
Chapter 3
Random Walks and Mesoscopic
Reaction–Transport Equations

As discussed in Sect. 2.1, the standard reaction–diffusion equation for the particle
density ρ(x, t) has the form

∂ρ

∂t
= D�ρ + F(ρ), x ∈ R

3
. (3.1)

This equation is an example of a macroscopic reaction–transport equation that can
be obtained in the long-time large-scale limit of mesoscopic equations. Recall that
the mesoscopic approach is based on the idea that one can introduce mean-field
equations for the particle density involving a detailed description of the movement
of particles on the microscopic level. At the same time, random fluctuations around
the mean behavior can be neglected due to a large number of individual particles.
For example, we can obtain (3.1) from the mesoscopic integro-differential equation

∂ρ

∂t
= λ

∫

R
3
ρ(x− z, t)w(z)dz− λρ(x, t)+ F(ρ), (3.2)

where λ is the intensity of particle jumps and w(z) is the long-distance dispersal
kernel. This equation arises in population theory, where the dispersal of individuals
leads to population spread in space and invasion into new territories. The reaction–
diffusion equation (3.1) can also be obtained from the mesoscopic balance equations

ρ(x, t) =ρ(x, 0)�(t)+
∫ t

0
j (x, t − τ)�(τ)dτ, (3.3a)

j (x, t) =F(ρ)+
∫

R
3
ρ(x− z, 0)ψ(z, t)dz+

+
∫ t

0

∫

R
3
j (x− z, t − τ)ψ(z, τ )dzdτ. (3.3b)

These are the mean-field equations for the density of particles that follow a
continuous-time random walk (CTRW). Each random step of a particle is character-
ized by a waiting time and a jump length, which are distributed according to the joint

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
DOI 10.1007/978-3-642-11443-4_3, C© Springer-Verlag Berlin Heidelberg 2010

55



56 3 Random Walks and Mesoscopic Reaction–Transport Equations

probability density function (PDF) ψ(z, τ ). Here j (x, t) is the density of particles
that are either produced with rate F(ρ) at point x at time t or arrive there exactly at
time t from other points x− z. The function

�(t) =
∫ ∞

t

∫

R
3
ψ(z, τ )dzdτ (3.4)

is the survival probability. Another long-time large-scale limit of (3.3) can be a
fractional reaction–transport equation, such as

∂ρ

∂t
= −Dα(−�)

α
2 ρ + F(ρ), x ∈ R

3
, (3.5)

where the Laplacian � is replaced by a fractional operator −(−�)
α
2 and Dα is a

generalized diffusion coefficient. This replacement leads to a faster spread of parti-
cles, i.e., superdiffusion, see Sect. 3.3, than the standard reaction–diffusion equation
(3.1) describes. The microscopic reason for the fast spread is that the jump length
PDF

w(z) =
∫ ∞

0
ψ(z, τ )dτ (3.6)

has a heavy tail, so that w(z) ∼ |z|−d−α with 0 < α < 2 as |z| → ∞, where d is
the dimension of space, R

d . The fractional Laplacian can be defined as

(−�)
α
2 g(x) = F−1 [|k|α g̃(k)

]

, (3.7)

where F−1 denotes the inverse Fourier transform and g̃(k) = F
[

g(x)
] = ∫

R
3 g(x)

eik·xdx. Fractional differential equations have attracted considerable interest in past
years. We believe that the approach based on random walk models, the long-time
large-scale limit asymptotics of mesoscopic equations, and stable distributions often
provides a deeper insight into mechanisms by which the fractional equations arise
than a standard phenomenological approach.

The main objective of this chapter is to establish the relation between the macro-
scopic equations like (3.1) and (3.5), the mesoscopic equations (3.2) and (3.3), etc.,
and the underlying microscopic movement of particles. We will show how to derive
mesoscopic reaction–transport equations like (3.2) and (3.3) from microscopic ran-
dom walk models. In particular, we will discuss the scaling procedures that lead
to macroscopic reaction–transport equations. As an example, let us mention that
the macroscopic reaction–diffusion equation (3.1) occurs as a result of the conver-
gence of the random microscopic movement of particles to Brownian motion, while
the macroscopic fractional equation (3.5) is closely related to the convergence of
random walks with heavy-tailed jump PDFs to α-stable random processes or Lévy
flights.
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In the following section we restrict ourselves to one-dimensional models for
expository purposes. The material is presented by means of examples of random
walk models and corresponding mesoscopic equations and is sometimes supported
by general theory.

3.1 Discrete-Time Random Walk

We begin with a simple example of a particle performing a discrete-time random
walk (DTRW) in one dimension. Assume that it is initially at point 0. The random
walk can be defined by the stochastic difference equation for the particle position
Xn at time n:

Xn+1 = Xn + Zn+1, (3.8)

where the jumps Zn are mutually independent, continuous random variables with
the common PDF

w(z) = ∂

∂z
P(Zn ≤ z). (3.9)

Equation (3.8) provides a microscopic description of the particle transport. After n
jumps, the position of the particle is

Xn =
n
∑

i=1
Zi . (3.10)

Let us define the PDF for the particle position Xn at time n:

p(x, n) = ∂

∂x
P(Xn ≤ x). (3.11)

It follows from (3.8) and (3.9) that the PDF p(x, n) obeys the Kolmogorov forward
equation

p(x, n + 1) =
∫

R

p(x − z, n)w(z)dz, (3.12)

with n = 0, 1, . . . . If Zi has zero mean and finite variance, σ 2 = ∫
R
z2w(z)dz, the

central limit theorem ensures that the PDF for the rescaled particle position Xn/
√
n

tends to a Gaussian as n → ∞. If the jumps Zn have a symmetric heavy-tailed
PDF with power-law index α < 2, then the variance σ

2 is infinite. According to the

generalized central limit theorem, the rescaled position Xn/n
1/α d→ Z as n →∞,
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where Z is a symmetric α-stable random variable and
d→ means convergence in

distribution [126, 377].

3.1.1 Mesoscopic Equation for the Particle Density

Let us introduce the average density of particles ρ(x, n) at point x at time n. We
assume that the number of particles per unit length around x is large enough that we
can neglect the random fluctuations in the number density. In this case, the particle
density ρ(x, n) obeys the integral balance equation

ρ(x, n + 1) =
∫

R

ρ(x − z, n)w(z)dz. (3.13)

This equation states that the particle density at time n+ 1 is the sum of the densities
at intermediate points x−z at time n multiplied by the probability of transition from
x − z to x . This is a mesoscopic description. Although it only deals with the mean
density of particles ρ(x, n), it involves a detailed description of the movement of
particles on the microscopic level. Equation (3.13) is the same as the Kolmogorov
forward equation (3.12). The solution to (3.13) can be rewritten as a convolution

ρ(x, n) = (ρ0 ∗ w
∗n

)(x), (3.14)

where ρ0(x) is the initial density, the asterisk ∗ denotes convolution, and w
∗n =

w ∗ · · · ∗ w (n times).
If the PDF is w(x) = 1

2δ(x−a)+ 1
2δ(x+a), jumps Zn can take only two values,

a and −a, with equal probabilities. In this case we have a recurrence equation

ρ(x, n + 1) = 1

2
ρ(x − a, n)+ 1

2
ρ(x + a, n). (3.15)

This equation can be recognized as a finite difference approximation of the diffusion
equation

∂ρ

∂t
= D

∂
2
ρ

∂x2
. (3.16)

This becomes clearer if we let the time step be of size τ instead of size 1. Then the
recurrence equation (3.15) can be rewritten as

ρ(x, t + τ)− ρ(x, t)

τ
= D

ρ(x + a, t)− ρ(x, t)+ ρ(x − a, t)

a2
, (3.17)

where t denotes a time point of the form nτ and D = a2/2τ . We see that (3.17)
is a discrete version of the standard diffusion equation (2.1). Though trivial, this
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derivation clearly explains the connection between the microscopic equation for
a single particle (3.8), the mesoscopic description for the particle density (3.13),
and the macroscopic diffusion equation (3.16). Later we discuss how the discrete
random walk (3.8) converges to Brownian motion after rescaling the time and space
steps, see Sect. 3.6.

So far we have considered a homogeneous-in-space random walk for which the
jump size Zn+1 in (3.8) is independent of the particle position Xn . The natural
generalization of this situation is the case where the jumps are described by the
conditional PDF

w(z|x) = ∂

∂z
P(Zn ≤ z|Xn−1 = x). (3.18)

The mesoscopic density is governed by the Kolmogorov forward equation, the
Master equation,

ρ(x, n + 1) =
∫

R

ρ(x − z, n)w(z|x − z)dz. (3.19)

The discrete model has the advantage that it can be easily generalized to include
various nonlinearities such as the kinetic term F(ρ) and the dependence of the jump
kernel w on the density ρ. In this case we have a nonlinear recurrence equation

ρ(x, n + 1) =
∫

R

F [ρ(x − z, n)]w(z|x − z, ρ(x − z, n))dz, (3.20)

with n = 0, 1, 2, . . . .

3.1.2 Random Walk with Two States and the System of Two
Mesoscopic Equations

So far we have considered a single mesoscopic equation for the particle density
and a corresponding random walk model, a Markov process with continuous states
in discrete time. It is natural to extend this analysis to a system of mesoscopic
equations for the densities of particles ρi (x, n), i = 1, 2, . . . ,m. To describe the
microscopic movement of particles we need a vector process (Xn, Sn), where Xn is
the position of the particle at time n and Sn its state at time n. Sn is a sequence of
random variables taking one of m possible values at time n. One can introduce the
probability density pi (x, n) = ∂P(Xn ≤ x, Sn = i)/∂x and an imbedded Markov
chain with the m × m transition matrix H = (hi j ), so that the matrix entry hi j
corresponds to the conditional probability of a transition from state i to state j .

To illustrate the idea, we derive mesoscopic equations for two densities ρi (x, n),
i = 1, 2, at point x at time n. One can think of a particle that moves along the
x-axis and that can be in two different states with dispersal kernels w1(z) and
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w2(z). We assume that the particles either jump or change their state. If the par-
ticle is in state 1 at time n, then the probability of being in state 2 at time n + 1
is h12, and the probability of being in state 1 at time n + 1 is h11 = 1 − h12.
In the same way, we can define the transition probabilities for the particle if it
is in state 2 at time n. We assume that these probabilities are h21 and h22 =
1 − h21. The transition matrix H of the Markov chain with two states has the
form

H =
(

h11 h12
h21 h22

)

. (3.21)

The balance equations for the two densities ρi (x, n), i = 1, 2, can be written as
follows:

ρ1(x, n + 1) = h11

∫

R

ρ1(x − z, n)w1(z)dz + h21ρ2(x, n), (3.22a)

ρ2(x, n + 1) = h22

∫

R

ρ2(x − z, n)w2(z)dz + h12ρ1(x, n), (3.22b)

with n = 0, 1, 2, . . . . The first equation states that the density of particles ρ1(x, n+
1) in state 1 at point x at time n + 1 is the sum of (i) the density of particles in state
1 at intermediate points x − z at time n multiplied by the probability of remaining
in state 1 at the transition time n + 1 and the probability of transition from x − z to
x and (ii) the density of particles in state 2 at time n multiplied by the probability of
transition from state 2 to state 1 at time n+1. It is straightforward to include kinetic
terms F1(ρ1) and F2(ρ2) and the dependence of the transition probabilities hi j on
densities ρ1 and ρ2, similar to (3.20).

3.2 Continuous-Time Random Walk

We now turn to a particle that performs a random walk in continuous time. In order
to keep this section as clear as possible, we will only consider one-dimensional ran-
dom walk models. As before, we assume that the jumps Z1, Z2, . . . are independent
identically distributed (IID) random variables. However, the jumps occur at random
times T1, T2, . . . , so that the intervals between jumps �n = Tn − Tn−1 are also IID
variables. In general, the time intervals �n and jumps Zn are dependent, and their
statistical characteristics are completely determined by the joint PDF ψ(z, t). The
spatial jump length PDF is given by w(z) = ∫∞

0 ψ(z, t)dt and the waiting time
PDF by φ(t) = ∫∞−∞ ψ(z, t)dz. If jumps and waiting times are independent of each
other, the corresponding joint PDF ψ(z, t) factorizes:

ψ(z, t) = w(z)φ(t). (3.23)
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Let X (t) denote the position of the particle at time t and X (0) = 0, then

X (t) =
N (t)
∑

i=1
Zi , (3.24)

where N (t) is the number of jumps up to time t . It can be defined in terms of the
random time Tn as follows:

N (t) = max
{

n ≥ 0 : Tn ≤ t
}

. (3.25)

Such a process N (t) is called a renewal or counting process. The particle position
X (t) is called a continuous-time random walk. Figure 3.1 illustrates the process
X (t). It should be noted that the CTRW X (t) defined by (3.24) can also be obtained
by replacing the discrete time n in (3.10) with the “random” time N (t), i.e.,

X (t) = XN (t). (3.26)

Fig. 3.1 Schematic picture of a CTRW

In the mathematical literature, X (t) is called a semi-Markov process associated with
the two-component Markov chain (Xn, Tn), a Markov renewal process [218]. As
discussed in Sect. 2.3, the CTRWmodel is a standard approach for studying anoma-
lous diffusion [298].

The microscopic stochastic equation for the particle position X (t) can be written
in the form

dX

dt
=
∑

i

Ziδ(t − Ti ), (3.27)
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where the right-hand side represents the sum of the stochastic pulses at renewal
times Ti with random amplitudes Zi .

To find the PDF p(x, t) for the particle position at time t we use the equation

p(x, t) = p0(x)�(t)+
∫ t

0
j (x, t − τ)�(τ)dτ, (3.28)

where p0(x) is the initial PDF, j (x, t) is the probability density of reaching the point
x exactly at time t , and

�(t) =
∫ ∞

t

∫

R

ψ(z, τ )dzdτ (3.29)

is the probability that the particle does not jump in the time interval (0, t], i.e., the
survival probability. Equation (3.28) expresses the law of total probability. The first
term on the RHS of (3.28) represents the probability of being at the point x times
the probability of no jumps up to time t . The second term takes into account the
probability of arriving at the point x at time t − τ and the probability of no jumps
during the remaining time τ . The density j (x, t) obeys the balance equation

j (x, t) =
∫

R

p0(x − z)ψ(z, t)dz +
∫ t

0

∫

R

j (x − z, t − τ)ψ(z, τ )dzdτ. (3.30)

Applying the Fourier–Laplace (F-L) transform to (3.28) and (3.30), we obtain
the Fourier–Laplace transform of the PDF p(x, t), the Montroll–Weiss equation,

ˆ̃p(k, s) =
p̃0(k)

[

1− φ̂(s)
]

s
[

1− ˆ̃
ψ(k, s)

] . (3.31)

Here φ̂(s) is the Laplace transform of the waiting time PDF φ(t), p̃0(k) is the

Fourier transform of the initial PDF p0(x), and
ˆ̃
ψ(k, s) is the F-L transform of

the joint PDF ψ(x, t). In particular, (3.31) can be rearranged for the uncoupled case
(3.23) as

s ˆ̃p(k, s)− p̃0(k) =
sφ̂(s)

1− φ̂(s)
(w̃(k)− 1) ˆ̃p(k, s), (3.32)

where the left-hand side is the Fourier–Laplace transform of the derivative ∂p/∂t
and w̃(k) is the Fourier transform of dispersal kernel w(z). If we apply the F-L
transform inversion, we obtain the integro-differential equation, the Master
equation,
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∂p

∂t
=
∫ t

0
K (t − τ)

[∫

R

p(x − z, τ )w(z)dz − p(x, τ )

]

dτ. (3.33)

The memory kernel K (t) is defined in terms of its Laplace transform, see (2.66),

K̂ (s) = φ̂(s)

�̂(s)
= sφ̂(s)

1− φ̂(s)
. (3.34)

It should be emphasized that it is impossible to find an explicit expression for the
memory kernel K (t) for arbitrary choices of the waiting time PDF φ(t).

As we mentioned in Sect. 2.3, CTRWs can be characterized by the mean waiting
time, T = ∫∞

0 tφ(t)dt , and the second moment of the jump length PDF, σ
2 =

∫

R
z2w(z)dz. We assume that w(z) is even, i.e., the first moment of w(z) vanishes.

If T and σ
2 are finite, the central limit theorem implies that the rescaled particle

position
√

εX (t/ε) has a Gaussian PDF as ε → 0,

lim
ε→0

∂

∂x
P

(√
εX

(
t

ε

)

≤ x

)

= 1√
4πDt

exp

(

− x2

4Dt

)

, (3.35)

with D = σ
2
/2T . In another words,

√
εX (t/ε) converges in distribution to the

Brownian motion B(t) as ε → 0.
The CTRW model is a standard tool for modeling subdiffusion, for which the

variance of the particle position increases with time as tγ with 0 < γ < 1, see Sect.
2.3. This regime occurs if the waiting time PDF behaves like φ(t) ∼ (τ0/t)

1+γ as
t → ∞. Then the mean waiting time T is infinite. The Laplace transform φ̂(s) is
approximated by

φ̂(s) � 1− (τ0s)
γ (3.36)

for small s and 0 < γ < 1. Then K̂ (s) � s(τ0s)
−γ . Equation (3.32) can be written

as sγ ˆ̃p(k, s) − sγ−1 p̃0(k) = τ
−γ

0 (w̃(k) − 1) ˆ̃p(k, s). We apply the F-L transform
inversion and obtain the fractional Kolmogorov–Feller equation

τ
γ

0
∂

γ p

∂tγ
=
∫

R

p(x − z, t)w(z)dz − p(x, t), (3.37)

where

∂
γ p

∂tγ
= 1

�(1− γ )

∂

∂t

∫ t

0

p(x, τ )dτ

(t − τ)
γ − t−γ p0(x)

�(1− γ )
(3.38)

is the Caputo fractional derivative, which reduces to the standard derivative for
γ = 1.
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3.2.1 Mesoscopic Equation for the Particle Density

Consider particles that undergo a continuous-time random walk and do not interact
with each other. Then the balance equations for the mean density of particles ρ(x, t)
and the density of particles j (x, t) arriving at the point x exactly at time t can be
written as

ρ(x, t) = ρ0(x)�(t)+
∫ t

0
j (x, τ )�(t − τ)dτ, (3.39)

and

j (x, t) =
∫

R

ρ0(x − z)ψ(z, t)dz +
∫ t

0

∫

R

j (x − z, τ )ψ(z, t − τ)dzdτ, (3.40)

where ρ0(x) is the initial particle density. These two equations have the same form
as (3.28) and (3.30). The two balance equations (3.39) and (3.40) can be rewritten
as a single equation:

ρ(x, t) = ρ0(x)�(t)+
∫ t

0

∫

R

ρ(x − z, τ )ψ(z, t − τ)dzdτ. (3.41)

Note that the initial distribution ρ0(x) is set up in such a way that the random walk
for all particles starts from t = 0. Other choices of the time origin lead to aging
effects [29]. In the following, we consider the uncoupled case (3.23) for simplicity.
Using the Laplace–Fourier transform, we obtain from (3.39) and (3.40) the expres-
sion for j (x, t) in terms of ρ(x, t):

j (x, t) =
∫ t

0

∫

R

K (t − τ)w(z)ρ(x − z, τ )dzdτ, (3.42)

where the memory kernel K (t) is given by (3.34). In the uncoupled case, (3.41) can
be converted into the integro-differential transport equation, the generalized Master
equation,

∂ρ

∂t
=
∫ t

0
K (t − τ)

[∫

R

ρ(x − z, τ )w(z)dz − ρ(x, τ )

]

dτ. (3.43)

The intuitive meaning of the Master equation can be understood in terms of the
density of particles j (x, t) given by (3.42). If we differentiate ρ(x, t) from (3.39)
with respect to time, we obtain

∂ρ

∂t
= −ρ0(x)φ(t)+ j (x, t)−

∫ t

0
j (x, τ )φ(t − τ)dτ, (3.44)
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since �
′
(t) = −φ(t). The last equation can be written in the following form:

∂ρ

∂t
= j (x, t)− i(x, t), (3.45)

where i(x, t) is the rate of departure of particles from the point x ,

i(x, t) =
∫ t

0
K (t − τ)ρ(x, τ )dτ. (3.46)

The generalized Master equation (3.43) can be rewritten as a simple rate equation:

∂ρ

∂t
=
∫

R

i(x − z, t)w(z)dz − i(x, t). (3.47)

It is tempting to generalize this equation by including a nonlinear reaction term
F(ρ) on its RHS:

∂ρ

∂t
=
∫

R

i(x − z, t)w(z)dz − i(x, t)+ F(ρ). (3.48)

It turns out that the inclusion of the kinetic term F(ρ) is not a trivial procedure
for non-Markovian processes. In particular, the transport term might depend on the
reaction kinetics. We discuss this problem later in detail, see Sect. 3.4.

As we mentioned, the particle position X (t) can be expressed in terms of a dis-
crete random walk Xn , see (3.10), and a counting process N (t) as (3.26). Therefore,
the solution of the Master equation (3.43) can be written as the average value

ρ(x, t) =
∞
∑

n=0
ρ(x, n)P(N (t) = n), (3.49)

where the density ρ(x, n) is defined by the convolution equation (3.13). Here we
have assumed that the jumps and waiting times are independent. Using the formula
(3.14), we can express the particle density ρ(x, t) in terms of the initial density
ρ0(x) and the expectation operator E as

ρ(x, t) = E

(

ρ0 ∗ w
∗N (t)

)

(x) =
∞
∑

n=0
(ρ0 ∗ w

∗n
)(x)P(N (t) = n). (3.50)

Applying the Fourier–Laplace transform, we obtain

ˆ̃ρ(k, s) = ρ̃0(k)
∞
∑

n=0
w̃

n
(k)P̂(n, s), (3.51)
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where P̂(n, s) is the Laplace transform of P(n, t) = P(N (t) = n). It is known from
renewal theory [81] that

P̂(n, s) =
φ̂
n
(s)
[

1− φ̂(s)
]

s
. (3.52)

Substitution of (3.52) into (3.51) yields

ˆ̃ρ(k, s) =
ρ̃0(k)

[

1− φ̂(s)
]

s

∞
∑

n=0
w̃

n
(k)φ̂n

(s) =
ρ0(k)

[

1− φ̂(s)
]

s
[

1− w̃(k)φ̂(s)
] , (3.53)

which is exactly the formula (3.31) for the case ˆ̃
ψ(k, s) = w̃(k)φ̂(s).

3.2.2 Random Walk with Discrete States in Continuous-Time

So far we have considered the homogeneous case for which the waiting time density
is independent of the position of the particles or their state. Let us formulate the
general equations describing a random walk with discrete states in continuous time
for which the waiting time PDF depends on the current state. (CTRWs with space-
dependent waiting time PDFs have been studied in [75].) We introduce the mean
density of particles ρm(t) in state m and the density of particles jm(t) arriving in
state m exactly at time t . The balance equations can be written as

ρm(t) = ρm0�m(t)+
∫ t

0
jm(τ )�m(t − τ)dτ (3.54)

and

jm(t) =
∑

i �=m
ρi0φi (t)him +

∑

i �=m

∫ t

0
ji (τ )φi (t − τ)himdτ. (3.55)

Here �m(t) = ∫∞
t φm(τ )dτ is the survival probability in the state m, him is the

transition probability from state i to m, and ρi0 is the initial density of particles in
state i . Using the Laplace transform, we obtain from (3.54) and (3.55)

jm(t) =
∑

i �=m

∫ t

0
Ki (t − τ)ρi (τ )himdτ, (3.56)

where the memory kernel Ki (t) is defined in terms of its Laplace transform

K̂i (s) =
φ̂i (s)

�̂i (s)
= sφ̂i (s)

1− φ̂i (s)
. (3.57)
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The two balance equations can be rewritten as a single equation:

ρm(t) = ρm0�m(t)+
∑

i �=m

∫ t

0
Mim(t − τ)ρi (τ )himdτ, (3.58)

where the memory kernel Mim(t) is defined as

M̂im(s) = φ̂i (s)�̂m(s)

�̂i (s)
. (3.59)

It should be noted that (3.58) cannot be written in the standard form (3.41), which
makes it difficult to give its probabilistic interpretation.

The generalized Master equation is

∂ρm(t)

∂t
=
∑

i �=m

∫ t

0
Ki (t − τ)ρi (τ )himdτ −

∫ t

0
Km(t − τ)ρm(τ )dτ. (3.60)

This equation can be useful for studying multi-component systems where the chem-
ical reactions do not obey classical kinetics.

3.2.3 Semi-Markov Processes

As mentioned on page 61, CTRWs are known as semi-Markov processes in the
mathematical literature. In this section we provide a brief account of semi-Markov
processes. They were introduced by P. Lévy and W. L. Smith [253, 415]. Recall that
for a continuous-time Markov chain, the transitions between states at random times
Tn are determined by the discrete chain Xn with the transition matrix H = (hi j ).
The waiting time �n = Tn − Tn−1 for a given state i is exponentially distributed
with the transition rate λi , which depends only on the current state i . The natural
generalization is to allow arbitrary distributions for the waiting times. This leads to a
semi-Markov process. The reason for such a name is that the underlying process is a
two-component Markov chain: (Xn, Tn). Here the random sequence Xn represents
the state at the nth transition, and Tn is the time of the nth transition. Obviously,
Tn =

∑n
k=1 �k .

The main statistical characteristic of the two-component Markov chain (Xn, Tn)
is the transition kernel

Qi j (t) = P
{

Xn+1 = j,�n+1 ≤ t |Xn = i
}

(3.61)

for any n ≥ 0. Here we consider only time-homogeneous chains for which the
kernel Qi j (t) is independent of n. We use the counting process N (t) (3.25) that
gives the number of transitions in the time interval (0, t].
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Semi-Markov processes can be defined as

X (t) = XN (t) (3.62)

or

X (t) = Xn if Tn ≤ t < Tn+1. (3.63)

If the process starts in the state i , then the subsequent state j is determined by the
transition kernel Q so that the process remains in state i some random time before
making a transition to j . One can introduce the conditional waiting time distribution
�i j (t) as

�i j (t) = P
{

Tn+1 − Tn ≤ t |Xn = i, Xn+1 = j
}

. (3.64)

It gives us the distribution of the random time spent in state i before jumping to state
j . The transition kernel Qi j (t) can be written as

Qi j (t) = hi j�i j (t), (3.65)

where hi j is the transition probability matrix of the underlying discrete Markov
chain Xn . Note that Qi j (t) → hi j as t → ∞ since �i j (∞) = 1. In general, the
waiting time distribution depends on the current state i and the next state j .

The standard continuous-time Markov chain is a special case of a semi-Markov
process with the transition kernel

Qi j (t) = hi j (1− exp(−λi t)). (3.66)

The transition probability

pi j (t) = P {X (t) = j |X (0) = i} (3.67)

satisfies the integral backward equation

pi j (t) = δi j Si (t)+
∑

k

∫ t

0
qik(t − τ)pkj (τ )dτ, (3.68)

where

qi j (t) =
∂Qi j (t)

∂t
(3.69)

is the transition density kernel and

Si (t) = 1−
∑

k

Qik(t) (3.70)
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is the survival probability for state i . The first term δi j Si (t) in (3.68) represents the
probability that the process X (t) does not leave the state i up to time t , given that
it was in this state initially. In the Markovian case, qi j (t) = λi exp(−λi t)hi j , this
equation is equivalent to a system of backward differential equations for Markov
processes. Janssen and Manca have summarized the theory of semi-Markov pro-
cesses and discussed its applications in [218].

3.3 Markov CTRW Models

3.3.1 Compound Poisson Process

If the counting process N (t) is a Poisson process with the transition rate λ, then the
particle position

X (t) =
N (t)
∑

i=1
Zi (3.71)

is a compound Poisson process [126]. The probability that n jumps occur in the time
interval [0, t] is given by

P(N (t) = n) = (λt)n

n! e−λt
. (3.72)

Note that the Poisson process plays a very important role in random walk theory. It
can be defined in two ways: (1) as a continuous-time Markov chain with constant
intensity, i.e., as a pure birth process with constant birth rate λ; (2) as a renewal
process. In the latter case, it can be represented as (3.25) with Tn =

∑n
i=0 �i . Here

�i are interarrival (waiting) times, which are independent random variables with
PDF

φ(t) = λe−λt
. (3.73)

Since the waiting time PDF φ(t) is exponential, the random walk X (t) is a Markov
process. The jump PDF w(z) is defined in (3.9).

The mesoscopic particle density ρ(x, t) obeys the integro-differential equation

∂ρ

∂t
= λ

∫

R

ρ(x − z, t)w(z)dz − λρ(x, t). (3.74)

The integro-differential equation (3.74) can be derived in several ways. The fol-
lowing is probably the most instructive in the context of transport theory. Since a
compound Poisson process is Markovian, the derivation of (3.74) is based on the
idea that the particle density at time t + h can be expressed in terms of the density
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at time t . In other words, the balance of particles during time (t, t + h] is indepen-
dent of what happened during the previous time interval (0, t]. We assume that the
probability of a jump during a small time interval of length h is λh + o(h) and the
probability of no jumps is 1− λh + o(h). Thus the balance of particles at the point
x can be written as

ρ(x, t + h) = (1− λh)ρ(x, t)+ λh
∫

R

ρ(x − z, t)w(z)dz. (3.75)

Subtracting ρ(x, t) from both sides of this equation, dividing by h, and letting h →
0, we obtain (3.74). Obviously, (3.74) corresponds to a particular case of (3.43),
namely where the time integral disappears, i.e., the Markov case.

Since the process is Markovian, it is easy to include chemical reactions in the
above model by adding the kinetic term F(ρ)h to the RHS of (3.75):

∂ρ

∂t
= λ

∫

R

ρ(x − z, t)w(z)dz − λρ(x, t)+ F(ρ). (3.76)

We can rewrite this equation with the initial condition ρ(x, 0) = ρ0(x) in integral
form. Let us look at (3.76) as a first-order inhomogeneous ODE of the form dρ/dt =
−λρ(t) + g(t), where the function g(t) combines the integral term and the kinetic
term F(ρ). This equation has a solution ρ(t) = ρ(0)e−λt + ∫ t0 g(t − τ)e−λτdτ ,
which implies that

ρ(x, t) = ρ0(x)e
−λt +

∫ t

0

∫

R

ρ(x − z, t − τ)w(z)λe−λτdzdτ

+
∫ t

0
F(ρ(x, t − τ))e−λτdτ. (3.77)

The first term on the right-hand side represents those particles that stay at point
x up to time t . The exponential factor e−λt = 1 − ∫ t0 φ(τ)dτ is the probability
that the particle makes no jump until time t . This is the survival probability �(t) for
φ(t) = λe−λt . The second term includes the contribution from the particles jumping
to point x from different positions x− z at time t−τ and surviving up to time t . The
last term describes the contribution from the chemical reaction with the rate F(ρ).

The natural generalization of a compound Poisson process is the Markov jump
process X (t) with the following statistical properties. If the position of a particle at
time t is X (t), then the probability of a jump during a small time interval (t, t+h] is
λ(X (t))h+o(h), so that X (t+h) = X (t)+Z(t)+o(h). The probability of no jump
during (t, t + h] is 1 − λ(X (t))h + o(h). The conditional density for a stationary
jump process Z(t) is

w(z|x) = ∂

∂z
P {Z(t) ≤ z|X (t) = x} . (3.78)
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The balance of particles at the point x is

ρ(x, t + h) =
∫

R

ρ(x − z, t)λ(x − z)hw(z|x − z)dz

+(1− λ(x)h)ρ(x, t)+ o(h). (3.79)

Subtracting ρ(x, t) from both sides, dividing by h, and letting h → 0, we obtain the
mesoscopic equation, the Master equation,

∂ρ(x, t)

∂t
=
∫

R

ρ(x − z, t)λ(x − z)w(z|x − z)dz − λ(x)ρ(x, t). (3.80)

This equation can easily be generalized to include various nonlinear effects. In par-
ticular, the jump PDF w(z|x) and the jump rate λ(x) can depend on the local density
ρ(x, t), due to an overcrowding effect for example. Then

∂ρ(x, t)

∂t
=
∫

R

ρ(x − z, t)λ(x − z, ρ(x − z, t))w(z|x − z, ρ(x − z, t))dz

−λ(x, ρ(x, t))ρ(x, t)+ F(ρ). (3.81)

3.3.2 System of Two Mesoscopic Equations

We consider the transport of particles A and B with linear reversible reaction A −↽⇀−
B. One can introduce a two-component system of equations for the densities ρ1(x, t)
and ρ2(x, t). We assume that the probability of a transition from A to B during a
small time interval of length h is α1h + o(h), and the backward transformation
B −→ A has the probability α2h+o(h). We assume that the reaction is independent
of the transport of particles. The probability of a jump during a small time interval h
is λ1h+o(h) for particles A and λ2h+o(h) for particles B. The balance of particles
A and B at the point x can be written as

ρ1(x, t + h) = (1− λ1h − α1h)ρ1(x, t)

+ λ1h
∫

R

ρ1(x − z, t)w1(z)dz + α2hρ2(x, t)+ o(h), (3.82a)

ρ2(x, t + h) = (1− λ2h − α2h)ρ2(x, t)

+ λ2h
∫

R

ρ2(x − z, t)w2(z)dz + α1hρ1(x, t)+ o(h). (3.82b)

These equations are the conservation laws for A and B particles. The first term on
the right-hand side of (3.82a) represents the particles A that stay at location x and
do not move during the time interval (t, t + h] and do not become particles B. The
second term corresponds to the number of particles of type A that arrive at x during
(t, t+h] from other points x−z, where the jump length z is distributed according to
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the dispersal kernel or jump length PDF w1(z). The last term represents the number
of particles B that turn into particles of type A.

In the limit h → 0, we obtain the mesoscopic system of reaction–transport equa-
tions

∂ρ1

∂t
= λ1

∫

R

ρ1(x − z, t)w1(z)dz − λ1ρ1 − α1ρ1 + α2ρ2, (3.83a)

∂ρ2

∂t
= λ2

∫

R

ρ2(x − z, t)w2(z)dz − λ2ρ2 + α1ρ1 − α2ρ2. (3.83b)

The main advantage of this Markovian model is that it can be easily general-
ized to include various nonlinear terms. Later we consider non-Markovian models
for which the inclusion of nonlinear effects is a highly nontrivial procedure, see
Sect. 3.4.

3.3.3 Characteristic Function and Transport Equation
for the Particle Density

Characteristic functions are very useful tools for studying random processes. It turns
out that reaction–transport equations can also be effectively handled by using the
characteristic function of the underlying random walks. In what follows, we will
see how this function helps to define the transport operator, a pseudo-differential
operator, for the mean density ρ(x, t).

3.3.3.1 Compound Poisson process

For illustrative purposes we begin with the transport of particles that follow the path
of the compound Poisson process (3.71), X (t) = ∑N (t)

i=1 Zi . The corresponding
mean-field equation for the density ρ(x, t) is given by (3.74). Let us show that this
equation is closely related to the characteristic function ρ̃(k, t) of X (t):

ρ̃(k, t) = E

(

eikX (t)
)

=
∞
∑

n=0
E

(

eikX (t)∣∣N (t) = n
)

P(N (t) = n). (3.84)

Here P(N (t) = n) = e−λt (λt)n

n! , and the conditional expectation is given by

E

(

eikX (t)∣∣N (t) = n
)

= E

(

eik
∑n

i=1 Zi ∣∣N (t) = n
)

= w̃
n
(k), (3.85)

where w̃(k) is the characteristic function of the random jump Zi with the density
w(z),

w̃(k) = E

(

eikZi
)

=
∫

R

eikzw(z)dz. (3.86)
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We obtain

ρ̃(k, t) =
∞
∑

n=0
e−λt (λtw̃(k))n

n! = etψ(k)
, (3.87)

where

ψ(k) = λ(w̃(k)− 1) (3.88)

is the characteristic exponent of the compound Poisson process X (t). Note that
ψ(k) = −Dk2 corresponds to the Brownian motion B(t) and ψ(k) = ikv − Dk2 is
the characteristic exponent of the Brownian motion with drift vt.

The function ψ(k) plays a very important role in defining a transport operator. It
follows from (3.87) that the function ρ̃(k, t) satisfies the equation

∂ρ̃(k, t)

∂t
= ψ(k)ρ̃(k, t). (3.89)

Applying the inverse Fourier transform to (3.89) with (3.88) and the standard convo-
lution theorem, we obtain the Kolmogorov–Feller equation (3.74). Thus the particle
density ρ(x, t) can be interpreted as the inverse Fourier transform of the character-
istic function ρ̃(k, t) = E(eikX (t)

). Since ρ̃(k, 0) = 1, the initial particle density is
ρ(x, 0) = δ(x). The integral operator on the RHS of the Kolmogorov–Feller equa-
tion (3.74) can be considered as a pseudo-differential operator with symbol (3.88).
Recall that a pseudo-differential operator Lx acting on the variable x is defined by
its Fourier transform as F[Lxρ(x, t)] = ψ(k)ρ̃(k, t), where ψ(k) is referred to as
the symbol of Lx (see, for example, [15]).

3.3.3.2 Symmetric α-Stable Lévy Process

Let us now consider another example of a Markov process for which the character-
istic exponent is

ψ(k) = −Dα |k|α , 0 < α < 2. (3.90)

This exponent corresponds to a symmetric α-stable Lévy process Sα(t), a Lévy
flight, which is self-similar with Hurst exponent H = 1/α. It follows from (3.89)
that the mesoscopic density of particles is the solution to the space-fractional diffu-
sion equation [371]:

∂ρ(x, t)

∂t
= Dα

∂
α
ρ(x, t)

∂ |x |α , (3.91)

where Dα is a generalized diffusion coefficient and ∂
α
ρ(x, t)/∂ |x |α is the symmet-

ric Riesz fractional derivative of order α defined by the Fourier representation
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F
[
∂

α
ρ(x, t)

∂ |x |α
]

= − |k|α ρ̃(k, t). (3.92)

The symmetric Riesz fractional derivative (3.92) is the pseudo-differential operator
with symbol − |k|α . Such a derivative describes a redistribution of particles in the
whole space according to the heavy-tailed distribution of the jumps

P{|Zi| > z} ∼ A

zα
, (3.93)

for large z. The symmetric Riesz derivative can be represented in explicit form as
[371, 372]

∂
α
ρ(x, t)

∂ |x |α = �(1+ α)

π
sin
(απ

2

) ∫ ∞

0

ρ(x − z, t)− 2ρ(x, t)+ ρ(x + z, t)

z1+α
dz.

(3.94)

The space-fractional equation (3.91) can be derived from the Kolmogorov–Feller
equation (3.74) by using the assumption that the random jump Zi has a Lévy-stable
PDF wα(z), symmetric with respect to zero, with power-law tails as z →∞. There
is no general explicit form for wα(z), but the characteristic function of wα(z), the
structure function, is

w̃α(k) = e−σ
α |k|α

. (3.95)

The width of the density wα(z) cannot be measured by the variance
∫

R
z2wα(z)dz,

which is infinite for α <2. The function wα(z) looks similar to a normal density in
the center, but the tails of wα(z) are much flatter than those of a Gaussian distribu-
tion. The asymptotic expression for large |z| involves power-law tails:

wα(z) ∼ σ
α
�(1+ α) sin(απ/2)

π
|z|−1−α (3.96)

(see, for example, [126, 373]). We show using scaling arguments that the large-
scale long-time limit for ρ(x, t) is the symmetric α-stable density that decays like
t |x |−1−α as x →∞. It follows from (3.88) and (3.89) that ρ̃(k, t) satisfies

∂ρ̃(k, t)

∂t
= λ

(

e−σ
α |k|α − 1

)

ρ̃(k, t). (3.97)

Let us find a space–time scaling, k → ε
Hk and t → t/ε, for which the characteristic

function

ρ̃
∗
(k, t) = lim

ε→0
ρ̃

ε
(k, t) = lim

ε→0
ρ̃

(

ε
Hk,

t

ε

)

(3.98)
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is scale invariant. In what follows we omit the asterisk for ρ̃
∗
(k, t). From (3.97) and

(3.98) we find that

ρ̃(k, t) = lim
ε→0

exp

[
λt

ε

(

e−σ
α |k|αε

Hα − 1

)]

= exp
(−λσ

α |k|α t) (3.99)

for the Hurst exponent H = α
−1. In this case, ρ(x, t) = F−1[ρ̃(k, t)] is the solution

to the space-fractional equation (3.91) with Dα = λσ
α . Let us find this solution by

using the scaling rules for the Fourier transform: g (x/a)
F→ ag̃(ak). If we set

λ = 1 and a = t1/α , then it follows from (3.99) and (3.95) that the Green’s function
G(x, t) for the space-fractional equation (3.91) with ρ(x, 0) = δ(x) can be written
in terms of the symmetric Lévy-stable PDF wα(z) as

G(x, t) = t−
1
α wα

(

xt−
1
α

)

. (3.100)

The Cauchy problem for (3.91) with ρ (x, 0) = ρ0(x) has the solution

ρ (x, t) =
∫

R

G(x − z, t)ρ0(z)dz. (3.101)

Note that an asymmetric density of jump lengths leads to the Riesz–Feller space-
fractional derivative of order α and skewness θ with the characteristic exponent

ψ(k) = −Dα |k|α ei sgn(k)θπ/2
, 0 < α < 2, |θ | ≤ min{α, 2− α}. (3.102)

The Cauchy problem involving the Riesz–Feller derivative was analyzed in
[166, 260]. In the next section we discuss the general Markov random processes
with independent and stationary increments, the Lévy processes, for which the
characteristic function is known explicitly.

3.3.4 Lévy Processes

In the previous two sections we gave a brief account of the compound Poisson
process and the symmetric α-stable Lévy process. This section is an introduction
to general one-dimensional Lévy processes. The compound Poisson process and
symmetric α-stable process are simply examples of Markov processes of Lévy type.
Readers who are interested in this topic in greater detail are referred to the books by
Applebaum [15] and Sato [378].

Recall that a Lévy process X (t) is a continuous-time stochastic process that has
independent and stationary increments. It represents a natural generalization of a
simple random walk defined as a sum of independent identically distributed random
variables. The independence of increments ensures that Lévy processes are Markov
processes. The main feature of a Lévy process is that it is infinitely divisible for
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any time t . It can be written as a sum of increments X (t) = ∑n
k=1 �Xk

(t) for any

n ∈ N , where �Xk
(t) are identically distributed random variables. It is usually

assumed that X (0) = 0. The simplest examples of Lévy processes are the Brownian
motion B(t), the Poisson process N (t), and the compound Poisson process X (t).
Any Lévy process X (t) can be written as the sum of a drift term at , a Brownian
motion B(t), and a pure jump process Z(t) with a finite or infinite number of jumps
in the interval [0, t].

Its statistical characteristics are completely determined by the characteristic
exponent ψ(k), defined as

E

{

eikX (t)
}

= etψ(k)
. (3.103)

The exponent ψ(k) has the Lévy–Khinchine representation

ψ(k) = iak − Dk2 +
∫

z �=0

(

eikz − 1− ikzχ0<|z|<1

)

ν(dz), (3.104)

where a and D are constants, χA is the indicator function of the set A, and ν(dz)
is a Lévy measure. The positive measure ν(A) is defined as the expected number
of jumps of X (t) per unit time, whose sizes belong to the set A. It must satisfy the
integrability condition

∫

z �=0 min(1, z2)ν(dz) < ∞, which means that there is a finite

number of jumps whose size is |z| ≥ 1,
∫

|z|≥1 ν(dz) < ∞, and
∫

0<|z|<1 z
2
ν(dz) <

∞ because of the convergence requirement for the integral in (3.104). For example,
the Lévy measure for the compound Poisson process (3.71) is ν(dz) = λw(z)dz.
Note that instead of zχ0<|z|<1 one can use any bounded continuous function g(z)

satisfying g(z) → z as z → 0. For example, g(z) = z/(1+ z2) or g(z) = sin z.
It follows from the previous section that the Fourier transform ρ̃(k, t) of the

particle density ρ(x, t) satisfies the equation

∂ρ̃(k, t)

∂t
= ψ(k)ρ̃(k, t). (3.105)

If we apply the inverse Fourier transform to this equation, we obtain an equation for
the density ρ(x, t):

∂ρ

∂t
+ a

∂ρ

∂x
= D

∂
2
ρ

∂x2
+
∫

z �=0

(

ρ(x − z, t)− ρ(x, t)+ z
∂ρ

∂x
χ0<|z|<1

)

ν(dz).

(3.106)

In particular, if the Lévy measure is ν(dz) = λδ(z− z0)dz and the size of the jumps
is z0 > 1, then

ψ(k) = iak − Dk2 + λ
(

eikz0 − 1
)

. (3.107)
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The intuitive meaning of this formula is as follows. Let X (t) be the position of a
particle performing a random Lévy walk with (3.107), then X (t) = at + B(t) +
Nz(t). The particle starts at zero and then follows the Brownian motion B(t) with
the drift velocity a until the random time T1 at which a jump of size z0 takes place.
Between random times T1 and T2 we have again the Brownian motion with a drift
and then another jump of the same size z0 at time T2. The last term in (3.107) is
related to a Poisson process Nz(t) with the rate λ in the set of values

{

nz0
}

with
n = 1, 2, . . . . The particle position X (t) is an example of a cadlag function. It is a
right-continuous with left limits function for which there exist two limits, X (t+) =
lims→t+ X (s) and X (t−) = lims→t− X (s), so that X (t) = X (t+). The difference

�X = X (t)− X (t−) describes the jump of X (t) at time t .
For example, the Lévy measure corresponding to anomalous transport is

ν(dz) = C dz

|z|1+α
(3.108)

where C = const, 0 < α < 2, α �= 1 and z �= 0. Let us assume that the drift a
and the diffusion coefficient D are zero. Then it follows from (3.104) and (3.108)
that the particle position X (t) is the symmetric α-stable random process Sα(t),
sometimes called a Lévy flight, with the anomalous diffusion coefficient Dα =
2Cα

−1
�(1 − α) cos(πα/2), see Sect. 3.3.3.2. It has an infinite variance which is

associated with very large jumps. The mesoscopic transport equation for the particle
density ρ (x, t) is the space-fractional diffusion equation (3.91).

3.3.4.1 Finite and Infinite Number of Jumps

We can distinguish two cases: (1) the average number of jumps is finite, i.e.,
∫

z �=0 ν(dz) < ∞; (2) infinite number of jumps, i.e.,
∫

z �=0 ν(dz) = ∞.

The compound Poisson process X (t), defined by (3.71), is an example of a pure
jump process which has only a finite number of jumps on the finite time interval
[0, t]. The Lévy measure ν(dz) = λw(z)dz is finite on R, that is,

∫

z �=0 ν(dz) =
λ < ∞. Note that ν is not a probability measure, because

∫

R
ν(dz) = λ. The

characteristic function for the compound Poisson process is

ρ̃(k, t) = etλ(w̃(k)−1) = etψ(k)
, (3.109)

where ψ(k) is the characteristic exponent (see also (3.88))

ψ(k) = λ

∫

R

(

eikz − 1
)

w(z)dz. (3.110)

The mesoscopic density of particles obeys the integro-differential equation (3.74).
The Gamma process is an example of a Lévy process with infinite number of

jumps. The Gamma process X�(t) is a pure jump Lévy process with the intensity
measure
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ν(dz) = γ0

z
e−βzdz, z > 0. (3.111)

The jumps in X�(t)with a size in the interval [z, z + dz] occur ν(dz). The parameter
γ0 determines the rate of jumps per unit time and β is the measure of jump size.
Since the jumps are positive, we analyze the Gamma process by using the Laplace
transform

E

{

e−sX�(t)
}

= et
∫∞
0 (e−sz−1)ν(dz)

. (3.112)

Taking into account (3.112) and the integral
∫∞
0

(

e−sz − 1
)

1
z e
−βzdz = − ln( s+β

β
),

we obtain

E

{

e−sX�(t)
}

=
(

β

s + β

)γ0t

. (3.113)

The expression
[

β/(s + β)
]γ0t is the Laplace transform of the density of the Gamma

process [15]. Therefore, we can find an explicit expression for the mesoscopic den-
sity of particles for x ≥ 0:

ρ(x, t) = ∂

∂x
P(X�(t) ≤ x) = 1

�(γ0t)
β

γ0t xγ0t−1e−βx
. (3.114)

Since the Lévy measure ν is infinite, i.e., ν(dz) = (γ0/z) exp(−βz)dz is not inte-
grable as z → 0, an infinite number of jumps occurs during a finite period of time.
However, the Lévy measure ν can be approximated by

νδ(dz) =
{

0, z ≤ δ,
(

γ0/z
)

exp(−βz)dz, z > δ,
(3.115)

where δ is a small number. Introducing the normalization constant λδ =
∫∞
δ

(γ0/z)
exp(−βz)dz, we approximate the Gamma process by the compound Poisson process
with intensity λδ that tends to infinity as δ → 0. In the limit we have an infinite
number of jumps whose size distribution is given by

wδ(z) =
(

γ0/z
)

e−βz

∫∞
δ

(

γ0/z
)

e−βzdz
. (3.116)

The mesoscopic density of particles obeys the integro-differential equation

∂ρ

∂t
= λδ

∫ ∞

0
ρ(x − z, t)wδ(z)dz − λδρ(x, t). (3.117)
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3.4 Non-Markovian CTRW Models with Chemical Reactions

In this section we consider CTRW models for which the waiting time distribution
is not exponential. The main challenge is to incorporate nonlinear kinetic terms
into non-Markovian transport equations. Several approaches exist in the literature
about how to include kinetic terms in reaction–transport systems with anomalous
diffusion. We discuss them in detail in the following.

We consider a one-component reaction–transport system consisting of particles
that follow a CTRW. Let ρ(x, t) represent the density of these particles at point
x and time t . We write the reaction term in the form F(ρ) = f (ρ)ρ. It is also
convenient to represent the nonlinear reaction rate f (ρ) as the difference between
the birth rate f +(ρ) and the death rate f −(ρ):

f (ρ) = f +(ρ)− f −(ρ). (3.118)

For example, if we consider the Schlögl Model I, see (1.66), then

f +(ρ) = k1ρa, f −(ρ) = k3ρb + k2ρ, (3.119)

where the densities ρa and ρb are constant. Note that the birth rate f +(ρ) must
allow for a constant term in F(ρ), as occurs in the Brusselator, the Lengyel–Epstein
model, and many other chemical schemes. In those cases, f +(ρ) = kρ−1. For KPP
kinetics, the birth rate is f +(ρ) = r and the death rate is f −(ρ) = rρ. The main
purpose is to derive the nonlinear Master equation for the density ρ(x, t) in the
form ∂ρ/∂t = Lρ, where the nonlinear evolution operator L has to be determined.
We consider three different models for reactions and non-Markovian transport pro-
cesses.

3.4.1 Model A

Non-Markovian behavior of particles performing a CTRW occurs if the particles
are trapped for random times distributed according to a nonexponential distribution.
The key question is how the chemical reaction influences the statistical properties
of the CTRW. For Model A, we assume that the transport process associated with
the CTRW and the chemical reactions are independent. We assume that the waiting
time PDF φ(t) and jump length PDF w(z) are independent and that the chemical
reactions do not affect at all the waiting time PDF. This case has been considered
in a series of papers [416, 143, 144, 187]. The main assumption here is that when
particles are trapped, the waiting time is the same for all particles, including new-
born particles. There are various ways to think about this assumption. In a chemical
setting, the context of Sokolov and collaborators’ work, the assumption implies that
reactive events do not destroy or create particles, as for example in an isomerization
reaction. Reactions simply change the state, label, or “color” of the particles. Such
reactions are known as color-change reactions in the literature [320, 154, 271]. In
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these reactions, the particles themselves survive a reactive event and their waiting
time is not changed. In a population biology setting, the assumption implies that
the whole community of individuals moves after a random time t , elapsed since the
arrival of the founding members at site x , to a new site x + z.

Since the kinetics is of the form f (ρ)ρ, the change in the number of particles, of a
given type, between the jumps involves the exponential factor exp[∫ f (ρ(x, u))du].
To explain this, let us introduce the density of particles j (x, τ ) arriving at point x
exactly at time τ . During time interval (τ, t), this density changes as follows:

j (x, τ )e
∫ t
τ f (ρ(x,u))du

. (3.120)

Let us now incorporate this nonlinear kinetic process into a non-Markovian transport
process described by a CTRW. We write the equations for the densities j (x, t) and
ρ(x, t) in the following forms:

j (x, t) =
∫

R

ρ0(x − z)e
∫ t
0 f (ρ(x−z,u))du

w(z)φ(t)dz

+
∫ t

0

∫

R

j (x − z, τ )e
∫ t
τ f (ρ(x−z,u))du

w(z)φ(t − τ)dzdτ (3.121)

and

ρ(x, t) = ρ0(x)e
∫ t
0 f (ρ(x,u))du

�(t)

+
∫ t

0
j (x, τ )e

∫ t
τ f (ρ(x,u))du

�(t − τ)dτ. (3.122)

We are in position now to derive the Master equation for the density ρ(x, t).
Since the balance equations (3.121) and (3.122) are nonlinear, we cannot apply the
standard technique of the Fourier–Laplace transforms directly. Instead we differen-
tiate the density ρ(x, t) with respect to time:

∂ρ

∂t
= j (x, t)+ f (ρ)ρ − ρ0(x)e

∫ t
0 f (ρ(x,u))du

φ(t)

−
∫ t

0
j (x, τ )e

∫ t
τ f (ρ(x,u))du

φ(t − τ)dτ. (3.123)

The last two terms can be interpreted as the density of particles i(x, t) leaving the
point x exactly at time t :

i(x, t) = ρ0(x)e
∫ t
0 f (ρ(x,u))du

φ(t)

+
∫ t

0
j (x, τ )e

∫ t
τ f (ρ(x,u))du

φ(t − τ)dτ. (3.124)
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It follows from (3.121) and (3.124) that j (x, t) = ∫
R
i(x−z, t)w(z)dz. Then (3.123)

can be rewritten as

∂ρ

∂t
=
∫

R

i(x − z, t)w(z)dz − i(x, t)+ f (ρ)ρ. (3.125)

This equation has a very simple meaning as the balance of particles at point x . The
first term on the RHS corresponds to the number of particles arriving at x from
different positions x − z. The second term represents the rate at which the particles
leave the position x . The last term describes the rate of change due to kinetics. Note
that a similar equation was used in [416]. The advantage of this equation lies in
the fact that we do not need the Fourier transform to obtain a closed equation for
the density ρ(x, t). Let us express i(x, t) in terms of ρ(x, t). We divide (3.122)

and (3.124) by the factor e
∫ t
0 f (ρ(x,u))du and take the Laplace transform L of both

equations:

L
{

ρ(x, t)e−
∫ t
0 f (ρ(x,u))du

}

=
[

ρ0(x)+ L
{

j (x, t)e−
∫ t
0 f (ρ(x,u))du

}]

�̂(s),

(3.126)

L
{

i(x, t)e−
∫ t
0 f (ρ(x,u))du

}

=
[

ρ0(x)+ L
{

j (x, t)e−
∫ t
0 f (ρ(x,u))du

}]

φ̂(s).

(3.127)

From these two equations, we obtain

L
{

i(x, t)e−
∫ t
0 f (ρ(x,u))du

}

= φ̂(s)

�̂(s)
L
{

ρ(x, t)e−
∫ t
0 f (ρ(x,u))du

}

. (3.128)

The inverse Laplace transform yields the expression for i(x, t):

i(x, t) =
∫ t

0
K (t − τ)ρ(x, τ )e

∫ t
τ f (ρ(x,u))dudτ, (3.129)

where K (t) is the standard memory kernel (3.34). Substitution of (3.129) into
(3.125) results in the Master equation:

∂ρ

∂t
=
∫ t

0
K (t − τ)

[∫

R

ρ(x − z, τ )e
∫ t
τ f (ρ(x−z,u))du

w(z)dz

−ρ(x, τ )e
∫ t
τ f (ρ(x,u))du

]

dτ + f (ρ)ρ. (3.130)

Now consider the case where the reaction rate f (ρ) = r = const. Then the
Master equation takes the form
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∂ρ

∂t
=
∫ t

0
K (t − τ)er(t−τ)

[∫

R

ρ(x − z, τ )w(z)dz − ρ(x, τ )

]

dτ + rρ. (3.131)

It is tempting to claim that this equation describes the coupling of chemical reaction
and transport. We believe that this is misleading. In fact, this equation describes the
perfect decoupling of transport with memory and linear reaction, in line with the
main assumption of Model A. To show this, we make the substitution

ρ(x, t) = n(x, t)er t . (3.132)

Then we obtain the following equation for n(x, t),

∂n

∂t
=
∫ t

0
K (t − τ)

[∫

R

n(x − z, τ )w(z)dz − n(x, τ )

]

dτ, (3.133)

which is independent of the reaction and describes the transport of passive particles.
So we have a perfect decoupling for which the density ρ(x, t) is the product of the
density of passive particles n(x, t) and the exponential factor er t due to reaction.

3.4.2 Model B

This model is equivalent to the Vlad–Ross approach of Sect. 2.3.2. We consider a
CTRW which depends on the chemical reaction in the following way. Assume that
the particles that are created with the rate f +(ρ)ρ have zero age. Note that particles
also have zero age when they just arrive at some point x from which they will jump
later. We interpret the density j (x, t) as a zero-age density of particles arriving at
the point x exactly at time t due to a jump process or a birth process with the rate
f +(ρ). Equations for the densities j (x, t) and ρ(x, t) can be written as

j (x, t) = f +(ρ)ρ +
∫

R

ρ0(x − z)e−
∫ t
0 f −(ρ(x−z,u))du

w(z)φ(t)dz

+
∫ t

0

∫

R

j (x − z, τ )e−
∫ t
τ f −(ρ(x−z,u))du

w(z)φ(t − τ)dzdτ

(3.134)

and

ρ(x, t) = ρ0(x)e
− ∫ t0 f −(ρ(x,u))du

�(t)

+
∫ t

0
j (x, τ )e−

∫ t
τ f −(ρ(x,u))du

�(t − τ)dτ. (3.135)

A single equation for the density ρ(x, t) can be derived in the same way as for
Model A. It takes the form
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∂ρ

∂t
=
∫ t

0
K (t − τ)

[∫

R

ρ(x − z, τ )e−
∫ t
τ f −(ρ(x−z,u))du

w(z)dz

−ρ(x, τ )e−
∫ t
τ f −(ρ(x,u))du

]

dτ + f +(ρ)ρ − f −(ρ)ρ. (3.136)

If we expand the expression in brackets for small z and truncate the Taylor series at
the second moment, we obtain

∂ρ

∂t
= σ

2

2

∂
2

∂x2

∫ t

0
K (t − τ)ρ(x, τ )e−

∫ t
τ f −(ρ(x,u))dudτ

+ f +(ρ)ρ − f −(ρ)ρ, (3.137)

which is identical with (2.82). Model B describes the situation where reactant parti-
cles are destroyed and product particles are created during a reactive event, the com-
mon situation in a chemical context, and where consequently the newborn product
particles are endowed a new waiting time. This model does not distinguish between
arrival of a particle at site x by reaction (birth) or by transport (jump); it treats both
processes on the same footing. Model B is expected to describe chemical reactions
in static porous or disordered media. Age on page 82 refers to the waiting time of
particles at a given point. Note that we do not consider aging effects of the system
as stated on page 64.

Models A and B result in the same reaction–transport equation, if the CTRW is
Markovian. In that case, K (t − τ) = δ(t − τ)/τ0, see Remark 2.5, and the Master
equations (3.130) and (3.136) are identical:

∂ρ

∂t
= 1

τ0

[∫

R

ρ(x − z, t)w(z)dz − ρ(x, t)

]

+ f (ρ)ρ. (3.138)

3.4.3 Model C

This is a very simple model. It assumes that the reaction is a pure birth process. It
corresponds to the case where the reaction term is F(ρ) = f +(ρ)ρ. This model
was considered in [188, 189, 121]. The balance equations are

j (x, t) = f +(ρ)ρ +
∫

R

ρ0(x − z)ψ(z, t)dz

+
∫ t

0

∫

R

j (x − z, t − τ)ψ(z, τ )dzdτ (3.139)

and

ρ(x, t) = ρ0(x)�(t)+
∫ t

0
j (x, t − τ)�(τ)dτ. (3.140)
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This system of equations can be written as a single equation for the density

ρ(x, t) = ρ0(x)�(t)+
∫ t

0

∫

R

ρ(x − z, t − τ)ψ(z, τ )dzdτ

+
∫ t

0
f +(ρ(x, t − τ))ρ(x, t − τ)�(τ)dτ. (3.141)

Thus the simplest way to take into account the chemical reaction is to add the term
∫ t
0 F(ρ(x, t − τ))�(τ)dτ to the RHS of the balance equation (3.41). The reaction

term F(ρ) = f +(ρ)ρ is a pure birth process for which all newborn particles are
given zero age.

Equation (3.141) takes the following form in Fourier–Laplace space:

ˆ̃ρ(k, s) = ρ̃0(k)�̂(s)+ ˆ̃ρ(k, s) ˆ̃ψ(k, s)+ ˆ̃F(k, s)�̂(s). (3.142)

We assume that the random jumps and the waiting times are independent, i.e.,
ˆ̃
ψ(k, s) = w̃(k)φ̂(s), and divide (3.142) by φ̂(s) to separate temporal and spatial
variables:

ˆ̃ρ(k, s)

φ̂(s)
− ρ̃0(k)�̂(s)

φ̂(s)
= ˆ̃ρ(k, s)w̃(k)+

ˆ̃F(k, s)�̂(s)

φ̂(s)
. (3.143)

If the waiting time PDF and the jump length PDF do not possess heavy tails, then
the mean waiting time and the variance of the jump length PDF are finite, and we
have the following results in the large-time and large-scale limit, see Sect. 3.2. First,
the Fourier transform of the even dispersal kernel can be written as

w̃(k) = 1− σ
2k2/2+ o(k2), (3.144)

since

w̃(0) =
∫ ∞

−∞
w(x)dx = 1, w̃

′
(0) = 0, σ

2 = −w̃
′′
(0) =

∫ ∞

−∞
x2w(x)dx .

(3.145)
Second, 1/φ̂(s) can be written as

1

φ̂(s)
� 1+ 〈t〉s, (3.146)

up to first order in s, or

1

φ̂(s)
� 1+ 〈t〉s +

(

〈t〉2 − 〈t2〉
2

)

s2 (3.147)
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up to second order, since

φ̂(0) =
∫ ∞

0
φ(t)dt = 1, 〈t〉 = −φ̂

′
(0) =

∫ ∞

0
tφ(t)dt, (3.148)

〈t2〉 = φ̂
′′
(0) =

∫ ∞

0
t2φ(t)dt. (3.149)

Substituting (3.144) into (3.143) and using that �̂(s) = [1− φ̂(s)]/s, we obtain

1− φ̂(s)

φ̂(s)

[

ˆ̃ρ(k, s)− ρ̃(k, 0)

s

]

= −σ
2k2

2
ˆ̃ρ(k, s)+ 1− φ̂(s)

sφ̂(s)
ˆ̃F(k, s). (3.150)

Substitution of (3.146) into (3.150) and inversion of the Fourier and Laplace trans-
forms leads to the RD equation (2.3) with D = σ

2
/2 〈t〉. If we substitute (3.147)

into (3.150) and invert the Fourier and Laplace transforms, we obtain the reaction-
telegraph equation:

(

〈t〉 − 〈t2〉
2〈t〉

)

∂
2
ρ

∂t2
+ ∂ρ

∂t
= σ

2

2〈t〉
∂
2
ρ

∂x2
+ F +

(

〈t〉 − 〈t2〉
2〈t〉

)

∂F

∂t
. (3.151)

A comparison of (2.19) and (3.151) leads to the relation between the macroscopic
parameters τ (relaxation time) and D (diffusion coefficient) and the mesoscopic
quantities, namely

τ = 〈t〉 − 〈t2〉
2〈t〉 and D = σ

2

2〈t〉 . (3.152)

3.5 Random Walk in Random Time and Subordination

In this section we consider a random walk in random time. In this case the particle
position X depends on the random time T (t), X (T (t)), rather than on the conven-
tional time t . An insight into this model can be obtained by considering a particle
moving in a nonstationary random environment for which the intensity of jumps is
random. We use the standard formula for the particle position as the sum of IID
random jumps Zi ,

X (t) =
N (t)
∑

i=1
Zi , (3.153)

in which the number of jumps N (t) is a nonhomogeneous Poisson process with
the random intensity λ(t) ≥ 0. For example, one can think of a particle moving
in a random turbulent flow. The process X (t) is called a compound Cox process
and N (t) is a doubly stochastic Poisson process. The probability of n jumps up to
time t is
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P(N (t) = n) = Eλ

⎧

⎪⎨

⎪⎩

(∫ t
0 λ(s)ds

)n

n! exp

(

−
∫ t

0
λ(s)ds

)

⎫

⎪⎬

⎪⎭

, (3.154)

where the expectation Eλ is taken over the random process λ(t). If we introduce the
random time T (t) = λ

−1 ∫ t
0 λ(s)ds, then the Cox process N (t) can be rewritten in

terms of a homogeneous Poisson process Nh(t) with intensity λ and random time
T (t) as

N (t) = Nh(T (t)). (3.155)

It follows from (3.153) and (3.155) that the particle position depends on T (t):

X (T (t)) =
Nh(T (t))
∑

i=1
Zi . (3.156)

In what follows we put the intensity of the Poisson process λ = 1 and treat both t
and T(t) as dimensionless.

Let us now consider the random time T (t) which is assumed to have nonnega-
tive stationary and independent increments, an increasing Lévy process, such that
T (t) ≥ 0, T (0) = 0, and T (t) ≤ T (s) whenever t ≤ s. It is often referred to as a
subordinator or operational time (we assume that T(t) and Nh(t) are independent).
If X(t) is a Markov process, then the process X (T (t)) is Markovian too. The later
process is said to be subordinate to X (t) [15, 126].

Our goal is to find an equation for the density of particles that follow the random
walk (3.156). First, let us find the characteristic function

ρ̃(k, t) = E

(

eikX (t)
)

=
∞
∑

n=0
E

(

eikX (t)∣∣N (t) = n
)

P(N (t) = n). (3.157)

Recall that we interpret this function as the Fourier transform of the density ρ(x, t)

with ρ(x, 0) = δ(x). The conditional expectation is given byE

(

eikX (t)∣∣N (t) = n
)

=
w̃

n
(k), where w̃(k) = E

(

eikZi
)

is the characteristic function of the random jumps

Zi . Using N (t) = Nh(T (t)) with λ = 1, we find

P(N (t) = n) =
∫ ∞

0
P(Nh(τ ) = n)pT (τ, t)dτ =

∫ ∞

0

τ
ne−τ

n! pT (τ, t)dτ,

(3.158)
where pT (τ, t) is the PDF of the random time T (t), defined as

pT (τ, t) = ∂

∂τ
P(T (t) ≤ τ). (3.159)
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Substitution of (3.158) into (3.157) yields

ρ̃(k, t) =
∞
∑

n=0

∫ ∞

0
w̃

n
(k)

(τ )
ne−τ

n! pT (τ, t)dτ

=
∫ ∞

0
eτ(w̃(k)−1) pT (τ, t)dτ = E

(

eT (t)(w̃(k)−1))
. (3.160)

Since T (t) ≥ 0 is a Lévy process, its Laplace transform, the moment generating
function can be written as

E

(

e−sT (t)
)

= e−tl(s), (3.161)

where l(s) is the Laplace exponent of the random time T (t). Using (3.160) and
(3.161), we obtain

ρ̃(k, t) = e−tl(−(w̃(k)−1))
. (3.162)

This implies that the characteristic exponent ψ(k) for the particle position X (t) is

ψ(k) = −l(−(w̃(k)− 1)). (3.163)

For example, if the random time T (t) is the Poisson process N (t) with λ = 1,

then the Laplace transform E

(

e−sN (t)
)

= ∑∞
n=0 e

−sn
P(N (t) = n) = e

−t
(

1−e−s
)

,

therefore l(s) =
(

1− e−s
)

. In the long-time limit, l(s) = s + o(s) as s → 0. This

limit corresponds to the Kolmogorov–Feller equation.
It follows from (3.89) that the mesoscopic transport equation for the density of

particles is

∂ρ

∂t
= Lρ, (3.164)

where L is a pseudo-differential operator with symbol given by (3.163), F[Lρ] =
ψ(k)ρ̃(k, t). When the random time T(t) is deterministic T (t) = t , then the Laplace
exponent is l(s) = s, the characteristic exponent defined in (3.161) is ψ(k) =
w̃(k)− 1 and Eq. (3.164) becomes the Kolmogorov–Feller equation.

3.5.1 Space-Fractional Transport Equation

In this section we use the idea of subordination to obtain the space-fractional trans-
port equation. Since T (t) is a nonnegative Lévy process, the Laplace exponent l(s)
defined in (3.161) can be written as

l(s) = as +
∫ ∞

0

(

1− e−sz
)

ν(dz), (3.165)
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where a ≥ 0 and ν(A) ≥ 0 is a Lévy measure satisfying
∫

(0,∞)
min(1, z)ν(dz) < ∞

[15].
γ -stable subordinator. As an example, consider a strictly γ -stable random time

Tγ (t), the stable subordinator, for which a = 0 and the Lévy measure is

ν(dz) = γ dz

�(1− γ )z1+γ
(3.166)

with 0 < γ < 1. Let us find the Laplace exponent l(s) of the γ -stable random time
Tγ (t). Integration by parts in (3.165) shows that l(s) = sγ. Thus

E

(

e−sTγ (t)
)

=
∫ ∞

0
e−sτ pT (τ, t)dτ = e−ts

γ

, (3.167)

which implies that E
[

Tγ (t)
] = ∞. The PDF pT (τ, t) can be written in terms of the

strictly γ -stable PDF gγ (τ ) with the Laplace transform

ĝγ (s) = e−s
γ

, 0 < γ < 1. (3.168)

The strictly stable process Tγ (t) has a nice scaling property: Tγ (t) =d t1/γ Tγ (1) for
all t. Scaling arguments lead to

pT (τ, t)= 1

t1/γ
gγ

(

τ/t1/γ
)

. (3.169)

Since the asymptotic decay of the tail of gγ (τ ) is τ
−(1+γ ) as τ →∞, we conclude

that pT (τ, t) has a power-law tail

pT (τ, t) ∼ t

τ
1+γ

(3.170)

as τ → ∞. The density pT (τ, t) admits an explicit representation for γ = 1
2 in

terms of the Lévy–Smirnov density g1/2(τ ) =
(

4πτ
3
)−1/2

exp(−1/4τ):

pT (τ, t) = t−2g1/2
(

τ/t2
)

= t

2
√

πτ
3
exp

(

− t2

4τ

)

. (3.171)

It follows from (3.163) that ψ(k) = −[−(w̃(k) − 1)]γ . The governing equation
for the particle density is the mesoscopic transport equation

∂ρ

∂t
= Iγ ρ(x, t), (3.172)

where the right-hand side is the fractional integral operator, defined as

Iγ g(x) = F−1 [−(−(w̃(k)− 1))γ g̃(k)
]

, (3.173)
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andF−1 denotes the inverse Fourier transform. This operator can be considered as a
generalization of the fractional Laplace operator. In the large-scale limit, w̃(k)−1 =
−σ

2k2/2+ o(k2) as k → 0, the transport equation (3.172) can be approximated by
the standard space-fractional diffusion equation

∂ρ

∂t
= σ

α

√
2α

∂
α
ρ

∂ |x |α (3.174)

with α = 2γ .
If the density of particles following the Lévy process X (t) is ρX (x, t), then the

density of particles performing the random walk Y (t) = X (T (t)) can be defined as

ρY (x, t) =
∫ ∞

0
ρX (x, τ )pT (τ, t)dτ, (3.175)

where pT (τ, t) = ∂
∂τ

P(T (t) ≤ τ) is the density of the random time T (t). Note
that the random process Y (t) is a Lévy process too. In order to illustrate how the
formula can be used, we consider the particles following the diffusion process X (t)
for which

ρX (x, τ ) = 1
√

2πσ
2
τ
exp

(

− x2

2σ 2
τ

)

. (3.176)

Substitution of (3.176) and (3.171) into (3.175) yields the Cauchy density

ρY (x, t) = σ t√
2π
(

x2 + σ
2t2/2

) . (3.177)

This density is the Green function for the space-fractional equation (3.174) with
α = 1. The characteristic exponent ψY (k) of the new process Y (t) can be obtained
as a composition of the Laplace exponent l(s) with the characteristic exponent
ψX (k), i.e.,

E

{

eikY (t)
}

= e−tψY (k) = e−tl(−ψX (k))
. (3.178)

We find

E

{

eikY (t)
}

=
∫ ∞

0
E

{

eikX (T (s))
}

pT (s, t)ds

=
∫ ∞

0
eT (s)ψX (k) pT (s, t)ds = e−tl(−ψX (k))

. (3.179)

Hougaard subordinator (tempered stable subordinator). Another example of a ran-
dom time is the Hougaard subordinator T (t) with the Lévy measure
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ν(dz) = γ ξe−kz

�(1− γ )z1+γ
dz, z > 0, (3.180)

where k ≥ 0, ξ > 0, and 0 < γ < 1. This density is obtained from the γ -stable den-
sity if we multiply it by the factor ξe−kz . The Laplace transform for the Hougaard
process is

E

{

e−sT (t)
}

= exp

[

t
∫ ∞

0
(1− e−sz)ν(dz)

]

= e−tξ
[

(k+s)γ−kγ ]

, s ≥ 0. (3.181)

The Laplace exponent is l(s) = ξ
[

(k + s)γ − kγ ]. For γ = 1 we have a determin-
istic process T (t) = ξ t . If k = 0 and ξ = 1 we have a γ -stable subordinator. In
particular, the mean value is

E {T (t)} = − ∂

∂s
E

{

e−sT (t)
}

s=0 =
γ ξ t

k1−γ
(3.182)

and it is finite. It is clear that E {T (t)} → ∞ as k → 0 for 0 < γ < 1. So the
Hougaard subordinator is useful when we consider transport processes with both
normal and anomalous behaviour.

3.5.2 Inverse Subordination and Time-Fractional Transport
Equation

In this section we show how to obtain subdiffusive transport by using the idea
of inverse subordination [278, 371]. Assume that the density ρX (x, t) obeys the
Kolmogorov–Feller equation

∂ρX

∂t
=
∫

R

ρX (x − z, t)w(z)dz − ρX (x, t) (3.183)

with the initial condition

ρX (x, 0) = ρ0(x). (3.184)

We define the particle density ρ(x, t) as follows:

ρ(x, t) =
∫ ∞

0
ρX

(

x,

(
t

τ

)γ)

gγ (τ )dτ, (3.185)

where gγ (τ ) is the density of the γ -stable variable with 0 < γ < 1 defined by the
Laplace transform (3.168). Then ρ(x, t) satisfies the time-fractional Kolmogorov–
Feller equation

∂
γ
ρ

∂tγ
=
∫

R

ρ(x − z, t)w(z)dz − ρ(x, t), (3.186)
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where ∂
γ
ρ/∂tγ is the Caputo fractional derivative and time t is dimensionless.

The main idea here is the introduction of the subordinated process, the position
of particles X (Nγ (t)), whose mesoscopic density is ρ(x, t). The parent process
X (t) is the compound Poisson process with the density ρX (x, t) and the ran-
dom time Nγ (t) is the inverse γ -stable subordinator defined as the hitting time
Nγ (t) = inf(τ : Tγ (τ ) > t) for γ -stable subordinator Tγ (τ ) with the Laplace
exponent l(s) = sγ . The non-Markovian behavior of the inverse subordinator Nγ (t)
leads to subdiffusion of X (Nγ (t)). The details of the derivation of (3.186) can be
found in [278]. Note that as the parent process X(t) one can use any Lévy pro-
cess with the transport operator L , so the time-fractional equation is of the form
∂

γ
ρ/∂tγ = Lρ.

3.6 Macroscopic Description

The term macroscopic description refers to the long-time and large-scale limit,
t →∞ and x →∞, of mesoscopic equations where the details of the microscopic
movement are irrelevant. In particular, it refers to the diffusive limit where balance
equations such as (3.13), (3.41), and (3.74) are approximated by the diffusion equa-
tion (2.1). The standard derivation of the diffusion equation involves the assumption
that the typical microscopic jumps and times are small compared to the character-
istic macroscopic space and time scales. Let us illustrate this using the mesoscopic
transport equation (3.74). If the jump density w(z) is a rapidly decaying function for
large z, one can expand ρ(x − z, t) in z and truncate the Taylor series at the second
moment:

ρ(x − z, t) = ρ(x, t)− ∂ρ

∂x
z + 1

2

∂
2
ρ

∂x2
z2 + o(z2). (3.187)

Substitution of (3.187) into (3.74) yields

∂ρ

∂t
+ v

∂ρ

∂x
= D

∂
2
ρ

∂x2
, (3.188)

where

v = λ

∫

R

zw(z)dz, D = λ

2

∫

R

z2w(z)dz. (3.189)

This truncation is a well-defined procedure, if the higher moments become pro-
gressively smaller. If the jump density w(z) is even, then we obtain the standard
diffusion equation. However, this “naive” Taylor series expansion is not valid for
“heavy-tailed” probability density functions, such as a Cauchy PDF,

w(z) = σ

π
(

σ
2 + z2

) , (3.190)
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for which the second moment,
∫

R
z2w(z)dz, diverges. A jump PDF is said to have a

power-law tail if

w(z) ∼ 1

|z|1+α
, z →∞, (3.191)

for which the nth moment exists if n < α. The question arises for which values of
the power-law exponent α the diffusion approximation (2.1) is not valid.

3.6.1 Scaling Procedure

In this section we use a scaling procedure to derive macroscopic equation. This
allows us to understand the connection between macroscopic and microscopic
descriptions. We introduce the macroscopic variables (x∗, t∗) as follows:

x∗ = ε
H x, t∗ = εt, (3.192)

where ε is a small parameter and H is a scaling exponent that has to be determined.
It is convenient to introduce such a small parameter, so that instead of taking the lim-
its t →∞ and x →∞, we can consider ε → 0 for fixed values of the macroscopic
space–time variables (x∗, t∗). We now drop the asterisk for macroscopic variables
and adopt the following notation for rescaling:

x → x

ε
H

, t → t

ε
. (3.193)

To illustrate the method, we derive the diffusion equation corresponding to the
discrete balance equation (3.13). For simplicity, we assume that the jump density is
an even function, w(z) = w(−z). We introduce the continuous-time variable t so
that n = [t], where [·] denotes the integer part of a real number. Using (3.193), we
obtain the rescaled density

ρ
ε
(x, t) = ρ

(
x

ε
H

,

[
t

ε

])

. (3.194)

Note that [t/ε] ≈ t/ε as ε → 0. From (3.13) we obtain the equation

ρ
ε
(x, t + ε) =

∫

R

ρ
ε
(

x − ε
H z, t

)

w(z)dz. (3.195)

It is clear that after rescaling the time step, ε � 1, the jump size is proportional to
ε
H . In the limit ε → 0, we expand both sides of the rescaled equation (3.195) in a

Taylor series as
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ρ
ε
(x, t)+ ∂ρ

ε

∂t
ε + o(ε) = ρ

ε
(x, t)+ σ

2

2

∂
2
ρ

ε

∂x2
ε
2H + o

(

ε
2H
)

, (3.196)

where σ
2 = ∫

R
z2w(z)dz. To obtain the macroscopic diffusion equation for the

density ρ(x, t) = limε→0 ρ
ε
(x, t), we must choose H = 1/2. Then (3.196) turns

into (2.1) with the diffusion coefficient D = σ
2
/2. This limit has a very nice

probabilistic interpretation. First let us consider the discrete case. It follows from
the central limit theorem (CLT) that if the number of steps n is large, the rescaled

particle position Xn/n
1
2 tends to a Gaussian variable with zero mean and variance

σ
2. The random position Xn is defined in (3.10). In particular EX2

n = σ
2n. The

functional CLT states that if Zi is a sequence of IID random variables with zero

mean and variance σ
2 = E

(

Zi
2
)

, then

X[nt]

n
1
2

= 1

n
1
2

[nt]
∑

i=1
Zi

d→ B(t) as n →∞, (3.197)

where
d→means convergence in distribution. Here B(t) is the Brownian motion with

the PDF

d

dx
P(B(t) ≤ x) = 1√

4πDt
exp

(

− x2

4Dt

)

, (3.198)

which is the Green’s function for the diffusion equation (2.1) with D = σ
2
/2.

Using the rescaling t → t/ε with a small parameter ε = n−1 and fixed time t ,
we write a rescaled particle position Xε

(t) in terms of Xn :

Xε
(t) = ε

1
2 X[t/ε] = ε

1
2

[t/ε]
∑

i=1
Zi . (3.199)

The functional CLT ensures that as ε → 0, the random process Xε
(t) converges to

the Brownian motion B(t). The PDF pε
(x, t) for the particle position Xε

(t), starting
at x = 0, satisfies

lim
ε→0

1

ε
pε

(x, t) = lim
ε→0

1

ε
p

(

x

ε
1
2

,

[
t

ε

])

= 1
√

2πσ
2t

(

− x2

2σ 2t

)

(3.200)

where p(x, t) is defined in (3.11).

It is instructive to show that Xε
(t)

d→ B(t) as ε → 0. Let us use the characteristic
function
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E
{

exp(ikXε
(t))
} = E

⎧

⎨

⎩
exp

⎛

⎝ikε
1
2

[t/ε]
∑

i=1
Zi

⎞

⎠

⎫

⎬

⎭
=
(

E

{

exp
(

ikε
1
2 Zi

)})[t/ε]
.

(3.201)

In the limit ε → 0, we have
[

t/ε
] ≈ t/ε, and E

{

exp(ikXε
(t))
} = (1− k2εσ 2

/2+
o(ε))t/ε → exp(−k2σ 2t/2). That is

lim
ε→0

E
{

exp
(

ikXε
(t)
)} = exp

(

−Dk2t
)

, (3.202)

which is a characteristic function of the Brownian motion with D = σ
2
/2. In the

next section we consider the case where the random variables Zi have infinite sec-
ond moments, which leads to the anomalous scaling x → x/ε1/α , t → t/ε, and
limε→0 E

{

exp(ikXε
(t))
} = exp(−Dα |k|α t) with 0 < α < 2. This corresponds to

the convergence of the discrete random walk Xn (3.10) to the symmetric α-stable
Lévy process (Lévy flight).

If we rescale the compound Poisson process X (t) as

Xε
(t) = ε

1
2 X (t/ε) = ε

1
2

N (t/ε)
∑

i=1
Zi , (3.203)

one can show that the random process Xε
(t) converges to the Brownian motion

B(t) as well. This is the probabilistic explanation why the integral equation (3.74)
can be approximated by the diffusion equation. However, if the second moment
E(Z2

i ) = ∞, then Xε
(t) has other limiting processes, depending on the counting

process N (t).

3.6.2 Anomalous Scaling

So far we have discussed random walks with a finite mean waiting time and a finite
variance of the jump length. These models lead to the classical parabolic scaling:
x → x/ε1/2, t → t/ε. The governing macroscopic equation for the density ρ

becomes the standard diffusion equation. Let us now consider two cases for which
the scaling is anomalous and the mean-field equations for ρ are fractional diffusion
equations.

3.6.2.1 Finite Mean Waiting Time and Infinite Variance

Suppose that the jump PDF w(z) is an even function and decreases as

w(z) ∼ 1

|z|1+α
, 0 < α < 2, (3.204)



3.6 Macroscopic Description 95

for large z. It is clear that the second moment diverges for 0 < α < 2. The key
question is how the rescaled process Xε

(t) = ε
H X (t/ε) behaves as ε → 0. Note

that we rescale X (t) by using a nontrivial scaling exponent H , the Hurst exponent.
As before, we assume that the particle position X (t) at time t is given by a CTRW

X (t) =
N (t)
∑

i=1
Zi , (3.205)

where N (t) is the Poisson process and the Zi are random jumps with a heavy-tailed
density (3.204). For simplicity, the jumps are assumed to be independent of the
counting process N (t). The waiting times between jumps are exponentially dis-
tributed with the mean value λ

−1
. The generalized CLT ensures that

Xε
(t) = ε

H X (t/ε) = ε
H

N (t/ε)
∑

i=1
Zi (3.206)

converges in distribution to a symmetric α-stable Lévy process, that is, Xε
(t)

d→
Sα(t) as ε → 0 [126] (see Sect. 3.3.3.2). The density of particles obeys the fractional
diffusion equation

∂ρ

∂t
= Dα

∂
α
ρ

∂ |x |α (3.207)

with 0 < α < 2. We conclude that stable Lévy processes are important for transport
theory because they provide the macroscopic description of particles with heavy-
tailed jumps in the hydrodynamic limit, t →∞ and x →∞.

From a probabilistic point of view, Sα(t) is the attractor for the rescaled parti-
cle position Xε

(t). To understand this, consider first a discrete random walk. The
rescaled position of a particle with jumps Zi that are symmetric with respect to zero
is Yn = n−1/α

∑n
i=1 Zi with 0 < α < 2.We are interested in the limit n →∞, such

that the sequence Yn converges toward a “new” random variable Z in distribution,

i.e., Yn
d→ Z as n →∞ or limn→∞ P(Yn < x) = P(Z < x). The random variable

Z is referred to as a symmetric stable variable. Since the parameter α plays a very
important role, the random variable Z is said to be a symmetric α-stable random
variable.

Recall that, in general, the stable random variable Z involves four parameters:
the exponent (stable index) 0 < α ≤ 2, the skewness −1 ≤ β ≤ 1, the shift a ∈ R,
and the scale σ ≥ 0. It is well known that the stable probability density function

w(z|α, β, σ, a) = ∂

∂z
P(Z < z) (3.208)
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cannot be written in an explicit form, but its Fourier transform, the characteristic
function has the following representation:

w̃(k|α, β, σ, a) = exp
[

ika − σ
α |k|α (1− iβ sgn(k)�)

]

, (3.209)

where � = tan(πα/2) for α �= 1 and � = −2/π log |k| for α = 1. The value β = 0
corresponds to a symmetric PDF. For example, the Cauchy distribution is

w(x |1, 0, σ, a) = σ

π
[

(x − a)
2 + σ

2
] , (3.210)

for which α = 1. We refer to Feller’s book [126] for further details on stable random
variables.

The generalized CLT states that if the jumps Zi are symmetric around zero and
distributed with heavy tails like |z|−1−α for z →∞, then for a large number of steps
n, the rescaled particle position Xn/n

1/α can be described by a symmetric α-stable
distribution with a = β = 0. So if we choose H = 1/α, then the rescaled particle
position

Xε
(t) = ε

H
N (t/ε)
∑

i=1
Zi (3.211)

tends to the symmetric α-stable Lévy process Sα(t) with the characteristic function

E

(

eikSα(t)
)

= e−Dα |k|α t and Dα = λσ
α (see (3.99)). The parameter Dα is referred

to as a scale factor, which is a measure of the width of the density ρ(x, t).
We conclude that as long as the mean waiting time and the variance of the jumps

are finite, parabolic scaling leads to the Brownian motion in the limit ε → 0. The
macroscopic equation for the density of particles is a scale-invariant diffusion equa-
tion. Infinite variance of jumps in the domain of attraction of a stable law leads
to Lévy processes, Lévy flights. In the limit ε → 0, the particle position Xε

(t)
becomes self-similar with exponent 1/α. Recall that the random process X (t) is
self-similar, if there exists a scaling exponent H such that X (t) and ε

H X (t/ε)
have the same distributions for any scaling parameter ε. In this case we write

X (t)
d= ε

H X (t/ε). For a symmetric Lévy process with the characteristic function
E {exp(ikX (t))} = exp(−Dα |k|α t), the scaling exponent is H = 1/α. For the
Brownian motion, H = 1/2. The main feature of a symmetric α-stable Lévy process
is that it has independent heavy-tailed increments. The asymptotic behavior of the
density of particles ρ(x, t) for large x is

ρ(x, t) ∼ Dαt

|x |1+α
. (3.212)
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In the three-dimensional case, the fractional diffusion equation in the long-time
large-scale limit has the form

∂ρ

∂t
= −Dα(−�)

α
2 ρ, x ∈ R

3
, (3.213)

in which the standard Laplacian � is replaced by a fractional Riesz operator. This
replacement leads to a faster spread of particles, than the standard diffusion equation
describes, i.e., superdiffusion, see Sect. 2.3. This is due to the heavy tails of the dis-
persal kernel w(z) ∼ |z|−d−α with 0 < α < 2 as z →∞ where d is the dimension
of space, Rd . The underlying stochastic process is the rotationally invariant α-stable
process [15]. A careful discussion of stable distributions and corresponding random
processes is provided in [373, 444].

3.6.2.2 Infinite Mean Waiting Time and Infinite Variance of Jumps

Assume that the PDF of the waiting time φ(t) decreases like t−1−γ as t → ∞,
and particles have a dispersal kernel w(z) with heavy tails |z|−1−α . What is the
scale-invariant macroscopic equation for the particles density in this case? It turns
out that the infinite variance of jumps leads to a fractional space derivative, and the
infinite mean waiting time leads to the fractional Caputo derivative. The density of
particles obeys the time–space fractional diffusion equation

∂
γ
ρ

∂tγ
= Dα,γ

∂
α
ρ

∂ |x |α (3.214)

and the scale invariance relation

ρ(x, t) = 1

ε
γ
α

ρ

(
x

ε
γ
α

,
t

ε

)

. (3.215)

Note that the underlying stochastic process Sα,γ is not Markovian (0 < γ < 1)
[371].

Let us show how the standard diffusion equation (3.16) and anomalous diffu-
sion equation (3.214) emerge as a result of long-time large-scale limit of a CTRW
described by (3.53). If we use the Dirac delta-function as the initial condition, then
ρ̃0(k) = 1, and the Fourier–Laplace transform of ρ(x, t), (3.53), is given by

ˆ̃ρ(k, s) = 1− φ̂(s)

s
[

1− w̃(k)φ̂(s)
] . (3.216)

First we rescale ˆ̃ρ(k, s) as ρ
ε
(k, s) = ˆ̃ρ

(

ε
Hk, εs

)

and use the standard expansions

w̃
(

ε
Hk
)

= 1− σ
2
ε
2Hk2

2
+ o

(

ε
2H
)

, (3.217)
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φ̂(εs) = 1− T εs + o(ε). (3.218)

If we choose scaling exponent H = 1/2, we obtain

lim
ε→0

ρ
ε
(k, s) = 1

s + Dk2
, (3.219)

with D = σ
2
/2T . This corresponds to the standard diffusion equation; in the long-

time large-scale limit all details of the random walk become irrelevant.
Consider now the anomalous case with the following scaling behavior:

w̃
(

ε
Hk
)

= 1− σ
α
ε
Hα |k|α
2

+ o
(

ε
αH
)

, (3.220a)

φ̂(εs) = 1− τ
γ

0 (εs)γ + o
(

ε
γ )

. (3.220b)

Substitution of these expressions into (3.216) yields the rescaled density ρ
ε
(k, s) =

ˆ̃ρ
(

ε
Hk, εs

)

. To obtain a nontrivial limit limε→0 ρ
ε
(k, s), we have to choose

H = γ

α
(3.221)

such that

lim
ε→0

ρ
ε
(k, s) = sγ−1

sγ + Dα,γ k
α , (3.222)

which is the Fourier–Laplace transform of the fundamental solution of the time–
space fractional equation (3.214) with

Dα,γ =
σ

α

2τγ

0

. (3.223)

Further details on the Cauchy problem for the time–space fractional diffusion equa-
tion (3.214) and its extension for the asymmetric case can be found in [371, 260].

Let us examine more closely the nature of the underlying stochastic process
Sα,γ (t) for the time–space fractional equation (3.214). The latter is the long-time
large-scale limit of the generalized Master equation (3.43) under the conditions that
the symmetric jumps have a heavy-tailed density (3.204) with infinite variance and
the waiting time PDF φ(t) decreases like t−1−γ with the index 0 < γ < 1 as
t → ∞. Let us find the long-time large-scale limit of the CTRW under these
conditions. We have introduced the CTRW as a subordinated stochastic process
X (t) = XN (t) in which the parent process Xn is the position of a particle (3.10) in
the discrete-time random walk (DTRW) model and the counting process N (t) plays
the role of the randomized time or operational time (see (3.26)). We have shown that
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under the anomalous scaling x → x/ε1/α , t → t/ε, the discrete random walk Xn
(3.10) converges to the symmetric α-stable Lévy process Sα(t), i.e.,

ε
1/αX[t/ε]

d→ Sα(t) (3.224)

as ε → 0. It can be shown that the rescaled counting process converges as

ε
γ N

(
t

ε

)

d→ Nγ (t) (3.225)

If we compose these two processes, we obtain the subordinated process

Sα,γ (t) = Sα(Nγ (t)), (3.226)

which is the scaling limit of the CTRW we are looking for. Note that Nγ (t) is the
hitting time: Nγ (t) = inf(τ : Tγ (τ ) > t) for the γ -stable subordinator Tγ (τ ). The
latter is the scaling limit of the time of the nth jump Tn ,

ε
1/γ T[t/ε] = ε

1/γ
[t/ε]
∑

i=1
�i

d→ Tγ (t), (3.227)

as ε → 0. Here �i = Ti − Ti−1 is the interval between jumps. The non-
Markovian behavior of the inverse subordinator Nγ (t) leads to the non-Markovian
behavior of Sα,γ (t). Of course, the scaling limit Sα,γ (t) is a self-similar process:

Sα,γ (t)
d= ε

γ/αSα,γ (t/ε). For further details and the statistical analysis of the rela-
tion between rescaled CTRWs and fractional equations, we refer to the series of
papers by Meerschaert and his colleagues [39, 275, 277, 276, 278, 22, 25].

In Fig. 3.2 we present a schematic picture of the convergence from microscopic
to macroscopic levels of description for different scalings and processes.

3.6.3 Scaling and Convergence to the Diffusion Process

We have seen how the scaling procedure can be used to obtain a macroscopic stan-
dard or fractional diffusion equation. We now describe the method for obtaining
macroscopic equations without deriving mesoscopic balance equations like (3.13),
(3.41), or (3.74). Let us explain the usefulness of the rescaling procedure. When
mesoscopic balance equations are derived from some underlying microscopic ran-
dom walk models, certain simplifying assumptions are made regarding the statis-
tical characteristics of random movements. However, if the assumptions are less
restrictive, we might have some problems deriving closed balance equations for the
particle density. In fact, in many cases we will not be able to do so.

Consider the microscopic stochastic equation for the particle position X (t),
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Fig. 3.2 Schematic picture for transition from microscopic to macroscopic equations

dX

dt
= v

(

ε
1/2X (t), ξ(t)

)

, (3.228)

where the velocity v is a slowly varying function of the space coordinate x ; ε
1/2 is

a small parameter. We assume that v depends on some stationary random process
ξ(t) with zero mean. Under quite general conditions, the rescaled particle position,

Xε
(t) = ε

1
2 X (t/ε), tends to a diffusion process as ε → 0. The key question is how

to find the effective velocity and diffusivity in the corresponding Fokker–Planck
equation.

Before dealing with the general stochastic equation (3.228), it is useful for fixing
the basic ideas to discuss a relatively simple example. Consider the equation for the
particle position X (t):

dX

dt
= v(t), (3.229)

where the random velocity v(t) has zero mean and takes a finite number of values
at random times Tn . We define the discrete Markov process (vn, Tn), where vn rep-
resents the velocity of the particle at the nth transition and Tn represents the random
time at which the nth transition occurs. We assume that successive waiting times
Tn − Tn−1 are independent identically distributed positive random variables. Even
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under these assumptions, it is impossible to derive a closed equation for the PDF
for the particle position or the mean density ρ(x, t). To solve this problem, we need
to make further simplifying assumptions regarding the velocity v(t). Obviously, if
v(t) is Gaussian white noise, then X (t) is the Brownian motion.

Let us apply the scaling idea and determine the behavior of the rescaled particle

position Xε
(t) = ε

1
2 X (t/ε) in the long-time limit ε → 0. It follows from (3.229)

that Xε
(t) with Xε

(0) = 0 can be written as

Xε
(t) = ε

1
2

∫ t/ε

0
v(s)ds ≈ ε

1
2

N (t/ε)
∑

i=1
Yi , (3.230)

where N (t) = max
{

n : Tn ≤ t
}

is the random number of jumps in particle’s veloc-
ity up to time t , Yi = vi−1(Ti − Ti−1) are IID random variables with zero mean and

variance σ
2
Y = E{v2i−1(Ti − Ti−1)

2}, and T0 = 0. Our goal is to show that Xε
(t)

converges in distribution to the Brownian motion B(t) as ε → 0. The important
question is how the rescaled process εN (t/ε) behaves as ε → 0. The renewal theo-
rem states that if the mean waiting time between jumps T = E

{

Ti − Ti−1
}

is finite,
then εN (t/ε) → t/T as ε → 0 [81]. The characteristic function E

{

exp
(

ikXε
(t)
)}

can be written as E

{

exp
(

ikε
1
2
∑N (t/ε)

i=1 Yi
)}

≈
(

E

{

exp
(

ikε
1
2 Yi
)})t/εT

. Since

E
{

Yi
} = 0, we can write E

{

exp
(

ikXε
(t)
)} =

(

1− k2εσ 2
Y /2+ o(ε)

)t/εT →
exp

(

−Dk2t
)

as ε → 0. So Xε
(t) converges in distribution to B(t) with the diffu-

sion coefficient D = σ
2
Y /2T .

For the general stochastic equation (3.228), the rescaled particle position Xε
(t) =

ε
1
2 X (t/ε) tends to a diffusion process, in the limit ε → 0, with the probability

density function p(x, t). The latter obeys the Fokker–Planck equation

∂p

∂t
= − ∂

∂x
(μ(x)p)+ 1

2

∂
2

∂x2

(

σ
2
(x)p

)

, (3.231)

with infinitesimal displacement

μ(x) = lim
ε→0

∫ 1/ε

0

∫ 1/ε

0
Eξ

[
∂v(x, ξ(s))

∂x
v(x, ξ(t))

]

dsdt (3.232)

and infinitesimal variance σ
2
(x),

σ
2
(x) = lim

ε→0

∫ 1/ε

0

∫ 1/ε

0
Eξ [v(x, ξ(s))v(x, ξ(t))] dsdt. (3.233)

The details of the derivation can be found in [142].
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3.7 Transport Equations and Underlying Stochastic Processes

In this section we remind the reader of the Kolmogorov forward and backward equa-
tions, infinitesimal generators, stochastic differential equations, and functional inte-
grals and then consider how the basic transport equations are related to underlying
Markov stochastic processes [141, 142].

3.7.1 Brownian Motion, Lévy Flight, and the Diffusion Equations

We start with a very simple one-dimensional diffusion equation

∂ρ

∂t
= D

∂
2
ρ

∂x2
, x ∈ R, (3.234)

with the initial condition

ρ(x, 0) = ρ0(x). (3.235)

The solution of the initial value problem (3.234) and (3.235) can be written as

ρ(x, t) =
∫

R

ρ0(y)p(y, t |x)dy, (3.236)

where the Green’s function, the propagator, is

p(y, t |x) = 1√
4Dt

exp

(

− (y − x)2

4Dt

)

. (3.237)

It should be noted that we integrate with respect to the “forward” variable y in
(3.236). In this case, (3.236) has a very nice probabilistic interpretation. Consider the
Brownian motion B(t), which is a stochastic process with independent increments,
such that B(t + s) − B(s) is normally distributed with zero mean and variance
2Dt . The corresponding transition probability density function p(y, t |x) is given
by (3.237). Therefore the solution (3.236) has a probabilistic representation

ρ(x, t) = Exρ0(B(t)), (3.238)

where Ex is the expectation operator with respect to the random process B(t) start-
ing at point x . At first glance, (3.238) appears to provide the connection between
the microscopic Brownian motion B(t) and the macroscopic diffusion equation for
the density of particles that all follow the Brownian motion. This is not quite true.
Since we integrate with respect to the “forward” variable y, we treat (3.234) as the
Kolmogorov backward equation which does not represent the transport equation. If
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we integrate with respect to the “backward” variable x , then

ρ(y, t) =
∫

R

ρ0(x)p(y, t |x)dx (3.239)

is the solution to the Kolmogorov forward equation,

∂ρ

∂t
= D

∂
2
ρ

∂y2
, y ∈ R, (3.240)

with ρ(y, 0) = ρ0(y).
Of course (3.234) and (3.240) are identical in form, but only the forward equa-

tion (3.240) has the physical meaning of a transport equation for particles. We will
discuss the difference between forward and backward equations in the next section.
It turns out that, it is more convenient to deal with the backward equation (3.234).
Let us give an example. The Brownian motion B(t) starting at x can be rewritten in
terms of the standard Wiener process W (t) as

B(t) = x +√2DW (t). (3.241)

Recall that W (0) = 0, EW (t) = 0, and EW 2
(t) = t . The solution to (3.234) and

(3.235) can be written as

ρ(x, t) = Eρ0

(

x +√
2DW (t)

)

, (3.242)

where E is the expectation operator with respect to W (t). The main advantage of
the probabilistic representation (3.242) is that we can use a Monte Carlo approach
to estimate ρ(x, t):

ρ(x, t) ≈ 1

N

N
∑

i=1
ρ0

(

x +√
2Dtξi

)

, (3.243)

where the sample ξi is computed from the standard normal distributionN (0, 1)with
zero mean and unit variance and N is the sample size [300]. The generalization of
these ideas to a Brownian particle moving in three dimensions is straightforward.
The solution of the Cauchy problem

∂u

∂t
= D�u, u(x, 0) = u0(x), x ∈ R

3
, (3.244)

can be written as

u(x, t) = Eu0
(

x+√
2DW(t)

)

, (3.245)
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where W(t) is the standard three-dimensional Wiener process.
The probabilistic solution to the space-fractional Cauchy problem

∂u

∂t
= Dα

∂
αu

∂|x |α , u(x, 0) = u0(x), x ∈ R, (3.246)

can be written in terms of the symmetric α-stable Lévy motion Sα(t) (Lévy
flight) as

u(x, t) = Eu0
(

x + Sα(t)
)

, (3.247)

where Sα(t) is defined in Sect. 3.3.3.2. Of course, for the simple transport problem
(3.234) and (3.235) we have an explicit solution (3.236). In most cases, explicit
solutions to the transport equations are not available, but we still can write down
the solution in the form of the functional integral (3.238). In fact, this formula can
be easily coded to obtain numerical solutions; it provides a powerful alternative to
standard finite difference methods [300].

3.7.2 Transport Equations: Forward vs Backward

Consider a collection of particles that move independently of each other in three-
dimensional space R

3. We assume that the position of a particle X(t) is a time-
homogeneous Markov process with transition density p(y, t |x).

The density of particles ρ(y, t) at point y at time t can be expressed in terms of
the initial density of particles ρ0(x) as

ρ(y, t) =
∫

R
3
ρ0(x)p(y, t |x)dx, (3.248)

where the integration is performed with respect to the “initial” or “backward” vari-
able x. This equation has a very simple meaning as the balance of particles arriving
at point y from various initial positions x. The probabilistic meaning of this equation
is the law of total probability: the probability density ρ(y, t) is the sum (integral)
of the probability density p(y, t |x) to be at point y at time t conditional on being at
point x at t = 0 multiplied by the probability density ρ0(x) to be at point x at time
0.

We define a transport operator Qt as follows:

ρ(y, t) = Qtρ0(y) ≡
∫

R
3
ρ0(x)p(y, t |x)dx, (3.249)

so the density of particles ρ(y, t) is the solution of a transport equation written
in terms of the “forward” variable y. The key question is what equation does
ρ(y, t) = Qtρ0(y) satisfy. In what follows, we derive several transport equations
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corresponding to various random processes X(t) and probability density functions
p(y, t |x), Green’s functions.

As we have mentioned in the previous section, it is convenient to integrate with
respect to the “forward” variable y. We define the transition operator Tt and the new
function u(x, t) as

u(x, t) = Ttu0(x) ≡
∫

R
3
u0(y)p(y, t |x)dy, (3.250)

where u(x, 0) = u0(x). We use the notation u instead of ρ to emphasize that the
function u(x, t) is formal and does not generally represent the particle density.

It follows from (3.250) that the operator Tt , associated with the transition prob-
ability p(y, t |x), can be written in terms of a conditional expectation Ex over the
particle position X(t) at time t , provided X(0) = x:

Tt f (x) = Ex f (X(t)). (3.251)

We always write the expectation Ex with the index x when we want to emphasize
that the process X(t) starts at point x, i.e., X(0) = x:

Ex { f (X(t))} = E { f (X(t))|X(0) = x} . (3.252)

The operator Tt has the semigroup property, TtTs f = Tt+s f . It is easy to check that
Tt is the adjoint of Qt :

∫

R
3
Tt f (x)ϕ(x)dx =

∫

R
3
f (x)Qtϕ(x)dx. (3.253)

We conclude that if the operator Tt is self-adjoint, i.e., Tt = Qt , then it can be used
as a transport operator. If the random position X(t) of a particle starting at x = 0
is a symmetric process for which P(X(t) = x) = P(X(t) = −x), then the operator
Tt is self-adjoint. For example, the Brownian motion B(t) is a symmetric process.
Note that if a stationary distribution ρ(y) exists, it satisfies ρ(y) = Qtρ(y).

Let us define two evolution operators L and L∗ for the Markov process X(t):

L f (x) = lim
h→0

Th f (x)− f (x)

h
= lim

h→0

∫

R
3 f (y)p(y, h|x)dy− f (x)

h
, (3.254)

where L acts only on the “backward” variable x, and

L∗ f (y) = lim
h→0

Qh f (y)− f (y)

h
= lim

h→0

∫

R
3 f (x)p(y, h|x)dx− f (y)

h
, (3.255)

where L∗ acts on the “forward” variable y. The operators L and L∗ are called
the infinitesimal generators of the semigroups Tt and Qt , respectively [142]. The
operator L∗ is the adjoint of L:



106 3 Random Walks and Mesoscopic Reaction–Transport Equations

∫

R
3
L∗ f (x)ϕ(x)dx =

∫

R
3
f (x)Lϕ(x)dx. (3.256)

One can show that u(x, t) given by (3.250) is the unique solution of the initial-value
problem:

∂u

∂t
= Lu, u(x, 0) = u0(x), x ∈ R

3
. (3.257)

The function ρ(y, t) given by (3.248) obeys the following initial-value problem:

∂ρ

∂t
= L∗ρ, ρ(y, 0) = ρ0(y), y ∈ R

3
. (3.258)

Note that some authors have used these operators interchangeably for the description
of the mesoscopic transport process. It is clear that if L is self-adjoint, then it can be
used as a transport operator and the function u(x, t) can represent the particle den-
sity. For example, the one-dimensional Brownian motion B(t) has the infinitesimal
generator L = ∂

2
/∂x2 which is self-adjoint. A symmetric α-stable Lévy process on

R has the generator L = ∂
α
/∂ |x |α , which is self-adjoint too. In the next section we

obtain L and L∗ from the Chapman–Kolmogorov equation.

3.7.3 Chapman–Kolmogorov Equation and Infinitesimal
Generators

Let us consider the Chapman–Kolmogorov equation for the transition density
p(y, t |x):

p(y, t + s|x) =
∫

R
3
p(z, t |x)p(y, s|z)dz. (3.259)

Our goal is to derive the Kolmogorov forward and backward equations and to dis-
cuss the main difference between them. The forward equation deals with the events
during the small time interval (t, t+h] and gives us the answer for how those events
define the probability density p(y, t+h|x) at time t+h, while the backward equation
is concerned with events just after the time t = 0.

Let us replace s with small h in (3.259) and rewrite this equation for the density
ρ(y, t):

ρ(y, t + h) =
∫

R
3
ρ(z, t)p(y, h|z)dz, (3.260)

where p(y, h|z) represents the probability of the transitions from z to y occurring
during short time interval (t, t + h]. The meaning of this equation is very simple. It
gives the balance of particles at point y at time t + h. Subtracting ρ(y, t) from both
sides and dividing by h, we find
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ρ(y, t + h)− ρ(y, t)

h
=
∫

R
3 ρ(z, t)p(y, h|z)dz− ρ(y, t)

h
. (3.261)

Letting h → 0, we obtain the Kolmogorov forward equation, the Master equation,

∂ρ(y, t)

∂t
= L∗ρ(y, t), (3.262)

where L∗ is defined by (3.255). The transition probability p(y, t |x) obeys the same
equation with respect to the forward variable y. The main idea in the derivation of
(3.262) is to split the time interval (0, t + h] into a long interval (0, t] and a short
interval (t, t + h], so that the particle density at time t + h is the result of transitions
during the short time interval (t, t + h].

To derive the backward equation, we consider the events just after the time t = 0
during the short time interval (0, h]. The Chapman–Kolmogorov equation is

p(y, h + t |x) =
∫

R
3
p(z, h|x)p(y, t |z)dz. (3.263)

We cannot write a similar equation for the density ρ(x, h + t). Rewriting (3.263) as

p(y, h + t |x)− p(y, t |x)

h
=
∫

R
3 p(z, h|x)p(y, t |z)dz− p(y, t |x)

h
, (3.264)

we obtain, in the limit h → 0, the Kolmogorov backward equation

∂p(y, t |x)

∂t
= Lp(y, t |x). (3.265)

This equation is written for two variables, the time t and the initial position x. The
final position y plays the role of a parameter. The function u(x, t) defined in (3.250)
obeys the Kolmogorov backward equation:

∂u(x, t)

∂t
= Lu(x, t). (3.266)

The natural question arises whether this equation represents the mesoscopic trans-
port of particles. The answer in general is negative. In what follows we illustrate a
general technique, using several examples of Markov processes.

3.7.3.1 Poisson Process

As a first illustration, consider the Poisson process Na(t) with intensity λ and jump
size a. We assume that the process starts at the point x . Then

L f (x) = lim
h→0

Ex f (Na(h))− f (x)

h
= λ( f (x + a)− f (x)). (3.267)
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Referring to (3.250) and (3.257), we conclude that the solution to the finite differ-
ence backward equation

∂u

∂t
= Lu = λ(u(x + a, t)− u(x, t)), x ∈ R, (3.268)

with the initial condition u(x, 0) = u0(x), can be written as

u(x, t) = Ttu0(x) = Exu0(Na(t)) =
∞
∑

k=0
u0(x + ak)

e−λt
(λt)k

k! . (3.269)

As usual we use the notation Ex to emphasize that the expectation is taken with
respect to the process Na(t) starting at x .

The forward equation follows from the balance equation (3.74) with w(z) =
δ(z − a), i.e.,

∂ρ

∂t
= L∗ρ = λ(ρ(y − a, t)− ρ(y, t)), y ∈ R. (3.270)

The advantage of having a probabilistic solution (3.269) is that it helps us to find
an explicit solution of the Cauchy problem for the transport equation (3.270) by
changing the sign a →−a:

ρ(y, t) = Qtρ0(y) =
∞
∑

k=0
ρ0(y − ak)

e−λt
(λt)k

k! . (3.271)

3.7.3.2 Three-Dimensional Brownian motion

As another illustration, consider the Brownian motion B(t) in three dimensions
starting at point x. The operator L is the Laplacian, i.e.,

L f (x) = lim
h→0

Ex f (B(h))− f (x)

h
= D� f. (3.272)

The solution of the Kolmogorov backward diffusion equation

∂u(x, t)

∂t
= D�u(x, t), x ∈ R

3
, (3.273)

with the initial condition u(x, 0) = u0(x), can be written as

u(x, t) = Ttu0(x) = Exu0(B(t)) =
∫

R
3
ρ0(x+ z)

e−z·z/(4Dt)

(4πDt)3/2
dz. (3.274)
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The operator L is self-adjoint, and the transport equation for the density is of the
form

∂ρ(y, t)

∂t
= D�ρ(y, t), y ∈ R

3
. (3.275)

The solution to this equation with the initial condition ρ(y, 0) = ρ0(y) is ρ(y, t) =
Eyρ0(B(t)). In this case B(t) starts at point y.

3.7.3.3 Deterministic Motion

Consider the case where the particles move with deterministic velocity v(x):

dX(t)

dt
= v(X(t)), X(0) = x, x ∈ R

3
. (3.276)

Then

L f (x) = lim
h→0

f (X(h))− f (x)

h
= v(x) · ∇ f =

∑

i

vi (x)
∂ f

∂xi
. (3.277)

The initial value problem

∂u

∂t
= Lu = v(x) · ∇u, u(x, 0) = u0(x) (3.278)

has the solution

u(x, t) = Ttu0(x) = u0(X(t)). (3.279)

The backward equation, Liouville’s equation, for the particle density takes the form

∂ρ

∂t
= L∗ρ = −

∑

i

∂

∂yi
(vi (y)ρ). (3.280)

For incompressible flow where ∇ · v = 0 we obtain the transport equation

∂ρ

∂t
+ v(y) · ∇ρ = 0. (3.281)

This equation, together with the initial condition ρ(y, 0) = ρ0(y), is identical to
(3.278) if we change the direction of velocity field v → −v. That is why we can
write

ρ(y, t) = ρ0(X(t)), (3.282)
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where X(t) is the solution of the initial value problem

dX(t)

dt
= −v(X(t)), X(0) = y. (3.283)

Later we will see how the deterministic theory above can be extended to the
convection–diffusion equation of the form

∂ρ

∂t
+ v(y) · ∇ρ = D�ρ. (3.284)

3.7.3.4 Discrete-in-Space Random Walk

Let X (t) be the position of a particle performing a random walk on the x-axis. If
the particle is at point x at time t , then the probability that it will jump to the right,
to the point x + a, during (t, t + h] is α(x)h + o(h). The probability of a jump
to the left to x − a at time t + h is β(x)h + o(h). The probability of no jumps
is 1 − α(x)h − β(x)h + o(h). These transition probabilities allow us to find the
infinitesimal operator L:

L f (x) = lim
h→0

Ex f (X (h))− f (x)

h
= α(x)( f (x + a)− f (x))

+ β(x)( f (x − a)− f (x)). (3.285)

So the Kolmogorov backward equation is

∂u

∂t
= Lu = α(x) [u(x + a, t)− u(x)]+ β(x) [u(x − a, t)− u(x, t)] . (3.286)

For the initial condition u(x, 0) = u0(x), it has the solution u(x, t) = Exu0(X (t)).
The forward equation for the density of particles takes the form

∂ρ

∂t
= L∗ρ = α(y − a)ρ(y − a, t)

− α(y)ρ(y)+ β(y + a)ρ(y + a, t)− β(y)ρ(y, t). (3.287)

If the transition rates α = β = const, then the forward and backward equations are
identical. In particular, the mesoscopic equation for the density ρ is

∂ρ

∂t
= α(ρ(x + a, t)− 2ρ(x, t)+ ρ(x − a, t)). (3.288)

We see that (3.288) is simply a discrete-in-space version of the diffusion equation
(3.234). On the right-hand side we have a symmetric central-difference approxima-
tion for the second derivative D∂

2
ρ/∂x2 with the diffusion coefficient D = αa2.
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This suggests that if we let the step size a → 0 and the rate α → ∞ such that
D = αa2=const, the density ρ(x, t) converges to the function that obeys the dif-
fusion equation. The function ρ(x, t) = Exρ0(X (t)) represents a solution of the
difference equation (3.288) with ρ(x, 0) = ρ0(x) as an expectation with respect to
the position of the random walk X (t).

3.7.3.5 Markov Process with Jumps

Consider a particle that moves with a velocity v(x) on R and jumps at random
times so that the rate of jumps depends on the position of the particle. The one-
dimensional microscopic movement can be represented as follows. If the position
of the particle at time t is X (t), then at time t + h the position is

X (t + h) = X (t)+ v(X (t))h + Z(t)+ o(h), (3.289)

with probability λ(X (t))h + o(h), and

X (t + h) = X (t)+ v(X (t))h + o(h) (3.290)

with probability 1− λ(X (t))h + o(h). The stationary random process Z(t) has the
conditional jump density

w(z|x) = ∂

∂z
P {Z(t) ≤ z|X (t) = x} . (3.291)

The Kolmogorov backward equation is

∂u(x, t)

∂t
= Lu(x, t) = v(x)

∂u

∂x

+ λ(x)
∫

R

u(x + z, t)w(z|x)dz − λ(x)u(x, t). (3.292)

The Kolmogorov forward equation, the Master equation, for the density ρ(y, t) is

∂ρ(y, t)

∂t
= L∗ρ(y, t) = −∂(v(y)ρ)

∂y

+
∫

R

λ(y − z)ρ(y − z, t)w(z|y − z)dz − λ(y)ρ(y, t). (3.293)

If λ = const, w(z) does not depend on x , and v(x) = 0, we obtain the Kolmogorov–
Feller equation (3.74), for which the underlying microscopic random movement is
a compound Poisson process.
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3.7.3.6 Integral-Difference Equation and Discrete Random Walk

Consider the discrete-time random walk model for the particle position Xn ,

Xn+1 = Xn + Zn+1, (3.294)

where the sequence of independent random jumps Zn is defined by the conditional
density

w(z|x) = ∂

∂z
P(Zn ≤ z|Xn−1 = x). (3.295)

The transition probability density function

p(y, n|x) = ∂

∂y
P(Xn ≤ y|X0 = x) (3.296)

obeys two equations [126]. The Kolmogorov forward equation involves the last
jump that takes place at time n − 1:

p(y, n|x) =
∫

R

p(y − z, n − 1|x)w(z|y − z)dz (3.297)

with n = 1, 2, 3, . . . . The Kolmogorov backward equation deals with the first jump
at time 1:

p(y, n|x) =
∫

R

w(z|x)p(y, n − 1|x + z)dz. (3.298)

The Master equation for the density is

ρ(y, n) =
∫

R

ρ(y − z, n − 1)w(z|y − z)dz. (3.299)

The backward equation for the function u takes the form

u(x, n) =
∫

R

w(z|x)u(z, n − 1)dz. (3.300)

For even jump PDFs, i.e., w(x) = w(−x), the backward and forward equations are
identical in form.

3.7.3.7 One-Dimensional Diffusion Process

We have seen that an appropriate rescaling of time and renormalizing the stochastic
process leads to the Brownian motion. Here we define the homogeneous-in-time



3.7 Transport Equations and Underlying Stochastic Processes 113

diffusion process X (t), which has two basic statistical characteristics, the infinitesi-
mal displacement (or drift) μ(x) and the infinitesimal variance σ

2
(x):

μ(x) = lim
h→0

1

h
E {X (t + h)− X (t)|X (t) = x} , (3.301)

σ
2
(x) = lim

h→0

1

h
E

{

[X (t + h)− X (t)]2 |X (t) = x
}

. (3.302)

The diffusion process X (t) can also be defined by the Itô stochastic differential
equation (SDE)

dX = μ(X)dt + σ(X)dW, (3.303)

where W (t) is the standard Wiener process [141, 142]. It is clear that W (t) can be
defined as a diffusion process with μ(x) = 0 and σ

2
(x) = 1.

The conditional probability density function

p(y, t |x) = ∂

∂y
P {X (t) ≤ y|X (0) = x} (3.304)

satisfies the forward equation, the Fokker–Planck equation,

∂p

∂t
= L∗ p = − ∂

∂y
(μ(y)p)+ 1

2

∂
2

∂y2

(

σ
2
(y)p

)

(3.305)

and the backward equation

∂p

∂t
= Lp = μ(x)

∂p

∂x
+ σ

2
(x)

2

∂
2 p

∂x2
. (3.306)

So the initial value problem

∂u

∂t
= Lu, u(x, 0) = u0(x), (3.307)

has the solution

u(x, t) = Exu0(X (t)). (3.308)

As we discussed earlier, the backward equation (3.307) does not describe the
average transport process of particles that follow the process X (t). The transport
equation for the density ρ(y, t) with the convection–diffusion flux J = v(y)ρ −
D(y)∂ρ/∂y can be written as
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∂ρ

∂t
= − ∂

∂y
(v(y)ρ)+ ∂

∂y

(

D(y)
∂ρ

∂y

)

. (3.309)

The convection–diffusion equation (3.309) has the form of a forward equation,
∂ρ/∂t = L∗ρ, if

D(y) = σ
2
(y)

2
, v(y) = μ(y)− σ(y)

∂σ (y)

∂y
. (3.310)

3.7.3.8 Diffusion Process in Three Dimensions

We discuss the diffusion process in three dimensions in the context of an anisotropic
convection–diffusion equation for the density of particles. Our goal is to obtain the
probabilistic solution to the initial value problem

∂ρ

∂t
+

3
∑

i=1
vi (x)

∂ρ

∂xi
=

3
∑

i, j=1

∂

∂xi

(

Di j (x)
∂ρ

∂x j

)

, ρ(x, 0) = ρ0(x). (3.311)

Let us assume that the particle position X(t) is the solution to the Itô SDE

dX(s) = b(X(s))ds + σ(X(s))dW(s), X(0) = x, 0 ≤ s ≤ t, (3.312)

where W(s) is the standard three-dimensional Wiener process, and σ is the matrix of
infinitesimal variances [141]. Using coordinate notation, we rewrite the SDE (3.312)
in the integral form as

Xi (t) = xi +
∫ t

0
bi (X(s))ds +

∫ t

0

3
∑

j=1
σi j (X(s))dWj (s), i = 1, 2, 3. (3.313)

This formula allows us to find the generator

L f (x) = lim
h→0

Ex f (X(h))− f (x)

h

=
3
∑

i=1
bi (x)

∂ f (x)

∂xi
+

3
∑

i, j=1
Di j (x)

∂ f (x)

∂xi∂x j
, (3.314)

where the diffusion matrix D(x) is given by

Di j (x) = 1

2

3
∑

k=1
σik(x)σk j (x). (3.315)



3.7 Transport Equations and Underlying Stochastic Processes 115

The anisotropic convection–diffusion equation (3.311) can be written in the form of
a backward equation, ∂ρ/∂t = Lρ, if

bi (x) = −vi (x)+
3
∑

k=1

∂Dki (x)

∂xk
. (3.316)

We know that the Cauchy problem

∂u

∂t
= Lu, u(x, 0) = u0(x), x ∈ R

3
, (3.317)

has the solution u(x, t) = Exu0(X(t)). Thus we conclude that the probabilistic
solution to the initial value problem (3.311) is

ρ(x, t) = Exρ0(X(t)), (3.318)

where the random process X(t) is defined by the SDE (3.312) with (3.315) and
(3.316).

It is instructive to show how the Itô formula can be used to obtain the probabilistic
solution to (3.317) [141]. We consider a “new” Markov process (X(s), T (s)), where
the first component X(s) obeys (3.312) and the effective time T (s) is defined as

T (s) = t − s, 0 ≤ s ≤ t. (3.319)

We apply the Itô formula to the smooth function u(x, t):

du(X(s), T (s)) =
[

−∂u

∂t
(X(s), T (s))+ Lu(X(s), T (s))

]

ds

+ ∇xu(X(s), T (s)) · σ(X(s))dW(s). (3.320)

This equation can be rewritten in the integral form as

u(X(t), 0)− u(x, t) =
∫ t

0

[

−∂u

∂t
(X(s), t − s)+ Lu(X(s), t − s)

]

ds

+
∫ t

0
∇xu(X(s), t − s) · σ(X(s))dW(s). (3.321)

If we average both sides and take into account (3.317), we obtain

u(x, t) = Exu0(X(t)). (3.322)
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3.7.4 Convection–Diffusion Equation with Reactions

This section is devoted to probabilistic solutions of reaction–diffusion equations in
terms of functional integrals. We will not attempt to cover the general theory and
all relevant equations. Our purpose is to discuss the main ideas and principal results
and give illustrating examples involving typical equations. The reader interested in
the general theory and all mathematical details will find a comprehensive treatment
of the subject in Freidlin’s book [141].

So far we have discussed the probabilistic solution of the convection–diffusion
equation only. There are various directions in which a probabilistic approach to
PDEs can be extended and generalized. The first direction is to extend it to the case
where chemical reactions are taken into account. The next direction would be to
allow the velocity field v and the diffusion matrix D to depend on both space x and
time t . Another direction for generalization is to analyze initial-boundary problems.

3.7.4.1 Path-Integral and Feynman–Kac Formula

We start with the one-dimensional reaction–diffusion equation

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ r(x)ρ, x ∈ R, (3.323)

where the function r(x) represents the intrinsic growth rate. The solution to the
reaction–diffusion equation (3.323) with ρ(x, 0) = ρ0(x) can be written as the
Feynman path integral, a functional integral,

ρ(x, t) =
∫

x(0)=x
ρ0(x(t)) exp

{

−
∫ t

0

[

ẋ2(s)

4D
− r(x(s))

]

ds

}

Dx(s), (3.324)

where the integration is performed over all trajectories x(s) starting at point x . The
propagator, p(y, t |x) can be written as

p(y, t |x) =
∫

x(0)=x
x(t)=y

exp

{

−
∫ t

0

[

ẋ2(s)

4D

]

ds

}

Dx(s), (3.325)

which is the transition probability density function for the Brownian motion:

p(y, t |x) = ∂

∂y
P(B(t) ≤ y|B(0) = x). So the path-integral (3.324) can be rewrit-

ten in terms of the expectation operator, the Feynman–Kac formula,

ρ(x, t) = Exρ0(B(t)) exp

(∫ t

0
r(B(s))ds

)

, (3.326)

where B(t) is the Brownian motion starting at point x [141].
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If the mesoscopic density of particles obeys the integro-differential equation

∂ρ

∂t
= λ

∫

R

ρ(x − z, t)w(z)dz − λρ(x, t)+ r(x)ρ, (3.327)

then the underlying random process is a compound Poisson process X (t) given by

X (t) =
N (t)
∑

i=1
Zi , (3.328)

where N (t) is a Poisson process with the transition rate λ and Zi is a sequence of IID
jumps with density function w(z). The solution to the integro-differential equation
(3.327) with the initial condition ρ(x, 0) = ρ0(x) can be written as

ρ(x, t) = Exρ0(X (t)) exp

(∫ t

0
r(X (s))ds

)

. (3.329)

If the process X (t) is a symmetric α-stable Lévy motion Sα(t) on R, then the for-
mula (3.329) provides the solution to the Cauchy problem

∂ρ

∂t
= Dα

∂
α
ρ

∂ |x |α + r(x)ρ, ρ(x, 0) = ρ0(x), x ∈ R. (3.330)

In the same way we can obtain the probabilistic representation for the density that
obeys the nonlinear Cauchy problem

∂ρ

∂t
= D�ρ + r(x, ρ)ρ, ρ(x, 0) = ρ0(x), x ∈ R

3
. (3.331)

We have

ρ(x, t) = Exρ0(B(t)) exp

[∫ t

0
r(B(s), ρ(B(s), t − s)ds

]

. (3.332)

3.7.4.2 Nonstationary Convection–Diffusion Equation with Reactions

So far the velocity field v and the growth rate r have been functions of the space
coordinate only. The goal now is to allow both v and r to depend on time t as well.
Consider a transport problem involving a nonstationary incompressible fluid flow
with the velocity field v(x, t), standard diffusion with the constant diffusivity D,
and reactions with rate r(x, t)ρ. The equation for the density of particles takes the
form

∂ρ

∂t
+ v(x, t) · ∇ρ = D�ρ + r(x, t)ρ, x ∈ R

3
, (3.333)

with the initial condition
ρ(x, t) = ρ0(x). (3.334)
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The solution of this problem can be written as the functional integral

ρ(x, t) = Exρ0(X(t)) exp

[∫ t

0
r(X(s), t − s)ds

]

, (3.335)

where the random process X(s) is the solution of the SDE

dX(s) = −v(X(s), t − s)ds +√2DdW(s), 0 ≤ s ≤ t, (3.336)

with the initial condition X(0) = x. Here W(t) is the standard three-dimensional
Wiener process.

In particular, the solution of the convection–diffusion equation (r = 0) is

ρ(x, t) = Exρ0(X(t)). (3.337)

In the next section we show why the velocity in (3.336) has arguments (X(s), t − s)
and why there is a minus sign for this velocity.

3.7.4.3 Convection–Transport Equation

Consider a convection–transport equation without diffusion,

∂ρ(x, t)

∂t
+ v(x, t) · ∇ρ(x, t) = 0, x ∈ R

3
, (3.338)

with the initial condition ρ(x, 0) = ρ0(x). The solution to this Cauchy problem can
be written as follows:

ρ(x, t) = ρ0(X(t)), (3.339)

where X(t) is the solution of the characteristic equation

dX(s) = −v(X(s), t − s)ds, X(0) = x, 0 ≤ s ≤ t. (3.340)

The formula (3.339) tells us that the value of the density at point x at time t is the
value of the initial density at the point X(t). The main idea is that we release the
underlying process X(s) from the point x so that s varies from 0 up to t . So we
allow the particle to move backward in time, such that the velocity field has a value
−v(x, t) at time s = 0 and −v(X(t), 0) at time s = t . We have

dρ(X(s), t − s)

ds
= dX(s)

ds
· ∇ρ(X(s), t − s)− ∂ρ(X(s), t − s)

∂t
. (3.341)
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We integrate both sides and find

ρ0(X(t))− ρ(x, t) =
−
∫ t

0

(

v(X(s), t − s) · ∇ρ(X(s), t − s)+ ∂ρ(X(s), t − s)

∂t

)

ds. (3.342)

Because of (3.338) the RHS of the last equation is zero, and therefore ρ(x, t) =
ρ0(X(t)).

3.7.4.4 Boundary Reaction–Diffusion Problem

So far we have found probabilistic solutions to PDEs on the whole space. In fact Itô’s
formula allows us to represent the solutions to these equations in a bounded domain,
� ∈ R

3, with appropriate boundary conditions. For example, let us consider the
stationary reaction–diffusion problem

D�ρ(x)+ r(x)ρ = 0, x ∈ �, ρ(x)x∈∂� = g(x). (3.343)

Then

ρ(x) = Exg(B(τ )) exp

{∫ τ

0
r(B(s))ds

}

, (3.344)

where B(t) is the Brownian motion starting at point x and τ is the first exit time for
Brownian motion to reach the boundary ∂�, i.e., τ = min(t : B(t) /∈ �). Freidlin’s
book [141] is an excellent reference for more details on initial-boundary problems
similar to (3.343) and corresponding diffusion processes.

Exercises

3.1 Show that the Laplace transform of the Caputo derivative defined in (3.38) is

L
(

∂
γ p(x, t)

∂tγ

)

= sγ p̂(x, s)− sγ−1 p0(x). (3.345)

Hint: Use the definition of the Gamma function �(1 − γ ) = ∫∞0 e−t t−γ dt and the

fact that the integral in (3.38) is the convolution of the functions f (t) and t−γ .

3.2 Using the Montroll–Weiss equation (3.31) for the uncoupled case (3.23), derive
the equation for ρ(x, t) in the form
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∫ t

0
M(t − τ)

∂ρ(x, τ )

∂τ
dτ =

∫

R

ρ(x − z, t)w(z)dz − ρ(x, t), (3.346)

where M(t) is defined by its Laplace transform M̂(s) = [1 − φ̂(s)]/[sφ̂(s)]. Note
that this is an alternative equation to the Master equation (3.31).

3.3 Obtain (3.141) from (3.139) and (3.140).

3.4 Assume that the waiting time PDF φ(t) corresponds to the family of Gamma
distributions with parameters m = 2 and λ:

φ(t) = λ
2te−λt

�(2)
. (3.347)

If the kinetic term is linear, show that the solution to (3.130) is ρ(x, t) = er t n(x, t),
where n(x, t) is the solution to

1

2λ

∂
2
ρ

∂t2
+ ∂ρ

∂t
= λ

2

[∫

R

ρ(x − z, τ )w(z)dz − ρ(x, τ )

]

. (3.348)

3.5 If the survival probability is

�(t) = Eγ

[

−
(

t

τ0

)γ ]

, 0 < γ ≤ 1, (3.349)

where Eγ [x] = ∑∞
0 xn/�(γ n + 1) is the Mittag–Leffler function, show that

(3.130) can be written as the fractional reaction–transport equation

∂ρ

∂t
= e

∫ t
0 f (ρ(x−z,u))du

τ
γ

0

D1−γ
t

(∫

R

ρ(x − z, t)e−
∫ t
0 f (ρ(x−z,u))du

w(z)dz

)

− e
∫ t
0 f (ρ(x,u))du

τ
γ

0

D1−γ
t

(

ρ(x, t)e−
∫ t
0 f (ρ(x,u))du

)

+ f (ρ)ρ, (3.350)

where D1−γ
t is the Riemann–Liouville fractional derivative defined by (2.58).
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