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Preface

The dynamics of reactive mixtures result from local transformation processes,
chemical reactions, and transport in space, diffusion. These processes are typically
modeled by a standard reaction–diffusion equation

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ F(ρ),

where ρ is a vector of concentrations of the diffusing species, D is the diffusion
matrix, and F is a kinetic term describing reactions or interactions between the
species. Reaction–diffusion models are not limited to the field of chemistry and
chemical engineering. They can describe the dynamics of nonchemical systems, and
reaction–diffusion equations provide a general theoretical framework for the study
of phenomena in areas such as biology, ecology, physics, and materials science.

Standard reaction–diffusion systems have been studied extensively over the last
half century, and they provide a good description of the dynamics in many appli-
cations. There exist, however, a variety of situations where the standard reaction–
diffusion equation fails to be an adequate model. Actual physical, chemical,
biological, and ecological systems often show significant deviations from the assump-
tions of simple diffusive transport and spatial homogeneity inherent in the standard
reaction–diffusion equation. In this monograph, we address the question how devia-
tions from standard diffusive transport or deviations from spatial homogeneity affect
the dynamics of reaction–transport systems. This represents a large area, and we
selected those topics that reflect our interests.

Front propagation and Turing instabilities are two emblematic phenomena dis-
played by nonlinear reaction–diffusion systems. In the former, a stable state invades
an unstable or less stable state. In the latter, diffusion couples with the local nonlin-
ear transformations and drives the uniform steady state of the system unstable. We
focus on the effect of deviations from standard diffusion and spatial homogeneity of
the medium on these two signature phenomena.

The book is organized in three parts. Part I lays the foundation. Chapter 1 pro-
vides an introduction to rate equations and their stability analysis. It also presents
several important chemical and biological models. In Chap. 2 we discuss the
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standard reaction–diffusion equation and introduce two deviations from normal
diffusion, namely transport with inertia and anomalous diffusion. We present a
phenomenological approach of standard diffusion, transport with inertia, and anoma-
lous diffusion. This chapter also contains a first mesoscopic description of the trans-
port in terms of random walk models. We strongly recommend such a mesoscopic
approach to ensure that the reaction–transport equations studied are physically and
mathematically sound. We present a comprehensive review of the mesoscopic foun-
dations of reaction–transport equations in Chap. 3, which is at the heart of Part I.

Part II focuses on front propagation. Chapter 4 provides an overview of front
propagation in standard reaction–diffusion systems. We discuss pulled vs pushed
fronts and provide tools to determine the front velocity for both cases. Chapter 5
deals with the effect of deviations from standard diffusion or Brownian motion
on front propagation into unstable states. The effect of spatial heterogeneities on
front propagation is studied in Chap. 6. Chapters 7 and 8 contain applications to
ecology, namely human migrations, avian range expansions, and plant invasions,
and biomedical systems, namely cancer invasion, virus dispersal, and propagation
in spiny dendrites.

Part III focuses on spatial instabilities and patterns. We examine the simplest
type of spatial pattern in standard reaction–diffusion systems in Chap. 9, namely
patterns in a finite domain where the density vanishes at the boundaries. We discuss
methods to determine the smallest domain size that supports a nontrivial steady
state, known as the critical patch size in ecology. In Chap. 10, we provide first an
overview of the Turing instability in standard reaction–diffusion systems. Then we
explore how deviations from standard diffusion, namely transport with inertia and
anomalous diffusion, affect the Turing instability. Chapter 11 deals with the effects
of temporally or spatially varying diffusivities on the Turing instability in reaction–
diffusion systems. We present applications of Turing systems to chemical reactions
and biological systems in Chap. 12. Chapter 13 deals with spatial instabilities and
patterns in spatially discrete systems, such as diffusively and photochemically cou-
pled reactors.

This book can serve as a text for a special topics course for advanced undergrad-
uate and beginning graduate students. With this purpose in mind, we have included
a set of exercises at the end of each chapter. Instructors can obtain solutions by
contacting the authors.

We value and thank our past collaborators and colleagues, who have influ-
enced our approach to the subject of reaction–transport systems. We would like to
acknowledge more specifically our most recent collaborators, Dr. Daniel Campos,
Prof. Stanislav I. Denisov, Prof. John Dold, Dr. Alexander Iomin, Dr. Niraj Kumar,
Dr. Kwan Lam, Prof. Grigori Milstein, Shane M. Milu, Prof. Peter K. Moore,
Dr. David Moss, Dr. Vicente Ortega-Cejas, Prof. Heinz Pitsch, Prof. Anvar Shukurov,
Prof. Michael Tretyakov, Dr. Aniruddha Yadav, Chase E. Zachary, and Prof. José
Casas-Vázquez and Prof. David Jou for encouraging us to write this book.

V.M. acknowledges grant 2007-PIV-00001 from the Generalitat de Catalunya for
providing funds for an extended stay of S.F. in Barcelona which was beneficial in
the manuscript preparation. S.F. was partially supported by NEST-028192-FEPRE.
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per, Prof. Jonathan Sherratt, and Prof. Harry Swinney for allowing us to reproduce
figures from their work.

We also appreciate the advice and guidance of Dr. Christian Caron and the
Springer staff.
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General Concepts



Chapter 1
Reaction Kinetics

If spatial effects can be neglected, many systems in chemistry, biology, ecology,
physics, and other areas can be described by rate equations, a set of ordinary differ-
ential equations. Systems may be homogeneous because the system is small enough
and transport is efficient enough to eliminate spatial gradients. Or the spatial homo-
geneity may be imposed from the outside, for example by stirring in chemical reac-
tors. In the following we collect some basic facts about rate equations and discuss
various model schemes whose dynamics we investigate in later chapters.

1.1 Rate Equations

We consider systems consisting of individuals, e.g., microorganism or animals, or
particles, e.g., molecules, of n different species. For simplicity, we generally use
“particles” to refer to particles or individuals in the following. Also, we often use
the language of chemical kinetics, but the concepts, tools, and results apply to any
type of system whose temporal evolution can be modeled by rate equations. We
assume that the system is large enough that a continuum, mean-field description is
valid, i.e., that internal fluctuations due to the discrete nature of the constituents can
be neglected. The evolution of the densities or concentrations is governed by kinetic
equations

dρ

dt
= F(ρ,μ), (1.1)

where ρ ∈ R
n and F : R

n → R
n . For systems of particles, the coefficients or

parameters of the rate terms, μ, are real numbers. Evolution equations for systems of
particles must possess certain properties to be acceptable descriptions. The densities
ρi , i = 1, . . . , n, cannot be negative. Therefore the kinetic equations must preserve
positivity, i.e., ρi (0) ≥ 0 at time t = 0 implies ρi (t) ≥ 0 for all times t > 0.
Equations (1.1) have this property if

Fi (ρ1, . . . , ρi−1, 0, ρi+1, . . . , ρn) ≥ 0. (1.2)

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
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4 1 Reaction Kinetics

It is sometimes convenient to split the rate function Fi into its positive and nega-
tive parts, i.e., write it in production–loss form:

Fi (ρ) = F+i (ρ)− F−i (ρ), (1.3)

where F+i (ρ) ≥ 0 and F−i (ρ) ≥ 0. The first term, F+i , is the production or birth
term and captures the processes that increase the chemical concentration or popula-
tion density. For simplicity of notation, we sometimes write

F+i (ρ) = gi (ρ). (1.4)

The second term, F−i , is the loss or death term and captures the processes that
decrease the concentration or density. The rate of consumption, removal or death
of particles of a given type must go to zero as the density of the particles goes to
zero, F−i (ρ)→ 0 as ρi → 0. Otherwise, the concentration ρi of those particles can
become negative. Introducing the per capita birth rate and loss rate, we write, where
convenient,

F+i (ρ) = f +i (ρ)ρi , F−i (ρ) = f −i (ρ)ρi . (1.5)

1.2 Linear Stability Analysis

Studies of the dynamics of a system generally pay little attention to transient behav-
ior and focus instead on the ultimate fate of the system, the asymptotic state it attains
as time goes to infinity. These can be stationary states, time-dependent periodic
states, or time-dependent aperiodic or chaotic states. Our interest here is the former,
the stationary or steady states and their stability properties. Small fluctuations or
perturbation are inevitable in any real system. If the system is in a steady state and
then experiences a small perturbation, will it return to the steady state? In other
words, is the state stable against small perturbations?

Let ρ be a stationary state of (1.1):

F(ρ) = 0. (1.6)

The stationary state ρ is stable if trajectories that start sufficiently close to it stay
close to the steady state. This is more formally stated in the following definition.

Definition 1.1 The stationary state ρ is Lyapunov stable if for any ε > 0, there
exists a δ > 0 (depending on ε) such that for all initial conditions ρ(0) = ρ0 with
∣
∣ρ0 − ρ

∣
∣ < δ we have |ρ(t)− ρ| < ε for all t > 0.

This does not quite answer the question we raised above. The definition states
only that a stationary state is stable if the system does not wander too far away when
starting close enough to the steady state. We require a stronger notion of stability,
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namely that the system actually returns to the steady state after a sufficiently small
perturbation. This is the content of the next definition.

Definition 1.2 The steady state ρ is asymptotically stable in the sense of Lyapunov,
if there exists an η such that if

∣
∣ρ0 − ρ

∣
∣ < η then

lim
t→∞ |ρ(t)− ρ| = 0. (1.7)

The stationary state ρ is globally asymptotically stable if η can be arbitrarily large.
Since we are interested in the ultimate fate, growth or decay, of small pertur-

bations of the steady state, it makes sense to linearize the rate equations about
the steady state. Let δ(t) = ρ(t) − ρ. The evolution of the perturbations δ(t) is
given by

dδ

dt
= Jδ + N(δ), (1.8)

where N(δ) = o(δ) as δ → 0, i.e., |N(δ)| / |δ| → 0 as |δ| → 0. The n × n matrix J
is the Jacobian matrix of the system evaluated at the steady state ρ and is given by

Ji j =
∂Fi
∂ρ j

∣
∣
∣
∣
ρ

. (1.9)

Neglecting the small nonlinear terms N(δ), we obtain the linearized system, with
respect to the steady state ρ, for (1.1):

dδ

dt
= Jδ. (1.10)

Let λl , l = 1, . . . , n, be the eigenvalues of the Jacobian J and �l , l = 1, . . . , n,
the associated eigenvectors. For the generic case that all eigenvalues are distinct, the
solution of (1.10) is given by

δ(t) =
n
∑

l=1

al�l exp(λl t), (1.11)

where al are constants determined by the initial condition δ(0). We conclude that
the solution of the linearized equation (1.10) approaches 0, i.e., the perturbations
decay, if all eigenvalues of the Jacobian have a negative real part, Re λl < 0 for
l = 1, . . . , n. If there exists at least one λl ′ with a positive real part, Re λl ′ > 0, then
the system moves away from the steady state. The perturbations grow exponentially
initially until the nonlinear terms become important. This suggests that the stability
of the steady state ρ is determined by the eigenvalues of the Jacobian. That is the
content of the following theorem.
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Theorem 1.1 (Principle of Linearized Stability) (a) If all the eigenvalues
λl , l = 1, . . . , n, of the Jacobian matrix J have a negative real part, then the
steady state ρ of the nonlinear evolution equations (1.1) is asymptotically stable.
(b) If at least one eigenvalue of J has a positive real part, then the steady state ρ is
unstable. (c) If the Jacobian has one or more eigenvalues with zero real part and no
eigenvalues with positive real part, then the steady state ρ may be stable, unstable,
or asymptotically stable depending on the nonlinear terms.

Remark 1.1 The case (c), one or more eigenvalues with zero real part and no eigen-
values with positive real part, is commonly called the case of (linear) marginal
stability.

The eigenvalues λl of J are the roots of the nth order characteristic polynomial,
(−1)n det(J− λIn) = 0, where In is the n × n identity matrix,

λ
n + c1λ

n−1 + c2λ
n−2 + · · · + cn−1λ+ cn = 0. (1.12)

1.2.1 One-Variable Systems

In some applications, the system is well described by the dynamics of one species,
see Sect. 1.4. In other words, the dynamics is governed by the rate equation for a
single-state variable, the density ρ,

dρ

dt
= F(ρ,μ), (1.13)

and the steady states are given by

F(ρ(μ),μ) = 0. (1.14)

The linearized system with respect to the steady state ρ reads, with δ = ρ − ρ,

dδ

dt
= F ′(ρ(μ),μ)δ = λδ. (1.15)

The eigenvalue λ is real, and the steady state ρ is stable if λ = F ′(ρ(μ)) < 0
and unstable if λ = F ′(ρ(μ)) > 0. In one-variable systems, the steady states can
undergo only one type of instability, namely a real eigenvalue passes through zero.
This is known as a stationary instability or bifurcation.

While one-variable systems are easy to analyze, there are few real-world appli-
cations. Also their dynamics is simple; they can display multistability, but no oscil-
latory behavior. Periodic oscillations can only occur in systems with at least two
species and chaos requires at least three species, see for example [421].
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1.2.2 Two-Variable Systems

We will generally use the letters U and V to denote the relevant species in two-
variable systems. The rate equations read

dρu

dt
= F1(ρu, ρv,μ), (1.16a)

dρv

dt
= F2(ρu, ρv,μ), (1.16b)

and the stationary states (ρu, ρv) are given by

F1(ρu, ρv,μ) = F2(ρu, ρv,μ) = 0. (1.17)

As discussed above, the stability of the steady states is determined by the eigenval-
ues of the Jacobian

J =
(

J11 J12
J21 J22

)

=

⎛

⎜
⎜
⎝

∂F1

∂ρu

∣
∣
∣
∣
(ρu,ρv)

∂F1

∂ρv

∣
∣
∣
∣
(ρu,ρv)

∂F2

∂ρu

∣
∣
∣
∣
(ρu,ρv)

∂F2

∂ρv

∣
∣
∣
∣
(ρu,ρv)

⎞

⎟
⎟
⎠

. (1.18)

The system (1.16) is said to be of the pure activator–inhibitor type if the Jacobian
has the structure

J =
(+ −
+ −

)

, (1.19)

i.e.,

J11 > 0, J22 < 0, J12 < 0, J21 > 0. (1.20)

The system (1.16) is said to be of the cross activator–inhibitor type if the Jacobian
has the structure

J =
(+ +
− −

)

, (1.21)

i.e.,

J11 > 0, J22 < 0, J12 > 0, J21 < 0. (1.22)

Note that the type can depend on the stationary state (ρu, ρv). If the specific type
does not matter, we will refer to (1.19) and (1.21) simply as activator–inhibitor sys-
tems. In our convention, the species U is the activator and V the inhibitor. Some
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authors adopt a different nomenclature and call systems of type (1.19) activator–
inhibitor systems and those of type (1.21) activator-substrate-depletion systems.

The characteristic polynomial for a two-variable system is a quadratic equation

λ
2 − Tλ+� = 0, (1.23)

where T is the trace of the Jacobian,

T = tr J = J11 + J22, (1.24)

and � is the determinant of the Jacobian,

� = det J = J11 J22 − J12 J21. (1.25)

The roots of the characteristic polynomial (1.23) are given by

λ1,2 =
1

2

[

T ±
√

T 2 − 4�

]

. (1.26)

Equation (1.26) implies that for a two-variable system all eigenvalues of the Jaco-
bian have a negative real part, i.e., the steady state is stable, if

T < 0, (1.27a)

� > 0. (1.27b)

It is useful to analyze the behavior of the eigenvalues in more detail and distinguish
the following cases which are illustrated in Fig. 1.1.

Case (I): T < 0, � > 0, and the discriminant is positive, T 2 − 4� > 0. In this
case both eigenvalues are real and negative. According to (1.11), all perturbations
to the steady state decay monotonically and the steady state is a stable node.

Case (II): T < 0, � > 0, and the discriminant is negative, T 2 − 4� < 0. In
this case the eigenvalues form a pair of complex conjugate numbers, λ1,2 = λ± iω,

with λ = T/2 and ω =
√

4�− T 2
/2. The real part is negative and perturbations

of the steady state still decay. However, the presence of a nonzero imaginary part
implies that the perturbations no longer decrease monotonically but in an oscillatory
manner. The trajectory approaches the steady state spiraling around it. The steady
state is a stable focus.

Case (III): T > 0, � > 0, and the discriminant is negative, T 2 − 4� < 0. The
eigenvalues are complex conjugate with a positive real part, λ = T/2. The steady
state is unstable. Due to the presence of a nonzero imaginary part, perturbations
grow in an oscillatory manner and spiral away from the steady state. The steady
state is an unstable focus.
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Case (IV): T > 0, � > 0, and the discriminant is positive, T 2 − 4� > 0. The
eigenvalues are both real and positive. All perturbations grow exponentially. The
steady state is an unstable node.

Case (V): � < 0. In this case the discriminant is always positive, T 2 − 4� > 0,
and both eigenvalues are real. However, one is positive and the other is negative.
Trajectories approach the steady state along the eigenvector corresponding to the
negative eigenvalue, but move away along the eigenvector corresponding to the
positive eigenvalue. The steady state has one stable and one unstable direction. It
is therefore unstable and called a saddle.

T

T
2 =

4

unstable
node

unstable
focus

stable
node

stable
focus

saddle
(unstable)

saddle
(unstable)

∇

∇

Fig. 1.1 Stability classification for two-variable systems

The preceding discussion shows that a steady state of a two-variable system can
undergo an instability in two generic ways. (i) If a real eigenvalue passes through
zero as a parameter μ of the system is varied, i.e, the determinant of the Jacobian
changes sign, then a stationary bifurcation occurs at μ = μst:

� = det J = 0 for μ = μst. (1.28)

At the instability threshold,

λ1 = 0, (1.29)

λ2 = T < 0, (1.30)

i.e., one eigenvalue vanishes, while the other is negative. (ii) If a pair of complex
conjugate eigenvalues crosses the imaginary axis, as a parameter μ of the system
is varied, i.e, the trace of the Jacobian changes sign, then an oscillatory or Hopf
bifurcation occurs at μ = μH:

T = tr J = 0 for μ = μH. (1.31)
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At the instability threshold,

λ1,2 = ±iωH, (1.32)

where the characteristic frequency is determined solely by the system parameters
and given by

ωH =
√
�. (1.33)

The stationary bifurcation and the Hopf bifurcation typically occur as one parameter
is varied and are therefore known as codimension-one bifurcations. They represent
the generic ways in which a steady state of a two-variable system can become unsta-
ble. It is sometimes possible to make the stationary and Hopf instability threshold
coalesce by varying two parameters. Such an instability, where T = � = 0,
is known as a Takens–Bogdanov bifurcation or a double-zero bifurcation, since
λ1 = λ2 = 0 at such a point [175]. This bifurcation is a codimension-two bifur-
cation, since it requires the fine-tuning of two system parameters.

1.2.3 Systems with n > 2 Variables

A linear stability analysis of the steady states of systems with more than two vari-
ables usually employs a Routh–Hurwitz analysis, which is based on the following
theorem [309, 153, 424].

Theorem 1.2 (Routh–Hurwitz) All roots of the characteristic polynomial (1.12)
have a negative real part, if and only if

�l =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c1 c3 · · · ·
1 c2 c4 · · ·
0 c1 c3 · · ·
0 1 c2 · · ·· · · · · ·
0 0 · · · cl

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0, l = 1, . . . , n, (1.34)

together with the condition

cn > 0. (1.35)

[Set cl = 0 in (1.34) for l > n.] The generic bifurcations of steady states in
n-variable systems, n > 2, are again the stationary bifurcation, where a real eigen-
value passes through zero, and the Hopf bifurcation, where a pair of complex conju-
gate eigenvalue crosses the imaginary axis. The steady state undergoes a stationary
bifurcation if condition (1.35) is violated, i.e.,

cn = 0. (1.36)
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Note that cn = (−1)n det J; this condition is the same as for two-variable systems.
To obtain the condition for the oscillatory or Hopf bifurcation, we exploit Orlando’s
formula [153],

�n−1 = (−1)n(n−1)/2
∏

1≤i<k≤n
(λi + λk), (1.37)

where λi and λk are roots of the characteristic polynomial (1.12). Orlando’s formula
implies that

�n−1 = 0, (1.38a)

cn > 0, (1.38b)

�l > 0, l = 1, . . . , n − 2, (1.38c)

is a necessary and sufficient condition for a conjugate pair of purely imaginary
eigenvalues [236], i.e., for a Hopf bifurcation.

The Routh–Hurwitz conditions are well known and can be used to determine, in
principle, the stability properties of the steady state of any n-variable system. This
advantage is, however, balanced by the fact that in practice their use is very cumber-
some, even for n as small as 3 or 4. The evaluation, by hand, of all the coefficients
cl of the characteristic polynomial and the Hurwitz determinants �l constitutes a
rather arduous task. It is for this reason that in the past this tool of linear stability
analysis could hardly be found in the literature of nonlinear dynamics. The situa-
tion changed with the advent of computer-algebra systems or symbolic computation
software. Software such as MATHEMATICA (Wolfram Research, Inc., Champaign,
IL) or MAPLE (Waterloo Maple Inc., Waterloo, Ontario) makes it easy to obtain
exact, analytical expressions for the coefficients cl of the characteristic polynomial
(1.12) and the Hurwitz determinants �l .

1.3 Chemical Kinetics

In the next section, we collect several models that we use repeatedly later on. We
begin by introducing some concepts from chemical kinetics in this section. This is
intended to be a very simple review of a few facts needed to discuss rate equation for
chemical reactions. Consider the following (abstract) balanced chemical equation:

ν1C1 + ν2C2 + · · · −→ νlCl + νmCm + · · · . (1.39)

Here νi are the stoichiometric coefficients of the reactants, C1, C2, . . . , and of the
products, Cl, Cm, . . . . They tell us, for example, that for every ν1 moles of C1, ν2
moles of C2 are simultaneously used up and νm moles of product Cm are formed.
The chemical equation can be written in the form of an algebraic equation by
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adopting the convention that the stoichiometric coefficients of products are positive
and those of reactants are negative:

∑

i

νiCi = 0. (1.40)

We consider only reactions that take place within a constant volume. For such
reactions, the reaction velocity v of (1.40) is defined as the rate of change of the
concentration of any species divided by its stoichiometric coefficient:

v = 1

νi

dρi
dt

. (1.41)

This definition results in a unique, positive reaction velocity for a given reaction.
Since (1.39) is balanced, v does indeed not depend on i , and the time dependence of
any reactant or product can be used. A rate law is a mathematical statement of how
the reaction velocity depends on concentration:

v = r(ρ). (1.42)

If v depends on the concentration of some species that does not appear in the bal-
anced chemical equation, then that species is called a catalyst if v increases as the
concentration of that species increases. If an increase in the concentration of that
species leads to a decrease of the reaction velocity v, it is called an inhibitor. If
v depends on one or more products, then the reaction is called autocatalytic if the
product increases the reaction velocity. If the product decreases the reaction velocity,
the reaction is called self-inhibiting. Rate laws are determined experimentally from
kinetic data. Such a rate law is called an empirical rate law. Rate laws are often, but
not always, found to depend on simple powers of the concentrations:

v = kρx
1ρ

y
2ρ

z
3 · · · . (1.43)

The coefficient k is known as the rate constant. It depends on temperature and is,
by the definition (1.41) of the reaction velocity, always a positive quantity. The
exponents define the order of the reaction, and the sum of the exponents the overall
order. For instance, the reaction

H2 + I2
k−→ 2 HI (1.44)

obeys the empirical rate law

v = k[H2][I2]. (1.45)

The brackets denote, as usual in chemistry, the concentration of the species enclosed.
This reaction is first order in hydrogen, H2, first order in iodine, I2, and second order
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overall. Note that the order of a reaction does not have to coincide with the stoi-
chiometric coefficient in the balanced chemical equation. For example, the thermal
decomposition of acetaldehyde

CH3CHO
k−→ CH4 + CO (1.46)

has the empirical rate law

v = k[CH3CHO]3/2
. (1.47)

As this example demonstrates, the order of a reaction does not need to be an integer.
The next example shows that an order or overall order cannot always be defined.
The reaction of hydrogen with bromine,

H2 + Br2
k−→ 2 HBr, (1.48)

has the empirical rate law

v = k
[H2][Br2]3/2

[Br2] + k′[HBr] . (1.49)

The reaction is first order in H2; no order for Br2 or HBr and no overall order can
be defined. Note that v decreases as the concentration of the product HBr increases,
i.e., the reaction is self-inhibiting.

Chemical equations are stoichiometric statements. For example, (1.48) means
that one mole of hydrogen reacts with one mole of bromine to form two moles of
hydrogen bromide. Sometimes, chemical equations can also be interpreted in terms
of what happens to the molecules. If such a molecular interpretation is valid, the
reaction is called elementary. In most cases, including reaction (1.48), the sequence
of events is more complex. A molecule of hydrogen does not collide with a mol-
ecule of bromine, exchange atoms, and form two molecules of hydrogen bromide.
The reaction, as is generally the case, proceeds from reactants to products involving
a variety of intermediate species and elementary steps. The series of elementary
reactions that constitute the stoichiometric reaction, the balanced chemical equa-
tion, is called the mechanism of the reaction. For example, the mechanism of the
hydrogen–bromine reaction is given by

Br2 +M
k1−→ 2 Br · +M, (1.50)

Br · +H2
k2−→ HBr+ H·, (1.51)

H · +Br2
k3−→ HBr+ Br·, (1.52)
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H · +HBr
k4−→ H2 + Br·, (1.53)

Br · +Br · +M
k5−→ Br2 +M, (1.54)

where M is an inert species. The dot on a chemical species denotes a radical, a
reactive, short-lived, odd-electron species. Rate laws for elementary reactions can
be read off from the chemical equation. The order of an elementary reaction is given
by the stoichiometric coefficients. For instance, the rate law of reaction (1.53) is
given by

v4 = k4[H][HBr]. (1.55)

The reaction is first order in H, first order in HBr, and second order overall. This
elementary reaction involves two molecules and is known as a bimolecular reac-
tion. This is the most common type of an elementary reaction. The other two are
unimolecular reactions and trimolecular (or termolecular) reactions; the latter are
rare.

Most reactions are not elementary. The hydrogen–iodine reaction looks like an
elementary bimolecular reaction; it is first order in H2, first order in I2, and sec-
ond order overall. However, this reaction is not elementary [425]. Reactions that
behave kinetically just like a single-step, elementary reaction are called kinetically
simple. The order of each reactant in such a reaction is equal to its stoichiometric
coefficients. Such reactions are also said to obey the law of mass action or to have
mass-action kinetics.

1.4 Chemical and Biological Models

This section contains several models whose spatiotemporal behavior we analyze
later. Nontrivial dynamical behavior requires nonequilibrium conditions. Such con-
ditions can only be sustained in open systems. Experimental studies of nonequilib-
rium chemical reactions typically use so-called continuous-flow stirred tank reac-
tors (CSTRs). As the name implies, a CSTR consists of a vessel into which fresh
reactants are pumped at a constant rate and material is removed at the same rate
to maintain a constant volume. The reactor is stirred to achieve a spatially homo-
geneous system. Most chemical models account for the flow in a simplified way,
using the so-called pool chemical assumption. This idealization assumes that the
concentrations of the reactants do not change. Strict time independence of the reac-
tant concentrations cannot be achieved in practice, but the pool chemical assumption
is a convenient modeling tool. It captures the essential fact that the system is open
and maintained at a fixed distance from equilibrium. We will discuss one model that
uses CSTR equations. All other models rely on the pool chemical assumption. We
will denote pool chemicals using capital letters from the start of the alphabet, A, B,
etc. Species whose concentration is allowed to vary are denoted by capital letters
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from the end of the alphabet, such as U, V, etc. We will use the corresponding small
letters as subscripts on the concentration variable ρ to represent the concentrations
or densities of the various species.

1.4.1 Branching-Coalescence Model

We begin by discussing several models with one state variable. In the case of sys-
tems with only one relevant species, we drop the subscript and denote the concen-
tration simply by ρ. The first specific system we consider is given by a mechanism
consisting of two elementary steps:

A+ U
k1−→ 2 U, (1.56)

2 U
k2−→ A+ U. (1.57)

The reaction velocity for the branching step is

v1 = k1ρaρ (1.58)

and for the coalescence step

v2 = k2ρ
2
. (1.59)

The rate equation for the concentration of U reads

dρ

dt
= k1ρaρ − k2ρ

2
. (1.60)

It is often convenient to nondimensionalize the rate equations. One way to achieve
a dimensionless evolution equation for the branching-coalescence model is to intro-
duce a dimensionless time and concentration as follows:

t∗ = k1ρat, ρ
∗ = k2

k1ρa
ρ, (1.61)

where the asterisk denotes dimensionless quantities. Substituting these two expres-
sions into the rate equation (1.60) we obtain, dropping the asterisk for notational
convenience,

dρ

dt
= F(ρ) = ρ − ρ

2 = ρ(1− ρ). (1.62)

The kinetic term of this form is commonly referred to as KPP kinetics and is
used in the Fisher–Kolmogorov–Petrovskii–Piskunov (FKPP) equation, see Chap. 4.
The equation has two steady states, the trivial one, ρ1 = 0, and ρ2 = 1. Since
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F ′(ρ) = 1 − 2ρ, we have F ′(0) = 1, i.e., the trivial state is unstable, and
F ′(1) = −1, i.e., the steady state ρ2 = 1 is stable.

1.4.2 Schlögl Model I

The first Schlögl model [384] is a generalization of the branching-coalescence
scheme and is defined by the mechanism

A+ U
k1−→ 2 U, (1.63)

2 U
k2−→ A+ U, (1.64)

B+ U
k3−→ C, (1.65)

and its rate equation is given by

dρ

dt
= (k1ρa − k3ρb)ρ − k2ρ

2
. (1.66)

The original version of the first Schlögl model contains a fourth step, the back reac-
tion C −→ B+U. We assume that the product C is immediately removed from the
system. We consider two different ways of nondimensionalizing this rate equation.
(i) Set t∗ = k2

√
ρaρb t and ρ

∗ = k2ρ/(k1ρa − k3ρb). This is acceptable for all
situations where k1ρa > k3ρb. Then we obtain the following nondimensionalized
version of (1.66):

dρ

dt
= F(ρ) = rρ(1− ρ). (1.67)

We have again dropped the asterisk and will do so from now on. The parameter r is
given by

r = k1ρa − k3ρb

k2
√
ρaρb

= r+ − r− > 0. (1.68)

The rate term of (1.67) corresponds again to KPP kinetics. (ii) Set t∗ = k2
√
ρaρb t

and ρ
∗ = ρ/

√
ρaρb. This works for all values of the parameters.

Then

dρ

dt
= F(ρ) = μρ − ρ

2
, (1.69)

where

μ = k1ρa − k3ρb

k2
√
ρaρb

. (1.70)
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The stationary states of (1.69) are the trivial steady state ρ1 = 0, which exists for all
values of μ, and ρ2 = μ, which exists only for μ ≥ 0. We have F ′(ρ) = μ − 2ρ,
which implies that F ′(0) = μ. The steady state ρ1 is stable for μ < 0, undergoes a
bifurcation at μst = 0, and is unstable for μ > 0. Since F ′(ρ2) = −μ, the second
steady state is stable for μ > 0.

1.4.3 Verhulst Equation

The next system is a simple model of population dynamics. Let ρ be the density of
a population. The population density will change due to births, deaths, and migra-
tion. The simplest model has no migration and the birth and death terms are simply
proportional to the density:

dρ

dt
= bρ − dρ = (b − d)ρ = rρ, (1.71)

where b and d are positive constants and are the intrinsic birth and death rates,
respectively. The parameter r = b − d is the intrinsic growth rate. Equation (1.71)
is known as the Malthusian growth equation. It corresponds to exponential growth,
which is unrealistic. The growth must saturate eventually, and Verhulst suggested
that the per capita growth rate decays linearly with population density. The resulting
kinetic equation is known as the Verhulst equation or logistic equation:

dρ

dt
= rρ

(

1− ρ

K

)

. (1.72)

The parameter K is the carrying capacity of the system, at which the growth rate
vanishes. If we nondimensionalize the system by measuring the density in terms
of the carrying capacity, ρ∗ = ρ/K , and rescale time by the intrinsic growth rate,
t∗ = r t , then we obtain again KPP kinetics:

dρ

dt
= ρ(1− ρ). (1.73)

1.4.4 Brusselator

Prigogine and Lefever introduced a simple two-variable scheme in 1968 [354, 243]
that displays sustained oscillatory behavior. It was subsequently dubbed the Brusse-
lator by Tyson [441] and consists of four steps:

A
k1−→ U, (1.74)

B+ U
k2−→ V+ D, (1.75)
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2 U+ V
k3−→ 3 U, (1.76)

U
k4−→ E. (1.77)

The rate equations for the Brusselator are

dρu

dt
= k1ρa − (k2ρb + k4)ρu + k3ρ

2
uρv, (1.78a)

dρv

dt
= k2ρbρu − k3ρ

2
uρv. (1.78b)

To nondimensionalize the kinetic equations we set t∗ = k4t , ρ
∗
u =

√

k3/k4 ρu, ρ∗v =
√

k3/k4 ρv, a =
√

k2
1k3/k

3
4 ρa, and b = (k2/k4)ρb. Dropping again the asterisk for

notational convenience, the nondimensionalized rate equations read

dρu

dt
= a − (b + 1)ρu + ρ

2
uρv, (1.79a)

dρv

dt
= bρu − ρ

2
uρv. (1.79b)

The Brusselator has a unique steady state,

ρu = a, ρv =
b

a
, (1.80)

and the Jacobian is given by

J =
(

b − 1 a2

−b −a2

)

. (1.81)

The Brusselator is a cross activator–inhibitor system if b > 1. The trace T and
determinant � of the Jacobian are given by

T = b − 1− a2
, � = a2

. (1.82)

The determinant is always positive and the steady state of the Brusselator cannot
undergo a stationary bifurcation, see (1.28). The condition for a Hopf bifurcation,
T = 0, see (1.31), yields

bH = 1+ a2
. (1.83)

For b < bH, the steady state (a, b/a) is stable. For b > bH, it is unstable and
the asymptotic state of the Brusselator is a stable limit cycle, i.e., an attracting,
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nonconstant periodic solution; see, e.g., [441]. According to (1.33), the frequency
of the limit-cycle oscillations at the bifurcation point is given by

ωH = a. (1.84)

The Brusselator provides a simple mass-action kinetic scheme that displays sus-
tained, stable oscillatory behavior.

1.4.5 Schnakenberg Model

The Schnakenberg model is a modification of the Brusselator scheme, and its mech-
anism consists of the following four steps:

U −→ A, (1.85)

A −→ U, (1.86)

B −→ V, (1.87)

2 U+ V −→ 3 U. (1.88)

The dimensionless rate equations for this scheme are given by

dρu

dt
= a − ρu + ρ

2
uρv, (1.89a)

dρv

dt
= b − ρ

2
uρv. (1.89b)

The Schnakenberg model too has a unique steady state:

ρu = a + b, ρv =
b

(a + b)2
. (1.90)

The Jacobian is given by

J =

⎛

⎜
⎜
⎝

b − a

a + b
(a + b)2

− 2b

a + b
−(a + b)2

⎞

⎟
⎟
⎠

. (1.91)

The Schnakenberg model is a cross activator–inhibitor system if b > a. The deter-
minant of the Jacobian is also always positive, � = (a + b)2, and no stationary
bifurcation can occur. The Hopf threshold bH is given by the cubic equation

bH − a = (a + bH)
3
. (1.92)
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1.4.6 Gierer–Meinhardt Model

Gierer and Meinhardt have suggested various models to account for biological pat-
tern formation, see for example [157, 279]. In the following we adopt a particular
model and use the dimensionless version of the rate equations presented in [388,
Chap. 8]:

dρu

dt
= 1− ρu + p

ρ
2
u

ρv
, (1.93a)

dρv

dt
= q(ρ2

u − ρv), (1.93b)

where p and q are positive parameters. This model also has a unique steady state,

ρu = 1+ p, ρv = (1+ p)2
, (1.94)

and the Jacobian is

J =
⎛

⎝

p − 1

p + 1
− p

(1+ p)2

2q(1+ p) −q

⎞

⎠ . (1.95)

The Gierer–Meinhardt model belongs to the class of pure activator–inhibitor sys-
tems if p > 1. The trace T and determinant � of the Jacobian are given by

T = p − 1

p + 1
− q, � = q. (1.96)

For all parameter values, the determinant is positive and the steady state of the
Gierer–Meinhardt model cannot undergo a stationary bifurcation. The Hopf con-
dition, T = 0, is satisfied for

pH =
1+ q

1− q
. (1.97)

1.4.7 Gray–Scott Model

The second Schlögl model [384] is defined by the mechanism

A+ 2 U
k1−↽⇀−
k−1

3 U, (1.98)

B+ U
k2−↽⇀−
k−2

C, (1.99)
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and its rate equation is given by

dρ

dt
= k−2ρc − k2ρbρ + k1ρaρ

2 − k−1ρ
3
. (1.100)

As the previous models, the second Schlögl model relies on the pool chemical
assumption to account for the inflow of reactants. If we assume instead that this
reaction scheme occurs in a CSTR, we obtain the Gray–Scott model [170, 171]:

V+ 2 U
k1−↽⇀−
k−1

3 U, (1.101)

U
k2−↽⇀−
k−2

W. (1.102)

Let V be the volume of the reactor and f the volumetric flow rate. We assume
that the CSTR is well mixed, i.e., we make the ideal mixing assumption. Then the
average time a fluid parcel spends in the CSTR is

tres =
V

f
. (1.103)

Defining the flow rate q as the inverse residence time,

q = 1

tres
= f

V
, (1.104)

the kinetic equations for the Gray–Scott model are given by

dρu

dt
= k1ρvρ

2
u − k−1ρ

3
u − k2ρu + k−2ρw + q(ρu0 − ρu), (1.105a)

dρv

dt
= −k1ρvρ

2
u + k−1ρ

3
u + q(ρv0 − ρv), (1.105b)

dρw

dt
= k2ρu − k−2ρw + q(ρw0 − ρw), (1.105c)

where the subscript 0 denotes the feed concentration. We nondimensionalize the
kinetic equations by setting ρ

∗
u = ρu/ρv0, ρ∗v = ρv/ρv0, ρ∗w = ρw/ρv0, t∗ = k1ρ

2
v0t ,

q∗ = q/k1ρ
2
v0, k∗2 = k2/k1ρ

2
v0, η1 = k−1/k1, and η2 = k−2/k2. Dropping again

the asterisk for notational convenience, the nondimensionalized rate equations for
the Gray–Scott model read

dρu

dt
= ρvρ

2
u − η1ρ

3
u − k2ρu + k2η2ρw + q(ρu0 − ρu), (1.106a)
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dρv

dt
= −ρvρ

2
u + η−1ρ

3
u + q(1− ρv), (1.106b)

dρw

dt
= k2ρu − k2η2ρw + q(ρw0 − ρw). (1.106c)

The Gray–Scott model has a first integral expressing the conservation of mass,
namely

d

dt

(

ρu + ρv + ρw
) = q

(

ρu0 + 1+ ρw0 − ρu − ρv − ρw
)

. (1.107)

Defining the total concentration ρ ≡ ρu + ρv + ρw, we obtain

dρ

dt
= q(ρ0 − ρ). (1.108)

This equation has the solution

ρ(t) = ρ(0) exp(−qt)+ ρ0[1− exp(−qt)], (1.109)

which implies that ρ(t) → ρ0 as t → ∞. In other words, the total concentration
relaxes to the total concentration in the feed stream. After a few residence times,
the initial condition has essentially been washed out of the reactor. We assume from
now on that ρ(0) = ρ0 and thus ρ(t) = ρ0. Then the concentration of species W
can be eliminated, ρw = ρ0 − ρu − ρv, and the Gray–Scott model reduces to a
two-variable model:

dρu

dt
= ρvρ

2
u − η1ρ

3
u − k2ρu + k2η2(ρ0 − ρu − ρv)+ q(ρu0 − ρu), (1.110a)

dρv

dt
= −ρvρ

2
u + η−1ρ

3
u + q(1− ρv). (1.110b)

We study the behavior of the Gray–Scott model under two simplifying assumptions.
(i) The back reactions are negligible, i.e., η1 � 1 and η2 � 1, and we set η1 =
η2 = 0 in (1.110). (ii) The autocatalytic intermediate U is not in the feed stream,
ρu0 = 0. Then the rate equations read

dρu

dt
= ρvρ

2
u − k2ρu − qρu, (1.111a)

dρv

dt
= −ρvρ

2
u + q(1− ρv). (1.111b)

The system (1.111) has a trivial steady state:

(ρu1, ρv1) = (0, 1). (1.112)
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It is a simple consequence of the fact that no reactions occur if the reactor contains
no catalyst U, since this species is not contained in the feed stream. The two other
steady states,

(ρu2,3, ρv2,3) =
(

1

2

q

k2 + q

[

1±√
1− δ

]

,
1

2

[

1∓√1− δ
])

, (1.113)

where

δ = 4(k2 + q)2

q
, (1.114)

exist for the interval (q−, q+) of the flow rate, where

q± =
(

1

8
− k2

)

±
√

1

64
− k2

4
, (1.115)

if

k2 <
1

16
. (1.116)

Note that

ρu2,3(q±) =
1

2

q±
k2 + q±

�= 0. (1.117)

The two branches of the nontrivial steady states are not connected to the branch of
the trivial steady state. They form a so-called isola and appear and disappear via a
saddle-node bifurcation.

The Jacobian of the Gray–Scott model (1.111) is given by

J =
(

2ρvρu − (k2 + q) ρ
2
u

−2ρvρu −ρ
2
u − q

)

. (1.118)

For the trivial steady state, (ρu1, ρv1) = (0, 1), we find

J =
(−(k2 + q) 0

0 −q

)

. (1.119)

Since the Jacobian is a diagonal matrix for this case, the eigenvalues can be read off
immediately:

λ1 = −(k2 + q), λ2 = −q. (1.120)
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Both eigenvalues are negative and the trivial steady state is stable for all flow rates.
This implies that a small initial amount of the autocatalyst U in the reactor will
decay to zero.

The nontrivial steady states satisfy the relation ρvρu = k2 + q, which allows us
to write the Jacobian in the following form:

J =
(

k2 + q ρ
2
u

−2(k2 + q) −ρ
2
u − q

)

, (1.121)

where ρu = ρu2 or ρu = ρu3. The trace and the determinant of the Jacobian (1.121)
are given by

T = −ρ
2
u + k2, � = (k2 + q)(ρ2

u − q). (1.122)

For the steady state (ρu3, ρv3) the determinant � is negative for all flow rates, i.e.,
according to the stability classification in Sect. 1.2.2 the steady state is a saddle
point. The lower branch of the isola is unstable for all flow rates for which it exists.
For the upper branch of the isola, (ρu2, ρv2), the determinant � is always positive.
The stability is determined by the trace T . For q near q+, T is negative and the upper
branch is stable. For q near q−, T is positive and the upper branch of nontrivial
steady states undergoes a Hopf bifurcation near q− as the flow rate is decreased.
For example, if k2 = 1/32, then q+ = 0.182138 and q− = 0.00536165. The upper
branch undergoes a Hopf bifurcation at qH = 0.00930292.

1.4.8 Oregonator

The best known oscillating reaction is without a doubt the Belousov–Zhabotinsky
(BZ) reaction, the oxidation of an organic substrate, typically malonic acid,
CH2(COOH)2, by bromate, BrO3

−, in an acidic medium in the presence of a metal-
ion catalyst. It was discovered by Belousov in the early 1950s [32], and modified
by Zhabotinsky [497]. The mechanism of the BZ reaction was elucidated by Field,
Körös, and Noyes in 1972 [326, 130, 325] and reduced to five essential steps by
Field and Noyes [131]. This model is called the Oregonator and in the version pre-
sented by Tyson and Fife [442] it is given by

Q+W −→ U+ P, (1.123)

U+W −→ 2 P, (1.124)

Q+ U −→ 2 U+ 2 V, (1.125)

2 U −→ Q+ P, (1.126)

B+ V −→ νW, (1.127)
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where Q = BrO3
−, B = BrMA (bromomalonic acid), P = HOBr, U = HBrO2, V

is the oxidized form of the catalyst, typically Ce4+, Fe3+, or Ru(bpy)3
3+, W = Br−,

and ν is an adjustable stoichiometric parameter. The dimensionless rate equations
for the scheme (1.123)–(1.127), where B, Q, and P are pool chemicals, are given by
[442]

ε
dρu

dt
= qρw − ρuρw + ρu − ρ

2
u , (1.128a)

dρv

dt
= ρu − ρv, (1.128b)

ε
′ dρw

dt
= −qρw − ρuρw + hρv, (1.128c)

with h = 2ν. From measured rate constants for the BZ reaction, Tyson and Fife
estimate the parameters in (1.128) by

ε
′ � ε � 1, q � 1, h � 1. (1.129)

Since the variable ρw evolves on the fastest time scale, it can be eliminated by
setting its time derivative equal to zero, and the value of ρw is determined by the
values of ρu and ρv:

ρw =
hρv

ρu + q
. (1.130)

Then the three-variable Oregonator model (1.128) reduces to the two-variable Oreg-
onator model:

dρu

dt
= 1

ε

(

ρu − ρ
2
u − hρv

ρu − q

ρu + q

)

, (1.131a)

dρv

dt
= ρu − ρv. (1.131b)

In this monograph we focus on (1.131) and refer to it for the sake of brevity as the
Oregonator. The nontrivial steady state of the Oregonator is given by

ρu =
1− h − q +

√

1− 2h + h2 + 2q + 6hq + q2

2
, (1.132a)

ρv = ρu. (1.132b)
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The Jacobian is given by

J =
⎛

⎜
⎝

1

ε

[

1− 2ρu −
2hqρu

(ρu + q)2

]

−h

ε

ρu − q

ρu + q

1 −1

⎞

⎟
⎠ . (1.133)

The expressions for the trace T and the determinant � in terms of ε, q, and
h are somewhat lengthy and not enlightening. They are best evaluated for spe-
cific values of the parameters. The Oregonator also belongs to the class of pure
activator–inhibitor systems. The autocatalytic species HBrO2 is the activator and
the oxidized catalyst the inhibitor.

1.4.9 Lengyel–Epstein Model

Next to the BZ reaction, the chlorite–iodide–malonic acid (CIMA) reaction has
played a key role in nonlinear chemical dynamics. It belongs to the group of sys-
tematically designed chemical oscillating reactions pioneered by the Brandeis group
[88, 110] and is among the very few reactions that can display transient oscillations
in batch reactors. The CIMA reaction also played a crucial role in the first observa-
tion of stationary spatial chemical patterns. Most experimental studies of the CIMA
reaction use starch as a visual indicator of the state of the system. Starch forms a
deep blue complex with triiodide ion, I3

−, and this color corresponds to the reduced
state of the system, whereas the oxidized state has a yellow color. A major variant of
the CIMA reaction is the simpler chlorine dioxide–iodine–malonic acid (CDIMA)
reaction. Spectrophotometric studies show that after an initial induction period,
where the chlorite, ClO2

−, and iodide, I−, are rapidly consumed to produce chlorine
dioxide, ClO2, and iodine, I2, the dynamics of the CIMA reaction is given by that
of the CDIMA reaction. Lengyel, Epstein, and Rabai proposed an empirical rate
law description of the CDIMA reaction, which we refer to as the Lengyel–Epstein–
Rabai (LRE) model [251, 252], consisting of the following reactions:

MA+ I2 −→ IMA+ I− + H+
, (1.134)

ClO2 + I− −→ ClO2
− + 1

2
I2, (1.135)

ClO2
− + 4 I− + 4 H+ −→ Cl− + 2 I2 + 2 H2O, (1.136)

S+ I2 + I− −↽⇀− SI3
−
, (1.137)

with reaction velocities given by

v1 =
k1a[MA][I2]
k1b + [I2]

, (1.138)
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v2 = k2[ClO2][I−], (1.139)

v3 = k3a[ClO2
−][I−][H+] + k3b[ClO2

−][I2][I−]
α + [I−]2

, (1.140)

v4 = k4[S][I2][I−] − k4[SI3
−]. (1.141)

Here MA stands for malonic acid, CH2(COOH)2, IMA for iodomalonic acid,
CHI(COOH)2, S is starch or another substrate that binds triiodide ion, and α is
an empirical parameter. The independent variables are [MA], [I2], [ClO2], [I−],
[ClO2

−], [S], and [SI3
−]. The concentration of H+ is considered to be constant, and

Cl− and IMA are inert products. In the absence of external feeds, the rate equations
of the LER model for the CDIMA reaction in a well-stirred reactor are given by

d[MA]
dt

= −v1, (1.142a)

d[I2]
dt

= −v1 +
1

2
v2 + 2v3 − v4, (1.142b)

d[ClO2]
dt

= −v2, (1.142c)

d[I−]
dt

= v1 − v2 − 4v3 − v4, (1.142d)

d[ClO2
−]

dt
= v2 − v3, (1.142e)

d[S]
dt

= −v4, (1.142f)

d[SI3
−]

dt
= v4. (1.142g)

Experimental observations show that [I−] and [ClO2
−] undergo much larger

changes than the concentrations of the input species MA, ClO2, and I2. Lengyel and
Epstein have simplified the LER model to reflect the behavior only of the iodide ion,
U, and the chlorite ion, V [246, 247]:

A −→ U, (1.143)

U −→ V, (1.144)

4 U+ V −→ D, (1.145)

S+ U −↽⇀− W. (1.146)



28 1 Reaction Kinetics

The rate equations are

dρu

dt
= k′1 − k′2ρu − 4k′3

ρuρv

α + ρ
2
u

− k′4ρu + k−4ρw, (1.147a)

dρv

dt
= k′2ρu − k′3

ρuρv

α + ρ
2
u

, (1.147b)

dρw

dt
= k′4ρu − k−4ρw, (1.147c)

where W denotes iodide ion bound to the substrate. The rate constants are k′1 =
k1a[MA], k′2 = k2[ClO2], k′3 = k3b[I2], and k′4 = k4[S][I2]. We have assumed
that the substrate is present in large excess and that therefore [S] can be considered
constant. Adding (1.147a) and (1.147c), we obtain

d

dt
(ρu + ρw) = k′1 − k′2ρu − 4k′3

ρuρv

α + ρ
2
u

. (1.148)

Assuming that the formation and dissociation of W is fast, we can eliminate ρw by
setting its time derivative equal to zero and (1.147c) yields

ρw =
k′4
k−4

ρu. (1.149)

Substituting this expression into (1.148), we find

σ
dρu

dt
= k′1 − k′2ρu − 4k′3

ρuρv

α + ρ
2
u

, (1.150)

where

σ = 1+ k′4
k−4

= 1+ k4

k−4
[S][I2] = 1+ K [S][I2]. (1.151)

Here K is the association constant of the substrate–activator complex. Acceptable
experimental values for σ lie in the range 1 ≤ σ < 1000 [368]. Note that σ = 1
corresponds to no complexing agent. To nondimensionalize the rate equation for
U and V, we set ρ∗u = ρu/

√
α, ρ∗v = k′3ρv/k

′
2α, and t∗ = k′2t , and dropping the

asterisk for notational convenience, we obtain

σ
dρu

dt
= F1(ρu, ρv) = a − ρu − 4

ρuρv

1+ ρ
2
u

, (1.152a)

dρv

dt
= F2(ρu, ρv) = b

(

ρu −
ρuρv

1+ ρ
2
u

)

. (1.152b)
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The parameters are given by

a = k′1
k′2
√
α
, b = k′3

k′2
√
α
, (1.153)

i.e., the constant a is proportional to [CH2COOH2]/[ClO2] and the constant b to
[I2]/[ClO2]. We refer to (1.152) as the Lengyel–Epstein (LE) model.

The CDIMA reaction in a CSTR, described by the LE model, has only one steady
state given by

ρu =
a

5
, ρv = 1+ a2

25
. (1.154)

Its stability is determined by the eigenvalues of the Jacobian matrix

J =
(

J11 J12
J21 J22

)

=
(

A11/σ A12/σ

A21 A22

)

. (1.155)

Here

A11 =
∂F1

∂ρu

∣
∣
∣
∣
(ρu,ρv)

= 3a2 − 125

25+ a2
, (1.156a)

A12 =
∂F1

∂ρv

∣
∣
∣
∣
(ρu,ρv)

= − 20a

25+ a2
, (1.156b)

A21 =
∂F2

∂ρu

∣
∣
∣
∣
(ρu,ρv)

= b
2a2

25+ a2
, (1.156c)

A22 =
∂F2

∂ρv

∣
∣
∣
∣
(ρu,ρv)

= −b 5a

25+ a2
. (1.156d)

The steady state (1.154) cannot undergo a stationary bifurcation, since

� = 25ba

σ(25+ a2
)
> 0 (1.157)

for all parameter values. The condition for a Hopf bifurcation of the steady state
(1.154), T = 0, yields

bH =
3a2 − 125

5aσ
. (1.158)

Consequently, for a >
√

125/3 the unique steady state of the CDIMA reaction in a
CSTR is stable for b > bH, and for b < bH the reaction oscillates. The iodide ion is
an activator, i.e., A11 > 0 for a > a◦, where

a◦ = √125/3, (1.159)
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and the chlorite ion is the inhibitor, since A22 < 0 for all values of a
and b.

To end our discussion of the LE model for the CDIMA reaction, we present an
alternative, equivalent version of the rate equations used by some authors. Rescaling
the dimensionless time in (1.152) by the dimensionless parameter σ , t → t/σ , we
obtain

dρu

dt
= a − ρu − 4

ρuρv

1+ ρ
2
u

, (1.160a)

dρv

dt
= σb

(

ρu −
ρuρv

1+ ρ
2
u

)

. (1.160b)

Exercises

1.1 Show that a one-variable system (1.13) cannot oscillate.

1.2 Solve the kinetic equation (1.69) for the first Schlögl model. Confirm the results
of the linear stability analysis for μ > 0 and μ < 0. Determine the stability of
ρ = 0 for the case of linear marginal stability μ = 0.

1.3 Cell-mediated immune surveillance. The following model describes the interac-
tion of tumor cells with immune cells, such as macrophages and killer cells:

dρ

dt
= a + ρ

(

1− ρ

K

)

− b
ρ

1+ ρ
, (1.161)

where ρ is the density of tumor cells per unit volume, a is the rate of conversion of
healthy cells into tumor cells (usually a small number), K is the maximum number
of cells per unit volume, and b is the density of killer cells. (All quantities have been
nondimensionalized.) For most tissues K lies between 0.1 and 5. (a) Determine the
steady-state tumor density ρ as a function of b, the density of killer cells, for fixed
K , and a = 0, i.e., a vanishing mutation rate. Do your results depend on the value
of K ? (b) Determine the stability of the steady states and plot ρ vs b. Discuss any
instabilities and possible medical consequences. (c) Give a qualitative discussion of
the situation for a �= 0.

1.4 Derive the kinetic equations for the following reaction scheme:

A+ U
k1−→ 2 U, (1.162)

U+ V
k2−→ 2 V, (1.163)

V
k3−→ D. (1.164)

Find the steady states and determine their stability. How do your results change, if
the following reaction step is added to the scheme:
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2 U
ε−→ A+ U. (1.165)

Assume that the rate constant ε is small, ε � 1.

1.5 Consider the following simple model for glycolysis:

dρu

dt
= −ρu + aρv + ρ

2
uρv, (1.166a)

dρv

dt
= b − aρv − ρ

2
uρv. (1.166b)

Here ρu and ρv are dimensionless concentrations, and a and b are positive param-
eters. Show that (1.166) displays a Hopf bifurcation in an appropriate region in
parameter space.

1.6 The following equations,

dρu

dt
= 1− ρuρ

h
v , (1.167a)

dρv

dt
= αρuρ

h
v − αρv, (1.167b)

have been proposed as another model of glycolytic oscillations. Here ρu and ρv
are dimensionless concentrations, and α and h are positive parameters. The latter is
known as the Hill constant. Consider the value of α to be a constant.

(a) Determine all acceptable steady states.
(b) Determine their stability as a function of h.
(c) Does the model display a Hopf bifurcation, i.e., oscillations? If so, what are the

values of h for which oscillations occur?

1.7 Consider the following systems of equations which represent a simplified model
of Rayleigh–Bénard convection:

dx

dt
= σ(y − x), (1.168a)

dy

dt
= −xz + r x − y, (1.168b)

dz

dt
= xy − bz. (1.168c)

The dimensionless variables x , y, and z do not correspond to concentrations and
negative values are allowed. The constants σ , r , and b are positive. Determine the
steady states of the system and their stability.



Chapter 2
Reactions and Transport: Diffusion, Inertia,
and Subdiffusion

Particles, such as molecules, atoms, or ions, and individuals, such as cells or ani-
mals, move in space driven by various forces or cues. In particular, particles or
individuals can move randomly, undergo velocity jump processes or spatial jump
processes [333]. The steps of the random walk can be independent or correlated,
unbiased or biased. The probability density function (PDF) for the jump length
can decay rapidly or exhibit a heavy tail. Similarly, the PDF for the waiting time
between successive jumps can decay rapidly or exhibit a heavy tail. We will discuss
these various possibilities in detail in Chap. 3. Below we provide an introduction to
three transport processes: standard diffusion, transport with inertia, and anomalous
diffusion.

2.1 Reaction–Diffusion Equation

The classical and simplest model for spatial spread or dispersal is the diffusion equa-
tion or Fick’s second law, which in spatially one-dimensional systems reads

∂ρ

∂t
= D

∂
2
ρ

∂x2
, (2.1)

where D is the diffusion coefficient. As is well known and shown explicitly in
Chap. 3, particles that perform a simple random walk or Brownian motion at the
microscopic level display diffusive dispersal at the macroscopic level. The diffusion
equation preserves positivity, and the fundamental solution of (2.1) with a point
source at x = 0 and t = 0, ρ(x, 0) = δ(x), is given by

ρ(x, t) = 1√
4πDt

exp

(

− x2

4Dt

)

, t > 0. (2.2)

If the particles or individuals react or interact according to some rate law F(ρ)
and at the same time undergo diffusion, it is legitimate to combine the diffusion
equation and the rate equation ρ̇ = F(ρ) [178]. The result is the well-known
reaction–diffusion (RD) equation:

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
DOI 10.1007/978-3-642-11443-4_2, C© Springer-Verlag Berlin Heidelberg 2010
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∂ρ

∂t
= D

∂
2
ρ

∂x2
+ F(ρ), (2.3)

which provides a theoretical framework for the spatiotemporal dynamics not only
of chemical systems but also of systems in other areas, such as biology [231, 264,
343, 393, 310], ecology [328], physics [11], and materials science [464]. In this
monograph, we refer to (2.3) as the standard reaction–diffusion equation or simply
as the reaction–diffusion equation. This equation preserves positivity, if the rate law
F satisfies condition (1.2).

Besides the simple mathematical approach of combining the rate equation and
the diffusion equation, two fundamental approaches exist to derive the reaction–
diffusion equation (2.3), namely a phenomenological approach based on the law
of conservation and a mesoscopic approach based on a description of the under-
lying random motion. While it is fairly straightforward to show that the standard
reaction–diffusion equation preserves positivity, the problem is much harder, not to
say intractable, for other reaction–transport equations. In this context, a mesoscopic
approach has definite merit. If that approach is done correctly and accounts for all
reaction and transport events that particles can undergo, then by construction the
resulting evolution equation preserves positivity and represents a valid reaction–
transport equation. For this reason, we prefer equations based on a solid mesoscopic
foundation, see Chap. 3.

In the context of chemical systems, the type of reaction–transport equations we
study in this monograph describe reactions in the activation-controlled or activation-
limited regime. We do not consider the opposite regime of diffusion-controlled or
diffusion-limited reactions. Diffusion-controlled reactions are very fast; a reactive
event occurs as soon as the reactants encounter each other. The reaction rate is
essentially given by the rate of transport of the reactants through the medium. In
activation-controlled reactions, the reactants must overcome a substantial energy
barrier after they encounter each other before a reactive event can occur. Cross-
ing the energy barrier is the rate-limiting step for these reactions, and activation-
controlled reactions are significantly slower than diffusion-controlled reactions.
For the spatiotemporal dynamics of diffusion-limited reactions see for example
[233, 56, 238, 255, 96, 361, 33].

2.1.1 Phenomenological Derivation of the Reaction–Diffusion
Equation

Let S be an arbitrary surface enclosing a time-independent volume V . The general
law of conservation for the particle density states that the rate of change of the
amount of particles in V is due to the flow of particles across the surface S plus the
net production of particles in the volume V :
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∂

∂t

∫

V
ρ(x, t)dV = −

∫

S
J · dS+

∫

V
F(ρ, x, t)dV, (2.4)

where ρ(x, t) represents the density of particles at x at time t , J the particle flux,
and F the net rate of production of ρ. Application of the divergence theorem,

∫

S
J · dS =

∫

V
∇ · J dV, (2.5)

to (2.4) yields

∫

V
dV

[
∂ρ

∂t
+∇ · J− F

]

= 0. (2.6)

Since the integration volume is arbitrary, we obtain the conservation equation, or
continuity equation, for ρ:

∂ρ

∂t
= −∇ · J+ F(ρ). (2.7)

The continuity equation (2.7) needs to be closed via a constitutive equation for
the flux J. If the transport process corresponds to classical diffusion, the constitutive
equation is given by Fick’s first law,

J = −D∇ρ. (2.8)

Substituting this expression for the flux in (2.7), we obtain

∂ρ

∂t
= ∇ · (D∇ρ)+ F(ρ). (2.9)

If D is constant, (2.9) reduces to (2.3) in the one-dimensional case. In some models
for insect populations, models for bacterial chemotaxis, or for animal grouping due
to social aggregation, the diffusion coefficient can be an explicit function of the
particle density or a function of other chemical components.

2.1.2 n-Variable Reaction–Diffusion Equations

The extension of (2.3) to n-variable systems is fairly straightforward:

∂ρ

∂t
= ∂

∂x

(

D
∂ρ

∂x

)

+ F(ρ). (2.10)
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In component form, (2.10) reads

∂ρi

∂t
= ∂

∂x

(

Dii
∂ρi

∂x

)

+
n
∑

j, j �=i

∂

∂x

(

Di j

∂ρ j

∂x

)

+ Fi (ρ), i = 1, . . . , n. (2.11)

The diagonal elements of D are called the “main-term” diffusion coefficients and
the off-diagonal elements are called the “cross-term” diffusion coefficients or cross-

diffusion terms. The cross-diffusion term ∂
∂x

(

Di j
∂ρ j
∂x

)

links the gradient of species

j to the flux of species i . If the cross-diffusion term is positive, Di j > 0, then the
flux of species i is directed toward decreasing values of the concentration of species
j , whereas Di j < 0 implies that the flux is directed toward increasing values of
the concentration of species j . The cross-diffusion terms Di j ( j �= i) must go to
zero as the concentration of species i goes to zero, Di j (ρ) → 0 as ρi → 0, since
there can be no flux of species i if ρi = 0. For chemical systems, thermodynamics
imposes the constraint that all eigenvalues of the diffusion matrix D must be real
and positive, which implies that tr D > 0 and det D > 0 [454]. Some studies have
investigated reaction–diffusion equations with constant cross-diffusion coefficients.
Such equations represent approximations with a limited range of validity. Further,
such equations do not preserve positivity [68, 69].

In this monograph, we consider only reaction–diffusion systems where the
cross-diffusion terms are negligible, i.e., the diffusion matrix is a diagonal matrix,
D = diag(D1, . . . , Dn), and the diffusion coefficients Di , which must be positive,
do not depend on ρ,

∂ρi

∂t
= Di

∂
2
ρi

∂x2
+ Fi (ρ), i = 1, . . . , n. (2.12)

2.2 Reaction–Transport Equations with Inertia

The diffusion equation has the well-known unrealistic feature that localized distur-
bances spread infinitely fast, though with heavy attenuation, through the system. To
see this, consider the fundamental solution (2.2). No matter how small t and how
large x , the density ρ will be nonzero, though exponentially small. In many cases,
this pathology of the diffusion equation and the reaction–diffusion reaction has neg-
ligible consequences, and (2.1) and (2.3) have proven to be satisfactory descriptions
in numerous circumstances and systems.

The origin of the unphysical behavior of the diffusion equation and the reaction–
diffusion equation can be understood from three different viewpoints: (i) the math-
ematical viewpoint, (ii) the macroscopic or phenomenological viewpoint, and (iii)
the mesoscopic viewpoint.
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2.2.1 Hyperbolic Reaction–Diffusion Equations

From a mathematical viewpoint, the origin of the infinitely fast spreading of local
disturbances in the diffusion equation can be traced to its parabolic character. This
can be addressed in an ad hoc manner by adding a small term τ∂t tρ to the diffu-
sion equation or the reaction–diffusion equation to make it hyperbolic. From the
diffusion equation (2.1) we obtain the telegraph equation, a damped wave equation,

τ
∂

2
ρ

∂t2
+ ∂ρ

∂t
= D

∂
2
ρ

∂x2
. (2.13)

The fundamental solution of this equation with a point source at x = 0 and t = 0 is
given by

ρ(x, t) =

⎧

⎪⎨

⎪⎩

1

N exp

[

− t

2τ

]

I0

[
1

N
√

ξ

]

, for |x | <
√

D

τ
t,

0, otherwise,
(2.14)

and converges to the solution (2.2) of the diffusion equation as τ → 0, see [494,
p. 388]. Here I0 is the modified Bessel function, ξ = Dt2

/τ − x2, and N = √
4Dτ .

Equation (2.14) also shows explicitly that perturbations governed by the telegraph
equation spread with a finite speed

√
D/τ , as expected for a damped wave equation.

Adding the term τ∂t tρ to (2.3), we obtain hyperbolic reaction–diffusion equa-
tions (HRDEs):

τ
∂

2
ρ

∂t2
+ ∂ρ

∂t
= D

∂
2
ρ

∂x2
+ F(ρ). (2.15)

This type of equation is also encountered in other areas, such as nonlinear waves,
nucleation theory, and phase field models of phase transitions, where it is known as
the damped nonlinear Klein–Gordon equation, see for example [165, 355, 366].
In the (singular) limit τ → 0, (2.15) goes to the reaction–diffusion equation
(2.3). Front propagation in HRDEs has been studied analytically and numerically
in [149, 150, 152, 151, 374]. The use of HRDEs in applications is problematic.
Such equations are obtained indeed very much in an ad hoc manner for reacting and
dispersing particle systems, and they can be derived neither from phenomenological
thermodynamic equations nor from more microscopic equations, see below.

For n-variable systems, the HRDEs are given by, i = 1, . . . , n,

τi
∂

2
ρi

∂t2
+ ∂ρi

∂t
= Di

∂
2
ρi

∂x2
+ Fi (ρ). (2.16)



38 2 Reactions and Transport: Diffusion, Inertia, and Subdiffusion

2.2.2 Reaction-Cattaneo Systems and Reaction-Telegraph
Equations

From a macroscopic or phenomenological viewpoint, the reaction–diffusion equa-
tion follows from the continuity equation

∂ρ

∂t
= −∂ J

∂x
+ F(ρ) (2.17)

and the use of Fick’s first law as the constitutive equation, see Sect. 2.1.1. Fick’s first
law implies that the flux adjusts instantaneously to the gradient of the density. This
is physically unrealistic, and it gives rise to the pathological feature of infinitely fast
spreading of local disturbances in the diffusion equation. Cattaneo and others, for
a review see [222], have argued that the flux adjusts to the gradient with a small
but nonzero relaxation time τ . Fick’s first law should be replaced as the constitutive
equation by the Cattaneo equation

τ
∂ J

∂t
+ J = −D

∂ρ

∂x
. (2.18)

We call the hyperbolic system (2.17) and (2.18) a reaction-Cattaneo system. Eu
and Al-Ghoul have derived such systems from generalized hydrodynamic theory [9,
7, 8, 6]. Reaction-Cattaneo systems can also be obtained from extended irreversible
thermodynamics [223], see for example [282]. If we differentiate (2.17) with respect
to t and (2.18) with respect to x and eliminate mixed second derivatives, we obtain
the so-called reaction-telegraph equation,

τ
∂

2
ρ

∂t2
+ [1− τ F ′(ρ)]∂ρ

∂t
= D

∂
2
ρ

∂x2
+ F(ρ). (2.19)

Remark 2.1 The reaction-telegraph equation can also be derived as the kinetic equa-
tion for a branching random evolution, see [101].

Remark 2.2 Nomenclature in this field is unfortunately not uniform, and some
authors use the term hyperbolic reaction–diffusion equations for reaction-telegraph
equations.

Note that the reaction-telegraph equation (2.19) differs from the ad hoc HRDE
(2.15) by the additional term−τ F ′(ρ)(∂ρ/∂t) on the left-hand side. It can be shown
that solutions of (2.19) converge to solutions of the reaction–diffusion equation (2.3)
as τ → 0 [494]. Traveling wave front solutions for the reaction-telegraph equation
have been investigated by several authors [201, 176, 282, 291, 285, 136, 288, 137,
114, 116, 115, 117].

The hyperbolic systems derived from a mathematical or macroscopic viewpoint
overcome the pathological feature of the reaction–diffusion equation, but they suffer
from other drawbacks: (i) Hyperbolic equations typically do not preserve positivity.
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Even if ρ(x, 0) ≥ 0, the solution ρ(x, t) of (2.19) will in general assume also nega-
tive values [178], which is unacceptable for a true density. (ii) In order to ensure the
dissipative character of the reaction-telegraph equation (2.19), the damping coeffi-
cient 1− τ F ′(ρ) must be positive, i.e.,

F ′(ρ) < 1

τ
for all ρ. (2.20)

This relation between the relaxation time τ of the flux and the time scale 1/F ′(ρ)
of the reaction appears to be a purely mathematical requirement. The following
mesoscopic approach will shed light on the foundational problems of the reaction-
Cattaneo system (2.17) and (2.18) and the reaction-telegraph equation (2.19) hinted
at by points (i) and (ii).

For n-variable systems, the reaction-Cattaneo systems and reaction-telegraph
equations read, i = 1, . . . , n,

∂ρi

∂t
= −∂ Ji

∂x
+ Fi (ρ), (2.21)

τi
∂ Ji
∂t

+ Ji = −Di
∂ρi

∂x
, (2.22)

and

τi
∂

2
ρi

∂t2
+ ∂ρi

∂t
− τi

n
∑

j=1

∂Fj

∂ρ j

∂ρ j

∂t
= Di

∂
2
ρi

∂x2
+ Fi (ρ). (2.23)

2.2.3 Persistent Random Walks and Reactions

From a mesoscopic viewpoint, the pathology of the diffusion equation can be traced
to the lack of inertia of Brownian particles; their direction of motion in succes-
sive time intervals is uncorrelated. This lack of correlation has two consequences:
(i) The particles move with infinite velocity. There is some probability, though
exponentially small, that a dispersing particle will travel arbitrarily far from its
current position in any small but nonzero amount of time. Clearly, this cannot be
true for molecules or organisms. (ii) The motion of the dispersing individuals is
unpredictable even on the smallest time scales. Again, this cannot be true, either
for molecules or organisms. It is therefore desirable to adopt a model for dispersion
that leads to more predictable motion with finite speed at smaller time scales and
approaches diffusive motion on larger time scales. The natural choice is a persistent
random walk, also known as a correlated random walk. It is the simplest velocity
jump process and was introduced by Fürth [146] and further studied by Taylor [434]
and Goldstein [163], as the simplest generalization of the ordinary random walk. In
the persistent random walk the particles have a well-defined finite speed. However,
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the average velocity of the particles vanishes, and no convective flow occurs in the
system.

In the correlated or persistent random walk [474], a particle or individual takes
steps of length �x and duration �t . The particle continues in its previous direction
with probability α = 1− μ�t and reverses direction with probability β = μ�t . In
the continuum limit �x → 0 and �t → 0, such that

lim
�x,�t→0

�x

�t
= γ = constant, (2.24)

we obtain the following set of equations for the density of particles going to the
right, ρ+(x, t), and the density of particles going to the left, ρ−(x, t):

∂ρ+
∂t

+ γ
∂ρ+
∂x

= μ(ρ− − ρ+), (2.25)

∂ρ−
∂t

− γ
∂ρ−
∂x

= μ(ρ+ − ρ−). (2.26)

The particles travel with speed γ and turn with frequency μ. The persistent random
walk is characterized by two parameters, in contrast to the ordinary random walk
or Brownian motion, which is completely characterized by the diffusion coefficient
D. The persistent random walk spans the whole range of dispersal, from ballistic
motion, in the limit μ → 0, to diffusive motion, in the limit γ → ∞, μ → ∞,
such that lim γ

2
/2μ = D = constant. The total density of the dispersing particles is

given by

ρ(x, t) = ρ+(x, t)+ ρ−(x, t), (2.27)

and the flux J of particles is given by J = γ j , where the “flow” j is defined as

j (x, t) = ρ+(x, t)− ρ−(x, t). (2.28)

Adding (2.25) and (2.26), we obtain the continuity equation

∂ρ

∂t
+ γ

∂ j

∂x
= 0. (2.29)

Subtracting (2.26) from (2.25), we recover the Cattaneo equation

∂ j

∂t
+ γ

∂ρ

∂x
= −2μj. (2.30)

Differentiating (2.29) with respect to t and (2.30) with respect to x and eliminating
the mixed second derivatives, we obtain the telegraph equation
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τ
∂

2
ρ

∂t2
+ ∂ρ

∂t
= D

∂
2
ρ

∂x2
, (2.31)

where

τ = 1

2μ
(2.32)

is the correlation time of the particle turning process, and

D = γ
2

2μ
. (2.33)

Brownian motion, or the diffusion equation, ceases to be a good model for dis-
persal at scales where particles or individuals have a well-defined velocity. In most
physical or chemical applications, the limiting scale is determined by the mean free
path. In liquids, the mean free path is a fraction of the molecular diameter, and per-
sistence or inertia effects are negligible even on mesoscopic scales. Velocity is not a
relevant variable in these situations, and the position of the particle is determined by
many independent effects. Dispersal has therefore a strongly diffusive character, and
reaction–diffusion equations are an appropriate description for chemical reactions
in aqueous solutions. The persistent random walk provides a better description for
particles dispersing in dilute gases, where the mean free path can be several orders
of magnitude larger than the molecular diameter, depending on gas pressure. The
McKean discrete velocity model for dilute gases is identical with a persistent ran-
dom walk [273]. Turbulent diffusion and dispersal of animals, especially bacteria,
are two other areas where the velocity of particles or organisms is well defined, and
persistence effects are not negligible, on macroscopic scales. Section 10.6 of [303]
presents the persistent random walk as a model for turbulent diffusion and discusses
the inadequacy of the classical diffusion equation in this context. The persistent ran-
dom walk also provides a better description for spatial spread in population dynam-
ics than the often used diffusion equation [201, 195, 178]. Microorganisms and
animals tend to continue moving in the same direction in successive time intervals.
Velocity is well defined and persistence effects are important on macroscopic scales.
In fact, Fürth [146] applied his theory to experiments on the motion of bacteria.

Besides these practical considerations, describing the motion of particles or indi-
viduals by a persistent random walk has several advantages from a theoretical view-
point: (i) The persistent random walk is a generalization of Brownian motion; it
contains the latter as a limiting case, see above. (ii) The persistent random walk
overcomes the pathological feature of Brownian motion or the diffusion equation
discussed above; it fulfills the physical requirement of bounded velocity. (iii) The
persistent random walk provides a unified treatment that covers the whole range of
transport, from the diffusive limit to the ballistic limit.

If the particles moving according to a persistent random walk react with each
other, the evolution equations for the densities, (2.25) and (2.26), must be modified
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to include a kinetic rate term. The contributions from different processes, such as
reactions and transport, to the evolution of a system are additive, if all the processes
are Markovian [178]. Since the persistent random walk is a Markovian process, it is
legitimate to add kinetic terms to the transport equation for (ρ+, ρ−):

∂ρ+
∂t

+ γ
∂ρ+
∂x

= μ(ρ− − ρ+)+ F+(ρ+, ρ−), (2.34a)

∂ρ−
∂t

− γ
∂ρ−
∂x

= μ(ρ+ − ρ−)+ F−(ρ+, ρ−). (2.34b)

Remark 2.3 If the state space is reduced from two variables, (ρ+, ρ−), to one vari-
able, ρ, the process ceases to be Markovian. It is not legitimate to simply add a
kinetic term to (2.31).

The problem arises as to how to “distribute” the kinetic term F(ρ) of the
reaction–diffusion equation to the left- and right-going densities ρ+ and ρ−. The
choice most commonly made in the literature [201, 195, 178, 176, 177] is the so-
called isotropic reaction walk (IRW):

F+(ρ+, ρ−) = F−(ρ+, ρ−) =
1

2
F(ρ). (2.35)

This choice is based on the assumption that F(ρ) is a source term for the particles,
that the reaction does not depend on the direction of motion, and that new particles
choose either direction with equal probability. With (2.35) we obtain from (2.34a)
and (2.34b) the reaction-Cattaneo system

∂ρ

∂t
+ γ

∂ j

∂x
= F(ρ), (2.36)

∂ j

∂t
+ γ

∂ρ

∂x
= −2μj. (2.37)

Traveling waves for isotropic reaction walks have been studied in [201, 176]. How-
ever, isotropic reaction walks are unsound; they violate a basic principle of kinetics
[178, 205, 204], namely that the rate of removal or death of particles of a given type
must go to zero as the density of those particles goes to zero, see Sect. 1.1. Other-
wise, the concentration of those particles can become negative, which is unphysi-
cal. We consider here a class of reaction random walks (RRWs) that are free from
this drawback. The kinetic terms are based on the following assumptions: (i) The
particles undergo a birth and death process with “fertilities” and “mortalities” that
are independent of the direction of motion of the particles. (ii) The direction of
“daughter” particles is correlated with that of the “mother” particle. The degree of
correlation is given by κ . The value κ = 1/2 corresponds to no correlation, κ = 1 to
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complete correlation, and κ = 0 to complete anticorrelation. In light of assumption
(i), it is appropriate to adopt the production–loss form for F(ρ), see (1.3), (1.4), and
(1.5). Then

F+(ρ+, ρ−) = [κρ+ + (1− κ)ρ−] f +(ρ)− f −(ρ)ρ+, (2.38a)

F−(ρ+, ρ−) = [(1− κ)ρ+ + κρ−] f +(ρ)− f −(ρ)ρ−, (2.38b)

where f +(ρ) and f −(ρ) are defined by (1.5). Note that if F+(ρ) contains a con-
stant term a, as occurs in the Brusselator, the Lengyel–Epstein model, and many
other chemical schemes, then f +(ρ) contains the term a/ρ. Other valid choices for
the kinetic terms are possible. A discussion of this aspect from the viewpoint of
chemical kinetics and population dynamics can be found in Chaps. 5 and 10.

For n-variable systems, the evolution equations for persistent random walks with
reaction read, i = 1, . . . , n,

∂ρ+,i

∂t
+ γi

∂ρ+,i

∂x
= μi

(

ρ−,i − ρ+,i
)+ F+,i (ρ+, ρ−), (2.39a)

∂ρ−,i

∂t
− γi

∂ρ−,i

∂x
= μi

(

ρ+,i − ρ−,i
)+ F−,i (ρ+, ρ−). (2.39b)

2.3 Reactions and Anomalous Diffusion

For a large variety of applications, simple Brownian motion or Fickian diffusion is
not a satisfactory model for spatial dispersal of particles or individuals. Physical,
chemical, biological, and ecological systems often display anomalous diffusion,
where the mean square displacement (MSD) of a particle does not grow linearly
with time:

〈x(t)2〉 ∝ tγ . (2.40)

If 0 < γ < 1, the process is subdiffusive; if γ > 1, it is superdiffusive. Superdif-
fusion is encountered, for example, in turbulent fluids [407], in chaotic systems
[51], in rotating flows [418, 472], in oceanic gyres [44], for nanorods at viscous
interfaces [93], and for surfactant diffusion in living polymers [14]. Subdiffusion
is observed in disordered ionic chains [45], in porous systems [100], in amorphous
semiconductors [383, 174], in disordered materials [307], in subsurface hydrology
[43, 38, 23, 42, 382, 91], and for proteins and lipids in plasma membranes of various
cells [380, 477, 387], for mRNA molecules in Escherichia coli cells [162], and for
proteins in the nucleus [463].

Motor proteins can lead to superdiffusive transport of engulfed microbeads in
living eukaryotic cells with γ = 1.47 ± 0.07 for short times, up to the order of
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1 s, with a crossover to subdiffusive or ordinary diffusion at longer times [70]. A
common cause of subdiffusive transport in living cells is macromolecular crowding,
which generates an environment where diffusion is hindered by obstacles and traps.
For example, in the cell cytoplasm diffusion processes with values of γ ranging from
0.5 to about 0.85, depending on the mass of the diffusing molecule, are observed
[476]. Subdiffusive motion, γ = 0.737±0.003, was also observed for lipid granules
in the cytoplasm of yeast cells [438]. The value of γ increased slightly to 0.755 ±
0.006, less subdiffusive behavior, when the actin filaments were disrupted.

Anomalous diffusion is often caused by memory effects and Lévy-type statistics
[185, 53]. Specifically, superdiffusion is observed for random walks with heavy-
tailed jump length distributions and subdiffusion for heavy-tailed waiting time dis-
tributions, see Sect. 3.4. The latter type of distribution can be caused by “traps” that
have an infinite mean waiting time [185]. For reviews of anomalous diffusion see,
e.g., [298, 299, 229].

2.3.1 Continuous-Time Random Walks

Anomalous diffusion is often modeled by a continuous-time random walk (CTRW)
[304, 213, 298, 299, 102], though other approaches have been explored, such as
stochastic switching generating superdiffusion [123], fractional Brownian motion
[266, 258, 254], and generalized Langevin equations with a memory kernel [465–
467]. In a CTRW, the length of a given jump and the waiting time between two
successive jumps are random variables characterized by the jump probability dis-
tribution function (PDF) ψ(x, t). For a more detailed discussion of CTRWs see
Chap. 3. The spatial jump length PDF is given by w(x) = ∫∞

0 ψ(x, t)dt and the
waiting time PDF by φ(t) = ∫∞−∞ ψ(x, t)dx . CTRWs can be characterized by the
mean waiting time,

T =
∫ ∞

0
tφ(t)dt, (2.41)

and the second moment of the jump length PDF,

σ
2 =

∫ ∞

−∞
x2

w(x)dx . (2.42)

A CTRW can be described by the evolution equation for the probability density
p(x, t) of the particle being at site x at time t , given that it was at x = 0 at t = 0
[381]:

p(x, t) = δ(x)�(t)+
∫ ∞

0

∫ ∞

−∞
ψ(x − x ′, t − t ′)p(x ′, t ′)dx ′dt ′, (2.43)
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where �(t) is the survival probability given by

�(t) = 1−
∫ t

0
φ(t ′)dt ′. (2.44)

The Laplace transform of a function f (x, t) is denoted either by L[ f (x, t)] =
∫∞

0 dt f (x, t) exp(−st) or by f̂ (x, s). Similarly the Fourier transform of a function
f (x, t) is denoted either by F[ f (x, t)] = ∫∞

−∞ dx f (x, t) exp(ikx) or by f̃ (k, t).
Equation (2.43) can be solved in Laplace–Fourier space,

ˆ̃p(k, s) = 1− φ̂(s)

s

p̃0(k)

1− ˆ̃
ψ(k, s)

, (2.45)

where p̃0(k) = 1 is the Fourier transform of the initial condition p0(x) = δ(x). We
consider the large-scale, long-time limit of CTRWs with independent jump length
and waiting time PDFs, i.e., ψ(x, t) = w(x)φ(t). If the waiting time PDF does
not have heavy tails, then the mean waiting time T is finite, and the long-time limit
corresponds to

φ̂(s)→ 1− T s, as s → 0. (2.46)

If the CTRW also has a short-range jump length PDF w(x), then the variance σ
2 is

finite, and the large-scale limit corresponds to

w̃(k)→ 1− σ
2k2

2
, as k → 0. (2.47)

This results in

ˆ̃p(k, s) = p̃0(k)

s + Dk2
, (2.48)

with D ≡ σ
2
/(2T ), or

(

s + Dk2
) ˆ̃p(k, s) = p̃0(k). (2.49)

Inverse Laplace and Fourier transforming (2.49), we find that p(x, t) obeys the dif-
fusion equation (2.1) by making use of the fact that

F
[

∂
2 p(x, t)

∂x2

]

= −k2 p̃(k, t) (2.50)

and that
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L
[
∂p(x, t)

∂t

]

= s p̂(x, s)− p0(x). (2.51)

CTRWs display subdiffusive behavior if the variance of the jump length PDF
remains finite, but the waiting time PDF is heavy-tailed, such that the mean waiting
time T is infinite. An example is a waiting time PDF derived from a Mittag–Leffler
function for the survival probability, �(t) = Eγ (−tγ ) with 0 < γ < 1 [381]. The

asymptotic behavior of a heavy-tailed waiting time PDF is given by φ(t) ∼ t−(1+γ )

as t →∞. Consequently, the long-time limit corresponds to

φ̂(s)→ 1− (τ0s)
γ
, as s → 0, (2.52)

where τ0 is a parameter with units of time. For this type of CTRW, the long-time,
large-scale limit of the evolution equation in Fourier–Laplace space reads

ˆ̃p(k, s) = p̃0(k)

s + Dγ s
1−γ k2

, (2.53)

where

Dγ ≡
σ

2

2τγ0
(2.54)

is a generalized diffusion constant. To inverse Laplace transform this equation, we
exploit the fact that the Grünwald–Letnikov fractional derivative, defined for 0 <

p < 1 by [353],

GLD p
t f (t) ≡ lim

h→0
nh=t

h−p
n
∑

r=0

(−1)r
(
p

r

)

f (t − rh), (2.55)

has the Laplace transform [353]:

L
[

GLD p
t f (t)

]

= s p f̂ (s). (2.56)

Consequently, inverse Laplace and Fourier transforming (2.53) we find that p(x, t)
obeys the fractional diffusion equation

∂p

∂t
= Dγ

GLD1−γ
t

∂
2 p(x, t)

∂x2
. (2.57)

Working with definition (2.55) is not very convenient. For sufficiently smooth
functions f (t), the Grünwald–Letnikov fractional derivative is equivalent to the
Riemann–Liouville fractional derivative [353, p. 75]. The latter is defined by
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D1−γ
t f (t) = 1

�(γ )

∂

∂t

∫ t

0

f (t ′)
(t − t ′)1−γ

dt ′, (2.58)

for 0 < γ < 1, and the fractional diffusion equation reads

∂p

∂t
= Dγ D1−γ

t
∂

2 p(x, t)

∂x2
. (2.59)

For the mean square displacement we obtain

〈x2
(t)〉 = 2

�(1+ γ )
Dγ t

γ
, (2.60)

confirming that CTRWs with short-range jump length PDFs and heavy-tailed wait-
ing time PDFs display subdiffusion. The solution of the fractional diffusion equation
(2.59) can be written in terms of the Fox H-function [298]:

p(x, t) = 1
√

4πDγ t
γ
H2,0

1,2

[

x2

4Dγ t
γ

∣
∣
∣
∣

(1− γ /2, 2)

(0, 1), (1/2, 1)

]

. (2.61)

The mean density ρ(x, t) of a system of independent particles that undergo a
CTRW obeys the same equation as the PDF p(x, t), which can be written in the
form of a generalized Master equation. The Montroll–Weiss equation (2.45) can be
rewritten for ˆ̃ρ(k, s) and rearranged as

s ˆ̃ρ(k, s)− ρ̃0(k) =
s

1− φ̂(s)

( ˆ̃
ψ(k, s)− φ̂(s)

) ˆ̃ρ(k, s), (2.62)

where the left-hand side is the Fourier–Laplace transform of the derivative ∂ρ/∂t .
If we apply the Fourier–Laplace transform inversion, then we obtain an integro-
differential equation, the generalized Master equation,

∂ρ

∂t
=
∫ t

0

∫

R

K (x − x ′, t − t ′)ρ(z, t ′)dx ′dt ′, (2.63)

where the kernel K (x, t) is defined in terms of its Fourier–Laplace transform

ˆ̃K (k, s) = s

1− φ̂(s)

( ˆ̃
ψ(k, s)− φ̂(s)

)

. (2.64)

In the uncoupled case, ψ(x, t) = w(x)φ(t), for which ˆ̃
ψ(k, s) = w̃(k)φ̂(s), the

generalized Master equation takes the form
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∂ρ

∂t
=
∫ t

0
K (t − t ′)

[∫

R

ρ(x − x ′, t ′)w(x ′)dx ′ − ρ(x, t ′)
]

dt ′, (2.65)

where the memory kernel K (t) is defined in terms of its Laplace transform

K̂ (s) = sφ̂(s)

1− φ̂(s)
. (2.66)

2.3.2 Reaction–Subdiffusion Equations

As shown above, the standard diffusion equation (2.1) has a fractional diffusion
equation (2.59) as its analog in the subdiffusive case. As in the case of reaction–
transport equation with inertia, see Sect. 2.2, the question arises how to combine
reactions and subdiffusion in the activation-controlled regime. (For a discussion
of the subdiffusion-limited case, which is outside the scope of this monograph as
mentioned on page 34, see for example [491–493, 369, 391, 392, 389, 409, 410,
390, 411, 203, 187].) In some schemes, [188, 189, 186, 187], reactions terms are
simply added to the fractional diffusion equation, in a manner similar to the ad hoc
HRDEs (2.16), assuming at the outset that the effects of subdiffusion and reactions
are separable as in the standard reaction–diffusion (2.11). However, it is easy to

show that already for the simple case of linear decay, U
k−→ P,

∂ρ

∂t
= Dγ D1−γ

t
∂

2
ρ(x, t)

∂x2
− kρ, (2.67)

this approach cannot be correct. Equation (2.67) does not preserve positivity [187].
The memory kernel in (2.59), recall that D1−γ

t represents a nonlocal-in-time
integral operator, is a clear indication that subdiffusive transport is non-Markovian.
Incorporating kinetic terms into a non-Markovian transport equation requires great
care and is best carried out at the mesoscopic level. We show in Sect. 3.4 how to
proceed directly at the level of the mesoscopic balance equations for non-Markovian
CTRWs. Here we pursue a different approach. As stated above, if all processes are
Markovian, then contributions from different processes are indeed separable and
simply additive. As is well known, processes often become Markovian if a suffi-
ciently large and appropriate state space is chosen. For the case of reactions and
subdiffusion, the goal of a Markovian description can be achieved by taking the age
structure of the system explicitly into account as done by Vlad and Ross [460, 461].
This approach is equivalent to Model B, see Sect. 3.4.

Let ξi (x, t, τ ) be the density of particles of type i , i = 1, . . . , n, whose waiting
time (age) at position x and time t lies in the range (τ, τ + dτ). The concentration
of species i , ρi (x, t), at position x and time t , is then given by
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ρi (x, t) =
∫ ∞

0
ξi (x, t, τ )dτ . (2.68)

In terms of chemical and related systems, reactions typically create and destroy
particles. In terms of ecological systems and populations dynamics, individuals are
born and die. In other words, kinetic events affect the waiting times of particles. We
assume that new particles are created with zero age. The same holds for newborn
individuals. Our assumption implies that all processes resulting in the arrival of a
particle or individual at a given site x are treated equally. We do not distinguish
between arrival via a jump to x from another site x ′ or arrival by a reactive or birth
event at x . Any arrival event sets the waiting time τ at x equal to zero. We assume
that locally the reactions obey classical kinetic laws, as is the case in porous media
for instance, and that the local kinetics of particles or individuals can be written in
production–loss form, Fi (ρ) = F+i (ρ)−F−i (ρ), see (1.3). As discussed in Sect. 1.1,
F−i (ρ)→ 0 as ρi → 0. To ensure the nonnegativity of the age-dependent densities
ξi (x, t, τ ), it is sufficient to require that F−i (ρ)/ρi remains bounded from above as
ρi → 0. Define Wi (x

′ → x, τ ) to be the rate at which an individual of species i
with an age between τ and τ + dτ moves from position x ′ to x . The evolution of
ξi (x, t, τ ) is governed by the balance equation [461]

(
∂

∂t
+ ∂

∂τ

)

ξi (x, t, τ ) = − ξi (x, t, τ )
∫

x ′
Wi (x → x ′, τ )dx ′

− ξi (x, t, τ )

ρi (x, t)
F−i (ρ(x, t)), (2.69)

with the boundary condition

ξi (x, t, τ = 0) = F+i (ρ(x, t))+
∫

x ′

∫

τ
′ ξi (x

′
, t, τ ′)×Wi (x

′ → x, τ ′)dx ′dτ ′.
(2.70)

This boundary condition implies that entities with zero age at a particular position
are either created there with a rate F+i (ρ(x, t)) or arrive there from other positions,
as discussed above.

Let the jump PDF of the CTRW of species i be ψi (x → x ′, τ ), and

�i (x, τ ) =
∫

x ′

∫ ∞

τ

ψi (x → x ′, τ ′)dx ′dτ ′ (2.71)

be the survival probability of a particle of type i at position x . The connection
between Wi (x → x ′, τ ′) and ψi (x → x ′, τ ) is given by the following relation
[460]:

ψi (x → x ′, τ ) = �i (x, τ )Wi (x → x ′, τ ). (2.72)



50 2 Reactions and Transport: Diffusion, Inertia, and Subdiffusion

The solution to (2.69) with boundary condition (2.70) reads [461]

Zi (x, t) = F+i (ρ(x, t))+
∫ t

0

∫

x ′
Zi (x

′
, t − τ

′
)ψi (x

′ → x, τ ′)

× exp

[

−
∫ t

t−τ
′
F−i (ρ(x ′, t ′′)
ρi (x

′
, t ′′)

dt ′′
]

dx ′dτ ′

+
∫ ∞

t

∫

x ′
ξi (x

′
, t = 0, τ ′ − t)

ψi (x
′ → x, τ ′)

�i (x
′
, τ

′ − t)

× exp

[

−
∫ t

0

F−i (ρ(x ′, t ′′))
ρi (x

′
, t ′′)

dt ′′
]

dx ′dτ ′, (2.73)

ρi (x, t) =
∫ t

0
�i (x, τ )Zi (x, t − τ) exp

[

−
∫ t

t−τ

F−i (ρ(x, t ′′)
ρi (x, t

′′
)

dt ′′
]

dτ

+
∫ ∞

t
ξi (x, t = 0, τ − t)

�i (x, τ )

�i (x, τ − t)

× exp

[

−
∫ t

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dτ, (2.74)

where Zi (x, t) is defined to be the zero-age density, Zi (x, t) ≡ ξi (x, t, τ = 0).
Equations (2.73) and (2.74) extend the usual linear CTRW formalism to include
general nonlinear birth and death processes.

In the following, we consider the usual case of spatially homogeneous CTRWs
with independent jump and waiting time PDFs, i.e., ψi (x → x ′, τ ) = ψi
(x ′ − x, τ ) = wi (x

′ − x)φi (τ ). The survival probability then does not depend
on position, �i (x, τ ) = �i (τ ). We choose the initial condition as ξi (x, t =
0, τ ) = ρi (x, 0)δ(τ ), i.e., at time zero all individuals are at the beginning of a
waiting period. To obtain kinetic equations for reaction–transport systems with
anomalous diffusion, we need to take the long-time and the large-scale limit, i.e.,
w̃i (k) → 1− σ

2
i k

2
/2, see (2.47). As shown in [484], in this limit (2.73) and (2.74)

lead to

∂ρi (x, t)

∂t
= F+i (ρ(x, t))− F−i (ρ(x, t))

+σ
2
i

2
∇2
{∫ t

0
φi (t − t ′)Zi (x, t

′
) exp

[

−
∫ t

t ′
F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dt ′
}

,

(2.75)
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ρi (x, t) =
∫ t

0
�i (t − t ′)Zi (x, t

′
) exp

[

−
∫ t

t ′
F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dt ′. (2.76)

We need to eliminate Zi (x, t) from the system (2.75) and (2.76). We rewrite (2.76)
as

ρi (x, t) exp

[
∫ t

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

=
∫ t

0
�i (t − t ′)Zi (x, t

′
) exp

[
∫ t ′

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dt ′. (2.77)

We Laplace transform this equation, use �̂(s) = [1− φ̂(s)]/s, and obtain

sφ̂i (s)

1− φ̂i (s)
L
[

ρi (x, t) exp

(
∫ t

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
)]

= φ̂i (s)L
[

Zi (x, t
′
) exp

(
∫ t ′

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
)]

. (2.78)

The inverse Laplace transform of (2.78) leads to

∫ t

0
Ki (t − t ′)ρi (x, t

′
) exp

[
∫ t ′

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dt ′

=
∫ t

0
φi (t − t ′)Zi (x, t

′
) exp

[
∫ t ′

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dt ′. (2.79)

We define the memory kernel Ki (t) in terms of its Laplace transform as in (2.66):

K̂i (s) ≡
sφ̂i (s)

1− φ̂i (s)
. (2.80)

Equation (2.75) can be rewritten as

∂ρi (x, t)

∂t
= F+i (ρ(x, t))− F−i (ρ(x, t))

+σ
2
i

2
∇2
{

exp

[

−
∫ t

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

×
∫ t

0
φi (t − t ′)Zi (x, t

′
) exp

[
∫ t ′

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dt ′
}

(2.81)
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We substitute (2.79) into (2.81) and obtain

∂ρi (x, t)

∂t
= F+i (ρ(x, t))− F−i (ρ(x, t))

+σ
2
i

2
∇2
{∫ t

0
Ki (t − t ′)ρi (x, t

′
) exp

[

−
∫ t

t ′
F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dt ′
}

,

(2.82)

which is the generalized reaction–diffusion equation for reacting systems with
anomalous diffusion [484]. The reaction terms and the Laplacian operator in (2.82)
are reminiscent of the standard reaction–diffusion equation (2.12). However, unlike
in a standard reaction–diffusion equation, the Laplacian acts on a nonlocal memory
term captured by a time integral. The presence of both the kernel Ki (t − t ′), related
to the waiting time PDF of the CTRW, and the death rate F−i (ρ(x, t)) in the memory
term indicates that the effects of reaction and subdiffusion are, indeed, not separable.

Remark 2.4 In the derivation of the generalized reaction–diffusion equation (2.82)
we do not explicitly refer to the particular form of the waiting time PDF. Equation
(2.82) is valid for arbitrary waiting time PDFs φi (t) and has much wider applica-
bility than subdiffusive transport.

Remark 2.5 It is easy to see that (2.82) simplifies to a standard reaction–diffusion
system if the CTRW is Markovian, i.e., the waiting times are exponentially dis-
tributed, φi (t) = (1/τ0,i )e

−t/τ0,i . In this case K̂i (s) = 1/τ0,i , and therefore,
Ki (t) = δ(t)/τ0,i .

Remark 2.6 In the derivation of (2.82) we have assumed that the spatial jump length
PDF w̃(k) is of the form w̃(k) = 1 − σ

2k2
/2. It is straightforward to extend the

derivation to the case of long-range jumps or Lévy flights by choosing w̃(k) =
1− σ

α |k|α /2, 1 < α < 2, see Chap. 3, and to the case of coupled jump length and
waiting time PDFs.

The generalized reaction–diffusion equation (2.82) can be written in a form using
fractional derivatives for subdiffusive transport, where the waiting PDF of species i
is given in Laplace space by (2.52), φ̂i (s)→ 1− (τ0,i s)

γi . In that case

K̂i (s) =
sφ̂i (s)

1− φ̂i (s)
� τ

−γi
0,i s1−γi , (2.83)

and (2.78) reads
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τ
−γi
0,i s1−γiL

[

ρi (x, t) exp

(
∫ t

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
)]

= φ̂i (s)L
[

Zi (x, t
′
) exp

(
∫ t ′

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
)]

. (2.84)

We inverse Laplace transform (2.84), using (2.56) and the equivalence of the
Grünwald–Letnikov and Riemann–Liouville fractional derivatives, to obtain

τ
−γi
0,i D1−γi

t

(

ρi (x, t) exp

[
∫ t

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
])

=
∫ t

0
φi (t − t ′)Zi (x, t

′
) exp

[
∫ t ′

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

dt ′. (2.85)

We substitute (2.85) into (2.81) and find [485]

∂ρi (x, t)

∂t
= F+i (ρ(x, t))− F−i (ρ(x, t))

+Di;γi∇
2

{

exp

[

−
∫ t

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
]

×D1−γi
t

(

ρi (x, t) exp

[
∫ t

0

F−i (ρ(x, t ′′))
ρi (x, t

′′
)

dt ′′
])}

. (2.86)

Exercises

2.1 Consider (2.1) with ρ(x, 0) = δ(x). Define

〈x(t)m〉 ≡
∫∞
−∞ xmρ(x, t)dx
∫∞
−∞ ρ(x, t)dx

. (2.87)

Obtain evolution equations for 〈x(t)〉 and 〈x(t)2〉 and solve them.

2.2 Solve (2.1) with ρ(x, 0) = δ(x) on the interval [0, L] with no-flux boundary
conditions, i.e., (∂ρ/∂x)(0) = (∂ρ/∂x)(L) = 0.

2.3 Solve the RD equation (2.3) for the pure death process F(ρ) = −rρ with
ρ(x, 0) = δ(x) on (−∞,∞).

2.4 Consider the nonlinear diffusion equation
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∂ρ

∂t
= D

∂

∂x

[(
ρ

ρ0

)n
∂ρ

∂x

]

(2.88)

on (−∞,∞) with ρ(x, 0) = δ(x), where D and ρ0 are positive constants.
(a) Verify that

ρ(x, t) =

⎧

⎪⎪⎨

⎪⎪⎩

ρ0

A(t)

[

1−
(

x

cA(t)

)2
]1/n

, |x | ≤ cA(t),

0, |x | > cA(t),

(2.89)

where

A(t) =
(
t

t0

) 1
2+n

, c =
�
(

1
n + 3

2

)

[

π
1/2

ρ0�
(

1
n + 1

)] , t0 =
c2n

2D(n + 2)
. (2.90)

Here � is the Gamma function.
(b) Determine 〈x(t)〉 and 〈x(t)2〉.



Chapter 3
Random Walks and Mesoscopic
Reaction–Transport Equations

As discussed in Sect. 2.1, the standard reaction–diffusion equation for the particle
density ρ(x, t) has the form

∂ρ

∂t
= D�ρ + F(ρ), x ∈ R

3
. (3.1)

This equation is an example of a macroscopic reaction–transport equation that can
be obtained in the long-time large-scale limit of mesoscopic equations. Recall that
the mesoscopic approach is based on the idea that one can introduce mean-field
equations for the particle density involving a detailed description of the movement
of particles on the microscopic level. At the same time, random fluctuations around
the mean behavior can be neglected due to a large number of individual particles.
For example, we can obtain (3.1) from the mesoscopic integro-differential equation

∂ρ

∂t
= λ

∫

R
3
ρ(x− z, t)w(z)dz− λρ(x, t)+ F(ρ), (3.2)

where λ is the intensity of particle jumps and w(z) is the long-distance dispersal
kernel. This equation arises in population theory, where the dispersal of individuals
leads to population spread in space and invasion into new territories. The reaction–
diffusion equation (3.1) can also be obtained from the mesoscopic balance equations

ρ(x, t) =ρ(x, 0)�(t)+
∫ t

0
j (x, t − τ)�(τ)dτ, (3.3a)

j (x, t) =F(ρ)+
∫

R
3
ρ(x− z, 0)ψ(z, t)dz+

+
∫ t

0

∫

R
3
j (x− z, t − τ)ψ(z, τ )dzdτ. (3.3b)

These are the mean-field equations for the density of particles that follow a
continuous-time random walk (CTRW). Each random step of a particle is character-
ized by a waiting time and a jump length, which are distributed according to the joint

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
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probability density function (PDF) ψ(z, τ ). Here j (x, t) is the density of particles
that are either produced with rate F(ρ) at point x at time t or arrive there exactly at
time t from other points x− z. The function

�(t) =
∫ ∞

t

∫

R
3
ψ(z, τ )dzdτ (3.4)

is the survival probability. Another long-time large-scale limit of (3.3) can be a
fractional reaction–transport equation, such as

∂ρ

∂t
= −Dα(−�)

α
2 ρ + F(ρ), x ∈ R

3
, (3.5)

where the Laplacian � is replaced by a fractional operator −(−�)
α
2 and Dα is a

generalized diffusion coefficient. This replacement leads to a faster spread of parti-
cles, i.e., superdiffusion, see Sect. 3.3, than the standard reaction–diffusion equation
(3.1) describes. The microscopic reason for the fast spread is that the jump length
PDF

w(z) =
∫ ∞

0
ψ(z, τ )dτ (3.6)

has a heavy tail, so that w(z) ∼ |z|−d−α with 0 < α < 2 as |z| → ∞, where d is
the dimension of space, R

d . The fractional Laplacian can be defined as

(−�)
α
2 g(x) = F−1 [|k|α g̃(k)] , (3.7)

where F−1 denotes the inverse Fourier transform and g̃(k) = F
[

g(x)
] = ∫

R
3 g(x)

eik·xdx. Fractional differential equations have attracted considerable interest in past
years. We believe that the approach based on random walk models, the long-time
large-scale limit asymptotics of mesoscopic equations, and stable distributions often
provides a deeper insight into mechanisms by which the fractional equations arise
than a standard phenomenological approach.

The main objective of this chapter is to establish the relation between the macro-
scopic equations like (3.1) and (3.5), the mesoscopic equations (3.2) and (3.3), etc.,
and the underlying microscopic movement of particles. We will show how to derive
mesoscopic reaction–transport equations like (3.2) and (3.3) from microscopic ran-
dom walk models. In particular, we will discuss the scaling procedures that lead
to macroscopic reaction–transport equations. As an example, let us mention that
the macroscopic reaction–diffusion equation (3.1) occurs as a result of the conver-
gence of the random microscopic movement of particles to Brownian motion, while
the macroscopic fractional equation (3.5) is closely related to the convergence of
random walks with heavy-tailed jump PDFs to α-stable random processes or Lévy
flights.
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In the following section we restrict ourselves to one-dimensional models for
expository purposes. The material is presented by means of examples of random
walk models and corresponding mesoscopic equations and is sometimes supported
by general theory.

3.1 Discrete-Time Random Walk

We begin with a simple example of a particle performing a discrete-time random
walk (DTRW) in one dimension. Assume that it is initially at point 0. The random
walk can be defined by the stochastic difference equation for the particle position
Xn at time n:

Xn+1 = Xn + Zn+1, (3.8)

where the jumps Zn are mutually independent, continuous random variables with
the common PDF

w(z) = ∂

∂z
P(Zn ≤ z). (3.9)

Equation (3.8) provides a microscopic description of the particle transport. After n
jumps, the position of the particle is

Xn =
n
∑

i=1

Zi . (3.10)

Let us define the PDF for the particle position Xn at time n:

p(x, n) = ∂

∂x
P(Xn ≤ x). (3.11)

It follows from (3.8) and (3.9) that the PDF p(x, n) obeys the Kolmogorov forward
equation

p(x, n + 1) =
∫

R

p(x − z, n)w(z)dz, (3.12)

with n = 0, 1, . . . . If Zi has zero mean and finite variance, σ 2 = ∫
R
z2
w(z)dz, the

central limit theorem ensures that the PDF for the rescaled particle position Xn/
√
n

tends to a Gaussian as n → ∞. If the jumps Zn have a symmetric heavy-tailed
PDF with power-law index α < 2, then the variance σ

2 is infinite. According to the

generalized central limit theorem, the rescaled position Xn/n
1/α d→ Z as n →∞,
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where Z is a symmetric α-stable random variable and
d→ means convergence in

distribution [126, 377].

3.1.1 Mesoscopic Equation for the Particle Density

Let us introduce the average density of particles ρ(x, n) at point x at time n. We
assume that the number of particles per unit length around x is large enough that we
can neglect the random fluctuations in the number density. In this case, the particle
density ρ(x, n) obeys the integral balance equation

ρ(x, n + 1) =
∫

R

ρ(x − z, n)w(z)dz. (3.13)

This equation states that the particle density at time n+ 1 is the sum of the densities
at intermediate points x−z at time n multiplied by the probability of transition from
x − z to x . This is a mesoscopic description. Although it only deals with the mean
density of particles ρ(x, n), it involves a detailed description of the movement of
particles on the microscopic level. Equation (3.13) is the same as the Kolmogorov
forward equation (3.12). The solution to (3.13) can be rewritten as a convolution

ρ(x, n) = (ρ0 ∗ w∗n
)(x), (3.14)

where ρ0(x) is the initial density, the asterisk ∗ denotes convolution, and w
∗n =

w ∗ · · · ∗ w (n times).
If the PDF is w(x) = 1

2δ(x−a)+ 1
2δ(x+a), jumps Zn can take only two values,

a and −a, with equal probabilities. In this case we have a recurrence equation

ρ(x, n + 1) = 1

2
ρ(x − a, n)+ 1

2
ρ(x + a, n). (3.15)

This equation can be recognized as a finite difference approximation of the diffusion
equation

∂ρ

∂t
= D

∂
2
ρ

∂x2
. (3.16)

This becomes clearer if we let the time step be of size τ instead of size 1. Then the
recurrence equation (3.15) can be rewritten as

ρ(x, t + τ)− ρ(x, t)

τ
= D

ρ(x + a, t)− ρ(x, t)+ ρ(x − a, t)

a2
, (3.17)

where t denotes a time point of the form nτ and D = a2
/2τ . We see that (3.17)

is a discrete version of the standard diffusion equation (2.1). Though trivial, this
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derivation clearly explains the connection between the microscopic equation for
a single particle (3.8), the mesoscopic description for the particle density (3.13),
and the macroscopic diffusion equation (3.16). Later we discuss how the discrete
random walk (3.8) converges to Brownian motion after rescaling the time and space
steps, see Sect. 3.6.

So far we have considered a homogeneous-in-space random walk for which the
jump size Zn+1 in (3.8) is independent of the particle position Xn . The natural
generalization of this situation is the case where the jumps are described by the
conditional PDF

w(z|x) = ∂

∂z
P(Zn ≤ z|Xn−1 = x). (3.18)

The mesoscopic density is governed by the Kolmogorov forward equation, the
Master equation,

ρ(x, n + 1) =
∫

R

ρ(x − z, n)w(z|x − z)dz. (3.19)

The discrete model has the advantage that it can be easily generalized to include
various nonlinearities such as the kinetic term F(ρ) and the dependence of the jump
kernel w on the density ρ. In this case we have a nonlinear recurrence equation

ρ(x, n + 1) =
∫

R

F [ρ(x − z, n)]w(z|x − z, ρ(x − z, n))dz, (3.20)

with n = 0, 1, 2, . . . .

3.1.2 Random Walk with Two States and the System of Two
Mesoscopic Equations

So far we have considered a single mesoscopic equation for the particle density
and a corresponding random walk model, a Markov process with continuous states
in discrete time. It is natural to extend this analysis to a system of mesoscopic
equations for the densities of particles ρi (x, n), i = 1, 2, . . . ,m. To describe the
microscopic movement of particles we need a vector process (Xn, Sn), where Xn is
the position of the particle at time n and Sn its state at time n. Sn is a sequence of
random variables taking one of m possible values at time n. One can introduce the
probability density pi (x, n) = ∂P(Xn ≤ x, Sn = i)/∂x and an imbedded Markov
chain with the m × m transition matrix H = (hi j ), so that the matrix entry hi j
corresponds to the conditional probability of a transition from state i to state j .

To illustrate the idea, we derive mesoscopic equations for two densities ρi (x, n),
i = 1, 2, at point x at time n. One can think of a particle that moves along the
x-axis and that can be in two different states with dispersal kernels w1(z) and
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w2(z). We assume that the particles either jump or change their state. If the par-
ticle is in state 1 at time n, then the probability of being in state 2 at time n + 1
is h12, and the probability of being in state 1 at time n + 1 is h11 = 1 − h12.
In the same way, we can define the transition probabilities for the particle if it
is in state 2 at time n. We assume that these probabilities are h21 and h22 =
1 − h21. The transition matrix H of the Markov chain with two states has the
form

H =
(

h11 h12
h21 h22

)

. (3.21)

The balance equations for the two densities ρi (x, n), i = 1, 2, can be written as
follows:

ρ1(x, n + 1) = h11

∫

R

ρ1(x − z, n)w1(z)dz + h21ρ2(x, n), (3.22a)

ρ2(x, n + 1) = h22

∫

R

ρ2(x − z, n)w2(z)dz + h12ρ1(x, n), (3.22b)

with n = 0, 1, 2, . . . . The first equation states that the density of particles ρ1(x, n+
1) in state 1 at point x at time n + 1 is the sum of (i) the density of particles in state
1 at intermediate points x − z at time n multiplied by the probability of remaining
in state 1 at the transition time n + 1 and the probability of transition from x − z to
x and (ii) the density of particles in state 2 at time n multiplied by the probability of
transition from state 2 to state 1 at time n+1. It is straightforward to include kinetic
terms F1(ρ1) and F2(ρ2) and the dependence of the transition probabilities hi j on
densities ρ1 and ρ2, similar to (3.20).

3.2 Continuous-Time Random Walk

We now turn to a particle that performs a random walk in continuous time. In order
to keep this section as clear as possible, we will only consider one-dimensional ran-
dom walk models. As before, we assume that the jumps Z1, Z2, . . . are independent
identically distributed (IID) random variables. However, the jumps occur at random
times T1, T2, . . . , so that the intervals between jumps �n = Tn − Tn−1 are also IID
variables. In general, the time intervals �n and jumps Zn are dependent, and their
statistical characteristics are completely determined by the joint PDF ψ(z, t). The
spatial jump length PDF is given by w(z) = ∫∞

0 ψ(z, t)dt and the waiting time
PDF by φ(t) = ∫∞−∞ ψ(z, t)dz. If jumps and waiting times are independent of each
other, the corresponding joint PDF ψ(z, t) factorizes:

ψ(z, t) = w(z)φ(t). (3.23)
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Let X (t) denote the position of the particle at time t and X (0) = 0, then

X (t) =
N (t)
∑

i=1

Zi , (3.24)

where N (t) is the number of jumps up to time t . It can be defined in terms of the
random time Tn as follows:

N (t) = max
{

n ≥ 0 : Tn ≤ t
}

. (3.25)

Such a process N (t) is called a renewal or counting process. The particle position
X (t) is called a continuous-time random walk. Figure 3.1 illustrates the process
X (t). It should be noted that the CTRW X (t) defined by (3.24) can also be obtained
by replacing the discrete time n in (3.10) with the “random” time N (t), i.e.,

X (t) = XN (t). (3.26)

Fig. 3.1 Schematic picture of a CTRW

In the mathematical literature, X (t) is called a semi-Markov process associated with
the two-component Markov chain (Xn, Tn), a Markov renewal process [218]. As
discussed in Sect. 2.3, the CTRW model is a standard approach for studying anoma-
lous diffusion [298].

The microscopic stochastic equation for the particle position X (t) can be written
in the form

dX

dt
=
∑

i

Ziδ(t − Ti ), (3.27)
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where the right-hand side represents the sum of the stochastic pulses at renewal
times Ti with random amplitudes Zi .

To find the PDF p(x, t) for the particle position at time t we use the equation

p(x, t) = p0(x)�(t)+
∫ t

0
j (x, t − τ)�(τ)dτ, (3.28)

where p0(x) is the initial PDF, j (x, t) is the probability density of reaching the point
x exactly at time t , and

�(t) =
∫ ∞

t

∫

R

ψ(z, τ )dzdτ (3.29)

is the probability that the particle does not jump in the time interval (0, t], i.e., the
survival probability. Equation (3.28) expresses the law of total probability. The first
term on the RHS of (3.28) represents the probability of being at the point x times
the probability of no jumps up to time t . The second term takes into account the
probability of arriving at the point x at time t − τ and the probability of no jumps
during the remaining time τ . The density j (x, t) obeys the balance equation

j (x, t) =
∫

R

p0(x − z)ψ(z, t)dz +
∫ t

0

∫

R

j (x − z, t − τ)ψ(z, τ )dzdτ. (3.30)

Applying the Fourier–Laplace (F-L) transform to (3.28) and (3.30), we obtain
the Fourier–Laplace transform of the PDF p(x, t), the Montroll–Weiss equation,

ˆ̃p(k, s) =
p̃0(k)

[

1− φ̂(s)
]

s
[

1− ˆ̃
ψ(k, s)

] . (3.31)

Here φ̂(s) is the Laplace transform of the waiting time PDF φ(t), p̃0(k) is the

Fourier transform of the initial PDF p0(x), and ˆ̃
ψ(k, s) is the F-L transform of

the joint PDF ψ(x, t). In particular, (3.31) can be rearranged for the uncoupled case
(3.23) as

s ˆ̃p(k, s)− p̃0(k) =
sφ̂(s)

1− φ̂(s)
(w̃(k)− 1) ˆ̃p(k, s), (3.32)

where the left-hand side is the Fourier–Laplace transform of the derivative ∂p/∂t
and w̃(k) is the Fourier transform of dispersal kernel w(z). If we apply the F-L
transform inversion, we obtain the integro-differential equation, the Master
equation,
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∂p

∂t
=
∫ t

0
K (t − τ)

[∫

R

p(x − z, τ )w(z)dz − p(x, τ )

]

dτ. (3.33)

The memory kernel K (t) is defined in terms of its Laplace transform, see (2.66),

K̂ (s) = φ̂(s)

�̂(s)
= sφ̂(s)

1− φ̂(s)
. (3.34)

It should be emphasized that it is impossible to find an explicit expression for the
memory kernel K (t) for arbitrary choices of the waiting time PDF φ(t).

As we mentioned in Sect. 2.3, CTRWs can be characterized by the mean waiting
time, T = ∫∞

0 tφ(t)dt , and the second moment of the jump length PDF, σ 2 =
∫

R
z2
w(z)dz. We assume that w(z) is even, i.e., the first moment of w(z) vanishes.

If T and σ
2 are finite, the central limit theorem implies that the rescaled particle

position
√
εX (t/ε) has a Gaussian PDF as ε → 0,

lim
ε→0

∂

∂x
P

(√
εX

(
t

ε

)

≤ x

)

= 1√
4πDt

exp

(

− x2

4Dt

)

, (3.35)

with D = σ
2
/2T . In another words,

√
εX (t/ε) converges in distribution to the

Brownian motion B(t) as ε → 0.
The CTRW model is a standard tool for modeling subdiffusion, for which the

variance of the particle position increases with time as tγ with 0 < γ < 1, see Sect.
2.3. This regime occurs if the waiting time PDF behaves like φ(t) ∼ (τ0/t)

1+γ as
t → ∞. Then the mean waiting time T is infinite. The Laplace transform φ̂(s) is
approximated by

φ̂(s) � 1− (τ0s)
γ (3.36)

for small s and 0 < γ < 1. Then K̂ (s) � s(τ0s)
−γ . Equation (3.32) can be written

as sγ ˆ̃p(k, s) − sγ−1 p̃0(k) = τ
−γ

0 (w̃(k) − 1) ˆ̃p(k, s). We apply the F-L transform
inversion and obtain the fractional Kolmogorov–Feller equation

τ
γ

0
∂
γ p

∂tγ
=
∫

R

p(x − z, t)w(z)dz − p(x, t), (3.37)

where

∂
γ p

∂tγ
= 1

�(1− γ )

∂

∂t

∫ t

0

p(x, τ )dτ

(t − τ)
γ − t−γ p0(x)

�(1− γ )
(3.38)

is the Caputo fractional derivative, which reduces to the standard derivative for
γ = 1.
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3.2.1 Mesoscopic Equation for the Particle Density

Consider particles that undergo a continuous-time random walk and do not interact
with each other. Then the balance equations for the mean density of particles ρ(x, t)
and the density of particles j (x, t) arriving at the point x exactly at time t can be
written as

ρ(x, t) = ρ0(x)�(t)+
∫ t

0
j (x, τ )�(t − τ)dτ, (3.39)

and

j (x, t) =
∫

R

ρ0(x − z)ψ(z, t)dz +
∫ t

0

∫

R

j (x − z, τ )ψ(z, t − τ)dzdτ, (3.40)

where ρ0(x) is the initial particle density. These two equations have the same form
as (3.28) and (3.30). The two balance equations (3.39) and (3.40) can be rewritten
as a single equation:

ρ(x, t) = ρ0(x)�(t)+
∫ t

0

∫

R

ρ(x − z, τ )ψ(z, t − τ)dzdτ. (3.41)

Note that the initial distribution ρ0(x) is set up in such a way that the random walk
for all particles starts from t = 0. Other choices of the time origin lead to aging
effects [29]. In the following, we consider the uncoupled case (3.23) for simplicity.
Using the Laplace–Fourier transform, we obtain from (3.39) and (3.40) the expres-
sion for j (x, t) in terms of ρ(x, t):

j (x, t) =
∫ t

0

∫

R

K (t − τ)w(z)ρ(x − z, τ )dzdτ, (3.42)

where the memory kernel K (t) is given by (3.34). In the uncoupled case, (3.41) can
be converted into the integro-differential transport equation, the generalized Master
equation,

∂ρ

∂t
=
∫ t

0
K (t − τ)

[∫

R

ρ(x − z, τ )w(z)dz − ρ(x, τ )

]

dτ. (3.43)

The intuitive meaning of the Master equation can be understood in terms of the
density of particles j (x, t) given by (3.42). If we differentiate ρ(x, t) from (3.39)
with respect to time, we obtain

∂ρ

∂t
= −ρ0(x)φ(t)+ j (x, t)−

∫ t

0
j (x, τ )φ(t − τ)dτ, (3.44)
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since �
′
(t) = −φ(t). The last equation can be written in the following form:

∂ρ

∂t
= j (x, t)− i(x, t), (3.45)

where i(x, t) is the rate of departure of particles from the point x ,

i(x, t) =
∫ t

0
K (t − τ)ρ(x, τ )dτ. (3.46)

The generalized Master equation (3.43) can be rewritten as a simple rate equation:

∂ρ

∂t
=
∫

R

i(x − z, t)w(z)dz − i(x, t). (3.47)

It is tempting to generalize this equation by including a nonlinear reaction term
F(ρ) on its RHS:

∂ρ

∂t
=
∫

R

i(x − z, t)w(z)dz − i(x, t)+ F(ρ). (3.48)

It turns out that the inclusion of the kinetic term F(ρ) is not a trivial procedure
for non-Markovian processes. In particular, the transport term might depend on the
reaction kinetics. We discuss this problem later in detail, see Sect. 3.4.

As we mentioned, the particle position X (t) can be expressed in terms of a dis-
crete random walk Xn , see (3.10), and a counting process N (t) as (3.26). Therefore,
the solution of the Master equation (3.43) can be written as the average value

ρ(x, t) =
∞
∑

n=0

ρ(x, n)P(N (t) = n), (3.49)

where the density ρ(x, n) is defined by the convolution equation (3.13). Here we
have assumed that the jumps and waiting times are independent. Using the formula
(3.14), we can express the particle density ρ(x, t) in terms of the initial density
ρ0(x) and the expectation operator E as

ρ(x, t) = E

(

ρ0 ∗ w∗N (t)
)

(x) =
∞
∑

n=0

(ρ0 ∗ w∗n
)(x)P(N (t) = n). (3.50)

Applying the Fourier–Laplace transform, we obtain

ˆ̃ρ(k, s) = ρ̃0(k)
∞
∑

n=0

w̃
n
(k)P̂(n, s), (3.51)
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where P̂(n, s) is the Laplace transform of P(n, t) = P(N (t) = n). It is known from
renewal theory [81] that

P̂(n, s) =
φ̂
n
(s)
[

1− φ̂(s)
]

s
. (3.52)

Substitution of (3.52) into (3.51) yields

ˆ̃ρ(k, s) =
ρ̃0(k)

[

1− φ̂(s)
]

s

∞
∑

n=0

w̃
n
(k)φ̂n

(s) =
ρ0(k)

[

1− φ̂(s)
]

s
[

1− w̃(k)φ̂(s)
] , (3.53)

which is exactly the formula (3.31) for the case ˆ̃
ψ(k, s) = w̃(k)φ̂(s).

3.2.2 Random Walk with Discrete States in Continuous-Time

So far we have considered the homogeneous case for which the waiting time density
is independent of the position of the particles or their state. Let us formulate the
general equations describing a random walk with discrete states in continuous time
for which the waiting time PDF depends on the current state. (CTRWs with space-
dependent waiting time PDFs have been studied in [75].) We introduce the mean
density of particles ρm(t) in state m and the density of particles jm(t) arriving in
state m exactly at time t . The balance equations can be written as

ρm(t) = ρm0�m(t)+
∫ t

0
jm(τ )�m(t − τ)dτ (3.54)

and

jm(t) =
∑

i �=m
ρi0φi (t)him +

∑

i �=m

∫ t

0
ji (τ )φi (t − τ)himdτ. (3.55)

Here �m(t) =
∫∞
t φm(τ )dτ is the survival probability in the state m, him is the

transition probability from state i to m, and ρi0 is the initial density of particles in
state i . Using the Laplace transform, we obtain from (3.54) and (3.55)

jm(t) =
∑

i �=m

∫ t

0
Ki (t − τ)ρi (τ )himdτ, (3.56)

where the memory kernel Ki (t) is defined in terms of its Laplace transform

K̂i (s) =
φ̂i (s)

�̂i (s)
= sφ̂i (s)

1− φ̂i (s)
. (3.57)
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The two balance equations can be rewritten as a single equation:

ρm(t) = ρm0�m(t)+
∑

i �=m

∫ t

0
Mim(t − τ)ρi (τ )himdτ, (3.58)

where the memory kernel Mim(t) is defined as

M̂im(s) =
φ̂i (s)�̂m(s)

�̂i (s)
. (3.59)

It should be noted that (3.58) cannot be written in the standard form (3.41), which
makes it difficult to give its probabilistic interpretation.

The generalized Master equation is

∂ρm(t)

∂t
=
∑

i �=m

∫ t

0
Ki (t − τ)ρi (τ )himdτ −

∫ t

0
Km(t − τ)ρm(τ )dτ. (3.60)

This equation can be useful for studying multi-component systems where the chem-
ical reactions do not obey classical kinetics.

3.2.3 Semi-Markov Processes

As mentioned on page 61, CTRWs are known as semi-Markov processes in the
mathematical literature. In this section we provide a brief account of semi-Markov
processes. They were introduced by P. Lévy and W. L. Smith [253, 415]. Recall that
for a continuous-time Markov chain, the transitions between states at random times
Tn are determined by the discrete chain Xn with the transition matrix H = (hi j ).
The waiting time �n = Tn − Tn−1 for a given state i is exponentially distributed
with the transition rate λi , which depends only on the current state i . The natural
generalization is to allow arbitrary distributions for the waiting times. This leads to a
semi-Markov process. The reason for such a name is that the underlying process is a
two-component Markov chain: (Xn, Tn). Here the random sequence Xn represents
the state at the nth transition, and Tn is the time of the nth transition. Obviously,
Tn =

∑n
k=1 �k .

The main statistical characteristic of the two-component Markov chain (Xn, Tn)
is the transition kernel

Qi j (t) = P
{

Xn+1 = j,�n+1 ≤ t |Xn = i
}

(3.61)

for any n ≥ 0. Here we consider only time-homogeneous chains for which the
kernel Qi j (t) is independent of n. We use the counting process N (t) (3.25) that
gives the number of transitions in the time interval (0, t].
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Semi-Markov processes can be defined as

X (t) = XN (t) (3.62)

or

X (t) = Xn if Tn ≤ t < Tn+1. (3.63)

If the process starts in the state i , then the subsequent state j is determined by the
transition kernel Q so that the process remains in state i some random time before
making a transition to j . One can introduce the conditional waiting time distribution
�i j (t) as

�i j (t) = P
{

Tn+1 − Tn ≤ t |Xn = i, Xn+1 = j
}

. (3.64)

It gives us the distribution of the random time spent in state i before jumping to state
j . The transition kernel Qi j (t) can be written as

Qi j (t) = hi j�i j (t), (3.65)

where hi j is the transition probability matrix of the underlying discrete Markov
chain Xn . Note that Qi j (t) → hi j as t → ∞ since �i j (∞) = 1. In general, the
waiting time distribution depends on the current state i and the next state j .

The standard continuous-time Markov chain is a special case of a semi-Markov
process with the transition kernel

Qi j (t) = hi j (1− exp(−λi t)). (3.66)

The transition probability

pi j (t) = P {X (t) = j |X (0) = i} (3.67)

satisfies the integral backward equation

pi j (t) = δi j Si (t)+
∑

k

∫ t

0
qik(t − τ)pkj (τ )dτ, (3.68)

where

qi j (t) =
∂Qi j (t)

∂t
(3.69)

is the transition density kernel and

Si (t) = 1−
∑

k

Qik(t) (3.70)
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is the survival probability for state i . The first term δi j Si (t) in (3.68) represents the
probability that the process X (t) does not leave the state i up to time t , given that
it was in this state initially. In the Markovian case, qi j (t) = λi exp(−λi t)hi j , this
equation is equivalent to a system of backward differential equations for Markov
processes. Janssen and Manca have summarized the theory of semi-Markov pro-
cesses and discussed its applications in [218].

3.3 Markov CTRW Models

3.3.1 Compound Poisson Process

If the counting process N (t) is a Poisson process with the transition rate λ, then the
particle position

X (t) =
N (t)
∑

i=1

Zi (3.71)

is a compound Poisson process [126]. The probability that n jumps occur in the time
interval [0, t] is given by

P(N (t) = n) = (λt)n

n! e−λt
. (3.72)

Note that the Poisson process plays a very important role in random walk theory. It
can be defined in two ways: (1) as a continuous-time Markov chain with constant
intensity, i.e., as a pure birth process with constant birth rate λ; (2) as a renewal
process. In the latter case, it can be represented as (3.25) with Tn =

∑n
i=0 �i . Here

�i are interarrival (waiting) times, which are independent random variables with
PDF

φ(t) = λe−λt
. (3.73)

Since the waiting time PDF φ(t) is exponential, the random walk X (t) is a Markov
process. The jump PDF w(z) is defined in (3.9).

The mesoscopic particle density ρ(x, t) obeys the integro-differential equation

∂ρ

∂t
= λ

∫

R

ρ(x − z, t)w(z)dz − λρ(x, t). (3.74)

The integro-differential equation (3.74) can be derived in several ways. The fol-
lowing is probably the most instructive in the context of transport theory. Since a
compound Poisson process is Markovian, the derivation of (3.74) is based on the
idea that the particle density at time t + h can be expressed in terms of the density
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at time t . In other words, the balance of particles during time (t, t + h] is indepen-
dent of what happened during the previous time interval (0, t]. We assume that the
probability of a jump during a small time interval of length h is λh + o(h) and the
probability of no jumps is 1− λh + o(h). Thus the balance of particles at the point
x can be written as

ρ(x, t + h) = (1− λh)ρ(x, t)+ λh
∫

R

ρ(x − z, t)w(z)dz. (3.75)

Subtracting ρ(x, t) from both sides of this equation, dividing by h, and letting h →
0, we obtain (3.74). Obviously, (3.74) corresponds to a particular case of (3.43),
namely where the time integral disappears, i.e., the Markov case.

Since the process is Markovian, it is easy to include chemical reactions in the
above model by adding the kinetic term F(ρ)h to the RHS of (3.75):

∂ρ

∂t
= λ

∫

R

ρ(x − z, t)w(z)dz − λρ(x, t)+ F(ρ). (3.76)

We can rewrite this equation with the initial condition ρ(x, 0) = ρ0(x) in integral
form. Let us look at (3.76) as a first-order inhomogeneous ODE of the form dρ/dt =
−λρ(t) + g(t), where the function g(t) combines the integral term and the kinetic
term F(ρ). This equation has a solution ρ(t) = ρ(0)e−λt + ∫ t0 g(t − τ)e−λτdτ ,
which implies that

ρ(x, t) = ρ0(x)e
−λt +

∫ t

0

∫

R

ρ(x − z, t − τ)w(z)λe−λτdzdτ

+
∫ t

0
F(ρ(x, t − τ))e−λτdτ. (3.77)

The first term on the right-hand side represents those particles that stay at point
x up to time t . The exponential factor e−λt = 1 − ∫ t0 φ(τ)dτ is the probability
that the particle makes no jump until time t . This is the survival probability �(t) for
φ(t) = λe−λt . The second term includes the contribution from the particles jumping
to point x from different positions x− z at time t−τ and surviving up to time t . The
last term describes the contribution from the chemical reaction with the rate F(ρ).

The natural generalization of a compound Poisson process is the Markov jump
process X (t) with the following statistical properties. If the position of a particle at
time t is X (t), then the probability of a jump during a small time interval (t, t+h] is
λ(X (t))h+o(h), so that X (t+h) = X (t)+Z(t)+o(h). The probability of no jump
during (t, t + h] is 1 − λ(X (t))h + o(h). The conditional density for a stationary
jump process Z(t) is

w(z|x) = ∂

∂z
P {Z(t) ≤ z|X (t) = x} . (3.78)
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The balance of particles at the point x is

ρ(x, t + h) =
∫

R

ρ(x − z, t)λ(x − z)hw(z|x − z)dz

+(1− λ(x)h)ρ(x, t)+ o(h). (3.79)

Subtracting ρ(x, t) from both sides, dividing by h, and letting h → 0, we obtain the
mesoscopic equation, the Master equation,

∂ρ(x, t)

∂t
=
∫

R

ρ(x − z, t)λ(x − z)w(z|x − z)dz − λ(x)ρ(x, t). (3.80)

This equation can easily be generalized to include various nonlinear effects. In par-
ticular, the jump PDF w(z|x) and the jump rate λ(x) can depend on the local density
ρ(x, t), due to an overcrowding effect for example. Then

∂ρ(x, t)

∂t
=
∫

R

ρ(x − z, t)λ(x − z, ρ(x − z, t))w(z|x − z, ρ(x − z, t))dz

−λ(x, ρ(x, t))ρ(x, t)+ F(ρ). (3.81)

3.3.2 System of Two Mesoscopic Equations

We consider the transport of particles A and B with linear reversible reaction A −↽⇀−
B. One can introduce a two-component system of equations for the densities ρ1(x, t)
and ρ2(x, t). We assume that the probability of a transition from A to B during a
small time interval of length h is α1h + o(h), and the backward transformation
B −→ A has the probability α2h+o(h). We assume that the reaction is independent
of the transport of particles. The probability of a jump during a small time interval h
is λ1h+o(h) for particles A and λ2h+o(h) for particles B. The balance of particles
A and B at the point x can be written as

ρ1(x, t + h) = (1− λ1h − α1h)ρ1(x, t)

+ λ1h
∫

R

ρ1(x − z, t)w1(z)dz + α2hρ2(x, t)+ o(h), (3.82a)

ρ2(x, t + h) = (1− λ2h − α2h)ρ2(x, t)

+ λ2h
∫

R

ρ2(x − z, t)w2(z)dz + α1hρ1(x, t)+ o(h). (3.82b)

These equations are the conservation laws for A and B particles. The first term on
the right-hand side of (3.82a) represents the particles A that stay at location x and
do not move during the time interval (t, t + h] and do not become particles B. The
second term corresponds to the number of particles of type A that arrive at x during
(t, t+h] from other points x−z, where the jump length z is distributed according to
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the dispersal kernel or jump length PDF w1(z). The last term represents the number
of particles B that turn into particles of type A.

In the limit h → 0, we obtain the mesoscopic system of reaction–transport equa-
tions

∂ρ1

∂t
= λ1

∫

R

ρ1(x − z, t)w1(z)dz − λ1ρ1 − α1ρ1 + α2ρ2, (3.83a)

∂ρ2

∂t
= λ2

∫

R

ρ2(x − z, t)w2(z)dz − λ2ρ2 + α1ρ1 − α2ρ2. (3.83b)

The main advantage of this Markovian model is that it can be easily general-
ized to include various nonlinear terms. Later we consider non-Markovian models
for which the inclusion of nonlinear effects is a highly nontrivial procedure, see
Sect. 3.4.

3.3.3 Characteristic Function and Transport Equation
for the Particle Density

Characteristic functions are very useful tools for studying random processes. It turns
out that reaction–transport equations can also be effectively handled by using the
characteristic function of the underlying random walks. In what follows, we will
see how this function helps to define the transport operator, a pseudo-differential
operator, for the mean density ρ(x, t).

3.3.3.1 Compound Poisson process

For illustrative purposes we begin with the transport of particles that follow the path
of the compound Poisson process (3.71), X (t) = ∑N (t)

i=1 Zi . The corresponding
mean-field equation for the density ρ(x, t) is given by (3.74). Let us show that this
equation is closely related to the characteristic function ρ̃(k, t) of X (t):

ρ̃(k, t) = E

(

eikX (t)
)

=
∞
∑

n=0

E

(

eikX (t)∣∣N (t) = n
)

P(N (t) = n). (3.84)

Here P(N (t) = n) = e−λt (λt)n

n! , and the conditional expectation is given by

E

(

eikX (t)∣∣N (t) = n
)

= E

(

eik
∑n

i=1 Zi
∣
∣N (t) = n

)

= w̃
n
(k), (3.85)

where w̃(k) is the characteristic function of the random jump Zi with the density
w(z),

w̃(k) = E

(

eikZi
)

=
∫

R

eikz
w(z)dz. (3.86)



3.3 Markov CTRW Models 73

We obtain

ρ̃(k, t) =
∞
∑

n=0

e−λt (λtw̃(k))n

n! = etψ(k)
, (3.87)

where

ψ(k) = λ(w̃(k)− 1) (3.88)

is the characteristic exponent of the compound Poisson process X (t). Note that
ψ(k) = −Dk2 corresponds to the Brownian motion B(t) and ψ(k) = ikv − Dk2 is
the characteristic exponent of the Brownian motion with drift vt.

The function ψ(k) plays a very important role in defining a transport operator. It
follows from (3.87) that the function ρ̃(k, t) satisfies the equation

∂ρ̃(k, t)

∂t
= ψ(k)ρ̃(k, t). (3.89)

Applying the inverse Fourier transform to (3.89) with (3.88) and the standard convo-
lution theorem, we obtain the Kolmogorov–Feller equation (3.74). Thus the particle
density ρ(x, t) can be interpreted as the inverse Fourier transform of the character-
istic function ρ̃(k, t) = E(eikX (t)

). Since ρ̃(k, 0) = 1, the initial particle density is
ρ(x, 0) = δ(x). The integral operator on the RHS of the Kolmogorov–Feller equa-
tion (3.74) can be considered as a pseudo-differential operator with symbol (3.88).
Recall that a pseudo-differential operator Lx acting on the variable x is defined by
its Fourier transform as F[Lxρ(x, t)] = ψ(k)ρ̃(k, t), where ψ(k) is referred to as
the symbol of Lx (see, for example, [15]).

3.3.3.2 Symmetric α-Stable Lévy Process

Let us now consider another example of a Markov process for which the character-
istic exponent is

ψ(k) = −Dα |k|α , 0 < α < 2. (3.90)

This exponent corresponds to a symmetric α-stable Lévy process Sα(t), a Lévy
flight, which is self-similar with Hurst exponent H = 1/α. It follows from (3.89)
that the mesoscopic density of particles is the solution to the space-fractional diffu-
sion equation [371]:

∂ρ(x, t)

∂t
= Dα

∂
α
ρ(x, t)

∂ |x |α , (3.91)

where Dα is a generalized diffusion coefficient and ∂
α
ρ(x, t)/∂ |x |α is the symmet-

ric Riesz fractional derivative of order α defined by the Fourier representation
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F
[
∂
α
ρ(x, t)

∂ |x |α
]

= − |k|α ρ̃(k, t). (3.92)

The symmetric Riesz fractional derivative (3.92) is the pseudo-differential operator
with symbol − |k|α . Such a derivative describes a redistribution of particles in the
whole space according to the heavy-tailed distribution of the jumps

P{|Zi| > z} ∼ A

zα
, (3.93)

for large z. The symmetric Riesz derivative can be represented in explicit form as
[371, 372]

∂
α
ρ(x, t)

∂ |x |α = �(1+ α)

π
sin
(απ

2

) ∫ ∞

0

ρ(x − z, t)− 2ρ(x, t)+ ρ(x + z, t)

z1+α
dz.

(3.94)

The space-fractional equation (3.91) can be derived from the Kolmogorov–Feller
equation (3.74) by using the assumption that the random jump Zi has a Lévy-stable
PDF wα(z), symmetric with respect to zero, with power-law tails as z →∞. There
is no general explicit form for wα(z), but the characteristic function of wα(z), the
structure function, is

w̃α(k) = e−σ
α |k|α

. (3.95)

The width of the density wα(z) cannot be measured by the variance
∫

R
z2
wα(z)dz,

which is infinite for α<2. The function wα(z) looks similar to a normal density in
the center, but the tails of wα(z) are much flatter than those of a Gaussian distribu-
tion. The asymptotic expression for large |z| involves power-law tails:

wα(z) ∼
σ
α
�(1+ α) sin(απ/2)

π
|z|−1−α (3.96)

(see, for example, [126, 373]). We show using scaling arguments that the large-
scale long-time limit for ρ(x, t) is the symmetric α-stable density that decays like
t |x |−1−α as x →∞. It follows from (3.88) and (3.89) that ρ̃(k, t) satisfies

∂ρ̃(k, t)

∂t
= λ

(

e−σ
α |k|α − 1

)

ρ̃(k, t). (3.97)

Let us find a space–time scaling, k → ε
Hk and t → t/ε, for which the characteristic

function

ρ̃
∗
(k, t) = lim

ε→0
ρ̃
ε
(k, t) = lim

ε→0
ρ̃

(

ε
Hk,

t

ε

)

(3.98)
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is scale invariant. In what follows we omit the asterisk for ρ̃∗(k, t). From (3.97) and
(3.98) we find that

ρ̃(k, t) = lim
ε→0

exp

[
λt

ε

(

e−σ
α |k|αεHα − 1

)]

= exp
(−λσ

α |k|α t) (3.99)

for the Hurst exponent H = α
−1. In this case, ρ(x, t) = F−1[ρ̃(k, t)] is the solution

to the space-fractional equation (3.91) with Dα = λσ
α . Let us find this solution by

using the scaling rules for the Fourier transform: g (x/a)
F→ ag̃(ak). If we set

λ = 1 and a = t1/α , then it follows from (3.99) and (3.95) that the Green’s function
G(x, t) for the space-fractional equation (3.91) with ρ(x, 0) = δ(x) can be written
in terms of the symmetric Lévy-stable PDF wα(z) as

G(x, t) = t−
1
α wα

(

xt−
1
α

)

. (3.100)

The Cauchy problem for (3.91) with ρ (x, 0) = ρ0(x) has the solution

ρ (x, t) =
∫

R

G(x − z, t)ρ0(z)dz. (3.101)

Note that an asymmetric density of jump lengths leads to the Riesz–Feller space-
fractional derivative of order α and skewness θ with the characteristic exponent

ψ(k) = −Dα |k|α ei sgn(k)θπ/2
, 0 < α < 2, |θ | ≤ min{α, 2− α}. (3.102)

The Cauchy problem involving the Riesz–Feller derivative was analyzed in
[166, 260]. In the next section we discuss the general Markov random processes
with independent and stationary increments, the Lévy processes, for which the
characteristic function is known explicitly.

3.3.4 Lévy Processes

In the previous two sections we gave a brief account of the compound Poisson
process and the symmetric α-stable Lévy process. This section is an introduction
to general one-dimensional Lévy processes. The compound Poisson process and
symmetric α-stable process are simply examples of Markov processes of Lévy type.
Readers who are interested in this topic in greater detail are referred to the books by
Applebaum [15] and Sato [378].

Recall that a Lévy process X (t) is a continuous-time stochastic process that has
independent and stationary increments. It represents a natural generalization of a
simple random walk defined as a sum of independent identically distributed random
variables. The independence of increments ensures that Lévy processes are Markov
processes. The main feature of a Lévy process is that it is infinitely divisible for
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any time t . It can be written as a sum of increments X (t) = ∑n
k=1 �Xk

(t) for any

n ∈ N , where �Xk
(t) are identically distributed random variables. It is usually

assumed that X (0) = 0. The simplest examples of Lévy processes are the Brownian
motion B(t), the Poisson process N (t), and the compound Poisson process X (t).
Any Lévy process X (t) can be written as the sum of a drift term at , a Brownian
motion B(t), and a pure jump process Z(t) with a finite or infinite number of jumps
in the interval [0, t].

Its statistical characteristics are completely determined by the characteristic
exponent ψ(k), defined as

E

{

eikX (t)
}

= etψ(k)
. (3.103)

The exponent ψ(k) has the Lévy–Khinchine representation

ψ(k) = iak − Dk2 +
∫

z �=0

(

eikz − 1− ikzχ0<|z|<1

)

ν(dz), (3.104)

where a and D are constants, χA is the indicator function of the set A, and ν(dz)
is a Lévy measure. The positive measure ν(A) is defined as the expected number
of jumps of X (t) per unit time, whose sizes belong to the set A. It must satisfy the
integrability condition

∫

z �=0 min(1, z2
)ν(dz) <∞, which means that there is a finite

number of jumps whose size is |z| ≥ 1,
∫

|z|≥1 ν(dz) < ∞, and
∫

0<|z|<1 z
2
ν(dz) <

∞ because of the convergence requirement for the integral in (3.104). For example,
the Lévy measure for the compound Poisson process (3.71) is ν(dz) = λw(z)dz.
Note that instead of zχ0<|z|<1 one can use any bounded continuous function g(z)

satisfying g(z)→ z as z → 0. For example, g(z) = z/(1+ z2
) or g(z) = sin z.

It follows from the previous section that the Fourier transform ρ̃(k, t) of the
particle density ρ(x, t) satisfies the equation

∂ρ̃(k, t)

∂t
= ψ(k)ρ̃(k, t). (3.105)

If we apply the inverse Fourier transform to this equation, we obtain an equation for
the density ρ(x, t):

∂ρ

∂t
+ a

∂ρ

∂x
= D

∂
2
ρ

∂x2
+
∫

z �=0

(

ρ(x − z, t)− ρ(x, t)+ z
∂ρ

∂x
χ0<|z|<1

)

ν(dz).

(3.106)

In particular, if the Lévy measure is ν(dz) = λδ(z− z0)dz and the size of the jumps
is z0 > 1, then

ψ(k) = iak − Dk2 + λ
(

eikz0 − 1
)

. (3.107)
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The intuitive meaning of this formula is as follows. Let X (t) be the position of a
particle performing a random Lévy walk with (3.107), then X (t) = at + B(t) +
Nz(t). The particle starts at zero and then follows the Brownian motion B(t) with
the drift velocity a until the random time T1 at which a jump of size z0 takes place.
Between random times T1 and T2 we have again the Brownian motion with a drift
and then another jump of the same size z0 at time T2. The last term in (3.107) is
related to a Poisson process Nz(t) with the rate λ in the set of values

{

nz0
}

with
n = 1, 2, . . . . The particle position X (t) is an example of a cadlag function. It is a
right-continuous with left limits function for which there exist two limits, X (t+) =
lims→t+ X (s) and X (t−) = lims→t− X (s), so that X (t) = X (t+). The difference

�X = X (t)− X (t−) describes the jump of X (t) at time t .
For example, the Lévy measure corresponding to anomalous transport is

ν(dz) = C dz

|z|1+α
(3.108)

where C = const, 0 < α < 2, α �= 1 and z �= 0. Let us assume that the drift a
and the diffusion coefficient D are zero. Then it follows from (3.104) and (3.108)
that the particle position X (t) is the symmetric α-stable random process Sα(t),
sometimes called a Lévy flight, with the anomalous diffusion coefficient Dα =
2Cα

−1
�(1 − α) cos(πα/2), see Sect. 3.3.3.2. It has an infinite variance which is

associated with very large jumps. The mesoscopic transport equation for the particle
density ρ (x, t) is the space-fractional diffusion equation (3.91).

3.3.4.1 Finite and Infinite Number of Jumps

We can distinguish two cases: (1) the average number of jumps is finite, i.e.,
∫

z �=0 ν(dz) <∞; (2) infinite number of jumps, i.e.,
∫

z �=0 ν(dz) = ∞.

The compound Poisson process X (t), defined by (3.71), is an example of a pure
jump process which has only a finite number of jumps on the finite time interval
[0, t]. The Lévy measure ν(dz) = λw(z)dz is finite on R, that is,

∫

z �=0 ν(dz) =
λ < ∞. Note that ν is not a probability measure, because

∫

R
ν(dz) = λ. The

characteristic function for the compound Poisson process is

ρ̃(k, t) = etλ(w̃(k)−1) = etψ(k)
, (3.109)

where ψ(k) is the characteristic exponent (see also (3.88))

ψ(k) = λ

∫

R

(

eikz − 1
)

w(z)dz. (3.110)

The mesoscopic density of particles obeys the integro-differential equation (3.74).
The Gamma process is an example of a Lévy process with infinite number of

jumps. The Gamma process X�(t) is a pure jump Lévy process with the intensity
measure
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ν(dz) = γ0

z
e−βzdz, z > 0. (3.111)

The jumps in X�(t) with a size in the interval [z, z + dz] occur ν(dz). The parameter
γ0 determines the rate of jumps per unit time and β is the measure of jump size.
Since the jumps are positive, we analyze the Gamma process by using the Laplace
transform

E

{

e−sX�(t)
}

= et
∫∞

0 (e−sz−1)ν(dz)
. (3.112)

Taking into account (3.112) and the integral
∫∞

0

(

e−sz − 1
)

1
z e−βzdz = − ln( s+β

β
),

we obtain

E

{

e−sX�(t)
}

=
(

β

s + β

)γ0t

. (3.113)

The expression
[

β/(s + β)
]γ0t is the Laplace transform of the density of the Gamma

process [15]. Therefore, we can find an explicit expression for the mesoscopic den-
sity of particles for x ≥ 0:

ρ(x, t) = ∂

∂x
P(X�(t) ≤ x) = 1

�(γ0t)
β
γ0t xγ0t−1e−βx

. (3.114)

Since the Lévy measure ν is infinite, i.e., ν(dz) = (γ0/z) exp(−βz)dz is not inte-
grable as z → 0, an infinite number of jumps occurs during a finite period of time.
However, the Lévy measure ν can be approximated by

νδ(dz) =
{

0, z ≤ δ,
(

γ0/z
)

exp(−βz)dz, z > δ,
(3.115)

where δ is a small number. Introducing the normalization constant λδ =
∫∞
δ

(γ0/z)
exp(−βz)dz, we approximate the Gamma process by the compound Poisson process
with intensity λδ that tends to infinity as δ → 0. In the limit we have an infinite
number of jumps whose size distribution is given by

wδ(z) =
(

γ0/z
)

e−βz

∫∞
δ

(

γ0/z
)

e−βzdz
. (3.116)

The mesoscopic density of particles obeys the integro-differential equation

∂ρ

∂t
= λδ

∫ ∞

0
ρ(x − z, t)wδ(z)dz − λδρ(x, t). (3.117)
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3.4 Non-Markovian CTRW Models with Chemical Reactions

In this section we consider CTRW models for which the waiting time distribution
is not exponential. The main challenge is to incorporate nonlinear kinetic terms
into non-Markovian transport equations. Several approaches exist in the literature
about how to include kinetic terms in reaction–transport systems with anomalous
diffusion. We discuss them in detail in the following.

We consider a one-component reaction–transport system consisting of particles
that follow a CTRW. Let ρ(x, t) represent the density of these particles at point
x and time t . We write the reaction term in the form F(ρ) = f (ρ)ρ. It is also
convenient to represent the nonlinear reaction rate f (ρ) as the difference between
the birth rate f +(ρ) and the death rate f −(ρ):

f (ρ) = f +(ρ)− f −(ρ). (3.118)

For example, if we consider the Schlögl Model I, see (1.66), then

f +(ρ) = k1ρa, f −(ρ) = k3ρb + k2ρ, (3.119)

where the densities ρa and ρb are constant. Note that the birth rate f +(ρ) must
allow for a constant term in F(ρ), as occurs in the Brusselator, the Lengyel–Epstein
model, and many other chemical schemes. In those cases, f +(ρ) = kρ−1. For KPP
kinetics, the birth rate is f +(ρ) = r and the death rate is f −(ρ) = rρ. The main
purpose is to derive the nonlinear Master equation for the density ρ(x, t) in the
form ∂ρ/∂t = Lρ, where the nonlinear evolution operator L has to be determined.
We consider three different models for reactions and non-Markovian transport pro-
cesses.

3.4.1 Model A

Non-Markovian behavior of particles performing a CTRW occurs if the particles
are trapped for random times distributed according to a nonexponential distribution.
The key question is how the chemical reaction influences the statistical properties
of the CTRW. For Model A, we assume that the transport process associated with
the CTRW and the chemical reactions are independent. We assume that the waiting
time PDF φ(t) and jump length PDF w(z) are independent and that the chemical
reactions do not affect at all the waiting time PDF. This case has been considered
in a series of papers [416, 143, 144, 187]. The main assumption here is that when
particles are trapped, the waiting time is the same for all particles, including new-
born particles. There are various ways to think about this assumption. In a chemical
setting, the context of Sokolov and collaborators’ work, the assumption implies that
reactive events do not destroy or create particles, as for example in an isomerization
reaction. Reactions simply change the state, label, or “color” of the particles. Such
reactions are known as color-change reactions in the literature [320, 154, 271]. In
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these reactions, the particles themselves survive a reactive event and their waiting
time is not changed. In a population biology setting, the assumption implies that
the whole community of individuals moves after a random time t , elapsed since the
arrival of the founding members at site x , to a new site x + z.

Since the kinetics is of the form f (ρ)ρ, the change in the number of particles, of a
given type, between the jumps involves the exponential factor exp[∫ f (ρ(x, u))du].
To explain this, let us introduce the density of particles j (x, τ ) arriving at point x
exactly at time τ . During time interval (τ, t), this density changes as follows:

j (x, τ )e
∫ t
τ f (ρ(x,u))du

. (3.120)

Let us now incorporate this nonlinear kinetic process into a non-Markovian transport
process described by a CTRW. We write the equations for the densities j (x, t) and
ρ(x, t) in the following forms:

j (x, t) =
∫

R

ρ0(x − z)e
∫ t

0 f (ρ(x−z,u))du
w(z)φ(t)dz

+
∫ t

0

∫

R

j (x − z, τ )e
∫ t
τ f (ρ(x−z,u))du

w(z)φ(t − τ)dzdτ (3.121)

and

ρ(x, t) = ρ0(x)e
∫ t

0 f (ρ(x,u))du
�(t)

+
∫ t

0
j (x, τ )e

∫ t
τ f (ρ(x,u))du

�(t − τ)dτ. (3.122)

We are in position now to derive the Master equation for the density ρ(x, t).
Since the balance equations (3.121) and (3.122) are nonlinear, we cannot apply the
standard technique of the Fourier–Laplace transforms directly. Instead we differen-
tiate the density ρ(x, t) with respect to time:

∂ρ

∂t
= j (x, t)+ f (ρ)ρ − ρ0(x)e

∫ t
0 f (ρ(x,u))du

φ(t)

−
∫ t

0
j (x, τ )e

∫ t
τ f (ρ(x,u))du

φ(t − τ)dτ. (3.123)

The last two terms can be interpreted as the density of particles i(x, t) leaving the
point x exactly at time t :

i(x, t) = ρ0(x)e
∫ t

0 f (ρ(x,u))du
φ(t)

+
∫ t

0
j (x, τ )e

∫ t
τ f (ρ(x,u))du

φ(t − τ)dτ. (3.124)
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It follows from (3.121) and (3.124) that j (x, t) = ∫
R
i(x−z, t)w(z)dz. Then (3.123)

can be rewritten as

∂ρ

∂t
=
∫

R

i(x − z, t)w(z)dz − i(x, t)+ f (ρ)ρ. (3.125)

This equation has a very simple meaning as the balance of particles at point x . The
first term on the RHS corresponds to the number of particles arriving at x from
different positions x − z. The second term represents the rate at which the particles
leave the position x . The last term describes the rate of change due to kinetics. Note
that a similar equation was used in [416]. The advantage of this equation lies in
the fact that we do not need the Fourier transform to obtain a closed equation for
the density ρ(x, t). Let us express i(x, t) in terms of ρ(x, t). We divide (3.122)

and (3.124) by the factor e
∫ t

0 f (ρ(x,u))du and take the Laplace transform L of both
equations:

L
{

ρ(x, t)e−
∫ t

0 f (ρ(x,u))du
}

=
[

ρ0(x)+ L
{

j (x, t)e−
∫ t

0 f (ρ(x,u))du
}]

�̂(s),

(3.126)

L
{

i(x, t)e−
∫ t

0 f (ρ(x,u))du
}

=
[

ρ0(x)+ L
{

j (x, t)e−
∫ t

0 f (ρ(x,u))du
}]

φ̂(s).

(3.127)

From these two equations, we obtain

L
{

i(x, t)e−
∫ t

0 f (ρ(x,u))du
}

= φ̂(s)

�̂(s)
L
{

ρ(x, t)e−
∫ t

0 f (ρ(x,u))du
}

. (3.128)

The inverse Laplace transform yields the expression for i(x, t):

i(x, t) =
∫ t

0
K (t − τ)ρ(x, τ )e

∫ t
τ f (ρ(x,u))dudτ, (3.129)

where K (t) is the standard memory kernel (3.34). Substitution of (3.129) into
(3.125) results in the Master equation:

∂ρ

∂t
=
∫ t

0
K (t − τ)

[∫

R

ρ(x − z, τ )e
∫ t
τ f (ρ(x−z,u))du

w(z)dz

−ρ(x, τ )e
∫ t
τ f (ρ(x,u))du

]

dτ + f (ρ)ρ. (3.130)

Now consider the case where the reaction rate f (ρ) = r = const. Then the
Master equation takes the form
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∂ρ

∂t
=
∫ t

0
K (t − τ)er(t−τ)

[∫

R

ρ(x − z, τ )w(z)dz − ρ(x, τ )

]

dτ + rρ. (3.131)

It is tempting to claim that this equation describes the coupling of chemical reaction
and transport. We believe that this is misleading. In fact, this equation describes the
perfect decoupling of transport with memory and linear reaction, in line with the
main assumption of Model A. To show this, we make the substitution

ρ(x, t) = n(x, t)er t . (3.132)

Then we obtain the following equation for n(x, t),

∂n

∂t
=
∫ t

0
K (t − τ)

[∫

R

n(x − z, τ )w(z)dz − n(x, τ )

]

dτ, (3.133)

which is independent of the reaction and describes the transport of passive particles.
So we have a perfect decoupling for which the density ρ(x, t) is the product of the
density of passive particles n(x, t) and the exponential factor er t due to reaction.

3.4.2 Model B

This model is equivalent to the Vlad–Ross approach of Sect. 2.3.2. We consider a
CTRW which depends on the chemical reaction in the following way. Assume that
the particles that are created with the rate f +(ρ)ρ have zero age. Note that particles
also have zero age when they just arrive at some point x from which they will jump
later. We interpret the density j (x, t) as a zero-age density of particles arriving at
the point x exactly at time t due to a jump process or a birth process with the rate
f +(ρ). Equations for the densities j (x, t) and ρ(x, t) can be written as

j (x, t) = f +(ρ)ρ +
∫

R

ρ0(x − z)e−
∫ t

0 f −(ρ(x−z,u))du
w(z)φ(t)dz

+
∫ t

0

∫

R

j (x − z, τ )e−
∫ t
τ f −(ρ(x−z,u))du

w(z)φ(t − τ)dzdτ

(3.134)

and

ρ(x, t) = ρ0(x)e
− ∫ t0 f −(ρ(x,u))du

�(t)

+
∫ t

0
j (x, τ )e−

∫ t
τ f −(ρ(x,u))du

�(t − τ)dτ. (3.135)

A single equation for the density ρ(x, t) can be derived in the same way as for
Model A. It takes the form
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∂ρ

∂t
=
∫ t

0
K (t − τ)

[∫

R

ρ(x − z, τ )e−
∫ t
τ f −(ρ(x−z,u))du

w(z)dz

−ρ(x, τ )e−
∫ t
τ f −(ρ(x,u))du

]

dτ + f +(ρ)ρ − f −(ρ)ρ. (3.136)

If we expand the expression in brackets for small z and truncate the Taylor series at
the second moment, we obtain

∂ρ

∂t
= σ

2

2

∂
2

∂x2

∫ t

0
K (t − τ)ρ(x, τ )e−

∫ t
τ f −(ρ(x,u))dudτ

+ f +(ρ)ρ − f −(ρ)ρ, (3.137)

which is identical with (2.82). Model B describes the situation where reactant parti-
cles are destroyed and product particles are created during a reactive event, the com-
mon situation in a chemical context, and where consequently the newborn product
particles are endowed a new waiting time. This model does not distinguish between
arrival of a particle at site x by reaction (birth) or by transport (jump); it treats both
processes on the same footing. Model B is expected to describe chemical reactions
in static porous or disordered media. Age on page 82 refers to the waiting time of
particles at a given point. Note that we do not consider aging effects of the system
as stated on page 64.

Models A and B result in the same reaction–transport equation, if the CTRW is
Markovian. In that case, K (t − τ) = δ(t − τ)/τ0, see Remark 2.5, and the Master
equations (3.130) and (3.136) are identical:

∂ρ

∂t
= 1

τ0

[∫

R

ρ(x − z, t)w(z)dz − ρ(x, t)

]

+ f (ρ)ρ. (3.138)

3.4.3 Model C

This is a very simple model. It assumes that the reaction is a pure birth process. It
corresponds to the case where the reaction term is F(ρ) = f +(ρ)ρ. This model
was considered in [188, 189, 121]. The balance equations are

j (x, t) = f +(ρ)ρ +
∫

R

ρ0(x − z)ψ(z, t)dz

+
∫ t

0

∫

R

j (x − z, t − τ)ψ(z, τ )dzdτ (3.139)

and

ρ(x, t) = ρ0(x)�(t)+
∫ t

0
j (x, t − τ)�(τ)dτ. (3.140)
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This system of equations can be written as a single equation for the density

ρ(x, t) = ρ0(x)�(t)+
∫ t

0

∫

R

ρ(x − z, t − τ)ψ(z, τ )dzdτ

+
∫ t

0
f +(ρ(x, t − τ))ρ(x, t − τ)�(τ)dτ. (3.141)

Thus the simplest way to take into account the chemical reaction is to add the term
∫ t

0 F(ρ(x, t − τ))�(τ)dτ to the RHS of the balance equation (3.41). The reaction

term F(ρ) = f +(ρ)ρ is a pure birth process for which all newborn particles are
given zero age.

Equation (3.141) takes the following form in Fourier–Laplace space:

ˆ̃ρ(k, s) = ρ̃0(k)�̂(s)+ ˆ̃ρ(k, s) ˆ̃ψ(k, s)+ ˆ̃F(k, s)�̂(s). (3.142)

We assume that the random jumps and the waiting times are independent, i.e.,
ˆ̃
ψ(k, s) = w̃(k)φ̂(s), and divide (3.142) by φ̂(s) to separate temporal and spatial
variables:

ˆ̃ρ(k, s)
φ̂(s)

− ρ̃0(k)�̂(s)

φ̂(s)
= ˆ̃ρ(k, s)w̃(k)+

ˆ̃F(k, s)�̂(s)

φ̂(s)
. (3.143)

If the waiting time PDF and the jump length PDF do not possess heavy tails, then
the mean waiting time and the variance of the jump length PDF are finite, and we
have the following results in the large-time and large-scale limit, see Sect. 3.2. First,
the Fourier transform of the even dispersal kernel can be written as

w̃(k) = 1− σ
2k2

/2+ o(k2), (3.144)

since

w̃(0) =
∫ ∞

−∞
w(x)dx = 1, w̃

′
(0) = 0, σ

2 = −w̃
′′
(0) =

∫ ∞

−∞
x2

w(x)dx .

(3.145)
Second, 1/φ̂(s) can be written as

1

φ̂(s)
� 1+ 〈t〉s, (3.146)

up to first order in s, or

1

φ̂(s)
� 1+ 〈t〉s +

(

〈t〉2 − 〈t2〉
2

)

s2 (3.147)
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up to second order, since

φ̂(0) =
∫ ∞

0
φ(t)dt = 1, 〈t〉 = −φ̂

′
(0) =

∫ ∞

0
tφ(t)dt, (3.148)

〈t2〉 = φ̂
′′
(0) =

∫ ∞

0
t2
φ(t)dt. (3.149)

Substituting (3.144) into (3.143) and using that �̂(s) = [1− φ̂(s)]/s, we obtain

1− φ̂(s)

φ̂(s)

[

ˆ̃ρ(k, s)− ρ̃(k, 0)

s

]

= −σ
2k2

2
ˆ̃ρ(k, s)+ 1− φ̂(s)

sφ̂(s)
ˆ̃F(k, s). (3.150)

Substitution of (3.146) into (3.150) and inversion of the Fourier and Laplace trans-
forms leads to the RD equation (2.3) with D = σ

2
/2 〈t〉. If we substitute (3.147)

into (3.150) and invert the Fourier and Laplace transforms, we obtain the reaction-
telegraph equation:

(

〈t〉 − 〈t2〉
2〈t〉

)

∂
2
ρ

∂t2
+ ∂ρ

∂t
= σ

2

2〈t〉
∂

2
ρ

∂x2
+ F +

(

〈t〉 − 〈t2〉
2〈t〉

)

∂F

∂t
. (3.151)

A comparison of (2.19) and (3.151) leads to the relation between the macroscopic
parameters τ (relaxation time) and D (diffusion coefficient) and the mesoscopic
quantities, namely

τ = 〈t〉 − 〈t2〉
2〈t〉 and D = σ

2

2〈t〉 . (3.152)

3.5 Random Walk in Random Time and Subordination

In this section we consider a random walk in random time. In this case the particle
position X depends on the random time T (t), X (T (t)), rather than on the conven-
tional time t . An insight into this model can be obtained by considering a particle
moving in a nonstationary random environment for which the intensity of jumps is
random. We use the standard formula for the particle position as the sum of IID
random jumps Zi ,

X (t) =
N (t)
∑

i=1

Zi , (3.153)

in which the number of jumps N (t) is a nonhomogeneous Poisson process with
the random intensity λ(t) ≥ 0. For example, one can think of a particle moving
in a random turbulent flow. The process X (t) is called a compound Cox process
and N (t) is a doubly stochastic Poisson process. The probability of n jumps up to
time t is
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P(N (t) = n) = Eλ

⎧

⎪⎨

⎪⎩

(∫ t
0 λ(s)ds

)n

n! exp

(

−
∫ t

0
λ(s)ds

)

⎫

⎪⎬

⎪⎭

, (3.154)

where the expectation Eλ is taken over the random process λ(t). If we introduce the
random time T (t) = λ

−1 ∫ t
0 λ(s)ds, then the Cox process N (t) can be rewritten in

terms of a homogeneous Poisson process Nh(t) with intensity λ and random time
T (t) as

N (t) = Nh(T (t)). (3.155)

It follows from (3.153) and (3.155) that the particle position depends on T (t):

X (T (t)) =
Nh(T (t))∑

i=1

Zi . (3.156)

In what follows we put the intensity of the Poisson process λ = 1 and treat both t
and T(t) as dimensionless.

Let us now consider the random time T (t) which is assumed to have nonnega-
tive stationary and independent increments, an increasing Lévy process, such that
T (t) ≥ 0, T (0) = 0, and T (t) ≤ T (s) whenever t ≤ s. It is often referred to as a
subordinator or operational time (we assume that T(t) and Nh(t) are independent).
If X(t) is a Markov process, then the process X (T (t)) is Markovian too. The later
process is said to be subordinate to X (t) [15, 126].

Our goal is to find an equation for the density of particles that follow the random
walk (3.156). First, let us find the characteristic function

ρ̃(k, t) = E

(

eikX (t)
)

=
∞
∑

n=0

E

(

eikX (t)∣∣N (t) = n
)

P(N (t) = n). (3.157)

Recall that we interpret this function as the Fourier transform of the density ρ(x, t)

with ρ(x, 0) = δ(x). The conditional expectation is given by E

(

eikX (t)∣∣N (t) = n
)

=
w̃

n
(k), where w̃(k) = E

(

eikZi
)

is the characteristic function of the random jumps

Zi . Using N (t) = Nh(T (t)) with λ = 1, we find

P(N (t) = n) =
∫ ∞

0
P(Nh(τ ) = n)pT (τ, t)dτ =

∫ ∞

0

τ
ne−τ

n! pT (τ, t)dτ,

(3.158)
where pT (τ, t) is the PDF of the random time T (t), defined as

pT (τ, t) =
∂

∂τ
P(T (t) ≤ τ). (3.159)
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Substitution of (3.158) into (3.157) yields

ρ̃(k, t) =
∞
∑

n=0

∫ ∞

0
w̃

n
(k)

(τ )
ne−τ

n! pT (τ, t)dτ

=
∫ ∞

0
eτ(w̃(k)−1) pT (τ, t)dτ = E

(

eT (t)(w̃(k)−1)
)

. (3.160)

Since T (t) ≥ 0 is a Lévy process, its Laplace transform, the moment generating
function can be written as

E

(

e−sT (t)
)

= e−tl(s), (3.161)

where l(s) is the Laplace exponent of the random time T (t). Using (3.160) and
(3.161), we obtain

ρ̃(k, t) = e−tl(−(w̃(k)−1))
. (3.162)

This implies that the characteristic exponent ψ(k) for the particle position X (t) is

ψ(k) = −l(−(w̃(k)− 1)). (3.163)

For example, if the random time T (t) is the Poisson process N (t) with λ = 1,

then the Laplace transform E

(

e−sN (t)
)

= ∑∞
n=0 e−snP(N (t) = n) = e

−t
(

1−e−s
)

,

therefore l(s) =
(

1− e−s
)

. In the long-time limit, l(s) = s + o(s) as s → 0. This

limit corresponds to the Kolmogorov–Feller equation.
It follows from (3.89) that the mesoscopic transport equation for the density of

particles is

∂ρ

∂t
= Lρ, (3.164)

where L is a pseudo-differential operator with symbol given by (3.163), F[Lρ] =
ψ(k)ρ̃(k, t). When the random time T(t) is deterministic T (t) = t , then the Laplace
exponent is l(s) = s, the characteristic exponent defined in (3.161) is ψ(k) =
w̃(k)− 1 and Eq. (3.164) becomes the Kolmogorov–Feller equation.

3.5.1 Space-Fractional Transport Equation

In this section we use the idea of subordination to obtain the space-fractional trans-
port equation. Since T (t) is a nonnegative Lévy process, the Laplace exponent l(s)
defined in (3.161) can be written as

l(s) = as +
∫ ∞

0

(

1− e−sz
)

ν(dz), (3.165)
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where a ≥ 0 and ν(A) ≥ 0 is a Lévy measure satisfying
∫

(0,∞)
min(1, z)ν(dz) <∞

[15].
γ -stable subordinator. As an example, consider a strictly γ -stable random time

Tγ (t), the stable subordinator, for which a = 0 and the Lévy measure is

ν(dz) = γ dz

�(1− γ )z1+γ
(3.166)

with 0 < γ < 1. Let us find the Laplace exponent l(s) of the γ -stable random time
Tγ (t). Integration by parts in (3.165) shows that l(s) = sγ. Thus

E

(

e−sTγ (t)
)

=
∫ ∞

0
e−sτ pT (τ, t)dτ = e−ts

γ

, (3.167)

which implies that E
[

Tγ (t)
] = ∞. The PDF pT (τ, t) can be written in terms of the

strictly γ -stable PDF gγ (τ ) with the Laplace transform

ĝγ (s) = e−s
γ

, 0 < γ < 1. (3.168)

The strictly stable process Tγ (t) has a nice scaling property: Tγ (t) =d t1/γ Tγ (1) for
all t. Scaling arguments lead to

pT (τ, t)=
1

t1/γ
gγ
(

τ/t1/γ
)

. (3.169)

Since the asymptotic decay of the tail of gγ (τ ) is τ−(1+γ ) as τ →∞, we conclude
that pT (τ, t) has a power-law tail

pT (τ, t) ∼
t

τ
1+γ

(3.170)

as τ → ∞. The density pT (τ, t) admits an explicit representation for γ = 1
2 in

terms of the Lévy–Smirnov density g1/2(τ ) =
(

4πτ 3
)−1/2

exp(−1/4τ):

pT (τ, t) = t−2g1/2

(

τ/t2
)

= t

2
√

πτ
3

exp

(

− t2

4τ

)

. (3.171)

It follows from (3.163) that ψ(k) = −[−(w̃(k) − 1)]γ . The governing equation
for the particle density is the mesoscopic transport equation

∂ρ

∂t
= Iγ ρ(x, t), (3.172)

where the right-hand side is the fractional integral operator, defined as

Iγ g(x) = F−1 [−(−(w̃(k)− 1))γ g̃(k)
]

, (3.173)
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and F−1 denotes the inverse Fourier transform. This operator can be considered as a
generalization of the fractional Laplace operator. In the large-scale limit, w̃(k)−1 =
−σ

2k2
/2+ o(k2

) as k → 0, the transport equation (3.172) can be approximated by
the standard space-fractional diffusion equation

∂ρ

∂t
= σ

α

√
2α

∂
α
ρ

∂ |x |α (3.174)

with α = 2γ .
If the density of particles following the Lévy process X (t) is ρX (x, t), then the

density of particles performing the random walk Y (t) = X (T (t)) can be defined as

ρY (x, t) =
∫ ∞

0
ρX (x, τ )pT (τ, t)dτ, (3.175)

where pT (τ, t) = ∂
∂τ

P(T (t) ≤ τ) is the density of the random time T (t). Note
that the random process Y (t) is a Lévy process too. In order to illustrate how the
formula can be used, we consider the particles following the diffusion process X (t)
for which

ρX (x, τ ) =
1

√

2πσ 2
τ

exp

(

− x2

2σ 2
τ

)

. (3.176)

Substitution of (3.176) and (3.171) into (3.175) yields the Cauchy density

ρY (x, t) =
σ t√

2π
(

x2 + σ
2t2

/2
) . (3.177)

This density is the Green function for the space-fractional equation (3.174) with
α = 1. The characteristic exponent ψY (k) of the new process Y (t) can be obtained
as a composition of the Laplace exponent l(s) with the characteristic exponent
ψX (k), i.e.,

E

{

eikY (t)
}

= e−tψY (k) = e−tl(−ψX (k)). (3.178)

We find

E

{

eikY (t)
}

=
∫ ∞

0
E

{

eikX (T (s))
}

pT (s, t)ds

=
∫ ∞

0
eT (s)ψX (k) pT (s, t)ds = e−tl(−ψX (k)). (3.179)

Hougaard subordinator (tempered stable subordinator). Another example of a ran-
dom time is the Hougaard subordinator T (t) with the Lévy measure
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ν(dz) = γ ξe−kz

�(1− γ )z1+γ
dz, z > 0, (3.180)

where k ≥ 0, ξ > 0, and 0 < γ < 1. This density is obtained from the γ -stable den-
sity if we multiply it by the factor ξe−kz . The Laplace transform for the Hougaard
process is

E

{

e−sT (t)
}

= exp

[

t
∫ ∞

0
(1− e−sz)ν(dz)

]

= e−tξ
[

(k+s)γ−kγ ]
, s ≥ 0. (3.181)

The Laplace exponent is l(s) = ξ
[

(k + s)γ − kγ
]

. For γ = 1 we have a determin-
istic process T (t) = ξ t . If k = 0 and ξ = 1 we have a γ -stable subordinator. In
particular, the mean value is

E {T (t)} = − ∂

∂s
E

{

e−sT (t)
}

s=0
= γ ξ t

k1−γ
(3.182)

and it is finite. It is clear that E {T (t)} → ∞ as k → 0 for 0 < γ < 1. So the
Hougaard subordinator is useful when we consider transport processes with both
normal and anomalous behaviour.

3.5.2 Inverse Subordination and Time-Fractional Transport
Equation

In this section we show how to obtain subdiffusive transport by using the idea
of inverse subordination [278, 371]. Assume that the density ρX (x, t) obeys the
Kolmogorov–Feller equation

∂ρX

∂t
=
∫

R

ρX (x − z, t)w(z)dz − ρX (x, t) (3.183)

with the initial condition

ρX (x, 0) = ρ0(x). (3.184)

We define the particle density ρ(x, t) as follows:

ρ(x, t) =
∫ ∞

0
ρX

(

x,

(
t

τ

)γ)

gγ (τ )dτ, (3.185)

where gγ (τ ) is the density of the γ -stable variable with 0 < γ < 1 defined by the
Laplace transform (3.168). Then ρ(x, t) satisfies the time-fractional Kolmogorov–
Feller equation

∂
γ
ρ

∂tγ
=
∫

R

ρ(x − z, t)w(z)dz − ρ(x, t), (3.186)
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where ∂
γ
ρ/∂tγ is the Caputo fractional derivative and time t is dimensionless.

The main idea here is the introduction of the subordinated process, the position
of particles X (Nγ (t)), whose mesoscopic density is ρ(x, t). The parent process
X (t) is the compound Poisson process with the density ρX (x, t) and the ran-
dom time Nγ (t) is the inverse γ -stable subordinator defined as the hitting time
Nγ (t) = inf(τ : Tγ (τ ) > t) for γ -stable subordinator Tγ (τ ) with the Laplace
exponent l(s) = sγ . The non-Markovian behavior of the inverse subordinator Nγ (t)
leads to subdiffusion of X (Nγ (t)). The details of the derivation of (3.186) can be
found in [278]. Note that as the parent process X(t) one can use any Lévy pro-
cess with the transport operator L , so the time-fractional equation is of the form
∂
γ
ρ/∂tγ = Lρ.

3.6 Macroscopic Description

The term macroscopic description refers to the long-time and large-scale limit,
t →∞ and x →∞, of mesoscopic equations where the details of the microscopic
movement are irrelevant. In particular, it refers to the diffusive limit where balance
equations such as (3.13), (3.41), and (3.74) are approximated by the diffusion equa-
tion (2.1). The standard derivation of the diffusion equation involves the assumption
that the typical microscopic jumps and times are small compared to the character-
istic macroscopic space and time scales. Let us illustrate this using the mesoscopic
transport equation (3.74). If the jump density w(z) is a rapidly decaying function for
large z, one can expand ρ(x − z, t) in z and truncate the Taylor series at the second
moment:

ρ(x − z, t) = ρ(x, t)− ∂ρ

∂x
z + 1

2

∂
2
ρ

∂x2
z2 + o(z2

). (3.187)

Substitution of (3.187) into (3.74) yields

∂ρ

∂t
+ v

∂ρ

∂x
= D

∂
2
ρ

∂x2
, (3.188)

where

v = λ

∫

R

zw(z)dz, D = λ

2

∫

R

z2
w(z)dz. (3.189)

This truncation is a well-defined procedure, if the higher moments become pro-
gressively smaller. If the jump density w(z) is even, then we obtain the standard
diffusion equation. However, this “naive” Taylor series expansion is not valid for
“heavy-tailed” probability density functions, such as a Cauchy PDF,

w(z) = σ

π
(

σ
2 + z2

) , (3.190)
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for which the second moment,
∫

R
z2
w(z)dz, diverges. A jump PDF is said to have a

power-law tail if

w(z) ∼ 1

|z|1+α
, z →∞, (3.191)

for which the nth moment exists if n < α. The question arises for which values of
the power-law exponent α the diffusion approximation (2.1) is not valid.

3.6.1 Scaling Procedure

In this section we use a scaling procedure to derive macroscopic equation. This
allows us to understand the connection between macroscopic and microscopic
descriptions. We introduce the macroscopic variables (x∗, t∗) as follows:

x∗ = ε
H x, t∗ = εt, (3.192)

where ε is a small parameter and H is a scaling exponent that has to be determined.
It is convenient to introduce such a small parameter, so that instead of taking the lim-
its t →∞ and x →∞, we can consider ε → 0 for fixed values of the macroscopic
space–time variables (x∗, t∗). We now drop the asterisk for macroscopic variables
and adopt the following notation for rescaling:

x → x

ε
H
, t → t

ε
. (3.193)

To illustrate the method, we derive the diffusion equation corresponding to the
discrete balance equation (3.13). For simplicity, we assume that the jump density is
an even function, w(z) = w(−z). We introduce the continuous-time variable t so
that n = [t], where [·] denotes the integer part of a real number. Using (3.193), we
obtain the rescaled density

ρ
ε
(x, t) = ρ

(
x

ε
H
,

[
t

ε

])

. (3.194)

Note that [t/ε] ≈ t/ε as ε → 0. From (3.13) we obtain the equation

ρ
ε
(x, t + ε) =

∫

R

ρ
ε
(

x − ε
H z, t

)

w(z)dz. (3.195)

It is clear that after rescaling the time step, ε � 1, the jump size is proportional to
ε
H . In the limit ε → 0, we expand both sides of the rescaled equation (3.195) in a

Taylor series as
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ρ
ε
(x, t)+ ∂ρ

ε

∂t
ε + o(ε) = ρ

ε
(x, t)+ σ

2

2

∂
2
ρ
ε

∂x2
ε

2H + o
(

ε
2H
)

, (3.196)

where σ
2 = ∫

R
z2
w(z)dz. To obtain the macroscopic diffusion equation for the

density ρ(x, t) = limε→0 ρ
ε
(x, t), we must choose H = 1/2. Then (3.196) turns

into (2.1) with the diffusion coefficient D = σ
2
/2. This limit has a very nice

probabilistic interpretation. First let us consider the discrete case. It follows from
the central limit theorem (CLT) that if the number of steps n is large, the rescaled

particle position Xn/n
1
2 tends to a Gaussian variable with zero mean and variance

σ
2. The random position Xn is defined in (3.10). In particular EX2

n = σ
2n. The

functional CLT states that if Zi is a sequence of IID random variables with zero

mean and variance σ
2 = E

(

Zi
2
)

, then

X[nt]

n
1
2

= 1

n
1
2

[nt]
∑

i=1

Zi
d→ B(t) as n →∞, (3.197)

where
d→means convergence in distribution. Here B(t) is the Brownian motion with

the PDF

d

dx
P(B(t) ≤ x) = 1√

4πDt
exp

(

− x2

4Dt

)

, (3.198)

which is the Green’s function for the diffusion equation (2.1) with D = σ
2
/2.

Using the rescaling t → t/ε with a small parameter ε = n−1 and fixed time t ,
we write a rescaled particle position Xε

(t) in terms of Xn :

Xε
(t) = ε

1
2 X[t/ε] = ε

1
2

[t/ε]
∑

i=1

Zi . (3.199)

The functional CLT ensures that as ε → 0, the random process Xε
(t) converges to

the Brownian motion B(t). The PDF pε(x, t) for the particle position Xε
(t), starting

at x = 0, satisfies

lim
ε→0

1

ε
pε(x, t) = lim

ε→0

1

ε
p

(

x

ε
1
2

,

[
t

ε

])

= 1
√

2πσ 2t

(

− x2

2σ 2t

)

(3.200)

where p(x, t) is defined in (3.11).

It is instructive to show that Xε
(t)

d→ B(t) as ε → 0. Let us use the characteristic
function



94 3 Random Walks and Mesoscopic Reaction–Transport Equations

E
{

exp(ikXε
(t))
} = E

⎧

⎨

⎩
exp

⎛

⎝ikε
1
2

[t/ε]
∑

i=1

Zi

⎞

⎠

⎫

⎬

⎭
=
(

E

{

exp
(

ikε
1
2 Zi

)})[t/ε]
.

(3.201)

In the limit ε → 0, we have
[

t/ε
] ≈ t/ε, and E

{

exp(ikXε
(t))
} = (1− k2

εσ
2
/2+

o(ε))t/ε → exp(−k2
σ

2t/2). That is

lim
ε→0

E
{

exp
(

ikXε
(t)
)} = exp

(

−Dk2t
)

, (3.202)

which is a characteristic function of the Brownian motion with D = σ
2
/2. In the

next section we consider the case where the random variables Zi have infinite sec-
ond moments, which leads to the anomalous scaling x → x/ε1/α , t → t/ε, and
limε→0 E

{

exp(ikXε
(t))
} = exp(−Dα |k|α t) with 0 < α < 2. This corresponds to

the convergence of the discrete random walk Xn (3.10) to the symmetric α-stable
Lévy process (Lévy flight).

If we rescale the compound Poisson process X (t) as

Xε
(t) = ε

1
2 X (t/ε) = ε

1
2

N (t/ε)
∑

i=1

Zi , (3.203)

one can show that the random process Xε
(t) converges to the Brownian motion

B(t) as well. This is the probabilistic explanation why the integral equation (3.74)
can be approximated by the diffusion equation. However, if the second moment
E(Z2

i ) = ∞, then Xε
(t) has other limiting processes, depending on the counting

process N (t).

3.6.2 Anomalous Scaling

So far we have discussed random walks with a finite mean waiting time and a finite
variance of the jump length. These models lead to the classical parabolic scaling:
x → x/ε1/2, t → t/ε. The governing macroscopic equation for the density ρ

becomes the standard diffusion equation. Let us now consider two cases for which
the scaling is anomalous and the mean-field equations for ρ are fractional diffusion
equations.

3.6.2.1 Finite Mean Waiting Time and Infinite Variance

Suppose that the jump PDF w(z) is an even function and decreases as

w(z) ∼ 1

|z|1+α
, 0 < α < 2, (3.204)
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for large z. It is clear that the second moment diverges for 0 < α < 2. The key
question is how the rescaled process Xε

(t) = ε
H X (t/ε) behaves as ε → 0. Note

that we rescale X (t) by using a nontrivial scaling exponent H , the Hurst exponent.
As before, we assume that the particle position X (t) at time t is given by a CTRW

X (t) =
N (t)
∑

i=1

Zi , (3.205)

where N (t) is the Poisson process and the Zi are random jumps with a heavy-tailed
density (3.204). For simplicity, the jumps are assumed to be independent of the
counting process N (t). The waiting times between jumps are exponentially dis-
tributed with the mean value λ

−1
. The generalized CLT ensures that

Xε
(t) = ε

H X (t/ε) = ε
H

N (t/ε)
∑

i=1

Zi (3.206)

converges in distribution to a symmetric α-stable Lévy process, that is, Xε
(t)

d→
Sα(t) as ε → 0 [126] (see Sect. 3.3.3.2). The density of particles obeys the fractional
diffusion equation

∂ρ

∂t
= Dα

∂
α
ρ

∂ |x |α (3.207)

with 0 < α < 2. We conclude that stable Lévy processes are important for transport
theory because they provide the macroscopic description of particles with heavy-
tailed jumps in the hydrodynamic limit, t →∞ and x →∞.

From a probabilistic point of view, Sα(t) is the attractor for the rescaled parti-
cle position Xε

(t). To understand this, consider first a discrete random walk. The
rescaled position of a particle with jumps Zi that are symmetric with respect to zero
is Yn = n−1/α∑n

i=1 Zi with 0 < α < 2. We are interested in the limit n →∞, such
that the sequence Yn converges toward a “new” random variable Z in distribution,

i.e., Yn
d→ Z as n →∞ or limn→∞ P(Yn < x) = P(Z < x). The random variable

Z is referred to as a symmetric stable variable. Since the parameter α plays a very
important role, the random variable Z is said to be a symmetric α-stable random
variable.

Recall that, in general, the stable random variable Z involves four parameters:
the exponent (stable index) 0 < α ≤ 2, the skewness −1 ≤ β ≤ 1, the shift a ∈ R,
and the scale σ ≥ 0. It is well known that the stable probability density function

w(z|α, β, σ, a) = ∂

∂z
P(Z < z) (3.208)
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cannot be written in an explicit form, but its Fourier transform, the characteristic
function has the following representation:

w̃(k|α, β, σ, a) = exp
[

ika − σ
α |k|α (1− iβ sgn(k)�)

]

, (3.209)

where � = tan(πα/2) for α �= 1 and � = −2/π log |k| for α = 1. The value β = 0
corresponds to a symmetric PDF. For example, the Cauchy distribution is

w(x |1, 0, σ, a) = σ

π
[

(x − a)2 + σ
2
] , (3.210)

for which α = 1. We refer to Feller’s book [126] for further details on stable random
variables.

The generalized CLT states that if the jumps Zi are symmetric around zero and
distributed with heavy tails like |z|−1−α for z →∞, then for a large number of steps
n, the rescaled particle position Xn/n

1/α can be described by a symmetric α-stable
distribution with a = β = 0. So if we choose H = 1/α, then the rescaled particle
position

Xε
(t) = ε

H
N (t/ε)
∑

i=1

Zi (3.211)

tends to the symmetric α-stable Lévy process Sα(t) with the characteristic function

E

(

eikSα(t)
)

= e−Dα |k|α t and Dα = λσ
α (see (3.99)). The parameter Dα is referred

to as a scale factor, which is a measure of the width of the density ρ(x, t).
We conclude that as long as the mean waiting time and the variance of the jumps

are finite, parabolic scaling leads to the Brownian motion in the limit ε → 0. The
macroscopic equation for the density of particles is a scale-invariant diffusion equa-
tion. Infinite variance of jumps in the domain of attraction of a stable law leads
to Lévy processes, Lévy flights. In the limit ε → 0, the particle position Xε

(t)
becomes self-similar with exponent 1/α. Recall that the random process X (t) is
self-similar, if there exists a scaling exponent H such that X (t) and ε

H X (t/ε)
have the same distributions for any scaling parameter ε. In this case we write

X (t)
d= ε

H X (t/ε). For a symmetric Lévy process with the characteristic function
E {exp(ikX (t))} = exp(−Dα |k|α t), the scaling exponent is H = 1/α. For the
Brownian motion, H = 1/2. The main feature of a symmetric α-stable Lévy process
is that it has independent heavy-tailed increments. The asymptotic behavior of the
density of particles ρ(x, t) for large x is

ρ(x, t) ∼ Dαt

|x |1+α
. (3.212)
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In the three-dimensional case, the fractional diffusion equation in the long-time
large-scale limit has the form

∂ρ

∂t
= −Dα(−�)

α
2 ρ, x ∈ R

3
, (3.213)

in which the standard Laplacian � is replaced by a fractional Riesz operator. This
replacement leads to a faster spread of particles, than the standard diffusion equation
describes, i.e., superdiffusion, see Sect. 2.3. This is due to the heavy tails of the dis-
persal kernel w(z) ∼ |z|−d−α with 0 < α < 2 as z →∞ where d is the dimension
of space, R

d . The underlying stochastic process is the rotationally invariant α-stable
process [15]. A careful discussion of stable distributions and corresponding random
processes is provided in [373, 444].

3.6.2.2 Infinite Mean Waiting Time and Infinite Variance of Jumps

Assume that the PDF of the waiting time φ(t) decreases like t−1−γ as t → ∞,
and particles have a dispersal kernel w(z) with heavy tails |z|−1−α . What is the
scale-invariant macroscopic equation for the particles density in this case? It turns
out that the infinite variance of jumps leads to a fractional space derivative, and the
infinite mean waiting time leads to the fractional Caputo derivative. The density of
particles obeys the time–space fractional diffusion equation

∂
γ
ρ

∂tγ
= Dα,γ

∂
α
ρ

∂ |x |α (3.214)

and the scale invariance relation

ρ(x, t) = 1

ε
γ
α

ρ

(
x

ε
γ
α

,
t

ε

)

. (3.215)

Note that the underlying stochastic process Sα,γ is not Markovian (0 < γ < 1)
[371].

Let us show how the standard diffusion equation (3.16) and anomalous diffu-
sion equation (3.214) emerge as a result of long-time large-scale limit of a CTRW
described by (3.53). If we use the Dirac delta-function as the initial condition, then
ρ̃0(k) = 1, and the Fourier–Laplace transform of ρ(x, t), (3.53), is given by

ˆ̃ρ(k, s) = 1− φ̂(s)

s
[

1− w̃(k)φ̂(s)
] . (3.216)

First we rescale ˆ̃ρ(k, s) as ρε
(k, s) = ˆ̃ρ

(

ε
Hk, εs

)

and use the standard expansions

w̃
(

ε
Hk
)

= 1− σ
2
ε

2Hk2

2
+ o

(

ε
2H
)

, (3.217)
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φ̂(εs) = 1− T εs + o(ε). (3.218)

If we choose scaling exponent H = 1/2, we obtain

lim
ε→0

ρ
ε
(k, s) = 1

s + Dk2
, (3.219)

with D = σ
2
/2T . This corresponds to the standard diffusion equation; in the long-

time large-scale limit all details of the random walk become irrelevant.
Consider now the anomalous case with the following scaling behavior:

w̃
(

ε
Hk
)

= 1− σ
α
ε
Hα |k|α
2

+ o
(

ε
αH
)

, (3.220a)

φ̂(εs) = 1− τ
γ

0 (εs)γ + o
(

ε
γ )

. (3.220b)

Substitution of these expressions into (3.216) yields the rescaled density ρ
ε
(k, s) =

ˆ̃ρ
(

ε
Hk, εs

)

. To obtain a nontrivial limit limε→0 ρ
ε
(k, s), we have to choose

H = γ

α
(3.221)

such that

lim
ε→0

ρ
ε
(k, s) = sγ−1

sγ + Dα,γ k
α , (3.222)

which is the Fourier–Laplace transform of the fundamental solution of the time–
space fractional equation (3.214) with

Dα,γ =
σ
α

2τγ0
. (3.223)

Further details on the Cauchy problem for the time–space fractional diffusion equa-
tion (3.214) and its extension for the asymmetric case can be found in [371, 260].

Let us examine more closely the nature of the underlying stochastic process
Sα,γ (t) for the time–space fractional equation (3.214). The latter is the long-time
large-scale limit of the generalized Master equation (3.43) under the conditions that
the symmetric jumps have a heavy-tailed density (3.204) with infinite variance and
the waiting time PDF φ(t) decreases like t−1−γ with the index 0 < γ < 1 as
t → ∞. Let us find the long-time large-scale limit of the CTRW under these
conditions. We have introduced the CTRW as a subordinated stochastic process
X (t) = XN (t) in which the parent process Xn is the position of a particle (3.10) in
the discrete-time random walk (DTRW) model and the counting process N (t) plays
the role of the randomized time or operational time (see (3.26)). We have shown that
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under the anomalous scaling x → x/ε1/α , t → t/ε, the discrete random walk Xn
(3.10) converges to the symmetric α-stable Lévy process Sα(t), i.e.,

ε
1/αX[t/ε]

d→ Sα(t) (3.224)

as ε → 0. It can be shown that the rescaled counting process converges as

ε
γ N

(
t

ε

)

d→ Nγ (t) (3.225)

If we compose these two processes, we obtain the subordinated process

Sα,γ (t) = Sα(Nγ (t)), (3.226)

which is the scaling limit of the CTRW we are looking for. Note that Nγ (t) is the
hitting time: Nγ (t) = inf(τ : Tγ (τ ) > t) for the γ -stable subordinator Tγ (τ ). The
latter is the scaling limit of the time of the nth jump Tn ,

ε
1/γ T[t/ε] = ε

1/γ
[t/ε]
∑

i=1

�i
d→ Tγ (t), (3.227)

as ε → 0. Here �i = Ti − Ti−1 is the interval between jumps. The non-
Markovian behavior of the inverse subordinator Nγ (t) leads to the non-Markovian
behavior of Sα,γ (t). Of course, the scaling limit Sα,γ (t) is a self-similar process:

Sα,γ (t)
d= ε

γ/αSα,γ (t/ε). For further details and the statistical analysis of the rela-
tion between rescaled CTRWs and fractional equations, we refer to the series of
papers by Meerschaert and his colleagues [39, 275, 277, 276, 278, 22, 25].

In Fig. 3.2 we present a schematic picture of the convergence from microscopic
to macroscopic levels of description for different scalings and processes.

3.6.3 Scaling and Convergence to the Diffusion Process

We have seen how the scaling procedure can be used to obtain a macroscopic stan-
dard or fractional diffusion equation. We now describe the method for obtaining
macroscopic equations without deriving mesoscopic balance equations like (3.13),
(3.41), or (3.74). Let us explain the usefulness of the rescaling procedure. When
mesoscopic balance equations are derived from some underlying microscopic ran-
dom walk models, certain simplifying assumptions are made regarding the statis-
tical characteristics of random movements. However, if the assumptions are less
restrictive, we might have some problems deriving closed balance equations for the
particle density. In fact, in many cases we will not be able to do so.

Consider the microscopic stochastic equation for the particle position X (t),
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Fig. 3.2 Schematic picture for transition from microscopic to macroscopic equations

dX

dt
= v

(

ε
1/2X (t), ξ(t)

)

, (3.228)

where the velocity v is a slowly varying function of the space coordinate x ; ε1/2 is
a small parameter. We assume that v depends on some stationary random process
ξ(t) with zero mean. Under quite general conditions, the rescaled particle position,

Xε
(t) = ε

1
2 X (t/ε), tends to a diffusion process as ε → 0. The key question is how

to find the effective velocity and diffusivity in the corresponding Fokker–Planck
equation.

Before dealing with the general stochastic equation (3.228), it is useful for fixing
the basic ideas to discuss a relatively simple example. Consider the equation for the
particle position X (t):

dX

dt
= v(t), (3.229)

where the random velocity v(t) has zero mean and takes a finite number of values
at random times Tn . We define the discrete Markov process (vn, Tn), where vn rep-
resents the velocity of the particle at the nth transition and Tn represents the random
time at which the nth transition occurs. We assume that successive waiting times
Tn − Tn−1 are independent identically distributed positive random variables. Even
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under these assumptions, it is impossible to derive a closed equation for the PDF
for the particle position or the mean density ρ(x, t). To solve this problem, we need
to make further simplifying assumptions regarding the velocity v(t). Obviously, if
v(t) is Gaussian white noise, then X (t) is the Brownian motion.

Let us apply the scaling idea and determine the behavior of the rescaled particle

position Xε
(t) = ε

1
2 X (t/ε) in the long-time limit ε → 0. It follows from (3.229)

that Xε
(t) with Xε

(0) = 0 can be written as

Xε
(t) = ε

1
2

∫ t/ε

0
v(s)ds ≈ ε

1
2

N (t/ε)
∑

i=1

Yi , (3.230)

where N (t) = max
{

n : Tn ≤ t
}

is the random number of jumps in particle’s veloc-
ity up to time t , Yi = vi−1(Ti − Ti−1) are IID random variables with zero mean and

variance σ
2
Y = E{v2

i−1(Ti − Ti−1)
2}, and T0 = 0. Our goal is to show that Xε

(t)
converges in distribution to the Brownian motion B(t) as ε → 0. The important
question is how the rescaled process εN (t/ε) behaves as ε → 0. The renewal theo-
rem states that if the mean waiting time between jumps T = E

{

Ti − Ti−1
}

is finite,
then εN (t/ε) → t/T as ε → 0 [81]. The characteristic function E

{

exp
(

ikXε
(t)
)}

can be written as E

{

exp
(

ikε
1
2
∑N (t/ε)

i=1 Yi
)}

≈
(

E

{

exp
(

ikε
1
2 Yi
)})t/εT

. Since

E
{

Yi
} = 0, we can write E

{

exp
(

ikXε
(t)
)} =

(

1− k2
εσ

2
Y /2+ o(ε)

)t/εT →
exp

(

−Dk2t
)

as ε → 0. So Xε
(t) converges in distribution to B(t) with the diffu-

sion coefficient D = σ
2
Y /2T .

For the general stochastic equation (3.228), the rescaled particle position Xε
(t) =

ε
1
2 X (t/ε) tends to a diffusion process, in the limit ε → 0, with the probability

density function p(x, t). The latter obeys the Fokker–Planck equation

∂p

∂t
= − ∂

∂x
(μ(x)p)+ 1

2

∂
2

∂x2

(

σ
2
(x)p

)

, (3.231)

with infinitesimal displacement

μ(x) = lim
ε→0

∫ 1/ε

0

∫ 1/ε

0
Eξ

[
∂v(x, ξ(s))

∂x
v(x, ξ(t))

]

dsdt (3.232)

and infinitesimal variance σ
2
(x),

σ
2
(x) = lim

ε→0

∫ 1/ε

0

∫ 1/ε

0
Eξ [v(x, ξ(s))v(x, ξ(t))] dsdt. (3.233)

The details of the derivation can be found in [142].



102 3 Random Walks and Mesoscopic Reaction–Transport Equations

3.7 Transport Equations and Underlying Stochastic Processes

In this section we remind the reader of the Kolmogorov forward and backward equa-
tions, infinitesimal generators, stochastic differential equations, and functional inte-
grals and then consider how the basic transport equations are related to underlying
Markov stochastic processes [141, 142].

3.7.1 Brownian Motion, Lévy Flight, and the Diffusion Equations

We start with a very simple one-dimensional diffusion equation

∂ρ

∂t
= D

∂
2
ρ

∂x2
, x ∈ R, (3.234)

with the initial condition

ρ(x, 0) = ρ0(x). (3.235)

The solution of the initial value problem (3.234) and (3.235) can be written as

ρ(x, t) =
∫

R

ρ0(y)p(y, t |x)dy, (3.236)

where the Green’s function, the propagator, is

p(y, t |x) = 1√
4Dt

exp

(

− (y − x)2

4Dt

)

. (3.237)

It should be noted that we integrate with respect to the “forward” variable y in
(3.236). In this case, (3.236) has a very nice probabilistic interpretation. Consider the
Brownian motion B(t), which is a stochastic process with independent increments,
such that B(t + s) − B(s) is normally distributed with zero mean and variance
2Dt . The corresponding transition probability density function p(y, t |x) is given
by (3.237). Therefore the solution (3.236) has a probabilistic representation

ρ(x, t) = Exρ0(B(t)), (3.238)

where Ex is the expectation operator with respect to the random process B(t) start-
ing at point x . At first glance, (3.238) appears to provide the connection between
the microscopic Brownian motion B(t) and the macroscopic diffusion equation for
the density of particles that all follow the Brownian motion. This is not quite true.
Since we integrate with respect to the “forward” variable y, we treat (3.234) as the
Kolmogorov backward equation which does not represent the transport equation. If
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we integrate with respect to the “backward” variable x , then

ρ(y, t) =
∫

R

ρ0(x)p(y, t |x)dx (3.239)

is the solution to the Kolmogorov forward equation,

∂ρ

∂t
= D

∂
2
ρ

∂y2
, y ∈ R, (3.240)

with ρ(y, 0) = ρ0(y).
Of course (3.234) and (3.240) are identical in form, but only the forward equa-

tion (3.240) has the physical meaning of a transport equation for particles. We will
discuss the difference between forward and backward equations in the next section.
It turns out that, it is more convenient to deal with the backward equation (3.234).
Let us give an example. The Brownian motion B(t) starting at x can be rewritten in
terms of the standard Wiener process W (t) as

B(t) = x +√2DW (t). (3.241)

Recall that W (0) = 0, EW (t) = 0, and EW 2
(t) = t . The solution to (3.234) and

(3.235) can be written as

ρ(x, t) = Eρ0

(

x +√
2DW (t)

)

, (3.242)

where E is the expectation operator with respect to W (t). The main advantage of
the probabilistic representation (3.242) is that we can use a Monte Carlo approach
to estimate ρ(x, t):

ρ(x, t) ≈ 1

N

N
∑

i=1

ρ0

(

x +√
2Dtξi

)

, (3.243)

where the sample ξi is computed from the standard normal distribution N (0, 1) with
zero mean and unit variance and N is the sample size [300]. The generalization of
these ideas to a Brownian particle moving in three dimensions is straightforward.
The solution of the Cauchy problem

∂u

∂t
= D�u, u(x, 0) = u0(x), x ∈ R

3
, (3.244)

can be written as

u(x, t) = Eu0

(

x+√
2DW(t)

)

, (3.245)
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where W(t) is the standard three-dimensional Wiener process.
The probabilistic solution to the space-fractional Cauchy problem

∂u

∂t
= Dα

∂
αu

∂|x |α , u(x, 0) = u0(x), x ∈ R, (3.246)

can be written in terms of the symmetric α-stable Lévy motion Sα(t) (Lévy
flight) as

u(x, t) = Eu0
(

x + Sα(t)
)

, (3.247)

where Sα(t) is defined in Sect. 3.3.3.2. Of course, for the simple transport problem
(3.234) and (3.235) we have an explicit solution (3.236). In most cases, explicit
solutions to the transport equations are not available, but we still can write down
the solution in the form of the functional integral (3.238). In fact, this formula can
be easily coded to obtain numerical solutions; it provides a powerful alternative to
standard finite difference methods [300].

3.7.2 Transport Equations: Forward vs Backward

Consider a collection of particles that move independently of each other in three-
dimensional space R

3. We assume that the position of a particle X(t) is a time-
homogeneous Markov process with transition density p(y, t |x).

The density of particles ρ(y, t) at point y at time t can be expressed in terms of
the initial density of particles ρ0(x) as

ρ(y, t) =
∫

R
3
ρ0(x)p(y, t |x)dx, (3.248)

where the integration is performed with respect to the “initial” or “backward” vari-
able x. This equation has a very simple meaning as the balance of particles arriving
at point y from various initial positions x. The probabilistic meaning of this equation
is the law of total probability: the probability density ρ(y, t) is the sum (integral)
of the probability density p(y, t |x) to be at point y at time t conditional on being at
point x at t = 0 multiplied by the probability density ρ0(x) to be at point x at time
0.

We define a transport operator Qt as follows:

ρ(y, t) = Qtρ0(y) ≡
∫

R
3
ρ0(x)p(y, t |x)dx, (3.249)

so the density of particles ρ(y, t) is the solution of a transport equation written
in terms of the “forward” variable y. The key question is what equation does
ρ(y, t) = Qtρ0(y) satisfy. In what follows, we derive several transport equations
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corresponding to various random processes X(t) and probability density functions
p(y, t |x), Green’s functions.

As we have mentioned in the previous section, it is convenient to integrate with
respect to the “forward” variable y. We define the transition operator Tt and the new
function u(x, t) as

u(x, t) = Ttu0(x) ≡
∫

R
3
u0(y)p(y, t |x)dy, (3.250)

where u(x, 0) = u0(x). We use the notation u instead of ρ to emphasize that the
function u(x, t) is formal and does not generally represent the particle density.

It follows from (3.250) that the operator Tt , associated with the transition prob-
ability p(y, t |x), can be written in terms of a conditional expectation Ex over the
particle position X(t) at time t , provided X(0) = x:

Tt f (x) = Ex f (X(t)). (3.251)

We always write the expectation Ex with the index x when we want to emphasize
that the process X(t) starts at point x, i.e., X(0) = x:

Ex { f (X(t))} = E { f (X(t))|X(0) = x} . (3.252)

The operator Tt has the semigroup property, TtTs f = Tt+s f . It is easy to check that
Tt is the adjoint of Qt :

∫

R
3
Tt f (x)ϕ(x)dx =

∫

R
3
f (x)Qtϕ(x)dx. (3.253)

We conclude that if the operator Tt is self-adjoint, i.e., Tt = Qt , then it can be used
as a transport operator. If the random position X(t) of a particle starting at x = 0
is a symmetric process for which P(X(t) = x) = P(X(t) = −x), then the operator
Tt is self-adjoint. For example, the Brownian motion B(t) is a symmetric process.
Note that if a stationary distribution ρ(y) exists, it satisfies ρ(y) = Qtρ(y).

Let us define two evolution operators L and L∗ for the Markov process X(t):

L f (x) = lim
h→0

Th f (x)− f (x)
h

= lim
h→0

∫

R
3 f (y)p(y, h|x)dy− f (x)

h
, (3.254)

where L acts only on the “backward” variable x, and

L∗ f (y) = lim
h→0

Qh f (y)− f (y)
h

= lim
h→0

∫

R
3 f (x)p(y, h|x)dx− f (y)

h
, (3.255)

where L∗ acts on the “forward” variable y. The operators L and L∗ are called
the infinitesimal generators of the semigroups Tt and Qt , respectively [142]. The
operator L∗ is the adjoint of L:
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∫

R
3
L∗ f (x)ϕ(x)dx =

∫

R
3
f (x)Lϕ(x)dx. (3.256)

One can show that u(x, t) given by (3.250) is the unique solution of the initial-value
problem:

∂u

∂t
= Lu, u(x, 0) = u0(x), x ∈ R

3
. (3.257)

The function ρ(y, t) given by (3.248) obeys the following initial-value problem:

∂ρ

∂t
= L∗ρ, ρ(y, 0) = ρ0(y), y ∈ R

3
. (3.258)

Note that some authors have used these operators interchangeably for the description
of the mesoscopic transport process. It is clear that if L is self-adjoint, then it can be
used as a transport operator and the function u(x, t) can represent the particle den-
sity. For example, the one-dimensional Brownian motion B(t) has the infinitesimal
generator L = ∂

2
/∂x2 which is self-adjoint. A symmetric α-stable Lévy process on

R has the generator L = ∂
α
/∂ |x |α , which is self-adjoint too. In the next section we

obtain L and L∗ from the Chapman–Kolmogorov equation.

3.7.3 Chapman–Kolmogorov Equation and Infinitesimal
Generators

Let us consider the Chapman–Kolmogorov equation for the transition density
p(y, t |x):

p(y, t + s|x) =
∫

R
3
p(z, t |x)p(y, s|z)dz. (3.259)

Our goal is to derive the Kolmogorov forward and backward equations and to dis-
cuss the main difference between them. The forward equation deals with the events
during the small time interval (t, t+h] and gives us the answer for how those events
define the probability density p(y, t+h|x) at time t+h, while the backward equation
is concerned with events just after the time t = 0.

Let us replace s with small h in (3.259) and rewrite this equation for the density
ρ(y, t):

ρ(y, t + h) =
∫

R
3
ρ(z, t)p(y, h|z)dz, (3.260)

where p(y, h|z) represents the probability of the transitions from z to y occurring
during short time interval (t, t + h]. The meaning of this equation is very simple. It
gives the balance of particles at point y at time t + h. Subtracting ρ(y, t) from both
sides and dividing by h, we find
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ρ(y, t + h)− ρ(y, t)
h

=
∫

R
3 ρ(z, t)p(y, h|z)dz− ρ(y, t)

h
. (3.261)

Letting h → 0, we obtain the Kolmogorov forward equation, the Master equation,

∂ρ(y, t)
∂t

= L∗ρ(y, t), (3.262)

where L∗ is defined by (3.255). The transition probability p(y, t |x) obeys the same
equation with respect to the forward variable y. The main idea in the derivation of
(3.262) is to split the time interval (0, t + h] into a long interval (0, t] and a short
interval (t, t + h], so that the particle density at time t + h is the result of transitions
during the short time interval (t, t + h].

To derive the backward equation, we consider the events just after the time t = 0
during the short time interval (0, h]. The Chapman–Kolmogorov equation is

p(y, h + t |x) =
∫

R
3
p(z, h|x)p(y, t |z)dz. (3.263)

We cannot write a similar equation for the density ρ(x, h + t). Rewriting (3.263) as

p(y, h + t |x)− p(y, t |x)
h

=
∫

R
3 p(z, h|x)p(y, t |z)dz− p(y, t |x)

h
, (3.264)

we obtain, in the limit h → 0, the Kolmogorov backward equation

∂p(y, t |x)
∂t

= Lp(y, t |x). (3.265)

This equation is written for two variables, the time t and the initial position x. The
final position y plays the role of a parameter. The function u(x, t) defined in (3.250)
obeys the Kolmogorov backward equation:

∂u(x, t)
∂t

= Lu(x, t). (3.266)

The natural question arises whether this equation represents the mesoscopic trans-
port of particles. The answer in general is negative. In what follows we illustrate a
general technique, using several examples of Markov processes.

3.7.3.1 Poisson Process

As a first illustration, consider the Poisson process Na(t) with intensity λ and jump
size a. We assume that the process starts at the point x . Then

L f (x) = lim
h→0

Ex f (Na(h))− f (x)

h
= λ( f (x + a)− f (x)). (3.267)
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Referring to (3.250) and (3.257), we conclude that the solution to the finite differ-
ence backward equation

∂u

∂t
= Lu = λ(u(x + a, t)− u(x, t)), x ∈ R, (3.268)

with the initial condition u(x, 0) = u0(x), can be written as

u(x, t) = Ttu0(x) = Exu0(Na(t)) =
∞
∑

k=0

u0(x + ak)
e−λt

(λt)k

k! . (3.269)

As usual we use the notation Ex to emphasize that the expectation is taken with
respect to the process Na(t) starting at x .

The forward equation follows from the balance equation (3.74) with w(z) =
δ(z − a), i.e.,

∂ρ

∂t
= L∗ρ = λ(ρ(y − a, t)− ρ(y, t)), y ∈ R. (3.270)

The advantage of having a probabilistic solution (3.269) is that it helps us to find
an explicit solution of the Cauchy problem for the transport equation (3.270) by
changing the sign a →−a:

ρ(y, t) = Qtρ0(y) =
∞
∑

k=0

ρ0(y − ak)
e−λt

(λt)k

k! . (3.271)

3.7.3.2 Three-Dimensional Brownian motion

As another illustration, consider the Brownian motion B(t) in three dimensions
starting at point x. The operator L is the Laplacian, i.e.,

L f (x) = lim
h→0

Ex f (B(h))− f (x)
h

= D� f. (3.272)

The solution of the Kolmogorov backward diffusion equation

∂u(x, t)
∂t

= D�u(x, t), x ∈ R
3
, (3.273)

with the initial condition u(x, 0) = u0(x), can be written as

u(x, t) = Ttu0(x) = Exu0(B(t)) =
∫

R
3
ρ0(x+ z)

e−z·z/(4Dt)

(4πDt)3/2
dz. (3.274)
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The operator L is self-adjoint, and the transport equation for the density is of the
form

∂ρ(y, t)
∂t

= D�ρ(y, t), y ∈ R
3
. (3.275)

The solution to this equation with the initial condition ρ(y, 0) = ρ0(y) is ρ(y, t) =
Eyρ0(B(t)). In this case B(t) starts at point y.

3.7.3.3 Deterministic Motion

Consider the case where the particles move with deterministic velocity v(x):

dX(t)

dt
= v(X(t)), X(0) = x, x ∈ R

3
. (3.276)

Then

L f (x) = lim
h→0

f (X(h))− f (x)
h

= v(x) · ∇ f =
∑

i

vi (x)
∂ f

∂xi
. (3.277)

The initial value problem

∂u

∂t
= Lu = v(x) · ∇u, u(x, 0) = u0(x) (3.278)

has the solution

u(x, t) = Ttu0(x) = u0(X(t)). (3.279)

The backward equation, Liouville’s equation, for the particle density takes the form

∂ρ

∂t
= L∗ρ = −

∑

i

∂

∂yi
(vi (y)ρ). (3.280)

For incompressible flow where ∇ · v = 0 we obtain the transport equation

∂ρ

∂t
+ v(y) · ∇ρ = 0. (3.281)

This equation, together with the initial condition ρ(y, 0) = ρ0(y), is identical to
(3.278) if we change the direction of velocity field v → −v. That is why we can
write

ρ(y, t) = ρ0(X(t)), (3.282)
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where X(t) is the solution of the initial value problem

dX(t)

dt
= −v(X(t)), X(0) = y. (3.283)

Later we will see how the deterministic theory above can be extended to the
convection–diffusion equation of the form

∂ρ

∂t
+ v(y) · ∇ρ = D�ρ. (3.284)

3.7.3.4 Discrete-in-Space Random Walk

Let X (t) be the position of a particle performing a random walk on the x-axis. If
the particle is at point x at time t , then the probability that it will jump to the right,
to the point x + a, during (t, t + h] is α(x)h + o(h). The probability of a jump
to the left to x − a at time t + h is β(x)h + o(h). The probability of no jumps
is 1 − α(x)h − β(x)h + o(h). These transition probabilities allow us to find the
infinitesimal operator L:

L f (x) = lim
h→0

Ex f (X (h))− f (x)

h
= α(x)( f (x + a)− f (x))

+ β(x)( f (x − a)− f (x)). (3.285)

So the Kolmogorov backward equation is

∂u

∂t
= Lu = α(x) [u(x + a, t)− u(x)]+ β(x) [u(x − a, t)− u(x, t)] . (3.286)

For the initial condition u(x, 0) = u0(x), it has the solution u(x, t) = Exu0(X (t)).
The forward equation for the density of particles takes the form

∂ρ

∂t
= L∗ρ = α(y − a)ρ(y − a, t)

− α(y)ρ(y)+ β(y + a)ρ(y + a, t)− β(y)ρ(y, t). (3.287)

If the transition rates α = β = const, then the forward and backward equations are
identical. In particular, the mesoscopic equation for the density ρ is

∂ρ

∂t
= α(ρ(x + a, t)− 2ρ(x, t)+ ρ(x − a, t)). (3.288)

We see that (3.288) is simply a discrete-in-space version of the diffusion equation
(3.234). On the right-hand side we have a symmetric central-difference approxima-
tion for the second derivative D∂

2
ρ/∂x2 with the diffusion coefficient D = αa2.
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This suggests that if we let the step size a → 0 and the rate α → ∞ such that
D = αa2=const, the density ρ(x, t) converges to the function that obeys the dif-
fusion equation. The function ρ(x, t) = Exρ0(X (t)) represents a solution of the
difference equation (3.288) with ρ(x, 0) = ρ0(x) as an expectation with respect to
the position of the random walk X (t).

3.7.3.5 Markov Process with Jumps

Consider a particle that moves with a velocity v(x) on R and jumps at random
times so that the rate of jumps depends on the position of the particle. The one-
dimensional microscopic movement can be represented as follows. If the position
of the particle at time t is X (t), then at time t + h the position is

X (t + h) = X (t)+ v(X (t))h + Z(t)+ o(h), (3.289)

with probability λ(X (t))h + o(h), and

X (t + h) = X (t)+ v(X (t))h + o(h) (3.290)

with probability 1− λ(X (t))h + o(h). The stationary random process Z(t) has the
conditional jump density

w(z|x) = ∂

∂z
P {Z(t) ≤ z|X (t) = x} . (3.291)

The Kolmogorov backward equation is

∂u(x, t)

∂t
= Lu(x, t) = v(x)

∂u

∂x

+ λ(x)
∫

R

u(x + z, t)w(z|x)dz − λ(x)u(x, t). (3.292)

The Kolmogorov forward equation, the Master equation, for the density ρ(y, t) is

∂ρ(y, t)

∂t
= L∗ρ(y, t) = −∂(v(y)ρ)

∂y

+
∫

R

λ(y − z)ρ(y − z, t)w(z|y − z)dz − λ(y)ρ(y, t). (3.293)

If λ = const, w(z) does not depend on x , and v(x) = 0, we obtain the Kolmogorov–
Feller equation (3.74), for which the underlying microscopic random movement is
a compound Poisson process.
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3.7.3.6 Integral-Difference Equation and Discrete Random Walk

Consider the discrete-time random walk model for the particle position Xn ,

Xn+1 = Xn + Zn+1, (3.294)

where the sequence of independent random jumps Zn is defined by the conditional
density

w(z|x) = ∂

∂z
P(Zn ≤ z|Xn−1 = x). (3.295)

The transition probability density function

p(y, n|x) = ∂

∂y
P(Xn ≤ y|X0 = x) (3.296)

obeys two equations [126]. The Kolmogorov forward equation involves the last
jump that takes place at time n − 1:

p(y, n|x) =
∫

R

p(y − z, n − 1|x)w(z|y − z)dz (3.297)

with n = 1, 2, 3, . . . . The Kolmogorov backward equation deals with the first jump
at time 1:

p(y, n|x) =
∫

R

w(z|x)p(y, n − 1|x + z)dz. (3.298)

The Master equation for the density is

ρ(y, n) =
∫

R

ρ(y − z, n − 1)w(z|y − z)dz. (3.299)

The backward equation for the function u takes the form

u(x, n) =
∫

R

w(z|x)u(z, n − 1)dz. (3.300)

For even jump PDFs, i.e., w(x) = w(−x), the backward and forward equations are
identical in form.

3.7.3.7 One-Dimensional Diffusion Process

We have seen that an appropriate rescaling of time and renormalizing the stochastic
process leads to the Brownian motion. Here we define the homogeneous-in-time
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diffusion process X (t), which has two basic statistical characteristics, the infinitesi-
mal displacement (or drift) μ(x) and the infinitesimal variance σ

2
(x):

μ(x) = lim
h→0

1

h
E {X (t + h)− X (t)|X (t) = x} , (3.301)

σ
2
(x) = lim

h→0

1

h
E

{

[X (t + h)− X (t)]2 |X (t) = x
}

. (3.302)

The diffusion process X (t) can also be defined by the Itô stochastic differential
equation (SDE)

dX = μ(X)dt + σ(X)dW, (3.303)

where W (t) is the standard Wiener process [141, 142]. It is clear that W (t) can be
defined as a diffusion process with μ(x) = 0 and σ

2
(x) = 1.

The conditional probability density function

p(y, t |x) = ∂

∂y
P {X (t) ≤ y|X (0) = x} (3.304)

satisfies the forward equation, the Fokker–Planck equation,

∂p

∂t
= L∗ p = − ∂

∂y
(μ(y)p)+ 1

2

∂
2

∂y2

(

σ
2
(y)p

)

(3.305)

and the backward equation

∂p

∂t
= Lp = μ(x)

∂p

∂x
+ σ

2
(x)

2

∂
2 p

∂x2
. (3.306)

So the initial value problem

∂u

∂t
= Lu, u(x, 0) = u0(x), (3.307)

has the solution

u(x, t) = Exu0(X (t)). (3.308)

As we discussed earlier, the backward equation (3.307) does not describe the
average transport process of particles that follow the process X (t). The transport
equation for the density ρ(y, t) with the convection–diffusion flux J = v(y)ρ −
D(y)∂ρ/∂y can be written as
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∂ρ

∂t
= − ∂

∂y
(v(y)ρ)+ ∂

∂y

(

D(y)
∂ρ

∂y

)

. (3.309)

The convection–diffusion equation (3.309) has the form of a forward equation,
∂ρ/∂t = L∗ρ, if

D(y) = σ
2
(y)

2
, v(y) = μ(y)− σ(y)

∂σ (y)

∂y
. (3.310)

3.7.3.8 Diffusion Process in Three Dimensions

We discuss the diffusion process in three dimensions in the context of an anisotropic
convection–diffusion equation for the density of particles. Our goal is to obtain the
probabilistic solution to the initial value problem

∂ρ

∂t
+

3
∑

i=1

vi (x)
∂ρ

∂xi
=

3
∑

i, j=1

∂

∂xi

(

Di j (x)
∂ρ

∂x j

)

, ρ(x, 0) = ρ0(x). (3.311)

Let us assume that the particle position X(t) is the solution to the Itô SDE

dX(s) = b(X(s))ds + σ(X(s))dW(s), X(0) = x, 0 ≤ s ≤ t, (3.312)

where W(s) is the standard three-dimensional Wiener process, and σ is the matrix of
infinitesimal variances [141]. Using coordinate notation, we rewrite the SDE (3.312)
in the integral form as

Xi (t) = xi +
∫ t

0
bi (X(s))ds +

∫ t

0

3
∑

j=1

σi j (X(s))dWj (s), i = 1, 2, 3. (3.313)

This formula allows us to find the generator

L f (x) = lim
h→0

Ex f (X(h))− f (x)
h

=
3
∑

i=1

bi (x)
∂ f (x)
∂xi

+
3
∑

i, j=1

Di j (x)
∂ f (x)
∂xi∂x j

, (3.314)

where the diffusion matrix D(x) is given by

Di j (x) =
1

2

3
∑

k=1

σik(x)σk j (x). (3.315)
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The anisotropic convection–diffusion equation (3.311) can be written in the form of
a backward equation, ∂ρ/∂t = Lρ, if

bi (x) = −vi (x)+
3
∑

k=1

∂Dki (x)
∂xk

. (3.316)

We know that the Cauchy problem

∂u

∂t
= Lu, u(x, 0) = u0(x), x ∈ R

3
, (3.317)

has the solution u(x, t) = Exu0(X(t)). Thus we conclude that the probabilistic
solution to the initial value problem (3.311) is

ρ(x, t) = Exρ0(X(t)), (3.318)

where the random process X(t) is defined by the SDE (3.312) with (3.315) and
(3.316).

It is instructive to show how the Itô formula can be used to obtain the probabilistic
solution to (3.317) [141]. We consider a “new” Markov process (X(s), T (s)), where
the first component X(s) obeys (3.312) and the effective time T (s) is defined as

T (s) = t − s, 0 ≤ s ≤ t. (3.319)

We apply the Itô formula to the smooth function u(x, t):

du(X(s), T (s)) =
[

−∂u

∂t
(X(s), T (s))+ Lu(X(s), T (s))

]

ds

+ ∇xu(X(s), T (s)) · σ(X(s))dW(s). (3.320)

This equation can be rewritten in the integral form as

u(X(t), 0)− u(x, t) =
∫ t

0

[

−∂u

∂t
(X(s), t − s)+ Lu(X(s), t − s)

]

ds

+
∫ t

0
∇xu(X(s), t − s) · σ(X(s))dW(s). (3.321)

If we average both sides and take into account (3.317), we obtain

u(x, t) = Exu0(X(t)). (3.322)
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3.7.4 Convection–Diffusion Equation with Reactions

This section is devoted to probabilistic solutions of reaction–diffusion equations in
terms of functional integrals. We will not attempt to cover the general theory and
all relevant equations. Our purpose is to discuss the main ideas and principal results
and give illustrating examples involving typical equations. The reader interested in
the general theory and all mathematical details will find a comprehensive treatment
of the subject in Freidlin’s book [141].

So far we have discussed the probabilistic solution of the convection–diffusion
equation only. There are various directions in which a probabilistic approach to
PDEs can be extended and generalized. The first direction is to extend it to the case
where chemical reactions are taken into account. The next direction would be to
allow the velocity field v and the diffusion matrix D to depend on both space x and
time t . Another direction for generalization is to analyze initial-boundary problems.

3.7.4.1 Path-Integral and Feynman–Kac Formula

We start with the one-dimensional reaction–diffusion equation

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ r(x)ρ, x ∈ R, (3.323)

where the function r(x) represents the intrinsic growth rate. The solution to the
reaction–diffusion equation (3.323) with ρ(x, 0) = ρ0(x) can be written as the
Feynman path integral, a functional integral,

ρ(x, t) =
∫

x(0)=x
ρ0(x(t)) exp

{

−
∫ t

0

[

ẋ2
(s)

4D
− r(x(s))

]

ds

}

Dx(s), (3.324)

where the integration is performed over all trajectories x(s) starting at point x . The
propagator, p(y, t |x) can be written as

p(y, t |x) =
∫

x(0)=x
x(t)=y

exp

{

−
∫ t

0

[

ẋ2
(s)

4D

]

ds

}

Dx(s), (3.325)

which is the transition probability density function for the Brownian motion:

p(y, t |x) = ∂

∂y
P(B(t) ≤ y|B(0) = x). So the path-integral (3.324) can be rewrit-

ten in terms of the expectation operator, the Feynman–Kac formula,

ρ(x, t) = Exρ0(B(t)) exp

(∫ t

0
r(B(s))ds

)

, (3.326)

where B(t) is the Brownian motion starting at point x [141].
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If the mesoscopic density of particles obeys the integro-differential equation

∂ρ

∂t
= λ

∫

R

ρ(x − z, t)w(z)dz − λρ(x, t)+ r(x)ρ, (3.327)

then the underlying random process is a compound Poisson process X (t) given by

X (t) =
N (t)
∑

i=1

Zi , (3.328)

where N (t) is a Poisson process with the transition rate λ and Zi is a sequence of IID
jumps with density function w(z). The solution to the integro-differential equation
(3.327) with the initial condition ρ(x, 0) = ρ0(x) can be written as

ρ(x, t) = Exρ0(X (t)) exp

(∫ t

0
r(X (s))ds

)

. (3.329)

If the process X (t) is a symmetric α-stable Lévy motion Sα(t) on R, then the for-
mula (3.329) provides the solution to the Cauchy problem

∂ρ

∂t
= Dα

∂
α
ρ

∂ |x |α + r(x)ρ, ρ(x, 0) = ρ0(x), x ∈ R. (3.330)

In the same way we can obtain the probabilistic representation for the density that
obeys the nonlinear Cauchy problem

∂ρ

∂t
= D�ρ + r(x, ρ)ρ, ρ(x, 0) = ρ0(x), x ∈ R

3
. (3.331)

We have

ρ(x, t) = Exρ0(B(t)) exp

[∫ t

0
r(B(s), ρ(B(s), t − s)ds

]

. (3.332)

3.7.4.2 Nonstationary Convection–Diffusion Equation with Reactions

So far the velocity field v and the growth rate r have been functions of the space
coordinate only. The goal now is to allow both v and r to depend on time t as well.
Consider a transport problem involving a nonstationary incompressible fluid flow
with the velocity field v(x, t), standard diffusion with the constant diffusivity D,
and reactions with rate r(x, t)ρ. The equation for the density of particles takes the
form

∂ρ

∂t
+ v(x, t) · ∇ρ = D�ρ + r(x, t)ρ, x ∈ R

3
, (3.333)

with the initial condition
ρ(x, t) = ρ0(x). (3.334)
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The solution of this problem can be written as the functional integral

ρ(x, t) = Exρ0(X(t)) exp

[∫ t

0
r(X(s), t − s)ds

]

, (3.335)

where the random process X(s) is the solution of the SDE

dX(s) = −v(X(s), t − s)ds +√2DdW(s), 0 ≤ s ≤ t, (3.336)

with the initial condition X(0) = x. Here W(t) is the standard three-dimensional
Wiener process.

In particular, the solution of the convection–diffusion equation (r = 0) is

ρ(x, t) = Exρ0(X(t)). (3.337)

In the next section we show why the velocity in (3.336) has arguments (X(s), t − s)
and why there is a minus sign for this velocity.

3.7.4.3 Convection–Transport Equation

Consider a convection–transport equation without diffusion,

∂ρ(x, t)
∂t

+ v(x, t) · ∇ρ(x, t) = 0, x ∈ R
3
, (3.338)

with the initial condition ρ(x, 0) = ρ0(x). The solution to this Cauchy problem can
be written as follows:

ρ(x, t) = ρ0(X(t)), (3.339)

where X(t) is the solution of the characteristic equation

dX(s) = −v(X(s), t − s)ds, X(0) = x, 0 ≤ s ≤ t. (3.340)

The formula (3.339) tells us that the value of the density at point x at time t is the
value of the initial density at the point X(t). The main idea is that we release the
underlying process X(s) from the point x so that s varies from 0 up to t . So we
allow the particle to move backward in time, such that the velocity field has a value
−v(x, t) at time s = 0 and −v(X(t), 0) at time s = t . We have

dρ(X(s), t − s)

ds
= dX(s)

ds
· ∇ρ(X(s), t − s)− ∂ρ(X(s), t − s)

∂t
. (3.341)
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We integrate both sides and find

ρ0(X(t))− ρ(x, t) =
−
∫ t

0

(

v(X(s), t − s) · ∇ρ(X(s), t − s)+ ∂ρ(X(s), t − s)

∂t

)

ds. (3.342)

Because of (3.338) the RHS of the last equation is zero, and therefore ρ(x, t) =
ρ0(X(t)).

3.7.4.4 Boundary Reaction–Diffusion Problem

So far we have found probabilistic solutions to PDEs on the whole space. In fact Itô’s
formula allows us to represent the solutions to these equations in a bounded domain,
� ∈ R

3, with appropriate boundary conditions. For example, let us consider the
stationary reaction–diffusion problem

D�ρ(x)+ r(x)ρ = 0, x ∈ �, ρ(x)x∈∂� = g(x). (3.343)

Then

ρ(x) = Exg(B(τ )) exp

{∫ τ

0
r(B(s))ds

}

, (3.344)

where B(t) is the Brownian motion starting at point x and τ is the first exit time for
Brownian motion to reach the boundary ∂�, i.e., τ = min(t : B(t) /∈ �). Freidlin’s
book [141] is an excellent reference for more details on initial-boundary problems
similar to (3.343) and corresponding diffusion processes.

Exercises

3.1 Show that the Laplace transform of the Caputo derivative defined in (3.38) is

L
(
∂
γ p(x, t)

∂tγ

)

= sγ p̂(x, s)− sγ−1 p0(x). (3.345)

Hint: Use the definition of the Gamma function �(1 − γ ) = ∫∞0 e−t t−γ dt and the

fact that the integral in (3.38) is the convolution of the functions f (t) and t−γ .

3.2 Using the Montroll–Weiss equation (3.31) for the uncoupled case (3.23), derive
the equation for ρ(x, t) in the form
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∫ t

0
M(t − τ)

∂ρ(x, τ )

∂τ
dτ =

∫

R

ρ(x − z, t)w(z)dz − ρ(x, t), (3.346)

where M(t) is defined by its Laplace transform M̂(s) = [1 − φ̂(s)]/[sφ̂(s)]. Note
that this is an alternative equation to the Master equation (3.31).

3.3 Obtain (3.141) from (3.139) and (3.140).

3.4 Assume that the waiting time PDF φ(t) corresponds to the family of Gamma
distributions with parameters m = 2 and λ:

φ(t) = λ
2te−λt

�(2)
. (3.347)

If the kinetic term is linear, show that the solution to (3.130) is ρ(x, t) = er t n(x, t),
where n(x, t) is the solution to

1

2λ

∂
2
ρ

∂t2
+ ∂ρ

∂t
= λ

2

[∫

R

ρ(x − z, τ )w(z)dz − ρ(x, τ )

]

. (3.348)

3.5 If the survival probability is

�(t) = Eγ

[

−
(

t

τ0

)γ ]

, 0 < γ ≤ 1, (3.349)

where Eγ [x] = ∑∞
0 xn/�(γ n + 1) is the Mittag–Leffler function, show that

(3.130) can be written as the fractional reaction–transport equation

∂ρ

∂t
= e

∫ t
0 f (ρ(x−z,u))du

τ
γ

0

D1−γ
t

(∫

R

ρ(x − z, t)e−
∫ t

0 f (ρ(x−z,u))du
w(z)dz

)

− e
∫ t

0 f (ρ(x,u))du

τ
γ

0

D1−γ
t

(

ρ(x, t)e−
∫ t

0 f (ρ(x,u))du
)

+ f (ρ)ρ, (3.350)

where D1−γ
t is the Riemann–Liouville fractional derivative defined by (2.58).
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Front Propagation



Chapter 4
Reaction–Diffusion Fronts

Traveling waves are typical nonequilibrium phenomena encountered in numerous
instances in physics, chemistry, biology, and other areas [129, 82, 309, 310]. React-
ing and diffusing systems described by the RD equation (2.3) represent a particular
well-studied class of applications. Equation (2.3) is known as Fisher’s equation, if
the reaction term has the logistic form F(ρ) = rρ(1− ρ):

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ rρ(1− ρ). (4.1)

It was introduced in 1937 in the seminal contributions of R. A. Fisher [132] and
A. N. Kolmogorov, together with I. G. Petrovskii and N. S. Piskunov [232] as a
model for the spreading of an advantageous gene. Consequently, we will refer to
(4.1) also as the FKPP equation. It is the simplest and most well-known equation
that has traveling wave solutions.

4.1 Propagating Fronts

A front corresponds to a traveling wave solution, which maintains its shape, travels
with a constant velocity v

∗, ρ(x, t) = ρ(x − v
∗t), and joins two steady states of

the system. The latter are uniform stationary states, ρ(x, t) = ρ, where F(ρ) =
0. For the logistic kinetics, the steady states are ρ1 = 0 and ρ2 = 1. While the
logistic kinetics has only two steady states, three or more stationary states can exist
for a broad class of systems in nonlinear chemistry and population dynamics with
Allee effect, but a front can only connect two of them. To determine the propagation
direction of the front, we need to evaluate the stability of the stationary states, see
Sect. 1.2. The steady state ρ is stable if F ′(ρ) < 0 and unstable if F ′(ρ) > 0. Let
the initial particle density ρ(x, 0) be such that on a certain finite interval, ρ(x, 0)
is different from 0 and 1, and to the left of this interval ρ(x, 0) = 1, while to the
right ρ(x, 0) = 0. In this case, the initial condition is said to have compact support.
Kolmogorov et al. [232] showed for Fisher’s equation that due to the combined
effects of diffusion and reaction, the region of density close to 1 expands to the

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
DOI 10.1007/978-3-642-11443-4_4, C© Springer-Verlag Berlin Heidelberg 2010
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right. There exists a front that connects the stable steady state to the unstable steady
state and that propagates to the right; the stable state invades the unstable state.

Consider a general reaction term that satisfies F(0) = F(1) = 0. If F vanishes
at ρ = c > 0 with c �= 1, ρ can be renormalized by defining a new field ρ/c for
which the above condition is satisfied. Aronson and Weinberger [18] showed that
any positive, sufficiently localized (this means decaying faster than exponentially
for |x | → ∞) initial condition ρ(x, 0), with ρ(x, 0) ∈ [0, 1], evolves into a front
propagating with velocity v

∗, i.e., for large t , ρ(x, t) behaves as ρ(x − v
∗t). The

shape of the front is determined by the boundary value problem

Dρzz + vρz + F(ρ) = 0 (4.2)

with

lim
z→−∞ ρ(z) = 1 and lim

z→+∞ ρ(z) = 0. (4.3)

Here z ≡ x−vt , and (4.2) is obtained by transforming (2.3) to the frame co-moving
with the front, since ∂xρ → dρ/dz ≡ ρz and ∂tρ → −vdρ/dz ≡ −vρz . Aronson
and Weinberger [18] characterized the asymptotic velocity v

∗ as the minimum value
of the parameter v in (4.2) for which the solution ρ(z) is monotonic. This poses the
problem of how to determine the value of v∗ for different reaction terms. We will
consider two types of reaction terms.

Case A: F ′(0) > 0, F(ρ) > 0, ρ ∈ (0, 1). This case is known as heterozygote
intermediate in population dynamics or as KPP kinetics.

Case B: F(ρ) > 0 for all ρ ∈ (b, 1) and F(ρ) < 0 for all ρ ∈ (0, b) with
b ∈ (0, 1),

∫ 1
0 F(ρ)dρ > 0, and F ′(0) < 0. This case is known as heterozygote

inferior in population dynamics or as bistable kinetics.
In both cases, (4.2) can be viewed as Newton’s equation for a particle moving

in one dimension under the action of the force −F(ρ) − vρz ; the variable z plays
the role of time. The force −F(ρ) is conservative and derives from the potential
V (ρ) = ∫ ρ

0 F(s)ds.
If the kinetic term F(ρ) belongs to Case A, the potential has a minimum at the

point ρ = 0 and a maximum at ρ = 1. The second term, −vρz , in (4.2) represents
a damping force, where v represents the viscosity. Then (4.2) describes the motion
of a particle rolling down from the top of the potential at ρ = 1 to the bottom of
the potential well, ρ = 0, in the presence of a viscous force. If v is small, i.e., the
viscosity is small, the particle oscillates near the bottom of the well before it settles
down at the minimum ρ = 0. If v increases, there exists a threshold value at which
the oscillations cease. In other words, the particle rolls down monotonically from
ρ = 1 to ρ = 0; in mechanics this is known as critical damping. If v increases
even further, the particle continues to roll down monotonically and has less and
less velocity at every point of its trajectory. Consequently, there exists a critical
value of v, which we denote by v

∗, such that for v ≥ v
∗, there will be mono-

tonically decreasing solutions to (4.2). The front is said to be propagating into the
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unstable state. This result was proven rigorously by Aronson and Weinberger, who
also showed that the critical value v

∗ is the front velocity for the RD equation in
Case A, if the front evolves from an initial condition with compact support.

If F(ρ) belongs to Case B, the potential has two maxima, at ρ = 1 and ρ = 0,
and a minimum at ρ = b. The particle starts at ρ = 1, z = −∞, and needs to
arrive at ρ = 0, z = +∞, with zero velocity. Energy conservation requires that the
height of the maximum at ρ = 0 must be smaller than the height of the maximum
at ρ = 1. Otherwise the particle never reaches ρ = 0. This condition is precisely
∫ 1

0 F(ρ)dρ > 0. In this case, the front connects two stable states and is said to be
propagating into a metastable state; ρ = 0 is less stable than ρ = 1. It should be
clear intuitively that there is only one value of v∗ for which the particle rolls down
from ρ = 1 to the bottom of the valley at ρ = b and then climbs up to the top at
ρ = 0 to stop there with zero velocity. If v < v

∗, the particle overshoots at ρ = 0,
leading to an unphysical front. If v > v

∗, the particle becomes trapped forever at
ρ = b, representing again a front propagating into an unstable state. We represent
schematically this discussion in Fig. 4.1.

A phase plane analysis represents a useful alternative to the mechanical analogy
discussed above. The phase plane is constructed by the standard technique of con-
verting the second-order ordinary differential equation (4.2) into a system of two
first-order differential equations:

Fig. 4.1 Schematic picture for Cases A and B. We plot the reaction term, its corresponding poten-
tial, and the front profile
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ρz = −q, (4.4a)

qz = − v

D
q − r

D
F(ρ). (4.4b)

In the phase plane (ρ, q), a front corresponds to trajectory that connects two steady
states of (4.4). Such a trajectory is know as a heteroclinic orbit or a heteroclinic
connection. The steady states of (4.4) are given by (ρ, 0), where F(ρ) = 0. The
phase plane trajectories or orbits of (4.4) are the solutions of

dρ

dq
= vq + r F(ρ)

Dq
. (4.5)

To be specific, we consider logistic kinetics and Nagumo kinetics [274], F(ρ) =
rρ(1−ρ)(ρ−b), as examples for cases A and B, respectively. For the logistic case, a
linear stability analysis of the stationary states (0, 0) and (1, 0) provides their eigen-

values λ±(0, 0) = −v/2 ±
√

v
2 − 4Dr/2 and λ±(1, 0) = −v/2 ±

√

v
2 + 4Dr/2,

respectively. The state (0, 0) is a stable node if v > 2
√
Dr and a stable focus if

v < 2
√
Dr . The state (1, 0) is always a saddle point. To be physically acceptable,

a front must always be nonnegative. Consequently, only nonnegative heteroclinic
orbits are acceptable. Such orbits can only exist if (0, 0) is a stable node. In other
words, fronts only exist for v > 2

√
Dr . Since there exists a heteroclinic connection

or front for each value of v with v > 2
√
Dr , this analysis does not yield a unique

propagating velocity. In fact, the front velocity v depends on the initial condition,
specifically on the tail of the initial condition.

For bistable kinetics there exist three steady states: (0, 0), (b, 0), and (1, 0). Both
(0, 0) and (1, 0) are saddle points, while (b, 0) is stable. A heteroclinic connection
between (1, 0) and (b, 0) requires (b, 0) to be stable node, which is satisfied for
v > 2

√
b(1− b). This case is equivalent to the logistic case. The heteroclinic orbit

corresponding to a front connecting (0, 0) and (1, 0) must be a saddle–saddle con-
nection. If one fixes b and varies v, one finds that for low values of v the phase plane
trajectories undershoot the state (1, 0), while for large values of v, the phase plane
trajectories overshoot the state (1, 0). There is a unique saddle–saddle connection,
the separatrix, which is uniquely determined by a specific value of v. In contrast to
the logistic case, where an infinite number of fronts exist if v is larger than 2

√
Dr ,

only a single front with a unique velocity exists in the bistable case. In Fig. 4.2 we
depict the phase portrait for both the logistic and the bistable cases. In the next two
sections, we present quantitative methods to characterize front propagation for both
cases A and B.

4.1.1 Fronts Propagating into Unstable States. Pulled vs Pushed
Fronts

Consider the RD equation (2.3). Without specifying the shape of F(ρ), we assume
two steady states such that
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0

q

1 0

q

1b

Fig. 4.2 Phase portrait for logistic and bistable reaction terms. The front is a heteroclinic saddle–
node connection for the logistic case. The front is a saddle–saddle connection for the bistable case

F(0) = F(1) = 0 and F(ρ) > 0, if 0 < ρ < 1, (4.6)

i.e., ρ = 0 is an unstable steady state and ρ = 1 a stable steady state. We linearize
the RD equation in the frame comoving with the front around the unstable steady
state:

Dρzz + vρz + F ′(0)ρ = 0. (4.7)

Looking for exponential solutions, we find ρ(z) ∼ Ae−λ+z + Be−λ−z , where

λ± =
v

2
± 1

2

√

v
2 − 4DF ′(0). (4.8)

The solutions are physically acceptable if

v ≥ 2
√

DF ′(0). (4.9)

Otherwise the solution oscillates around the state ρ = 0, resulting in negative values
for the particle density. The linear analysis establishes the existence of a minimum
value for the front velocity. We can also obtain the minimum value by substituting
ρ(z) ∼ e−λz in (4.7), writing the characteristic equation in the form

v(λ) = Dλ+ F ′(0)
λ

, (4.10)

and calculating

v
∗ = minλ[v(λ)] = 2

√

DF ′(0). (4.11)

Aronson and Weinberger [18] obtained the condition

2
√

DF ′(0) ≤ v
∗
< 2

√

D sup
ρ

[
F(ρ)

ρ

]

, (4.12)
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for fronts evolving from initial conditions with compact support. This result pro-
vides both a lower and an upper bound for the front velocity. For any concave kinetic
term, i.e., F(ρ) ≤ ρF ′(0), the lower and the upper bounds in (4.12) coincide, and
the front velocity can be predicted with certainty:

v
∗ = 2

√

DF ′(0). (4.13)

It equals the minimum velocity obtained by linearizing around the unstable state,
the linear velocity. In this case the front dynamics is determined by the ρ(x, t) ≈ 0
region. The front is called a pulled front, since it is pulled by its leading edge. The
lower and upper bounds do not coincide for convex kinetic terms, and the front
velocity is larger than the linear velocity. In this case, the nonlinear part of the
kinetic term plays an important role in determining the value of the front velocity;
the front dynamics is pushed by its interior part.

We consider the Ginzburg–Landau reaction term F(ρ) = ρ(1 − ρ)(1 + αρ),
with α > 0, in (2.3) to illustrate the existence of pulled and pushed regimes. This
RD equation has two steady states, ρ = 0 (unstable) and ρ = 1 (stable). The
front connecting both states propagates into the unstable state, which resembles the
situation in the FKPP case. However, Ben-Jacob et al. [37] show that when the front
emerges from initial conditions with compact support, the velocity is given by

v =
{

2
√
D, α ≤ 2,

(√
α + 2/

√
α
)√

D/2, α > 2.
(4.14)

The linear velocity 2
√
D is selected by the front only if α ≤ 2. The front is pulled

in this case. However, if α > 2, the selected velocity is
(√

α + 2/
√
α
)√

D/2, and
the front is pushed. The value α = 2 corresponds to the transition between pulled
and pushed regimes.

The asymptotic velocity depends explicitly on the shape of the initial conditions,
if they do not have compact support. An adaptation of the Hamilton–Jacobi theory
from classical mechanics is a useful technique to deal with this problem in a very
general way, see below. The prototypical example of a concave reaction term is the
KPP or logistic term F(ρ) = rρ(1 − ρ). Equation (4.13) implies that v = 2

√
r D.

Examples for convex reaction functions typically occur in combustion theory, where
F(ρ) = e−ρc/ρ(1 − ρ) is referred to as the Arrhenius reaction term, or F(ρ) =
ρ
m
(1− ρ) for forest fire models. In these cases, as well as for Case B, generally the

variational characterization is the only tool that can provide analytical expressions
for the front velocity. Other types of reaction terms are a combination of Cases A and
B, such that the kinetic term is convex for a range of values of ρ, while elsewhere it
is concave.
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4.1.2 Transient Dynamics of Pulled Fronts

Pushed fronts, such as fronts propagating into a metastable state, converge expo-
nentially to the asymptotic front profile ρ(x − vt). Both the profile and veloc-
ity of pulled fronts converge algebraically. It was proven rigorously by Bramson
[57] that the solution of the Fisher equation with a KPP reaction term relaxes to
a unique front profile ρ(x − 2t), where the velocity converges asymptotically as
v(t) = 2− 3

2t . (Here and in the remainder of this section, we consider the case that
space and time have been scaled such that D = r = 1.) More recently, Ebert and
van Saarloos [103, 104] found universal behavior in the relaxation to the asymptotic
regime for fronts emerging from initial conditions with compact support or with
exponential decay. We summarize their main results for the first case. We consider
the shape of the transient front as a small perturbation η about the asymptotic shape,
ρ
∗[x−v(t)t], where v(t) = v

∗+Ẋ(t). Then, written in the frame ξ = x−v
∗t−X (t),

the Fisher equation (2.3) with logistic growth reads

ρ(ξ, t) = ρ
∗
(ξ)+ η(ξ, t) = ρ

∗
(ξ)+ Ẋ(t)ηs(ξ) (4.15)

for the interior region of the front, ξ � 2
√
t . Here η(ξ, t) obeys the equation

∂η

∂t
= L∗η + Ẋ(t)

∂

∂ξ

[

η + ρ
∗
(ξ)
]+ η

2

2
F ′′(ρ∗)+ O(η

3
), (4.16)

with L∗ = ∂
2
ξ +v

∗
∂ξ+F ′(ρ∗). The fact that Ẋ(t) is O(t−1

) suggests the asymptotic
expansion

Ẋ(t) = c1

t
+ c3/2

t3/2
+ · · · , (4.17)

η(ξ, t) = η1

t
+ η3/2

t3/2
+ · · · . (4.18)

Substitution of this expansion into (4.16) yields the hierarchy of ordinary differential
equations:

L∗η1 = −c1∂ξρ
∗
, L∗η3/2 = −c3/2∂ξρ

∗
, . . . . (4.19)

Each ηi is determined by its differential equation, the requirement ηi (0) = 0, and
the appropriate boundary conditions. The equations for η1/c1 and η3/2/c3/2 are pre-
cisely the differential equations for ηs(ξ) in (4.16).

In the far edge, where ξ ≥ O(
√
t) � 1, a different expansion is needed, as the

transient profile falls off faster than ρ
∗, so that η ≈ −ρ

∗. Linearizing about ρ = 0
one finds
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ρ(ξ, t) = e−ξ−ξ
2
/(4t)

⎡

⎢
⎢
⎣

√
tg−1/2

(

ξ
2

4t

)

+ g0

(

ξ
2

4t

)

+
g1/2

(

ξ
2

4t

)

√
t

+ · · ·

⎤

⎥
⎥
⎦
,

(4.20)

where the functions gi obey a new hierarchy of ordinary differential equations that
can also be integrated with the appropriate boundary conditions. Finally, matching
this solution to the one for the interior region, we determine the parameters c1 and
c3/2, and the front velocity is found to be

v(t) = v
∗ − 3

2t
+ 3

√
π

2t3/2
+ · · · . (4.21)

4.1.3 Front Propagation into Metastable States

As explained above, the shape and velocity of a front propagating into a metastable
state is governed by the nonlinear (interior) part, and the nonlinear term in the reac-
tion function plays an important role. When a front propagates into a metastable
state, only one velocity is possible, in contrast to a front propagating into an unsta-
ble state. In the latter case, there exists an infinite number of possible velocities,
namely all velocities larger than the linear velocity. To obtain the unique veloc-
ity of a front propagating into a metastable state, one has to solve the differential
equation in the frame co-moving with the front and find the front shape. Since the
differential equation is nonlinear, this is not an easy task. Often, one has to resort
to some trial parametric solution and substitute it into the differential equation to
calculate the parameter values. As a typical example we consider the reaction term
F(ρ) = r(ρ − ρ1)(ρ2 − ρ)(ρ − ρ3), where ρ1 < ρ2 < ρ3. This kinetic term has
the steady states ρ = ρi , with i = 1, 2, 3. The states ρ1 and ρ3 are stable, while ρ2
is unstable. To obtain the front profile and velocity, we need to solve the differential
equation

Dρzz + vρz + r(ρ − ρ1)(ρ2 − ρ)(ρ − ρ3) = 0. (4.22)

Since the front joins the two stable states and propagates into the metastable state,
the boundary conditions are given by

lim
z→−∞ ρ(z) = ρ3 and lim

z→+∞ ρ(z) = ρ1. (4.23)

The derivative ρz must vanish at ρ = ρ3 and at ρ = ρ1. A possible candidate for the
front solution is ρz = b(ρ − ρ1)(ρ − ρ3), where b is a constant to be determined.
Substituting this solution into (4.22), we obtain a cubic polynomial in ρ. Setting
the coefficients to 0 provides a system of four algebraic equations. The equation
for the coefficient of ρ3 yields b = √

r/2D. With this value, the equations for the
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coefficient of ρ2 and ρ
0 are satisfied, and only one equation remains to be solved.

The equation for the coefficient of ρ provides the relation for the velocity:

v =
√

r D

2

(

ρ1 − 2ρ2 + ρ3
)

. (4.24)

Finally, we calculate the front profile by integrating

ρz =
√

r/2D(ρ − ρ1)(ρ − ρ3) (4.25)

and imposing the boundary conditions. The result is

ρ(z) = ρ3 + Kρ1e
√
r/2D(ρ3−ρ1)z

1+ K e
√
r/2D(ρ3−ρ1)z

, (4.26)

where K is an arbitrary constant that can be determined, e.g, by imposing a value for
ρ(z = 0). Equation (4.24) implies that v > 0 if ρ2 < (ρ1 + ρ3)/2, and it is negative
otherwise. This means that we can change the direction of front propagation for
fixed values of ρ1 and ρ3 by varying the value of ρ2. Changing ρ2 affects the relative
stability of the stable states ρ1 and ρ3, i.e., which one is the stable and the metastable
state, and thus the direction of front motion. This can be easily understood by invok-
ing the dynamical picture introduced in Sect. 4.1. The potential difference between
states ρ1 and ρ3 is given by

�V = V (ρ3)− V (ρ1) =
∫ ρ3

ρ1

F(ρ)dρ = (ρ3 − ρ1)
3

12

(

ρ1 − 2ρ2 + ρ3
)

. (4.27)

If ρ2 < (ρ1 + ρ3)/2, V (ρ3) > V (ρ1), and ρ3 is stable, while ρ1 is metastable.
In this case, the front travels to the right, v > 0, by invading ρ1 (remember that
ρ1 < ρ3). Otherwise, if ρ2 > (ρ1 + ρ3)/2, V (ρ1) > V (ρ3), and ρ1 is stable, while
ρ3 is metastable; the front propagates to the left. This is depicted in Fig. 4.3. The
sign of the front velocity, i.e., the direction of propagation, can be determined for a
general kinetic term F(ρ). We multiply (4.2) by ρz and integrate over z to obtain

∫ ∞

−∞
ρzzρzdz + v

∫ ∞

−∞
ρ

2
z dz +

∫ ∞

−∞
F(ρ)ρzdz = 0. (4.28)

The first integral is

∫ ∞

−∞
ρzzρzdz =

1

2

[

ρ
2
z

]+∞
−∞ = 0, (4.29)

and the third one is
∫ ∞

−∞
F(ρ)ρzdz =

∫ ρ3

ρ1

F(ρ)dρ, (4.30)
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Fig. 4.3 The potential difference between the stable steady states changes their relative stability
and changes the direction of front propagation

so that

v =
∫ ρ3
ρ1

F(ρ)dρ
∫∞
−∞ ρ

2
z dz

(4.31)

and

sgn(v) = sgn

(
∫ ρ3

ρ1

F(ρ)dρ

)

. (4.32)

For the case (4.22), sgn(v) = sgn
(

ρ1 − 2ρ2 + ρ3
)

, in agreement with (4.24).

4.2 Front Velocity Selection

The fact that an infinity of front velocities occurs for pulled fronts gives rise to
the problem of velocity selection. In this section we present two methods to tackle
this problem. The first method employs the Hamilton–Jacobi theory to analyze the
dynamics of the front position. It is equivalent to the marginal stability analysis
(MSA) [448] and applies only to pulled fronts propagating into unstable states.
However, in contrast to the MSA method, the Hamilton–Jacobi approach can also
deal with pulled fronts propagating in heterogeneous media, see Chap. 6. The
second method is a variational principle that works both for pulled and pushed fronts
propagating into unstable states as well as for those propagating into metastable
states. This principle can deal with the problem of velocity selection, if it is possible
to find the proper trial function. Otherwise, it provides only lower and upper bounds
for the front velocity.
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4.2.1 Hamilton–Jacobi Formalism

4.2.1.1 Hyperbolic Scaling and Hamilton–Jacobi Equation for the Front
Position

This method consists in finding the Hamilton–Jacobi equation for an RD equation
with a KPP reaction term and was originally introduced by Freidlin [140]. The first
step consists in performing the hyperbolic scaling on the RD equation (2.3):

x → x

ε
and t → t

ε
, ε � 1. (4.33)

The second step consists in analyzing the behavior of solutions of (2.3) for large
times, of order ε

−1, and determine whether or not a front exists in the limit
t → ∞ (ε → 0). We expect that after the hyperbolic scaling the new field
ρ
ε
(x, t) = ρ(x/ε, t/ε) takes only two values, 0 and 1, as ε → 0, which means that

the solution of (2.3) converges to the indicator function of the set whose boundary
can be considered as the position of a moving front that separates the stable and
unstable states. In fact any initial condition with compact support will ensure a front
propagating with the minimal velocity. After the hyperbolic scaling, (2.3) reads

ε
∂ρ

ε

∂t
= Dε

2 ∂
2
ρ
ε

∂x2
+ r F(ρε

). (4.34)

Since ρ
ε
(x, t) ≥ 0, we can make use of the transformation

ρ
ε
(x, t) = exp

[−Gε
(x, t)/ε

]

, (4.35)

where Gε
(x, t) ≥ 0. The new function Gε

(x, t) determines the location of the front
in the limit ε → 0. If F(ρ) = ρ(1 − ρ), straightforward calculations show that
Gε

(x, t) obeys the equation

− ∂Gε

∂t
= −Dε

∂
2Gε

∂x2
+ D

(
∂Gε

∂x

)2

+ r
[

1− e−Gε
(x,t)/ε

]

. (4.36)

Since exp
[−Gε

/ε
] → 0 as ε → 0 for Gε

> 0, we conclude that the limiting
function G(x, t) = limε→0 G

ε
(x, t) obeys the classical Hamilton–Jacobi equation

− ∂G

∂t
= D

(
∂G

∂x

)2

+ r. (4.37)

Indeed, we obtain the classical Hamiltonian, H = Dp2 + r , if we define

H = −∂G

∂t
and p = ∂G

∂x
. (4.38)
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4.2.1.2 Propagation Velocity

The hyperbolic scaling (4.33) and the transformation (4.35) of the field allows us to
obtain, in the asymptotic limit ε → 0, a Hamilton–Jacobi equation for any given
reaction–transport equation. In this chapter we focus only on RD equations, but in
Chap. 5 we deal with other models. Regardless of the specific form of the Hamilton–
Jacobi equation, its solution can be written as

G(x, t) = inf
x(0)=0,x(t)=x

[∫ t

0
L(x, s)ds

]

, (4.39)

where

L(x, s) = p(s)
dx(s)

ds
− H(x, s) (4.40)

is the Lagrangian and s the temporal coordinate. x(s) and p(s) satisfy the Hamilton
equations

dx

ds
= ∂H

∂p
,

dp

ds
= −∂H

∂x
, (4.41)

with the conditions x(0) = 0, x(t) = x . The location of the front position is deter-
mined by the equation G(x(t), t) = 0, and the propagation velocity can be found
as follows. Differentiating G(x(t), t) = 0 and taking into account v = dx/dt , one
writes

∂G

∂t
+ v

∂G

∂x
= 0 (4.42)

or using (4.38)

v = H

p
. (4.43)

If the reaction–transport equations are homogeneous, i.e., there is no explicit depen-
dence on time or space coordinates, then the Hamilton–Jacobi equation is of the
form H = H(p). (The case with spatial or temporal heterogeneities is dealt with in
Chap. 6.) The Hamilton equations (4.41) imply that p is constant and that

x(s) = ∂H

∂p
s,

∂H

∂p
= x

t
, (4.44)
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where we have made use of the boundary conditions. From (4.39) and (4.44)

G(x, t) = px − H(p)t, (4.45)

and the front position evolves according to x/t = H/p, which combined with the
second equation in (4.44) and (4.43) yields a closed system of algebraic equation to
calculate the front velocity,

v = ∂H

∂p
, and

∂H

∂p
= H

p
. (4.46)

This system of equations can be summarized in the single equation

v = min
p>0

[
H(p)

p

]

. (4.47)

In the case of the RD equation,

v = min
p>0

[

Dp2 + r

p

]

= 2
√
r D, (4.48)

which is known as the Fisher velocity.

4.2.2 Variational Characterization

We follow here the derivation by Benguria and Depassier [34, 35]. The starting
point for the variational principle is the ordinary differential equation for the RD
equation in the frame comoving with the front (4.2). Without loss of generality, we
assume that the front connects the states ρ = 0 and ρ = 1, i.e., limz→∞ ρ = 0
and limz→−∞ ρ = 1. Since the front is monotonic, we define q(ρ) = −ρz > 0.
Monotonic fronts are solutions of

Dq(ρ)
dq

dρ
− vq(ρ)+ F(ρ) = 0, (4.49)

with

q(0) = 0, q(1) = 0, (4.50)

and q > 0 in (0, 1).
Let g(ρ) be any positive function on (0, 1), such that h = −dg/dρ > 0. Multi-

plying (4.49) by g/q and integrating with respect to ρ, we obtain

∫ 1

0

(

Dhq + F(ρ)

q
g

)

dρ = v

∫ 1

0
gdρ, (4.51)
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where the first term is obtained after integration by parts. For fixed ρ, the functional

�[q] ≡ Dhq + F(ρ)

q
g (4.52)

has a minimum at qmin = √
Fg/(Dh), since v, q, g, and h are positive. Conse-

quently, �[q] ≥ �[qmin] = 2
√
DFgh and

∫ 1

0
�[q]dρ = v

∫ 1

0
gdρ ≥ 2

√
D
∫ 1

0

√

Fghdρ, (4.53)

that is,

v ≥ 2
√
D

∫ 1
0

√
Fghdρ

∫ 1
0 gdρ

. (4.54)

This lower bound for the front velocity is valid for any F(ρ) > 0 on (0,1) and
F(0) = F(1) = 0, i.e., for a front propagating into unstable states (reaction terms
of Case A) [34]. To show that (4.54) represents indeed a variational principle, we
must establish that there exists a function, namely ğ, for which the equality holds in
(4.54). Equality holds if ğ satisfies hq = Fğ/(Dq), i.e.,

− d(ln ğ)

dρ
= v

Dq
− d(ln q)

dρ
, (4.55)

where we have made use of (4.49). This equation can be integrated to yield

ğ(ρ) = q(ρ) exp

(∫ ρ0

ρ

v

Dq
dρ

)

(4.56)

for some fixed ρ0, 0 < ρ0 < 1. Obviously, ğ(ρ) is a continuous, positive, and
decreasing function on (0,1) and ğ(1) = 0. However, for ρ → 0, a singularity
occurs that needs to be handled carefully. We must ensure that the integrals in (4.54)
exist for this value. We linearize (4.2) near ρ = 0 and find that if ρ ∼ exp(−λz)

then q ∼ λ+ρ. Here λ+ =
[

v +
√

v
2 − 4DF ′(0)

]

/2D is the largest root of the

characteristic equation for λ. From (4.56)

√

Fğh ∼ ğ(ρ) ∼ ρ
1−v/(λ+D) near ρ = 0. (4.57)

Therefore, if v > 2
√

DF ′(0), we have
∫ 1

0 gdρ < ∞ and
∫ 1

0

√
Fghdρ < ∞. In

summary, we have proven that there exists a positive, continuous, and monotonically
decreasing function g, for which the integrals in (4.54) exist and which maximizes
the lower bound in (4.54) in such a way that the equality holds. In summary,
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v = max
g

(

2
√
D

∫ 1
0

√
Fghdρ

∫ 1
0 gdρ

)

, (4.58)

if v > 2
√

DF ′(0) which is a lower bound for the front velocity. We can obtain from
(4.58) also the upper bound derived by Aronson and Weinberger [18]:

v = max
g

(

2
√
D

∫ 1
0

√
Fghdρ

∫ 1
0 gdρ

)

= max
g

(

2
√
D

∫ 1
0 g

√
Fh/gdρ

∫ 1
0 gdρ

)

≤ 2
√
D max

g

√
√
√
√

∫ 1
0 Fhdρ
∫ 1

0 gdρ
, (4.59)

where the inequality follows from Jensen’s inequality. Since h > 0, we have

∫ 1
0 Fhdρ
∫ 1

0 gdρ
=
∫ 1

0 (F/ρ)hρdρ
∫ 1

0 gdρ
≤
∫ 1

0 hρdρ
∫ 1

0 gdρ
sup
ρ

(
F

ρ

)

= sup
ρ

(
F

ρ

)

. (4.60)

We have used
∫ 1

0 hρdρ = ∫ 1
0 gdρ, which follows from integration by parts. Finally,

we obtain

2
√

DF ′(0) < v ≤ 2
√
D

√

sup
ρ

(
F

ρ

)

, (4.61)

which is the result given in (4.12).
Note that the variational characterization given in (4.58) only holds if F > 0 on

(0,1) and for fronts propagating into unstable states. To derive a variational result
valid if F < 0 for some values of ρ, we need to extend these results [35]. To do
so, we multiply (4.49) by g. Integrating between ρ = 0 and ρ = 1, we obtain after
integration by parts

∫ 1

0
F(ρ)gdρ = v

∫ 1

0
qgdρ − 1

2
D
∫ 1

0
hq2dρ. (4.62)

For fixed ρ, the functional

�[q] ≡ vqg − 1

2
Dhq2 (4.63)

has a maximum at qmax = vg/(Dh), since v, q, g, and h are positive. Therefore
�[q] ≤ �[qmax] = v

2g2
/(2Dh) for any value of ρ. It follows that
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v
2 ≥ 2D

∫ 1
0 Fgdρ

∫ 1
0 (g

2
/h)dρ

, (4.64)

which holds for any F(ρ) for which a monotonic front exists. The equality in (4.64)
holds if ğ satisfies

− d(ln ğ)

dρ
= v

Dq
, (4.65)

which can be integrated to yield

ğ(ρ) = exp

(∫ ρ0

ρ

v

Dq
dρ

)

. (4.66)

Obviously, ğ(ρ) is again a continuous, positive, and decreasing function on (0,1)
with ğ(1) = 0. Near ρ = 0, ğ diverges. We linearize (4.2) to find from (4.66)

ğ(ρ) ∼ ρ
−v/(λ+D) near ρ = 0, (4.67)

and f ğ ∼ (ğ)2
/h ∼ ρ

1−v/(λ+D). The integrals in (4.64) exist if λ+D/v > 1/2.
This condition is always satisfied if F ′(0) ≤ 0, i.e., for Case B (front propagating
into metastable states). However, it is also satisfied for Case A (fronts propagating

into unstable states) provided that v > 2
√

DF ′(0). The asymptotic front velocity is
given for both cases A and B by

v
2 = max

g

[

2D

∫ 1
0 Fgdρ

∫ 1
0 (g

2
/h)dρ

]

, (4.68)

where the maximum is taken over all positive, decreasing trial functions on (0,1) for
which the integrals exist.

We illustrate the power of the variational characterization (4.68) by solving some
examples for cases A and B. To do so, we will consider the trial function

g(ρ) = ρ
−μ

(1− ρ)
μ with μ > 0. (4.69)

We maximize over all possible values of μ for which the integrals in the variational
formula exist:

v
2 = max

0<μ≤2
2D

[

μ�(4)

�(2− μ)�(2+ μ)

∫ 1

0
F(ρ)ρ−μ

(1− ρ)
μdρ

]

. (4.70)
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KPP reaction term. With F(ρ) = ρ(1− ρ) (4.70) yields

v
2 = 2D max

0<μ≤2
μ, (4.71)

i.e., v = 2
√
D.

Pulled–Pushed transition. The variational characterization can account for the
pulled–pushed transition for fronts propagating into unstable states. We consider
the Ben-Jacob case [37], where F(ρ) = ρ(1 − ρ)(1 + αρ) with α > 0. Equation
(4.70) yields

v
2 = max

0<μ≤2
2Dμ

[

1+ α

4
(2− μ)

]

. (4.72)

The maximum must be evaluated carefully for this case. For α ≤ 2, the maximum
occurs at μ = 2 and for α ≥ 2 at μ = (α + 2)/α,

v =
{

2
√
D, α ≤ 2,√

D/2
(√

α + 2/
√
α
)

, α ≥ 2,
(4.73)

which coincides with Ben-Jacob’s result.
Cubic reaction term. We deal again with the case considered in (4.22) for a front

propagating into a metastable state, i.e., connecting ρ1 and ρ3. To apply (4.70),
where it is assumed that the front connects 0 and 1, we rescale (4.22) by defining
the new field u = (ρ − ρ1)/(ρ3 − ρ1). Equation (4.22) then reads

Duzz + vuz + rau(1− u)(u − b), (4.74)

where

a ≡ (ρ3 − ρ1)
2 and b ≡ ρ2 − ρ1

ρ3 − ρ1
> 0. (4.75)

Substitute the reaction term F(u) = rau(1− u)(u − b) into (4.70). Then

v
2 = max

0<μ≤2
Dμar

[

1− μ

2
− 2b

]

. (4.76)

In this case, the maximum occurs at μ = 1− 2b,

v =
√

raD

2
(1− 2b) =

√

r
D

2
(ρ3 − 2ρ2 + ρ1), (4.77)

which is exactly the same result as in (4.24). Furthermore, we can also obtain the
front profile from the variational characterization. The selected front is the one that
satisfies the equality in (4.64), and the front profile is given by q = vg/(Dh):
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− du

dz
= vg

Dh
=
√

r

2D
(ρ3 − ρ1)u(1− u). (4.78)

Since u = (ρ − ρ1)/(ρ3 − ρ1), the above equation turns into

dρ

dz
=
√

r

2D
(ρ − ρ1)(ρ − ρ3), (4.79)

which coincides with (4.25) for the front profile.

4.3 Effect of Low Concentrations

The sensitivity of fronts to the dynamics of small perturbations about the unstable
or metastable states has been studied by Brunet and Derrida [61] for pulled fronts
and Kessler et al. [227] for pulled and pushed fronts. The mean-field description
of reacting and diffusing systems ceases to be valid for low values of the particle
density ρ, values that correspond to less than one particle. This fact can be incor-
porated into the RD equation by introducing a cutoff for the reaction term. Such a
cutoff strongly affects the front velocity. Throughout this section we consider for
simplicity that space and time have been rescaled such that D = r = 1.

4.3.1 Effect on Pulled Fronts

The starting point of Brunet and Derrida’s approach is to replace the kinetic term in
the FKPP equation by F(ρ) = θ(ρ − ε)ρ(1 − ρ). Here θ(·) denotes the Heaviside
function, and ε = 1/N is the cutoff, where N is the average number of particles in
the state ρ = 1. In the frame comoving with the front, the RD equation

ρzz + vερz + θ(ρ − ε)ρ(1− ρ) = 0 (4.80)

can be divided into three regions. In region II, ε < ρ � 1, the nonlinear terms in
the reaction function can be ignored. In region III, ρ < ε, the kinetic term vanishes.
In region I, ρ is not small compared to 1, and one has to consider the full nonlinear
equation without cutoff. These considerations lead to the system of equations:

ρzz + vερz + ρ(1− ρ) = 0, in region I, (4.81a)

ρzz + vερz + ρ � 0, in region II, (4.81b)

ρzz + vερz = 0, in region III. (4.81c)

At the boundary between regions I and II and the boundary between II and III, the
particle density ρ, as well as its comoving derivative ρz , must be continuous. Since
ε � 1, the solutions of (4.81) are given to leading order by
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ρ(z) = εe−vε(z−z0), in region III, and (4.82a)

ρ(z) ∼ sin

(
π z

|ln ε|
)

e−z
, in region II, (4.82b)

where z0 � |ln ε| marks the boundary between regions II and III. The continuity
conditions at the boundary between both regions lead to

vε � 2− π
2

(ln ε)
2
. (4.83)

The velocity converges to 2 as (ln ε)
−2 or (ln N )

−2.

4.3.2 Effect on Pushed Fronts

For fronts propagating into metastable states and pushed fronts propagating into
unstable states, Kessler et al. [227] showed that the velocity shift introduced by the
cutoff depends on a power of ε. Consider a RD equation with a cutoff around the
state ρ = 0, where the linear part of the growth term is ρ. In the nonreacting region
III, i.e., z > z0, and the region corresponding to large z with z < z0, the solutions
of the RD equation are

ρ(z) = εe−vε(z−z0), for z > z0, (4.84a)

ρ(z) = A1e−λ+z + δvA2e−λ−z, for large z with z < z0. (4.84b)

Here

λ± =
v0 ±

√

v
2
0 − 4

2
, (4.85)

and v0 is the front velocity in the absence of a cutoff, i.e., vε = v0 + δv. The
integration constants A1 and A2 do not depend on ε and can be obtained by matching
the solutions at the boundary, treating δv as a small parameter. At z = z0, the two
terms in (4.84b) must be of the same order, e−λ+z0 ∼ δve−λ−z0 , or δv ∼ ez0(λ−−λ+).
The matching condition implies that e−λ+z0 ∼ ε, or z0 ∼ − ln ε/λ+, and

δv ∼ ε
1− λ−

λ+ = ε
1+

√

1−4/v2
0−1

√

1−4/v2
0+1 . (4.86)

We consider first an example of a pushed front propagating into an unstable state,
namely Ben-Jacob’s case with a cutoff, F(ρ) = θ(ρ − ε)ρ(1 − ρ)(1 + αρ).
A pushed front occurs for α > 2 and v0 = (

√
α + 2/

√
α)/

√
2, see (4.14). In this
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case, δv ∼ ε
(α−2)/α , i.e., a sublinear dependence of the shift in the front velocity on

the cutoff.
We consider next a front propagating into a metastable state for the Nagumo

equation, F(ρ) = θ(ρ − ε)ρ(1 − ρ)(ρ − a). The front velocity in the absence of
a cutoff is v0 = 1/

√
2− a

√
2. Equation (4.86) yields δv ∼ ε

1+2a . Exact analytical
results for the front solutions can be obtained if the reaction term F(ρ) with a cutoff
is replaced by a piecewise linear approximation. The dependence of the velocity
shift on the cutoff displays good agreement with the results by Brunet and Derrida
and Kessler et al. [495].

4.3.3 Variational Principles and the Cutoff Problem

Recent studies have applied improved variational principles to deal with the velocity
shift due to a cutoff in the reaction term, both for fronts propagating into unstable
and metastable states [284, 36]. They confirm the results by Brunet and Derrida and
improve the results by Kessler et al. The variational principle given in (4.68) implies
that for any admissible trial function a lower bound for the velocity can be found by
(4.64). The trial function for which equality in (4.64) holds diverges at ρ = 0, and
it is convenient to consider trial functions that in addition to the requirements g > 0
and g′ < 0 also satisfy g(0) →∞. Such trial functions allow us to obtain accurate
lower bounds for the front velocity. We perform a change of variables ρ = ρ(s),
where s = 1/g, and consider s as the independent variable in (4.68). With this
change of variables, the variational principle reads

v
2 = max

ρ(s)
2
V (1)/s0 +

∫ s0
0

(

V [ρ(s)]/s2
)

ds
∫ s0

0 (dρ/ds)2 ds
. (4.87)

Here s0 = 1/g(ρ = 1), V (ρ) = ∫ ρ

0 F(u)du, and the maximum is taken over
positive increasing functions ρ(s), such that ρ(0) = 0 and for which the integrals
in (4.87) converge. Consider the reaction term F(ρ) = θ(ρ − ε)ρ(1 − ρ

2
) and the

trial function

ρ(s) =
⎧

⎨

⎩

s, if 0 ≤ s ≤ ε,
√
εs

√

1+ (ln ε)
2

4φ2 cos
[

φ
|ln ε| ln(s/ε)− φ

]

, if ε ≤ s ≤ ε
−1,

(4.88)

where φ is the solution of the equation φ tanφ− |ln ε| /2 = 0. Substituting this trial
function into (4.87), we find the lower bound

v
2 ≥ 4

(

1− π
2

|ln ε|2
+ · · ·

)

(4.89)
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after expanding for small ε. For pushed fronts, the existence of a variational prin-
ciple allows one to use the Feynman–Hellman theorem to calculate the dependence
of the velocity on parameters of the reaction term [36]. If the reaction term is of the
form F(ρ) = F(ρ, α) then

∂v
2

∂α
= 2

∫ 1
0

∂F(ρ,α)
∂α

ğ(ρ, α)dρ
∫ 1

0

(

−ğ2
/ğ′
)

dρ
, (4.90)

where ğ is the trial function, unique up to a multiplicative constant, that produces
the maximum in (4.68) for the given parameter α. Note that the Feynman–Hellman
theorem only holds, if the maximum is actually realized, which is not the case for
pulled fronts. Consider the reaction term F(ρ) = θ(ρ − ε) f (ρ) and α ≡ ε. The
Feynman–Hellman theorem (4.90) implies that

∂v
2

∂ε
= 2

∫ 1
0 ğ(ρ, ε) ∂

∂ε

[

θ(ρ − ε) f (ρ)
]

dρ
∫ 1

0

(

−ğ2
/ğ′
)

dρ
= −2

ğ(ε, ε) f (ε)
∫ 1

0

(

−ğ2
/ğ′
)

dρ
. (4.91)

For small ε, the leading order of the trial function ğ(ρ, ε) is ğ(ρ, 0) ≡ ğ0(ρ), which
is exactly the optimizing function for the case without a cutoff. On the other hand,
for small ε we can write v(ε) = v0 + ε (∂v/∂ε)ε=0 + · · · , so that

δv = ε
∂v

∂ε

∣
∣
∣
∣
ε=0

= − 1

v0
∫ 1

0

(

−ğ2
0/ğ

′
0

)

dρ
ε f (ε)ğ0(ε), (4.92)

where we have made use of the variational result for the case without cutoff:

v
2
0 = 2

∫ 1
0 f (ρ)ğ0(ρ)dρ
∫ 1

0

(

−ğ2
0/ğ

′
0

)

dρ
. (4.93)

From (4.67) we know that ğ0(ρ) ∼ ρ
−v0/λ+ near ρ = 0, with

λ+ =
1

2

[

v0 +
√

v
2
0 − 4 f ′(0)

]

, (4.94)

and ğ0(ε) ∼ ε
−v0/λ+ . Since the denominator in (4.92) is a positive constant and

does not depend on ε, we conclude that

δv ∼
{

− f (ε), if f ′(0) = 0,

− f ′(0)ε2−v0/λ+ , if f ′(0) �= 0.
(4.95)
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These results are in agreement with the previous results obtained from a different
variational principle and also with the results obtained by Kessler et al. The depen-
dence of the second result is exactly that given in (4.86).

4.4 Effect of External Noise

In this section we explore the systematic effect of an external noise on the front
velocity. Consider a reaction term F(ρ, α) that depends not only on the density but
also on a parameter α that fluctuates. Assuming small fluctuations around its mean
value, we can write α(x, t) = αm − ε

1/2
η(x, t), where αm is the mean value, ε is a

small parameter governing the noise amplitude, and η(x, t) is a Gaussian noise with
zero mean and correlation given by

〈

η(x, t)η(x ′, t ′)
〉

= 2C(x − x ′)δ(t − t ′), (4.96)

where δ(·) is the Dirac delta-function and 〈·〉 denotes averaging. The role of spa-
tiotemporal structured noise has been discussed in [377]. For simplicity, we consider
here noise that is white in time and correlated in space [376]. This is an excellent
approximation if the time scale of the noise is much shorter than the characteris-
tic time of the kinetics. We assume that the fluctuations have a small amplitude,
F(ρ, α) = F(ρ, αm)− ∂F

∂α
ε

1/2
η(x, t)+O(ε). Then the RD equation can be written

as the following stochastic partial differential equation:

∂ρ

∂t
= ∂

2
ρ

∂x2
+ f (ρ)+ ε

1/2g(ρ)η(x, t), (4.97)

where f (ρ) = F(ρ, αm) and g(ρ) = − ∂F
∂α

(ρ, αm). The noise appears in the
RD equation (4.97) in a multiplicative way. An additive noise source can also be
included to account for fluctuations due to internal noise. Additive noise does not
modify the front velocity for the invasion of either metastable or unstable states,
and the front itself exists only during a short transient period. We consider here
only the case of a multiplicative noise. The effects on front propagation are twofold:
First, multiplicative noise produces a random meandering of the front position with
respect to its mean position [17, 16]. Second, multiplicative noise induces a shift in
the mean front velocity. We focus on the second effect; the problem reduces to an
analogous deterministic problem with renormalized coefficients.

A crucial feature of the multiplicative noise case is that the noise term in (4.97)
has a nonzero mean value. Using Novikov’s theorem [324] for Gaussian noise in the
Stratonovich interpretation, we find that

ε
1/2 〈g(ρ)η(x, t)〉 = εC(0)

〈

g(ρ)g′(ρ)
〉

. (4.98)



4.4 Effect of External Noise 145

According to this result, (4.97) can be rewritten as

∂ρ

∂t
= ∂

2
ρ

∂x2
+ h(ρ)+ ε

1/2R(ρ, x, t), (4.99)

where

h(ρ) ≡ f (ρ)+ εC(0)g(ρ)g′(ρ) (4.100)

and

R(ρ, x, t) ≡ g(ρ)η(x, t)− ε
1/2C(0)g(ρ)g′(ρ). (4.101)

The stochastic term in (4.99) has zero mean, 〈R(ρ, x, t)〉 = 0, and correlation

〈

R(ρ, x, t)R(ρ, x ′, t ′)
〉

=
〈

g(ρ(x, t))η(x, t)g(ρ(x ′, t ′))η(x ′, t ′)
〉

+ O(ε
1/2

).

(4.102)
This rearrangement allows us to distinguish explicitly between the systematic con-
tribution from the noise term and a residual stochastic one. Since the noise is white
in time, the average of the noise term has no explicit time dependence. Writing
ρ(x, t) = ρ0(x, t)+ δρ, where ρ0(x, t) = 〈ρ(x, t)〉 and the perturbative fluctuation
is δρ ∼ O(ε

1/2
), we obtain to lowest order

∂ρ0

∂t
= ∂

2
ρ0

∂x2
+ f (ρ0)+ εC(0)g(ρ0)g

′
(ρ0), (4.103)

which is the RD equation for the mean front profile. The methods developed in Sect.
4.2 allow us to study fronts connecting the steady states of (4.103) and to obtain the
mean velocity in terms of the noise intensity ε(0) ≡ εC(0).

To illustrate our approach, we consider the Ginzburg–Landau reaction term
F(ρ) = ρ(1 − ρ)(α + ρ), where α → αm − ε

1/2
η(x, t). Then f (ρ0) =

ρ0(1−ρ0)(αm+ρ0) and g(ρ0) = −ρ0(1−ρ0). In the absence of noise, the velocity
of the front propagating into the unstable state 0 is given by

v =
{

(1+ 2α)/
√

2, −1/2 < α < 1/2 (nonlinear),

2
√
α, 1/2 ≤ α (linear),

(4.104)

a result that can be obtained directly from (4.70). In the presence of multiplicative
noise, the mean front profile is governed by (4.103), which reads in this case

∂ρ0

∂t
= ∂

2
ρ0

∂x2
+ ρ0(1− ρ0)(α

′
m + βρ0), (4.105)
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with α
′
m = αm + ε(0) and β = 1 − 2ε(0). Applying the variational formula (4.70)

to the RD equation (4.105), we obtain the velocity for the front propagating, in the
presence of noise, into the unstable state 0:

v =
{

(1+ 2αm)/
√

2 [1− 2ε(0)], −1/2 ≤ αm < 1/2− 2ε(0) (nonlinear),

2
√

αm + ε(0), 1/2− 2ε(0) ≤ αm < 1 (linear).
(4.106)

An important condition for propagating fronts to exist is that ε(0) < 1/2, other-
wise the above result does not hold and the presence of noise can destroy the front
formation. This result shows that multiplicative noise, which is white in time, can
modify the mean front velocity as well as the transition point from the linear to the
nonlinear regime of propagation.

4.5 Effect of Time Delay and Age Structure

The inclusion of age structure in RD equations has its origin in the generalization
of population growth models. Age-structured models take explicitly into account
that population growth is due only to adult individuals. The oldest such model is
described by the McKendrick–von Foerster equation [447]:

∂ρ(a, t)

∂t
+ ∂ρ(a, t)

∂a
= −μ(a, t)ρ(a, t), (4.107)

where ρ(a, t) is the age distribution density of the population. Let ρ(a, t)da be the
density of individuals with an age in the interval (a, a + da) at time t . The rate of
change of the number of individuals in a given age interval �a is due to the rate of
entry at age a minus the rate of departure at age a + da minus the deaths, which
yields the balance equation

∂ρ(a, t)

∂t
�a = J (a, t)− J (a +�a, t)− μ(a, t)ρ(a, t)�a. (4.108)

Here μ(a, t) is the per capita mortality rate for individuals of age a at time t , and
J (a, t) is the flux of individuals of age a at time t . Dividing by �a and taking the
limit �a → 0, we obtain the conservation equation for the density of individuals:

∂ρ(a, t)

∂t
+ ∂ J (a, t)

∂a
= −μ(a, t)ρ(a, t). (4.109)

The flux J is not a flux in space, but rather the “movement” of individuals in age. We
assume that it is proportional to the density of individuals and some characteristic
velocity of aging, J (a, t) = ρ(a, t)v(a, t). Aging is simply the passage of time
v = da/dt = 1, and we obtain (4.107). If we also include the flux in the space due
to the motion of individuals, then we obtain Metz–Diekman model [295]:
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∂ρ(x, a, t)

∂t
+ ∂ρ(x, a, t)

∂a
= D

∂
2
ρ(x, a, t)

∂x2
− μ(a, t)ρ(x, a, t). (4.110)

Almost parallel to McKendrick, Hutchinson [215], a well-known ecologist, pro-
posed a time-delayed version for the logistic growth equation, where the nonlinear
term was delayed in time. The diffusive Hutchinson equation, also known as the
delayed Fisher equation,

∂ρ(x, t)

∂t
= D

∂
2
ρ(x, t)

∂x2
+ ρ(x, t) [1− ρ(x, t − τ)] , (4.111)

has front solutions. When the delay τ is large, the traveling wave solution oscillates
around the state ρ = 1, which can be driven unstable for still larger τ [482].
A generalization of (4.111) consists in incorporating distributed delays in an ad hoc
manner by multiplying the second term on the right-hand side of (4.111) by a kernel
k(τ ) and integrating over τ . Many other delayed RD equations have appeared in
the ecological literature. A particularly well-known one is the Nicholson’s blowflies
equation:

∂ρ(x, t)

∂t
= D

∂
2
ρ(x, t)

∂x2
− δρ(x, t)+ pρ(x, t − τ)e−βρ(x,t−τ)

. (4.112)

Under certain conditions, this equation has front solutions. However, as for (4.111),
loss of monotonicity occurs as the delay is increased and the front develops a promi-
nent hump [167].

There exists a connection between age-structured and time-delayed RD models
[169]. From (4.110) we can obtain an equation for the total mature population den-
sity w(x, t). Let f (a) be the probability density function of maturation ages, i.e.,
f (a)da is the probability of maturing between the ages a and a + da. Then the
probability of maturing before age a is F(a) = ∫ a

0 f (a′)da′. The total density of
mature individuals is

w(x, t) =
∫ ∞

0
da f (a)

∫ ∞

a
ρ(x, t, a′)da′ =

∫ ∞

0
daF(a)ρ(x, t, a). (4.113)

Differentiating (4.113) with respect to time and using (4.110), we obtain

∂w

∂t
= D

∂
2
w

∂x2
− μw +

∫ ∞

0
da f (a)ρ(x, t, a), (4.114)

where the diffusion coefficient D and the death rate μ for immature population are
assumed to be constants. The solution of (4.110) is given by
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ρ(x, t, a) = e−μa

2
√
πDa

∫ ∞

−∞
b
[

w(y, t − a)
]

e−(x−y)2
/4Dady, (4.115)

where ρ(x, t = 0, a) ≡ b[w(x, t)] is the birth function. Inserting this expression
into (4.114), we obtain the equation

∂w

∂t
= D

∂
2
w

∂x2
−μw +

∫ ∞

0
da f (a)

e−μa

2
√
πDa

∫ ∞

−∞
b
[

w(y, t − a)
]

e−(x−y)2
/4Dady.

(4.116)

If the diffusion coefficient for immature individuals is very small (D → 0), then the
Gaussian function in the integrand can be approximated by a Dirac-delta-function,

∂w

∂t
= D

∂
2
w

∂x2
− μw +

∫ ∞

0
da f (a)e−μab [w(x, t − a)] . (4.117)

If there exists only a unique maturation age τ , then f (a) = δ(a − τ). Assuming
that b(w) = we−w we recover Nicholson’s equation. Recently, a model consisting
of two subpopulations, mature and immature, with an age-dependent disperser–
nondisperser transition has been studied analytically and applied to the Neolithic
transition in Europe. This model shows good agreement with observational data
[292]. This example will be analyzed in detail in Chapter 7.

4.6 Multi-Component Reaction–Diffusion Systems

The reaction–diffusion equations for a system of n species in one-dimensional space
read, see Sect. 2.1.2,

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ F(ρ), (4.118)

where ρ ∈ R
n , F : R

n → R
n , and D is the n × n diffusion matrix. We focus on

front solutions and illustrate how to determine the front velocity for KPP kinetics.
Let us write, for simplicity,

Fj (ρ) = c j j (ρ)ρ j +
∑

m �= j

γ jmρm, (4.119)

where γ jm > 0 for j �= m. The kinetic terms in (4.118) must satisfy the following
conditions:

(i) In R
n
+ = {(

ρ1, . . . , ρn
) |ρ j > 0

}

, the vector field
(

F1(ρ), . . . , Fn(ρ)
)

has an
unstable stationary state at 0 = (0, . . . , 0) and an asymptotically stable one at
A = (A1, . . . , An) with A j > 0 for j = 1, . . . , n.

(ii) The coefficients
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r j = c j j (0) = sup
0≤ρi≤Ai ;∀i=1,...,n

[

c j j (ρ)
]

(4.120)

must be finite.

4.6.1 Two-Component RD system

In this section we show how to compute the front velocity for a reaction–diffusion
system of two components. The calculations can be extended easily to three or more
components. Define γ12 = γ1 and γ21 = γ2 for simplicity. Consider the system

∂ρ1

∂t
= D1

∂
2
ρ1

∂x2
+ f1(ρ1, ρ2)ρ1 + γ1ρ2, (4.121a)

∂ρ2

∂t
= D2

∂
2
ρ2

∂x2
+ f2(ρ1, ρ2)ρ2 + γ2ρ1. (4.121b)

We assume that the interaction terms fi (ρ1, ρ2), i = 1, 2, are of KPP type. The
dynamical behavior of the front is governed by the linear part of the system and
we can use the Hamilton–Jacobi formalism, see Sect. 4.2.1. Under the hyperbolic
scaling (4.33), the fields ρε

i (x, t) = ρi (x/ε, t/ε) satisfy

ε
∂ρ

ε
1

∂t
= ε

2D1
∂

2
ρ
ε
1

∂x2
+ r1ρ

ε
1 + γ1ρ

ε
2, (4.122a)

ε
∂ρ

ε
2

∂t
= ε

2D2
∂

2
ρ
ε
2

∂x2
+ r2ρ

ε
2 + γ2ρ

ε
1 . (4.122b)

This system of equations can be rewritten as

−A1
∂Gε

∂t
= D1A1

(
∂Gε

∂x

)2

− D1A1ε
∂

2Gε

∂x2
+ r1A1 + γ1A2, (4.123a)

−A2
∂Gε

∂t
= D2A2

(
∂Gε

∂x

)2

− D2A2ε
∂

2Gε

∂x2
+ r2A2 + γ2A1, (4.123b)

after taking into account the nonlinear transformation

ρ
ε
i (x, t) = Ai exp

[

−Gε
(x, t)

ε

]

. (4.124)
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For simplicity we suppose that the initial conditions for (4.121) have the form

ρi (x, 0) =
{

Ai , x < 0,

0, x ≥ 0,
(4.125)

which will give rise to a front with the minimal propagation velocity. Taking the
limit ε → 0, i.e., the long-time and large-spatial scale limit, we obtain the equation
for the action functional G(x, t). Introduction of the definitions (4.38) turns the
system (4.123) into an eigenvalue problem MA = HA, where

M =
(

D1 p
2 + r1 γ1

γ2 D2 p
2 + r2

)

. (4.126)

This system of algebraic equations for A1 and A2 has a nontrivial solution if
det(M− H I) = 0:

H2−H
(

D1 p
2 + D2 p

2 + r1 + r2

)

+(D1 p
2+r1)(D2 p

2+r2)−γ1γ2 = 0. (4.127)

To ensure the positivity of A1 and A2, we need to choose the largest eigenvalue
H(p), i.e., the largest solution of equation (4.127),

H(p) = D1 + D2

2
p2 + r1 + r2

2

+ 1

2

√
[

(D1 − D2)p
2 + r1 − r2

]2 + 4γ1γ2. (4.128)

The front velocity can be determined from (4.128) and (4.47). One of the exercises
below deals with a particular case where an analytical solution for the front velocity
can be obtained.

Exercises

4.1 Find exact solutions for the RD equation with the reaction term F(ρ) =
ρ
q+1

(1 − ρ
q
) by looking for solution in the form ρ(z) = (1 + aebz)−s with

z = x − vt . Determine the unique values for v, b, and s in terms of q. Consider
D, a, b, s as positive parameters.

4.2 Consider the RD equation with the piecewise linear emulation for the KPP reac-
tion term

F(ρ) =
{

αρ, 0 ≤ ρ < a,

β(1− ρ), a < ρ ≤ 1,
(4.129)
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with β > 0. Shift to the traveling wave coordinate and solve the corresponding ordi-
nary differential equation to determine the front profile that satisfies ρ(−∞) = 1
and ρ(+∞) = 0. By matching the derivative of the front profile at ρ = a obtain the
front velocity.

4.3 Consider the RD equation with the initial condition

ρ(x, 0) =
{

1, x < 0,

e−h(x), x > 0.
(4.130)

The Hamilton–Jacobi formalism can be extended to incorporate initial condition
without compact support by considering

G(x, t) = min
y≥0

{

εh(y/ε)+
∫ t

0
L(x, s)ds, x(t) = x, x(0) = y

}

. (4.131)

Prove that for h(x) = αx the front velocity is

v =
{

1/α + α, α < 1,

2, α > 1.
(4.132)

4.4 The equation

∂ρ

∂t
= ∂

2
(ρ

m
)

∂x2
+ F(ρ) (4.133)

with F(0) = F(1) = 0 and m > 1 is known as the reaction–diffusion equation in
porous media. Transform to the traveling wave coordinate and consider the bound-
ary conditions limz→−∞ ρ = 1 and limz→+∞ ρ = 0. By defining q = −ρ

m−1
ρz

construct a variational principle as in Sect. (4.2.2) to show that

v = max
g

2
√
m

∫ 1
0

√

ρ
m−1F(ρ)ghdρ
∫ 1

0 gdρ
. (4.134)

Show that the fronts of the equation (4.133) and those of the equation

∂ρ

∂t
= ∂

2
ρ

∂x2
+ mρ

m−1F(ρ) (4.135)

travel with the same velocity.

4.5 The evolution of iodide, I−, in the iodate–arsenous acid reaction with arsenous
acid in stoichiometric excess is well described by the RD equation
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∂ρ

∂t
= D

∂
2
ρ

∂x2
+ (a + bρ)ρ(c − ρ). (4.136)

Here ρ is the concentration of I−, in M=mol/L, a = ka[H+]2, b = kb[H+]2, and
c is the initial concentration of iodate, IO3

−. The experimental values are ka =
4.50×103

/M3 s, kb = 4.36×108
/M4 s, D = 2.0×10−3mm2

/s, [H+] = 7.1×10−3

M, and c = 5.0 × 10−3 M. Find the chemically acceptable stationary states of
the kinetic term in (4.136) and determine their stability. Show that (4.136) has a
propagating front solution connecting the stable to the unstable steady state and
determine the propagation velocity v. Compare your value with the experimental
value vexp = 2.3× 10−2 mm/s.

4.6 Use the variational principle

v = max
g

2α

∫ 1
0

Fg
ρ(1−ρ)

dρ
∫ 1

0 gdρ
(4.137)

with the trial function g(ρ) = exp

[

−α
2 ∫ F

ρ
2
(1−ρ)

2 dρ

]

to calculate the front

velocity, connecting 0 and 1, for RD equations with reaction terms given by (a)
b−1

ρ(1− ρ)(ρ + b), (b) ρ(1− ρ)(ρ − a), and (c) ρ(1− ρ).

4.7 Determine the shift in the front velocity for the RD equation with a Ginzburg–
Landau reaction term F(ρ) = (1 − ρ

2
)(ρ + a) with 0 < a < 1, when a cutoff is

imposed at the metastable state ρ = −1.

4.8 Determine the shift in the front velocity for the RD equation with a Nagumo
reaction term, when a cutoff is imposed at the state ρ = 0. Use the variational
principle to show that

δv =
√

2�(4)a

�(1+ 2a)�(3− 2a)
ε

1+2a
. (4.138)

4.9 Find the shift in the front velocity for a reaction–diffusion equation where the
diffusion coefficient D(ρ) depends on ρ, with D(0) = 0, D′

(ρ) > 0, and the cutoff
is imposed at the state ρ = 0 of the KPP reaction term.

4.10 Consider the RD equation with the reaction term F(ρ) = −ρ(α+ρ). Since it is
always negative, the RD equation cannot have propagating front solutions. Consider
that the control parameter α fluctuates around its mean value αm with a Gaussian
noise of zero mean and correlation given by (4.96). Show that if the noise inten-
sity is larger than αm , the state 0 becomes unstable and can be invaded by a front
propagating with the linear velocity.
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4.11 Consider the system given in (4.121) with D1 = D2 = D. Calculate the Hamil-
tonian and show that it coincides with the Hamiltonian for a single-component RD

equation with an effective reaction rate r =
(

r1 + r2 +
√

(r1 − r2)
2 + 4γ1γ2

)

/2.



Chapter 5
Reaction–Transport Fronts Propagating
into Unstable States

In this chapter we consider the problem of propagating fronts traveling into an
unstable state of a reaction–transport system. The purpose is to present the gen-
eral formalism for the asymptotic analysis of traveling fronts. The method relies on
the hyperbolic scaling procedure, the theory of large deviations, and the Hamilton–
Jacobi technique. A generic model that describes phenomena of this type is the
RD equation (2.3) with appropriate kinetics, such as the FKPP equation (4.1). The
propagation velocity of fronts of this equation has been studied in Chap. 4. The
RD equation involves implicitly a long-time large-scale parabolic scaling, while as
far as propagating fronts are concerned, the appropriate scaling must be a hyper-
bolic one. The macroscopic transport process arises from the overall effect of many
particles performing complex random movements. Classical diffusion is simply an
approximation for this transport in the long-time large-scale parabolic limit. In
general, this approximation is not appropriate for problems involving propagat-
ing fronts. The basic idea is that the kinetic term in the RD equation with KPP
kinetics is very sensitive to the tails of a density profile. These tails are typically
“non-universal,” “non-diffusional,” and dependent on the microscopic details of the
underlying random walk. The purpose of this chapter is to demonstrate that the
macroscopic dynamics of the front for a reaction–transport system are dependent
on the choice of the underlying random walk model for the transport process. To
illustrate the idea of an alternative description of front propagation into an unstable
state of reaction–transport system, we consider several models including discrete-
in-time or continuous-in-time Markov models with long-distance dispersal kernels,
non-Markovian models with memory effects, etc., instead of the RD equation. Let
us give a few examples of such models.

The discrete-time model

ρ(x, t + τ) =
∫

R

ρ(x − z, t)w(z)dz + rτρ(1− ρ) (5.1)

is the extension of the mesoscopic equation for the DTRW, see (3.13), with KPP
kinetics, if the reaction and transport processes are independent. The continuous-
time model with long-range dispersal, see (3.76),
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∂ρ

∂t
= λ

∫

R

ρ(x − z, t)w(z)dz − λρ(x, t)+ rρ(1− ρ), (5.2)

is the result of combining the Kolmogorov–Feller equation with KPP kinetics, if
both reaction and transport are independent processes. The equation with memory
effects

∂ρ

∂t
=
∫ t

0
K (t − τ)

∂
2
ρ(x, τ )

∂x2
dτ + rρ(1− ρ) (5.3)

is obtained phenomenologically by combining the continuity equation for particle
density with a nonlocal Fick’s first law. Equations (5.1) and (5.2) provide a suitable
coarse-grained description of reaction–transport processes with long-range interac-
tion modeled by the kernel w(z) [310]. It is natural to assume that w(z) → 0 as
z →∞ and w(z) = w(−z) ≥ 0.

Since exact solutions of the integro-differential equations (5.1), (5.2), and (5.3)
are not known, some sort of approximation is needed. The conventional way to
simplify the problem consists in approximating the integral term in these equations
by the second derivative of ρ with respect to the spatial coordinate x , which results
in the FKPP equation (4.1), see for example [310]. In the following we show that, in
general, this approximation for a propagating front problem is not appropriate and
can lead to unphysical results. To illustrate the idea, consider the kernel w(z) given
by

w(z) = 1

2
δ(z − a)+ 1

2
δ(z + a). (5.4)

This case corresponds to the random walk model where the jumps Zi can only take
two values, −a or a, with equal probability 1/2, see Sect. 3.1.1. Then (5.1) takes
the form

ρ(x, t + τ) = 1

2
ρ(x + a, t)+ 1

2
ρ(x − a, t)+ rτρ(1− ρ). (5.5)

This is a typical example of a coupled map lattice describing a logistic map and
spatial diffusion. It has been extensively used in modeling traveling fronts and spa-
tiotemporal chaos [65, 67]. In the limit a → 0 and τ → 0, such that D = a2

/2τ =
const, we recover the FKPP equation (4.1) from (5.5). This diffusion approximation
corresponds to the replacement of the random walk by the Brownian motion. As
far as traveling waves are concerned, the diffusion approximation is not adequate,
since in the limit a → 0 and τ → 0 we should keep the velocity v = a/τ con-
stant, rather than D = a2

/2τ . It is clear that the velocity v = a/τ must be the
maximum possible velocity of front propagation. The theory of front propagation
in reaction–transport systems with nondiffusive transport and its applications have
been reviewed in [139].
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5.1 Hyperbolic Scaling and Hamilton–Jacobi Equation
for the Front Position

In this section we explore some examples to derive the Hamilton–Jacobi equation
for a reaction–transport equation. We follow the same procedure as illustrated in
Chap. 4.

5.1.1 Discrete-Time Model

We consider here the discrete-time transport process corresponding to (5.1). After
the hyperbolic scaling (4.33), the equation governing the rescaled field ρ

ε
(x, t)

reads

ρ
ε
(x, t + ετ) =

∫

R

ρ
ε
(x − εz, t)w(z)dz + rτρε

(1− ρ
ε
), (5.6)

with initial condition with compact support.
We seek a solution in the exponential form (4.35), so that G(x, t) obeys, to lead-

ing order in ε, the following equation:

exp

(

−τ
∂G

∂t

)

=
∫

R

exp

(

z
∂G

∂x

)

w(z)dz + rτ. (5.7)

Taking logarithms of both sides, we find that G(x, t) satisfies the nonlinear partial
differential equation

∂G

∂t
+ 1

τ
ln

[∫

R

exp

(

z
∂G

∂x

)

w(z)dz + rτ

]

= 0, (5.8)

which is the Hamilton–Jacobi equation with the Hamiltonian

H(p) = 1

τ
ln

[∫

R

exp(zp)w(z)dz + rτ

]

. (5.9)

This result is of particular importance. It shows that the front dynamics for (5.1)
must be different from that of the classical RD equation. This follows from the
fact that the Hamiltonian (5.9), governing the evolution of the action functional G
and thereby the dynamics of traveling front, differs from H(p) = Dp2 + r , see
(4.37), corresponding to the RD equation. We conclude that an understanding of
the relevant Hamiltonians H , combined with the appropriate action functional G,
provides the basis for understanding traveling fronts in reaction–transport systems.

If the jumps can only take the values a or −a with the same probability, i.e.,
the kernel w(z) is a superposition of two delta-functions as in (5.4), the Hamilton–
Jacobi equation takes the form
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∂G

∂t
+ 1

τ
ln

[

cosh

(

a
∂G

∂x

)

+ rτ

]

= 0, (5.10)

with the Hamiltonian

H(p) = 1

τ
ln
[

cosh(ap)+ rτ
]

. (5.11)

If we expand the expression in square brackets in powers of ap, take logarithms,
and let a → 0 and τ → 0 such that a2

/τ = const, we easily find that G obeys the
classical Hamilton–Jacobi equation:

∂G

∂t
+ a2

2τ

(
∂G

∂x

)2

+ r = 0. (5.12)

This corresponds to a limiting procedure for a random walk model where the jumps
and the time intervals in which they occur are considered to be very small, such that
a2

/τ = const. The front velocity for the case of the dispersal kernel given by (5.4)
can be calculated from (4.47) and (5.11):

v = min
p>0

ln[cosh(ap)+ rτ ]
τp

. (5.13)

It is easy to see that the function to be minimized tends to+∞ as p → 0+, whereas
this function tends to the constant value a/τ for p → ∞. This implies that some-
where in the middle exists a value of p, namely p∗, that satisfies dv/dp = 0, i.e.,

ap sinh(ap)

cosh(ap)+ rτ
= ln[cosh(ap)+ rτ ]. (5.14)

For this value, p = p∗, the front velocity (5.13) reads

v = a

τ

sinh(ap∗)
cosh(ap∗)+ rτ

≤ a

τ
. (5.15)

As expected, the front velocity is always smaller than a/τ , in contrast to the RD
equation for which the front velocity grows without bound in the fast reaction limit
rτ >> 1.

If we assume that the PDF w(z) corresponds to a normal distribution,

w(z) = 1

σ
√

2π
exp

(

− z2

2σ 2

)

, (5.16)
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then the Hamiltonian takes the form

H(p) = 1

τ
ln
[

exp
(

σ
2 p2

/2
)

+ rτ
]

. (5.17)

The front velocity is now

v = min
p>0

ln
[

exp
(

σ
2 p2

/2
)

+ rτ
]

τp
. (5.18)

As p → 0+, v → ∞, and as p → ∞, v grows linearly with p. This ensures the
existence of a minimum velocity but does not guarantee a maximum velocity. In
fact, in this case, no maximum velocity exists, and the front velocity grows without
bound in the fast reaction limit, as for the RD equation.

5.2 Continuous-Time Model with Long-Range Dispersal

Consider particles that follow a CTRW, such that the random time T between jumps
is exponentially distributed with rate λ, P(T > t) = exp(−λt). The mean-field
equation for the particle density is the Master equation for the compound Poisson
process with logistic growth (5.2). Hyperbolic scaling yields

∂ρ
ε

∂t
= λ

ε

[∫

R

ρ
ε
(x + εz, t)w(z)dz − ρ

ε
(x, t)

]

+ 1

ε
rρε

(1− ρ
ε
). (5.19)

The corresponding Hamiltonian is given by

H(p) = λ

[∫

R

exp(zp)w(z)dz − 1

]

+ r. (5.20)

For a simple random walk with dispersal kernel w(z) = 1
2δ(z− a)+ 1

2δ(z+ a), we
obtain

H(p) = λ
[

cosh(ap)− 1
]+ r. (5.21)

Both Hamiltonians (5.11) and (5.21) involve the maximum velocities a/τ and aλ,
respectively. The front velocities tend to infinity in the fast reaction limit when the
diffusion approximation is considered. This means that H(p) depends quadratically
on ap for ap small. The two models (5.11) and (5.20) differ fundamentally with
respect to propagating fronts; discreteness in time leads to a finite propagation rate,
while the continuous-in-time model leads to an infinite velocity of propagation in
the limit of fast reaction, r →∞. The front velocity for model (5.21) is
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v = min
p>0

λ ln
[

cosh(ap)− 1
]+ r

p
. (5.22)

As p → 0+, v → ∞, and as p → ∞, v saturates toward the value aλ. This
also ensures the existence of a minimum velocity and the maximum velocity aλ,
in contrast to the RD equation. If we assume that the density function w(z) has the
normal distribution (5.16), then the Hamiltonian takes the form

H(p) = λ

[

exp

(

σ
2 p2

2

)

− 1

]

+ r. (5.23)

It is clear from (5.11) and (5.23) that for arbitrary values of the parameters a, λ, τ ,
σ , and r , these Hamiltonians are different from the classical Hamiltonian H(p) =
Dp2 + r . However, we obtain the latter if we expand (5.11) and (5.23) in terms of
small values of ap and rτ . From this expansion we identify

D = 1

2τ

∫

R

z2
w(z)dz and D = λ

2

∫

R

z2
w(z)dz, (5.24)

for the two models with discrete and normally distributed kernels w(z), respectively.
The front velocity for the case of a normally distributed PDF w(z) reads

v = min
p>0

λ
[

exp(σ 2 p2
/2)− 1

]

+ r

p
. (5.25)

As p → 0+, we have v → ∞, and as p → ∞, we find that v grows with p. In
consequence, a minimum velocity exists, but no maximum velocity. In the previ-
ous section we considered the cases when the microscopic transport processes are
described by Markovian random walks. The great advantage of the Hamilton–Jacobi
formulation of the front propagation problem in general, and the formulas (4.46) in
particular, is that they allow us to study quite complicated transport operators for
the evolution of the scalar field ρ and the underlying random walk model, including
non-Markovian processes [118, 121, 125].

5.3 CTRW Models and Front Propagation

In this section we present a geometric approach to the problem of propagating fronts
into an unstable state, valid for an arbitrary CTRW with a KPP reaction rate. We
derive an integral Hamilton–Jacobi type equation determining the position of the
front and its velocity. The essential feature of the method is that it does not rely on
the explicit derivation of an evolution equation for the particle density. In particular,
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we obtain an explicit formula for the propagation velocity for the case of anomalous
transport involving non-Markovian random processes.

In previous sections we showed that the macroscopic dynamics of propagating
fronts depend on the statistical characteristics of the underlying random walk model
for the mesoscopic transport process. Since the dynamics of fronts are nonuniversal,
it is an important problem to find universal rules relating both levels of description.
The goal of this section is to address this problem. We are interested in exploring
the physical properties of systems of particles that disperse according to a general
CTRW.

As usual we introduce the mesoscopic concentration ρ(x, t) of particles perform-
ing a CTRW. The complete description of the mesoscopic transport processes is
given by the joint probability density ψ(τ, z) of making a jump of length z in the
time interval (τ, τ + dτ), see Sect. 3.2. We assume that the local growth rate has the
KPP form:

F(ρ) = rρ(1− ρ). (5.26)

We start with Model C given by (3.141) and the above kinetics. The governing
equation for ρ(x, t) can be written in the form

ρ(x, t) = ρ0(x)�(t)+
∫ t

0

∫

R

ψ(τ, z)ρ(x − z, t − τ, )dzdτ

+r
∫ t

0
�(τ)ρ(x, t − τ) [1− ρ(x, t − τ)] dτ. (5.27)

This equation describes the balance of particles at the position x at time t . The
first term on the RHS of (5.27) represents the number of particles remaining at
their initial position x up to time t . The second term corresponds to the number of
particles arriving at x up to time t from position x − z and time t − τ , and the last
term is a production term due to growth (5.26).

For reaction–transport process with a linear kinetic term F(ρ) = rρ, an alterna-
tive description has been suggested in [187], namely

ρ(x, t) = �(t)er tρ0(x)+
∫ t

0

∫

R

ψ(τ, z)erτ ρ(x − z, t − τ)dzdτ, (5.28)

where the exponential growth er t has been taken into account. For the case of linear
kinetics, (3.121) and (3.122) of Model A can be reduced to (5.28).

Proceeding as in the previous section, and taking into account the definitions of
the moment-generating functions,

ψ̌(p, H) =
∫ ∞

0

∫

R

ψ(τ, z)e−Hτ epxdzdτ, �̂(H) =
∫ ∞

0
�(τ)e−Hτdτ, (5.29)

we can rewrite (5.27) as an equation for the Hamiltonian function H :
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1− ψ̌(p, H)− r�̂(H) = 0. (5.30)

It turns out that for (5.28) one can obtain a very simple equation for the Hamil-
tonian:

ψ̌(p, H − r) = 1. (5.31)

If the jump length and waiting time are independent random variables, we can write
down the moment-generating function ψ̌(p, H) in the decoupled form

ψ̌(p, H) = φ̂(H)w̌(p), (5.32)

where

w̌(p) =
∫

R

epzw(z)dz. (5.33)

Note that our approach applies only to situations where the moment-generating
function w̌(p) is finite, which excludes heavy-tailed jump length PDFs.

Consider a power-law waiting time distribution φ(t) with Laplace transform

φ̂(H) = 1

1+ (Hτ0
)γ , 0 < γ < 1. (5.34)

The waiting time PDF φ(t) behaves like t−(γ+1) for large t , and its expectation
diverges if 0 < γ < 1. If the moment-generating function for the jump length PDF
is w̌(p) � 1 + σ

2 p2
/2, then (5.30) takes the form of the anomalous Hamilton–

Jacobi equation

(

Hτ0
)γ − rτ0

(

Hτ0
)γ−1 = σ

2 p2

2
. (5.35)

In a similar fashion, one can write down the time-fractional Hamilton–Jacobi equa-
tion for the case where the waiting time PDF φ(t) is stable with the index of stability
γ . The corresponding Laplace transform is φ̂(H) = exp

[−(Hτ0)
γ ].

From (5.35) we obtain the momentum p in terms of the Hamiltonian, p = f (H),

where f (H) =
[

2τ0(H − r)(Hτ0)
γ−1
]1/2

σ
−1. This, together with (4.46), pro-

vides the equation for H , namely 1 = Hd ln f (H)/dH , which has the solution
H = r(3− γ )(2− γ )

−1, and an explicit expression for v,

v = σ

τ0

√
2

(

rτ0
)1−γ /2

(3− γ )
(3−γ )/2

(2− γ )
−1+γ /2

. (5.36)
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For the case γ = 1, (5.36) agrees with the corresponding Fisher velocity, with the
diffusion coefficient D = σ

2
/2τ0. In the absence of reaction, r = 0, the mean

squared displacement (MSD) of particles grows as tγ , so that the physical meaning
of the exponent γ is clear. For a fixed time, the MSD grows monotonically with γ ,
which means that the intensity of the transport increases with γ . One can think of γ
as a measure of the tail length of the waiting time distribution φ(t) (5.34). When the
waiting time PDF has a heavy tail, we expect that the mean rate of jumps is smaller
than normal. In other words, a heavy-tailed waiting time PDF decreases the rate
of the spread of the particles and therefore the velocity of the front, because some
particles have long sojourns before starting the next jump. As a result, the velocity
of the front, when reaction is present, should also be a monotonically increasing
function of γ , that is dv/dγ > 0. This physical requirement, applied to (5.36),
yields r < rmax = τ

−1
0 (2 − γ )/(3 − γ ) and therefore the reaction rate cannot be

arbitrarily large. Moreover

v < vmax =
√

D

τ0

√

3− γ

2
. (5.37)

If we consider (5.31) with (5.34) and the diffusion approximation for the jump
length PDF, then the Hamilton–Jacobi equation for Model A reads

σ
2 p2 = 2τγ0 (H − r)γ , (5.38)

and the minimum value of H/p is attained at H∗ = 2r/(2− γ ). The front velocity
is given by

v =
√
√
√
√

2r2−γ
σ

2

τ
γ

0 (2− γ )
2−γ

γ
γ
. (5.39)

Following the same reasoning as before, the criterion dv/dγ > 0 leads to r <

rmax = τ
−1
0 (2 − γ )/γ and v < vmax = σ

√
2/γ τ0. The front velocities (5.36)

and (5.39) have been derived assuming diffusive transport which is attained if the
chemical time r−1 is large compared to the transport time scale τ0, i.e., rτ0 is small.
This condition reflects the fact that diffusive behavior results from the accumulation
of many jumps of the random walk on a time scale much larger than τ0. Therefore,
large reaction rates r require corresponding small values of τ0. For subdiffusive
transport, the condition that rτ0 is small ensures that there exists a maximum front
velocity. Front propagation in reaction–superdiffusion systems has been considered
in [265, 90, 60, 89].



164 5 Reaction–Transport Fronts Propagating into Unstable States

5.4 Memory Effects in RD Equation

To account for memory effects in the transport, one is tempted to replace the stan-
dard Fick’s first law form of the constitutive equation by a nonlocal phenomenolog-
ical relation between the flux and the density gradient:

J (x, t) = −
∫ t

0
K (t − τ)

∂ρ(x, τ )

∂x
dτ, (5.40)

where K (t) is a memory kernel. This form of the constitutive equation captures the
physical fact that the particle flux does not instantaneously adjust to the particle
density gradient. If K (t) = Dδ(t), then (5.40) corresponds to Fick’s first law, while
the exponential kernel K (t) = D

τ0
exp(−t/τ0) leads to the Cattaneo equation (2.18)

for the flux.
Combining the constitutive equation for the flux (5.40) with the continuity equa-

tion for the particle density, we obtain the nonlocal RD equation

∂ρ

∂t
=
∫ t

0
K (t − τ)

∂
2
ρ(x, τ )

∂x2
dτ + F(ρ). (5.41)

If one considers the exponential memory kernel in (5.41) and takes the temporal
derivative, the reaction-telegraph equation (2.19) is recovered.

We assume that the reaction term is of the KPP type, F(ρ) = rρ(1 − ρ). Our
main goal is to find the front velocity for a general memory kernel in terms of its
Laplace transform, K̂ , and to show that fronts travel with a finite velocity in the fast
reaction limit only if the initial value of the memory kernel is positive definite. This
general result will be applied to some specific memory kernels.

We proceed as in the previous sections and find that the Hamilton–Jacobi equa-
tion for (5.41) can be written as

H = K̂ (H)p2 + r. (5.42)

From (4.46) and (5.41) we obtain

v(H) = H

√

K̂ (H)

H − r
,

∂p

∂H
= p

H
. (5.43)

The front velocity is given by v(H∗
), where H∗ is the solution to

d

dH∗
(
H∗ − r

K̂ (H∗
)

)

= 2(H∗ − r)

H∗ K̂ (H∗
)
. (5.44)

The existence of the front and the value of the minimal velocity depend crucially
on the behavior of v(H) as H →∞. To see this, note that v(H)→∞ as H → r+.
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Therefore, if v(H) is a monotonically decreasing function in the limit H →∞, then
the minimum value is 0 and no propagating front exists. If, on the other hand, v(H)

is monotonically increasing with H , then a minimum velocity exists. We assume
that K (t) is a smooth function. The limit H →∞ is equivalent to the limit t → 0.
We write K (t) = K (0)+K ′

(0)t+K ′′
(0)t2

/2+· · · , which has the Laplace transform
K̂ (H) = K (0)H−1 + K ′

(0)H−2 + K ′′
(0)H−3 + · · · , where the prime denotes the

derivative with respect to time. Then, in the limit H →∞, K̂ (H) � K (0)H−1 and
v(H → ∞) = √

K (0). This velocity value can be selected by the front because
it fulfills the condition ∂H p = p/H , if K (0) > 0, as can be easily shown. We
conclude that

v =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

H∗
√

K̂ (H∗
)

H∗−r , K (0) = 0,

min

[

H∗
√

K̂ (H∗
)

H∗−r ,
√
K (0)

]

, K (0) > 0,
(5.45)

where H∗ is the solution of (5.44). It is interesting to note that v is a monotonically
increasing function of the reaction rate, ∂v/∂r > 0. However, if K (0) > 0, this
growth saturates at

√
K (0), a value that is not affected at all by the reaction process

and depends only on the characteristics of the transport through the memory kernel.
Equation (5.45) implies that the memory kernel contains all the physical informa-
tion we need to determine the propagation velocity. Indeed, the upper bound for
the front velocity equals the velocity of propagation of periodic disturbances in the
high-frequency limit for the pure transport equation, i.e., (5.41) with F = 0 [223].
Equation (5.45) demonstrates that for an infinitely differentiable memory kernel
with K (0) > 0, the front velocity is bounded from above by the transport process,
even if the reaction process is very fast. The flux at time t is a weighted average
of the particle density gradients at previous times, see (5.40). The weight of the
gradient at time t , ∂xρ(x, t), is given by K (0). If K (0) = 0, the instantaneous
particle gradient at time t does not contribute to the particle flux at time t and the
front velocity is unbounded. We illustrate these results for some typical memory
kernels.

(a) Consider first the case K (t) = Dδ(t). In this case, (5.45) cannot be applied
because δ(t) is not differentiable near t = 0. However, the velocity can be calculated
from (5.43) to yield v = 2

√
r D as expected.

(b) For the exponential kernel K (t) = Dτ
−1
0 e−t/τ0 , one has K (0) = D/τ0 > 0,

and the front velocity reads

v = min
z>b

√

D

τ0

[

1,
z√

z + 1
√
z − b

]

=
⎧

⎨

⎩

2
√

D
τ0

√
b

1+b , b ≤ 1,
√

D
τ0
, b > 1,

(5.46)

where z ≡ Hτ0 and b = rτ0. Note that the front velocity is bounded from above by
the limiting velocity of the transport process

√

D/τ0.
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(c) Let us consider the power-law kernel

K (t) = D(γ − 1)

τ0

(

1+ t

τ0

)−γ

(5.47)

with γ > 1 and finite moments. Since K (0) = D(γ − 1)/τ0 > 0, (5.45) implies
that the front velocity is bounded by

√

D(γ − 1)/τ0. The Laplace transform of the

kernel is K̂ (H) = D(γ − 1)(Hτ0)
γ−1eHτ0�(1 − γ, Hτ0), where �(·, ·) is the

incomplete Gamma function. The front velocity has to be calculated numerically
from (5.44) and (5.45).

In Fig. 5.1 we plot the front velocity vs rτ0 for different values of γ . The sat-
uration effect at

√

D(γ − 1)/τ0 is observed. Note that when γ increases, the front
velocity also increases due to the faster decay of the memory kernel tail.

Fig. 5.1 Dimensionless front velocity vs rτ0 for the kernel given in (5.47). In this case, the dimen-
sionless front velocity is bounded by

√
γ − 1. For higher values of the index γ the kernel tail

decays faster than for low γ and this generates faster fronts. Reprinted with permission from [287].
Copyright 2007, EPL

5.5 Front Propagation in the Reaction-Telegraph Equation

In this section we consider the problem of front propagation for the three-dimensional
reaction-telegraph equation involving KPP kinetics. The goal is to derive the equa-
tion governing the evolution of the front in the long-time large-scale limit as in the
previous sections and to show that this equation is identical in form to the relativistic
Hamilton–Jacobi equation.

Consider the reaction-telegraph equation (2.19) in three dimensions,

τ0
∂

2
ρ

∂t2
+ [1− τ0r (1− 2ρ)

] ∂ρ

∂t
= D�ρ + rρ(1− ρ), x ∈ R

3
, (5.48)



5.5 Front Propagation in the Reaction-Telegraph Equation 167

with an initial condition with compact support. Applying the hyperbolic scaling to
(5.48), we obtain the equation for ρε in the form

ετ0
∂

2
ρ
ε

∂t2
+ (1− τ0r + 2τ0rρ

ε) ∂ρ
ε

∂t
= εD�ρ

ε + r

ε
ρ
ε (1− ρ

ε)
. (5.49)

The limiting function G(t, x) obeys the first-order nonlinear PDE:

− τ0

(
∂G

∂t

)2

+ (1− τ0r
) ∂G

∂t
+ D(∇G)

2 + r = 0. (5.50)

The location of the reaction front can be determined as the boundary of the set

S =
{

x ∈ R
3 : G(x, t) ≥ 0

}

. (5.51)

5.5.1 Relativistic Hamilton–Jacobi Equation

The basic idea is that equation (5.50) is identical in form to an equation arising in
classical relativity theory. If we introduce the new parameters

ϕ = 1

2

(

r − 1

τ0

)

, m = τ0

2D

(

r + 1

τ0

)

, c2 = D

τ0
, (5.52)

then (5.50) can be rewritten in the form of the relativistic Hamilton–Jacobi equation
for a particle with a mass m moving in the potential field ϕ:

(
∂G

∂t
+ ϕ

)2

− m2c4 − c2
(∇G)

2 = 0, x ∈ R
3
, (5.53)

where c is the speed of light. The Hamiltonian associated with this equation is

H(p) =
√

m2c4 + c2 p2 + ϕ, (5.54)

and the Lagrangian L has the form

L = −mc2

√

1− 1

c2

(
dx
ds

)2

− ϕ, (5.55)

that is,

L = −1

2

(

r + 1

τ0

)
√

1− τ0

D

(
dx
ds

)2

− 1

2

(

r − 1

τ0

)

. (5.56)
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The analogy with the relativistic mechanics allows us to derive the explicit expres-
sion for the function G(x, t) and thereby to find the reaction front position and its
velocity.

5.5.2 Exact Formula for Front Velocity

The optimal trajectory is that of a free particle, i.e., the straight line connecting the
points x and y ∈ �0, where �0 is the support of the initial condition:

x(s) =
(

y− x
t

)

s + x, 0 ≤ s ≤ t. (5.57)

The action integral can be written as

G(x, t) = inf
y∈�0

⎧

⎨

⎩
−mc2t

√

1− 1

c2

(
y− x
t

)2

− ϕt

⎫

⎬

⎭
. (5.58)

Let l(x,�0) denote the minimal distance between the point x and the set �0. Then,
in terms of the phenomenological parameters τ0, D, and r , the action functional
G(x, t) can be rewritten as

G(x, t) = − t

2

(

r + 1

τ0

)
√

1− τ

D

(
l(x,�0)

t

)2

+ t

2

(
1

τ0
− r

)

. (5.59)

We are now in a position to determine the exact formula for the reaction front propa-

gation velocity. The set S =
{

x ∈ R
3 : G(x, t) ≥ 0

}

, where ρε
(x, t)→ 0 as ε → 0,

can be represented as S =
{

x ∈ R
3 : l(x,�0) > vt

}

, where

v = c

√

1−
(

1− τ0r

1+ τ0r

)2

=
√

4Dr

1+ τ0r
, τ0r ≤ 1. (5.60)

The effect of diffusion with finite velocity, τ0r �= 0, is to decrease the propagation
rate corresponding to the RD equation. The last restriction τ0r ≤ 1 arises from the
fact that the speed of light c = √

D/τ0 is the maximal velocity of propagation.
In other words, front motion with a velocity greater than the speed of light c is
impossible.

In the limiting case, where the relaxation time τ0 is small compared with the
chemical time r−1, i.e., τ0r � 1, we can neglect the effect that the velocity of the
transport mechanism is finite.
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5.6 Front Propagation in Persistent Random Walks with
Reactions

As discussed in Sect. 2.2, persistent random walks provide a mesoscopic description
of reaction–transport systems with inertia. This approach provides another opportu-
nity to explore the effects of a finite velocity in the transport mechanism on propa-
gating fronts. We consider two cases. The first corresponds to reaction walks where
the kinetic terms do not depend on the direction of the particles. This corresponds
to choosing κ = 1/2 in (2.38), and persistent random walks with such kinetics are
called direction-independent reaction walks (DIRW). The second case corresponds
to walks where reactions occur only between particles with opposite velocities. We
call such systems direction-dependent reaction walks (DDRWs).

5.6.1 Fronts in Direction-Independent Reaction Walks

We consider RRWs with KPP kinetics [204]. Specifically we choose the branching-
coalescence kinetic scheme, see Sect. 1.4.1. A DIRW with such kinetics obeys the
following nondimensionalized evolution equations:

∂ρ+
∂t

+ γ
∂ρ+
∂x

= μ(ρ− − ρ+)+
1

2
ρ − ρρ+, (5.61a)

∂ρ−
∂t

− γ
∂ρ−
∂x

= μ(ρ+ − ρ−)+
1

2
ρ − ρρ−, (5.61b)

where ρ = ρ+ + ρ− again denotes the total particle density. We consider (5.61)
on (−∞,+∞). The uniform steady states of the Fisher DIRW (5.61) are given by
(ρ+(x), ρ−(x)) = (0, 0) and (ρ+(x), ρ−(x)) = (1/2, 1/2). It is easily verified that
the former is unstable, while the latter is stable. If the system is prepared such that
limx→−∞(ρ+(x, 0), ρ−(x, 0)) = (1/2, 1/2) and limx→+∞(ρ+(x, 0), ρ−(x, 0)) =
(0, 0), the stable state invades the unstable state in the form of propagating front.
We employ phase plane analysis, see Sect. 4.1, to show this. We look for solutions
of (5.61) of the form

ρ+(x, t) = u+(z), ρ−(x, t) = u−(z), (5.62)

where z = x − vt , v > 0, and

lim
z→−∞ u±(z) =

1

2
, lim

z→∞ u±(z) = 0. (5.63)
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Substituting (5.62) into (5.61), we obtain

u′+ =
1

γ − v

[

μ(u− − u+)+
1

2
u − uu+

]

, γ �= v, (5.64a)

0 = μ(u− − u+)+
1

2
u − uu+, γ = v, (5.64b)

u′− = − 1

γ + v

[

μ(u+ − u−)+
1

2
u − uu−

]

. (5.64c)

The prime denotes the derivative with respect to the argument of the function and
u = u+ + u−. The fixed points of (5.64) are (0, 0) and (1/2, 1/2), and a front cor-
responds to a nonnegative heteroclinic orbit in the u−–u+ phase plane connecting
the two fixed points. Such an orbit exists if (1/2, 1/2) is a saddle point and (0, 0) a
stable node, see Sect. 4.1. The nullcline of the density u+, i.e., the curve u′+ = 0,
in the u−–u+ phase plane is given by (5.64b), of which only the positive root is
acceptable:

u+ = N (u−) = −1

2

(

u− + μ− 1

2

)

+
√

1

4

(

u− + μ− 1

2

)2

+
(

μ+ 1

2

)

u−.

(5.65)

For v > γ , the vector field of (5.64a) and (5.64c) points away from the nullcline
N (u−), and a stable heteroclinic orbit does not exist. For v < γ , the vector field
points toward the nullcline, and for front velocities close to γ , i.e., 0 < γ − v =
ε � 1, the density u+ is a fast variable and follows the evolution of u− adiabatically.
The system (5.64a) and (5.64c) is then well approximated by (5.65) and

u′− = − 1

2γ

[

μ(u+ − u−)+
1

2
u − uu−

]

= − 1

2γ
R−(u+, u−). (5.66)

This approximation becomes exact in the limit v → γ . The trajectory in the phase
plane is then given by the nullcline N (u−). Substituting (5.65) into (5.66), we obtain

u′− = − 1

2γ
R−(N (u−), u−) = R(u−). (5.67)

For 2μ > 1, the nullcline N (u−) runs from the fixed point (0, 0) to the fixed point
(1/2, 1/2). It is nonnegative, and straightforward calculations show that R′(0) < 0
and R′(1/2) > 0. In other words, for 0 ≤ γ − v � 1 a nonnegative heteroclinic
orbit exists and is well approximated by the u+-nullcline N (u−) in the u−–u+ phase
plane.

The condition

2μ > 1 (5.68)
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implies that the DIRW is in the diffusive regime. The correlation time of the par-
ticle turning process is τcorr = 1/(2μ), see (2.32), and the typical time scale of
the kinetics is τchem = 1, due to nondimensionalization. If the condition (5.68) is
fulfilled, the time scale of the transport process is faster than the time scale of the
kinetics; the RRW is in the diffusive regime. The ballistic regime, i.e., slow turning
compared to the kinetics, corresponds to 2μ < 1.

The nonnegative heteroclinic orbit will persist as v decreases, as long as no
bifurcation occurs in the vector field of (5.64a) and (5.64c) and (1/2, 1/2) remains
a saddle point and (0, 0) a stable node, whose eigenvectors lie strictly within the
positive quadrant. For v < γ , the eigenvalues for the fixed point (0, 0) are

λ±(0) = −1

2

v(1− 2μ)

v
2 − γ

2
±
√
√
√
√
√

1

4

v
2
(1− 2μ)2

(

v
2 − γ

2
)2

+ 2μ

v
2 − γ

2
, (5.69)

and for the fixed point (1/2, 1/2),

λ±(1/2) = v(1+ μ)

v
2 − γ

2
±
√
√
√
√
√

v
2
(1+ μ)

2

(

v
2 − γ

2
)2
− (1+ 2μ)

v
2 − γ

2
. (5.70)

It is easily verified that the fixed point (1/2, 1/2) is a saddle point, i.e., λ+ is real
and positive and λ− is real and negative, for all values of μ. The fixed point (0, 0)
undergoes a Hopf bifurcation at μH = 1/2. Condition (5.68) ensures that (0, 0) is a
stable fixed point. It is a node, if the discriminant is positive, see Sect. 1.2.2, which
implies that

v ≥ vDIRW = 2
√

2μ

1+ 2μ
γ. (5.71)

The eigenvectors of the stable node (0, 0) are given by

(

e±+
e±−

)

=
(−α±/n

1/n

)

, (5.72)

where

α± =
1
2 − μ+ (v + γ )λ±

1
2 + μ

, n =
√

α
2
± + 1. (5.73)

They lie strictly in the positive quadrant for μ > 1/2 and γ > v ≥ vDIRW.
We have established the following result: If the reaction walk is in the diffusive

regime, i.e., if 2μ > 1, then the stable state (1/2, 1/2) invades the unstable state
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(0, 0) in the Fisher DIRW in the form of a propagating front. The front travels at
constant velocity v with v ∈ [vDIRW, γ ).

Recall that the diffusive limit corresponds to γ → ∞ and μ → ∞ such that
γ = √

2μD. Therefore we have as μ→∞,

vDIRW = 4μ
√
D

1+ 2μ
→ 2

√
D. (5.74)

Adding (5.64a) and (5.64c) and integrating the resulting equation over z from
−∞ to +∞, we find that

v =
∫ ∞

−∞
dz
[

u(z)− u2
(z)
]

. (5.75)

The integrand is appreciably different from zero only in the front region of the wave;
a smaller value of v corresponds to a narrower, i.e., steeper front. As for the Fisher
equation (4.1), the steepness of the wave front depends inversely on the wave veloc-
ity v, and “natural” initial conditions, i.e., initial conditions that are localized or that
decay faster than exponentially, relax to the front with the minimal front velocity.
The minimal front velocity for the Fisher DIRW is smaller than the minimal front
velocity for the Fisher equation, vRD = 2

√
D, see Sect. 4.1.1, and approaches the

latter in the diffusive limit.

5.6.2 Fronts in Direction-Dependent Reaction Walks

If we replace Brownian motion by its simplest generalization, the persistent ran-
dom walk, we obtain direction-independent reaction walks as the simplest gener-
alization of reaction–diffusion equations. Both describe chemical reactions in the
reaction-limited or activation-controlled regime. However, the activation barrier is
only implicitly taken into account; it is incorporated into the kinetic coefficients

ki = Ai exp(−Ei/RT ), (5.76)

where Ei is the activation energy, R the gas constant, T the temperature, and Ai the
preexponential factor [350]. The Boltzmann factor in (5.76) reflects the requirement
that molecules must possess sufficient energy to overcome an activation barrier for
a reaction to occur. In condensed phase reactions, this energy can be acquired from
the surroundings, and a description in terms of direction-independent kinetics is
satisfactory. In population dynamics, birth and death rates typically depend on the
total density, and again a reaction random walk with direction-independent kinetics
is an appropriate description.

In gas-phase reactions, molecules must collide with sufficient kinetic energy to
overcome the activation barrier. Since velocity is not defined for Brownian motion,
this requirement cannot be taken into account explicitly in a reaction–diffusion
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equation. Velocity is, however, defined for persistent random walks, and they offer
an opportunity to incorporate the existence of an energy requirement for reactive
collisions into the formalism. Of course, the persistent random walk retains velocity
only in a simplified, namely a dichotomous, way. Within this limitation we can
model the energy requirement by allowing reactions only between particles with
opposite velocities.

For the branching-coalescence kinetics, this amounts to replacing the kinetic
scheme (1.56) and (1.57) by

A− +U+ κ1−→ U− +U+
, (5.77)

A+ +U− κ1−→ U+ +U−
, (5.78)

U+ +U− κ2−→
{

A− +U+

A+ +U− . (5.79)

Here κi = Ai = Pi Zi , and Pi is the steric factor and Zi the collision frequency
factor [350]. We will consider only situations where the steric factor ensures that
the kinetics are reaction-limited. We assume that the pool species A is in equilib-
rium, i.e., ρ+,a = ρ−,a = 1

2ρa . In dimensionless variables we obtain the following
evolution equations for the kinetic scheme (5.77), (5.78), and (5.79):

∂ρ+
∂t

+ γ
∂ρ+
∂x

= μ(ρ− − ρ+)+ ρ− − 2ρ+ρ−, (5.80a)

∂ρ−
∂t

− γ
∂ρ−
∂x

= μ(ρ+ − ρ−)+ ρ+ − 2ρ+ρ−. (5.80b)

The uniform steady states of the Fisher DDRW (5.80) and their stability properties
are identical to those of the Fisher DIRW (5.61). We again look for propagating
front solutions of (5.80a) and (5.80b), i.e., solutions of the form (5.62) and (5.63),
and we obtain

u′+ =
1

γ − v

[

μ(u− − u+)+ u− − 2u+u−
]

, γ �= v, (5.81a)

0 = μ(u− − u+)+ u− − 2u+u−, γ = v, (5.81b)

u′− = − 1

γ + v

[

μ(u+ − u−)+ u+ − 2u+u−
]

. (5.81c)

The u+-nullcline is given by

u+(u−) = N̄ (u−) =
(μ+ 1)u−
μ+ 2u−

, (5.82)
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and for v = γ we obtain from (5.81c)

u′− = R̄(u−) = − 1

2γ

[

μ(N̄ (u−)− u−)+ N̄ (u−)− 2N̄ (u−)u−
]

. (5.83)

For all values of μ, the nullcline N̄ (u−) runs from the fixed point (0, 0) to the
fixed point (1/2, 1/2). It is nonnegative, and straightforward calculations show that
R̄′(0) < 0 and R̄′(1/2) > 0. For v �= γ , the eigenvalues of the fixed point (1/2, 1/2)
are identical to those of the DIRW case, (5.70), and the eigenvalues for (0, 0) are
given by

λ± =
vμ

v
2 − γ

2
±
√
√
√
√
√

v
2
μ

2

(

v
2 − γ

2
)2
+ 1+ 2μ

v
2 − γ

2
. (5.84)

For

γ > v ≥ vDDRW =
√

1+ 2μ

1+ μ
γ, (5.85)

(0, 0) is a stable node, and its eigenvectors

(

ē±+
ē±−

)

=
(

β±/n
1/n

)

, (5.86)

where

β± =
μ− (v + γ )λ±

μ+ 1
, n =

√

β
2
± + 1, (5.87)

lie strictly in the positive quadrant. No Hopf bifurcation occurs for the DDRW.
Reasoning along the same lines as for the DIRW case, we obtain the following

result: In the diffusive as well as the ballistic regime, the stable state (1/2, 1/2)
invades the unstable state (0, 0) in the Fisher DDRW in the form of a propagating
front. The front travels at constant velocity v with v ∈ [vDDRW, γ ).

In the diffusive limit, μ→∞, with γ = √
2μD, we have

vDDRW = 2μ
√

1+ 1/(2μ)

1+ μ

√
D → 2

√
D = vRD. (5.88)

It is also easily verified that vDDRW < vRD, and that in the diffusive regime, 2μ > 1,
where propagating fronts exist in both the Fisher DIRW and the Fisher DDRW,

vDDRW < vDIRW. (5.89)
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5.7 Reaction-Biased Random Walks. Propagation Failure

An interesting question arises when the dispersal is biased in a direction away from
the region occupied by the unstable state [286]. What are the conditions on the
reaction rate and bias that will result in a stalled front? Or phrased differently,
what is the critical (minimal) value of the reaction rate to sustain front propaga-
tion when the underlying random walk has a bias in the opposite direction? The
goal of this section is to show the following: (i) The standard diffusion approxi-
mation of the transport process always provides an inaccurate value for the criti-
cal reaction rate. (ii) If the reaction rate exceeds the jump frequency of the ran-
dom walk, then the front cannot stall and will always propagate into the unstable
state, independently of the values of the other statistical parameters of the random
walk.

We choose the initial conditions to be ρ(x, 0) = 1 for x ≤ 0 and ρ(x, 0) = 0
for x > 0. This initial condition describes, for example, a territory divided into
an invaded zone, x ≤ 0, and a noninvaded zone, x > 0, separated by a frontier
at x = 0. If particles disperse according to an isotropic random walk with KPP
kinetics, this initial condition turns into a front propagating from left to right, i.e.,
the invasion starts. Since the particle jumps are isotropic, the reaction is responsible
for the motion of the front from left to right. It is the reaction process that starts and
maintains a successful invasion. A bias to the left in the random walk will hinder
the invasion. Therefore we expect that the critical reaction rate is given by a bal-
ance between the factor favoring the invasion, the reaction process, and the factor
opposing the invasion, the bias in the transport process.

We use Model C, given by (5.27), for the mean-field equation for ρ(x, t) with
ψ(t, z) = φ(t)w(z). The standard diffusion approximation of (5.27), i.e., taking the
limit of small jump lengths and small waiting times, yields the reaction–diffusion–
advection equation

∂ρ

∂t
− c

∂ρ

∂x
= D

∂
2
ρ

∂x2
+ rρ(1− ρ), (5.90)

where

c = 〈z〉
T

, D = 〈z2〉
2T

, T =
∫ ∞

0
tφ(t)dt, and 〈z j 〉 =

∫

R

z jw(z)dz. (5.91)

The propagation velocity is obtained from (4.46), involving H and p. The critical
condition, i.e., a stalled front, v = 0, is realized if H(p∗) = 0 with p∗ > 0. Writing
the Laplace transform φ̂(H) as a power series of H , φ̂(H) = 1 − T H + · · · , and
taking the limit H → 0 in (5.30), we obtain 1 − ψ̌(0, p) − Tr∗ = 0, where ψ̌ is
defined by (5.29). Differentiating (5.30) with respect to p and taking into account
that v = 0 in (4.46), we find that the critical value of the momentum p is the
solution of dψ̌(0, p)/dp = 0. This results in the following simple form for the
critical reaction rate,
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r∗ = 1− w̌(p∗)
T

, (5.92)

with p∗ such that

dw̌(p)

dp

∣
∣
∣
∣
p=p∗

= 0, (5.93)

and w̌(p) is defined by (5.33). Note that the critical value r∗ depends on the shape
of the dispersal kernel and on the mean waiting time T only. This implies that two
systems with identical dispersal kernels and different waiting times PDFs, but the
same mean waiting time T , will have the same r∗. Since w̌(p) > 0, the maximum
value for r∗ is 1/T . If r = r∗, front propagation fails. The front velocity is 0 due to
the opposing effects of the reaction and jump processes. If r > r∗, v > 0 and the
front moves from left to right. If r < r∗, v < 0 and the front moves from right to
left. An interesting way to interpret (5.92) is as a balance or an equilibrium condition
between parameters favorable (left-hand side) and unfavorable (right-hand side) to
the invasion. However, there is another way to look at this relation. The product Tr
is a dimensionless quantity, namely the reaction–diffusion number. Equation (5.92)
implies that r > r∗ is equivalent to NGRD ≡ Tr + w̌(p∗) > 1, where we have
defined the generalized reaction–diffusion number NGRD. If NGRD > 1, the front
travels from left to right, v > 0. If NGRD < 1, the front travels from right to
left, and if NGRD = 1 the front stalls and turns into a stationary spatial pattern,
v = 0. If r is larger than the maximum possible value of r∗, then v > 0 and
invasion always succeeds, no matter how large the opposing bias in the transport
process. From (5.92), max(r∗) = 1/T , and we conclude that if r > 1/T , i.e.,
the reaction rate is larger than the jump frequency, the front always propagates to
the right, completely independent of the other statistical properties of the random
walk.

We now prove that the diffusion approximation always underestimates r∗, r∗dif <

r∗. To do so, it is sufficient to consider a small bias to the left such that

∫ 0

−∞
w(x)dx −

∫ ∞

0
w(x)dx ≡ ε, (5.94)

and 0 < ε � 1. The normalization condition implies

∫ 0

−∞
w(x)dx +

∫ ∞

0
w(x)dx = 1. (5.95)

First, we determine the order of magnitude of the moments of w(x). For j =
1, 2, . . . we can write
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〈x j 〉 = lim
 →∞

[
∫ 0

− 

x j
w(x)dx +

∫  

0
x j

w(x)dx

]

= lim
 →∞

∫  

0
x j
[

w(x)+ (−1) jw(−x)
]

dx . (5.96)

Using of the Mean Value Theorem for integrals and (5.95), we find

〈x2 j 〉 = lim
 →∞

∫  

0
x2 j [w(x)+ w(−x)] dx

= ξ
2 j
1 lim

 →∞

∫  

0
[w(x)+ w(−x)] dx = ξ

2 j
1 ∼ O(1), (5.97)

and

〈x2 j−1〉 = lim
 →∞

∫  

0
x2 j−1 [w(x)− w(−x)] dx

= ξ
2 j
2 lim

 →∞

∫  

0
[w(x)− w(−x)] dx

= −ξ
2 j−1
2 ε ∼ O(ε), (5.98)

for some ξ1 and ξ2 in [0,  ]. The minus sign in (5.98) implies 〈x2 j−1〉 < 0 and
reflects that the random walk is biased to the left. As a result we can write

w̌(p) =
∞
∑

j=0

〈x j 〉p j

j ! . (5.99)

We break off the expansion at order j = 3, i.e., a small correction to the diffusion
approximation, order j = 2,

w̌(p) = 1+ p〈x〉 + 1

2
p2〈x2〉 + 1

6
p3〈x3〉, (5.100)

and find

p∗ = 〈x2〉
〈x3〉

⎛

⎝−1+
√
√
√
√1− 2

〈x〉〈x3〉
〈x2〉2

⎞

⎠

� − 〈x〉
〈x2〉

(

1+ 1

2

〈x〉〈x3〉
〈x2〉2

)

+ O
(

ε
4
)

, (5.101)



178 5 Reaction–Transport Fronts Propagating into Unstable States

where we have made use of (5.97) and (5.98) to calculate the series expansion.
Substituting (5.101) into (5.100) and expanding according to (5.97) and (5.98), we
obtain

w̌(p∗) = 1− 1

2

〈x〉2
〈x2〉

− 1

6

〈x〉3〈x3〉
〈x2〉3

. (5.102)

As the condition for the critical reaction rate is Tr∗ = 1 − w̌(p∗), one has for the
diffusion approximation

Tr∗dif =
1

2

〈x〉2
〈x2〉

(5.103)

and finally

Tr∗ − Tr∗dif =
1

6

〈x〉3〈x3〉
〈x2〉3

> 0. (5.104)

The last inequality results from the fact that the odd moments are negative. In con-
clusion, r∗ > r∗dif, i.e., the diffusion approach always underestimates the critical
reaction rate.

We illustrate the theoretical results by considering a simple dispersal kernel w(x)
with an effective drift from right to left. There are two simple ways to introduce such
a drift: (i) the probability of a jump to the left is greater than the probability of the
same jump to the right or (ii) jumps to the right and left have the same probability
but are of different length. Consider first a Dirac delta kernel, i.e., a dispersal kernel
with fixed jump length, w(x) = qδ(x − a)+ (1− q)δ(x + a), 0 < q < 1/2. Using
(5.92) and (5.103), we obtain

Tr∗ = 1− 2
√

q(1− q), Tr∗dif =
1

2
(1− 2q)2

. (5.105)

If w(x) = 1
2δ(x − aR)+ 1

2δ(x + aL), then

Tr∗ = 1− 1

2

[

y−
y

1+y + y
1

1+y

]

, Tr∗dif =
(1− y)2

4(1+ y2
)
, (5.106)

where 0 < y = aR/aL < 1. Next we consider an exponential distribution with
different statistical characteristics for x ≥ 0 and x < 0. Let w(x) be qe−x/a

/a for
x ≥ 0 and (1− q)ex/a/a for x < 0. Then,

Tr∗ = 1− (1− 2q)2

2− 4
√
q(1− q)

, Tr∗dif =
1

4
(1− 2q)2

. (5.107)
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If w(x) is e−x/aR/(aR + aL) for x ≥ 0 and ex/aL /(aR + aL) for x < 0 then

Tr∗ =
(

1− y

1+ y

)2

, Tr∗dif =
(1− y)2

4
(

1− y + y2
) . (5.108)

To check these analytical results, one can perform numerical simulations that
mimic the dispersal–reaction processes microscopically, for every biased form of
w(x) considered above, and find the critical value r∗ at which wave propagation
stalls. One can consider a one-dimensional lattice where dispersal and reaction
processes take place starting from step-like initial conditions as in [67]. Instead of
studying the evolution of a large number of individual particles, as is usually done,
one can consider a continuous density of particles ρ(x, t) for every cell in the lattice.
For the case w(x) = qδ(x − a) + (1 − q)δ(x + a) dispersal works in this way: a
fraction q of the density ρ(x, t) in a certain cell goes to the cell at x + a and a
fraction 1 − q goes to the cell at x − a. (For nondiscrete forms of w(x) one must
discretize the corresponding function.) After that, the reaction function is applied to
each cell in the lattice. The time between successive steps in this scheme is equal
to T .

Panels in Fig. 5.2 show that the numerical simulations (open circles) are in
excellent agreement with the analytical predictions (solid curves) given by (5.105),

Fig. 5.2 The dimensionless critical reaction rate, calculated analytically (solid lines), obtained
numerically (circles), and obtained from the diffusion approach, is plotted vs the dimensionless
parameters q or y. Reprinted with permission from [286]. Copyright 2007 by the American Phys-
ical Society
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(5.106), (5.107), and (5.108) for Dirac delta and exponential kernels. Moreover, the
dashed curves correspond to the diffusion approximation and lie below the solid
curves, in agreement with the general result given by (5.104).

In summary, the critical reaction rate r∗ depends on the dispersal kernel and on
the mean waiting time only, i.e., r∗ does not depend on the shape of the waiting time
PDF. If the reaction rate is larger than the jump frequency, the invasion front never
fails, independent of the shape of the waiting time PDF, even if the dispersal kernel
is maximally biased. Finally, the diffusion approximation always underestimates r∗.

Exercises

5.1 Consider the Lévy kernel

K̂ (H) = D
[

1+ (Hτ0)
γ ]−1

(5.109)

with 0 < γ ≤ 1 for an RD equation with memory as given by (5.41). Calculate the
front velocity invading the unstable state in terms of the Hamiltonian and show that
there is no upper bound for the front velocity in the fast reaction limit.

5.2 Consider the waiting time PDF in Laplace space

φ̂(H) = e−(Hτ0)
γ

(5.110)

and the diffusion approximation for the jump PDF w̌(p) � 1 + σ
2 p2

/2 in (5.27).
Using the hyperbolic scaling and the Hamilton–Jacobi formalism show that the front
velocity is given by

v = σ√
2τ0

min
y>b

y3/2

√
y − b

√

ey
γ − 1

, (5.111)

where y = Hτ0 and b = rτ0. Study the behavior of this expression and show that
v = 0, i.e., no propagating front invades the unstable state. In [283] the conditions
for propagation failure in Model C with KPP kinetics are studied in detail.

5.3 The Laplace dispersal jump PDF

w(x) = 1

2α0
e−|x |/α0 (5.112)

is widely used in ecological models for animal invasions. Consider the continuous-
time model with long-range dispersal (5.2) and show that the velocity of the front
invading the unstable state is given by the exact formula
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v = α0

√
2

τ0

(1− b)3/2

(√
1+ 8b − 1− 2b

)1/2

√
1+ 8b − 1

3−√1+ 8b
, (5.113)

where τ0 = λ
−1 and b = τ0r .

5.4 Consider the reaction-telegraph equation (5.48) in one dimension. Show that the
Hamilton–Jacobi equation is given by

τ0H
2 + (1− rτ0)H = Dp2 + r, (5.114)

and show that the velocity of the front invading the unstable state is given by

v =
{

2
√
r D/

(

1+ rτ0
)

, rτ0 < 1,
√

D/τ0, rτ0 ≥ 1.
(5.115)

5.5 Consider (3.137) for Model B with branching-coalescence kinetics, where the
birth rate is f +(ρ) = r and the death rate is f −(ρ) = rρ. Show that the Hamilton–
Jacobi equation is given by

H = σ
2 p2 K̂ (H)+ r. (5.116)



Chapter 6
Reaction–Diffusion Fronts in Complex
Structures

Most systems in nature are heterogeneous. Porous media, fractals, random or fluc-
tuating environments, and ecological patchiness are only a few examples. Homo-
geneous media are, in fact, an idealization. In this chapter we discuss how fronts
propagate in these more complex structures. Our main goal is to present various
techniques that allow us to calculate the front velocity. When the heterogeneity is
weak, we can employ perturbative methods, but in most cases only the Hamilton–
Jacobi method works effectively in the large-time limit.

6.1 Diffusion on Fractals

Fractals can be defined in two different ways. The first definition considers a fractal
to be a structure that is self-similar at any scale. The second definition considers a
fractal to be a structure with a noninteger Hausdorff dimension. Let M be the fractal
mass, i.e., the number of points of the fractal. If the mass density is constant, the
mass is proportional to the fractal volume. The latter is proportional to Ld f , where
L is the fractal length and d f the Hausdorff, or fractal, dimension. Both definitions

are equivalent; the power-law relation for the fractal mass M ∼ Ld f satisfies the
self-similarity condition, as is easily verified.

As far as transport properties of a fractal structure are concerned, the mean square
displacement (MSD) of a particle follows a power law, 〈r2〉 ∼ t2/dw , where r is
the distance from the origin of the random walk and dw is known as the random
walk dimension. In other words, diffusion on fractals is anomalous, see Sect. 2.3.
Recall that for normal diffusion in three-dimensional space the MSD is given by
〈r2〉 = 6Dt . For fractals, dw ≥ 2, and the exponent of t in the MSD is smaller
than 1. We introduce a dimensionless distance by dividing r by the typical diffusive

length
√

〈r2〉 and find r/
√

〈r2〉 ∼ r t−1/dw . Diffusive transport on fractals displays
two different regimes. The first one corresponds to the asymptotic regime, where

the particles are at large distances from the origin, i.e., r �
√

〈r2〉 and r t−1/dw �
1. The second one corresponds to the opposite limit, where the particles are very

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
DOI 10.1007/978-3-642-11443-4_6, C© Springer-Verlag Berlin Heidelberg 2010
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close to the origin compared to the typical diffusive length scale, r �
√

〈r2〉 and

r t−1/dw � 1. Bunde and Dräger pointed out that the relevant physical length for
diffusive transport is the chemical distance [62]. Given two points on the fractal
structure, the chemical distance l is defined as the shortest distance on the fractal
from one point to the other. We illustrate this idea in Fig. 6.1 for the Sierpinski
gasket. The Euclidean or radial distance between the points a and a′ is r , while the
chemical distance is l = l1 + l2 + l3.

Fig. 6.1 Comparison between the chemical distance l and the Euclidean distance r for a Sierpinski
gasket

The chemical and Euclidean distances are related by

l ∼ rdmin, (6.1)

where dmin is the fractal dimension of the shortest path between two given points in
the fractal.

The derivation of the functional form for the probability distribution function
(PDF) P(r, t) for diffusion on fractals, i.e., the probability that a particle or individ-
ual is at a distance r from the origin at time t , has been a challenge. The geometry
of fractals causes local and global diffusion to behave in different ways. For most
applications we need to know only how the particles move at global scales. Here
the homogenization properties of fractals become important. Due to the “restoration
of isotropy,” the averaged global diffusion behaves like Brownian motion, which
allows us to define a proper averaged PDF in the asymptotic regime. Scaling argu-
ments and computer simulations lead to the following form for this averaged PDF:

P(r, t) ∼ t−d f /dw exp

⎡

⎣−c
(

r

t1/dw

) dw
dw−1

⎤

⎦ , (6.2)

where c is a constant. Mosco considered an alternative approach and introduced an
intrinsic metric for fractals, defined by the relation
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s ≡ rdw/2
, (6.3)

where s and r are the intrinsic and Euclidean distances, respectively [306]. The
importance of this formalism lies in the fact that it incorporates the anomalous
dynamics of fractals into the metric and therefore provides an ideal framework to
describe phenomena that occur in the usual Euclidean space for nonfractal systems.
Mosco [306] obtained the following expression for the PDF:

P(r, t) ∼ t−d f /dw exp

⎡

⎣−c
(

r

t1/dw

) dwdmin
dw−dmin

⎤

⎦ . (6.4)

Equation (6.4) is a generalization of the usual form (6.2), which is recovered in the
case dmin = 1 or by averaging in the appropriate regime, as shown both theoretically
and by simulations.

We have left an important question open at this point. What is the appropriate
diffusion equation for transport on a fractal? One of the first attempts at an answer
was due to O’Shaughnessy and Procaccia [331], before (6.2) and (6.4) had been
derived. They based their derivation on the continuity equation

∂P(r, t)

∂t
+ 1

rd f−1

∂ J (r, t)

∂r
= 0 (6.5)

and the constitutive equation for the particle flux

J (r, t) = −D(r)rd f−1 ∂P(r, t)

∂r
(6.6)

and obtained

∂P

∂t
= 1

rd f−1

∂

∂r

[

D(r)rd f−1 ∂P

∂r

]

, (6.7)

where D(r) = D∗r2−dw is the diffusion coefficient, or conductivity, on fractals. The
exact solution for this equation is known. Its second moment behaves like t2/dw , but
lacks the scaling (6.4).

To address this issue, generalizations were proposed by different authors. For
example, Giona and Roman took into account memory effects [161]. They replaced
(6.5) and (6.6) by

∫ t

0
dt ′�(t − t ′)P(r, t ′) = 1

rd f−1

∫ t

0
dt ′ J (r, t ′) (6.8)
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for the continuity equation and

J (r, t) = −D(r)

[
∂P

∂r
+ d f − 1

2
P(r, t)

]

(6.9)

for the constitutive equation for the flux. Equation (6.8) implies that the particle
density flux J at position r is equal to the probability of being at this point at a
prior time t ′ multiplied by the probability � of moving for a period t − t ′ and
integrated over the whole history. Assuming a power law for the memory kernel,
�(t) ∼ t−1/dw , and the diffusion coefficient, D(r) ∼ rd f−1, and combining (6.8)
and (6.9), we obtain

D1/dw
t P(r, t) = −A

[
∂P

∂r
+ d f − 1

2
P(r, t)

]

, (6.10)

where A is a constant. The left-hand side of (6.10) contains a fractional derivative
as defined in (2.58). The exact solution of (6.10) is also known and yields again
the behavior 〈r2〉 ∼ t2/dw . However, it also lacks the scaling of (6.4), except for
dmin = 1.

The idea of introducing fractional derivatives in diffusion equations to account
for long-range memory effects has given rise to a large number of publications. In
this context, the work by Metzler, Glöckle, and Nonnenmacher is noteworthy [297].
They realized that (6.10) suffers from a pathological defect: For d f = 1 and dw = 2
one should recover the standard diffusion equation; however, this is not the case. To
overcome this difficulty they propose

D2/dw
t P(r, t) = 1

rd f−1

∂

∂r

(

D(r)rd f−1 ∂P

∂r

)

(6.11)

with D(r) as in (6.7). However, as in the previous case, the solution still lacks the
scaling of (6.4), except for the case dmin = 1.

Recently Campos, Méndez, and Fort (CMF) have proposed a new equation that
overcomes all these difficulties and is derived without the need to introduce ad
hoc fractional derivative operators to obtain anomalous diffusion [66]. The authors
assume that the procedure by O’Shaughnessy and Procaccia can be adapted directly
to the intrinsic metric of the fractal by writing the equation in terms of s and dS
instead of r and d f :

∂P(s, t)

∂t
= 1

sdS−1

∂

∂s

[

D(s)sdS−1 ∂P(s, t)

∂s

]

, (6.12)

where dS = 2d f /dw is the mass scaling exponent in the intrinsic metric. (See
[306] for the equivalence relation between the Euclidean and intrinsic metric.)
This approach has the advantage that the undesirable dynamical consequences
from the fractal nature, which prevented previous models from producing the
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expected results, are now absorbed into the intrinsic metric [306]. The approach by
O’Shaugnessy and Procaccia [331] can account for the fractional geometric proper-
ties of fractals, but not completely for their fractional dynamic properties, since the
parameter dw does not appear there. Mosco’s idea of an intrinsic metric provides an
alternative that is more suitable to deal with diffusion processes on fractals.

Equation (6.12) faces one main difficulty, namely the determination of the
explicit functional form of D(s). It is important to stress that D(s) does not have
exactly the same properties as the classical diffusion coefficient, and we refer to
it here as the conductivity. Likewise, we define the resistivity of the medium as
R = 1/D. We expect the resistivity to be proportional to the number of steps
of the particle, and arguments from random walks on fractals should be useful to
determine R. Walks on fractals are characterized by the existence of two scales.
Divide the medium into small blocks of size ξ , such that the diffusion is normal
within the small blocks, ξ2 ∼ t . At scales larger than ξ , the effect of the hetero-
geneities becomes important, and motion depends on the fractal parameters. The
self-invariance properties of the fractal are not valid at short distances. Similarly,
the idealized concept of self-similarity at all scales does not hold for fractals in
practice.

For large scales s, the number of blocks n crossed by walkers increases as n ∼
(s2

/t)γ , where γ = dS
min/(2 − dS

min) and dS
min = 2dmin/dw is the equivalent of

dmin for the intrinsic metric [306]. In the asymptotic regime, the number of steps
executed by the walker is proportional to the number n of blocks crossed, and we
expect that R ∼ n. This result must be renormalized to recover the limiting case
of constant resistivity for homogeneous media. We have to divide n by the number
of blocks nhom for diffusion in homogeneous media. Therefore R ∼ n/nhom ∼
(s2

/t)γ /(s2
/t) = (s2

/t)γ−1, and

D(s) = D0(s
2
/t)1−γ (6.13)

for the conductivity, where D0 is a constant. The time dependence of D arises
from the existence of two separate scales and the relation between them. Brownian
random walks, namely normal diffusion, take place for small scales. We are con-
cerned with the transport behavior on large, asymptotic scales and must take into
account the dual behavior. The idea of a time-dependent conductivity was proposed
previously for specific systems involving heterogeneous media [190]. To confirm
the validity of (6.13), numerical simulations for random walks on two-dimensional
percolation clusters were performed [66]. To keep r and s fixed, a circle of a certain
radius from the origin of the walk was chosen, and the flux of particles and the
spatial derivative of the density at that radius were measured as a function of time.
The results of the simulations are shown in Fig. 6.2. They yield D ∼ t−0.33±0.04, in
good agreement with the known exponent of the power law for percolation clusters,
γ − 1 = dmin

dw−dmin
− 1 = −0.35 ± 0.01. The results obtained for simulations in

homogeneous media (solid circles) show that the diffusion coefficient is constant
as expected. The small discrepancy, and the error estimate given above, is due to
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Fig. 6.2 Time dependence of the diffusion coefficient for a percolation cluster on a square lattice
(open circles). The slope of the linear fit is −0.33 ± 0.04. Solid circles represent the diffusion
coefficient for homogeneous media. Reprinted with permission from [66]. Copyright 2004 by the
American Physical Society

the fact that the spatial derivative is difficult to estimate exactly from discretized
simulations. We substitute (6.13) into (6.12) and find the point-source solution for
the PDF:

P(s, t) ∼ t−
dS
2 exp

[

−c
(

s2

t

)γ]

, (6.14)

where we have used the normalization condition
∫

P(s, t)d(sds ) = 1. This expres-
sion is exactly the same as (6.4), the expression which Mosco obtained using only
scaling arguments. Since r ≡ s2/dw , the corresponding equation in Euclidean space
for the diffusive flux is

J (r, t) = 4D0

d2
w

(
r

t1/dw

)dw−u
rd f−dw+1 ∂P(r, t)

∂r
. (6.15)

Combining this constitutive equation with the continuity equation (6.5), we obtain
the CMF equation:

∂P(r, t)

∂t
= 4D0

d2
wr

d f−1

∂

∂r

[(
r

t1/dw

)dw−u
rd f−dw+1 ∂P(r, t)

∂r

]

, (6.16)

where u = dwdmin/(dw−dmin). The exact solution of (6.16) in the asymptotic limit
is (6.4). The MSD is given by
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〈r2〉(t) =
∫

r2d(rd f )P(r, t) =
�
(

2+d f
u

)

�
(
d f
u

)

(
4uD0

dw

)2/u

t2/dw , (6.17)

i.e., the transport is subdiffusive.

6.2 Reaction–Diffusion Fronts on Fractals

In the previous section we presented some of the equations proposed in the lit-
erature for describing diffusion on fractal structures. These equations must meet
three requirements to be considered valid. First, the MSD must display subdiffusion,
〈r2〉 ∼ t2/dw . Second, the PDF P(r, t) must agree with the scaling form (6.4). Third,
the equation has to recover the form of the standard diffusion equation for dw = 2,
d f = 1, and dmin = 1. We have shown that only the CMF equation (6.16) meets all
three requirements. As expected, this result remains true for the description of front
propagation on fractals.

Following the argument by Bunde and Dräger [62], front propagation is well
defined in the chemical distance space. The front has to propagate with constant
velocity, i.e., the front position in the chemical distance space behaves like l ∼ t .
Euclidean and chemical distances are related by (6.1). The front position in real
(Euclidean) space behaves like r ∼ l1/dmin ∼ t1/dmin and [33]

v = dr

dt
∼ t

1
dmin

−1
. (6.18)

Since dmin ≥ 1, the front is always decelerated. Clearly, the models that do not
explicitly consider dmin cannot fulfill the scaling law (6.18) for the front velocity
on a fractal; only the CMF equation can satisfy (6.18). To obtain the CMF equation
with reaction, we combine the constitutive equation for the flux (6.15) with the
conservation equation for the particle density ρ:

∂ρ

∂t
+ 1

rd f−1

∂ J

∂r
= F(ρ), (6.19)

where F(ρ) is a particle source term. The phenomenological reaction-CMF equa-
tion with KPP kinetics, F(ρ) = aρ(1− ρ), reads

∂ρ

∂t
= 4D0

d2
wr

d f−1

∂

∂r

[(
r

t1/dw

)dw−u
rd f−dw+1 ∂ρ

∂r

]

+ aρ(1− ρ), (6.20)

where a denotes, in this section, the reaction rate. We employ the Hamilton–Jacobi
formalism introduced in Sect. 4.2.1 for homogeneous media. Performing the hyper-
bolic scaling (4.33) and introducing the field Gε

(r, t) = −ε ln ρ(r/ε, t/ε), we
obtain the Hamilton–Jacobi equation for (6.20),
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∂G

∂t
+ 4D0

d2
w

ε
− u

dw
+u−1

t
u
dw
−1

r−u+2
(
∂G

∂r

)2

+ a = 0 (6.21)

in the limit ε → 0. Equation (6.21) can be solved by using the Hamilton equations

dr(τ )

dτ
= 8D0

d2
w

ε
− u

dw
+u−1

τ
u
dw
−1

r(τ )−u+2 p(τ ), (6.22a)

dp(τ )

dτ
= −4D0

d2
w

(2− u)ε
− u

dw
+u−1

τ
u
dw
−1

r(τ )−u+1 p2
(τ ). (6.22b)

Integrating the system (6.22) with the boundary conditions r (0) = 0 and r (t) = x ,
we find r(τ ) = x(τ/t)2/dw , and the Lagrangian is given by

L(x, τ ) = 1

4D0
ε

u
dw
−u+1

xuτ
u
dw
−1

t
− 2u

dw − a. (6.23)

From (4.39) we obtain

G(x, t) = dwε
u
dw
−u+1

xut
− u

dw

4D0u
− at. (6.24)

Inverting the hyperbolic scaling in (6.24), by taking x → εx and t → εt , and
solving G(x, t) = 0, we arrive at

v(t) = dx

dt
=
(

1

u
+ 1

dw

)(
u

dw

)1/u

(4r D0)
1
u t

1
dw
−1+ 1

u ∼ t
1

dmin
−1

. (6.25)

The reaction-CMF equation predicts a front velocity with the appropriate scaling
(6.18).

6.3 Reaction–Transport Fronts on Comb Structures

Lattice models and other discrete models are used to describe a wide variety of
dynamical systems [270, 77]. In this section we study the propagation of reaction-
random walk wavefronts on heterogeneous lattices that consist of a main backbone
with a regular distribution of secondary branches. An example is comb-like struc-
tures, see Fig. 6.3 [53].

6.3.1 Comb-Like Structures

We first consider the case of a discrete one-dimensional chain where the nearest
neighbors are separated by a distance a. A random walk, where each walker moves
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Fig. 6.3 Sketch of a comb structure with a nearest neighbor distance a and secondary branches of
length l. The symbols A, A′, A′′, . . . denote sites on the lattice (see text)

only to one of its nearest neighbors with equal probability after a fixed waiting time
τ , is characterized by the following PDFs for the waiting times and jump lengths,
respectively:

φ(t) = δ(t − τ), (6.26)

w(x) = 1

2
[δ(x − a)+ δ(x + a)] . (6.27)

In this way, systems with discrete time and space can be analyzed in terms of
CTRWs.

Next, we add to every site of the backbone a secondary branch of length l, to
produce a comb-like structure (see Fig. 6.3). On such a structure, a walker that is
at a given site of the backbone can spend a certain amount of time in the secondary
branch before jumping to one of the nearest neighbor sites on the backbone. If we are
only interested in the behavior of the system in the direction of the backbone, then
the secondary branches introduce a delay time for jumps between the neighboring
sites on the backbone. The random walk on the comb structure can be modeled as a
CTRW with (6.27) and a new waiting PDF φ(t) that includes the effect of the delay
due to the secondary branches.

To determine analytically the effect of the branches, we invoke convolution rules
that were introduced in [446] for the case of homogeneous lattices:

(i) Consider a walker that is initially at a certain site within the secondary branch.
If the walker proceeds further into the secondary branch, i.e., moves away from
the backbone, its probability to return to the initial site after a time t is a con-
volution of factors, i.e., a product in the Laplace space.

(ii) The total probability for that walker to return to the initial site is determined
by summing over all t from 0 to ∞.

(iii) When the walker reaches a crossing, where it can choose between different
directions, the total probability is the sum of the probabilities for each possible
direction.
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The secondary branches have no crossings for comb structures such as the one
shown in Fig. 6.3, and rule (iii) does not apply. For the sake of generality, we con-
sider the case that when the walker is at a site on the backbone it can jump to another
site on the backbone with probability α or move onto the secondary branch with
probability 1 − α. This generalization allows us to analyze, for example, structures
as those shown in Fig. 6.4, treating them as equivalent to that in Fig. 6.3 by choosing
an appropriate value for α.

Q=1 Q=2 Q=3

Fig. 6.4 The first three construction levels of the Peano fractal basin

Without loss of generality, we assume that initially the walker is located on the
backbone and we apply the rules (i)–(iii) to determine φ(t). We study three specific
cases.

(a) Comb structure with l = a. In this case there is only one site on the secondary
branch, A′. The walker can only jump in the direction of the backbone with proba-
bility α or move onto the branch with probability 1−α and then return to the initial
site at the next jump. The time it takes to reach one of the nearest neighbors on the
backbone is t = τ with probability α, t = 3τ with probability (1 − α) × 1 × α,
t = 5τ with probability (1 − α)

2 × 12 × α, and so on. We can write intuitively the
general form φ(t) as

φ(t) =
∞
∑

j=1

α(1− α)
j−1

δ
[

t − (2 j − 1) τ
]

. (6.28)

The rules listed above for φ(t) should reproduce this behavior. For this purpose
we need to work in the Laplace space. Let φ̂(s) be the Laplace transform of φ(t).
The rules (i)–(iii) lead to the expression

φ̂(s) = αφ̂0

∞
∑

j=0

[

(1− α)φ̂
2
0

] j = αφ̂0

1− (1− α)φ̂
2
0

, (6.29)

where φ̂0 is the probability distribution for a single jump, φ̂0 = e−τ s , which is the
Laplace transform of (6.26).

Equation (6.29) is derived as follows. The term (1− α)φ̂
2
0 in the sum represents,

according to rule (i), the probability function for each occurrence of the walker
moving onto the secondary branch. This expression must be summed up to infinity,
rule (ii), to take into account that the walker can move onto the secondary branch
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1, 2, . . . ,∞ times. The factor αφ̂0 accounts for the final jump to the nearest neigh-
bor on the backbone.

It is easy to see that the expression (6.29) may be written as a Taylor series,

φ̂(s) =
∞
∑

j=1

α(1− α)
j−1
(

φ̂0

)2 j−1
, (6.30)

which is the Laplace transform of (6.28). The method for determining φ̂(s) is shown
to be valid in this case.

(b) Comb structure with l = 2a. The secondary branch is two-sites long, A′ and
A′′. Similar to the previous case we can write the distribution for the time probabil-
ities as

φ̂(s) = αφ̂0

∞
∑

j=0

[

(1− α)

2
φ̂

2
0

∞
∑

k=0

(
1

2
φ̂

2
0

)k
] j

= αφ̂0(2− φ̂
2
0)

2− (2− α)φ̂
2
0

. (6.31)

In this equation a new sum over the index k appears, because the walker can
move away from the backbone twice. For each such occurrence we must apply rule
(i). We also assume that jumps to the nearest neighbor occur with probability 1/2
on the linear secondary branch.

(c) Comb structure with l → ∞. Each time the walker moves away from the
backbone, a new convolution factor appears in φ̂(s). For the case l →∞, we have in
principle infinitely many convolution factors in the expression for φ̂(s). Fortunately,
we can simplify this situation considerably. Assume that the walker is at the first site
on the secondary branch, point A′ in Fig. 6.3, and moves away from the backbone.
Let ηA′ be the probability distribution of returning for the first time to the point A′

after a time t . Now imagine the same situation but for the initial point A′′. It is easy
to see that as l → ∞ the limit ηA′′ → ηA′ has to hold, and we can again use the
rules (i)–(iii) to determine ηA′ . Doing so, we obtain the expression

ηA′ =
1

2
φ̂0

∞
∑

j=0

(
1

2
φ̂0ηA′′

) j

. (6.32)

This expression is equivalent to the form (6.29) with α = 1/2; on the secondary
branch every jump to a nearest neighbor occurs with probability 1/2. Introducing
the condition ηA′′ = ηA′ , which is strictly correct for l = ∞, and solving (6.32), we
find

ηA′ =
1−

√

1− φ̂
2
0

φ̂0

. (6.33)
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With this result, the distribution φ̂(s) is obtained straightforwardly from the three
rules (i)–(iii):

φ̂(s) = αφ̂0

∞
∑

j=0

[

(1− α)φ̂0ηA′
] j = αφ̂0

α + (1− α)

√

1− φ̂
2
0

. (6.34)

In finding the waiting time PDF associated with the comb structures, we assumed
that we are only interested in the dynamical behavior along the backbone and con-
sidered the rest of the structure as secondary. Another interesting structure, the well-
known Peano basin, shown in Fig. 6.4 as a function of the construction level Q, has
been used to model fractal river basins [64]. Again, if we are only interested in
the behavior in the direction of the backbone, then for Q = 1 the waiting time
distribution function is given by

φ̂(s) = 1

2
φ̂0

∞
∑

j=0

(
1

2
φ̂

2
0

) j

= φ̂0

2− φ̂
2
0

. (6.35)

Similarly, for Q = 2 we find

φ̂(s) = 1

2
φ̂0

∞
∑

j=0

⎡

⎣
1

2

φ̂
2
0

4

∞
∑

k=0

(

φ̂
2
0

2
+ φ̂

2
0

4

)k
⎤

⎦

j

= 4φ̂0 − 3φ̂3
0

8− 7φ̂2
0

, (6.36)

where we have used α = 1/2, i.e., the same jump probability in all directions.

6.3.2 Diffusion and Front Propagation

6.3.2.1 Diffusion

To characterize diffusion on these structures, we calculate the MSD using the CTRW
formalism with the waiting time PDFs (6.29), (6.31), (6.34), (6.36), and the dispersal
PDF (6.27). In Laplace–Fourier space, the MSD reads

̂〈x2〉(s) = − d2 ˆ̃ρ(k, s)
dk2

∣
∣
∣
∣
∣
k=0

= φ̂(s)a2

s
[

1− φ̂(s)
] . (6.37)

Substituting (6.29) and (6.31) into (6.37), we find for cases (a) and (b) 〈x2〉(t) =
2D(a),(b)t in the limit t →∞, with

D(a) =
αa2

2τ(2− α)
, D(b) =

αa2

2τ(4− 3α)
. (6.38)
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Introducing (6.34) into (6.37), we find anomalous diffusion in the limit t →∞ for
case (c):

〈x2〉(t) =
√

2

π

αa2

1− α

(
t

τ

)1/2

. (6.39)

6.3.2.2 Front Propagation

Front propagation in heterogeneous media has recently received much attention
due to the potential applications. Some examples are reaction–diffusion equations
in periodic and random media [483], spatial heterogeneities [290], temporal het-
erogeneities [289], and biological invasions in ecological patchy environments
[403–405]. Computer simulations of heterogeneous models have also been used to
describe the dynamics of brain tumors [427], the formation of Alzheimer’s disease
senile plaques [105], and calcium release waves [225, 367]. In Chap. 5 we obtained
the Hamilton–Jacobi equation for reaction–transport equations, derived from the
CTRW formalism, with a KPP reaction term such as F(ρ) = rρ(1−ρ). Introducing
the bilateral transform of the dispersal kernel (6.27), w̌(p) = cosh(ap), into (5.30),
we obtain from (4.46) the following expression for the front velocity across the
comb structure:

v = min
H>r

H

cosh−1
[

1
φ̂(H)

(

1− r
H

)+ r
H

] . (6.40)

We plot in Fig. 6.5 the dimensionless front velocity vτ/a vs the reaction rate r
on a log–log scale. The front velocity increases with r . For the cases l = a and
l = 2a, the slope is very similar, but for l = ∞ it is steeper. In all cases the front
velocity increases as a power law of r , straight line in a log–log plot, for small and
moderate values of r and saturates to 1 for larger values, the slope in the log–log
plot tends to 0. This behavior is due to the fact that an increase of the reaction rate
r leads to an increase of the front velocity. However, the front cannot travel faster
than the jump velocity of the particles if all of them jump in the backbone direction,
i.e., v ≤ a/τ . For l = a and l = 2a the transport is diffusive, and the diffusion
coefficient is properly defined. If this transport is combined with a KPP reaction, a
Fisher velocity is expected, i.e., in both cases v ∼ √

r . Computing numerically the
slope from a linear fit in Fig. 6.5 we obtain r0.48 and r0.51 for l = a and l = 2a,
respectively. The case l →∞ is quite different, because the transport is anomalous.
Equation (5.36) with γ = 1/2 yields v ∼ r3/4, while the linear fit of the numerical
results yields r0.71. Numerical and analytical results are in good agreement.
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= ∞
=
=

r

Fig. 6.5 Comparison of the front velocity across the comb structure obtained from (6.40) (lines)
and from the simulations within the comb structures (symbols) as function of the reaction parameter
r for the three cases studied here. α = 2/3

6.3.3 Front Propagation on Oriented Graphs

Oriented graphs are graphs where the edges connecting the nodes have a direction,
so-called directed graphs that have no symmetric pair of directed edges. Reaction-
random walks on such structures were studied recently and applied to describe
migration fronts through river networks [46]. In this section we outline how to
calculate the front velocity on Peano networks from CTRWs with reactions. The
walker sojourns for a time τ at a node. Then the walker jumps from that node to one
of its adjacent nodes with a certain probability. The adjacent nodes are comprised
of all the nodes that are connected to a node by an inward or outward edge. Let
Pout (Pin) be the probability that a particle moves from a node to an adjacent node
along an outward (inward) edge. We assume that all particles move at each time
step, Pout+ Pin = 1. If each node has dout outward edges and din inward edges, then
the probability Pi j for a particle to jump from the node i to one of its neighbors j
can be expressed as

Pi j =
Pout

dout(i)Pout + din(i)Pin
, i → j, (6.41a)

Pi j =
Pin

dout(i)Pout + din(i)Pin
, j → i, (6.41b)

with

dout(i)+din(i)∑

j=1

Pi j = 1. (6.42)
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The bias of the transport through the network can be defined as b = Pout − Pin =
2Pout − 1. We focus on an oriented Peano network at the first level of construction.
Figure 6.6 shows this network, where the segment AB is the backbone direction.

A B

Fig. 6.6 Peano network at the first level of its construction process. The arrows show the edge
direction. The line indicated as AB is the backbone direction

The probabilities that a particle, starting from any node on the backbone, jumps to
its downstream neighbor or to one of its three upstream neighbors are, respectively,

P+ =
Pout

Pout + 3Pin
, P− =

Pin

Pout + 3Pin
. (6.43)

To obtain the expression for the waiting time PDF we proceed as in Sect. 6.3, see
the part corresponding to the comb structure with l = a. The Laplace transform of
the waiting time PDF is given by

φ̂(s) = (P+ + P−)φ̂0

∞
∑

j=0

(

2P−φ̂
2
0

) j = (P+ + P−)φ̂0

1− 2P−φ̂
2
0

. (6.44)

The jump length distribution for a walker moving along the backbone of the net-
work, segment AB in Fig. 6.6, is w(x) = Poutδ(x − l) + Pinδ(x + l), where l is
the distance between two consecutive nodes. Equations (5.30) and (4.46) yield the
following expression for the front velocity:

v = l

τ
min
y>rτ

y

ln

[

ζ(y)+
√

ζ(y)2 − 1+ b2
]

− ln(1+ b)
, (6.45)

where

ζ(y) =
[

(2− b)ey − (1− b)e−y
](

1− rτ

y

)

+ rτ

y
. (6.46)

Results for the front velocity, determined numerically from (6.45), are shown in
Fig. 6.7, where the dimensionless front velocity is plotted as a function of the dimen-
sionless growth rate rτ .

The front velocity is a monotonically increasing function of rτ . As expected, it
approaches asymptotically the advection velocity along the backbone l/τ , since the
front velocity cannot exceed the maximum particle velocity. The inset shows that the
front velocity does not depend linearly on the bias b, which implies that the front
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=

Fig. 6.7 Dimensionless front velocity as a function of rτ (main figure) and as a function of b
(inset)

velocity on this network is not simply given by the sum of the advection velocity in
the backbone plus the front velocity for the unbiased case.

6.4 Reaction–Diffusion Fronts in General Heterogeneous Media

In this section we present three different analytical tools that can be used to calculate
the velocity of a front propagating in nonuniform media, if the heterogeneities are
small. Methods such as the marginal (linear) stability analysis, Sect. 4.1.1, and vari-
ational analysis, Sect. 4.2.2, have been widely used to find the asymptotic velocity of
a front. Both methods do not work or at least need to be appropriately generalized, if
the reaction–diffusion equation depends explicitly on the spatial or temporal coordi-
nate. Instead, we employ well-known analytical techniques such as singular pertur-
bation analysis and the local velocity approach, both valid for weak heterogeneities,
and the Hamilton–Jacobi formalism, Sect. 4.2.1, valid for general heterogeneities,
to study how heterogeneities introduce corrections to the asymptotic front velocity,
both for pulled and pushed (but monostable) fronts. We will compare the analytical
results and numerical solutions.

These methods have some limitations. Singular perturbation analysis is an effec-
tive tool if the solution is known to the leading order and if the reaction term is not
given by KPP kinetics. The solution to the lowest order can be found for some partic-
ular non-KPP kinetic terms, but it is not known in general. This method requires, of
course, that a small parameter is present in the model. It is necessary to assume that
the spatial heterogeneities in the system introduce a small variation in the reaction
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rate or the diffusion coefficient, weak heterogeneities, and the characteristic length
of the heterogeneities must be greater than the characteristic width of the front,
smooth heterogeneities. To illustrate this, consider the problem

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ rg(x/ l) f (ρ), (6.47)

where g(x) is the heterogeneity function and l the characteristic length of the spatial
heterogeneities. If we define the dimensionless variables x∗ = x

√
r/D and t∗ = tr ,

we find that, omitting the asterisk for notational simplicity, (6.47) takes the form

∂ρ

∂t
= ∂

2
ρ

∂x2
+ g(εx) f (ρ), (6.48)

where ε ≡ l−1√D/r . The width of the front

L ∼
(
∂ρ

∂x

)−1

= √D/r

(
∂ρ

∂x∗
)−1

(6.49)

is O(
√
D/r), which implies ε is O(L/ l). If L � l, then ε � 1.

The Hamilton–Jacobi formalism, on the other hand, only holds for KPP kinet-
ics, but in contrast to singular perturbation analysis there is no need to assume
either weak or smooth heterogeneities. The local velocity approach is based on the
assumption that for weak and smooth heterogeneities the velocity of the front is
given by the local value of the reaction rate r and the diffusion coefficient D at each
spatial point, i.e., the front velocity coincides with the instantaneous Fisher velocity:
v � 2

√
r(x)D(x). In general, this simple-minded approach is not consistent with

results from the other analytical methods or with numerical solutions.
In this section we study the smooth heterogeneous problem

∂ρ

∂t
= ∂

2
ρ

∂x2
+ r(εx) f (ρ), (6.50)

i.e., an RD equation with a nonuniform reaction term. The function f satisfies
f (0) = f (1) = 0 and ρ(x, 0) = θ̃ (x) where θ̃ (x) is an initial condition that
can range from the Heaviside step function to a fully developed front. Here r is the
dimensionless reaction rate, and ε is a small parameter. Space has been scaled such
that D = 1. Since we are interested in solutions that behave like fully developed
fronts, we consider the asymptotic regime, i.e., the large-scale and large-time limit,
and employ the hyperbolic scaling t → t/ε and x → x/ε. Equation (6.50) then
reads
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ε
∂ρ

∂t
= ε

2 ∂
2
ρ

∂x2
+ r(x) f (ρ), (6.51)

r(x) ≡ 1+ δηu(x), (6.52)

where δ is the amplitude of the heterogeneities and ηu(x) is the reactive hetero-
geneity. Consistent with the initial condition and the existence of a front, we require
the solution to satisfy limx→−∞ ρ = 1 and limx→∞ ρ = 0. To calculate the front
velocity we make use of the singular perturbation analysis (SPA), the local velocity
approach (LVA), and the Hamilton–Jacobi (HJ) formalism.

6.4.1 Singular Perturbation Analysis

Singular perturbation analysis was employed to study the velocity of pulled fronts,
and it was shown that the solvability integrals diverge [103, 104, 448]. Therefore
we will use this method only for non-KPP kinetics. We assume δ = O(ε), weak
heterogeneities, i.e., δ ≡ σε in (6.51) with σ = O(1). Equation (6.51), together
with the corresponding boundary conditions, becomes

ε
∂ρ

∂t
= ε

2 ∂
2
ρ

∂x2
+ [1+ σεηu(x)

]

f (ρ), (6.53a)

lim
x→−∞ ρ = 1, lim

x→∞ ρ = 0. (6.53b)

To study (6.53) we carry out a nonrigorous asymptotic analysis. We assume
that the domain is divided into two regions, an interior or boundary layer region,
whose width is O(ε), where ρ varies rapidly, and an outer region where ρ is almost
constant. In other words, either ρ = O(ε

n1) or ρ = 1 + O(ε
n2), where n1 and

n2 are positive real numbers. To solve (6.53) in the outer region we expand ρ as
follows:

ρ(x, t; ε) = �0(x, t)+ ε�1(x, t)+ ε
2
�2(x, t)+ O(ε

3
). (6.54)

By substituting (6.54) into (6.53) and equating terms of equal power in ε, we obtain

f (�0) = 0, lim
x→−∞�0 = 1, lim

x→∞�0 = 0, (6.55)

∂�0

∂t
= f ′(�0)�1 + σηu(x) f (�0), lim

x→±∞�1 = 0, (6.56)

∂�1

∂t
= ∂

2
�0

∂x2
+ 1

2
f ′′(�0)�

2
1 + f ′(�0)�2 + σηu(x) f

′
(�0)�1, lim

x→±∞�2 = 0.

(6.57)
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The solution of (6.55) is �0 = 1 to the left of the boundary layer and �0 = 0
to the right of the boundary layer. The solutions of (6.56) and (6.57) are �1 ≡ 0
and �2 ≡ 0, respectively. This implies that ρ(x, t; ε) = O(ε

3
) to the left of the

boundary layer and ρ(x, t; ε) = 1+O(ε
3
) to the right of the boundary layer. To the

order of the expansion considered here, the homogeneous and heterogeneous cases
are identical, and there is no difference in the shape of the front.

To study the dynamics in the interior of the boundary layer we transform (6.53)
to the reference frame of the front, i.e., we define the new variable z = [x− S(t)]/ε,
where S(t) represents the position of the front. The derivatives in (6.51) transform
according to

∂

∂t
→− Ṡ

ε

∂

∂z
+ ∂

∂t
,

∂
2

∂x2
→ 1

ε
2

∂
2

∂z2
, (6.58)

where the dot denotes the time derivative. We expand ρ and S in powers of ε,

ρ(z, t) = φ0(z)+ εφ1(z, t)+ ε
2
φ2(z, t)+ · · · , (6.59)

S(t) = S0(t)+ εS1(t)+ ε
2S2(t)+ · · · , (6.60)

and consequently

ηu(x) = ηu(S0 + zε + S1ε + · · · ) � ηu(S0)+ η
′
u(S0)(z + S1)ε + · · · , (6.61)

f (φ) = f (φ0)+ f ′(φ0)φ1ε +
1

2
f ′′(φ0)φ

2
1ε

2 + f ′(φ0)φ2ε
2 + · · · , (6.62)

where η
′
u(S0) = dηu(x)/dx

∣
∣
x=S0

and f ′(φ0) = d f (ρ)/dρ|ρ=φ0
. Substituting

(6.60) and (6.62) into (6.53) and taking account of (6.58), and equating terms with
equal powers of ε we obtain at orders ε0, ε, and ε

2, respectively,

Lφ0 = 0, (6.63)

L1φ1 = −σ f (φ0)ηu(S0)− Ṡ1
∂φ0

∂z
, (6.64)

L1φ2 =− Ṡ2
∂φ0

∂z
− Ṡ1

∂φ1

∂z
− 1

2
f ′′(φ0)φ

2
1 − σηu(S0) f

′
(φ0)φ1

− σ f (φ0)η
′
u(S0)(z + S1)+

∂φ1

∂t
,

(6.65)

where L = ∂zz + Ṡ0∂z + f (φ0) and L1 = ∂zz + Ṡ0∂z + f ′(φ0).
Since we assumed φ0 = φ0(z) in (6.59), the first equation (6.63) is equivalent

to the homogeneous (ε = 0) reaction–diffusion equation transformed to the front
reference frame, z = x− Ṡ0t , which travels with constant velocity Ṡ0. We set Ṡ0 ≡ c,
and S0 = ct with S(0) = 0. Since L1 has a zero eigenvalue, L1dφ0/dz = 0, it cannot
be inverted to obtain the solutions of (6.64) and (6.65). Instead those equations have
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to fulfill a solvability condition, which determines the corrections to the velocity
of the front. The solvability condition of (6.64) is

∫∞
−∞ ψL1φ1dz = 0, where ψ

is the zero eigenfunction of the adjoint operator L†
1 = ∂zz − Ṡ0∂z + f ′(φ0), i.e.,

L†
1ψ = 0. It is easy to show that ψ = eczdφ0/dz is an eigenfunction of L†

1 with
zero eigenvalue. The solvability condition for (6.64) yields

Ṡ1 = −σηu(ct)
∫∞
−∞ ecz dφ0

dz f (φ0)dz
∫∞
−∞ ecz

(
dφ0
dz

)2
dz

= 1

2
σcηu(ct). (6.66)

Note that Ṡ1 depends only on the function ηu and not on the solution of φ0. Inverting
the hyperbolic scaling, we find that the velocity of the front is given by

v(t) = c + 1

2
cηu(ctε)δ + O(δ

2
). (6.67)

Before proceeding to the next order in the expansion, we need to solve (6.64).
Since L1dφ0/dz = 0, we look for a solution of the form φ1(z, t) = dφ0

dz + dφ0
dz zF(t).

Substituting this ansatz into (6.64), we find F(t) = 1
2σηu(ct) and

φ1(z, t) =
dφ0

dz

[

1+ 1

2
σηu(ct)z

]

. (6.68)

After substituting S0 = ct , (6.66), and (6.68) into (6.65) and applying the solvability
condition

∫∞
−∞ ecz dφ0

dz L1φ2dz = 0 for (6.65), we obtain

Ṡ2 = −cσ 2

8
ηu(ct)

2 + αση
′
u(ct)+

cσ

2
η
′
u(ct)S1(t), (6.69)

where η
′
u(ct) ≡ dηu(x)/dx

∣
∣
x=ct , S1(t) = 1

2σ
∫ ct

ηu(x)dx with S(0) = 0, and

α ≡ −1

2
+ c

∫∞
−∞ zecz

(
dφ0
dz

)2
dz

∫∞
−∞ ecz

(
dφ0
dz

)2
dz

. (6.70)

Note that Ṡ2 depends explicitly on the solution of φ0. To calculate analytically the
second-order correction of the velocity it is necessary to have an analytical expres-
sion for the zeroth order solution φ0(z). Some exact solutions are known in the
literature for reaction terms of the form f (ρ) = ρ

q+1
(1 − ρ

q
) for q ≥ 1 (see

Exercise 4.1). In this case, the solution for the homogeneous case takes the form
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φ0(z) =
1

(

1+ ebz
)a , c = 1√

1+ q
, b = qc, a = 1

q
. (6.71)

It is easy to check that the integrals involved in (6.66) and (6.70) converge for any
q. For example, for q = 1 we have f (ρ) = ρ

2
(1 − ρ), α = 1, and the velocity of

the front is given by

v(t) = Ṡ(t) = 1√
2
+ σ

2
√

2
ηu

(
t√
2

)

ε+
{

− σ
2

8
√

2
ηu

(
t√
2

)2

+ ση
′
u

(
t√
2

)

+ σ
2

4
√

2
η
′
u

(
t√
2

)∫ t/
√

2

ηu(x)dx

}

ε
2

+ O(ε
3
). (6.72)

For the sake of mathematical and numerical simplicity we illustrate the results
for the case where ηu(x) = x is linear. Taking σ = 1, we find from (6.72) that
v(t) = 1/

√
2+ tε/4+ ε

2, and inverting the hyperbolic scaling we obtain

v(t) = 1√
2
+
(

1+ t

4

)

ε
2 + O(ε

3
), (6.73)

which is valid for t � O(ε
−2

). For any non-KPP f (ρ) one has the general result

v(t) = c +
(

c2t

2
+ α

)

ε
2 + O(ε

3
). (6.74)

6.4.2 Local Velocity Approach

The local velocity approach assumes that the front position changes adiabatically in
time as the front moves into a region where the characteristic parameters D and r
change. For (6.50) with a source term f (ρ) = ρ

2
(1− ρ) the velocity of the front is

locally given by v = √r(εx f )/2, where x f is the position of the front. To be more
specific, let us also assume ηu(x) = x and σ = 1. The temporal dependence of the
front velocity is obtained by integrating the differential equation

dx f

dt
=
√

1+ ε
2x f

2
(6.75)

for the front position. With the initial condition x f (0) = 0, the local velocity
approach yields
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v(t) = 1√
2
+ tε2

4
. (6.76)

In Fig. 6.8 we compare the numerical results for the front velocity of (6.50) for
r(εx) = 1+ δηu(εx), ηu(x) = x , and ρ(x, 0) a Heaviside function, with the analyt-
ical solutions (6.73) and (6.76) for different values of ε. We observe that the velocity
calculated from the SPA is in better agreement with numerical solutions than that
calculated from the LVA.

ve
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Fig. 6.8 Comparison of the temporal evolution of the velocity of fronts (in dimensionless units)
between the singular perturbation analysis result given by (6.73) (solid lines), the local velocity
approach (6.76) (dashed lines), and numerical results (symbols) for different values of ε. Here
ηu(x) = x and f = ρ

2
(1 − ρ). Reprinted with permission from [290]. Copyright 2003 by the

American Physical Society

6.4.3 Hamilton–Jacobi Formalism

Singular perturbation analysis does not provide a fully analytical result for the very
important case of KPP kinetics. It is not possible to go beyond the first order in δ,
because the exact unperturbed solution is not known and the integrals in the solv-
ability condition diverge. Proceeding as in Sect. 4.2.1 for (6.50) with KPP kinetics,
we obtain to leading order the following equation for the action functional (ε = 0):

∂tG + (∂xG
)2 + r(δ, x) = 0, (6.77)

where r(δ, x) = 1+ δηu(x). The Hamilton equations
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dx

ds
= 2p, (6.78)

dp

ds
= −δ

dηu
dx

(6.79)

yield the differential equation for x(s),

ẍ(s)+ 2δ
dηu[x(s)]

dx
= 0, (6.80)

for the boundary conditions x(s = 0) = x and x(s = t) = 0. The solution for the
action functional G(x, t) is given by (4.39). Since the Hamiltonian does not depend
explicitly on the time s, the energy integral

E = ẋ(s)2

4
+ 1+ δη[x(s)] (6.81)

exists, and

G(x, t) = −Et + 1

2

∫ t

0
ẋ(s)2ds. (6.82)

We carry out the calculations explicitly for two simple choices of ηu , where
(6.80) has an exact solution. The first one is ηu(x) = x as in the previous section.
In this case, (6.80) yields, together with the boundary conditions,

x(s) = x − δs2 − sx

t
+ δst, for 0 ≤ s ≤ t, (6.83)

and

E = 1+ 1

2
xδ + 1

4
δ

2t2 + x2

4t2
. (6.84)

Equation (6.82) implies that G(x, t) = −t− δ
2t3

/12− xtδ/2+ x2
/4t . The position

of the front, given by G(x, t) = 0, is

x(t) = δt2 + 2t

√

1+ 1

3
δ

2t2
. (6.85)

The exact expression for the velocity, after inverting the hyperbolic scaling, is given
by

v(t) = dx

dt
= 2δεt + 4ε2

δ
2t2 + 6

√

3ε2
δ

2t2 + 9
(6.86)
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for any δ. For weak heterogeneities (δ � 1) and for σ = 1, (6.86) reduces to

v(t) � 2+ 2tε2 + t2
ε

4 + O(ε
8
), (6.87)

which holds only for t � O(ε
−2

). The HJ formalism can provide a general solution
for any ηu(x) if δ � 1. In this case, see Exercise 6.5,

v(t) = 2+ δηu(2tε)+ O(δ
2
). (6.88)

The local velocity approach for KPP kinetics yields v = 2
√
r(εx f ). The differ-

ential equation for the front position is

dx f

dt
= 2
√

1+ ε
2x f , (6.89)

and integrating with the initial condition x f (0) = 0, we find

v(t) = 2+ 2tε2
. (6.90)

In Fig. 6.9 we compare (6.86) and (6.90) with the numerical solution of (6.50) for
different values of ε. We observe in general good agreement after an initial transient.
However, the front velocity (6.87) is in better agreement with numerical solutions
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Fig. 6.9 Comparison of the temporal evolution of the velocity of fronts (in dimensionless units)
between the HJ analytical result given by (6.86) (solid lines), the LVA (6.90) (dashed lines), and
numerical results (symbols) for different values of ε. Here ηu(x) = x for nonuniform KPP kinetics.
Reprinted with permission from [290]. Copyright 2003 by the American Physical Society
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than (6.90), as is the case for a comparison between SPA and LVA. In Exercises 6.6,
6.7, and 6.8 we propose to study the case of a nonuniform diffusion coefficient. From
their results and from (6.72) and (6.88) we deduce the following general result:

Theorem 6.1 For the equations

∂ρ

∂t
= ∂

2
ρ

∂x2
+ [1+ δηu(εx)

]

f (ρ) (6.91)

and

∂ρ

∂t
= ∂

∂x

{
[

1+ δηD(εx)
] ∂ρ

∂x

}

+ f (ρ), (6.92)

with f (ρ) such that f (0) = f (1) = 0, δ, ε � 1 (weak and smooth heterogeneities),
and ηu,D(x) a continuous and differentiable function, the front velocity has the form

v(t) = c + 1

2
cηu,D(ctε)δ + O(δ

2
), (6.93)

for t � O(ε
−1

). Here c is the asymptotic (constant) velocity for the homogeneous
system.

Remark 6.1 If η is an increasing (decreasing) function of space, the front is acceler-
ated (decelerated).

Exercises

6.1 Apply the Hamilton–Jacobi formalism to the O’Shaughnessy–Procaccia equa-
tion (6.7) and show that the front velocity behaves like v ∼ t2/dw−1.

6.2 Apply the Hamilton–Jacobi formalism to the Giona–Roman equation (6.10) and
show that the front velocity is constant.

6.3 Find the waiting time PDF for the Peano basin with Q = 3. Calculate 〈x2〉(t)
when t →∞.

6.4 Consider ηu(x) = x2 and KPP kinetics in the equation (6.51) and find the front
position. Obtain the front velocity up to O(δ

3
).

6.5 Consider (6.51) with a general ηu(x) and KPP kinetics but now assume δ � 1.
Obtain the front velocity up to O(δ

3
).

6.6 Consider the RD equation with a nonuniform diffusion coefficient
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∂ρ

∂t
= ∂

∂x

[

D(εx)
∂ρ

∂x

]

+ f (ρ), (6.94)

with D(x) = 1+δηD(x). Assume that δ = σε and make use of the SPA to calculate
the front velocity up to O(ε

3
).

6.7 Consider (6.94). Assume KPP kinetics and ηD(x) = x . Find the exact front
velocity for any δ by using the HJ formalism.

6.8 Find the front velocity for the equation (6.94) for any ηD(x) and KPP kinetics
up to O(δ

3
).

6.9 Consider the RD equation with a time-dependent reaction rate given by

∂ρ

∂t
= ∂

2
ρ

∂x2
+ [1+ εη(εt)] ρ2

(1− ρ). (6.95)

Calculate the front velocity up to O(ε
3
).

6.10 The RD equations with a time-dependent reaction rate or diffusion coefficient
and KPP kinetics are given by

∂ρ

∂t
= ∂

2
ρ

∂x2
+ g(εt)ρ(1− ρ), (6.96)

∂ρ

∂t
= g(εt)

∂
2
ρ

∂x2
+ ρ(1− ρ), (6.97)

respectively. Show that both equations have fronts propagating with the same veloc-
ity. Show that this velocity is given by

v(t) = εtg(εt)+ ∫ εt
0 g(s)ds

[

εt
∫ εt

0 g(s)ds
]1/2

. (6.98)



Chapter 7
Ecological Applications

Reaction–transport equations allow us to model the spread of invading populations.
Traveling front solutions describe the invasive process, and their velocity is a quan-
tity that can be obtained from observational data. In this chapter we review some
recent reaction–transport models and compare the theoretical predictions with the
observed values for the rate of population invasions.

7.1 Human Migrations

7.1.1 Neolithic Transition: Single-Species Models

An interesting, direct application of the RD equation (2.3) arose after archaeological
data led to the conclusion that European farming originated in the Near East, from
where it spread across Europe. The rate of this spread was measured [12], and a
mathematical model was proposed according to which early farming expanded in
the form of an RD wave of advance [13]. Such a model provides a consistent expla-
nation for the origin of Indo-European languages [94] and also finds remarkable
support from the observed gene frequencies [73]. However, this RD model predicts
a velocity for the spread of agriculture that is higher than that inferred from archae-
ological evidence, provided that one accepts those values for the parameters in the
model that have been measured in independent observations [13].

In order to make a comparison with archaeological data possible for this process,
one needs a more detailed microscopic model than the RD model. Such a model
should (i) apply to two-dimensional (2D) spaces and (ii) relate the macroscopic
parameters of the evolution equation to the microscopic properties of the system
[87]. We consider here the RT model and compare its predictions with observations
[137]. The RT equation in 2D reads

τ
∂

2
ρ

∂t2
+ ∂ρ

∂t
= D∇2

ρ + r F(ρ)+ rτ
∂F(ρ)

∂t
, (7.1)

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
DOI 10.1007/978-3-642-11443-4_7, C© Springer-Verlag Berlin Heidelberg 2010
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where ∇2 is the Laplacian. Note that (7.1) is the RT equation (3.151) in 2D, with
relaxation time given by (3.152), that is,

τ = 〈t〉 − 〈t2〉
2〈t〉 . (7.2)

If the waiting time is the same for all individuals and equal to T , then φ(t) =
δ(t − T ) and (7.2) yields

τ = T/2. (7.3)

If the space is assumed to be a 2D regular lattice of spacing σ and individuals can
perform isotropic jumps only to their nearest neighbors, the jump length PDF reads
w(x, y) = [δ(x − σ)+ δ(x + σ)+ δ(y − σ)+ δ(y + σ)]/4. The 2D extension of
(3.152) with φ(t) = δ(t − T ),

D = 1

4T

∫ ∞

−∞

∫ ∞

−∞

(

x2 + y2
)

w(x, y)dxdy, (7.4)

leads to the diffusion coefficient

D = 1

4

σ
2

T
, (7.5)

a well-known result for two-dimensional diffusion.
The time T is estimated as the time of travel, on the order of days or weeks, plus

the time of “residence,” i.e., the time interval between the arrival of a family and the
subsequent migration, on the order of a generation [358]. This implies that in our
case T is approximately the time of residence or the waiting time during the rest
phase of the population.

We assume that the population growth can be described by the logistic growth
function F(ρ) = ρ

(

1− ρ/ρmax
)

, where ρmax is the saturation density or carrying
capacity. This growth function compares favorably with a wealth of experimen-
tal results [256]. Equation (7.1) leads to wavefronts with asymptotic velocity, see
(5.60),

v =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
√
r D

1+ rT

2

, rT < 2,

√

2D

T
, rT > 2.

(7.6)

In the limit T → 0, (7.6) becomes
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vT→0 = 2
√
r D, (7.7)

which is the basis of the classical wave-of-advance theory of the Neolithic transi-
tion in Europe [13]. Equation (7.6) implies that the waiting time T slows down the
wavefront, as it should.

Here σ
2
/T is the invaded area during the time interval T that separates two

successive migrations. Previous approaches did not take the factor 1/4 in (7.5) into
account but relied on the approximation D ≈ σ

2
/T [13].

The front velocity for the expansion of agriculture can be predicted from (7.6),
provided that independent estimates for the values of T , r , and D are available. As in
[13], we assume 25 yr for the average generation, T = 25 yr. Let us assume, for the
moment, an initial growth rate of 3%, i.e., r = 0.032 yr−1 [73], and σ

2
/T = 1700

km2/generation [13]. Using these values in the approximation D ≈ σ
2
/T and (7.7),

we obtain a front velocity of vT→0 = 2.86 km/yr. In contrast, (7.7) with (7.5)
yields a velocity of 1.43 km/yr. The dashed-dotted and dashed lines in Fig. 7.1,
which reproduces the archaeological data for the spread of the Neolithic transition
in Europe found in [13], are the best fits with these slopes, respectively. The front
velocity implied by D ≈ σ

2
/T is much higher than that inferred from the data.

The prediction with D given by (7.5), on the other hand, shows the usefulness of
the wave-of-advance theory, provided that the factor 1/4 in (7.5) is included, which
corresponds to 2D diffusion. Still, the data clearly imply a lower front velocity.
This can also be seen from the regression (full line) in Fig. 7.1 [12, 13]: its slope
yields a velocity of 1.0 km/yr. When the same values for the parameters as above
are introduced into (7.6) and (7.5), we obtain a front velocity of v = 1.04 km/yr.
The prediction from (7.1) agrees very well with observations, see the values of χ2

in Fig. 7.1.
Changing the value of the average length of a generation has little effect. For

example, (7.6) and (7.5) yield v = 0.95 km/yr with T = 28 yr [13]. In Figs.
7.2 and 7.3, the curves labeled with the number 1 give the possible values of r
and σ

2
/T that are compatible, according to each one of the three models, with the

observed velocity of 1 km/yr [12, 13]. It is interesting to note that this invasion
velocity was estimated using a data set of 53 archaeological sites. Over the years,
a much larger data set has become available and recently the 95% confidence-level
(CL) velocity was estimated as 0.95±0.35 km/yr using a data set of 735 sites [351].
In Figs. 7.2 and 7.3 we also include curves corresponding to these velocities. The
hatched regions in these figures correspond to likely ranges of the parameters and
have been obtained as follows. Birdsell [47] was able to collect detailed evolution
data of two human populations which settled in virgin territory. A fit of these data,
either to an exponential or to a logistic curve, yields r = 0.032 ± 0.003 yr−1, with
an 80% confidence level. Values for σ 2

/T have been derived [13, 357] from obser-
vations of Ethiopian shifting agriculturalists and Australian aborigines. A statisti-
cal analysis of these values yields σ

2
/T = 1544±368 km2

/generation (80% C.L.
interval). As we have stressed, (7.5) should replace the approximation D ≈ σ

2
/T in
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Fig. 7.1 Comparison between empirical evidence and theoretical models for the spread of agricul-
ture in Europe [137]. The points are the data already analyzed in [13], distances being measured
as great circle routes from Jericho (the presumed center of diffusion). Dates are conventional
radiocarbon ages in years Before Present (B.P.). The full line is the regression by Ammerman
and Cavalli-Sforza (correlation coefficient 0.89) [13]. The other three lines are least-square fits
with slopes calculated from the classical wave-of-advance model with D ≈ σ

2
/T (dashed-dotted

line), D (dashed line) given by (7.5), and from the RT model with D as in (7.5) (dotted line). Here
T = 25 yr, r = 0.03 yr−1, and σ

2
/T = 1700 km2/generation. Reprinted with permission from

[137]. Copyright 1999 by the American Physical Society

two-dimensional situations. This does not rely on any assumption. Figure 7.2 shows
that use of this correction (three upper curves), instead of the classical approach
(lower curves), makes the nondelayed model marginally consistent with the exper-
imental range of r and σ

2
/T values (hatched rectangle). In other words, the RD

approach is compatible with the demographic data, but only assuming extreme val-
ues for the parameters. The RT model leads to (7.6) and Fig. 7.3. From this figure
we conclude that the agreement between the available empirical data and the RT
model is very satisfactory, in spite of the simplicity of the latter. This shows that it is
not necessary to assume extreme values of the measured parameters, provided that
one is willing to accept the hypothesis that a time interval T of about one generation
separates successive migrations.
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σ /T

Fig. 7.2 Predictions of the classical wave-of-advance model (7.7) [137]. The hatched regions
correspond to the range of allowed values for r and σ

2
/T , according to the available empirical

evidence. Each curve is labeled with a number, which corresponds to the front velocity in km/yr.
The three lower curves correspond to the D ≈ σ

2
/T approximation, which was used in [13].

The three upper curves correspond to the same model, but taking into account (7.5) for two-
dimensional diffusion. Reprinted with permission from [137]. Copyright 1999 by the American
Physical Society

Fig. 7.3 The same as Fig. 7.2, but for the hyperbolic wave-of-advance model (7.6) and an average
generation of T = 25 yr [137]. For almost all of the likely values of the parameters r and σ

2
/T

(hatched rectangle), the predictions of the model are consistent with the observed front velocity
(1.0±0.2 km/yr). Reprinted with permission from [137]. Copyright 1999 by the American Physical
Society

Simulations of the Neolithic transition in Europe with the values r = 0.02 yr−1

and σ
2
/T = 973.4 km2/generation yield a front velocity of v = 1.09 km/yr [357].

Making use of (7.7), the two-dimensional result (7.5), and the above values for r and
σ

2
/T , we obtain vT→0 = 0.88 km/yr. In [357] an irregular lattice was considered.

Since (7.5) can be easily generalized to D = 1
2d

σ
2

T , where d is the number of
dimensions and 2d is the number of nearest neighbors of a point on the lattice, we
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note that a decrease in the number of neighbors corresponds to an enhancement of
diffusion, as expected intuitively. If we take into account that for the irregular lattice
used in [357] the mean number of neighbors was 3.4, we estimate from (7.7) that
vT→0 = 0.96 km/yr, which is closer to the value 1.09 km/yr observed in the simula-
tions. Since the simulations in [357] included corrections due to the acculturation of
hunter-gatherers by farmers, which leads to a more rapid agricultural expansion as
will be shown in the following subsection, one can conclude that there is reasonable
agreement between analytical predictions and simulations.

7.1.1.1 Neolithic Transition in Oceania

For the Neolithic transition in Oceania, there also exist enough archaeological data
so that a front velocity can be inferred [135]. The theory in the previous subsection
assumes a continuous description, in the sense that all areas of two-dimensional
space are equally suitable in principle for the settlement of human populations.
This can be an adequate approximation to a large-scale, space-averaged description
of the observed clustered distribution of sites. A continuous description does not
mean that all land areas are occupied by individuals; this is obviously impossible at
small enough scales, no matter what habitat and biological population one wishes to
consider. From this perspective, it is reasonable to apply the same model to island
expansions. In this case, settlements cluster on islands, whereas large sea areas are
unsettled. Similarly, in mainland expansions settlements are clustered near water
resources, whereas large forest areas remain unsettled. However, the diffusion coef-
ficient has now a different value, which can again be inferred from anthropological
observations, leading to good agreement with the observed velocity of about 5 km/yr
[135], which is much faster than that for the Neolithic transition in Europe previ-
ously discussed.

Another application refers to mass extinctions. Simulations using RD models
(limit T → 0) and realistic parameter values for the diffusion of hunter-gatherers
predict that it took humans about �tT→0 = 1200 yr to colonize North America,
leading to the extinction of some 30 species of herbivores [10]. This is basically
consistent with the archaeological evidence. However, this approach neglects the
waiting time in the diffusion process. In the approximate, single-species description
above, we obtain from (7.6) and (7.7)

�t

�tT→0
= vT→0

v
= 1+ r

T

2
, (7.8)

which, using as a first approximation the same parameter values as above, yields
about 1700 yr, i.e., a correction of about 40% relative to the RD value �tT→0 =
1200 yr.
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7.1.2 Hunter-Gatherers Interaction: Indo-European Neolithic
Transition

Consider a two-component RT system with densities ρ1 and ρ2:

τ1
∂

2
ρ1

∂t2
+ ∂ρ1

∂t
= D1

∂
2
ρ1

∂x2
+ F1(ρ1)+ τ1F

′
1(ρ1)

∂ρ1

∂t
+ γ1ρ1ρ2, (7.9a)

τ2
∂

2
ρ2

∂t2
+ ∂ρ2

∂t
= D2

∂
2
ρ2

∂x2
+ F2(ρ2)+ τ2F

′
2(ρ2)

∂ρ2

∂t
− γ2ρ1ρ2. (7.9b)

This model describes a reaction–diffusion process with a sedentary phase where
interactions between species are reduced to a switch between species and are not
included in the reproduction process. In terms of a predator–prey system, the last
term means that predators increase their population density ρ1 because of their inter-
action with preys, which in turn experience a decrease in their population density ρ2.
We assume that the interaction term ρ1ρ2 is small compared to the other terms, since
otherwise higher-order terms such as ρ

2
1ρ2 might be important in the description of

the interaction between both species. For τ1 = τ2 = 0, one recovers the usual RD
Lotka–Volterra system. In the Neolithic transition, the population invasion of farm-
ers, with number density ρ1, traveled into areas where they encountered a population
of preexisting hunter-gatherers with a number density ρ2 that is usually assumed to
be approximately uniform, say ρ

0
2 [13, 357]. This approximation will be valid for

sufficiently small values of the interaction term ρ1ρ2. Both populations mixed to
some extent, and this interaction is regarded as the cause of the gradients observed
in the present spatial distribution of human genes [13]. With ρ2(x) = ρ

0
2 , (7.9) can

be reduced to the single RT equation

τ1
∂

2
ρ1

∂t2
+ ∂ρ1

∂t
= D1

∂
2
ρ1

∂x2
+ r1ρ1(1− ρ1)+ r1τ1(1− 2ρ1)

∂ρ1

∂t
+ γ1ρ

0
2ρ1, (7.10)

where we have assumed logistic growth with rate r1. It is not difficult to show that
the front velocity for (7.10) is

v =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2

√
√
√
√

D
(

r1 + γ1ρ
0
2

)

(1+ r1τ1)
2 + 4γ1ρ

0
2τ1

, r1τ1 < 1,

√

D

τ1
, r1τ1 > 1.

(7.11)



216 7 Ecological Applications

In order to obtain numerical predictions from (7.11), we need values for the param-
eters appropriate to the Neolithic transition. As explained in Sect. 7.1.1, such values
have been obtained from independent observations of the Neolithic expansion and
their mean values are r1 = 0.032 yr−1, D = 15.44 km2/yr, and τ1 = T/2 = 12.5
yr. The latter value follows from the mean generation time T = 25 yr. On
the other hand, from the observations in [357] we have the mean values for the
other two parameters, ρ

0
2 = 0.04 hunters/km and γ1 = 5.84 km2/(hunter yr).

Using these values for the RD case (τ1 → 0) we find 1.6 km/yr, which is much
higher than the velocity derived from the archaeological record. In contrast, (7.11)
yields v = 1.1 km/yr, which lies entirely within the experimental range, namely
1.0±0.2 km/yr.

7.1.3 Model for Human Settlements

Despite the interest in the establishment of farming communities in Europe during
the Neolithic transition, there are few models explaining the spatial pattern formed
behind the wave of advance. We present a model [124] that provides an explanation
for the formation of human settlements and the tendency of the population distribu-
tion to form clusters. We show that this large-scale pattern is a transient phenomenon
which disappears as an extinction wave due to land degradation.

We assume that the population consists of semisedentary foragers and sedentary
farmers who share the same territory. The semisedentary foragers are the popula-
tion of individuals who randomly move along a river valley and search for food
and other resources. An implicit consequence of this behavior is the foundation of
new settlements—large localized values of population density and an interchange
between farming and foraging populations. The sedentary farmers are individuals
who do not migrate. They live in small villages scattered near cultivated land in the
valley of a major river. We define the total density as ρ(x, t) = ρ1(x, t)+ ρ2(x, t),
where ρ1(x, t) is the density of semisedentary foragers and ρ2(x, t) the density
of sedentary farmers. We assume that there are transitions from a sedentary to a
foraging way of life and vice versa and that these transitions depend strongly on the
local food supply. The key feature of the movement of semisedentary foragers is that
they do not move from place to place completely randomly, i.e., their movements
cannot be modeled by a standard diffusion law. We adopt a biased random walk
whose statistical characteristics depend on the local food supply. In this model, the
probability of a random migration event resulting in a jump of length x ′ in the time
interval [t, t+�t] is μ�t , the probability of a transition from a foraging lifestyle to
farming is α1�t , and the probability of the conversion of farmers to semisedentary
foragers is α2�t . We consider that the local crop production per individual per year
is q(x, t) and the frequencies μ, α1, and α2 depend explicitly on the crop production:
μ = μ(q) and αi = αi (q) for i = 1, 2. The balance equations for semisedentary
forager and sedentary farmers are, respectively,
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ρ1(x, t +�t) = {1− μ[q(x, t)]�t − α1[q(x, t)]�t
}

ρ1(x, t)

+ α2[q(x, t)]ρ2(x, t)�t

+�t
∫

R

μ[q(x − x ′, t)]ρ1(x − x ′, t)w(x ′)dx ′, (7.12a)

ρ2(x, t +�t) = {1− α2[q(x, t)]�t
}

ρ2(x, t)+ α1[q(x, t)]ρ1(x, t)�t

+ r�tρ2(x, t)

[

1− ρ(x, t)

K

]

. (7.12b)

The first term on the right-hand side of (7.12a) represents those foragers who stay at
location x and do not move during the period �t and do not become sedentary
farmers. The second term corresponds to the number of sedentary farmers who
become semisedentary foragers during the period �t , and the last term accounts
for foragers who arrive at x during the period �t from different places x − x ′,
where the jump distance x ′ is distributed by a dispersal kernel w(x ′). The first term
on the right-hand side of (7.12b) represents those sedentary farmers who do not
become foragers during the period �t . The second term corresponds to the number
of foragers who become farmers during the period �t , and the last term accounts
for the new sedentary farmers born during the period �t . The parameters r and K
are the intrinsic reproduction rate and the carrying capacity, respectively. In the limit
�t → 0, we obtain from (7.12a) and (7.12b)

∂ρ

∂t
=
∫

R

μ[q(x − x ′, t)]p[q(x − x ′, t)]ρ(x − x ′, t)w(x ′)dx ′

− p(q)μ(q)ρ + r [1− p(q)]ρ
[

1− ρ

K

]

, (7.13)

where we have introduced the fraction of foragers p as ρ1 = pρ and ρ2 = (1− p)ρ.
This fraction depends on the crop production p(q). To obtain a closed system of
equations, we assume that p(q) is given by

p(q) =

⎧

⎪⎪⎨

⎪⎪⎩

pmax, q ≤ qmin,
pmax − pmin

qmax − qmin
q + pmax + pmin

2
, qmin < q < qmax,

pmin, q ≥ qmax,

(7.14)

and the local food production by

q(x, t) = α
ρ(x, t)

ρ0 + ρ(x, t)

[

1− e−βF(x,t)
]

, (7.15)

where F(x, t) is the density of soil nutrients, ρ0 is a constant, and β determines
how the yield depends on the nutrients. The factor 1 − e−βF(x,t) describes the land
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degradation, and ρ/(ρ0 + ρ) represents a tendency toward group solidarity that
increases efficiency of food production. The equation for the soil nutrients has the
form

∂F

∂t
= ξ1 − ξ2F(x, t)− γ q(x, t)ρ(x, t), (7.16)

where ξ1 is the rate at which soil nutrients regenerate naturally, ξ2 the rate of nutrient
depletion due to environmental reasons, such as erosion and flooding, and γ the
rate at which nutrients are depleted due to harvests. Finally, the dispersal kernel is
assumed to be of the Laplace type: w(x) ∼ e−|x |/ l , where l is a characteristic length.
The system of equations (7.13), (7.14), (7.15), and (7.16) is now closed and can be
solved numerically.

We chose the following values for the parameters: qmin = 300 and qmax = 736
kg per person and per year, pmax = 0.95, and pmin = 0.05. Data indicate that
the annual production of food per unit area was up to 0.0736 kg/m2. If the area
cultivated by a person per year is about 104 m2, then α � 736 kg per person and
per year. For corn cultivation β � 890 m2/kg, and this parameter is in general of the
order of 102. The rate of nutrient depletion γ � 5.43 × 10−3 kgP/kg, where kgP
denotes kilograms of phosphorous in the soil. Numerical solutions of (7.13), (7.14),
(7.15), and (7.16) reveal the emergence of a large-scale pattern in the population
density. This phenomenon can be interpreted as the formation of human settlements
along a river valley. The individual farmers have a tendency toward aggregation and
clustering as a result of nonlinear random migration. The results also show the decay
of these clusters or settlements due to land degradation. This is shown in Fig. 7.4,
where a sequence of total population densities for different times is plotted.

7.1.4 Models with Dispersive Variability

RD models have certain limitations in applications to the real world. For example,
members of a population do not necessarily disperse in the same way, there is always
some variability. To take this fact into account, Cook considered that the population
explicitly consists of distinct subpopulations, namely dispersers with density ρ1 and
nondispersers with density ρ2. These subpopulations are allowed to have different
birth rates. They interbreed fully, and all newborns have the same probability of
being a disperser [309]. The evolution equations for the RD system are given by

∂ρ1

∂t
= D

∂
2
ρ1

∂x2
+ r1(ρ1 + ρ2)

[

1− ρ1 + ρ2

K

]

, (7.17a)

∂ρ2

∂t
= r2(ρ1 + ρ2)

[

1− ρ1 + ρ2

K

]

. (7.17b)
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Fig. 7.4 Total density ρ(x, t) for the system (7.13), (7.14), (7.15), and (7.16) with μ = 0.1,
l = 10, ξ1 = 10−4, ξ2 = 0, r = 0.03 yr−1, β = 200 m2/kg, γ = 0.01 m2/kg, K = 10−4,
and the other parameters as in the text. The initial condition is ρ = 0.1K for 0 < x < 15 km
and ρ = 0 elsewhere. Reprinted with permission from [124]. Copyright 2008 by the American
Physical Society
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We have assumed logistic population growth, with K being the carrying capacity of
the environment. The probability of a newborn being a disperser is μ = r1/(r1+r2).
Note that if r2 → 0, the whole population disperses and (7.17) becomes the standard
RD equation. Since the kinetics satisfy the KPP criteria, we can calculate the front
velocity from the Hamilton–Jacobi formalism. The corresponding Hamiltonian is

H2 − (r + Dp2
)H + (1− μ)p2 = 0, (7.18)

where r = r1 + r2. The front velocity is, see Sect. 4.6,

v = min
p>0

H(p)

p
= min

p>0

√

(r − Dp2
)
2 + 4Drμp2 + r + Dp2

2p

= √
r D
(

1+√μ
)

. (7.19)

7.1.4.1 Cook’s Model with Delayed Growth

Consider the evolution equations for both populations in the general form [292]

∂ρ1

∂t
= L[ρ1] + R1(ρ1, ρ2, x, t), (7.20a)

∂ρ2

∂t
= L[ρ2] + R2(ρ1, ρ2, x, t), (7.20b)

where L is the transport operator and R1 and R2 the reproduction contribution to
the change in ρ1 and ρ2, respectively. If the population with density ρ1 disperses by
diffusion and the subpopulation with ρ2 is sedentary, then L[ρ1] = D∂

2
ρ1/∂x

2 and
L[ρ2] = 0. To include a delay between dispersal and reproduction, which accounts
for the time of newborns to mature and reach adulthood, we consider reproduction
terms that are nonlocal in time. The contribution of these terms to the change in
the densities ρ1 and ρ2 at time t depends on their values at preceding times. If
ρ(1−ρ/K ) is the number of new individuals born at time t , where ρ = ρ1+ρ2, then

this quantity evaluated at t−t ′, i.e., ρ(x, t−t ′)
[

1− ρ(x, t − t ′)/K
]

, represents the

number of new individuals born at time t ′ earlier and which reach adulthood now, at
time t , i.e., become members of both subpopulations. If the population displays vari-
ability in the time to reach adulthood, the fraction of new individuals born at t ′ and

which mature at time t is ϕ(t ′)ρ(x, t − t ′)
[

1− ρ(x, t − t ′)/K
]

. Here ϕ(t ′) repre-

sents the fraction of individuals that mature at time t ′, i.e., a probability distribution
function of the age at onset of adulthood (PDFAA). To determine the contributions
of all the possible maturation ages, one has to integrate the above quantity over the
whole range of t ′. The number of individuals which reach adulthood and become
dispersers (or nondispersers) at time t is a fraction μ (or 1−μ) of those individuals
born at time t ′ earlier, summed over all the possible values of t ′. New individuals do
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not affect the dynamical process of migration during the period of maturation. With
all this in mind, our model system is given by

∂ρ1

∂t
= D

∂
2
ρ1

∂x2
+ r1

∫ ∞

0
dt ′ϕ(t ′)

[

ρ1(x, t − t ′)+ ρ2(x, t − t ′)
]

×
[

1− ρ1(x, t − t ′)+ ρ2(x, t − t ′)
K

]

, (7.21a)

∂ρ2

∂t
= r2

∫ ∞

0
dt ′ϕ(t ′)

[

ρ1(x, t − t ′)+ ρ2(x, t − t ′)
]

×
[

1− ρ1(x, t − t ′)+ ρ2(x, t − t ′)
K

]

. (7.21b)

To calculate the front velocity for (7.21) we reduce the system to a Hamilton–Jacobi
equation. To do so, we employ the hyperbolic scaling (4.33), the exponential trans-
formation (4.35), the large scale limit ε → 0, and the definitions in (4.38) to obtain
the Hamilton–Jacobi equation

H2 − H
[

Dp2 + r ϕ̂(H)
]

+ (1− μ)Drp2
ϕ̂(H) = 0, (7.22)

where ϕ̂(H) is the Laplace transform of ϕ(t) with argument H . Equation (4.46)
yields

v = √
D min

H>H∗

√

H
r(1− μ)ϕ̂(H)− H

r ϕ̂(H)− H
, (7.23)

where H∗ is the solution to r ϕ̂(H∗
) = H∗. Equation (7.23) implies that the front

velocity depends on the statistical properties of the PDFAA.
The hyperbolic extension to Cook’s models was proposed in [181]. The system

of RT equations is

τeff
∂

2
ρ1

∂t2
+ ∂ρ1

∂t
= D

∂
2
ρ1

∂x2
+ r1(ρ1 + ρ2)(1− ρ1 − ρ2)

+ τeffr1
∂

∂t

[

(ρ1 + ρ2)(1− ρ1 − ρ2)
]

, (7.24a)

∂ρ2

∂t
= r2(ρ1 + ρ2)(1− ρ1 − ρ2). (7.24b)

Reducing this system to a Hamilton–Jacobi equation, we find the front velocity

v =
√
r D

1+ b

[

b(1− μ)+ 1+ μ+ 2
√

bμ(1− μ)+ μ
]1/2

, (7.25)
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where

b = rτeff =
r 〈t〉

2

(

2− 〈t2〉
〈t〉2

)

(7.26)

and 〈t〉 is the mean maturation age. We compare the invasion velocity for Cook’s
model (7.19) with the RT extension (7.24) and the numerical solution obtained from
(7.23) for different forms of the PDFAA, but with the same mean value for the onset
of adulthood. In Table 7.1 we present values for the model parameters obtained from
the literature.

From a practical point of view, the dependence of the front velocity on charac-
teristic parameters related to the shape of the PDFAA is an important issue. The
observational data available for the Neolithic transition in Europe typically provide
the mean maturation age 〈t〉 but not the complete form of the PDFAA. The question
arises as to how the shape of different PDFAAs with the same mean value affects the
velocity of the migratory fronts. To address this question, we consider three different
PDFAAs. The simplest one is the Dirac delta form which corresponds to a unique
maturation age for the whole population. Second, we consider a Gamma family of
PDFAAs that allows us to determine the dependence of the migratory front velocity
on the probability of maturation ages larger than the mean one. Third, we consider
a Gamma PDFAA where the tail is truncated to analyze the effect of the tail length.

(i) Dirac delta. The PDFAA ϕ(t) = δ(t − τ) yields ϕ̂(H) = e−Hτ . For the
delayed growth model (7.23) leads to

v = √
D min

H>H∗

√

H
r(1− μ)e−Hτ − H

re−Hτ − H
, (7.27)

which has to be evaluated numerically. For the hyperbolic model the velocity is
given by (7.25) with b = rτ/2. Using the data of Table 7.1, we display in Fig. 7.5 the
velocity of migratory fronts in terms of μ. As expected, the velocity is an increasing
function of μ in both models. Symbols in Fig. 7.5 represent the calculated values
of the velocity for both models with the observational values of μ in Table 7.1.
Table 7.2 provides the values for the velocity calculated for the RD model (7.19),
the delayed growth [DG, (7.23)] and hyperbolic [RT, (7.25)] models for the whole
population (wp), Gilishi with 15 yr of mean adult age (g15), Gilishi with 20 yr of
mean adult age (g20), and Shiri with 15 yr of mean adult age (s15). For both DG

Table 7.1 Observational data for the Neolithic transition in Europe. Reprinted from [292]. Copy-
right 2006, with permission from Elsevier

Population μ 〈t〉 (yr) D (km2/yr) r (yr−1)

wp 1 25 15.44 0.032
g15 0.46 15 11.57 0.032
g20 0.52 20 12.24 0.032
s15 0.81 15 21.53 0.032
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Fig. 7.5 Graph of the migratory front velocity in terms of the disperser fraction μ for a Dirac delta
PDFAA. Symbols are the calculated velocities from the RD, DG, and RT models for the values
of μ in Table 7.1. The shaded area corresponds to the observational range. Reprinted from [292].
Copyright 2006, with permission from Elsevier

Table 7.2 Results for the migratory fronts velocity in km/yr for the Dirac delta and Gamma-family
PDFAAs for the RD, DG, and RT models. Reprinted from [292]. Copyright 2006, with permission
from Elsevier

Population Dirac delta Gamma family
vRD vRT vDG vRT vDG

wp 1.41 1.00 0.93 1.19–1.66 0.93–1.01
g15 1.02 0.85 0.79 0.85–1.02 0.79–0.82
g20 1.08 0.85 0.78 0.85–1.08 0.78–0.83
s15 1.58 1.29 1.18 1.29–1.58 1.18–1.24

and RT models and for the four populations we obtain values for the migratory front
velocity very close to its observational range 1.0± 0.2 km/yr.

(ii) Gamma family. We consider now a more realistic situation: There exists a
wide range of maturation ages, each one with a certain probability, obeying the
Gamma PDF

ϕ(t) = 1

τ�(m + 1)

(
t

τ

)m

e−t/τ , m ∈ (0,∞], (7.28)

with 〈t〉 = (m + 1)τ , ϕ̂(H) = (1+ Hτ)
−m−1. From (7.23)

v = √
D min

H>H∗

√
√
√
√H

H(1+ Hτ)
m+1 − r(1− μ)

H(1+ Hτ)
m+1 − r

, (7.29)

which has to be solved numerically. The velocity for the RT model is given by (7.25)
with
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b = r 〈t〉m
2(m + 1)

. (7.30)

We analyze now how the velocity of migratory fronts depends on the probability of
having a maturation age larger than the mean value

P (t > 〈t〉) =
∫ ∞

〈t〉
ϕ(t)dt = � (m + 1,m + 1)

�(m + 1)
, (7.31)

where �(·, ·) is the incomplete Gamma function. We have calculated the range of
values for the migratory front velocity from DG and RT models for m ∈ (0,∞], see
Table 7.2. These results show how strongly the migratory front velocity depends on
the parameter m when it goes from 0 to infinity.

This parameter controls the shape of the PDFAA, as shown in Fig. 7.6, because
it is related to its kurtosis β2 by the relation m = (9 − β2)/(β2 − 3). The range
m ∈ (0,∞] is equivalent to 3 < β2 ≤ 9, and the Gamma family PDFAA is always
leptokurtic.

In Fig. 7.7 we plot the results of the velocity of migratory fronts in terms of
P (t > 〈t〉). As expected, the velocity decreases as P (t > 〈t〉) increases. Figure 7.7
shows that the details of the shape of the PDFAA affect the velocity of migratory
fronts in both models, yielding in some cases values that fall outside the observa-
tional range.

(iii) Gamma family with cutoff. The previous PDFAAs have an infinite tail. In
other words, the probability that individuals have an extremely large maturation age
is small but not zero. Such a situation is unrealistic, and the tail should be truncated
at a maximum age tmax, so that there are no individuals with a maturation age larger
than tmax. To study the effect of the tail length on the velocity of migratory fronts,

= +

−⎛ ⎞= ⎜ ⎟Γ + ⎝ ⎠

= =

= =

= =

Fig. 7.6 Graph of the Gamma family of PDFAAs for different values of m. All the PDFAAs
depicted have the same mean maturation age. Reprinted from [292]. Copyright 2006, with permis-
sion from Elsevier
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Fig. 7.7 Migratory fronts velocity in terms of the probability P(t > 〈t〉). The velocity is a mono-
tonically decreasing function for both the DG and RT models. The shaded area corresponds to the
observational range. Reprinted from [292]. Copyright 2006, with permission from Elsevier

we consider the Gamma PDFAA with a truncated tail:

ϕ(t) = 1

τ
(

1− e−tmax/τ − tmax
τ

e−tmax/τ
)
t

τ
e−t/τ θ

(

tmax − t
)

, (7.32)

where θ(·) is the Heaviside step function. The PDFAA in (7.32) has a mean matu-
ration age of

〈t〉 =
∫ ∞

0
tϕ(t)dt = τ

2etmax/τ − (tmax/τ
)2 − 2− 2

(

tmax/τ
)

etmax/τ − 1− tmax/τ
. (7.33)

To characterize the tail length, we define tmax as n times the mean maturation age,
i.e., tmax ≡ n 〈t〉 with n a positive integer number. With the definition of the dimen-
sionless quantity y ≡ 〈t〉 /τ , (7.33) turns into

y = 2eny − n2y2 − 2− 2ny

eny − 1− ny
. (7.34)

Once the tail length is established, i.e., n is fixed, (7.34) can be solved numerically
to yield y. Since 〈t〉 is known from observational data, the values of τ and tmax can
be obtained. It is easy to check that (7.34) has a solution only if n ∈ (3/2,∞), i.e.,
tmax > 3 〈t〉 /2. After some algebra we obtain from (7.32)

ϕ̂(H) = eα − e−Hτα [1+ (1+ Hτ) α]

(1+ Hτ)
2 (eα − 1− α

) (7.35)
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and b = r 〈t〉 F(α)/(2y), with

F(α) =
2e2α + eα

(

α
3 − 5α2 − 4α − 4

)

+ α
4 + 4α3 + 7α2 + 4α + 2

(

eα − 1− α
) (

2eα − α
2 − 2− 2α

) (7.36)

and α = ny. The velocity of migratory fronts for both models can now be calculated.
Before doing so, it is interesting to analyze how the dimensionless delay a = rτ
and b for the DG and RT models, respectively, depends on the tail length. This is
depicted in Fig. 7.8.

Both dimensionless delays decrease as the tail length increases, contrary to
expectations; the existence of individuals with a large maturation age should increase
the delay effect. This counterintuitive behavior is due to the fact of maintaining the
mean maturation age fixed independently of the tail length. It is expected that the
velocity of migratory fronts increases with the tail length. In Fig. 7.9 this behavior
is observed and we find, as in Fig. 7.7, that the tail length also affects the velocity,
yielding in some cases values outside of the observational range.

Fig. 7.8 Plot of the dimensionless delay a and b vs the dimensionless tail length. A monotonically
decreasing behavior is observed. Reprinted from [292]. Copyright 2006, with permission from
Elsevier
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Fig. 7.9 Behavior of the speed of migratory fronts in terms of the dimensionless tail length. The
shaded area corresponds to the observational range of the speed. Reprinted from [292]. Copyright
2006, with permission from Elsevier

7.1.5 Neanderthal Extinction

Neanderthal populations were very stable in Europe for more than 60,000 yr; nev-
ertheless, 40,000 yr before our epoch, they were replaced by Early Modern Men.
Although it remains unclear whether the interaction was direct or not, we consider
here the case where both species compete for the same ecological niche composed
by limited resources and territory [134]. Let ρn express the density of Neanderthal
individuals and ρm the density of Early Modern Men. If we assume that the Nean-
derthals are sedentary, the reaction–diffusion system reads

∂ρn

∂t
= ρn f (ρn, ρm)− βρn, (7.37a)

∂ρm

∂t
= D

∂
2
ρm

∂x2
+ ρm f (ρn, ρm)− βsρm, (7.37b)

where f (ρn, ρm) is the birth rate for both species and β is the mortality rate. We
assume that Early Modern Men are better adapted to survive and the parameter s
varies between 0 and 1. It indicates the similarity between both species, with s = 1
corresponding to complete similarity. The limited resources are included in f which
has the form f (ρn, ρm) = r − ε(ρn + ρm), where r is the reproduction rate and ε is
an interaction parameter.

A stability analysis of the uniform steady states (ρn, ρm) of the system yields
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(0, 0), unstable node, (7.38a)
(
r − β

ε
, 0

)

, saddle point, (7.38b)

(

0,
r − sβ

ε

)

, stable node. (7.38c)

The steady state (7.38c) represents the final state of the evolution of the invasion
process and the extinction of the Neanderthal individuals. A linear stability analysis
around (7.38c) shows that the Neanderthal population decays like e−t/τ , with

τ = 1

β(1− s)
(7.39)

the time of extinction. Paleontological data yield an extinction time between 5000
and 10,000 yr and a lifetime 1/β between 30 and 40 yr, which implies that 0.992 <

s < 0.997. Using the Hamilton–Jacobi formalism we calculate the propagation
velocity for the invasion front and find v = 2

√
D(r − sβ). For a successful invasion,

i.e., for the Neanderthal extinction, the condition r > sβ has to be fulfilled. This
inequality leads to rmin = 0.029 yr−1 for the upper value s = 0.997 and β = 1/35
yr−1, which agrees with the value 0.032 yr−1 for the Neolithic transition [47].

7.1.6 US Colonization: Invasions Through Fractal River Networks

One of the best-known modern range expansions is the colonization across the
United States in the 19th century. In 1790, the North American population of
European origin was concentrated in the Atlantic region, but during the following
decades internal migrations resulted in a displacement of the established population
westwards. According to the data and atlases, the average expansion rate for this
transition between 1790 and 1910 was approximately 13.5± 0.8 km/yr [133].

An essential characteristic of the US transition westwards was the fact that set-
tlers did not occupy all of the territory, as homogeneous models assume [137], but
followed the course of the major rivers and lakes and settled near them to make
use of their resources [113, 133]. Therefore, landscape heterogeneities should have
played an essential role in the process of migration. This situation is similar to the
case of dispersion of biological species along the margins of rivers and streams
[220, 63].

Great efforts have been undertaken to describe the intricate geometry of river
networks [363]. In Chap. 6 we illustrated some models, such as the Peano network,
which resembles fractal river basins. Another well-known structure that was pro-
posed to describe better the evolution and formation of river basins and that agrees
with most of the observations is the Optimal Channels Network (OCN) model, based
on some optimization principles that minimize the energy expenditure by the net-
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Fig. 7.10 River basin modeled by an OCN network

work [364, 360]. The evolution rules of this model lead to fractal structures like
that shown in Fig. 7.10. The properties of the OCN have been shown to be similar
to those of Peano network [80], and we can employ the results (6.35) and (6.36)
for the waiting time distributions φ(t) for first and second degrees of constructions,
respectively.

The jump distance distribution w(x) for an isotropic random walk across the
backbone is w(x) = 1

2δ(x + l) + 1
2δ(x − l). Equation (5.30) yields the Hamilton–

Jacobi equation for the CTRW model:

1

φ̂(H)
= cosh(lp)+ r

H

(
1

φ̂(H)
− 1

)

. (7.40)

Let us first consider the asymptotic regime, τ � t and l � x , where τ is the time
spent by the walker at a node and l is the distance between two consecutive nodes.
This is equivalent to lp � 1 and Hτ � 1 in (7.40). Expanding up to first order, i.e.,
O(Hτ) and O(l2 p2

), we obtain the Hamilton–Jacobi equation for the RD equation:
H = Dp2 + r with D = l2/2 〈t〉, where 〈t〉 = ∫∞0 tφ(t)dt = −φ̂

′
(0) is the mean

waiting time. Equations (6.35) and (6.36) yield 〈t〉 = 3τ for Q = 1 and 〈t〉 = 9τ
for Q = 2, respectively. The front velocity is given by the Fisher equation

v =
√

2l2r

〈t〉 . (7.41)

In general, from (4.47) and (7.40) the front velocity is given by

v = l min
H

H

cosh−1
[

1

φ̂(H)

(

1− r

H

)

+ r

H

] . (7.42)



230 7 Ecological Applications

Fig. 7.11 Plot of the results for the front velocity vs the parameter rτ . The points are obtained from
simulations of the stochastic process on the OCNs (full circles) and the Peano basin (open circles).
The lines correspond to theoretical values from the Fisher equation (solid) and for the Peano basin
(dotted and dotted-dashed). Reprinted from [64]. Copyright 2006, with permission from Elsevier

Figure 7.11 summarizes the results obtained from (7.42) (lines) and compares it with
random walk simulations on the Peano basin up to order Q = 10 (open circles) and
OCNs (full circles). In the simulations, all the walkers were initially on the left side
of the lattice and the front advanced to the right. A logistic growth rρ(1 − ρ) was
introduced at every site at every time step to simulate the reaction process. For the
OCNs, we averaged over 10 different 200 × 200 networks.

We observe that simulations on the Peano lattice and the OCN network lead to
very similar results. Although these structures show some topological differences,
their dynamical similarities are due to the fact that the front velocity in fractals is
mainly determined by dmin, see (6.18) and (6.25), and the existence of loops in
the structure. Both Peano and OCN networks are loopless structures with dmin = 1,
which explains the results. Figure 7.11 also shows that a higher level of construction
Q for the Peano network in (7.42) leads to better agreement with simulations on
OCN.

To estimate the velocity of human migration one can consider τ to be the time
between successive generations. A value of τ = 25 yr is usually assumed [137].
The growth parameter r can be obtained directly from [256], where the population
vs time plot for the United States in the 19th century was fitted to a logistic curve,
obtaining r = 0.031± 0.001 yr−1.

Regarding the distribution of jump lengths, we know that the settlers did not
always cover the same distance, and the distribution w(x) should include the pos-
sibility of different jump lengths. This can be done by fitting the observed data to
a continuous distribution. In [64], the jump distances covered by settlers were esti-
mated from individual records obtained from the “migrations.org project” database,
available at http://www.migrations.org. The authors collected 400 individual

http://www.migrations.org
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records from the database and measured the distance covered by colonizers from
their birthplace to the place they were 25 yr later, i.e., after a time τ . Only the dis-
tances in the E–W direction were considered, in keeping with the one-dimensional
nature of our model. The jump length distribution obtained in this way is represented
in Fig. 7.12.

This approach does not take into account the fraction f of people who remained
at their birthplace after 25 yr without migrating. Ferrie’s works [127], based on
the censuses of the 19th century, allow us to estimate f = 0.3 ± 0.05. Taking all
these aspects into account, the best fit corresponds to an exponentially decaying
distribution of the form w(x) = Ae−|x |/x0 , where A is a normalization factor and
x0 = 640 ± 23 km−1, and the mean distance is l = 810 ± 93 km. By introducing
these distributions and parameters into (7.40), we obtain the results for the velocity
listed in Table 7.3.

Table 7.3 includes results for different values of Q, because the settlers moved
mainly following the major river valleys according to historical reports. One might
conclude therefore that small details in the structure of the Peano basin, namely
tertiary, quaternary, and higher-order channels, do not affect the dynamics of the
migration process, and a low order in Q should be chosen.

Fig. 7.12 Plot of the distribution of distances covered by migrants in the E–W direction during
the 19th century, obtained from 400 individual records. Reprinted from [64]. Copyright 2006, with
permission from Elsevier

Table 7.3 Observed front velocity and predictions obtained from theory and simulations on fractal
basins for the case of the US colonization. Reprinted from [64]. Copyright 2006, with permission
from Elsevier

Observed velocity 13.5±0.8 km/yr

Fisher’s prediction 40.3±2.9 km/yr
Exponential w(x) and Peano with Q = 2 19.4±3.2 km/yr
Exponential w(x) and Peano with Q = 5 18.9±3.1 km/yr
Simulations on Peano with Q = 10 14.5±0.1 km/yr
Simulation on OCN 14.4±0.1 km/yr
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In any case, we observe from Table 7.3 that the geometrical constraints of the
networks significantly affect the velocity of the fronts. The classical prediction by
Fisher clearly overestimates the observed velocity of the migration front, while the
results obtained from simulations for the Peano and the OCN and the theoreti-
cal predictions agree reasonably well with the observations. This leads us to the
hypothesis that colonization of the United States during the 19th century was sig-
nificantly influenced by the landscape constraints and that heterogeneities reduced
the propagation rate substantially. This specific example illustrates the importance
of analyzing transport through river networks and heterogenous media in general.

7.2 Avian Range Expansions

We consider two avian range expansions, Collared Dove and House Finch, and com-
pare their observed range expansion rates with the predictions of RD and RT models
with φ(t) = δ(t − T ) [329]:

vRD = 2
√
r D, (7.43a)

vRT =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
√
r D

1+ rT

2

, rT < 2,

√

2D

T
, rT > 2.

(7.43b)

To compare the predictions from (7.43) with the observed values, we need to esti-
mate the parameters T , D, and r . As in previous sections, T is the mean time elapsed
between two successive migrations, i.e., the generation time. It can be estimated
as the time needed for a newborn individual to grow into an adult and reproduce.
When the adult age is reached, individuals leave the paternal territory and fly to new
places. Since the available data for the dispersal process correspond to a histogram
of frequencies of jump distances, the diffusion coefficient can be calculated from
the discrete version of (7.4):

D = 1

4T

∑

j

z2
j f j , (7.44)

where z j are the radial observed distances and f j their respective observed frequen-
cies,

∑

j f j = 1. For these birds, reproduction does not occur throughout the year;
it is episodic and relatively synchronous. Therefore, one way to model their spread
would be to employ a discrete-time model. This would be necessary if the time scale
of measurements were of the order of, or smaller than, the typical reproduction time,
about a year. Measurements of population invasion velocities usually span several
decades. The use of a continuous model is a reasonable approximation for the bird
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reproductive dynamics which is assumed to be logistic. If P is the population size
and it is small, or at the initial phase of growth, the logistic equation can written as
dP/dt ≈ r P , where r is the intrinsic growth rate. Note the whole survey data for
the population size should be used and not only those of a restricted range.

7.2.1 House Finch

The range expansion of the House Finch (Carpodacus mexicanus) in Northern
America has been taking place since 1940. From the observed population size,
Fig. 7.13 inset, we can estimate r by fitting a straight line to the logarithms of the
observed data for the total population vs time. The slope of the fitted line yields
r = 0.020± 0.003 yr−1.

To calculate T , note that when the adult age is reached, individuals leave the
paternal territory and fly to new places. The value of this time has been estimated
from observations to fall between 1.5 and 2 years [196]; we choose 1.75 yr as a
typical value. In fact, values of T between 1.5 and 2 yr do not change the results we
derive below. From Fig. 7.13 (main figure) and (7.44) we obtain D = (10.1± 2.4)×
103 km2

/yr. From (7.43) one finds that both RD and RT models yield an invasion
velocity of 28 ± 4 km/yr with a relative difference

(

vRD − vRT
)

/vRT of 1.8±0.4.
The observed velocity is 28 ± 1 km/yr and can be estimated from experimental

Fig. 7.13 Inset: House Finch survey-wide population size (P , measured in counts per party hour)
vs time (The North American Breeding Bird Survey. Graph of survey-wide yearly indices from
CBC. USGS Patuxent Wildlife Research Center, Laurel, Maryland, USA). In order to estimate r
we used a logarithmic plot and removed points far away from the exponential phase (large times),
which implied a decrease in the regression coefficient of the linear fits. Main figure: House Finch
annual dispersal histogram (from [457]). Note that a time interval of 1 yr, which is the value for
the data shown, corresponds roughly to the time required by a newborn individual to turn into an
adult, i.e., roughly to T in the RT model. Reprinted from [329]
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Fig. 7.14 Linear fit of experimental data to estimate the velocity of the range expansion of the
House Finch. The two first data points were removed because they correspond to early times,
when the population invasions had not yet reached the saturation (constant) velocity. Reprinted
from [329]

data obtained from [327] illustrated in Fig. 7.14. Excellent agreement is observed
between both RD and RT models and observational data.

7.2.2 Eurasian Collared Dove

We now turn our attention to the range expansion of the Collared Dove (Streptopelia
decaocto Friv.) into Europe. Using the same method as for the House Finch, the
graph of survey-wide data for the Collared Dove, see Fig. 7.15, allows us to calculate
r = 0.29± 0.02 yr−1. From Tables 3 and 4 in [445] we obtain T = 1.81± 0.73 yr
and D = 5026 ± 2400 km2

/yr. With these values we find vRT = 60 ± 19 km/yr,
whereas vRD = 76±19 km/yr. Reference [445] reports a migration velocity of 44±3
km/yr. Note that the RT model provides a range for the front speed compatible with
observations, whereas the Fisher model does not.

7.3 Plant Invasions

We focus on a version of the CTRW model adapted for the description of plant
invasions. Further modifications of the model for applications to animal invasions
or more complex situations are straightforward. Although these models are rather
complex at first sight, the results and expressions in most cases are simple and have
a clear ecological meaning. This makes the models attractive tools for management
purposes. One of our main results consists of a threshold condition to predict if a
species will show invasive behavior or not in terms of their specific life cycle. This
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Fig. 7.15 Eurasian Collared-Dove survey-wide population size (P) vs time (USGS 2001). To esti-
mate r we used the logarithmic plot and removed points far away from the exponential phase
(large times), which implied a decrease in the regression coefficient of the linear fits. Reprinted
from [329]

condition can be an alternative to Caswell’s models [72] based on projected popula-
tion matrices. In those models, a value of the population growth parameter, usually
labeled λ, above or below unity determines if a population increases or decreases
with time.

To demonstrate the applicability of the mathematical approach we compare our
model with population data taken from the literature for different invasive plants.
Data from the native and exotic ranges of Echium plantagineum, Cytisus scoparius,
and Carduus nutans [172, 344, 397, 398, 479] were used to establish that the model
predicts their invasive behavior when the fecundity of these species in their exotic
ranges is considered. Finally, the invasion rates recently found experimentally [221]
for Carduus acanthoides are shown to fit closely the analytical predictions of the
model.

We present a stage-structured model where each process is governed by temporal
or spatial probability distributions to obtain as detailed and realistic a description of
the process as possible. We assume a spatially homogeneous medium. To capture
the essential dynamics of an invasion process, it is necessary to account for only
three life stages: unripe seeds on the plant (called seeds of type 1), mature seeds
(dispersible seeds, called seeds of type 2), and adult plants. Figure 7.16 describes
the plant invasion life cycle, including mature seed germination, death or growth,
the ripening phase of unripe seeds, and dispersal of the mature seeds.

When a mature seed has dispersed, germination begins. After a random time
interval distributed according to the PDF β1(t), a plant germinates with probability
α0. This plant grows, over a random time interval distributed according to the PDF
β2(t), to maturity (i.e., able to produce seeds), unless it first dies within a random
time distributed according to the PDF β3(t). When a plant matures, it produces Y
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Fig. 7.16 The life cycle graph. The random times t1, t2, and t3 of germination, growth, and waiting
are distributed according to the PDFs β1(t), β2(t), and ϕ(t), respectively

unripe seeds. Unripe seeds become mature seeds after a ripening period distributed
according to the PDF ϕ(t). Mature seeds disperse to repeat the cycle. We have not
accounted explicitly for seed death, since mortality effects are implicitly taken into
account through every seed generating a new plant with probability α0.

7.3.1 The Model. Invasion Threshold

The two-dimensional continuous-time mesoscopic equations for each stage are

P(x, t) =
∫ t

0
β3(t

′
)p(x, t − t ′)dt ′, (7.45)

p(x, t) = p0(x, 0)δ(t)+ α0

∫ t

0
β1(t

′
)s2(x, t − t ′)

[

1− P(x, t − t ′)
K

]

dt ′, (7.46)

S1(x, t) =
∫ t

0
ϕ
∗
(t ′)s1(x, t − t ′)dt ′, (7.47)

s1(x, t) = s1(x, 0)δ(t)+ Y
∫ t

0
β2(t

′
)β
∗
3 (t

′
)p(x, t − t ′)dt ′, (7.48)

S2(x, t) =
∫ t

0
β
∗
1 (t

′
)s2(x, t − t ′)dt ′, (7.49)

s2(x, t) = s2(x, 0)δ(t)+
∫ t

0
ϕ(t ′)dt ′

∫

w(x′)s1(x− x′, t − t ′)dx′. (7.50)

Here P(x, t), S1(x, t), and S2(x, t) are the number density of plants, unripe seeds,
and mature seeds located at point x at time t , respectively, while p(x, t), s1(x, t),
and s2(x, t) are the number density of plants, unripe and dispersible seeds arriving
at point x at time t , respectively. The distribution functions β

∗
3 (t), β

∗
1 (t), and ϕ

∗
(t)

are the survival probabilities for plant death, germination, and seed ripening, respec-
tively, and are defined by
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β
∗
3 (t) =

∫ ∞

t
β3(t

′
)dt ′, β

∗
1 (t) =

∫ ∞

t
β1(t

′
)dt ′, ϕ

∗
(t) =

∫ ∞

t
ϕ(t ′)dt ′. (7.51)

Equation (7.45) describes the number of plants present at point x at time t and is
the sum of plants that arrived at x at time t ′ earlier and of those that have survived
during the interval t− t ′. Equation (7.46) describes the number of plants that appear
at point x at time t and is the sum of the initial distribution plus the type 2 seeds
which fall and germinate at point x by time t . The factor 1− P/K provides a form
of density dependence by describing growth saturation due to the limited resources
of the environment; K stands for the carrying capacity. Equation (7.47) describes the
number of unripe seeds at point x at time t and is the accumulated number of unripe
seeds produced on the plants. Equation (7.48) describes the number of unripe seeds
that arrive at point x at time t and is the sum of unripe seeds already present at t = 0
plus those seeds, produced by adult plants, that survived since their germination at
time t − t ′. The number of mature seeds at point x at time t are those that arrived at
point x at time t − t ′ and have not germinated during this period and are described
by (7.49). Equation (7.50) expresses the number of mature seeds that arrive at point
x at time t as those that arrived at t = 0 plus those unripe seeds that appeared at x′
at t ′ and waited a time t − t ′ before dispersing to x.

The steady states of the system (7.45), (7.46), (7.47), (7.48), (7.49), and (7.50),
(P, S1, S2), fulfill the conditions

P = α0Ya0P(1− P/K ), (7.52a)

S1 = τYa0P/τm, (7.52b)

S2 = τ1S1/τ, (7.52c)

where

a0 ≡
∫ ∞

0
β2(t)β

∗
3 (t)dt, (7.53)

and τ , τ1, and τm are the average seed ripening, seed germination, and plant mortal-
ity times, respectively. Since

∫∞
0 β2(t)dt = 1 and β

∗
3 (t) < 1 for t > 0,

a0 ≡
∫ ∞

0
β2(t)β

∗
3 (t)dt ≤ sup

t∈[0,∞)

[

β
∗
3 (t)

]
∫ ∞

0
β2(t)dt = 1, (7.54)

and the condition a0 < 1 is always fulfilled. Equations (7.52) have two solutions:

(P, S1, S2)1 = (0, 0, 0) (7.55)

and
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(P, S1, S2)2 =
(

K

[

1− 1

α0Ya0

]

, K
τ

τm
Ya0

[

1− 1

α0Ya0

]

, K
τ1

τm
Ya0

[

1− 1

α0Ya0

])

. (7.56)

For the steady state to be biologically meaningful, the population density must be
positive, which requires

Y > Ymin ≡
1

α0a0
. (7.57)

Equation (7.57) represents a threshold condition for invasion success in terms of the
number of fertile unripe seeds released per plant. It depends only on the parameter
α0 and through a0 on how the random times for death, β∗3 (t), and maturity, β2(t),
are distributed. The threshold satisfies the inequality Ymin > 1, since both a0 < 1
and α0 < 1. Expression (7.57) is equivalent to Lotka’s equation [256] for growth in
age-structured populations. In the present model, Lotka’s result arises as a natural
consequence, without the need for phenomenological arguments as in the original
derivation [256, 445]. Equation (7.57) implies that the number of seeds giving rise to
new plants at each life cycle, α0Y , must be larger than the number of adult plants that
died within a life cycle. We have presented first a three-stage model, because the life
cycle is implemented more intuitively that way. The model can be nicely written as
a closed and simple expression, which makes it more manageable. Equations (7.45),
(7.46), (7.47), (7.48), (7.49), and (7.50) can be reduced to the following equation for
P(x, t):

P(x, t) = f (x, t)+ Y

Ymin

∫ t

0
β(t ′)

∫

R
2
w(x′)P(x− x′, t − t ′)dx′dt ′. (7.58)

Here f (x, t) incorporates all the terms where initial conditions appear, and β(t) can
be regarded as the PDF of times between successive generations. It is defined as

β(t) = 1

a0

∫ t

0
β1(t1)

∫ t−t1

0
β2(t2)β

∗
3 (t2)ϕ(t − t1 − t2)dt2dt1. (7.59)

The roles of the PDFs β1, β2, β3, and ϕ are encapsulated in β(t). Given a PDF for the
generation of seeds and plant mortality we can calculate from (7.57) the minimum
number of seeds that need to be produced by a plant to invade successfully. This
outcome can sometimes be an alternative to the well-known model by Caswell [72]
based on population matrices for predicting the population growth characteristics.
The product Yα0 is approximately equivalent to the parameter λ of Caswell’s model,
which usually represents the population growth in the matrix formalism. Compared
with Caswell’s approach, where the condition λ ≷ 1 determines the invasive char-
acter of a species, we find that the threshold depends on the distributions of plant
survival β

∗
3 (t) and seed production β2(t). Therefore, this model can be seen as

a generalization of Caswell’s result for the case where temporal PDFs for every
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process are considered. Let us now discuss some specific examples to show how
simple expressions for Ymin can be obtained for different situations:

(a) Seed production and plant mortality are exponentially distributed, β2(t) =
τ
−1
2 e−t/τ2 and β3(t) = τ

−1
m e−t/τm , where τi accounts for the typical time scale

of the processes. In this case condition (7.57) leads to

Ymin =
1

α0

(

1+ τ2

τm

)

. (7.60)

(b) Seed production occurs at a fixed time τ2 after germination, β2(t) = δ(t − τ2),
and mortality is as in case (a). This matches plants producing seeds at approxi-
mately a fixed age, e.g., an annual species. This case leads to

Ymin =
1

α0
eτ2/τm . (7.61)

(c) Seed production occurs periodically with a period given by τ2, β2(t) = δ(t −
τ2)+δ(t−2τ2)+δ(t−3τ2)+· · · , and mortality over time is again exponentially
distributed. This choice for β2(t) allows us to take into account that a given
plant can generate seeds many times, i.e., many generations, before dying and a
seasonal behavior is introduced. Condition (7.57) leads to

Ymin =
1

α0
(eτ2/τm − 1), (7.62)

where the periodic behavior of β2(t) renders the condition (7.57) less restrictive
compared to case (b).

(d) Seed production occurs periodically, as in (c), and the life span is fixed at τm ,
so β3(t) = δ(t − τm). We introduce a parameter n, defined as n ≡ Int

[

τ2/τm
]

,
to define the number of times that plants produce seeds before they die. (“Int”
denotes the integer part of a number.) Condition (7.57) has the form

Ymin =
1

α0n
. (7.63)

7.3.2 Applications to the Invasion Success of Weeds

To illustrate the applicability (7.57), we compare it with published data of three
different invasive weed species in their native and exotic ranges. In the exotic range,
species can exhibit invasive behavior. The model should show that predicted Ymin
values are higher than the actual plant fecundities in the native range and lower than
actual plant fecundities in the exotic range. Although the three species studied show
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important differences in their life cycle, the model can account for these differences
easily by introducing suitable PDFs.

7.3.2.1 E. plantagineum

This is an annual plant native to the western Mediterranean basin which was intro-
duced and became invasive in pastures in Australia. In [172] the authors compared
its population dynamics in Evora, Portugal, where this plant is native, with Can-
berra, Australia, where this plant is exotic. From the published data we accurately
estimated the parameters needed to evaluate Ymin. As E. plantagineum is an annual,
all surviving plants produce seed once at age 1 yr and die. This presents the case
in (7.63) with n = 1. To estimate the parameters Y and α0, we average the data
published in [172] over all the populations considered. If one assumes that seeds
produced can survive in the seedbank up to 6 yr [172], then

α0 = GSih

⎡

⎣1+
5
∑

j=1

(

Sb
) j

⎤

⎦ , (7.64)

where G is the seedling establishment fraction, Si is the seedbank incorporation
rate, h is the fraction of the seedbank germinating every year, and Sb is the seedbank
survival rate. The averaged results obtained from our analysis are given in Table 7.4.
The theoretical prediction for Ymin holds, as only those populations where Y > Ymin
exhibit invasive behavior.

7.3.2.2 C. scoparius

This leguminous shrub is native to western Europe and has become an invasive weed
in some Australian ecosystems, suppressing native species and increasing fire risk
[212]. We compare the population dynamics of this species in a native habitat in
southern France [344] with those from an invasive population in Australia [396].

Table 7.4 Parameter estimates from our model of the invasiveness of E. plantagineum, C. scopar-
ius, and C. nutans in their native and exotic range. (1) Portugal, (2) France, (3) Australia

Plant Range α0 a0 Ymin Actual Y

E. Plantagineum Native(1) 7.1× 10−3 0.18 783 322

Exotic(3) 1.2× 10−2 0.66 124 261

C. scoparius Native(2) 0.0314 0.06 531 81.6
Native (SC) 0.0314 2.27 14.0 81.6

Exotic(3) 0.023 0.16 272 300

C. nutans Native(2) 0.01 0.109 917 125

Exotic(3) 0.12 7.2× 10−3 1161 1950
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In the native range, the parameters can be estimated as follows. The average
percentage seed germination was used to estimate α0, see Fig. 2 in [344]. Fecundity
was estimated from average seed production per unit area (38.3 seeds per m2), taken
from the total study area (400 m2) and that 7% of plants produced any seeds by
the end of the experiment (Y = 81.6 seeds per plant). The survival distribution is
taken from Fig. 4 in [344], where from the second-year sampling, survival decay is
approximately a linear function of time. One of the treated subpopulations, labeled
single-cultivated (SC) in the original work, see also Table 7.4, had very different
survival behavior from the others. This subpopulation has to be studied separately.

Finally, one can estimate the germination distribution β2(t) using that 18% of the
flowering plants produced seeds in their first flowering year (at 3 yr of age), as noted
in [396]. Assuming that after the second flowering year all surviving plants (they can
survive up to 20 yr) could produce seeds, we obtain a PDF for seed production over
time of the form

β2(t) =
t f
∑

j=ti
γ jδ(t − j), (7.65)

where ti = 3 yr, t f = 20 yr, γ3 = 0.18, and γl>3 = 1. Estimation of the parameters
for C. scoparius in the exotic range was carried out in a similar way as for the native
range, since the published data are very similar. The averaged value α0 = 0.023 is
already given in the text in [396] and fecundity data are also presented in graphical
form. The age at the first seed production is also studied in the original work, and
from that we estimated β2(t) as in (7.65), but with ti = 2 yr, t f = 20 yr, γ2 = 0.003,
γ3 = 0.068, γ4 = 0.706, γ5 = 0.990, and γ j>5 = 1. Finally, the survival data
showed the best fit to a power law of the form

β
∗
3 (t) ≈

1

1.607+ 0.844t2.37
. (7.66)

The estimated values of Y and Ymin for the native and exotic range in Table 7.4 are
as expected for noninvasive and invasive populations, respectively, except for the SC
subpopulation in the native range, which our Y and Ymin estimates suggest should
exhibit invasive behavior. However, the SC subpopulation relates to a disturbed
treatment, and survival was very different from that found in other subpopulations in
the same study. We conclude that this case is not representative of the characteristic
behavior of C. scoparius in its native range.

7.3.2.3 C. nutans

This thistle of European origin has become a weed in many parts of the world.
Demographic data of C. nutans for some native populations in France, studied over
more than 2 yr reported at intervals of 3 months, were published in [397]. The
parameters corresponding to the exotic range have been extracted from analogous
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published data for one site in Australia [479]. Fecundity Y was estimated from
seed density and flowering plant density. The probability α0 was estimated from the
product of the proportion of surviving mature seeds entering the seedbank and the
proportion of the seedbank recruited. The values are listed in Table 7.4, where lower
α0 values in the native range reflect the important effect of predispersal predation
[396]. C. nutans is monocarpic, i.e., it dies after seed production. Since the age at
flowering can vary among individuals, we made the same assumption as used for
E. plantagineum. In this case we needed to produce a survival distribution, which
could be done accurately from the published demographic data and leads to

Native: β
∗
3 (t) ≈

1

1+ 9t1.47
, (7.67a)

Exotic: β
∗
3 (t) ≈

1

1+ 106t2.69
. (7.67b)

The data indicate individual survival is greater in the native range than in the exotic
habitat, as is also evident from a0 values in Table 7.4. Nevertheless, the importance
of the predispersal predation on the seedbank and the great differences in fecundity
between the two ranges are the factors that determine the invasive behavior of C.
nutans in Australia [479], as confirmed by comparing Y and Ymin parameters in
Table 7.4.

7.3.3 Invasion Velocity of Weeds

Recent experimental work [221] for another invasive thistle, C. acanthoides, was
used to test our theoretical predictions for the invasion rate. Rosettes of C. acan-
thoides were introduced into uninvaded plots in Maryland (USA), where each
rosette was considered as a founder individual for new invasive thistle populations.
The cumulative probability distribution for jump lengths W (r) was measured for
different years and different treatments, named 0x, 1x, and 2x clippings. The relation
between W (r) and w(r) is given by W (r) = 2π

∫ r
0 r ′w(r ′)dr ′ or

w(r) = 1

2πr

dW (r)

dr
. (7.68)

The Hamilton–Jacobi equation corresponding to (7.58) reads

1 = Y

Ymin
β̂(H)w̆(p), (7.69)

where β̂(H) is the Laplace transform of β(t) with argument H and

w̆(p) = 2π
∫

�

rw(r)I0(pr)dr. (7.70)
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We have assumed isotropic dispersal, � is the spatial dispersal domain, and I0(·) is
the modified Bessel function of order 0. One can consider 1 year as the fixed time
between two successive generations, i.e., β(t) = δ(t − τg) with τg = 1 yr [221].
The invasion velocity is, from (4.47) and (7.69),

v = 1

τg
min
p>0

1

p
ln

[
Y

Ymin
w̆(p)

]

. (7.71)

To compare the theoretical prediction (7.71) with the observed results in [221], it
is necessary to know the value for the quotient Y/Ymin. The field data are not on
a fine enough spatial scale. However, it is possible to make this comparison with a
desirable accuracy for the case of the invasion in 1995, where the number of seeds
released per plot was approximately 1111 seeds per plot for any treatment.

Since Ymin is not known, we have estimated it by fitting the theoretical prediction
with the observed value. Fitting the cumulative distribution W (r) to the experi-
mental data for 0x clipping in 1995 one can estimate, with a correlation coefficient
R2 = 0.961, the dispersal kernel to be of the form

w(r) = k

2πr

e−kr

e−krmin − e−krmax
. (7.72)

Here k = 4.63 m−1 is the inverse of the characteristic jump length, and rmin = 0.04
m and rmax = 0.44 m are the minimum and maximum jump lengths. The dispersal
domain is � = {r : r ∈ [rmin, rmax

]}

. Substituting (7.72) into (7.70) and integrating
from rmin to rmax, we find Ymin = 44.4, which will be used for comparing with 1x
and 2x clippings.

Fitting the dispersal kernel to the data from the 1x clipping for 1995, we obtain
the same kernel as in (7.72), but with R2 = 0.977, k = 3.57 m−1, rmin = 0.036
m, and rmax = 0.55 m. Substituting these values into (7.72) and (7.70), we can
calculate the invasion rate from (7.71) and obtain 0.45 m/yr, which is very close to
the observed result of 0.49 m/yr in [221].

By fitting the dispersal kernel to the data for 2x clipping in 1995 we obtain,
R2 = 0.982,

w(r) = kr + k1

2πr
, (7.73)

with k = 2.87 m−1, k1 = 0.14, rmin = 0, and rmax = 0.30 m, with a dispersal
domain � = {

r : r ∈ [0, rmax
]}

. In this case the invasion velocity is 0.26 m/yr,
which is again in agreement with the observed result of 0.27 m/yr in [221].

These results can be discussed in light of those obtained in [413], where the inva-
sion velocities for C. acanthoides and C. nutans were also studied. In that work, the
authors obtained some predictions for the front velocities by using nonparametric
[78] and mechanistic estimates of the dispersal kernel. Their work was specially
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focused on the role of the dispersal patterns and the influence of long-distance
dispersal on the invasion velocity, while in the present approach we have instead
highlighted the importance of the PDFs governing the life cycle of individuals. The
present results are restricted to local dispersal. The work by Jongegans, which we
used as a reference, was restricted to dispersal distances up to 4 m, and we have
introduced the thresholds rmin and rmax to remove the problem of data extrapolation
[78, 79]. These differences prevent us from performing a direct comparison between
both works. We stress, however, that they both agree with the idea that models based
on PDFs can fit quite well the behavior of weed invasions, if the dispersal kernel can
be implemented accurately.

Exercises

7.1 Consider the RT model for the hunter-gatherer interaction of Sect. 7.1.2. Obtain
(7.11) for the migration front velocity.

7.2 Find the steady states given by (7.55) and (7.56) for the system (7.45), (7.46),
(7.47), (7.48), (7.49), and (7.50). Study their temporal stability.

7.3 Obtain (7.58) from the system (7.45), (7.46), (7.47), (7.48), (7.49), and (7.50).

7.4 Calculate the Hamilton–Jacobi equation (7.69) corresponding to (7.58).



Chapter 8
Biomedical Applications

Reaction–transport equations have found many applications to biological processes
of interest in medicine and microbiology. Examples range from cancer invasion to
virus dispersal and transport in spiny dendrites.

8.1 Cancer Invasion

Cancer arises essentially from mutations of single somatic cells that are able to
divide uncontrollably, invade adjacent normal tissues, and give rise to secondary cell
clusters, tumors, at sites different from their primary origin, metastasis. Numerous
mathematical models have been constructed to describe the competition between
tumor cells and surrounding normal cells. These include reaction–diffusion equa-
tions that describe the dispersal behavior of tumor cell growth together with the
interaction between normal and cancer cells [155, 156, 402]. Other models deal with
cancer evolution and its interaction with the immune system [399, 31], the motility
of gliomas [427, 428], and their dichotomy between proliferation and migration
[119, 120].

8.1.1 Tumor–Host Interaction

Reaction–diffusion models have very successfully accounted for the interaction
between normal and tumor cells. The diffusion terms in these models can be broadly
divided into two categories, linear and nonlinear diffusion. In linear diffusion mod-
els, the flux of one cell type depends only on the concentration of cells of the same
type. In nonlinear diffusion models, the presence of one cell type affects the dif-
fusion of cells of a different type. Models with nonlinear diffusion have described
the spatial dispersal and temporal development of tumor tissue, normal tissue, and
excess H+ ion concentration [155]. They assume that transformation-induced rever-
sion of neoplastic tissue creates a microenvironment around the tumor where tumor
cells survive and proliferate, whereas normal cells do not remain viable. These
conditions, favorable for tumor cells and unfavorable for normal cells, are due to
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increased production of H+ ions, i.e., the presence of a pH gradient, and the dif-
fusion of those ions into surrounding normal tissue. Model results are consistent
with tumor growth rates in vivo. Other models with nonlinear diffusion describe
tumor encapsulation. Solid tumors typically undergo an initial period of avascular
growth, after which they become quiescent for a long time. The first steps in the
metastatic cascade end the dormant phase. A significant feature of the quiescent
phase is the presence, in some cases, of capsules of dense and fibrous extracellu-
lar matrix around the solid tumor. The formation of a capsule is a key prognostic
indicator in a wide range of cancers. However, the mechanisms responsible for cap-
sule formation remain unclear. Two competing hypotheses have been advanced: the
expansive growth hypothesis, which holds that remodeling of existing extracellular
matrix without any new matrix production generates the capsule, and the foreign
body hypothesis which assumes that de novo cellular secretion of collagen plays a
key role. Mathematical models have been developed to study the implications of the
expansive growth hypothesis [349, 401]. The model in [349] exhibits traveling wave
solutions where a pulse of extracellular matrix, corresponding to a capsule, moves
in parallel with the invasive tumor front. In [401], saturation in the extent of matrix
rearrangement per cell is included, and the existence of stable solutions for a pulse
of extracellular matrix, corresponding to a capsule, moving ahead of the growing
tumor is established. Moreover, the author shows that the predicted density of matrix
in the capsule correlates with the rate of local matrix movement and remodeling per
cell. This implies that the capsule density is not correlated with either the velocity
at which the tumor grows or its size. This explains the wide discrepancies between
studies attempting to correlate tumor size and capsule incidence or thickness and
argues against the conventional intuition that these should be correlated if the cap-
sule forms without matrix production.

A simple model for the interaction between tumor and normal cells with linear
diffusion has been analyzed as an inverse problem [156]. The stability of the inva-
sion front imposes constraints on the model parameters, which demonstrate the lim-
itations of traditional therapeutic strategies that focus solely on killing tumor cells or
reducing their proliferation rate. The model assumes that the tumor–host interface of
an invasive cancer is morphologically a traveling wave, where the tumor edge rep-
resents a plane wave front propagating into, and replacing, the surrounding normal
tissue. If ρN (x, t) and ρT (x, t) denote normal and tumor cell densities, respectively,
at time t and spatial position x , then the reaction–diffusion system takes the form

∂ρN

∂t
= DN

∂
2
ρN

∂x2
+ rNρN

(

1− ρN

KN
− bNT ρT

KN

)

, (8.1a)

∂ρT

∂t
= DT

∂
2
ρT

∂x2
+ rT ρT

(

1− ρT

KT
− bT NρN

KT

)

. (8.1b)

We assumed Lotka–Volterra kinetics between tumor and normal cells in (8.1). The
maximum growth rates of normal and tumor cells, i.e., the net result of tumor
cell doubling minus tumor cells loss from apoptosis or necrosis, are rN and rT ,
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respectively. KN and KT denote the maximal normal and tumor cell densities,
bNT and bT N are the lumped competition terms, and DN and DT are the cellular
diffusion coefficients. Note that bNT represents the negative effects of a tumor on
normal tissue, such as tumor-induced extracellular matrix breakdown and microen-
vironmental changes, and bT N includes a variety of host defenses, such as immune
response. The steady states of (8.1) are

state I:
(

ρN , ρT
) = (0, 0), (8.2)

state II:
(

ρN , ρT
) = (KN , 0), (8.3)

state III:
(

ρN , ρT

) = (0, KT ), (8.4)

state IV:
(

ρN , ρT
) =

(
KN − bNT KT

1− bNT bT N
,
KT − bT N KN

1− bNT bT N

)

. (8.5)

State I is the trivial solution; it is unstable and biologically irrelevant. State II cor-
responds to normal, healthy tissue without tumor cells. The system evolves to this
state, regardless of the initial state, if bNT KT < KN and bT N KN > KT . If the
initial state is sufficiently close to State II, only the second condition needs to be
satisfied. State III corresponds to complete tumor invasion with total destruction
of normal tissue. The system evolves to this state, regardless of the initial state, if
bNT KT > KN and bT N KN < KT . If the initial state is sufficiently close to State III,
only the first condition is needed. State IV corresponds to a state of coexistence
between tumor and normal cells. The system evolves to this state, if bNT KT < KN
and bT N KN < KT .

In this model, an invasive cancer, where the tumor edge advances as a propagat-
ing front into normal tissue, corresponds to a transition to a stable state containing
tumor cells, state III or IV. The Hamilton–Jacobi formalism provides the propaga-
tion velocity of a front connecting state II to state III, an invasive tumor front,

v = 2

[

rT DT

(

1− bT N KN

KT

)]1/2

, (8.6)

if the front evolves from an initial condition with compact support. In order to stop
or reverse the cancer invasion, one needs to alter the stability of the states II and
III. Sufficient conditions are, for example, bNT large and bT N small. The most
obvious contribution to bNT comes from the fact that tumor cells consume much
more resources than do normal cells. Another possibly significant contribution is
the acidic intercellular pH in tumors as a result of the glycolytic metabolic path-
ways. Other factors could be extracellular matrix breakdown by tumor-produced
proteinases or normal cell crowding by increased interstitial pressure in tumors.

A recovery front, where the invasive front travels in the opposite direction and
ensures the complete eradication of the tumor, requires state II to be stable and state
III unstable. To this end, the conditions bNT KT < KN and bT N KN > KT must be
met, and the velocity of the recovery front is given by
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v = 2

[

rN DN

(

1− bNT KT

KN

)]1/2

. (8.7)

Consequently, therapeutic strategies should include the following aspects: (i) Reduce
KT , which can be achieved by decreasing vascularity. (ii) Reduce bNT and increase
bT N , which can be achieved by therapy oriented toward decreasing the uptake and
utilization of substrate by tumor cells, increasing the avidity of substrate uptake by
normal cells, or reducing the production of protease and tumor acid. (iii) Increase
KN , which can be achieved by therapy directed toward normal cells. The model
predicts that therapy that decreases contact inhibition in normal cells by increasing
KN could result in a tumor regression.

8.1.2 Tumor–Host Interaction with Contact Inhibition

Linear diffusion satisfactorily describes the transport mechanism for a single popu-
lation. For interacting populations, linear diffusion terms imply that the populations
are able to mix completely, with the movement of one cell type unaffected by the
presence of cells of the other type. The reality is exactly the opposite. Cell move-
ment is typically halted by contact with another cell. This phenomenon is known
as contact inhibition and is very well documented for many types of cells. Sherratt
introduced a phenomenological model to account for contact inhibition [402]. Con-
sider the interaction between normal and tumor cells with concentrations ρN (x, t)
and ρT (x, t), respectively. The overall cell flux of both populations is given by
−∂x (ρN + ρT ). A fraction ρN/(ρN + ρT ) of this flux corresponds to normal cells,
so that the flux of normal cells is − [ρN/(ρN + ρT )

]

∂x (ρN + ρT ), and a similar
expression for the flux of tumor cells. These expressions indicate that the movement
of one population is inhibited by the presence of the other. The system of dimen-
sionless reaction–diffusion equations reads [402]

∂ρN

∂t
= ∂

∂x

[
ρN

ρN + ρT

∂

∂x
(ρN + ρT )

]

+ ρN
(

1− ρN − ρT
)

, (8.8a)

∂ρT

∂t
= ∂

∂x

[
ρT

ρN + ρT

∂

∂x
(ρN + ρT )

]

+ ρT
(

γ− ρN − ρT
)

. (8.8b)

The term−ρN−ρT in the kinetics of (8.8) represents the decrease in the cell division
rate due to crowding. The constant γ (> 1) expresses the proliferative advantage of
the tumor cell population. Note that the model is in one-dimensional space and that
the kinetic terms are of Lotka–Volterra competition type.

Consider front-like initial conditions, such that the density of normal cells travels
to the left connecting ρN = 0 to ρN = 1 and the density of tumor cells travels to the
right connecting ρT = 0 to ρT = γ [402]. If γ > 1, fronts of normal and tumor cells
move toward one another. As they approach each other, the tumor front continues
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to advance, but more slowly, while the normal cell density changes direction and
moves in parallel with that of tumor cells.

This change in the dynamics when the fronts meet and interact is due to the
contact inhibition, since this behavior does not occur in the case of linear diffusion.
Biologically, the front dynamics correspond to a tumor invasion and is exactly the
behavior seen in the very early stages of a carcinoma. The tumor cells prolifer-
ate very fast and develop a dense ball that replaces surrounding tissue. Numerical
experiments suggest that for γ > 1 a family of fronts exists, whose velocity depends
on the width of the initial density of tumor cells but not on the width of the initial
density of the normal cells. Figure 8.1 depicts the front profiles for the densities of
normal and cancer cells for γ = 2. Analysis [402] shows that the use of simple

Fig. 8.1 Typical solutions of (8.8) for γ = 2. The initial condition are ρN (x, 0) = [1 +
exp(−0.1(x − 250))]−1 and ρT (x, 0) = [1 + exp(0.1(x − 30))]−1. The front for ρT continues
to advance in parallel with the receding front for ρN . Reprinted from [402]. Copyright 2000 with
permission from The Royal Society
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linear diffusion in (8.8) leads to an overestimate of the front velocity of interfaces
between normal and tumor cell populations by a factor that is at least 2.4, and very
much larger when the competitive advantage is small.

8.1.3 Glioma Invasion

The mathematical models discussed above and many others in the literature were
designed mainly to describe solid tumors. The understanding of malignant gliomas
is much less complete. Gliomas are intracranial neoplasms of glial cells, neural
cells capable of division, and usually occur in the upper cerebral hemisphere. How-
ever, gliomas can be found throughout the brain due to their highly diffuse behav-
ior. Experimental results indicate that within 7 days of tumor implantation in rat
brains, gliomas can be identified throughout the central nervous system. Progress in
diagnostic techniques and detection capabilities, such as computer tomography and
magnetic resonance imaging, has resulted in earlier detection of gliomas and their
geometric patterns. Despite this progress, the benefits of early treatments remain
minimal. For example, even with extensive surgical excision well beyond the visible
tumor boundary, regeneration near the edge of resection ultimately results. This indi-
cates a potential failing point of the treatment. Most glioma treatments are directed
locally to the bulk mass when, in fact, the action of the tumor growth and invasion
is elsewhere.

Mathematical modeling has been used as a theoretical framework to describe the
invasive nature of gliomas [439, 480, 427, 184] by isolating two characteristics: pro-
liferation and migration (invasion). Experimental studies show a lower proliferation
rate of mobile gliomas in comparison with the tumor core. This indicates an inverse
correlation between mobility and proliferation of gliomas, supported by numer-
ous experimental data obtained in vitro and clinical data obtained in vivo [158].
This phenomenon was dubbed the migration–proliferation dichotomy by Giese and
Westphal [160]. Diffusive transport was considered to represent the active mobility
of gliomas. Since malignant gliomas implanted in the brain of rats disperse more
quickly along the white matter than along the grey matter, some mathematical mod-
els proposed heterogeneous reaction–diffusion equations with a spatially varying
diffusion coefficient [427]. These models include linear reaction terms instead of
logistic growth. Although logistic growth would be more accurate, the differences
in calculated survival times are so slight as to be negligible on the time scale consid-
ered [439, 480]. An excellent review of these mathematical models can be found in
Chap. 11 of the second volume of Murray’s book [310]. In this section we focus on
an alternative way to model the dichotomy between proliferation and migration of
gliomas. The molecular basis for this dichotomy has been established [478]. It forms
the foundation for numerical models of brain tumors and their fractal topologies
[267, 268]. These models focus primarily on the effect of cell fission on transport
properties of cells. An essential decrease in cell mobility during fission time is deter-
mined by the interaction of cells with their environment. In vitro experiments of cell
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dispersal confirm the essential decrease in cell dispersal during cell proliferation. An
agent-based model was developed recently where glioma transport is described in
terms of a local-search mechanism. The purpose of this conscious search is to find
and then invade the most permissive location in extracellular matrix [267]. A simpli-
fied scheme of migration–proliferation dichotomy in terms of a CTRW was studied
in [216, 217, 119]. It involves two random processes, cell fission with characteristic
time T f and cell migration with characteristic duration Tt . On the time scale T f ,
the cells interact strongly and motility of cells is small. On the time scale Tt , inter-
action between cells is weak and motility of cells is determined by a characteristic
jump length proportional to Tt . Moreover, the CTRW can deal with chemotaxis or
haptotaxis by considering biased random walks and matrix cell adhesions by using
heavy-tailed waiting time distributions.

Experimental observations of migration–proliferation dichotomy suggest that the
process of tumor cell invasion consists of two states. In state 1, the migratory phe-
notype, the cells move randomly, but there is no cell proliferation. In state 2, the
proliferating phenotype, the cancer cells do not migrate and only proliferation takes
place. To describe the random switching between the two phenotypes, we employ a
two-state Markov chain model. A cell of type 1 remains in state 1 during a waiting
time τ1 and then switches to a cell of type 2. After a waiting time τ2, spent in state
2, it switches back to a cell of type 1. Both waiting times τ1 and τ2 are mutually
independent random variables, distributed exponentially with parameters β1 and β2,

P(τk) = βk exp
(−βkτk

)

(8.9)

with k = 1, 2. The parameters βk are the switching rates, namely, β1 is the rate
of switching from state 1 to 2, while β2 determines the transition rate 2 → 1. We
assume that the growing tumor is a spheroid consisting of the tumor core with a high
density of cells and the outer invasive zone where the cell density is much smaller.
To describe the cancer cells of the two phenotypes, we introduce the density of the
cells of migrating phenotype, ρ1(x, t), and the density of the cells of proliferating
phenotype, ρ2(x, t). The balance equations for the densities are

ρ1(x, t) = ρ1(x, 0)�(t)e−β1t +
∫ t

0

∫

R
d
ρ1(x− x′, t − t ′)ψ(x′, t ′)e−β1t

′
dx′dt ′

+ β2

∫ t

0
ρ2(x, t − t ′)�(t ′)e−β1t

′
dt ′, (8.10a)

ρ2(x, t) = ρ2(x, 0)e−β2t +
∫ t

0
f
[

ρ1(x, t − t ′), ρ2(x, t − t ′)
]

e−β2t
′
dt ′

+ β1

∫ t

0
ρ1(x, t − t ′)e−β2t

′
dt ′, (8.10b)

where ψ(x, t) is the joint probability density function of making a jump x in the
time interval (t ′, t ′ + dt ′), and R

d indicates that integration is over d-dimensional
space. Cell migration, random jumps, involves a receptor-mediated adhesion to
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matrix proteins, matrix degradation by proteases, detachment from adhesion sites,
active invasion into “new” intercellular space formed by degradation, etc. It would
be extremely difficult, not to say impossible, to formulate a rigorous deterministic
model for this process. Since so many factors are involved, a random walk with
memory effects represents a good alternative. The active mechanism of migration
of tumor cells involves small random jumps and waiting times between jumps. The
latter are expected to be of the same order as the proliferation time. The dynamics is
obviously random, and its distribution is given by the PDF φ(t). Equation (8.10a) is
the conservation law for cells of type 1 at time t at position x. The first term on the
right-hand side ρ1(x, 0)Ψ (t)e−β1t represents cells of type 1 that remain up to time
t at position x, such that no jump occurred and no switch in phenotype occurred.
This term involves the survival probability Ψ (t), the probability that a cell of type
1 makes no jump until time t . The exponential factor e−βk t = 1 − ∫ t0 P(τk)dτk
is the probability that cells of phenotypes k do not switch until time t . The inde-
pendence of the random jumps and switching leads to the probability Ψ (t)e−β1t ,
while the first factor ρ1(x, 0) is the initial density of cells of type 1 at x. The second
term,

∫ t

0

∫

R
d
ρ1(x− x′, t − t ′)ψ(x′, t ′)e−β1sdx′dt ′, (8.11)

represents the number of cells of type 1 arriving at x up to time t . We assume the
following random mechanism of migration: a cell of type 1 at time t − t ′ at position
x − x′ waits a random time t ′ before jumping to position x and remains a cell of

type 1. The last term β2
∫ t

0 ρ2(x, t− t ′)Ψ (t ′)e−β1t
′
dt ′ represents the number of cells

of type 2 that switch to cells of type 1 up to time t and remain the cells of type

1, the factor e−β1t
′
. It also takes into account the fact that if the transition 2 → 1

occurs at time t − t ′, then no jump takes place during the remaining time t ′, the
factor Ψ (t ′).

Equation (8.10b) describes the balance of cells of proliferating phenotype, which
do undergo spatial jumps. The first term on the right-hand side, ρ2(x, 0)e−β2t ,
represents the density of cells of type 2 that remain up to time t at position x
such that no switch 2 → 1 takes place. The second term on the right-hand side
∫ t

0 f
[

ρ1(x, t − t ′), ρ2(x, t − t ′)
]

e−β2t
′
dt ′ represents the proliferation of cells of

type 2, which occurs providing that no switch takes place up to time t . The last

term β1
∫ t

0 ρ1(x, t − t ′)e−β2t
′
dt ′ represents the number of cells of type 1 switching

to state 2 during the time interval (0, t).
The PDF ψ(x, t) can be written in decoupled form ψ(x, t) = w(x)φ(t), where

φ(t) is the waiting time PDF and w(x) is the PDF of cell jumps. The balance
equations (8.10a) and (8.10b) can be rewritten as a system of integro-differential
equations:
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∂ρ1

∂t
=
∫ t

0
K (t − t ′)

∫

R
d

[

ρ1(x− x′, t ′)− ρ1(x, t
′
)
]

w(x′)dx′dt ′ − β1ρ1 + β2ρ2,

(8.12a)

∂ρ2

∂t
= f (ρ1, ρ2)+ β1ρ1 − β2ρ2. (8.12b)

The memory kernel K (t) is, in terms of its Laplace transform,

K̂ (s) =
(

s + β1
)

φ̂(s + β1)

1− φ̂(s + β1)
. (8.13)

The cells of the migrating phenotype are biased to migrate away from the tumor
spheroid core. The reasons for this asymmetrical motion are the nonuniform nutri-
ent concentration (chemotaxis), the gradient of cell adhesion sites (haptotaxis), etc.
Experimental observations suggest that cell jumps are controlled by adhesion of
tumor cells to extracellular matrix and that jump lengths are very small [159].
Therefore w(x) is a rapidly decaying function for large |x|. We can use a Taylor
series in (8.12a), expand ρ1(x − x′, t − t ′) in x, and truncate the series at the sec-
ond moment. This truncation is a well-defined procedure, since the higher moments
become progressively smaller. We have

∫

R
d
ρ1(x− x′, t − t ′)w(x′)dx′ = ρ1(x, t − t ′)−

d
∑

i=1

〈

xi
〉 ∂ρ1

∂xi
+

+ 1

2

d
∑

i=1

〈

xi x j
〉 ∂

2
ρ1

∂xi∂x j
+ · · · , (8.14)

where

〈

xi
〉 =

∫

R
d
xiw(x)dx, (8.15)

〈

xi x j
〉 =

∫

R
d
xi x jw(x)dx. (8.16)

If the cell jumps are normally distributed, the characteristic function of w(x) is

w̃(k) = exp
(

iai ki − 1
2σi j ki k j

)

. The positive definite matrix σi j can be written in

terms of the first two moments

σi j =
〈

xi x j
〉− 〈xi

〉 〈

x j
〉

. (8.17)
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The PDF w(x) is given by

w(x) = 1

(2π)d/2
(det σ)1/2

exp

[

−1

2

(

σ
−1
)

i j

(

xi −
〈

xi
〉) (

x j −
〈

x j
〉)
]

. (8.18)

We assume that the characteristic length scale for the tumor front is much smaller
than the radius of the initial tumor spheroid and that the bias acts in the radial direc-
tion. These assumptions allow us to neglect all curvature effects and to consider the
propagation as that of an effective plane front in the radial direction. Then (8.14)
reads

∫

R
d
ρ1(x−x′, t− t ′)w(x′)dx′ = ρ1(r, t− t ′)−m1

∂ρ1

∂r
+ 1

2
m2

∂
2
ρ1

∂r2
+· · · , (8.19)

which can be substituted into (8.12a):

∂ρ1

∂t
+m1

∫ t

0
K (t ′)∂ρ1(r, t − t ′)

∂r
dt ′

= m2

2

∫ t

0
K (t ′)∂

2
ρ1(r, t − t ′)

∂r2
dt ′ − β1ρ1 + β2ρ2, (8.20a)

∂ρ2

∂t
= rρ2

(

1− ρ1 + ρ2

ρ
∗

)

+ β1ρ1 − β2ρ2. (8.20b)

We have used the logistic growth for cell proliferation, and the first two moments of
the dispersal kernel are m1 =

∫

rw(r)dr and m2 =
∫

r2
w(r)dr .

We assume that the initial tumor is a sphere of radius R0 with the following
distribution:

ρk(r, 0) =
{

Ak, r ≤ R0,
k = 1, 2.0, r > R0,

(8.21)

where the positive constants A1 and A2 represent the stable uniform stationary val-
ues of the densities ρ1 and ρ2, respectively. For the system (8.20) these are given
by

A1 = ρ
∗ β2

β1 + β2
, A2 = ρ

∗ β1

β1 + β2
. (8.22)

Using the Hamilton–Jacobi formalism, we obtain the Hamilton–Jacobi equation

m1 p +
m2

2
p2 − H + β1

K̂ (H)

[

1− β1β2

(H + β2 − r)(H + β1)

]

= 0. (8.23)
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The invasion velocity is given by (4.46):

v = m2

m1
min

H∈(H∗
,∞)

H
√

1+ 2m2
m1

ξ(H)− 1
, (8.24)

where

ξ(H) = H + β1

K̂ (H)

[

1− β1β2

(H + β2 − r)(H + β1)

]

, (8.25)

and H∗ is such that ξ(H∗
) = 0, i.e.,

H∗ = 1

2

√
(

β1 + β2
)2 + r2 + 2r

(

β1 − β2
)− 1

2

(

β1 + β2 − r
)

. (8.26)

An alternative description for the two phenotypes of glioma cells is the following
balance equations obtained directly from Chap. 3:

ρ1 (x, n + 1) = h11

∫

R

ρ1 (x − z, n) w1 (z) dz + h21ρ2 (x, n) , (8.27a)

ρ2 (x, n + 1) = h22 f2
(

ρ2 (x, n)
)+ h12ρ1 (x, n) . (8.27b)

Here the mechanism of switching between the two phenotypes is described by the
transition matrix H = (hi j ) given in (3.21). One can easily take into account asym-
metrical motion of cells due to nonuniform nutrient concentration (chemotaxis) and
the gradient of cell adhesion sites (haptotaxis), etc., by allowing both w1 and H to
depend on the nutrient concentration c (x, n) and ρi (x, n).

8.2 Virus Dispersal in Bacterial Colonies

The space–time dynamics of bacteriophages in bacterial colonies can be described
by considering two mechanisms: (i) virus dispersal through the heterogeneous
medium composed of the bacterial colony and the substrate and (ii) interactions
between viruses and bacteria [487, 489, 138]. The life cycle of bacteriophages is a
well-established topic in microbiology. Viruses are very simple molecular structures
that are not able to reproduce by themselves. They need to hijack the reproductive
machinery of bacteria to replicate their own genetic material. If the cycle ends with
the destruction of bacteria, it is known as a lytic cycle, which is the case we analyze
here. From a biological point of view, the lytic cycle is very complex and involves
a large number of biochemical reactions. For our purposes it suffices to lump
them together in two main reactions: adsorption, with rate k1, and replication, with
rate k2,
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V+ B
k1−→ I, (8.28)

I
k2−→ Y V. (8.29)

Here V, B, and I denote virus, host bacteria, and infected bacteria, respectively. Y
is the production or yield of new viruses per host. We focus on the relevant factors
by excluding negligible reactions, such as virus desorption and their adsorption to
infected hosts. Consider a homogeneous medium composed initially of host bacteria
and a few free viruses. The adsorption process can be described by the classical
kinetic equations

dρV

dt
= −k1ρVρB, (8.30a)

dρB

dt
= −k1ρVρB, (8.30b)

where ρV and ρB are the number densities of virus and host bacteria at time t . One
virus is removed for each adsorbed bacterium, i.e., dρV/dt = dρB/dt , which can be
integrated to yield ρV(t)− ρV(0) = ρB(t)− ρB(0). This relation can be substituted
into (8.30), and integration leads to

g(ρV) ≡ ln

(
ρV + C

ρV

)

− ln

(
ρV(0)+ C

ρV(0)

)

= Ck1t, (8.31)

where C = ρB(0)− ρV(0). Both parameters C and k1 can be estimated from exper-
imental data for adsorption between virus and bacteria.

The replication process begins when the virus injects its DNA into the bacterium.
The latter replicates the viral DNA and new viruses are formed. They are released
into the medium by bursting the bacteria and the lytic cycle ends. Replication phe-
nomena match very well a logistic growth of viruses, and we assume

dρV

dt
= k2ρV

(

1− ρV

ρV
max

)

. (8.32)

If replication begins at t = 0 and if we define τ as the time elapsed from the adsorp-
tion to the replication of ρV

max
/2 viruses, the solution of (8.32) reads

ρV(t) =
ρV

max

1+ e−k2(t−τ)
, (8.33)

where k2 is the rate of release of the new viruses. The time τ is a measure of the
lag time between the beginning of replication and the viruses’ release and coincides
with the characteristic time spent by viruses between two successive jumps. The
conservation of the number of viruses and infected bacteria implies ρV + YρI =
ρV

max = YρI
max, which can be substituted into (8.32) to yield
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dρV

dt
= Yk2ρI

(

1− ρI

ρI
max

)

, (8.34a)

dρI

dt
= −k2ρI

(

1− ρI

ρI
max

)

. (8.34b)

We illustrate how to estimate the above parameters. The specific case we consider
here is the interaction between the virus T7 and the bacterium Escherichia coli.
The adsorption rate k1 can be obtained by fitting g(ρV) to experimental data [406]
as shown in the inset of Fig. 8.2. The fit yields C = 1.39 × 108 ml−1 and k1 =
(1.29 ± 0.59) × 10−9 ml/min. The function (8.33) is called the one-step growth
and is fitted to the experimental results [486] for replication of T7 inside E. coli.
The fit, illustrated in the main part of Fig. 8.2, provides Y = 34.5, τ = 18.4 min,
and k2 = 1.39 min−1. The kinetic equations for viruses, host bacteria, and infected
bacteria can be written as

dρV

dt
= FV ≡ −k1ρVρB + Yk2ρI

(

1− ρI

ρI
max

)

, (8.35a)

dρB

dt
= FB ≡ −k1ρVρB, (8.35b)

dρI

dt
= FI ≡ k1ρVρB − k2ρI

(

1− ρI

ρI
max

)

. (8.35c)

The system (8.35) has four steady states; we are interested in only two of them.
The state (ρV, ρB, ρI) = (0, ρ∗B, 0) is the infection-free state which could represent
an initial state, ρB(0) = ρ

∗
B. Provided that Y > 1, this state is always unstable.

Fig. 8.2 Experimental results (symbols) and theoretical predictions (solid curves) for adsorption
and replication processes between T7 and E. coli. The inset depicts the adsorption process and the
main part of the figure corresponds to virus release after adsorption. Reprinted with permission
from [138]. Copyright 2002 by the American Physical Society
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The state (ρV, ρB, ρI) = (ρ
∗
V, 0, 0) is the final state, is stable, and represents a

completely invaded state where all the host cells were killed producing new viruses.
We are interested in studying a front of invasion connecting both states. Since lysis
of bacteria results in a precipitous decline in the culture turbidity, virus population
growth produces circular clearings called plaques. The growth of these plaques in
size is not only a result of the kinetics but also due to the dispersal movement of
the viruses within the bacterial culture. To derive an equation for virus dispersal in
agar, we start with the mesoscopic balance equation for the virus density at point x
at time t obtained from Model C (see Sect. 3.4.3) [121]:

ρV(x, t) = ρV(x, 0)Ψ (t)+
∫ t

0

∫

R
2
ρV(x− x′, t − t ′)ψ(x′, t ′)dx′dt ′

+
∫ t

0
FV(x, t − t ′)Ψ (t ′)dt ′, (8.36)

where, as above, ψ(x, t) is the PDF of performing a jump of length |x| after waiting
a time t , φ(t) is the waiting time PDF, and Ψ (t) is its survival probability. The
function FV(x, t) takes into account the kinetics of viruses at point x and is the right-
hand side of (8.35a). We assume again that the jump length PDF is given by a 2D
Gaussian distribution. The one-step growth curve, or more precisely its derivative,
suggests that the waiting time PDF should be of the form φ(t) = (t/τ 2

)e−t/τ , where
τ denotes the characteristic waiting time between jumps. Note that we intentionally
employ the same notation for this time as for the half reproduction time for viruses.
This reflects the fact that viruses reproduce only in the sedentary stage. With these
assumptions, (8.36) yields, after Fourier–Laplace transformation and rearrangement
of terms, the following RT equation:

τ

2

∂
2
ρV

∂t2
+ ∂ρV

∂t
= D

∂
2
ρV

∂r2
+ FV +

τ

2

∂FV

∂t
, (8.37)

where r the radial coordinate. The diffusion coefficient D has to take into account
that virus dispersal takes place in a medium where movement is hindered by the
presence of a suspension of spheroids, the host bacteria. The effect of host bacteria
on the movement of viruses is twofold. They constitute impenetrable obstacles and
they are centers of adsorption. We employ Fricke’s formula to account for these
effects:

D = D∗ 1− f

1+ f/ς
, (8.38)

where f = ρB(0)/ρB
max is the concentration of bacteria relative to the maximum

possible value for a fixed nutrient concentration, and ρB(0) = ρ
∗
B is the initial

concentration of host bacteria, previous to the arrival of viruses. The diffusion coef-
ficient in the absence of host bacteria is denoted by D∗, which is approximately
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4×10−8 cm2/s for T7 in agar, and ς is a parameter that accounts for the shape of
bacteria and is equal to 1.67 for E. coli.

The set of partial differential equations (8.37), ∂ρB/∂t = FB, and ∂ρI/∂t = FI
form a closed system. We calculate the velocity of a propagating front, connecting
the state (0, ρ∗B, 0) to (ρ

∗
V, 0, 0) from initial conditions with compact support, from

the Hamilton–Jacobi equation in dimensionless units:

[
τk2

2
H2 + H

(

1+ τk2

2
κ

)

− p2 + κ

]

(H + 1)− Yκ

(

1+ τk2

2
H

)

= 0, (8.39)

with κ = k1 f ρ
max
B /k2. To obtain the velocity in dimensioned units, we must mul-

tiply the velocity given by (4.46) by the factor
√

Dk2. We plot the results obtained
from (4.46) and (8.39) for the two extreme values of k1 (solid and dashed lines)
together with the parabolic case where τ = 0 in Fig. 8.3. Symbols represent the
experimental results [487] for ρ

max
B =107 ml−1 and ρ

max
B =108 ml−1. Figure 8.3

shows that the hyperbolic model agrees considerably better with the experimental
data than the parabolic model. This result demonstrates the importance of a non-
Markovian waiting time PDF in the model. Approximate solutions for the front
velocity were also obtained by considering the small parameter ε = k1ρ

max
B /k2 ∼

10−3−10−2 [330]. These results can be useful as an alternative way to characterize
mutant virus strains in terms of its front velocities [1, 2].

8.3 Propagation in Spiny Dendrites

Spiny dendrites are essential elements of most brain regions because they form a
surface for receiving synaptic inputs. For the Purkinje cells of the cerebellar cortex,
over 90% of their excitatory synapses are located on dendritic spines. The latter play
a very important role in regulating neuronal activity [179, 321]. The heads of spines
have an active membrane, and as a consequence, spiny dendrites can sustain the
propagation of an action potential with a rate that depends on the spatial distribution
of spines. Abnormalities in dendritic spine populations, e.g., decreased spine den-
sity, can result in cognitive disorders, such as autism, mental retardation, and fragile
X syndrome [321]. A significant amount of theoretical work has been devoted to
study the interaction of spines with dendrites on the macroscopic level with so-
called cable models. Baer and Rinzel [21] proposed a cable theory for excitable
spiny dendrites and found that the spread of local excitation depends strongly on the
spine-stem resistance. Other extensions of that work take into account the dynamic
structure of the spines and their changes in response to synaptic activity [481].

The development of confocal microscopies and other techniques rendered feasible
the study of transport and biochemical reactions on the microscopic level of a single
spine and a parent dendrite [426, 370, 80]. Several models exist for particle trans-
port and chemical reactions inside biological microdomains [386, 200, 199, 59, 85].
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Fig. 8.3 Plaque growth velocity as a function of the relative bacteria concentration for ρ
max
B =

107ml−1 (panel a) and ρ
max
B = 108ml−1 (panel b). The solid curves correspond to k1 = 0.70×10−9

ml/min and the dashed curves to k1 = 1.88 × 10−9 ml/min. In panel b, the two lower curves are
not distinguishable from each other at the present scale, implying that the uncertainty in the value
of k1 has a little effect on the predicted velocity. Reprinted with permission from [138]. Copyright
2002 by the American Physical Society

Santamaria et al. [375] found that the transport of biologically inert particles, fluo-
rescein dextran, in spiny dendrites is very slow compared with standard diffusion.
The mean-square displacement is 〈x2

(t)〉 ∼ tγ with γ < 1 [298, 379]. The anoma-
lous diffusion appears to be caused by the dendritic spines acting as the traps for
the particles. We present here a mesoscopic model for the transport and biochemi-
cal reactions inside a population of spines and dendrites [122]. The morphology of
spiny dendrites is very complex; the distances between the spines and their sizes and
shapes are randomly distributed [179, 362]. The model allows us to deal with the
morphological diversity of dendritic spines via the transparent formalism of waiting
time distributions.
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8.3.1 Mesoscopic Model

The main ingredients of the model are as follows. Inside a dendrite with a uniform
surface spine density ns , particles perform Brownian motion with a constant drift
v along the dendrite and a diffusion coefficient D. This describes, e.g., the motion
of an overdamped ion under the action of an electric field E such that v = μE ,
where μ is the ion mobility. After a random time τd , distributed according to the
PDF φ1(τ ), the particle hits the neck of a spine on the surface of the dendrite. It is
then trapped inside the spine for a random time τs . The PDF for the sojourn time τs

is φ2(τ ). During this time, an irreversible chemical reaction C
β−→ Cb takes place,

where β is the rate of removing particles by buffers and pumps inside spines. After
the random time τs , the particle is released back into the parent dendrite through
the spine neck. Measurements of the Ca2+ flux out of spines show that spine necks
slow down the transport of ions up to a factor 102 compared with free diffusion
[370]. Therefore it is reasonable to assume a power-law distribution for the waiting
time PDF φ2(τ ), which also accounts for heterogeneous spine–dendrite transport
coupling [49]. The PDF φ1(τ ) for the random time τd can be derived from the
escape problem for diffusion in bounded domain with absorbing sites, spines, on the
surface [386]. If a cylindrical dendrite of length L and radius R has just one spine
with a neck radius a � R, then the survival probability

∫∞
t φ1(s)ds is exponentially

distributed for large t and the mean escape time
〈

τd
〉

is πR2L/4aD [386, 85]. To
be specific, we consider two distributions, the exponential distribution, φ1(t) =
μ1 exp

(−μ1t
)

, which implies Markovian behavior, and the Gamma distribution,

φ1(t) = ν
2
1 t exp(−ν1t), which corresponds to non-Markovian behavior. For both

cases we assume that the parameters μ1 and ν1 are functions of the linear spine
density nl = 2πRns , that is μ1 = nlμ

0
1 and ν1 = nlν

0
1 .

We derive the balance equations for the density of particles inside a single
dendrite ρ1 and the density of particles inside a single spine ρ2 starting with the
stochastic model for a single particle delineated above. Let ρ0

1 and ρ
0
2 be the initial

densities of particles in the dendrite and the spine. If j1(x, t) denotes the number of
particles arriving at point x in a dendrite at time t through a single spine stem and
j2(x, t) is the number of particles arriving at point x in a single spine at time t , see
Fig. 8.4, the balance equations for the densities ρ1 and ρ2 can be written as follows:

for a dendrite:

ρ1(x, t) = Ψ1(t)Qtρ
0
1(x)+ nl

∫ t

0
Ψ1(t − t ′)Qt−t ′ j1(x, t

′
)dt ′, (8.40a)

for a single spine:

ρ2(x, t) = Ψ2(t)e
−βt

ρ
0
2(x)+

∫ t

0
Ψ2(t − t ′)e−β(t−t ′) j2(x, t

′
)dt ′. (8.40b)

Here we introduced the transport operator Qt , see also (3.248),
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Fig. 8.4 Spine–dendrite interaction. Reprinted with permission from [122]. Copyright 2008 by the
American Physical Society

Qtρ
0
1(x) =

∫

R

p(x, t |x ′)ρ0
1(x

′
)dx ′, (8.41a)

Qt−t ′ j1(x, t
′
) =

∫

R

p(x, t − t ′|x ′) j1(x ′, t ′)dx ′, (8.41b)

where p(x, t |x ′) is the transition PDF for a particle that starts at point x ′ in a dendrite
and ends up at point x at time t . Equation (8.40a) expresses the density of particles
at point x in a dendrite at time t as a sum of two terms. The first term Ψ1(t)Qtρ

0
1(x)

is the contribution of those particles that are initially located inside the dendrite and
diffuse along it from t = 0 up to time t without moving into spines. The second
term represents those particles that arrived in the dendrite from spines at point x ′
at time t ′ and diffuse to reach point x without switching to spines. The functions
Ψ1(t) and Ψ2(t) are the survival probabilities of particles inside dendrites and spines,
respectively. Equation (8.40b) is the particle balance equation in a single spine. The
function e−βt represents the fraction of free particles. The first term Ψ2(t)e

−βt
ρ

0
2(x)

is the contribution from particles initially located in a spine that remain free up to
time t without moving into the dendrite.

We also need the balance equations for j1(x, t) and j2(x, t):

for a dendrite:

j1(x, t) = φ2(t)e
−βt

ρ
0
2(x)+

∫ t

0
φ2(t − t ′)e−β(t−t ′) j2(x, t

′
)dt ′, (8.42a)

for a single spine:

j2(x, t) = φ1(t)Qtρ
0
1/nl +

∫ t

0
φ1(t − t ′)Qt−t ′ j1(x, t

′
)dt ′. (8.42b)
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The first term in (8.42a) corresponds to the number of particles initially located in
the spine that arrive at the dendrite at time t due to transport through the spine neck.
The second term represents those particles that arrived at spines at point x at time
t ′ and spent time t − t ′ there before moving into the dendrite at time t . Equation
(8.42b) is derived in a similar manner, but we must take into account the motion of
particles along the dendrite. We consider v = const in the following. For this linear
problem, we can obtain an explicit expression for the PDF:

p(x, t |x ′) = (4πDt)−1/2 exp
[

−(x − x ′ − vt)2
/4Dt

]

. (8.43)

Using the Fourier–Laplace transforms (x, t) → (k, s), we derive from the balance
equations (8.40) and (8.42) expressions for s ˆ̃ρi (k, s) − ρ̃

0
i (k). Using the Fourier–

Laplace inversion formula, we obtain a system of integro-differential equations,

∂ρ1

∂t
+ v

∂ρ1

∂x
= D

∂
2
ρ1

∂x2
− nl J [ρ1, ρ2], (8.44a)

∂ρ2

∂t
= J [ρ1, ρ2] − βρ2, (8.44b)

with the spine–dendrite interaction term

J [ρ1, ρ2] = −
∫ t

0
e−βt ′a2(t

′
)ρ2(x, t − t ′)dt ′

+ n−1
l

∫ ∞

−∞

∫ t

0
p(x ′, t ′|z)a1(t

′
)ρ1(x − x ′, t − t ′)dt ′dx ′. (8.45)

The Laplace transforms of the kernels are given by âi (s) = φ̂i (s)/Ψ̂i (s), i = 1, 2.
Note that this model involves two equations, one for the freely moving particles
and one for the particles trapped in the spines, whereas the standard CTRW model
describes the trapping as a temporal memory of the moving particles. J [ρ1, ρ2] is
the number of particles per unit time flowing between the dendrite and a single spine.
The first term on the RHS of (8.45) describes the flux of particles from a single spine
through the spine neck into a parent dendrite. The second term represents the flux
of particles from the dendrite into the spine. The spine–dendrite coupling is crucial
for the propagation of an action potential along spiny dendrites, since there is no
direct communication between neighboring spines. It turns out that this interaction
is far from trivial and cannot be easily found using a phenomenological approach.
In general, both terms in (8.45) are nonlocal in time. Equations (8.45) implies that
the effective memory kernel in the first term depends on the chemical reaction in
spines with decay rate β. The second term of (8.45) is nonlocal in space. Note
that this effect is not due to long-range jumps of particles inside the dendrite. This
nonlocal behavior can lead to anomalous transport of particles in dendrites as we
show below. If the probability density functions φ1(t) and φ2(t) are exponential
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with the rates μ1 =
〈

τd
〉−1 and μ2 =

〈

τs
〉−1, then the memory kernels ai (t) are delta

functions and the system (8.44) reduces to standard reaction–diffusion equations
with the interaction term

J [ρ1, ρ2] = μ
0
1ρ1 − μ2ρ2, (8.46)

where μ
0
1 = μ1/nl . This Markovian model corresponds to the phenomenological

approach for spine–dendrite interaction [59]. Consider now the non-Markovian case
where both waiting time PDFs φi are Gamma distributions φi (t) = ν

2
i te

−νi t . Then
the interaction memory kernels are ai (t) = ν

2
i e−2νi t , i = 1, 2. This formula shows

that the effective memory kernel in the first term of (8.45) is e−(2ν1+β)t , with an
effective delay time (2ν1 + β)

−1. When the drift is zero, the second term can be

written in Fourier space as ν
2
1
∫ t

0 e−(2ν1+Dk2
)t ′
ρ̃1(k, t − t ′)dt ′. This implies that the

effective delay time (2ν1 + Dk2
)
−1 depends on the diffusion in the dendrites and

the density of spines, since ν1 = nlν
0
1 .

8.3.2 Biologically Inert Particles: Anomalous Diffusion

The transport of inert particles, fluorescein dextran, in spiny dendrites of cerebel-
lar Purkinje cells is subdiffusive [375], i.e., 〈x2

(t)〉 ∼ tγ, where 0 < γ < 1.
The model formulated in Sect. 8.3.1 predicts this subdiffusive behavior. For sim-
plicity we assume that the waiting time PDF for the dendrite φ1(t) is exponential.
Experimental evidence suggests a power-law distribution for the waiting time PDF
φ2(t) ∼ (t/τ)−1−γ as t → ∞, which reads in Laplace space φ̂2(s) = 1 − (τ s)γ

[298, 379]. The Laplace transform of the mean squared displacement is given by

̂〈x2〉(s) = − d2 ˆ̃ρ
dk2

(k, s)

∣
∣
∣
∣
∣
k=0

. (8.47)

Here ˆ̃ρ(k, s) = ˆ̃ρ1(k, s) + nl ˆ̃ρ2(k, s) is the Laplace–Fourier transform of the total
density of particles. We obtain from (8.40), (8.41), and (8.42)

ˆ̃ρ(k, s) = ρ̃
0
1(k)

Ψ̂
k
1 (s)+ Ψ̂2(s + β)ϕ̂

k
1(s)

1− ϕ̂2(s + β)φ̂
k
1(s)

+ nl ρ̃
0
2(k)

Ψ̂2(s + β)+ φ̂2(s + β)Ψ̂
k
1 (s)

1− φ̂2(s + β)φ̂
k
1(s)

, (8.48)

where Ψ̂
k
1 (s) = Ψ1(s+ikv + Dk2

) and φ̂
k
1(s) = φ̂1(s+ikv + Dk2

). In particular,
when β = 0, v = 0 and ρ

0
2(x) = 0, the mean squared displacement is found to be
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〈x2
(t)〉 = 2

�(1+ γ )
D
〈

τd
〉
(
t

τ

)γ

, (8.49)

as t → ∞. In the Markovian case with PDFs φi (t) = μi exp
(−μi t

)

, we obtain

the standard behavior, 〈x2
(t)〉 = 2Deqt with the effective diffusivity Deq = Dγ2

(

μ1+μ2
)−1. In the anomalous case, (8.49) implies that the effective diffusion coef-

ficient goes to zero.

8.3.3 Kinetics of Particle Decay in Spiny Dendrites

While anomalous switching slows down the transport of particles in dendrites
(8.49), it leads to a higher rate of particle decay than in the Markovian case. This is
illustrated in Fig. 8.5, where the decay of particles in the anomalous case (γ = 0.1)
is compared with that in the non-Markovian case (Gamma distribution) and the stan-
dard Markovian case (γ = 1). One can see that the decrease of diffusion of particles
toward the parent dendrite, decrease of the exponent γ, leads to a faster decay of
the total number of particles ρ(t) = ∫(ρ1 + nlρ2

)

dx . From (8.48), ρ(t) ∼ t−γe−βt

as t → ∞. This explains the effect of limited diffusion of Ca2+ along dendrites

γ

γ

γ

γ

Fig. 8.5 Kinetics of particles decaying in the spine–dendrite system ρ(t) (main figure) and in
spines ρ2(t) (inset). D = 0.2 μm2/ms, 〈τs〉 = 〈τd 〉 = 1 ms, β = 0.1 ms−1, nl = 10 μm−1.
The initial conditions are ρi (x, 0) = δ(x)/2, i = 1, 2. Reprinted with permission from [122].
Copyright 2008 by the American Physical Society
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observed in experiments [375]. The decay of ρ2 is also depicted in Fig. 8.5. It
shows that transport equilibration is slow, which is important for the accumulation
of plasticity-inducing signals inside spines [49]. The phenomenological models for
spine–dendrite interaction assume that the ion current I passing through the spine
necks is proportional to current voltage difference between the spines and dendrite
[21]. This model shows that particles flux through the spine’s neck is nonlocal in
time and space, see (8.45).

Exercises

8.1 Obtain the velocity of the invasion front (8.6) and the recovery front (8.7) for
the tumor–host interaction model given by (8.1).

8.2 Obtain the integro-differential equations for glioma invasion (8.12) from the
balance equations (8.10).

8.3 Find the Hamilton–Jacobi equation for the glioma invasion front (8.23) from
(8.20) following the same procedure as in Sect. 4.6.1.

8.4 Find the Hamilton–Jacobi equation for the plaque growth (8.39) from the equa-
tions (8.37) and

∂ρB

∂t
= −k1ρBρV, (8.50a)

∂ρI

∂t
= k1ρBρV − k2ρI

(

1− ρI

ρI
max

)

, (8.50b)

for the densities of viruses, host bacteria, and infected bacteria.
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Spatial Instabilities and Patterns



Chapter 9
Persistence and Extinction of Populations
in Finite Domains

We now turn our attention to steady states of reaction–transport systems. We focus
first on steady states that arise in RD models on finite domains. Such models are
important from an ecological point of view, since they describe population dynam-
ics in island habitats. The main problem consists in determining the critical patch
size, i.e., the smallest patch that can minimally sustain a population. As expected
intuitively, the critical patch size depends on a number of factors, such as the pop-
ulation dynamics in the patch, on the nature of the boundaries, the patch geometry,
and the reproduction kinetics of the population. The first critical patch model was
studied by Kierstead and Slobodkin [228] and Skellam [414] and is now called the
KISS problem. A significant amount of work has focused on systems with partially
hostile boundaries, where individuals can cross the boundary at some times but not
at others, or systems where individuals readily cross the boundary but the region
outside the patch is partially hostile, or a combination of the above. In this chapter
we deal with completely hostile boundaries and calculate the critical patch size for
different geometries, reproduction processes, and dynamics.

9.1 Critical Patch Size

Let L be the patch size. Throughout this chapter we consider the RD equation on
the interval [0, L] with Dirichlet boundary conditions:

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ r F(ρ), (9.1a)

ρ(0, t) = ρ(L , t) = 0, (9.1b)

ρ(x, 0) = ρ0(x), F ′(0) > 0. (9.1c)

Since the critical patch size corresponds to the borderline between population
extinction and survival, the population density ρ is small and we can linearize (9.1)
about ρ(x) ≡ 0, the state of extinction. If ρ = 0 is stable, the population goes to
extinction. If ρ = 0 is unstable, the population persists or survives. Near ρ = 0

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
DOI 10.1007/978-3-642-11443-4_9, C© Springer-Verlag Berlin Heidelberg 2010

269



270 9 Persistence and Extinction of Populations in Finite Domains

there are two competing effects, growth and loss from the boundaries. Linearizing
(9.1) about ρ(x) = 0, we obtain

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ r F ′(0)ρ, (9.2a)

ρ(0, t) = ρ(L , t) = 0, (9.2b)

ρ(x, 0) = ρ0(x), F ′(0) > 0. (9.2c)

Since the problem is linear, it is reasonable to look for solutions of the form

ρ(x, t) = er F
′
(0)t u(x, t). We substitute this ansatz into (9.2) and find that the u(x, t)

obeys

∂u

∂t
= D

∂
2u

∂x2
, (9.3a)

u(0, t) = u(L , t) = 0, (9.3b)

u(x, 0) = ρ0(x). (9.3c)

Equation (9.3) is the heat equation with homogeneous Dirichlet boundary condi-
tions. Its solution is well known, and the solution of (9.2) is given by

ρ(x, t) =
∞
∑

k=1

Ak exp

{[

r F ′(0)− D

(
πk

L

)2
]

t

}

sin

(
πkx

L

)

, (9.4)

where the coefficients Ak are determined by the Fourier series expansion of the
initial condition ρ0(x).

The trivial solution ρ(x) ≡ 0 is unstable, i.e., the population grows, if λk ≡
r F ′(0)−D (πk/L)2

> 0 for some k. Since the “growth” rates λk decrease monoton-
ically with k, the dominant mode is the long-wavelength mode k = 1. It determines

the fate of the population, and the condition λ1 < 0, i.e., L < π

√

D/r F ′(0),
ensures extinction of the population. The critical patch size, commonly referred to
as the KISS size, is then given by

Lc = π

√

D

rF ′(0)
. (9.5)

If the patch size L is less than Lc, ρ(x, t) → 0 as t → ∞. No nontrivial steady
state develops, and the population collapses from its initial condition. Increasing
the patch size leads to a bifurcation. The state ρ(x) = 0 loses its stability at the
bifurcation point Lc (a detailed analysis of the bifurcation diagram can be found
in the next section) and ρ starts to grow with time. The growth saturates due to
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nonlinear effects, and ρ(x, t) tends to a steady state, a spatially nonuniform solution
ρ(x), that according to (9.1) is determined by

D
d2
ρ

dx2
+ r F(ρ) = 0, (9.6a)

ρ(0) = ρ(L) = 0. (9.6b)

We are interested only in those solutions for which ρ(x) ≥ 0. The trivial solu-
tion ρ(x) ≡ 0 satisfies (9.6) for any value of L . Due to the spatial symmetry of
(9.1) and (9.6), we expect the solutions to be symmetric in x about the midpoint
x = L/2. Since ρ = 0 at the boundaries, we can assume that the population
density of nontrivial steady states reaches its maximum value ρm at the midpoint,
[dρ(x)/dx](L/2) = 0.

Fig. 9.1 Sketch of a typical nontrivial steady state

In Fig. 9.1 we plot a typical nontrivial steady state. Multiplying (9.6) by dρ/dx
and integrating with respect to x from 0 to L , we obtain

D

2

(
dρ

dx

)2

+ rϕ(ρ) = rϕ(ρm), (9.7)

where ϕ(ρ) = ∫ ρ

0 F(s)ds. We separate the variables in (9.7) and integrate with
respect to x from 0 to L/2 and find

L =
√

2D

r

∫ ρm

0

dρ
√

ϕ(ρm)− ϕ(ρ)
, (9.8)
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which can be rewritten in a more suitable form by making the substitution z =
ρ/ρm :

L =
√

2D

r
ρm

∫ 1

0

dz
√

ϕ(ρm)− ϕ(zρm)
. (9.9)

This formula is usually referred to as a time map and allows us to determine, implic-
itly, ρm as a function of L . The critical patch size can be recovered from (9.9) by
taking the limit Lc = limρm→0 L . To do so, we carry out a Taylor expansion around
ρm = 0. We write

ϕ(ρm)− ϕ(zρm) =
1

2
F ′(0)ρ2

m(1− z2
)+ O(ρ

3
m). (9.10)

Equations (9.9) and (9.10) yield

Lc = 2

√

D

rF ′(0)

∫ 1

0

dz
√

1− z2
= π

√

D

rF ′(0)
, (9.11)

recovering (9.5).
We now formulate a variational characterization of the critical patch size to deter-

mine the relation between L and ρm . To this end, it is convenient to change the origin
to L/2, i.e., we set x → x − L/2. Let y = 2x/L − 1, then

D
d2
ρ

dy2
+ λF(ρ) = 0, (9.12a)

ρ(0) = ρm, ρ(1) = 0, (9.12b)

dρ

dy

∣
∣
∣
∣
y=0

= 0, (9.12c)

where the eigenvalue λ, λ = L2r/4D, has to be determined. Let g(ρ) be an arbitrary,
nonnegative function such that g(0) = 0 and g′(ρ) > 0, and q ≡ −ρ

′
(y) > 0 for

y ∈ (0, 1). Here and below, the prime denotes the derivative with respect to the
argument of the function. Then (9.12) reads

q
dq

dρ
+ λF(ρ) = 0, q(ρm) = 0, and q(0) > 0. (9.13)

Multiplying (9.13) by g and integrating with respect to ρ, we obtain

1

2

∫ ρm

0
q2

(ρ)g′(ρ)dρ = λ

∫ ρm

0
g(ρ)F(ρ)dρ. (9.14)
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For fixed g(ρ), we consider the functional

Jg[ρ] ≡
1

2

∫ ρm

0
q2

(ρ)g′(ρ)dρ = 1

2

∫ 1

0
φ(ρ, ρ

′
)dy, (9.15)

where φ(ρ, ρ
′
) ≡ −[ρ′(y)]3g′(ρ). The Euler–Lagrange equation

d

dz

(
∂φ

∂ρ
′
)

− ∂φ

∂ρ
= 0 (9.16)

yields 3dq/q = −[g′′(ρ)/g′(ρ)]dρ. Integration results in

q3g′(ρ) = K , (9.17)

where K is an integration constant to be determined. We substitute (9.17) into (9.15)
to obtain Jg[ρ] ≥ min Jg[ρ] = K/2 and finally

λ ≥ K/2
∫ ρm

0 g(ρ)F(ρ)dρ
. (9.18)

Once the trial function g(ρ) is selected according to the conditions g(ρ) ≥ 0,
g(0) = 0, and g′(ρ) > 0, we calculate K by integrating (9.17) and obtain from
(9.18)

λ = max
g(ρ)

[∫ ρm
0 g′(ρ)1/3dρ

]3

∫ ρm
0 g(ρ)F(ρ)dρ

. (9.19)

We omit here the proof that there exists a function g that maximizes the above
quantity, i.e., for which the equality in (9.18) holds, and refer the reader to [35] and
[281] for details.

If the nonlinear terms of the reaction function are small, we can choose the g that
corresponds to the linear case where F(ρ) = ρ. In this case, (9.12) reads ρ′′ +λρ =
0, with ρ(0) = ρm and ρ

′
(0) = 0. This is exactly the equation for a linear oscillator,

with
√
λ as the frequency and y as the time. This equation is easily solved, ρ(y) =

ρm cos(y
√
λ). The third boundary condition ρ(1) = 0 implies

√
λ = π/2. We

now determine which g(ρ) provides the correct result for λ. Since q ≡ −ρ
′
(y) =

(

ρmπ/2
)
√

1− (ρ/ρm
)2, (9.17) yields g′(ρ) ∼ q−3 ∼

[

1− (ρ/ρm
)2
]−3/2

, so that

for the linear case

g(ρ) = ρ
√

1− (ρ/ρm
)2

. (9.20)
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Choosing this form (9.20) of g for the nonlinear system (9.12) and integrating (9.17),
we find K = (πρm/2

)3. Inserting the latter result into (9.18), we obtain the relation
L(ρm) from the variational principle:

L2 ≈ D

4r

(

πρm
)3

⎡

⎣

∫ ρm

0

ρF(ρ)dρ
√

1− (ρ/ρm
)2

⎤

⎦

−1

, (9.21)

and with z = ρ/ρm ,

L2 ≈ D

4r
π

3
ρm

⎡

⎣

∫ 1

0

zF(zρm)dz
√

1− z2

⎤

⎦

−1

. (9.22)

The critical patch size is obtained by taking the limit ρm → 0 in (9.22):

L2
c ≈ lim

ρm→0
L2 = Dπ

3

4r F ′(0)

⎡

⎣

∫ 1

0

z2dz
√

1− z2

⎤

⎦

−1

= Dπ
2

r F ′(0)
, (9.23)

which is identical with (9.5). In summary, there exists a nonuniform stationary solu-
tion of the RD equation (9.1) if L > Lc. This solution coexists with the trivial
solution ρ(x) ≡ 0. What are the stability properties of these solutions? The stability
of the trivial solution was analyzed at the beginning of this section. The stability
analysis of the nontrivial steady state is more difficult.

9.2 Bifurcation Diagrams: Stability of Spatial Patterns

Some authors used subsolutions, supersolutions, and comparison theorems to ana-
lyze the stability of the nontrivial steady state ρ(x) [257]. For the Fisher equa-
tion, Skellam’s linear stability analysis about ρ(x) can be used [414]. If we set
ρ(x, t) = ρ(x) + δρ(x, t) and consider the linearization of (9.1) about ρ(x), we
obtain

∂δρ

∂t
= r F ′(ρ)δρ + D

∂
2
δρ

∂x2
, (9.24a)

δρ(0, t) = δρ(L , t) = 0, (9.24b)

for perturbations with appropriate initial conditions. Equation (9.24) can be solved
via separation of variables, δρ(x, t) = S(x)T (t). The temporal equation reads

dT

dt
= −μnDT, (9.25)
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where −μn is the separation constant. The spatial equation reads

d2S

dx2
+
[

μn +
r

D
F ′(ρ)

]

S = 0, (9.26a)

S(0) = S(L) = 0. (9.26b)

The explicit form of the nontrivial steady state ρ(x) is generally not known, which
presents a difficulty in dealing with (9.26). However, (9.26) forms a regular Sturm–
Liouville problem, and the generic properties of its solutions are well known. The
spectrum of (9.26) consists of a discrete set of real eigenvalues μn , which form
an infinite ordered sequence μ1 < μ2 < μ3 < · · · with μn → ∞ as n → ∞.
The eigenfunction corresponding to the eigenvalue μ1, denoted by S1(x), has no
zeros in [0, L], i.e., does not change sign on [0, L]. Setting μn = μ1 and S = S1,
multiplying (9.26a) by ρ(x), integrating by parts, and using (9.6), we obtain

μ1 =
r

D

∫ L
0 S1(x)Q(ρ)dx
∫ L

0 S1(x)ρ(x)dx
, (9.27)

where Q(ρ) ≡ F(ρ)− ρF ′(ρ). For the logistic kinetic term, F(ρ) = ρ(1− ρ) and
Q(ρ) = ρ

2. Since ρ(x) > 0 and S1 does not change sign on (0, L), it follows that
μ1 and all of the other eigenvalues are positive which guarantees the stability of the
nonuniform steady state, see (9.25).

This conclusion is not quite as straightforward for other kinetic terms. For exam-
ple, if F(ρ) = ρ(1−ρ)(ρ−a), then Q(ρ) = ρ

2
(2ρ−1−a), which does not have a

definite sign on [0, L]. If Q(ρ) > 0 on [0, L], the nonuniform steady state is stable.
If Q(ρ) < 0 on [0, L], the nonuniform steady state is unstable. If Q(ρ) changes
sign on [0, L], no conclusion can be drawn and one has to resort to other tools. The
bifurcation diagram that emerges for the logistic case is that of a simple forward or
supercritical bifurcation at Lc as illustrated in Fig. 9.2. Below Lc the trivial steady
state is stable and the population dies out. Above Lc, the nonuniform steady state is
stable, the trivial state is unstable, and the population persists or survives.

Fig. 9.2 Schematic bifurcation diagram (L , ρm) for the logistic case
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9.3 Normal Solution Expansion

The method of the normal solution expansion provides a means to obtain the critical
patch size if F ′(0) > 0, the saddle–node bifurcation point if F ′(0) ≤ 0, and the
stability of the steady states. An analytical expression for the steady state can also be
obtained, but it is an approximate solution since we truncate the expansion. The nor-
mal solution expansion is a well-known method to obtain solutions of the nonlinear
Boltzmann equation [180, 359]. It assumes that the distribution function f(x, v, t),
describing the density of atoms or structureless molecules at position x with velocity
v at time t depends on time only through the velocity moments ρ(x, t), u(x, t),
Pi j (x, t), i.e., f(x, v, t) → f(x, v, ρ(x, t), u(x, t), Pi j (x, t)), where ρ, u, Pi j are
found by integrating f, fv, and fviv j , respectively, over the full velocity space. We
express the solution of (9.1) in terms of an appropriate complete set of orthogonal
spatial basis functions:

ρ(x, t) =
∞
∑

k=1

ϕk(t) sin

(
kπx

L

)

. (9.28)

The normal solution ansatz consists in the assumption that all the coefficients ϕk(t)
with k > 1 depend on time only through their functional dependence on ϕ1(t), i.e.,

ϕk(t) = ϕk
[

ϕ1(t)
] = αkϕ1(t)+ βkϕ1(t)

2 + · · · , k > 1. (9.29)

As is the case with the normal solutions of the Boltzmann equation, the ini-
tial conditions may be such that the solution obtained is not accurate for early
times (initial slip [180]). The validity of the normal solution method requires that
limϕ1→0 ϕk>1/ϕ1 = 0. We show below that this condition is satisfied. Since we
focus on the critical patch size, i.e., the size of the habitat where a transition from
population extinction to persistence occurs, we deal with the case where ρ is a small
quantity. We expect therefore that the solution will be well approximated outside an
initial time layer by ϕ1(t). The equations for ϕ j (t), with j = 1, 2, . . . , can be found
by substituting (9.28) into (9.1), multiplying by sin( jπx/L), and integrating over
the spatial domain.

We assume the kinetic term has the general form

F(ρ) = a1ρ + a2ρ
2 + a3ρ

3
. (9.30)

Kinetic functions of especial interest in population dynamics are logistic growth,
a1 = 1, a2 = −1, a3 = 0, depensation growth, a1 = a, a2 = 1 − a, a3 = −1,
and critical depensation growth, also known as Nagumo reaction or Allee effect,
a1 = −a, a2 = 1+ a, a3 = −1. The equation for ϕ1(t) is given by

dϕ1

dt
+
(

Dπ
2

L2
− ra1

)

ϕ1 =
8ra2

3π
ϕ

2
1 +

3ra3

4
ϕ

3
1 , (9.31)
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where we have neglected higher order terms, such as ϕ1ϕ2, ϕ1ϕ3,. . . , ϕ2ϕ3, . . . ,
ϕ

2
2 ,. . . . The equation for ϕ j (t), with j = 2, 3, . . . , reads

dϕ j

dt
+
(

Dj2
π

2

L2
− ra1

)

ϕ j = Mjra2ϕ
2
1 + N jra3ϕ

3
1 , (9.32)

where

Mj =
4

jπ

cos(π j)− 1

j2 − 4
, N j =

12

π

sin(π j)

( j2 − 9)( j2 − 1)
. (9.33)

Substituting the expansion ϕ j>1(t) = ϕ j>1
[

ϕ1(t)
] ≡ α jϕ1(t) + β jϕ1(t)

2 +
γ jϕ1(t)

3 + · · · (by construction β1 = γ1 = 0) into (9.32) and using (9.31), we
find α j>1 = 0 and

β j =
Mjra2

(

j2 − 2
)

Dπ
2

L2 + ra1

, (9.34)

γ j = r
N ja3 − 2β j M1a2

(

j2 − 3
)

Dπ
2

L2 + 2ra1

, (9.35)

by equating the coefficients of ϕ1, ϕ2
1 , ϕ3

1 , . . . on each side of (9.32). Then, ϕk>1(t) =
βkϕ1(t)

2+γkϕ1(t)
3+· · · , which implies ϕk>1/ϕ1 → 0 as ϕ1 → 0, and the approx-

imate solution of (9.1) reads

ρ(x, t) � ϕ1(t) sin
πx

L
+ ϕ1(t)

2
∑

m=2

βm sin
mπx

L

+ ϕ1(t)
3
∑

m=2

γm sin
mπx

L
. (9.36)

To find the stationary states, we set ϕ1(t) = ϕ
∗ = constant in (9.31). The solutions

are

ϕ
∗
1 = 0 (extinction), (9.37a)

ϕ
∗
± =

−M1a2 ±
√

M2
1a

2
2 − 4N1a3

(

a1 − Dπ
2

r L2

)

2N1a3
(survival), (9.37b)
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if a3 �= 0. If a3 = 0, then ϕ
∗
1 = 0 and ϕ

∗
± = −

(

a1 − Dπ
2

r L2

)
1

M1a2
. The stationary

state of (9.1) is given by

ρ(x) � ϕ
∗ sin

πx

L
+ (ϕ

∗
)
2
∑

m=2

βm sin
mπx

L
+ (ϕ

∗
)
3
∑

m=2

γm sin
mπx

L
. (9.38)

Since the maximum population density ρm occurs at the midpoint, x = L/2, the
branches of the bifurcation diagram (L , ρm) correspond to

ρm � ϕ
∗ + (ϕ

∗
)
2
∑

m=2

βm sin
mπ

2
+ (ϕ

∗
)
3
∑

m=2

γm sin
mπ

2
. (9.39)

To determine the stability of the stationary state, we set ϕ1(t) = ϕ
∗ + ε(t) with

ε(t) � 1. Substituting this expression into (9.31) and linearizing the equation, we
obtain

dε

dt
= −

[

Dπ
2

L2
− ra1 − 2M1ra2ϕ

∗ − 3N1ra3(ϕ
∗
)
2

]

ε(t). (9.40)

The steady state is stable if the term in brackets is positive, and unstable if it is
negative. To be specific, we consider explicitly some examples of ecological interest,
namely compensation and depensation population growth. In Fig. 9.3 we plot typical
growth functions.

0 1

critical depensation

depensation

F(ρ)

a

ρ

0

compensation

Fig. 9.3 Sketch of typical growth functions in ecology
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9.3.1 Compensation Growth

Compensation growth corresponds to a logistic term, that is (9.30) with a1 = 1,
a2 = −1, and a3 = 0. In this case (9.37) turns into

ϕ
∗
1 = 0 (extinction), (9.41a)

ϕ
∗
± =

3π

8

(

1− Dπ
2

r L2

)

(survival). (9.41b)

The state (9.41a) is stable if Dπ
2

L2 − r > 0, i.e., if L < Lc with Lc given by (9.5) and

it is unstable if L > Lc. The value of ρm in the survival state (9.41b) is

ρm �
3π

8

(

1− Dπ
2

r L2

)

+ 9π2

64

(

1− Dπ
2

r L2

)2
∑

m=3

βm sin
mπ

2
. (9.42)

0.0

0.2

0.4

0.6

0.8

1.0

survivalextinction

ρm

L

Lc

0 1 32 4 5 6

Fig. 9.4 Bifurcation diagram for compensation growth for D = r = 1

In Fig. 9.4 we plot the corresponding bifurcation diagram. A forward or super-
critical bifurcation occurs at L = Lc. We depict with symbols the values obtained
by integrating (9.1) numerically using an explicit finite difference method with a
time step of 10−3 units and a mesh size of 5× 10−2. The system reaches the steady
state after a time of 90 units. Solid curves correspond to (9.42). The dashed line
corresponds to the result obtained from the variational principle (9.22):

L2 = Dπ
2

r

(

1− 8ρm
3π

)−1

. (9.43)
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Equation (9.40) implies that the survival state (9.41b) is stable for L > Lc.

9.3.2 Depensation Growth

Depensation growth corresponds to a kinetic term F(ρ) = ρ(1 − ρ)(ρ + a) with
0 < a ≤ 1, i.e., to setting a1 = a, a2 = 1 − a, and a3 = −1. From (9.37) we can
find the three branches of steady states:

ϕ
∗
1 = 0 (extinction), (9.44a)

ϕ
∗
± =

16(1− a)

9π
± 2

3

√

�(L) (survival), (9.44b)

where

�(L) = 64(1− a)2

9π2
+ 3a

[

1−
(
Lc

L

)2
]

, with Lc = π

√

D

ra
. (9.45)

In this case there exists a critical patch size. In the following we truncate the expan-
sion in (9.39) at the first order for simplicity, ρm � ϕ

∗ with ϕ
∗ given by (9.44). The

nontrivial branches collide at a saddle–node bifurcation point or turning point that
has the following coordinates:

(

ρbif, Lbif
) =

⎛

⎜
⎜
⎝

16(1− a)

9π
,

Lc
√

1+ 64(1−a)2

27aπ2

⎞

⎟
⎟
⎠

. (9.46)

Equation (9.40) implies that the trivial solution is stable if L < Lc with Lc
given by (9.45); otherwise it is unstable. Equation (9.40) implies that stability of
the nontrivial branches requires ϕ

∗
± > 16(1 − a)/9π , which is satisfied only by

ϕ
∗
+. The branch ρ

+
m � ϕ

∗
+ is stable, and the branch ρ

−
m � ϕ

∗
− is unstable. We

represent the bifurcation diagram in Fig. 9.5a. A backward or subcritical bifurcation
occurs at L = Lc. Branches are calculated from (9.39), and symbols correspond to
numerical solutions. For L < Lbif, only the trivial solution exists, and the population
always dies out, the region of absolute extinction. Within the intermediate region
Lbif < L < Lc, the system is bistable; both ρm = 0 and ρ

+
m are stable branches. The

system selects one of them, i.e., the population dies out or survives, depending on
the value of the initial condition. For L > Lc, only ρ

+
m is stable and the population

survives independently of the initial condition, the region of absolute survival. In the
phase diagram dϕ1/dt vs ϕ1, given by (9.31), ϕ∗− is a repellor, while ϕ

∗
1 = 0 and ϕ

∗
+

are attractors. If the initial condition ϕ1(0) lies between 0 and ϕ
∗
−, the asymptotic

state of the system is ρm = 0; otherwise it is ρ+m . In summary, there exists a critical
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Fig. 9.5 (a) Bifurcation diagram for depensation growth for a = 0.1 and D = r = 1. Solid lines
correspond to stable branches and the dotted lines to unstable branches. Symbols depict numeri-
cal results. Vertical dashed lines separate the extinction, relative extinction/survival, and survival
regions. (b) Plot of the critical initial density vs the patch size for the relative extinction/survival
region

value for the initial condition ϕ
∗
1 (0) = ϕ

∗
−, such that for ϕ1(0) < ϕ

∗
− the population

dies out, while for ϕ1(0) > ϕ
∗
− it survives. ρ

−
m plays the role of the separatrix

between the basins of attraction for the states ρm = 0 and ρ
+
m . We have plotted this

result in Fig. 9.5b, where we also compare it with the numerical solutions. Fixing the
parameter values and varying ϕ1(0) from 1 to 0, we have determined numerically
the value at which the steady state collapses to 0. Figure 9.5b shows that the critical
value of the initial condition ρ

−
m decreases as L increases, as expected intuitively.

9.3.3 Critical Depensation

We consider the case of a strong Allee effect which corresponds to a growth term of
the form F(ρ) = ρ(1 − ρ)(ρ − a) with 0 < a < 1/2, i.e., a1 = −a, a2 = 1 + a,
and a3 = −1. The three branches of the bifurcation diagram are

ϕ
∗
1 = 0 (extinction), (9.47a)

ϕ
∗
± =

16(1+ a)

9π
± 2

3

√

�(L) (survival), (9.47b)
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with

�(L) = 64(1+ a)2
/9π2 − 3a

[

1+ D (π/L)2
/ra
]

. (9.48)

The coordinates of the saddle–node bifurcation point are

(

ρbif, Lbif
) =

⎛

⎝
16(1+ a)

9π
, π

2

√

D

r

3
√

3
√

64(1+ a)2 − 27aπ2

⎞

⎠ . (9.49)

The trivial steady state, extinction, satisfies the stability condition for any L , while
ϕ
∗
+ is stable and ϕ

∗
− is unstable, as in the depensation growth case. Again, for

0 < L < Lbif, only the trivial solution exists and the population dies out. How-
ever, there is an important difference. The trivial steady state does not undergo a
bifurcation and no critical patch size exists. The relative extinction/survival region
extends indefinitely for L > Lbif; there is no absolute survival region. In Fig. 9.6a
we plot the corresponding bifurcation diagram. Figure 9.6b corresponds, as in the
previous case, to the critical initial condition ϕ

∗
1 (0) = ϕ

∗
− with ϕ

∗
− given by (9.47).

The reason for the stability of the trivial state, extinction, and the absence of a crit-
ical patch size, does not simply stem from the fact that the growth term F(ρ) is
negative for low values of the density ρ, see Fig. 9.3. Note that the unstable branch
is given by the value ϕ

∗
− and not by the Allee parameter a alone. As we showed for

Fig. 9.6 The same as Fig. 9.5 but for critical depensation
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depensation growth, a region of relative survival/extinction exists even for a strictly
positive function F(ρ).

9.4 Exact Solutions

Equation (9.6) can be solved exactly in terms of Jacobi elliptic functions if F(ρ) =
ρ(1 − ρ) [226]. Define ξ = x/L − 1/2; then ρ(ξ = 1/2) = ρ(ξ = −1/2) = 0.
Consider the ansatz ρ(ξ, k) = A+B cd(Cξ, k)2, where k is a positive parameter and
cd(u) = cn(u)/ dn(u). Substituting this ansatz into (9.6), we find the values of the
coefficients A, B, and C in terms of k. Making use of the relations between Jacobi
elliptic functions, we can write the derivative d2

ρ/dx2 in terms of the function sn(·)
only. Collecting terms with the same powers of sn(·), we obtain three algebraic
equations that provide the values of the coefficients A, B, and C in terms of k:

A = 1

2

⎛

⎝1− k2 + 1
√

k4 − k2 + 1

⎞

⎠ , (9.50a)

B = 3

2

k2

√

k4 − k2 + 1
, (9.50b)

C = L
√
r/D

2
(

k4 − k2 + 1
)1/4

. (9.50c)

The boundary conditions, ρ(ξ = 1/2, k) = ρ(ξ = −1/2, k) = A + B cd(C/2, k)2

= 0, imply that

3k2 cd

⎡

⎢
⎣

L
√
r/D

4
(

k4 − k2 + 1
)1/4

, k

⎤

⎥
⎦

2

+
√

k4 − k2 + 1− 1− k2 = 0. (9.51)

Substitution of the constants (9.50) into the ansatz yields the parametric equation
for the pattern:

ρ(x) = 1

2

⎛

⎝1− k2 + 1
√

k4 − k2 + 1

⎞

⎠

+ 3

2

k2

√

k4 − k2 + 1
cd

⎡

⎢
⎣

L
√
r/D

(
x
L − 1

2

)

4
(

k4 − k2 + 1
)1/4

, k

⎤

⎥
⎦

2

, (9.52)
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Fig. 9.7 Nontrivial steady state. Solid curve corresponds to (9.52) and symbols to numerical solu-
tions. In both cases we have taken r = D = 1 and L = 3.5. To plot (9.52), we solved first (9.51)
for k to obtain k = 0.505

where k is given in terms of L by the relation (9.51). The pattern is shown in Fig. 9.7.
The bifurcation diagram can be obtained by noting that ρm(k) = ρ(ξ = 0, k) =

A + B, and the curve ρm vs L is, in parametric form,

ρm(k) =
1

2

⎛

⎝1+ 2k2 − 1
√

k4 − k2 + 1

⎞

⎠ , (9.53)

where again k is given in terms of L by the relation (9.51) with 0 < k < 1. It is
easy to check that ρm(k = 0) = 0, and the critical patch size is obtained by taking
the limit k → 0 in (9.51). Since cd(x, 0) = cos(x), the limit yields Lc = π

√
D/r .

Fig. 9.8 Bifurcation diagram for the maximum central density vs the patch size for r = D = 1
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In Fig. 9.8 we compare the analytical predictions obtained from (9.53) (solid curve)
with the numerical results (circles) for the bifurcation diagram. As expected, the
agreement is perfect.

Exercises

9.1 Consider the RD equation with a cutoff in the reaction term, i.e., F(ρ) =
θ(ρ−ε) f (ρ). As we saw in Sect. 4.3, the cutoff takes into account that a successful
reaction requires a minimum value of the particle density, ε. If ε � 1, derive the
relation between L and ρm up to terms of order ε3 from (9.8).

9.2 Consider F(ρ) = θ(ρ − ε)ρ(1− ρ) and determine the coordinates of the bifur-
cation point (ρbif, Lbif) from the variational characterization (9.22).

9.3 Find the critical patch size for the RD equation with Robin boundary conditions

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ r F(ρ), (9.54a)

∂ρ

∂x

∣
∣
∣
∣
x=0

= αρ(0, t),
∂ρ

∂x

∣
∣
∣
∣
x=L

= −αρ(L , t), (9.54b)

ρ(x, 0) = ρ0(x). (9.54c)

9.4 Find the critical patch size for the radially symmetric problem

∂ρ

∂t
= D

r

∂

∂r

(

r
∂ρ

∂r

)

+ αF(ρ), (9.55a)

ρ(r ≥ R, t) = 0. (9.55b)

Note that we use α rather than r as the intrinsic growth rate.

9.5 Consider a linear stream ecosystem. The RD equation contains now a drift term,
so that

∂ρ

∂t
+ v

∂ρ

∂x
= D

∂
2
ρ

∂x2
+ r F(ρ). (9.56)

Typical streams have an upstream source and then empty into a larger body of water.
Reasonable boundary conditions are zero flux at the upstream end, x = 0, because
population cannot leave, and hostile at the downstream end, x = L , where environ-
mental condition may dramatically change:
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vρ(0, t)− D

(
∂ρ

∂x

)

x=0
= 0, (9.57a)

ρ(L , t) = 0, (9.57b)

respectively. Linearize the RD-advection equation (9.56) about the state ρ = 0 and
show that the critical patch size is

Lc =
√
√
√
√

D/r

1− v
2

4r D

arctan

[

−2
√
r D

v

(

1− v
2

4r D

)]

. (9.58)



Chapter 10
Turing Instabilities in Homogeneous Systems

Alan Turing’s paper entitled “The Chemical Basis of Morphogenesis” [440] ranks
without doubt among the most important papers of the last century. In that seminal
work Turing laid the foundation for the theory of chemical pattern formation. Turing
showed that diffusion can have nontrivial effects in nonequilibrium systems. The
interplay of diffusion with nonlinear kinetics can destabilize the uniform steady state
of reaction–diffusion systems and generate stable, stationary concentration patterns.
To quote from the abstract,

It is suggested that a system of chemical substances, called morphogens, reacting together
and diffusing through a tissue, is adequate to account for the main phenomena of mor-
phogenesis. Such a system, although it may originally be quite homogeneous, may later
develop a pattern or structure due to an instability of the homogeneous equilibrium, which
is triggered off by random disturbances.

The diffusion-induced instability of the uniform steady state is now called a Turing
instability or Turing bifurcation. The stationary patterns to which it gives rise are
called Turing patterns. Turing patterns posses the important feature of an intrinsic
length. The typical length scale of these stationary patterns is solely determined by
the diffusion coefficients and the rate coefficients and not by geometrical parameters
of the system. In this chapter we review first the theory of Turing instabilities in
standard reaction–diffusion systems. We then present results on transport-induced
instabilities in reacting systems with nonstandard diffusive transport, namely trans-
port with inertia and anomalous diffusion. These results address the question of how
the characteristics of the transport process affect spatial instabilities and the forma-
tion of stationary spatial patterns in reaction–transport systems. To quote once more
from the abstract of Turing’s paper, “The investigation is chiefly concerned with the
onset of instability,” and this is also the main concern of this chapter.

10.1 Turing Instabilities in Standard Reaction–Diffusion Systems

We begin the discussion of Turing instabilities by presenting some general results
for n-variable systems. We focus particularly on properties of the diffusion matrix
D that facilitate or hinder the onset of spatial instabilities.

V. Méndez et al., Reaction–Transport Systems, Springer Series in Synergetics,
DOI 10.1007/978-3-642-11443-4_10, C© Springer-Verlag Berlin Heidelberg 2010

287
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10.1.1 n-Variable Reaction–Diffusion Systems

We consider the general n-variable reaction–diffusion system (2.12),

∂ρi

∂t
= Di

∂
2
ρi

∂x2
+ Fi (ρ,μ), i = 1, . . . , n, (10.1)

with three possible boundary conditions:

(1) infinite system: x ∈ (−∞,∞); (10.2a)

(2) finite system: x ∈ [0, L], ∂ρi

∂x
(0, t) = ∂ρi

∂x
(L , t) = 0, i = 1, . . . , n,

no-flux (Neumann) boundary condition; (10.2b)

(3) finite system: x ∈ [0, L], ρ(0, t) = ρ(L , t) = ρb, i = 1, . . . , n,

fixed concentration (Dirichlet) boundary condition. (10.2c)

The spatially uniform solution ρ(x) = ρ, where F(ρ,μ) = 0, is a stationary state
of (10.1) with boundary conditions (10.2a) or (10.2b). For Dirichlet boundary con-
ditions, uniform steady states of (10.1) are only possible if

ρb = ρ. (10.3)

The uniform steady state ρ(x) is stable against uniform perturbations, if ρ is a
stable steady state of the homogeneous or well-mixed system:

dρ

dt
= F(ρ,μ), (10.4)

i.e., if all eigenvalues of the Jacobian matrix J have a negative real part, see Sect.
1.2. A Turing instability corresponds to a diffusion-driven instability where a sta-
ble uniform steady state becomes unstable to a small nonuniform spatial perturba-
tion with wavenumber kT �= 0. A small inhomogeneity about ρ(x) = ρ can be
written as

δρ(x, t) = ρ(x, t)− ρ =
∑

akφk(x) exp(λk t), (10.5)

where the spatial modes φk(x) satisfy

∂
2
φk(x)

∂x2
= −k2

φk(x) (10.6)

and the boundary conditions. Substituting (10.5) into (10.1) and linearizing with
respect to the uniform steady state, we find that the λk , which determine the sta-
bility of the uniform steady to infinitesimal perturbations of the form φk(x), are
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the eigenvalues of the matrix Ĵ(k2
) ≡ J − Dk2, i.e., the roots of the characteristic

polynomial (−1)n det[̂J(k2
) − Inλk] = 0. A Turing instability occurs when for the

first time a single real λk , for some nonzero k, passes through zero as a control
parameter μ is varied, while the real part of all other eigenvalues of Ĵ(k2

) remains
negative. In other words, as the control parameter is changed, the uniform steady
state of the reaction–diffusion system becomes unstable at μ = μT to perturbations
with a nonzero wavenumber kT, and the spatial mode φkT

(x) grows into a stationary
spatially nonuniform solution of (10.1) beyond the Turing threshold μT, i.e., a time-
independent concentration pattern. The final pattern is determined by the nonlinear
terms of the kinetic rate functions and can differ qualitatively from the unstable
Turing mode φkT

(x).
If all diffusion coefficients are equal, Di = D, that is D = DIn is a scalar

times the identity, known as a scalar matrix, then the characteristic polynomial reads
(−1)n det[J − (Dk2 + λk)In] = 0. This implies that Dk2 + λk must equal the
eigenvalues of J. The latter all have a negative real part, since ρ is a stable steady
state of the well-mixed system. Consequently, the eigenvalues λk all have a negative
real part, and Re λk < Re λ0 for k �= 0 [455]. These results imply the following
theorem and corollary.

Theorem 10.1 If D = DIn, then ρ(x) = ρ is a stable solution of (10.1). If all
diffusion coefficients of the reaction–diffusion system (10.1) are equal, no Turing
instability can occur.

Corollary 10.1 No Turing bifurcation can occur in a one-variable reaction–diffusion
system.

Remark 10.1 Since Re λk < Re λ0, diffusion is always stabilizing in one-variable
reaction–diffusion systems and in n-variable reaction–diffusion systems with equal
diffusion coefficients. The initial bifurcation from the uniform steady state ρ(x) = ρ

of (10.1), as the parameter μ is varied, must always be the eigenfunction φk(x)
corresponding to the lowest wavenumber. For infinite systems and systems with
Neumann boundary conditions, the initial bifurcation is thus a wavenumber-zero
bifurcation, i.e., a homogenous bifurcation. For finite systems with Dirichlet bound-
ary conditions a wavenumber-zero mode is not possible. The lowest wavenumber
is given by k = π/L . The length scale of this inhomogeneity is determined by the
boundary conditions. There is no intrinsic length scale and this is not a chemical
pattern. In systems with equal diffusion coefficients the initial bifurcation does not
give rise to steady chemical patterns.

To obtain the threshold criterion for the onset of a Turing instability, we set λk =
0 and analyze the determinant

�(k2
) = det(J− Dk2

). (10.7)

For (10.2a), the spectrum of possible wavenumber is continuous, k ≥ 0. For (10.2b)
and (10.2c), the spectrum of possible wavenumbers is given by k = mπ/L , where
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m = 0, 1, 2, . . . for Neumann boundary conditions and m = 1, 2, . . . for Dirichlet
boundary conditions. To simplify the presentation, we treat k as a continuous vari-
able also for finite systems and assume that the system can accommodate a pattern
with intrinsic wavenumber kT. This represents no restriction of generality, since one
can ensure that any given k is in the spectrum by an appropriate choice of the system
size L . A Turing instability occurs when �(k2

) has a degenerate, strictly positive,
root k2

T, i.e., when

�(k2
)

∣
∣
∣
μT,k

2
T>0

= 0, (10.8a)

d�(k2
)

d(k2
)

∣
∣
∣
∣
∣
μT,k

2
T>0

= 0, (10.8b)

sgn

⎛

⎝
d2
�(k2

)

d(k2
)
2

∣
∣
∣
∣
∣
μT,k

2
T>0

⎞

⎠ = −1n . (10.8c)

Theorem 10.1 raises the question how unequal the diffusion coefficients must
be in order for a Turing instability to occur. The answer was given in [348]: Turing
instabilities can occur in generic systems with nearly scalar diffusion matrices if and
only if J has at least two eigenvalues that are sufficiently close to zero. Generically,
it is necessary to vary two control parameters of the well-mixed system, say μ1
and μ2, to find such a point. We define without loss of generality the double-zero
condition as μ1 = μ2 = 0. Before stating the results more precisely, we briefly
discuss the double-zero bifurcation. The generic case corresponds to a coalescence
of a Hopf and a saddle–node bifurcation, the Takens–Bogdanov bifurcation [175],
see Sect. 1.2.2. The linear part in Jordan–Arnold normal form is given by

(

0 1
−a1 −a2

)

, (10.9)

where a1 and a2 are positive functions of the control parameters. The double-zero
bifurcation occurs for a1 = a2 = 0. The line of Hopf bifurcations corresponds to
a2 = 0 and the line of saddle–node bifurcations to a1 = 0. Along the line of Hopf
bifurcations the frequency of the limit-cycle oscillations is given by ωH = √

a1. The
second type of double-zero bifurcation corresponds to the Lotka–Volterra system
and has the linear part

(−a 0
0 −b

)

(10.10)

near the double zero. Such systems are nongeneric; small perturbations destroy the
diagonal character of the linearized system. Lotka–Volterra systems are structurally
unstable; the Lotka–Volterra double zero occurs only in systems with symmetries. In
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general, chemical systems have no such symmetries. The matrix (10.9) is the generic
form for matrices with two eigenvalues near zero. Therefore, when we refer to
double-zero bifurcations we mean Takens–Bogdanov points. To find a double-zero
bifurcation in chemical systems, one needs to locate a branch of Hopf bifurcations
and track it in the direction of decreasing frequency.

Let us define a smallness parameter ε that measures the deviation of the diffusion
matrix D from a scalar matrix. Define the mean diagonal coefficient D as

D = det(D)
1/n

. (10.11)

If the diffusion matrix is a diagonal matrix, D = diag(D1, . . . , Dn), then D is just
the geometric mean of the n diffusion coefficients. We write D as

D = DIn + d̄ (10.12)

and define ε as

ε = max
i, j

∣
∣d̄i j
∣
∣

D
. (10.13)

We define the deviations di j by

Di j = D(δi j + εdi j ), (10.14)

where δi j is the Kronecker delta.

Theorem 10.2 If a set of di j exists such that a Turing bifurcation occurs for arbi-
trarily small but nonzero ε and the eigenvalues of J remain bounded in modulus,
then

lim
ε→0

μ1,T = lim
ε→0

μ2,T = 0. (10.15)

This limit corresponds to a small wavenumber limit:

lim
ε→0

Dk2
T = 0. (10.16)

The preceding theorem establishes that the well-mixed system being in the vicinity
of a double-zero point is a necessary condition for a Turing bifurcation to occur
in (10.1) with nearly equal diffusion coefficients. The next theorem establishes that
this is also a sufficient condition.

Theorem 10.3 If the well-mixed system is sufficiently close to a Takens–Bogdanov
point, then there exists a set of di j such that a Turing bifurcation occurs for arbi-
trarily small ε.
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Theorem 10.4 The critical wavenumber kT of the Turing instability near a double-
zero point is given by

k2
T =

√
a1

D
. (10.17)

The proofs of Theorems 10.2, 10.3, and 10.4 are found in [348]. Equation (10.17) is
of particular interest. Near the Takens–Bogdanov point, the frequency of the limit-
cycle oscillations along the line of Hopf bifurcations, a2 = 0, is given by ωH = √

a1,
see above. On the line of saddle–node bifurcations we have a1 = 0. An equation
like (10.17) is expected from simple dimensional arguments. The only intrinsic
length scales in reaction–diffusion systems come from the diffusion coefficients.
The inverse time

√
a1 is determined by the rate coefficients of the reaction kinetics.

Thus (10.17) provides an estimate of the intrinsic length of the Turing pattern near
a double-zero point:

lT ≈
√

2πD

ωH
. (10.18)

10.1.2 Two-Variable Reaction–Diffusion Systems

In this section we study the onset of Turing instabilities in more detail for two-
variable systems. We will focus on systems with Neumann boundary conditions,
which are most relevant for experimental systems,

∂ρu

∂t
= Du

∂
2
ρu

∂x2
+ F1(ρu, ρv), (10.19a)

∂ρv

∂t
= Dv

∂
2
ρv

∂x2
+ F2(ρu, ρv), (10.19b)

with no-flow boundary conditions on the interval [0, L]:
∂ρu

∂x
(0, t) = ∂ρu

∂x
(L , t) = 0, (10.20a)

∂ρv

∂x
(0, t) = ∂ρv

∂x
(L , t) = 0. (10.20b)

Let (ρu, ρv) be a stable steady state of the homogeneous system

dρu

dt
= F1(ρu, ρv), (10.21a)
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dρv

dt
= F2(ρu, ρv), (10.21b)

namely

F1(ρu, ρv) = F2(ρu, ρv) = 0. (10.22)

Then, see (1.27),

T = J11 + J22 < 0, (10.23a)

� = J11 J22 − J12 J21 > 0. (10.23b)

To assess the stability of the uniform steady state (ρu(x), ρv(x)) = (ρu, ρv), we
carry out a linear stability analysis as in Sect. 10.1.1:

ρu(x, t) = ρu + u0 cos(kx) exp(λk t), (10.24a)

ρv(x, t) = ρv + v0 cos(kx) exp(λk t). (10.24b)

The “growth” rates λk of the spatial modes cos(kx) are the roots of the characteristic
polynomial

det(J− Dk2 − Inλk) =
∣
∣
∣
∣
∣

J11 − Duk
2 − λk J12

J21 J22 − Dvk
2 − λk

∣
∣
∣
∣
∣
= 0. (10.25)

This is a second-order polynomial

λ
2
k + c1λk + c2 = 0, (10.26)

where

c2 = (J11 − Duk
2
)(J22 − Dvk

2
)− J12 J21

= DuDvk
4 − (Dv J11 + Du J22)k

2 +�, (10.27)

c1 = (Du + Dv)k
2 − T . (10.28)

Equation (10.26) is called the dispersion relation; it relates the growth rates of the
spatial modes to the parameter values of the system.

A spatial Hopf bifurcation, commonly called a wave bifurcation, corresponds to
a pair of purely imaginary eigenvalues for some kH �= 0, i.e., c1 = 0 and c2 > 0.
According to the stability conditions (10.23), T < 0, and therefore

c1 = (Du + Dv)k
2 − T > 0 (10.29)
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for all k. In other words, the uniform steady state of a two-variable reaction–
diffusion system cannot undergo a wave bifurcation, i.e., an oscillatory instability to
a standing wave pattern.

A Turing bifurcation corresponds to λkT
= 0 for kT �= 0, i.e., c2 = 0, which

leads to

(

J11 − Duk
2
) (

J22 − Dvk
2
)

− J12 J21 = 0 (10.30)

or

K 2 −
(
J11

Du
+ J22

Dv

)

K + �

DuDv
= 0, (10.31)

where K = k2. Since the roots of (10.31) have to be positive,

Dv J11 + Du J22 > 0 (10.32)

is a necessary but not sufficient condition for a Turing bifurcation. In light of (10.23),
a Turing bifurcation can therefore occur only if (i) the coefficients J11 and J22 do not
have the same sign and (ii) if the diffusion coefficients are not equal, see Theorem
10.1. In other words, Turing instabilities can occur only in pure or cross activator–
inhibitor systems, (1.19) or (1.21). For such systems

J11 > 0, J22 < 0, (10.33)

which together with (10.32) implies that Turing bifurcations can only occur if
∣
∣J22

∣
∣ > J11 since T < 0 and J12 J21 < 0 since � > 0. Defining

θRD =
Dv

Du
, (10.34)

we obtain from (10.32)

θRD >
−J22

J11
> 1. (10.35)

In other words, for a Turing instability to occur, the activator must diffuse slower
than the inhibitor. This is known as the principle of “short-range activation and long-
range inhibition.” It is also known as “local autocatalysis with lateral inhibition”
or “local auto-activation–lateral inhibition” (LALI), see for example [332, 319],
“local self-activation and lateral inhibition” [280], or “self-enhancement and lateral
inhibition” (SELI) [315] and has been applied to mechanisms other than reaction–
diffusion.

Rewriting (10.31) in the form
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k4 + ĉ2k
2 + ĉ4 = 0, (10.36)

with

ĉ2 = −
(
J11

Du
+ J22

Dv

)

, (10.37)

ĉ4 =
�

DuDv
, (10.38)

we find that the roots of (10.31) are given by

k2
± =

1

2

(

−ĉ2 ±
√

ĉ2
2 − 4ĉ4

)

, (10.39)

provided ĉ2 < 0, i.e., (10.32) is satisfied. As discussed in Sect. 10.1.1, a Turing
instability occurs when (10.31) has a degenerate or double root, i.e., if ĉ2

2−4ĉ4 = 0.
The stable uniform steady state undergoes a Turing bifurcation for parameter values
μ of the system such that

Dv J11 + Du J22 =
√

4DuDv� (10.40)

or equivalently at the critical ratio of diffusion coefficients

θRD,c =
[

1

J11

(√
�+√−J12 J21

)]2

. (10.41)

The critical wavenumber is given by

k2
T,RD = − ĉ2

2
=
√

�

DuDv
. (10.42)

In conclusion, the uniform steady state of (10.19), (ρu(x), ρv(x)) = (ρu, ρv),
satisfying the stability conditions (10.23), will be driven unstable by diffusion if
and only if

ĉ2 < 0, i.e., Dv J11 + Du J22 > 0, (10.43a)

ĉ2
2 − 4ĉ4 > 0, i.e., [Dv J11 + Du J22]2 > 4DuDv�, (10.43b)

and the band of unstable modes is given by

1

2

(

−ĉ2 −
√

ĉ2
2 − 4ĉ4

)

< k2
<

1

2

(

−ĉ2 +
√

ĉ2
2 − 4ĉ4

)

. (10.44)
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10.1.3 Turing Instability in the Standard Brusselator
Reaction–Diffusion System

We use the Brusselator, see Sect. 1.4.4, to illustrate these results. The steady state of
the well-mixed system is stable if b < bH = 1 + a2, see (1.83). Condition (10.35)
implies that

θRD >
a2

b − 1
> 1. (10.45)

The second inequality is satisfied if the uniform steady state (ρu(x), ρv(x)) =
(a, b/a) is stable against uniform perturbation, that is b < bH. The Turing condition
(10.40) reads

Dv(b − 1)+ Du(−a2
) =

√

4DuDva
2
, (10.46)

and the critical ratio of diffusion coefficients is given by

θRD,c =
a2

(b − 1)2

(

1+√
b
)2

. (10.47)

If we consider b to be the control parameter, then the threshold for the Turing insta-
bility is given by

bT,RD =
(

1+ a

√

Du

Dv

)2

=
(

1+ aθ−1/2
RD

)2
. (10.48)

From (10.42) we find the critical wavenumber to be

k2
T,RD =

a
√

DuDv
. (10.49)

In order for the Turing bifurcation to occur first, the Turing threshold must lie below
the Hopf threshold of the well-mixed system, bT < bH:

(

1+ 1
√

θRD
a

)2

< 1+ a2 (10.50)

or

a >
2
√

θRD

θRD − 1
. (10.51)
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Note that the Brusselator does not have a Takens–Bogdanov point. Theorems
10.2 and 10.3 are not applicable in this case, and the Brusselator displays somewhat
pathological behavior as θRD decreases toward unity. Equation (10.51) implies that
a becomes arbitrarily large as θRD → 1. Infinite a corresponds to an infinite Hopf
frequency ωH and an infinite wavenumber of the Turing instability kT.

10.2 Turing Instabilities in Reaction–Transport Systems with
Inertia: HRDEs and Reaction-Cattaneo Systems

As discussed in Sect. 2.2 the diffusion equation has the well-known unrealistic
feature that localized disturbances spread infinitely fast, though with heavy atten-
uation, through the system. In that section we described three approaches to address
the unphysical behavior of the diffusion equation and reaction–diffusion equation.
Since the Turing instability is a diffusion-driven instability, it is of particular inter-
est to explore how this bifurcation depends on the characteristics of the transport
process. In this section, we address the effects of inertia in the dispersal of parti-
cles or individuals on the Turing instability. Does the finite speed of propagation
of perturbations in such systems affect Turing instabilities? We determine the sta-
bility properties of the uniform steady state for the three approaches presented in
Sect. 2.2.

10.2.1 Turing Instabilities in Hyperbolic Reaction–Diffusion
Equations

We first use hyperbolic reaction–diffusion equations, see Sect. 2.2.1, to study the
effect of inertia on Turing instabilities [206]. Specifically, we consider two-variable
HRDEs,

τu
∂

2
ρu

∂t2
+ ∂ρu

∂t
= Du

∂
2
ρu

∂x2
+ F1(ρu, ρv), (10.52a)

τv
∂

2
ρv

∂t2
+ ∂ρv

∂t
= Dv

∂
2
ρv

∂x2
+ F2(ρu, ρv), (10.52b)

with no-flow boundary conditions on the interval [0, L]:

∂ρu

∂x
(0, t) = ∂ρu

∂x
(L , t) = 0, (10.53a)

∂ρv

∂x
(0, t) = ∂ρv

∂x
(L , t) = 0. (10.53b)
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Let (ρu(x), ρv(x)) = (ρu, ρv) be a uniform steady state (USS) of (10.52), where
(ρu, ρv) is again a stable steady state of the well-mixed system (10.21), i.e., the
stability conditions (10.23) are satisfied. To determine the stability of the USS, we
consider as usual the evolution of small, spatially nonuniform perturbations,

ρu(x, t) = ρu + u0 cos(kx) exp(λk t), (10.54a)

ρv(x, t) = ρv + v0 cos(kx) exp(λk t), (10.54b)

and determine their “growth” rate by linearizing (10.52) about the uniform steady
state. This procedure leads to the following characteristic equation for λk :

det

⎛

⎜
⎜
⎜
⎝

J11

τu
− λ

2
k −

λk

τu
− k2

τu
Du

J12

τu
J21

τv

J22

τv
− λ

2
k −

λk

τv
− k2

τv
Dv

⎞

⎟
⎟
⎟
⎠
= 0, (10.55)

which, as for all two-variable hyperbolic descriptions considered in this section, is
a fourth-order polynomial in λk :

λ
4
k + c1λ

3
k + c2λ

2
k + c3λk + c4 = 0. (10.56)

The uniform steady state is stable if all roots have a negative real part for all k. The
necessary and sufficient conditions for this to hold are the Routh–Hurwitz condi-
tions, see Theorem 1.2. The Turing bifurcation corresponds to a real root λk crossing
the imaginary axis for some nonzero kT, i.e., λkT

= 0. This occurs if condition
(1.35) is violated, i.e., c4 = 0 for some kT �= 0. A bifurcation to oscillatory patterns,
i.e., a spatial Hopf bifurcation, corresponds to a pair of complex conjugate roots
λ
±
k = λk ± iωk crossing the imaginary axis for some nonzero kH, i.e., λkH

= 0.
According to (1.38), a Hopf bifurcation occurs if the Hurwitz determinant �3 van-
ishes, �3 = 0.

The Turing condition c4 = 0 for hyperbolic reaction–diffusion equations leads to
exactly the same conditions as for the standard reaction–diffusion equation, namely
(10.42) and (10.40). In other words, the Turing condition is independent of τu and
τv. If inertia in the transport is modeled by HRDEs, then the inertia has no effect
whatsoever on the Turing instability to stationary patterns.

In contrast to standard two-species reaction–diffusion systems, the uniform
steady state of the hyperbolic reaction–diffusion system can undergo a spatial Hopf
bifurcation to oscillatory spatial pattern, if �3 = 0 can be fulfilled for some kH �= 0.
This condition gives rise to a second-order polynomial in k2:

a0k
4 + a1k

2 + a2 = 0. (10.57)
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The coefficients ai are complicated expressions of the parameters of the system,
and an exact evaluation of the Hopf condition is a very involved and tedious task.
However, for the physically relevant regime of small inertia, i.e., τu and τv small,
all the coefficients ai are positive if (10.23) is satisfied, and consequently (10.57)
has no physically acceptable solution. The spatial Hopf bifurcation to oscillatory
patterns cannot occur in hyperbolic reaction–diffusion systems with small inertia.

10.2.2 Turing Instabilities in Reaction-Cattaneo Systems

As a second approach, we use reaction-Cattaneo equations, see Sect. 2.2.2, to study
the effect of inertia on Turing instabilities [206]. The uniform steady state of the
two-species reaction-Cattaneo system,

∂ρu

∂t
= −∂ Ju

∂x
+ F1(ρu, ρv),

∂ρv

∂t
= −∂ Jv

∂x
+ F2(ρu, ρv), (10.58a)

τu
∂ Ju

∂t
+ Ju = −Du

∂ρu

∂x
, τv

∂ Jv

∂t
+ Jv = −Dv

∂ρv

∂x
, (10.58b)

with zero-flow boundary conditions

Ju(0, t) = Ju(L , t) = 0, Jv(0, t) = Jv(L , t) = 0, (10.59)

is given by

(ρu, ρv) = (ρu, ρv), (J u(x), J v(x)) = (0, 0). (10.60)

We assume again that (ρu, ρv) satisfies the stability conditions (10.23). To deter-
mine the stability of (10.60) against spatially inhomogeneous perturbations, we set

ρu(x, t) = ρu + δρu(x) exp(λt), ρv(x, t) = ρv + δρv(x) exp(λt), (10.61a)

Ju(x, t) = δ Ju(x) exp(λt), Jv(x, t) = δ Jv(x) exp(λt). (10.61b)

Linearizing (10.58a) and (10.58b) about the uniform steady state, we obtain

λδρu(x) = −δ J ′u(x)+ J11δρu(x)+ J12δρv(x), (10.62a)

λδρv(x) = −δ J ′v(x)+ J21δρu(x)+ J22δρv(x), (10.62b)

τuλδ Ju(x)+ δ Ju(x) = −Duδρ
′
u(x), (10.62c)

τvλδ Jv(x)+ δ Jv(x) = −Dvδρ
′
v(x), (10.62d)

where the prime denotes derivative with respect to x . We differentiate (10.62a) and
(10.62b) with respect to x and use (10.62c) and (10.62d) to eliminate δρ

′
u and δρ

′
v:
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−λ(τuλ+ 1)

Du
δ Ju = −δ J ′′u + J11

(

−τuλ+ 1

Du

)

δ Ju + J12

(

−τvλ+ 1

Dv

)

δ Jv,

(10.63a)

−λ(τvλ+ 1)

Dv
δ Jv = −δ J ′′v + J21

(

−τuλ+ 1

Du

)

δ Ju + J22

(

−τvλ+ 1

Dv

)

δ Jv.

(10.63b)

The appropriate spatial modes for the fluxes δ Ju and δ Jv are sin(kx), and we obtain
the characteristic equation for the reaction-Cattaneo system, det Ĵ = 0, where

Ĵ11 =
τuλk + 1

τu
J11 −

(

λ
2
k +

λk

τu

)

− Duk
2

τu
, (10.64a)

Ĵ12 =
Du

Dv

τvλk + 1

τu
J12, (10.64b)

Ĵ21 =
Dv

Du

τuλk + 1

τv
J21, (10.64c)

Ĵ22 =
τvλk + 1

τv
J22 −

(

λ
2
k +

λk

τv

)

− Dvk
2

τv
. (10.64d)

The characteristic equation is again a fourth-order polynomial:

λ
4
k + c1λ

3
k + c2λ

2
k + c3λk + c4 = 0. (10.65)

As for HRDEs, the Turing condition c4 = 0 for the reaction-Cattaneo system
leads to exactly the same conditions as for the standard reaction–diffusion equation,
namely (10.42) and (10.40); the Turing condition is independent of τu and τv for
reaction-Cattaneo equations. As for HRDEs, the spatial Hopf bifurcation cannot
occur in the regime of small inertia, if (10.23) is satisfied.

10.3 Turing Instabilities in Reaction–Transport Systems with
Inertia: Persistent Random Walks with Reactions

As a third approach, we use persistent random walks with reactions, see Sect. 2.2.3,
to study the effect of inertia on Turing instabilities [205, 206]. This is our preferred
approach to describe reaction–transport systems with inertia, since it has a solid
mesoscopic foundation. We consider Turing instabilities for two classes of reaction
random walks, DIRWs and DDRWs, see Sect. 5.6.
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10.3.1 Turing Instabilities in Direction-Independent Reaction
Walks

We consider two-species DIRWs:

∂ρ+,u

∂t
+ γu

∂ρ+,u

∂x
= μu

(

ρ−,u − ρ+,u
)+ 1

2
g1(ρu, ρv)− f −1 (ρu, ρv)ρ+,u,

(10.66a)

∂ρ−,u

∂t
− γu

∂ρ−,u

∂x
= μu

(

ρ+,u − ρ−,u
)+ 1

2
g1(ρu, ρv)− f −1 (ρu, ρv)ρ−,u,

(10.66b)

∂ρ+,v

∂t
+ γv

∂ρ+,v

∂x
= μv

(

ρ−,v − ρ+,v
)+ 1

2
g2(ρu, ρv)− f −2 (ρu, ρv)ρ+,v,

(10.66c)

∂ρ−,v

∂t
− γv

∂ρ−,v

∂x
= μv

(

ρ+,v − ρ−,v
)+ 1

2
g2(ρu, ρv)− f −2 (ρu, ρv)ρ−,v,

(10.66d)

with impermeable (no-flow) boundaries, i.e., reflective boundary conditions, on
[0, L]:

ρ+,u(0, t) = ρ−,u(0, t), ρ+,v(0, t) = ρ−,v(0, t), (10.67a)

ρ+,u(L , t) = ρ−,u(L , t), ρ+,v(L , t) = ρ−,v(L , t). (10.67b)

Equations (10.66) lead to the following evolution equations for the total densities
ρu(x, t) = ρ+,u(x, t) + ρ−,u(x, t), ρv(x, t) = ρ+,v(x, t) + ρ−,v(x, t), and flows
ju(x, t) = ρ+,u(x, t)− ρ−,u(x, t), jv(x, t) = ρ+,v(x, t)− ρ−,v(x, t):

∂ρu

∂t
+ γu

∂ ju
∂x

= g1(ρu, ρv)− f −1 (ρu, ρv)ρu, (10.68a)

∂ρv

∂t
+ γv

∂ jv
∂x

= g2(ρu, ρv)− f −2 (ρu, ρv)ρv, (10.68b)

∂ ju
∂t

+ γu
∂ρu

∂x
= −

[

2μu + f −1 (ρu, ρv)
]

ju, (10.68c)

∂ jv
∂t

+ γv
∂ρv

∂x
= −

[

2μv + f −2 (ρu, ρv)
]

jv. (10.68d)

Remark 10.2 These equations do not constitute a reaction-Cattaneo system because
of the contribution of the intrinsic death rates f −i (ρu, ρv), i = 1, 2, to the decay rate
of the flows. Further, no reaction-telegraph equations can be derived for the total
densities, unless the death rates f −i (ρu, ρv) are constants.



302 10 Turing Instabilities in Homogeneous Systems

The boundary conditions (10.67) become

ju(0, t) = ju(L , t) = 0, (10.69a)

jv(0, t) = jv(L , t) = 0. (10.69b)

The uniform steady state of (10.68) with boundary conditions (10.69) is given by

(ρu(x), ρv(x)) = (ρu, ρv), ( ju(x), jv(x)) = (0, 0), (10.70)

and we assume that (ρu, ρv) satisfies the stability conditions (10.23). To determine
the stability of this state with respect to spatially nonuniform perturbations, we pro-
ceed similarly as for the reaction-Cattaneo case:

ρu(x, t) = ρu + δρu(x, t), ρv(x, t) = ρv + δρv(x, t), (10.71a)

ju(x, t) = δ ju(x, t), jv(x, t) = δ jv(x, t). (10.71b)

The linearized evolution equations for the DIRW are

˙δρu(x, t)+ γuδ j
′
u(x, t) = J11δρu(x, t)+ J12δρv(x, t), (10.72a)

˙δρv(x, t)+ γvδ j
′
v(x, t) = J21δρu(x, t)+ J22δρv(x, t), (10.72b)

j̇u(x, t)+ γuδρ
′
u(x, t) = −[2μu + f −1 (ρu, ρv)]δ ju(x, t), (10.72c)

j̇v(x, t)+ γvδρ
′
v(x, t) = −[2μv + f −2 (ρu, ρv)]δ jv(x, t), (10.72d)

where as usual the dot and the prime denote differentiation with respect to t and x ,
respectively. To shorten the notation, we set in the following

μ = 2μu + f −1 (ρu, ρv), ν = 2μv + f −2 (ρu, ρv), γ = γu, χ = γv. (10.73)

The boundary conditions (10.69) imply that the spatial modes for the flows are given
by sin(kx) with k = mπ/L , m = 0, 1, 2, . . . . To obtain the appropriate spatial
modes for the densities, we evaluate (10.68c) and (10.68d) at the boundaries x = 0
and x = L and find

∂ρu

∂x
(0, t) = ∂ρu

∂x
(L , t) = 0, (10.74a)

∂ρv

∂x
(0, t) = ∂ρv

∂x
(L , t) = 0. (10.74b)

This implies that the spatial modes for the densities are given by cos(kx). We write
the perturbations as

δρu(x, t) = u0 cos(kx) exp(λk t), (10.75a)

δρv(x, t) = v0 cos(kx) exp(λk t), (10.75b)
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δ ju(x, t) = w0 sin(kx) exp(λk t), (10.75c)

δ jv(x, t) = z0 sin(kx) exp(λk t), (10.75d)

and the linearized equations (10.72) read

λkδρu + γ δ j ′u = J11δρu + J12δρv, (10.76a)

λkδρv + χδ j ′v = J21δρu + J12δρv, (10.76b)

λkδ ju + γ δρ
′
u = −μδ ju, (10.76c)

λkδ jv + χδρ
′
v = −νδ jv. (10.76d)

From (10.76c) and (10.76d) we obtain

δρ
′
u = −λk + μ

γ
δ ju, (10.77a)

δρ
′
v = −λk + ν

χ
δ jv. (10.77b)

We differentiate (10.76a) and (10.76b) with respect to x and use (10.77) to eliminate
δρu and δρv from the linearized evolution equations:

−λk + μ

γ
λkδ ju + γ δ j ′′u = J11

(

−λk + μ

γ

)

δ ju + J12

(

−λk + ν

χ

)

δ jv, (10.78a)

−λk + ν

χ
λkδ jv + χδ j ′′v = J21

(

−λk + μ

γ

)

δ ju + J22

(

−λk + ν

χ

)

δ jv. (10.78b)

Since δ j ′′u = −k2
δ ju and δ j ′′v = −k2

δ jv, these equations can be written after some
simple algebra as

⎛

⎝
χ
[

(λk + μ)(J11 − λk)− k2
γ

2
]

γ J12(λk + ν)

χ J21(λk + μ) γ
[

(λk + ν)(J22 − λk)− k2
χ

2
]

⎞

⎠

(
δ ju

δ jv

)

= 0.

(10.79)

The characteristic equation is the determinant of the matrix in (10.79), and it is
given by

λ
4
k + c1λ

3
k + c2λ

2
k + c3λk + c4 = 0, (10.80)

with

c1 = μ+ ν − T, (10.81)

c2 = �− T (μ+ ν)+ μν + (χ
2 + γ

2
)k2

, (10.82)
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c3 = �(μ+ ν)− Tμν − [χ2
(J11 − μ)+ γ

2
(J22 − ν)]k2

, (10.83)

c4 = �μν − [μχ2 J11 + νγ
2 J22]k2 + γ

2
χ

2k4
. (10.84)

The necessary condition for a Turing bifurcation, c4 = 0, leads to

K 2 −
(
J11

Du
+ J22

Dv

)

K + �

DuDv
= 0, (10.85)

where we have set again K = k2 and defined

Du =
γ

2

μ
, Dv =

χ
2

ν
. (10.86)

The Turing condition for two-variable DIRWs, (10.85), has the same form as
the Turing condition for two-variable reaction–diffusion systems, (10.31). Conse-
quently, the uniform steady state (10.70) of a DIRW undergoes a Turing bifurcation
with critical wavenumber

k2
T,DIRW =

√

�

DuDu
, (10.87)

for parameter values of the system such that

Dv J11 +Du J22 =
√

4DvDu�, (10.88)

or equivalently at

θ̃DIRW,c =
(
Dv

Du

)

c
=
[

1

J11

(√
�+√−J12 J21

)]2

. (10.89)

Though (10.87), (10.88), and (10.89) have the same form as the corresponding
expressions for reaction–diffusion systems, (10.42), (10.40) and (10.41), they are
not identical. The Di are “renormalized” and differ from the actual diffusion coeffi-
cients Di :

Di =
γ

2
i

2μi + f −i (ρu, ρv)
= Di

[

1+ f −i (ρu, ρv)

2μi

]−1

= Di

[

1+ f −i (ρu, ρv)

νi
τ

]−1

.

(10.90)

Here Di = γ
2
i /(2μi ), see (2.33), and we have set 2μi = νi/τ , where τ is the

characteristic time of the transport process. One way to define this characteristic
time is to choose the geometric mean of the correlation times of the particle turning
processes, τ = √

τuτv, where τi = 1/(2μi ), see (2.32), and then νu =
√

μu/μv and
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νv = ν
−1
u . Comparing expressions for the DIRW case and the reaction–diffusion

case, we find

θDIRW,c =
(
Dv

Du

)

c
= μu

μv

2μv + f −2 (ρu, ρv)

2μu + f −1 (ρu, ρv)
θRD,c (10.91)

= νu

νv

νv + τ f −2 (ρu, ρv)

νu + τ f −1 (ρu, ρv)
θRD,c, (10.92)

k2
T,DIRW =

√

�

DuDv

√

[2μu + f −1 (ρu, ρv)][2μv + f −2 (ρu, ρv)]
4μuμv

(10.93)

= k2
T,RD

√

[2μu + f −1 (ρu, ρv)][2μv + f −2 (ρu, ρv)]
4μuμv

(10.94)

= k2
T,RD

√

[νu + τ f −1 (ρu, ρv)][νv + τ f −2 (ρu, ρv)]
νuνv

. (10.95)

We draw several conclusions from these equations: (i) The Turing condition for per-
sistent random walks with direction-independent kinetics depends on the parameters
of the persistent random walk not only through the combination Di = γ

2
i /(2μi ) but

also explicitly on the turning rates μi . (ii) The Turing bifurcation will be advanced or
delayed compared to the reaction–diffusion case, depending if μu/μv is smaller or
larger than f −1 (ρu, ρv)/ f

−
2 (ρu, ρv). (iii) The critical wavenumber is always shifted

to larger values, or the intrinsic length of the Turing pattern to smaller values, com-
pared with the reaction–diffusion system.

As for the reaction–diffusion case, Sect. 10.1.2, we use again the Brusselator
to illustrate our results. For the Brusselator the loss rates of the activator and the
inhibitor are

f −1 (ρu, ρv) = b + 1, f −2 (ρu, ρv) = ρ
2
u . (10.96)

The uniform steady state of the Brusselator DIRW is (ρu, ρv, ju, jv) = (a, b/a, 0, 0).
The Turing condition (10.85) for the Brusselator DIRW reads

K 2 −
[

b − 1

Dx
+ −a2

Dy

]

K + a2

DxDy
= 0. (10.97)

The critical ratio of diffusion coefficients is given by

θDIRW,c =
(
Dv

Du

)

c
= μu

μv

2μv + a2

2μu + b + 1

a2

(b − 1)2

(

1+√b
)2

(10.98)
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=
(
Dv

Du

)

c
= μu

μv

2μv + a2

2μu + b + 1
θRD,c (10.99)

and the critical wavenumber is given by

k2
T,DIRW = a

√

DuDv

√

(2μu + b + 1)(2μv + a2
)

4μuμv
(10.100)

= k2
T,RD

√

(2μu + b + 1)(2μv + a2
)

4μuμv
. (10.101)

If we again consider b to be the control parameter, the explicit expression for the
Turing threshold bT,DIRW can be obtained using computer algebra software such as
MATHEMATICA. The result is many lines long and not enlightening at all. We there-
fore consider the Brusselator DIRW in the diffusive regime, τ small, to illustrate the
effect of inertia in the transport process on the Turing threshold in terms of b. We
write bT,DIRW = b0,DIRW + b1,DIRWτ + · · · and find

b0,DIRW = bT,RD =
(

1+ a

√

Du

Dv

)2

[see (10.48)], (10.102)

b1,DIRW =

−
a
√

Du
(

a
√

Du +
√

Dv
) [

2aνv
√

DuDv + 2νvDv + a2 (
νvDu − νuDv

)]

νuνvD
2
v

.

(10.103)

The critical wavenumber in the diffusive regime is given by

k2
T,DIRW =

√
√
√
√
√

a2

DuDv
+

a2
[

2aνv
√

DuDv + 2νvDv + a2 (
νuDv + νvDu

)]

νuνvDuD
2
v

τ + · · ·. (10.104)

10.3.2 Spatial Hopf Instabilities in Direction-Independent
Reaction Walks

Spatial Hopf bifurcations or wave bifurcations can never occur in two-variable
reaction–diffusion systems, see Sect. 10.1.2. This is no longer the case for reaction–
transport systems with inertia. As shown in Sects. 10.2.1 and 10.2.2, spatial Hopf
bifurcations are in principle possible in two-variable hyperbolic reaction–diffusions
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and two-variable reaction-Cattaneo systems. However, the general evaluation of the
Hopf condition for those systems is an intractable task. It can be analyzed in the
diffusive regime, i.e., small inertial effects, and no Hopf instability occurs. Persistent
random walks offer an opportunity to analyze spatial Hopf or wave bifurcations in
two-variable systems with inertia in a general way. According to (1.38), the uniform
steady state (10.70) of the DIRW undergoes a spatial Hopf bifurcation if the Hurwitz
determinant �3 of the characteristic polynomial (10.80) vanishes for some kH �= 0:

�3 = c2
3 − c1c2c3 + c4c

2
1 = 0. (10.105)

The Hopf frequency is given by

ωH,DIRW =
√
c3

c1
. (10.106)

Since T is negative according to the stability conditions (10.23), c1 is always pos-
itive. The positivity of the Hurwitz determinant �2 and c4 at the Hopf bifurcation
imply that c3 > 0 there and that ωH,DIRW is well defined [205]. Gathering terms of
equal powers in k, we rewrite the Hopf condition as

a0k
4 + a1k

2 + a2 = 0, (10.107)

where, after some algebra,

a0 =−
(

J11 − μ
) (

J22 − ν
)

(χ
2 − γ

2
)
2
, (10.108)

a1 =− 2 (�S − T M) B1 − (S − T ) (�S − T M) (χ
2 + γ

2
)

+ (S − T )B1(�− T S + M)− (S − T )2B2, (10.109)

a2 = T S
[

�(μ
2 + ν

2
)− T S(M +�)+ M2 +�

2 + T 2M
]

. (10.110)

Here

S = μ+ ν, M = μν, (10.111)

B1 = χ
2
(J11 − μ)+ γ

2
(J22 − ν), (10.112)

and

B2 = μχ
2 J11 + νγ

2 J22. (10.113)

Since μ > 0, ν > 0, � > 0, and T < 0, it follows that a2 is always negative.
Further, a0 is negative if γ �= χ and μ > J11. Lengthy calculations show that a1 is
negative if a0 is negative [205]. Thus for μ > J11, (10.107) has no real roots, since
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all coefficients are negative. In other words, a Hopf bifurcation can only occur if the
characteristic time of the activator transport process is larger than the characteristic
chemical time, τu = 1/(2μu) > 1/J11 = τchem, i.e., the persistent random walk
must be in the ballistic regime. If μ < J11 and γ �= χ , then a0 is positive, and
(10.107) has a positive root kH. The existence of this Hopf bifurcation depends,
however, on the kinetics. The Hopf condition reads

μ < J11 (10.114)

or

2μu < J11 − f −1 (ρu, ρv). (10.115)

The uniform steady state of a DIRW can undergo a spatial Hopf or wave bifurca-
tion only if the right-hand side of (10.115) is positive. In other words, the rate of
activation must exceed the loss rate of the activator in the steady state. If a spatial
Hopf instability occurs, then all spatial modes with wavenumbers bigger than kH,
the positive root of (10.107), are unstable.

Remark 10.3 The analysis of all three approaches to two-variable reaction–transport
systems with inertia establishes that the Turing instability of reaction–diffusion sys-
tems is structurally stable. The threshold conditions are either the same, HRDEs
and reaction-Cattaneo systems, or approach the reaction–diffusion Turing threshold
smoothly as the inertia becomes smaller and smaller, τ → 0. Further, inertia effects
induce no new spatial instabilities of the uniform steady state in the diffusive regime,
τ small. A spatial Hopf bifurcation to standing wave patterns can only occur in the
opposite regime, the ballistic regime.

We consider several model systems to explore if the spatial Hopf bifurcation does
occur in DIRWs with commonly studied kinetics. We begin with the Brusselator.
The spatial Hopf condition (10.114) reads

2μu + b + 1 < b − 1 (10.116)

or

μu < −1, (10.117)

which can never be satisfied, since the turning rate μu is of course always
nonnegative.

For the Gierer–Meinhardt model, Sect. 1.4.6, the loss rates of the activator and
inhibitor are

f −1 (ρu, ρv) = 1, f −2 (ρu, ρv) = q, (10.118)
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and the spatial Hopf condition reads

2μu + 1 <
p − 1

p + 1
, (10.119)

μu < − 1

p + 1
, (10.120)

which can never be true.
For the Schnakenberg model, Sect. 1.4.5, the loss rate of the activator is f −1 = 1

and the right-hand side of the Hopf condition (10.115) is given by

J11 − f −1 (ρu, ρv) = − 2a

a + b
. (10.121)

For the Lengyel–Epstein model, Sect. 1.4.9, the loss rate of the activator is σ f −1 =
1+ 4ρv/(1+ρ

2
u ) and the right-hand side of the Hopf condition (10.115) is given by

J11 − f −1 (ρu, ρv) = − 2a2 + 250

σ(a2 + 25)
. (10.122)

For the Brusselator, the Gierer–Meinhardt model, the Schnakenberg model, and
the Lengyel–Epstein model, the right-hand side of the Hopf condition (10.115)
is always negative; the reaction kinetics suppresses the spatial Hopf instability in
all these models. For the Oregonator, Sect. 1.4.8, the loss rate of the activator is
ε f −1 = ρu + hρv/(ρu + q). The expression for J11 − f −1 (ρu, ρv) is lengthy and it
is not obvious if it has a definite sign. Evaluating the expression numerically for a
variety of chemically reasonable values for h and q, we find it to be negative in all
cases. Again, the spatial Hopf bifurcation is suppressed in DIRWs with Oregonator
kinetics.

For the Gray–Scott model, Sect. 1.4.7, the loss rate of the activator is f −1 = k2+q
and the right-hand side of the Hopf condition (10.115) is given by

J11 − f −1 (ρu, ρv) = 0. (10.123)

Again the spatial Hopf bifurcation does not occur, but (10.123) shows that the
Gray–Scott model represents a borderline case since μu,H = 0. If this model is
modified and the third-order autocatalysis replaced by a rather unrealistic fourth
order, F1(ρu, ρv) = ρvρ

3
u − qρu, F2(ρu, ρv) = −ρvρ

3
u + q(1 − ρv), then for suf-

ficiently small q the model has a nontrivial stable uniform steady state, for which
J11 − f −1 (ρu, ρv) = q. A spatial Hopf bifurcation occurs for 2μu < q. In conclu-
sion, the existence of a spatial Hopf bifurcation for DIRWs in the ballistic regime is
an interesting theoretical possibility, but studies of common models show that it is
unlikely to occur for realistic kinetics.
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10.3.3 Spatial Instabilities in One-Variable Systems

To shed further light on the occurrence of spatial Hopf bifurcations in DIRWs, it is
instructive to study the stability properties of the uniform steady state in one-variable
systems. Consider the one-variable reaction–diffusion system

∂ρ

∂t
= D

∂
2
ρ

∂x2
+ F(ρ), (10.124)

with no-flow boundary conditions on the interval [0, L]:
∂ρ

∂x
(0, t) = ∂ρ

∂x
(L , t) = 0. (10.125)

Let ρ be a stable steady state of the well-mixed system:

F(ρ) = 0, with
dF

dρ
(ρ) ≡ λ0 < 0. (10.126)

The linearized evolution equation for small perturbations, ρ(x, t) = ρ+ δρ(x, t) =
ρ + ρ0 cos(kx) exp(λk t), is

λkδρ = −Dk2
δρ + λ0δρ, (10.127)

which yields the spectrum of “growth” rates, the dispersion relation,

λk = λ0 − Dk2
. (10.128)

For one-variable reaction–diffusion systems, diffusion is always stabilizing and no
spatial instability of the uniform steady state can occur, explicitly confirming Corol-
lary 10.1.

The evolution equations for the total density and flow of a one-variable DIRW
are given by

∂ρ

∂t
+ γ

∂ j

∂x
= g(ρ)− f −(ρ)ρ = F(ρ), (10.129a)

∂ j

∂t
+ γ

∂ρ

∂x
= −[2μ+ f −(ρ)] j. (10.129b)

The uniform steady state is given by (ρ(x), j(x)) = (ρ, 0) and the linearized evo-
lution equations are

λkδρ(x, t)+ γ δ j ′(x, t) = λ0δρ(x, t), (10.130a)

λkδ j (x, t)+ γ δρ
′
(x, t) = −μ̃δ j (x, t), (10.130b)
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where

μ̃ = 2μ+ f −(ρ). (10.131)

Eliminating δρ(x, t), we obtain

[(λk + μ̃)(λ0 − λk)− γ
2k2]δ j (x, t) = 0 (10.132)

or the characteristic equation

λ
2
k + (μ̃− λ0)λk − μ̃λ0 + γ

2k2 = 0. (10.133)

The spectrum of “growth” rates is given by

λk,± =
1

2

[

λ0 − μ̃±
√

(λ0 + μ̃)
2 − 4γ 2k2

]

. (10.134)

For

k < kc =
1

2γ

∣
∣λ0 + μ̃

∣
∣ , (10.135)

the “growth” rates are real and negative. At k = kc, a double root occurs, λkc =
1
2 (λ0 − μ̃), and for k > kc, the “growth” rates become complex. The real part is
equal to λkc and negative. Perturbations with wavenumbers bigger than kc exhibit
damped oscillations. These perturbations decay with a rate that is the mean of the
decay rate of the flow, μ̃, and of the chemical decay rate

∣
∣λ0

∣
∣. They oscillate with

a frequency ωk =
√∣
∣
∣(λ0 + μ̃)

2 − 4γ 2k2
∣
∣
∣. This behavior is qualitatively different

from the reaction–diffusion system, where perturbations of all wavenumbers decay
monotonically. As expected, kc goes to infinity in the diffusive limit

kc →
μ

γ
= γ

2D
→∞, (10.136)

as γ → ∞, μ → ∞ with D = γ
2
/(2μ). In the ballistic limit, μ → 0, the

wavenumber kc goes to

kc =
∣
∣
∣λ0 + f −(ρ)

∣
∣
∣

2γ
. (10.137)

Note that if the decay rate of the flow, μ̃ = 2μ + f −(ρ), coincides with chemical
decay rate

∣
∣λ0

∣
∣, i.e., μ̃ = ∣∣λ0

∣
∣, then kc = 0, and perturbations with all wavenumbers
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k exhibit damped oscillations. This phenomenon foreshadows the spatial Hopf con-
dition for two-species DIRWs (10.114).

10.3.4 Turing Instabilities in Direction-Dependent Reaction Walks

The kinetic terms for DDRWs, see Sect. 5.6.2, depend on the details of the underly-
ing mechanism of the reacting system, and it is impossible to write down a general
form for them. We consider here the Brusselator model. In keeping with the spirit of
the model, we consider two possible direction-dependent kinetic schemes, namely
an activated U2 complex or an activated UV complex, to investigate the effect of
activation energy on the Turing instability [206].

10.3.4.1 Turing Instability in the Brusselator DDRW with Activated U Dimer

If the termolecular step in the Brusselator proceeds via an activated U2 complex, we
have the following kinetic scheme for the Brusselator DDRW:

A±
κ1−→ U±, (10.138)

B± + U∓
κ2−→ V∓ + D±, (10.139)

U+ + U− + V±
κ3−→ U− + U+ + U±, (10.140)

U±
κ4−→ E±. (10.141)

Here κi = Ai = Pi Zi , and Pi is the steric factor and Zi the collision frequency
factor [350]. We consider only situations where the steric factor ensures that the
kinetics are reaction-limited. We assume that the pool species A and B are in
equilibrium, i.e., ρ+,a = ρ−,a = 1

2a and ρ+,b = ρ−,b = 1
2b. Then the properly

nondimensionalized evolution equations for the Brusselator DDRW with activated
U dimer read

∂ρ+,u

∂t
+ γu

∂ρ+,u

∂x
= μu

(

ρ−,u − ρ+,u
)+ 1

2
a − (b + 1)ρ+,u + 4ρ+,uρ−,uρ+,v,

(10.142a)

∂ρ−,u

∂t
− γu

∂ρ−,u

∂x
= μu

(

ρ+,u − ρ−,u
)+ 1

2
a − (b + 1)ρ−,u + 4ρ+,uρ−,uρ−,v,

(10.142b)

∂ρ+,v

∂t
+ γv

∂ρ+,v

∂x
= μv

(

ρ−,v − ρ+,v
)+ bρ+,u − 4ρ+,uρ−,uρ+,v, (10.142c)

∂ρ−,v

∂t
− γv

∂ρ−,v

∂x
= μv

(

ρ+,v − ρ−,v
)+ bρ−,u − 4ρ+,uρ−,uρ−,v, (10.142d)



10.3 Turing Instabilities in Persistent Random Walks with Reactions 313

which lead to the following equations for the total densities and flows:

∂ρu

∂t
+ γu

∂ ju
∂x

= a − (b + 1)ρu + (ρ
2
u − j2

v )ρv, (10.143a)

∂ρv

∂t
+ γv

∂ jv
∂x

= bρu − (ρ
2
u − j2

v )ρv, (10.143b)

∂ ju
∂t

+ γu
∂ρu

∂x
= −2μu ju − (b + 1) ju + (ρ

2
u − j2

v ) jv, (10.143c)

∂ jv
∂t

+ γv
∂ρv

∂x
= −2μv jv + bju − (ρ

2
u − j2

v ) jv. (10.143d)

The uniform steady state of the Brusselator DDRW with activated U dimer with
impermeable boundaries at x = 0 and x = L is the same as for the Brusselator
DIRW, namely (ρu, ρv, ju, jv) = (a, b/a, 0, 0). A linear stability analysis leads to
the characteristic equation det Ĵ = 0, where

Ĵ11 = (μ+ λk)(b − 1− λk)− (γ /χ)a2b − k2
γ

2
, (10.144a)

Ĵ12 = −a2
(b − 1)+ (γ /χ)a2

(ν + λk)+ a2
λk, (10.144b)

Ĵ21 = λkb − (χ/γ )b(μ+ λk)+ a2b, (10.144c)

Ĵ22 = −(ν + λk)(λk + a2
)+ (χ/γ )ba2 − k2

χ
2
. (10.144d)

Here μ, ν, γ , and χ are defined by (10.73) and for the Brusselator are given by
μ = 2μu + b + 1 and ν = 2μv + a2.

The Turing condition, c4 = 0, leads to (K = k2)

K 2 −
[

b − 1

Du
+ −a2

Dv

]

K + a2

DuDv
− a4b

μνDuDv
= 0. (10.145)

This equation is identical with the Turing condition for the Brusselator DIRW
(10.97) except for the last term, which in the diffusive regime, small τ , is of order
τ

2. The Turing threshold bT,U2 for the Brusselator with activated U dimer coincides
with the Turing threshold bT,DIRW for the Brusselator DIRW up to first order in
τ ; b0,U2 and b1,U2 are given by the same expressions as for b0,DIRW and b1,DIRW,
namely (10.102) and (10.103). In the Brusselator DDRW with activated U dimer,
inertia and activation energy affect the locus of the Turing bifurcation at different
orders. Inertia gives rise to a first-order effect, whereas the activation energy affects
the Turing bifurcation only at a higher, namely second, order.



314 10 Turing Instabilities in Homogeneous Systems

10.3.4.2 Turing Instability in the Brusselator DDRW with Activated UV
Complex

To explore if the activation energy always affects the Turing bifurcation at a higher
order than the inertia, we consider the kinetic scheme where the termolecular step
in the Brusselator proceeds via an activated UV complex instead of an activated U
dimer:

A±
κ1−→ U±, (10.146)

B± + U∓
κ2−→ V∓ + D±, (10.147)

U+ + V− + U±
κ3−→ U− + U+ + U±, (10.148)

U− + V+ + U±
κ3−→ U− + U+ + U±, (10.149)

U±
κ4−→ E±. (10.150)

We assume again that the pool species A and B are in equilibrium. Then the properly
nondimensionalized evolution equations for the Brusselator DDRW with activated
UV complex read

∂ρ+,u

∂t
+ γu

∂ρ+,u

∂x
= μu

(

ρ−,u − ρ+,u
)+ 1

2
a − (b + 1)ρ+,u + 2ρ−,uρ+,vρu,

(10.151a)

∂ρ−,u

∂t
− γu

∂ρ−,u

∂x
= μu

(

ρ+,u − ρ−,u
)+ 1

2
a − (b + 1)ρ−,u + 2ρ+,uρ−,vρu,

(10.151b)

∂ρ+,v

∂t
+ γv

∂ρ+,v

∂x
= μv

(

ρ−,v − ρ+,v
)+ bρ+,u − 2ρ−,uρ+,vρu, (10.151c)

∂ρ−,v

∂t
− γv

∂ρ−,v

∂x
= μv

(

ρ+,v − ρ−,v
)+ bρ−,u − 2ρ+,uρ−,vρu, (10.151d)

which lead to the following equations for the total densities and flows:

∂ρu

∂t
+ γu

∂ ju
∂x

= a − (b + 1)ρu + (ρuρv − ju jv)ρu, (10.152a)

∂ρv

∂t
+ γv

∂ jv
∂x

= bρu − (ρuρv − ju jv)ρu, (10.152b)

∂ ju
∂t

+ γu
∂ρu

∂x
= −2μu ju − (b + 1) ju + (ρu jv − ρv ju)ρu, (10.152c)

∂ jv
∂t

+ γv
∂ρv

∂x
= −2μv jv + bju − (ρu jv − ρv ju)ρu. (10.152d)

The uniform steady state of the Brusselator DDRW with activated UV complex with
impermeable boundaries at x = 0 and x = L is again given by (ρu, ρv, ju, jv) =
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(a, b/a, 0, 0). A linear stability analysis leads to the characteristic equation
det Ĵ = 0, where

Ĵ11 = (μ+ b + λk)(b − 1− λk)− (γ /χ)2a2b − k2
γ

2
, (10.153a)

Ĵ12 = −a2
(b − 1)+ (γ /χ)a2

(ν + λk)+ a2
λk, (10.153b)

Ĵ21 = 2bλk − (χ/γ )b(μ+ b + λk)+ 2a2b, (10.153c)

Ĵ22 = −(ν + λk)(λk + a2
)+ (χ/γ )ba2 − k2

χ
2
. (10.153d)

The Turing condition, c4 = 0, leads to

K 2 −
[

b − 1

Du
+ −a2

Dv
− b(1− b)

μDu
− a2b
√

μνDuDv

]

K

+ a2

DuDv
+ a2b

μDuDv
− 2a2b

μνDuDv
= 0. (10.154)

The coefficients of this equation differ from those of the corresponding equation
for the Brusselator DIRW (10.97) by terms that are first order in τ , namely the
terms with 1/μ and 1/

√
μν, and a term that is second order in τ , namely the term

with 1/(μν). In the Brusselator DDRW with activated UV complex, inertia and
activation energy both affect the threshold of the Turing bifurcation at first order,
in contrast to the DDRW with activated U dimer. We find for the Turing threshold
bT,UV = b0,UV + b1,UVτ + · · · :

b0,UV =
(

1+ a
√

Du/Dv

)2
, (10.155)

b1,UV =

−
a
√

Du
(

a
√

Du +
√

Dv
) [

4aνv
√

DuDv + 3νvDv + a2
(2νvDu − νuDv)

]

νuνvD
2
v

.

(10.156)

The critical wavenumber is given by

k2
T,UV =

√
√
√
√
√

a2

DuDv
+

a2
[

4aνv
√

DuDv + 3νvDv + a2
(νuDv + 2νvDu)

]

νuνvDuD
2
v

τ + · · ·.
(10.157)
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10.4 Turing Instabilities in Reaction–Transport Systems with
Anomalous Diffusion

As discussed in Sect. 2.3, the transport of particles or dispersal of individuals dis-
plays anomalous diffusive behavior in a variety of applications, and subdiffusion
and superdiffusion are commonly modeled within a CTRW framework.

10.4.1 Turing Instabilities in Reaction–Subdiffusion Systems:
Model B

In this section, we use Model B, see Sect. 3.4.2, to explore the effects of subdiffu-
sion on the Turing instability. We consider the two-variable generalized reaction–
diffusion equation [484],

∂ρu(x, t)

∂t
= F+1 (ρ(x, t))− F−1 (ρ(x, t))

+σ
2
u

2
∇2

[
∫ t

0
Ku(t − t ′)ρu(x, t

′
) exp

[

−
∫ t

t ′
F−1 (ρ(x, t ′′))
ρu(x, t

′′
)

dt ′′
]

dt ′
]

,

(10.158a)
∂ρv(x, t)

∂t
= F+2 (ρ(x, t))− F−2 (ρ(x, t))

+σ
2
v

2
∇2

[
∫ t

0
Kv(t − t ′)ρv(x, t

′
) exp

[

−
∫ t

t ′
F−2 (ρ(x, t ′′))
ρv(x, t

′′
)

dt ′′
]

dt ′
]

,

(10.158b)

for an infinite system. As pointed out in Remark 2.4, (10.158) is valid for arbitrary
waiting time PDFs and has much wider applicability than subdiffusive transport.
The uniform steady state of (10.158) is given by (ρu(x), ρv(x)) = (ρu, ρv), and we
assume, as in the preceding sections, that it satisfies the stability conditions (10.23).
Linearizing (10.158) about the uniform steady state, we obtain the linearized evolu-
tion equations for δρu(x, t) and δρv(x, t):

∂δρu(x, t)

∂t
=σ

2
u

2
∇2
{

ρu

∫ t

0
Ku(t − t ′)e−pu(t−t ′)

×
[

−A11

∫ t

t ′
δρu(x, t

′′
)dt ′′ − A12

∫ t

t ′
δρv(x, t

′′
)dt ′′

]

dt ′
}

+ σ
2
u

2
∇2
∫ t

0
δρu(x, t

′
)Ku(t − t ′)e−pu(t−t ′)dt ′

+ J11(ρu, ρv)δρu(x, t)+ J12(ρu, ρv)δρv(x, t), (10.159a)
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∂δρv(x, t)

∂t
=σ

2
v

2
∇2
{

ρv

∫ t

0
Kv(t − t ′)e−pv(t−t ′)

×
[

−A21

∫ t

t ′
δρu(x, t

′′
)dt ′′ − A22

∫ t

t ′
δρv(x, t

′′
)dt ′′

]

dt ′
}

+ σ
2
v

2
∇2
∫ t

0
δρv(x, t

′
)Kv(t − t ′)e−pv(t−t ′)dt ′

+ J21(ρu, ρv)δρu(x, t)+ J22(ρu, ρv)δρv(x, t). (10.159b)

Here pi = F−i (ρu, ρv)/ρi , and the matrix A is defined as

Ai j =
∂

∂ρ j

[

F−i (ρ)

ρi

]

(ρu,ρv)

. (10.160)

For the case of subdiffusive transport, the Laplace transforms of the waiting–time
PDFs for the two species are given by φ̂u(s) → 1 − (τ0,us)

γu and φ̂v(s) → 1 −
(τ0,vs)

γv . For rational values of γu and γv, we can Laplace and Fourier transform
(10.159) and find [484]

s ̂̃δρu(k, s) = ̂̃δρu(k, t = 0)

− σ
2
u k

2
ρu[puτ0,u]1−γuhγu

(s, pu)

2sτ0,u

[

A11
̂̃δρu(k, s)+ A12

̂̃δρv(k, s)
]

− σ
2
u k

2
(s + pu)

1−γu

2τ
γu
0,u

̂̃δρu(k, s)

+ J11(ρu, ρv)
̂̃δρu(k, s)+ J12(ρu, ρv)

̂̃δρv(k, s), (10.161a)

s ̂̃δρv(k, s) = ̂̃δρv(k, t = 0)

− σ
2
v k

2
ρv[pvτ0,v]1−γvhγv

(s, pv)

2sτ0,v

[

A21
̂̃δρu(k, s)+ A22

̂̃δρv(k, s)
]

− σ
2
v k

2
(s + pu)

1−γv

2τ
γv
0,v

̂̃δρv(k, s)

+ J21(ρu, ρv)
̂̃δρu(k, s)+ J22(ρu, ρv)

̂̃δρv(k, s), (10.161b)

where hγi (s, pi ) = 1− p
γi−1
i (s + pi )

1−γi .
We determine the stability of the uniform steady state (ρu(x), ρv(x)) = (ρu, ρv)

of (10.158) and the conditions for the Turing instability by solving (10.161) for
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̂̃δρu(k, s) and ̂̃δρv(k, s), followed by taking an inverse Laplace transform. For sim-
plicity, we assume that the species V undergoes normal diffusion, γv = 1, and we
write γu = γ . Solving (10.161), we obtain

̂̃δρu(k, s) =
ν(s)

�(s)
, (10.162)

where

ν(s) =
(

s − J22 +
σ

2
v k

2

2τ0,v

)

̂̃δρu(k, t = 0)

+
(

J12 − σ
2
u k

2
ρu[puτ0,u]1−γ hγ (s, pu)

2sτ0,u

)

̂̃δρv(k, t = 0) (10.163)

and

�(s) =
[

s − J11 + σ
2
u k

2 (s + pu)
1−γ

2τγ0,u

][

s − J22 +
σ

2
v k

2

2τ0,v

]

− J21 J12

+σ
2
u k

2
ρu[puτ0,u]1−γ hγ (s, pu)

2sτ0,u

(

A12 J21 + A11s − A11 J22 + A11
σ

2
v k

2

2τ0,v

)

.

(10.164)

We obtain a similar expression for ̂̃δρv(k, s), with the same denominator as in
(10.162).

The inverse Laplace transform leads to

δ̃ρu(k, t) =
∑

i

ζ(si )e
si t , (10.165)

where si are the zeros of the denominator �(s) on the right-hand side of (10.164),
while ζ(si ) are time-independent coefficients [484]. Equation (10.165) shows that
the long-time asymptotic behavior of the perturbations is controlled only by the
zeros of �(s). The perturbation δ̃ρu(k, t) grows if at least one of the zeros si of
�(s) has a positive real part, else it decays. This holds true for δ̃ρv(k, t) as well,
since the long-time asymptotics are controlled by the zeros of the same polynomial
�(s). An instability occurs if all s j have negative real parts except for s jc whose
real part changes from negative to positive at the instability threshold as a control
parameter of the system is varied. The Turing instability corresponds to a real zero
crossing the imaginary axis, i.e., �(s jT → 0) = 0:

[(

−J11 +
σ

2
u k

2 p1−γ
u

2τγ0,u

)(

−J22 +
σ

2
v k

2

2τ0,v

)

− J21 J12

]
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+ (σ
2
u /2)k2

ρu p
−γ
u τ

−γ

0,u (γ − 1)

(

A12 J21 − A11 J22 + A11
σ

2
v k

2

2τ0,v

)

= 0. (10.166)

Using the generalized diffusion coefficient, see (2.54), Dγ ;u = σ
2
u /(2τ

γ

0,u), and the

regular diffusion coefficient Dv = σ
2
v /(2τ0,v), we write the Turing condition as

[(

−J11 + Dγ ;uk
2 p1−γ

u

) (

−J22 + Dvk
2
)

− J21 J12

]

+ Dγ ;uk
2
ρu p

−γ
u (γ − 1)

(

A12 J21 − A11 J22 + A11Dvk
2
)

= 0. (10.167)

Rewriting (10.167) in the form

k4 + ĉ2k
2 + ĉ4 = 0, (10.168)

with

ĉ2 =
−Dv J11 p

γ
u + (γ − 1)A12 J21Dγ ;uρu − J22Dγ ;u[pu + (γ − 1)A11ρu]

DvDγ ;u[pu + (γ − 1)A11ρu]
(10.169)

and

ĉ4 =
(J11 J22 − J12 J21)p

γ
u

DvDγ ;u[pu + (γ − 1)A11ρu]
, (10.170)

furnishes the upper and lower cutoff of the band of unstable modes,

1

2

(

−ĉ2 −
√

ĉ2
2 − 4ĉ4

)

< k2
<

1

2

(

−ĉ2 +
√

ĉ2
2 − 4ĉ4

)

, (10.171)

provided ĉ2 < 0 and ĉ2
2 − 4ĉ4 > 0. At the Turing threshold, ĉ2

2 − 4ĉ4 = 0, and the
critical wavenumber is k2

c = −ĉ2/2.
Equation (10.167) is the general condition for the occurrence of a Turing insta-

bility in a two-component system when one of the components subdiffuses. By
choosing γ = 1 in (10.167), we obtain the classical Turing condition, (10.30), for
the case when both entities undergo normal diffusion:

(

−J11 + Duk
2
) (

−J22 + Dvk
2
)

− J21 J12 = 0, (10.172)

where Du = D1;u = σ
2
u /(2τ0,u).

To be able to compare directly a reaction–subdiffusing system with a standard
reaction–diffusion system, we proceed in the following way. As shown in Sect.
10.1.2, a Turing instability can occur in a standard reaction–diffusion system only
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if the activator diffuses slower than the inhibitor. This is expressed quantitatively
by the critical ratio of diffusion coefficients θRD,c given by (10.41). The latter is
equivalent to the ratio of the chemical length scales squared of the inhibitor and the
activator. This observation points to the appropriate generalization of the ratio of
diffusion coefficients for situations where the two species diffuse with a different
characteristic exponent γi and the generalized diffusion coefficients Dγi ;i have dif-
ferent units. Define the effective diffusion constant for the subdiffusing species U by

D̂γ ;u = Dγ ;u p
1−γ
u = Du(puτ0,u)

1−γ
, (10.173)

which for normal diffusive behavior reduces to the standard diffusion constant Du.
Further, the mean squared chemical length of species i is given by 〈x2

i (τch)〉. The
chemical time scale τch is determined by the characteristic lifetime of the activa-
tor, namely τch = p−1

u . The mean squared displacement (MSD) for subdiffusing
particles is given by (2.60):

〈x2
u(t)〉 =

2

�(1+ γ )
Dγ ;ut

γ
. (10.174)

We obtain for the ratio of the mean squared chemical lengths of the inhibitor and
the activator

〈x2
v(τch)〉

〈x2
u(τch)〉

= �(1+ γ )
Dv

D̂γ ;u
. (10.175)

Since the factor �(1 + γ ) is close to 1 for 0 < γ ≤ 1, the result implies that the
ratio θc,γ ′ = (Dv/D̂γ ;u)c, the ratio of the diffusion constant of the inhibitor and the
effective diffusion constant of the activator at the Turing threshold, is the appropriate
generalization of (10.41) to reaction–subdiffusion systems. We have set γ ′ = 1− γ

for convenience, so that γ ′ = 0 corresponds to standard diffusion.
Introducing the effective diffusion constant for the activator into the Turing con-

dition (10.167), we obtain

[(

−J11 + D̂γ ;uk
2
) (

−J22 + Dvk
2
)

− J21 J12

]

+ D̂γ ;uk
2
ρu p

−1
u (γ − 1)

(

A12 J21 − A11 J22 + A11Dvk
2
)

= 0. (10.176)

When the subdiffusion exponent γ is close to one, (10.176) reduces to the condition

(

−J11 + D̂γ ;uk
2
) (

−J22 + Dvk
2
)

− J21 J12 = 0. (10.177)

This is formally identical to the classical Turing condition with the effective diffu-
sion coefficient of the subdiffusing species, D̂γ ;u, in place of the original diffusion
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constant Du of the purely diffusive case. For small deviations from purely diffusive
behavior into the subdiffusive regime, the memory of the transport shifts the Turing
instability threshold and the characteristic wavenumber of the unstable mode at the
threshold. This translates into a change in the characteristic size of the resulting
pattern. Also, the upper and lower cutoffs of the band of unstable modes are shifted.

Equation (10.177) holds for all values of γ if the loss rate of the subdiffusing
species U is linear, i.e., of the form F−1 (ρu, ρv) = puρu, since in this case A11 =
A12 = 0. The Brusselator, see Sect. 1.4.4, F1(ρu, ρv) = a − (b + 1)ρu + ρ

2
uρv and

consequently F−1 (ρu, ρv) = (b+1)ρu, the Gierer–Meinhardt model, see Sect. 1.4.6,
F1(ρu, ρv) = 1−ρu+aρ2

u/ρv, i.e., F−1 (ρu, ρv) = ρu, and the Schnakenberg model,
see Sect. 1.4.5, F1(ρu, ρv) = a − ρu + ρ

2
uρv, i.e., F−1 (ρu, ρv) = ρu, belong to this

class. For models with linear death rates it follows from (10.177) that the critical
value of θc,γ ′ for a Turing instability to occur is given by

θc,γ ′ = θRD,c =
[

1

J11

(√
�+√−J12 J21

)]2

, (10.178)

i.e., identical to the critical value of the ratio of diffusion coefficients for a Turing
instability in a standard reaction–diffusion system (10.41). Therefore the diffusion
coefficient of the normally diffusing inhibitor V must be larger than

Dv,c = θRD,c D̂γ ;u = θRD,cDu(puτ0,u)
1−γ (10.179)

for a Turing instability to occur if the activator displays subdiffusion with expo-
nent γ .

If the loss rate of the activator is nonlinear, then we need to solve the Turing
threshold condition ĉ2

2 − 4ĉ4 = 0, which provides two solutions for the ratio θc,γ ′ .
To choose the physically meaningful solution, we recall that for standard diffusion,
γ
′ = 0, the ratio θc,0 = (Dv/Du)RD,c must always be greater than one, see (10.35).

This criterion leads to the choice

θc,γ ′ =
1

J 2
11 p

2
u

{

−2J12 J21 p
2
u + J11 J22 p

2
u − A12 J11 J21 puρuγ

′

+2A11 J12 J21 puρuγ
′ − A11 J11 J22 puρuγ

′

+2
√

J21(−�)p2
u(pu − A11ρuγ

′
)[A12 J11ρuγ

′ + J12(pu − A11ρuγ
′
)]
}

,

(10.180)

which reduces to θc,0 = θRD,c, see (10.41), for γ ′ = 0.
We apply the result, (10.180), to the Oregonator model of the BZ reaction, see

Sect. 1.4.8, and the Lengyel–Epstein model of the CDIMA reaction, see Sect. 1.4.9.
Turing instabilities have been observed in experimental systems with normal diffu-
sive behavior of the activator and inhibitor for both reactions. Equation (10.180) can
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of course be evaluated explicitly for any kinetic scheme using symbolic computa-
tion software. However, the resulting expression for the Oregonator is very lengthy
and not enlightening at all. It will therefore not be displayed here. We illustrate
instead the behavior by choosing specific values for the kinetic parameters, namely
q = 0.005, h = 1.9, and ε = 0.3. For these values, the stability conditions (10.23)
are fulfilled for the nontrivial steady state (1.132), and

θc,γ ′ = 6.8012+ 6.1183γ ′ + 5.8167
√

(0.98539+ γ
′
)(1.3513+ γ

′
). (10.181)

A plot of this curve, θc,γ ′ vs γ
′, is shown in Fig. 10.1. The ratio of the diffusion

constant of the inhibitor and the effective diffusion constant of the activator at the
Turing threshold increases as the motion becomes more subdiffusive, γ ′ → 1.

0.25 0.5 0.75 1

14

20

26

θ c,γ

γ

Fig. 10.1 Plot of θc,γ ′ for the Oregonator. The parameters are q = 0.005, h = 1.9, and ε = 0.3.
Reprinted with permission from [485]. Copyright 2008 by the American Physical Society

We are interested in the effect of subdiffusive motion of the activator on Turing
instabilities. We focus on this mechanism exclusively and consider the LE model
in its original form without a substrate, i.e., σ = 1 in (1.152) or (1.160). Equa-
tion (10.180) results in the following expression:

θc,γ ′ =
1

(125− 3a2
)
2

[

625ab + 65a3b + 128a5bγ ′

25+ a2

+4
√

10

√

a4b2
(125+ 5a2 + 8a2

γ
′
)(125− 125γ ′ + 5a2 + 11a2

γ
′
)

25+ a2

]

.

(10.182)

We again illustrate the behavior of the critical ratio θc,γ ′ by choosing specific values
for the kinetic parameters, namely a = 50.0 and b = 40.0. For these values, the
stability conditions (10.23) are fulfilled for the steady state (1.154), and

θc,γ ′ = 5.9983+ 11.650γ ′ + 10.829
√

(0.46119+ γ
′
)(0.63125+ γ

′
). (10.183)
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A plot of this curve is shown in Fig. 10.2. As for the Oregonator model, the ratio
of the diffusion constant of the inhibitor and the effective diffusion constant of the
activator at the Turing threshold increases as the motion becomes more subdiffusive,
γ
′ → 1.
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Fig. 10.2 Plot of θc,γ ′ for the Lengyel–Epstein model. The parameters are a = 50.0 and b = 40.0.
Reprinted with permission from [485]. Copyright 2008 by the American Physical Society

It is worth noting that the nonlinear loss rate for the subdiffusing species, present
in the two models analyzed above, is responsible for the increase of the ratio θc,γ ′

with an increase in γ
′. The ratio θc,γ ′ remains unchanged on changing γ

′, if the
subdiffusing species has a linear loss rate, see (10.178).

As shown in Sect. 10.1.2, Turing patterns arise from a competition between local
activation and long-range inhibition. For the kinetic schemes studied in this section,
the interaction between the nonlinear kinetics, especially the nonlinear death rate,
and the memory effects of the transport, as explicitly displayed in the generalized
reaction–diffusion equation (10.158) by the presence of both the kernel Ki (t − t ′),
related to the waiting time PDF of the CTRW, and the death rate F−i (ρ(x, t)) in
the memory term, leads to an enhanced local activation. For the Oregonator and
Lengyel–Epstein model and for the parameter values considered here, the specific
loss rate of the activator, F−1 (ρu, ρv)/ρu, decreases as the concentration ρu increases
away from the steady state value. The increased survival rate in regions with positive
fluctuations in the activator concentration, combined with the fact that subdiffusive
activator particles stay longer in a given region than normally diffusing particles,
leads to an increase of the local autocatalytic effect. This effect becomes more pro-
nounced as the dispersion of the activator becomes more subdiffusive, γ ′ → 1.
A Turing instability can only occur, if the enhanced local autocatalytic effect is
countered by a longer ranged inhibitory effect, and consequently θc,γ ′ increases as

γ
′ increases.

Having examined the consequences of a subdiffusing activator on the Turing
instability, we turn now to the opposite case of a subdiffusing inhibitor. We explore
if the coupling between a nonlinear specific loss rate and subdiffusion can similarly
enhance the inhibitory effect and result in conditions that are more favorable for
the formation of Turing patterns. The Turing condition (10.167) is valid under the
assumption that the first species, i.e., U, undergoes subdiffusion. Recall that we
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denote the activator by U and the inhibitor by V, see Sect. 1.2.2. To be able to utilize
(10.167) in studying the role of a subdiffusing inhibitor, we reverse the convention
by setting the first species, U, as the inhibitor for activator–inhibitor models, (1.19)
or (1.21), and the second species V as the activator. It is straightforward to show by
symmetry arguments that the critical ratio of the effective diffusion constant for the
subdiffusive inhibitor and the standard diffusion constant for the normally diffusing
activator is given by

θc,γ ′ =
(

1

J 2
11 p

2
u

{

−2J12 J21 p
2
u + J11 J22 p

2
u − A12 J11 J21 puρuγ

′

+2A11 J12 J21 puρuγ
′ − A11 J11 J22 puρuγ

′

−2
√

J21(−�)p2
u(pu − A11ρuγ

′
)[A12 J11ρuγ

′ + J12(pu − A11ρuγ
′
)]
})−1

.

(10.184)

Previously, the physically meaningful solution branch for θc,γ ′ , given by (10.180),
was obtained by requiring that θc,0 > 1. Reversing the labels of the activator and
inhibitor amounts to considering the inverse of the conjugate solution to 10.180,
which is provided by 10.184.

The death rate of the inhibitor in the Oregonator is linear. Subdiffusive motion of
this species leaves the critical ratio θc,γ ′ unchanged as γ

′ increases, θc,γ ′ = θc,0 =
θRD,c, see (10.178). In the following we consider the Lengyel–Epstein model and the
Schnakenberg model, Sect. 1.4.5, and the Gray–Scott model, Sect. 1.4.7. We will not
display the explicit expression (10.184) for θc,γ ′ for each model, but rather illustrate

the behavior by a plot of θc,γ ′ vs γ
′ for a typical set of parameter values. For the

Lengyel–Epstein model with a subdiffusing inhibitor, a typical plot of θc,γ ′ , obtained
from (10.184), is shown in Fig. 10.3. In our reversed convention, the nonlinearities
are given by

F1(ρu, ρv) = b

[

ρv −
ρuρv

1+ ρ
2
v

]

, (10.185a)

F2(ρu, ρv) = a − ρv − 4
ρuρv

1+ ρ
2
v

, (10.185b)

and the unique uniform steady state is (ρu, ρv) = (1+ a2
/25, a/5).

Typical plots of θc,γ ′ for the Schnakenberg model with the kinetic terms

F1(ρu, ρv) = b − ρuρ
2
v , (10.186a)

F2(ρu, ρv) = a − ρv + ρuρ
2
v , (10.186b)
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Fig. 10.3 Plot of θc,γ ′ for the Lengyel–Epstein model with a subdiffusing inhibitor. The param-
eters are a = 50.0 and b = 40.0. Reprinted with permission from [485]. Copyright 2008 by the
American Physical Society

and steady state (ρu, ρv) = (b/(a + b)2
, a + b) and for the Gray–Scott model with

the kinetic terms

F1(ρu, ρv) = −ρuρ
2
v + q(1− ρu), (10.187a)

F2(ρu, ρv) = ρuρ
2
v − (k2 + q)ρv, (10.187b)

and steady state

(ρu, ρv) =
(

1−
(k2 + q)

(

−q −
√

−4k2
2q + q2 − 8k2q

2 − 4q3
)

−2q(k2 + q)
,

−q −
√

−4k2
2q + q2 − 8k2q

2 − 4q3

−2q(k2 + q)

)

(10.188)

are shown in Figs. 10.4 and 10.5, respectively.
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Fig. 10.4 Plot of θc,γ ′ for the Schnakenberg model with a subdiffusing inhibitor. The parameters
are a = 0.1 and b = 0.9. Reprinted with permission from [485]. Copyright 2008 by the American
Physical Society
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Fig. 10.5 Plot of θc,γ ′ for the Gray–Scott model with a subdiffusing inhibitor. The parameters are
q = 0.15 and k2 = 0.03. Reprinted with permission from [485]. Copyright 2008 by the American
Physical Society

A subdiffusing inhibitor with a nonlinear loss term results in a decreasing θc,γ ′

as γ
′ increases, in contrast to the opposite case of a subdiffusing activator. Again,

the interaction between the nonlinear kinetics, especially the nonlinear loss rate,
and the memory effects of the transport enhances the effectiveness of the inhibitor.
This effect becomes more pronounced as the dispersion of the activator becomes
more subdiffusive, γ ′ → 1, and makes it easier for a Turing instability to arise.
Consequently θc,γ ′ decreases as γ ′ increases.

10.4.2 Turing Instabilities in Reaction–Subdiffusion Systems:
Model A and Other Approaches

We have focused on Model B to investigate the effect of subdiffusive transport on
the Turing instability, because it appears to have the broadest range of applicability.
The assumptions inherent in the other CTRW models are quite restrictive. Model C,
Sect. 3.4.3, corresponds to a pure birth process. Model A assumes that reactions do
not change the waiting time PDF. As discussed in Sect. 3.4.1, in a chemical con-
text this implies that reactive events do not destroy or create particles; they simply
change the internal state of the reactant particles. It is not clear that actual chemi-
cal reactions meeting the requirements of Model A can display Turing instabilities.
The situation appears to be more promising for ecological and other nonchemical
systems. Experimental studies will of course be the ultimate arbiter of which model
provides an adequate description for a specific system.

Nec and Nepomnyashchy have used Model A to investigate Turing instabilities
in a two-variable activator–inhibitor subdiffusive system [317]. The analysis is quite
involved, and the Turing condition is somewhat complicated. Since reactions do not
change the waiting time PDF in model A, φu(t) = φv(t) = φ(t), the anomaly
exponent is the same for both species. The authors find that the Turing condition
is more restrictive than for standard RD systems. For anomaly exponents γ close
to one, the critical ratio θc is larger than θRD,c. Consequently, subdiffusion of the
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activator and inhibitor with the same exponent γ has a stabilizing effect in Model
A reaction–transport systems. Further, the growth rate of the most unstable mode
decreases as γ decreases. Reducing γ for fixed θ will eventually stabilize the uni-
form steady state.

Numerical simulations of a subdiffusing activator–inhibitor system, namely the
Schnakenberg model, see Sect. 1.4.5, have been conducted by Weiss [475] and Chiu
and Chiam [76]. Weiss considers the case of a subdiffusing activator and a normally
diffusing inhibitor. He observes a stabilization of Turing patterns due to subdiffusion
and attributes it to subdiffusion mimicking the effects of a lower effective diffusion
constant for the activator. Chiu and Chiam consider the case where the activator and
the inhibitor have the same anomaly coefficient γ . They also find that subdiffusion
has a stabilizing effect. As γ decreases, it becomes harder for Turing patterns to
form. A direct quantitative comparison of the numerical observations with analyti-
cal results is not feasible. The models studied above are mean-field descriptions and
neglect particle number fluctuations as discussed at the start of Chap. 3. In contrast,
the simulations are stochastic in nature and the total number of particles, N , is rela-
tively small. The largest N in Weiss’s simulations is 5000, and in the simulations by
Chiu and Chiam it is 6428. The reported results show that N is not large enough to
neglect random fluctuations around the mean behavior. Particle number fluctuations
have a strong effect in both numerical approaches and change the Turing conditions
from those obtained for mean-field reaction–transport equations.

Several authors have considered reaction–transport equations, where the frac-
tional time derivative operates both on the diffusion term and the nonlinear kinetic
term [391, 490, 240, 235],

∂ρi

∂t
= D1−γi

t

[

Dγi ;i
∂

2
ρi

∂x2
+ Fi (ρ)

]

, (10.189)

or the equivalent form [147, 148],

∂
γiρi

∂tγi
= Dγi ;i

∂
2
ρi

∂x2
+ Fi (ρ). (10.190)

These equations describe subdiffusion-limited chemical reactions. As stated in
Chap. 2, such reactions are outside the scope of this monograph. For results on fronts
and Turing instabilities in systems with subdiffusion-controlled chemical reactions,
see for example [490, 240, 147, 148, 235, 318, 191].

10.4.3 Turing Instability in the Superdiffusive Brusselator

CTRWs with short–tailed waiting time PDFs and heavy-tailed jump length PDFs
correspond to Lévy flights, which model superdiffusive processes, as discussed in
Chap. 3. Lévy flights have been studied extensively [299, 74, 296] and have found
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applications in subsurface hydrology [38, 42] and ecology [459, 20, 356, 24], though
recent work questions the empirical evidence for Lévy flights in animal search pat-
terns [108, 107]. The Lévy flight behavior is a good fit on length scales encountered
in applications. From a fundamental viewpoint, however, the infinite variance of
Lévy flights is problematic for particles or individuals, since it implies an unbounded
velocity distribution [74, 24]. This feature leads to accelerating fronts for instance
[90, 24].

Lévy flights are Markovian CTRWs, and we can therefore simply add a kinetic
term to the RHS of (3.91),

∂ρi (x, t)

∂t
= Dαi ;i

∂
αiρi (x, t)

∂ |x |αi + Fi (ρ), (10.191)

with 1 < αi < 2. This equation can also be obtained from the Master equation
(3.138). Golovin and coworkers have investigated the Turing instability in the Brus-
selator model with superdiffusion [164],

∂ρu

∂t
= Dα;u

∂
α
ρu

∂ |x |α + a − (b + 1)ρu + ρ
2
uρv, (10.192a)

∂ρv

∂t
= Dβ;v

∂
β
ρv

∂ |x |β
+ bρu − ρ

2
uρv, (10.192b)

on −∞ < x < ∞. The authors write (ρu(x, t), ρv(x, t)) = (ρu + δρu(x, t), ρv +
δρv(x, t)). They rescale the variables

δρu =
√

θyρ
∗
u , δρv =

(

1/
√

θy

)

ρ
∗
v , x =  x∗, (10.193)

where

θy =
Dβ;v
D1/y

α;u
, y = α

β
,  = D1/α

α;u , (10.194)

and obtain, dropping the ∗,

∂ρu

∂t
= ∂

α
ρu

∂ |x |α + (b − 1)ρu + q2
ρv + (b/q)ρ2

u + 2qρuρv + ρ
2
uρv, (10.195a)

1

θy

∂ρv

∂t
= ∂

β
ρv

∂ |x |β
− bρu − q2

ρv − (b/q)ρ2
u − 2qρuρv − ρ

2
uρv, (10.195b)

with q = a/
√
θy . A linear stability analysis of the uniform steady state (ρu(x), ρv

(x)) = (0, 0) of (10.195) yields the dispersion relation

λ
2
k/θy + c1λk + c2 = 0, (10.196)
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where

c1 = q2 + kβ − (b − 1− kα
)

/θy, (10.197)

c2 = ba2 − (b − 1− kα
) (

q2 + kβ
)

. (10.198)

The locus of the stationary instability of mode k, i.e., λk = 0, can be written in
the form

b(k) = 1

kβ
(

1+ kα
) (

q2 + kβ
)

. (10.199)

This curve has a single minimum, (kT, bT), which corresponds to the Turing instabil-
ity of the uniform steady state. The Turing threshold bT and the critical wavenumber
kT depend on q and read in parametric form

kT = ζ
1/α

, bT =
(1+ ζ )

2

1+ (1− y)ζ
, q2 = yζ 1+1/y

1+ (1− y)ζ
. (10.200)

The parameter ζ varies over (0,∞) if 1/2 < y ≤ 1 and over (0, 1/(y − 1)) if
1 < y < 2. Analysis shows that for y = 1, i.e., the activator and inhibitor have
the same anomaly coefficient and which includes the case of standard diffusion,
the conditions (10.200) reduce to those of the standard Brusselator RD system, see
Sect. 10.1.3. If y < 1, the anomaly coefficient of the inhibitor is larger than that of
the activator, and the tail of the jump length PDF of the inhibitor decreases faster
than that of the activator, see (3.191). In other words, the activator has a longer range
than the inhibitor, which prevents a Turing instability in a standard RD system. In
contrast, a Turing bifurcation can occur in the superdiffusive Brusselator for such a
situation, provided a is sufficiently large [164].

Exercises

10.1 Consider the model of Exercise 1.6 in a reaction–diffusion setting:

∂ρu

∂t
= 1− ρuρ

h
v + Du

∂
2
ρu

∂x2
, (10.201a)

∂ρv

∂t
= αρuρ

h
v − αρv + Dv

∂
2
ρv

∂x2
. (10.201b)

Can the uniform steady state of (10.201) undergo a Turing instability? If so, discuss
the effect of increasing the Hill constant h.

10.2 Consider the modified Brusselator RD system,
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∂ρu

∂t
= a − (b + 1)ρu + ρ

h
uρv + Du

∂
2
ρu

∂x2
, (10.202a)

∂ρv

∂t
= bρu − ρ

h
uρv + Dv

∂
2
ρv

∂x2
, (10.202b)

with h > 2. Discuss the effect of increasing h on the Turing instability of the Brus-
selator.

10.3 Investigate the effect of cross-diffusion terms on the Turing instability in two-
variable RD systems,

∂ρu

∂t
= Du

∂
2
ρu

∂x2
+ ∂

∂x
Duv(ρu)

∂ρv

∂x
+ F1(ρu, ρv), (10.203a)

∂ρv

∂t
= Dv

∂
2
ρv

∂x2
+ ∂

∂x
Dvu(ρv)

∂ρu

∂x
+ F2(ρu, ρv), (10.203b)

with no-flow boundary conditions on the interval [0, L]. The cross-diffusion coef-
ficients Di j must go to zero as ρi goes to zero, since there can be no flux of ρi if
ρi = 0. Recall that in chemical systems, see Sect. 2.1.2, thermodynamics imposes
the constraint that all eigenvalues of the diffusion matrix

D =
(

Du Duv
Dvu Dv

)

(10.204)

must be real and positive, i.e., tr D > 0 and det D > 0.
Assume that

Duv(ρu) = Duv
ρu

εu + ρu
, (10.205)

Dvu(ρv) = Dvu
ρv

εv + ρv
, (10.206)

where εi is small. Then for ρu � εu and ρv � εv, the cross-diffusion terms can be
considered constant, and (10.203) reduces to

∂ρu

∂t
= Du

∂
2
ρu

∂x2
+ Duv

∂
2
ρv

∂x2
+ F1(ρu, ρv), (10.207a)

∂ρv

∂t
= Dv

∂
2
ρv

∂x2
+ Dvu

∂
2
ρu

∂x2
+ F2(ρu, ρv). (10.207b)

Investigate the spatial instabilities of (10.207). Assume that Du = 1 and Dv = d >

1. The cross-diffusion terms can be positive or negative, but the constraint det D > 0
must be satisfied.

10.4 Discuss the spatial instabilities of the uniform steady states of the prey–
predator system
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∂ρu

∂t
= ∂

∂x

(

du + Duρu
) ∂ρu

∂x
+ ρu − ρ

2
u − ρuρ

2
v , (10.208a)

∂ρv

∂t
= ∂

∂x

(

dv + Dvρu
) ∂ρu

∂x
+ ∂

∂x
Dvρv

∂ρu

∂x
− μρv + αρuρv, (10.208b)

with no-flow boundary conditions on the interval [0, L]. Here μ α, di , and Di
are positive quantities. For simplicity, consider the case du = dv = d and
Du = Dv = D.

10.5 Investigate the effect of a quiescent phase for the activator, i.e., an immobile
unreactive phase, on the Turing instability of two-variable DIRWs,

∂ρ+,u

∂t
+ γu

∂ρ+,u

∂x
= μu

(

ρ−,u − ρ+,u
)+ 1

2
ν2ρ0,u − ν1ρ+,u

+ 1

2
g1(ρ+,u + ρ−,u, ρv)− f −1 (ρ+,u + ρ−,u, ρv)ρ+,u,

(10.209a)

∂ρ−,u

∂t
− γu

∂ρ−,u

∂x
= μu

(

ρ+,u − ρ−,u
)++1

2
ν2ρ0,u − ν1ρ−,u

+ 1

2
g1(ρ+,u + ρ−,u, ρv)− f −1 (ρ+,u + ρ−,u, ρv)ρ−,u,

(10.209b)

∂ρ0,u

∂t
= ν1(ρ+,u + ρ−,u)− ν2ρ0,u, (10.209c)

∂ρ+,v

∂t
+ γv

∂ρ+,v

∂x
= μv

(

ρ−,v − ρ+,v
)+ 1

2
g2(ρ+,u + ρ−,u, ρv)

− f −2 (ρ+,u + ρ−,u, ρv)ρ+,v, (10.209d)

∂ρ−,v

∂t
− γv

∂ρ−,v

∂x
= μv

(

ρ+,v − ρ−,v
)+ 1

2
g2(ρ+,u + ρ−,u, ρv)

− f −2 (ρ+,u + ρ−,u, ρv)ρ−,v, (10.209e)

with impermeable boundaries. For simplicity, consider the case that ν1 = ν2 = ν.



Chapter 11
Turing Instabilities in Reaction–Diffusion
Systems with Temporally or Spatially Varying
Parameters

In Chap. 10 we considered the Turing instability in systems where the kinetic param-
eters and the transport coefficients are constant in space and time. While the vast
majority of theoretical work on Turing patterns deals with such systems, there are
good reasons from applications in biology and ecology to account for the effect
of spatial or temporal variations on the threshold of the Turing instability. Chem-
ical or biological systems are rarely completely uniform. Pattern formation in the
Drosophila egg, for example, occurs in the presence of maternally imposed gradi-
ents of gene products [106]. Experimental studies of Turing patterns in the CIMA
and CDIMA reactions use continuously fed unstirred reactors (CFURs), see Chap.
12, which unavoidably exhibit gradients in the concentrations of the feed reactants.
The problem of determining diffusion-driven instabilities in reacting systems with
spatially or temporally varying parameters is in general a rather difficult one. The
tools of the linear stability analysis employed in Chap. 10 cannot be extended to such
systems, since they do not posses a uniform steady state in most cases. Reaction–
diffusion systems with weak heterogeneities can be studied with perturbation tech-
niques [19, 50, 92, 40, 341, 342]. Lengyel and coworkers [249] used an approxima-
tion of the reaction–diffusion equation to study the effect of the gradients in CFURs
on the position and the possible three-dimensional character of the Turing structures.
In general, numerical studies are required to address the problem of Turing patterns
in heterogeneous systems, see for example [192, 433, 365, 394, 395, 55]. Voroney
and coworkers carried out numerical simulations of the Sel’kov model with a com-
plexing reaction [462]. They considered the case where the immobile complexing
species is confined to disks or stripes. If the spatial distribution of the complexing
agent varies on a scale small compared to the intrinsic length scales of the reaction–
diffusion system, normal Turing pattern formation occurs. If the spatial scales are
comparable, interactions between oscillatory behavior and Turing patterns generate
spatiotemporal dynamics not observed in a homogeneous medium.

While in general the problem of pattern formation in heterogeneous media is
a difficult one, the analysis is more manageable in situations where the spatial or
temporal variations in parameters of the reaction–diffusion system do not compro-
mise the existence of a uniform steady state. Such is the case for a varying diffusion
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coefficient. In that situation, a uniform steady state exists, but the standard tools of
bifurcation theory cannot be applied.

11.1 Turing Instability with Time-Varying Diffusivities

Ecological systems can display temporal oscillations in parameter values due to sea-
sonal variations. The effects of time-varying diffusivities on the Turing instability
were first considered by Timm and Okubo [436] in a predator–prey model describ-
ing the interaction between zooplankton and phytoplankton. Temporal variations
in the horizontal diffusion coefficients arise from the interaction of vertical current
shear with vertical mixing processes.

Consider the two-variable system

∂ρu

∂t
= Du

∂
2
ρu

∂x2
+ F1(ρu, ρv), (11.1a)

∂ρv

∂t
= Dv(t)

∂
2
ρv

∂x2
+ F2(ρu, ρv), (11.1b)

with no-flow boundary conditions (10.20) on the interval [0, L]. For simplicity, we
assume that only one of the diffusion coefficients is time-dependent, namely the
diffusivity of the inhibitor,

Dv(t) = Du[θ + ε sin(ωt)], (11.2)

with

θ > 1, θ > |ε| . (11.3)

We impose the first inequality in (11.3), since a Turing instability can occur in a two-
variable reaction–diffusion system with constant parameters only if θRD > 1. The
second inequality ensures the positivity of Dv(t). We assume that the system (11.1)
possesses a uniform steady state, (ρu(x), ρv(x)) = (ρu, ρv), with F1(ρu, ρv) =
F2(ρu, ρv) = 0, which fulfills the stability conditions (10.23), and U is an activator
and V an inhibitor.

To assess the stability of the uniform steady state, we carry out a linear stability
analysis. We set

ρu(x, t) = ρu + δu(t) cos(kx), (11.4a)

ρv(x, t) = ρv + δv(t) cos(kx), (11.4b)
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and obtain the linearized evolution equations

dδu(t)

dt
= [J11 − k2Du]δu(t)+ J12δv(t), (11.5a)

dδv(t)

dt
= J21δu(t)+ [J22 − k2Dv(t)]δv(t). (11.5b)

We rescale time, τ ≡ ωt , and find

dδu(τ )

dτ
= Ĵ11δu(τ )+ Ĵ12δv(τ ), (11.6a)

dδv(τ )

dτ
= Ĵ21δu(τ )+ Ĵ22(τ )δv(τ ), (11.6b)

with

Ĵ11 = [J11 − k2Du]ω−1
, (11.7a)

Ĵ12 = J12ω
−1

, (11.7b)

Ĵ21 = J21ω
−1

, (11.7c)

Ĵ22(τ ) = [J22 − k2Duθ ]ω−1 − (k2Duεω
−1

) sin(τ ). (11.7d)

From (11.6a) we obtain

δv(τ ) = [dδu(τ )/dτ − Ĵ11δu(τ )]/ Ĵ12, (11.8)

and substitution of this result into (11.6b) yields

d2
δu(τ )

dτ 2
− [ Ĵ11 + Ĵ22(τ )]

dδu(τ )

dτ
+ [ Ĵ11 Ĵ22(τ )− Ĵ12 Ĵ21]δu(τ ) = 0. (11.9)

With the transformation

δu(τ ) = exp

{
1

2

∫ τ [

Ĵ11 + Ĵ22(τ
′
)
]

dτ ′
}

δ̂u, (11.10)

(11.9) turns into Hill’s equation [259]

d2
δ̂u

dτ 2
+ Q(τ )δ̂u = 0, (11.11)

where

Q(τ ) = 1

2

d Ĵ22(τ )

dτ
− 1

4
[ Ĵ11 + Ĵ22(τ )]2 + [ Ĵ11 Ĵ22(τ )− Ĵ12 Ĵ21]. (11.12)
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If the corresponding system with constant parameters, i.e., ε = 0, is at the Turing

threshold, i.e., θ = θRD,c =
[

J−1
11

(√
�+√−J12 J21

)]2
, see (10.41), and if k2 =

k2
T,RD =

√

�/(DuDv), then a perturbation analysis of Hill’s equation (11.11) shows
that the uniform steady state of (11.1) with a temporally varying diffusion coefficient
of the inhibitor is stable for sufficiently small oscillations, ε � 1 [436]. In other
words, small oscillations in the diffusion coefficient have a stabilizing effect; they
delay the onset of the Turing instability.

Gourley and coworkers [168] have generalized Timm and Okubo’s result and
have applied perturbation theory to the system (11.1) with Di = D(0)

i + εD(1)
i (t)

positive (i = u, v), where ε small and the D(1)
i are periodic with period T and aver-

age zero. Choosing the system parameters again such that the corresponding system
with constant parameters, i.e., ε = 0, is at the Turing threshold, i.e., θ = θRD,c,

and k2 = k2
T,RD, they find that the uniform steady state is stable. In other words,

all small-amplitude periodic perturbations with average zero in the diffusion coeffi-
cients delay the onset of the Turing instability. Further, if the periodic variations are
O(ε), then the stabilizing effect is O(ε

2
).

More general analytical results can be obtained if the periodic oscillations of the
inhibitor diffusion coefficient are dichotomous or of “square-tooth” form [400]:

Dv(t) =
{

D+ on nT ≤ t < (n + 1/2)T ,

D− on (n + 1/2)T ≤ t < (n + 1)T ,
(11.13)

where n ∈ Z. We assume D+
> D− ≥ 0 and define D ≡ (D+ + D−

)/2 and
d ≡ (D+ − D−

)/2. For simplicity, we rescale x such that Du = 1:

∂ρu

∂t
= ∂

2
ρu

∂x2
+ F1(ρu, ρv), (11.14a)

∂ρv

∂t
= Dv(t)

∂
2
ρv

∂x2
+ F2(ρu, ρv). (11.14b)

We assume again that (11.14) possesses a uniform steady state, (ρu(x), ρv(x)) =
(ρu, ρv), with F1(ρu, ρv) = F2(ρu, ρv) = 0, which fulfills the stability condition
(10.23), and that U is an activator and V an inhibitor.

With (11.4), the linearized evolution equations read

dδu(t)

dt
= [J11 − k2]δu(t)+ J12δv(t), (11.15a)

dδv(t)

dt
= J21δu(t)+ [J22 − k2Dv(t)]δv(t). (11.15b)

As is well known, any nth order homogeneous system of nonautonomous linear
ordinary differential equations



11.1 Turing Instability with Time-Varying Diffusivities 337

du
dt

= A(t)u (11.16)

has n linearly independent solutions [458, 435]. We compose these n linearly inde-
pendent solutions u1(t), . . . ,un(t) to a matrix �(t) with these solutions as columns,
�(t) = (u1(t)u2(t) . . . un(t)). Such a matrix is called a fundamental matrix of
(11.16). The solution of (11.16) with the initial condition u(t0) = u0 is then
given by

u(t) = �(t)�(t0)
−1u0. (11.17)

If the linear equation (11.16) has periodically varying coefficients with period
T , A(t + T ) = A(t), the Floquet theorem provides the fundamental result that the
fundamental matrix of (11.16) can be written as the product of a T -periodic matrix
and a (generally) nonperiodic matrix [458, p. 80].

Theorem 11.1 Suppose A(t) is periodic with period T . Each fundamental matrix
�(t) of (11.16) can be written as the product of two n × n matrices

�(t) = P(t) exp(Bt), (11.18)

where P(t) is T -periodic and B is a constant matrix.

Equation (11.18) implies that

�(t + T ) = �(t) exp(BT ) = �(t)M. (11.19)

Remark 11.1 The matrix M = exp(BT ) is called the monodromy matrix of u̇ =
A(t)u [458].

Remark 11.2 The eigenvalues μi of M are known as Floquet multipliers or charac-
teristic multipliers and the eigenvalues νi of B are known as the Floquet exponents
or characteristic exponents. They are related by μi = exp(νiT ) [435].

Theorem 11.2 A periodic linear system is stable if all Floquet multipliers satisfy
∣
∣μi

∣
∣ ≤ 1 (respectively all Floquet exponents satisfy Re νi ≤ 0) and for all Floquet

multipliers with
∣
∣μi

∣
∣ = 1 (respectively all Floquet exponents with Re νi = 0) the

algebraic and geometric multiplicities are equal.
A periodic linear system is asymptotically stable if all Floquet multipliers satisfy

∣
∣μi

∣
∣ < 1 (respectively all Floquet exponents satisfy Re νi < 0) [435].

Equation (11.19) implies that the monodromy matrix is given by M = �(t0)
−1

�

(t0 + T ), independent of the choice of t0. The main difficulty in applying Theorem
11.2 to a particular set of equations lies in obtaining a linearly independent set of
solutions.
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In the following we provide a summary of the stability analysis of (11.15) as
carried out by Sherratt [400]. We write (11.15) in the form

dδ

dt
= Ĵ+δ on nT ≤ t < (n + 1/2)T , (11.20a)

dδ

dt
= Ĵ−δ on (n + 1/2)T ≤ t < (n + 1)T , (11.20b)

where

δ(t) =
(

δu(t)
δv(t)

)

(11.21)

and

Ĵ± =
(

J11 − k2 J12

J21 J22 − k2D±

)

. (11.22)

We denote the eigenvalues and corresponding eigenvectors of Ĵ± by λ
±
i and z±i with

i = 1, 2 and write $
±
(t) = diag(exp(λ±1 t), exp(λ±2 t)). Let Z± be the matrix whose

first and second columns are z±1 and z±2 . Then any fundamental matrices �(t) of
(11.20a) and (11.20b) have the form Z+$+

(t)C+ and Z−$−
(t)C−, respectively,

where C± are matrices whose entries are constants of integration. Without loss
of generality, we choose C+ = [$+

(T /2)]−1. Continuity at t = T /2 imposes
that

C− = [$−
(T /2)]−1[Z−]−1Z+ (11.23)

and

M = [�(0)]−1
�(T ) = [Z+]−1Z−$−

(T /2)[Z−]−1Z+$+
(T /2). (11.24)

The eigenvalues μ of M, i.e., the Floquet multipliers are given by

μ = μ̂ exp(−�T /4), (11.25)

where

μ̂
2 − a1μ̂+ 1 = 0 (11.26)
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and (K = k2)

� = 2[(1+ D)K − (J11 + J22)], (11.27a)

a1 =
1

2
exp[(P+ + P−)T /4]

{[

1+ exp(−P+T /2)
] [

1+ exp(−P−T /2)
]

+ 4J12 J21 + Q+Q−

P+ + P−
[

1− exp(−P+T /2)
] [

1− exp(−P−T /2)
]}

,

(11.27b)

Q± = K D± − K + J11 − J22, (11.27c)

P± =
√

4J12 J21 + (Q±
)
2
. (11.27d)

We focus on the case, most relevant in applications, that the period T of Dv(t) is
much longer than the characteristic time scale of the kinetics, which implies that
∣
∣
∣P

±T
∣
∣
∣ � 1. Analysis of (11.25), (11.26), and (11.27) leads to the conclusion

that there exists a μ > 1, i.e., the uniform steady state is unstable to nonuniform
perturbations if either (i) P+ > � or (ii) [� + (P+)2 − (P−)2]2 < 4�2

(P+)2.
Somewhat lengthy further calculations show that, to leading order for large T , the
uniform steady state will be driven unstable by diffusion if and only if either

(i) 3J11 + J22 > 0, (11.28a)

D+ − 1

D− + 3
> χc, (11.28b)

or

(ii) DJ11 + J22 > 0, (11.29a)

[DJ11 + J22]2 > 4D�, (11.29b)

d < dc. (11.29c)

Here, � = det J = J11 J22 − J12 J21, and χc > 0 is the larger root of

(3J11 + J22)
2
χ

2 + 2(3J 2
11 − 2J11 J22 − J 2

22 + 4J12 J21)χ

+ J 2
11 − 2J11 J22 + 4J12 J21 + J 2

22 = 0. (11.30)

Further, dc is the unique value of d for which

F(K ) = DK 2 − (DJ11 + J22)K +�+ d2 K 2
(J11 − K )(DK − J22)

[(1+ D)K − (J11 + J22)]2
(11.31)

touches the K -axis on (0, J11).
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The instability conditions (ii), (11.29), are an extension of the Turing instability
conditions (10.43) when D+ = D− = D. (Recall we rescaled space to set Du = 1.)
The first two inequalities, (11.29a) and (11.29b), are identical with the Turing insta-
bility condition (10.43) for the system (11.14) with a constant inhibitor diffusion
coefficient Dv(t) = D. It is therefore a necessary condition that the system with
constant diffusion coefficients be Turing unstable, in order for condition (11.29) to
be fulfilled. In that sense, square-tooth temporal oscillations in the diffusion coeffi-
cient of the inhibitor have a stabilizing effect, since an additional condition, namely
(11.29c), needs to be satisfied. Further, it turns out that condition (i), (11.28), defines
a region of diffusion-driven instability in parameter space that is separate from the
unstable region defined by condition (ii), (11.29), only if d is sufficiently large,
i.e., D+ and D− are sufficiently different. Then, if the system possesses parameter
values that fall inside the region defined by condition (i), temporal variations in Dv
can have destabilizing effect.

11.2 Turing Instability with Spatially Inhomogeneous
Diffusivities

As discussed at the beginning of this chapter, biological and ecological systems are
often spatially inhomogeneous, and consequently diffusion coefficients display spa-
tial variations. In analogy to the case of temporally varying diffusivities, dealt with
in Sect. 11.1, we study the simplest possible situation. Only the diffusion coefficient
of the inhibitor varies spatially, and it is piece-wise constant, a step function in space
with a single point of discontinuity. We consider the following two-variable system
on the interval [0, L] with no-flow boundary conditions:

∂ρu

∂t
= ∂

2
ρu

∂x2
+ F1(ρu, ρv), (11.32a)

∂ρv

∂t
= ∂

∂x

[

Dv(x)
∂ρv

∂x

]

+ F2(ρu, ρv), (11.32b)

with

Dv(x) =
{

D− on 0 ≤ x < ξL ,

D+ on ξL < x ≤ L ,
(11.33)

D−
> 0, D+

> 0, D− �= D+, and ξ ∈ (0, 1). We assume again that (11.32)
possesses a uniform steady state, (ρu(x), ρv(x)) = (ρu, ρv), with F1(ρu, ρv) =
F2(ρu, ρv) = 0, which fulfills the stability condition (10.23), and that U is an
activator and V an inhibitor.

The linear stability analysis of (11.32) was carried out by Maini and coworkers
[263, 41], and we provide a summary of their work in the following. With
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ρu(x, t) = ρu + δu(x) exp(λt), (11.34a)

ρv(x, t) = ρv + δv(x) exp(λt), (11.34b)

the linearized evolution equations read

δ
′′
u (x)+ [J11 − λ]δu(x)+ J12δv(x) = 0, (11.35a)

[Dv(x)δ
′
v(x)]′ + J21δu(x)+ [J22 − λ]δv(x) = 0, (11.35b)

where the prime denotes d/dx . Since the system decomposes into parts, for each
of which the diffusion coefficient of the inhibitor is a constant, we consider (11.35)
separately on [0, ξL) and (ξL , L]. For the first part, we multiply (11.35b) by s−/D−
and add it to (11.35a) to obtain

[δu(x)+ s−δv(x)]′′ +
[

J11 − λ+ J21s
−

D−

]

×
[

δu(x)+
J12 + (J22 − λ)s−/D−

J11 − λ+ J21s
−
/D− δv(x)

]

= 0. (11.36)

We choose s− such that

J12 + (J22 − λ)s−/D−

J11 − λ+ J21s
−
/D− = s−, (11.37)

which is a quadratic equation:

J21(s
−
)
2 + [D−

(J11 − λ)− (J22 − λ)]s− − J12D
− = 0. (11.38)

Let s−1 and s−2 be the roots of (11.38). Then (11.36) turns into two equations for the
quantity δ j (x) ≡ δu(x)+ s−j δv(x) for j = 1, 2:

δ1(x)
′′ +

[

J11 − λ+ J21s
−
1

D−

]

δ1(x) = 0, (11.39a)

δ2(x)
′′ +

[

J11 − λ+ J21s
−
2

D−

]

δ2(x) = 0. (11.39b)

The general solutions of (11.39) are given by

δ j (x) = C j cos(α−j x)+ C̃ j sin(α−j x), (11.40)

where C j and C̃ j are constants of integration, and
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α
−
j =

√

J11 − λ+ J21s
−
j

D− . (11.41)

The no-flow boundary condition at x = 0 implies that the constants C̃ j vanish. We
express the constants C j in terms of the values of δ j (x) at x = ξL and solve for
δu(x) and δv(x) on [0, ξL):

δu(x) =
1

s−2 − s−1

⎡

⎣

(

�u + s−1 �v

)

s−2
cos(α−1 ξL)

cos(α−1 x)−
(

�u + s−2 �v

)

s−1
cos(α−2 ξL)

cos(α−2 x)

⎤

⎦ ,

(11.42a)

δv(x) =
1

s−2 − s−1

⎡

⎣

(

�u + s−2 �v

)

cos(α−2 ξL)
cos(α−2 x)−

(

�u + s−1 �v

)

cos(α−1 ξL)
cos(α−1 x)

⎤

⎦ ,

(11.42b)

where �u = δu(ξL) and �v = δv(ξL). Proceeding similarly for the second part of
the system, we obtain δu(x) and δv(x) on (ξL , L]:

δu(x) =
1

s+2 − s+1

[
(

�u + s+1 �v

)

s+2
cos(α+1 (1− ξ)L)

cos(α+1 (L − x))

−
(

�u + s+2 �v

)

s+1
cos(α+2 (1− ξ)L)

cos(α+2 (L − x))

]

, (11.43a)

δv(x) =
1

s+2 − s+1

[
(

�u + s+2 �v

)

cos(α+2 (1− ξ)L)
cos(α+2 (L − x))

−
(

�u + s+1 �v

)

cos(α+1 (1− ξ)L)
cos(α+1 (L − x))

]

. (11.43b)

By construction, the solutions δu(x) and δv(x) of (11.35) given by (11.42) and
(11.43) are continuous at x = ξL . However, the solution must also satisfy continuity
of flux at x = ξL:

lim
x→(ξL)−

δ
′
u(x) = lim

x→(ξL)+
δ
′
u(x), (11.44a)

lim
x→(ξL)−

D−
δ
′
v(x) = lim

x→(ξL)+
D+

δ
′
v(x). (11.44b)

Substituting (11.42) and (11.43) into (11.44), we obtain
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(

P(λ) Q(λ)

R(λ) S(λ)

)(

�u
�v

)

=
(

0
0

)

, (11.45)

where

P(λ) = s−1 T−2 − s−2 T−1
s−2 − s−1

+ s+1 T+2 − s+2 T+1
s+2 − s+1

, (11.46a)

Q(λ) = s−1 s−2 (T−2 − T−1 )

s−2 − s−1
+ s+1 s+2 (T+2 − T+1 )

s+2 − s+1
, (11.46b)

R(λ) = D−
(T−1 − T−2 )

s−2 − s−1
+ D+

(T+1 − T+2 )

s+2 − s+1
, (11.46c)

S(λ) = D−
(s−1 T−1 − s−2 T−2 )

s−2 − s−1
+ D+

(s+1 T+1 − s+2 T+2 )

s+2 − s+1
, (11.46d)

with T−j = α
−
j tan(ξLα−j ) and T+j = α

+
j tan((1 − ξ)Lα+j ) for j = 1, 2. Here we

assume that s±1 �= s±2 , cos(α−j ξL) �= 0, and cos(α+j (1−ξ)L) �= 0 for j = 1, 2. From
the solutions (11.42) and (11.43), �u = �v = 0 implies that δu(x) ≡ δv(x) ≡ 0. In
order to obtain nontrivial solutions δu(x) and δv(x), the determinant of the matrix in
(11.45) must vanish:

F(λ) ≡ P(λ)S(λ)− Q(λ)R(λ) = 0. (11.47)

This is the dispersion relation for a two-variable reaction–diffusion system with a
step-function diffusivity for V. It is the analog of (10.26) for homogeneous reaction–
diffusion systems and relates the growth rates λ of spatial perturbations to the
parameter values of the system. In contrast to the homogeneous case, the dispersion
relation (11.47) is a complicated expression that cannot be solved analytically if
D− �= D+. A diffusion-driven instability of the uniform steady state of the system
occurs if the stability condition (10.23) is satisfied and (11.47) has solutions with a
positive real part.

Note that in deriving (11.47) we have assumed that s±2 − s±1 , cos(α−j ξL), and

cos(α+j (1 − ξ)L) are all nonzero. The analysis can be carried out for those cases
where one or more of these expressions are zero, but typically the solutions δu(x)
and δv(x) cannot satisfy (11.44).

In general, the roots of the dispersion relation (11.47) will be complex valued. For
homogeneous, two-variable reaction–diffusion systems, all complex solutions of the
dispersion relation (10.26) have a negative real part. Extensive numerical simula-
tions of the full nonlinear inhomogeneous system (11.32) by Maini and coworkers
[263, 41] show that, if an instability occurs, the uniform steady state always evolves
to a steady pattern and not a temporally oscillating solution. These observations sug-
gest that the diffusion-driven instability is a Turing bifurcation, i.e., a real eigenvalue
passes through zero. If λ is real, then F(λ) is also real, and the dispersion relation
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is amenable to simple numerical solution. The Turing condition that F(λ) = 0
has positive real solutions is far less enlightening than the Turing condition (10.43)
for homogeneous systems. In particular, it is not immediately clear that the sys-
tem must be either a pure activator–inhibitor scheme or a cross activator–inhibitor
scheme. Numerical solutions of (11.47) suggest, however, as expected, that these
requirements are still necessary for a diffusion-driven instability to occur in the
system (11.32). Studies of chemical and biological models [263, 41], such as the
Schnakenberg model, see Sect. 1.4.5, show that as expected the uniform steady state
of (11.32) undergoes a Turing instability if D+

> D−
> θRD,c, where the latter is

given by (10.41). A Turing bifurcation can occur for D−
< θRD,c, if D+ exceeds

some critical value D+
c , which depends on the system parameters, with D+

c > θRD,c.

Exercise

11.1 Explore the dispersion relation (11.47) for the Brusselator.



Chapter 12
Chemical and Biological Applications of Turing
Systems

Turing’s paper on diffusion-driven instabilities in nonequilibrium reaction–diffusion
systems as a means of biological pattern formation [440] attracted little attention
for about two decades, as shown by the citation histogram in Fig. 12.1. One of
the first scientists to be intrigued by Turing’s ideas was Wardlaw, a botanist who
thought about ways to test the mechanism experimentally [468, 470, 469]. By
the early 1970s theoretical biologists and biomathematicians began to explore in
earnest if Turing instabilities could explain spatial pattern formation in a variety of
living systems and a considerable body of theoretical work was produced, see for
example [157, 279, 231, 239, 182, 183, 264, 261, 308]. Morphogen-based pattern
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Fig. 12.1 Citation histogram for [440]: number of citations/year vs year. Figure courtesy of J. E.
Pearson
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formation, where the long-range influence of signaling molecules induces structure,
is a well-established phenomenon in developmental biology [26]. However, defini-
tive evidence for a Turing mechanism of pattern formation within a morphogen sys-
tem is still lacking. Several promising candidate systems exist and are discussed in
Sect. 12.2.

The first unambiguous observation of a Turing instability in any experimental
system did not occur until 1990. That year, the Bordeaux group found convinc-
ing evidence for Turing patterns in an in vitro system, the CIMA reaction (see
Sect. 1.4.9). The gap of almost 40 yr between Turing’s theoretical prediction of
diffusion-induced instabilities and the experimental realization of stationary chemi-
cal pattern was caused by two main factors.

12.1 Turing Patterns in the CIMA/CDIMA and BZ Reactions

Genuine Turing patterns are nonequilibrium structures and can occur only in open
systems. This requirement represents the first obstacle on the way to an experimental
realization of Turing patterns. Needed is an open reactor, an unstirred flow reactor,
which can play the same role for spatial patterns that the CSTR plays for temporal
patterns. This instrumentation problem was solved in the second half of the 1980s
by the Austin group. They developed two types of open spatial reactors, the Couette
reactor [433, 335, 456, 336] and the continuously fed unstirred reactor (CFUR) [322,
432, 431, 323]. The latter proved to be instrumental in the experimental realization
of Turing patterns.

12.1.1 Continuously Fed Unstirred Chemical Reactor

A CFUR consists of a gel layer in contact with one or two well-stirred feed reser-
voirs. The main purpose of the gel is to prevent convective flows in the reactor,
which would otherwise arise in an open reactor due to the feeds. The gel needs to
be chemically inert and transparent, and it should have good mechanical properties.
The first CFUR experiments with the BZ reaction used polyacrylamide. In the one-
sided version of the CFUR, a thin gel disk sits on top of a CSTR. Reactants diffuse
from the CSTR through a glass capillary array into the gel. This arrangement has
the drawback that the reactants do already react in the feed reservoir. The two-sided
CFUR can avoid this complication, and two configurations of this type of CFUR
have been constructed, see Fig. 12.2. In the first version, the gel strip reactor, a
thin gel slab is sandwiched between a white bottom plate and a Plexiglas cover.
The assembly is oriented such that the two opposite thin long faces are in contact
with two different chemical reservoirs A and B. The view of the spatial patterns in
the gel layer is perpendicular to the direction of the feed gradients. In the second
version, the disk reactor, a thin gel disk is sandwiched between two thin porous
glass plates, such that the broad faces of the gel layer are in contact with the glass
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B

Fig. 12.2 Continuously fed unstirred reactor (CFUR). Sketch of (a) gel strip reactor and (b) disk
reactor. The grey rectangle represents the gel and its support. Patterns are viewed from the top

plates, which in turn are in contact with two different chemical reservoirs A and B.
The view of the spatial patterns in the gel layer is parallel to the direction of the feed
gradients.

The reservoirs are CSTRs. Fresh reactants flow continuously at a fixed flow rate
into these feed reservoirs, where they are vigorously stirred to ensure uniform and
constant feed conditions. The reactants diffuse into the gel from the two reservoirs
and generate counter gradients of the various reactants. The reactants are distributed
in the reservoirs A and B in such a way that the pattern-forming reaction cannot
occur in the reservoirs, in contrast to the one-sided CFUR.

The Austin group conducted extensive studies of the BZ reaction in one-sided
and two-sided CFURs. They observed wave patterns [322, 432], but found no evi-
dence of stationary chemical patterns. This failure is caused by the second obstacle
on the way to an experimental realization of Turing patterns. According to Theo-
rem 10.1, a Turing instability cannot occur if all the diffusion coefficients are the
same. To be specific, the formation of Turing patterns requires that the diffusion
coefficient of the inhibitor exceeds that of the activator, see (10.35). Unfortunately,
diffusion coefficients of small molecules and ions in aqueous solution differ rarely
by more than a factor 2. For typical conditions, a factor of 10 or even larger is
necessary for a diffusion-driven instability [30, 111]. However, Theorems 10.2 and
10.3 indicate that a Turing instability can occur for special experimental conditions,
namely when the system is sufficiently close to a Takens–Bogdanov point. The
BZ reaction does display Takens–Bogdanov points. To explore the possibility of
a Turing instability of the BZ reaction near these points, Pearson and Horsthemke
employed the seven-variable Showalter–Noyes–Bar-Eli (SNB) model [408], which
describes the inorganic part of the reaction in greater detail than the Oregonator.
They found that, depending on the values of the rate constants, either Ce4+ or HOBr
needs to diffuse slightly faster than Br− for a Turing instability to occur [348].
Neither is likely to be true, and the BZ reaction is not a good candidate for the
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experimental realization of Turing patterns, unless it is appropriately modified, see
Sect. 12.1.5.

12.1.2 Turing Patterns in the CIMA and CDIMA Reactions:
Experiments

The Bordeaux group found the first unambiguous evidence for Turing patterns in
experiments with the CIMA reaction in a two-sided CFUR, a gel strip reactor [71].
Their set-up and findings are shown in Fig. 12.3. They first observed the formation
of a series clear and dark bands parallel to the feed faces of the gel layer. These
concentration patterns cannot be unambiguously identified as Turing patterns. They
preserve the symmetry of the feed boundaries and could be caused by the concen-
tration gradients in the reactor. However, for a well-defined range of malonic acid
concentration in the reservoir B, all clear bands, except the one located closest to
the B reservoir, break up into rows of periodic spots. This represents a genuine
symmetry breaking in a direction perpendicular to the gradients imposed by the
feeds. Further experiments showed that the wavelength, λ ∼ 0.2 mm, is intrinsic,
as it should be for a true Turing pattern. Ouyang and Swinney, using the second
configuration of a two-sided CFUR, a disk reactor, confirmed the Bordeaux results
and established beyond a doubt that the CIMA reaction displays Turing patterns
[337, 338] (Fig. 12.4).

Fig. 12.3 (a) Sketch of the two-sided CFUR; dimensions of the gel slab: length L = 20 mm, width
w = 3 mm, thickness e = 1 mm. (b) Dark regions of the gel correspond to reduced state, colored
blue, and clear regions to the oxidized state. (c) An enlarged region of the pattern; dimensions are
in mm. Reprinted with permission from [71]. Copyright 1990 by the American Physical Society

The ratio d of the diffusion coefficients of the inhibitor and the activator d =
DClO−2

/DI− has a value very close to one. Typically a value of d = 1.07 is chosen
in simulations, which appears to represent a situation rather unfavorable for the
formation of Turing patterns. This view is too simple, however; it overlooks the role
of starch in the reaction. As discussed in Sect. 1.4.9, the activator I− reacts with
iodine, I2, to form triiodide ion I3

−, which gets trapped by the starch molecules
embedded in the gel or by iodide-binding sites of the gel. (Polyacrylamide binds
polyiodide ions even in the absence of starch as does poly(vinyl alcohol), used as a



12.1 Turing Patterns in the CIMA/CDIMA and BZ Reactions 349

Fig. 12.4 Stationary patterns in the CIMA reaction in a CFUR. (a) and (b) hexagons, (c) stripes,
(d) mixed state. The bar beside each picture represents 1 mm; the reactor is 25 mm in diameter.
Reprinted with permission from Macmillan Publishers Ltd: Nature [337]. Copyright 1991

gel and color indicator in some experiments with the CDIMA reaction [86, 368].)
Therefore the activator diffuses and reacts more slowly than in a medium without
a substrate that binds triiodide ions. This slowing down effect of the reaction and
transport process is captured in the LE model by the factor σ , see Sect. 1.4.9.

12.1.3 Theory of Turing Patterns in the CIMA and CDIMA
Reactions: Lengyel–Epstein Model

The reaction–diffusion equations for the Lengyel–Epstein model,

σ
∂ρu(x, t)

∂t
= F1(ρu, ρv)+

∂
2
ρu

∂x2
= a − ρu − 4

ρuρv

1+ ρ
2
u

+ ∂
2
ρu

∂x2
, (12.1a)

∂ρv(x, t)

∂t
= F2(ρu, ρv)+ d

∂
2
ρv

∂x2
= b

(

ρu −
ρuρv

1+ ρ
2
u

)

+ d
∂

2
ρv

∂x2
, (12.1b)

show that the effective ratio of the diffusion coefficients of the inhibitor and the
activator is given by

θRD = σd, (12.2)
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which can be made significantly larger than 1 by using a sufficiently large substrate
concentration. For simplicity, x was rescaled such that Du = 1. The LE reaction–
diffusion system (12.1) has a unique uniform steady state,

ρu(x) =
a

5
, ρv(x) = 1+ a2

25
, (12.3)

which undergoes a Turing instability when condition (10.40) is satisfied. Solving
the Turing condition for the control parameter b, we obtain an expression for the
threshold of the Turing instability:

bT =
d

5a

(

13a2 − 4
√

10a

√

25+ a2 + 125

)

. (12.4)

The critical wave number is given by (10.42) and reads for the LE system

k2
T = −5+ 2

√
10a

√

25+ a2
, (12.5)

which is positive for a > a◦ = √
125/3, i.e., if iodide ion is indeed an activator,

see (1.159). For experimentally reasonable values of the parameters, (12.5) yields
an intrinsic wavelength of the order of 0.2 mm, which agrees with experimental
observations. Note that both the Turing threshold and the critical wave number do
not depend on σ . The uniform steady state is stable for large b, and it undergoes
an instability as b is decreased, either a Hopf bifurcation to uniform oscillations at
b = bH = (3a2 − 125)/5aσ , see (1.158), or a Turing bifurcation to a nonuniform
steady state at b = bT.

This demonstrates the crucial role of the substrate for the formation of Turing pat-
terns in the CIMA and CDIMA reactions. The critical value bT for a bifurcation to
stationary patterns is independent of σ , i.e., of the starch or substrate concentration,
whereas the critical value bH for a bifurcation to uniform oscillations is inversely
proportional to σ . In order to observe the formation of steady chemical patterns,
one must ensure that the Turing bifurcation is the primary bifurcation, i.e., it occurs
before the Hopf bifurcation. In other words, the stability conditions (10.23) must be
satisfied. For a given value of a, this can be achieved by using a sufficiently large
concentration of complexing agent such that σ > σ

∗
c (a), where σ

∗
c (a) is given by

bT = bH:

σ
∗
c (a) =

3a2 − 125

d

(

13a2 − 4
√

10a
√

25+ a2 + 125

) , (12.6)

which is positive for a > a◦.
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12.1.4 Theory of Turing Patterns in the CIMA and CDIMA
Reactions: “2+1” Model

The derivation of the LE model in Sect. 1.4.9 is based on two assumptions. The
formation and dissociation of the iodide ion–substrate complex is in a fast equilib-
rium and the substrate concentration [S] can be considered constant. Then the three-
variable activator–inhibitor–substrate system reduces to a two-variable activator–
inhibitor system, where the kinetics and the diffusion coefficient of the activator
are rescaled by a factor 1/σ [214, 246, 247]. We now explore these assumptions in
greater detail. Consider the following well-stirred two-variable activator–inhibitor
system

dρu

dt
= F1(ρu, ρv), (12.7a)

dρv

dt
= F2(ρu, ρv), (12.7b)

with a steady state (ρu, ρv) given by

F1(ρu, ρv,μ) = F2(ρu, ρv,μ) = 0. (12.8)

Let J be the Jacobian of (12.7) at the steady state, see (1.18). Consider now
the (2+1)-variable activator–inhibitor–substrate system by combining (12.7) with
a complexation reaction between the substrate S and the activator U:

S+ U
kf−↽⇀−
kr

W. (12.9)

The rate equations for the well-stirred (2+1)-variable system can be written as

dρu(t)

dt
= F1(ρu, ρv)− G(ρu, ρw), (12.10a)

dρv(t)

dt
= F2(ρu, ρv), (12.10b)

dρw(t)

dt
= G(ρu, ρw), (12.10c)

where G(ρu, ρw) is the reaction velocity of (12.9). As is clear from the structure of
(12.10), the complexation reaction does not modify the steady values (ρu, ρv). In
the derivation of the LE model, Sect. 1.4.9, the reaction (12.9) obeys mass-action
kinetics:

G(ρu, ρw) = kfρsρu − krρw. (12.11)
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Note that in contrast to Sect. 1.4.9 we do not assume that [S] is constant, and we do
not employ an effective rate coefficient for the forward reaction. The stoichiometry
of (12.9) implies that ρs + ρw = ρ0, where ρ0 is the total substrate concentration,
i.e., free plus bound substrate. The rate term can then be written as

G(ρu, ρw) = kf(ρ0 − ρw)ρu − krρw. (12.12)

If the equilibrium (12.9) is fast, we can eliminate ρw by setting its time derivative
equal to zero and obtain

ρw,eq =
kfρ0ρu

kr + kfρu
. (12.13)

Proceeding similarly as in Sect. 1.4.9, we add (12.10a) and (12.10c), substitute
(12.13) into the resulting equation, and find that the scale factor σ is given by
σ = 1 + kfρ0/kr. If ρs is to remain constant, ρs ≈ ρ0, then ρw,eq must be small
or

kr � kfρu. (12.14)

To obtain a decrease in the effective diffusion coefficient of the activator, 1/σ , the
complexation reaction must satisfy

kfρ0/kr > 1. (12.15)

The time scale requirements amount to

kfρu � kr < kfρ0 (12.16)

or

τs � τb > τu. (12.17)

Here τu = 1/kfρ0 is the time scale on which the activator is bound to the substrate,
τb = 1/kr the time scale on which the activator–substrate complex dissociates,
and τs = 1/kfρu the time scale of substrate consumption, the time scale on which
significant numbers of binding sites are used. The results show that the activator
diffusion coefficient can be rescaled, if the dissociation time τb is much smaller
than the substrate consumption time τs.

Pearson has analyzed the effect of an immobile species on the Turing instabil-
ity in two-variable activator–inhibitor systems for more general conditions [346].
Consider the “2+1” species system described by the following reaction–diffusion
equations:
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∂ρu(x, t)

∂t
= F1(ρu, ρv)− G(ρu, ρw)+

∂
2
ρu

∂x2
, (12.18a)

∂ρv(x, t)

∂t
= F2(ρu, ρv)+ d

∂
2
ρv

∂x2
, (12.18b)

∂ρw(x, t)

∂t
= G(ρu, ρw). (12.18c)

In the derivation of the LE model and above, we assumed that the complexation
reaction obeys mass-action kinetics. That assumption is not needed here, and we
consider a general form for the rate term G(ρu, ρw). We postulate only that there
exists a steady state ρw, i.e., G(ρu, ρw) = 0, such that

∂G(ρu, ρw)

∂ρu
(ρu, ρw) ≡ Ḡu > 0,

∂G(ρu, ρw)

∂ρw
(ρu, ρw) ≡ Ḡw < 0. (12.19)

The inequalities (12.19) are satisfied if (12.9) obeys simple mass-action kinetics. As
is easily verified from (12.12) with (12.13), in that case

Ḡu =
kfkrρ0

kr + kfρu
> 0, Ḡw = −kr < 0. (12.20)

System (12.18) possesses a uniform steady state (ρu(x), ρv(x), ρw(x)) =
(ρu, ρv, ρw). To assess its stability, we carry out as usual a linear stability
analysis:

ρu(x, t) = ρu + u0 cos(kx) exp(λk t), (12.21a)

ρv(x, t) = ρv + v0 cos(kx) exp(λk t), (12.21b)

ρw(x, t) = ρw + w0 cos(kx) exp(λk t). (12.21c)

The “growth rates” λk of the kth spatial mode are given by the eigenvalues of the
Jacobian

J3(k
2
) =

⎛

⎜
⎝

J11 − Ḡu − k2 J12 −Ḡw

J21 J22 − dk2 0
Ḡu 0 Ḡw

⎞

⎟
⎠ , (12.22)

where J = (Ji j ) is the Jacobian of (12.7). Recall that a Turing instability occurs if
a real eigenvalue λk with k = kT �= 0 goes through zero, while the k = 0 mode
remains stable. The eigenvalues of the wavenumber zero mode are the roots of the
characteristic polynomial

− det(J3(0)− λ0I3) = λ
3
0 + c1λ

2
0 + c2λ0 + c3 = 0. (12.23)
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According to the Routh–Hurwitz Theorem 1.2, all roots of (12.23) have a negative
real part if

�1 = c1 > 0, (12.24a)

�2 = c1c2 − c3 > 0, (12.24b)

�3 = c3
(

c1c2 − c3
)

> 0, (12.24c)

c3 > 0. (12.24d)

Note that the inequality (12.24c) is satisfied if inequalities (12.24b) and (12.24d) are
satisfied. The stability conditions for the wave number zero mode therefore read

c1 = −T3 > 0, (12.25a)

c3 = −�0 > 0, (12.25b)

�2 = −T3
(

ḠwT +�− Ḡu J22
)+�0 > 0. (12.25c)

Here T3 = tr J3(0), �0 = det J3(0) = Ḡw�, T = tr J, and � = det J.
A Turing instability corresponds to a degenerate root of det(J3(k

2
)) ≡ �(K ) = 0

(K = k2):

�(K ) = Ḡw

[

dK 2 − (d J11 + J22
)

K +�
]

= 0. (12.26)

Note that �(K ) does not depend on Ḡu and that Ḡw factors out; the complex-
ation reaction has no effect on the Turing condition. The (2+1)-variable activator–
inhibitor–substrate system has the same Turing threshold as the two-variable
activator–inhibitor system without substrate. Equation (10.32),

d J11 + J22 > 0, (12.27)

is a necessary condition for a Turing bifurcation. The stable uniform steady state of
the (2+1) system undergoes a Turing bifurcation for parameter values of the system
such that (10.40) is satisfied, i.e.,

(d J11 + J22)
2 = 4d�, (12.28)

provided the stability conditions (12.25) for the wave number zero mode are satis-
fied. The critical wavenumber is given by (10.42):

k2
T,3 =

√

�

d
. (12.29)

To understand the precise role of the substrate and the complexation reaction,
consider the case d = 1, the case most unfavorable for a Turing bifurcation in
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an activator–inhibitor system without substrate. Then the Turing condition (12.28)
reads

T 2 = 4�. (12.30)

Equation (12.30) implies that when the full activator–inhibitor–substrate system is at
the point of a Turing bifurcation, the corresponding well-stirred activator–inhibitor
system without substrate is, in the generic case, at a transition from an unstable focus
to an unstable node, see Fig. 1.1. (In the nongeneric case, the activator–inhibitor
system without substrate is at a double-zero bifurcation point.) In other words, the
wavenumber zero mode of the system would already be unstable in the absence of
the substrate when the Turing bifurcation occurs. The uniform steady state would
have undergone an instability to uniform oscillations before the stationary instability
to Turing patterns occurs. In conclusion, the complexation reaction does not change
the Turing threshold. Its only role is to ensure that the wavenumber zero mode is
stable, i.e., the stability conditions (12.25) are satisfied. Conditions (12.19) ensure
that the first condition (12.25a)

T3 = J11 + J22 − Ḡu + Ḡw < 0 (12.31)

is satisfied if the complexation reaction is sufficiently rapid. This is a less restrictive
condition than the time scale requirement (12.17). The second stability condition
(12.25b)

�0 = Ḡw� < 0 (12.32)

is satisfied, since Ḡw < 0 according to (12.19) and � > 0 according to (12.30).
If the complexation reaction is sufficiently fast, such that the Ji j can be neglected
compared to Ḡu and Ḡw, then the third stability condition (12.25c) simplifies to

ḠwT − Ḡu J22 > 0. (12.33)

Since T > 0 according to (12.27), Ḡw < 0, Ḡu > 0, and J22 < 0 and since V is an
inhibitor, this stability condition requires that

∣
∣Ḡu J22

∣
∣ >

∣
∣ḠwT

∣
∣ . (12.34)

Note that the third stability condition corresponds to �2 > 0. According to (1.38),
the wavenumber zero mode of the activator–inhibitor–substrate system undergoes a
Hopf bifurcation if �2 goes through 0. For mass-action kinetics, (12.20) implies that
Ḡu ∝ ρ0. Consequently, the third stability condition can fail, if the total substrate
is too low. Then the Turing bifurcation ceases to be the primary instability, and a
uniform Hopf bifurcation occurs first in the full system.

The results for the (2+1)-system can be extended to N + Q systems with N
mobile species reacting with Q immobile species, provided the presence of the
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immobile species does not change the steady states of the mobile species [347]. The
theory has also been extended to the case where the reactions with the complexing
agents are rapid, but the latter are no longer immobile [420].

12.1.5 Turing Patterns in the BZ-AOT Reaction: Experiments

The experimental results and theoretical insights for the CDIMA reaction suggest
a strategy for designing systems that display Turing patterns [247]. Start with an
oscillating reaction and find a complexing agent that binds reversibly to the acti-
vator. As the concentration of the complexing agent is increased, a transition from
oscillations to a steady state should occur, providing a guideline for the appropriate
concentration of the substrate in a CFUR. De Kepper and coworkers have elaborated
these ideas [211]. They designed an experimental method to find chemical systems
that display stationary patterns based on three steps: (i) Look for autocatalytic reac-
tions that display spatial bistability in one-sided CFURs. (ii) Look for reactions
where the major negative feedback is performed by a species that is not involved
in the activation pathway. (iii) Induce space-scale separation of the activation and
inhibition processes via a low-mobility complexing agent. Using this strategy, De
Kepper and coworkers found stationary pH patterns in the thiourea–iodate–sulfite
reaction.

The best known oscillating reaction is the BZ reaction. Unfortunately, no appro-
priate complexing agent exists for bromous acid, HBrO2, the activator in the
BZ reaction [453]. The Brandeis group has pioneered an alternative strategy to
achieve the difference in diffusion coefficients needed to generate Turing patterns
[450, 449, 453]. They employed a microheterogeneous medium, namely a water-
in-oil AOT microemulsion. The surfactant sodium bis(2-ethylhexyl) sulfosuccinate,
commonly known as aerosol OT (AOT), contains a small polar group and two long
fat tails. When combined with water and oil (e.g., octane used in experiments by
the Brandeis group), AOT can form a reverse microemulsion phase, which consists
of nanometer-sized water droplets surrounded by a monolayer of AOT in oil. The
polar group of AOT is hydrophilic and points toward the water core of the droplet,
while the nonpolar tails are hydrophobic and are directed out into the oil.

All the initial reagents of the BZ reaction are hydrophilic and migrate into the
water core of the droplets. Diffusion within single droplets plays no role in the
pattern-forming mechanism of the BZ-AOT system, because of the small size of
the droplets. Highly polar species are essentially confined to the water core of the
droplets. Their diffusion coefficient is determined by the diffusion coefficient of the
water droplets Dd, if the volume fraction of the droplets φd is less than the percola-
tion threshold φp (around 0.5) of the microemulsion. The value of Dd depends on the
radius of the droplets and on φd and is about one to two order of magnitude smaller
than the diffusion coefficient of small molecules in octane. Typical values for Dd are
approximately 10−7 cm2

/s [449]. Efficient mass exchange between droplets occurs
via the collision–fusion–fission of two droplets.



12.1 Turing Patterns in the CIMA/CDIMA and BZ Reactions 357

Less polar or nonpolar intermediates of the BZ reaction, such as Br2 or BrO2,
are octane-soluble and diffuse in the oil phase as single molecules with diffusion
coefficients on the order of 10−5 cm2

/s [449]. Consequently, the radical BrO2,
which serves as a second activator, and Br2, which serves as a second inhibitor,
diffuse much faster than the water-soluble BZ reactants. For low values of the vol-
ume fraction φd, the inhibitor Br2 is the dominant species in the oil phase. Since
it diffuses ten to hundred times faster than the activator HBrO2, confined to the
slow-diffusing droplets, conditions should be favorable for the observation of Turing
patterns.

The Brandeis group uses a batch reactor for experiments with the BZ-AOT sys-
tem, similar to the gel-free gradient-free experiments with the CDIMA reaction
[250, 248]. The reactive microemulsion is sandwiched between two flat optical
windows. The reaction volume is a closed cylinder of radius 10 mm and height
0.1 mm, and the experiments are conducted at room temperature. Batch reac-
tors have the advantage that no concentration gradients of the reactants occur
in the reactor, in contrast to a CFUR. Batch reactors have the disadvantage that
the patterns cannot be truly stationary, because the reactants are consumed. In
the CDIMA system, the patterns remain “stationary” for 10–30 min. The BZ-
AOT system displays a large variety of spatial structures, such as Turing pat-
terns, standing waves, wave packets, target patterns, spirals, antispirals, accelerating
waves, dash waves, segmented spiral, localized Turing patterns, and oscillons [450–
452, 449, 453]. Patterns typically emerge after a few minutes, and their lifetime
is a few hours [449, 453]. Turing patterns are observed for low values of φd, i.e.,
when Br2 is the dominant species in the oil phase. At larger values of φd, BrO2
replaces Br2 as the dominant species in the oil phase. Instead of a fast-diffusing
inhibitor, the system contains a fast-diffusing activator under these conditions, and
the dynamics is changed. The Turing bifurcation is replaced by a wave bifurca-
tion, which gives rise to standing waves. These patterns oscillate in time, but they
posses, like Turing patterns, an intrinsic wavelength and the nodal points remain
fixed.

12.1.6 Turing Patterns in the BZ-AOT Reaction: Theory

Vanag and Epstein have formulated a four-variable model to understand pattern for-
mation in the BZ-AOT system [449, 453]. Their model builds on the Oregonator, see
Sect. 1.4.8. It assumes that the chemistry within the water core of the droplets is well
described by the two-variable Oregonator rate equations (1.131). It further assumes
that the species in the oil phase are “inert,” since they lack reaction partners, the key
reactants all being confined to the aqueous core of the droplets. Consequently, only
transfer reactions occur for the activator BrO2 and inhibitor Br2 in the oil phase.
The rate terms for the two transfer reactions are added to the rate terms of the two-
variable Oregonator model. The reaction–diffusion equations of the four-variable
model of the BZ-AOT system are given in nondimensionalized form by
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∂ρu

∂t
= 1

ε

[

ρu − ρ
2
u − hρv

ρu − q

ρu + q
− βρu + ρw

]

+ du
∂

2
ρu

∂x2
, (12.35a)

∂ρv

∂t
= ρu − ρv − αρv + γ ρz + dv

∂
2
ρv

∂x2
, (12.35b)

∂ρw

∂t
= 1

ε2

(

βρu − ρw + χρz
)+ dw

∂
2
ρw

∂x2
, (12.35c)

∂ρz

∂t
= 1

ε3

(

αρv − γ ρz
)+ ∂

2
ρz

∂x2
. (12.35d)

Here U = HBrO2, V is the oxidized form of the catalyst, W = BrO2 in the oil phase,
and Z = Br2 in the oil phase. The parameters ε, ε2, ε3, α, β, γ , χ , and q depend on
the rate constants, the bromate concentration, and the droplet volume fraction φd; h
is an adjustable stoichiometric parameter and ε, ε3 � 1. The diffusion coefficients
have been scaled such that Dz = 1. The fact that species diffuse much faster in the
oil phase implies du = dv � dw ≈ 1.

The four-variable reaction–diffusion system (12.35) possesses a nontrivial uni-
form steady state given by

(ρu(x), ρv(x), ρw(x), ρz(x)) = (ρu, ρv, ρw, ρz), (12.36)

where

ρu =
B

2
+
√

B2

4
+ q

(

1+ h + χ
α

γ

)

, (12.37a)

B = 1+ χ
α

γ
− h − q, (12.37b)

ρv = ρu, (12.37c)

ρw =
(

β + χ
α

γ

)

ρu, (12.37d)

ρz =
α

γ
ρu. (12.37e)

To assess the stability of the uniform steady state (12.36), we carry out again a linear
stability analysis:

ρu(x, t) = ρu + u0 cos(kx) exp(λk t), (12.38a)

ρv(x, t) = ρv + v0 cos(kx) exp(λk t), (12.38b)

ρw(x, t) = ρw + w0 cos(kx) exp(λk t), (12.38c)

ρz(x, t) = ρz + z0 cos(kx) exp(λk t). (12.38d)
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The “growth rates” λk of the kth spatial mode are given by the eigenvalues of the
Jacobian (K = k2)

J(K ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

ε
A − duK

1

ε

h(q − ρu)

ρu + q

1

ε
0

1 −(1+ α)− dvK 0 γ

β

ε2
0 − 1

ε2
− dwK

χ

ε2

0
α

ε3
0 − γ

ε3
− K

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (12.39)

where

A = 1− β − 2ρu −
2hqρv

(ρu + q)2
. (12.40)

To determine the stability of the kth mode, we conduct a Routh–Hurwitz analysis.
All eigenvalues λk have a negative real part, if

�1(K ) = c1(K ) > 0, (12.41a)

�2(K ) = c1(K )c2(K )− c3(K ) > 0, (12.41b)

�3(K ) = c1(K )c2(K )c3(K )− c3(K )
2 − c1(K )

2c4(K ) > 0, (12.41c)

c4(K ) = det J(K ) > 0. (12.41d)

The coefficients ci (K ) of the characteristic polynomial det[J(k2
)−λk I4] = 0 and the

Hurwitz determinants �i (K ) are easily obtained using computational algebra soft-
ware such as MATHEMATICA (Wolfram Research, Inc., Champaign, IL) or MAPLE

(Waterloo Maple Inc., Waterloo, Ontario). The kth mode undergoes a stationary
bifurcation when condition (12.41d) is violated, namely c4(K ) = 0, as discussed in
Sect. 1.2.3, see (1.36). In other words, a Turing bifurcation of the uniform steady
state corresponds to c4(k

2
T) = 0 with kT �= 0, while the stability conditions (12.41)

are satisfied for all other modes with k �= kT. The kth mode undergoes an oscillatory
bifurcation when condition (12.41c) is violated, namely �3(K ) = 0, as discussed in
Sect. 1.2.3, see (1.38). A wave bifurcation of the uniform steady state corresponds
to �3(k

2
W) = 0 with kW �= 0, while the stability conditions (12.41) are satisfied

for all other modes with k �= kW. As discussed in Sect. 10.1.2, see (10.29), a wave
bifurcation cannot occur in a two-variable reaction–diffusion system.

Given the lengthy expressions for ci (K ) and �i (K ), an exact general derivation
of the Turing bifurcation and wave bifurcation thresholds is neither desirable nor
analytically feasible for the latter, even with the help of symbolic computation soft-
ware. Vanag and Epstein have carried out numerical evaluations of the eigenvalues
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λk to obtain dispersion curves. They find that the four-variable model displays both
Turing and wave bifurcations.

12.2 Turing Mechanism in Biological Pattern Formation

While the Turing instability has been observed in both the CIMA/CDIMA reaction
and the BZ reaction, a definitive proof of a Turing mechanism in biological pattern
formations is still lacking. An early favorite among model builders for the action
of a diffusion-driven instability was the formation of the striped pattern of the pair-
rule genes in the early Drosophila embryo. Unfortunately, a considerable amount of
experimental evidence rules out a Turing instability as the origin of the striped pat-
tern [3]. The main problem of validating Turing’s idea in biological systems lies in
the difficulties of identifying morphogens. During the last decade, progress has been
made in this direction, and several strong candidates for a LALI reaction–diffusion
mechanism have emerged, for example, TGF-β as the activator and an unknown
inhibitor in limb bud morphogenesis [301]. While TGF-β is a strong candidate for
the activator in a reaction–diffusion mechanism, it has been impossible so far to pin
down the molecular identity of the inhibitor. Therefore Newman and Bhat consider
an alternative to a diffusible inhibitor morphogen [319]. They propose that lateral
inhibition is provided by local Notch-Delta juxtacrine signaling, followed by syn-
chronization of a Notch-activated oscillatory state. It is the latter that converts the
short-range juxtacrine signaling into long-range inhibition. The most compelling
experimental evidence for a Turing morphogen system, a LALI reaction–diffusion
system, has been found in the hair-follicle patterning and the left–right axis forma-
tion in mouse embryos. We briefly discuss these two systems below.

12.2.1 Hair-Follicle Patterning

Hair follicles form regular patterns, consisting of large primary follicles, which
develop first, interspersed with smaller secondary follicles, which develop at a later
stage. An explanation in terms of a Turing mechanism was first suggested by Nagor-
cka and Mooney [312, 313, 311]. The morphogens in their models were, however,
entirely hypothetical, given that molecular biology had not yet identified the key
players in the formation of epidermal appendages at that time. Sick et al. have
studied hair-follicle patterning in developing murine skin [412]. They identified the
proteins WNT and DKK as the primary determinants in this process. The WNT
pathway is active from the earliest stages of follicular development, and WNT
signaling is essential for the induction of hair and feather follicles. WNT plays
the role of an activator; WNT receptor binding leads to the production of itself
and DKK, which inhibits WNT. Both proteins are secreted into the extracellular
space where they diffuse. Values for the diffusion coefficients are not available, but
WNT proteins are about 20–60% larger than DKK proteins [412, supporting online
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material]. Consequently, the activator WNT is expected to diffuse more slowly than
the inhibitor DKK. The authors adopt a modified Gierer–Meinhardt system, see
Sect. 1.4.6, to model the role of WNT and DKK in hair-follicle patterning:

∂ρu

∂t
= auF(ρu, ρv)− buρu + Du∇2

ρu, (12.42a)

∂ρv

∂t
= avF(ρu, ρv)− bvρv + Dv∇2

ρv, (12.42b)

where U = WNT and V = DKK. Since WNT binding leads to the production
of both the activator and inhibitor, Sick et al. chose the production term F to be
the same in both equations. The antagonistic action of DKK on WNT takes place
at a particular receptor and is modeled by noncompetitive inhibition. Including a
saturation term in F leads to the following form:

F(ρu, ρv) =
ρ

2
u

(

Kv + ρv
) (

1+ cρ2
u

) . (12.43)

Equations (12.42) with (12.43) were integrated numerically on a square grid with
no-flux boundary conditions, using the solver d03rafe from the NAG library, with
Du = 0.005, Dv = 0.2, au = 0.005, av = 0.02, bu = 0.005, bv = 0.015, Kv = 0.1,
and c = 0.01. These parameter values are arbitrary and not based on experimen-
tally measured quantities. However, the authors found the system to be robust to
parameter variations, and the qualitative behavior of the reaction–diffusion system
is not affected by the actual parameter values. The initial conditions were randomly
distributed around the uniform steady state values according to a Gaussian distri-
bution. To model consecutive waves of follicle formation, the spots from the first
simulation were fixed by adding a constant activator and inhibitor production at
locations where the activator concentration ρu exceeds a threshold of 2. To account
for embryo growth, the size of the system was doubled for the simulation of the
second wave by stretching the coordinates.

The simulations predict that strong overexpression of the activator disrupts the
patterning process, while moderate overexpression increases follicular density dur-
ing the first or subsequent waves. Moderate overexpression of the inhibitor during
the initial wave increases the spacing between follicles. During the secondary wave,
increased expression of the inhibitor impedes the development of secondary folli-
cles. The authors corroborated the predictions of their activator–inhibitor model in
vivo using transgenic mice in which the expression of the gene Dkk is controlled
by a promoter. The experimental confirmation of the theoretical predictions pro-
vides strong circumstantial evidence that “WNT and DKK determine hair-follicle
spacing through a reaction-diffusion mechanism,” to quote the title of the article
by Sick et al. More experimental work is, however, necessary to elucidate further
molecular details of the WNT–DKK interactions and to measure key parameters of
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the system, such as diffusion coefficients, rates constants, in order to establish defini-
tively that hair-follicle patterning does indeed occur via a Turing system [262, 419].

12.2.2 Left–Right Asymmetry in the Mouse Embryo

The vertebrate body plan has three axes: anterior–posterior (A-P), dorsal–ventral
(D-V), and left–right (L-R) axes. The left–right asymmetry is established last [430].
Structures established by the formation of the A-P and D-V axes lead to a small
initial breaking of the left–right symmetry. For example, in the mouse embryo, cilia
protrude from cells located on the ventral side of the node. They rotate clockwise,
viewed from the ventral side, and generate a leftward flow of the extraembryonic
fluid in the node cavity, the so-called nodal flow [385]. The nodal flow leads to a
small enhancement of the expression of Nodal on the left side. Though Nodal is a
left-side determinant, experimental data suggest that the initial symmetry breaking
due to the nodal flow, or other mechanisms in other vertebrates, alone does not gen-
erate a robust asymmetry [315, 429]. Nakamura and coworkers have provided com-
pelling evidence that in the mouse embryo an activator–inhibitor reaction–diffusion
system plays the key role in the formation of the L-R axis. The two morphogens
involved are Nodal and Lefty. Nodal-related genes activate their own expression
and Nodal signaling also promotes production of Lefty, which acts as a feedback
inhibitor of Nodal activity [417, 315, 429]. Both Nodal and Lefty proteins move over
long distances through tissues, but Lefty diffuses faster [417]. Nodal and Lefty fulfill
Turing’s requirement of local self-activation and long-range inhibition. Nakamura
et al. have formulated a Nodal–Lefty reaction–diffusion model [315, supplemental
data]:

∂ρu

∂t
= F1(z)− quρu + Du

∂
2
ρu

∂x2
+ E(x, t), (12.44a)

∂ρv

∂t
= F2(z)− qvρv + Dv

∂
2
ρv

∂x2
, (12.44b)

where ρu and ρv denote the levels of Nodal and Lefty, respectively. The level of the
net induction signal is given by

z = puρu − pvρv. (12.45)

The synthesis rates of Nodal and Lefty are given by Fi (z); they are increasing func-
tions of z, and thus increasing functions of ρu and decreasing functions of ρv. The
rates are further assumed to be switching functions of z, i.e., Fi (z) is close to 0
for z small, increases rapidly for z near the threshold value, and saturates for z
large. The threshold values z = Tu and z = Tv are sufficiently large relative to the
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degradation rates qu and qv. They are close in value, but experimental data indicate
that Tu < Tv. For their numerical simulations, Nakamura and coworkers chose the
following expressions for the synthesis rates Fi (z):

F1(z) =
su

1+ exp
[−λu

(

puρu − pvρv − Tu
)] , (12.46a)

F2(z) =
sv

1+ exp
[−λv

(

puρu − pvρv − Tv
)] . (12.46b)

The term E(x, t) takes into account the small initial symmetry breaking due to
the nodal flow. For all numerical simulations, the values of the various parame-
ters are chosen such that the model without diffusion and nodal flow term shows
“signal-dependent amplification.” If the initial level of Nodal is large enough, the
levels of both Nodal and Lefty increase transiently and then decrease and con-
verge to zero. If the initial level of Nodal is small enough, the levels of both Nodal
and Lefty converge to zero without a transient increase [315]. The model displays
signal-dependent amplification, if qu is sufficiently larger than qv, and the Nodal
self-activation rate is larger than its Lefty-mediated inhibition rate. The numerical
values of the parameters are adjusted within these ranges to account for various
mutant phenotypes. The model satisfactorily simulates experimental data on the
expression patterns of Nodal and Lefty in various L-R mutants. Moreover, it pro-
vides an explanation for certain unexpected mutants, which are otherwise difficult
to understand [315].

Exercises

12.1 Explore the spatial stability of the uniform steady state of a Brusselator RD
system with a second fast-diffusing activator,

∂ρu

∂t
= a − (b + 1)ρu + ρ

2
uρv − c1ρu + c2ρw + d

∂
2
ρu

∂x2
, (12.47a)

∂ρv

∂t
= bρu − ρ

2
uρv + d

∂
2
ρv

∂x2
, (12.47b)

∂ρw

∂t
= c1ρu − c2ρw + D

∂
2
ρw

∂x2
, (12.47c)

with D � d.
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12.2 Explore the spatial stability of the uniform steady state of a Brusselator RD
system with a second fast-diffusing inhibitor,

∂ρu

∂t
= a − (b + 1)ρu + ρ

2
uρv + d

∂
2
ρu

∂x2
, (12.48a)

∂ρv

∂t
= bρu − ρ

2
uρv − c1ρv + c2ρw + d

∂
2
ρv

∂x2
, (12.48b)

∂ρw

∂t
= c1ρv − c2ρw + D

∂
2
ρw

∂x2
, (12.48c)

with D � d.

12.3 Investigate the Turing instability of the hair-follicle patterning system (12.42).

12.4 Investigate the Turing instability of the Nodal–Lefty RD model (12.44) with
E(x, t) ≡ 0.

12.5 Investigate the Turing instability of the following RD system:

∂ρu

∂t
= a

ρ
2
uρv

1+ κρ
2
u

− eρu + Du
∂

2
ρu

∂x2
, (12.49a)

∂ρv

∂t
= −b ρ

2
uρv

1+ κρ
2
u

+ c + Dv
∂

2
ρv

∂x2
, (12.49b)

which has been used to model the pattern on wings of ladybugs (Coccinellidae).
Here a, b, c, e, and κ are nonnegative constants.



Chapter 13
Pattern Formation in Spatially Discrete Systems

The preceding chapters have dealt with the spatiotemporal behavior of spatially con-
tinuous systems. We now turn our attention to the dynamical behavior and stability
properties of spatially discrete systems. A wide variety of phenomena in chemistry,
biology, physics, and other fields involve the coupling between nonlinear, discrete
units. Examples include arrays of Josephson junctions, chains of coupled diode res-
onators, coupled chemical or biochemical reactors, myelinated nerve fibers, neu-
ronal networks, and patchy ecosystems. Such networks of coupled nonlinear units
often combine dynamical and structural complexity [422]. Cells in living tissues,
for example, are arranged in a variety of geometries. One-dimensional rings of cells
were already considered by Turing [440]. Other types of lattices, such as open-ended
linear arrays, tubes, rectangular and hexagonal arrays, and irregular arrangements in
two or three dimensions are also found, see for example [5]. Cells interact with adja-
cent cells in various distinct ways. For example, signaling between cells may occur
via diffusion through gap junctions [352, 230] or by membrane-bound proteins,
juxtacrine signaling [339, 340, 471].

In specific applications, the number of discrete units involved can be quite large.
However, insight into the dynamical behavior of coupled nonlinear elements can be
gained already from the study of small arrays, consisting of as little as two units.
The study of two coupled continuous-flow stirred tank reactors (CSTRs) has a his-
tory of more than 30 yr and has had considerable theoretical and practical impact,
see for example [269, 145, 314, 423, 27, 54, 84, 83, 28, 245, 473, 97, 99, 202,
234, 488, 244, 198, 197, 499, 496]. In most studies, the reactors are coupled via
passive diffusion-like mass transfer, though some have considered electrical cou-
pling [84, 197, 198] and flow rate coupling [473, 202, 488]. Most theoretical and
experimental investigations of coupled CSTRs have focused on coupled chemical
oscillators, and many different types of dynamical behavior were observed. A few
studies have considered the effect of coupled steady-state reactors. To study the
relative stability of two steady states in a bistable system, Stuchl and Marek carried
out a series of mixing experiments on two identical CSTRs with different steady
states to determine the relative stability of the steady states [423]. Boukalouch and
coworkers found that coupling two steady-state reactors, whose feed concentrations
differ, may induce oscillations [54]. Laplante and Erneux considered the case of
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bistable reactions. Specifically, they investigated propagation failure in a linear array
of 16 cells [242, 241] and the coexistence of nonuniform steady states in linear and
circular 16-cell arrays [241, 52].

The earliest studies of coupled chemical cells were theoretical investigations and
focused on the diffusion-induced instability to nonuniform steady states [354, 443]
in two coupled reactors. More recently, Epstein and Golubitsky investigated the
Turing instability in linear and circular arrays of Brusselators [109]. Their approach
makes use of underlying symmetry groups.

This chapter focuses on the stability properties of networks or arrays of coupled
monostable units or cells. We consider two types of coupling, namely diffusive cou-
pling and photochemical coupling. The two main concerns are how the topology of
the network connectivity and how spatial inhomogeneities in the array affect insta-
bilities. Spatially discrete systems or networks of coupled cells are described by sets
of ordinary differential equations. Methods to determine the stability of stationary
states of ODEs are well developed.

13.1 Linear Stability Analysis

For the sake of simplicity, we adopt the terminology of chemical kinetics in the fol-
lowing and use the term “reactor” instead of the general, but lengthy, term “discrete,
nonlinear unit.” We consider networks of coupled reactors such that the reactions in
each reactor are the same and the dynamics is governed by

dρ

dt
= F(ρ,μ), (13.1)

where ρ ∈ R
k and F : R

k → R
k . We assume that F depends on some fixed

set of parameters μ and that (13.1) has a steady state ρ(μ), i.e., F(ρ(μ),μ) = 0.
Networks of reactors can be described by graphs where the nodes correspond to the
individual reactors and the edges represent connections between them. The graph
G, corresponding to a network of n reactors, has n nodes, ν1, . . . , νn , and (νi , ν j ),
i �= j , is an edge of G if and only if reactor i is coupled to reactor j . The sets of
nodes and edges of G are denoted by NG and EG , respectively. We assume in the
following that G is connected and that the coupling is symmetric, i.e., G is a simple
graph. The dynamics of the network is described by the set of ordinary differential
equations

dρi

dt
= F(ρi ,μi )+GG,i (ρ1, . . . , ρn, κ), i = 1, . . . , n. (13.2)

The first term on the right-hand side describes the internal dynamics of each reac-
tor. We allow for the possibility that the network is inhomogeneous, i.e., the set of
parameters μ can differ from reactor to reactor though the kinetic rate functions
are identical for all reactors. The second term describes the dynamics due to the
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coupling between reactors via the topology described by the graph G, and κ is a
set of parameters that characterizes the coupling between pairs of reactors. If the
reactors are coupled by passive mass diffusion, then the coupling term is given by

GG,i (ρ1, . . . , ρn, κ) =
n
∑

j=1

ai jD(ρ j − ρi ), i = 1, . . . , n, (13.3)

where aii = 0, ai j can be either 0 or 1 for i �= j and ai j = a ji . The latter case,
ai j = 1, holds if and only if (νi , ν j ), i �= j , is an edge of G. The matrix D satisfies
D = κdiag(D11, . . . , Dkk), where κ > 0, Dll > 0, and l = 1, . . . , k. The constant κ
represents the coupling strength between reactors. Equations (13.2) and (13.3) can
be rewritten as

dρi

dt
= F(ρi ,μi )+

n
∑

j=1

Li jDρ j , i = 1, . . . , n, (13.4)

where Li j = ai j , i �= j , and

Lii = −
⎛

⎝

i−1
∑

j=1

ai j +
n
∑

j=i+1

ai j

⎞

⎠ , i = 1, . . . , n. (13.5)

The corresponding matrix L is symmetric and is referred to as the Laplacian matrix
of the graph G. Note that some authors define the Laplacian to be the negative of
our definition. The degree, or number of neighbors, of node i is ki = −Lii .

13.1.1 Routh–Hurwitz Analysis

It is convenient to rewrite (13.2) in the following compact form:

dσ

dt
= FG(σ ), (13.6)

with σ = (ρ1,1, ρ2,1, . . . , ρk,1, . . . , ρ1,n, . . . , ρk,n)
T . Let σ be a stationary state of

(13.6), i.e., FG(σ ) = 0. As discussed in Sect. 1.2, the stability of this steady state is
given by the eigenvalues of the m × m Jacobian matrix (m = kn)

JG =
∂FG
∂σ

∣
∣
∣
∣
σ

, (13.7)

which are roots of the mth order characteristic polynomial, (−1)m det(JG − λIm)
= 0:
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λ
m + c1λ

m−1 + c2λ
m−2 + · · · + cm−1λ+ cm = 0. (13.8)

The stationary state of the network of reactors is stable, if all roots λ of (13.8) have
a negative real part. The necessary and sufficient conditions for this to hold are the
Routh–Hurwitz conditions, see Theorem 1.2. The stationary state of the network, σ ,
undergoes a stationary instability if cm = 0, see (1.36), and an oscillatory instability
if �m−1 = 0, together with cm > 0,�l > 0, l = 1, . . . ,m − 2, see (1.38). The
Routh–Hurwitz analysis can be used to determine, in principle, the stability proper-
ties of the steady state of any network, even inhomogeneous networks. This advan-
tage is, however, balanced by the fact that it is a computationally expensive task
to evaluate all the coefficients cl of the characteristic polynomial and the Hurwitz
determinants �l . In our studies of instabilities in arrays of coupled reactors, we used
symbolic computation software, namely MATHEMATICA (Wolfram Research, Inc.,
Champaign, IL, 2002) and MAPLE (Waterloo Maple Inc., Waterloo, Ontario, 2002),
to obtain exact, analytical expressions for the coefficients cl of the characteristic
polynomial (13.8) and the Hurwitz determinants �l for arrays of up to six coupled
reactors.

13.1.2 Structural Mode Analysis

The application of the Routh–Hurwitz analysis or the direct calculation of the eigen-
values and eigenvectors of the Jacobian JG of the network of reactors is a formidable
task for moderate and large arrays of coupled reactors. There is an alternative
approach, a spectral analysis of networks, that works for any size array of coupled
reactors, as long as the array is homogeneous, i.e., μi = μ for all i, i = 1, . . . , n,
and the coupling is diffusive. In this case, the system (13.4) has a uniform steady
state:

ρi (μ) = ρ(μ), i = 1, . . . , n. (13.9)

In the following we suppress the explicit dependence of the stationary state on the
set of parameters μ and write ρ(μ) = ρ. The Jacobian JG is given by

JG = In ⊗ J+ L⊗ D, (13.10)

where J is the Jacobian matrix of a single reactor,

Jlm ≡
∂Fl
∂ρm

(ρ), 1 ≤ l,m ≤ k, (13.11)

and ⊗ denotes the Kronecker product, see Appendix A.
As we saw in Sect. 10.1, the stability properties of the uniform steady state of

spatially continuous reaction–diffusion systems can be analyzed in terms of normal
modes corresponding to the eigenfunctions of the Laplace operator. Othmer and
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Scriven [334] showed that the stability of spatially discrete homogeneous reaction–
diffusion systems can be analyzed in terms of the structural modes of the network,
i.e., the eigenvectors of the Laplacian matrix L. We have extended that approach
[305], and the eigenvalues and eigenvectors of the matrix

Ĵ(r) ≡ J− rD, (13.12)

with r ≥ 0, play an important role in our linear stability analysis of the uniform
steady state ρ of the homogeneous network G. Equation (13.12) implies that

Ĵ(r1 + r2) = Ĵ(r1)− r2D. (13.13)

For simplicity we assume throughout this chapter the generic case that Ĵ(r) has a
complete set of eigenvectors for all appropriate values of r . We extend the definition
(13.12) to ĴG :

ĴG(r) ≡ JG − r In ⊗ D. (13.14)

For simple networks, it is possible to obtain a complete description of the eigen-
values and eigenvectors of JG [334]. These include linear and circular arrays. A
network of n reactors is said to be a linear array if

EG = ∪n−1
i=1 {(νi , νi+1)}. (13.15)

The eigenvalues of JG , associated with a linear array, are given by the
eigenvalues of

Ĵ (2− 2 cos ( jπ/n)) , j = 0, 1, . . . , n − 1. (13.16)

The associated eigenvectors are given by

z j = (α j1z̄, . . . , α jn z̄)T , (13.17)

where z̄ is the associated eigenvector of (13.16), and

α jl =
{√

1/n, j = 0,
[

sin(π jl
n )− sin(π j (l−1)

n )
]

/
√

2n sin(π j
2n ), j > 0,

l = 1, . . . , n.

(13.18)
A network is said to be a circular array if

EG = ∪n−1
i=1 {(νi , νi+1)} ∪ (ν1, νn). (13.19)
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In this case the eigenvalues of JG are given by the eigenvalues of

Ĵ (2− 2 cos (2 jπ/n)) , j = 0, 1, . . . , n − 1. (13.20)

The associated eigenvectors have the form (13.17) but with z̄ the associated eigen-
vector of (13.20) and

α jl =
√

1

n
exp

(
2i j (l − 1)π

n

)

, i = √−1, l = 1, . . . , n. (13.21)

The linear stability analysis of the homogeneous steady state ρi = ρ of arbitrary,
homogenous networks

dρi

dt
= F(ρi ,μ)+

n
∑

j=1

Li jDρ j , i = 1, . . . , n, (13.22)

is enormously simplified by the fact that finding the eigenvalues and eigenvectors
of JG(r) is equivalent to finding the eigenvalues and eigenvectors of the matrices
L and Ĵ(r) for appropriate values of r . This leads to much simpler problems, since
L is symmetric and Ĵ(r) is a k × k matrix with, typically, k � n. The foundation of
our spectral analysis approach is the following theorems [305].

Theorem 13.1 Consider a network of n reactors represented by a graph G. Then λ

is an eigenvalue of ĴG(r), λ ∈ σ (̂JG(r)), if and only if λ ∈ σ (̂J(−β + r)), where
β ∈ σ(L). The associated eigenvectors z have the form

z = (α1z̄, . . . , αn z̄)T , (13.23)

where z̄ is the associated eigenvector of Ĵ(−β + r) and (α1, . . . , αn)
T is the asso-

ciated eigenvector of L.

Remark 13.1 The Laplacian matrix L is symmetric and therefore has real eigenval-
ues,

β1 ≥ β2 ≥ · · · ≥ βn, (13.24)

and a complete set of orthonormal eigenvectors (α1, . . . , αn)
T , the so-called struc-

tural modes of the network G [334].

Theorem 13.2 Consider a network of n reactors represented by a graph G and let
λ ∈ σ (̂J(r)), i.e., β = 0, with eigenvector z̄. Then λ ∈ σ (̂JG(r)) with eigenvector

z = (z̄, . . . , z̄)T .

The remaining eigenvalues of JG(r) are associated with spatially nonuniform eigen-
vectors, and those eigenvectors share an additional property which is stated in the
next theorem.
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Theorem 13.3 Consider a network of n reactors represented by a graph G and let
λ ∈ σ (̂JG(r)) with eigenvector z = (z1, . . . , zn)

T , zi ∈ R
k . Then if λ /∈ σ (̂J(r)),

n
∑

i=1

zi = 0. (13.25)

This theorem complements the previous one. Uniform eigenvectors belong to eigen-
values of ĴG(r) that are also eigenvalues of Ĵ(r), whereas the nonuniform eigenvec-
tors occur for eigenvalues of ĴG(r) that are not eigenvalues of Ĵ(r).

In the light of Theorem 13.1, information about the eigenvalues and eigenvectors
of the Laplacian matrix L of the network G is important for the spectral method of
linear stability analysis. Laplacian matrices appear in a variety of other contexts, and
a survey of known results about their spectrum can be found in [293]. The following
four theorems provide additional information about the eigenvalues of L, and in light
of Theorem 13.1, on the eigenvalues of ĴG(r). The eigenvalue β2, referred to as the
algebraic connectivity of the graph [128], plays a critical role in determining the
largest value of κ for which a Turing instability is possible.

Theorem 13.4 For a network of n reactors represented by a graph G the Laplacian
matrix L is negative semidefinite. Moreover, β1 = 0, and

βn ≥ 2 min
1≤i≤n Lii . (13.26)

Remark 13.2 For a circular array of n reactors it follows from (13.20) that as
n →∞,

βn →−4 = 2 min
1≤i≤n Lii . (13.27)

The following Theorem addresses the question of how the eigenvalues of the
Laplacian matrix change, when connections between reactors are removed or added
in the network. It turns out that the eigenvalues of the smaller and the bigger graph
interlace in an orderly arrangement.

Theorem 13.5 Consider a network of n reactors, n > 2, represented by a graph G
with Laplacian matrix LG . Let G

′ be a connected subgraph of G such that NG′ =
NG and for some (νl , νm) ∈ EG , EG′ = EG\(νl , νm). If LG′ is the corresponding

Laplacian matrix of G′ with eigenvalues β ′1 ≥ β
′
2 ≥ · · · ≥ β

′
n then

0 = β
′
1 = β1 > β

′
2 ≥ β2 ≥ · · · ≥ β

′
n ≥ βn . (13.28)

A bound on β2 can be found in terms of n and the diameter of G, dG . The diameter
of a graph is the maximum distance between any two nodes in the graph. Since the
graph is connected, the distance between any two nodes ν and ν

′ is the length of the
shortest path between them.
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Theorem 13.6 Consider a network of n reactors represented by a graph G with
Laplacian matrix L, then

β2 ≤ − 4

dGn
. (13.29)

The following theorem establishes that the number of reactors in the network
provides a lower bound for the spectrum of the Laplacian matrix of the network.

Theorem 13.7 Consider a network of n reactors represented by a graph G with
Laplacian matrix L. Then

βn ≥ −n. (13.30)

This result and Theorem 13.5 imply that the eigenvalues β of the Laplacian
matrix L associated with the structural modes of the network G lie between 0 and
−n, 0 ≥ β ≥ −n. This narrows the search for eigenvalues leading to instabilities of
the uniform steady state of the network to eigenvalues of Ĵ(r) with 0 ≤ r ≤ n, with
r = −β.

Theorem 13.8 Consider a network of n reactors represented by a graph G. If λ ∈
σ (̂JG), then λ ∈ σ (̂J(r)) where 0 ≤ r ≤ n.

13.2 Instabilities in Diffusively Coupled Reactor Networks

We use the results of the previous section to analyze the stability of the uniform
steady state of homogeneous arrays of diffusively coupled reactors, whose internal
dynamics can be described by the concentration of two species U and V:

dρui

dt
= F1(ρui , ρvi , μ)+ κDu

n
∑

j=1

Li jρu j , i = 1, . . . , n, (13.31a)

dρvi

dt
= F2(ρui , ρvi , μ)+ κDv

n
∑

j=1

Li jρv j , i = 1, . . . , n. (13.31b)

As above, the kinetic rate functions F1 and F2 depend on a set of parameters. We
display only one explicitly, namely the bifurcation parameter μ. The steady state
(ρu, ρv) of an isolated reactor is given by

F1(ρu, ρv, μ) = F2(ρu, ρv, μ) = 0, (13.32)

and we assume that this steady state is stable in an isolated reactor, i.e., the trace
T = tr J of the Jacobian at the steady state is negative and the determinant � = det J
is positive, see Sect. 1.2.2:



13.2 Instabilities in Diffusively Coupled Reactor Networks 373

T = tr J = J11 + J22 < 0, (13.33a)

� = det J = J11 J22 − J12 J21 > 0. (13.33b)

The homogeneous network of reactors (13.31) has a uniform steady state (USS):

(

ρui , ρvi

) = (ρu, ρv
)

, i = 1, . . . , n. (13.34)

According to the results of the previous section, the stability of the USS is deter-
mined by the eigenvalues of the matrix Ĵ(r),

Ĵ(r) = J− rκ

(

Du 0
0 Dv

)

, (13.35)

with r = −βi , where βi ∈ σ(L) and i = 1, . . . , n. The uniform structural mode of
the network G has the eigenvalue β1 = 0:

Ĵ(0) = J. (13.36)

According to our assumptions (13.33), the USS of the network is stable against
uniform spatial perturbations. To analyze the stability of the USS against spatially
nonuniform perturbations, we need to examine two possibilities for the structural
modes associated with βi < 0, i = 2, . . . , n: (i) Can a pair of complex conjugate
eigenvalues cross the imaginary axis, i.e., tr Ĵ(r) = 0, which corresponds to an
oscillatory or Hopf bifurcation of the structural mode? (ii) Can a real eigenvalue
of Ĵ(r) pass through zero, i.e., det Ĵ(r) = 0, which corresponds to a stationary
bifurcation of the structural mode?

The first possibility leads to

tr Ĵ(r) = J11 + J22 − κr(Du + Dv) = T − κr(Du + Dv), (13.37)

which is negative for all r ≥ 0, since T < 0 and Du + Dv > 0. As for spatially
continuous systems, the USS of diffusively coupled reactor arrays cannot undergo
an oscillatory spatial instability or wave bifurcation, if the kinetics depends only on
two variables.

The second possibility, a stationary spatial or Turing instability, requires that
det Ĵ(r) = 0,

(κr)2 − κr(Dv J11 + Du J22)+ J11 J22 − J12 J21 = 0, (13.38)

or

(κr)2 − κr(Dv J11 + Du J22)+� = 0. (13.39)

We can approach (13.38) or (13.39) from two viewpoints.
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(i) We consider μ to be the bifurcation parameter and keep the coupling constant
κ fixed. Then these equations determine the instability threshold for each struc-
tural mode, μc(βi ). The explicit form of the instability conditions depends on the
particular internal kinetics, F. The threshold of the Turing instability is given by
μT = min{μc(β2), . . . , μc(βn)}, if the USS becomes unstable as μ increases, or
μT = max{μc(β2), . . . , μc(βn)}, if the USS becomes unstable as μ decreases. We
adopt this approach in Sect. 13.3 below.

(ii) We consider the coupling constant κ to be the bifurcation parameter and
keep all other parameters fixed. For κ small, the reactors are only weakly coupled.
Since each isolated reactor is stable, the USS of the network G will be stable for
sufficiently small κ . For κ large, the array of coupled reactors behaves like one
large CSTR. This is the “well-stirred” regime and no spatial patterns are possible.
We expect that for moderate values of the coupling constant κ , the regime where
the reaction terms and the coupling terms contribute equally to the evolution of the
reactor network, stationary spatial instabilities can occur for a range of values of κ
in an appropriate region of parameter space.

The roots of (13.39) have to be positive, since both κ > 0 and r > 0. As for
the Turing instability in spatially continuous reaction–diffusion system, see Sect.
10.1.2,

Dv J11 + Du J22 > 0 (13.40)

is a necessary but not sufficient condition, since � > 0 according to (13.33b). In
light of (13.33a), a stationary spatial instability of the network can only occur if
(i) the coefficients J11 and J22 do not have the same sign and (ii) if the diffusion
coefficients are not equal; the same conditions that pertain to a Turing instability in
reaction–diffusion systems, see Sect. 10.1.2. Again, we will assume that

J11 > 0, J22 < 0, (13.41)

and consequently
∣
∣J22

∣
∣ > J11, since T < 0 and J12 J21 < 0 since � > 0. The roots

of (13.39) are given by

κ±r =
Dv J11 + Du J22 ±

√

(Dv J11 + Du J22)
2 − 4DuDv�

2DuDv
. (13.42)

The roots are positive if the discriminant is nonnegative

(Dv J11 + Du J22)
2 ≥ 4DuDv�. (13.43)

The boundary of the instability region in parameter space occurs where (13.42) has
a double root, i.e.,

Dv J11 + Du J22 =
√

4DuDv�. (13.44)
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Inside the unstable region, i.e., (Dv J11 + Du J22)
2
> 4DuDv�, the range of the

coupling constant (κ−, κ+) in which the USS of G is unstable to the structural mode
associated with βi is given by

κ± =
1

−βi

Dv J11 + Du J22 ±
√

(Dv J11 + Du J22)
2 − 4DuDv�

2DuDv
, i = 2, . . . , n.

(13.45)
This implies that if we start with a network in the weak-coupling regime and then

increase κ , the first structural mode to become unstable is the mode with the most
negative eigenvalue, i.e., the eigenvector of the network Laplacian associated with
βn . For geometrically regular graphs, such as linear and circular arrays and pieces of
rectangular two- and three-dimensional lattices with four and six nearest neighbors,
respectively, this mode corresponds to a short-wavelength mode, and we will call
this instability a “short-wavelength” instability for arbitrary networks G.

If, on the other hand, we start with a network in the strong-coupling regime and
then decrease κ , (13.45) implies that the first structural mode to become unstable
is the mode with the least negative eigenvalue, i.e., the eigenvector of the net-
work Laplacian associated with β2. For geometrically regular graphs this mode
corresponds to a long-wavelength mode, and we will call this instability a “long-
wavelength” instability for arbitrary networks G. Our results show that the stationary
instability of the USS of G is reentrant, if the coupling strength κ is the bifurcation
parameter.

13.3 Networks of Diffusively Coupled Reactors with
Lengyel–Epstein Kinetics

We employ the tools of structural mode analysis to determine the instability thresh-
old for Turing bifurcations to patterns in arrays of reactors that contain all the com-
ponents of the CDIMA reaction, including the complexing agent. The reactors are
linked by diffusive coupling via membranes that are impermeable to the complexing
agent. In this section we consider the case that all reactors contain the same concen-
tration of the complexing agent, i.e., the network is homogeneous. Arrays where
the individual reactors are loaded with different concentrations of the substrate are
discussed in Sect. 13.6.

13.3.1 Turing Threshold

As discussed in Sect. 1.4.9, the CDIMA reaction in a single CSTR is well described
by the two-variable Lengyel–Epstein model. The evolution of a homogeneous net-
work of n reactors with Lengyel–Epstein kinetics is governed by the set of ordinary
differential equations
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dρi

dt
= F(ρi ,μi )+

n
∑

j=1

Li jDρ j , i = 1, . . . , n, (13.46)

where, k = 2,

F(ρ) =
(

F1(ρu, ρv)

F2(ρu, ρv)

)

=

⎛

⎜
⎜
⎜
⎜
⎝

1

σ

(

a − ρu − 4
ρuρv

1+ ρ
2
u

)

b

(

ρu −
ρuρv

1+ ρ
2
u

)

⎞

⎟
⎟
⎟
⎟
⎠

(13.47)

and

D = κdiag(1/σ, d), (13.48)

with a, b, d > 0. The coupling strength κ corresponds to the mass transfer coef-
ficient for the activator in the absence of the complexing agent. We allow for the
possibility that the mass transfer coefficient of the inhibitor differs from that of the
activator, and the ratio of the mass transfer coefficients of the two species is d. As
discussed in Sect. 1.4.9, this system has a unique steady state in a single CSTR

ρ = (ρu, ρv) =
(

a

5
, 1+ a2

25

)

, (13.49)

which undergoes a Hopf bifurcation to oscillatory behavior as the parameter b is
decreased at

bH =
3a2 − 125

5aσ
. (13.50)

We adopt here the first viewpoint discussed in the previous section. We keep
the coupling constant κ fixed and consider b to be the bifurcation parameter. The
parameter σ affects neither the stationary states of the network nor the stationary
bifurcations, i.e., bifurcations corresponding to an eigenvalue of 0, as is clear from
the structure of the right-hand side of (13.46). To observe the formation of Turing
patterns, the Turing bifurcation must be the primary bifurcation, i.e., must occur
before the Hopf bifurcation. The Turing threshold bT must be larger than bH. Since
the Hopf threshold is inversely proportional to σ , one can ensure for a given value of
a that any stationary bifurcation will occur before the Hopf bifurcation by choosing
a sufficiently large concentration of complexing agent. If

σ > σ
∗
c (a), (13.51)
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where σ
∗
c (a) is given by bT = bH, then the stationary bifurcation occurs first.

The system (13.46) has a unique uniform steady state given by

ρi = ρ. (13.52)

To obtain the threshold condition for the Turing bifurcation of this USS, we need to
determine all conditions for which the eigenvalues of JG can vanish. According to
Theorem 13.8, we need to determine the conditions such that

Ĵ(r) =

⎛

⎜
⎜
⎜
⎜
⎝

1

σ

(

−5+ 8a2

25+ a2

)

− rκ

σ
− 1

σ

20a

25+ a2

b
2a2

25+ a2
−b 5a

25+ a2
− rκd

⎞

⎟
⎟
⎟
⎟
⎠

(13.53)

has a zero eigenvalue, i.e., that det Ĵ(r) = 0, which yields

a2dκr(−3+ κr)+ 5ab(5+ κr)+ 25dκr(5+ κr)

25+ a2
= 0. (13.54)

We obtain the following result:

Theorem 13.9 If 0 < κr < 3, there exist a and d such that if b = b∗ + ε and

b∗(r) =
dκr

[

a2
(3− κr)− 25(5+ κr)

]

5a(5+ κr)
, (13.55)

an eigenvalue of Ĵ(r) changes sign with ε, while for r = 0 or κr ≥ 3 the determi-
nant is always positive.

For a graph of b∗(r) vs κr , see Fig. 13.1.
For b sufficiently large, the uniform steady state of G, given by ρi = ρ, is stable.

As mentioned above, with σ large enough, the Turing bifurcation occurs before the
Hopf bifurcation as b decreases. Define the set � as

� = {r |r = −β, β ∈ σ(L), 0 < κr < 3}, (13.56)

i.e., the set of r such that the eigenvalues of Ĵ(r) pass through zero with an appro-
priate choice of κ . Then it follows from (13.55) that the Turing threshold is given
by

bT = max
r∈� b∗(r). (13.57)

For b > bT the USS is stable, and for b < bT it is unstable to spatially nonuniform
perturbations. Equation (13.55) implies that for a and d fixed, b∗(r) is positive for
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0

b*

κr0 3

3a2 − 125
a2 + 25

Fig. 13.1 b∗ as function of κr for fixed a and d. Reprinted from [305]. Copyright 2005, with
permission from Elsevier

0 < κr <
3a2 − 125

a2 + 25
. (13.58)

This implies that a Turing instability can occur only if a is larger than a◦, see
(1.159), i.e., the iodide ion must be an activator. Since r = −β and β j ≤ β2 < 0,
j > 2, the maximum value of κ for which a Turing instability can occur is

κmax,G ≡
125− 3a2

β2(a
2 + 25)

. (13.59)

This implies that if G′ is a proper subgraph of G with the same number of nodes, a
Turing instability of G can occur for no greater value of the coupling strength than
the maximum value at which a Turing instability of G′ occurs.

Theorem 13.10 Consider a network of n LE reactors represented by a graph G, and
let G′ be a connected subgraph of G such that NG′ = NG and EG′ = EG\{(νi , ν j )}.
Then κmax,G ≤ κmax,G′ .

Remark 13.3 For fixed n, Theorem 13.6 suggests that an ordering of κmax,G based
on the diameter of G exists. A partial ordering based on graph diameter is observed
when n = 4, as we show below [207].

13.3.2 Turing Instability in Small Arrays

We systematically survey the Turing threshold conditions and the structural mode
that becomes unstable, for arrays of two, three, and four coupled reactors with
Lengyel–Epstein kinetics. The results illustrate the importance of the value of the
coupling strength on the occurrence of a Turing instability. They also provide the
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first evidence of the effect of the network topology on the Turing threshold. The
topology already plays a role in the occurrence of the Turing instability for the first
nontrivial case, namely three coupled reactors.

13.3.2.1 Two Reactors

For two coupled reactors, the Laplacian matrix of the graph G reads

L2 =
(−1 1

1 −1

)

. (13.60)

The structural modes and associated eigenvalues are

(

α
(1)
1 , α

(1)
2

)T = (1, 1)T , β1 = 0, (13.61)
(

α
(2)
1 , α

(2)
2

)T = (−1, 1)T , β1 = −2. (13.62)

There is only one nonuniform structural mode, and we obtain the Turing threshold
by setting r = 2 in (13.55):

bT =
2dκ

(

3a2 − 2κa2 − 125− 50κ
)

5a(5+ 2κ)
. (13.63)

The mass-transfer coefficient κ must lie in the interval (0, κmax), see above, for
Turing patterns to occur, where

κmax =
3a2 − 125

2a2 + 50
. (13.64)

A strict upper bound for κmax is given by κsup = 3/2, the limit of κmax as a →∞.
No Turing instability occurs in two coupled reactors, if κ > 3/2. We illustrate our
results for the specific case κ = 1, where contributions from reaction and diffusion
terms are evenly balanced. For a and d, we choose a = 50.0 and d = 1.07. The
latter value is the ratio of the diffusion coefficients of the activator and inhibitor
in aqueous solution. We use these values in all examples in this section. For these
conditions, bT = 2.84314, κmax = 1.4604, and σ

∗
c = 10.3758.

13.3.2.2 Three Reactors

Two different network topologies are possible for three coupled reactors: (i) a linear
array and (ii) a circular array. For three reactors, the latter coincides with global or
all-to-all coupling. A linear array corresponds to the Laplacian matrix
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L3lin =
⎛

⎝

−1 1 0
1 −2 1
0 1 −1

⎞

⎠ . (13.65)

The structural modes and associated eigenvalues are

(

α
(1)
1 , α

(1)
2 , α

(1)
3

)T = (1, 1, 1)T , β1 = 0, (13.66)
(

α
(2)
1 , α

(2)
2 , α

(2)
3

)T = (−1, 0, 1)T , β2 = −1, (13.67)
(

α
(3)
1 , α

(3)
2 , α

(3)
3

)T = (1,−2, 1)T , β3 = −3. (13.68)

There are two nonuniform structural modes, one odd and one even, and we obtain
the Turing threshold by setting r = 1 and r = 3 in (13.55). The USS is unstable to
the structural mode (−1, 0, 1)T for values of b below

b∗(1) =
dκ
(

3a2 − κa2 − 25κ − 125
)

5a(5+ κ)
, (13.69)

and the range for the coupling constant κ is (0, κ1,max) with

κ1,max =
3a2 − 125

a2 + 25
. (13.70)

A strict upper bound for κ1,max is given by κ1,sup = 3. Since this structural mode
corresponds to the eigenvalue β2 of the Laplacian matrix L3lin, no Turing instability
can occur in a linear three-reactor array if the mass-transfer coefficient κ exceeds
the value 3 in accordance with (13.59).

The USS is unstable to the structural mode (1,−2, 1)T for values of b below

b∗(3) =
dκ
[

9(1− κ)a2 − 225κ − 375
]

5a(5+ 3κ)
, (13.71)

and the range for the coupling constant κ is (0, κ3,max) with

κ3,max =
3a2 − 125

3a2 + 75
. (13.72)

A strict upper bound for κ3,max is given by κ3,sup = 1. For a given value of the
coupling constant κ , the instability thresholds of the two inhomogeneous structural
modes coincide, i.e., the modes are degenerate, at
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a0(κ) =
5
√

25+ 20κ + 3κ2

√

15− 20κ − 3κ2
, (13.73)

which is a real, positive number for κ < (
√

145 − 10)/3 = 0.680532. For a given
value of a, the two modes are degenerate at

κ0(a) =
√

5
√

3125+ 850a2 + 29a4 − 10a2 − 250

3(25+ a2
)

, (13.74)

which is positive for a > a◦. These results imply that for κ > κ3,max only the

structural mode (−1, 0, 1)T can become unstable and

bT = b∗(1) =
dκ
(

3a2 − κa2 − 225κ − 125
)

5a(5+ κ)
. (13.75)

For 0.680532 < κ < κ3,max, it represents the primary bifurcation, i.e., b∗(1) >

b∗(3). Therefore for fixed a, the Turing threshold bT is given by (13.75) for coupling
constants in the range 0.680532 < κ < κ1,max. For 0 < κ < 0.680532 we have that
b∗(3) > b∗(1) and

bT = b∗(3) =
dκ
[

9(1− κ)a2 − 225κ − 375
]

5a(5+ 3κ)
. (13.76)

We illustrate our results for three specific values of the mass-transfer coefficient.
We find that the two structural modes are degenerate at κ0(50.0) = 0.664053. For
κ = 1, only the eigenvalue of JG associated with the structural mode (−1, 0, 1)T ,
the odd mode, passes through zero and the Turing instability occurs at bT =
3.445967. For κ = 0.75, the eigenvalues of JG associated with the odd and the even
nonuniform structural mode both pass through zero, the first one at b∗(1) = 3.05997
and the second one at b∗(3) = 2.24977. As expected, the primary bifurcation
is still associated with the odd mode. For k = 0.5, the instability conditions for
the two inhomogeneous structural modes correspond to b∗(1) = 2.37832 and
b∗(3) = 3.54335 and thus bT = 3.54335. It is now the even structural mode
(1,−2, 1)T that goes unstable first. If we change the coupling strength κ in a linear
three-reactor array from a value above κ0(a) to a value below κ0(a), then the Turing
mode will change from an odd mode to an even mode.

A circular three-reactor array has the following Laplacian matrix:

L3circ =
⎛

⎝

−2 1 1
1 −2 1
1 1 −2

⎞

⎠ . (13.77)
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The structural modes and associated eigenvalues are

(

α
(1)
1 , α

(1)
2 , α

(1)
3

)T = (1, 1, 1)T , β1 = 0, (13.78)
(

α
(2)
1 , α

(2)
2 , α

(2)
3

)T = (−1, 1, 0)T , β2 = −3, (13.79)
(

α
(3)
1 , α

(3)
2 , α

(3)
3

)T = (−1, 0, 1)T , β3 = −3. (13.80)

The nonzero eigenvalue is doubly degenerate, and so is the eigenvalue of JG that
passes through zero. The Turing threshold is given by

bT = b∗(3) =
dκ
[

9(1− κ)a2 − 225κ − 375
]

5a(5+ 3κ)
, (13.81)

and the USS of the array is unstable to any linear combination of the two nonuniform
structural modes (−1, 1, 0)T and (−1, 0, 1)T . The range for the coupling constant
κ is (0, κ3,max).

The network topology affects the Turing instability already in a three-reactor
array. Consider the case where the mass-transfer coefficient falls in the range
(κ3,max, κ1,max), say for instance κ = 1.5. If we start with a circular array of three
reactors, then the homogeneous steady state is stable against spatial perturbations.
No Turing instability can occur in a circular three-reactor array for a coupling con-
stant κ larger than κ3,max. When we sever the connection between the first and third
reactors, i.e., we turn the circular array into a linear one, the uniform steady state can
become unstable to nonuniform spatial perturbations and a stationary pattern can
form, since κ is below the upper limit for a Turing instability in a linear three-reactor
array given by (13.70).

13.3.2.3 Four Reactors

The six different network topologies that occur for arrays of four coupled reactors
are shown in Fig. 13.2. The Laplacian matrix L of each network can be read off
from Fig. 13.2 and is given below. We also list the structural modes of L and the
corresponding eigenvalues.

(i) Linear array:

L4,i =

⎛

⎜
⎜
⎝

−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

⎞

⎟
⎟
⎠

. (13.82)

The structural modes and associated eigenvalues are
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(i)

1 2 3 4

(ii)

1 2

34

(iii)
4 3

2

1

(iv)
4 3

2

1

(v)

1 2

34
(vi)

4 3

2

1

Fig. 13.2 Topologies for four coupled reactors: (i) linear; (ii) circular; (iii) star-shaped; (iv)
triangle-plus-one; (v) circular-plus-diagonal; (vi) global or all-to-all coupling. Reprinted from
[207]. Copyright 2004, with permission from Elsevier

(

α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4

)T = (1, 1, 1, 1)T , β1 = 0, (13.83)
(

α
(2)
1 , α

(2)
2 , α

(2)
3 , α

(2)
4

)T = (−1, 1−√2,−1+√2, 1)T , β2 = −2+√
2,

(13.84)
(

α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
4

)T = (1,−1,−1, 1)T , β3 = −2, (13.85)
(

α
(4)
1 , α

(4)
2 , α

(4)
3 , α

(4)
4

)T = (−1, 1+√2,−1−√2, 1)T , β2 = −2−√
2.

(13.86)

The eigenvalues of the three nonuniform structural modes, their instability thresh-
olds, the maximum value of the coupling constant κmax, and its upper limit κsup as
a →∞ are given in Table 13.1.

(ii) Circular array:

L4,ii =

⎛

⎜
⎜
⎝

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎞

⎟
⎟
⎠

. (13.87)
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Table 13.1 Instability threshold b∗(r) for the nonuniform structural modes of four-reactor arrays.
r± = ±2 + √

2, t = 25 + 20κ + 2κ2, n± = ±25r∓t + a2[∓15r∓ ± 4(∓6 + 5
√

2) − 2r∓κ
2].

Reprinted from [207]. Copyright 2004, with permission from Elsevier

β b∗(r) κmax κsup

(i) −2+√
2

dκn+
5at

3a2 − 125

−r−(a2 + 25)
5.12132

(i) −2
dκ(6a2 − 4κa2 − 100κ − 250)

a(25+ 10κ)

3a2 − 125

2a2 + 50
3/2

(i) −2−√
2

dκn−
5at

3a2 − 125

r+(a
2 + 25)

0.87868

(ii) −2 (2×)
dκ(6a2 − 4κa2 − 100κ − 250)

a(25+ 10κ)

3a2 − 125

2a2 + 50
3/2

(ii) −4
dκ(12a2 − 16κa2 − 400κ − 500)

a(25+ 20κ)

3a2 − 125

4a2 + 100
3/4

(iii) −1 (2×)
dκ(3a2 − κa2 − 25κ − 125)

a(25+ 5κ)

3a2 − 125

a2 + 25
3

(iii) −4
dκ(12a2 − 16κa2 − 400κ − 500)

a(25+ 20κ)

3a2 − 125

4a2 + 100
3/4

(iv) −1
dκ(3a2 − κa2 − 25κ − 125)

a(25+ 5κ)

3a2 − 125

a2 + 25
3

(iv) −3
dκ[9(1− κ)a2 − 225κ − 375]

a(25+ 15κ)

3a2 − 125

3a2 + 75
1

(iv) −4
dκ(12a2 − 16κa2 − 400κ − 500)

a(25+ 20κ)

3a2 − 125

4a2 + 100
3/4

(v) −2
dκ(6a2 − 4κa2 − 100κ − 250)

a(25+ 10κ)

3a2 − 125

2a2 + 50
3/2

(v) −4 (2×)
dκ(12a2 − 16κa2 − 400κ − 500)

a(25+ 20κ)

3a2 − 125

4a2 + 100
3/4

(vi) −4 (3×)
dκ(12a2 − 16κa2 − 400κ − 500)

a(25+ 20κ)

3a2 − 125

4a2 + 100
3/4

The structural modes and associated eigenvalues are

(

α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4

)T = (1, 1, 1, 1)T , β1 = 0, (13.88)
(

α
(2)
1 , α

(2)
2 , α

(2)
3 , α

(2)
4

)T = (−1, 0, 1, 0)T , β2 = −2, (13.89)
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(

α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
4

)T = (0,−1, 0, 1)T , β3 = −2, (13.90)
(

α
(4)
1 , α

(4)
2 , α

(4)
3 , α

(4)
4

)T = (−1, 1,−1, 1)T , β2 = −4. (13.91)

The eigenvalues, and their multiplicity, of the three nonuniform structural modes,
their instability thresholds, the maximum value of the coupling constant κmax, and
its upper limit κsup as a →∞ are given in Table 13.1.

(iii) Star-shaped array:

L4,iii =

⎛

⎜
⎜
⎝

−1 1 0 0
1 −3 1 1
0 1 −1 0
0 1 0 −1

⎞

⎟
⎟
⎠

. (13.92)

The structural modes and associated eigenvalues are

(

α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4

)T = (1, 1, 1, 1)T , β1 = 0, (13.93)
(

α
(2)
1 , α

(2)
2 , α

(2)
3 , α

(2)
4

)T = (−1, 0, 1, 0)T , β2 = −1, (13.94)
(

α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
4

)T = (−1, 0, 0, 1)T , β3 = −1, (13.95)
(

α
(4)
1 , α

(4)
2 , α

(4)
3 , α

(4)
4

)T = (1,−3, 1, 1)T , β2 = −4. (13.96)

The eigenvalues, and their multiplicity, of the three nonuniform structural modes,
their instability thresholds, the maximum value of the coupling constant κmax, and
its upper limit κsup as a →∞ are given in Table 13.1.

(iv) Triangle-plus-one array:

L4,iv =

⎛

⎜
⎜
⎝

−1 1 0 0
1 −3 1 1
0 1 −2 1
0 1 1 −2

⎞

⎟
⎟
⎠

. (13.97)

The structural modes and associated eigenvalues are

(

α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4

)T = (1, 1, 1, 1)T , β1 = 0, (13.98)
(

α
(2)
1 , α

(2)
2 , α

(2)
3 , α

(2)
4

)T = (−2, 0, 1, 1)T , β2 = −1, (13.99)
(

α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
4

)T = (0, 0,−1, 1)T , β3 = −3, (13.100)
(

α
(4)
1 , α

(4)
2 , α

(4)
3 , α

(4)
4

)T = (1,−3, 1, 1)T , β2 = −4. (13.101)
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The eigenvalues, and their multiplicity, of the three nonuniform structural modes,
their instability thresholds, the maximum value of the coupling constant κmax, and
its upper limit κsup as a →∞ are given in Table 13.1.

(v) Circular-plus-diagonal array:

L4,v =

⎛

⎜
⎜
⎝

−2 1 0 1
1 −3 1 1
0 1 −2 1
1 1 1 −3

⎞

⎟
⎟
⎠

. (13.102)

The structural modes and associated eigenvalues are

(

α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4

)T = (1, 1, 1, 1)T , β1 = 0, (13.103)
(

α
(2)
1 , α

(2)
2 , α

(2)
3 , α

(2)
4

)T = (−1, 0, 1, 0)T , β2 = −2, (13.104)
(

α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
4

)T = (1,−2, 1, 0)T , β3 = −4, (13.105)
(

α
(4)
1 , α

(4)
2 , α

(4)
3 , α

(4)
4

)T = (0,−1, 0, 1)T , β2 = −4. (13.106)

The eigenvalues, and their multiplicity, of the three nonuniform structural modes,
their instability thresholds, the maximum value of the coupling constant κmax, and
its upper limit κsup as a →∞ are given in Table 13.1.

(vi) Array with global or all-to-all coupling:

L4,vi =

⎛

⎜
⎜
⎝

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

⎞

⎟
⎟
⎠

. (13.107)

The structural modes and associated eigenvalues are

(

α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(1)
4

)T = (1, 1, 1, 1)T , β1 = 0, (13.108)
(

α
(2)
1 , α

(2)
2 , α

(2)
3 , α

(2)
4

)T = (−1, 1, 0, 0)T , β2 = −4, (13.109)
(

α
(3)
1 , α

(3)
2 , α

(3)
3 , α

(3)
4

)T = (−1, 0, 1, 0)T , β3 = −4, (13.110)
(

α
(4)
1 , α

(4)
2 , α

(4)
3 , α

(4)
4

)T = (−1, 0, 0, 1)T , β2 = −4. (13.111)

The eigenvalues, and their multiplicity, of the three nonuniform structural modes,
their instability thresholds, the maximum value of the coupling constant κmax, and
its upper limit κsup as a →∞ are given in Table 13.1.
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The effect of the network topology is evident from the values for κsup. A Tur-
ing instability occurs over the widest range of the coupling constant for the linear
array. The array with global coupling has, as expected, the narrowest range. The
six topologies can be grouped into four classes according to the largest κsup. Class

one has the largest κsup = 3/(2 − √
2) = 5.12132; it includes only the linear

array. Arrays in class two have a largest κsup of 3 and include the star-shaped and
the triangle-plus-one arrays. The circular array and the circular-plus-diagonal array
belong to class three, where the largest κsup is 3/2. Class four comprises only the
array with global coupling and has κsup = 3/4. If κ > 3, the uniform steady state
can undergo a Turing bifurcation only in the linear array, and only one mode, an odd
mode, is unstable. Note that arrays (iv) and (v) display localized Turing modes. In
the second nonuniform structural mode of (iv), the array acts as a linear two-reactor
array; only reactors 3 and 4 deviate from the steady state. In the first nonuniform
structural mode of (v), the two most strongly coupled reactors, namely 2 and 4
with three connections each, do not participate in the pattern. We will present more
general results on localized Turing patterns in the next section.

Our results for two coupled reactors, the circular three-reactor array, and the
four-reactor array with all-to-all coupling suggest that κsup for arrays with global
coupling is given by κsup = 3/n, which turns out to be indeed the case, see Theorem
13.13 and (13.59).

13.4 Localized Patterns in Homogeneous Networks of Diffusively
Coupled Reactors

In the previous section, we found that some four-reactor arrays can display localized
structural modes. We now investigate the conditions on network topology that lead
to localized patterns, i.e., patterns that are constant over much of the network but
vary on some connected portion of it. Such patterns are not unique to spatially dis-
crete systems. They have been observed in spatially continuous reaction–diffusion
systems, see for example [219]. The Turing bifurcation in a reaction–diffusion sys-
tem with Lengyel–Epstein kinetics is subcritical. This implies that for a certain
region in parameter space Turing patterns and the uniform steady state can coexist
in a stable manner in different parts of the system. It is this pinning phenomenon that
gives rise to a variety of localized patterns, for example, a Turing pattern surrounded
by the uniform steady state. These localized patterns in the spatially continuous
Lengyel–Epstein reaction–diffusion system result mainly from the kinetics, which
causes the subcritical nature of the Turing bifurcation. As we saw above, networks of
coupled reactors provide an alternative mechanism for the appearance of localized
patterns. There localized structures can result from the transport and the network
topology, which gives rise to localized structural modes of the graph G.

To determine which network topologies give rise to localized stationary patterns,
we need to investigate the conditions on the topology that lead to localized eigen-



388 13 Pattern Formation in Spatially Discrete Systems

vectors of JG , i.e., eigenvectors that are zero over much of the network but vary on
some portion of it.

Definition 13.1 Consider a graph G with two proper, connected subgraphs G′ and
G′′ such that NG′ ∪NG′′ = NG , NG′ ∩NG′′ = ∅, and (ν

′
, ν

′′
) /∈ EG′ , EG′′ whenever

ν
′ ∈ NG′ and ν

′′ ∈ NG′′ . An eigenvector z is said to be localized, if the components
of z corresponding to the nodes NG′′ are zero.

Linear and circular arrays do not display localized eigenvectors, as shown by
(13.17), (13.18), and (13.21). Localized eigenvectors also do not occur for topolo-
gies that correspond to pieces of two- or three-dimensional media, namely rectan-
gular two- and three-dimensional lattices with four and six nearest neighbors, since
their structural modes are obtained from tensor products of the one-dimensional
structural modes [334]. Connectivity plays an important role for the existence of
localized eigenvectors, and they occur for topologies with a higher degree of con-
nectivity.

Definition 13.2 Consider a graph G and a proper, nonempty subset of its nodes N̄ ⊂
NG . A nonempty subgraph G′ is said to be completely connected with respect to N̄ ,
if NG′ ∩ N̄ = ∅, (ν′, ν̄) ∈ EG whenever ν′ ∈ NG′ and ν̄ ∈ N̄ and if (ν′, ν) ∈ EG
and ν

′ ∈ NG′ implies that ν ∈ N̄ ∪NG′ .

The nodes N̄ form a barrier between G′ and the rest of G. For this reason N̄ is
referred to as a barrier set and is a special case of a separating set [95]. One important
special case of a barrier set is the set of complete nodes of a graph, referred to
henceforth as a complete barrier set.

Definition 13.3 A node ν ∈ NG is said to be complete if (ν, ν
′
) ∈ EG, ∀ ν

′ ∈
NG\{ν}.
To illustrate the meaning of Definitions 13.2 and 13.3, we consider the four graphs
shown in Fig. 13.3. The graph Ga is a star graph with 10 nodes. It has a degenerate
(no edges) subgraph G′a with nodes NG′a = {ν2, . . . , ν10} that is completely con-

nected with respect to N̄a = {ν1}. Patterns on a reactor network Ga with Lengyel–
Epstein kinetics are considered in Sect. 13.4.2.1.

Stationary patterns on the two graphs Gb and Gc are examined in Sect. 13.4.2.2.
The graph Gb contains several completely connected subgraphs. With respect to
N̄b,1 = {ν7, . . . , ν10}, the subgraph G′b,1 formed from the nodes NG′b,1 = {ν1, . . . , ν6}
and edges connecting these nodes is a completely connected circular array. Similarly
the degenerate subgraph G′b,2 with NG′b,2 = {ν8, ν9} and no edges is completely

connected with respect to N̄b,2 = {ν1, . . . , ν6, ν12}. Finally, the subgraph G′b,3 with
nodes NG′b,3 = {ν13, ν15} and edge (ν13, ν15) is completely connected with respect

to N̄b,3 = {ν7, ν14}.
Graph Gc is obtained from Gb by making nodes ν7, . . . , ν10 complete. The sub-

graph G′c,1 ≡ G′b,1 is still completely connected with respect to N̄c,1 ≡ N̄b,1 but this
barrier set is now complete. This is not true of the subgraph G′b,2 since ν8 and ν9 are
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Fig. 13.3 Graphs of four networks: Ga , Gb, Gc, and Gd . Reprinted from [305]. Copyright 2005,
with permission from Elsevier

complete nodes. The subgraph G′c,3 ≡ G′b,3 is still completely connected but with
respect to N̄c,3 = {ν7, . . . , ν10, ν14}.

The graph Gd has two completely connected linear arrays, G′d,1 and G′d,2 with
nodal sets NG′d,1 = {ν1, . . . , ν4} and NG′d,2 = {ν6, . . . , ν10}, respectively, and appro-

priate edge sets with respect to the same complete barrier set N̄d = {ν5}. We study
patterns on these subgraphs in Sect. 13.4.2.3.

13.4.1 Theoretical Tools

In this section we present several results concerning the eigenvalues and eigenvec-
tors of JG for graphs with complete nodes or completely connected subgraphs. See
[305] for proofs of the following theorems.



390 13 Pattern Formation in Spatially Discrete Systems

Theorem 13.11 Consider a network of n reactors represented by a graph G and let
νi ∈ NG be a complete node. If λ ∈ σ (̂J(n)) with eigenvector z̄, then λ ∈ σ(JG)
with eigenvector z such that

z j =
{

z̄, j �= i,

−(n − 1)z̄, j = i .
(13.112)

When m < n complete nodes are present, the eigenvalues of Ĵ(n) are eigenvalues
of JG of multiplicity m.

Theorem 13.12 Consider a network of n reactors represented by a graph G and let

N0 = {ν|ν ∈ NG, ν is a complete node} �= ∅. (13.113)

If m = ∣∣N0

∣
∣, m < n, and if λ ∈ σ (̂J(n)), λ ∈ σ(JG) of multiplicity at least m.

Together with Theorem 13.2, the two preceding theorems allow us to character-
ize completely the stability properties of an array of cells with all-to-all or global
coupling. Such a network corresponds to a complete graph.

Theorem 13.13 Consider a network of n reactors represented by a complete graph
G. Then the eigenvalues of JG are the eigenvalues of J of multiplicity 1 and the
eigenvalues of Ĵ(n) of multiplicity n − 1.

We showed above that reactors that are coupled to all other reactors play a special
role. In a similar way, the presence of completely connected subgraphs influences
pattern formation in networks of diffusively coupled monostable elements. The
following five theorems address the consequences of the presence of completely
connected subgraphs with respect to a nonempty set of nodes N̄ . In the latter three
results, N̄ is a set of complete nodes. These results address the possibility of local-
ized and “buffered” patterns in networks of diffusively coupled reactors. We demon-
strate the existence of such patterns for networks with Lengyel–Epstein kinetics in
Sect. 13.4.2.

Theorem 13.14 Consider a network of n reactors represented by a graph G with
nodesNG = {ν1, . . . , νn}. Suppose G has a completely connected subgraph G′ with
respect to N̄ = {ν1, . . . , νn1

} and NG′ = {νn1+1, . . . , νn2
}. If λ ∈ σ(JG′(n1)) with

eigenvector ẑ and λ /∈ σ (̂J(n1)), then λ ∈ σ(JG) with eigenvector z = (0, ẑ, 0)T .

Remark 13.4 For a related theorem for the Laplacian matrix see Merris [294].

From Theorem 13.1 it follows that the eigenvalues of JG′(n1) depend on the

topology of G′ via the eigenvalues of the Laplacian matrix LG′ . If
∣
∣
∣NG′

∣
∣
∣ � ∣

∣NG
∣
∣,

then a significant reduction in the size of the eigenvalue problem for some of the
eigenvalues of JG has been achieved.

The following theorem concerns the effect of adding or deleting a node from a
completely connected subgraph. It suggests the existence of “buffered patterns,” i.e.,
patterns that are not affected by changes in other parts of the network.
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Theorem 13.15 Consider a network of n reactors represented by a graph G. Sup-
pose that NG can be partitioned into two disjoint sets N1 = {ν1, ν2, . . . , νl} and
N2 = {νl+1, . . . , νn} such that (νi , ν j ) ∈ EG whenever νi ∈ N1 and ν j ∈ N2. Let
the graph Gi have nodes NGi

= Ni and edges

EGi
= {(ν, ν′)|ν, ν′ ∈ Ni , (ν, ν

′
) ∈ EG}, (13.114)

for i = 1, 2. If λ ∈ σ(JG1
(n − l)) with eigenvector z̄ and λ /∈ σ (̂J(n − l)), then

λ ∈ σ(JG) with eigenvector z = (z̄, 0)T . Similarly if λ ∈ σ(JG2
(l)) with eigenvector

z̄ and λ /∈ σ (̂J(l)), then λ ∈ σ(JG) with eigenvector z = (0, z̄)T .

Remark 13.5 The subgraph G3 given by NG3
= NG and EG3

= EG\(EG1
∪ EG1

) is a
complete bipartite graph.

Theorem 13.15 implies that if an edge or node, which is not a complete node, is
added to or deleted from G1, then the effect on the eigenvalues and eigenvectors will
primarily be manifested only in G1.

If the barrier set N̄ is complete, a more thorough description of the eigenvalues
and eigenvectors of JG than that of Theorem 13.14 is possible. Recall the simplify-
ing assumption that for all r , 0 ≤ r ≤ n, Ĵ(r) has a complete set of eigenvectors.

Theorem 13.16 Consider a network of n reactors represented by a graph G and
assume there exists N0 defined by (13.113), such that N0 is a proper subset of NG .
Then there exist subgraphs Gi , i = 0, . . . , l, such that NG0

= N0; Gi , i = 1, . . . , l,
are completely connected with respect to N0;

NG = N0 ∪
(

∪l
i=1NGi

)

≡ {ν1, . . . , νn0
} ∪
(

∪l
i=1{νni−1+1, . . . , νni }

)

; (13.115)

EG = ∪l
i=0EGi

. (13.116)

Moreover the eigenvalues of JG include the eigenvalues of J of multiplicity at least
1; the eigenvalues of Ĵ(n) of multiplicity at least n0; the eigenvalues of JGi

(n0)

that are not eigenvalues of Ĵ(n0) of multiplicity at least one; and the eigenvalues of
Ĵ(n0) of multiplicity at least l − 1. The eigenvectors of JG have the form

z = (z0, . . . , zl)
T
, zi ∈ R

kli , li =
∣
∣Gi
∣
∣ =

{

n0, i = 0,

ni − ni−1, i = 1, . . . , l.
(13.117)

Let z̄0
j , j = 1, . . . , k, be linearly independent eigenvectors of J. Then there are k

corresponding linearly independent eigenvectors of JG given by Theorem 13.2. Let
z̄nj , j = 1, . . . , k, be linearly independent eigenvectors of Ĵ(n). Then there are n0k
corresponding linearly independent eigenvectors of JG given by Theorem 13.11.

Let LGi
be the Laplacian matrix associated with Gi and let z̄ j

i , j = 1, . . . , li −
1, be the li − 1 linearly independent eigenvectors of LGi

not associated with the



392 13 Pattern Formation in Spatially Discrete Systems

eigenvalue 0. Then there are k(li − 1) linearly independent eigenvectors, z j
i , of

JGi
(n0), i = 1, . . . , l, not associated with the eigenvalues of Ĵ(n0), and thus k(li −

1) corresponding linearly independent eigenvectors of JG such that

zm =
{

0, m �= i,

z j
i , m = i,

m = 0, . . . , l. (13.118)

Let z̄ j
0 , j = 1, . . . , k, be linearly independent eigenvectors of Ĵ(n0). Then there are

k(l − 1) corresponding linearly independent eigenvectors of JG such that

zi =
{

0, i = 0,

αi (z̄
n0
j , . . . , z̄n0

j )
T
, i = 1, . . . , l,

(13.119)

where

l
∑

i=1

αi li = 0. (13.120)

Remark 13.6 If for any r1 �= r2 the eigenvalues of Ĵ(r1) and Ĵ(r2) are distinct,
then the multiplicities of the eigenvalues in Theorem 13.16 of J, Ĵ(n), and Ĵ(n0)

are precisely 1, n0, and l − 1, respectively. If additionally the li , i = 1, . . . , l, are
distinct, then the same is true for the eigenvalues of JGi

(n0). The eigenvalues of JG
leading to Turing instabilities are the eigenvalues of Ĵ(r), r ≥ n0.

In principle, eigenvalues and eigenvectors of graphs with complete nodes can be
found if eigenvalues and eigenvectors of appropriate subgraphs can be computed. In
some cases it is possible to find all the eigenvalues and eigenvectors associated with
such a network. The simplest case is that of a star graph (Fig. 13.3a) G of n nodes
such that EG = {(ν1, νi )|i = 2, . . . , n}.
Theorem 13.17 Consider a network of n nodes represented by a star graph G. Then
the eigenvalues of JG are the eigenvalues of J; the eigenvalues of Ĵ(1) of multiplicity
n − 2; and the eigenvalues of Ĵ(n). The eigenvectors of JG associated with the
eigenvalues of J are given by Theorem 13.16.

Remark 13.7 If G is a complete or star graph, all the eigenvalues of its Laplacian are
integers. A list of Laplacians with only integer eigenvalues is given in [173].

A second example where all the eigenvalues and eigenvectors associated with
a network can be found is the following case. Since a complete description of the
eigenvalues and eigenvectors associated with a linear array is available, networks
built from linear arrays can be analyzed. In particular let G be a network formed
from a linear array of n reactors by adding edges such that m nodes in G are complete
(e.g., Fig. 13.3d with m = 1). Then a complete description of the eigenvalues and
eigenvectors can be found.
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Theorem 13.18 Consider a network of n nodes represented by a graph G with
NG = {ν1, . . . , νn} and

EG = {(νi , νi+1)|i = 1, . . . , n − 1} ∪ {(ν, ν̄) |∀ ν̄ ∈ N̄ , ν ∈ NG\ν̄}, (13.121)

where N̄ ⊂ NG\{ν1, νn} such that
∣
∣N̄
∣
∣ = n0. Then there exist Gi , i = 1, . . . , l, and

$ j = {Gi |
∣
∣
∣NGi

∣
∣
∣ = j, 1 ≤ i ≤ n}, j = 2, . . . , n − n0, (13.122)

such that the eigenvalues of JG are the eigenvalues of J; the eigenvalues of Ĵ(n) of
multiplicity n0; the eigenvalues of

J
(

n0 + 2

(

1− cos
jπ

li

))

, j = 1, . . . , li − 1, (13.123)

of multiplicity
∣
∣$ j

∣
∣, where li =

∣
∣
∣NGi

∣
∣
∣; and the eigenvalues of Ĵ(n0) of multiplicity

l − 1. The eigenvectors of JG associated with the eigenvalues of J, Ĵ(n), and Ĵ(n0)

are given by Theorem 13.16. The eigenvectors associated with the eigenvalues of
(13.123) are given by (13.17) and Theorem 13.16.

13.4.2 Localized Pattern in Networks with Lengyel–Epstein
Kinetics

Structural mode analysis is a linear stability analysis, while the stationary pattern
of the network is the result of nonlinear dynamics. This raises the question if the
pattern predicted by the linear analysis, i.e., the most unstable mode, is in qualitative
agreement with the pattern finally selected. Jensen et al. [219] found in their study
of the spatially continuous Lengyel–Epstein reaction–diffusion system that the sta-
tionary structures which finally appeared in the system showed good agreement
with the prediction from linear analysis, provided the pattern developed from the
uniform steady state. We investigate in this section if the same holds true for the
Lengyel–Epstein model in networks of coupled reactors. We consider three exam-
ples of specific networks with particular parameter values to see if the results of
Theorems 13.14, 13.17, and 13.18 carry over from the eigenvectors to the steady
patterns. Figure 13.1 shows that the instability threshold b∗(r) passes through a
maximum, which occurs at

rmax =
4a2
√

10+ 250/a2 − 10a2 − 250

2κ(a2 + 25)
. (13.124)
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For our numerical simulations, we set a = 50, d = 1.07, and σ = 20. Then

rmax =
1.2932

κ
(13.125)

and bT = 3.6145. (The Hopf threshold value is bH = 1.475.) To obtain patterns
associated with a specific r ∈ �, we choose κ so that (13.125) is satisfied with
rmax = r . Thus as κ changes, the value of rmax is shifted. Consequently, the first
eigenvalue among the possible eigenvalues λ of JG to pass through zero, i.e., the
eigenvalue corresponding to the Turing condition, will vary, as will the associated
structural mode to which the uniform steady state of G is unstable. As a result, we
expect that the patterns will also change. For the numerical solutions we choose b
slightly below the Turing threshold, namely b = 3.5, such that the uniform steady
state is unstable and patterns form. The unique steady state is (ρu, ρv) = (10, 101).
To solve the system of ordinary differential equations (13.46) to steady state, we
used the implicit multistep solver DASSL [58] with absolute and relative error tol-
erances of 10−8, finite difference approximations for the Jacobian matrix and the
dense matrix solver. The time interval used is (0, 4 × 107]. All calculations are
performed in double precision on a Compaq DS20 Alphastation. We represent the
results by plotting the steady-state concentrations of the activator in the reactors,
ρui , i = 1, . . . , n, where the horizontal axis corresponds to the reactor number.
Plots of the concentrations of the inhibitor ρvi show the same qualitative behavior.

13.4.2.1 Star Graph

The simplest case of a network with a complete node is a star graph. We start our
exploration of the nonlinear dynamical behavior of Lengyel–Epstein networks with
a 10-node star graph, namely Ga of Fig. 13.3a. Theorem 13.17 implies that � =
{1, 10}. Choosing r = rmax = 1, we expect from (13.125) that a coupling strength
of κ = 1.2932 will result in patterns on the 10-node star graph. We solve (13.46)
with five initial conditions [ρ = (ρu, ρv)]:

(ρ1(0), . . . , ρ10(0)) =
(10.2, 102, 9.96, 100.8, 10, 101, . . . , 10, 101), (13.126)

(10.2, 102, 9.96, 100.8, 10.2, 102, 9.96, 100.8, 10, 101, . . . , 10, 101), (13.127)

(10.2, 102, 9.96, 100.8, . . . , 10.2, 102, 9.96, 100.8, 10, 101,

10, 101, 10, 101, 10, 101), (13.128)

(10.2, 102, 9.96, 100.8, . . . , 10.2, 102, 9.96, 100.8, 10, 101, 10, 101), (13.129)

(10.2, 102, 9.96, 100.8, 10, 101, 10, 101, 10, 101, 10, 101, 10.2, 102,

9.96, 100.8, 10, 101, 10, 101). (13.130)

The resulting activator concentrations are shown in Fig. 13.4, from left to right,
top to bottom. In all cases, the patterns are characterized by three constants, ρu−,
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Fig. 13.4 Activator concentrations ρui for the 10-node star graph, for initial conditions (13.126)
(top left), (13.127), (13.128), (13.129), and (13.130) (bottom left). Reprinted from [305]. Copyright
2005, with permission from Elsevier

ρu0, and ρu+, where ρu− ≈ 0 and distinctly less than ρu, ρu0 ≈ ρu, and ρu+
distinctly larger than ρu. The actual value of the constants changes slightly as the
number of nodes taking on those values varies. At the complete node ν1, ρu1 = ρu0.
As the initial conditions change from (13.126) to (13.129), the number of nodes
at which ρu = ρu− increases from 1 to 4, while the number at which ρu = ρu+
decreases appropriately. Symmetry dictates that any permutation of a solution in the
first four plots is also a solution. As an example, the solution in the last plot is a
permutation of the solution in the second plot. The multiplicity of patterns for the
same parameter values is due to the multiplicity of the root r = 1.

13.4.2.2 Completely Connected Circular Arrays

As a second example of the nonlinear dynamics of Lengyel–Epstein networks, we
consider the graph Gb in Fig. 13.3b. As discussed above, this graph has three com-
pletely connected subgraphs, G′b,1, G′b,2, and G′b,3. For G′b,1, Theorem 13.14 and
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(13.20) imply that if λ ∈ σ (̂J(6 − 2 cos(2 jπ/6))), j = 1, 2, 3, then λ ∈ σ(JGb
).

From Theorem 13.14 with G′b,2, the eigenvalues of Ĵ(7) are also eigenvalues of JGb
.

Finally with G′b,3, (13.16) and Theorem 13.14 imply that eigenvalues of Ĵ(4) are
eigenvalues of JGb

. From this we conclude that {4, 5, 7, 8} ⊂ �.
The values of κ corresponding to these values of r are 0.3233, 0.2586, 0.1847,

and 0.1616. We obtain the stationary state of (13.46) numerically for the four values
of κ and choose for all cases the initial conditions to be

(ρ1(0), . . . , ρ15(0)) =
(10.2, 102, 9.96, 100.8, 10, 101, . . . , 10, 101, 9.96, 100.8, 10.2, 102). (13.131)

Steady state values of the activator for these four values of κ are shown in Fig. 13.5.
When κ = 0.3233, the dominant eigenvalue and corresponding structural mode are
associated with subgraph G′b,3. We therefore expect that the pattern will appear at
only reactors 13 and 15. In fact the solution is constant on subgraphs G′b,1 and G′b,2
and varies on G′b,3 and on the remaining nodes. The constants are different, with
neither constant being equal to ρu. The same is true when κ = 0.2586, except that
the pattern appears on G′b,1, while the solution is constant (with different constants)
on G′b,2 and G′b,3 and varies at the remaining nodes. Somewhat surprisingly the solu-
tion is not constant on the barrier set N̄b,1. The pattern on G′b,1 is qualitatively the

same as the associated structural mode (1, 0,−1,−1, 0, 1)T . When κ = 0.1847,
the pattern has moved to G′b,2 (the value r = 7 has multiplicity greater than one).
The difference between the patterns for κ = 0.1847 and κ = 0.1616 is negligible
and the pattern did not move back to G′b,1.

To investigate whether or not adding (or removing) an edge from a subgraph
separated from another subgraph by a barrier set results in only local changes,
we created a new graph Ĝb by adding an edge between nodes ν12 and ν13 to Gb.
We expect that the solution behavior on G′b,1 should be only slightly affected. The
steady state obtained when κ = 0.2586, seen on the left in Fig. 13.6, bears out this
hypothesis, since the patterns on G′b,1 in both graphs (the upper right panel in Fig.
13.5 and the left panel in Fig. 13.6) are nearly identical while the symmetry on G′b,3
has been broken. Thus with complete connectivity coupled with a barrier set that
is not complete we are able to obtain a “buffered” pattern, i.e., a pattern that is not
affected by other parts of the graph, but not localized patterns.

To see if such localized patterns can appear, we consider Gc of Fig. 13.3c. Since
G′c,1 and G′c,2 are completely connected subgraphs as described above, we have
{5, 7, 8, 14} ⊂ � and 4 /∈ �. Thus the largest value of κ is 0.2586. The correspond-
ing steady state for the activator is shown on the right in Fig. 13.6. The solution
is constant at the complete nodes and at the remaining nodes, but the constants
are different. The constant at the complete nodes is approximately ρu. In this case
the pattern is localized on G′c,1. Interestingly the pattern is also very close to the
corresponding patterns on the two previous graphs (Fig. 13.5 upper right panel and
Fig. 13.6 left panel).
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13.4.2.3 Completely Connected Linear Arrays

In this example we investigate whether or not localized patterns exist for networks
described in Theorem 13.18. We also examine the effect of varying κ on the type
and location of observed patterns. If in Theorem 13.18 n = 10 and N̄ = {ν5}, the
result is Gd (see Fig. 13.3d). As discussed above, there are two completely connected
linear arrays, G′d,1 and G′d,2, with four and six nodes, respectively. From Theorem
13.18 it follows that the eigenvalues of JG are the eigenvalues of: J; Ĵ(10); Ĵ(1);
Ĵ(3− 2 cos( jπ/4)), j = 1, 2, 3; or Ĵ(3− 2 cos( jπ/5)), j = 1, . . . , 4. In this case

� = {1, 1.3820, 1.5858, 2.3820, 3, 3.6180, 4.4142, 4.6180, 10}. (13.132)

The values r ∈ � between 1 and 10 alternate between 3− 2 cos( jπ/5), j = 1, 2, 3,
and 3−2 cos( jπ/4), j = 1, 2. Solutions are calculated using values of κ = 1.2932,
0.9357, 0.8155, 0.5429, 0.4311, 0.3574, and 0.2930, corresponding to the first seven
values in �, such that (13.125) holds. Additionally a solution is computed with
κ = 1.5. The steady state activator concentrations for each of these cases are shown
in Fig. 13.7, where the initial conditions are

(ρ1(0), . . . , ρ10(0)) =
(10.2, 102, 9.96, 100.8, 10, 101, . . . , 10, 101, 9.96, 100.8, 10.2, 102). (13.133)

When κ = 1.5, the pattern corresponds to the structural mode associated with r = 1,
and like the patterns in Sect. 13.4.2.1 it is characterized by three constants. With κ =
1.2932, a localized pattern emerges on G′d,2 corresponding to r = 0.9357 rather than
r = 1 since b < bT . The activator concentrations then alternate between localized
patterns on G′d,2 and G′d,1. Patterns on G′d,2 are in good qualitative agreement with
the structural modes but less so on G′d,1. Thus the eigenvectors have some predictive
value. Since l = 2, only two constant values are attained on the nonpattern portion
of the domain, one constant for the barrier set and the other for the remainder of the
nodes. As in Sect. 13.4.2.2, at steady state, the constant values of ρu on the portion
of the domain without a pattern are not equal to ρu, while the value of the activator
at the complete node, ν5, is close to ρu. When κ = 0.2930, a pattern appears over
the whole domain (the value of κ corresponding to r = 4.6180 is 0.2800) which is
not constant on either G′d,1 or G′d,2, as opposed to the solution when κ = 1.5.

From Theorem 13.10 we expect that edge removal can lead to patterns at larger
coupling strength. However, edge removal may also break up a subgraph leading
to less robust localized patterns. To that end we consider a new graph Ĝd obtained
from Gd by removing the edge connecting nodes 7 and 8. Thus there are three sub-
graphs (l = 3) Ĝ′d,1, Ĝ′d,2 and Ĝ′d,3 with nodes {ν1, . . . , ν4}, {ν6, ν7} and {ν8, ν9, ν10},
respectively, where Ĝ′d,1 = G′d,1. Now

� = {1, 1.5858, 2, 3, 4, 4.4142, 10}. (13.134)
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Activator concentrations computed with κ = 1.2932, 0.9357, 0.8155, 0.6466, and
0.4311, which correspond to the first five values in �, and the initial conditions
(13.133) are shown in the first five plots of Fig. 13.8. The activator concentration of
a second solution, when κ = 0.4311, with initial conditions

(ρ1(0), . . . , ρ10(0)) = (10, 101, 10, 101, 10, 101, 10, 101, 10, 101,

10.2, 102, 9.96, 100.8, 10, 101, . . . , 10, 101), (13.135)
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Fig. 13.8 Activator concentrations ρui for various values of κ on Ĝd . Reprinted from [305]. Copy-
right 2005, with permission from Elsevier
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is shown in the last plot of Fig. 13.8, since r = 3 is shared by both Ĝ′d,1 and Ĝ′d,2.
The pattern corresponding to r = 1 (this time characterized by four constants since
l = 3) is obtained when κ = 1.2932. Comparing the plots from both graphs when
κ = 1.2932, we find that localized patterns do not appear until κ is smaller when the
edge is removed. When κ = 0.9357 and 0.8155, the steady-state pattern is nearly
identical to the one obtained on Gd as seen in Fig. 13.7. This supports the observation
made earlier that adding or removing edges from the “non-pattern” portion of the
graph does not affect the pattern. When κ = 0.4311, two different patterns are
obtained from two different initial conditions, one a pattern on Ĝ′d,1 and the second

a pattern on Ĝ′d,2. As in Sect. 13.4.2.1, when eigenvalues have multiplicity greater
than one, multiple patterns are possible. In this case, however, both patterns are
localized.

13.5 Turing Instability in Large Arrays

In the previous two sections we considered instabilities in networks of small and
moderate sizes. Such networks are convenient to illustrate the analysis of arrays
of diffusively coupled reactors, since the eigenvalues of the Laplacian matrix and
the associated structural modes can be obtained with modest computational effort
and patterns on such networks are easily visualized. We stress, however, that the
structural mode analysis applies to networks of arbitrary size, even very large net-
works. Gaining complete knowledge of the Laplacian spectrum and the structural
modes represents the main difficulty in the study of spatial instabilities of very large
arrays of diffusively coupled reactors. Though complex networks have received
tremendous interest, the spectrum and eigenvectors of the Laplacian matrix have
received far less attention. The full spectrum and properties of the eigenvectors of
the Laplacian have been investigated for random Erdös–Rényi networks [48] and
small-world networks [302]. For a definition of Erdös–Rényi networks, small-world
networks, and other types of networks, see for example [4]. McGraw and Menzinger
examined numerically the eigenvalues and eigenvectors of the Laplacian for ran-
dom Erdös–Rényi networks with Poisson degree distribution and Barabási–Albert
networks with scale-free distribution [272]. They found that some of the structural
modes of these networks are strongly localized. Increased clustering in the network,
i.e., the tendency of neighbors of a given node to form links with each other, leads
to more localized eigenvectors of the Laplacian. Zhang and coworkers have derived
exact expressions for the eigenvalues and eigenvectors of the Laplacian for a family
of growing tree-like networks [498].

Nakao and Mikhailov [316] performed numerical simulations of an activator–
inhibitor model, namely the Mimura–Murray model, on a large array, namely a
Barabási–Albert scale-free network with 1000 nodes and mean degree of 20:

dρi

dt
= F(ρi ,μ)+

n
∑

j=1

Li jDρ j , i = 1, . . . , n = 1000, (13.136)
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where

F(ρ) =
(

F1(ρu, ρv)

F2(ρu, ρv)

)

=

⎛

⎜
⎜
⎝

[
1

9

(

35+ 16ρu − ρ
2
u

)

− ρv

]

ρu
[

ρu −
(

1+ 2

5
ρv

)]

ρv

⎞

⎟
⎟
⎠

(13.137)

and

D = κdiag(1, θ). (13.138)

The model has one nontrivial, physically acceptable uniform steady state, namely
(ρu, ρv)i = (5, 10). The critical ratio of the diffusion coefficients necessary for
a Turing instability is θc = 15.5. The numerical simulations were performed for
κ = 0.12 and θ = 15.6. For these conditions, the critical structural mode is not
localized. Starting from almost uniform initial conditions with very small perturba-
tions, the activator concentration initially resembles closely the critical mode, but it
develops into a quite different final pattern. The activator concentration for a large
number of nodes, in particular for all nodes with a high degree, ki > 24, remains
close to, and mostly somewhat above, the USS value of 5. Nodes with a relatively
small degree, ki < 24, separate into two groups. In one group, the activator concen-
tration is near, and mostly slightly above, the USS value of 5. In the other group, the
activator concentration drops to lower values, in the vicinity of 2.5. The numerical
simulations showed that the network displays multistability. Different patterns were
observed for the same parameter values, and the final pattern depended sensitively
on initial conditions. Increasing and decreasing the ratio θ revealed hysteresis effects
between the various patterns. Numerical simulations with Brusselator kinetics and
random Erdös–Rényi networks yielded similar results.

13.6 Turing Instability in Small Inhomogeneous Arrays

So far we have considered homogeneous networks with Lengyel–Epstein kinetics;
all reactors were loaded with the same concentration of substrate. Since the substrate
concentration plays a crucial role in ensuring the observability of Turing patterns,
see (13.51), the question naturally arises how inhomogeneities affect the Turing
threshold. The theory of Pearson and Bruno for systems where N mobile species
react with Q immobile species [347] leads to the conclusion that σ(x) > σ

∗
c (a)

everywhere is a sufficient condition for the Turing bifurcation to be the primary
bifurcation of the uniform steady state in a reaction–diffusion system with Lengyel–
Epstein kinetics. However, this is only a sufficient condition. We expect that as long
as the regions where σ(x) < σ

∗
c (a) are sufficiently small or

∣
∣σ(x)− σ

∗
c (a)

∣
∣ is not

too large in those regions, the Turing bifurcation should still occur before the Hopf
bifurcation. As discussed in Chap. 11, the analytical determination of the stability
of spatially continuous reaction–diffusion systems with spatial nonuniformities is
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difficult. The situation is much more favorable for networks of coupled reactors,
since their evolution is governed by a set of ordinary differential equations. Struc-
tural mode analysis cannot be applied to inhomogeneous arrays of reactors, and
we have to resort to the general method of linear stability analysis based on the
Routh–Hurwitz criterion, see Sect. 13.1.1, for such systems.

We consider inhomogeneous networks with Lengyel–Epstein kinetics where the
substrate concentration, i.e., the value of σ , can differ from reactor to reactor [208].
All other parameters are independent of the reactor number i . The evolution equa-
tions are

Si
dρi

dt
= F(ρi ,μ)+

n
∑

j=1

Li jDρ j , i = 1, . . . , n, (13.139)

where

F(ρ) =
(

F1(ρu, ρv)

F2(ρu, ρv)

)

=

⎛

⎜
⎜
⎜
⎝

a − ρu − 4
ρuρv

1+ ρ
2
u

b

[

ρu −
ρuρv

1+ ρ
2
u

]

⎞

⎟
⎟
⎟
⎠

, (13.140)

Si =
(

σi 0
0 1

)

, (13.141)

and

D = κdiag(1, d), (13.142)

with a, b, d > 0.
Generally, inhomogeneities in parameters of an array of reactors lead to nonuni-

form steady states. This is not the case for Lengyel–Epstein networks with inhomo-
geneities in the parameter σ , as is clear from the structure of (13.139). The network
still has a unique uniform steady state given by (13.52). We use the Routh–Hurwitz
criterion to determine the stability boundaries of this USS. Note that the Routh–
Hurwitz analysis is general and can deal with the case where inhomogeneities in
parameters lead to nonuniform steady states. Let

λ
m + c1λ

m−1 + c2λ
m−2 + · · · + cm−1λ+ cm = 0 (13.143)

be the characteristic polynomial of the Jacobian matrix JG of (13.139) evaluated
at the steady state, m = 2n. As discussed in Sect. 1.2.3, a stationary bifurcation
occurs if cm = 0, see (1.36). We showed in Sect. 1.4.9 that a single CSTR with
Lengyel–Epstein kinetics cannot undergo a stationary bifurcation. This implies that
spatially homogeneous perturbations cannot have a vanishing real eigenvalue for the
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array of CDIMA reactions, and cm = 0, with �l > 0, is a necessary and sufficient
condition for a Turing instability to occur. As discussed in Sect. 1.2.3, �m−1 = 0,
with cm > 0,�l > 0, l = 1, . . . ,m − 2, is a necessary and sufficient condition for
a conjugate pair of purely imaginary eigenvalues, i.e., for a Hopf bifurcation, see
(1.38).

Therefore, the Turing bifurcation and the Hopf bifurcation occur together, if

cm = 0 and �m−1 = 0, (13.144)

which determines the critical profile σi,c(a). Since �m−1 = �m−2 · cm−1 −
Mm−2,m−1·cm , where Mi, j is the minor of the (i, j)-element of the Hurwitz determi-
nant �m−1, (13.144) implies that �m−2 = 0 also, if cm−1 �= 0 which is the generic
case. The Routh–Hurwitz stability analysis leads to a fully analytical criterion for
the critical substrate concentration profile. This approach avoids time-consuming
numerical searches of a large parameter space to determine the critical substrate
concentration profile, i.e., the condition where the Turing bifurcation ceases to be
the primary bifurcation.

We apply the Routh–Hurwitz analysis to linear inhomogeneous arrays of two,
three, and four reactors. In the following we fix the coupling strength at κ = 1.
Our results show that the Pearson and Bruno result, σi > σ

∗
c (a) for all reactors, is

indeed only a sufficient condition for the Turing bifurcation to occur first. It is not
a necessary condition. In fact, we find that for three and four coupled reactors, the
Turing bifurcation will be the primary bifurcation, even if a reactor in the middle of
the array contains no complexing agent at all, provided that a is low enough and σ

high enough in those reactors that contain substrate.

13.6.1 Two Coupled Reactors

For two coupled reactors, the Jacobian JG is given by

JG =
(

R1 D1
D2 R2

)

, (13.145)

where

Ri =
(

(A11 − 1)/σi A12/σi
A21 A22 − d

)

(13.146)

and

Di =
(

1/σi 0
0 d

)

. (13.147)

The matrix A is given by (1.156).
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The expressions for the coefficients cm of the characteristic polynomial and the
Hurwitz determinants �l in terms of b, a, d, σ1, and σ2 are obtained using compu-
tational algebra software, such as MATHEMATICA (Wolfram Research, Inc., Cham-
paign, IL, 2002) and MAPLE (Waterloo Maple Inc., Waterloo, Ontario, 2002). They
are very lengthy already for only two coupled reactors and will not be displayed
here. The condition c4 = 0 yields the Turing threshold

bT =
2d(a2 − 175)

35a
. (13.148)

As expected, this expression is identical with the result (13.63) in Sect. 13.3.2.1 for
κ = 1, since the parameter σ does not affect stationary bifurcations as discussed
above. The Turing bifurcation exists if a > amin;2 =

√
175 = 13.228756. For a

homogeneous array, i.e., σ1 = σ2 = σ , the Turing bifurcation occurs before the
Hopf bifurcation if σ > σ

∗
c (a; 2) (the argument after the semicolon denotes the

number of coupled reactors), where

σ
∗
c (a; 2) = 7(3a2 − 125)

2d(a2 − 175)
. (13.149)

For the inhomogeneous two-reactor array, let reactor 1 be the high-substrate reactor,
σ1 > σ

∗
c (a; 2), and reactor 2 the low-substrate reactor, σ2 < σ

∗
c (a; 2). We vary σ1

in reactor 1 and determine the critical concentration σ2,c(σ1, a, d) in reactor 2, as a
function of σ1. For σ2 > σ2,c(σ1, a, d) the Turing bifurcation occurs first, whereas
for σ2 < σ2,c(σ1, a, d) the Hopf bifurcation is the primary bifurcation. We obtain
the critical substrate concentration in reactor 2, σ2,c(σ1, a, d), by solving (13.144).
We set b = bT, which ensures that the first condition of (13.144) holds, and use
MATHEMATICA to solve �3 = 0 in terms of σ2. The resulting expression for σ2,c
is very lengthy, about a dozen lines. It is not enlightening at all and will therefore
not be displayed here. Instead we illustrate the behavior by choosing specific values
for a and d and plot σ2,c as a function of σ1. As before, we choose a = 50.0 and
d = 1.07 for all the arrays in this section. (The behavior is qualitatively similar
for other values of these parameters. Below, we will no longer explicitly denote the
dependence on d of quantities like σ2,c.) For these conditions, bT = 2.84314, and
σ
∗
c (50; 2) = 10.3758. If the concentration of substrate in reactor 1 is very large,

i.e., σ1 → ∞, then the Turing instability occurs before the Hopf bifurcation if
σ2 > σ2,c(∞, 50) = 5.41038. As σ1 decreases, σ2,c increases monotonically as can
be seen from Fig. 13.9. As σ1 approaches σ ∗c = 10.3758, so does σ2,c.

These results lead to the conclusion that the USS of the array is more susceptible
to the Hopf instability than to the Turing instability. If one reactor, i.e., half the
system, contains no substrate, σ2 = 1, then the Hopf bifurcation occurs first, no
matter how large the substrate concentration σ1 in the other reactor. In fact, for
a = 50.0 the USS of the inhomogeneous two-reactor array will undergo a tran-
sition to oscillations first as b is decreased as long as σ2 < 5.41038. Further, the
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Fig. 13.9 Critical profile, σ2,c vs σ1, for two coupled reactors with Lengyel–Epstein kinetics for
a = 50.0, d = 1.07. Reprinted with permission from [208]. Copyright 2004, American Chemical
Society

arithmetic mean of the critical profile, σ̄c = σ1 + σ2,c(σ1, a), and the geometric
mean, σ̂c =

√

σ1 · σ2,c(σ1, a), are larger than the critical value for a homogeneous
array σ

∗
c (a; 2), which reinforces the conclusion that the USS is more vulnerable to

an oscillatory instability than to a stationary instability.

13.6.2 Three Coupled Reactors

For three coupled reactors, the Jacobian is given by

JG =
⎛

⎝

R1 D1 O
D2 R̃2 D2
O D3 R3

⎞

⎠ , (13.150)

where

R̃i =
(

(A11 − 2)/σi A12/σi
A21 A22 − 2d

)

and O =
(

0 0
0 0

)

. (13.151)

The Turing condition corresponds to c6 = 0 and again leads to the same threshold
expression as (13.69) for κ = 1:

bT =
d(a2 − 75)

15a
. (13.152)

A Turing bifurcation exists if a > amin;3 =
√

75 = 8.660254. For a homogeneous
array, i.e., σ1 = σ2 = σ3 = σ , the Turing bifurcation is the primary instability if
σ > σ

∗
c (a; 3), where

σ
∗
c (a; 3) = 3(3a2 − 125)

d(a2 − 75)
. (13.153)
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We consider two types of inhomogeneous substrate profiles, either an end reactor,
say reactor 3, or the middle reactor has a different substrate concentration, i.e., (1)
σ1 = σ2 = σ > σ3 or (2) σ1 = σ3 = σ > σ2. We determine the critical substrate
profile, i.e., σ3,c(σ, a) in case 1 and σ2,c(σ, a) in case 2 by solving (13.144) with
n = 6 for σ > σ

∗
c (a; 3). We proceed as for two coupled reactors and set b = bT,

which ensures that the first condition of (13.144) holds. We use MATHEMATICA to
obtain �5 in terms of σ3 or σ2, respectively. The solution of the second equation
in (13.144), �m−1 = 0, can no longer be found in closed, analytical form for three
or more coupled reactors. The critical profile of the substrate concentration, σ3,c
or σ2,c, respectively, is obtained numerically. We emphasize that this is the only
numerical step in the Routh–Hurwitz analysis. Analytical expressions are obtained
for all other quantities and conditions. For a = 50.0 the Turing threshold is
bT = 3.45967 and σ

∗
c (50; 3) = 8.52683. The critical profiles for case 1 and 2

are shown in Figs. 13.10 and 13.11, respectively. Again, σ3,c(σ, a) and σ2,c(σ, a)
increase monotonically as σ decreases.
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σ3,c

Fig. 13.10 Critical profile, σ3,c as a function of σ , for three coupled reactors with Lengyel–Epstein
kinetics for case 1: σ1 = σ2 = σ ; a = 50.0, d = 1.07. Reprinted with permission from [208].
Copyright 2004, American Chemical Society
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Fig. 13.11 Critical profile, σ2,c as a function of σ , for three coupled reactors with Lengyel–Epstein
kinetics for case 2: σ1 = σ3 = σ ; a = 50.0, d = 1.07. Reprinted with permission from [208].
Copyright 2004, American Chemical Society

The behavior of the critical profile is qualitatively the same in both cases and
qualitatively the same as for two coupled reactors. A comparison of Figs. 13.10 and
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13.11 with Fig. 13.9 shows that the critical values of the substrate concentration
are lower for three coupled reactors than for two coupled reactors. This is due to
the fact that Turing patterns are favored in two-thirds of the array for three coupled
reactors, since two reactors have a substrate concentration above σ

∗
c (50; 3). For two

coupled reactors, Turing patterns are favored only in half the array, explaining the
higher critical value. For the three-reactor array, the critical substrate concentration
is lower for case 2. Locating the reactor with a low substrate concentration at the end
of the linear array, rather than in the middle, favors the Hopf bifurcation. The Hopf
bifurcation always occurs first in both cases, if either σ3 = 1 or σ2 = 1, respectively,
no matter how large σ is in the other two reactors. These results appear to strengthen
the conclusion from the previous subsection that the Hopf bifurcation is more desta-
bilizing than the Turing bifurcation in inhomogeneous Lengyel–Epstein networks.
This is, however, not true, and the situation is more subtle for a three-reactor array.
As a decreases, the critical profile retains the same qualitative form, but it shifts
to lower values. For case 1, σ3,c(σ, a) > 1 for a > amin;3, and if σ3 = 1, then
the Hopf instability occurs before the Turing bifurcation for all values of a and
σ . The situation is different for case 2, where the reactor with the low substrate
concentration is located in the middle. For a fixed value of σ1 = σ3 = σ , there
exists an a∗ > amin;3, such that for a < a∗ one finds σ2,c(σ, a) < 1. The latter is
physically unacceptable; experimentally σ cannot be smaller than one. The behav-
ior of a∗ as a function of σ is shown in Fig. 13.12. As σ increases, a∗ increases
and approaches an asymptotic value of 24.2072. For the largest experimentally
acceptable value of the substrate concentration, σ = 1000, we find a∗ = 24.029.
For a > 24.2072, the Hopf bifurcation is the primary bifurcation, if 1 ≤ σ2 <

σ2,c(σ, a). For a < 24.2072 and σ sufficiently large, the Turing bifurcation always
occurs first, even if the middle reactor contains no substrate. An inhomogeneous
reactor array, where the reactor with the low substrate concentration is located
in the middle, provides more favorable conditions for observing Turing patterns
than an array where the reactor with the low substrate concentration is located at
the end.
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Fig. 13.12 Plot of a∗ as a function of σ for three coupled reactors for case 2; d = 1.07. Reprinted
with permission from [208]. Copyright 2004, American Chemical Society
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13.6.3 Four Coupled Reactors

For four coupled reactors, the Jacobian is given by

JG =

⎛

⎜
⎜
⎝

R1 D1 O O
D2 R̃2 D2 O
O D3 R̃3 D3
O O D4 R4

⎞

⎟
⎟
⎠

. (13.154)

As shown in Sect. 13.3.2.3, see Table 13.1, two Turing instabilities can occur in a
linear four-reactor array with κ = 1, namely

bT1 =
2d

35a
(a2 − 175), (13.155)

with a > amin;4(1) =
√

175 = 13.228756, and

bT2 =
d

235a
(2a2 + 7

√
2a2 − 2350+ 1175

√
2), (13.156)

with a > amin;4(2) = 7.60544. These two Turing bifurcations are degenerate at
aT0 = 32.96566389, and for a �= aT0, the difference between bT1 and bT2 is small.
For a = 50.0, the Turing instability corresponding to bT1 occurs first, bT = bT1 =
2.84314, and σ

∗
c (50; 4) = 10.3758. We have determined the critical substrate con-

centration profile for four cases following the same procedure as used for two and
three coupled reactors: (1) σ1 = σ2 = σ3 = σ > σ4; (2) σ1 = σ2 = σ4 = σ > σ3;
(3) σ1 = σ2 = σ > σ3 = σ4; (4) σ1 = σ4 = σ > σ2 = σ3.

The behavior of the critical substrate concentration is again qualitatively the same
in all four cases and qualitatively the same as for two- and three-reactor arrays.
Therefore we show only the two cases most favorable to Turing patterns, Figs. 13.13
and 13.14, which as expected are case 2 and case 4, where the low-substrate reactors
are located in the interior of the array.

As for a linear array of three reactors, we find in case 2 that for a small enough
and σ large enough, the Turing bifurcation always occurs first, even if the reactor
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Fig. 13.13 Critical profile, σ3,c as a function of σ for four coupled reactors with Lengyel–Epstein
kinetics for case 2: σ1 = σ2 = σ4 = σ ; a = 50.0, d = 1.07. Reprinted with permission from
[208]. Copyright 2004, American Chemical Society



410 13 Pattern Formation in Spatially Discrete Systems

20 40 60 80 100
σ

2

4

6

8

10
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Fig. 13.14 Critical profile, σ2,c = σ3,c as a function of σ , for four coupled reactors with Lengyel–
Epstein kinetics for case 4: σ1 = σ4 = σ ; a = 50.0, d = 1.07. Reprinted with permission from
[208]. Copyright 2004, American Chemical Society

3 contains no substrate. We define, as for three coupled reactors, the critical value
a∗ by the condition that σ3,c(σ, a

∗
) = 1. The behavior of a∗ as function of σ is

shown in Fig. 13.15. For σ < 17.7, two curves of Hopf bifurcation points approach
each other, merge and vanish as a is decreased. This results in a jump of σ3,c from
a value larger than 1 to a value smaller than 1, and the definition of a∗ is no longer
applicable.
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Fig. 13.15 Plot of a∗ as a function of σ for four coupled reactors for case 2; d = 1.07. Reprinted
with permission from [208]. Copyright 2004, American Chemical Society

13.7 Networks of Photochemically Coupled Reactors

In Sects. 13.3.2 and 13.4 we showed that the topology of the network strongly affects
the stationary instability of the uniform steady state and the patterns which form
on the network. A convenient way to implement complex network topologies is
photochemical feedback coupling. Both the BZ reaction and the CDIMA reaction
are photosensitive or exist in photosensitive variants [237, 210]. Photochemical cou-
pling is implemented by measuring the concentration of one or more species, such
as the activator or inhibitor. The concentration data are then fed into a computer
algorithm to determine the light intensity that is projected onto each reactor in the
network. This method of coupling was introduced by Showalter and coworkers in
several experiments on the photosensitive BZ reaction [194, 193, 437].
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We consider networks of coupled reactors such that in each CSTR the reactions
are governed by

dρu

dt
= F1(ρu, ρv, φ) = f̃1(ρu, ρv) + φ f̂1(ρu, ρv), (13.157a)

dρv

dt
= F2(ρu, ρv, φ) = f̃2(ρu, ρv)+ φ f̂2(ρu, ρv). (13.157b)

We consider only the case that the kinetic terms F1(ρu, ρv, φ) and F2(ρu, ρv, φ)

depend linearly on the light intensity φ. This covers both the photosensitive BZ
reaction and the CDIMA reaction, see Sect. 13.7.1. The influence of the projected
light is additive if f̂1 and f̂2 are constants; otherwise it is multiplicative. We assume
that the system (13.157) has a unique steady state (ρu(φ), ρv(φ)) which is stable.
This requires that conditions (1.27) are satisfied, i.e., the trace of the Jacobian matrix

J(φ) =
(

J11(φ) J12(φ)

J21(φ) J22(φ)

)

=
(

∂F1/∂ρu ∂F1/∂ρv

∂F2/∂ρu ∂F2/∂ρv

)∣
∣
∣
∣
∣
(ρu(φ),ρv(φ))

(13.158)

is negative,

T = tr J(φ) = J11(φ)+ J22(φ) < 0, (13.159)

and the determinant is positive,

� = det J(φ) = J11(φ)J22(φ)− J12(φ)J21(φ) > 0. (13.160)

13.7.1 Photosensitive BZ and CDIMA Reactions

As discussed in Sect. 1.4.8, the BZ reaction is well described by the two-variable
Oregonator model (1.131). The BZ reaction is photosensitive if Ru(bpy)2+

3 is used
as the catalyst. The effect of illumination can be modeled by a modification of
(1.131) [237]:

F1(ρu, ρv, φ) =
1

ε

{

ρu − ρ
2
u −

[

hρv + φ
] ρu − q

ρu + q

}

, (13.161a)

F2(ρu, ρv, φ) = ρu − ρv. (13.161b)

The steady states of an isolated reactor are given by ρv = ρu, where ρu is a root of
the cubic equation:

ρ
3
u + ρ

2
u(h + q − 1)+ ρu (φ − hq − q)− φq = 0. (13.162)
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Equation (13.162) has unique, physically acceptable solution if the stoichiometric
parameter h is large enough.

The effect of illumination on the CDIMA reaction can be taken into account by
a modified two-variable Lengyel–Epstein model [98]:

F1(ρu, ρv, φ) = a − ρu − 4
ρuρv

1+ ρ
2
u

− φ, (13.163a)

F2(ρu, ρv, φ) = σb

[

ρu −
ρuρv

1+ ρ
2
u

+ φ

]

. (13.163b)

The kinetic equations preserve positivity, see (1.2), if the light intensity satisfies

φ ≤ a. (13.164)

An isolated reactor has a unique steady state (ρu, ρv) given by

ρu =
1

5
a − φ, (13.165a)

ρv =
a(25+ a2 − 10aφ + 25φ2

)

25(a − 5φ)
. (13.165b)

A nonnegative steady state in an isolated reactor exists only if the light intensity
satisfies a more stringent upper limit than (13.164), namely

φ ≤ 1

5
a. (13.166)

For a/5 < φ ≤ a the concentration of the inhibitor grows without bound as time
goes to infinity in an isolated point reactor. In the following, we impose the bound
given by (13.166).

13.7.2 Stability Analysis of Photochemically Coupled Reactors

A network of n photochemically coupled reactors is described by the following
system of ordinary differential equations:

dρui

dt
= F1(ρui , ρvi , φi ),

dρvi

dt
= F2(ρui , ρvi , φi ), (13.167)
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where

φi =
φ0

2

⎧

⎨

⎩
1+ H

[

κ
∑

j

Li j (cuρu j + cvρv j )

]
⎫

⎬

⎭
. (13.168)

Here φ0/2 is a reference level of illumination, the constant illumination experienced
by a homogeneous state. The function H(z) has the following properties: (i) H
is monotonically increasing, (ii) H(−∞) = −1, H(0) = 0, H(+∞) = 1, and
H ′

(0) = 1. A specific example is H(z) = tanh(z), which is used in the numerical
simulation described below. The constant κ is the coupling strength and L is the
Laplacian matrix of the network G. If the coupling occurs only via the activator,
cv = 0, if only via the inhibitor, cu = 0. The nature of the coupling, inhibitory or
activatory, is characterized by the values ±1 for cu or cv .

The system (13.167) with (13.168) has a uniform steady state ρui = ρu, ρvi =
ρv, i = 1, . . . , n, with ρu = ρu(φ0/2) and ρv = ρv(φ0/2). The Jacobian matrix JG
of the photochemically coupled array of reactors is given by

JG = In ⊗ J(φ0/2)+ L⊗ κC. (13.169)

The coupling matrix C has entries

C =
(

C11 C12
C21 C22

)

=
(

φ0
2 cu f̂1(ρu, ρv)

φ0
2 cv f̂1(ρu, ρv)

φ0
2 cu f̂2(ρu, ρv)

φ0
2 cv f̂2(ρu, ρv)

)

=
(

cu F cvF
cuG cvG

)

,

(13.170)
where

F ≡ φ0

2
f̂1(ρu, ρv), G ≡ φ0

2
f̂2(ρu, ρv). (13.171)

As is clear from the structure of (13.169), the stability of the uniform steady
state of a photochemically coupled network can be determined by structural mode
analysis, as in the case of homogeneous diffusively coupled networks. According to
Theorem 13.8, λ is an eigenvalue of JG if and only if λ is an eigenvalue of

Ĵ(r) = J(φ0/2)− rκC, (13.172)

with r = −β, where β is any eigenvalue of L. The structural mode associated with
βi , i = 1, . . . , n, undergoes a stationary instability if

det Ĵ(r) = 0, (13.173)

and a Hopf instability if

tr Ĵ(r) = 0, (13.174)

where r = −βi .
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13.7.3 Instability Thresholds

It is convenient to choose the coupling strength κ as the bifurcation parameter for
photochemically coupled arrays of reactors. According to our assumptions (13.159)
and (13.160) with φ = φ0/2, the USS of the network is stable against uniform
spatial perturbations. The nonuniform structural modes i = 2, . . . , n can undergo
stationary or oscillatory instabilities. According to (13.173), the i th structural mode,
i > 1, undergoes a stationary instability, as the coupling strength is increased, at the
threshold value

κst = − �

[(cv J11 − cu J12)G + (cu J22 − cv J21)F]βi
, i > 1, (13.175)

where Jlm = Jlm(φ0/2). According to (13.174), the i th structural mode, i > 1,
undergoes an oscillatory instability, as the coupling strength is increased, at the
threshold value

κosc = − T

(cu F + cvG)βi
, i > 1. (13.176)

The i th mode is stable if κ < min(κst, κosc). Since the steady state of an isolated
reactor is stable, i.e., T < 0 and � > 0, see (13.159) and (13.160), it follows from
(13.175) that the USS of the network can undergo a stationary bifurcation only if

(cv J11 − cu J12)G + (cu J22 − cv J21)F > 0. (13.177)

Similarly, it follows from (13.176) that the USS can undergo a spatial Hopf bifurca-
tion only if

cu F + cvG < 0. (13.178)

The type of coupling that gives rise to either instability, i.e., inhibitory or activa-
tory coupling, depends on the sign and value of the rate functions f̂1 and f̂2 at the
uniform steady state.

The threshold conditions (13.175) and (13.176) imply that the first structural
mode to become unstable is the mode with the most negative eigenvalue, i.e., the
eigenvector of the network Laplacian associated with βn . Increasing the coupling
strength results in a “short-wavelength” instability as happens for diffusively cou-
pled networks, see Sect. 13.2. There are, however, important differences between
the instabilities in diffusively coupled networks and in photochemically coupled
networks. (1) Diffusively coupled arrays of reactors cannot undergo an oscilla-
tory spatial instability, if the kinetics depends only on two variables, see (13.37).
(2) The USS becomes stable again as the coupling strength exceeds a maximum
value κ+(βi ), see (13.45). (3) Adding edges to the graph has a stabilizing effect

in diffusively coupled networks. As shown in Sect. 13.3.1, κmax,G ∼ β
−1
2 . The
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magnitude of β2 typically increases with adding edges. Consequently, the maximum
value of the coupling strength for which a Turing instability can occur in diffu-
sively coupled Lengyel–Epstein networks decreases as the connectivity of the graph
increases. Adding edges has a destabilizing effect for photochemically coupled net-
works. The threshold for a stationary or oscillatory instability of the USS is inversely
proportional to βn , whose magnitude also typically increases with adding edges thus
lowering the instability threshold. For example, adding random long-range shortcuts
to a circular array to generate small-world-like networks makes βn more negative.
To illustrate this, we consider a 10-node circular network which has β10 = −4.000,
see Fig. 13.16c. A circular 10-node network with two extra edges between nodes
1 and 6 and nodes 4 and 9 has β10 = −5.11491, Fig. 13.16d. Networks with the
lowest instability threshold belong to the class of graphs where the nth eigenvalue
is equal to its lower bound, βn = −n, see Theorem 13.7. Two members of this
class are the complete graph of n nodes, corresponding to a network with all-to-all
coupling, see Theorem 13.13, and the star graph of n nodes, see Theorem 13.17.

(a)

1
2

3
45

6

7

8 9
10

(b)

1

23

4

5

6

7 8

9

10

(c)

1

23

4

5

6

7 8

9

10

(d)

1

23

4

5

6

7 8

9

10

Fig. 13.16 Four 10-node graphs: (a) star graph, β10 = −10, (b) linear graph, β10 = −3.90211,
(c) circular graph, β10 = −4, (d) small-world-like graph, β10 = −5.11491. Reprinted-rom [209].
Copyright 2006, with permission from Elsevier

13.7.4 Oregonator-Type Kinetics

For kinetic schemes with a structure similar to the Oregonator model, i.e., f̂2(ρu, ρv)

≡ 0, the expressions for the instability thresholds, (13.175) and (13.176), and for the
instability conditions, (13.177) and (13.178), simplify to

κst = − �

(cu J22 − cv J21)Fβn
, (13.179)

κosc = − T

cu Fβn
, (13.180)
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(cu J22 − cv J21)F > 0, (13.181)

cu F < 0. (13.182)

If the coupling is via the inhibitor only, cu = 0, then no Hopf instability can
occur. The condition for a stationary instability to occur is given by

cv J21F < 0. (13.183)

For kinetic schemes that like the Oregonator model and pure activator–inhibitor
schemes in general have J21 > 0, a stationary instability can occur only if cv and F
have opposite signs, i.e., if the coupling is inhibitory. The uniform steady state of an
array of photochemically coupled Oregonator undergoes a stationary instability at

κst = −2[−φ0q + q2
(1+ h − 2ρu)− (2qρu + ρ

2
u)(−1+ h + 2ρu)]

φ0(q
2 − ρ

2
u)βn

, (13.184)

for cv = 1, which corresponds to inhibitory coupling for the following reason.
Equation (13.161a) implies that an increase in the light intensity leads to a decrease
in the production rate of the activator. If cv = 1 and v j > vi , then reactor j increases
the illumination on reactor i . Consequently, reactor j decreases the production of
activator in reactor i ; the coupling is inhibitory. If cv = −1 and v j > vi , then
reactor j decreases the illumination on reactor i . Consequently, reactor j increases
the production of activator in reactor i ; the coupling is activatory.

If the coupling is via the activator only, cv = 0, the thresholds for the stationary
and for the oscillatory instability are given by

κst = − �

cu F J22βn
, (13.185)

κosc = − T

cu Fβn
. (13.186)

Since T < 0, an oscillatory instability of the uniform steady state of G occurs only
for networks with inhibitory coupling, i.e., cu and F have opposite signs. Interest-
ingly, for kinetic schemes that like the Oregonator model and activator–inhibitor
schemes in general have J22 < 0, a stationary instability also occurs only for net-
works with inhibitory coupling. If |T | > ∣

∣�/J22

∣
∣, the stationary instability is the

primary instability; otherwise, the oscillatory instability occurs first.

13.7.5 Lengyel–Epstein-Type Kinetics

If the coupling is via the inhibitor only, cu = 0, for kinetic schemes with a structure
similar to the Lengyel–Epstein model, i.e., f̂1(ρu, ρv) = −const f̂2(ρu, ρv), then
the instability threshold expressions simplify:
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κst = − �

cv(J11G − J21F)βn
, (13.187)

κosc = − T

cvGβn
. (13.188)

Equation (13.163) implies that an increase in the light intensity leads to a decrease in
the production rate of the activator. Therefore cv = 1 corresponds again to inhibitory
coupling and cv = −1 to activatory coupling.

The uniform steady state of G undergoes a Hopf instability only if cvG is nega-
tive, i.e., for activatory coupling. The stationary instability can only occur if

cv(J11G − J21F) > 0. (13.189)

For pure activator–inhibitor schemes J11 > 0 and J21 > 0. These inequalities hold
for the LE model if a > a◦(φ0), which we assume to be the case in the follow-
ing. The expression for a◦(φ0) is rather cumbersome and not enlightening. For the
following, only the lower bound a∗(φ0) > 5 + 5φ0/2 is needed. Since G > 0
and F < 0, a stationary instability cannot occur for LE networks with activatory
coupling via v. On the other hand, in LE networks with inhibitory coupling via v, a
Hopf instability is impossible and only the stationary instability can occur. Switch-
ing the nature of the coupling results in a change from an oscillatory instability of
the network to a stationary instability, or vice versa.

The uniform steady state undergoes a stationary instability for inhibitory cou-
pling at

κst =
10
(

2a − 5φ0
)2

aφ0

[

4a2 − 20aφ0 + 25(φ2
0 − 4)

] ∣
∣βn
∣
∣

, (13.190)

and an oscillatory instability for activatory coupling at

κosc = κ
∗
osc −

2J11

σbφ0|βn|
. (13.191)

Here

κ
∗
osc =

20
(

2a − 5φ0
)

[

100+ (2a − 5φ0)
2
]

φ0

∣
∣βn
∣
∣

(13.192)

and

J11 =
24a3 − 100a2

φ0 + 50a
(

φ
2
0 − 20

)

+ 125φ0

(

φ
2
0 + 4

)

(

2a − 5φ0
) [

4a2 − 20aφ0 + 25(φ2
0 + 4)

] . (13.193)
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As the concentration of the substrate is increased, the threshold of the oscillatory
spatial instability increases and κosc → κ

∗
osc as σ →∞. If

a < ac(φ0) =
5

[

4+ φ
2
0 + 2

(

4+ φ
2
0

)1/2
]

2φ0
, (13.194)

then κ
∗
osc < κst and a network with activatory coupling is always less stable than a

network with the same topology and inhibitory coupling. If a > ac, an inhibitory
network is less stable than the corresponding activatory network for σ sufficiently
large. Both κst and κ

∗
osc approach 10/[aφ0

∣
∣βn
∣
∣] for large a.

The behavior of networks photochemically coupled only via the inhibitor differs
for networks of Oregonators and networks of reactors with LE kinetics. Switching
from inhibitory to activatory coupling suppresses instabilities of the uniform steady
state for Oregonator kinetics. For LE kinetics, switching from inhibitory to activa-
tory coupling changes the instability of the uniform steady state from a stationary to
an oscillatory instability without affecting the critical mode.

If the coupling occurs via the activator only, cv = 0, then the instability condi-
tions read

κst = − �

cu(−J12G + J22F)βn
, (13.195)

κosc = − T

cu Fβn
. (13.196)

Since � > 0, J12 < 0, J22 < 0, F < 0, and G > 0 for the LE model, G can undergo
a stationary instability only if cu = 1, i.e., for inhibitory coupling. Since T < 0 and
F < 0 for the LE model, G can undergo an oscillatory instability only if cu = 1. If
∣
∣T/F

∣
∣ >

∣
∣�/(−J12G + J22F)

∣
∣, the stationary instability is the primary instability;

otherwise, the oscillatory instability occurs first. In the case of photochemical cou-
pling via the activator only, networks of Oregonators and networks of reactors with
LE kinetics show the same behavior. Networks with activatory coupling are always
stable, while networks with inhibitory coupling can display both a stationary and an
oscillatory instability.

We have carried out some numerical studies to determine if the pattern predicted
by the linear structural mode analysis is in qualitative agreement with the pattern
finally selected by the photochemically coupled array. We have investigated the
asymptotic states of LE networks with inhibitory coupling for the four graphs shown
in Fig. 13.16, namely the linear 10-node graph, the circular 10-node graph, a circular
10-node graph with two extra edges (small-world-like graph), and the 10-node star
graph.

The parameter values were a = 10.0, φ0 = 0.1, σ = 1.0, and b = 5.0. For these
values, the uniform steady state (ρu(φ0/2), ρv(φ0/2)) = (1.95, 4.92564) is stable
and a < ac = 200.3749. The stationary instability of the uniform state occurs
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at κst = 13.56824264/
∣
∣β10

∣
∣. (The threshold for the oscillatory instability in the

corresponding networks with activatory coupling is κosc = 2.54456146/
∣
∣β10

∣
∣.) In

all cases, we have chosen the bifurcation parameter κ to be in the fully nonlinear
regime, κ = 23.56824264/

∣
∣β10

∣
∣, and a small perturbation of the uniform steady

state as the initial condition. The system settles down to a steady pattern that resem-
bles the structural mode associated with β10, in good qualitative agreement with the
linear analysis, see Fig. 13.17.
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Fig. 13.17 Stationary pattern for the four graphs from Fig. 13.16 with inhibitory coupling and
Lengyel–Epstein kinetics. The stationary value of the activator concentration ρu is plotted vs the
reactor number. (The inhibitor concentration ρv shows qualitatively the same pattern.) Parameter
values: a = 10.0, φ0 = 0.1, σ = 1.0, b = 5.0, and κ = 23.56824264/

∣
∣β10

∣
∣. Reprinted from

[209]. Copyright 2006, with permission from Elsevier

Figure 13.17 also illustrates the effects of the network topology. For example,
the stationary pattern on the star graph is clearly imposed by the geometry of the
reactor network. The value of ρu lies above ρu(φ0/2) for reactor 1, the central node,
whereas all peripheral nodes have the same value, slightly below ρu(φ0/2). Also, a
change from a circular graph to a small-world-like graph by adding two extra edges
adds a small-amplitude modulation to the stationary pattern.



420 13 Pattern Formation in Spatially Discrete Systems

Exercises

13.1 Write the Laplacian for a five-node star graph. Let 1 be the central node and
number the peripheral modes clockwise. Use computational algebra software or
WolframAlpha (www.wolframalpha.com) to determine explicitly the eigenvalues
βi of the Laplacian to confirm Theorem 13.17. Also obtain the corresponding struc-
tural modes.

13.2 Add an edge between nodes 2 and 3 and between nodes 4 and 5 of the star graph
in Exercise 13.1. Write the Laplacian and use computational algebra software or
WolframAlpha (www.wolframalpha.com) to determine explicitly the eigenvalues
βi of the Laplacian and the corresponding structural modes.

13.3 Determine the Turing threshold for a linear three-reactor array, a circular three-
reactor array, and a five-node star graph of Brusselators.

13.4 Determine the instability thresholds for “photochemically” coupled Brussela-
tors, i.e., consider the system, i = 1, . . . , n,

dρui

dt
= ai − (b + 1)ρui + ρ

2
u iρvi , (13.197a)

dρvi

dt
= bρui − ρ

2
u iρv, (13.197b)

with

ai =
a0

2

⎧

⎨

⎩
1+ H

[

κ
∑

j

Li j (cuρu j + cvρv j )

]
⎫

⎬

⎭
. (13.198)

www.wolframalpha.com
www.wolframalpha.com


Appendix A
Kronecker Product

A.1 Definition

Let A be a n × n matrix (with entries ai j ) and let B be a m × m matrix. Then the
Kronecker product of A and B is the mn × mn block matrix

A⊗ B =
⎛

⎜
⎝

a11B · · · a1nB
...

. . .
...

an1B · · · annB

⎞

⎟
⎠ . (A.1)

The Kronecker product is also known as the direct product or the tensor product
[112, 345, 224].

z = x⊗ y = (x1y1, . . . , x1ym, . . . , xn y1, . . . , xn ym)
T
, (A.2)

(A⊗ B)z = (A⊗ B)(x⊗ y) = (Ax)⊗ (By). (A.3)

A.2 Fundamental Properties

1. The product is bilinear. If k is a scalar, and A, B, and C are square matrices, such
that B and C are of the same dimension, then

A⊗ (B+ C) = A⊗ B+ A⊗ C, (A.4)

(B+ C)⊗ A = B⊗ A+ C⊗ A, (A.5)

k(A⊗ B) = (kA)⊗ B = A⊗ (kB). (A.6)

2. If A, B, C, and D are square matrices such that the products AC and BD exist,
then (A⊗ B)(C⊗ D) exists and

(A⊗ B)(C⊗ D) = AC⊗ BD. (A.7)
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If A and B are invertible matrices, then

(A⊗ B)
−1 = A−1 ⊗ B−1

. (A.8)

3. If A and B are square matrices, then for the transpose we have

(A⊗ B)
T = AT ⊗ BT

. (A.9)

4. Let A and B be square matrices of dimensions n and m. If {λi |i = 1, . . . , n}
are the eigenvalues of A and {μ j | j = 1, . . . ,m} are the eigenvalues of B, then
{λiμ j |i = 1, . . . , n, j = 1, . . . ,m} are the eigenvalues of A⊗ B. Also,

det(A⊗ B) = (det A)
m
(det B)

n
, (A.10)

rank(A⊗ B) = rank A rank B, (A.11)

tr(A⊗ B) = tr A tr B. (A.12)
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