
Chapter 4
Reaction–Diffusion Fronts

Traveling waves are typical nonequilibrium phenomena encountered in numerous
instances in physics, chemistry, biology, and other areas [129, 82, 309, 310]. React-
ing and diffusing systems described by the RD equation (2.3) represent a particular
well-studied class of applications. Equation (2.3) is known as Fisher’s equation, if
the reaction term has the logistic form F(ρ) = rρ(1− ρ):

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ rρ(1− ρ). (4.1)

It was introduced in 1937 in the seminal contributions of R. A. Fisher [132] and
A. N. Kolmogorov, together with I. G. Petrovskii and N. S. Piskunov [232] as a
model for the spreading of an advantageous gene. Consequently, we will refer to
(4.1) also as the FKPP equation. It is the simplest and most well-known equation
that has traveling wave solutions.

4.1 Propagating Fronts

A front corresponds to a traveling wave solution, which maintains its shape, travels
with a constant velocity v

∗, ρ(x, t) = ρ(x − v
∗t), and joins two steady states of

the system. The latter are uniform stationary states, ρ(x, t) = ρ, where F(ρ) =
0. For the logistic kinetics, the steady states are ρ1 = 0 and ρ2 = 1. While the
logistic kinetics has only two steady states, three or more stationary states can exist
for a broad class of systems in nonlinear chemistry and population dynamics with
Allee effect, but a front can only connect two of them. To determine the propagation
direction of the front, we need to evaluate the stability of the stationary states, see
Sect. 1.2. The steady state ρ is stable if F ′(ρ) < 0 and unstable if F ′(ρ) > 0. Let
the initial particle density ρ(x, 0) be such that on a certain finite interval, ρ(x, 0)
is different from 0 and 1, and to the left of this interval ρ(x, 0) = 1, while to the
right ρ(x, 0) = 0. In this case, the initial condition is said to have compact support.
Kolmogorov et al. [232] showed for Fisher’s equation that due to the combined
effects of diffusion and reaction, the region of density close to 1 expands to the
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124 4 Reaction–Diffusion Fronts

right. There exists a front that connects the stable steady state to the unstable steady
state and that propagates to the right; the stable state invades the unstable state.

Consider a general reaction term that satisfies F(0) = F(1) = 0. If F vanishes
at ρ = c > 0 with c �= 1, ρ can be renormalized by defining a new field ρ/c for
which the above condition is satisfied. Aronson and Weinberger [18] showed that
any positive, sufficiently localized (this means decaying faster than exponentially
for |x | → ∞) initial condition ρ(x, 0), with ρ(x, 0) ∈ [0, 1], evolves into a front
propagating with velocity v

∗, i.e., for large t , ρ(x, t) behaves as ρ(x − v
∗t). The

shape of the front is determined by the boundary value problem

Dρzz + vρz + F(ρ) = 0 (4.2)

with

lim
z→−∞ ρ(z) = 1 and lim

z→+∞ ρ(z) = 0. (4.3)

Here z ≡ x−vt , and (4.2) is obtained by transforming (2.3) to the frame co-moving
with the front, since ∂xρ → dρ/dz ≡ ρz and ∂tρ → −vdρ/dz ≡ −vρz . Aronson
andWeinberger [18] characterized the asymptotic velocity v

∗ as the minimum value
of the parameter v in (4.2) for which the solution ρ(z) is monotonic. This poses the
problem of how to determine the value of v

∗ for different reaction terms. We will
consider two types of reaction terms.

Case A: F ′(0) > 0, F(ρ) > 0, ρ ∈ (0, 1). This case is known as heterozygote
intermediate in population dynamics or as KPP kinetics.

Case B: F(ρ) > 0 for all ρ ∈ (b, 1) and F(ρ) < 0 for all ρ ∈ (0, b) with
b ∈ (0, 1),

∫ 1
0 F(ρ)dρ > 0, and F ′(0) < 0. This case is known as heterozygote

inferior in population dynamics or as bistable kinetics.
In both cases, (4.2) can be viewed as Newton’s equation for a particle moving

in one dimension under the action of the force −F(ρ) − vρz ; the variable z plays
the role of time. The force −F(ρ) is conservative and derives from the potential
V (ρ) = ∫ ρ

0 F(s)ds.
If the kinetic term F(ρ) belongs to Case A, the potential has a minimum at the

point ρ = 0 and a maximum at ρ = 1. The second term, −vρz , in (4.2) represents
a damping force, where v represents the viscosity. Then (4.2) describes the motion
of a particle rolling down from the top of the potential at ρ = 1 to the bottom of
the potential well, ρ = 0, in the presence of a viscous force. If v is small, i.e., the
viscosity is small, the particle oscillates near the bottom of the well before it settles
down at the minimum ρ = 0. If v increases, there exists a threshold value at which
the oscillations cease. In other words, the particle rolls down monotonically from
ρ = 1 to ρ = 0; in mechanics this is known as critical damping. If v increases
even further, the particle continues to roll down monotonically and has less and
less velocity at every point of its trajectory. Consequently, there exists a critical
value of v, which we denote by v

∗, such that for v ≥ v
∗, there will be mono-

tonically decreasing solutions to (4.2). The front is said to be propagating into the
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unstable state. This result was proven rigorously by Aronson and Weinberger, who
also showed that the critical value v

∗ is the front velocity for the RD equation in
Case A, if the front evolves from an initial condition with compact support.

If F(ρ) belongs to Case B, the potential has two maxima, at ρ = 1 and ρ = 0,
and a minimum at ρ = b. The particle starts at ρ = 1, z = −∞, and needs to
arrive at ρ = 0, z = +∞, with zero velocity. Energy conservation requires that the
height of the maximum at ρ = 0 must be smaller than the height of the maximum
at ρ = 1. Otherwise the particle never reaches ρ = 0. This condition is precisely
∫ 1
0 F(ρ)dρ > 0. In this case, the front connects two stable states and is said to be
propagating into a metastable state; ρ = 0 is less stable than ρ = 1. It should be
clear intuitively that there is only one value of v

∗ for which the particle rolls down
from ρ = 1 to the bottom of the valley at ρ = b and then climbs up to the top at
ρ = 0 to stop there with zero velocity. If v < v

∗, the particle overshoots at ρ = 0,
leading to an unphysical front. If v > v

∗, the particle becomes trapped forever at
ρ = b, representing again a front propagating into an unstable state. We represent
schematically this discussion in Fig. 4.1.

A phase plane analysis represents a useful alternative to the mechanical analogy
discussed above. The phase plane is constructed by the standard technique of con-
verting the second-order ordinary differential equation (4.2) into a system of two
first-order differential equations:

Fig. 4.1 Schematic picture for Cases A and B. We plot the reaction term, its corresponding poten-
tial, and the front profile
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ρz = −q, (4.4a)

qz = − v

D
q − r

D
F(ρ). (4.4b)

In the phase plane (ρ, q), a front corresponds to trajectory that connects two steady
states of (4.4). Such a trajectory is know as a heteroclinic orbit or a heteroclinic
connection. The steady states of (4.4) are given by (ρ, 0), where F(ρ) = 0. The
phase plane trajectories or orbits of (4.4) are the solutions of

dρ

dq
= vq + r F(ρ)

Dq
. (4.5)

To be specific, we consider logistic kinetics and Nagumo kinetics [274], F(ρ) =
rρ(1−ρ)(ρ−b), as examples for cases A and B, respectively. For the logistic case, a
linear stability analysis of the stationary states (0, 0) and (1, 0) provides their eigen-

values λ±(0, 0) = −v/2 ±
√

v
2 − 4Dr/2 and λ±(1, 0) = −v/2 ±

√

v
2 + 4Dr/2,

respectively. The state (0, 0) is a stable node if v > 2
√
Dr and a stable focus if

v < 2
√
Dr . The state (1, 0) is always a saddle point. To be physically acceptable,

a front must always be nonnegative. Consequently, only nonnegative heteroclinic
orbits are acceptable. Such orbits can only exist if (0, 0) is a stable node. In other
words, fronts only exist for v > 2

√
Dr . Since there exists a heteroclinic connection

or front for each value of v with v > 2
√
Dr , this analysis does not yield a unique

propagating velocity. In fact, the front velocity v depends on the initial condition,
specifically on the tail of the initial condition.

For bistable kinetics there exist three steady states: (0, 0), (b, 0), and (1, 0). Both
(0, 0) and (1, 0) are saddle points, while (b, 0) is stable. A heteroclinic connection
between (1, 0) and (b, 0) requires (b, 0) to be stable node, which is satisfied for
v > 2

√
b(1− b). This case is equivalent to the logistic case. The heteroclinic orbit

corresponding to a front connecting (0, 0) and (1, 0) must be a saddle–saddle con-
nection. If one fixes b and varies v, one finds that for low values of v the phase plane
trajectories undershoot the state (1, 0), while for large values of v, the phase plane
trajectories overshoot the state (1, 0). There is a unique saddle–saddle connection,
the separatrix, which is uniquely determined by a specific value of v. In contrast to
the logistic case, where an infinite number of fronts exist if v is larger than 2

√
Dr ,

only a single front with a unique velocity exists in the bistable case. In Fig. 4.2 we
depict the phase portrait for both the logistic and the bistable cases. In the next two
sections, we present quantitative methods to characterize front propagation for both
cases A and B.

4.1.1 Fronts Propagating into Unstable States. Pulled vs Pushed
Fronts

Consider the RD equation (2.3). Without specifying the shape of F(ρ), we assume
two steady states such that
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Fig. 4.2 Phase portrait for logistic and bistable reaction terms. The front is a heteroclinic saddle–
node connection for the logistic case. The front is a saddle–saddle connection for the bistable case

F(0) = F(1) = 0 and F(ρ) > 0, if 0 < ρ < 1, (4.6)

i.e., ρ = 0 is an unstable steady state and ρ = 1 a stable steady state. We linearize
the RD equation in the frame comoving with the front around the unstable steady
state:

Dρzz + vρz + F ′(0)ρ = 0. (4.7)

Looking for exponential solutions, we find ρ(z) ∼ Ae−λ+z + Be−λ−z , where

λ± =
v

2
± 1

2

√

v
2 − 4DF ′(0). (4.8)

The solutions are physically acceptable if

v ≥ 2
√

DF ′(0). (4.9)

Otherwise the solution oscillates around the state ρ = 0, resulting in negative values
for the particle density. The linear analysis establishes the existence of a minimum
value for the front velocity. We can also obtain the minimum value by substituting
ρ(z) ∼ e−λz in (4.7), writing the characteristic equation in the form

v(λ) = Dλ+ F ′(0)
λ

, (4.10)

and calculating

v
∗ = minλ[v(λ)] = 2

√

DF ′(0). (4.11)

Aronson and Weinberger [18] obtained the condition

2
√

DF ′(0) ≤ v
∗

< 2

√

D sup
ρ

[
F(ρ)

ρ

]

, (4.12)
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for fronts evolving from initial conditions with compact support. This result pro-
vides both a lower and an upper bound for the front velocity. For any concave kinetic
term, i.e., F(ρ) ≤ ρF ′(0), the lower and the upper bounds in (4.12) coincide, and
the front velocity can be predicted with certainty:

v
∗ = 2

√

DF ′(0). (4.13)

It equals the minimum velocity obtained by linearizing around the unstable state,
the linear velocity. In this case the front dynamics is determined by the ρ(x, t) ≈ 0
region. The front is called a pulled front, since it is pulled by its leading edge. The
lower and upper bounds do not coincide for convex kinetic terms, and the front
velocity is larger than the linear velocity. In this case, the nonlinear part of the
kinetic term plays an important role in determining the value of the front velocity;
the front dynamics is pushed by its interior part.

We consider the Ginzburg–Landau reaction term F(ρ) = ρ(1 − ρ)(1 + αρ),
with α > 0, in (2.3) to illustrate the existence of pulled and pushed regimes. This
RD equation has two steady states, ρ = 0 (unstable) and ρ = 1 (stable). The
front connecting both states propagates into the unstable state, which resembles the
situation in the FKPP case. However, Ben-Jacob et al. [37] show that when the front
emerges from initial conditions with compact support, the velocity is given by

v =
{

2
√
D, α ≤ 2,

(√
α + 2/

√
α
)√

D/2, α > 2.
(4.14)

The linear velocity 2
√
D is selected by the front only if α ≤ 2. The front is pulled

in this case. However, if α > 2, the selected velocity is
(√

α + 2/
√

α
)√

D/2, and
the front is pushed. The value α = 2 corresponds to the transition between pulled
and pushed regimes.

The asymptotic velocity depends explicitly on the shape of the initial conditions,
if they do not have compact support. An adaptation of the Hamilton–Jacobi theory
from classical mechanics is a useful technique to deal with this problem in a very
general way, see below. The prototypical example of a concave reaction term is the
KPP or logistic term F(ρ) = rρ(1 − ρ). Equation (4.13) implies that v = 2

√
r D.

Examples for convex reaction functions typically occur in combustion theory, where
F(ρ) = e−ρc/ρ(1 − ρ) is referred to as the Arrhenius reaction term, or F(ρ) =
ρ
m
(1− ρ) for forest fire models. In these cases, as well as for Case B, generally the

variational characterization is the only tool that can provide analytical expressions
for the front velocity. Other types of reaction terms are a combination of Cases A and
B, such that the kinetic term is convex for a range of values of ρ, while elsewhere it
is concave.
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4.1.2 Transient Dynamics of Pulled Fronts

Pushed fronts, such as fronts propagating into a metastable state, converge expo-
nentially to the asymptotic front profile ρ(x − vt). Both the profile and veloc-
ity of pulled fronts converge algebraically. It was proven rigorously by Bramson
[57] that the solution of the Fisher equation with a KPP reaction term relaxes to
a unique front profile ρ(x − 2t), where the velocity converges asymptotically as
v(t) = 2− 3

2t . (Here and in the remainder of this section, we consider the case that
space and time have been scaled such that D = r = 1.) More recently, Ebert and
van Saarloos [103, 104] found universal behavior in the relaxation to the asymptotic
regime for fronts emerging from initial conditions with compact support or with
exponential decay. We summarize their main results for the first case. We consider
the shape of the transient front as a small perturbation η about the asymptotic shape,
ρ
∗[x−v(t)t], where v(t) = v

∗+Ẋ(t). Then, written in the frame ξ = x−v
∗t−X (t),

the Fisher equation (2.3) with logistic growth reads

ρ(ξ, t) = ρ
∗
(ξ)+ η(ξ, t) = ρ

∗
(ξ)+ Ẋ(t)ηs(ξ) (4.15)

for the interior region of the front, ξ � 2
√
t . Here η(ξ, t) obeys the equation

∂η

∂t
= L∗η + Ẋ(t)

∂

∂ξ

[

η + ρ
∗
(ξ)
]+ η

2

2
F ′′(ρ∗)+ O(η

3
), (4.16)

with L∗ = ∂
2
ξ +v

∗
∂ξ+F ′(ρ∗). The fact that Ẋ(t) is O(t−1) suggests the asymptotic

expansion

Ẋ(t) = c1
t
+ c3/2

t3/2
+ · · · , (4.17)

η(ξ, t) = η1

t
+ η3/2

t3/2
+ · · · . (4.18)

Substitution of this expansion into (4.16) yields the hierarchy of ordinary differential
equations:

L∗η1 = −c1∂ξρ
∗
, L∗η3/2 = −c3/2∂ξρ

∗
, . . . . (4.19)

Each ηi is determined by its differential equation, the requirement ηi (0) = 0, and
the appropriate boundary conditions. The equations for η1/c1 and η3/2/c3/2 are pre-
cisely the differential equations for ηs(ξ) in (4.16).

In the far edge, where ξ ≥ O(
√
t) � 1, a different expansion is needed, as the

transient profile falls off faster than ρ
∗, so that η ≈ −ρ

∗. Linearizing about ρ = 0
one finds
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ρ(ξ, t) = e−ξ−ξ
2
/(4t)

⎡

⎢
⎢
⎣

√
tg−1/2

(

ξ
2

4t

)

+ g0

(

ξ
2

4t

)

+
g1/2

(

ξ
2

4t

)

√
t

+ · · ·

⎤

⎥
⎥
⎦

,

(4.20)

where the functions gi obey a new hierarchy of ordinary differential equations that
can also be integrated with the appropriate boundary conditions. Finally, matching
this solution to the one for the interior region, we determine the parameters c1 and
c3/2, and the front velocity is found to be

v(t) = v
∗ − 3

2t
+ 3

√
π

2t3/2
+ · · · . (4.21)

4.1.3 Front Propagation into Metastable States

As explained above, the shape and velocity of a front propagating into a metastable
state is governed by the nonlinear (interior) part, and the nonlinear term in the reac-
tion function plays an important role. When a front propagates into a metastable
state, only one velocity is possible, in contrast to a front propagating into an unsta-
ble state. In the latter case, there exists an infinite number of possible velocities,
namely all velocities larger than the linear velocity. To obtain the unique veloc-
ity of a front propagating into a metastable state, one has to solve the differential
equation in the frame co-moving with the front and find the front shape. Since the
differential equation is nonlinear, this is not an easy task. Often, one has to resort
to some trial parametric solution and substitute it into the differential equation to
calculate the parameter values. As a typical example we consider the reaction term
F(ρ) = r(ρ − ρ1)(ρ2 − ρ)(ρ − ρ3), where ρ1 < ρ2 < ρ3. This kinetic term has
the steady states ρ = ρi , with i = 1, 2, 3. The states ρ1 and ρ3 are stable, while ρ2
is unstable. To obtain the front profile and velocity, we need to solve the differential
equation

Dρzz + vρz + r(ρ − ρ1)(ρ2 − ρ)(ρ − ρ3) = 0. (4.22)

Since the front joins the two stable states and propagates into the metastable state,
the boundary conditions are given by

lim
z→−∞ ρ(z) = ρ3 and lim

z→+∞ ρ(z) = ρ1. (4.23)

The derivative ρz must vanish at ρ = ρ3 and at ρ = ρ1. A possible candidate for the
front solution is ρz = b(ρ − ρ1)(ρ − ρ3), where b is a constant to be determined.
Substituting this solution into (4.22), we obtain a cubic polynomial in ρ. Setting
the coefficients to 0 provides a system of four algebraic equations. The equation
for the coefficient of ρ

3 yields b = √
r/2D. With this value, the equations for the
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coefficient of ρ
2 and ρ

0 are satisfied, and only one equation remains to be solved.
The equation for the coefficient of ρ provides the relation for the velocity:

v =
√

r D

2

(

ρ1 − 2ρ2 + ρ3
)

. (4.24)

Finally, we calculate the front profile by integrating

ρz =
√

r/2D(ρ − ρ1)(ρ − ρ3) (4.25)

and imposing the boundary conditions. The result is

ρ(z) = ρ3 + Kρ1e
√
r/2D(ρ3−ρ1)z

1+ K e
√
r/2D(ρ3−ρ1)z

, (4.26)

where K is an arbitrary constant that can be determined, e.g, by imposing a value for
ρ(z = 0). Equation (4.24) implies that v > 0 if ρ2 < (ρ1+ ρ3)/2, and it is negative
otherwise. This means that we can change the direction of front propagation for
fixed values of ρ1 and ρ3 by varying the value of ρ2. Changing ρ2 affects the relative
stability of the stable states ρ1 and ρ3, i.e., which one is the stable and the metastable
state, and thus the direction of front motion. This can be easily understood by invok-
ing the dynamical picture introduced in Sect. 4.1. The potential difference between
states ρ1 and ρ3 is given by

�V = V (ρ3)− V (ρ1) =
∫ ρ3

ρ1

F(ρ)dρ = (ρ3 − ρ1)
3

12

(

ρ1 − 2ρ2 + ρ3
)

. (4.27)

If ρ2 < (ρ1 + ρ3)/2, V (ρ3) > V (ρ1), and ρ3 is stable, while ρ1 is metastable.
In this case, the front travels to the right, v > 0, by invading ρ1 (remember that
ρ1 < ρ3). Otherwise, if ρ2 > (ρ1 + ρ3)/2, V (ρ1) > V (ρ3), and ρ1 is stable, while
ρ3 is metastable; the front propagates to the left. This is depicted in Fig. 4.3. The
sign of the front velocity, i.e., the direction of propagation, can be determined for a
general kinetic term F(ρ). We multiply (4.2) by ρz and integrate over z to obtain

∫ ∞

−∞
ρzzρzdz + v

∫ ∞

−∞
ρ
2
z dz +

∫ ∞

−∞
F(ρ)ρzdz = 0. (4.28)

The first integral is

∫ ∞

−∞
ρzzρzdz =

1

2

[

ρ
2
z

]+∞
−∞ = 0, (4.29)

and the third one is
∫ ∞

−∞
F(ρ)ρzdz =

∫ ρ3

ρ1

F(ρ)dρ, (4.30)
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Fig. 4.3 The potential difference between the stable steady states changes their relative stability
and changes the direction of front propagation

so that

v =
∫ ρ3
ρ1

F(ρ)dρ
∫∞
−∞ ρ

2
z dz

(4.31)

and

sgn(v) = sgn

(
∫ ρ3

ρ1

F(ρ)dρ

)

. (4.32)

For the case (4.22), sgn(v) = sgn
(

ρ1 − 2ρ2 + ρ3
)

, in agreement with (4.24).

4.2 Front Velocity Selection

The fact that an infinity of front velocities occurs for pulled fronts gives rise to
the problem of velocity selection. In this section we present two methods to tackle
this problem. The first method employs the Hamilton–Jacobi theory to analyze the
dynamics of the front position. It is equivalent to the marginal stability analysis
(MSA) [448] and applies only to pulled fronts propagating into unstable states.
However, in contrast to the MSA method, the Hamilton–Jacobi approach can also
deal with pulled fronts propagating in heterogeneous media, see Chap. 6. The
second method is a variational principle that works both for pulled and pushed fronts
propagating into unstable states as well as for those propagating into metastable
states. This principle can deal with the problem of velocity selection, if it is possible
to find the proper trial function. Otherwise, it provides only lower and upper bounds
for the front velocity.
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4.2.1 Hamilton–Jacobi Formalism

4.2.1.1 Hyperbolic Scaling and Hamilton–Jacobi Equation for the Front
Position

This method consists in finding the Hamilton–Jacobi equation for an RD equation
with a KPP reaction term and was originally introduced by Freidlin [140]. The first
step consists in performing the hyperbolic scaling on the RD equation (2.3):

x → x

ε
and t → t

ε
, ε � 1. (4.33)

The second step consists in analyzing the behavior of solutions of (2.3) for large
times, of order ε

−1, and determine whether or not a front exists in the limit
t → ∞ (ε → 0). We expect that after the hyperbolic scaling the new field
ρ

ε
(x, t) = ρ(x/ε, t/ε) takes only two values, 0 and 1, as ε → 0, which means that

the solution of (2.3) converges to the indicator function of the set whose boundary
can be considered as the position of a moving front that separates the stable and
unstable states. In fact any initial condition with compact support will ensure a front
propagating with the minimal velocity. After the hyperbolic scaling, (2.3) reads

ε
∂ρ

ε

∂t
= Dε

2 ∂
2
ρ

ε

∂x2
+ r F(ρ

ε
). (4.34)

Since ρ
ε
(x, t) ≥ 0, we can make use of the transformation

ρ
ε
(x, t) = exp

[−Gε
(x, t)/ε

]

, (4.35)

where Gε
(x, t) ≥ 0. The new function Gε

(x, t) determines the location of the front
in the limit ε → 0. If F(ρ) = ρ(1 − ρ), straightforward calculations show that
Gε

(x, t) obeys the equation

− ∂Gε

∂t
= −Dε

∂
2Gε

∂x2
+ D

(
∂Gε

∂x

)2

+ r
[

1− e−Gε
(x,t)/ε

]

. (4.36)

Since exp
[−Gε

/ε
] → 0 as ε → 0 for Gε

> 0, we conclude that the limiting
function G(x, t) = limε→0 G

ε
(x, t) obeys the classical Hamilton–Jacobi equation

− ∂G

∂t
= D

(
∂G

∂x

)2

+ r. (4.37)

Indeed, we obtain the classical Hamiltonian, H = Dp2 + r , if we define

H = −∂G

∂t
and p = ∂G

∂x
. (4.38)
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4.2.1.2 Propagation Velocity

The hyperbolic scaling (4.33) and the transformation (4.35) of the field allows us to
obtain, in the asymptotic limit ε → 0, a Hamilton–Jacobi equation for any given
reaction–transport equation. In this chapter we focus only on RD equations, but in
Chap. 5 we deal with other models. Regardless of the specific form of the Hamilton–
Jacobi equation, its solution can be written as

G(x, t) = inf
x(0)=0,x(t)=x

[∫ t

0
L(x, s)ds

]

, (4.39)

where

L(x, s) = p(s)
dx(s)

ds
− H(x, s) (4.40)

is the Lagrangian and s the temporal coordinate. x(s) and p(s) satisfy the Hamilton
equations

dx

ds
= ∂H

∂p
,

dp

ds
= −∂H

∂x
, (4.41)

with the conditions x(0) = 0, x(t) = x . The location of the front position is deter-
mined by the equation G(x(t), t) = 0, and the propagation velocity can be found
as follows. Differentiating G(x(t), t) = 0 and taking into account v = dx/dt , one
writes

∂G

∂t
+ v

∂G

∂x
= 0 (4.42)

or using (4.38)

v = H

p
. (4.43)

If the reaction–transport equations are homogeneous, i.e., there is no explicit depen-
dence on time or space coordinates, then the Hamilton–Jacobi equation is of the
form H = H(p). (The case with spatial or temporal heterogeneities is dealt with in
Chap. 6.) The Hamilton equations (4.41) imply that p is constant and that

x(s) = ∂H

∂p
s,

∂H

∂p
= x

t
, (4.44)
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where we have made use of the boundary conditions. From (4.39) and (4.44)

G(x, t) = px − H(p)t, (4.45)

and the front position evolves according to x/t = H/p, which combined with the
second equation in (4.44) and (4.43) yields a closed system of algebraic equation to
calculate the front velocity,

v = ∂H

∂p
, and

∂H

∂p
= H

p
. (4.46)

This system of equations can be summarized in the single equation

v = min
p>0

[
H(p)

p

]

. (4.47)

In the case of the RD equation,

v = min
p>0

[

Dp2 + r

p

]

= 2
√
r D, (4.48)

which is known as the Fisher velocity.

4.2.2 Variational Characterization

We follow here the derivation by Benguria and Depassier [34, 35]. The starting
point for the variational principle is the ordinary differential equation for the RD
equation in the frame comoving with the front (4.2). Without loss of generality, we
assume that the front connects the states ρ = 0 and ρ = 1, i.e., limz→∞ ρ = 0
and limz→−∞ ρ = 1. Since the front is monotonic, we define q(ρ) = −ρz > 0.
Monotonic fronts are solutions of

Dq(ρ)
dq

dρ
− vq(ρ)+ F(ρ) = 0, (4.49)

with

q(0) = 0, q(1) = 0, (4.50)

and q > 0 in (0, 1).
Let g(ρ) be any positive function on (0, 1), such that h = −dg/dρ > 0. Multi-

plying (4.49) by g/q and integrating with respect to ρ, we obtain

∫ 1

0

(

Dhq + F(ρ)

q
g

)

dρ = v

∫ 1

0
gdρ, (4.51)
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where the first term is obtained after integration by parts. For fixed ρ, the functional

�[q] ≡ Dhq + F(ρ)

q
g (4.52)

has a minimum at qmin =
√
Fg/(Dh), since v, q, g, and h are positive. Conse-

quently, �[q] ≥ �[qmin] = 2
√
DFgh and

∫ 1

0
�[q]dρ = v

∫ 1

0
gdρ ≥ 2

√
D
∫ 1

0

√

Fghdρ, (4.53)

that is,

v ≥ 2
√
D

∫ 1
0

√
Fghdρ

∫ 1
0 gdρ

. (4.54)

This lower bound for the front velocity is valid for any F(ρ) > 0 on (0,1) and
F(0) = F(1) = 0, i.e., for a front propagating into unstable states (reaction terms
of Case A) [34]. To show that (4.54) represents indeed a variational principle, we
must establish that there exists a function, namely ğ, for which the equality holds in
(4.54). Equality holds if ğ satisfies hq = Fğ/(Dq), i.e.,

− d(ln ğ)

dρ
= v

Dq
− d(ln q)

dρ
, (4.55)

where we have made use of (4.49). This equation can be integrated to yield

ğ(ρ) = q(ρ) exp

(∫ ρ0

ρ

v

Dq
dρ

)

(4.56)

for some fixed ρ0, 0 < ρ0 < 1. Obviously, ğ(ρ) is a continuous, positive, and
decreasing function on (0,1) and ğ(1) = 0. However, for ρ → 0, a singularity
occurs that needs to be handled carefully. We must ensure that the integrals in (4.54)
exist for this value. We linearize (4.2) near ρ = 0 and find that if ρ ∼ exp(−λz)

then q ∼ λ+ρ. Here λ+ =
[

v +
√

v
2 − 4DF ′(0)

]

/2D is the largest root of the

characteristic equation for λ. From (4.56)

√

Fğh ∼ ğ(ρ) ∼ ρ
1−v/(λ+D) near ρ = 0. (4.57)

Therefore, if v > 2
√

DF ′(0), we have
∫ 1
0 gdρ < ∞ and

∫ 1
0

√
Fghdρ < ∞. In

summary, we have proven that there exists a positive, continuous, and monotonically
decreasing function g, for which the integrals in (4.54) exist and which maximizes
the lower bound in (4.54) in such a way that the equality holds. In summary,
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v = max
g

(

2
√
D

∫ 1
0

√
Fghdρ

∫ 1
0 gdρ

)

, (4.58)

if v > 2
√

DF ′(0) which is a lower bound for the front velocity. We can obtain from
(4.58) also the upper bound derived by Aronson and Weinberger [18]:

v = max
g

(

2
√
D

∫ 1
0

√
Fghdρ

∫ 1
0 gdρ

)

= max
g

(

2
√
D

∫ 1
0 g

√
Fh/gdρ

∫ 1
0 gdρ

)

≤ 2
√
Dmax

g

√
√
√
√

∫ 1
0 Fhdρ
∫ 1
0 gdρ

, (4.59)

where the inequality follows from Jensen’s inequality. Since h > 0, we have

∫ 1
0 Fhdρ
∫ 1
0 gdρ

=
∫ 1
0 (F/ρ)hρdρ
∫ 1
0 gdρ

≤
∫ 1
0 hρdρ
∫ 1
0 gdρ

sup
ρ

(
F

ρ

)

= sup
ρ

(
F

ρ

)

. (4.60)

We have used
∫ 1
0 hρdρ = ∫ 10 gdρ, which follows from integration by parts. Finally,

we obtain

2
√

DF ′(0) < v ≤ 2
√
D

√

sup
ρ

(
F

ρ

)

, (4.61)

which is the result given in (4.12).
Note that the variational characterization given in (4.58) only holds if F > 0 on

(0,1) and for fronts propagating into unstable states. To derive a variational result
valid if F < 0 for some values of ρ, we need to extend these results [35]. To do
so, we multiply (4.49) by g. Integrating between ρ = 0 and ρ = 1, we obtain after
integration by parts

∫ 1

0
F(ρ)gdρ = v

∫ 1

0
qgdρ − 1

2
D
∫ 1

0
hq2dρ. (4.62)

For fixed ρ, the functional

�[q] ≡ vqg − 1

2
Dhq2 (4.63)

has a maximum at qmax = vg/(Dh), since v, q, g, and h are positive. Therefore
�[q] ≤ �[qmax] = v

2g2/(2Dh) for any value of ρ. It follows that
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v
2 ≥ 2D

∫ 1
0 Fgdρ

∫ 1
0 (g2/h)dρ

, (4.64)

which holds for any F(ρ) for which a monotonic front exists. The equality in (4.64)
holds if ğ satisfies

− d(ln ğ)

dρ
= v

Dq
, (4.65)

which can be integrated to yield

ğ(ρ) = exp

(∫ ρ0

ρ

v

Dq
dρ

)

. (4.66)

Obviously, ğ(ρ) is again a continuous, positive, and decreasing function on (0,1)
with ğ(1) = 0. Near ρ = 0, ğ diverges. We linearize (4.2) to find from (4.66)

ğ(ρ) ∼ ρ
−v/(λ+D) near ρ = 0, (4.67)

and f ğ ∼ (ğ)2/h ∼ ρ
1−v/(λ+D). The integrals in (4.64) exist if λ+D/v > 1/2.

This condition is always satisfied if F ′(0) ≤ 0, i.e., for Case B (front propagating
into metastable states). However, it is also satisfied for Case A (fronts propagating

into unstable states) provided that v > 2
√

DF ′(0). The asymptotic front velocity is
given for both cases A and B by

v
2 = max

g

[

2D

∫ 1
0 Fgdρ

∫ 1
0 (g2/h)dρ

]

, (4.68)

where the maximum is taken over all positive, decreasing trial functions on (0,1) for
which the integrals exist.

We illustrate the power of the variational characterization (4.68) by solving some
examples for cases A and B. To do so, we will consider the trial function

g(ρ) = ρ
−μ

(1− ρ)
μ with μ > 0. (4.69)

We maximize over all possible values of μ for which the integrals in the variational
formula exist:

v
2 = max

0<μ≤2 2D
[

μ�(4)

�(2− μ)�(2+ μ)

∫ 1

0
F(ρ)ρ

−μ
(1− ρ)

μdρ

]

. (4.70)
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KPP reaction term. With F(ρ) = ρ(1− ρ) (4.70) yields

v
2 = 2D max

0<μ≤2μ, (4.71)

i.e., v = 2
√
D.

Pulled–Pushed transition. The variational characterization can account for the
pulled–pushed transition for fronts propagating into unstable states. We consider
the Ben-Jacob case [37], where F(ρ) = ρ(1 − ρ)(1 + αρ) with α > 0. Equation
(4.70) yields

v
2 = max

0<μ≤2 2Dμ
[

1+ α

4
(2− μ)

]

. (4.72)

The maximum must be evaluated carefully for this case. For α ≤ 2, the maximum
occurs at μ = 2 and for α ≥ 2 at μ = (α + 2)/α,

v =
{

2
√
D, α ≤ 2,√

D/2
(√

α + 2/
√

α
)

, α ≥ 2,
(4.73)

which coincides with Ben-Jacob’s result.
Cubic reaction term. We deal again with the case considered in (4.22) for a front

propagating into a metastable state, i.e., connecting ρ1 and ρ3. To apply (4.70),
where it is assumed that the front connects 0 and 1, we rescale (4.22) by defining
the new field u = (ρ − ρ1)/(ρ3 − ρ1). Equation (4.22) then reads

Duzz + vuz + rau(1− u)(u − b), (4.74)

where

a ≡ (ρ3 − ρ1)
2 and b ≡ ρ2 − ρ1

ρ3 − ρ1
> 0. (4.75)

Substitute the reaction term F(u) = rau(1− u)(u − b) into (4.70). Then

v
2 = max

0<μ≤2 Dμar
[

1− μ

2
− 2b

]

. (4.76)

In this case, the maximum occurs at μ = 1− 2b,

v =
√

raD

2
(1− 2b) =

√

r
D

2
(ρ3 − 2ρ2 + ρ1), (4.77)

which is exactly the same result as in (4.24). Furthermore, we can also obtain the
front profile from the variational characterization. The selected front is the one that
satisfies the equality in (4.64), and the front profile is given by q = vg/(Dh):
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− du

dz
= vg

Dh
=
√

r

2D
(ρ3 − ρ1)u(1− u). (4.78)

Since u = (ρ − ρ1)/(ρ3 − ρ1), the above equation turns into

dρ

dz
=
√

r

2D
(ρ − ρ1)(ρ − ρ3), (4.79)

which coincides with (4.25) for the front profile.

4.3 Effect of Low Concentrations

The sensitivity of fronts to the dynamics of small perturbations about the unstable
or metastable states has been studied by Brunet and Derrida [61] for pulled fronts
and Kessler et al. [227] for pulled and pushed fronts. The mean-field description
of reacting and diffusing systems ceases to be valid for low values of the particle
density ρ, values that correspond to less than one particle. This fact can be incor-
porated into the RD equation by introducing a cutoff for the reaction term. Such a
cutoff strongly affects the front velocity. Throughout this section we consider for
simplicity that space and time have been rescaled such that D = r = 1.

4.3.1 Effect on Pulled Fronts

The starting point of Brunet and Derrida’s approach is to replace the kinetic term in
the FKPP equation by F(ρ) = θ(ρ − ε)ρ(1− ρ). Here θ(·) denotes the Heaviside
function, and ε = 1/N is the cutoff, where N is the average number of particles in
the state ρ = 1. In the frame comoving with the front, the RD equation

ρzz + vερz + θ(ρ − ε)ρ(1− ρ) = 0 (4.80)

can be divided into three regions. In region II, ε < ρ � 1, the nonlinear terms in
the reaction function can be ignored. In region III, ρ < ε, the kinetic term vanishes.
In region I, ρ is not small compared to 1, and one has to consider the full nonlinear
equation without cutoff. These considerations lead to the system of equations:

ρzz + vερz + ρ(1− ρ) = 0, in region I, (4.81a)

ρzz + vερz + ρ � 0, in region II, (4.81b)

ρzz + vερz = 0, in region III. (4.81c)

At the boundary between regions I and II and the boundary between II and III, the
particle density ρ, as well as its comoving derivative ρz , must be continuous. Since
ε � 1, the solutions of (4.81) are given to leading order by
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ρ(z) = εe−vε(z−z0), in region III, and (4.82a)

ρ(z) ∼ sin

(
π z

|ln ε|
)

e−z
, in region II, (4.82b)

where z0 � |ln ε| marks the boundary between regions II and III. The continuity
conditions at the boundary between both regions lead to

vε � 2− π
2

(ln ε)
2
. (4.83)

The velocity converges to 2 as (ln ε)
−2 or (ln N )

−2.

4.3.2 Effect on Pushed Fronts

For fronts propagating into metastable states and pushed fronts propagating into
unstable states, Kessler et al. [227] showed that the velocity shift introduced by the
cutoff depends on a power of ε. Consider a RD equation with a cutoff around the
state ρ = 0, where the linear part of the growth term is ρ. In the nonreacting region
III, i.e., z > z0, and the region corresponding to large z with z < z0, the solutions
of the RD equation are

ρ(z) = εe−vε(z−z0), for z > z0, (4.84a)

ρ(z) = A1e
−λ+z + δvA2e

−λ−z, for large z with z < z0. (4.84b)

Here

λ± =
v0 ±

√

v
2
0 − 4

2
, (4.85)

and v0 is the front velocity in the absence of a cutoff, i.e., vε = v0 + δv. The
integration constants A1 and A2 do not depend on ε and can be obtained by matching
the solutions at the boundary, treating δv as a small parameter. At z = z0, the two
terms in (4.84b) must be of the same order, e−λ+z0 ∼ δve−λ−z0 , or δv ∼ ez0(λ−−λ+).
The matching condition implies that e−λ+z0 ∼ ε, or z0 ∼ − ln ε/λ+, and

δv ∼ ε
1− λ−

λ+ = ε
1+

√

1−4/v20−1√

1−4/v20+1 . (4.86)

We consider first an example of a pushed front propagating into an unstable state,
namely Ben-Jacob’s case with a cutoff, F(ρ) = θ(ρ − ε)ρ(1 − ρ)(1 + αρ).
A pushed front occurs for α > 2 and v0 = (

√
α + 2/

√
α)/

√
2, see (4.14). In this
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case, δv ∼ ε
(α−2)/α , i.e., a sublinear dependence of the shift in the front velocity on

the cutoff.
We consider next a front propagating into a metastable state for the Nagumo

equation, F(ρ) = θ(ρ − ε)ρ(1 − ρ)(ρ − a). The front velocity in the absence of
a cutoff is v0 = 1/

√
2− a

√
2. Equation (4.86) yields δv ∼ ε

1+2a . Exact analytical
results for the front solutions can be obtained if the reaction term F(ρ) with a cutoff
is replaced by a piecewise linear approximation. The dependence of the velocity
shift on the cutoff displays good agreement with the results by Brunet and Derrida
and Kessler et al. [495].

4.3.3 Variational Principles and the Cutoff Problem

Recent studies have applied improved variational principles to deal with the velocity
shift due to a cutoff in the reaction term, both for fronts propagating into unstable
and metastable states [284, 36]. They confirm the results by Brunet and Derrida and
improve the results by Kessler et al. The variational principle given in (4.68) implies
that for any admissible trial function a lower bound for the velocity can be found by
(4.64). The trial function for which equality in (4.64) holds diverges at ρ = 0, and
it is convenient to consider trial functions that in addition to the requirements g > 0
and g′ < 0 also satisfy g(0) →∞. Such trial functions allow us to obtain accurate
lower bounds for the front velocity. We perform a change of variables ρ = ρ(s),
where s = 1/g, and consider s as the independent variable in (4.68). With this
change of variables, the variational principle reads

v
2 = max

ρ(s)
2
V (1)/s0 +

∫ s0
0

(

V [ρ(s)]/s2
)

ds
∫ s0
0 (dρ/ds)2 ds

. (4.87)

Here s0 = 1/g(ρ = 1), V (ρ) = ∫ ρ

0 F(u)du, and the maximum is taken over
positive increasing functions ρ(s), such that ρ(0) = 0 and for which the integrals
in (4.87) converge. Consider the reaction term F(ρ) = θ(ρ − ε)ρ(1− ρ

2
) and the

trial function

ρ(s) =
⎧

⎨

⎩

s, if 0 ≤ s ≤ ε,
√

εs

√

1+ (ln ε)
2

4φ2 cos
[

φ
|ln ε| ln(s/ε)− φ

]

, if ε ≤ s ≤ ε
−1,

(4.88)

where φ is the solution of the equation φ tanφ− |ln ε| /2 = 0. Substituting this trial
function into (4.87), we find the lower bound

v
2 ≥ 4

(

1− π
2

|ln ε|2
+ · · ·

)

(4.89)
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after expanding for small ε. For pushed fronts, the existence of a variational prin-
ciple allows one to use the Feynman–Hellman theorem to calculate the dependence
of the velocity on parameters of the reaction term [36]. If the reaction term is of the
form F(ρ) = F(ρ, α) then

∂v
2

∂α
= 2

∫ 1
0

∂F(ρ,α)
∂α

ğ(ρ, α)dρ
∫ 1
0

(

−ğ2/ğ′
)

dρ
, (4.90)

where ğ is the trial function, unique up to a multiplicative constant, that produces
the maximum in (4.68) for the given parameter α. Note that the Feynman–Hellman
theorem only holds, if the maximum is actually realized, which is not the case for
pulled fronts. Consider the reaction term F(ρ) = θ(ρ − ε) f (ρ) and α ≡ ε. The
Feynman–Hellman theorem (4.90) implies that

∂v
2

∂ε
= 2

∫ 1
0 ğ(ρ, ε) ∂

∂ε

[

θ(ρ − ε) f (ρ)
]

dρ
∫ 1
0

(

−ğ2/ğ′
)

dρ
= −2 ğ(ε, ε) f (ε)

∫ 1
0

(

−ğ2/ğ′
)

dρ
. (4.91)

For small ε, the leading order of the trial function ğ(ρ, ε) is ğ(ρ, 0) ≡ ğ0(ρ), which
is exactly the optimizing function for the case without a cutoff. On the other hand,
for small ε we can write v(ε) = v0 + ε (∂v/∂ε)ε=0 + · · · , so that

δv = ε
∂v

∂ε

∣
∣
∣
∣
ε=0

= − 1

v0
∫ 1
0

(

−ğ20/ğ
′
0

)

dρ
ε f (ε)ğ0(ε), (4.92)

where we have made use of the variational result for the case without cutoff:

v
2
0 = 2

∫ 1
0 f (ρ)ğ0(ρ)dρ
∫ 1
0

(

−ğ20/ğ
′
0

)

dρ
. (4.93)

From (4.67) we know that ğ0(ρ) ∼ ρ
−v0/λ+ near ρ = 0, with

λ+ =
1

2

[

v0 +
√

v
2
0 − 4 f ′(0)

]

, (4.94)

and ğ0(ε) ∼ ε
−v0/λ+ . Since the denominator in (4.92) is a positive constant and

does not depend on ε, we conclude that

δv ∼
{

− f (ε), if f ′(0) = 0,

− f ′(0)ε2−v0/λ+ , if f ′(0) �= 0.
(4.95)
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These results are in agreement with the previous results obtained from a different
variational principle and also with the results obtained by Kessler et al. The depen-
dence of the second result is exactly that given in (4.86).

4.4 Effect of External Noise

In this section we explore the systematic effect of an external noise on the front
velocity. Consider a reaction term F(ρ, α) that depends not only on the density but
also on a parameter α that fluctuates. Assuming small fluctuations around its mean
value, we can write α(x, t) = αm − ε

1/2
η(x, t), where αm is the mean value, ε is a

small parameter governing the noise amplitude, and η(x, t) is a Gaussian noise with
zero mean and correlation given by

〈

η(x, t)η(x ′, t ′)
〉

= 2C(x − x ′)δ(t − t ′), (4.96)

where δ(·) is the Dirac delta-function and 〈·〉 denotes averaging. The role of spa-
tiotemporal structured noise has been discussed in [377]. For simplicity, we consider
here noise that is white in time and correlated in space [376]. This is an excellent
approximation if the time scale of the noise is much shorter than the characteris-
tic time of the kinetics. We assume that the fluctuations have a small amplitude,
F(ρ, α) = F(ρ, αm)− ∂F

∂α
ε
1/2

η(x, t)+O(ε). Then the RD equation can be written
as the following stochastic partial differential equation:

∂ρ

∂t
= ∂

2
ρ

∂x2
+ f (ρ)+ ε

1/2g(ρ)η(x, t), (4.97)

where f (ρ) = F(ρ, αm) and g(ρ) = − ∂F
∂α

(ρ, αm). The noise appears in the
RD equation (4.97) in a multiplicative way. An additive noise source can also be
included to account for fluctuations due to internal noise. Additive noise does not
modify the front velocity for the invasion of either metastable or unstable states,
and the front itself exists only during a short transient period. We consider here
only the case of a multiplicative noise. The effects on front propagation are twofold:
First, multiplicative noise produces a random meandering of the front position with
respect to its mean position [17, 16]. Second, multiplicative noise induces a shift in
the mean front velocity. We focus on the second effect; the problem reduces to an
analogous deterministic problem with renormalized coefficients.

A crucial feature of the multiplicative noise case is that the noise term in (4.97)
has a nonzero mean value. Using Novikov’s theorem [324] for Gaussian noise in the
Stratonovich interpretation, we find that

ε
1/2 〈g(ρ)η(x, t)〉 = εC(0)

〈

g(ρ)g′(ρ)
〉

. (4.98)
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According to this result, (4.97) can be rewritten as

∂ρ

∂t
= ∂

2
ρ

∂x2
+ h(ρ)+ ε

1/2R(ρ, x, t), (4.99)

where

h(ρ) ≡ f (ρ)+ εC(0)g(ρ)g′(ρ) (4.100)

and

R(ρ, x, t) ≡ g(ρ)η(x, t)− ε
1/2C(0)g(ρ)g′(ρ). (4.101)

The stochastic term in (4.99) has zero mean, 〈R(ρ, x, t)〉 = 0, and correlation

〈

R(ρ, x, t)R(ρ, x ′, t ′)
〉

=
〈

g(ρ(x, t))η(x, t)g(ρ(x ′, t ′))η(x ′, t ′)
〉

+ O(ε
1/2

).

(4.102)
This rearrangement allows us to distinguish explicitly between the systematic con-
tribution from the noise term and a residual stochastic one. Since the noise is white
in time, the average of the noise term has no explicit time dependence. Writing
ρ(x, t) = ρ0(x, t)+ δρ, where ρ0(x, t) = 〈ρ(x, t)〉 and the perturbative fluctuation
is δρ ∼ O(ε

1/2
), we obtain to lowest order

∂ρ0

∂t
= ∂

2
ρ0

∂x2
+ f (ρ0)+ εC(0)g(ρ0)g

′
(ρ0), (4.103)

which is the RD equation for the mean front profile. The methods developed in Sect.
4.2 allow us to study fronts connecting the steady states of (4.103) and to obtain the
mean velocity in terms of the noise intensity ε(0) ≡ εC(0).

To illustrate our approach, we consider the Ginzburg–Landau reaction term
F(ρ) = ρ(1 − ρ)(α + ρ), where α → αm − ε

1/2
η(x, t). Then f (ρ0) =

ρ0(1−ρ0)(αm+ρ0) and g(ρ0) = −ρ0(1−ρ0). In the absence of noise, the velocity
of the front propagating into the unstable state 0 is given by

v =
{

(1+ 2α)/
√
2, −1/2 < α < 1/2 (nonlinear),

2
√

α, 1/2 ≤ α (linear),
(4.104)

a result that can be obtained directly from (4.70). In the presence of multiplicative
noise, the mean front profile is governed by (4.103), which reads in this case

∂ρ0

∂t
= ∂

2
ρ0

∂x2
+ ρ0(1− ρ0)(α

′
m + βρ0), (4.105)
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with α
′
m = αm + ε(0) and β = 1 − 2ε(0). Applying the variational formula (4.70)

to the RD equation (4.105), we obtain the velocity for the front propagating, in the
presence of noise, into the unstable state 0:

v =
{

(1+ 2αm)/
√
2 [1− 2ε(0)], −1/2 ≤ αm < 1/2− 2ε(0) (nonlinear),

2
√

αm + ε(0), 1/2− 2ε(0) ≤ αm < 1 (linear).
(4.106)

An important condition for propagating fronts to exist is that ε(0) < 1/2, other-
wise the above result does not hold and the presence of noise can destroy the front
formation. This result shows that multiplicative noise, which is white in time, can
modify the mean front velocity as well as the transition point from the linear to the
nonlinear regime of propagation.

4.5 Effect of Time Delay and Age Structure

The inclusion of age structure in RD equations has its origin in the generalization
of population growth models. Age-structured models take explicitly into account
that population growth is due only to adult individuals. The oldest such model is
described by the McKendrick–von Foerster equation [447]:

∂ρ(a, t)

∂t
+ ∂ρ(a, t)

∂a
= −μ(a, t)ρ(a, t), (4.107)

where ρ(a, t) is the age distribution density of the population. Let ρ(a, t)da be the
density of individuals with an age in the interval (a, a + da) at time t . The rate of
change of the number of individuals in a given age interval �a is due to the rate of
entry at age a minus the rate of departure at age a + da minus the deaths, which
yields the balance equation

∂ρ(a, t)

∂t
�a = J (a, t)− J (a +�a, t)− μ(a, t)ρ(a, t)�a. (4.108)

Here μ(a, t) is the per capita mortality rate for individuals of age a at time t , and
J (a, t) is the flux of individuals of age a at time t . Dividing by �a and taking the
limit �a → 0, we obtain the conservation equation for the density of individuals:

∂ρ(a, t)

∂t
+ ∂ J (a, t)

∂a
= −μ(a, t)ρ(a, t). (4.109)

The flux J is not a flux in space, but rather the “movement” of individuals in age. We
assume that it is proportional to the density of individuals and some characteristic
velocity of aging, J (a, t) = ρ(a, t)v(a, t). Aging is simply the passage of time
v = da/dt = 1, and we obtain (4.107). If we also include the flux in the space due
to the motion of individuals, then we obtain Metz–Diekman model [295]:



4.5 Effect of Time Delay and Age Structure 147

∂ρ(x, a, t)

∂t
+ ∂ρ(x, a, t)

∂a
= D

∂
2
ρ(x, a, t)

∂x2
− μ(a, t)ρ(x, a, t). (4.110)

Almost parallel to McKendrick, Hutchinson [215], a well-known ecologist, pro-
posed a time-delayed version for the logistic growth equation, where the nonlinear
term was delayed in time. The diffusive Hutchinson equation, also known as the
delayed Fisher equation,

∂ρ(x, t)

∂t
= D

∂
2
ρ(x, t)

∂x2
+ ρ(x, t) [1− ρ(x, t − τ)] , (4.111)

has front solutions. When the delay τ is large, the traveling wave solution oscillates
around the state ρ = 1, which can be driven unstable for still larger τ [482].
A generalization of (4.111) consists in incorporating distributed delays in an ad hoc
manner by multiplying the second term on the right-hand side of (4.111) by a kernel
k(τ ) and integrating over τ . Many other delayed RD equations have appeared in
the ecological literature. A particularly well-known one is the Nicholson’s blowflies
equation:

∂ρ(x, t)

∂t
= D

∂
2
ρ(x, t)

∂x2
− δρ(x, t)+ pρ(x, t − τ)e−βρ(x,t−τ)

. (4.112)

Under certain conditions, this equation has front solutions. However, as for (4.111),
loss of monotonicity occurs as the delay is increased and the front develops a promi-
nent hump [167].

There exists a connection between age-structured and time-delayed RD models
[169]. From (4.110) we can obtain an equation for the total mature population den-
sity w(x, t). Let f (a) be the probability density function of maturation ages, i.e.,
f (a)da is the probability of maturing between the ages a and a + da. Then the
probability of maturing before age a is F(a) = ∫ a

0 f (a′)da′. The total density of
mature individuals is

w(x, t) =
∫ ∞

0
da f (a)

∫ ∞

a
ρ(x, t, a′)da′ =

∫ ∞

0
daF(a)ρ(x, t, a). (4.113)

Differentiating (4.113) with respect to time and using (4.110), we obtain

∂w

∂t
= D

∂
2
w

∂x2
− μw +

∫ ∞

0
da f (a)ρ(x, t, a), (4.114)

where the diffusion coefficient D and the death rate μ for immature population are
assumed to be constants. The solution of (4.110) is given by
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ρ(x, t, a) = e−μa

2
√

πDa

∫ ∞

−∞
b
[

w(y, t − a)
]

e−(x−y)2/4Dady, (4.115)

where ρ(x, t = 0, a) ≡ b[w(x, t)] is the birth function. Inserting this expression
into (4.114), we obtain the equation

∂w

∂t
= D

∂
2
w

∂x2
−μw +

∫ ∞

0
da f (a)

e−μa

2
√

πDa

∫ ∞

−∞
b
[

w(y, t − a)
]

e−(x−y)2/4Dady.

(4.116)

If the diffusion coefficient for immature individuals is very small (D → 0), then the
Gaussian function in the integrand can be approximated by a Dirac-delta-function,

∂w

∂t
= D

∂
2
w

∂x2
− μw +

∫ ∞

0
da f (a)e−μab [w(x, t − a)] . (4.117)

If there exists only a unique maturation age τ , then f (a) = δ(a − τ). Assuming
that b(w) = we−w we recover Nicholson’s equation. Recently, a model consisting
of two subpopulations, mature and immature, with an age-dependent disperser–
nondisperser transition has been studied analytically and applied to the Neolithic
transition in Europe. This model shows good agreement with observational data
[292]. This example will be analyzed in detail in Chapter 7.

4.6 Multi-Component Reaction–Diffusion Systems

The reaction–diffusion equations for a system of n species in one-dimensional space
read, see Sect. 2.1.2,

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ F(ρ), (4.118)

where ρ ∈ R
n , F : R

n → R
n , and D is the n × n diffusion matrix. We focus on

front solutions and illustrate how to determine the front velocity for KPP kinetics.
Let us write, for simplicity,

Fj (ρ) = c j j (ρ)ρ j +
∑

m �= j

γ jmρm, (4.119)

where γ jm > 0 for j �= m. The kinetic terms in (4.118) must satisfy the following
conditions:

(i) In R
n
+ = {(

ρ1, . . . , ρn
) |ρ j > 0

}

, the vector field
(

F1(ρ), . . . , Fn(ρ)
)

has an
unstable stationary state at 0 = (0, . . . , 0) and an asymptotically stable one at
A = (A1, . . . , An) with A j > 0 for j = 1, . . . , n.

(ii) The coefficients
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r j = c j j (0) = sup
0≤ρi≤Ai ;∀i=1,...,n

[

c j j (ρ)
]

(4.120)

must be finite.

4.6.1 Two-Component RD system

In this section we show how to compute the front velocity for a reaction–diffusion
system of two components. The calculations can be extended easily to three or more
components. Define γ12 = γ1 and γ21 = γ2 for simplicity. Consider the system

∂ρ1

∂t
= D1

∂
2
ρ1

∂x2
+ f1(ρ1, ρ2)ρ1 + γ1ρ2, (4.121a)

∂ρ2

∂t
= D2

∂
2
ρ2

∂x2
+ f2(ρ1, ρ2)ρ2 + γ2ρ1. (4.121b)

We assume that the interaction terms fi (ρ1, ρ2), i = 1, 2, are of KPP type. The
dynamical behavior of the front is governed by the linear part of the system and
we can use the Hamilton–Jacobi formalism, see Sect. 4.2.1. Under the hyperbolic
scaling (4.33), the fields ρ

ε
i (x, t) = ρi (x/ε, t/ε) satisfy

ε
∂ρ

ε
1

∂t
= ε

2D1
∂
2
ρ

ε
1

∂x2
+ r1ρ

ε
1 + γ1ρ

ε
2, (4.122a)

ε
∂ρ

ε
2

∂t
= ε

2D2
∂
2
ρ

ε
2

∂x2
+ r2ρ

ε
2 + γ2ρ

ε
1 . (4.122b)

This system of equations can be rewritten as

−A1
∂Gε

∂t
= D1A1

(
∂Gε

∂x

)2

− D1A1ε
∂
2Gε

∂x2
+ r1A1 + γ1A2, (4.123a)

−A2
∂Gε

∂t
= D2A2

(
∂Gε

∂x

)2

− D2A2ε
∂
2Gε

∂x2
+ r2A2 + γ2A1, (4.123b)

after taking into account the nonlinear transformation

ρ
ε
i (x, t) = Ai exp

[

−Gε
(x, t)

ε

]

. (4.124)
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For simplicity we suppose that the initial conditions for (4.121) have the form

ρi (x, 0) =
{

Ai , x < 0,

0, x ≥ 0,
(4.125)

which will give rise to a front with the minimal propagation velocity. Taking the
limit ε → 0, i.e., the long-time and large-spatial scale limit, we obtain the equation
for the action functional G(x, t). Introduction of the definitions (4.38) turns the
system (4.123) into an eigenvalue problem MA = HA, where

M =
(

D1 p
2 + r1 γ1

γ2 D2 p
2 + r2

)

. (4.126)

This system of algebraic equations for A1 and A2 has a nontrivial solution if
det(M− H I) = 0:

H2−H
(

D1 p
2 + D2 p

2 + r1 + r2
)

+(D1 p
2+r1)(D2 p

2+r2)−γ1γ2 = 0. (4.127)

To ensure the positivity of A1 and A2, we need to choose the largest eigenvalue
H(p), i.e., the largest solution of equation (4.127),

H(p) = D1 + D2

2
p2 + r1 + r2

2

+ 1

2

√
[

(D1 − D2)p
2 + r1 − r2

]2 + 4γ1γ2. (4.128)

The front velocity can be determined from (4.128) and (4.47). One of the exercises
below deals with a particular case where an analytical solution for the front velocity
can be obtained.

Exercises

4.1 Find exact solutions for the RD equation with the reaction term F(ρ) =
ρ
q+1

(1 − ρ
q
) by looking for solution in the form ρ(z) = (1 + aebz)−s with

z = x − vt . Determine the unique values for v, b, and s in terms of q. Consider
D, a, b, s as positive parameters.

4.2 Consider the RD equation with the piecewise linear emulation for the KPP reac-
tion term

F(ρ) =
{

αρ, 0 ≤ ρ < a,

β(1− ρ), a < ρ ≤ 1,
(4.129)
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with β > 0. Shift to the traveling wave coordinate and solve the corresponding ordi-
nary differential equation to determine the front profile that satisfies ρ(−∞) = 1
and ρ(+∞) = 0. By matching the derivative of the front profile at ρ = a obtain the
front velocity.

4.3 Consider the RD equation with the initial condition

ρ(x, 0) =
{

1, x < 0,

e−h(x)
, x > 0.

(4.130)

The Hamilton–Jacobi formalism can be extended to incorporate initial condition
without compact support by considering

G(x, t) = min
y≥0

{

εh(y/ε)+
∫ t

0
L(x, s)ds, x(t) = x, x(0) = y

}

. (4.131)

Prove that for h(x) = αx the front velocity is

v =
{

1/α + α, α < 1,

2, α > 1.
(4.132)

4.4 The equation

∂ρ

∂t
= ∂

2
(ρ

m
)

∂x2
+ F(ρ) (4.133)

with F(0) = F(1) = 0 and m > 1 is known as the reaction–diffusion equation in
porous media. Transform to the traveling wave coordinate and consider the bound-
ary conditions limz→−∞ ρ = 1 and limz→+∞ ρ = 0. By defining q = −ρ

m−1
ρz

construct a variational principle as in Sect. (4.2.2) to show that

v = max
g

2
√
m

∫ 1
0

√

ρ
m−1F(ρ)ghdρ
∫ 1
0 gdρ

. (4.134)

Show that the fronts of the equation (4.133) and those of the equation

∂ρ

∂t
= ∂

2
ρ

∂x2
+ mρ

m−1F(ρ) (4.135)

travel with the same velocity.

4.5 The evolution of iodide, I−, in the iodate–arsenous acid reaction with arsenous
acid in stoichiometric excess is well described by the RD equation
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∂ρ

∂t
= D

∂
2
ρ

∂x2
+ (a + bρ)ρ(c − ρ). (4.136)

Here ρ is the concentration of I−, in M=mol/L, a = ka[H+]2, b = kb[H+]2, and
c is the initial concentration of iodate, IO3

−. The experimental values are ka =
4.50×103/M3 s, kb = 4.36×108/M4 s, D = 2.0×10−3mm2

/s, [H+] = 7.1×10−3

M, and c = 5.0 × 10−3 M. Find the chemically acceptable stationary states of
the kinetic term in (4.136) and determine their stability. Show that (4.136) has a
propagating front solution connecting the stable to the unstable steady state and
determine the propagation velocity v. Compare your value with the experimental
value vexp = 2.3× 10−2 mm/s.

4.6 Use the variational principle

v = max
g

2α

∫ 1
0

Fg
ρ(1−ρ)

dρ
∫ 1
0 gdρ

(4.137)

with the trial function g(ρ) = exp

[

−α
2 ∫ F

ρ
2
(1−ρ)

2 dρ

]

to calculate the front

velocity, connecting 0 and 1, for RD equations with reaction terms given by (a)
b−1ρ(1− ρ)(ρ + b), (b) ρ(1− ρ)(ρ − a), and (c) ρ(1− ρ).

4.7 Determine the shift in the front velocity for the RD equation with a Ginzburg–
Landau reaction term F(ρ) = (1 − ρ

2
)(ρ + a) with 0 < a < 1, when a cutoff is

imposed at the metastable state ρ = −1.
4.8 Determine the shift in the front velocity for the RD equation with a Nagumo
reaction term, when a cutoff is imposed at the state ρ = 0. Use the variational
principle to show that

δv =
√
2�(4)a

�(1+ 2a)�(3− 2a)
ε
1+2a

. (4.138)

4.9 Find the shift in the front velocity for a reaction–diffusion equation where the
diffusion coefficient D(ρ) depends on ρ, with D(0) = 0, D′

(ρ) > 0, and the cutoff
is imposed at the state ρ = 0 of the KPP reaction term.

4.10 Consider the RD equation with the reaction term F(ρ) = −ρ(α+ρ). Since it is
always negative, the RD equation cannot have propagating front solutions. Consider
that the control parameter α fluctuates around its mean value αm with a Gaussian
noise of zero mean and correlation given by (4.96). Show that if the noise inten-
sity is larger than αm , the state 0 becomes unstable and can be invaded by a front
propagating with the linear velocity.
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4.11 Consider the system given in (4.121) with D1 = D2 = D. Calculate the Hamil-
tonian and show that it coincides with the Hamiltonian for a single-component RD

equation with an effective reaction rate r =
(

r1 + r2 +
√

(r1 − r2)
2 + 4γ1γ2

)

/2.
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