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Abstract. In this paper we study the planar graphs that admit an acyclic
3-coloring. We show that testing acyclic 3-colorability is NP-hard for planar
graphs of maximum degree 4 and we show that there exist infinite classes of cu-
bic planar graphs that are not acyclically 3-colorable. Further, we show that ev-
ery planar graph has a subdivision with one vertex per edge that is acyclically
3-colorable. Finally, we characterize the series-parallel graphs such that every 3-
coloring is acyclic and we provide a linear-time recognition algorithm for such
graphs.

1 Introduction

A coloring of a graph is an assignment of colors to vertices such that no two adjacent
vertices have the same color. A k-coloring is a coloring using k colors. Planar graph
colorings have been widely studied from both a combinatorial and an algorithmic point
of view. The existence of a 4-coloring for every planar graph, proved by Appel and
Haken [4,5], is one of the most famous results in Graph Theory. A quadratic-time algo-
rithm is known to compute a 4-coloring of any planar graph [15].

An acyclic coloring is a coloring with no bichromatic cycle. An acyclic k-coloring is
an acyclic coloring using k colors. Acyclic colorings have been deeply investigated in
the literature. From an algorithmic point of view, Kostochka proved in [12] that deciding
whether a graph admits an acyclic 3-coloring is NP-hard. From a combinatorial point
of view, the most interesting result is perhaps the one proved by Alon et al. in [2],
namely that every graph with degree Δ can be acyclically colored with O(Δ4/3) colors,
while there exist graphs requiring Ω(Δ4/3/ 3

√
log Δ) colors in any acyclic coloring.

Acyclic colorings of planar graphs have been first considered in 1973 by Grünbaum,
who proved in [10] that there exist planar graphs requiring 5 colors in any acyclic col-
oring. The same lower bound holds even for bipartite planar graphs [13]. Grünbaum
conjectured that such a bound is tight and proved that 9 colors suffice for constructing
such a coloring. The Grünbaum upper bound was improved to 8 [14], to 7 [1], to 6 [11],
and finally to 5 by Borodin [6].

Since there exist planar graphs requiring 5 colors in any acyclic coloring, it is natural
to study which planar graphs can be acyclically 3- or 4-colored. In this paper we study
the acyclically 3-colorable planar graphs, from both an algorithmic and a combinatorial
perspective. We show the following results.

– In Sect. 3 we prove that deciding whether a planar graph of maximum degree 4 has
an acyclic 3-coloring is an NP-complete problem. An NP-hardness proof for de-
ciding acyclic 3-colorability was known for bipartite planar graphs of degeneracy
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2 [12]. The NP-hardness result is not surprising, since an analogous result is
known for deciding (possibly non-acyclic) 3-colorability of planar graphs of degree
4 [9]. However, we show an interesting difference between the class of 3-colorable
planar graphs and the class of acyclically 3-colorable planar graphs, by exhibit-
ing an infinite number of cubic planar graphs not admitting any acyclic 3-coloring
(while K4 is the only cubic graph that can not be 3-colored [8]). We remark that
it is known how to construct acyclic 4-colorings of every cubic (even non-planar)
graph [16].

– In Sect. 4 we prove that every planar graph has a subdivision with one vertex per
edge that is acyclically 3-colorable. Acyclic colorings of graph subdivisions have
been already considered by Wood in [18], where the author observed that every
graph has a subdivision with two vertices per edge that is acyclically 3-colorable.

– In Sect. 5 we consider the problem of determining the planar graphs such that ev-
ery 3-coloring is acyclic. Such a problem has been introduced by Grünbaum [10],
who showed that every 3-coloring of a maximal outerplanar graph is acyclic. We
improve his result by characterizing the series-parallel graphs such that every 3-
coloring is acyclic and by providing a linear-time recognition algorithm. As a side
result, we show a simple algorithm for obtaining an acyclic 3-coloring of any series-
parallel graph.

In Sect. 6 we conclude and we present some open problems. Some proofs are omitted
because of space limitations and can be found in the full version of the paper [3].

2 Preliminaries

A graph G is k-connected if removing any k-1 vertices leaves G connected; 3-connected
and 2-connected graphs are called triconnected and biconnected graphs, respectively.
The degree of a vertex is the number of incident edges. The degree of a graph is the
maximum degree of the vertices of the graph. In a cubic graph (resp. a subcubic graph)
each vertex has degree exactly 3 (resp. at most 3). A subdivision of a graph G is obtained
by replacing each edge of G with a path. A k-subdivision of G is such that any path
replacing an edge of G has at most k internal vertices. The internal (extremal) vertices of
the paths replacing the edges of G are called subdivision vertices (resp. main vertices).

A planar graph is a graph with no K5-minor and no K3,3-minor. A planar graph is
maximal if all its faces are delimited by 3-cycles. An outerplanar graph is a graph ad-
mitting a planar drawing with all the vertices on the outer face. Combinatorially, an out-
erplanar graph is a graph with no K4-minor and no K2,3-minor. An outerplanar graph
is maximal if all its internal faces are delimited by 3-cycles. A series-parallel graph
(SP-graph) is a graph with no K4-minor. SP-graphs are inductively defined as follows.
An edge (u, v) is an SP-graph with poles u and v. Denote by ui and vi the poles of an
SP-graph graph Gi. A series composition of SP-graphs G0, . . . , Gk, with k ≥ 1, is an
SP-graph with poles u=u0 and v=vk, containing graphs Gi as subgraphs, and such that
vi=ui+1, for each i=0, 1, . . . , k − 1. A parallel composition of SP-graphs G0, . . . , Gk,
with k ≥ 1, is an SP-graph with poles u=u0=u1=. . .=uk and v=v0=v1=. . .=vk and con-
taining graphs Gi as subgraphs. The SPQ-tree T of an SP-graph G is the tree, rooted
at any node, representing the series and parallel compositions of G.
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3 Deciding the Acyclic 3-Colorability of Planar Graphs

In this section we study the problem of deciding whether a given planar graph admits
an acyclic 3-coloring. First, we present a very simple proof that Planar Graph Acyclic
3-Colorability is NP-hard. We remark that a proof of NP-hardness for Planar Graph
Acyclic 3-Colorability has been already presented by Kostochka in [12]. We later prove
an analogous complexity result for planar graphs of maximum degree 4.

Theorem 1. Planar Graph Acyclic 3-Colorability is NP-complete.

The membership in NP is trivial. To show the NP-hardness, we sketch a simple re-
duction from Planar Graph 3-Colorability that uses the graph G9 shown in Fig. 1.a as a
gadget. It is easy to see that G9 has only one acyclic 3-coloring (up to a switch of the
color classes), which satisfies the following properties: (P1) u1 and u2 have different
colors; (P2) every path connecting u1 and u2 contains vertices of all the three colors.

The reduction works as follows. Let G be an instance of Planar Graph 3-Colorability
(see Fig. 1.b). Replace each edge (u, v) of G with a copy of G9 by identifying vertices
u and v with u1 and u2, respectively (see Fig. 1.c). Let G′ be the resulting planar graph.
We argue that G admits a 3-coloring if and only if G′ admits an acyclic 3-coloring.

First, suppose that G admits a 3-coloring. For each edge (u, v) of G, color the cor-
responding graph G9 in G′ by assigning the color of u to u1, the color of v to u2, and
by then completing the unique acyclic 3-coloring of G9. The resulting coloring of G′

is acyclic. Namely, assume, for a contradiction, that G′ contains a bichromatic cycle C.
Such a cycle is not entirely contained inside a graph G9 replacing an edge of G in G′

(in fact, the 3-coloring of each graph G9 is acyclic). Hence, C contains vertices of more
than one graph G9. This implies that C contains as a subgraph a simple path p connect-
ing vertices u1 and u2 of a graph G9. However, by property P2 of the G9’s coloring, p
contains vertices of all the three colors, a contradiction.

Second, if G′ admits an acyclic 3-coloring, a coloring of G is obtained from the
acyclic 3-coloring of G′ by assigning to each vertex of G the color of the corresponding
vertex of G′. By property P1, each edge of G connects vertices of distinct colors.

Next, we show that testing whether a planar graph has an acyclic 3-coloring remains
an NP-hard problem even when restricted to planar graphs of degree 4.
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Fig. 1. (a) Graph G9 and its unique acyclic 3-coloring. (b) A planar graph G. (c) The planar graph
G′ obtained by replacing each edge of G with a copy of G9.
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Fig. 2. (a) Graph H1. (b) Graph H3.

Theorem 2. Degree-4 Planar Graph Acyclic 3-Colorability is NP-complete.

The membership in NP is trivial. To show the NP-hardness, we sketch a simple re-
duction from Planar Graph Acyclic 3-Colorability. Consider the family of graphs Hi

defined as follows. H1 is shown in Fig. 2.a. Hi is obtained from a copy of Hi−1 and
a copy of H1 by renaming vertices u1, v1, and w1 of H1 with labels ui, vi, and wi,
respectively, and by identifying vertex wi−1 of Hi−1 and vertex ui of H1. H3 is shown
in Fig. 2.b. Vertices uj , vj , and wj of Hi, for 1 ≤ j ≤ i, are the outlets of Hi. The
family of graphs Hi has been defined in [9] to perform a reduction from Planar Graph
Colorability to Degree-4 Planar Graph Colorability. Here we use the same graph class
to reduce Planar Graph Acyclic 3-Colorability to Degree-4 Planar Graph Acyclic 3-
Colorability. It is easy to see that Hi satisfies the following properties: (P0) Hi admits
an acyclic 3-coloring; (P1) in any acyclic 3-coloring of Hi, the outlets have the same
color c0; (P2) in any acyclic 3-coloring of Hi, for any two outlets xj and yk of Hi,
there exist two bichromatic paths with colors c0 and c1, and with colors c0 and c2,
respectively, where x, y ∈ {u, v, w} and j, k ∈ {1, 2, . . . , i}.

We reduce Planar Graph Acyclic 3-Colorability to Degree-4 Planar Graph Acyclic
3-Colorability. Let G be any instance of Planar Graph Acyclic 3-Colorability (Fig. 3.a).
For each vertex z of G with d neighbors z1, z2, . . . , zd, delete z and its incident edges
from G, introduce a copy H(z) of Hd, and add an edge between outlet vj of H(z)
and zj , for each j=1, 2, . . . , d (Fig. 3.b). We argue that the resulting planar graph G′ of
degree 4 admits an acyclic 3-coloring if and only if G admits an acyclic 3-coloring.

Suppose that G admits an acyclic 3-coloring. Color the outlets zj corresponding to
each vertex z of G with the color of z. By properties P0 and P1, the coloring of each
H(z) can be completed to an acyclic 3-coloring. Any cycle C′ of G′ either is entirely

4

6

7

1

2

9

8

5

3

H(5)

H(1)
H(4)

H(6)

H(7)

H(9)

H(8)

H(3)

H(2)

(a) (b)

Fig. 3. (a) A planar graph G. (b) Graph G′ obtained by replacing each degree-d vertex z of G
with a copy H(z) of Hd. For each graph H(z), only its outlets are shown.
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contained in a graph H(z) (hence C′ is not bichromatic), or contains vertices of several
graphs H(z). In the latter case suppose, for a contradiction, that C′ is bichromatic.
Consider the (possibly non-simple) cycle C of G containing a vertex z if C′ passes
through vertices of H(z) and containing an edge (z1, z2) if C′ contains an edge between
a vertex of H(z1) and a vertex of H(z2). Since the outlets of H(z) have the same color
of z, the colors of the vertices of C are a subset of the colors of the vertices of C′;
since C′ is bichromatic, C is bichromatic, as well, contradicting the assumption that the
coloring of G is acyclic.

Suppose that G′ admits an acyclic 3-coloring. Color G by assigning to each vertex z
the color of the outlets of H(z) (by Property P1, all such outlets have the same color).
Suppose that G contains a bichromatic cycle C with colors c0 and c1. A bichromatic
cycle C′ in G′ is found by replacing each vertex z1 of C with a path with colors c0 and
c1 connecting the outlets of H(z1) adjacent to the outlets of H(z2) and H(z3), where
z2 and z3 are the neighbors of z1 in C. Such a path exists by Property P2. Then, C′ is a
bichromatic cycle in G′, contradicting the assumption that the coloring of G′ is acyclic.

Now we show infinite classes of cubic planar graphs not admitting any acyclic 3-
coloring. Such a result is based on the following lemmata. Denote by K2,3 the complete
bipartite graph whose vertex sets V A

2,3 and V B
2,3 have two and three vertices, respectively.

Denote by K1,1,2 the complete tripartite graph whose vertex sets V A
1,1,2, V B

1,1,2, and
V C

1,1,2 have one, one, and two vertices, respectively.

Lemma 1. Let G be a graph having a vertex z of degree 2 adjacent to two vertices
u and v. Let G′ be the graph obtained by substituting z with a copy of K2,3, where a
vertex uB

2,3 of V B
2,3 is connected to u and a vertex vB

2,3 �=uB
2,3 of V B

2,3 is connected to v
(see Fig. 4.a and Fig. 4.b). Then, G′ has an acyclic 3-coloring if and only if G has an
acyclic 3-coloring.

Proof: Suppose that G has an acyclic 3-coloring. Color each vertex of G′ not in K2,3

as in G, the vertices in V B
2,3 with the color cz of z, and the vertices in V A

2,3 with the two
colors different from cz . Every cycle C′ in G′ either does not pass through vertices of
K2,3 (hence it is also a cycle in G and it is not bichromatic), or it is a subgraph of K2,3

(hence it is not bichromatic), or it passes through vertices of K2,3 and contains a path
P ′ from uB

2,3 to vB
2,3 whose vertices do not belong to K2,3 (except for uB

2,3 and vB
2,3).

However, P ′ is a cycle in G (where uB
2,3 and vB

2,3 are identified to be the same vertex
z), hence it is not bichromatic.

Suppose that G′ has an acyclic 3-coloring. In any acyclic coloring of K2,3, the ver-
tices in V B

2,3 have the same color cz . Color each vertex of G different from z as in G′

and color z with cz . Every cycle C in G either does not pass through z (hence it is also
a cycle in G′ and it is not bichromatic), or passes through z. In the latter case, if C is
bichromatic then each of its vertices has either the color of z or the one of u. However,
one vertex in V A

2,3, say xA
2,3, has the color of u, hence the cycle C′ of G′ obtained from

C by replacing (u, z, v) with (u, uB
2,3, x

A
2,3, v

B
2,3, v) is bichromatic, a contradiction. �

Lemma 2. Let G be a graph having a vertex z of degree 2 adjacent to two vertices u
and v. Let G′ be the graph obtained by substituting z with a copy of K1,1,2, where a
vertex uC

1,1,2 of V C
1,1,2 is connected to u and a vertex vC

1,1,2 �=uC
1,1,2 of V C

1,1,2 is connected
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 4. (a) and (b) Replacement of a degree-2 vertex with a K2,3. (a) and (c) Replacement of a
degree-2 vertex with a K1,1,2. (d) G5. (e) G9. (f) G13. (g) G+

5 . (h) G+
9 . (i) G+

13.

to v (see Fig. 4.a and Fig. 4.c). Then, G′ has an acyclic 3-coloring if and only if G has
an acyclic 3-coloring.

Graph G5 (Fig. 4.d) has no acyclic 3-coloring and has a degree-2 vertex. For i > 0,
replace the degree-2 vertex of G4i+1 with a copy of K2,3, obtaining a graph G4i+5 that
has a degree-2 vertex and, by Lemma 1, is not acyclically 3-colorable. Figs. 4.e–f show
G9 and G13. Replacing the degree-2 vertex of G4i+1 with a copy of K1,1,2 yields a
graph G+

4i+1 that, by Lemma 2, is not acyclically 3-colorable. Figs. 4.g–i show G+
5 ,

G+
9 , G+

13. Graphs G+
4i+1 are cubic, for every i > 0.

4 Acyclic 3-Colorings of Planar Graph Subdivisions

In this section we prove the following theorem.

Theorem 3. Every planar graph has a 1-subdivision that admits an acyclic 3-coloring.

Proof: It suffices to prove the statement for maximal planar graphs. In fact, suppose that
the statement holds for maximal planar graphs. Let G be a planar graph. Augment G to
a maximal planar graph G′ by adding dummy edges. Then G′ has a 1-subdivision G′

s

that has an acyclic 3-coloring c. Remove the edges of G′
s corresponding to subdivided

dummy edges of G′, obtaining a planar graph Gs that is a subdivision of G. Since every
cycle of Gs is also a cycle of G′

s, c is an acyclic 3-coloring of Gs.
Consider a planar drawing of any maximal planar graph G. Let Gs be the planar

graph obtained by subdividing each edge of G with one subdivision vertex. Partition
the vertices of G into disjoint sets V 0, V 1, . . . , V k as follows. Let G0=G; while there
are vertices in Gi, denote by V i the main vertices incident to the outer face of Gi;
remove the vertices in V i and their incident edges from Gi obtaining a graph Gi+1.
Each edge of G is either incident to two vertices in the same set V i or to two vertices
in sets V i and V i+1, for some i ∈ {0, 1, . . . , k − 1}.

Color the main vertices in V i with color cj(i), where j(i) ∈ {0, 1, 2} and j(i) ≡
i mod 3. Color each subdivision vertex adjacent to a vertex in V i and to a vertex in
V i+1 with color cj(i+2). See Fig. 5.a. It remains to color each subdivision vertex adja-
cent to two vertices belonging to the same V i. Consider the outerplanar subgraph Oi

of G induced by the vertices in V i. Augment Oi to maximal by adding dummy edges.
See Fig. 5.b. Let Oi

s be the graph obtained by subdividing each edge of Oi with one
subdivision vertex. Each subdivision vertex of Gs adjacent to two vertices belonging
to the same V i, for some i ∈ {1, 2, . . . , k}, is also a subdivision vertex of Oi

s. Hence,
a coloring of the subdivision vertices of Oi

s determines a coloring of the subdivision
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Fig. 5. (a) Coloring the main vertices and the subdivision vertices of Gs adjacent to a vertex in
V i and to a vertex in V i+1. Thick edges connect vertices of G in the same V i. (b) Subgraph O2

of G augmented to maximal. (c)–(d) Coloring O2
s at steps x and x + 1 of the algorithm. Not yet

colored subdivision vertices of O2
s are not shown.

vertices of Gs adjacent to two vertices in the same V i. We show how to color the subdi-
vision vertices of Oi

s. The algorithm already chose to color all the main vertices of Oi
s

with color cj(i). Since Oi is maximal, every internal face of Oi
s has three subdivision

vertices. The coloring algorithm consists of several steps. At the first step, consider any
internal face f∗ of Oi

s. Color two of its subdivision vertices with cj(i+1) and the third
one with cj(i+2). At the x-th step, with x ≥ 2, suppose that the subgraph Oi,x

s of Oi
s

induced by the colored subdivision vertices and by their neighbors is biconnected. See
Fig. 5.c. Consider any internal face of Oi

s of which one subdivision vertex has already
been colored. Color the other two subdivision vertices incident to the face, one with
cj(i+1) and the other one with cj(i+2). See Fig. 5.d.

We show that the resulting coloring of Gs is acyclic. Consider any simple cycle C.
If C contains main vertices in V i and V i+1, then C contains two edges (vp, vs) and
(vs, vq), where vp and vq are main vertices in V i and V i+1, respectively, and vs is
a subdivision vertex. However, vp, vq , and vs have color cj(i), cj(i+1), and cj(i+2),
respectively, hence C is not bichromatic. Otherwise, C only contains main vertices in
the same V i. Then, C is also a cycle of Oi

s. We show by induction that the described
coloring of Oi

s is acyclic. The coloring of f∗ is acyclic. Suppose that, after a certain
step of the coloring algorithm for the vertices of Oi

s, the subgraph Oi,x
s of Oi

s induced
by the colored subdivision vertices and by their neighbors is acyclic. When a new face
is considered and two subdivision vertices v1 and v2 are colored with colors cj(i+1) and
cj(i+2), respectively, every cycle either entirely belongs to Oi,x

s , hence by induction it
is not bichromatic, or passes through v1, v2, and their common neighbor, hence it is not
bichromatic. �

5 Acyclic 3-Colorings of Series-Parallel Graphs

In this section we consider the problem of determining which are the SP-graphs such
that every 3-coloring is acyclic. First, we show a simple algorithm to construct an
acyclic 3-coloring of any SP-graph. Let c(x) denote the color assigned to vertex x.
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Theorem 4. Every SP-graph G with poles u and v admits an acyclic 3-coloring such
that c(u)�=c(v) and every path connecting u and v, except for edge (u, v), contains a
vertex w with c(w)�=c(u), c(v).

Proof: We prove the statement by induction on the number n of vertices. Case n=2 is
trivial. If n > 2, distinguish two cases: (Case 1) G is a series composition of SP-graphs
G0, · · · , Gk, such that Gi has poles ui and vi, with u0=u, vi=ui+1, and vk=v; (Case 2)
G is a parallel composition of SP-graphs G0, · · · , Gk with poles u and v.

In Case 1, apply induction to construct an acyclic 3-coloring of Gi with colors c0,
c1, and c2 such that c(ui)=cj(i) and c(vi)=cj(i+1), for each i=0, 1, . . . , k − 1, where
j(i) ∈ {0, 1, 2} and j(i) ≡ i mod 3. Apply induction to construct an acyclic 3-
coloring of Gk with colors c0, c1, and c2 such that c(uk)=cj(k), and such that c(vk)=c1,
if c(uk)=c0 or c(uk)=c2, and c(vk)=c2, if c(uk)=c1. By construction, c(u0=u)=c0,
c(u1)=c1, c(u2)=c2. Every path connecting u and v passes through u0, u1, and u2,
hence it is not bichromatic. Further, any simple cycle in G is also a cycle in a compo-
nent Gi. Hence, by induction, the coloring of G is acyclic.

In Case 2, apply induction to construct an acyclic 3-coloring of Gi, for i=0, 1, · · · , k,
with colors c0, c1, and c2 such that c(u)=c0, c(v)=c1, and every path connecting u and
v in Gi, except for edge (u, v), contains a vertex w with c(w)=c2. By construction,
c(u)=c0 and c(v)=c1. Further, every path connecting u and v is also a path in a compo-
nent Gi which, by induction, contains a vertex with color c2, unless it is edge (u, v). Let
C be any simple cycle in G. If all the vertices of C belong to a graph Gi, then C is not
bichromatic by induction. Otherwise, C contains vertices u and v, hence it consists of
two paths P1 and P2 connecting u and v and belonging to two distinct components Gi

and Gj . At most one of P1 and P2, say P1, coincides with edge (u, v). By induction,
P2 contains a vertex of color c2. �
Second, we characterize the SP-graphs that have a 3-coloring in which the poles have
distinct colors and the SP-graphs that have a 3-coloring in which the poles have the
same color.

Corollary 1. Every SP-graph with poles u and v admits a 3-coloring with c(u)�=c(v).

Lemma 3. Every SP-graph G with poles u and v admits a 3-coloring with c(u)=c(v)
if and only if G does not contain edge (u, v).

Proof: The necessity is trivial. We inductively prove the sufficiency. Suppose that G is
a parallel composition of SP-graphs G0, G1, . . . , Gk and that G does not contain edge
(u, v). Then, no component Gi contains (u, v), hence it admits a 3-coloring in which
c(u)=c(v) by induction. Suppose that G is a series composition of graphs
G0, G1, . . . , Gk. Color G0 so that c(u)=c0 and the other pole of G0 has color c1. Such a
coloring exists by Corollary 1. For 1 ≤ i ≤ k− 1, assume that the color of the pole that
Gi shares with Gi−1 has been already determined to be either c1 or c2. Color the pole
that Gi shares with Gi+1 with color c2 or c1, respectively, and color Gi so that its poles
have colors c1 and c2 (such a coloring exists by Corollary 1). Complete the coloring of
G by setting c(v)=c0 and by coloring Gk so that its poles have colors c0 and either c1

or c2. Again, such a coloring exists by Corollary 1. �
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Third, we characterize the SP-graphs that have a 3-coloring in which there exists a
bichromatic path between the poles.

Lemma 4. Let G be an SP-graph with poles u and v. Suppose that G is a parallel com-
position of SP-graphs G0, G1, . . . , Gk. Then, G admits a 3-coloring with c(u)�=c(v)
and with a bichromatic path between u and v if and only if there exists a component
that admits a 3-coloring with c(u)�=c(v) and with a bichromatic path between u and v.

Proof: The necessity comes from the observation that every bichromatic path between
u and v in G is internal to a component Gi. We prove the sufficiency. There exists a Gi

admitting a 3-coloring with c(u)�=c(v) and with a bichromatic path between u and v.
By Corollary 1, all other components can be colored with c(u)�=c(v), thus completing
a 3-coloring of G with the required properties. �

Lemma 5. Let G be an SP-graph with poles u and v. Suppose that G is a series com-
position of SP-graphs G0, G1, . . . , Gk. Then, G admits a 3-coloring with c(u)�=c(v)
and with a bichromatic path between u and v if and only if the following two condi-
tions are satisfied: (1) Each component admits a 3-coloring with a bichromatic path
between its poles and (2) there exists a component Gi with poles ui and vi that admits
a 3-coloring with c(ui)=c(vi) and with a bichromatic path between ui and vi, and a
3-coloring with c(ui)�=c(vi) and with a bichromatic path between ui and vi, or there
exists an odd number of components that admit a 3-coloring in which the poles have
different colors and are connected by a bichromatic path.

Proof: We prove the necessity of (1). Suppose that there exists a Gi that admits no
3-coloring with a bichromatic path between its poles. Every path connecting u and v
contains a path between Gi’s poles, hence it is not bichromatic. We prove the necessity
of (2). Suppose, for a contradiction, that (2) does not hold. Then, in every 3-coloring
of G with a bichromatic path between u and v, there is an even number of components
Gi such that c(ui)�=c(vi), hence c(u)=c(v). We prove the sufficiency. Suppose that
each component Gi admits a 3-coloring with a bichromatic path between its poles.
First, suppose that there exists a component Gi with poles ui and vi that admits a
3-coloring with c(ui)=c(vi) and with a bichromatic path between ui and vi, and a 3-
coloring with c(ui)�=c(vi) and with a bichromatic path between ui and vi. Set c(u0)=c0.
For 0 ≤ j ≤ i − 1, assume that c(uj) has already been determined to be either c0 or
c1; color Gj so that there exists a bichromatic path between uj and vj and so that c(vj)
is either c0 or c1. Analogously, set c(vk)=c1. For k ≥ j ≥ i + 1, assume that c(vj)
has been determined to be either c0 or c1; color Gj so that there exists a bichromatic
path between uj and vj and so that c(uj) is either c0 or c1. Color Gi so that there
exists a bichromatic path between ui and vi; this can be done both if c(ui)=c(vi) and if
c(ui)�=c(vi). Second, suppose that there exists an odd number of components that admit
a 3-coloring in which the poles have different colors and are connected by a bichromatic
path. Each component has either a 3-coloring with a bichromatic path between its poles
and the poles have the same color, or a 3-coloring with a bichromatic path between its
poles and the poles have distinct colors. Color each component with such a coloring, so
that its poles have colors in {c0, c1}. Since an odd number of components have poles
with different colors, c(u)�=c(v). �
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Lemma 6. Let G be an SP-graph with poles u and v. Suppose that G is a parallel com-
position of SP-graphs G0, G1, . . . , Gk. Then, G admits a 3-coloring with c(u)=c(v)
and with a bichromatic path between u and v if and only if G does not contain edge
(u, v) and there exists a component admitting a 3-coloring with c(u)=c(v) and with a
bichromatic path between u and v.

Lemma 7. Let G be an SP-graph with poles u and v. Suppose that G is a series compo-
sition of SP-graphs G0, G1, . . . , Gk. Then, G admits a 3-coloring with c(u)=c(v) and
with a bichromatic path between u and v if and only if the following two conditions are
satisfied: (1) Each component admits a 3-coloring with a bichromatic path between its
poles and (2) there exists a component Gi with poles ui and vi admitting a 3-coloring
with c(ui)=c(vi) and with a bichromatic path between ui and vi, and a 3-coloring with
c(ui)�=c(vi) and with a bichromatic path between ui and vi, or there exists an even
number of components admitting a 3-coloring in which the poles have different colors
and are connected by a bichromatic path.

Fourth, we characterize the SP-graphs such that every 3-coloring in which the poles
have distinct colors is acyclic and the SP-graphs such that every 3-coloring in which the
poles have the same color is acyclic.

Lemma 8. Let G be an SP-graph with poles u and v. Suppose that G is a parallel com-
position of SP-graphs G0, G1, . . . , Gk. Then, every 3-coloring of G with c(u)�=c(v) is
acyclic if and only if the following two conditions are satisfied: (1) For each compo-
nent Gi, every 3-coloring with c(u)�=c(v) is acyclic; (2) there exist no two components
admitting a 3-coloring with c(u)�=c(v) and with a bichromatic path between u and v.

Lemma 9. Let G be an SP-graph with poles u and v. Suppose that G is a series com-
position of SP-graphs G0, G1, . . . , Gk. Then, every 3-coloring of G with c(u)�=c(v) is
acyclic if and only if the following two conditions are satisfied: (1) For each compo-
nent Gi with poles ui and vi, every 3-coloring with c(ui)�=c(vi) is acyclic; (2) for each
component Gi with poles ui and vi, every 3-coloring with c(ui)=c(vi) is acyclic.

Lemma 10. Let G be an SP-graph with poles u and v. Suppose that G is a parallel
composition of SP-graphs G0, G1, . . . , Gk. Then, every 3-coloring of G with c(u)=c(v)
is acyclic if and only if one of the following two conditions is satisfied: (1) There exists
a component Gi not admitting any 3-coloring with c(ui)=c(vi); or (2) for each com-
ponent Gi, every 3-coloring with c(u)=c(v) is acyclic and no two components exist
admitting a 3-coloring with c(u)=c(v) and with a bichromatic path between u and v.

Lemma 11. Let G be an SP-graph with poles u and v. Suppose that G is a series com-
position of SP-graphs G0, G1, . . . , Gk. Then, every 3-coloring of G with c(u)=c(v) is
acyclic if and only if the following three conditions are satisfied: (1) For each com-
ponent Gi with poles ui and vi, every 3-coloring with c(ui)�=c(vi) is acyclic; (2) if
k > 2, for each component Gi with poles ui and vi, every 3-coloring with c(ui)=c(vi)
is acyclic; (3) if k=2, for each component Gi with poles ui and vi, every 3-coloring
with c(ui)=c(vi) is acyclic, or there exists a component not admitting any 3-coloring
in which c(ui)=c(vi).
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Fig. 6. Triconnected cubic planar graphs with no acyclic 3-coloring

Finally, we conclude by observing that an SP-graph with poles u and v is such that
every 3-coloring is acyclic if and only if every 3-coloring in which c(u)�=c(v) is acyclic
and every 3-coloring in which c(u)=c(v) is acyclic. The above characterization gives
rise to a linear-time recognition algorithm.

Theorem 5. There exists a linear-time algorithm for deciding whether an SP-graph is
such that every 3-coloring is acyclic.

Proof: The SPQ-tree T of an SP-graph G can be computed in linear-time (see,
e.g., [17]). Then, each node μ of T with poles uµ and vµ can be equipped with val-
ues indicating whether: (i) G(μ) admits a 3-coloring with c(uµ)=c(vµ); (ii) G(μ) ad-
mits a 3-coloring with c(uµ)�=c(vµ) and with a bichromatic path between uµ and vµ,
G(μ) admits a 3-coloring with c(uµ)=c(vµ) and with a bichromatic path between uµ

and vµ, and G(μ) admits a 3-coloring with a bichromatic path between uµ and vµ; and
(iii) every 3-coloring of G(μ) in which c(uµ)�=c(vµ) is acyclic, every 3-coloring of
G(μ) in which c(uµ)=c(vµ) is acyclic, and every 3-coloring of G(μ) is acyclic. Due to
Lemmata 3–11, the computation of such values for μ only requires simple checks on
analogous values for the children of μ in T . �

6 Conclusions

In this paper we have shown several results on the acyclic 3-colorability of planar
graphs. We proved that recognizing acyclic 3-colorable planar graphs of degree 4 is
NP-hard. Further, we exhibited infinite classes of subcubic and cubic planar graphs
with no acyclic 3-coloring, result contrasting with the fact that all cubic planar graphs
have a 3-coloring, except for K4 [8]. However, the following problem is still open.

What is the time complexity of testing whether a sub-cubic graph (resp. a cubic
graph) admits an acyclic 3-coloring?

The problem is interesting even when restricted to triconnected cubic planar graphs.
Moreover, we are aware of only three graphs that are cubic, triconnected, and not acyclic
3-colorable (see Fig. 6). The graphs depicted in Figs. 6.a and 6.b were already known
to have no acyclic 3-coloring. On the other hand, the graph depicted in Fig. 6.c seems
to have gone unnoticed in the literature.

Does an infinite number of triconnected, cubic, and not acyclic 3-colorable planar
graphs exist? What is the time complexity of testing whether a triconnected cubic planar
graph admits an acyclic 3-coloring?

We have shown that it is possible to test in linear time whether every 3-coloring of
an SP-graph is acyclic. Testing and characterizing the same property for general planar
graphs seems to be interesting and non-trivial.
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Is it possible to test in polynomial time whether every 3-coloring of a given planar
graph is acyclic?

Finally, we would like to remind a problem that has been already studied in the
literature but that has not been tackled in this paper.

Which is the smallest k such that all planar graphs with girth at least k are acyclic
3-colorable?

The best known lower bound for k is 5 (the second graph of Fig. 6, proposed by
Grünbaum, has girth 4 and is not acyclic 3-colorable [10]), while the best known upper
bound for k is 7, as proved by Borodin, Kostochka, and Woodall [7].
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