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Abstract. We study the recently introduced Connected Feedback

Vertex Set (CFVS) problem from the view-point of parameterized
algorithms. CFVS is the connected variant of the classical Feedback

Vertex Set problem and is defined as follows: given a graph G = (V, E)
and an integer k, decide whether there exists F ⊆ V , |F | ≤ k, such that
G[V \ F ] is a forest and G[F ] is connected. We show that Connected

Feedback Vertex Set can be solved in time O(2O(k)nO(1)) on gen-

eral graphs and in time O(2O(
√

k log k)nO(1)) on graphs excluding a fixed
graph H as a minor. Our result on general undirected graphs uses, as
a subroutine, a parameterized algorithm for Group Steiner Tree, a
well studied variant of Steiner Tree. We find the algorithm for Group

Steiner Tree of independent interest and believe that it could be useful
for obtaining parameterized algorithms for other connectivity problems.

1 Introduction

Feedback Vertex Set (FVS) is a classical NP-complete problem and has
been extensively studied in all subfields of algorithms and complexity. In this
problem we are given an undirected graph G = (V, E) and a positive integer k
as input, and the goal is to check whether there exists a subset F ⊆ V of size at
most k such that G[V \ F ] is a forest. This problem originated in combinatorial
circuit design and found its way into diverse applications such as deadlock pre-
vention in operating systems, constraint satisfaction and Bayesian inference in
artificial intelligence. We refer to the survey by Festa, Pardalos and Resende [12]
for further details on the algorithmic study of feedback set problems in a vari-
ety of areas like approximation algorithms, linear programming and polyhedral
combinatorics.

In this paper we focus on the recently introduced connected variant of Feed-

back Vertex Set, namely, Connected Feedback Vertex Set (CFVS).
Here, given a graph G = (V, E) and a positive integer k, the objective is to check
whether there exists a vertex-subset F of size at most k such that G[V \ F ] is
a forest and G[F ] is connected. Sitters and Grigoriev [21] recently introduced
this problem and obtained a polynomial time approximation scheme (PTAS) for

� This work was done while the author was at the University of Bergen, Norway.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 269–280, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



270 N. Misra et al.

CFVS on planar graphs. We find it a bit surprising that the connected version
of FVS has not been studied in the literature until now. This is in complete
contrast to the fact that the connected variants of other problems, like Vertex

Cover—Connected Vertex Cover, and Dominating Set—Connected

Dominating Set are extremely well-studied in the literature (See, e.g, [17],
[14], respectively.). In this paper, we initiate the algorithmic study of CFVS
from the view-point of parameterized algorithms.

Parameterized complexity is a two-dimensional generalization of “P vs. NP”
where, in addition to the overall input size n, one studies how a secondary mea-
surement (called the parameter), that captures additional relevant information,
affects the computational complexity of the problem in question. Parameterized
decision problems are defined by specifying the input, the parameter, and the
question to be answered. The two-dimensional analogue of the class P is de-
cidability within a time bound of f(k)nc, where n is the total input size, k is
the parameter, f is some computable function and c is a constant that does
not depend on k or n. A parameterized problem that can be decided in such a
time-bound is termed fixed-parameter tractable (FPT). For general background
on the theory of fixed-parameter tractability, see, e.g, the textbook by Flum and
Grohe [13].

FVS has been extensively studied in the context of parameterized algorithms.
The earliest known FPT algorithms for FVS go back to the early 90’s (e.g, [2]).
After several rounds of improvements, the current best FPT algorithm for FVS
runs in time O(5kkn2) [5].

In this paper, we show that CFVS can be solved in time O(2O(k)nO(1)) on
general graphs and in time O(2O(

√
k log k)nO(1)) on graphs excluding a fixed graph

H as a minor. Most of the known FPT algorithms for connectivity problems
enumerate all minimal solutions and then try to connect each solution using an
algorithm for the Steiner Tree problem. For instance, this is the case with the
existing FPT algorithms for Connected Vertex Cover(e.g, [17]). The crucial
observation which the algorithms for Connected Vertex Cover rely on is
that there are at most 2k minimal vertex covers of size at most k. However, this
approach fails for CFVS as the number of minimal feedback vertex sets of size at
most k is Ω(nk) (consider a graph that is a collection of k vertex-disjoint cycles
each of length approximately n/k). To circumvent this problem, we make use
of “compact representations” of feedback vertex sets. A compact representation
is simply a collection of families of mutually disjoint sets, where each family
represents a number of different feedback vertex sets. This notion was defined
by Guo et al. [16] who showed that the set of all minimal feedback vertex sets of
size at most k can be represented by a collection of set-families of size O(2O(k)).

We use compact representations to obtain an FPT algorithm for CFVS in
Section 3. In order to do this we need an FPT algorithm for a general version
of Steiner Tree, namely Group Steiner Tree (GST), which is defined as
follows: Given a graph G = (V, E); |V | = n, |E| = m, subsets Ti ⊆ V , 1 ≤ i ≤ l,
and an integer p, does there exist a subgraph of G on p vertices that is a tree T
and includes at least one vertex from each Ti? Observe that when the Ti’s are
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each of size one, then GST is the Steiner Tree problem. Our FPT algorithm for
GST runs in polynomial space and uses a Turing-reduction to a directed version
of Steiner Tree, called Directed Steiner Out-Tree, which we show to
be fixed-parameter tractable. We note that GST is known to be of interest to
database theorists, and that it has been studied in [10], where an algorithm with
running time O(3l · n + 2l · (n + m)) (that uses exponential space) is discussed.

We also show that CFVS does not admit a polynomial kernel (See Section 2)
on general graphs but has a quadratic kernel on the class of graphs that exclude
a fixed graph H as minor. Finally, in Section 4 we design a subexponential-time
algorithm for CFVS on graphs excluding some fixed graph H as a minor using the
theory of bidimensionality. This algorithm is obtained using an O∗(wO(w))-time
algorithm that computes an optimal connected feedback vertex set in graphs of
treewidth at most w.

2 Preliminaries

In this section we state some basic definitions related to parameterized complex-
ity and graph theory, and give an overview of the notation used in this paper. To
describe running times of algorithms we sometimes use the O∗ notation. Given
f : N → N, we define O∗(f(n)) to be O(f(n) · p(n)), where p(·) is some poly-
nomial function. That is, the O∗ notation suppresses polynomial factors in the
running-time expression.

A parameterized problem Π is a subset of Γ ∗ × N, where Γ is a finite alpha-
bet. An instance of a parameterized problem is a tuple (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed-parameter
tractability (FPT) which means, for a given instance (x, k), decidability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the
input size. The notion of kernelization is formally defined as follows.

Definition 1. [Kernelization] [13,20]
A kernelization algorithm for a parameterized problem Π ⊆ Γ ∗ × N is an algo-
rithm that, given (x, k) ∈ Γ ∗ × N, outputs, in time polynomial in |x|+ k, a pair
(x′, k′) ∈ Γ ∗ × N such that (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b)
|x′|, k′ ≤ g(k), where g is some computable function. The output instance x′ is
called the kernel, and the function g is referred to as the size of the kernel. If
g(k) = kO(1) (resp. g(k) = O(k)) then we say that Π admits a polynomial (resp.
linear) kernel.

We say that a graph G (undirected or directed) contains a graph H if H is a
subgraph of G. Given a directed graph (digraph) D = (V, A), we let V (D) and
A(D) denote the vertex and arc set of D, respectively. A vertex u ∈ V (D) is
an in-neighbor (out-neighbor) of v ∈ V (D) if uv ∈ A (vu ∈ A, respectively).
The in- and out-neighborhood of a vertex v are denoted by N−(v) and N+(v),
respectively. The in-degree d−(v) (resp. out-degree d+(v)) of a vertex v is |N−(v)|
(resp. |N+(v)|). We say that a subdigraph T of D with vertex set VT ⊆ V (D) is
an out-tree if T is an oriented tree (see [1]) with only one vertex r of in-degree
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zero (called the root). The vertices of T of out-degree zero are called leaves and
every other vertex is called an internal vertex.

3 Connected Feedback Vertex in General Graphs

In this section we give an FPT algorithm for CFVS on general graphs. We start
by describing an FPT algorithm for the Group Steiner Tree problem which
is crucially used in our algorithm for CFVS.

3.1 Group Steiner Tree

The Group Steiner Tree (GST) problem is defined as follows:

Input: An undirected graph G = (V, E); vertex-disjoint subsets
S1, . . . , Sl ⊆ V ; and an integer p.

Parameter: The integer l.
Question: Does G contain a tree on at most p vertices that includes at

least one vertex from each Si?

Our fixed-parameter algorithm for GST first reduces it to Directed Steiner

Out-Tree (defined below) which we then show to be fixed-parameter tractable.

Input: A directed graph D = (V, A); a distinguished vertex r ∈ V ; a
set of terminals S ⊆ V ; and an integer p.

Parameter: The integer l = |S|.
Question: Does D contain an out-tree on at most p vertices that is rooted

at r and that contains all the vertices of S?

Lemma 1. The GST problem Turing-reduces to the Directed Steiner Out-

Tree problem.

Proof. Given an instance (G = (V, E), S1, . . . , Sl, p) of GST, construct an in-
stance of Directed Steiner Out-Tree as follows. Let S = {s1, s2, . . . , sl}
be a set of l new vertices, that is, si /∈ V for 1 ≤ i ≤ l. Let V ′ = V ∪ S and
A = {uv, vu : {u, v} ∈ E} ∪ ⋃l

i=1{xsi : x ∈ Si}. Finally, let D = (V ′, A). It is
easy to see that G contains a tree on at most p vertices that includes at least one
vertex from each Si if and only if there exists a vertex r ∈ V ′ and an out-tree in
D rooted at r on at most p + l vertices containing all vertices of S. ��
Lemma 2. Directed Steiner Out-Tree can be solved in O(2l · nO(1)) time
using polynomial space.

Nederlof [19] uses the Inclusion-Exclusion Principle and a notion of branch-
ing walks to give an algorithm for the Steiner Tree problem that runs in
O(2l · nO(1)) time using polynomial space, where l is the number of terminals.
Essentially the same algorithm works for Directed Steiner Out-Tree, with
the same resource bounds; we omit the details due to space constraints.
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Lemmas 1 and 2 together imply:

Lemma 3. The Group Steiner Tree problem can be solved in O(2l · nO(1))
time using polynomial space.

3.2 An FPT Algorithm for CFVS

Our FPT algorithm for CFVS uses as a subroutine an algorithm (due to Guo
et al. [16]) for enumerating an efficient representation of minimal feedback vertex
sets of size at most k. Strictly speaking, the subroutine enumerates all compact
representations of minimal feedback sets. A compact representation for a set of
minimal feedback sets of a graph G = (V, E) is a set C of pairwise disjoint subsets
of V such that choosing exactly one vertex from every set in C results in a minimal
feedback set for G. Call a compact representation a k-compact representation if
the number of sets in the representation is at most k. Clearly, any connected
feedback set of size at most k must necessarily pick vertices from the sets of
some k-compact representation. Given a graph G = (V, E) and a k-compact
representation S1, . . . , Sr, where r ≤ k, the problem of deciding whether there
exists a connected feedback vertex set that contains at least one vertex from
each set Si reduces to the Group Steiner Tree problem where the Steiner
groups are the sets of the compact representation.

Our algorithm therefore cycles through all k-compact representations and for
each such representation uses the algorithm for Group Steiner Tree to check
if there is a tree on at most k vertices that includes one vertex from each set Si of
the compact representation. If the answer is no for all k-compact representations,
the algorithm reports that the given instance is a no-instance. If the answer is
yes for some compact representation, the algorithm returns the tree found. Since
one can enumerate all compact representations in time O(ck ·m) [16], we have:

Theorem 1. Given a graph G = (V, E) and an integer k, one can decide
whether G has a connected feedback set of size at most k in time O(ck · nO(1)),
for some constant c.

Although CFVS is fixed-parameter tractable, it is unlikely to admit a polynomial
kernel as the following theorem shows. This is in contrast to Feedback Vertex

Set which admits a quadratic kernel [22].

Theorem 2. The CFVS problem does not admit a polynomial kernel unless the
Polynomial Hierarchy collapses to Σ3.

Proof. The proof follows from a polynomial-time parameter-preserving reduction
from Connected Vertex Cover, which does not admit a polynomial kernel
unless the Polynomial Hierarchy collapses to the third level [11]. This would
prove that CFVS too does not admit a polynomial kernel [4]. Given an instance
(G = (V, E), k) of the Connected Vertex Cover problem, construct a new
graph G′ as follows: V (G′) = V (G) ∪ {xuv /∈ V (G) : {u, v} ∈ E(G)}; if {u, v} ∈
E(G) then add the edges {u, v}, {u, xuv}, {xuv, v} to E(G′). This completes the
construction of G′. It is easy to see that G has a connected vertex cover of size
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at most k if and only if G′ has a connected feedback vertex set of size at most
k. This completes the proof of the theorem. ��
Interestingly, the results from [15] imply that CFVS has polynomial kernel on a
graph class C which excludes a fixed graph H as a minor(See Section 4.1).

We note in passing that the algorithm for enumerating compact representa-
tions can be improved using results from [6]. The authors of [6] describe a set of
reduction rules such that if a yes-instance of the Forest Bipartition problem
(defined below) is reduced with respect to this set of rules then the instance has
size at most 5k + 1.

Forest Bipartition

Input: An undirected graph G = (V, E), possibly with multiple edges
and loops and a set S ⊆ V such that |S| = k + 1 and G \ S is
acyclic.

Parameter: The integer k.
Question: Does G have a feedback vertex set of size at most k contained

in V \ S?

Thus in a yes-instance of Forest Bipartition that is reduced with respect to
the rules in [6], we have |V \S| ≤ 4k. Using this bound in the algorithm described
by Guo et al. [16], one obtains a O∗(ck)-time algorithm for enumerating compact
representations of minimal feedback vertex sets of size at most k, where c = 52.
The constant c in [16] is more than 160.

Theorem 3. [6,16] Given a graph G = (V, E) and an integer k, the compact
representations of all minimal feedback vertex sets of G of size at most k can be
enumerated in time O(52k · |E|).

4 A Subexponential FPT Algorithm for CFVS on
H-Minor-Free Graphs

In the last section, we obtained an O∗(ck) algorithm for CFVS on general graphs.
In this section we show that CFVS on the class of H-minor-free graphs admits
a sub-exponential time algorithm with running time O(2O(

√
k log k)nO(1)). This

section is divided into three parts. In the first part we give essential definitions
from topological graph theory, and in the second part we show that CFVS can
be solved in time O(wO(w)nO(1)) on graphs with treewidth bounded by w. In
the last part we present an algorithm with the stated running time for CFVS on
H-minor-free graphs, by bounding the treewidth of the input graph using the
known “grid theorems”.

4.1 Definitions and Terminology

We use terminology from [9]. Given an edge e in a graph G, the contraction of
e is the result of identifying its endpoints in G and then removing all loops and
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duplicate edges. A minor of a graph G is a graph H that can be obtained from
a subgraph of G by contracting edges. A graph class C is minor-closed if any
minor of any graph in C is also an element of C. A minor-closed graph class C is
H-minor-free or simply H-free if H /∈ C.

A tree decomposition of a graph G = (V, E) is a pair (T = (VT , ET ),X =
{Xt}t∈VT ) where T is a tree and the Xt are subsets of V such that:

1.
⋃

u∈VT
Xt = V ;

2. for each edge e = {u, v} ∈ E there exists t ∈ VT such that u, v ∈ Xt; and
3. for each vertex v ∈ V , the subgraph T [{t | v ∈ Xt}] is connected.

The width of a tree decomposition is maxt∈VT |Xt| − 1 and the treewidth of
G = (V, E), denoted tw(G), is the minimum width over all tree decompositions
of G.

A tree decomposition is called a nice tree decomposition [3] if the following
conditions are satisfied:

– Every node of the tree T has at most two children. A node that has no
children is called a leaf node. The non-leaf nodes are of three kinds:
• If a node t has two children t1 and t2, then Xt = Xt1 = Xt2 , and t is

called a join node.
• if a node t has one child t1, then either |Xt| = |Xt1 | + 1 and Xt1 ⊂ Xt

(t is called an introduce node), or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (t is
called a forget node).

It is possible to transform a given tree decomposition into a nice tree decompo-
sition in time O(|V | + |E|) [3].

4.2 Connected FVS and Treewidth

In this section we show that the Connected Feedback Vertex Set problem
is FPT with the treewidth of the input graph as the parameter. That is, we show
that the following problem is FPT:

Input: An undirected graph G = (V, E); an integer k; and a nice tree
decomposition of G of width w.

Parameter: The treewidth w of the graph G.
Question: Does there exist S ⊆ V such that G \ S is acyclic, G[S] is

connected, and |S| ≤ k?

We design a dynamic programming algorithm on the nice tree decomposition
with running time O(wO(w) · nO(1)) for this problem. See, e.g, Moser [18] for
a detailed exposition of this paradigm; in particular, our algorithm is similar
in spirit to the algorithm given in [18] for the Connected Vertex Cover

problem.
Let (T = (I, F ) , {Xi|i ∈ I}) be a nice tree decomposition of the input graph

G of width w and rooted at r ∈ I. We let Ti denote the subtree of T rooted at
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i ∈ I, and Gi = (Vi, Ei) denote the subgraph of G induced on all the vertices of
G in the subtree Ti, that is, Gi = G[

⋃
j∈V (Ti)

Xj ].
For each node i ∈ I we compute a table Ai, the rows of which are 4-tuples

[S, P, Y, val ]. Table Ai contains one row for each combination of the first three
components which denote the following:

– S is a subset of Xi.
– P is a partition of S into at most |S| labelled pieces.
– Y is a partition of Xi \ S into at most |Xi \ S| labelled pieces.

We use P (v) (resp. Y (v)) to denote the piece of the partition P (resp. Y ) that
contains the vertex v. We let |P | (resp. |Y |) denote the number of pieces in the
partition P (resp. Y ). The last component val , also denoted as Ai [S, P, Y ], is
the size of a smallest feedback vertex set Fi ⊆ V (Gi) of Gi which satisfies the
following properties:

– If S = ∅, then Fi is connected in Gi.
– If S �= ∅, then

• Fi ∩ Xi = S.
• All vertices of S that are in any one piece of P are in a single con-

nected component of Gi[Fi]. Moreover Gi[Fi] has exactly |P | connected
components.

• All vertices of Xi \ S that are in the same piece of Y are in a single
connected component (a tree) of Gi[Vi \ Fi]. Moreover Gi[Vi \ Fi] has at
least |Y | connected components.

If there is no such set Fi, then the last component of the row is set to ∞.
We fix an arbitrary ordering of the vertices of Xi, and compute the table Ai

for each node i ∈ I of the tree decomposition. Since there are at most w + 1
vertices in each bag Xi, there are no more than

w+1∑

i=0

(
w + 1

i

)

ii · (w + 1 − i)w+1−i ≤ (2w + 2)2w+2

rows in any table Ai. We compute the tables Ai starting from the leaf nodes of
the tree decomposition and going up to the root.

Leaf Nodes. Let i be a leaf node of the tree decomposition. We compute the
table Ai as follows. For each triple (S, P, Y ) where S is a subset of Xi, P a
partition of S, and Y a partition of Xi \ S:
– Set Ai [S, P, Y ] = ∞ if at least one of the following holds:

• Gi \ S contains a cycle (i.e., S is not an FVS of Gi).
• At least one piece of P is not connected in Gi[S] or if Gi[S] has less

than |S| connected components.
• At least one piece of Y is not connected in Gi[Vi \ S] or if Gi[Vi \ S]

has less than |Y | connected components.
– In all other cases, set Ai [S, P, Y ] = |S|.
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It is easy to see that this computation correctly determines the last compo-
nent of each row of Ai for a leaf node i of the tree decomposition.

Introduce Nodes. Let i be an introduce node and j its unique child. Let x ∈
Xi \ Xj be the introduced vertex. For each triple (S, P, Y ), we compute the
entry Ai[S, P, Y ] as follows.

Case 1. x ∈ S. Check whether N(x)∩S ⊆ P (x); if not, set Ai[S, P, Y ] = ∞.

– Subcase 1. P (x) = {x}. Set Ai[S, P, Y ] = Aj [S \ {x}, P \ P (x), Y ] + 1.
– Subcase 2: |P (x)| ≥ 2 and N(x) ∩ P (x) = ∅. Set Ai[S, P, Y ] = ∞, as no

extension of S to an fvs for Gi can make P (x) connected.
– Subcase 3: |P (x)| ≥ 2 and N(x)∩P (x) �= ∅. Let A be the set of all rows

[S′, P ′, Y ] of the table Aj that satisfy the following conditions:
• S′ = S \ {x}.
• P ′ = (P \ P (x)) ∪ Q, where Q is a partition of P (x) \ {x} such that

each piece of Q contains an element of N(x) ∩ P (x).
Set Ai[S, P, Y ] = min[S′,P ′,Y ]∈A{Aj [S′, P ′, Y ]} + 1.

Case 2. x /∈ S. Check whether N(x)∩(Xi\S) ⊆ Y (x); if not, set Ai[S, P, Y ] =
∞.

– Subcase 1: Y (x) = {x}. Set Ai[S, P, Y ] = Aj [S, P, Y \ Y (x)].
– Subcase 2: |Y (x)| ≥ 2 and N(x) ∩ Y (x) = ∅. Set Ai[S, P, Y ] = ∞, as no

extension of S to an fvs Fi for Gi can make Y (x) a connected component
in Gi[Vi \ Fi].

– Subcase 3: |Y (x)| ≥ 2 and N(x)∩Y (x) �= ∅. Let A be the set of all rows
[S, P, Y ′] of the table Aj where Y ′ = (Y \Y (x))∪Q, and Q is a partition
of Y (x) \ {x} such that each piece of Q contains exactly one element of
N(x) ∩ Y (x). Set Ai[S, P, Y ] = min[S,P,Y ′]∈A{Aj [S, P, Y ′]}.

Forget Nodes. Let i be a forget node and j its unique child node. Let x ∈
Xj \Xi be the forgotten vertex. For each triple (S, P, Y ) in the table Ai, let
A be the set of all rows [S′, P ′, Y ] of the table Aj that satisfy the following
conditions:
– S′ = S ∪ {x}, and
– P ′(x) = P (y) ∪ {x} for some y ∈ S.

Let B be the set of all rows [S, P, Y ′] of the table Aj such that Y ′(x) =
Y (z) ∪ {x} for some z ∈ S. Set

Ai[S, P, Y ] = min
{

min
[S′,P ′,Y ]∈A

Aj [S′, P ′, Y ], min
[S,P,Y ′]∈B

Aj [S, P, Y ′]
}

.

Join Nodes. Let i be a join node and j and l its children. For each triple
(S, P, Y ) we compute Ai[S, P, Y ] as follows.
– Case 1. S = ∅. If both Aj [∅, P, Y ] and Al[∅, P, Y ] are posi-

tive finite, then set Ai[∅, P, Y ] = ∞. Otherwise, set Ai[∅, P, Y ] =
max{Aj[∅, P, Y ], Al[∅, P, Y ]}.
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– Case 2. S �= ∅. Let A denote the set of all pairs of triples
〈(S, P1, Y1), (S, P2, Y2)〉, where (S, P1, Y1) ∈ Aj and (S, P2, Y2) ∈ Al

with the following property: Starting with the partitions Qp = P1 and
Qy = Y1 and repeatedly applying the following set of operations, we
reach stable partitions that are identical to P and Y . The first operation
that we apply is:

If there exist vertices u, v ∈ S such that they are in different
pieces of Qp but are in the same piece of P2, delete Qp(u) and
Qp(v) from Qp and add Qp(u) ∪ Qp(v).

To describe the second set of operations, we need some notation. Let Z =
Xi \ S and let the connected components of Gi[Z] be C1, . . . , Cq. First
contract each connected component Ci to a vertex ci, the representative
of that component, and let C = {c1, . . . , cq}. Note that for each 1 ≤ i ≤ q,
the component Ci is not split across pieces in either Y1 or Y2. Denote
by Y ′

1 and Y ′
2 the partitions obtained from Y1 and Y2, respectively, be

replacing each connected component Ci by its representative vertex ci.
Let Qy = Y ′

1 . Repeat until no longer possible:
If there exist ca, cb ∈ C that are in different pieces of Qy but in
the same piece of Y2 then delete Qy(ca), Qy(cb) from Qy and add
Qy(ca) ∪ Qy(cb) provided the following condition holds: for all
ce ∈ C\{ca, cb} either Y2(ce)∩Qy(ca) = ∅ or Y2(ce)∩Qy(cb) = ∅.

If this latter condition does not hold, move on to the next pair of triples.
Finally expand each ci to the connected component it represents.
Set

Ai[S, P, Y ] = min
〈(S,P1,Y1),(S,P2,Y2)〉∈A

{Aj[S, P1, Y1] + Al[S, P2, Y2] − |S|}.

The stated conditions ensure that u, v ∈ S are in the same piece of P if
and only if for each 〈(S, P1, Y1), (S, P2, Y2)〉 ∈ A, they are in the same
piece of P1 or of P2 (or both). Similarly, the stated conditions ensure
that merging solutions at join nodes do not create new cycles. Given
this, it is easy to verify that the above computation correctly determines
Ai [S, P, Y ].

Root Node. We compute the size of a smallest CFVS of G from the table Ar

for the root node r as follows. Find the minimum of Ar[S, P, Y ] over all
triples (S, P, Y ), where S ⊆ Xr, P a partition of S such that P consists of a
single (possibly empty) piece and Y is a partition of Xr \ S. This minimum
is the size of a smallest CFVS of G.

This concludes the description of the dynamic programming algorithm for CFVS
when the treewidth of the input graph is bounded by w. From the above de-
scription and the size of tables being bounded by (2w + 2)2w+2, we obtain the
following result.

Lemma 4. Given a graph G = (V, E), a tree-decomposition of G of width w,
one can compute the size of an optimum connected feedback vertex set of G (if
it exists) in time O((2w + 2)2w+2 · nO(1)).
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4.3 FPT Algorithms for H-Minor Free Graphs

We first bound the treewidth of the yes instance of input graphs by O(
√

k).

Lemma 5. If (G, k) is a yes-instance of CFVS where G excludes a fixed graph
H as a minor, then tw(G) ≤ cH

√
k, where cH is a constant that depends only

on the graph H.

Proof. By [7], for any fixed graph H , every H-minor-free graph G that does
not contain a (w × w)-grid as a minor has treewidth at most c′Hw, where c′H
is a constant that depends only on the graph H . Clearly a (w × w)-grid has
a feedback vertex set of size at least c1w

2, where c1 is a constant independent
of w. Therefore if G has a connected feedback vertex set of size at most k, it
cannot have a (w×w)-grid minor, where w >

√
k/c1. Therefore tw(G) ≤ c′Hw ≤

c′H · (√k/c1 + 1) ≤ cH

√
k, where cH = (c′H + 1)/

√
c1. ��

Theorem 4. CFVS can be solved in time O(2O(
√

k log k) + nO(1)) on H-minor-
free graphs.

Proof. Given an instance (G, k) of CFVS, we first find a tree-decomposition of G
using the polynomial-time constant-factor approximation algorithm of Demaine
et al. [8]. If tw(G) > cH

√
k, then the given instance is a no-instance; else, use

Lemma 4 to find an optimal CFVS for G. All this can be done in O(2O(
√

k log k) ·
nO(1)). To obtain the claimed running time bound we first apply the results
from [15] and obtain an O(k2) kernel for the problem in polynomial time and
then apply the algorithm described. ��

5 Conclusion

We conclude with some open problems. The obvious question is to obtain an
O∗(ck) algorithm for CFVS in general graphs with a smaller value of c. Also the
approximability of CFVS in general graphs is unknown. Is there a constant-factor
approximation algorithm for CFVS? If not, what is the limit of approximation?
Is there an O∗(cw) algorithm for CFVS, for a constant c, for graphs of treewidth
at most w? Note that this question is open even in the context of finding a
(unconnected) feedback vertex set in graphs of treewidth at most w.
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