed and if found consistent, the resulting
updates are applied to the current state.

If an inconsistent set of updates is generated in a step, the scheduler selects a
different subset of agents and the step is re-initiated. The process is iterated until
a consistent set of updates is generated, in which case the computation proceeds
to the Step Succeeded state of the Control API, or all possible combinations have
been exhausted, in which case the Step Failed state is entered instead.

Depending on the outcome of the previous stage, either the NotifySuccess or
the NotifyFailure rule in the Control API notifies the environment of the success
or failure of the step, and Control API returns to the Idle state awaiting further
commands from the environment (e.g., another STEP command to continue).

2.3 Microkernel Approach

The architecture of CoreASM is partitioned along two dimensions referred to as
modular decomposition and conservative refinement respectively. In particular,
our plug-ins progressively extend in a conservative way the capabilities of the
language accepted by the CoreASM engine, in the same spirit in which successive
layers of the Java [9] and C# [10] languages have been used to structure the
language definition into manageable parts.4

Most of the functionality of the engine is implemented through plug-ins to a
minimal kernel.This kernel contains only the bare essentials, that is, all that is
needed to execute only the most basic ASM:
– the concepts of functions and universes are native to the kernel, as they are

needed to define the state of an ASM;
– universes are represented through their characteristic functions, hence

booleans are also included in the kernel;
– the special value undef is in the kernel;
– an ASM program is defined by a finite number of rules, hence the domain of

rules is included in the kernel as well.

It should be noted that the kernel includes the above mentioned domains, but not
all of the ‘expected’ backgrounds. While, for example, the domain of booleans
(that is, true and false) is in the kernel, boolean algebra (∧, ∨, ¬, etc.) is not,
and is instead provided through a background plug-in. In the same vein, while
universes are represented in the kernel through set characteristic functions, the
background of finite sets is implemented in a plug-in, which provides expression
syntax for defining them, as well as an implicit representation for storing sets in
the abstract state, and implementations of the various set theoretic operations
(e.g., ∈) that work on such an implicit representation.
4 While CoreASM plug-ins can extend the engine through a conservative refinement,

the CoreASM architecture does not restrict the plug-ins to such a refinement.

154 R. Farahbod et al.

The kernel includes only two types of rules: assignment and import. This
particular choice is motivated by the fact that without updates established by
assignments there would be no way of specifying how the state should evolve,
and that import has a special status due to its privileged access to the Reserve.
All other rule forms (e.g., if, choose, forall), as well as sub-machine calls and
macros, are implemented as plug-ins in a standard library, which is implicitly
loaded with each CoreASM specification.

Finally, there is a single scheduling policy implemented in the kernel—the
pseudo-random selection of an arbitrary subset of agents—which is sufficient for
multi-agent ASMs where no assumptions are made on the scheduling policy.

3 Extensibility and Plug-Ins

The term plug-in and the concept behind it is widely used these days. According
to the Merriam-Webster dictionary, the term refers to “a small piece of software
that supplements a larger program.”, whereas the CNET glossary defines it as “a
type of program that tightly integrates with a larger application to add a special
capability to it.”

In fact, plug-in-based architectures can go beyond “supplementing” and
“adding a special capability” to a main program. In contrast to the traditional
plug-in architectures in which plug-ins extend the functionality of a host appli-
cation, in new Pure Plug-in Architectures, like that of the Eclipse Platform5,
almost all the functionalities of the application are provided by plug-ins [11,12].

Plug-in based architectures have three characteristics [12,13] that make them
different from other types of modular architectures (e.g., pluggable
components [14]):

1. Plug-ins are optional to the main application. In other words, the main ap-
plication is independent of the plug-ins, allowing plug-ins to be dynamically
added or updated without changing the main application.

2. Plug-ins are not known at compile-time of the main application; i.e., nothing
about a specific plug-in is hard coded into the main application’s source code.

3. Plug-ins are not stand-alone programs; i.e., in order to function, they have
to be deployed in the environment provided by the main application which
they were designed for.

There are many advantages in adopting a plug-in based architecture. One ad-
vantage, which is also shared to some degree with other modular architectures,
is that the complexity of large systems can be reduced by modularization of the
system into plug-ins. In traditional modular architectures, all modules (compo-
nents) have to be designed and developed to build the system. The main benefit
of having a plug-in based architecture, specifically from a software development
point of view, is that functionality can be developed and added at a later time
— i.e., after the application is shipped or released — without changing or re-
building the whole system. A well-designed architecture also allows third parties
5 See www.eclipse.org

www.eclipse.org

CoreASM Plug-In Architecture 155

to develop new plug-ins that further extend the functionality of the main ap-
plication or customize it for different environments [12,13,15]. This feature is
particularly important for modeling environments, such as CoreASM, that are
built to be used and customized in various application domains.

There are two main requirements that motivates a plug-in based architecture
for CoreASM. The first requirement is the extensibility of the CoreASM language
and state. ASM has been used in various domains, some of which required the
introduction of special rule forms and data structures into ASM. To follow the
same spirit and to preserve this freedom of experimentation that comes with
ASM, the CoreASM language has to be easily extensible by third parties so that
it can naturally fit into different application domains.

The second requirement is to have an extensible CoreASM engine whose be-
havior can be modified by plug-ins and extensions. Such extensibility allows
various modeling tools and environments to closely interact with the engine and
also gives researchers the freedom to experiment with variations to the engine’s
functionality such as scheduling policy or consistency check of updates.

In this section we present the plug-in architecture of CoreASM and exemplify
its capabilities by looking at two standard plug-ins: the Signature Plug-in and
the IO Plug-in.

3.1 CoreASM Plug-In Framework

A CoreASM plug-in is a Java class implementing one or more of the interfaces
defined by the CoreASM extensibility framework (see Table 1). The framework
supports two extension mechanisms: plug-ins can either extend the functionality
of specific components of the engine, by contributing additional data or behavior
to those components, or they can extend the control state ASM of the engine
itself, by interposing their own code in between state transitions.

In the rest of this section we look at various plug-in interfaces and explore the
mechanisms through which they extend the CoreASM engine.

Parser Extensions. Plug-ins can implement the Parser Plug-in interface and/
or the Operator Provider interface to extend the parser by respectively con-
tributing additional grammar rules and/or new operator descriptions. For any
parser plug-in pp, pluginGrammar(pp) holds the set of all the grammar rules
contributed by pp. For any operator provider op, pluginOperators(op) holds the
descriptions (syntax and semantics) of new operators contributed by op.

Before parsing a specification, the engine gathers all the grammar rules and
operator descriptions provided by all parser plug-ins and operator providers. The
parser component then combines these grammar rules and operator tokens with
the kernel grammar and builds a new ‘parser’ to scan the specification. While
building the abstract syntax tree, this parser labels the nodes that are created
by plug-in-provided grammar rules with the plug-in identifier; these labels can
later be used by the interpreter to evaluate such nodes.

Parser plug-ins and operator providers are probed by the LoadSpecPlugins
rule before the engine starts parsing the specification (see Figure 3). This rule

156 R. Farahbod et al.

Table 1. CoreASM Plug-in Interfaces

Plug-in Interface Extends Description
Parser Plug-in Parser provides additional grammar rules

to the parser
Interpreter Plug-in Interpreter provides new semantics to the inter-

preter
Operator Provider Parser, Interpreter provides grammar rules for new op-

erators along with their precedence
levels and semantics

Vocabulary Extender Abstract Storage extends the state with additional
functions, universes, and back-
grounds

Aggregator Abstract Storage aggregates partial updates into ba-
sic updates

Scheduler Plugin Scheduler provides new scheduling policies for
multi-agent ASMs

Extension Point Plugin all components extends the control state model of
the engine

iterates over all the plug-ins required by the loaded specification and after ensur-
ing dependency requirements, loads the plug-ins by calling the LoadPlugin rule
presented below. The latter initializes the plug-in, then loads all the provided
grammar rules and operator descriptions to be processed by the parser in the
next control state.

Control API

LoadPlugin(p) ≡
if p �∈ loadedPlugins then

InitializePlugin(p) seq
add p to loadedPlugins
if isParserPlugin(p) then

add pluginGrammar(p) to grammarRules
if isOperatorProvider(p) then

add pluginOperators(p) to operatorRules

Interpreter Extensions. Plug-ins can extend the interpreter component of the
engine by implementing either the Interpreter Plug-in interface or the Operator
Provider interface (or both). These plug-ins provide the semantics for rules and
operations contributed as per Section 3.1. Traversing the abstract syntax tree,
the ExecuteTree rule of the interpreter (see Figure 4(d)) uses these semantic rules
to evaluate nodes that correspond to the extended grammar rules.

The semantics contributed by a plug-in p which implements the Interpreter
Plug-in interface can be obtained through pluginRule(p). As already mentioned
earlier, nodes of the parse tree corresponding to grammar rules provided by a
plug-in are annotated with the plug-in identifier. If a node is found to refer to a

CoreASM Plug-In Architecture 157

plug-in, the interpreter obtains the semantic rules provided by that plug-in and
executes it; otherwise, the default kernel interpreter rules are used.

The ExecuteTree rule of the interpreter is presented below. In this rule, the
current position in the abstract syntax tree is denoted by the nullary function
pos, and assignment to pos is used to move evaluation to a different node. We
refer the reader to [5,1] for more details on this process.

Interpreter

ExecuteTree ≡
if ¬evaluated(pos) then

if plugin(pos) �= undef then
let R = pluginRule(plugin(pos)) in R

else
KernelInterpreter

else
if parent(pos) �= undef then pos := parent(pos)

A similar approach is also used by the KernelInterpreter rule to obtain seman-
tics of extended operators from Operator Providers. A detailed discussion on
how the engine deals with operators and their extensions is provided in [16].

Abstract Storage Extensions. Vocabulary Extender plug-ins can extend the
vocabulary of the CoreASM state by contributing new backgrounds, universes,
and functions to the abstract storage. Such plug-ins in fact extend the initial state
and signature of the simulated machine. In the abstract storage, the following
functions bind the names of functions and universes in the CoreASM state to
the mathematical objects that represent them. Backgrounds are considered as
special universes and hence are handled by the same mapping.

stateUniverse : State × Name → UniverseElement

stateFunction : State × Name → FunctionElement

The value of these functions is initialized by the InitAbstractStorage rule(see Fig-
ure 3). After creating the default universe and functions (i.e., “Agents”, “program”,
and “self”), this rule iterates over all vocabulary extender plug-ins and extends the
CoreASM state with the vocabulary they provide:

Abstract Storage

InitAbstractStorage ≡
InitializeState
forall p ∈ specPlugins do

if isVocabularyExtender(p) then
forall (bkgName, bkg) ∈ pluginBackgrounds(p) do

stateUniverse(state, bkgName) := bkg
forall (uName, universe) ∈ pluginUniverses(p) do

stateUniverse(state, uName) := universe
forall (fName, f) ∈ pluginFunctions(p) do

stateFunction(state, fName) := f

158 R. Farahbod et al.

Plug-ins can also implement the Aggregator interface and provide aggregation
rules to be applied on update instructions before they are submitted to the
state. The aggregator plug-ins are called to aggregate update instructions by the
AggregateUpdate rule in the Aggregation state of the engine (see Figure 4(c)).
Aggregators are used, for example, to implement partial updates; for more detail
on this issue, we refer the reader to [16].

Scheduler Extensions. Policy plug-ins — also called Scheduler plug-ins —
extend the scheduler of the engine by providing new scheduling policies that
affect the selection of agents in multi-agent ASMs. They provide an extension
to the scheduler that is used to determine at each step the next set of agents
to execute. In practice, a scheduler plug-in provides a concrete implementation
of a choose in the SelectAgents step in Figure 4(b). It is worthwhile to note
that only a single scheduling policy can be in force at any given time, whereas
an arbitrary number of plug-ins of the remaining types can be all in use at the
same time.

Extension Point Plug-ins. In addition to modular extensions of specific com-
ponents, plug-ins can also extend the control state of the engine by registering
themselves for Extension Points. Each mode transition in the execution engine is
associated to an extension point. At any extension point, if there is any plug-in
registered for that point, the code contributed by the plug-in for that transition
is executed before the engine proceeds into the new mode. Such a mechanism
enables arbitrary extensions to the engine’s life-cycle, which facilitates imple-
menting various practically relevant features such as adding debugging support,
adding a C-like preprocessor, or performing statistical analysis of the behavior
of the simulated machine (e.g., coverage analysis or profiling). A plug-in, for ex-
ample, could monitor the updates that are generated by a step before they are
actually applied to the current state of the simulated machine, possibly check-
ing conditions on these updates and thus implementing a kind of watches (i.e.,
displaying updates to certain locations) or watch-points (i.e., suspending exe-
cution of the engine when certain updates are generated), which are useful for
debugging purposes. As an additional example, a plug-in could provide syntax
for declaring assertions and invariants. Assertions have to be checked when the
corresponding node is evaluated, hence the plug-in would also implement the In-
terpreter extension to give semantics to assertions. In contrast, invariants have
to be checked at each step (not when a particular rule is executed), for exam-
ple immediately before applying updates: thus, the plug-in would hook on the
FireUpdateSet extension point to check that the declared invariants really hold
in each state.

As we mentioned earlier, we have used a variant of control state ASMs to
present a high-level specification of the CoreASM engine. A control state ASM
is an ASM whose rules are all of the form presented in Figure 5 (see [2, Section
2.2.6]). Such a control state ASM can be formulated in textual form by a parallel
composition of FSM rules, where FSM is defined as:

CoreASM Plug-In Architecture 159

Fig. 5. Control State ASMs

FSM(i, if cond then rule, j) ≡
if ctl state = i and cond then

rule
ctl state := j

Thus, the control state ASM of Figure 5 can be formulated as a parallel
composition of the following FSM rules:

FSM(i, if cond1 then rule1, j1)
FSM(i, if cond2 then rule2, j2)
. . .
FSM(i, if condn then rulen, jn)

To model the CoreASM engine, we introduce a variation of control state ASMs,
called an Extensible Control State ASM, which is a control state ASM with an
additional (and potentially dynamic) set of extension point plug-ins contributing
supplementary rules that are executed before the machine switches to a new state
(i.e., before ctl state gets a new value).

Rules of extensible control state ASMs, although pictured with the same control
state diagrams as shown in Figure 5, are formulated in textual form by a set of
Extensible Finite State Machine (EFSM) rules, where EFSM is defined as follows:

EFSM

EFSM(i, if cond then rule, j) ≡
if ctl state = i and cond then

rule seq Proceed(i, j)

Proceed(i, j) ≡
forall p ∈ extensionPointPlugins do

marked(p) := isRegistered(p, i, j) // mark the plug-ins registered for this point

seq

iterate
choose p ∈ extensionPointPlugins with marked(p) do

marked(p) := false
let R = extensionRule(p) in

R(i, j)

seq

ctl state := j

An EFSM rule, instead of updating the control state of the machine in parallel
with the execution of the transition rule, first executes the transition rule and

160 R. Farahbod et al.

(a)

(b)

Fig. 6. (a) An Extensible Control State ASM and (b) its extended form

then non-deterministically iterates over all the extension point plug-ins and one
by one executes their extension rules before switching the control state of the
machine to a new state.6

As an example, the extensible control state ASM of Figure 6(a) can be exe-
cuted with a set of extension point plug-ins {p1, p2} contributing rules PRule1
and PRule2 which may extend the machine (during its execution) to the control
state ASM of Figure 6(b).

The Signature and IO plug-ins from the standard CoreASM library, among
others, implement the Extension Point interface to extend the control state ASM
of the engine. We will look into these plug-ins in some detail in Sections 3.2 and
3.3.

Plug-in Service Interface. In many cases, there is a legitimate need for the
environment where the CoreASM engine resides (e.g., the GUI of a simulator or of
a debugger) to interact directly with some plug-ins. To support this interaction,
the CoreASM extensibility framework introduces the concept of a Plug-in Service
Interface through which plug-ins can expose part of their functionality to the
environment of the engine.

The Plug-in Service Interface allows CoreASM plug-ins to define and provide
their own interfaces to the environment. Applications utilizing the engine can
access these interfaces through Control API and directly interact with such plug-
ins. As an example, the IO Plug-in provides its own interface to expose the output
of its print rules to the environment of the engine (see Section 3.3). A GUI for
the engine, for example, can utilize this interface to obtain the printed output
and display it in a console window.

As each plug-in exposes different functionalities, users of the Plug-in Service
Interface have to know in advance what to expect from a specific plug-in, which is
in keeping with the assumption that the environment will access specific services
from a specific plug-in, as in the example above.
6 At this point, we do not assume any order on the execution of plug-in rules and the

non-deterministic choose rule clearly states that in the model.

CoreASM Plug-In Architecture 161

3.2 Signature Plug-In

In principle, CoreASM functions are untyped alike ASM functions. While this is
desirable in initial specification phases focusing on exploring the problem space,
domain and range types of functions often add useful semantic information to a
refined specification, for instance, to improve its understandability, to implement
runtime type checking, and also to facilitate model checking. The Signature plug-
in provides means to declare functions with their associated signatures, thereby
adding type information to CoreASM. Moreover, it also allows to define new
universes and enumerated backgrounds directly in a specification, rather than
introducing them by a separate plug-in.

The Signature plug-in extends the parser, the interpreter and the abstract
storage. Extending the grammar of the CoreASM language with its own syntac-
tic patterns, the Signature plug-in creates new nodes in the AST. These nodes
are not evaluated during the execution of the ASM, since they do not repre-
sent regular rules or expressions; rather they are interpreted before an ASM
run, specifically during the transition from Parsing Spec to Initializing State.
During the initialization of the abstract storage, the engine queries plug-ins
for the vocabulary elements they provide. Hence, the interpretation of Signa-
ture declarations directly modifies the initial state (and vocabulary of the ma-
chine).

Functions. To declare functions, the Signature plug-in extends the CoreASM
language with a syntactic pattern7 with the following form, which can appear in
the header of a specification:

Function Declaration

� function xname : xd1* xd2 * . . . * xdn-> xr � →
CreateFunction(xname, controlled, 〈xd1 , . . . , xdn〉, xr, undef)

There are similar patterns for the definition of static and monitored
functions.

One can also specify the initial value(s) of a function by including an initial-
ization expression at the end of function declaration. The initialization expression

7 The notation we use here has been introduced in [1], and due to space limitation we
cannot fully present it again here. It will suffice to say that the semantics is given
by ASM rules guarded by syntactical patterns; a variable pos indicates the subtree
which is being evaluated, and is used to navigate the syntax tree. Patterns are
delimited by � �→ symbols; inside a pattern, variables named x, e, v indicate that the
corresponding node or subtree is an identifier, an expression, a value. An empty box
indicates an unevaluated node; a boxed letter indicates an unevaluated node which is
expected to result in the corresponding element. Prefix superscripts name locations.
In the ASM rules, each symbol is bound to the corresponding value in the pattern.
Evaluation of ASM rules results in assigning a triple (location,updates,value) to the
evaluated node; this operation is denoted as [[pos]] := (l, u, v).

162 R. Farahbod et al.

may be a basic expression for nullary functions, or a map expression for n-ary
functions. Before the function is added to the state, Signature plug-in uses the
interpreter to evaluate the expression and sets the initial value(s) of the the
function.

Function Declaration with Initialization

� function controlled xname : xd1* . . . * xdn-> xr initially v � →
CreateFunction(xname, controlled, 〈xd1 , . . . , xdn〉, xr, v)

The interpretation of function declaration patterns is defined by the Create-
Function rule. This rule creates a new function element, assign the value of its
function class, its signature, and if an initial value is provided, it also sets the
initial value of the function. Finally, it adds the function to the list of functions
provided by the Signature plug-in.

CreateFunction

CreateFunction(name, functionClass, domain, range, initialValue) ≡
let f = new(FunctionElement) in

fClass(f) := functionClass
let s = new(Signature) in

sigDomain(s) := domain
sigRange(s) := range
signature(f) := s
if initialV alue �= undef then

setFunctionValue(f, domain, initialV alue)
add (name, f) to pluginFunctions(SignatureP lugin)

Universes and Enumerations. To declare universes, the Signature plug-in
extends the CoreASM language with the following declaration forms:

Universe Declaration

�universe xname � → CreateUniverse(xname, {})
�universe xname = {xe1 , . . . , xen} � → CreateUniverse(xname, {xe1 , . . . , xen})

The second pattern above allows the specification writer to declare a uni-
verse along with a set of named initial member elements. Of course, a declared
universe can still be extended using standard methods, namely by using the
extend rule that imports a new element to a universe [2, Table 2.4] or by set-
ting the value of the corresponding universe membership predicate to true for a
given element.

The universe declaration patterns are interpreted by the CreateUniverse rule,
which creates a new universe with the specified name. If initial member elements
are specified, for each member element a static function that refers to the member
is also created. The new universe is added to the list of universes provided by
the Signature plug-in.8

8 In CoreASM specification, state refers to the current state of the engine.

CoreASM Plug-In Architecture 163

CreateUniverse

CreateUniverse(name,members) ≡
let u = new(UniverseElement) in

add (name, u) to pluginUniverses(SignatureP lugin)
forall elementName ∈ members do

let e = new(Element) in
uMember(u, e) := true
let f = new(FunctionElement) in

add (elementName, f) to pluginFunctions(SignatureP lugin)
fClass(f) := static
FSetValue(f, 〈〉, e)

To support declaration of enumerated backgrounds, the Signature plug-in
provides the following declaration form:

Enumeration Declaration

� enum xname = {xe1 , . . . , xen} � → CreateEnumeration(xname, {xe1 , . . . , xen})

The CreateEnumeration rule is similar in spirit to CreateUniverse, as enumer-
able backgrounds are analogous to static universes.

Possible Further Extensions. It is interesting to note that, since the Signa-
ture plug-in internally manages the functions and universes that are defined by
a specification writer, it can provide this information to external components,
such as a GUI, through its Plug-in Service Interface. In a GUI, a user may find
it useful to be able to visually differentiate between functions declared by the
user and those defined by the kernel or by other plug-ins.

As noted earlier, the Signature plug-in could also be extended to implement
runtime type checking of update sets. For each update to a user declared function,
the Signature plug-in would check to see that the update value matches the
specified range type of that function. This check would occur during the engine’s
transition from the Aggregation state to the Step Succeeded state.

3.3 IO Plug-In

In an open system view, the system operates in a given environment. The en-
vironment affects system runs through actions or events and the system can as
well affect the environment by its output. In abstract state machines, the in-
teraction between the system (the machine) and the environment is captured
through monitored (also called in), shared, and out functions. Monitored func-
tions are controlled by the environment and they are read-only for the machine.
They are channels through which the machine observes the environment. In a
given state, the values of all monitored functions are determined [2]. Out func-
tions are updated only by the machine and they are read-only for the environ-
ment. Shared functions are both controlled and read by the machine and the
environment.

164 R. Farahbod et al.

The IO Plug-in utilizes this machine-environment interaction mechanism of
ASM and provides two simple channels of communication between a CoreASM
machine and its environment: a print rule that outputs values to the environ-
ment, and an input function to get values from the environment. In both cases,
textual representations of values are used.

Input and Output. To provide an output channel for CoreASM specifications,
the IO Plugin extends the state of the simulated machine by introducing an
output function (output: StringElement) which in any given step holds the
output of the previous step. Output values are assigned to output by print
rules. Every print rule generates an update instruction to append a given value
to output.

IO Plugin

�printα�
e � → pos := α

�printαv � → let l = (“output”, 〈〉) in
[[pos]] := (undef, {|〈l, v, printAction〉|}, undef)

Conversely, to receive input from the environment the IO Plugin introduces
a monitored function input with the following signature:

input : StringElement → StringElement

For any given value as its argument, this input function queries an input value
from the environment (presenting the argument as a prompt or key to the input
value); this allows the machine to observe more than one input value by mapping
different input values to different arguments.

Extending the Engine. The IO Plug-in implements Parser and Interpreter
extensions to add the ‘print value’ pattern to the language and to provide se-
mantics for it, respectively. The plug-in also extends the CoreASM state with
the new input and output functions; this is obtained by providing a Vocabulary
extension.

All the printAction instructions produced by the print rule need to be ag-
gregated into one single update to the output function. To achieve this, the IO
Plug-in provides an Aggregator extension so that it will be called by the engine
during the aggregation phase at the end of each step (see Figure 4(c)). As an
aggregator, the plug-in combines all the “printed” values into one single value
and produces a single update to the output function.

At any simulated state, the output function holds the output produced in the
last computation step. Thus, if the environment does not capture the output
of the machine in a synchronous fashion, it looses it. In order to avoid loss of
output data, the IO Plugin keeps the history of output values in a data stream
and makes this history available to the environment. The plug-in maintains the
output history by extending the lifecycle of the engine using Extension Points:
namely, it hooks on the extension point prior to Step Succeeded (see Figure 4(c))

CoreASM Plug-In Architecture 165

— which is when all the updates are successfully applied to the state — and
when called at that point, appends the current value of output to the output
history.

We previously mentioned that the input function queries the environment for
input values. This is done through a Plug-in Service Interface. The IO Plug-in
implements its own version of the plug-in service interface and provides an ex-
tension point to the environment through which the environment can, in its turn,
provide input to the IO Plug-in whenever the input function is being evaluated
by the engine. As an example, Carma9 utilizes this plug-in service interface to
open an input dialog window every time the engine evaluates the input func-
tion (for the first time with the given argument in the current step). The input
provided by the user is then assigned as the value of the input function for the
current state of CoreASM.

4 Related Work

The idea of using plug-ins to develop extensible software has been adopted by
many applications such as Mozilla Firefox, Eclipse, Adobe Photoshop, Gimp,
and many others.10 Although the idea has been around for almost two decades,
there are still different interpretations of the concept. In 2002, following the
style of [17], Mayer et al. [12] presented the plug-in concept as a design pattern.
The pattern explains how one can design an application that can be extended
at runtime by dynamically loaded plug-ins. It consists of a plug-in loader and
zero or more plug-in interfaces and implementations. The article also provides a
sample implementation of the pattern in Java.

Today, Eclipse is one of the most popular extensible development environments.
Mostly known as a powerful Java integrated development environment, Eclipse is
in fact a universalplug-in architecture for creating almost anything [11]. The archi-
tecture of Eclipse is an example of pure plug-in architectures. Its runtime engine is
implemented as a number of core plug-ins, and except for a tiny bootstrap loader,
everything else in Eclipse is provided by plug-ins. Eclipse plug-ins not only can ex-
tend the functionality of the kernel, they can also extend other plug-ins. However,
despite the flexibility of the Eclipse framework, the complexity of its API makes it
somewhat difficult for third parties to write even the simplest extension plug-ins.
Nevertheless, many modeling and development frameworks, such as the design-
driven environment Together11 from Borland, have been ported to Eclipse due to
the richness of the framework.

In its latest incarnation, the Eclipse extensibility framework is based on
OSGi12, a dynamic modules systems for Java which, in addition to defining
9 Carma is a command-line user interface for the CoreASM engine. Please visit
www.coreasm.org for more information.

10 See www.firefox.com, www.eclipse.org, www.adobe.com, and www.gimp.org re-
spectively.

11 See www.borland.com/together
12 See www.osgi.org

www.coreasm.org
www.firefox.com
www.eclipse.org
www.adobe.com
www.gimp.org
www.borland.com/together
www.osgi.org

166 R. Farahbod et al.

a plug-in based architecture, provides specifications and services for run-time
reconfiguration of a compliant application. Plug-ins can be added to or removed
from an application without any need to stop it, and a security layer helps ensure
the necessary trust between the various independent components. CoreASM does
not manage security at all, assuming that the plug-ins in its library are trusted,
but has dynamic capabilities as well: in fact, the set of plug-ins active in a certain
run of a specification is entirely described by the specifications itself (via use
directives), and plug-ins are loaded and unloaded at run time as necessary.

Language extensibility is not a new concept [18]. Various programming lan-
guages such as Smalltalk13, Common Lisp14, Python15, Fortress16, XLR17, and
Seed718 all support some form of extensibility from definition of new macros
to introduction of new syntactical structures. However, what we are offering in
CoreASM is the possibility of extending and modifying the syntax and semantics
of the language, keeping only the bare essential parts of the ASM language as
static. To the best of our knowledge, among all these languages only the Seed7
programming language supports the introduction of new syntax and their se-
mantics into the language. In terms of language extensibility, Seed7 goes beyond
CoreASM as it allows new language constructs to be defined using the Seed7
language itself.

Among the various tools for running ASM models [1], Asmeta [19], XASM
(eXtensible ASM) [20], and AsmL (ASM Language) [21] provide some form
of extensibility. Asmeta focuses on defining a metamodel for ASM based on
the Model-Driven Engineering (MDE) [22] guidelines. Since it is a metamodel-
based framework, various tools and applications can be developed utilizing the
already implemented features. AsmetaL (Asmeta Language) is not an extensible
language but it can utilize external Java functions to model static ASM functions.

The XASM language provides an interface to C allowing both C-functions
to be used in XASM programs as well as Xasm modules to be called from
within C-programs. The extensibility is based on the concept of components
and modularity. There is no mechanism to extend the XASM language or the
execution model of its specifications.

AsmL, developed by the Foundations of Software Engineering group at Mi-
crosoft Research, is a strongly typed language based on the concept of ASMs.
Built on the Microsoft .NET framework [23], AsmL incorporates numerous
object-oriented features and constructs of Microsoft .NET for rapid prototyping
of component-oriented software. Although a limited form of extensibility is pro-
vided through interaction with external .NET classes, neither the language nor
the underlying execution model are extensible.

13 www.smalltalk.org
14 www.common-lisp.net
15 www.python.org
16 projectfortress.sun.com
17 xlr.sourceforge.net
18 seed7.sourceforge.net

www.smalltalk.org
www.common-lisp.net
www.python.org
projectfortress.sun.com
xlr.sourceforge.net
seed7.sourceforge.net

CoreASM Plug-In Architecture 167

The design of CoreASM and its extensibility framework is exceptional among
the existing executable ASM languages and modeling environments. Extensibil-
ity of the CoreASM language and its engine facilitates minimizing the need for
encoding in mapping the problem space to a formal model and also support-
ing data operations at the natural level of abstraction of application domains. In
addition, CoreASM plug-ins like JASMine [24] can enrich the language by provid-
ing access to external Java objects and classes from ASM specifications without
polluting the basic ASM computation model.

As more and more plug-ins will be developed for the CoreASM engine, its
plug-in architecture needs to be improved to better handle inconsistencies and
overlapping features and also to support more sophisticated plug-in interactions.
In future work, we will look into utilizing the concepts and ideas of Feature-
Oriented Software Development (FOSD) [25,26], such that every plug-in would
provide a list of features. We believe that this would facilitate the integration of
complementing features and the detection of inconsistent or overlapping ones.

5 Conclusion

We have presented the extensibility architecture of the CoreASM engine through
which both the interpreter and the execution model of the CoreASM language
can be extended by third-party plug-ins.

The extensibility architecture provides a number of specific extension points
for parsing and interpreting CoreASM specifications, and providing syntax and
semantics for new operators and data types with associated static functions (i.e.,
parts of the ASM implicit background with its initial signature). These exten-
sions allow external plug-ins to change the language by adding new rule forms
and operations, thus realizing domain-specific ASM dialects. Such languages have
often been used with indubitable merits in the literature: many published speci-
fications of large systems have introduced background elements or non-standard
rule forms that were well suited to express the intended behavior at the level of
abstraction appropriate in the given domain. By allowing customization of the
CoreASM language along the same lines, we provide the benefits of executable
specifications without renouncing the expressivity of a domain-specific language,
and thus avoid the introduction of a further encoding level which would stand
between the conceptual specification and its executable version.

The extensibility architecture also supports the customization of scheduling
policies for multi-agent or distributed ASM. While most common policies are
provided in a standard library, in certain applications the exact scheduling of
agents is important, and it is much easier to state the expected properties of the
scheduling policy in the given context (and provide a concrete implementation
of a scheduler satisfying those properties) than to re-encode an agent scheduler
as part of the ASM itself.

Finally, the entire life cycle of a CoreASM execution has been specified as a
control-state ASM, and the extensibility architecture provides an homogeneous
extension mechanism for any arbitrary step in the engine. We have defined a

168 R. Farahbod et al.

general EFSM() macro (for Extensible Finite State Machine) which, substituted
for the classical FSM() macro from [2], provides any control-state ASM with the
kind of extensibility we have implemented in the CoreASM engine. A number of
capabilities are provided by such extensions, of which we have provided examples
in the paper.

In summary, the CoreASM extensibility framework provides utmost flexibility
for extending the language definition and the execution engine in order to tailor
it to the particular needs of virtually any conceivable domain-specific application
context—very much the way Abstract State Machines were meant to be used.

Acknowledgments. We would like to thank Mashaal Memon for his contri-
bution to the CoreASM project and for many constructive discussions regarding
the plug-in architecture. Our sincere appreciation to Egon Börger for persistent
encouragement and valuable feedback on the CoreASM project.

References

1. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An Extensible ASM Execution
Engine. Fundamenta Informaticae, 71–103 (2007)

2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

3. Fowler, M.: The New Methodology (April 2003),
http://martinfowler.com/articles/newMethodology.html

4. Farahbod, R., Gervasi, V., Glässer, U.: Design and Specification of the CoreASM
Execution Engine, Part 1: the Kernel. Technical Report SFU-CMPT-TR-2006-09,
Simon Fraser University (May 2006), http://www.coreasm.org

5. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution
engine. In: Proc. of the 12th Int’l Workshop on Abstract State Machines (2005)

6. Farahbod, R., Gervasi, V., Glässer, U., Memon, M.: Design exploration and exper-
imental validation of abstract requirements. In: Proceedings of the 12th Interna-
tional Working Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ 2006), Luxembourg, Grand-Duchy of Luxembourg, Essener In-
formatik Beitrage (June 2006)

7. Blass, A., Gurevich, Y.: Abstract State Machines Capture Parallel Algorithms.
ACM Transactions on Computation Logic 4(4), 578–651 (2003)

8. Blass, A., Gurevich, Y.: Background, Reserve, and Gandy Machines. In: Clote,
P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 1–17. Springer,
Heidelberg (2000)

9. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

10. Börger, E., Fruja, N.G., Gervasi, V., Stärk, R.F.: A High-level Modular Definition
of the Semantics of C#. Theoretical Computer Science 336(2/3), 235–284 (2005)

11. Birsan, D.: On Plug-ins and Extensible Architectures. ACM Queue 3(2), 40–46
(2005)

12. Mayer, J., Melzer, I., Schweiggert, F.: Lightweight plug-in-based application devel-
opment. In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591,
pp. 87–102. Springer, Heidelberg (2003)

http://martinfowler.com/articles/newMethodology.html
http://www.coreasm.org

CoreASM Plug-In Architecture 169

13. Marquardt, K.: Patterns for plug-ins. In: Proceedings of the Fourth European
Conference on Pattern Languages of Programming and Computing, EuroPLoP
1999 (1999)

14. Völter, M.: Pluggable Components — A Pattern for Interactive System Configu-
ration. In: Proceedings of the Fourth European Conference on Pattern Languages
of Programming and Computing (EuroPLoP 1999) (1999)

15. Chatley, R., Eisenbach, S., Magee, J.: Modelling a Framework for Plugins. In: Pro-
ceedings of Specification and verification of component-based systems (September
2003)

16. Memon, M.A.: Specification language design concepts: Aggregation and extensibil-
ity in coreasm. Master’s thesis, Simon Fraser University, Burnaby, Canada (April
2006)

17. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, Reading (1995)

18. Standish, T.A.: Extensibility in programming language design. SIGPLAN
Not. 10(7), 18–21 (1975)

19. Formal Methods laboratory of University of Milan: Asmeta (2006),
http://asmeta.sourceforge.net/ (Last visited June 2008)

20. Anlauff, M.: XASM – An Extensible, Component-Based Abstract State Machines
Language. In: Gurevich, Y., Kutter, P., Odersky, M., Thiele, L. (eds.) ASM 2000.
LNCS, vol. 1912, pp. 69–90. Springer, Heidelberg (2000)

21. Microsoft FSE Group: The Abstract State Machine Language (2003),
http://research.microsoft.com/fse/asml/ (Last visited June 2008)

22. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39 (February 2006)
23. Microsoft Corp.: Microsoft .NET Framework (Last visited December 2006),

http://www.microsoft.com/net

24. Farahbod, R., Gervasi, V.: JASMine: Accessing Java Code from CoreASM. In:
Abrial, J.-R., Glässer, U. (eds.) Börger Festschrift. LNCS, vol. 5115, pp. 170–186.
Springer, Heidelberg (2009)

25. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling stepwise refinement (2003)
26. Apel, S., Lengauer, C., Batory, D., Möller, B., Kästner, C.: An algebra for feature-

oriented software development. Number MIP-0706. University of Passau (2007)

http://asmeta.sourceforge.net/
http://research.microsoft.com/fse/asml/
http://www.microsoft.com/net

JASMine: Accessing Java Code from CoreASM

Vincenzo Gervasi1 and Roozbeh Farahbod2

1 Dipartimento di Informatica
Università di Pisa

Pisa, Italy
2 School of Computing Science

Simon Fraser University
Burnaby, B.C. Canada

Abstract. In this paper we introduce JASMine, a CoreASM plug-in pro-
viding means to access Java objects and classes from inside an ASM
specification. We discuss why this access is desirable, and provide a for-
mal specification of the new rule forms as well as some notes on the
actual implementation. JASMine ensures that the ability to access the
“Java world” does not pollute the mathematical purity of the basic ASM
computation model; differences between the JASMine approach and the
other major research effort in the same direction, namely the way AsmL
interacts with the .NET framework, are also discussed.

1 Introduction

The CoreASM environment [5,6] consists of an open-source, platform-independent
execution engine for the CoreASM language, together with a suite of tools for edit-
ing, testing and proving properties of CoreASM specifications.

The engine comes with a sophisticated and well defined interface, thereby en-
abling development and integration of complementary tools, e.g., for symbolic
model checking [4] and automated test generation [10]. The design of CoreASM
is novel and the underlying principles are unprecedented among the existing
executable ASM languages, including the most advanced ones: AsmL [14], the
ASM Workbench [3], XASM [1], and AsmGofer [15]. In particular, CoreASM
stresses fidelity to the mathematical definition of ASM and extensibility of the
language above other concerns. The syntax and semantics of the CoreASM lan-
guage closely follow those given in [2], thus preserving the mathematical purity
of the language. Yet, the engine supports extensibility mechanisms [9] (through
plug-ins) which make it possible to extend the language by adding new con-
structs in a modular fashion, thus enabling creation of domain-specific dialects
which are more suited to writing specifications for a given domain.

CoreASM provides its own set of plug-ins implementing most common mathe-
matical objects and structures, e.g. numbers, sets, sequences, maps. While these
sorts are usually sufficient for modeling most algorithms and systems, complex
specifications may need more advanced features, not necessarily data-oriented.
For example, an executable specification for a new peer-to-peer protocol may
need access to network sockets and files; a specification that is used as an ex-
ecutable stub for a software module that still has to be implemented or for a

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 170–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

JASMine: Accessing Java Code from CoreASM 171

missing piece of hardware may need to put up an on-screen window showing its
current state; a complex numerical algorithm which is already specified by some
standard may be moved out of a specification and a concrete implementation
written in a standard programming language may be used in its place.

There is thus a clear need to allow interaction between CoreASM specifications
and concrete code, including operating systems functions, external libraries, and
custom code. Among the various tools for running ASM models [8], AsmL (ASM
Language) [14], XASM (eXtensible ASM) [1], and AsmGofer [15] provide some
support for interaction with external programming languages. AsmL, built on the
Microsoft .NET framework [13], incorporates numerous object-oriented features
and constructs of Microsoft .NET and supports interaction with external .NET
classes. The XASM language allows external C-functions to be used in XASM
specifications. However, the arguments and return values of C-functions can only
be of a specific C-type that represents elements of the super-universe in XASM.
Newer versions of XASM support interaction with Java classes but the support
is only limited to invoking Java object constructors. AsmGofer [15], an ASM
interpreter embedded in the functional programming language “Gofer”, supports
the use of functional programming in the definition of types and functions.

This paper sketches a solution based on integrating Java with CoreASM through
a CoreASM plug-in named JASMine. The paper is structured as follows. The next
section presents the most important design choices with their rationale, and pro-
vides the formal semantics for the new ASM rule forms introduced by JASMine.
Section 3 shows in some detail how the JASMine plug-in is implemented. Section 4
presents a simple example of how JASMine can be used in a CoreASM specification
to interact with Java objects; this is followed by some consideration on pragmatic
aspects and directions for future work. Finally, Section 6 presents some conclusions
and examples of relevant applications of JASMine in real-life scenarios.

2 JASMine: Design and Semantics

The Java Class Library provides an extremely rich (and continuously growing)
set of APIs and efficient implementations for almost any computing task. More-
over, Java offers platform-independence, support on a wide variety of architec-
tures, and many modern language features that make it an attractive target for
the integration of ASM specifications with concrete code.

However, there is a marked risk that by intertwining too strictly the “ASM
world” of elements, functions and predicates and the “object world” of an object-
oriented language, the very nature of the ASM paradigm is changed in funda-
mental ways. This is, for example, what happened in AsmL [14], where rules and
methods, elements and objects, sets and the Set object of the .NET framework
become confused.

In contrast, we do not want interaction with Java to pollute the CoreASM
word. In particular,

– we want to maintain typelessness of the language: it must be possible to treat
Java objects as regular ASM values, and to pass untyped ASM elements as
arguments to Java methods (with type checking performed at run time only);

172 V. Gervasi and R. Farahbod

– we want to maintain the parallel model of execution of ASM: the notion of
step must be preserved, as well as the assumption that the ASM state and
environment is observed in a stable snapshot, and updates are applied in
parallel and only when no conflict arise;

– we want to avoid the introduction of extraneous fundamental concepts: the
notions of state, update and step should suffice to describe the computation.

The fundamental choice of preserving — unadulterated — the ASM computation
model sets strong constraints on how JASMine works, which will be described
later in more detail.

Four basic capabilities are needed for a minimal reasonable level of interaction,
namely:

1. Instantiating new objects, invoking their constructors, storing a reference to
the new object in the ASM state.

2. Accessing (reading and writing) public fields of objects, including static fields
of classes.

3. Invoking public methods of objects and static methods of classes, passing
the needed arguments, and storing the result in the ASM state.

4. Converting between certain ASM types and the corresponding Java types
and back, as needed to support expression evaluation and updates.

The mechanisms we propose to provide these capabilities constitute a conserva-
tive extension of CoreASM, in the sense that the semantics of the non-JASMine
parts of a specification are not altered by the extension1.

Notice that the integration that JASMine provides between ASM and Java is
far less complete than the one existing between, for example, AsmL and .NET:
in particular, it is not currently possible to define new Java classes or interfaces
through ASM specifications, nor is it possible to use Java inheritance in CoreASM
specifications. Interfaces and abstract classes cannot be accessed at all.

We do not see these limitations as particularly relevant in practice. In fact,
the design goal of JASMine is to allow interaction between ASM and Java, rather
than full integration, and we believe the JASMine plug-in to serve well in this
capacity.

The following subsections describe in turn the constructs implementing the
four capabilities mentioned above. We will provide here a formal semantics using
the notation introduced in [7]. For brevity’s sake, we do not fully present the
notation again here. It will suffice to say that the semantics is given by ASM
rules guarded by syntactical patterns; a variable pos indicates the subtree which
is being evaluated, and is used to navigate the syntax tree. Patterns are de-
limited by � �→ symbols; inside a pattern, variables named x, l, e, v indicate
that the corresponding subtree shall evaluate, respectively, to an identifier, a
location (i.e., an assignable l-value), an expression, a value (i.e., an evaluated
expression). An empty box indicates an unevaluated node; a boxed letter from

1 In other terms, a specification which does not interact with Java, and thus does not
use the JASMine constructs, has the same semantics whether it includes the JASMine
plug-in or not.

JASMine: Accessing Java Code from CoreASM 173

the set above indicates an unevaluated node which is expected to result in the
corresponding element. Prefixed superscripts (usually in Greek letters) are used
to name positions in the syntax tree. In the ASM rules, each of these symbols is
bound to the corresponding value in the pattern. Evaluation results in assigning
a triple (location,updates,value) to the evaluated node; this operation is denoted
as [[pos]] := (l, u, v). These indications are only meant to support the intuition;
the interested reader should see Section 3.1 of [7] for a precise definition.

2.1 Creation of Java Objects

Java objects in JASMine are seen as part of the environment, not of the state.
This is a fundamental design choice, which differs from what others have done
(e.g., AsmL), and helps in cleanly separating the structures-based state of ASM,
which only changes between steps and through non-conflicting updates, from the
independently evolving state of Java, which can change at any time and also due
to external events (e.g., a timer or GUI actions).

JASMine introduces a new background (hence, a new kind of element in the
ASM state) called JObject which holds a reference to the real Java object. Only
this immutable reference enters the ASM state as a value, and only through a
special update command, hence the basic ASM computation cycle is preserved.
As a consequence, creation of a new object is not considered an expression (as
is the new operator in Java) but rather a rule, since it results in an update.

In formal terms, using the notation described above, creation of a new Java
object is accomplished as follows:

CreationRules

� import native α
�

into β
�
l � → pos := β

� import native αx into β l � → if isJavaClassName(x) then
if hasEmptyConstructor(x) then

EvaluateImport(l, x, 〈〉)
else

Error(‘Constructor not found.’)
else

Error(‘Java class not found.’)

� import native αx(λ1
�
e 1, . . . ,

λn
�
e n) into β�

l � → pos := β

� import native αx(λ1
�
e 1, . . . ,

λn
�
e n) into β l � →

if isJavaClassName(x) then
choose i ∈ [1..n] with ¬evaluated(λi)

pos := λi

ifnone
if hasConstructor(x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)

EvaluateImport(l, x, 〈λ1, . . . , λn〉)
else

Error(‘Constructor not found.’)
else

Error(‘Java class not found.’)

174 V. Gervasi and R. Farahbod

Here, we use the jValue function to abstract from the task of potentially
converting CoreASM elements to Java objects (see Section 2.4). The actual eval-
uation of the import native statement is defined by the following macro, which
takes as parameters a location where to store the reference to the new Java ob-
ject (as a JObject value), an identifier representing the name of the class, and
a sequence of positions of values, which will be the actual parameters for the
constructor call:

EvaluateImport

EvaluateImport(l, x, 〈λi, . . . , λn〉) ≡
let u = DefUpd(CREATE, (l, x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in

let jtl = (“jasmChannel”, 〈〉) in
[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

Notice in the specification above how the execution of the rule does not really
instantiate the new object (whose constructor could have side effects, and thus
alter the Java state), but instead accumulates a special update instruction (a
deferred update) akin to the update instructions used for aggregation and partial
updates [12]. Actual instantiation will be performed at update application time,
as will be shown later on. The designated location (“jasmChannel”, 〈〉) accumu-
lates all the JASMine-related update instructions that are performed during a
step, whereas the DefUpd macro produces an encoding of its parameters, suitable
for later execution of the relevant update.

While the subject will be discussed more fully in the following, it is worthwhile
to remark here that this strategy ensures that any action that can perturb the
environment (e.g., instantiation of a new Java object) will only be taken if the
step turns out to be effective, i.e. if no conflicting updates are generated in that
step.

2.2 Access to Fields of Java Objects

Reading a field in a Java object does not have side effects and thus can be
treated as a pure expression as far as the ASM computation cycle is concerned2.
In particular, the value in the field can be computed immediately at expression
evaluation time. In contrast, writing into a field has observable side effects, and
thus cannot be performed during a step, but only between steps; the correspond-
ing value is then stored in the field at update application time through another
deferred update. The following rules detail the semantics used for field access in
JASMine.

2 In a multi-threaded context, field values can change at any moment, even without any
write action by the ASM specification. To guarantee the stability of the environment,
values read from Java fields are cached by JASMine when first read, and the same
value is used if the same field read expression on the same Java object is evaluated
multiple times in the same step.

JASMine: Accessing Java Code from CoreASM 175

FieldReadExpression

� α�
e ->βx � → pos := α

� αv->βx � → if isJObject(v)
if hasField(jObj(v), x)

if ImplicitConversionMode then
[[pos]] := (undef, undef, asmValue(GetField(jObj(v), x)))

else
[[pos]] := (undef, undef,newJObject(GetField(jObj(v), x)))

else
Error(‘No such field.’)

else
Error(‘Not a Java object.’)

As can be observed, field access expressions are evaluated by first evaluating
the reference to the JObject, and then (after checking that the given value is
actually a JObject and that the corresponding class has an accessible field with
the given name) the value in the field of the Java object is retrieved, possibly
converted to its ASM counterpart based on the configuration of the plug-in (see
Section 2.4), and finally used as the value of the whole expression. Access to
static class fields are handled similarly, and we skip here the corresponding rules
for brevity.3 Assignments are treated through deferred updates:

FieldWriteRule

� store α
�
e into β

�
e ->γx � →

choose λ ∈ {α, β} with ¬evaluated(λ)
pos := λ

ifnone
if isJObject(value(β)) then

if hasField(jObj(value(β)), x) then
let u = DefUpd(STORE, (value(β), x, jValue(value(α))) in

let jtl = (“jasmChannel”, 〈〉) in
[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

else
Error(‘No such field.’)

else
Error(‘Not a Java object.’)

Notice how write access to fields is treated as a partial update to the internal
structure of the JObject element. Before the engine applies the updates to the
state, the JASMine plug-in as the corresponding aggregator will have to check
that no conflicting assignments to the same field of a given JObject element
are performed, and moreover that the JObject as a whole is not updated to

3 Reading a static field of a class that has a static block and is not initialized can
potentially have side effects. Currently, we do not handle this special case and treat
static fields and object fields the same with regard to read access.

176 V. Gervasi and R. Farahbod

a different value in the same step4. Once more, write access to static fields of
classes is very similar and we do not detail it here.

2.3 Invoking Methods of Java Objects

As remarked above, invocation of methods in Java objects can have side effects
which can change both the internal state of the object and of other objects as
well (i.e., by calling other methods or accessing public fields). For this reason,
method invocation is handled through a deferred update, as described below.
Two forms of method invocation exists: one for void methods, which have no
return value, and one for methods returning a value. The simplest version for
void methods invocation is specified as follows:

VoidMethodInvocationRule

� invoke α�
e ->βx(λ1

�
e 1, . . . ,

λn
�
e n) � →

choose λ ∈ {α, λ1, . . . , λn} with ¬evaluated(λ)
pos := λ

ifnone
if isJObject(value(α))

if hasMethod(jObj(value(α)), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)
let u = DefUpd(INVOKE,

(undef, value(α), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in
let jtl = (“jasmChannel”, 〈〉) in

[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)
else

Error(‘No such method.’)
else

Error(‘Not a Java object.’)

The version for non-void methods is only slightly more complex. We provide
a special update instruction (in the vein of add . . . to . . .) so that the actual
method call is only performed if the update set is guaranteed to be consistent
(see section 2.5 for detailed conditions).

This solution may be inconvenient at times. For example, it is not possible to
assign directly the result of a method invocation to a field of the same or of a
different object, as two separate invoke and store instructions are needed, and
in two different steps. In other words, the effect of any rule altering the state
of the “Java world” is only observable in the next step of the machine, which
of course discourages programming in a sequential style: instead, any needed
sequentiality will have to be made explicit, e.g. by using an FSM representation
of the ASM. Also, field updates and method invocations performed in the same
step will be performed — in due time — in an unspecified order, since update
instructions in CoreASM constitute an unordered multiset. This behavior, too,
may surprise the unaware Java programmer at his first approach with ASMs, as
will be discussed in Sections 4 and 5.

4 The same situation is found in other cases, e.g. when both a := {1, 2} and add 3 to a
appear in the same step.

JASMine: Accessing Java Code from CoreASM 177

Nevertheless, we believe that the soundness of the semantics that is given by
the deferred updates approach is worth the inconvenience, and can actually help
even novice specifiers in drawing a clear line between what needs to be specified
and the actual behavior (possibly, over-specified) of the implementation.

Formally, invocation of non-void methods is specified as follows:

NonVoidMethodInvocationRule

� invoke α�
e ->βx(λ1

�
e 1, . . . ,

λn
�
e n) result into γ�

l � →
choose λ ∈ {α, γ, λ1, . . . , λn} with ¬evaluated(λ)

pos := λ
ifnone

if isJObject(value(α))
if hasMethod(jObj(value(α)), x, 〈jValue(value(λ1)), . . . , jValue(value(λn))〉)
if loc(γ) �= undef

let u = DefUpd(INVOKE, (loc(γ), value(α), x,
〈jValue(value(λ1)), . . . , jValue(value(λn))〉)) in

let jtl = (“jasmChannel”, 〈〉) in
[[pos]] := (undef, {|〈jtl, u, jasmAction〉|}, undef)

else
Error(‘Cannot update a non-location.’)

else
Error(‘No such method.’)

else
Error(‘Not a Java object.’)

As for the previous constructs, we do not detail here how static methods on
classes are invoked, as the mechanism is totally analogous.

Due to space constraints, we do not detail also how Java exceptions thrown by
invoked methods are handled. Intuitively, if an exception is returned two updates
are produced, one storing the value of the exception (as an ASM JObject) in
a designated location, and another one storing a different value to the same
location. As a consequence, Java exceptions are mapped in ASM to conflicting
updates, which can be caught via the TurboASM try/catch rule [2,7].

2.4 Type Conversion

JASMine operates in two type conversion modes: implicit conversion and ex-
plicit conversion. In the implicit mode, which is the default mode, JASMine
automatically converts types between CoreASM and Java when needed. This re-
duces the hassle of type conversion and helps in writing more concise CoreASM
specifications. Automatic type conversion, however, has its drawbacks in cer-
tain applications: it converts values even when such a conversion is not needed;
e.g., when returned values of Java methods are to be passed as arguments in
future calls to other Java methods. In the explicit mode, the user is responsible
for explicitly converting values between Java and CoreASM using the provided
CoreASM functions described further below.

JASMine constructs apply type conversion when needed, through the functions
javaValue and asmValue that convert CoreASM values to Java objects and vice
versa. These two functions are defined by cases as summarized in Table 1. In

178 V. Gervasi and R. Farahbod

Table 1. Type conversions between CoreASM and Java

Java type CoreASM background
bool, Boolean Boolean
byte, short, int, long, float, double, Number
Byte, Short, Integer, Long, Float, Double
char, Character currently not supported
String String
Set interface Set
List interface Sequence
Map interface Function (dynamic)
arrays currently not supported
any other object JObject

most of the rules presented in this paper, the jValue function abstracts the details
of type conversion based on the conversion mode.

It is anticipated that in most cases JObjects will be obtained from and passed
to Java methods, and only few objects will be explicitly created in CoreASM
through import native rules. A fuller definition of the conversion operations
is provided in Section 3.2, as these have complex interactions with the facilities
offered by the Java Reflection API, in particular with regard to the duality
between primitive types (e.g., int) and wrapper classes (e.g., Integer) in Java.

Here we will mention that the JObject background offers two functions, toJava :
Element → JObject and fromJava : JObject → Element which perform the
same conversion on arbitrary values. As these conversions do not have any side
effect, they can be performed immediately, and their semantics is trivial:

TypeConversionRules

� toJava(α�
e) � → pos := α

� toJava(αv) � → [[pos]] := (undef, undef, javaValue(v))

� fromJava(α�
e) � → pos := α

� fromJava(αv) � → if isJObject(v)
[[pos]] := (undef, undef, asmValue(jObj(v)))

else
[[pos]] := (undef, undef, uu)

2.5 Aggregation of Deferred Updates

As we have seen, any modification to the “Java world” is performed through
special updated instructions, called deferred updates (but not to be confused
with ASM updates), to ensure a stable state and environment inside a single
ASM step. Three types of deferred updates are used by JASMine: instantiation
(CREATE), field writing (STORE) and method invocation (INVOKE).

Each type of deferred update carries the information necessary for its execu-
tion; in particular, CREATE carries information on the Java class to create and

JASMine: Accessing Java Code from CoreASM 179

on the location of the new ASM element to create; STORE carries information
about the JObject whose field is to be modified, about the name of the field
to modify, and about the new value to be written in the field; INVOKE carries
information about the JObject on which the method has to be invoked, about
the name of the method, and about the (possibly empty) list of arguments to
pass to the method.

The following compatibility conditions must be met for a set of updates to be
considered consistent:

1. No other update is permitted on the ASM location used in a CREATE. Notice
that this includes JASMine deferred updates (i.e., it is not possible to import
twice to the same location) as well as regular updates (i.e., it is not possible to
assign a different value through the assignment operator := or other update
rules to a location used in a CREATE).

2. If multiple STOREs are performed on the same field of the same object, they
must all assign the same value.

3. Any location used to store the result of an INVOKE cannot appear in any
other update.

Notice that this latter condition is sufficient, but not necessary to guarantee
consistency. In fact, we disallow even multiple updates that would write the
same value (which are normally permitted under standard ASM semantics).
The reason for this more restrictive choice is that in general it is impossible to
know which value will be returned by a method call without actually calling the
method, and we want the method to be called only if a consistent set of updates
is generated. Hence, we require a stronger guarantee than what is strictly needed.

If the set of update instructions is consistent, the prescribed operations are
performed in unspecified order. Notice that the first condition above ensures
that newly-created JObjects are not used in the same step, so there is no need
to specify a special ordering with CREATE update instructions performed before
STORE and INVOKE ones.

A common troublesome case is when multiple method invocations are per-
formed: if the particular sequence is order-sensitive, ordering will have to be
specified explicitly by means of seq rules or by using a finite state automaton.
In most cases, though, the specific order will be immaterial (e.g., Point.setX()
and Point.setY()), and in these cases multiple invocations can well be specified
in the same step. We regard this as a desirable feature for a specification: in fact,
the implementer will know that fields can be written and that methods can be
invoked in any order as long as they are specified to happen in a single ASM
step, whereas the ordering between different steps is significant, and should be
respected in the implementation.

3 Implementing JASMine

In its capacity as a bridging technology, JASMine has to interact closely with
both the CoreASM engine and the Java virtual machine. We will discuss these
interactions in the following.

180 V. Gervasi and R. Farahbod

3.1 Interacting with the CoreASM Engine

The CoreASM extensibility architecture [9] dictates that plug-ins extending the
basic CoreASM language have to implement one or more interfaces, depending
on which elements of the language (both syntax and semantics) and of the com-
putation cycle are contributed. In particular, JASMine provides the following
extensions:

– It implements the parser plug-in interface to extend the parser with new
syntax for native import, field read/write, and method invocation. The syn-
tax rules contributed to the language correspond to the syntactical patterns
shown in Section 2.

– It implements the interpreter plug-in interface and contributes the semantics
for the new syntactical patterns. The semantics contributed correspond to
the ASM rules shown in Section 2.

– It implements the vocabulary extender interface to extend the CoreASM state
with the JObject background and the monitored jasmChannel function. In
particular, the two casting function toJava and fromJava are introduced as
part of the JObject background. Moreover, element equality, ordering and
conversion to a String value are forwarded to the Java object represented
by any given JObject value.

– It implements the aggregator interface to provide aggregation rules which
encode all the JASMine update instructions computed in one step into one
single update to the jasmChannel location.

– To actually communicate with the Java virtual machine, the value of jasm-

Channel must be read after every successful step and the actions encoded
therein must be parsed and applied to the corresponding Java objects. To
perform this, the JASMine plug-in extends the lifecycle of the CoreASM en-
gine and reads the value of jasmChannel whenever the control state of the
engine is switched to Step Successful, i.e. whenever a step is completed with
a consistent set of updates; it then executes all the CREATE, STORE and
INVOKE operations stored in jasmChannel.

3.2 Interacting with the JVM

Interaction between JASMine and the Java Virtual Machine is limited to a few,
well-defined operations, and is mostly mediated by the Java Reflection API [16].

The application of updates encoded in jasmChannel entails the following steps:

1. for CREATE updates, the classical Class.forName() method is invoked,
passing a string representation of the imported class name. Once a Class
object for the desired class is obtained, if the nullary version of import
native was used the Class.newInstance() method is invoked to obtain
the instance. Otherwise, Class.getConstructor() is called to retrieve the
corresponding constructor, then the constructor’s newInstance() method
is called, with the given arguments, to obtain the instance. A new JObject
element encapsulating the new instance is then created and assigned to the
ASM location provided in the CREATE record.

JASMine: Accessing Java Code from CoreASM 181

2. for STORE updates, the class of the referenced object is obtained by calling
getClass() on the reference held by the JObject; the Field object is then
retrieved through Class.getField(), and finally Field.set() (or one of
its primitive types variant) is called to assign the value from the STORE
record.

3. for INVOKE updates, the class of the referenced object is obtained as above,
then the matching Method object is retrieved through Class.getMethod()
(notice that in this way only public methods can be retrieved), and finally
Method.invoke() is called, with the appropriate parameters from the IN-
VOKE record. If the method was non-void, the resulting value is then stored
in the ASM location provided in the INVOKE record.

It is worthwhile to remark that fields and methods name resolution is entirely
delegated to the Reflection API, and thus follows the normal resolution algorithm
in Java (see [11], sections 8.2 and 8.4).

Evaluation of field read access is performed immediately upon encountering
the corresponding expression, by first obtaining the Field object as for STORE
updates, then invoking Field.get() (or one of its primitive types variants) to
retrieve the field value, which is then returned as the expression’s value. These
operations constitute the GetField macro used in the semantics (Section 2.2).

The various functions used in sections 2.1 to 2.3 (isJavaClassName, hasEmpty-

Constructor, hasConstructor, hasField, hasMethod) are directly mapped to the
corresponding Reflection API methods. All these predicates are implemented
by trying to access the given class, constructor, field or method and possi-
bly catching the various exceptions (ClassNotFoundException, NoSuchMethod-
Exception, NoSuchFieldException) thrown by the Reflection API methods.

The function jObj returns a reference to the Java object encapsulated by a
JObject.

Finally the conversion functions javaValue and asmValue are implemented by
cases, as summarized in Table 1. In particular, when converting from CoreASM
elements to Java values (javaValue function), Booleans and numbers are simply
converted to the corresponding primitive types in Java (with possible boxing
if a wrapper class is needed); numbers are generally converted to double, then
downcast as needed to fit smaller types. CoreASM’s strings are wrappers around
Java strings, so the conversion is trivial. More complex mathematical structures
(e.g., set or sequences) are generally implemented in CoreASM as wrappers to the
various Java Collections API objects, so in this case also conversion amounts to
unwrapping the underlying object. Any other CoreASM value is upcast to Object
and passed as-is, thus realizing an opaque container for the ASM value from the
point of view of Java code.

Conversion from Java values to CoreASM elements (asmValue function) is sim-
ilar, except that any unrecognized Java object is wrapped in an opaque JObject
from the point of view of ASM code. This allows access to fields and invocation
of methods of objects returned from other Java methods, as in

invoke calendar->getCurrentDate() result into today

followed, in a subsequent step, by

182 V. Gervasi and R. Farahbod

wday := today->weekDay
invoke today->add(7) result into nextWeek

4 A Simple Example

In this section we show a simple example of an ASM using JASMine constructs.
Our example will first instantiate an object from a Java class we have written
(and whose .class file is put on the classpath of the CoreASM engine), and
then invoke two methods on that object. Notice that, despite its simplicity,
this is typical of the expected usage pattern: complicated computations, library
interactions, and especially sequential processing should be confined in Java
code. The CoreASM specification should interact with the “Java world” at high
level, through methods of some semantic significance, leaving the nitty-gritty to
ad-hoc Java code.

The example specification is as follows:
1 CoreASM JASMineExample
2 use StandardPlugins
3 use JASMinePlugin
4 init InitRule
5
6 rule InitRule =
7 if mode = undef then
8 mode := 1
9 import native org.jasmine.example.Foo into foo

10 else if mode = 1 then
11 mode := 2
12 invoke foo->setMsg("How are you?")
13 invoke foo->getTime() result into t
14 endif

Here, line 3 instructs the CoreASM engine to use the JASMine plug-in (in addi-
tion to the standard plug-ins mentioned on line 2), as is customary in CoreASM’s
extensible architecture [9,7].

Then, as mode is not initially defined, lines 8-9 are executed. In particular,
line 9 instantiates an object of the org.jasmine.example.Foo class — more
in detail, it generates a deferred update (assigning a new JObject holding a
reference to the new Java object to the location foo). The first ASM step is now
complete. The set of update instructions generated includes assigning 1 to mode
as well as the following special JASMine update instruction:

〈 (“jasmChannel”, 〈〉),
DefUpd(CREATE, (“foo”, 〈〉), “org.jasmine.example.Foo”, 〈〉),
jasmAction 〉

The JASMine update aggregator is called to handle the special update instruction
above. The aggregator creates a new JObject (call it v) and adds the the current

JASMine: Accessing Java Code from CoreASM 183

update set a new update assigning this JObject to foo. It also saves a reference
to v and defers the instantiation of the Java object org.jasmine.example.Foo
to the end of the computation step.

As there is no inconsistency, the updates are then applied to the state. the
JASMine plug-in comes in again (as an extension point plug-in) and decodes
the value of jasmChannel. Decoding the CREATE action, JASMine instantiates
the new Java object and modifies v so that it refers to this new Java object.

The engine then continues execution in the next step. This time, due to the
new value of mode, lines 11-13 are executed. In addition to setting the value
of mode to 2, deferred updates for the two method invocations are generated,
namely

〈 (“jasmChannel”, 〈〉),
DefUpd(INVOKE, (undef, v, “setMsg”, 〈““How are you?””)〉,
jasmAction 〉

and

〈(“jasmChannel”, 〈〉), DefUpd (INVOKE,((“t”,〈〉),v,“getTime”,〈〉), jasmAction〉

Again, as there is no conflict, updates will be applied and the JASMine plug-
in will execute (in an unspecified order) both method calls. It is worthwhile
to remark here that the arguments (e.g., the "How are you?" string passed to
setMsg() will be converted to the corresponding Java type prior to the call.
Moreover, as result of the aggregation phase an update will be generated assign-
ing the result from the getTime() to the location t. For example, if the current
time is represented by the (Java) integer with value time, the update generated
by the JASMine aggregator will be

〈(“t”, 〈〉), time, updateAction〉

(notice that this is an update instruction encoding a standard ASM update,
and that — as for invocation — the Java integer value is converted to an ASM
number in the process).

After the updates to mode and t are applied to the state, no update is produced
anymore, and the computation is finished.

5 Pragmatics and Future Work

As we have remarked in our previous discussion, we have chosen faithfulness
to the theoretical ASM model as a guiding principle in defining the semantics
of JASMine. However, this choice has important pragmatic implications which
merit to be discussed.

In particular, JASMine presents a stable view of the Java environment to the
ASM. This is required by ASM semantics, but may be inconvenient in practice,
as any action performed on a Java object (e.g., storing a value in a field or

184 V. Gervasi and R. Farahbod

invoking a method) will produce observable effects only in the next step of the
machine: thus, many programming patterns typical of sequential programming
cannot be applied. This is also true in the case of TurboASM rules: hence, the
n-th step in a seq or iterate rule will not observe the effects on the environment
of the previous n − 1 steps, as the corresponding updates are being deferred as
described in Section 2.5. This is due to the impossibility of rolling back the Java
environment to a previous state, which prevents speculative execution of the
inner steps of a TurboASM step (which is what is done instead for the ASM
state). For example, a while cycle like

1 import native java.io.File into file
2 ...
3 while (lastModified <= lastActed)
4 invoke file->lastModified() result into lastModified
5 ...

which could be used to wait for a modification to a file, will not work as expected:
in fact, invocations to lastModified()will be deferred until the end of the step,
hence after the while, probably defeating the programmer’s intention.

In terms of style, one could argue that such behavior should be either encapsu-
lated inside a single Java method waitModification() (to be invoked through
JASMine), or — if the details of how modifications are detected are significant
enough — lifted up to the top level of the ASM specification.

However, another possibility would be to offer alternative semantics. As part
of future work, we intend to specify and implement three other strategies for
managing modifications to the Java environment inside a sub-machine, namely:
(i) immediately executing updates due to field stores and method invocations;
(ii) disallowing field stores and method invocations in sub-machines altogether,
or (iii) caching field stores so that subsequent field reads will return the last spec-
ulatively stored value, disallowing or deferring method invocations. The specifi-
cation writer should be able to declare, in the specification itself, which of the
four semantics is desired. There is no clear winner among these alternative se-
mantics: (i) breaks the stable environment postulate (as does AsmL), whereas
(iii) is not regular, treating field stores and method invocations in different ways,
and (ii) is too restrictive, by imposing sufficient but not necessary conditions on
the specification.

Also as part of future work we intend to complete the support of certain Java
constructs which would have a natural mapping in CoreASM. Among those,
access to Java enumerations as ASM universes and access to static methods
and fields of uninstantiable classes (e.g., the Math class) are immediately useful
candidates. We are also exploring the possibility of a similar integration with
the other major framework, namely Microsoft’s .NET.

6 Conclusions

In this paper we have introduced JASMine, a plug-in for the CoreASM environ-
ment allowing access to Java objects and classes from ASM specifications. The

JASMine: Accessing Java Code from CoreASM 185

extension has been achieved without compromising on the CoreASM project
goals, namely providing an executable ASM language which preserves the pure
ASM semantics, and ensuring freedom of experimentation through typelessness
and extensibility.

We regard JASMine as an enabling technology which opens a number of novel
application areas for CoreASM. Possible applications include:

– CoreASM specifications can be used as drivers for “real” software, e.g. as
part of a test suite, as integration bridges, or mediators between independent
components;

– it is possible to realize automated black-box testing, whereas a specification
(in CoreASM) and a corresponding implementation (in Java) are executed
in step-wise parallel fashion, with the progress of both being checked one
against the other at each step;

– accessing the rich set of graphical UI components available as Java libraries,
it becomes easy to implement GUIs for CoreASM specifications, for example
to have an animated, executable specification in a rapid prototyping scenario;

– a huge collection of high-quality code is available as Java libraries; these
can be used as implementation of very complex functions (e.g., an MPEG4
decoder) for which no specific background plug-in is available in CoreASM;

– in a similar way, uninteresting (but needed) parts of a CoreASM specification
could be directly written in Java, especially when they consist of “standard”
programming code;

– the CoreASM engine itself can be invoked and controlled from Java code
through its Control API: hence, it is possible to build two-ways integration,
whereas a CoreASM can both be called from and call Java code.

We believe JASMine to be both a clear demonstration of the usefulness of and
flexibility afforded by the CoreASM extensible architecture, and a valuable ad-
dition to every specifier’s toolbox, empowering him or her to make recourse to
executable yet pure ASMs in a number of problems hitherto difficult to tackle.

Acknowledgments. We would like to thank Antonio Cisternino for his contri-
bution to an early definition and implementation of the JASMine plug-in, and
Egon Börger for many discussions clarifying some of the more difficult issues
that we faced in the design of the JASMine semantics. We would also like to
thank the anonymous reviewers for their valuable feedback on this paper.

References

1. Anlauff, M.: XASM - an extensible, component-based abstract state machines lan-
guage. In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.) ASM 2000.
LNCS, vol. 1912, pp. 69–90. Springer, Heidelberg (2000)

2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

3. Del Castillo, G.: Towards Comprehensive Tool Support for Abstract State Ma-
chines. In: Hutter, D., Traverso, P. (eds.) FM-Trends 1998. LNCS, vol. 1641, pp.
311–325. Springer, Heidelberg (1999)

186 V. Gervasi and R. Farahbod

4. Del Castillo, G., Winter, K.: Model Checking Support for the ASM High-Level
Language. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 331–346. Springer, Heidelberg (2000)

5. Farahbod, R., et al.: The CoreASM Project, http://www.coreasm.org
6. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution

engine. In: Proc. of the 12th Int’l Workshop on Abstract State Machines (2005)
7. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution

engine. Fundamenta Informaticae 77, (March/April 2007) (to be published)
8. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution

engine. Fundamenta Informaticae, 71–103 (2007)
9. Farahbod, R., Gervasi, V., Glässer, U., Ma, G.: CoreASM plug-in architecture

(2007) (submitted to the same Festschrift volume)
10. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to generate tests from

ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003)

11. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd
edn. Prentice Hall, Englewood Cliffs (2005)

12. Memon, M.A.: Specification language design concepts: Aggregation and extensibil-
ity in coreasm. Master’s thesis, Simon Fraser University, Burnaby, Canada (April
2006)

13. Microsoft Corp. Microsoft. NET Framework, http://www.microsoft.com/net

(Last visited December 2006)
14. Microsoft FSE Group. The Abstract State Machine Language,

http://research.microsoft.com/fse/asml/ (Last visited June 2003)
15. Schmid, J.: Executing ASM Specitications with AsmGofer,

http://www.tydo.de/AsmGofer/ (Last visited September 2005)
16. Sun Microsystems, Inc. The Java 2 Platform Standard Edition 5.0 API Specifica-

tion. Sun Microsystems, Inc. (2004), http://java.sun.com/j2se/1.5.0/docs/api

http://www.coreasm.org
http://www.microsoft.com/net
http://research.microsoft.com/fse/asml/
http://www.tydo.de/AsmGofer/
http://java.sun.com/j2se/1.5.0/docs/api

A Modular Verification Methodology for C# Delegates

Peter Müller and Joseph N. Ruskiewicz

ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch, joseph.ruskiewicz@inf.ethz.ch

Abstract. Function objects are used to express higher-order features in object-
oriented programs. C# provides the delegate construct to simplify the implemen-
tation of function objects. A delegate instance represents a method together with
a target object. Sound reasoning about delegates requires that the precondition of
the underlying method holds whenever a delegate is invoked. This is difficult to
achieve if the method precondition depends on the state of the target object. Prov-
ing such a precondition when the delegate is invoked is in general not possible
because properties of the target object are typically not known at the invocation
site. Proving the precondition when the delegate is instantiated is not sufficient
either because the state of the target might change before the delegate is invoked.
In this paper, we present a verification methodology for C# delegates. Properties
of the target object are expressed as invariant of the delegate. Our methodology
keeps track when this invariant can be assumed to hold. It enables modular veri-
fication of interesting implementations and is proven sound.

1 Introduction

Higher-order features are a common programming idiom. Typical examples include a
generic sort algorithm whose comparison method is passed as parameter, an algorithm
that approximates an integral of a function which is passed as a method reference, and
a GUI that stores references to methods that are called upon certain events.

In object-oriented programs, references to methods are encoded as function objects.
A function object represents a method, possibly with some actual method arguments.
Function objects are often implemented using the Command pattern, whose class dia-
gram is shown in Fig. 1. A function object is an instance of class ConcreteCommand .
As described by Gamma et al. [8], a function object stores exactly one actual argument
of the underlying method, namely its target. The target is fixed when the function object
is created. The function object is invoked by calling its Execute method, which will
call Action on the stored target object.

In C#, the Command pattern is built into the programming language in the form
of delegates [6]. Each delegate type corresponds to a ConcreteCommand class. It
prescribes the signature of the underlying method, but not its name. The name—like
the target object—is determined when the delegate is instantiated.

We illustrate delegates by an implementation of a simple storage system. We use the
delegate Archiver (Fig. 2) to create function objects for the store methods of different
archives. Method Client .Log takes an Archiver instance as parameter and invokes it.
Class TapeDrive (Fig. 3) implements such an archive. The boolean field IsLoaded is

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 187–203, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

188 P. Müller and J.N. Ruskiewicz

Client

Action()

Target ConcreteCommand
Execute()

Command
Execute()

target

target .Action()

Fig. 1. The command pattern

delegate void Archiver(object p)
requires p �= null ∧ IsPeerConsistent(this) ;

class Client {
static void Log(Archiver logFile, string s)
requires logFile �= null ∧ IsPeerConsistent(logFile) ;
requires s �= null ;
{ logFile(s) ; }
}

Fig. 2. A client of the storage system. We explain the annotations along with the presentation
of our methodology.

true if and only if a tape is loaded into the drive. Hence, the Store method requires
IsLoaded to be true , and method Eject sets IsLoaded to false . In method Main
(Fig. 4), Archiver is instantiated with method Store and target tapeDrive .

The invocation of a delegate instance triggers a call of the underlying method on the
stored target object. In our example, the invocation of logfile in method Client .Log
(Fig. 2) triggers a call of tapeDrive.Store . A sound verification methodology has to
ensure that the requires clause of this method holds in the prestate of the call. This is
difficult to achieve if the requires clause of the method depends on the state of the target
object. This verification challenge was pointed out in an earlier paper [10], from which
we took the storage example to show that our methodology can handle it.

The problem is illustrated by method Store , whose second requires clauses refers
to the IsLoaded field of its target. Proving this condition when a delegate instance is
invoked is not possible because properties of the target are typically not known at the in-
vocation site. For instance, method Client .Log does not have any knowledge about the
particular archive used by logFile . In fact, logFile could even represent a static method
such that no target exists. Proving the condition when a delegate is instantiated with
tapeDrive.Store is not sufficient either because the state of tapeDrive might change
before the delegate is invoked. For instance, if method Main called tapeDrive.Eject
before calling Client .Log , the invocation of the delegate would violate Store ’s re-
quires clause, even though the condition held when the delegate was instantiated.

A Modular Verification Methodology for C# Delegates 189

class TapeDrive {
bool IsLoaded ;

void Store (object p)
requires p �= null ∧ IsPeerConsistent(this) ;
requires IsLoaded ;
{ . . . }

void Eject ()
requires IsPeerConsistent(this) ∧ IsLoaded ;
ensures ¬IsLoaded ;
{ expose (this for TapeDrive) { IsLoaded := false ; } }

void ChangeMedia ()
requires IsPeerConsistent(this) ∧ IsLoaded ;
{

expose (this for TapeDrive) {
IsLoaded := false ; / ∗ exchange media ∗ / IsLoaded := true ;
}
}

// Constructors and other methods omitted.
}

Fig. 3. An implementation of a tape archive. expose blocks are used by the Boogie
methodology to denote regions in which an object invariant is potentially violated.

static void Main(string[] args) {
TapeDrive tapeDrive := new TapeDrive() ;
Archiver archiver := new Archiver(tapeDrive.Store) ;
Client .Log(archiver , ”HelloWorld”) ;
}

Fig. 4. Main method for the storage example

In the Command pattern, the desired condition could be expressed as invariant of the
function object; that is, class ConcreteCommand could declare the object invariant
target �= null ∧ target .IsLoaded . This invariant is strong enough to guarantee that
Store ’s requires clause is satisfied whenever the function object is invoked. However,
modular reasoning about invariants that depend on the state of several objects (here, the
function object and its target) is difficult, and existing solutions are not suitable for func-
tion objects. Ownership-based invariants [11,13] would require the function object to
own the target object. This means that the target could be modified only through a sin-
gle function object, which is clearly too restrictive. Solutions based on visibility-based
invariants [13] lead to complicated proof obligations that essentially quantify over all
instances of a delegate type, which are difficult to verify. Solutions based on friendship
invariants [3] introduce a ghost state in each target object to keep track of function ob-
jects attached to it. This ghost state is used to impose the appropriate proof obligations

190 P. Müller and J.N. Ruskiewicz

about invariants of function objects whenever the state of the target is changed. Handling
the ghost state leads to significant specification and verification overhead.

In this paper, we present a modular verification methodology for C# 1.0 delegates
using delegate invariants. Our methodology is based on the Boogie methodology for
object invariants [11] and can be adopted by the Spec# programming system [2]. It
exploits the syntactic structure of delegates to generate simple proof obligations while
keeping the annotation burden small. In particular, our methodology does not introduce
any overhead for programs that do not use delegates, and very little overhead for the
common applications of delegates.

Overview. This paper is organized as follows. Sec. 2 summarizes those parts of the
Boogie methodology for object invariants that are used in the rest of the paper. Sec. 3
explains our methodology informally. The technical details including a soundness result
are presented in Sec. 4. We review related work in Sec. 5 and offer conclusions in Sec. 6.

2 Background on Boogie Methodology

In this section, we summarize those parts of the Boogie methodology for object invari-
ants [1] that are needed in the rest of this paper. The motivation for the design and the
technical details are presented in an earlier paper [11].

Meaning of Invariants. To handle temporary violations of object invariants, the Boo-
gie methodology introduces for every object the concrete field inv that represents ex-
plicitly whether the object invariant is required to hold. The inv field ranges over class
names. If o.inv <: T for an object o of type T (where <: denotes the reflexive sub-
type relation), then o ’s invariants declared in class T and its superclasses must hold
and we say o is valid for T . If o is not valid for T then the invariant of o declared in
T is allowed to be temporarily violated and we say o is mutable for T . We say o is
fully valid if it is valid for its dynamic type: o.inv = typeof(o) .

The inv field is modified only by a special block statement: expose (o forT) { S } .
Before executing the statement S , object o is exposed, that is, o.inv is set to T ’s su-
perclass. After the execution of S , o is un-exposed by checking that the object invariant
declared in class T holds for o and then setting o.inv back to T .

Since the update of a field o.f potentially breaks the invariant of o , o.f is allowed
to be assigned to only at times when o is mutable for the class F that declares f . To
enforce this policy, each update of o.f is guarded by an assertion ¬o.inv <: F . The
assertions for field updates and expose statements ensure that throughout the program
execution the following program invariant holds:

P1: (∀ o,T • o.inv <: T ⇒ InvT (o))

where InvT (o) expresses that the invariant declared in class T holds for object o . The
quantification ranges over non-null allocated objects.

Aggregate Objects. The Boogie methodology uses ownership to handle invariants of
aggregate objects, that is, an aggregate object is the owner of its component objects.
Updating a field of a component object potentially affects the invariant of the aggregate

A Modular Verification Methodology for C# Delegates 191

object. Therefore, the Boogie methodology enforces that the aggregate object is mutable
whenever one of its component objects is mutable.

The Boogie methodology encodes ownership by adding a field owner to each object.
This field ranges over pairs 〈obj , typ〉 , where obj is the owner object and typ is a
superclass of the dynamic type of obj at which the ownership is established. Like inv ,
owner cannot directly be assigned to. The owner of an object is set when the object is
created. Because it would be a distraction in this paper, we omit the program statement
for changing the owner field (but see [11]).
The relation between the validity of an aggregate object and its components is expressed
by the following program invariant:

P2: (∀ o,T • o.inv <: T ⇒ (∀ p • p.owner = 〈o,T 〉 ⇒ p.inv = typeof(p)))

We say that two objects are peers if they have the same owner. A method m typically
requires its target and all of its peers to be fully valid, which allows m to call methods
with the same requires clause on these objects. Moreover, m typically requires the
owner of its target to be sufficiently exposed, that is, the owner object is mutable for
the owner type. This allows m to expose its target. An object o that satisfies these two
requirements, is called peer-consistent. In specifications, peer-consistency of an object
o is expressed by the following predicate:

IsPeerConsistent(o) ≡ (∀ p • p.owner = o.owner ⇒ p.inv = typeof(p)) ∧
(o.owner .obj �= null ⇒ ¬o.owner .obj .inv <: o.owner .typ)

By the program invariants of the Boogie methodology, peer-consistency of an object o
implies that the invariants of o , o ’s peers, and all objects owned by these objects are
fully valid.

Static Verification. The proof rules of the Boogie methodology are formulated as as-
sertions, which cause the program execution to abort if evaluated to false . For static
verification, each assertion is turned into a proof obligation, which is proved using an
appropriate program logic. As justified by earlier work [11], one may assume the pro-
gram invariants for this proof. All of the proof obligations can be generated and shown
modularly. That is, a class C can be verified based on the specifications of the classes
used by C , but without knowing the complete program in which C will be used.

3 Main Concepts

In this section, we present our verification methodology informally. Our presentation
will focus on single cast delegates, that is, delegates with exactly one underlying method
and target. C# also provides for multicast delegates whose invocation triggers calls to
several methods and targets. An extension of our methodology to multicast delegates
follows directly from single cast delegates.

3.1 Delegate Specifications and Refinement

In the Command pattern (Fig. 1), invocations of function objects are verified using the
specifications of method Execute . Since Execute simply calls target .Action , the re-
quires clause of Execute must be strong enough to guarantee Action ’s requires clause,

192 P. Müller and J.N. Ruskiewicz

and the converse holds for ensures clauses. In other words, the specification of Action
must refine the specification of Execute .

To adapt this approach to delegates, we associate each delegate declaration with
a specification similar to method specifications. In this paper, we focus on requires
and ensures clauses for delegates and assume that frame conditions are encoded in the
ensures clause. When a delegate D is instantiated with a method o.m , one has to prove
that m ’s specification (with o for this) refines D ’s specification. More precisely, one
has to prove that D ’s requires clause is stronger than m ’s and that D ’s ensures clause is
weaker than m ’s when D ’s requires clause holds. At the invocation site of the delegate,
it suffices to prove that the requires clause of D holds, which implies that the weaker
requires clause of m holds as well. Conversely, one may assume D ’s ensures clause
after the invocation.

As explained in Sec. 2, most methods in the Boogie methodology require their target
to be peer-consistent. To support this idiom, we arrange for delegate instances and their
target objects to be peers. Therefore, we may assume that the target is peer-consistent
whenever the delegate instance is peer-consistent. The peer relationship between a del-
egate instance d and its target o is established when d is created and maintained
afterwards. Therefore, the following program invariant holds in all execution states.

P3: (∀ o, d • d .target = o ∧ d .inv = typeof(d) ⇒ d .owner = o.owner)

The refinement of specifications is illustrated by the instantiation of delegate Archiver
(Fig. 2) with tapeDrive.Store in method Main (Fig. 4). We ignore for the moment
the second requires clause of method Store (Fig. 3), which will be discussed in the
next subsection. Archiver ’s requires clause implies Store ’s first requires clause be-
cause (1) the first conjunct, p �= null , appears in both requires clauses, and (2) because
of program invariant P3, the target is peer-consistent whenever the delegate instance
is peer-consistent. The default ensures clause, true , of Store trivially implies the de-
fault ensures clause of Archiver . Still ignoring Store ’s second requires clause, Store ’s
specification refines the specification of Archiver , which allows us to verify the dele-
gate instantiation in method Main . When the delegate is invoked in method Client .Log
(Fig. 2), we have to prove that the requires clause of the delegate is satisfied, which fol-
lows trivially from the requires clause of Client .Log .

Equipping delegates with requires and ensures clauses, and checking a refinement
relation when a delegate is instantiated allows us to verify most applications of dele-
gates. We looked at all delegate instantiations in Microsoft’s compiler framework CCI
and the Spec# compiler. The vast majority of delegates are instantiated with static meth-
ods, for which the methodology introduced so far is sufficient as static methods do not
have target objects. It is also sufficient for instance methods whose requires clauses do
not refer to the state the target besides requiring validity or peer-consistency. In the rest
of this section, we discuss how to handle the remaining cases such as method Store ,
whose second requires clause requires the IsLoaded field of the target to be true .

3.2 Delegate Invariants

We allow delegates to declare invariants that may refer to the state of the target. Anal-
ogously to C#, we assume that each delegate has an immutable field target that holds

A Modular Verification Methodology for C# Delegates 193

a reference to the target. An invariant of the form invariant for T is P(target) ex-
presses that if the target is a non-null object of class T then it satisfies P . Such an in-
variant declared in a delegate type D is desugared into the invariant o.target is T ⇒
P((T)o.target) . Note that our notation implicitly casts target to T . In our example,
an invariant for Archiver could require that if its target is a reference to a TapeDrive
object, then its IsLoaded field is true :

invariant for TapeDrive is target .IsLoaded ;

With this invariant, it is trivial to show that the specification of Store refines the spec-
ification of Archiver , in particular, that Store ’s second requires clause IsLoaded is
implied by Archiver ’s require clause IsPeerConsistent(this) . By program invariant
P1, peer-consistency of the Archiver instance implies that its invariant holds. With
the appropriate substitution, this immediately yields Store ’s second requires clause.
Therefore, the instantiation of Archiver in method Main (Fig. 4) verifies.

Delegate Subtypes. As illustrated by the above invariant, delegate invariants specify
a type for the target object in order to access its fields. This means that the specifier
of the delegate has to foresee that the delegate might be instantiated with a method of
that type. This deprives delegates of their flexibility. In particular, adding a new class
DiskDrive with method Save to the program in general requires an additional invariant
for Archiver , which cannot be added without changing the existing code.

To solve this problem, we allow programmers to declare subtypes of delegates, which
may refine the specification of the supertype. Instead of adding the above invariant to
Archiver , we declare the following subtype:

delegate TapeArchiver : Archiver
invariant for TapeDrive is target .IsLoaded ;

Delegate subtypes prescribe identical signatures as their supertypes, which is not re-
peated in the subtype declaration. Moreover, subtypes inherit the specifications of their
supertypes to enforce behavioral subtyping [5], but they may refine the inherited speci-
fications. In particular, delegate subtypes are allowed to declare additional invariants.

To make use of the invariant of TapeArchiver , we have to adapt method Main
(Fig. 4) to instantiate TapeArchiver rather than Archiver :

Archiver archiver := new TapeArchiver(tapeDrive.Store) ;

Since TapeArchiver is a subtype of Archiver , the instance archiver can be passed
to method Client .Log without further adaptations. In particular, Client .Log (Fig. 2)
need not be aware of the existence of the delegate subtype.

Note that delegate subtypes are merely a specification construct that allows us to
associate invariants with delegates. In particular, they do not affect program execution.
When a program is compiled, all occurrences of delegate subtypes can be replaced by
their supertypes, and the subtype declarations can be eliminated.

Maintaining Delegate Invariants. Our verification methodology treats delegate in-
stances basically like other objects. In particular, every delegate instance d has a field
inv that indicates which invariants of d may be assumed to hold.

194 P. Müller and J.N. Ruskiewicz

The invariant of a delegate instance d may depend on the immutable field d .target
and on fields of the object referenced by d .target . Therefore, the only operations that
potentially violate d ’s invariant are modifications of the state of d ’s target. Conse-
quently, programs never have to expose d in order to change its own state, but d must
be exposed before its target object is modified. In other words, whenever a field o.f is
modified, we have to enforce that all delegate instances whose invariants depend on o.f
are exposed. We achieve that as follows:

1. Visibility requirement: If a delegate D declares or inherits an invariant for T then
class T must contain the dependent clause dependent D . Otherwise, D ’s in-
variant is not admissible and will be rejected by the compiler. Conversely, if a class
T contains dependent D then delegate D must declare or inherit an invariant
for T . Otherwise, T ’s specification is not admissible.

2. Automatic expose: We adapt the semantics of expose as follows. Besides object
o , expose (o for T) exposes each instance d of a delegate D where d .target =
o and D is mentioned in a dependent clause of class T . At the end of the expose
block, d ’s invariants are checked and d is un-exposed.

The visibility requirement ensures that the dependent clause of a class T lists all dele-
gates whose invariants are potentially broken by updates of fields of T . This allows us
to determine in a modular way all the invariants that have to be checked at the end of
an expose block.

The automatic expose guarantees that whenever a target object o is mutable for
a class T , then all dependent delegate instances d are also mutable. The following
program invariant states the contraposition of this property. D ∈ dependents(T) ex-
presses that class T contains a depends clause dependent D .

P4: (∀ o, d ,T ,D • d .target = o ∧ d .inv <: D ∧ D ∈ dependents(T) ∧
typeof(o) <: T ⇒ o.inv <: T)

The visibility requirement and automatic expose guarantee that P1 also holds for dele-
gate instances, where InvD denotes the desugared delegate invariant of delegate D .

The visibility requirement seems to be a severe restriction since it forces a class T
and a dependent delegate D to be implemented together as they refer to each other in
their dependent clause and delegate invariant. However, the requirement is not overly
restrictive for the practical examples we have considered. First, as stated above, most
delegates do not have invariants at all. Second, if the implementer of T wants to use
an existing delegate D , they can declare a subtype of D that contains the invariant for
T . This is illustrated by Archiver and TapeArchiver . Third, if a delegate D needs to
declare an invariant for an existing class T , it is not possible to add a dependent clause
to T . In that case, one can declare a subtype S of T or a wrapper class S for T and
establish the relation between D and S .

In our example, the invariant of TapeArchiver refers to the IsLoaded field of class
TapeDrive . Therefore, we have to add the following dependent clause to TapeDrive :

dependent TapeArchiver ;

Method ChangeMedia (Fig. 3) illustrates how delegate invariants are verified. Because
of the above dependent clause, the statement expose (this for TapeDrive) exposes

A Modular Verification Methodology for C# Delegates 195

each TapeArchiver instance d where d .target = this . The subsequent update of
IsLoaded violates the invariant of d . However, since d is exposed, this violation is
permitted by P1. At the end of the expose block, d ’s invariant is asserted. Since
IsLoaded is set to true before the end of the block, this assertion holds.

It is important to understand how our methodology prevents delegate invocations
when the requires clause of the underlying method does not hold. Consider an execution
of method ChangeMedia on target object o , and let d be a TapeArchiver instance
representing o.Store . We show how our methodology prevents ChangeMedia from
invoking d between the two updates of IsLoaded , that is, when IsLoaded is false
and, thus, the second requires clause of Store does not hold. TapeArchiver requires
IsPeerConsistent(this) . Therefore, an invoker of d must prove that d is fully valid.
However, according to program invariant P4, this is not the case while its target o
is mutable, and the invocation does not verify. Note that if TapeArchiver would not
require IsPeerConsistent(this) then an instantiation with Store would not verify
because TapeArchiver ’s invariant is needed to prove the refinement relation.

Disabling Delegates. Method ChangeMedia can be verified because it re-establishes
the invariants of all TapeArchiver instances before the end of the expose block.
Other methods such as Eject violate delegate invariants without re-establishing them.
Such methods can only be verified under the requirement that the target does not have
any dependent TapeArchiver delegate instances. To ensure this requirement, we have
to add the following requires clause to Eject :

requires (∀ d • d .target = this ⇒ ¬d .inv <: TapeArchiver) ;
This strong requires clause enables the verification of the method body, but is difficult to
be satisfied by callers of Eject . In particular, if in some execution state a TapeArchiver
instance d refers to an object o then o.Eject cannot be called in any subsequent exe-
cution state, even if d is not used anymore. This is because program verifiers typically
do not model garbage collection, which means that formally d will never be deleted.

To support methods that violate certain delegate invariants, we provide a statement
disable(D for o) , which disables all delegate instances with target object o that are
valid for a delegate type D . A delegate instance d is disabled by exposing it—such that
its invariant does not have to be maintained anymore—and by making d un-owned.
The change of ownership is necessary to be able to un-expose d ’s owner—recall that
P2 requires owned objects to be fully valid when the owner is valid. We do not provide
a statement to re-enable a delegate instance since one can simply create a new instance.

It is generally necessary to execute disable(TapeArchiver for o) before each call
to o.Eject to establish the above requires clause. This might seem tedious, but is only
necessary if a delegate declares an invariant for class T and T contains methods that
break this invariant. Such delegates are error-prone and we consider the overhead of
adding disable statements acceptable in these rare cases.

4 Technical Treatment

In this section, we present the technical treatment of our methodology. We define pre-
cisely which delegate invariants are admissible, formalize the proof rules, and prove
that our methodology is sound.

196 P. Müller and J.N. Ruskiewicz

4.1 Admissible Delegate Invariants

Our methodology permits the invariant of a delegate instance d to depend on the field
d .target as well as the state of d ’s target object and all objects (transitively) owned
by the target. However, to make the presentation and, in particular, the soundness proof
self-contained; we use a slightly more restrictive definition of admissible delegates in-
variants here, which does not permit dependencies on the objects owned by the target.

Definition 1 (Admissible Delegate Invariant). An invariant for T declared in or in-
herited by a delegate type D is admissible if and only if: (i) its sub-expressions type-
check under the assumption that target is of type T ; (ii) each of the field-access ex-
pressions has the form this.target or this.target .f , where f is declared in T or a
superclass of T and f is not one of the pre-defined fields inv or owner ; (iii) D is
mentioned in the dependent clause of T .

4.2 Proof Rules

We define the proof rules of our methodology by translating the relevant statements into
pseudo code, which makes the assertions and state changes explicit.

Delegate Instantiation. The instantiation of a delegate D with an instance method
o.m (Fig. 5) checks that the target o is non-null and valid for each class T that D
depends on. The latter assertion is necessary to maintain program invariant P4. Note
that the visibility requirement (Sec. 3.2) allows us to determine each dependee T mod-
ularly by inspecting the invariants of D and D ’s supertypes. Next, a fresh object d is
allocated, its target field is set to o , and its owner field is set to o.owner to make
the delegate instance and the target peers. New delegate instances start off being fully
valid. To maintain program invariant P1, we assert the invariant of D and D ’s super-
types before setting the inv field of the new instance to D . Finally, we check that the
specification of m refines the specification of D . PreD (d , p, h) and Prem(o, p, h)
denote the requires clauses of D and m , respectively. The ensures clauses are denoted
by PostD (d , p, r , h, h′) and Postm(o, p, r , h, h′) , where d and o are the targets of
D and m , respectively, p is the (only) explicit parameter, r is the result, h is the heap
of the prestate, and h′ is the heap of the poststate.

d := new D(o.m) ≡
assert o �= null ;
#foreach T such that D ∈ dependents(T) { assert o.inv <: T ; }
d := new D ;
d .target := o ; d .owner := o.owner ;
#foreach E such that D <: E { assert InvE (d) ;}
d .inv := D ;
assert (∀ p, h • PreD (d , p, h) ⇒ Prem (o, p, h)) ;
assert (∀ p, r , h, h ′ • PreD (d , p, h) ∧ Postm (o,p, r , h, h ′) ⇒ PostD (d , p, r , h, h ′)) ;

Fig. 5. Pseudo code for delegate instantiation

A Modular Verification Methodology for C# Delegates 197

Delegate Invocation. Delegate invocations are handled just like method calls (Fig. 6).
The invoker must ensure that the requires clause holds before the invocation and may
assume the ensures clause after the invocation. This reasoning is justified by the refine-
ment relationship between the specifications of the delegate and the underlying method,
which is checked when the delegate is instantiated. The havoc statement assigns ar-
bitrary values to the variables for the current heap H and the result of the invocation v .
This is necessary to make the verifier “forget” any prior knowledge about the variables
that are potentially modified by the delegate invocation. Before the havoc, the heap of
the prestate is saved since the ensures clause may refer to it.

v := d(p) ≡
assert d �= null ∧ PreD (d , p, H) ;
h := H ; havoc H, v ;
assume PostD (d ,p, v , h, H) ;

Fig. 6. Pseudo code for delegate invocation. D is the static type of the delegate instance d .

Expose. Our methodology extends the expose statement of the Boogie methodology
to automatically expose and un-expose dependent delegates (Fig. 7). We first discuss
the parts we adopted from the Boogie methodology and then explain the extensions.

The expose statement of the Boogie methodology implements a protocol that guar-
antees that owners are exposed before the objects they own, and that an object is ex-
posed for a subclass before it is exposed for the superclass. Besides fields of o declared
in T , the protocol allows InvT (o) to depend on fields of objects owned by 〈o,T 〉
and on fields of o that are inherited from a superclass of T . In both cases, the proto-
col ensures that o is exposed for T before InvT (o) is potentially violated by a field
update.

In the pseudo code for expose (o for T) , this protocol is implemented as follows.
First, we assert that o is non-null and valid for T , that is, has already been exposed
for T ’s subclasses. Next, we assert that o ’s owner is sufficiently exposed. Finally, o is
exposed by setting o.inv to T ’s direct superclass, super(T) . After the body of the
expose block is executed, we assert that all objects owned by o in the type frame of
T are fully valid. Then we un-expose o by setting o.inv back to T . This update is
guarded by an assertion that InvT (o) holds (to maintain program invariant P1).

The automatic exposing of dependent delegates is done as follows. For each delegate
type D in the dependent clause of T , we determine the set DepD of all delegate
instances whose target is o and that are valid for D . These are the delegate instances
whose invariants are potentially violated by assigning to fields of o declared in class
T . We expose each of these delegate instances by setting its inv field to object . The
automatic un-exposing is done analogously. For each delegate instance that has been
previously exposed, that is, is in one of the sets DepD , we assert its delegate invariant
and set its inv field back to D . While non-delegate objects are exposed for one class
at a time, the automatic exposes for a delegate instance d goes in one step from D to
object and back. Therefore, it is necessary to assert all invariants that are declared in
D and D ’s supertypes when d is un-exposed.

198 P. Müller and J.N. Ruskiewicz

expose (o for T) { S } ≡
assert o �= null ∧ o.inv = T ;
assert o.owner .obj �= null ⇒ ¬o.owner .obj .inv <: o.owner .typ ;
#foreach D ∈ dependents(T) {

let DepD := { d
⎪⎪⎪ d .target = o ∧ d .inv = D } ;

foreach d ∈ DepD { d .inv := object ;}
}
o.inv := super(T) ;

S ;

assert (∀object p • p.owner = 〈o,T 〉 ⇒ p.inv = typeof(p)) ;
assert InvT (o) ;
o.inv := T ;
#foreach D ∈ dependents(T) {

foreach d ∈ DepD {
#foreach E such that D <: E { assert InvE (d) ;}
d .inv := D ;

}
}

Fig. 7. Pseudo code for expose . The extensions for delegates are highlighted by a shaded
background.

An important virtue of our methodology is that it causes no verification overhead
for programs that do not use delegates, and very little overhead for programs whose
delegates do not have invariants. In particular, the #foreach loops in Fig. 7 can be
unrolled statically by a compiler using the dependent clause of class T . If T does not
have a dependent clause, the pseudo code for expose (o for T) is identical to the
Boogie methodology without delegates.

Disabling Delegates. As explained in Sec. 3, a delegate instance is disabled by expos-
ing it and by making it un-owned, that is, setting its owner object to null . The statement
disable(D for o) (Fig. 8) disables all delegate instances that are attached to a target
object o and valid for delegate type D . Since disabling a delegate instance d changes
its state, d ’s owner has to be sufficiently exposed.

disable(D for o) ≡
assert o �= null ;
assert o.owner .obj �= null ⇒ ¬o.owner .obj .inv <: o.owner .typ ;
foreach d such that d .target = o ∧ d .inv <: D {

d .inv := object ; d .owner := 〈null, 〉 ;
}

Fig. 8. Pseudo code for disable

A Modular Verification Methodology for C# Delegates 199

4.3 Soundness

Soundness of our methodology means that it is justified to assume program invariants
P1–P4 when proving the assertions introduced by the methodology. In the following,
we sketch the proofs of these program invariants. The proofs run by induction over the
sequence of states of an execution of a program that is well-formed: that is, syntactically
correct, type correct, and all invariants are admissible. The induction base is trivial since
there are no allocated objects in the initial program state. For the induction step, we
assume that the program invariant holds before the next statement s to be executed,
and show that s preserves it.

Program Invariant P1. For non-delegate objects, P1 is guaranteed by the Boogie
methodology. The soundness proof [11] remains valid because creation, exposing, and
modification (that is, disabling) of delegate instances are guarded by the same proof
obligations as the corresponding operations on non-delegate objects.

We proceed by proving P1 for delegate instances. That is, we show that statement s
preserves the implication o.inv <: T ⇒ InvT (o) for any delegate instance o and
any type T . We consider all cases where s manipulates the state of an object; we omit
all other cases for brevity.

Delegate Instantiation. Instantiation of a delegate D does not change the state of exist-
ing delegate instances. It remains to prove that the implication is established if o is the
new delegate instance. After the instantiation, we have o.inv = D . The pseudo code
asserts InvE (o) for all E where D <: E , in particular, for E = T . Therefore, the
implication holds.

Expose. The statement expose (x for S) changes the inv field of x as well as each
delegate instance d ∈ DepD , but nothing else. Since admissible delegate invariants do
not refer to inv fields (Def. 1), InvT (o) cannot be affected by these state changes. It
remains to show that the implication is preserved if o = x or o = d .

In both cases, the first update of inv preserves the implication by making its left-
hand side stronger. By the induction hypothesis, the body of the expose block pre-
serves the implication. Setting x .inv from super(S) back to S affects the implication
only if T = S . However, since InvS (x) is asserted before the update of x .inv , the
implication is preserved. Setting d .inv from object back to D affects the implication
only if T = E for some supertype E of D . Again, since InvE (d) is asserted for all
such E before the update of d .inv , the implication is preserved.

Field Update. Consider an update x .f := e , where f is declared in a class F . We may
assume that f is different from inv and target , which must not be directly assigned
to. According to Def. 1, an invariant of T that mentions f must be an invariant for G ,
where G <: F and T is mentioned in G ’s dependent clause (T ∈ dependents(G)).
The update of x .f is guarded by the assertion ¬x .inv <: F . By G <: F , we get
¬x .inv <: G . For o , T ’s invariant for G may depend on x .f only if o.target = x .
Moreover, we may assume typeof(o) <: G , otherwise the desugared invariant holds
trivially. Therefore, by contraposition on P4 , this implies ¬o.inv <: T , and, thus, the
left-hand side of the implication is false .

200 P. Müller and J.N. Ruskiewicz

Disable. The statement disable(D for x) changes the inv and owner fields of each
delegate instance where d .inv <: D and d .target = x , but nothing else. Since admis-
sible delegate invariants do not refer to inv and owner (Def. 1), InvT (o) cannot be
affected by these modifications. It remains to show that the implication is preserved if
o = d . This is trivially the case since the update of d .inv makes the left-hand side of
the implication stronger. �

Program Invariant P2. This program invariant is a consequence of the protocol that
owners are exposed before the objects they own, the block structure of expose , and the
fact that newly created objects and delegate instances are fully valid when the construc-
tor terminates. Since these arguments are identical for objects and delegate instances,
the soundness proof from the Boogie methodology [11] remains valid. �

Program Invariant P3. The owner field of an object is modified when an object
or delegate instance is created and when a delegate instance is disabled. The proof is
trivial for all three cases: (1) Newly created objects do not have any delegate instances
attached. Therefore, the property holds trivially. (2) When a delegate is instantiated,
its owner is set to the owner of its target, which establishes the property for the new
instance. (3) When a delegate instance d is disabled, d .inv is set to object . Therefore,
the left-hand side of the implication becomes false . �

Program Invariant P4. We prove that statement s preserves the implication of P4 for
any object o , delegate instance d , class T , and delegate type D . It suffices to consider
all statements s that modify the inv field.

Object Creation. Newly created objects do not have any delegate instances attached.
Therefore, the implication trivially holds.

Delegate Instantiation. The instantiation e := new E (x .m) does not change the state
of existing objects. We have to show that the implication is preserved for e = d . We
may assume d .inv <: D , D ∈ dependents(T) , and d .target = o , otherwise the
left-hand side of the implication is false . The instantiation establishes e.inv = E . By
d .inv <: D and e = d , we get E <: D .

From D ∈ dependents(T) we conclude that D is mentioned in a dependent clause
of T . By the visibility requirement (Sec. 3.2), D must declare or inherit an invariant
for T . Since E <: D and invariants are inherited, E also declares or inherits this
invariant. By Def. 1, we know that E must also be mentioned in a dependent clause of
T , that is, we have E ∈ dependents(T) . The pseudo code for delegate instantiation
(Fig. 5) asserts x .inv <: T . Since x = d .target = o , this implies the right-hand side
of the implication.

Expose. The statement expose (x for S) changes the inv field of x as well as each
delegate instance e in one of the DepA , but nothing else. This case is trivial if o �= x
because in that case neither o.inv nor d .inv is changed.

For o = x , setting d .inv to object makes the left-hand side of the implication
stronger and, therefore, preserves the implication. Setting o.inv to super(S) affects
the implication only if S = T . The proof of this case is very similar to the proof for

A Modular Verification Methodology for C# Delegates 201

delegate instantiation. Again, we may assume d .inv <: D , D ∈ dependents(T) , and
d .target = o . Let E = d .inv ; consequently, we have E <: D . Like for instantiation,
we conclude E ∈ dependents(T) and, by S = T , E ∈ dependents(S) . Since
d .target = o and o = x , we know d ∈ DepE such that d .inv is set to object .
Since D is a delegate type, this makes the left-hand side of the implication false .

By the induction hypothesis, the body of the expose block preserves the implica-
tion. The un-exposing after the body precisely un-does the modifications of the inv
fields performed before the body. Therefore, it preserves the implication.

Disable. The statement disable(E for x) modifies the inv field of each delegate
instance where e.inv <: E and e.target = x , but nothing else. The setting of e.inv
to object only makes the left-hand side of the implication stronger. �

5 Related Work

Eiffel agents [7] are similar to C# delegates, but more general since they allow the
programmer to decide for each parameter, including the target, whether the actual argu-
ment is provided when the agent is instantiated (closed parameter) or when it is invoked
(open parameter). Adapting our methodology to agents would require agent invariants
that depend on all closed parameter objects. The corresponding visibility requirement
might be too restrictive for certain applications of agents.

The work closest to ours is the version of the Boogie methodology described by
Leino and Müller [11]. Besides the ownership-based object invariants that we also use
in this paper, their work also supports visibility-based object invariants. Like our del-
egate invariants, visibility-based invariants may depend on fields of peers, provided
that a visibility requirement is met. However, Leino and Müller’s work requires pro-
grams to explicitly expose all objects whose visibility-based invariants are potentially
affected by a field update. In general, without explicit references to the dependent
peers, this obligation is hard to live up to. Our methodology exposes dependent del-
egate instances automatically when their target is exposed. Like the Boogie method-
ology, our work supports ownership transfer, but we omitted details due to space
limitations.

The friendship methodology by Barnett and Naumann [3] simplifies the verification
of visibility-based invariants by introducing ghost state to keep track of all dependent
invariants of an object. This ghost state facilitates the exposing of dependent objects.
The friendship methodology can handle implementations of function objects such as the
Command pattern. Whereas the friendship methodology is very general, our method-
ology exploits the special syntactic structure of delegates to expose dependent delegate
instances automatically, which removes the need to explicitly keep track of dependent
invariants and, thus, reduces the annotation overhead.

Jacobs’s version of Spec#, SpecLeuven [9], permits sound reasoning about delegates.
Delegate instances own their target objects, which prevents these objects from being
owned by other objects and, in particular, from being used in other delegate instances.
Our solution does not impose this restriction.

Leino and Schulte [12] use history constraints to verify object invariants that are
neither ownership-based nor visibility-based. If a history constraint guarantees that

202 P. Müller and J.N. Ruskiewicz

the state of an object o only evolves in ways that does not affect a dependent object
invariant then there is no need to expose the dependent object before modifying o .
We expect this approach to be a useful complement of our methodology, but not all
targets have strong history constraints. For instance, Leino and Schulte’s methodol-
ogy cannot handle our TapeDrive example, because IsLoaded is not a monotonic
property.

Visible state semantics require invariants to hold in the pre- and post-states of all
method executions. When invariants are allowed to depend on several objects such
as delegate invariants, one needs a way of determining which invariants are poten-
tially affected by a field update. These are exactly the invariants that our methodol-
ogy exposes automatically when a target is exposed. Our methodology can be adapted
to a visible state semantics using visibility-based invariants as described by Müller
et al. [13].

The work by Börger et al. [4] has captured the semantics of delegates in an ASM
model. This work has been fundamental in understanding the delegate construct. How-
ever, it is not suggestive how to use an ASM model to verify programs modularly.

6 Conclusions

We have presented a methodology for specifying and verifying C# delegates. Our
methodology uses delegate invariants to express properties of the target object and al-
lows one to reason about delegate invariants in a sound and modular way.

Our methodology requires significantly less specification and verification overhead
than other techniques that could handle the Command pattern. This simplification is
possible because delegates are essentially a stylized Command pattern, for which we
can build special support into the verification methodology. We expect that similar
methodologies can be developed for other design patterns, provided that the compo-
nents of a design pattern are marked as such or that the idiom is supported by a special
language construct.

Our methodology solves one of the two challenges related to function objects re-
ported earlier [10], namely how to verify invocations of function objects. The other
challenge is how to specify and verify invokers of function objects. We plan to address
this challenge in future work. We also plan to implement our methodology into the
Spec# programming system.

C# 2.0 delegates are more expressive than the delegates of C# 1.0, which we con-
sidered in this paper. For instance, C# 2.0 provides anonymous delegates, which may
refer to local variables of the method body enclosing their declaration. Extending our
methodology to C# 2.0 delegates is future work.

Acknowledgments. We are grateful to Rustan Leino for very helpful discussions and
suggestions, in particular, his idea to use delegate subtypes. Thanks also to Bart Jacobs
for his comments. Müller’s work was funded in part by the Information Society Tech-
nologies program of the European Commission, Future and Emerging Technologies
under the IST-2005-015905 MOBIUS project during his stay at ETH Zurich.

A Modular Verification Methodology for C# Delegates 203

References

1. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-
oriented programs with invariants. JOT 3(6) (2004)

2. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In:
Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

3. Barnett, M., Naumann, D.: Friends need a bit more: Maintaining invariants over shared state.
In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84. Springer, Heidelberg (2004)

4. Börger, E., Fruja, N.G., Gervasi, V., Stärk, R.F.: A high-level modular definition of the se-
mantics of C#. Theoretical Computer Science 336(2-3), 235–284 (2005)

5. Dhara, K.K., Leavens, G.T.: Forcing behavioral subtyping through specification inheritance.
In: ICSE, pp. 258–267. IEEE Computer Society Press, Los Alamitos (1996)

6. C# language specification. ECMA Standard 334 (June 2005)
7. Eiffel analysis, design and programming language. ECMA Standard 367 (June 2005)
8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley, Reading

(1995)
9. Jacobs, B.: A Statically Verifiable Programming Model for Concurrent Object-Oriented Pro-

grams. PhD thesis, Katholieke Universiteit Leuven (2007)
10. Leavens, G.T., Leino, K.R.M., Müller, P.: Specification and verification challenges for se-

quential object-oriented programs. Formal Aspects of Computing 19(2), 159–189 (2007)
11. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)

ECOOP 2004. LNCS, vol. 3086, pp. 491–516. Springer, Heidelberg (2004)
12. Leino, K.R.M., Schulte, W.: Using history invariants to verify observers. In: De Nicola, R.

(ed.) ESOP 2007. LNCS, vol. 4421, pp. 80–94. Springer, Heidelberg (2007)
13. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-

tures. Science of Computer Programming 62, 253–286 (2006)

On the Evolution of OCL for Capturing Structural
Constraints in Modelling Languages

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK

{dkolovos,paige,fiona}@cs.york.ac.uk

Abstract. The Object Constraint Language (OCL) can be used to capture struc-
tural constraints in the context of the abstract syntax of modelling languages
(metamodels) defined in the MOF metamodelling architecture. While the expres-
sion language of OCL has been revised and updated a number of times since its
inception, the constructs used for capturing constraints (invariants) have remained
unchanged. In this paper we argue that the abstract and concrete syntax of OCL
invariants should also be updated to address a number of shortcomings and render
OCL more usable in a contemporary modelling environment. To support our ar-
guments we have implemented the proposed extensions in the prototype Epsilon
Validation Language (EVL). To demonstrate the benefits delivered, we present
and discuss a concrete example.

1 Introduction

The Meta Object Facility (MOF) [1] is a self-defining language for specifying the ab-
stract syntax of modelling languages such as UML. MOF enables capturing the con-
cepts of a language and, to an extent, also expresses how they can be legitimately
combined to form valid models. By design, MOF can only express a limited range
of structural constraints, mainly with respect to containment and type conformance [1].
For more complex structural constraints that MOF cannot capture by itself, the Object
Constraint Language (OCL) [2] is used. In OCL, structural constraints are captured in
the form of invariants attached to MOF meta-classes.

To enable users to specify precise and concise constraints, OCL provides an ex-
pression language with powerful model querying and navigation facilities. Since its
inception, the expression language and the type system of OCL have undergone sev-
eral revisions and as a result they have been radically improved. By contrast, the syntax
and semantics of invariants have remained almost unchanged since the early versions
of the language. In this paper, we identify some of the shortcomings of the syntax and
semantics of OCL invariants for capturing structural constraints and stress the need for
evolving the standard. Our views on OCL modernization range from adding simple fea-
tures such as support for detailed user feedback, to advanced features such as support
for semi-automatically repairing inconsistent model elements.

The focus in this paper is on improving support for OCL (and OCL-like languages),
in terms of supporting richer structures for encoding constraints, checking constraints,
and obtaining feedback from the checking process. As such, we work in the domain

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 204–218, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Evolution of OCL for Capturing Structural Constraints 205

of models (e.g., UML, MOF, Eclipse EMF). However, the principles and limitations
we identify in Section 2, and the lessons learned and improvements made to OCL, will
also be useful in assessing and evolving constraint-based techniques in domains other
than modelling, particularly analysis of object-oriented programs and formal models of
object-oriented programs. In particular, the techniques illustrated in this paper could be
applied to formal languages such as JML [3], Spec# [4], and Eiffel [5].

The rest of the paper is organized as follows. In Section 2 we identify shortcomings
of OCL for capturing structural constraints in modelling languages. In Section 3 we
present a coherent set of extensions that address the identified issues and present an im-
plementation of those extensions in the prototype Epsilon Validation Language (EVL).
To demonstrate the usefulness and practicality of our approach, in Section 4 we present
a working case study where we compare OCL with EVL on a common scenario. In
Section 5, we discuss related work and in Section 6 we conclude and discuss directions
for further research on the subject.

2 Shortcomings of OCL for Capturing Structural Constraints

In OCL, structural constraints are captured in the form of invariants. Each invariant
is defined in the context of a meta-class of the metamodel and specifies a name and a
body. The body is an OCL expression that must evaluate to a Boolean result, indicating
whether an instance of the meta-class satisfies the invariant or not. Execution-wise, the
body of each invariant is evaluated for each instance of the meta-class and the results
are stored in a set of <Element, Invariant, Boolean> triplets. Each triplet captures the
Boolean result of the evaluation an Invariant on a qualified Element. An exemplar OCL
invariant for UML, requiring that abstract operations only belong to abstract classes, is
shown in Listing 1.1.

Listing 1.1. OCL constraint on UML operations

context Operation
inv AbstractOperationInAbstractClassOnly :
self.isAbstract implies self.owner.isAbstract

While in its current version OCL enables users to capture particularly complex in-
variants, it also demonstrates a number of shortcomings, as follows.

2.1 Poor Support for User Feedback

OCL does not support specifying meaningful messages that can be reported to the user
in case an invariant is not satisfied for certain elements. Therefore, feedback to the user
is limited to the name of the invariant and the instance(s) for which it failed. Weak
support for proper feedback messages implies that the end users must be familiar with
OCL so that they can comprehend the meaning of the failed invariant and locate the
exact reason for the failure. This is a significant shortcoming as in practice only a very
small number of end users are familiar with OCL.

206 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

2.2 No Support for Warnings/Critiques

Contemporary software development environments typically produce two types of feed-
back when checking artefacts for consistency and correctness: errors and warnings.
Errors indicate critical deficiencies that contradict basic principles and invalidate the
developed artefacts. By contrast, warnings (or critiques) indicate non-critical issues that
should nevertheless be addressed by the user. To enable users to address warnings in a
priority-based manner, they are typically categorized into three levels of importance:
High, Medium and Low (although other classifications are also possible).

By contrast, in OCL there is no such distinction between errors and warnings and
consequently all reported issues are considered to be errors. This adds an additional
burden to identifying and prioritizing issues of major importance, particularly within an
extensive set of unsatisfied invariants.

2.3 No Support for Dependent Constraints

Each OCL invariant is a self-contained unit that does not depend on other invariants.
However, there are cases where this design decision is particularly restrictive. For in-
stance consider the invariants I1 and I2 displayed in Listing 1.2. Both I1 and I2 are
applicable on UML classes with I1 requiring that: the name of a class must not be
empty and I2 requiring that: the name of a class must start with a capital letter. In the
case of those two invariants, if I1 is not satisfied for a particular UML class, evaluating
I2 on that class would be meaningless. In fact it would be worse than meaningless since
it would consume time to evaluate and would also produce an extraneous error message
to the user. In practice, to avoid the extraneous message, I2 needs to replicate the body
of I1 using an if expression (lines 2 and 5).

Listing 1.2. Conceptually related OCL constraints

1 context Class
2 inv I1 : self.name.size() > 0
3
4 inv I2 :
5 if self.name.size > 0 then
6 self.name.substring(0,1) =
7 self.name.substring(0,1).toUpper()
8 else
9 true

10 endif

2.4 Limited Flexibility in Context Definition

As already discussed, in OCL invariants are defined in the context of meta-classes.
While this achieves a reasonable partitioning of the model element space, there are cases
where more fine-grained partitioning is required. For instance, consider the following
scenario. Let IA1..N , IB1..M be invariants applying to classes that are stereotyped as
<<A>> and <> respectively. Since OCL only supports partitioning the model ele-
ment space using meta-classes, all IA1..N , IB1..M must appear under the same context

On the Evolution of OCL for Capturing Structural Constraints 207

(i.e. Class). Moreover, each invariant must explicitly define that it addresses the one
or the other conceptual sub-partition. Therefore, each of IA1..N must limit its scope
initially (using the self.isA expression) and then express the real body. In our example
the simplest way to achieve this would be by combining a scope-limiting expression
with the real invariant body using the implies clause as demonstrated in Listing 1.3.

Listing 1.3. Demonstration of OCL constraints with duplication

context Class
inv I1 : self.isA implies <real-invariant-body>
inv I2 : self.isA implies <real-invariant-body>
...
inv IN : self.isA implies <real-invariant-body>

def isA :
let isA : Boolean =
self.stereotype->exists(s|s.name = ’A’)

Furthermore, if the real body of the invariant needs to assume that self is stereo-
typed with <<A>>, this technique is not applicable because OCL does not support lazy
evaluation of boolean clauses [2] and therefore although the first part of the expression
(self.isA) may fail for some instances, the second part will still be evaluated thus
producing runtime errors. In this case, an if expression must be used, further compli-
cating the specified invariants.

2.5 No Support for Repairing Inconsistencies

While OCL can be used for detecting inconsistencies, it provides no means for repairing
them. The reason is that OCL has been designed as a side-effect free language and
therefore lacks constructs for modifying models. Nevertheless, there are many cases
where inconsistencies are trivial to resolve and users can benefit from semi-automatic
repairing facilities.

This need has been long recognized in the related field of code development tools.
In such tools, errors are not only identified but also context-aware actions are proposed
to the user for automatically repairing them. To our view, this feature significantly in-
creases the usability of such tools and consequently enhances users’ productivity.

Following this discussion on the shortcomings of OCL for capturing structural con-
straints in modelling languages, in Section 3 we propose an extended version of OCL
that overcomes them.

3 Extending OCL: The Epsilon Validation Language (EVL)

To address the issues discussed in Section 2, in this section we propose a set of exten-
sions to the abstract and concrete syntaxes of OCL. To experiment with the proposed
extensions in practice, we have implemented them in the context of a prototype vali-
dation language with tool-support: the Epsilon Validation Language (EVL). Here we
should state that EVL is not a rival to OCL; instead we view EVL as a flexible proto-
type on which we can easily implement and evaluate novel approaches to specifying

208 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

and managing model constraints. The purpose of this paper is not to promote this new
language but to demonstrate useful ideas, using a working prototype, that can hopefully
contribute to the evolution of OCL and similar languages. From this perspective, in this
section we discuss the abstract syntax of EVL and how each additional or extended
construct in it contributes to addressing the shortcomings identified in Section 2.

3.1 Infrastructure

EVL has been designed atop the Epsilon platform [6], and therefore instead of pure OCL,
it uses the OCL-based Epsilon Object Language (EOL) [7] as a query and navigation lan-
guage. Using EOL instead of pure OCL delivers several practical advantages. First, EOL
supports statement sequencing, thus allowing users to disentangle complex queries into
sequences of simpler queries. From our experience, this enhances readability and main-
tainability and also facilitates a smoother transition to the field of model-management
for developers with background in object oriented or procedural programming. For this
community, the purely declarative style of OCL, which is significantly influenced by
the style of functional programming languages [8], has been shown to be challenging to
use. Nevertheless, the design decision to support statement sequencing does not affect
existing OCL users who can still specify purely declarative queries.

A further advantage is that since EOL can access more than one model simulta-
neously [7], EVL can be also used to express inter-model constraints. However, this
feature is considered to be out of the scope of this paper and is not further discussed
here. EOL also provides model modification features that are used in the sequel to ad-
dress the issue of semi-automatic repairing of inconsistencies. Finally, EOL supports
user input and output operations. This allows users to produce diagnostic messages to
examine the flow of control, which is one of the most widely-employed techniques for
understanding and debugging purposes.

3.2 Abstract Syntax of EVL

In this section we discuss the main concepts of the abstract syntax of EVL, which is
also presented graphically in Figure 1.

Context. A context specifies the type (or kind) of instances on which the contained
invariants will be evaluated. Each context can optionally define a guard which limits
its applicability to a narrower subset of instances of its specified type. Thus, if the
guard fails for a specific instance of the metaclass, none of its contained invariants are
evaluated.

Invariant. As with plain OCL, each EVL invariant defines a name and a body (check).
In this extended version, it can additionally define a guard which further limits its appli-
cability to a subset of the instances of the metaclass defined by the embracing context.
To achieve the requirement for detailed user feedback (Section 2.1), each invariant can
optionally define a message as an ExpressionOrStatementBlock that should return a
String. To support semi-automatically fixing elements on which invariants have failed
(Section 2.5), an invariant can optionally define a number of fixes. Finally, as displayed

On the Evolution of OCL for Capturing Structural Constraints 209

Fig. 1. Abstract Syntax of EVL

in Figure 1, Invariant is an abstract class that is used as a super-class for the specific
types Constraint and Critique. This is to address the issue of separation of errors and
warnings/critiques (Section 2.2).

Guard. Guards are used to limit the applicability of invariants (Section 2.4). This can
be achieved at two levels. At the Context level it limits the applicability of all invariants
of the context and at the Invariant level it limits the applicability of a specific invariant.

Fix. A fix defines a title using an ExpressionOrStatementBlock instead of a static String
to allow users specify context-aware titles (e.g. Rename class customer to Customer
instead of the generic Convert first letter to upper-case). Moreover, it defines a do part
where the fixing functionality can be defined using EOL. The developer is responsible
for ensuring that the actions contained in the fix actually repair the inconsistency.

Constraint. Constraints in this extended metamodel are used to capture critical errors
that invalidate the model. As discussed above, Constraint is a sub-class of Invariant and
therefore inherits all its features.

Critique. Unlike Constraints, Critiques are used to capture non-critical situations that
do not invalidate the model, but should nevertheless be addressed by the user to en-
hance the quality of the model. This separation addresses the issue raised in Section
2.2. Moreover, to enable users define different levels of importance in critiques, the
CritiqueLevel enumeration supports a 3-level classification. Fixed-level classification
has been preferred in EVL over infinite level classification (e.g. using Integer levels)
since it is more common in development tools and easier to visualize.

210 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

Pre and Post. An EVL module can define a number of named pre and a post blocks that
contain EOL statements which are executed before and after evaluating the invariants
respectively.

3.2.1 Additional built-in operations
As discussed in Section 2.3, it is often the case that invariants conceptually depend on each
other. To allow users capture such dependencies, the satisfies(invariant:String): Boolean,
satisfiesAll(invariants:Sequence(String)) and satisfiesOne(invariants:Sequence(String))
have been added to EVL. Using these operations, an invariant can specify in its guard
other invariants which need to be satisfied for it to be meaningful to evaluate.

3.2.2 Concepts reused from EOL
As EVL has been built atop EOL, it reuses the following constructs from the base-
language:

ExpressionOrStatementBlock. There are cases where users needs to calculate a value
(e.g. in the message of an invariant, in the guard of a context etc). When the value can
be calculated declaratively, this is preferred. However, for cases in which calculating
the value requires complex computations, users can use an EOL statement block and
use a ReturnStatement to return the calculated value to the caller.

StatementBlock. A statement block is a sequence of EOL statements that can optionally
include one or more ReturnStatements to return a calculated value to its caller.

3.3 Execution Semantics of EVL

The additional concepts EVL provides also affect its execution semantics. Currently, an
EVL module can only be executed in batch-mode (all invariants against all instances). In
the future we plan to investigate how the additional structures that EVL provides affect
approaches to incremental consistency checking such as those presented in [9,10]. In
this section we outline the execution semantics of the language in batch-mode.

Phase 1. Before any invariant is evaluated, the pre section of the module is executed.

Phase 2. For each context, the instances of the meta-class it defines are collected. For
each instance, the guard of the context is evaluated. If the guard is satisfied then for each
invariant contained in the context the invariant’s guard is also evaluated. If the guard of
the invariant is satisfied, the body of the invariant is evaluated. In case the body evaluates
to false, the message part of the rule is evaluated and the produced message is added
along with the instance, the invariant and the available fixes to the ValidationTrace.

The execution order of an EVL module follows a top-down depth-first scheme that
respects the order in which the contexts and ivnariants appear in the module. However,
the execution order can change in case one of the satisfies, satisfiesOne, satisfiesAll
built-in operations are called. In this case, if the required invariants have not been eval-
uated yet for the instances on which the operations are invoked, the engine will evaluate
them and then resume with the normal execution order. By using a caching mechanism,
each invariant is executed for a specific instance at most once.

On the Evolution of OCL for Capturing Structural Constraints 211

Phase 3. In this phase, the validation trace is examined for unsatisfied constraints and
the user is presented with the message each one has produced. The user can then select
one or more of the available fixes to be performed.

Phase 4. When the user has performed all the necessary fixes, the post section of the
module is executed. There, the user can perform tasks such as serializing the validation
trace or producing a summary of the validation process results.

3.4 Tool Support

As proof of concept, we have implemented a prototype EVL execution engine with
respective development tools for Eclipse [11]. Moreover, to increase practicality for
validating UML models, we have integrated the EVL execution engine with the open-
source ArgoUML modelling tool [12].

Eclipse Development Tools. Using the Eclipse development tools, developers can
compose EVL specifications using a dedicated editor that provides syntax highlighting
and on-site reporting of syntax and run-time errors (Figure 2). With regard to mod-
elling technologies, users can evaluate EVL specifications on EMF [13], MDR [14]
and XML models. Following the evaluation process, messages generated by failed in-
variants are reported in the Validation view. For each one, the available fixes are ac-
cessible by right clicking on the respective error message, so that users can select
and perform the appropriate ones. The EVL Eclipse Development tools have been
released as part of the Epsilon development Tools available at the Epsilon GMT
website [15].

Integrating with ArgoUML. As discussed above, using the EVL Eclipse Develop-
ment Tools enables users to validate and repair models of diverse technologies. How-
ever, although EVL can produce meaningful messages (by contrast to pure OCL),
there are cases where users may need to thoroughly inspect their models before de-
ciding how to resolve an inconsistency. To provide better support for UML models,
we have also integrated EVL with the open-source ArgoUML tool to enable users val-
idate and fix their UML 1.5 models without leaving their modelling tool. Integrating
with ArgoUML did not require customizing the EVL engine and therefore we an-
ticipate that we can use the same technique to integrate EVL with additional Java-
based modelling tools and particularly with the Eclipse Graphical Modelling
Framework (GMF) [16].

4 Case Study

In this section we present a case study of comparing EVL and OCL in the context
of a common scenario. The purpose of the case study is to present readers with the
concrete syntax of the language and demonstrate the benefits delivered by the proposed
extensions.

212 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

Fig. 2. Screenshot of the Eclipse-based EVL Development Tools

4.1 Scenario: The Singleton Pattern

The singleton pattern is a widely-used object oriented pattern. A singleton is a class for
which exactly one instance is allowed [17]. In UML, a singleton is typically represented
as a class which is stereotyped with a <<singleton>> stereotype and which also
defines a static operation named getInstance() that returns the unique instance.

To ensure that all singletons have been modelled correctly in a UML model we
need to evaluate the following invariants on all classes that are stereotyped with the
<<singleton>> stereotype:

– DefinesGetInstance : Each stereotyped class must define a getInstance() method
– GetInstanceIsStatic : The getInstance() method must be static
– GetInstanceReturnsSame : The return type of the getInstance() method must be the

class itself

Obviously, invariants GetInstanceIsStatic and GetInstanceReturnsSame depend on De-
finesGetInstance because if the singleton does not define a getInstance() operation,
checking for the operation’s scope and return type is meaningless. Moreover, in case
an invariant fails, there are corrective actions (fixes) that users may want to perform
semi-automatically: e.g. for DefinesGetInstance, such an action would be to add the

On the Evolution of OCL for Capturing Structural Constraints 213

missing getInstance() operation, for GetInstanceIsStatic to change it to static and for
GetInstanceRetunrsSame to set the return type to the class itself. In the following sections
we use OCL and EVL to express the three constraints and comment on each solution.

4.1.1 Using OCL to Express the Invariants
Listing 1.4 shows the aforementioned invariants implemented in OCL.

Listing 1.4. OCL Module for Validating Singletons
1 package Foundation::Core
2
3 context Class
4
5 def isSingleton :
6 let isSingleton : Boolean =
7 self.stereotype->exists(s|s.name = ’singleton’)
8
9 def getInstanceOperation :

10 let getInstanceOperation : Operation =
11 self.feature->select(f|f.oclIsTypeOf(Operation)
12 and f.name = ’getInstance’)->first().oclAsType(Operation)
13
14 inv DefinesGetInstanceOperation :
15 if isSingleton
16 then getInstanceOperation.isDefined
17 else true
18 endif
19
20 inv GetInstanceOperationIsStatic :
21 if isSingleton then
22 if getInstanceOperation.isDefined
23 then getInstanceOperation.ownerScope = #classifier
24 else false
25 endif
26 else
27 true
28 endif
29
30 inv GetOperationReturnsSame :
31 if isSingleton then
32 if getInstanceOperation.isDefined then
33 if getInstanceOperation.returnParameter.isDefined
34 then getInstanceOperation.returnParameter.type = self
35 else false
36 endif
37 else
38 false
39 endif
40 else
41 true
42 endif
43
44 context Operation
45
46 def returnParameter :
47 let returnParameter : Parameter =
48 self.parameter->select(p|p.kind = #return)->first()
49
50 endpackage

214 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

By examining the OCL solution we note that all invariants first check that the class is
a singleton (lines 15, 21 and 31) by using the isSingleton derived property defined in line
5. If the isSingleton returns false, the invariants return true since returning false would
cause them to fail for all non-singleton classes. This reveals an additional shortcoming
of OCL: if a constraint returns true it may mean two different things: either that the
instance satisfies the constraint or that the constraint is not applicable to the instance at
all. To our view, this overloading reduces understandability.

By further studying the solution of Listing 1.4 we observe that dependency be-
tween constraints is captured artificially using nested if expressions. For instance, both
GetInstanceIsStatic and GetInstanceRetunrsSame contain an if expression in lines 22
and 32 respectively, where they check the value of the getInstanceOperation defined in
line 9, where they actually recalculate the result of the DefinesGetInstanceOperation
invariant. As discussed in Section 2.3, this happens because OCL lacks constructs for
capturing dependencies in a structured manner.

4.1.2 Using EVL to Express the Invariants
Listing 1.5 provides a solution for this problem expressed in EVL.

Listing 1.5. EVL Module for Validating Singletons
1 context Singleton typeOf Class {
2
3 guard : self.stereotype->exists(s|s.name = ’singleton’)
4
5 constraint DefinesGetInstance {
6 check : self.getGetInstanceOperation()->isDefined()
7 message : ’Singleton ’ + self.name +
8 ’ must define a getInstance() operation’
9 fix {

10 title : ’Add a getInstance() operation to singleton ’ + self.name
11 do {
12 -- Create the getInstance operation
13 var op : new Operation;
14 op.name := ’getInstance’;
15 op.owner := self;
16 op.ownerScope := ScopeKind#sk_classifier;
17
18 -- Create the return parameter
19 var returnParameter : new Parameter;
20 returnParameter.type := self;
21 op.parameter := Sequence{returnParameter};
22 returnParameter.kind := ParameterDirectionKind#pdk_return;
23 }
24 }
25 }
26
27 constraint GetInstanceIsStatic {
28 guard : self.satisfies(’DefinesGetInstance’)
29 check : self.getGetInstanceOperation().ownerScope =
30 ScopeKind#sk_classifier
31 message : ’ The getInstance() operation of singleton ’
32 + self.name + ’ must be static’
33
34 fix {
35 title : ’Change to static’
36 do {
37 self.getGetInstanceOperation.ownerScope
38 := ScopeKind#sk_classifier;
39 }
40 }
41 }
42

On the Evolution of OCL for Capturing Structural Constraints 215

43 constraint GetInstanceReturnsSame {
44
45 guard : self.satisfies(’DefinesGetInstance’)
46 check {
47 var returnParameter : Parameter;
48 returnParameter := self.getReturnParameter();
49 return (returnParameter->isDefined()
50 and returnParameter.type = self);
51 }
52 message : ’ The getInstance() operation of singleton ’
53 + self.name + ’ must return ’ + self.name
54
55 fix {
56 title : ’Change return type to ’ + self.name
57 do {
58 var returnParameter : Parameter;
59 returnParameter := self.getReturnParameter();
60
61 -- If the operation does not have a return parameter
62 -- create one
63 if (not returnParameter.isDefined()){
64 returnParameter := Parameter.newInstance();
65 returnParameter.kind := ParameterDirectionKind#pdk_return;
66 returnParameter.behavioralFeature :=
67 self.getInstanceOperation();
68 }
69 -- Set the correct return type
70 returnParameter.type := self;
71 }
72 }
73 }
74 }
75
76 operation Class getGetInstanceOperation() : Operation {
77 return self.feature->
78 select(o:Operation|o.name = ’getInstance’).first();
79 }
80
81 operation Operation getReturnParameter() : Parameter {
82 return self.parameter->
83 select(p:Parameter|p.kind =
84 ParameterDirectionKind#pdk_return).first();
85 }

The Singleton context defines that the invariants it contains will be evaluated on
instances of the UML Class type. Moreover, its guard defines that they will be evaluated
only on classes that are stereotyped with the singleton stereotype. Therefore, unlike the
OCL solution of Listing 1.4, invariants contained in this context do not need to check
individually that the instances on which they are evaluated are singletons.

Constraint DefinesGetInstance defines no guard which means that it will be evaluated
for all the instances of the context. In its check part, the constraint examines if the class
defines an operation named getInstance() by invoking the getGetInstanceOperation()
operation. If this fails, it proposes a fix that adds the missing operation to the class.

Constraint GetInstanceIsStatic defines a guard which states that for the constraint
to be evaluated on an instance, the instance must first satisfy the DefinesGetInstance
constraint. If it doesn’t, it is not evaluated at all. In its check part it examines that the
getInstance() operation is static. Note that here the constraint needs not check that the
getInstance() operation is defined again since this is assumed by the DefinesGetInstance
constraint on which it depends. If the constraint fails for an instance, the fix part can be
invoked to change the scope of the getInstance() operation to static.

216 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

Constraint GetInstanceReturnsSame checks that the return type of getInstance() is
the singleton itself. Similarly to the GetInstanceIsStatic constraint, it defines that to be
evaluated the DefinesGetInstance constraint must be satisfied. If it fails for a particular
instance, the fix part can be invoked. In the fix part, if the operation defines a return pa-
rameter of incorrect type, its type is changed and if it does not define a return parameter
at all, the parameter is created and added to the parameters of the operation.

It is worth noting here that by observing the two solutions the OCL one resembles the
concept of defensive programming, where conditions are embedded in supplier code,
while the EVL one is closer to the design by contract [5] approach where conditions are
explicitly checked in guards.

Through this case study we have shown that the additional constructs provided by
EVL can reduce repetition significantly and thus enable specification of more concise
constraints. Moreover, in case a constraint is not satisfied for a particular instance, the
user is provided with a meaningful context-aware message and with an automated fa-
cility for repairing the inconsistency.

5 Related Work

Although the academic community has shown little interest in extending OCL to make
it more practical and usable for contemporary developers, the need for enhanced val-
idation mechanisms similar to those presented in this paper is widely recognized by
practitioners and thus implemented in tools. For instance, in the IBM Rational Software
Architect, distinguishing between critical errors and warnings is achieved by adding ap-
propriate stereotypes to constraints in UML models. In the ArgoUML modelling tool,
validation functionality has been implemented using Java with an overall rationale quite
similar to the one presented in this paper.

In the context of the openArchitectureWare (oAW) [18] framework, the Check OCL-
based constraint language has been proposed for capturing errors and warnings in mod-
els. Moreover, in [19], a model transformation language (ATL) is used to check models
by transforming them into Problem models. While both approaches are more powerful
than plain OCL, they do not address the issues of defining constraint dependencies or
repairing identified inconsistencies.

6 Conclusions and Further Work

In this paper we have identified a number of shortcomings of OCL in the context of
capturing structural constraints for modelling languages and proposed a set of exten-
sions to the OCL abstract and concrete syntaxes that address those shortcomings ef-
fectively. As proof of concept we have implemented the proposed extensions in the
prototype Epsilon Validation Language with tool-support for Eclipse and ArgoUML.
In the case study we used a concrete example and demonstrated solutions using both
plain OCL and EVL and showed the benefits delivered by the additional constructs of
EVL.

On the Evolution of OCL for Capturing Structural Constraints 217

As discussed in Section 3, we do not consider EVL as a rival language to OCL but as
a useful prototype through which we can experiment with new features and extensions
to the language that can hopefully be considered for adoption in future versions of the
standard.

There are two main directions for further research on the subject: to enrich EVL with
additional constructs that can further simplify definition of constraints, and to assess
how the proposed extensions affect work done in the context of incremental evaluation
of constraints, which is essential for achieving scalability.

Acknowledgements

The work in this paper was supported by the European Commission via the MOD-
ELPLEX project, co-funded by the European Commission under the “Information So-
ciety Technologies” Sixth Framework Programme (2006-2009).

References

1. Object Management Group. Meta Object Facility (MOF) 2.0 Core Specification,
http://www.omg.org/cgi-bin/doc?ptc/03-10-04

2. Object Management Group. UML 2.0 OCL Specification,
http://www.omg.org/docs/ptc/03-10-14.pdf

3. Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer 7(3), 212–232 (2005)

4. Barnett, M., DeLine, R., Jacobs, B., Fähndrich, M., Leino, K.R.M., Schulte, W., Venter, H.:
The Spec# programming system: Challenges and directions. In: Meyer, B., Woodcock, J.
(eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer, Heidelberg (2008)

5. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood Cliffs
(1997)

6. Kolovos, D.S.: Extensible Platform for Specification of Integrated Languages for mOdel
maNagement (Epsilon), http://www.cs.york.ac.uk/˜dkolovos/epsilon

7. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142. Springer, Heidelberg
(2006)

8. Chiorean, D., Bortes, M., Corutiu, D.: Proposals for a Widespread Use of OCL. In: Proc. Tool
Support for OCL and Related Formalisms - Needs and Trends, Models/UML 2005, Montego
Bay, Jamaica (October 2005)

9. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 81–95. Springer, Heidelberg (2006)

10. Egyed, A.: Instant consistency checking for the UML. In: ICSE 2006: Proceeding of the
28th international conference on Software engineering, Shanghai, China, pp. 381–390. ACM
Press, New York (2006)

11. Eclipse Foundation, http://www.eclipse.org
12. ArgoUML, http://argouml.tigris.org
13. Eclipse.org. Eclipse Modelling Framework, http://www.eclipse.org/emf
14. Sun Microsystems. Meta Data Repository, http://mdr.netbeans.org
15. Epsilon component - Eclipse Generative Modeling Technology (GMT),

http://www.eclipse.org/gmt/epsilon

http://www.omg.org/cgi-bin/doc?ptc/03-10-04
http://www.omg.org/docs/ptc/03-10-14.pdf
http://www.cs.york.ac.uk/~dkolovos/epsilon
http://www.eclipse.org
http://argouml.tigris.org
http://www.eclipse.org/emf
http://mdr.netbeans.org
http://www.eclipse.org/gmt/epsilon

218 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

16. Eclipse GMF - Graphical Modeling Framework, http://www.eclipse.org/gmf
17. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and

Design and Iterative Development, 3rd edn. Prentice Hall PTR, Englewood Cliffs (2004)
18. openArchitectureWare, http://www.openarchitectureware.org/
19. Jouault, F., Bezı́vin, J.: Using ATL for Checking Models. In: Proc. International Workshop

on Graph and Model Transformation (GraMoT), Tallinn, Estonia (September 2005)

http://www.eclipse.org/gmf
http://www.openarchitectureware.org/

Ten Commandments Ten Years On:
Lessons for ASM, B, Z and VSR-net

Jonathan P. Bowen1 and Michael G. Hinchey2

1 Museophile Limited
Reading, United Kingdom
jpbowen@gmail.com
www.jpbowen.com

2 Loyola College in Maryland
Computer Science Department, Baltimore, Maryland, USA

mhinchey@loyola.edu
www.cs.loyola.edu

Abstract. Just over a decade ago, a paper Ten Commandments of Formal Meth-
ods [16] suggested some guidelines to help ensure the success of a formal meth-
ods project. It proposed ten important requirements (or “commandments”) for
formal developers to consider and follow, based on our knowledge of several in-
dustrial application success stories, most of which have been reported in more
detail in two books [32,33]. The paper was surprisingly popular, is still widely
referenced, and used as required reading in a number of formal methods courses.
However, not all have agreed with some of our commandments, feeling that they
may not be valid in the long-term. We re-examine the original commandments
over ten years on, and consider their validity in the light of a further decade of
industrial best practice and experiences, especially with respect to formal nota-
tions like ASM, B and Z. We also cover the activities of the UK Verified Software
Repository Network (VSR-net) in the context of UK Grand Challenge 6 on De-
pendable Systems Evolution.

1 Introduction

Painting is easy when you don’t know how, but very difficult when you do.
— Edgar Degas (1834–1917)

In our everyday world, we are constantly bombarded with examples of problems with
human design, be it using hardware or software. Sometimes the situation is not too
critical, but in a real safety-critical setting, the resulting problems could be far more
serious and the design engineer has a major responsibility to protect the lives of any
humans involved [14].

There have been problems with the use of hardware since the dawn of civilization.
However, the use of software is a newer and still less well understood phenomenon.
This is partly due to the additional complexity introduced in systems by the use of
software. The potential for mistakes is exponential and the mechanisms to prevent these
are still in active development. In addition, the digital nature of software, in contrast to

J.-R. Abrial and U. Glässer (Eds.): Börger Festschrift, LNCS 5115, pp. 219–233, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

www.jpbowen.com
www.cs.loyola.edu

220 J.P. Bowen and M.G. Hinchey

the analogue nature of many hardware systems, means that traditional techniques of
extrapolation and interpolation are impossible to extend to the software field. A single
incorrect bit can produce catastrophic results.

Given the number of systems controlled by software that now directly affect our
lives, whether in a critical or non-critical manner, we need techniques to reduce the
number of errors in these systems in order to minimise the impact of problems that they
may cause. This paper explores the use of one particular technique in the development
of computer-based systems, namely formal methods [34]. These mathematically-based
approaches have the potential to help eliminate errors early in the design process rather
than try to remove them later on in the testing phase, or worse, even later. Of course
both approaches (i.e., formal methods and testing) are important and are even com-
plementary. The use of formal methods at the initial stages can help in improving the
software at the later stages. It has been argued by Daniel Berry [4] that this is because
the developer is in essence undertaking the development twice, and that we always do
things better with the benefit of hindsight. Notwithstanding, many success stories (see
[32,33], amongst others) illustrate the potential benefits of formal methods.

In this paper, we first briefly introduce formal methods, and specifically address ASM
[13,28], the B-Method [2,50] and the Z notation [39,43], three leading approaches to
aid in the formal development of software. We then consider a number of “command-
ments” [16,19,20] in relation to using these formal methods at various stages in the
design process, especially with respect to developments over the last decade. We also
present a “Grand Challenge” initiative in the United Kingdom inspired by Sir Tony
Hoare [36,38], designed to encourage the improvement of formal approaches to soft-
ware verification and development, and related activities concerning a planned Verified
Software Repository [6,41,56]. Finally we draw some general conclusions.

2 Formal Methods

The ability to simplify means to eliminate the unnecessary so that the necessary
may speak.

— Hans Hofmann (1880–1966)

The term “formal methods” [17] as we know it now has been in use since the late
1970s; the term was used in logic in a different context a century previously. Although
the exact origins of the term seem to have been lost in the midst of time, unlike the
term “software engineering”, which was coined through NATO conferences in the late
1960s; see an online archive from one of the original editors [47]. A book with the title
“Formal Methods” by the Dutch logician and philosopher Evert W. Beth was published
in 1970 (although Beth died in 1964).

Perhaps the first real example of the use of formal methods is the proof of a program
presented by Alan Turing in the late 1940s [45]. C. A. R. Hoares classic 1969 paper on
the axiomatic basis of computer programming was certainly an important turning point
in the recognition of the importance of a formal basis for software [35].

Formal methods grew out of the structured programming paradigm as it was re-
alised that a mathematical (and specifically logical) basis to software development could

Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net 221

provide a key underpinning to ensure correctness of a program with respect to a speci-
fication. Suitable mature tool support is needed to help ensure scalability and industrial
applicability.

Important aspects of formal methods are a mathematical specification of the product
and the ability to prove the implemented program meets this specification, even if a full
proof is not carried out in practice due to engineering and cost limitations. This process
is known as verification. Another useful use of proof is validation, where a challenge
property of a specification is demonstrated to increase the confidence that it is indeed
the specification that is desired. If a required validation property does not in fact hold,
it illustrates a probable misunderstanding in the specification itself, which should be
rectified in discussion with the customer.

Over the years, there has been much misunderstanding about formal methods and
the way that they can usefully be applied [16]. Certainly it is very easy to use formal
methods inappropriately and it is very important that the project manager has a full
understanding and appreciation of how and where formal methods can be helpfully
used in the development process. The impact of using formal methods inappropriately
seems particularly high because it is possible to devote huge amounts of time to proofs,
which may or may not be worthwhile in practice, depending on the circumstances.

For example, GEC Alsthom spent decades of person years developing a few thousand
lines of program code fully formally, with tool support in the guise of the B Tool, for
the Paris subway RER line A to the (then) new Euro Disney site [23]. This controlled
the automated train protection (ATP) system, controlling the braking, etc., and crucially
allowing trains to be more closely spaced while still maintaining safety. Around half
the development time was spent on the verification process. This may sound like much
effort for little reward. However, the alternative would have been to build a new tunnel,
an obviously far more expensive endeavour. In such circumstances, what may appear to
be excessive cost initially can actually be a very cost-effective alternative in practice.

3 Levels of Abstraction

Abstraction is the way to the heart — it is not the heart itself.
— John Piper (1903–1992)

Formal methods are not widely used in software development in general. However, they
have achieved niche use in high-integrity systems where safety or security is paramount
[1,14], or the cost of failure would be huge (i.e., in business-critical applications). Here
we consider the impact of using formal methods in software development. Most soft-
ware projects start with a set of informal requirements agreed with the customer, ideally
in advance, although requirements are notorious for changing even during the lifetime
of a software project. These could be relatively simple. In Table 1 below [19], by way
of example, we consider a hypothetical project were the initial requirements are only
25 lines, which may be the result of discussions between a supplier and a customer. It is
even possible to formalise this high level of abstraction, for example using “lightweight”
formal methods [27] or a domain-specific formalism such as Duration Calculus for real-
time systems [58].

222 J.P. Bowen and M.G. Hinchey

Table 1. Levels of complexity [19]

25 lines of informal requirements
250 lines of specification (e.g., Z)

2,500 lines of design description (e.g., B)
25,000 lines of high-level program code

250,000 machine instructions of object code
2,500,000 CMOS transistors in hardware

The contractor could take these rather short and informal requirements and produce a
specification document, detailing what the system is intended to do. This could be infor-
mal, with a natural language description and diagrams, perhaps with some tool support.
Alternatively it is possible to formalise for the first time at this level of abstraction. A
typical approach would be to use the Z notation [39], based on logic and set theory
with the addition of schema boxes for structuring. This could be 250 lines long, i.e., an
order of magnitude larger that the original requirements. Unless the various levels in a
development process introduce significant additional complexity and information, there
is little point in including such a step.

Now it is helpful to describe the design of how the desired software is to operate in
more detail, including algorithms, data structures, etc. Again, much more detail could
be introduced, making the design description 2,500 lines long, for example. Industry of-
ten uses UML (The Unified Modeling Language) [8] at this level of abstraction. Using a
more formal approach, a tool like Atelier B could be used to develop a high-level spec-
ification and transform to a lower-level algorithmic description close to a compilable
programming language.

The program produced from the design stage, whether produced formally or infor-
mally, could be an order of magnitude larger than the design documentation (i.e., 25,000
lines of code in our running example). This may be the first time a fully formal piece of
text is produced on many software projects. In fact, in this sense, all software develop-
ment involves formal methods. It is just that often the formality is not introduced until
the last possible stage, as an executable high-level program.

By this time, this executable formal description is many times larger than its coun-
terpart at the specification stage. Thus, if only because of scale, it is much more difficult
to reason about and manipulate. In addition, most programming languages are not de-
signed for formal manipulation, although the use of assertions in programs, originally
developed for proof rather than testing purposes [35], is increasingly common.

Once an executable program is realized, the process of generating lower level de-
scriptions becomes increasingly automated. A compiler can produce object code suit-
able for direct execution by a processor. This may have an order of magnitude more
instructions in it than the high-level program equivalent (i.e., 250,000 machine instruc-
tions in our example). This could be implemented in hardware of yet more complexity,
perhaps 2,500,000 CMOS transistors for example.

Formal methods can be introduced and used at any of these levels of abstraction.
However, the impact is likely to be much more cost-effective at the higher levels such
as the requirements or specification. At these stages, the description is still relatively

Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net 223

small and can be changed easily at little cost. At each development stage, the cost of
correcting errors becomes very much more expensive.

It is highly desirable to correct errors early on before proceeding to further stages of
development. However, this can easily give the appearance of delaying a project because
it is superficially apparent to a naı̈ve observer (such as a manager inexperienced in the
use of formal methods) that there has been little progress with respect to the generation
of executable code until relatively late in a project that uses formality at the initial stages.

4 Ten Commandments

There is no mistake so great as the mistake of not going on.
— William Blake (1757–1827)

In this section we briefly cover some developments in the past decade relevant to the
original “ten commandments” of formal methods presented in [16], especially in rela-
tion to ASM, B and Z. Further, more extensive, information can be found in [19].

I. Thou Shalt Choose an Appropriate Notation

Choosing a formal method can be difficult for an industrial practitioner. Around 95
different approaches are listed on the main Virtual Library Formal Methods web page
[http://vl.fmnet.info]. Of these, ASM, B and Z are three of the leading approaches.

ASM has been demonstrated to be useful in combination with testing, as has been
done at Microsoft with Component Object Models [3], and in the Falko project at
Siemens, where apparently testing was the only viable means of verification [13].

B has particularly good mechanized tool support for software development compared
to most formal methods. Atelier B [http://www.atelierb.societe.com] is a tool used by
industry. B4free [http://www.b4free.com] is a free version of this tool that is useful
for teaching. For the future, The European Rodin project is developing a new B-based
development environment of industrial quality [http://rodin.cs.ncl.ac.uk].

Z is an excellent general purpose formal specification language with an ISO standard
[39]. However its tool support has been weaker than could be desired. The Z/EVES tool
[48] provides good theorem proving support (with type-checking as well), but is quite
difficult to use and is no longer supported. The Community Z Tools (CZT) project
[http://czt.sourceforge.net] is a collaborative project to develop open source tools for Z,
based around the SourceForge website facilities.

Increasingly all formal methods are providing XML support for interoperability, in-
cluding ASM, B and Z. Indeed, integrated formal methods continues to be a topic of
interest for research and application [7]. This trend is likely to continue. Although
most efforts for individual notations are rather independent at the moment, there is
some coordination. For example, an International Workshop on Web Languages and
Formal Methods (WLFM 2005) was held in conjunction with the FM’05 conference
[http://www.w3c.rl.ac.uk/WLFM2005].

ASM offers a significant advantage over both Z and B in that it is not tied to a first-
order set theoretic language and theorem provers, but may be used with any mathemati-
cal proof framework. In addition, the ability to utilize operational abstract pseudo-code

224 J.P. Bowen and M.G. Hinchey

to address system dynamics, while still utilizing declarative mathematical axioms for
environmental assumptions, offers significant advantages over the declarative nature of
languages such as Z. This flexibility in specification and proving properties comes at
the cost of difficulties in implementation and mechanization, however.

II. Thou Shalt Formalize But Not Over-Formalize

Formal methods continue to have different levels of use. ASM and Z can be used at quite
a light high-level with little tool support apart from type-checking if desired. Refinement
towards an implementation is also possible [9,24], although the theory is more advanced
than current practical tool support. For formal development, B provides an excellent
framework and selection of tools for actual software development. Properties can be
proved and refinement calculus applied in a stepwise manner, with many of the proofs
performed automatically.

Theorem provers and model checkers allow full machine checking but can be diffi-
cult to use and limited in scale. However, the Alloy Analyzer [http://alloy.mit.edu], with
its Z-like notation, allows a relatively lightweight approach to analyzing models. It can
usefully be used for checking potentially tricky aspects of real systems at relatively low
cost.

Animation of formal specifications can be beneficial. The ProB tool [http://www.st-
ups.uni-duesseldorf.de/ProB] and the newer ProZ tool allow this approach for B and Z,
respectively.

A significant number of open source tools for ASM are in existence and several
have been used in successful industrial projects ranging from hardware control sys-
tems to protocol verification. These include the component-based ASM tool environ-
ment CoreAsm [http://www.coreasm.org], downloadable from SourceForge, as well as
ASM-based hardware and software design and analysis tools that support real-time
features. AsmL (Abstract State Machine Language) [http://research.microsoft.com/-
fse/asml] from Microsoft is an executable specification language based on ASM, in-
tegrated within the Microsoft Word editor. AsmL has also been integrated into the C#
programming environment of Microsoft’s .NET. The Spec Explorer tool can be used to
explore models written in AsmL [53].

III. Thou Shalt Estimate Costs

The cost of using formal methods is difficult to estimate because of the different quality
of people involved, as with all software development. The specialist nature of formal
methods makes such estimation even more difficult. A study at NASA has demonstrated
that increased effort at the requirements phase of a project results in lower cost overruns
later [19], something that has also been experienced when using ASM [12].

A tool such as those for B can automate 90–95% of the proof obligations associated
with the refinement from the specification to code using heuristics within the tool. An
experienced and expert B user can help ensure that this figure is nearer 95% than 90%.
Since the remaining 5–10% of proof obligations must be proved with manual interven-
tion, the human effort involved could vary considerably as a result. In addition, the more

Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net 225

naı̈ve user will find the proofs that do need manual direction, through the addition of
suitable lemmas for example, considerably more difficult than the expert. Because of
this, it is well worth obtaining more expert formal methods experts at a higher cost per
day to reduce overall costs and development time.

IV. Thou Shalt Have a Formal Methods Guru on Call

Technology transfer is an important part of ensuring success in the use of formal methods.
For example, with Z, there have been courses both from academia and industry, a rea-
sonable choice of textbooks (around 15 [http://vl.zuser.org/pub/faq.txt]), tools for type-
checking and proofs, web resources [http://vl.zuser.org], a discussion forum (electronic
mailing list and newsgroup), a user group with regular meetings [http://www.zuser.org]
and an ISO standard [39]. Similar user groups and regular meetings exist for B and ASM.

More generally, Formal Methods Europe [http://www.fmeurope.org] founded the
Formal Techniques Industry Association (ForTIA) [http://www.fortia.org] in 2003 to
specifically support technology transfer of formal methods to industry. The European
Research Consortium for Informatics and Mathematics (ERCIM) Working Group on
Formal Methods for Industrial Critical Systems(FMICS) has been promoting the indus-
trial use of formal methods for the last decade.

V. Thou Shalt Not Abandon Thy Traditional Development Methods

Most of industry does not use formal methods. Instead, over the last decade, UML
(The Unified Modeling Language) [8] has increasingly dominated the favoured tool-
supported approach of industry for software development. A major flaw in the eye of
the formal methods community, and benefit in the eyes of some practitioners, is that
UML has an ill-defined semantics, and is indeed a loosely associated collection of tools
branded collectively as UML.

The precise UML group (pUML) [http://www.cs.york.ac.uk/puml] has looked at for-
malizing parts of UML. In addition, some efforts have been made to produce formal
methods tools that integrity with UML. For example, the UML-B approach with the
U2B translation tools enables integration of UML and B [51]. For increased use of for-
mal methods in the future, it will probably be necessary to consider the use of UML
in association with the formal methods itself. There have also been efforts to provide
precise semantics for UML activity diagrams, state machines and sequence diagrams,
which have subsequently been incorporated into ASM execution tools; e.g., [22] uses
AsmGofer to build a simulator for UML state diagrams, while [10] gives an ASM se-
mantics for UML activity diagrams and extended in [11].

Object-orientation is also very popular and indeed object-oriented ideas were origi-
nated by O.-J. Dahl who was to go on to be prominent in the field of formal methods
[46]. Object-oriented extensions of formal approaches are possible. For example, the
most popular extension for Z is Object-Z [25]. However, tool support is less extensive
and its use is less widespread too.

An object-oriented proof tool, similar to those for B, called Perfect Developer has
been developed by the UK firm Escher Technologies [http://www.eschertech.com/
products]. It targets to Java and C++ program implementations. A commendable feature

226 J.P. Bowen and M.G. Hinchey

of the tool is that it has been applied to itself, sadly still a rare occurrence among for-
mal methods approaches. It can automatically prove around 95% of the approximately
130,000 verification conditions that are generated [19]. The remaining conditions have
not been proved due to lack of resources to do this.

VI. Thou Shalt Document Sufficiently

Documenting successes and failures in the use of formal methods is important. Two
books have attempted to give examples of applications and industrial use of formal
methods [32,33], including B and Z. Documenting real successes can be difficult be-
cause companies do not wish to reveal information that might be useful to their compe-
tition. Equally, documenting failures can be difficult to encourage because of possible
bad publicity for the company concerned.

Much documentation concerning formal methods presents finished specifications.
One of the real benefits of a formal approach is the knowledge gained during the pro-
duction of a formal specification and reasoning about it for validation purposes. A book
recently reissued in a second edition [26] attempts to present a number of formal spec-
ification approaches applied to a single case study. A unique aspect of the book is that
the material is presented by going through a series of questions together with answers
to develop the eventual formal specification from the initial informal English require-
ments. This helps to give the reader an insight into the various approaches presented.
There are three Z-related examples: “vanilla” Z in Chapter 1, SAZ (a combination of
the SSADM diagram and text approach with Z) in Chapter 2, and UML+Z (adding Z to
UML) in Chapter 5. There are also three B-based approaches: using B itself in Chap-
ter 3, an approach transforming UML into B in Chapter 4, and using the event-based
Event-B in Chapter 9. The ASM approach is covered in Chapter 6. A comparison of all
the approaches covered is given in Chapter 19.

There are relatively few textbooks for formal methods. For the Z notation, there have
been around 15 textbooks as previously mentioned (e.g., [43]), for B less than half
this number (e.g., [50]) and ASM still fewer (e.g., [13]). This compares with the Java
programming language, for example, where around two orders of magnitude of books
exist.

Online, there are websites for ASM, B and Z linked from the Virtual Library formal
methods pages [http://vl.fmnet.info], which have been developed over the past decade.
More recently, there are also entries linked from the main Wikipedia category on formal
methods [http://en.wikipedia.org/wiki/Category:Formal methods]. However, documen-
tation on the practical application of formal methods is still relatively scant online. A
Verified Software Repository is planned that may provide more real and accessible ex-
amples for the future [6,41,56]. One of the goals of the ASM Research Center is to
provide a repository of design and analysis work, see [http://www.asmcenter.org].

VII. Thou Shalt Not Compromise Thy Quality Standards

With regard to standards, a decade ago some standards mentioned or even mandated the
use of formal methods in the development of the most critical systems. The UK Ministry
of Defense 00-55 and 00-56 standards including mandated use of formal methods for

Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net 227

safety-related software. 00-55 was updated in 1997 and Issue 3 of 00-56 for hardware
and software was made available in 2005.

In 2002, an ISO standard for the Z notation was accepted and published [39] after its
acceptance in 2001. However this was issued after a long gestation period during much
of the 1990s. There are many hurdles for the acceptance of an international standard
through ISO and agreement from several countries as required, with the possibility of
updates being needed due to feedback from members of ISO.

A de facto definition of Z has been available since the early 1990s in the form of a
book [52] (dubbed “ZRM” for the Z Reference Manual, now freely available online in
a slightly updated form since 2001). However, this did not specify the semantics of Z
and much of the time in the production of the Z standard was spent in the discussion
and production of an acceptable semantics [30]. While this was beneficial in clarifying
some aspects of Z that were potentially unsound (especially concerning schemas, used
for structuring specifications), it caused considerable delays in the production of the
standard. In addition, further features were added to the style of Z presented in the
standard.

With hindsight, it may have been advisable to adopt the ZRM book as the standard
with minimal changes. It would have then been available considerably earlier, possibly
with more benefit for producers of tools for Z. With the progress of time there have
been some benefits, such as the inclusion of additional Z symbols in UNICODE and
the consideration of an XML-based markup language for Z, for use on the web.

There are currently no explicit plans for the production of ISO standards for ASM
and B. The Abstract State Machines book [http://www.di.unipi.it/AsmBook] [13] does
however act as a de facto standard for core ASM concepts and the B-Book [2] takes a
similar role for B. It may be that this is all that is required in practice, especially with
the increased ease of access to material using the web. The more recent development
of Event-B, an event-based version of B, is likely to need a similar widely accepted de
facto standard [44].

VIII. Thou Shalt Not be Dogmatic

There should be some flexibility in the choice of notations and tools when applying
formal methods. While B is tied by definition of the method to mechanical tool support,
Z and ASM are not. It is important to listen to industry’s problems and let this guide
the development and use of tools, rather than being driven from an entirely academic
viewpoint. Good industrial-strength tool support is often the most critical aspect for
commercial use and formal methods still do not have a very good record on this.

Z/EVES has been one of the best Z theorem provers available over the last decade.
However, although this was developed by the Canadian company ORA, it is officially
owned by the Canadian government and is no longer generally available under license
except to organizations with existing agreements. More recently, the international Com-
munity Z Tools (CZT) initiative has been developing a suite of open source tools for the
support of Z. These are available on a SourceForge website [http://czt.sourceforge.net]
and it is possible to contribute to the project. However CZT is essentially a volunteer

228 J.P. Bowen and M.G. Hinchey

and academic effort, which can be treated with some suspicion in industrial, where good
reliable support for software tool is crucial and the cost is much less of an issue than in
academia.

Fortunately, the situation is somewhat better with respect to B. Atelier-B is a com-
mercially available tool for B and includes code generation facilities. The B4free tool
[http://www.b4free.com] is a freely available version suitable for academic use, but
lacking code generation. The European RODIN Project on Rigorous Open Develop-
ment Environment for Complex Systems [http://rodin.cs.ncl.ac.uk], running from 2004
to 2007, is developing excellent tool support with an impressive user interface for a
newer variant of B known as B# (“B sharp”, like the C# programming language). Sup-
port for changing the specification and handling the implications of this as automatically
as possible is an aspect that is being considered serious on this project. This is com-
mendable since it is something that is lacking in many existing formal methods tools,
but it is crucial in actual software development where software changes and mainte-
nance are a major part of the overall cost in practice. The RODIN B# tool is available
from a SourceForge website [http://rodin-b-sharp.sourceforge.net].

Tool support for ASM is less well developed than for B, and this will be a critical
aspect for industrial take-up of ASM. There are however tools based on theorem provers
for verification and validation of ASMs; theorem provers used for these tools include
KIV, Isabelle and PVS.

IX. Thou Shalt Test, Test, and Test Again

The availability of a formal specification (e.g., in the framework of ASM, B or Z),
means that there is a very precise description against which the final software can be
tested. ASM has been found to be particularly useful with respect to testing, as men-
tioned earlier, but the relationship of specification and testing has also be explored in
the context of Z as well.

If the formal specification can be animated, it can be used as a “test oracle”, and
this approach has been used succesfully in the context of ASM. Even if the formal
specification is not easily animatable (as with Z in general), it is possible to use a formal
specification to semi-automatically determine worthwhile test sets (e.g., to cover all
the various preconditions in an operation). Indeed, this can reduce the cost of testing
considerably, perhaps even more than the cost of producing the formal specification
itself, since this typically requires considerable manual effort.

Formalizing test criteria themselves can also be beneficial since there are normally
defined informally in practice and there can be misunderstanding as to what is required
for testing with respect to various criteria. Indeed, there are sometimes subtle variants
that may cause confusion for those that are not expert in the field.

MC/DC is one such criteria, mandated by the US FAA (Federal Aircraft Authority)
for critical aircraft software. Even stricter criteria are possible for greater assurance. For
example, RC/DC, based on MC/DC, has been suggested [54,42]. The formal definition
of the RC/DC criterion can be formulated in terms of the existing MC/DC criterion
(formalised using the Z notation) as follows [54]:

Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net 229

RC DC
MC DC

∀DecReinforced ; c : cond | c ∈ argdec •
(let target0 == choice(keep0fix c, keep0 c);
target1 == choice(keep1fix c, keep1 c) •

(target0 �= ∅ ⇒ (testset × testset) ∩ target0 �= ∅) ∧
(target1 �= ∅ ⇒ (testset × testset) ∩ target1 �= ∅))

The predicate part of the Z schema above adds an additional constraint to be satisfied.
In the United Kingdom, a government-funded EPSRC Network on formal methods

and testing (FORTEST) [15], with academic and industrial partners, ran between 2001
and 2005 [http://www.fmnet.info/fortest]. An associated book is due to appear [31] and
the TAICPART conference series (Testing: Academic & Industrial Conference — Prac-
tice And Research Techniques) continues to address these issues [29].

X. Thou Shalt Reuse

Meaningful reuse is possible in general as soon as a sufficient level of formality has been
introduced into the description language being used. Normally in a software project, this
is only at the programming stage (see Table 1 earlier). In a project employing formal
specification (e.g., ASM, B or Z), this could be at a higher level of abstraction. Since
the description is considerably less complex at these levels, there is the potential for it
to be easier and cheaper as well.

However, formal methods still do not have a good record of reuse in practice and
this is something that tools developers should consider seriously. The RODIN tool, as
mentioned earlier, is probably the leading formal methods tool under development that
is attempting to address this problem.

5 A Grand Challenge and the Verified Software Repository

For the future, realistic examples of formal specification and verification could help
to set goals for the improvement of formal methods. In the United Kingdom, there is
a Hilbert-style “Grand Challenge” initiative considering seven difficult and unsolved
problems in computer science [38]. Grand Challenge 6 [http://www.fmnet.info/gc6]
concerns Dependable Systems Evolution, inspired by Tony Hoare’s concept of a verify-
ing compiler in particular [36] and verified software in general [37]. A workshop was
held in conjunction with the FM’05 conference in 2005 [21].

In 2005, the three-year United Kingdom EPSRC Network VSR-net started, based
around the idea of a Verified Software Repository to document verified software at-
tempts and case studies [http://www.fmnet.info/vsr-net]. This has been partly inspired
by the existing QED Pro Quo repository of tools in the US [http://www.qpq.org].

Initially the security-critical Mondex Electronic Purse example (developed by Log-
ica for the NatWest bank) has been studied [56,57]. This was originally specified using
Z with hand proofs for verification in the late 1990s. At the time although Z proof

230 J.P. Bowen and M.G. Hinchey

tools such as Z/EVES were available, it would have taken days to run the proofs us-
ing the hardware of the time, making this intractable in practice. Now the proofs have
been replayed using Z/EVES and on current hardware they only take hours to complete,
making this a reasonable proposition. In addition, mechanization has revealed a number
of minor problems in the hand proofs, something that is to be expected in any proof of
industrial scale. Fortunately there are no major issues.

The case study has been attempted using a number of other formal approaches and
tools as well. In general these have discovered the same problems independently, which
is a pleasing aspect of the experiment. The alternative approaches used besides Z have
included RAISE, Perfect Developer (a B-like proof tool), the KIV theorem prover using
the ASM for the formalization [49].

6 Conclusion

Perfection is achieved, not when there is nothing more to add, but when there
is nothing left to take away.

— Antoine de Saint-Exupéry (1900–1944)

Formal methods continue to be important in safety and security critical applications,
where they have found their niche. They are useful for both hardware (especially us-
ing model-checking approaches) and software. ASM, B and Z are mainly suitable for
aiding software development. Z is the most mature approach, with an ISO standard. It
is general purpose and is especially applicable for formal specification, but still lacks
good tool support. B is better for machine-support program development from a spec-
ification to program code, with good industrial-level support, and more planned. ASM
is the least mature approach in terms of industrial usage, but has been applied to real
problems, and has potential for the future if tool and other support can be improved.

For all approaches, tool support is critical for success, and this is why B looks like a
favoured practical approach at present out of ASM, B and Z. Open source tools seem to
be increasing, which certainly has benefits, especially in the academic world. However,
industry requires reliable support even for open source software, and is willing to pay
for it. Formal methods developers should take note of this since a professional approach
is very important in an industrial context.

The formal methods community is still relatively small. While it has not declined in
the last decade, it certainly has not increased dramatically either. Whether it will do so
in the future is debatable, although even large software companies like Microsoft now
recognize the importance of formal methods in the right context. For example, the prob-
lem of third party device drivers causing system crashes has been aided by taking a more
formal approach and an ASM-based test oracle approach has also been adopted in parts
of the company. This is the sort of environment where it is possible that there could be
a breakthrough in the use of formal methods, but it will require significant technology
transfer skills with convincing support (especially through tools) for this to happen.

Interaction between different parts of the formal methods community is also impor-
tant. The Dagstuhl seminar at which this paper was presented explicitly aimed to help
with interaction between the ASM, B and to a lesser extent the Eiffel communities.

Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net 231

For the future, an ABZ Conference is planned for 2008 to continue such interaction be-
tween the groups of researchers and practitioners interested in ASM, B and Z
[http://www.abz2008.org].

Acknowledgements

The ideas in this paper are a development from two papers that have appeared in IEEE
Computer over a ten-year period [16,19]. The latter paper was based on [18,20]. Thank
you to the organizers of the Dagstuhl Seminar 06191 on Rigorous Methods for Software
Construction and Analysis, for an excellent meeting and the opportunity to present this
paper. We are grateful to the anonymous reviewers for several pointers and insightful
comments on an earlier draft. A special thank you to Prof. Egon Börger of the Uni-
versity of Pisa for his support and academic conviviality over the years. He has been
instrumental in bringing together the ASM, B and Z communities.

References

1. Abdallah, A.E., Bowen, J.P., Nissanke, N.: Formal methods for safety critical systems. In:
Diab, H.B., Zomaya, A.Y. (eds.) Dependable Computing Systems: Paradigms, Performance
Issues, and Applications, Part I: Models and Paradigms. Wiley Series on Parallel and Dis-
tributed Computing, vol. 9. John Wiley & Sons, Chichester (2005)

2. Abrial, J.-R.: The B-Bool: Assigning programs to meanings. Cambridge University Press,
Cambridge (1996)

3. Barnett, M., Schulte, W.: Spying on components: A runtime verification technique. In: Work-
shop on Specification and Verification of Component-Based Systems, Technical Report TR
01-09a, Iowa State University, USA, pp. 7–13 (2001)

4. Berry, D.M.: Formal methods: The very idea — Some thoughts about why they work when
they work. Science of Computer Programming 42(1), 11–27 (2002)

5. Beth, E.W.: Formal Methods: An Introduction to Symbolic Logic and to the Study of Effec-
tive Operations in Arithmetic and Logic. Synthese Library. Springer, Heidelberg (1970)

6. Bicarregui, J., Hoare, C.A.R., Woodcock, J.C.P.: The Verified Software Repository: A step
towards the verifying compiler. Formal Aspects of Computing 18(2), 143–151 (2006)

7. Boiten, E.A., Derrick, J., Smith, G.P. (eds.): IFM 2004. LNCS, vol. 2999. Springer, Heidel-
berg (2004)

8. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide, 2nd
edn. Addison-Wesley Object Technology Series (2005)

9. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15(1–2), 237–257
(2003)

10. Börger, E., Cavarra, A., Riccobene, E.: An ASM semantics for UML Activity Diagrams. In:
Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 293–308. Springer, Heidelberg (2000)

11. Börger, E., Cavarra, A., Riccobene, E.: Modeling the dynamics of UML state machines. In:
[28], pp. 223–241

12. Börger, E., Päppinghaus, P., Schmid, J.: Report on a practical application of ASMs in soft-
ware design. In: [28], pp. 361–366

13. Börger, E., Stärck, R.: Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer, Heidelberg (2003), http://www.di.unipi.it/AsmBook/

14. Bowen, J.P.: The ethics of safety-critical systems. Communications of the ACM 43(4), 91–97
(2000)

http://www.di.unipi.it/AsmBook/

232 J.P. Bowen and M.G. Hinchey

15. Bowen, J.P., Bogdanov, K., Clark, J., Harman, M., Hierons, R., Krause, P.: FORTEST: For-
mal methods and testing. In: Proc. 26th Annual International Computer Software and Ap-
plications Conference (COMPSAC 2002), Oxford, UK, August 26–29, pp. 91–101. IEEE
Computer Society Press, Los Alamitos (2002)

16. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods. IEEE Computer 28(4),
56–63 (1995)

17. Bowen, J.P., Hinchey, M.G.: Formal methods. In: Tucker Jr., A.B. (ed.) Computer Science
Handbook, 2nd edn. Section XI, Software Engineering, ch. 106, pp. 106-1–106-25. Chapman
& Hall / CRC, ACM (2004)

18. Bowen, J.P., Hinchey, M.G.: Ten commandments revisited: A ten-year perspective on the
industrial application of formal methods. In: Margaria, T., Massink, M. (eds.) FMICS 2005:
Proceedings of the Tenth International Workshop on Formal Methods for Industrial Critical
Systems, Lisbon, Portugal, September 5-6, pp. 8–16. ACM Press, New York (2005)

19. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods... ten years later. IEEE
Computer 39(1), 40–48 (2006)

20. Bowen, J.P., Hinchey, M.G.: Ten commandments ten years on: An assessment of formal
methods usage. In: Eleftherakis, G. (ed.) SEEFM 2005: 2nd South-East European Workshop
on Formal Methods, Formal Methods: Challenges in the Business World, Ohrid, Macedonia,
South-East European Research Centre, November 18–19, pp. 1–16 (2005)

21. Bowen, J.P., Woodcock, J.C.P. (eds.): Grand Challenge 6 Workshop on Dependable
Systems Evolution. Workshop in association with the FM 2005 Formal Methods Con-
ference, , University of Newcastle upon Tyne, United Kingdom, July 18 (2005),
http://www.fmnet.info/gc6/fm05/proceedings.pdf

22. Cavarra, A.: Applying Abstract State Machines to Formalize and Integrate the UML
Lightweight Method. PhD thesis, University of Catania, Sicily, Italy (2000)

23. Dehbonie, B., Mejia, F.: Formal development of safety-critical software systems in railway
signalling. In: [32], ch. 10, pp. 227–252 (1995)

24. Derrick, J.: A single complete refinement rule for Z. Journal of Logic and Computation 10(5),
663–675 (2000)

25. Duke, R., Rose, G.: Formal Object-Oriented Specification using Object-Z. Cornerstones of
Computing Series. MacMillan Press, Basingstoke (2000)

26. Frappier, M., Habrias, H. (eds.): Software Specification Methods: An Overview Using a Case
Study. ISTE (2006)

27. George, V., Vaughan, R.: Application of lightweight formal methods in Requirement Engi-
neering1. CrossTalk: The Journal of Defense Software Engineering (January 2003),
http://www.stsc.hill.af.mil/crosstalk/2003/01/George.html

28. Gurevich, Y., Kutter, P., Odersky, M., Thiele, L. (eds.): ASM 2000. LNCS, vol. 1912.
Springer, Heidelberg (2000)

29. Harman, M., McMinn, P. (eds.): Proceedings of Testing: Academic & Industrial Conference
— Practice And Research Techniques (TAICPART), Windsor, United Kingdom, August 29–
31, pp. 29–31. IEEE Computer Society Press, Los Alamitos (2006)

30. Henson, M.C., Reeves, S., Bowen, J.P.: Z logic and its consequences. CAI: Computing and
Informatics 22(4), 381–415 (2003)

31. Hierons, R.M., Bowen, J.P., Harman, M. (eds.): FORTEST 2008. LNCS, vol. 4949. Springer,
Heidelberg (2008)

32. Hinchey, M.G., Bowen, J.P. (eds.): Applications of Formal Methods. Prentice Hall Interna-
tional Series in Computer Science (1995)

33. Hinchey, M.G., Bowen, J.P.: Industrial-Strength Formal Methods in Practice. FACIT series.
Springer, Heidelberg (1999)

34. Hinchey, M.G., Bowen, J.P., Rouff, C.: Introduction to formal methods. In: Rouff, C.,
Hinchey, M.G., Rash, J., Truszkowski, W., Gordon-Spears, D. (eds.) Agent Technology from
a Formal Perspective. NASA Monographs in Systems and Software Engineering, vol. 2, pp.
25–64. Springer, Heidelberg (2006)

http://www.fmnet.info/gc6/fm05/proceedings.pdf
http://www.stsc.hill.af.mil/crosstalk/2003/01/George.html

Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net 233

35. Hoare, C.A.R.: An axiomatic basic for computer programming. Communications of the
ACM 12(10), 576–583 (1969)

36. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research. Journal
of the ACM 50(1), 63–69 (2003)

37. Hoare, S.T.: The ideal of verified software. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 5–16. Springer, Heidelberg (2006)

38. Hoare, C.A.R., Milner, R.: Grand challenges for computing research. The Computer Jour-
nal 48(1), 49–52 (2005)

39. ISO. Information Technology — Z Formal Specification Notation — Syntax, Type System
and Semantics, ISO/IEC 13568 (2002)

40. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge
(2006)

41. Jones, C.B., O’Hearn, P.W., Woodcock, J.C.P.: Verified software: A grand challenge. IEEE
Computer 39(4), 93–95 (2006)

42. Kapoor, K., Bowen, J.P.: A formal analysis of MCDC and RCDC test criteria. Software
Testing, Verification and Reliability 15(1), 21–40 (2005)

43. Lightfoot, D.: Formal Specification Using Z, 2nd edn. Grassroots Series. Palgrave (2001)
44. Métayer, C., Abrial, J.-R., Voisin, L.: Event-B Language. Project IST-511599 RODIN (Rig-

orous Open Development Environment for Complex Systems), Deliverable 3.2, Public Doc-
ument, May 31 (2005), http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

45. Morris, L., Jones, C.B.: An early program proof by Alan Turing. IEEE Annals of the History
of Computing 6(2), 129–143 (1984)

46. Owe, O., Krogdahl, S., Lyche, T. (eds.): From Object-Orientation to Formal Methods. LNCS,
vol. 2635. Springer, Heidelberg (2004)

47. Randell, B.: Memories of the NATO software engineering conferences. IEEE Annals of the
History of Computing 20(1), 51–54 (1998),
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/

48. Saaltink, M.: The Z/EVES system. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.) ZUM 1997.
LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

49. Schellhorn, G., Grandy, H., Haneberg, D., Möbius, N., Reif, W.: A systematic verification
approach for Mondex electronic purses using ASMs. In: Abrial, J.-R., Glässer, U. (eds.)
Börger Festschrift. LNCS, vol. 5115. Springer, Heidelberg (2009)

50. Schneider, S.: The B-Method: An Introduction. Cornerstones of Computing Series. MacMil-
lan Press, Basingstoke (2001)

51. Snook, C., Butler, M.: UML-B: Formal modelling and design aided by UML. ACM Trans-
actions on Software Engineering and Methodology 15(1), 92–122 (2006)

52. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall International Se-
ries in Computer Science (1992), http://spivey.oriel.ox.ac.uk/˜mike/zrm/

53. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson, L.:
Model-based testing of object-oriented reactive systems with Spec Explorer. In: [31]

54. Vilkomir, S.A., Bowen, J.P.: From MC/DC to RC/DC: Formalization and Analysis of
Control-Flow Testing Criteria. Formal Aspects of Computing 18(1), 42–62 (2006)

55. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering 10, 352–357 (1984)
56. Woodcock, J.C.P.: First steps in the verified software Grand Challenge. IEEE Com-

puter 39(10), 57–64 (2006)
57. Woodcock, J., Freitas, L.: Z/Eves and the mondex electronic purse. In: Barkaoui, K., Caval-

canti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 15–34. Springer, Heidelberg
(2006)

58. Chaochen, Z., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems.
Monographs in Theoretical Computer Science. Springer, Heidelberg (2004)

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
http://spivey.oriel.ox.ac.uk/~mike/zrm/

Author Index

Boulmé, Sylvain 1
Bowen, Jonathan P. 219
Butler, Michael 78

Cansell, Dominique 17, 78

Evans, Neil 130

Farahbod, Roozbeh 147, 170

Gargantini, Angelo 33
Gervasi, Vincenzo 147, 170
Glässer, Uwe 147
Glausch, Andreas 50
Grandy, Holger 93
Grant, Neil 130

Haneberg, Dominik 93
Hinchey, Michael G. 219

Ifill, Wilson 130

Kirchberg, Markus 65
Kolovos, Dimitrios S. 204

Leuschel, Michael 78

Ma, Geroge 147
Méry, Dominique 17
Moebius, Nina 93
Müller, Peter 187

Paige, Richard F. 204
Polack, Fiona A.C. 204
Potet, Marie-Laure 1

Reif, Wolfgang 93
Reisig, Wolfgang 50
Riccobene, Elvinia 33
Ruskiewicz, Joseph N. 187

Scandurra, Patrizia 33
Schellhorn, Gerhard 93
Schewe, Klaus-Dieter 65
Schmidt, Peggy 111
Schneider, Steve 130

Thalheim, Bernhard 111
Treharne, Helen 130

Zhao, Jane 65

	Title Page
	Preface
	Table of Contents
	Relaxing Restrictions on Invariant Composition in the B Method by Ownership Control a la Spec#
	Introduction
	A Brief Presentation of the B Method
	Abstract Machine
	Invariants Composition

	Adapting Spec# Approach for Modules a la B
	Dependencies between Components and Admissible Invariants
	Extending the Language of Generalized Substitution
	Revisiting Example 2.2

	A Component Approach
	Several Forms for Definitions of Operations
	Initialization and Reinitialization Process
	An Example with Two Writers

	Static Analysis and Proof Obligations
	Introduction to Our Static Analysis
	Inference Rules of Our Static Analysis
	Correctness of the Typing Rules
	The Typing Algorithm and Its Application
	Revisiting Example of Section 4.3

	Conclusion and Perspectives
	References

	Designing Old and New Distributed Algorithms by Replaying an Incremental Proof-Based Development
	Introduction
	Playing with Proof-Based Developments
	Modelling, Design and Verification of Distributed Algorithms
	Proof-Based Development for Distributed Algorithms
	Summary of the Paper

	Proof-Based Developments of Distributed Algorithms in Event B
	Analysis of the Leader Election Problem
	Formalizing the Leader Election Problem in Event B
	First Algorithmic Model of the Leader Election Problem

	The Leader Election Protocol without Acknowledgement
	Contention-Free Development Part
	Contention Resolution
	Contention Prevention

	Localisation of Events and Data
	Conclusion and Future Work
	References

	Ten Reasons to Metamodel ASMs
	To Have a Standard Abstract Notation
	To Have a Graphical Abstract Notation
	To Have an Interchange Format
	To Have Standard Libraries
	To Derive Concrete Notations and Their Parsers
	To Allow Tool Interoperability
	To Help the Integration of Existing Tools
	To Help the Development of New Tools
	To Integrate ASMs with Other Notations/Tools
	To Complement the MDE with a Formal Approach
	References

	An ASM-Characterization of a Class of Distributed Algorithms
	Introduction
	Scope and Contribution of This Paper
	The Basic Framework
	Distributed Algorithms
	A State of a Distributed Algorithm Is a Structure
	Distributed Algorithms Perform Actions
	Distributed Algorithms Respect Isomorphism
	Actions of Distributed Algorithms Operate Autonomously
	Actions of Distributed Algorithms Are Bounded

	Distributed Abstract State Machines
	Assignment Statements
	Assignment Statements Generate Actions
	Guarded Assignment Statements
	Sequential ASM Programs
	Distributed Abstract State Machines

	The Distributed ASM Theorem
	Conclusion
	References

	Using Abstract State Machines for the Design of Multi-level Transaction Schedulers
	Introduction
	ASM Ground Model for Multi-level Transaction Processing
	Multi-level Transactions
	Multi-level Schedules

	Serialisability and Recoverability
	The str-2PL-Refinement
	The Basic FoPL-Refinement
	Conclusion
	References

	Validating and Animating Higher-Order Recursive Functions in B
	Introduction
	Symbolic Representation of Sets of Values
	Defining Recursive Functions in B
	The Problems with Recursive Set Comprehensions
	How to Define Recursive Functions in B
	A General Scheme

	Implementation: Recursive Closures
	Higher-Order Functional Programming Examples in B
	Empirical Results
	Related Work and Conclusion
	References

	A Systematic Verification Approach for Mondex Electronic Purses Using ASMs
	Introduction
	The ASM Specifications of Mondex
	The Abstract Level
	The Concrete Level

	Systematic Development of a Forward Simulation
	A Denial of Service Attack
	Systematic Development of an Invariant
	Related Work
	Conclusion
	References

	Management of UML Clusters
	Introduction
	Software Engineering and Software Specification
	Requirements for Management of UML Specifications
	Organisation of the Paper

	UML Diagram Clusters
	Algebraic UML Systems for Kinds of UML Diagrams
	Contracted Development of UML Diagrams
	Coexistence of UML Diagrams and UML Clusters

	ASM-Based UML Clusters
	ASM Basis for UML Clusters
	ASM-Based Contract Management
	Supporting Management by Contract Templates

	Development of Clusters and Contracts
	Example: Library Support System
	Collaborative Development and Collaboration Contracts
	Support for Change Management

	Conclusion
	References

	A Step towards Merging xUML and CSP || B
	Introduction
	Notation
	Executable UML Overview
	State Machine Overview
	Concurrency Models
	Modelling Signals

	Modelling Signal Queues in CSP
	Case Study
	What Shall We Model Formally?

	Analysis
	Discussion
	References

	$CoreASM$ Plug-In Architecture
	Introduction
	$CoreASM$ Architecture
	CoreASM Engine
	Engine Life-Cycle
	Microkernel Approach

	Extensibility and Plug-Ins
	$CoreASM$ Plug-In Framework
	Signature Plug-In
	IO Plug-In

	Related Work
	Conclusion
	References

	$JASMine$: Accessing Java Code from $CoreASM$
	Introduction
	$JASMine$: Design and Semantics
	Creation of Java Objects
	Access to Fields of Java Objects
	Invoking Methods of Java Objects
	Type Conversion
	Aggregation of Deferred Updates

	Implementing $JASMine$
	Interacting with the CoreASM Engine
	Interacting with the JVM

	A Simple Example
	Pragmatics and Future Work
	Conclusions
	References

	A Modular Verification Methodology for C# Delegates
	Introduction
	Background on Boogie Methodology
	Main Concepts
	Delegate Specifications and Refinement
	Delegate Invariants

	Technical Treatment
	Admissible Delegate Invariants
	Proof Rules
	Soundness

	Related Work
	Conclusions
	References

	On the Evolution of OCL for Capturing Structural Constraints in Modelling Languages
	Introduction
	Shortcomings of OCL for Capturing Structural Constraints
	Poor Support for User Feedback
	No Support forWarnings/Critiques
	No Support for Dependent Constraints
	Limited Flexibility in Context Definition
	No Support for Repairing Inconsistencies

	Extending OCL: The Epsilon Validation Language (EVL)
	Infrastructure
	Abstract Syntax of EVL
	Execution Semantics of EVL
	Tool Support

	Case Study
	Scenario: The Singleton Pattern

	Related Work
	Conclusions and Further Work
	References

	Ten Commandments Ten Years On: Lessons for ASM, B, Z and VSR-net
	Introduction
	Formal Methods
	Levels of Abstraction
	Ten Commandments
	A Grand Challenge and the Verified Software Repository
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

