

Lecture Notes in Computer Science 5942
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Md. Saidur Rahman Satoshi Fujita (Eds.)

WALCOM: Algorithms
and Computation

4th International Workshop, WALCOM 2010
Dhaka, Bangladesh, February 10-12, 2010
Proceedings

13

Volume Editors

Md. Saidur Rahman
Bangladesh University of Engineering and Technology (BUET)
Department of Computer Science and Engineering
Dhaka 1000, Bangladesh
E-mail: saidurrahman@cse.buet.ac.bd

Satoshi Fujita
Hiroshima University
Graduate School of Engineering
Department of Information Engineering
Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, Japan
E-mail: fujita@se.hiroshima-u.ac.jp

Library of Congress Control Number: 2009942780

CR Subject Classification (1998): F.2, G.2.1, G.2.2, G.4, I.1, I.3.5, E.1, B.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11439-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11439-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12836628 06/3180 5 4 3 2 1 0

Preface

WALCOM 2010, the 4th International Workshop on Algorithms and Compu-
tation, held during February 10–12, 2010 in Dhaka, Bangladesh, covered the
areas of approximation algorithms, combinatorial algorithms, combinatorial op-
timization, computational Biology, computational geometry, data structures,
graph algorithms, graph drawing, parallel and distributed algorithms, param-
eterized complexity, network optimization, online algorithms, randomized al-
gorithms and string algorithms. The workshop was organized jointly by the
Bangladesh Academy of Sciences (BAS) and Bangladesh University of Engi-
neering and Technology (BUET), and the quality of the workshop was ensured
by a Program Committee comprising 25 researchers of international repute from
Australia, Bangladesh, Canada, France, Germany, Greece, Hong Kong, Hungary,
India, Italy, Japan, Switzerland, Taiwan, UK and USA.

This volume contains 23 contributed papers and four invited papers presented
at WALCOM 2010. The Call for Papers received an enthusiastic response, result-
ing in 60 submissions from 21 countries. The Program Committee thoroughly
reviewed each of the 60 submissions and accepted 23 of them for presentation
in the workshop after elaborate discussions on review reports. The image of
the workshop was highly enhanced by the four invited talks of eminent and well-
known researchers Tetsuo Asano of JAIST, Japan, Subir Kumar Ghosh of TIFR,
India, Giuseppe Liotta of University of Perugia, Italy and János Pach of EPFL
Lausanne, Switzerland and Rényi Institute Budapest, Hungary.

As editors of this proceedings, we would like to thank all the authors who
submitted their papers to WALCOM 2010. Our sincere appreciation goes to the
invited speakers for joining us and presenting their talks on recent research ar-
eas of computer science from which researchers of this field will be immensely
benefited. We thank the members of the Program Committee and external re-
viewers for their wonderful job in reviewing the manuscripts. We acknowledge
the Steering Committee members for their continuous encouragement. We also
thank the advisory committee members M. Shamsher Ali, Naiyyum Choudhury
and A.M.M. Safiullah for their inspiring support to this workshop. We are in-
debted to the Organizing Committee led by M. Kaykobad and Md. Monirul Islam
for their excellent services that made the workshop a grand success. We thank
M.A. Mazed for his prompt organizational support and appreciate Debajyoti
and Rahnuma for their tireless effort for the workshop.

We would like to thank Springer for publishing these proceedings in their pres-
tigious LNCS series. This workshop is in cooperation with Technical Committee
on Computation, IEICE, and Special Interest Group for Algorithms, IPSJ. We
acknowledge the EasyChair conference system—a free conference management

VI Preface

system that is flexible, easy to use, and has many features to make it suitable for
various conference models. Finally, we thank our sponsors for their assistance
and support.

February 2010 Md. Saidur Rahman
Satoshi Fujita

WALCOM Organization

WALCOM Steering Committee

Kyung-Yong Chwa KAIST, Korea
Costas S. Iliopoulos KCL, UK
M. Kaykobad BUET, Bangladesh (Convenor)
Petra Mutzel TU Dortmund, Germany
Shin-ichi Nakano Gunma University, Japan
Subhas Chandra Nandy Indian Statistical Institute, Kolkata, India
Takao Nishizeki Tohoku University, Japan
Md. Saidur Rahman BUET, Bangladesh
C. Pandu Rangan IIT, Madras, India

WALCOM 2010 Organizers

VIII Organization

WALCOM 2010 Committees

Advisory Committee

M. Shamsher Ali President, BAS
Naiyyum Choudhury Secretary, BAS
A.M.M. Safiullah Vice-Chancellor, BUET

Program Committee

Tetsuo Asano JAIST, Japan
Therese Biedl University of Waterloo, Canada
Sandip Das Indian Statistical Institute, Kolkata, India
Hubert de Fraysseix CNRS, France
Satoshi Fujita Hiroshima University, Japan (Co-chair)
Subir Kumar Ghosh TIFR, India
Ming-Yang Kao Northwestern University, USA
Giuseppe Liotta University of Perugia, Italy
Alejandro López-Ortiz University of Waterloo, Canada
Meena Mahajan The Institute of Mathematical Science,

Chennai, India
Brendan D. McKay Australian National University, Australia
Petra Mutzel TU Dortmund, Germany
Hiroshi Nagamochi Kyoto University, Japan
Shin-ichi Nakano Gunma University, Japan
Subhas Chandra Nandy Indian Statistical Institute, Kolkata, India
János Pach EPFL Lausanne, Switzerland and

Rényi Institute Budapest, Hungary
Leonidas Palios University of Ioannina, Greece
Tomasz Radzik King’s College London, UK
Md. Saidur Rahman BUET, Bangladesh (Co-chair)
William F. Smyth McMaster University, Canada and Curtin

University, Australia
Anand Srivastav CAU Kiel, Germany
Takeshi Tokuyama Tohoku University, Japan
Ryuhei Uehara JAIST, Japan
Hsu-Chun Yen National Taiwan University, Taiwan
W. Zang The University of Hong Kong, Hong Kong

Organizing Committee

Reaz Ahmed
Syed Ishtiaque Ahmed
Shah Md. Rifat Ahsan
Md. Mostofa Akbar

Muhammad Jawaherul Alam
Muhammad Masroor Ali
Md. Tanvir Al Amin
Md. Faizul Bari

Organization IX

Sukarna Barua
Md. Shamsuzzoha Bayzid
Md. Shariful Islam Bhuyan
Naiyyum Choudhury
Shihabur Rahman Chowdhury
Anupam Das
Rajkumar Das
Masud Hasan
Mojahedul Hoque Abul Hasnat
A.S.M. Latiful Hoque
Md. Iqbal Hossain
Shahrear Iqbal
Md. Monirul Islam (Co-chair)
Md. Monirul Islam
Mohammad Mahfuzul Islam
Nusrat Sharmin Islam
Md. Humayun Kabir
Md. Rezaul Karim
M. Kaykobad (Co-chair)
M.A. Mazed

Momenul Islam Milton
Debajyoti Mondal
Md. Abu Sayeed Mondol
Tanaeem Muhammad Moosa
Mahmuda Naznin
Rahnuma Islam Nishat
Suraiya Parveen
Md. Anindya Tahsin Prodhan
A.K.M. Ashikur Rahman
M. Sohel Rahman
Md. Saidur Rahman (Secretary)
Md. Shaifur Rahman
Md. Wasi-ur-Rahman
Arup Raton Roy
Md. Abdus Sattar
Khaled Mahmud Shahriar
Nashid Shahriar
Rifat Shahriyar
Sadia Sharmin

External Reviewers

Alam, Muhammad Jawaherul
Binucci, Carla
Bishnu, Arijit
Claude, Francisco
Cohen, Elad
Cooper, Colin
Datta, Samir
Di Giacomo, Emilio
Didimo, Walter
Dorrigiv, Reza
El Ouali, Mourad
Fraser, Robert
Grilli, Luca
Islam, Md. Monirul
Jäger, Gerold
Karim, Md. Rezaul
Karmakar, Arindam
Kliemann, Lasse

Langetepe, Elmar
Langfeld, Barbara
Lin, Chun-Cheng
Misra, Neeldhara
Muthu, Rahul
Nimbhorkar, Prajakta
Romero, Jazmin
Ruiz Velasquez, Lesvia Elena
Salinger, Alejandro
Samee, Md. Abul Hassan
Sarma, Jayalal M.N.
Satti, Srinivasa Rao
Sauerland, Volkmar
Shibuya, Tetsuo
Sikdar, Somnath
Sun, Jonathan Z.
Zhao, Liang

X Organization

WALCOM 2010 Sponsors

Table of Contents

Invited Talks

Crossings between Curves with Many Tangencies . 1
Jacob Fox, Fabrizio Frati, János Pach, and Rom Pinchasi

Constant-Work-Space Algorithm for a Shortest Path in a Simple
Polygon . 9

Tetsuo Asano, Wolfgang Mulzer, and Yajun Wang

Approximation Algorithms for Art Gallery Problems in Polygons and
Terrains . 21

Subir Kumar Ghosh

The Hamiltonian Augmentation Problem and Its Applications to
Graph Drawing . 35

Emilio Di Giacomo and Giuseppe Liotta

Graph Drawing

Small Grid Drawings of Planar Graphs with Balanced Bipartition 47
Xiao Zhou, Takashi Hikino, and Takao Nishizeki

Switch-Regular Upward Planar Embeddings of Trees 58
Carla Binucci, Emilio Di Giacomo, Walter Didimo, and
Aimal Rextin

A Global k-Level Crossing Reduction Algorithm . 70
Christian Bachmaier, Franz J. Brandenburg,
Wolfgang Brunner, and Ferdinand Hübner

Computational Geometry

Computation of Non-dominated Points Using Compact Voronoi
Diagrams . 82

Binay Bhattacharya, Arijit Bishnu, Otfried Cheong, Sandip Das,
Arindam Karmakar, and Jack Snoeyink

Cutting a Convex Polyhedron Out of a Sphere . 94
Syed Ishtiaque Ahmed, Masud Hasan, and Md. Ariful Islam

A Simple Algorithm for Approximate Partial Point Set Pattern
Matching under Rigid Motion . 102

Arijit Bishnu, Sandip Das, Subhas C. Nandy, and
Bhargab B. Bhattacharya

XII Table of Contents

Graph Algorithms I

Acyclically 3-Colorable Planar Graphs . 113
Patrizio Angelini and Fabrizio Frati

Reconstruction Algorithm for Permutation Graphs 125
Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara

Harmonious Coloring on Subclasses of Colinear Graphs 136
Kyriaki Ioannidou and Stavros D. Nikolopoulos

Computational Biology and Strings

Comparing RNA Structures with Biologically Relevant Operations
Cannot Be Done without Strong Combinatorial Restrictions 149

Guillaume Blin, Sylvie Hamel, and Stéphane Vialette

The 1.375 Approximation Algorithm for Sorting by Transpositions Can
Run in O(n log n) Time . 161

Jesun S. Firoz, Masud Hasan, Ashik Z. Khan, and M. Sohel Rahman

Parallel Algorithms for Encoding and Decoding Blob Code 167
Saverio Caminiti and Rossella Petreschi

Combinatorial Optimization

A Rooted-Forest Partition with Uniform Vertex Demand 179
Naoki Katoh and Shin-ichi Tanigawa

A Simple and Faster Branch-and-Bound Algorithm for Finding a
Maximum Clique . 191

Etsuji Tomita, Yoichi Sutani, Takanori Higashi,
Shinya Takahashi, and Mitsuo Wakatsuki

Graph Algorithms II

On Some Simple Widths . 204
Ling-Ju Hung and Ton Kloks

A New Model for a Scale-Free Hierarchical Structure of Isolated
Cliques . 216

Takeya Shigezumi, Yushi Uno, and Osamu Watanabe

Approximation Algorithms

The Covert Set-Cover Problem with Application to Network
Discovery . 228

Sandeep Sen and V.N. Muralidhara

Table of Contents XIII

Variants of Spreading Messages . 240
T.V. Thirumala Reddy, D. Sai Krishna, and C. Pandu Rangan

On Finding a Better Position of a Convex Polygon Inside a Circle to
Minimize the Cutting Cost . 252

Syed Ishtiaque Ahmed, Md. Mansurul Alam Bhuiyan,
Masud Hasan, and Ishita Kamal Khan

Real Root Isolation of Multi-Exponential Polynomials with
Application . 263

Ming Xu, Liangyu Chen, Zhenbing Zeng, and Zhi-bin Li

Parameterized Complexity

FPT Algorithms for Connected Feedback Vertex Set 269
Neeldhara Misra, Geevarghese Philip, Venkatesh Raman,
Saket Saurabh, and Somnath Sikdar

A Simple and Fast Algorithm for Maximum Independent Set in
3-Degree Graphs . 281

Mingyu Xiao

Pathwidth and Searching in Parameterized Threshold Graphs 293
D. Sai Krishna, T.V. Thirumala Reddy, B. Sai Shashank, and
C. Pandu Rangan

Author Index . 305

Crossings between Curves with Many Tangencies

Jacob Fox1,�, Fabrizio Frati2, János Pach3,��, and Rom Pinchasi4

1 Department of Mathematics, Princeton University, Princeton, NJ
jacobfox@math.princeton.edu

2 Dipartimento di Informatica e Automazione, Roma Tre University, Italy
frati@dia.uniroma3.it

3 EPFL Lausanne, Switzerland and Rényi Institute Budapest, Hungary
pach@cims.nyu.edu

4 Mathematics Department,
Technion – Israel Institute of Technology, Haifa 32000, Israel

room@math.technion.ac.il

Abstract. Let A and B be two families of two-way infinite x-monotone
curves, no three of which pass through the same point. Assume that
every curve in A lies above every curve in B and that there are m pairs
of curves, one from A and the other from B, that are tangent to each
other. Then the number of proper crossings among the members of A∪B
is at least (1/2 − o(1))m ln m. This bound is almost tight.

1 Introduction

Studying the incidence structure of a family of curves in the plane is a classi-
cal theme in combinatorial geometry with many applications in computational
geometry. Venn diagrams were introduced in the 19th century to analyze log-
ical relationships between various statements [9,7]. The incidence structure of
non-overlapping circular disks was investigated by Koebe [2], while Erdős [4]
raised several questions about tangencies between possibly overlapping congru-
ent disks, including his famous problem on unit distances: How many pairs of
points can be at distance one from each other in a set of n points in the plane?
In other words, how many tangencies can occur among n unit diameter disks in
the plane? These are hard questions, see [5] for a survey.

An equally tantalizing innocent-looking question was asked by Richter and
Thomassen [6]. We say that two closed curves γ1 and γ2 in the plane properly
cross if they share at least one point p (called a crossing point) such that γ1
passes from one side to the other side of γ2 in a small neighborhood of p. We say
that two closed curves γ1 and γ2 in the plane touch or are tangent to each other,
if they share exactly one point. This point is called the point of tangency of the
two curves. We say that two closed curves are intersecting if they have at least
� Research supported by an NSF Graduate Research Fellowship and a Princeton Cen-

tennial Fellowship.
�� Research supported by NSF grant CCF-08-30272, by grants from NSA, OTKA, BSF,

and SNF.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 1–8, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 J. Fox et al.

∈ A
∈ A

∈ A

∈ B

∈ B

∈ B

Fig. 1. Two intersecting families A and B of curves in general position such that no
curve in A properly crosses any curve in B

one point in common. A family F of closed curves is intersecting if every pair of
them is intersecting. The family F is in general position if any two of its members
share only a finite number of points and no three members pass through the same
point. According to the Richter-Thomassen conjecture, any intersecting family
of n closed curves in general position in the plane determines a total of at least
(1−o(1))n2 crossing points. This, of course, holds automatically if no two curves
of the family touch each other, because then the number of crossing points is at
least 2

(
n
2

)
. Therefore, in order to settle the problem, we have to analyze families

of curves with many tangencies.
In this note, we take the first step in this direction by studying the system

of tangencies between two intersecting families A and B of curves in general
position, with the property that no curve in A properly crosses any curve in B
(see Fig. 1). In this case, we are going to prove that, if m denotes the number
of pairs of touching curves (α, β) with α ∈ A and β ∈ B, the total number
of crossing points in F = A ∪ B divided by m tends to infinity, as m → ∞.
Consequently, if |F| = n and m > εn2 for some ε > 0, then the total number of
crossing points in F is superquadratic in n.

For aesthetical reasons, we formulate our results for two-way infinite x-
monotone curves, that is, for graphs γf of continuous functions f : R → R.
For simplicity, in the sequel, we use the term curve in this sense. We say that a
curve γf lies above a curve γg if f(x) ≥ g(x) for all x ∈ R.

For any family F of curves in general position, let CN(F) denote the number
of crossing points.

Our main result is the following.

Theorem 1. Let A and B be two families of two-way infinite x-monotone curves
such that A ∪ B is in general position. Assume that every curve in A lies above
every curve in B and that there are m pairs of curves, one from A and the other
from B, that touch. Then the sum of the numbers of proper crossings among the
members of A and among the members of B satisfies

Crossings between Curves with Many Tangencies 3

CN(A) + CN(B) ≥
(

1
2
− o(1)

)
m ln m,

where the o(1) term goes to 0 as m tends to ∞.

We say that A and B completely touch if every member of A touches every
member of B.

Theorem 2. For every n > 2, there exist two completely touching n-member
families A and B of two-way infinite x-monotone curves such that A ∪ B is in
general position, every curve in A lies above every curve in B, and

CN(A) + CN(B) ≤
(

3
4

+ o(1)
)

n2 log2 n.

Comparing Theorems 1 and 2, we obtain that if c(n) denotes the minimum
number of crossing points in the union A ∪ B of two completely touching n-
member families of curves, A and B, such that all the members of A are above
all the members of B, then we have:

(1 − o(1))n2 ln n ≤ c(n) ≤
(

3
4

+ o(1)
)

n2 log2 n =
(

3
4 ln 2

+ o(1)
)

n2 ln n.

This shows that Theorem 1 is tight up to a multiplicative factor of roughly
3

4 ln 2 ≈ 1.082.
In Sections 2 and 3 of this note, we establish Theorems 1 and 2, respectively.

In the final section, we make some concluding remarks. In particular, we for-
mulate a combinatorial result of independent interest on alternations in certain
sequences over finite alphabets (Theorem 3), which can also be used to prove
Theorem 1.

2 Levels – Proof of Theorem 1

The lower k-level of a family F of curves is the closure of the set of all points that
lie on exactly one member of F and strictly above exactly k − 1 members (see
Fig. 2). Let �k(F) denote the number of all proper crossings among members of
F that lie on the lower k-level of F . Analogously, the upper k-level of a family
F of curves is the closure of the set of all points that lie on exactly one member
of F and strictly below exactly k − 1 members. Let uk(F) denote the number
of all proper crossings among members of F that lie on the upper k-level of F .
Note that each proper crossing among two members of a family F of curves in
general position lies on two consecutive levels, so that we have

|F|∑
k=1

�k(F) =
|F|∑
k=1

uk(F) = 2CN(F). (1)

4 J. Fox et al.

a1
a2
a3
a4

a4

a1

a2

a3

b1
b2
b3

b3

b1
b2

xinf(a3, b2)
xsup(a3, b2)

Fig. 2. Two families A and B of curves, with |A| = 4 and |B| = 3. The lower 2-level
of A and the upper 2-level of B are shown by thick lines. Black dots show xinf(a3, b2)
and xsup(a3, b2) when k = 2.

Theorem 1 can be easily deduced from the following lemma.

Lemma 1. Let k > 1 and A and B be two families of two-way infinite x-
monotone curves, each of cardinality at least k, such that A ∪ B is in general
position. Assume that every curve in A lies above every curve in B and that
there are m pairs of curves, one from A and the other from B, that touch. Then,
we have

�1(A) + u1(B) ≥ m − 1,

and
�k(A) + uk(B) ≥ 2

m

k
− 4k.

Proof: We may assume without loss of generality that all crossing points be-
tween members of A∪B have distinct x-coordinates and that all of these values
belong to the open interval 0 < x < 1.

Note that, as x varies between the x-coordinates of two consecutive points
at which a member of A touches a member of B, the lowest curve of A or the
highest curve of B must change. This yields the inequality

�1(A) + u1(B) ≥ m − 1.

Fix k > 1. For any 0 ≤ ξ ≤ 1 which is not the x-coordinate of an intersection
point, let Ak(ξ) denote the kth lowest curve in A at the vertical line x = ξ and let
Bk(ξ) denote the kth highest curve in B at the vertical line x = ξ. Analogously,
A≤k(ξ) denotes the family consisting of the k lowest curves in A at the vertical
line x = ξ and B≤k(ξ) denotes the family consisting of the k highest curves in B
at the vertical line x = ξ.

For ξ = 0 or ξ = 1, the number of pairs (a, b) ∈ A≤k(ξ) × B≤k(ξ) is k2. A
pair (a, b) ∈ A × B is said to be internally touching if a and b touch each other
and

(a, b) 	∈ (A≤k(0) × B≤k(0)) ∪ (A≤k(1) × B≤k(1)) .

Let I stand for the number of internally touching pairs (a, b). Clearly, we have
I ≥ m − 2k2. For any internally touching pair (a, b), let (see Fig. 2)

Crossings between Curves with Many Tangencies 5

1. xinf(a, b) be the infimum of all x-values for which Ak(x) = a and b ∈ B≤k(x),
or a ∈ A≤k(x) and Bk(x) = b, and let

2. xsup(a, b) be the supremum of all x-values for which Ak(x) = a and b ∈
B≤k(x), or a ∈ A≤k(x) and Bk(x) = b.

Obviously, we have xinf(a, b) < xsup(a, b) as the x-coordinate of the touching
point between a and b lies strictly between these two numbers. It is also clear
that the numbers xinf(a, b) and xsup(a, b) are x-coordinates of crossing points
lying on the kth lowest level of A or on the kth highest level of B.

For any 0 < ξ < 1, there are at most k internally touching pairs (a, b) with
xinf(a, b) = ξ. Indeed, for any a ∈ A such that a = Ak(ξ + ε), say, for all
sufficiently small ε > 0, all curves b ∈ B with xinf(a, b) = ξ must belong to the
set B≤k(ξ). This is a set of size k. Thus, the number of distinct x-coordinates ξ
at which either Ak(ξ) or Bk(ξ) changes is at least 2I/k. That is, we have

�k(A) + uk(B) ≥ 2I

k
≥ 2

m − 2k2

k
= 2

m

k
− 4k. �

A similar argument was used in [1].
Now we are in a position to establish Theorem 1.

Proof of Theorem 1: Assume without loss of generality that |A| ≥ |B| and
that every curve in A∪B participates in at least one touching pair. This implies
that any two members of A properly cross at least once and any two members
of B properly cross at least once. Hence, we have

CN(A) + CN(B) ≥
(|A|

2

)
+

(|B|
2

)
.

This completes the proof in the special case where m ≤ |A|2/ ln |A|, because
then the term

(|A|
2

)
already exceeds the desired lower bound. In particular, since

the total number m of touching pairs is at most |A||B|, we are done if |B| ≤
|A|/ ln |A|.

From now on, we can assume that

m > |A|2/ ln |A|
and

|A|/ ln |A| ≤ |B| ≤ |A|.
Let ε > 0 be a very small constant. Set K = m

1
2−ε, and add up �k(A)+uk(B) for

all 1 ≤ k ≤ K. Note that we can apply Lemma 1, since the last two inequalities
imply that K ≤ |B|. In view of (1), we obtain

CN(A) + CN(B) ≥ 1
2

K∑
k=1

(�k(A) + uk(B)) ≥ 1
2

(
m − 1 +

K∑
k=2

(
2
m

k
− 4k

))

≥ 1
2

(
m−2K(K + 1) + 3 + 2m

K∑
k=2

1
k

)
=
(

1
2
− ε − o(1)

)
m ln m.

6 J. Fox et al.

Letting ε → 0, we can conclude that CN(A)+CN(B) is at least (1
2 −o(1))m ln m,

as required. �

3 Constructive Upper Bound – Proof of Theorem 2

Let c(n) denote the minimum number of crossing points in the union of any two
completely touching n-member families of curves A ∪ B, where all members of
A are above all members of B.

We need the following:

Lemma 2. For any pair of positive integers i and j, we have

c(ij) ≤ i2c(j) + j2c(i).

Proof: Let (A′,B′) be a pair of completely touching i-member families of curves
with

CN(A′) + CN(B′) = c(i).

Replace each curve γ ∈ A′ ∪B′ by j curves that closely follow γ. For any α ∈ A′

and for any β ∈ B′, let each of the j curves corresponding to α touch each of
the j curves corresponding to β in a small neighborhood of the point where α
and β touch each other. This can be achieved by introducing c(j) crossings near
each point of tangency between α and β. Apart from the crossings introduced in
the neighborhoods of these points, the j new curves corresponding to an “old”
curve γ ∈ A′ ∪ B′ are disjoint.

Denote the family of ij curves obtained from the members of A′ by A, and
the family of ij curves obtained from B′ by B. Since the number of tangencies
between A′ and B′ is i2, there are at most i2c(j) crossings among the members
of A ∪ B that occur near these touching points. On the other hand, in a small
neighborhood of each crossing between two members of A′ or two members of B′,
we create j2 crossings in A or in B. Therefore, there are j2c(i) crossings among
members of A ∪ B that occur near crossings in A′ or B′. In view of the fact
that each crossing in A∪B occurs in a small neighborhood of either a touching
point or a crossing point in A′ ∪ B′, we obtain that c(ij) ≤ CN(A) + CN(B) ≤
i2c(j) + j2c(i), as required. �

Using the fact c(2) = 3, by repeated application of Lemma 2 with j = 2 and
i = 2, 22, . . . , 2k−1. we obtain that c(2k) ≤ 3

4k4k. Starting with a completely
touching pair of 2-member families of curves, after k − 1 iterations we obtain a
completely touching pair (A,B) of 2k-member families with m = 22k touching
pairs. Thus, there exists a configuration with only 3

4k4k = 3
8m log2 m crossings,

meeting the requirements. This completes the proof of Theorem 2.

Crossings between Curves with Many Tangencies 7

4 Concluding Remarks

The assumption in Theorem 1 that the curves are two-way infinite is not im-
portant. If we have a family F = A ∪ B of arbitrary x-monotone curves such
that, for any pair of curves α ∈ A, β ∈ B which can be met by a vertical line,
α lies above β, we can make each curve two-way infinite without destroying this
property, by adding only at most

2
(|A|

2

)
+ 2

(|B|
2

)
< |F|2

crossings.
One can give an alternative proof of Theorem 1 by reducing it to a combina-

torial statement about sequences. Let (x1, . . . , xm) be a sequence of m elements
taken from a finite alphabet Φ. For any pair of distinct elements a, b ∈ Φ, define
the number of alternations of a and b in the sequence, as the largest number
t such that there is a subsequence (xi(0), xi(1), . . . , xi(t)) of length t + 1 with
1 ≤ i(0) < i(1) < . . . < i(t) ≤ m such that its elements alternate between a and
b (or between b and a). That is,

xi(0) = xi(2) = . . . = a, xi(1) = xi(3) = . . . = b,

or
xi(0) = xi(2) = . . . = b, xi(1) = xi(3) = . . . = a.

This number t is denoted by alt{a,b}(x1, . . . , xn).
Define the alternation number of the sequence (x1, . . . , xm), as∑

{a,b}⊆Σ

alt{a,b}(x1, . . . , xm),

where the sum is taken over all unordered pairs {a, b} of distinct elements from
Φ.

Theorem 1 can also be proved using the following result, which is perhaps of
independent interest.

Theorem 3. Let (x1, . . . , xm) be a sequence of length m over an alphabet Φ.
Assume that there exists an absolute constant c > 0 such that for all 1 ≤ z ≤
m, every z consecutive elements of the sequence contain at least c

√
z distinct

symbols. Then the alternation number of the sequence (x1, . . . , xm) is at least
dm log m, for a suitable constant c′ > 0, depending only on c.

Salazar [8] verified the Richter-Thomassen conjecture in the special case when
any pair of curves have at most k points in common, for a fixed constant k. The
best known general bound is due to Mubayi [3], who proved that any family of
n closed curves in general position in the plane determines at least

(4
5 + o(1)

)
n2

intersection points.

8 J. Fox et al.

References

1. Chan, T.M.: On levels in arrangements of curves, II: A simple inequality and its
consequences. Discrete & Computational Geometry 34(1), 11–24 (2005)

2. Koebe, P.: Kontaktprobleme der konforman abbildung. Berichte über die Verhand-
lungen d. Sächs. Akademie der Wissenschaften Leipzig 88, 141–164 (1936)

3. Mubayi, D.: Intersecting curves in the plane. Graphs and Combinatorics 18(3), 583–
589 (2002)

4. Erdös, P.: On sets of distances of n points. The American Mathematical Monthly 53,
248–250 (1946)

5. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley, New York (1995)
6. Richter, R.B., Thomassen, C.: Intersection of curves systems and the crossing num-

ber of C5 × C5. Discrete & Computational Geometry 13, 149–159 (1995)
7. Ruskey, F., Weston, M.: Venn diagram survey. Electronic Journal of Combina-

torics DS#5 (2005)
8. Salazar, G.: On the intersections of systems of curves. Journal of Combinatorial

Theory Series B 75, 56–60 (1999)
9. Venn, J.: On the diagrammatic and mechanical representation of propositions and

reasonings. Philosophical Magazine and Journal of Science, Series 5 10(59) (1880)

Constant-Work-Space Algorithm for a Shortest
Path in a Simple Polygon

Tetsuo Asano1, Wolfgang Mulzer2, and Yajun Wang3

1 School of Information Science, JAIST, Japan
2 Department of Computer Science, Princeton University, USA

3 Microsft Research, Beijing, China

Abstract. We present two space-efficient algorithms. First, we show
how to report a simple path between two arbitrary nodes in a given tree.
Using a technique called “computing instead of storing”, we can design
a naive quadratic-time algorithm for the problem using only constant
work space, i.e., O(log n) bits in total for the work space, where n is the
number of nodes in the tree. Then, another technique “controlled recur-
sion” improves the time bound to O(n1+ε) for any positive constant ε.
Second, we describe how to compute a shortest path between two points
in a simple n-gon. Although the shortest path problem in general graphs
is NL-complete, this constrained problem can be solved in quadratic time
using only constant work space.

1 Introduction

We present two polynomial-time algorithms in a computational model which we
call constant-work-space computation, which is also known as “log-space” algo-
rithms. In this model, the input is given as a read-only array, and the algorithm
can access an arbitrary array element in constant time, This is a difference from
the strict data-streaming model where the input can be read only once in a se-
quential manner. Chan and Chen [7] give algorithms in different computational
models varying from a multi-pass data-streaming model to the random access
constant-work-space model in our paper.

One of the most important constant-work-space algorithms is a selection al-
gorithm by Munro and Raman [9] which runs in O(n1+ε) time using work space
O(1/ε) for any small constant ε > 0. A polynomial-time algorithm for determin-
ing connectivity of two arbitrarily specified nodes in a graph by Reingold [10]
is also another breakthrough in this area. See also [2,3,4,5] for applications to
image processing. Constant-work-space algorithms for geometric problems are
also known. Asano and Rote [1] give efficient algorithms for drawing Delaunay
triangulation and Voronoi diagram of a planar point set, and they also show how
the Euclidean minimum spanning tree for a planar point set can be constructed
quickly in this model.

Here, we focus on the efficiency of algorithms in the constant work space
model. Using two geometric problems we showcase some techniques for design-
ing space-efficient algorithms. One technique, named “ computing instead of

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 9–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

10 T. Asano, W. Mulzer, and Y. Wang

storing”, is applied to the problem of finding a simple path between two nodes
in a tree. A simple solution in a standard computational model with linear work
space goes as follows: compute an Eulerian path between the two nodes and
count how often each edge appears on the path. Removing those edges that
appear more than once gives us a desired simple path. We can implement this
idea without using any extra array. Instead of storing a count in each edge, we
compute it whenever it is needed, which takes linear time. In this way we can
compute a simple path in quadratic time without using any extra array.

Then we describe another technique named “controlled recursion” which
limits the depth of recursion by a predetermined value determined by the amount
of work space. Using this technique the running time of the algorithm is improved
into O(n1+ε) for any small positive constant ε using work space of size O(1/ε).

The above algorithms can be extended to an algorithm for finding a short-
est path between two points in a simple polygon. A naive application leads
to a polynomial-time algorithm, but a more careful implementation yields a
quadratic-time algorithm.

2 Finding a Simple Path on a Tree Using Eulerian Tours

As a warm up, consider a simple problem: Let T be a tree with n nodes. Given
two nodes s and t, find a simple path with no node visited more than once from
s to t. This is our first problem.

Here is a simple naive algorithm. It is well known that any tree has an Eulerian
tour visiting every edge exactly twice. Let A be such a tour. A simple path
between s and t is obtained by considering the portion of A between s and t
and removing redundant edges where an (undirected) edge is redundant if it
appears twice on A. Thus, if we know how to generate an Eulerian tour, it is
easy to reform a part of the tour into a simple path by counting the number of
occurrences of each edge. Unfortunately, in our constant work space model no
extra array can be used for the counts.

Thus, we apply the technique “computing instead of storing” in which
whenever we need a value we compute it instead of storing it. Whenever we
extend a path by an edge e to generate an Eulerian path between two nodes, we
generate the Eulerian path to count how often the edge e appears. If it appears
exactly once, we report the edge.

We introduce some terminology for a formal description of the algorithm. We
assume that a tree is given by adjacency lists on a read-only array. Let Adj(u)
be the adjacency list of a node u. The following two functions suffice to generate
an Eulerian tour.

FirstNeighbor(u): given a node u, return the first node in the adjacency list
Adj(u).

NextNeighbor(u, v): Given a node u and one of its adjacent nodes, say v,
return the next node in its adjacency list Adj(u). If v is the last node, return
the first node in the list.

Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon 11

The function FirstNeighbor can easily be performed in constant time, but
the time required for NextNeighbor depends on which data structure we as-
sume. If the tree is given by a doubly-connected edge list [6], then it takes
constant time. If a naive data structure is assumed, we may need to search all of
Adj(u) for the next element, which takes time O(Δ) where Δ is the maximum
degree of a node in the tree.

Given a tree T , a starting node s, and a target node t, the following function
FindFeasibleSubtree finds the subtree of s which contains t, in other words, it
tells us which edge to follow toward the target t. In the algorithm we successively
find the next edge following an Eulerian path starting from s. We start from an
edge (s, u) incident to s and follow an Eulerian path by applying the function
NextNeighbor. If we come back to its twin edge (u, s) before finding the target
node t, it means the subtree of s rooted at u does not contain the target node t.

Algorithm 1. Finding a simple path from s to t.
Input: A tree T and two nodes s and t in T .
Output: A simple path from s to t.
begin

currentNode = s;
repeat

report currentNode;
currentNode = FindFeasibleSubtree(currentNode);

until currentNode = t

end
function FindFeasibleSubtree(u, t) // returns a child of u whose
subtree contains t
begin

for each node v in Adj(u) do
if SubtreeSearch(u, v, t) then return v;

end
function SubtreeSearch(u, v, t) // checks whether the subtree of u
rooted at v contains t
begin

currentNode = u; neighbor = v;
repeat

nextNode =NextNeighbor(neighbor, currentNode);
currentNode = neighbor; neighbor = nextNode;

until (currentNode = t or (currentNode = v and neighbor = u))
return (currentNode = t);

end

Lemma 1. Given a tree T , a starting node s, and a target node t, Algorithm 1
reports a simple path from s to t in O(n2d) time using only constant work space,
where n is the number of nodes of T and depends on which data structure is used:
if the tree is given by a doubly-connected edge list then d = O(1). If a naive data
structure is assumed then d = O(Δ), where Δ is the maximum node degree in T .

12 T. Asano, W. Mulzer, and Y. Wang

Figure 1 illustrates how the search proceeds.

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

P
Q

R

S

Start

Goal

A (D)
B (D)
C (E)
D (A, B, E, H)
E (C, D, F)
F (E)
G (H)
H (D, G, I, M)
· · ·

Adjacency lists:

Fig. 1. Canonical traversal of a tree given by adjacency lists

We have shown that a simple path on a tree can be found in quadratic time
if a tree is represented by an appropriate data structure. Further improvement
on its running time is possible. A key idea is a “controlled recursion,” which
was also used by Munro and Raman [9] for finding a median . The controlled
recursion is an algorithmic technique which controls the recursion depth so that
the depth never exceeds a predetermined constant, which reflects the amount of
work space.

Suppose O(k) work space is available. Then, we design algorithms, A1, A2,
. . ., Ak such that Ai calls Ai−1 for i = k, k − 1, . . . , 2. As describe above, the
algorithm A1, finds a simple path between two nodes in a tree by removing
redundant edges in quadratic time.

The algorithm A2 uses a decomposition of the Eulerian path from s to t.
Let s = u0, u1, . . . , um = t be the Eulerian path from s to t, which is a se-
quence of nodes in which a node may appear more than once. We decom-
pose the path into O(

√
m) blocks, B1, B2, . . . , B√

m. For the first block B1 =
{s = u0, u1, . . . , u√

m = v} we find the lowest common ancestor of v and t in
B1 using a binary search. The binary search starts at a node x which is the√

m/2-th step from u0 toward v. Now we have three nodes x, v, and t. For each
of them we compute its first occurrence and the last occurrence, denoted by
F (x), L(x), F (v), L(v), F (t) and L(t), respectively. As is easily seen, the node x
is a common ancestor of v and t if and only if F (x) < F (v) ≤ L(v) ≤ F (t) ≤
L(t) < L(x) holds. In the binary search, if F (v) < F (x), that is, if we visit the
node v before x when we walk along the Eulerian path from s to t, then we have
to walk back to satisfy F (x) < F (v). If F (x) < F (v) but L(x) < L(t), then we
have to walk toward t to satisfy L(t) < L(x). In each test we halve the number
of steps starting from

√
m/2. Whenever we find a common ancestor of v and t,

we compare it with the current lowest common ancestor of v and t. It is easy
since it suffices to compare the number of steps from s. The node of the longer
steps is lower than the other. Then, we walk toward t to find a possible lower
common ancestor.

Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon 13

In this way we can find the lowest common ancestor u of v and t. Each step of
the binary search is done in O(n) time for the Eulerian tour from s to s. Thus,
it is done in O(n log n) time in total.

Finally, we compute a simple path from s to u, which is the initial part of the
simple path from s to t. The simple path is computed by removing redundant
edges from the Eulerian path from s to u. Here note that its length is at most√

m. Thus, if we use the function A1, it returns the simple path in O(
√

m
2) =

O(m) = O(n) time.
In the next block B2 we can start from the lowest common ancestor we just

computed. In the same way we can extend the simple path toward t. In this
way we extend the simple path O(

√
m) times. Since each iteration is done in

O(n log n) time, the total time we need is O(n3/2 log n).
The algorithm A3 partitions the Eulerian path from s to t into O(n1/3) blocks

and finds the lowest common ancestor by the binary search, and finally returns
the Eulerian path from the starting node to the lowest common ancestor by using
the algorithm A2. The first part is done in O(n4/3 log n) time and the second
part is done in O((n2/3)3/2 log n2/3n1/3) = O(n4/3 log n) time in total. Thus, it
runs in O(n4/3 log n) time.

The algorithm Ak partitions the Eulerian path from s to t into n1/(k+1) parts
of length O(nk/(k+1)). It runs in O(n1+1/(k+1) logk−1 n).

Lemma 2. Algorithm Ak finds the simple path between any two nodes in a
tree of size n stored in a read-only storage by doubly-connected edge lists in
O(n1+1/(k+1) logk n) time using O(k) work storage.

Proof. The lemma is easily proved using induction on k. Note that the amount
of work space is now O(k) instead of constant. It is because Algorithm Ak

successively calls algorithms Ak−1, Ak−2, A1 in order. ��
Now, if we set

ε =
1

k + 1
, (1)

then the time complexity of Algorithm Ak is O(n1+ε log1/ε n/ logn). Suppose
we have

nε = log1/ε n. (2)

Then, we have

ε =

√
log log n

log n
.

Now, the time complexity of Algorithm Ak is

O(n1+2ε). (3)

14 T. Asano, W. Mulzer, and Y. Wang

This means the following theorem.

Theorem 1. Given two nodes s and t in a tree T with n nodes in a read-only
storage and any positive constant δ, there is an algorithm which finds the simple
path from s to t in T in O(n1+δ) time using only O(1/δ) amount of work space.

In the theorem we assumed a doubly-connected edge list for a given tree. If the
tree is given in a simple list, then the basic operation to find the next or previous
edge takes time proportional to the length of the adjacency list. Thus, the time
complexity becomes O(n1+δ�), where � is the maximum node degree in T .

3 Shortest Paths in Polygons

Dijkstra’s algorithm for finding a shortest path between two specified vertices in
a weighted graph is one of the most popular and important algorithms. It can
find such an path in O(n2) time using a simple data structure that maintains
the current distance from a source vertex to each vertex during the progress of
the algorithm. Is it still possible to find such a shortest path in the constant-
work-space model where the input graph is given by a read-only array and only
a constant number of storage cells of length O(log n) is available as work space?
Unfortunately, no polynomial-time algorithm for the shortest path problem is
known in the model. In this paper we consider a restricted version of the problem:

Geometric Shortest Path within a Simple Polygon
Given a simple polygon P with n vertices and two points s and t in the interior
of P , find the shortest path between s and t within the polygon P .

A linear-time algorithm is known for the problem if O(n) work space is al-
lowed. It works as follows: Given a simple polygon P , we first partition its interior
into triangles using Chazelle’s linear-time algorithm [8]. Then, we compute the
dual graph G∗ of the triangulation: the vertices of G∗ correspond to the triangles,
and two vertices are adjacent if their corresponding triangles share a triangular
edge. Since G∗ is a tree, any two vertices in G∗ are connected by a unique simple
path. Given two points s and t to be interconnected, we locate them in the tri-
angulation and thus in G∗. Consider the unique path in G∗ between the triangle
containing s to the triangle containing t. It defines a sequence of triangular edges
hit by the path. Let (e0, e1, . . . , em) be this edge sequence. We walk along the
sequence while keeping the visibility angle from the starting point s and two
vertices vlow and vhigh that determine the visibility.

Whenever the visibility angle vanishes at a triangular edge, we choose a vertex
v, either vlow or vhigh, depending on which direction the path bends, and output
the edge (s, v) as a part of the shortest path and repeat the same operation after
replacing s with v. Obviously, every step is done in constant time. Thus, the
algorithm runs in O(n) time.

3.1 A Shortest-Path Algorithm Using a Dual Graph

We adapt the algorithm to use constant work space. That is, we develop an algo-
rithm for triangulating a given simple polygon and then finding a unique path in

Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon 15

the dual graph. The difficulty here is, of course, that we cannot store any inter-
mediate result. To overcome the difficulty, we will use a canonical triangulation
of a simple polygon and also a canonical traversal of the tree.

Our canonical triangulation is the constrained Delaunay triangulation. For a
point set S, three points of S determine a Delaunay triangle if and only if the
circle defined by the three points contains no point of S in its proper interior.
Such a circle passing through three points of S is called an empty circle. Delaunay
triangles partition the convex hull of the set S, and the resulting structure is
called the Delaunay triangulation of S.

Now we describe how to extend this notion to a simple polygon P . The vertices
of P define a set V of points and the edges define a set E of line segments.
Constrained Delaunay edges are defined using the notion of a chord. A chord is
an open line segment between two polygon vertices that does not intersect the
boundary any edge in E. A pair (p, q) of vertices defines a constrained Delaunay
edge if and only if there is a third point r in V such that(i) (p, q) is a chord; (ii)
(p, r) and (q, r) are chords or polygon edges; and (iii) the circle through p, q, r
does not contain any other point s ∈ V that is visible from r.

It is known that a constrained Delaunay triangulation DT(P) is uniquely
defined for any simple polygon whose vertices are in general position. Once we
have a DT(P), we define its dual graph DT(P)∗: vertices are triangles, and two
vertices are adjacent if and only if their corresponding triangles share an edge.
Since a simple polygon is simply connected, DT(P)∗ is always a tree.

s
t

(a) (b) (c)

Fig. 2. The unique path on the dual graph and its corresponding sequence of Delaunay
edges. (a) Constrained Delaunay triangulation of a given simple polygon, (b) the dual
graph of the triangulation (a tree), and (c) the unique path between s and t.

Once we have a path in DT(P)∗, we walk along the path while extending the
visibility angle. Let (e0, e1, . . . , em) be an edge sequence corresponding to the
path. We first compute the visibility angle defined by the starting point s and
the first edge e0. Then, we take the intersection between the current visibility
angle with that defined by the next edge e1. We keep the intersection as the
current visibility angle. If the intersection becomes empty, we know that the line
segment between the current vertex and previous starting point must be a part
of the shortest path. So, we output that line segment and then we start the new

16 T. Asano, W. Mulzer, and Y. Wang

(a) (b) (c)

Fig. 3. Finding a shortest path along a sequence of Delaunay edges. (a) The unique
path in the dual graph, (b) extension of visibility region from the starting point until
it vanishes, and (c) shortest path within the simple polygon.

propagation of the visibility angle from the current vertex. Figure 3 illustrates
how this algorithm proceeds.

Finally, we need to describe how to implement the function NextNeighbor()
for DT(P)∗. By the definition of the dual graph and the fact that each DT(P)∗

has maximum degree at most 3, the next neighbor is found by finding the clock-
wisely or or counter-clockwisely next Delaunay edge as shown in Figure 4. Hence,
we need to find a third vertex of a Delaunay triangle for a given edge. Given a
Delaunay edge (u, v), we want to find a vertex w such that

(1) w is visible from the edge (u, v), and
(2) the circle defined by three points u, v, and w is empty, that is, it does not
contain any other vertex visible from the edge (u, v).

A vertex w is visible from the edge (u, v) when there is no edge intersecting a
line segment uw or vw. Thus, we can find in O(n2) time a vertex with which a
Delaunay edge forms a Delaunay triangle.

Fig. 4. Walking along a path in the dual graph while finding the clockwisely next
Delaunay edge (solid or blue arrow) or counterclockwisely next edge (dotted or red
arrow)

Theorem 2. There is a constant-work space algorithm for finding a shortest
path between arbitrary two points in a simple n-gon P in time O(n3+ε) for any
small constant ε > 0.

Proof. Such a shortest path can be found by applying the function NextNeigh-
bor() O(n1+ε) times. Since it takes O(n2) time for each call of the function, we
obtain the bound in the theorem. ��

Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon 17

3.2 A Shortest-Path Algorithm Using Point Location

The algorithm given above is obtained by a direct adaptation of the algorithm
for reporting a simple path between two nodes in a tree. The dual graph, which
is a tree, gives us a correct direction toward a given target point. In this section
we show that there is a more direct way to find a correct direction. Suppose
we are in some triangle A in DT(P). Removing A divides P into at most 3
parts. We need to find the part that contains t. For this, we find an edge et just
above the target point t, which is the first polygon edge hit by the vertical ray
emanating upward from t. Then, the part containing t is the one whose boundary
contains the edge et, which is found by walking along the boundary. This kind
of operation is called point location in computational geometry. It takes O(n)
time since the total length of the boundary is O(n).

Now, we know which way to go from any triangle. Unfortunately, finding
adjacent triangles in a canonical triangulation can be slow. The next idea for
efficiency is to use the trapezoidal decomposition instead of the constrained De-
launay triangulation. That is, we partition the interior of a given simple polygon
by drawing a vertical chord at each vertex toward the interior of the polygon.
This decomposition is canonical and easy to compute. Moreover, it inherits the
same property as the triangulation used to have for shortest paths.

s

t

s

t

s

t

(a) (b) (c)

Fig. 5. Trapezoidal decomposition of a simple polygon for finding a shortest path
in a simple polygon. (a) A simple polygon and two internal points s and t to be
interconnected within the polygon. (b) Trapezoidal decomposition of P . (c) A sequence
of trapezoids between two containing s and t.

The trapezoidal decomposition defined above is uniquely determined for any
simple polygon. In general, degeneracies can cause one trapezoid to be adjacent
to arbitrarily many trapezoids, as shown in Figure 6. Hence, we perform a sym-
bolic perturbation to avoid this issue: each vertex of P and the two points s
and t all have integral coordinates with O(log n) bits. Then, each integral point
(x, y) is treated as a point (x + yε, y), ie, it is shifted to the right by yε for a
small parameter ε such that y∗ε < 1 for the largest y-coordinate y∗ of a vertex.
After this perturbation, no two vertices share the same x-coordinate, as shown
to the right in Figure 6.

18 T. Asano, W. Mulzer, and Y. Wang

Fig. 6. Removing degeneracies by shifting vertices to the right. An original polygon is
given to the left. The conversion results in the right polygon in which no two vertices
share the same x-coordinate.

From now on, we assume that no two vertices have the same x-coordinate.
This implies that any trapezoid is adjacent to at most four other trapezoids. Our
first goal is to find a sequence of trapezoids between the two containing s and
t. For the purpose, it suffices to find a correct neighbor at each trapezoid. More
formally, suppose we are in a trapezoid T of which we know that it appears in the
sequence. Since T is adjacent to at most four trapezoids, we want to determine
which one lies on the correct path.

A characterization of a trapezoid is given in Figure 7. For a trapezoid T , two
polygon edges ea(T) and eb(T) bound T from above and below, respectively.
The vertical sides of T are denoted by vl(T) and vr(T), the left and right sides,
respectively. At a trapezoid T we have to determine which way we should go
toward the target point t. To that end, we traverse the corresponding boundary
to find which part contains the edge et just above t.

By the observation above we now know that we can find the correct next
trapezoid toward the target t in O(n) time without using any extra array. Since
the length of the trapezoid sequence is O(n), the total time we need to find the
sequence is O(n2).

We still need to describe how to find the shortest path from s to t, but this
just works as in the previous algorithm: we know how to walk on the sequence

T

ea(T)

eb(T)

vr(T)

vl(T)
t

P

s

t

et

es

(a) (b)

Fig. 7. Characterization of a trapezoid T by two polygon edges bounded from above
and below and two vertical sides. (a) A trapezoid adjacent to three trapezoids. (b) A
polygon edge es just above the point s and a polygon edge et just above t.

Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon 19

using O(n) time at each step. To find a shortest path we just maintain the visible
part of vertical sides of those trapezoids in the sequence. Whenever the entire
side becomes invisible, we create a new bending point and recompute the visible
part.

Given an arbitrary point q in the interior of P , we can determine a trapezoid
containing q as follows: first find the polygon edges which are hit by a vertical
ray emanating from q upward. If we find the edge among them that is closest to
q, it is the top edge ea(T) of the trapezoid T containing q. In a similar fashion
we can find a polygon edge eb(T) just below q which is the bottom edge of the
trapezoid that contains q. Then, we compute the left and right vertical sides of
the trapezoid T , denoted by vl(T) and vr(T), respectively. We start with four
endpoints of ea(T) and eb(T). vl(T) is initially determined by the rightmost of
the two left endpoints of ea(T) and eb(T). The initial value of vr(T) is similarly
determined. Then, we scan each polygon vertex. If it lies in the current trapezoid
and its incident polygon edge enters the trapezoid from its left, then we update
the value vl(T) to be the x-coordinate of the vertex. If it lies in T and its incident
edge enters T from the right, we update vr(T). In this way we can obtain the
trapezoid in O(n) time.

A trapezoid is specified in this way. Then, how can we find trapezoids adjacent
to a given trapezoid? Suppose we want to find a trapezoid Tr which shares a right
boundary with T . To do this, take a point q which is located to the right of the
side at a small enough distance. Using the point q, the trapezoid Tr is computed
in the same manner is described above. Thus, once we have a trapezoid, we can
find trapezoids adjacent to it in O(n) time.

Theorem 3. Given an n-gon P and two arbitrary points in P , we can find a
shortest path between them within P in O(n2) time in the constant work space
model.

4 Concluding Remarks

We have presented a constant-work-space algorithm for finding a shortest path
between two arbitrary points in a simple polygon in polynomial-time. A number
of geometric problems are open in the constant work space model. For example,
does there exist an efficient constant-working-space algorithm for computing the
visibility polygon from a point in a simple polygon. Another interesting direction
is to investigate time-space trade-offs: how much work space is need to find a
shortest path in a simple polygon in linear time?

Acknowledgments

This work of T.A. was partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research on Priority Areas and
Scientific Research (B).

20 T. Asano, W. Mulzer, and Y. Wang

References

1. Asano, T., Rote, G.: Constant-Working-Space Algorithms for Geometric Problems.
In: Proc. CCCG 2009, Vancouver, pp. 87–90 (2009)

2. Asano, T.: Constant-Working-Space Algorithms: How Fast Can We Solve Problems
without Using Any Extra Array? In: Hong, S.-H., Nagamochi, H., Fukunaga, T.
(eds.) ISAAC 2008. LNCS, vol. 5369, p. 1. Springer, Heidelberg (2008)

3. Asano, T.: Constant-Working-Space Algorithms for Image Processing. In: Nielsen,
F. (ed.) ETVC 2008. LNCS, vol. 5416, pp. 268–283. Springer, Heidelberg (2009)

4. Asano, T.: Constant-Working-Space Image Scan with a Given Angle. In: Proc. 24th
European Workshop on Computational Geometry, Nancy, France, March 18-20,
pp. 165–168 (2008)

5. Asano, T.: Constant-Working Space Algorithm for Image Processing. In: Proc. of
the First AAAC Annual meeting, Hong Kong, April 26-27, p. 3 (2008)

6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

7. Chan, T.M., Chen, E.Y.: Multi-Pass Geometric Algorithms. Discrete & Computa-
tional Geometry 37(1), 79–102 (2007)

8. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete & Computa-
tional Geometry 6(1), 485–524 (1991)

9. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-
mum data movement. Theoretical Computer Science 165, 311–323 (1996)

10. Reingold, O.: Undirected connectivity in log-space. J. ACM 55, 24, Article #17
(2008)

Approximation Algorithms for Art Gallery
Problems in Polygons and Terrains

Subir Kumar Ghosh

School of Technology & Computer Science
Tata Institute of Fundamental Research, Mumbai 400005, India

ghosh@tifr.res.in

http://www.tcs.tifr.res.in/∼ghosh

Abstract. In this survey paper, we present an overview of approxima-
tion algorithms that are designed for art gallery problems in polygons
and terrains.

1 Problems and Results

The art gallery problem is to determine the number of guards that are sufficient
to cover or see every internal point of an art gallery (Figure 2(a)). An art gallery
can be viewed as an n-sided polygon P (with or without holes) and guards as
points inside P . A polygon P is defined as a closed region in the plane bounded
by a finite set of line segments (called edges of P) such that there exists a
path between any two points of P which does not intersect any edge of P (see
Figure 1). If the boundary of P consists of two or more cycles, then P is called a
polygon with holes. Otherwise, P is called a simple polygon or a polygon without
holes [31].

Any point z ∈ P is said to be visible from a guard g if the line segment zg does
not intersect the exterior of P (see Figure 1). In general, guards may be placed
anywhere inside P . If the guards are allowed to be placed only on vertices of P ,
they are called vertex guards. If there is no such restriction, guards are called

P

g

z

z′

z

P

z′

g

Fig. 1. Polygons with or without holes

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 21–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

22 S.K. Ghosh

(a)

P

Guard 1

Guard 2

(b)

1
2

1
1

21

2

3

1

3

3

3

1
2

P

32

2

Fig. 2. (a) Two point guards are necessary and sufficient to see the entire polygon P .
(b) The vertices of P are colored with three colors {1,2,3}.

point guards (see Figure 2(a)). Point and vertex guards are also called stationary
guards. If guards are allowed to patrol along a segment inside P , they are called
mobile guards. If they are allowed to patrol only edges of P , they are called edge
guards.

The art gallery problem for stationary guards was first posed by Victor Klee
in a conference (see [38]). Chavatal [13] showed that a simple polygon P needs
at most �n/3	 stationary guards. Fisk [28] later presented a simple proof of this
result as follows. The vertices of P are colored with three colors (say, {1,2,3})
such that two vertices joined by an edge of P or by a diagonal in the triangulation
of P receive different colors (see Figure 2(b)). Choose the color (say, 1) that has
been assigned to the smallest number of vertices of P . Assign guards to vertices
that received the color 1. Figure 3 (a) shows that �n/3	 guards are sometimes
necessary. Based on this proof, Avis and Toussaint [5] gave an O(n log n) time
algorithm for placing guards in P . Kooshesh and Moret [45] later showed that
the guards can be placed in O(n) time.

P

P

(a) (b)

Fig. 3. (a) For any simple polygon P , �n/3� guards are sometimes necessary. (b) For
any simple orthogonal polygon P , �n/4� guards are sufficient and sometimes necessary.

Approximation Algorithms for Art Gallery Problems 23

P P

P

(a) (b)

Fig. 4. (a) By adding 2 vertices for every hole, P is converted into a simple polygon of
n + 2h vertices. (b) A polygon requires �n+h

3
� guards [57].

For a simple orthogonal polygon P whose edges are horizontal or vertical,
Kahn et al. [40] and O’Rourke [50] showed that P needs at most �n/4	 stationary
guards (see Figure 3(b)). These proofs partitions P into convex quadrilaterals
before �n/4	 guards are placed in P . A convex quadrilaterization of P can be
constructed by algorithms of Edelsbrunner, O’Rourke and Welzl [22], Lubiw [48],
Sack [53], and Sack and Toussaint [54].

For a polygon P with h holes, O’Rourke [52] showed that P can be converted
into a simple polygon of n + 2h vertices (see Figure 4(a)), and therefore, P
needs at most �n+2h

3 	 vertex guards. Shermer conjectured that P can always
be guarded with �n+h

3 	 vertex guards [52] and proved the conjecture for h = 1.
For h > 1, the conjecture is still open. On the other hand, if the placement of
guards is not restricted to vertices, Hoffmann et al. [36] and Bjorling-Sachs and
Souvaine [8] proved independently that P can always be guarded with
n+h

3 �
point guards (see Figure 4(b)). Bjorling-Sachs and Souvaine also presented an
O(n2) time algorithm for placing the point guards.

If P is an orthogonal polygon with holes, then P requires at most �n
4 	 point

guards [35] or �n
3 	 vertex guards [37] (see Figure 5(a)). On the other hand, a

P

(a) (b)

R2
R1

R4

R3

R8

R5

R6

R7

Fig. 5. (a) A polygon of 44 vertices with 4 holes requires 12 vertex guards [57]. (b) A
rectilinear art gallery needs one guard for two adjacent rooms.

24 S.K. Ghosh

P

P

(b)(a)

Fig. 6. (a) A polygon requires �n/4� mobile guards. (b) A rectilinear polygon requires
� 3n+4

16
� mobile guards [57].

rectangular art gallery with n rooms can be guarded with exactly
n
2 � guards

[19] (see Figure 5(b)).
For placing mobile guards, O’Rourke [51,52] showed that a simple polygon P

needs at most �n/4	 mobile guards (see Figure 6(a)). For placing edge guards
in P , �n/4	 edge guards seem to be sufficient, except for a few polygons (see
[57]). Aggarwal [2] proved that P needs at most � 3n+4

16 	 mobile guards (see
Figure 6(b)) and the same bound holds for edge guards as shown by Bjorling-
Sachs [7]. For guarding an orthogonal polygon P with h holes, Györi et al. [34]
established that � 3n+4h+4

16 	 mobile guards are always sufficient and sometimes
necessary. For survey of art gallery theorems, see O’Rourke [52], Shermer [56]
and Urrutia [57].

The minimum guard problem is to find the minimum number of stationary or
mobile guards that can see every point inside a polygon. O’Rourke and Supowit
[52] proved that the minimum point, vertex and edge guard problems in polygons
with holes are NP-hard. Even for polygons without holes, Lee and Lin [47] proved
that these three guarding problems are NP-hard. They are also NP-hard for
simple orthogonal polygons as shown by Katz and Rpoisman [41] and Schuchardt
and H.-D. Hecker [55].

Ghosh [30,32] presented approximation algorithms for minimum vertex and
edge guard problems for polygons with or without holes by transforming art
gallery problems into set-cover problems after discretizing the entire polygon. For
simple polygons P , approximation algorithms for both problems run in O(n4)
time (after a recent improvement [32]) and yield solutions that can be at most
O(log n) times the optimal solution. For polygons P with holes, approximation
algorithms for both problems give the same approximation ratio of O(log n) but
the algorithms take O(n5) time (after a recent improvement). Since 1986, this
is the only known technique for transforming these four art gallery problems
leading to efficient approximation algorithms in terms of worst case running
times and approximation bounds. We present these algorithms in details in the
next section.

Approximation Algorithms for Art Gallery Problems 25

For the minimum vertex guard problem in a simple polygon P , Efrat and
Har-Peled [23] presented randomized approximation algorithms which run in
O(nc2

opt log4 n) expected time. The approximation ratio of the algorithm is
O(log copt), where copt is the number of vertex guards in the optimal solution
and copt can be a fraction of n in the worst case. For a polygon P with h holes,
their randomized approximation algorithm runs in O(nhc3

optpolylog n) expected
time, and the algorithm gives an approximation ratio of O(log n log(copt log n)).
It may be noted that their randomized approximation algorithms do not always
guarantee solutions, and the quality of approximation is correct with high proba-
bility. For the same minimum vertex guard problem, Worman and Keil [59] gave
a polynomial time exact algorithm for the special case of rectangle visibility in
rectilinear polygons.

For the point guard problem, Nilsson [49] gave an O(copt)2-approximation
algorithms for monotone polygons and simple orthogonal polygons, Deshpande
et al. [21] gave a pseudo-polynomial time O(log n)-approximation algorithm for
simple polygons, and Efrat and Har-Peled [23] gave an exact algorithm for simple
polygons that runs in O((ncopt)3(copt+1)) time.

Recently, efforts are being made to design heuristics to solve stationary guard
problems [3,16,17,18], where the efficiency of these heuristics are evaluated by
experimentation. These heuristics essentially follow Ghosh’s method of first dis-
cretizing the entire region of a polygon and then using the minimum set-cover
solution. However, these heuristics use different criteria for discretization or in
choosing candidate sets.

Let us consider the guarding problems in 1.5-dimensional and 2.5-dimensional
terrains. Let C denote a polygonal chain which is monotone with respect to X-
axis. The region of the plane T lying above C is called 1.5-dimensional terrain
(see Figure 7(a)). Two points of C are said to be mutually visible if the line
segment joining then lies entirely inside T . Chen et al. [12] gave a proof showing
that the minimum vertex guard problem for T is NP-hard but there seems to be
some gap in the proof of hardness. Recently, King and Krohn [44] have proved
that the problem is indeed NP-hard. Chen et al. [12] also considered the problem
of placing the minimum number of guards for guarding every point of C from
its left, and presented a linear time algorithm for this problem.

T
T

(a) (b)

C

Fig. 7. (a) T is a 1.5-dimensional terrain. (b) T is a 2.5-dimensional terrain.

26 S.K. Ghosh

For the general vertex guard problem in 1.5-dimensional terrain, Ben-Moshe
et al. [6] designed an O(1)-approximation algorithm exploiting the geometric
structure of C, and their algorithm runs in O(n4) time. Note that the value of
the approximation ratio seems to be at least 6. Clarkson and Varadarajan [14]
suggested another approximation algorithm with the constant factor approxi-
mation ratio using ε-nets, and showed that their algorithm runs in O(n2 log n)
time. King [42] presented an improved approximation algorithm for this prob-
lem which runs in O(n2) time and gives an approximation ratio of 4. It turned
out latter that the approximation ratio of the algorithm is 5 and not 4. Using
linear programming relaxation method, Elbassioni et al. [26] presented an ap-
proximation algorithm for this problem that runs in O(n log n) time giving an
approximation ratio of 4. We present this algorithm in details in Section 3. For
guarding 1.5-dimensional rectilinear terrains, Katz and Roisman [41] gave an
approximation algorithm that runs in O(n2) time and gives an approximation
ratio of 2.

Recently, Gibson et al. [33] have designed a polynomial time approximation
scheme for the 1.5-dimensional terrain guarding problem using a local search in
a planar graph that appropriately relates the local and global optimum. So, their
polynomial time algorithm returns a guard cover whose cardinality is at most
(1 + ε) time optimal for any ε > 0. Complexity issues in guarding terrains have
also been studied recently [43,44].

Let us consider the problem of guarding 2.5-dimensional terrains. Let T denote
a polyhedral surface such that any vertical line intersects T exactly at one point.
Then, T is called a 2.5-dimensional terrain (see Figure 7(b)). Two points of T
are said to be mutually visible if the line segment joining then lies entirely on or
above T . Visibility problems on 2.5-dimensional terrains were studied initially
in the context of geographical information system [20].

For the vertex and edge guards problems on T of n vertices, Bose et al. [11]
proved that �n

2 	 vertex guards are both necessary and sufficient, and Everett
and Rivera-Campo [27] proved �n

3 	 edge guards are always sufficient. Bose et al.
[11] showed that � 4n−4

13 	 edge guards are sometimes necessary. They show gave
linear time algorithms for placing � 3n

5 	 vertex guards and � 2n
5 	 edge guards on

T . Using the technique of maximum matching in a bridgeless cubic graph, Bose
et al. [9] gave O(n3/2) time algorithm for placing �n

2 	 vertex guards and �n
3 	

edge guards on T .
For the minimum guard problems on T , Cole and Sharir [15] showed that

the minimum point guard problem for T is NP-hard. It is not known whether
the minimum vertex and edge guard problems on T are also NP-hard. For the
minimum vertex guard problem on T , Eidenbenz [24] gave an approximation
algorithm using the same method given by Ghosh [30]. The approximation al-
gorithm runs in O(n8) time and gives an approximation ratio of O(log n). In
Section 3, we present this algorithm in details. There is no approximation algo-
rithms known for the minimum point and edge guard problems on T . Using the
same method, Eidenbenz [24] also gave O(log n) approximation algorithms for
related guarding problems on terrains with triangle restrictions.

Approximation Algorithms for Art Gallery Problems 27

2 Approximation Algorithms in Polygons

In this section, we present approximation algorithms of Ghosh [30,32] for vertex
and edge guard problems in a polygon P with or without holes. Assume that
vertices of P are labeled v1, v2, . . . , vn. Let Fi denote the set of all points of P
that are visible from a vertex vi [31]. So, the vertex guard problem of P can
be viewed as a polygon decomposition problem in which decomposed pieces are
fans.

It may appear that if the entire boundary of P is visible from vertex guards,
then all internal points of P are also visible from them. However, this is not true
as shown in Figure 8(a). This establishes that vertex guards must be chosen in
such a way that the entire polygon P is visible from the chosen guards. A convex
region c ⊂ P is said to be a convex component of P such that c cannot be divided
further by a line segment passing through two vertices of P (see Figure 8(b)).
We have the following lemma.

Lemma 1. Every convex component of P is either totally visible or totally not
visible from a vertex of P .

Proof: If there exists a convex component c partially visible from a vertex vi of
P , then there exists a vertex vj in P such that the line drawn from vi through
vj intersects c. So, c is not a convex component, a contradiction.

Corollary 1. For every vertex vi of P , the fan Fi is the union of convex com-
ponents of P .

If we consider convex components as elements of sets and every fan as a set
consisting of these elements, then the problem of finding the minimum num-
ber of fans is the same as the minimum set-covering problem. Given a finite

(a) (b)

P

vi

vj
vk

P

Fig. 8. (a) The entire boundary of P is visible from vi, vj and vk but the shaded region
in the middle is not visible from any of them. (b) The entire region of P is decomposed
into convex components.

28 S.K. Ghosh

family of sets S1, . . . , Sn, the problem is to determine the minimum cardinality
subset A such that

⋃
i∈A Si =

⋃n
j=1 Sj [29,58]. In the following, we present an

approximation algorithm for the vertex guard problem in P .

Step 1. Compute all convex components c1, c2, . . . , cm by drawing lines through
every pair of vertices of P . Let C = (c1, c2, . . . , cm), N = (1, 2, . . . , n) and
Q = ∅.

Step 2. For 1 ≤ j ≤ n, construct Fj by adding convex components of P totally
visible from vj .

Step 3. Find i ∈ N such that |Fi| ≥ |Fj | for all j ∈ N and i �= j.
Step 4. Add i to Q and delete i from N .
Step 5. For all j ∈ N , Fj := Fj − Fi, and C := C − Fi.
Step 6. If |C| �= ∅ then goto Step 3.
Step 7. Output the set Q and Stop.

Let us analyze the time complexity of the algorithm. Step 1 requires O(n4) time
as O(n2) lines are drawn in P to compute convex components. For every convex
component ck of C, take a point zk ∈ ck and identify the vertices of P that are
visible from cz, and then add cz to the fans of these visible vertices. If P is a
simple polygon, vertices visible from ck can be identified in O(n) time [31,46].
If P contains holes, vertices visible from ck can be identified in O(n) query
time after spending O(n2) preprocessing time [4,31]. Therefore, constructing
F1, F2, . . . , Fn in Step 2 can be done in O(mn) time. Step 3 requires O(n2) time.
Since the fans containing any convex component cl is known, removing cl from
all fans containing cl in Step 5 can be done in O(n) time. Therefore, Step 5 takes
O(n5) time. Hence, the overall time complexity of the approximation algorithm
is O(n5).

It has been shown by Bose, Lubiw and Munro [10] that convex components can
also be computed by the intersections of visibility polygons of P from vi for all i,
and the number of convex components m becomes O(n3) if P does not contain
holes. Using this method for computing convex components, the running time of
the approximation algorithm reduces to O(n4) for polygons without holes. We
have the following theorem.

Theorem 1. For a polygon P of n vertices, an approximate solution of the
minimum vertex guard problem in P can be computed (i) in O(n4) time for P
without holes and (ii) in O(n5) time for P with holes, and (iii) the size of the
solution can be at most O(log n) times the optimal.

We now consider the edge guard problem in a polygon P with or without holes.
Assume that edges of P are labeled e1, e2, . . . , en. A point z ∈ P is said to be
weakly visible from ei if there exists a point w ∈ ei such that the segment zw lies
inside P [31]. The set of all points of P weakly visible from ei is referred as the
weak visibility polygon of P from ei. Since the region of P that can be seen by an
edge guard is a weak visibility polygon of P , it can be seen that the edge guard
problem of P is a polygon decomposition problem in which decomposed pieces
are weak visibility polygons. Again, draw lines through every pair of vertices of
P , and decompose P into convex components. We have the following lemma.

Approximation Algorithms for Art Gallery Problems 29

Lemma 2. Every convex component of P is either totally visible or totally not
visible from an edge of P .

Corollary 2. For every edge ei of P , the weak visibility polygon of P from ei

is the union of some convex components of P .

As before, the weak visibility polygon (denoted as Ei) from every edge ei can be
viewed as a set, and convex components as elements of sets. Hence, edge guards
in P can be located from E1, E2, . . . , En following the method in the vertex
guard approximation algorithm. We have the following theorem.

Theorem 2. For a polygon P of n vertices, an approximate solution of the
minimum edge guard problem in P can be computed (i) in O(n4) time for P
without holes and (ii) in O(n5) time for P with holes, and (iii) the size of the
solution can be at most O(log n) times the optimal.

In the minimum set-covering problem, any subset of elements can form a set,
whereas any subset of convex components may not form a polygonal region
corresponding to the visibility polygon of P from a vertex or an edge. So, this
geometric restriction on the input sets may not allow the approximation ratio
to reach the upper bound of O(log n). Ghosh conjectured in 1986 that these
approximation algorithms yield solutions within a constant factor of the optimal.

Regarding the lower bound on the approximation ratio, Eidenbenz, Stamm
and Widmayer [25] showed that the problems of minimum vertex, point and
edge guards in simple polygons are APX-hard. This means that there exists a
constant ε > 0 for each of these problems such that an approximation ratio of
1 + ε cannot be guaranteed by any polynomial time approximation algorithm
unless P = NP . Though there may be approximation algorithms for these prob-
lems whose approximation ratios are not small constants, these problems cannot
be approximated for polygons with holes by a polynomial time algorithm with
ratio ((1− ε)/12)(ln n) for any (ε > 0), unless NP ⊆ TIME(nO(loglogn)). These
complexity results are obtained using gap-preserving reductions from the SET
COVER problem. Hence, the open problem is to design approximation algo-
rithms for vertex, edge and point guards problems for simple polygons whose
approximation ratios are constants.

3 Approximation Algorithms on Terrains

In this section, we start by presenting the approximation algorithm given by
Elbassioni et al. [26] for the vertex guard problem on 1.5-dimensional terrain.
Assume that vertices of the polygonal chain C of T are numbered v0, v1, . . . , vn

from left to right. Let vi and vj be two mutually visible vertices such that i < j
and a guard g is placed on vi to guard vj . Then g is called a left vertex guard of
vj . A right vertex guard of vj is defined analogously.

Consider the problem of guarding entire chain C using only left vertex guards
(refereed as the left guarding problem). Compute the Euclidean shortest paths

30 S.K. Ghosh

(a) (b)

T

C

vn
v0

T

C

vn
v0

Fig. 9. The Euclidean shortest path trees rooted at v0 and vn

from v0 to all vertices of C [31]. It can be seen that the union of these short-
est paths gives the shortest path tree rooted at v0 (denoted as SPT (v0)) (see
Figure 9(a)). Place guards at all vertices of SPT (v0) which are not leaves of
SPT (v0). Let Gl denote the set of all these guards. We have the following lemma.

Lemma 3. The guard set Gl is an optimal solution for the left guarding problem
of T .

Proof: Let vi be the parent of a vertex vj in SPT (v0) such that vivj is an edge
in the polygonal chain C. Since vj is visible only from vi for 0 ≤ i < j, the
left vertex guard of vj must be place on vi. Since for every intermediate vertex
vi of SPT (v0), there exists such a vertex vj , guards must be placed on every
intermediate vertex of SPT (v0) which forms Gl. Note that all vertices that are
on leaves of SPT (v0) also become visible from guards in Gl. Hence, Gl is an
optimal solution for the left guarding problem of T .

For the corresponding right guarding problem, the optimal solution (denoted
as Gr) can be obtained by placing guards at all vertices of STP (vn) which are
not leaves of SPT (vn) (see Figure 9(b)). It is straightforward to show that the
algorithm runs in O(n) time [31].

It can be seen that for every vertex vj of C, vj is guarded by a left vertex guard
in Gl and a right vertex guard in Gr. In order to minimize the number of guards,
a selection of guards has to be made from Gl ∪ Gr such that they together see
the entire polygonal chain. So, vertices of C are partitioned into two sets L and
R such that if a vertex vj belongs to L (or R) then its left (respectively, right)
vertex guard from Gl (respectively, Gr) is added to the selected list of guards
(say, G) provided vj is not visible from any guard already in G. Note that vertices
of L and R are considered from v0 to vn and from vn to v0 respectively for adding
their guards to G.

In the following, we show how vertices of C can be partitioned in L and R
such that |G| is at most four times the optimal solution for the vertex guard
problem in T . Let xi denote the decision variable of a vertex vi for all i. The
problem can be formulated as integer linear programming problem:

Approximation Algorithms for Art Gallery Problems 31

Minimize
n∑

i=0

xi

subject to ∑
visees vj

xi ≥ 1 for all vj ∈ C

xi ∈ {0, 1}
The variable xi = 1 if a guard is placed on vi. Otherwise, xi = 0. This constraint
can be relaxed to 1 ≥ xi ≥ 0. A vertex vj is placed in L if∑

visees vj

xi ≥ 1
2

Otherwise, vj is placed in R. Let LP solution be x∗
i for 0 ≤ i ≤ n giving rise to

LP relaxation. Then 2x∗
i is a feasible solution for both L and R. Therefore, the

solution for L is at most twice the LP solution which is bounded by twice the
integer optimal solution. Similar bound holds for the solution for R. We have
the following theorem.

Theorem 3. For a 1.5-dimensional terrain T of n vertices, an approximate so-
lution of the minimum vertex guard problem in T can be computed in polynomial
time and the size of the solution can be at most four times the optimal.

Let us now present the approximation algorithm of Eidenbenz [24] for the mini-
mum vertex guard problem on a 2.5-dimensional terrain T . Convex components
defined in the previous section can be generalize for T as follows. Triangulate all
faces of T . Let vi, vj and vk be vertices of T such that vivj is an edge of a triangle
of T . Construct a plane containing vi, vj and vj and intersect T by the plane.
Similarly, for every such three vertices of T , T is further partitioned by the cor-
responding plane define by the three vertices. These planes partition the space
into three-dimensional cells and they have two-dimensional faces bounded by
intersection points of three planes. Since there are O(n) edges of T , the number
of planes that are used for intersecting T can be O(n2). Since this arrangement
of cells consists of O(n6) points, faces and cells, the arrangement of T can be
computed in O(n6) time [1]. We have the following lemma.

Lemma 4. Every face in the arrangement of T is either totally visible or totally
not visible from a vertex of T .

For each vertex vj of T , construct a set Fj consisting of those faces in the arrange-
ment of T that are totally visible, which can be computed in O(n7) time. So,
F1, F2, . . . , Fn can be constructed in O(n8) time. Using the Johnson’s approx-
imation algorithm [39] for the minimum set-cover problem, an approximation
solution can be computed for the vertex guard problem on T . We state the
result in the following theorem.

Theorem 4. For a 2.5-dimensional terrain T of n vertices, an approximate
solution of the minimum vertex guard problem in T can be computed in O(n8)
time and the size of the solution can be at most O(log n) times the optimal.

32 S.K. Ghosh

References

1. Agarwal, P., Sharir, M.: Arrangements and their applications. In: Sack, J.R., Ur-
rutia, J. (eds.) Handbook of Computational Geometry, pp. 49–119. North-Holland,
Amsterdam (2000)

2. Aggarwal, A.: The art gallery theorem: its variations, applications, and algorithmic
aspects. Ph. D. Thesis, Johns Hopkins University (1984)

3. Amit, Y., Mitchell, J.S.B., Packer, E.: Locating guards for visibility coverage of
polygons. In: Proceedings of the 9th Workshop on Algorithm Engineering and
Experiments (ALENEX 2007), pp. 120–134. SIAM, Philadelphia (2007)

4. Asano, T., Asano, T., Guibas, L.J., Hershberger, J., Imai, H.: Visibility of disjoint
polygons. Algorithmica 1, 49–63 (1986)

5. Avis, D., Toussaint, G.T.: An efficient algorithm for decomposing a polygon into
star-shaped polygons. Pattern Recognition 13, 395–398 (1981)

6. Ben-Moshe, B., Katz, M., Mitchell, J.: A constant-factor approximation algorithm
for optimal terrain guarding. SIAM Journal on Computing 36, 1631–1647 (2007)

7. Bjorling-Sachs, I.: Edge guards in rectilinear polygons. Computational Geometry:
Theory and Applications 11, 111–123 (1998)

8. Bjorling-Sachs, I., Souvaine, D.L.: An efficient algorithm for guard placement in
polygons with holes. Discrete & Computational Geometry 13, 77–109 (1995)

9. Bose, P., Kirkpatrick, D.G., Li, Z.: Efficient algorithms for guarding or illuminating
the surface of a polyhedral terrain. In: Proceedings of the 8th Canadian Conference
on Computational Geometry, pp. 217–222 (1996)

10. Bose, P., Lubiw, A., Munro, J.: Efficient visibility queries in simple polygons. Com-
putational Geometry: Theory and Applications 23, 313–335 (2002)

11. Bose, P., Shermer, T., Toussaint, G.T., Zhu, B.: Guarding polyhedral terrains.
Computational Geometry: Theory and Applications 7, 173–185 (1997)

12. Chen, D., Estivill-Castro, V., Urrutia, J.: Optimal guarding of polygons and mono-
tone chains. In: Proceedings of the 7th Canadian Conference on Computational
Geometry, pp. 133–138 (1995)

13. Chvatal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory, Series B 18, 39–41 (1975)

14. Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geo-
metric set cover. Discrete & Computational Geometry 37, 43–58 (2007)

15. Cole, R., Sharir, M.: Visibility problems for polyhedral terrains. Journal of Sym-
bolic Computation 7, 11–30 (1989)

16. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact and efficient algorithm
for the orthogonal art gallery problem. In: Proceedings of the 20th Brazilian Sym-
posium on Computer Graphics and Image Processing, pp. 87–94 (2007)

17. Couto, M.C., de Rezende, P.J., de Souza, C.C.: Experimental evaluation of an
exact algorithm for the orthogonal art gallery problem. In: McGeoch, C.C. (ed.)
WEA 2008. LNCS, vol. 5038, pp. 101–113. Springer, Heidelberg (2008)

18. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An IP solution to the art gallery
problem. In: Proceedings of the 25th Annual ACM Symposium on Computational
Geometry, pp. 88–89 (2009)

19. Czyzowicz, J., Rivera-Campo, E., Santoro, N., Urrutia, J., Zaks, J.: Guarding rect-
angular art galleries. Discrete Applied Mathematics 50, 149–157 (1994)

20. de Floriani, L., Magillo, P., Puppo, E.: Applications to computational geometry
to geographic information systems. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of
Computational Geometry, pp. 333–388. North-Holland, Amsterdam (2000)

Approximation Algorithms for Art Gallery Problems 33

21. Deshpande, A., Kim, T., Demaine, E.D., Sarma, S.E.: A pseudopolynomial
time O(log n)-approximation algorithm for art gallery problems. In: Dehne, F.,
Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 163–174. Springer,
Heidelberg (2007)

22. Edelsbrunner, H., O’Rourke, J., Welzl, E.: Stationing guards in rectilinear art gal-
leries. Computer Vision, Graphics, Image Processing 27, 167–176 (1984)

23. Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Information Processing
Letters 100, 238–245 (2006)

24. Eidenbenz, S.: Approximation algorithms for terrain guarding. Information Pro-
cessing Letters 82, 99–105 (2002)

25. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding
polygons and terrains. Algorithmica 31, 79–113 (2000)

26. Elbassioni, K., Krohn, E., Matijevi, D., Mestre, J., Severdija, D.: Improved approx-
imations for guarding 1.5-dimensional terrains. Algorithmica (to appear, 2009)

27. Everett, H., Rivera-Campo, E.: Edge guarding polyhedral terrains. Computational
Geometry: Theory and Applications 7 (1997)

28. Fisk, S.: A short proof of Chvatal’s watchman theorem. Journal of Combinatorial
Theory, Series B 24, 374 (1978)

29. Garey, M., Johnson, D.: Computer and Intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Company, New York (1979)

30. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Proceedings
of Canadian Information Processing Society Congress, pp. 429–434 (1987)

31. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cam-
bridge (2007)

32. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Dis-
crete Applied Mathematics (to appear, 2010)

33. Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: An approximation scheme
for terrain guarding. In: Dinur, I., et al. (eds.) APPROX and RANDOM 2009.
LNCS, vol. 5687, pp. 140–148. Springer, Heidelberg (2009)

34. Györi, E., Hoffmann, F., Kriegel, K., Shermer, T.: Generalized guarding and par-
titioning for rectilinear polygons. Computational Geometry: Theory and Applica-
tions 6, 21–44 (1996)

35. Hoffmann, F.: On the rectilinear art gallery problem. In: Paterson, M. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 717–728. Springer, Heidelberg (1990)

36. Hoffmann, F., Kaufmann, M., Kriegel, K.: The art gallery theorem for polygons
with holes. In: Proceedings of the 32nd IEEE Symposium on the Foundation of
Computer Science, pp. 39–48 (1991)

37. Hoffmann, F., Kriegel, K.: A graph-coloring result and its consequences for
polygon-guarding problems. SIAM Journal on Discrete Mathematics 9, 210–224
(1996)

38. Honsberger, R.: Mathematical games II. Mathematical Associations for America
(1979)

39. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences 9, 256–278 (1974)

40. Kahn, J., Klawe, M., Kleitman, D.: Traditional galleries require fewer watchmen.
SIAM Journal of Algebraic and Discrete Methods 4, 194–206 (1983)

41. Katz, M., Roisman, G.: On guarding the vertices of rectilinear domains. Compu-
tational Geometry: Theory and Applications 39, 219–228 (2008)

42. King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In:
Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–640.
Springer, Heidelberg (2006)

34 S.K. Ghosh

43. King, J.: VC-dimension of visibility on terrains. In: Proceedings of the 20th Cana-
dian Conference on Computational Geometry, pp. 27–30 (2008)

44. King, J., Krohn, E.: The complexity of guarding terrains. In: Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (to appear, 2010)

45. Kooshesh, A.A., Moret, B.: Three-coloring the vertices of a triangulated simple
polygon. Pattern Recognition 25, 443 (1992)

46. Lee, D.T.: Visibility of a simple polygon. Computer Vision, Graphics, and Image
Processing 22, 207–221 (1983)

47. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE
Transactions on Information Theory IT-32, 276–282 (1986)

48. Lubiw, A.: Decomposing polygons into convex quadrilaterals. In: Proceedings of
the 1st ACM Symposium on Computational Geometry, pp. 97–106 (1985)

49. Nilsson, B.J.: Approximate guarding of monotone and rectilinear polygons.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 1362–1373. Springer, Heidelberg (2005)

50. O’Rourke, J.: An alternative proof of the rectilinear art gallery theorem. Journal
of Geometry 211, 118–130 (1983)

51. O’Rourke, J.: Galleries need fewer mobile guards: A variation on Chvatal’s theorem.
Geometricae Dedicata 4, 273–283 (1983)

52. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New
York (1987)

53. Sack, J.: An O(nlogn) algorithm for decomposing simple rectilinear polygons into
quadrilaterals. In: Proceedings of the 20th Allerton Conference, pp. 64–75 (1982)

54. Sack, J., Toussaint, G.T.: Guard placement in rectilinear polygons. In: Toussaint,
G.T. (ed.) Computational Morphology, pp. 153–175. North-Holland, Amsterdam
(1988)

55. Schuchardt, D., Hecker, H.D.: Two NP-hard art-gallery problems for ortho-
polygons. Mathematical Logic Quarterly 41, 261–267 (1995)

56. Shermer, T.: Recent results in art galleries. Proceedings of the IEEE 80, 1384–1399
(1992)

57. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.-R., Urrutia, J. (eds.)
Handbook of Computational Geometry, pp. 973–1023. North-Holland, Amsterdam
(2000)

58. Vazirani, V.: Approximation Algorithms. Springer, New York (2001)
59. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery

problem. International Journal of Computational Geometry and Applications 17,
105–138 (2007)

The Hamiltonian Augmentation Problem and Its
Applications to Graph Drawing

Emilio Di Giacomo and Giuseppe Liotta

Dip. di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia
{digiacomo,liotta}@diei.unipg.it

Abstract. In this talk we digress about the strict interplay between the graph-
theoretic problem of computing a Hamiltonian augmentation of a planar graph
G and the graph drawing problem of embedding G onto a given set of points.
We review different Hamiltonian augmentation techniques and their impact on
different variants of the corresponding graph drawing problem. We also look at
universal point sets, simultaneous graph embeddings, and radial graph drawings.

1 Introduction

Let G be a graph with no self-loops and no multiple edges. A Hamiltonian cycle of G
is a simple cycle that contains all vertices of G. A graph G that admits a Hamiltonian
cycle is said to be Hamiltonian. A planar graph G is sub-Hamiltonian if either G is
Hamiltonian or G can be augmented with dummy edges (but not with dummy vertices)
to a graph aug(G) that is Hamiltonian and planar. A subdivision of a graph G is a
graph obtained from G by replacing each edge by a path with at least one edge. Internal
vertices on such a path are called division vertices. Let G be a planar graph and let
sub(G) be a sub-Hamiltonian subdivision of G (it is easy to see that any planar graph
always admits a subdivision that is sub-Hamiltonian). The graph aug(sub(G)) is called
a Hamiltonian augmentation of G and will be denoted as Ham(G).

Hamiltonicity and Hamiltonian augmentation techniques have turned out to be useful
tools in solving some graph drawing problems where the output must satisfy a set of
semantic rules such as having the vertices drawn on a a given set of points, or on a given
curve, or on a given line (see, e.g., [34] for a list of semantic rules in graph drawing).
Namely, different Hamiltonian augmentation techniques can lead to drawing algorithms
with different performances in terms of fundamental aesthetic requirements such as area
and number of bends per edge in the output.

This paper shortly surveys different Hamiltonian augmentation techniques and their
applications to graph drawing. We shall discuss the impact of Hamiltonicity in the
following graph drawing problems: (i) computing a crossing-free drawing of a planar
graph where the vertices are mapped to a given set of points; (ii) computing a simulta-
neous embedding of two planar graphs; and (iii) computing a radially layered drawing
of a planar layered graph. For reasons of space, the applications of Hamiltonian aug-
mentation techniques to upward point-set embeddability (see, e.g., [18,19,30,31]) are
omitted from this paper.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 35–46, 2010.
© Springer-Verlag Berlin Heidelberg 2010

36 E.D. Giacomo and G. Liotta

2 Hamiltonian Augmentations and Point-Set Embeddings

Let G be a planar graph with n vertices and let S be a set of n distinct points in the
plane. A point-set embedding of G on S is a planar polyline drawing of G such that
each vertex of G is mapped to a distinct point of S. The maximum number of bends
along an edge, also called curve complexity, is a measure of the quality of the drawing.

The problem of computing a point-set embedding of a planar graph G has been
studied both under the assumption that the mapping between each vertex of G and its
corresponding point of S is given as part of the input and in the case that the drawing
algorithm can choose this mapping. In the first case, we talk about point-set embedding
with mapping; in the second case, we talk about point-set embedding without mapping.

2.1 Point-Set Embeddings with Mapping

Halton [21] proves that every planar graph admits a point-set embedding on any set
of n points and for any given mapping; however, he does not address the problem of
optimizing the curve complexity of the computed drawing. Pach and Wenger [32] re-
visit the question and show a construction that guarantees O(n) curve complexity.

The drawing algorithm by Pach and Wenger to compute a point-set embedding with
mapping of G on S relies on a Hamiltonian augmentation of a planar graph. They first
prove the following lemma for Hamiltonian graphs.

Lemma 1. [32] Let G be a Hamiltonian planar graph with n vertices, let S be any
set of n distinct points in the plane, and let any mapping from the vertices of G to the
points of S be given. There exists an O(n2) time algorithm that computes a point-set
embedding of G on S with the given mapping and such that the curve complexity is at
most 8n + 9.

In order to extend the lemma above to general planar graphs, Pach and Wenger describe
an elegant Hamiltonian augmentation technique that introduces at most 2 division ver-
tices per edge. The idea behind the method is based on computing a spanning tree of
a planar embedded graph and on executing a Eulerian visit of this tree. Each time the
Eulerian visit crosses an edge not in the tree, a division vertex is added. By this Eulerian
tour the Hamiltonian cycle in the augmented graph can be easily derived.

Theorem 1. [32] Every planar graph G with n vertices admits a Hamiltonian augmen-
tation Ham(G) with at most 2 division vertices per edge and at most 5n − 10 vertices
in total. Also, Ham(G) can be computed in O(n) time.

According to Theorem 1 one can compute a point-set embedding of G on any set of
points S and any given mapping, by computing a point-set embedding of Ham(G) on
any superset of S (with a mapping that “implies” the original one) and then removing
the division vertices. The number of bends along an edge of G depends on the number
of division vertices of that edge. Namely, if and edge e is subdivided with k division
vertices, then it is replaced by a path with k + 1 edges. Each of these edges has at
most 8n′ + 9 bends, where n′ denotes the number of vertices in Ham(G); also, every
division vertex d can produce an additional bend if the two segments of e incident to d

The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing 37

are drawn with different slopes. In summary, if an edge is subdivided with k division
vertices, then it can have up to (k+1)(8n′+9)+k bends in the point-set embedding of
G on S. Since by Theorem 1 every planar graph has a Hamiltonian augmentation with
at most k = 2 division vertices per edge and at most n′ = 5n− 10 vertices in total, the
following theorem holds.

Theorem 2. [32] Let G be a planar graph with n vertices, let S be any set of n distinct
points in the plane, and let any mapping from the vertices of G to the points of S be
given. There exists an O(n2) time algorithm that computes a point-set embedding of G
on S with the given mapping and such that the curve complexity is at most 120n− 211.

Pach and Wenger also established a Ω(n) lower bound on the curve complexity of the
point-set embeddability problem with mapping even for very simple classes of graphs
such as paths or matchings.

Theorem 3. [32] Let G be a planar graph with n vertices and m pairwise independent
edges, let S be a set of n points in convex position, and assume a random mapping
of the vertices of G to the points of S be given. Then, as n tends to infinity, in every
point-set embedding of G on S with the given mapping there are almost surely at least
m/20 edges each having at least m/403 bends.

2.2 Point-Set Embeddings without Mapping

Kaufmann and Wiese [28] study point-set embeddings without mapping. Given a planar
graph G with n vertices and any set S of n distinct points in the plane they show how
to compute a point-set embedding of G on S without mapping such that the curve
complexity is at most two, which is proved to be worst-case optimal. Similar to the work
by Pach and Wenger described in the previous section, also the paper by Kaufmann and
Wiese concentrates first on Hamiltonian graphs.

Lemma 2. [28] Let G be a Hamiltonian planar graph with n vertices and let S be any
set of n distinct points in the plane. There exists an O(n) time algorithm that computes
a point-set embedding of G on S without mapping and such that the curve complexity
is at most 1.

Also in this case, the technique of Lemma 2 is extended to general planar graphs by
means of a Hamiltonian augmentation technique. As discussed in Section 2.1 we have
that the number of bends of a point-set embedding of a planar graph G on a given set
of points S is at most 2k + 1 where k is the number of division vertices per edge in
Ham(G). Namely, an edge of G is split into at most k + 1 edges in Ham(G); each of
these edges has at most one bend by Lemma 2; and each division vertex can give rise to a
new bend when removed. Thus, Lemma 2 and Theorem 1 imply that every planar graph
has a point-set embedding without mapping on any set of points with curve complexity
at most 5.

Kaufmann and Wiese show a different Hamiltonian augmentation technique which
leads to optimal curve complexity. To this aim,they present a Hamiltonian augmentation
technique that introduces at most one division vertex per edge. This technique is based

38 E.D. Giacomo and G. Liotta

on combining two algorithms by Chiba and Nishizeki [5,6]. The first algorithm is used
to find the separating triangles in G (which is assumed to be triangulated) [5]. For each
separating triangle, one of the edges of the triangle is split with a division vertex which
is suitably connected to existing vertices so that the triangle is no longer separating.
This procedure is applied repeatedly until no separating triangle remains in the graph.
The graph obtained by this procedure is four-connected and another algorithm by Chiba
and Nishizeki [6] can be used to find a Hamiltonian cycle in the four-connected graph.

Theorem 4. [28] Every planar graph with n vertices admits a Hamiltonian augmenta-
tion with at most 1 division vertices per edge. This Hamiltonian augmentation can be
computed in O(n) time.

Theorem 4 implies that every planar graph G admits a point-set embedding without
mapping on any set of points with at most 3 bends per edge. As pointed out above, one
of the three bends of an edge e corresponds to the division vertex d of e and it exists
if the two segments incident to d have different slopes. Kaufmann and Wiese describe
a procedure to avoid this bend. This procedure consists in rotating the two segments
incident to d so that they become both vertical.

Theorem 5. [28] Let G be a planar graph with n vertices and let S be any set of
n distinct points in the plane. There exists an O(n2) time algorithm that computes a
point-set embedding Γ of G on S without mapping and such that the curve complexity
is at most 2. Also, there exists a graph G and a set of collinear points S such that every
point-set embedding of G on S has curve complexity at least 2.

The result by Kaufmann and Wiese suggests two interesting research directions.

1. The construction that computes point-set embeddings with curve complexity two
requires exponential area for some of the cases. One may wonder whether optimal
curve complexity and polynomial area can be simultaneously achieved. It may be
worth remarking that the technique by Kaufmann and Wiese computes drawings
of polynomial area at the expenses of sub-optimal curve complexity (namely curve
complexity 3).

2. The proof of the lower bound on the curve complexity uses a set of collinear points.
It is natural to ask whether the same lower bound holds for sets of points in general
position (no three points are collinear). While curve complexity zero can only be
achieved for the family of outerplanar graphs [20], one may wonder whether all
planar graphs admit point-set embedding without mapping with curve complexity
one on every set of points in general position.

In the next sections we will present an alternative Hamiltonian augmentation technique
based on the notion of monotone topological book embedding. We will show how to
use monotone topological book embedding to answer the first question. We will also
use monotone topological book embeddings to partially answer the second question. In
addition, monotone topological book embeddings can be applied to extend and unify
the results of Theorems 2 and 5 in the framework of colored point-set embeddings.
Finally, applications of monotone topological book embeddings to radial layouts and
simultaneous embeddings are also described.

The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing 39

3 Point-Set Embedding without Mapping: Optimal Curve
Complexity and Polynomial Area

3.1 Flat Division Vertices

The algorithm by Kaufmann and Wiese first computes a drawing with curve complexity
3 and area O(W 3) where W is the size of S, i.e., the length of the side of the smallest
axis parallel square containing S. The rotation technique used to reduce the number of
bends per edge from 3 to 2 may cause an exponential growth of the area of the drawing.
In order to obtain optimal cure complexity and polynomial area we would like to avoid
rotations.

We recall that the rotation involves two edges sharing a same division vertex; we
also observe that this rotation is not necessary if the division vertex satisfies a special
topological property that we call flatness. To define the notion of flatness we start by
observing that a division vertex d of Ham(G) has degree at most four. Namely, it has
degree two in sub(G) and it may be necessary to add at most two edges in order to
guarantee that the Hamiltonian cycle passes through d1. Consider a planar embedding
of Ham(G). Let C be the Hamiltonian cycle of Ham(G), let e be an edge of C and let
P = C \ e the Hamiltonian path obtained by removing e from C. A division vertex d of
Ham(G) is called a flat division vertex if:

– d is an internal vertex of P and has degree four in Ham(G);
– the two edges of P incident to d are not consecutive in the circular order around d

defined by the planar embedding of Ham(G);
– letting (u, d) and (d, v) be the two edges incident to d that are not in P , d is en-

countered after u and before v when walking along P .

The following lemma relates the flatness of the division vertices with the curve com-
plexity of a point-set embedding.

Lemma 3. [3] Let G be a planar graph. If G has a Hamiltonian augmentation such
that each edge has at most k division vertices kf of which are flat, then G admits a
point-set embedding without mapping on any set of points with curve complexity at
most 2k + 1 − kf .

In the next section we show an alternative Hamiltonian augmentation technique where
all division vertices are flat and there is at most one division vertex per edge. By
Lemma 3 this implies that optimal curve complexity two is achievable by only flat divi-
sion vertices. Hence no rotation is needed and point-set embeddings without mapping
with optimal curve complexity and polynomial area can be computed.

3.2 Monotone Topological Book Embeddings

Let G be a graph. A book embedding of G consists of a total order <σ of V (G) and
a partition of E(G) into disjoint sets, called pages, such that there are no edges (v, w)

1 We assume that the edges added to sub(G) to obtain Ham(G) all belong to the Hamiltonian
cycle C of Ham(G). This assumption is not restrictive because a dummy edge that were not in
C could be removed without altering the Hamiltonicity and the planarity of Ham(G).

40 E.D. Giacomo and G. Liotta

and (x, y) in a single page with v <σ x <σ w <σ y. A topological book embedding of
G is a book embedding of a subdivision of G. A (topological) book embedding with h
pages is also called a h-page (topological) book embedding. As observed in [15], every
planar graph admits a 2-page topological book embedding.

A 2-page (topological) book embedding of a planar graph G can also be regarded
as a planar drawing of (a subdivision of) G such that all vertices lie along a horizontal
straight line, called spine, ordered according to <σ and each edge is completely drawn
in one of the two half-planes defined by the spine. According to this equivalent defi-
nition of (topological) book embedding, a division vertex of G in a topological book
embedding of G is also called a spine crossing.

Starting from a 2-page topological book embedding of G it is immediate to define
a Hamiltonian augmentation of G. Namely, let sub(G) be the subdivision of G that
defines the topological book embedding and let v1, v2, . . . , vn′ be the vertices of sub(G)
in the order they appear along the spine. For every pair of non-adjacent vertices vi,
vi+1 we add a dummy edge (vi, vi+1). We also add edge (v0, vn′) if this edge does
not exist in G. The cycle C = 〈v0, v1, . . . , vn′〉 is a Hamiltonian cycle of the graph
aug(sub(G)) consisting of sub(G) plus the dummy edges, and therefore aug(sub(G))
is a Hamiltonian augmentation of G. Also the number of division vertices in Ham(G)
is equal to the number of spine crossings in the 2-page topological book embedding
of G.

Di Giacomo et al. [11] introduce and study a special type of topological book em-
bedding. A monotone topological book embedding of a planar graph G is a 2-page
topological book embedding such that:

1. each edge e = (u, v) of G has at most one spine crossing d;
2. d is encountered between u and v when walking along the spine;
3. edge (u, d) is below the spine, while edge (d, v) is above the spine.

Starting from a monotone topological book embedding γ of G we obtain a Hamiltonian
augmentation of G with at most one division vertex per edge and such that all division
vertices are flat. Consider the Hamiltonian path P = C \ (v0, vn′). Each edge e of G
has at most one division vertex d in Ham(G) because e has at most one spine crossing
in γ (Property 1 of the definition of monotone topological book embedding). The two
edges of P incident to d are not consecutive in the circular order around d defined by the
planar embedding of Ham(G) by Property 3 of the definition of monotone topological
book embedding. Finally, d is encountered after u and before v when walking along P
by Property 2 of the definition of monotone topological book embedding.

Theorem 6. [11] Every planar graph with n vertices admits a monotone topological
book embedding that can be computed in O(n) time.

Corollary 1. [11] Every planar graph with n vertices admits a Hamiltonian augmen-
tation with at most 1 division vertices per edge such that all division vertices are flat.
This Hamiltonian augmentation can be computed in O(n) time.

By Corollary 1 and Theorem 3 we can answer the first question at the end of Section 2.2.

The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing 41

Theorem 7. Let G be a planar graph with n vertices and let S be any set of n distinct
points in the plane. There exists an O(n log n) time algorithm that computes a point-set
embedding Γ of G on S without mapping and such that the curve complexity is at most
2. Also, the area of the drawing is O(W 3), where W is the length of the side of the
smallest axis parallel square containing S.

4 Point-Set Embeddings with Curve Complexity 1

Everett et al. [17] describe set of points that make it possible to point-set embed every
planar graph with curve complexity at most one. More precisely, a set S of m points is
h-bend universal for a family of planar graphs with n vertices (n ≤ m) if each graph
in the family admits a point-set embedding on a subset of S that has curve complexity
at most h.

Gritzman, Mohar, Pach and Pollack [20] proved that every set of n distinct points
in general position in the plane is 0-bend universal for the class of outerplanar graphs
with n vertices. De Fraysseix, Pach, and Pollack [8] and independently Schnyder [33]
proved that a grid with O(n2) points is 0-bend universal for all planar graphs with n
vertices. De Fraysseix et al. [8] also showed that a 0-bend universal set of points for all
planar graphs having n vertices cannot have n + o(

√
n) points. This last lower bound

was improved by Chrobak and Karloff [7] and later by Kurowski [29] who showed
that linearly many extra points are necessary for a 0-bend universal set of points for all
planar graphs having n vertices. On the other hand, if two bends along each edge are
allowed, a tight bound on the size of the point-set is implied by Theorem 5. Finally, if
one bend along each edge is allowed, Di Giacomo et al. [11] proved a related result that
every planar graph can be drawn with its vertices on any given convex curve; however,
the positions of the points on the curve depend on the planar graph.

Everett et al. [17] prove the following theorem.

Theorem 8. [17] Let Fn be the family of all planar graphs with n vertices. There exists
a set of n distinct points in the plane in general position that is 1-bend universal for
Fn.

The proof of Theorem 8 is constructive. A set S of n points is defined and a point-set
embedding of a planar graph G on this set of points is constructed by exploiting the
Hamiltonian augmentation technique of Corollary 1. Namely, the points are chosen to
be in convex position and the Hamiltonian cycle C of Ham(G) is drawn as the convex
hull CH of S suitably enriched with extra points that represent the division vertices.
The edges of Ham(G) that are not in C are either inside C or outside it. Those inside
are drawn as chords inside CH , the others are drawn with one bend outside CH . The
choice of points and the flatness of the division vertices guarantee that no additional
bend is required when the division vertices are removed.

5 Colored Hamiltonicity and Colored Point-Set Embeddability

In this section we present an application of Hamiltonian augmentation techniques to
a problem that generalizes and encompasses those described in Sections 2.1 and 2.2.

42 E.D. Giacomo and G. Liotta

Namely, we revisit both the point-set embeddability problem with mapping and the
one without mapping in the framework of colored point-set embeddability. This new
framework is studied by investigating a novel notion of Hamiltonicity, called colored
Hamiltonicity, and the corresponding colored Hamiltonian augmentation problem. Col-
ored Hamiltonicity and colored point-set embeddings have been first introduced by Di
Giacomo et al. [13] and further studied in [3,10,12].

5.1 Colored Hamiltonicity

Let G be a planar graph with n vertices, and with a partition of the vertex set into subsets
V0, . . . , Vk−1 for some positive integer 1 ≤ k ≤ n. We say that each index i is a color,
G is a k-colored planar graph. Note that vertices of the same color may be adjacent.

Let k and n be two positive integers. A k-colored sequence σ is a linear sequence of
(possibly repeated) colors c0, c1, . . . , cn−1 such that 0 ≤ cj ≤ k − 1 (0 ≤ j ≤ n − 1).
We say that σ is compatible with a k-colored planar graph G if, for every 0 ≤ i ≤ k−1,
color i occurs |Vi| times in σ.

Let C be the Hamiltonian cycle of a Hamiltonian augmentation Ham(G) of G. Let
e be an edge of C, let P = C \ e be a Hamiltonian path obtained by removing an edge
from C, and let v0, v1, . . . , vn be the vertices of G in the order they appear along P . P
is a k-colored Hamiltonian path consistent with σ if col(vi) = ci (0 ≤ i ≤ n′ − 1). C
is a k-colored Hamiltonian cycle consistent with σ if there exists an edge e ∈ C such
that P = C \ e is a k-colored Hamiltonian path consistent with σ. Ham(G) is called a
k-colored Hamiltonian augmentation of G consistent with σ.

Theorem 9. [3] Let G be a k-colored planar graph with n vertices and let σ be a k-
colored sequence compatible with G. G admits a k-colored Hamiltonian augmentation
consistent with σ with at most 3n − 1 division vertices per edge, 3n − 3 of which are
flat. This Hamiltonian augmentation can be computed in O(n2 log n) time.

The idea behind the proof of Theorem 9 can be shortly summarized as follows. In or-
der to to find a k-colored Hamiltonian path consistent with the sequence σ, start from
a monotone topological book embedding of G and then transform it into a different
topological book embedding such that the order of the vertices along the spine is con-
sistent with σ. This topological book embedding is then used to compute a k-colored
Hamiltonian augmentation of G consistent with σ. The number of spine crossing in this
topological book embedding is such that the obtained Hamiltonian augmentation of G
has at most 3n − 1 division vertices per edge, 3n − 3 of which are flat.

5.2 Colored Point-Set Embeddings

Let G be a k-colored planar graph with n vertices such that each color i has |Vi| vertices
of that color. Let S be a set of n distinct points in the plane with a partition into subsets
S0, . . . , Sk−1 with |Vi| = |Si| (0 ≤ i ≤ k−1). S is a k-colored set of points compatible
with G. A k-colored point-set embedding of G on S is a planar polyline drawing of G
such that each vertex of Vi is mapped to a distinct point of Si.

The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing 43

Observe that a k-colored point-set embedding is a point-set embedding with mapping
if k = n and that it is a point-set embedding without mapping if k = 1. Some of the lit-
erature about red and blue point sets can also be revisited within the general framework
of k-colored point-set embeddings with k = 2 (see, e.g., [1,2,26,22,23,24,27,25]).

Badent et al. [3] study the curve complexity of k-colored point-set embeddings and
prove both upper and lower bounds.

The proof of the upper bound is constructive. The idea is to exploit the result about
colored Hamiltonian augmentation of Theorem 9 to extend the technique of Kaufamnn
and Wiese [28] for 1-colored point-set embeddings to the more general case of k colors
(k > 1). In a nutshell, the drawing algorithm by Badent et al. can be sketched as follows.

Let p0, p1, . . . , pn−1 be the points of S ordered according to their x-coordinates.
The left-to-right sequence of the colors of the points defines a k-colored sequence σ
compatible with the k-colored graph G. By using Theorem 9, a k-colored Hamiltonian
augmentation of G is computed having a k-colored Hamiltonian path v0, v1, . . . , vn

consistent with σ. Each vertex vi is mapped to point pi (0 ≤ i ≤ n− 1); dummy points
representing the division vertices are suitably added to the point set. By drawing one ex-
tra edge, we obtain that a k-colored Hamiltonian cycle consistent with σ is represented
with all edges as straight-line segments except one that has one bend. All other edges
of the k-colored Hamiltonian augmentation are now drawn either inside or outside the
cycle with one bend each. The result follows from considerations analogous to those of
Lemma 3.

Theorem 10. [3] Let G be a k-colored planar graph with n vertices and let S be any
k-colored set of points compatible with G. There exists an O(n2 log n) time algorithm
that computes a k-colored point-set embedding of G on S with curve complexity at most
3n+2. Also, for every n ≥ 16 and for every k ≥ 2, there exists a k-colored plana graph
G with n vertices and k-colored set of n points S compatible with G such that every
k-colored point-set embedding of G on S has curve complexity Ω(n).

An implication of the upper bound in Theorem 10 is that the curve complexity of
n-colored point-set embeddings is improved from 120n − 211 proved by Pach and
Wenger [32] to 3n+2. Also, the lower bound extends the one of Pach and Wenger [32]
to the less constrained case of two or more colors and has larger constant factors. We
observe however that the graph used in the lower bound of [3] is biconnected, while the
lower bound by Pach and Wenger [32] holds even for matchings and paths.

5.3 More Points Than Vertices

In order to obtain k-colored point-set embeddings whose curve complexity does not
depend on n, Di Giacomo et al. [12] used colored Hamiltonicity to study variants and
extensions of the result by Badent et al [3]. They first considered a specific configuration
of points, i.e., ordered set of points. A k-colored set of n points is ordered if for each
color all points of that color are consecutive along the x-direction.

Theorem 11. [12] Let G be an n-vertex k-colored planar graph (1 ≤ k ≤ n). Let S be
an ordered k-colored set of points compatible with G. There exists an O(n log n+k n)-
time algorithm that computes a k-colored point-set embedding of G on S having curve
complexity at most 3k + 7.

44 E.D. Giacomo and G. Liotta

Di Giacomo et al. [12] then used the result of Theorem 11 to study the case when
the k-colored set of points S is such that the number of points of color i is larger that
the number of vertices of color i, i.e., |Si| ≥ |Vi| for every i = 0, 1, . . . , k − 1. They
prove that O(kn) points for each color are sufficient to guarantee a k-colored point-set
embedding with curve complexity O(k).

Theorem 12. [12] Let G = (
⋃k−1

i=0 Vi, E) be an n-vertex k-colored planar graph (1 ≤
k ≤ n) with |Vi| = ni (i = 0, 1, . . . , k − 1); let S =

⋃k−1
i=0 Si be any k-colored set of

points such that |Si| = k(ni − 1)+ 1. There exists an O(n log n + k n)-time algorithm
that computes a k-colored point-set embedding of G on a subset of S having curve
complexity at most 3k + 7.

6 Other Applications of Hamiltonicity to Graph Drawing

In this section we briefly recall applications of Hamiltonian augmentation techniques to
other graph drawing problems.

6.1 Simultaneous Embeddings

Let G1 = (V, E1) and G2 = (V, E2) be two planar graphs with the same set of vertices.
A simultaneous embedding of G1 and G2 is a pair of drawings 〈Γ1, Γ2〉 of G1 and G2,
respectively, such that both Γ1 and Γ2 are planar and each vertex v ∈ V has the same
coordinates in Γ1 and in Γ2.

One can think to solve the simultaneous embedding problem as a point-set embed-
dability problem. Namely, one can compute a planar drawing of G1 and then a point-
set embedding with mapping of G2 on the points representing the vertices of G1. In
this case, however, the lower bounds on the curve complexity of a n-colored point-
set embedding of Theorems 3 and 10 imply that a curve complexity of Ω(n) can be
required.

Erten and Kobourov [16] observe that a simultaneous embedding of two planar
graphs with at most three bends per edge can be constructed in polynomial area as
follows. Let Ham(G1) and Ham(G2) be two Hamiltonian augmentations of G1 and
G2, respectively. Let P1 and P2 be two Hamiltonian paths of Ham(G1) and Ham(G2),
respectively. Compute a straight-line simultaneous embedding of P1 and P2 with the
technique of Brass et al. [4]; apply the technique by Kaufmann and Wiese [28] to com-
plete the simultaneous embedding. Analogously to the case of point-set embeddings,
polynomial area and curve complexity two can be obtained by using Hamiltonian aug-
mentations with only flat division vertices. Based on this observation, Di Giacomo and
Liotta [14] improve the result by Erten and Kobourov [16] by exploiting Hamiltonian
augmentation computed by using monotone topological book embeddings.

Theorem 13. [14] Every pair of planar graphs G1 and G2 admit a simultaneous em-
bedding of size O(n2) × O(n2) with at most two bends per edge.

The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing 45

6.2 Radially Layered Drawings

A layered graph G = (V, E, φ), consists of a set of vertices V , a set of edges E and
a function φ : V → {0, 1, . . . , k − 1} that maps each vertex to an integer between 0
and k− 1, which represents its centrality. A radially layered drawing of G = (V, E, φ)
on a set of k concentric circles C = {C0, . . . , Ck−1} is such that each vertex v ∈ V is
drawn as a point of circle Cφ(v).

In [9] it is studied how to compute radially layered drawings ofgraphs by taking into ac-
count additional geometricconstraintswhich correspond to typical aestheticand semantic
requirements for the visualization. Namely, the following requirements are considered:
edge crossings, curve complexity, and radial distribution of the vertices (i.e., a measure
of how uniformly the vertices are distributed on a polar grid). Trade-offs among these
requirements are discussed and different linear-time drawing algorithms are presented.
In particular, Hamiltonian augmentation techniques are used to prove the following.

Theorem 14. [9] Every planar layered graph has a planar radially layered drawing
with optimal radial distribution and whose curve complexity is 3. Also, this drawing
can be computed in O(n) time, where n is the number of vertices of the graph.

References

1. Abellanas, M., Garcia-Lopez, J., Hernández-Peñver, G., Noy, M., Ramos, P.A.: Bipartite
embeddings of trees in the plane. Discrete Applied Mathematics 93(2-3), 141–148 (1999)

2. Akiyama, J., Urrutia, J.: Simple alternating path problem. Discrete Mathematics 84, 101–103
(1990)

3. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. Theoret-
ical Computer Science 408(2-3), 129–142 (2008)

4. Braß, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S.G., Lu-
biw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. 36(2),
117–130 (2007)

5. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM Journal on Com-
puting 14, 210–223 (1985)

6. Chiba, N., Nishizeki, T.: The hamiltonian cycle problem is linear-time solvable for 4-
connected planar graphs. Journal of Algorithms 10, 189–211 (1989)

7. Chrobak, M., Karloff, H.: A lower bound on the size of universal sets for planar graphs.
SIGACT News 20(4), 83–86 (1989)

8. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinator-
ica 10, 41–51 (1990)

9. Di Giacomo, E., Didimo, W., Liotta, G.: Radial drawings of graphs: Geometric constraints
and trade-offs. Journal of Discrete Algorithms 6(1), 109–124 (2008)

10. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.: k-colored
point-set embeddability of outerplanar graphs. Journal of Graph Algorithms and Applica-
tions 12(1), 29–49 (2008)

11. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of pla-
nar graphs. Computational Geometry 30, 1–23 (2005)

12. Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained vertex posi-
tions and few bends per edge. Algorithmica (to appear)

13. Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points. IJFCS,
Special Issue on Graph Drawing 17(5), 1071–1094 (2006)

46 E.D. Giacomo and G. Liotta

14. Di Giacomo, E., Liotta, G.: Simultaneous embedding of outerplanar graphs, paths, and cy-
cles. International Journal of Computational Geometry and Applications 17(2), 139–160
(2007)

15. Enomoto, H., Miyauchi, M.S.: Embedding graphs into a three page book with O(m log n)
crossings of edges over the spine. SIAM J. Discrete Math. 12(3), 337–341 (1999)

16. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. Journal
of Graph Algorithms and Applications 9(3), 347–364 (2005)

17. Everett, H., Lazard, S., Liotta, G., Wismath, S.K.: Universal sets of n points for 1-bend
drawings of planar graphs with n vertices. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.)
GD 2007. LNCS, vol. 4875, pp. 345–351. Springer, Heidelberg (2008)

18. Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topological
book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS,
vol. 4835, pp. 172–183. Springer, Heidelberg (2007)

19. Giordano, F., Liotta, G., Whitesides, S.: Embeddability problems for upward planar digraphs.
In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 242–253. Springer,
Heidelberg (2009)

20. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with ver-
tices at specified points. Amer. Math. Monthly 98(2), 165–166 (1991)

21. Halton, J.H.: On the thickness of graphs of given degree. Information Sciences 54, 219–238
(1991)

22. Kaneko, A., Kano, M.: Straight line embeddings of rooted star forests in the plane. Discrete
Applied Mathematics 101, 167–175 (2000)

23. Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane - a survey.
In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete & Computational Geometry.
Algorithms and Combinatories, vol. 25, pp. 551–570. Springer, Heidelberg (2003)

24. Kaneko, A., Kano, M., Suzuki, K.: Path coverings of two sets of points in the plane. In:
Pach, J. (ed.) Towards a Theory of Geometric Graphs. Contemporary Mathematics, vol. 342.
American Mathematical Society (2004)

25. Kaneko, A., Kano, M., Yoshimoto, K.: Alternating hamilton cycles with minimum number
of crossing in the plane. International Journal of Computational Geometry & Application 10,
73–78 (2000)

26. Kaneko, A., Kano, M.: Straight-line embeddings of two rooted trees in the plane. Discrete &
Computational Geometry 21(4), 603–613 (1999)

27. Kaneko, A., Kano, M., Tokunaga, S.: Straight-line embeddings of three rooted trees in the
plane. In: Canadian Conference on Computational Geometry, CCCG 1998 (1998)

28. Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs.
Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)

29. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all n-vertex
planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)

30. Mchedlidze, T., Symvonis, A.: Crossing-optimal acyclic hamiltonian path completion and its
application to upward topological book embeddings. In: Das, S., Uehara, R. (eds.) WALCOM
2009. LNCS, vol. 5431, pp. 250–261. Springer, Heidelberg (2009)

31. Mchedlidze, T., Symvonis, A.: Crossing-optimal acyclic hp-completion for outerplanar t-
digraphs. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 76–85. Springer, Hei-
delberg (2009)

32. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graph and Combi-
natorics 17, 717–728 (2001)

33. Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM Sympos.
Discrete Algorithms (SODA 1990), pp. 138–148 (1990)

34. Sugiyama, K.: Graph Drawing and Applications. World Scientific, Singapore (2002)

Small Grid Drawings of Planar Graphs with
Balanced Bipartition�

Xiao Zhou, Takashi Hikino, and Takao Nishizeki

Graduate School of Information Sciences, Tohoku University,
Sendai 980-8579, Japan

zhou@ecei.tohoku.ac.jp, hikino@nishizeki.ecei.tohoku.ac.jp,
nishi@ecei.tohoku.ac.jp

Abstract. In a grid drawing of a planar graph, every vertex is located at
a grid point, and every edge is drawn as a straight-line segment without
any edge-intersection. It has been known that every planar graph G of
n vertices has a grid drawing on an (n − 2) × (n − 2) integer grid and
such a drawing can be found in linear time. In this paper we show that if
a planar graph G has a balanced bipartition then G has a grid drawing
with small grid area. More precisely, if a separation pair bipartitions G
into two edge-disjoint subgraphs G1 and G2, then G has a grid drawing
on a W ×H grid such that both the width W and height H are smaller
than the larger number of vertices in G1 and in G2. In particular, we show
that every series-parallel graph G has a grid drawing on a (2n/3)×(2n/3)
grid and such a drawing can be found in linear time.

1 Introduction

In a straight line drawing of a planar graph, all edges are drawn as straight line
segments without any edge-intersection. A grid drawing is a straight line drawing
in which all vertices are put on grid points of integer coordinates [1]. This paper
deals with a grid drawing of a planar graph G in a variable embedding setting, in
which one can choose any plane embedding of G. Every plane graph G (with a
fixed embedding) has a grid drawing on an (n− 2)× (n− 2) grid [2,3] and hence
the area upper bound is (n − 2)2 = O(n2), where n is the number of vertices in
G. A plane graph of nested triangles needs a �2(n − 1)/3	 × �2(n − 1)/3	 area
[4], while the graph can be drawn in 2n2/9+O(n) area and needs 2n2/9+Ω(n)
area when one can choose the outer face [5]. Thus the area upper bound O(n2)
above is optimal within a coefficient. However, it is still unknown whether every
planar graph G has a grid drawing with a quadratic area whose coefficient of n2

is less than one. It is conjectured that every plane graph G has a
2n/3�×
2n/3�
grid drawing. The conjecture holds for some restricted classes of planar graphs.
For example, every 4-connected plane graph G with at least four vertices on
the outer face has a (
n/2� − 1) × �n/2	 grid drawing [6]. Every tree has a grid

� This work is supported in part by a Grant-in-Aid for Scientific Research (C) 19500001
from Japan Society for the Promotion of Science (JSPS).

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 47–57, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

48 X. Zhou, T. Hikino, and T. Nishizeki

drawing in area O(n log n) [7]. Every outerplanar graph has a grid drawing with
area O(n1.48) in a variable embedding setting [8].

In this paper we show that if a planar graph G has a balanced bipartition
then G has a grid drawing with small area. More precisely, if a separation pair
bipartitions G into two edge-disjoint subgraphs G1 and G2 as illustrated in
Fig. 1(a), then G has a grid drawing on a W × H grid such that W, H <
max{n(G1), n(G2)}, where n(G1) and n(G2) are the numbers of vertices in G1
and G2, respectively. The plane embedding of G in the drawing may be different
from that of a given plane graph. The outer face boundary of G is drawn as a
parallelogram as illustrated in Fig. 1(c), while it is drawn as a triangle by most of
the known algorithms [1,3,9,10]. In particular, we show that every series-parallel
graph has a balanced bipartition and has a �2n/3	 × (�2n/3	 − 1) grid drawing
as illustrated in Fig. 2, and hence the conjecture above holds for series-parallel
graphs in a variable embedding setting. We also show that such a drawing can
be found in linear time.

2 Planar Graph

In this section, we show that if a planar graph G has a balanced bipartition then
G has a small grid drawing.

We deal with an undirected simple graph G. We denote the set of vertices of
G by V (G) and the set of edges by E(G). We denote the number of vertices in
G by n(G) or simply by n. An edge joining vertices u and v is denoted by (u, v).

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding in the plane. A plane
graph G divides the plane into connected regions called faces. The unbounded
region is called the outer face of G.

A W ×H integer grid consists of W +1 vertical grid lines and H +1 horizontal
grid lines, and has a rectangular contour. We call W and H the width and height
of the integer grid, respectively. We denote by W (D) the width of the minimum
integer grid enclosing a grid drawing D of a graph, and by H(D) the height
of D.

We call a pair of distinct vertices {s, t} in a graph G a separation pair of G if
G has two subgraphs G1 and G2 such that

(a) V (G) = V (G1) ∪ V (G2), V (G1) ∩ V (G2) = {s, t}; and
(b) E(G) = E(G1) ∪ E(G2), E(G1) ∩ E(G2) = ∅.
(See Fig. 1(a).) Such a pair of subgraphs {G1, G2} is called a bipartition of G.
For example, the pair of ends of any edge in G is a separation pair. It should be
noted that G1 or G2 may not be connected and that s or t may be a cut-vertex
of G.

Chrobak and Kant gave a linear-time algorithm to find a (convex) grid drawing
D of a 3-connected plane graph G such that W (D) = H(D) = n − 2 and all
the face boundaries are drawn as convex polygons [2]. If G is a maximal planar
graph, then the outer face boundary of G is drawn as a triangle such that

Small Grid Drawings of Planar Graphs with Balanced Bipartition 49

1

s

t

s

2G

G1

G1

2G

G1

s

s

t

t

u2

t

2G

(a)

u1

(c)(b)

u2

u

Fig. 1. (a) Bipartition {G1, G2} of G, (b) grid drawings of G1 and G2, and (c) grid
drawing of G

(a) one of the three sides is horizontal, and the length is n − 2;
(b) the height of the triangle is n − 2; and
(c) the x-coordinate of the top vertex of the triangle is equal to the x-coordinate

of the left end of the horizontal side plus 1, and hence the two oblique sides
have slope n − 2 and −(n − 2)/(n − 3), respectively.

(See Figs. 1(b) and 2(c).) Using their method, we show that if G has a bipartition
{G1, G2} of balanced size then G has a grid drawing with small area, as follows.

Theorem 1. Let G be a planar graph, and let {G1, G2} be an arbitrary biparti-
tion of G. Then G has a grid drawing D such that

W (D) ≤ max{n(G1), n(G2)} − 1
and

H(D) ≤ max{n(G1), n(G2)} − 2.

Furthermore such a drawing D can be found in linear time.

Proof. Clearly Theorem 1 holds if n(G) = 2. One may thus assume that n(G) ≥ 3
and n(G1) ≥ n(G2).

We first consider the case where n(G2) = 2. In this case, n(G) = n(G1) ≥ 3
and one may assume that G = G1. Add dummy edges to G, if necessary, so
that the resulting graph is maximal planar. Find a grid drawing of the graph
by the algorithm in [2]. Erase the dummy edges from the drawing to obtain
a drawing D of G. Then W (D) = n(G) − 2 < max{n(G1), n(G2)} − 1 and
H(D) = n(G)− 2 = max{n(G1), n(G2)}− 2, and hence the theorem holds true.

We then consider the other case where n(G2) ≥ 3. One may assume that a
separation pair {s, t} bipartitions G to G1 and G2, as illustrated in Figs. 1(a)
and 2(a). Add dummy edges to G1, if necessary, so that the resulting graph is
maximal planar and has an edge (s, t), as illustrated in Figs. 1(b) and 2(b) where

50 X. Zhou, T. Hikino, and T. Nishizeki

u1

u2

G1 G 2

u1

u2

u2

G1

s G 2

t

u1

s

t

1D(c)

t

s

(a) G and(b)

u1
t

s

D2(d)

D(e)

t

s

s

t

u2

Fig. 2. (a) A series-parallel graph G, (b) G1 and G2, (c) drawing D1 of G1, (d) drawing
D2 of G2, and (e) drawing D of G

dummy edges are drawn by dotted lines. The resulting graph is also denoted by
G1. Similarly, add to G2 dummy edges and (n(G1)− n(G2)) dummy vertices so
that the resulting graph is maximal planar and has an edge (s, t) and exactly
n(G1) vertices, as illustrated in Figs. 1(b) and 2(b). The resulting graph is also
denoted by G2. We embed Gi, i = 1, 2, so that the edge (s, t) is on the outer face
of Gi. Since Gi is a maximal plane graph, there are exactly three vertices on the

Small Grid Drawings of Planar Graphs with Balanced Bipartition 51

outer face. Let ui be the vertex on the outer face other than s and t. Using the
algorithm in [2], we obtain a grid drawing D1 of G1 such that W (D1) = n(G1)−2,
H(D1) = n(G1)−2, edge (u1, t) is horizontal, and edge (s, t) has slope −(n(G1)−
2)/(n(G1) − 3), as illustrated in Figs. 1(b) and 2(c). Similarly, we obtain a grid
drawing D2 of G2 such that W (D2) = n(G1)−2, H(D2) = n(G1)−2, edge (s, u2)
is horizontal, and edge (s, t) has slope −(n(G1) − 2)/(n(G1) − 3), as illustrated
in Figs. 1(b) and 2(d). The edge (s, t) in D1 has the same length and slope as
the edge (s, t) in D2. Combining the two drawings D1 and D2 and erasing all
the dummy vertices and edges, we obtain a grid drawing D of G, as illustrated
in Figs. 1(c) and 2(e). Since G has no multiple edges, either the edge (s, t) in G1
or the edge (s, t) in G2 is dummy. Therefore, the combination above does not
produce any edge-crossing. Since D1 and D2 are obtained by the algorithm in
[2], we have x(s) = x(u1) + 1 and x(t) = x(u2)− 1 in D, where x(v) denotes the
x-coordinate of a vertex v. We thus have

W (D) = W (D1) + 1 = n(G1) − 1 = max{n(G1), n(G2)} − 1,

and
H(D) = H(D1) = n(G1) − 2 = max{n(G1), n(G2)} − 2.

Furthermore, D can be found in linear time, because D1 and D2 can be found
in linear time by the algorithm in [2]. ��
Figure 2 illustrates the drawing process of the plane graph in Fig. 2(a). The
outer face boundary is drawn as a parallelogram, as illustrated in Fig. 2(e). The
embedding of the obtained drawing in Fig. 2(e) is different from that in Fig. 2(a);
compare edge (s, t) in the two embeddings.

Using the shift method in [9], one can find a grid drawing D of a maximal
plane graph G such that W (D) = H(D) = n − 1 and the outer face boundary
is drawn as an isosceles right triangle having a horizontal side and a vertical
side. Using the method in place of the algorithm in [2], one can show that if G
has a bipartition {G1, G2} then G has a grid drawing D such that its outer face
boundary is drawn as a square and W (D) = W (H) = max{n(G1), n(G2)} − 1.

3 Series-Parallel Graph

In this section we give a linear algorithm to find a small grid drawing of a
series-parallel graph.

A series-parallel graph (with terminals s and t) is a simple graph recursively
defined as follows [11]:

(a) A graph G of a single edge is a series-parallel graph. The ends s and t of the
edge are called the terminals of G. (See Fig. 3(a).)

(b) Let G1 be a series-parallel graph with terminals s1 and t1, and let G2 be a
series-parallel graph with terminals s2 and t2.

52 X. Zhou, T. Hikino, and T. Nishizeki

t

1

G2

G

2

=s1s

G1

G2

s t =s1s t=t= =s2 t21
t

=st1 2
=

(a) (b) (c)

Fig. 3. (a) K2, (b) series, and (c) parallel connections

(i) A graph G obtained from G1 and G2 by identifying vertex t1 with vertex
s2 is a series-parallel graph, whose terminals are s = s1 and t = t2. Such
a connection is called a series connection. (See Fig. 3(b).)

(ii) A graph G obtained from G1 and G2 by identifying s1 and t1 with s2 and
t2, respectively, is a series-parallel graph, whose terminals are s = s1 = s2
and t = t1 = t2. Such a connection is called a parallel connection. (See
Fig. 3(c).)

For example, the graph in Fig. 2(a) is series-parallel.
Every series-parallel graph has a balanced bipartition, as in the following

Lemma 1. It is well known that one can decompose any tree into two edge-
disjoint forests of balanced size by deleting a vertex [12, Theorem 9.1]. Applying
the result to a “decomposition tree” of a series-parallel graph, one can prove
Lemma 1. However, we give a direct simple proof without using the result so
that the proof would be self-contained.

Lemma 1. Every series-parallel graph G of n vertices has a bipartition {G1, G2}
such that n(G1), n(G2) ≤ �2n/3	+1. Furthermore such a bipartition can be found
in linear time.

Proof. (a) Existence of a desired bipartition

Suppose for a contradiction that a series-parallel graph G does not have a desired
bipartition. Then n ≥ 4; otherwise, n ≤ �2n/3	 + 1 and hence the pair of ends
of any edge in G would produce a desired bipartition. One may further assume
that G is 2-connected; otherwise, add to G a dummy edge joining the terminals
of G, and let G be the resulting 2-connected series-parallel graph.

Let {s, t} be a separation pair of G such that max{n(G1), n(G2)} is minimum
among all bipartitions of G. One may assume without loss of generality that
n(G1) ≥ n(G2) and that (s, t) �∈ E(G1) and (s, t) ∈ E(G2) if (s, t) ∈ E(G).
Since G is 2-connected, both G1 and G2 are connected and series-parallel. G
is a parallel connection of G1 and G2. Since G has no desired bipartition and
n(G1) ≥ n(G2), we have

n(G1) = max{n(G1), n(G2)} ≥ �2n/3	+ 2 (1)

Small Grid Drawings of Planar Graphs with Balanced Bipartition 53

s t

u

(b)

s t

G1a

(a)

G

2

1

G

G1bG1a

G1a

G1b

2G

Fig. 4. (a) Bipartition {G1, G2} with respect to {s, t}, and (b) bipartition {G1a, G1a}
with respect to {s, u}

and hence

n(G2) = n − n(G1) + 2 ≤
n/3�. (2)

Substituting n ≥ 4 to Eq. (1), we have n(G1) ≥ 4, and hence the series-parallel
graph G1 is obtained from two subgraphs G1a and G1b by a series or parallel
connection, as illustrated in Fig. 4. We shall thus consider the following two
cases.
Case 1: G1 is a parallel connection of G1a and G1b (see Fig. 4(a)).

One may assume without loss of generality that n(G1a) ≥ n(G1b). We then
have

n(G1) = n(G1a) + n(G1b) − 2 ≥ 2n(G1b) − 2. (3)

We now consider another bipartition {G1a, G1a} with respect to the same sep-
aration pair {s, t}, where G1a is a parallel connection of G1b and G2. Since
max{n(G1), n(G2)} is minimum among all bipartitions of G, we have

max{n(G1a), n(G1a)} ≥ max{n(G1), n(G2)} = n(G1). (4)

Since G1 has no edge (s, t), we have n(G1b) ≥ 3. Therefore

n(G1a) = n(G1) − n(G1b) + 2 < n(G1). (5)

By Eqs. (4) and (5) we have

n(G1) ≤ n(G1a) = n(G2) + n(G1b) − 2. (6)

From Eqs. (3) and (6) one can easily derive

n(G1) ≤ 2n(G2) − 2. (7)

54 X. Zhou, T. Hikino, and T. Nishizeki

On the other hand, Eq. (1) implies

n(G1) ≥ �2n/3	+ 2 ≥ 2
n/3�. (8)

Substituting Eq. (2) to Eq. (8), we have n(G1) ≥ 2n(G2), contrary to Eq. (7).
Case 2: G1 is a series connection of G1a and G1b (see Fig. 4(b)).

One may assume that n(G1a) ≥ n(G1b). Let u be the common terminal of G1a

and G1b. We now choose {s, u} as a new separation pair of G, which bipartitions
G into G1a and the remaining graph G1a as illustrated in Fig. 4(b). G1a is a
series connection of G2 and G1b. Since max{n(G1), n(G2)} is minimum among
all bipartitions of G, we have

max{n(G1a), n(G1a)} ≥ n(G1). (9)

Since n(G1a) < n(G1), by Eq. (9) we have n(G1a) ≥ n(G1). Therefore, by Eq. (1)
we have

n(G1a) ≥ �2n/3	+ 2. (10)

On the other hand, since n(G1a) ≥ n(G1b), we have

n(G1) = n(G1a) + n(G1b) − 1 ≤ 2n(G1a) − 1

and hence

n(G1a) ≥ n(G1)/2 + 1/2. (11)

Substituting Eq. (1) to Eq. (11), we have

n(G1a) ≥ �2n/3	/2 + 3/2. (12)

Substituting Eqs. (10) and (12) to n = n(G1a) + n(G1a) − 2, we have

n ≥ (3/2)�2n/3	+ 3/2 ≥ n + 1/2,

a contradiction.
(b) Algorithm

A series-parallel graph G can be represented by a decomposition tree T , which
is a rooted binary tree and can be obtained in linear time [11]. Figure 5 depicts
a decomposition tree T of the series-parallel graph G in Fig. 2(a). Each internal
node of T labeled s means a series connection, while each internal node labeled
p means a parallel connection. Each leaf of T corresponds to an edge of G. Each
internal node u of T corresponds to a subgraph Gu of G induced by all edges that
are descendants of u in T . The number of vertices in Gu is attached to an internal
node u of T . Thus the root of T corresponds to G. One can easily observe that a
desired bipartition of G can be found in linear time by the following procedure
Bipartition(G, T).

Small Grid Drawings of Planar Graphs with Balanced Bipartition 55

u1s

ts

u1 u1 t

u1 t

u1 t

u2 u2

s u1s u1s u1

t

ts ts ts

s 3

p

3

s

s

p

s s

3

3

4 3

5

p

p

3s s 3

3

s

p

s

3

43

5

9

root 12

4

5

3

3

p

p

s

p

p

p

Fig. 5. A decomposition tree of the series-parallel graph in Fig. 2(a)

56 X. Zhou, T. Hikino, and T. Nishizeki

Bipartition(G, T);
{ G is a series-parallel graph of n vertices with a decomposition tree T . }
begin

let u be the root of T ;
while n(Gu) ≥ �2n/3	+ 2 do
begin

let v1 and v2 be the two children of u in T ;
if n(Gv1) ≥ n(Gv2)

then let u := v1
else let u := v2;

end;
let G1 := Gu and let G2 be the remaining graph G1;
return a bipartition {G1, G2};

end;
��

By Theorem 1 and Lemma 1 we immediately have the following theorem.

Theorem 2. Every series-parallel graph of n vertices has a grid drawing D such
that W (D) ≤ �2n/3	 and H(D) ≤ �2n/3	 − 1. Furthermore such a drawing D
can be found in linear time.

One can observe from the example in Figs. 2(a) and (b) that the bound �2n/3	+1
in Lemma 1 is best possible. Recently, Biedl showed that every series-parallel
graph has a visibility representation of area O(n3/2), which can be converted to
a poly-line drawing of asymptotically the same area[13].

4 Conclusions

In this paper we showed that if a planar graph G has a balanced bipartition
then G has a small grid drawing. In particular, we showed that every series-
parallel graph has a balanced bipartition and has a �2n/3	 × (�2n/3	 − 1) grid
drawing. We also showed that such a drawing can be found in linear time. There
exist series-parallel graphs requiring Ω(n log n) area in any grid drawing [14].
Thus, there is a big gap between this Ω(n log n) lower bound and our 4n2/9
upper bound, and it is still open whether every series-parallel graph has a grid
drawing of o(n2) area [13,15]. Adding dummy edges, one can extend a partial
2-tree to a 2-tree, which is series-parallel. Therefore, every partial 2-tree has a
�2n/3	 × (�2n/3	 − 1) grid drawing. It is still open whether every planar graph
has a
2n/3� ×
2n/3� grid drawing.

References

1. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific, Singapore
(2004)

2. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Inter-
national Journal of Computational Geometry and Applications 7, 211–223 (1997)

Small Grid Drawings of Planar Graphs with Balanced Bipartition 57

3. Schnyder, W.: Embedding planar graphs on the grid. In: Proc. of First ACM-SIAM
Symposium on Discrete Algorithms, pp. 138–148 (1990)

4. Dolev, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. Ad-
vances in Computing Research 2, 147–161 (1984)

5. Frati, F., Patrignami, M.: A note on minimum-area straight-line drawings of planar
graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875,
pp. 339–344. Springer, Heidelberg (2008)

6. Miura, K., Nakano, S., Nishizeki, T.: Grid drawings of 4-connected plane graphs.
Discrete & Computational Geometry 26, 73–87 (2001)

7. Shiloach, Y.: Arrangements of Planar Graphs on the Planar Lattice. PhD thesis,
Weizmann Institute of Science (1976)

8. Battista, G.D., Frati, F.: Small area drawings of outerplanar graphs. Algorith-
mica 54, 25–53 (2009)

9. Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on
a grid. Information Processing Letters 54, 241–246 (1995)

10. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10, 41–51 (1990)

11. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinato-
rial problems on series-parallel graphs. J. ACM 29, 623–641 (1982)

12. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Dover Publica-
tions, New York (2008)

13. Biedl, T.: On small drawings of series-parallel graphs and other subclasses of planar
graphs. In: Proc. of GD 2009 (to appear)

14. Frati, F.: A lower bound on the area requirements of series-parallel graphs. In:
Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS,
vol. 5344, pp. 159–170. Springer, Heidelberg (2008)

15. Biedl, T.: Drawing outer-planar graphs in o(n log n) area. In: Goodrich, M.T.,
Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 54–65. Springer, Heidelberg
(2002)

Switch-Regular Upward Planar Embeddings of Trees�

Carla Binucci1, Emilio Di Giacomo1, Walter Didimo1, and Aimal Rextin2

1 University of Perugia, Italy
{binucci,digiacomo,didimo}@diei.unipg.it

2 University of Limerick, Ireland
aimal.tariq@ul.ie

Abstract. Upward planar drawings of digraphs are crossing free drawings where
all edges flow in the upward direction. The problem of deciding whether a digraph
admits an upward planar drawing is called the upward planarity testing problem,
and it has been widely studied in the literature. In this paper we investigate a
new version of this problem: Deciding whether a digraph admits a switch-regular
upward planar drawing, i.e., an upward planar drawing with specific topological
properties. Switch-regular upward planar drawings have applications in the de-
sign of efficient checkers and in the design of effective compaction heuristics.
We provide characterizations for the class of directed trees that admit a switch-
regular upward planar drawing. Based on these characterizations we describe an
optimal linear-time testing and embedding algorithm.

1 Introduction

An upward drawing of a digraph is a drawing such that each vertex is mapped to a
distinct point of the plane and all edges are drawn as simple Jordan curves monoton-
ically increasing in the vertical direction. Upward drawings have a long tradition in
Graph Drawing and they are commonly adopted for the visual representation of acyclic
digraphs that model hierarchical structures, like PERT diagrams or class inheritance di-
agrams. A digraph is said to be upward planar if it admits an upward planar drawing,
i.e., a crossing free upward drawing.

Although it is immediate to see that every acyclic digraph has an upward drawing,
it is well known that not all acyclic planar digraphs are upward planar. Since edge
crossings negatively affect the readability of a drawing, a very rich body of research
has been devoted so far to the so called upward planarity testing problem (i.e., the
problem of deciding whether or not a planar digraph admits an upward planar drawing),
and many combinatorial and algorithmic results have been described (see, e.g., [8]). In
particular, Bertolazzi et al. proved that given an embedded planar digraph G with n
vertices, it is possible to decide in O(n2) time if G admits an embedding preserving
upward planar drawing [2]. Conversely, Garg and Tamassia proved that the upward
planarity testing problem in the variable embedding setting is NP-complete [12]. In
the middle of these two results, polynomial-time upward planarity testing algorithms
have been described for specific sub-families of planar digraphs [3,11,14,15] and more
general exponential-time algorithms can be found in [1,6,13].

� The problem studied in this paper was posed during the first Bertinoro Workshop on Graph
Drawing (http://www.diei.unipg.it/∼bwgd/).

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 58–69, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Switch-Regular Upward Planar Embeddings of Trees 59

Concerning the topological properties of upward planar drawings, Di Battista and
Liotta discovered and characterized a meaningful sub-family of upward planar drawings
whose embedding has some special properties of “regularity” [9]. Namely, an upward
planar drawing has a switch-regular embedding if: (i) the boundary of each internal
face contains at most one maximal subsequence of ”small” angles (i.e., angles smaller
than π) of length greater than one. (ii) the external boundary does not contain two
consecutive ”small” angles.

From a practical point of view, finding switch-regular upward planar embeddings is
relevant for two main applications:

(i) Design of Efficient Checkers. A checker is an algorithm that efficiently checks the
correctness of the output produced by another algorithm (see, e.g., [7]). Di Battista and
Liotta showed that it is possible to design an optimal linear-time checker that verifies
the correctness of a computed upward planar drawing, provided that its embedding is
switch-regular. Namely, suppose we are given an algorithm that takes as input a planar
digraph G and that computes, if any, an upward planar drawing Γ of G; if the embed-
ding of Γ is switch-regular, the checker described by Di Battista and Liotta efficiently
verifies the correctness of Γ in terms of upward planarity.

(ii) Effective Drawing Compaction. Area and aspect ratio are considered two of the
most important aesthetic requirements for the readability of a drawing. There are works
that experimentally show that, starting from a switch-regular embedding of a digraph
or augmenting a non-switch regular embedding to a switch-regular one, it is possible
to design heuristics that compute drawings with compact area and that dramatically
improve aspect ratio with respect to previous drawing approaches [10]. We also remark
that similar heuristics, based on a analogous concept of “regularity”, were previously
adopted and successfully experimented for the computation of orthogonal drawings [5].

These applications naturally motivate the following new upward planarity testing prob-
lem: “Given a planar digraph G, is it possible to test in polynomial time whether G
admits a switch-regular upward planar embedding?”. In this paper we solve the prob-
lem for digraphs whose underlying undirected graph is a tree (we call such a digraph
a directed tree for short). We remark that a directed tree always admits an upward pla-
nar embedding, but it may not admit a switch-regular one. Also, since an embedding
of a tree has only one face (i.e., the external one) the switch-regularity reduces to the
requirement that there are no two consecutive “small” angles along the face boundary.
For example, Fig. 2(c) shows a tree that does not admit a switch-regular embedding.
Our results are as follows:

– We provide three equivalent characterizations of switch-regular directed trees, i.e.,
directed trees that admit a switch-regular upward planar embedding.

– Exploiting the above characterizations, we describe an optimal linear-time algorithm
that tests whether a directed tree is switch-regular and that computes a switch-regular
upward planar embedding of the tree in the affirmative case.

We observe that, besides their practical relevance, our techniques make use of new
theoretical ingredients that are interesting in their own right. The outline of the paper
is as follows. Section 2 recalls the formal definition of switch-regular upward planar

60 C. Binucci et al.

embeddings. In Section 3 we define and study two main ingredients of our results: (i)
We prove that switch-regular upward planar embeddings of a directed tree cannot con-
tain subdivisions of a digraph that we call a 3-hook. (ii) We define a new kind of decom-
position for a directed tree, called red-blue decomposition, and we study the interplay
between 3-hooks and the properties of red-blue decompositions. In Section 4 we study
the relationship between red-blue decompositions and switch-regularity. Section 5 gives
characterizations and a linear-time testing and embedding algorithm based on the results
of Sections 3 and 4. Conclusions and open problems can be found in Section 6.

In the remainder of the paper many proofs are sketched or omitted for reasons of
space. Complete proofs can be found in [4]1.

2 Basic Definitions

We assume familiarity with the basic concepts of graph drawing and graph planarity [8].
Let G be an embedded planar digraph. A vertex v of G is bimodal if all incoming edges
of v (and hence all outgoing edges of v) are consecutive in the circular clockwise order
around v. G is called bimodal if all its vertices are bimodal. Acyclicity and bimodal-
ity are necessary conditions for the upward planar drawability of an embedded planar
digraph, but they are not sufficient conditions [2].

Let f be a face of G and suppose that the boundary of f is traversed counterclock-
wise. If e1 = (u1, v) and e2 = (v, u2) are two edges encountered in this order along
the boundary of f , the triplet s = (e1, v, e2) is called an angle of f . Note that, e1 and
e2 may coincide if G is not biconnected. Angle s is called a switch of f if e1 and e2
are both incoming edges or both outgoing edges of v: in the first case s is also called
a sink-switch of f , while in the second case it is a source-switch of f . Observe that the
number of source-switches of f equals the number of sink-switches of f . We denote
by 2nf the total number of switches of f . The capacity of f is denoted by cf and it is
defined by cf = nf − 1 if f is an internal face and by cf = nf + 1 if f is the external
face. If G is bimodal an assignment of the sources and the sinks of G to the faces of G
is called an upward consistent assignment if: (i) Each source and each sink is assigned
to exactly one of its incident face; (ii) for each face f , the total number of sources and
sinks assigned to f is equal to cf . The following theorem characterizes the embedded
planar digraphs that admit an upward planar drawing.

Theorem 1. [2] An acyclic embedded planar bimodal digraph is upward planar if and
only if it admits an upward consistent assignment.

The upward planar embedding of G corresponding to an upward consistent assignment
of G is a planar embedding of G with labels at the switches of every face. Namely, a
switch s = (e1, v, e2) of f is labeled L when v is a source or a sink assigned to f and
s is labeled S otherwise. If f is a face of an upward planar embedding, the circular
list of labels of f is denoted by σf . Also, Sσf

and Lσf
denote the number of S and L

labels of f , respectively. An upward planar drawing of a digraph G can be constructed

1 Observe that in [4] red-blue decompositions are called red-black decompositions. We renamed
them in order to avoid confusion with the well-known red-black tree data structure.

Switch-Regular Upward Planar Embeddings of Trees 61

4
3

f

5

1 2

6

7

(a)

4 3

5

1

6

2

7

(b)

13

15

7
910 6

2019

16

14

18

17

3
2

4
5

8

1

1112

(c)

3

2

11 8 7

10

20

6

4

12

9
13

5

19

14

1 17
18

16

15

(d)

Fig. 1. (a) A non switch-regular embedding and (b) a switch-regular embedding of the same
digraph. (c) A non switch-regular embedding and (d) a switch-regular embedding of the same
directed tree. Dark angles are switches labeled L, light angles are switches labeled S.

for a given upward planar embedding of G; this drawing is such that each switch angle
labeled L forms a geometric angle larger than π, and each switch angle labeled S forms
a geometric angle smaller than π. An internal face f of an upward planar embedding is
called switch-regular if σf does not contain two distinct maximal subsequences σ1 and
σ2 of S labels such that Sσ1 > 1 and Sσ2 > 1. The external face f is switch-regular if
σf does not contain two consecutive S labels.

An upward planar embedding is switch-regular if all its faces are switch-regular.
We say that a digraph G is switch-regular if it admits a switch-regular upward planar
embedding. Examples of switch-regular and non switch-regular upward planar embed-
dings are depicted in Fig. 1. Intuitively speaking, a switch-regular embedding does not
have a face containing two L labeled angles that are “opposite” each other (like vertices
6 and 7 in face f of Fig. 1(a) or vertices 4 and 5 in Fig. 1(c)). The remainder of the
paper concentrates on directed trees. We remark that a directed tree always admits an
upward planar embedding, but it may not admit a switch-regular one.

If e = (u, v) is a directed edge of a digraph G, a subdivision of e is a path of directed
edges (u, w1), (w1, w2), . . . , (wk, v) that replaces e (k > 0). A digraph obtained from
G by subdividing some edges (possible none) of G is called a subdivision of G.

3 3-Hooks and Red-Blue Decompositions

A hook is a digraph H whose underlying undirected graph is a path consisting of three
vertices such that the middle vertex is either a source or a sink of H . A 3-hook is a
directed tree consisting of three hooks sharing an endvertex. A subdivision of a hook is
called a hook subdivision and a subdivision of a 3-hook is called a 3-hook subdivision.
Fig. 2(a) and 2(b) show two different 3-hook subdivisions. The center of a 3-hook
subdivision is the vertex shared by the three hook-subdivisions; the middle vertices of a
3-hook subdivision are the vertices corresponding to the middle vertices of the 3-hook.

Lemma 1. A switch-regular directed tree does not contain 3-hook subdivisions.

Sketch of Proof: Assume by contradiction that T contains a 3-hook subdivision T ′.
We will show that T is not switch-regular in this case. Let ψ be an upward planar
embedding of T , and let v be the center of T ′. Assume that H is any of the three

62 C. Binucci et al.

s̄

u2

v

ŝ

u1

H1

H2

H3

u3

(a)

ŝ

v

H2

u1

u2 u3

H3

H1

s̄

(b)

C3

Π2

C2
v

w1

C1

w3
w2

Π1

u1

u2

u3

(c)

Fig. 2. (a)-(b) Illustration of Lemma 1: (a) Case 1; (b) Case 2. (c) A red-blue decomposition
with respect to v; C1, C2, and C3 are red components of RB(T, v) and w1, w2, and w3 are
their corresponding attaching vertices. C1 is strongly regular, C2 is weakly regular, and C3 is not
regular. Π1 and Π2 are backbones of C1 and C2, respectively. The directed blue path from u1 to
v is an incoming attaching path of RB(T, v), while the directed paths from v to u2 and from v
to u3 are two outgoing attaching paths of RB(T, v).

subgraphs of T ′ that are hook subdivisions, and let u denote the middle vertex of H .
We say that H is an incoming hook (outgoing hook) if there is a directed path from u
to v (v to u). Let ψ′ be the upward planar embedding of T ′ induced by ψ; one of the
two switches at u is labeled S in ψ′ while the other is labeled L. We say that H is a
left hook if walking counterclockwise around T ′, starting from v, the switch labeled
L incident to u is encountered before the switch labeled S, while H is a right hook
otherwise.

One of the two following cases always holds for ψ′: Case 1. There is an incoming
and an outgoing hook such that one is a right hook and the other one is a left hook.
Case 2. There are two incoming or two outgoing hooks, such that both are either right
hooks or left hooks. In both cases there are two consecutive switches ŝ and s̄ labeled S.
In Case 1 they are at the middle vertices of two different hooks (see Fig. 2(a)), while in
Case 2 they are one at the middle vertex of a hook and the other one is at the center of
T ′ (see Fig. 2(b)).

Both Case 1 and Case 2 have four subcases. Let Π = H1∪H2 in Fig. 2(a) and let Π =
H1 in Fig. 2(b). Sub-Case 1. No switch is encountered when walking counterclockwise
around T from ŝ to s̄. In this case ŝ and s̄ form a sequence of two consecutive S labels
and therefore T is not switch-regular. Sub-Case 2. Walking counterclockwise from ŝ to
s̄ the first switch s1 = (e1, w, e′1) encountered after ŝ is such that e1 is an edge of Π , w is
a vertex of Π , and e′1 leaves w. The switches ŝ and s1 form a sequence of two consecutive
S labels because s1 is also labeled S. Sub-Case 3. Walking counterclockwise from ŝ to
s̄ the last switch s1 = (e′1, w, e1) encountered before s̄ is such that e1 is an edge of Π ,
w is a vertex of Π , and edge e′1 enters w. The switches s1 and s̄ form a sequence of two
consecutive S labels because s1 is also labeled S. Sub-Case 4. Walking counterclockwise
from ŝ to s̄ there are two switches s1 = (e′1, w1, e1) and s2 = (e2, w2, e

′
2) such that ei

is an edge of Π (i = 1, 2), wi is a vertex of Π (i = 1, 2), e′1 is an edge entering w1
and e′2 is an edge leaving w2. Both s1 and s2 are labeled S. If they are consecutive they
form a sequence of two consecutive S labels, otherwise walking counterclockwise from

Switch-Regular Upward Planar Embeddings of Trees 63

s1 to s2 there are two consecutive switches with the same properties as s1 and s2. These
switches form a sequence of two consecutive S labels. �

From now on we concentrate on trees with at least one vertex of degree larger than two,
otherwise T is a path, which admits a switch-regular upward planar embedding.

An hourglass tree T is a directed tree with a vertex v such that either there is a
directed path from v to every other vertex of T or there is a directed path from every
other vertex of T to v. The vertex v is called the center of the hourglass. It easy to see
that every upward planar embedding of an hourglass tree is switch-regular.

Let T be a directed tree and let v be a vertex of T with deg(v) ≥ 3. A red-blue
decomposition of T with respect to v is a coloring of the vertices and edges of T such
that: (i) a vertex u of T is colored blue if there exists a directed path either from u to
v or from v to u, and u is colored red otherwise; (ii) an edge e of T is colored blue if
both its endvertices are blue, and e is colored red otherwise (see Fig. 2(c)). We denote
by RB(T, v) such a decomposition. If e is a red edge of RB(T, v), then either both
end-vertices of e are red or one is red and the other is blue. By definition the subgraph
consisting of all blue vertices is an hourglass tree.

Let u and w be a red and a blue vertex of RB(T, v), respectively. We say that u
is attached to w if there exists a (non-directed) path from u to w whose vertices are
all red vertices except w. We also say that w is the attaching vertex of u. Let C′ =
(VC′ , EC′) be any connected component obtained by removing the blue vertices. Note
that all vertices of C′ have the same attaching vertex w. Let e be the (unique) edge
of T that connects w to C′. The subtree C = (VC′ ∪ {w}, EC′ ∪ {e}) is called a red
component of RB(T, v) and vertex w is called the attaching vertex of the red component
C. We say that C is regular if it contains a (non-directed) path Π having w as an
endvertex and such that C minus the edges of Π is a forest of hourglass trees whose
centers belong to Π . If C is regular, we call Π a backbone of C. We say that C is
strongly regular if the path consisting of the only vertex w is a backbone of C (in
this case no edge is removed from C). In other words, C is strongly regular if either
all vertices of C are reachable with a directed path from w, or w is reachable with a
directed path from all vertices of C. If C is regular but not strongly regular, it is said to
be weakly regular. Fig. 2(c) shows examples of regular and non-regular components in
a red-blue decomposition of a directed tree.

An outgoing (incoming) attaching path of RB(T, v) is a directed blue path Π from
v to a leaf of T (from a leaf of T to v) such that at least one vertex of Π is an attaching
vertex (see Fig. 2(c)). Given an attaching path Π we call last attaching vertex of Π the
attaching vertex that has maximum distance from v. Let Π1 and Π2 be two attaching
paths. We say that Π1 and Π2 are distinct if their last attaching vertices are distinct.
Clearly, an outgoing and an incoming attaching paths are always distinct. We say that
Π1 and Π2 are commonly oriented if they are both incoming or both outgoing. Let u
be a vertex of an attaching path Π of RB(T, v); we say that u is: (i) a k-regular vertex
(k > 0), if it is the attaching vertex of at least k regular red components; a k-regular
vertex is also called regular. (ii) A k-weak-regular vertex (k > 0), if it is the attaching
vertex of at least k weakly regular red components; a k-weak-regular vertex is also
called weak-regular. (iii) A branch vertex, if it has two incident blue edges such that
they are both entering/leaving u and one of them belongs to Π . (iv) A branch attaching

64 C. Binucci et al.

u2

u1

v

Π
u3

(a)

Π

u2

v = u1

(b)

Π

u1

v

u2

(c)

Π

u

v

(d)

Fig. 3. Some examples of forbidden configurations. (a) FC1: u1 is branch, u2 is weak-regular and
u3 is regular. (b) FC2: u1 is internal attaching, u2 is 2-weak-regular. (c) FC3: u1 is weak-regular,
u2 is weak-regular and branch attaching. (d) FC4: u is 3-weak-regular.

vertex, if it is a branch shared by two distinct attaching paths. Note that a k-weak-regular
vertex is also k-regular and that a branch attaching vertex is also a branch vertex. We
say that v is internal attaching if it is shared by an incoming and an outgoing attaching
path. Fig. 3 shows some examples of these concepts.

Let RB(T, v) be a red-blue decomposition of T with respect to v, such that all red
components of RB(T, v) are regular and let Π be an attaching path of RB(T, v). We
have a forbidden configuration if, walking along Π starting from v, we encounter:

FC1. Three not necessarily consecutive vertices u1, u2, u3 (u1 may coincide with v)
such that: u1 is either weak-regular or branch or internal attaching, u2 is weak-regular
or branch attaching, and u3 is regular or branch attaching (see, e.g., Fig. 3(a)).

FC2. Two not necessarily consecutive vertices u1, u2 (u1 may coincide with v) such
that u1 is either weak-regular or branch or internal attaching, and u2 is either 2-weak-
regular or weak-regular and branch attaching at the same time (see, e.g., Fig. 3(b)).

FC3. Two not necessarily consecutive vertices u1, u2 (u1 may coincide with v) such
that u1 is either 2-weak-regular or weak-regular and branch attaching at the same time,
and u2 is either regular or branch attaching (see, e.g., Fig. 3(c)).

FC4. One vertex that is either 3-weak-regular or 2-weak-regular and branch attach-
ing at the same time (see, e.g., Fig. 3(d)).

Let T be a directed tree and let v be a vertex of T with deg(v) ≥ 3. RB(T, v) is said
to be regular if the following conditions hold: RB1. RB(T, v) has at most two distinct
attaching paths; RB2. Every red component of RB(T, v) is regular; RB3. RB(T, v)
has no forbidden configuration.

Lemma 2. Let T be a directed tree. If T does not contain 3-hook subdivisions, then for
every vertex v with deg(v) ≥ 3 RB(T, v) is regular.

Sketch of Proof: Assume by contradiction that there exists a vertex v with deg(v) ≥ 3
such that RB(T, v) is not regular. We show that T contains a 3-hook subdivision. Since
RB(T, v) is not regular then at least one of RB1-RB3 does not hold. Here, we only
consider the case when RB1 does not hold, the other cases can be proven with similar
arguments. Since RB1 does not hold, there exist at least three distinct attaching paths

Switch-Regular Upward Planar Embeddings of Trees 65

Π1, Π2, and Π3. Let ui be an attaching vertex of Πi not shared with another attaching
path Πj and let ei be a red edge incident to ui (1 ≤ i �= j ≤ 3). Let wi be the last
vertex (i.e., the farthest from v) of Πi shared with another attaching path Πj and let
Π ′

i be the portion of Πi from wi to ui (1 ≤ i �= j ≤ 3). We have the following two
cases. Case 1: w1 = w2 = w3. Notice that w1 = w2 = w3 may coincide with v. In
this case Π ′

i ∪ ei is a hook subdivision with wi as an endvertex (i = 1, 2, 3). Hence,
there is a 3-hook subdivision with center w1. Case 2: w1 = w2. Notice that w1 = w2
does not coincide with v and therefore Π1 and Π2 are commonly oriented. In this case
Π ′

i ∪ ei is a hook subdivision with wi as an endvertex (i = 1, 2). Let Π∗ be the path
from w1 to w3. If Π3 is commonly oriented with Π1 and Π2, let e be the edge of Π ′

3
incident to w3. Then Π∗∪e is a hook subdivision with w1 as an endvertex and therefore
we have a 3-hook subdivision. If Π3 is not commonly oriented with Π1 and Π2, then
Π∗ ∪ e3 is a hook subdivision with w1 as an endvertex and therefore we have a 3-hook
subdivision. �

4 Red-Blue Decompositions and Switch-Regularity

Lemmas 1 and 2 imply that if a directed tree T with a vertex v with deg(v) ≥ 3 is
switch-regular then RB(T, v) is regular. In this section we prove that the converse is
also true, i.e., that if RB(T, v) is regular then T is switch-regular. To this aim we de-
scribe an algorithm that computes a switch-regular upward planar embedding of T .
The algorithm first computes an upward planar embedding of the blue subtree Tb of
RB(T, v) (Phase 1). Then it adds the weakly regular red components (Phase 2) and
finally it adds the strongly regular red components (Phase 3). For reasons of space, we
describe each phase of the algorithm and omit the proofs of their correctness (Lem-
mas 5, 6 and 7). The next two lemmas will be used in the description of the phases.

Lemma 3. Let T be a directed tree and let v be a vertex of T with deg(v) ≥ 3 and
such that RB(T, v) is regular. If RB(T, v) has only one attaching path, then it has
at most two weak-regular vertices. If RB(T, v) has two distinct attaching paths, then
each of them can have at most one weak-regular vertex. Moreover, there cannot be a
weak-regular vertex shared by two distinct attaching paths.

Lemma 4. Let T be a directed tree with a vertex v such that deg(v) ≥ 3. A weakly
regular red component of RB(T, v) admits a switch-regular upward planar embedding.

Phase 1 - Computing an upward planar embedding of Tb. Tree Tb is an hourglass
tree, hence every upward planar embedding of Tb is switch-regular. We choose an
embedding of Tb that allows red components to be added while maintaining switch-
regularity. Let Π be an outgoing (incoming) attaching path of RB(T, v). Let u1, w, u2
be three vertices encountered consecutively in this order when walking along Π starting
from v. We say that Π is left externally embedded if: (i) the edge e of Π incident to v is
the last outgoing (incoming) edge in the counterclockwise order around v; (ii) for every
pair of edges e1 = (u1, w) and e2 = (w, u2) on Π , the triplet (e2, w, e1) is an angle
of Tb. Angle (e2, w, e1) is said to be the external angle of w; also, (e2, w, e1) is said
to be a left angle. We say that Π is right externally embedded if: (i) the edge e of Π

66 C. Binucci et al.

incident to v is the first outgoing (incoming) edge in the counterclockwise order around
v; (ii) for every pair of consecutive edges e1 = (u1, w) and e2 = (w, u2) on Π , the
triplet (e1, w, e2) is an angle of Tb. Angle (e1, w, e2) is said to be the external angle of
w; also, (e1, w, e2) is said to be a right angle. When an attaching path Π is externally
embedded, each attaching vertex of Π has at least one external angle. An attaching ver-
tex w may have both a left angle and a right angle if all paths leaving (entering) v have
a common subpath Πs and w ∈ Πs.

We describe how to construct an embedding of Tb by distinguishing the following
cases: Case 1: RB(T, v) has one attaching path. We choose an upward planar embed-
ding of Tb where the attaching path is externally embedded. Case 2: RB(T, v) has two
distinct commonly oriented attaching paths. We choose an upward planar embedding
where both attaching paths are externally embedded. Case 3: RB(T, v) has one incom-
ing and one outgoing attaching path. We choose an upward planar embedding where
the attaching paths are either both right externally embedded or both left externally em-
bedded. Case 4: RB(T, v) has two distinct attaching paths that share a subpath. It can
be proved that there is no branch vertex before the branch attaching vertex because oth-
erwise there would be a forbidden configuration FC1. Hence, we can choose an upward
planar embedding where the two attaching paths are both externally embedded.

Let s be an angle of a tree T , prev(s) and next(s) denote the switches that precede
and follow s in the counterclockwise order around T , respectively.

Lemma 5. Let T be a directed tree with a vertex v such that deg(v) ≥ 3 and RB(T, v)
is regular. The upward planar embedding of Tb computed by Phase 1 is switch-regular
and for each external angle s, prev(s) and next(s) are labeled L.

Phase 2 - Adding weakly regular red components. By Lemma 3 there are at most two
weakly regular red components. We assume that there is at least one weakly regular red
component because otherwise this phase is not executed. By Lemma 4 each weakly
regular red component C has a switch-regular upward planar embedding. Let s∗ be
the only switch of C at the attaching vertex of C. A switch-regular upward planar
embedding of C is a left embedding if prev(s∗) is labeled L, and a right embedding
otherwise. Note that, in a right embedding next(s∗) is labeled L. Given a switch-regular
upward planar embedding of C, it is possible to make this embedding a left or a right
embedding. When we add C to Tb we say that C is left (right) embedded to mean that C
is added inside the left (right) angle of its attaching vertex and a left (right) embedding
is chosen for C.

The weakly regular red components are added to the embedding of Tb as follows. If
the attaching vertex w of C has only one external angle s, then C will be left or right
embedded depending on the fact that s is a left or a right angle. If w has two external
angles, C is left or right embedded according to the following cases. Case 1: There is
only one attaching path Π . Assume that Π is left externally embedded, the other case
is symmetric. If there is only one weakly regular red component, then it is right em-
bedded. If there are two weakly regular red components attached to distinct attaching
vertices, then the first attaching vertex w1 on Π has two external angles (otherwise there
is a forbidden configuration of type FC1), while attaching vertex w2 has either one or
two external angles. If w2 has only one external angle then this is a left angle because
Π is left externally embedded. The weakly regular red component attached to w1 will

Switch-Regular Upward Planar Embeddings of Trees 67

be right embedded, the other one will be left embedded. If w1 = w2, then w1 has two
external angles; in this case one of the two component is left embedded and the other
one is right embedded. Case 2: There are one incoming and one outgoing attaching
paths. Assume the two attaching paths are left externally embedded, the other case is
symmetric. If there is only one weakly regular red component, then it is left embedded.
If there are two weakly regular red components, then they are attached to distinct at-
taching paths by Lemma 3. By hypothesis, one of the two attaching vertices has two
external angles, while the other one, call it w, can have one or two external angles. If
w has only one external angle, then this is a left angle because the two attaching paths
are left externally embedded. In both cases both weakly regular red components can be
left embedded. Case 3: There are two commonly oriented attaching paths. An attaching
vertex w with two external angles can exist in this case only if the two attaching paths
Π1 and Π2 share a subpath and w belongs to this subpath. However, by Lemma 3, w
cannot be the attaching vertex of a weakly regular red component.

Lemma 6. Let T be a directed tree with a vertex v such that deg(v) ≥ 3 and RB(T, v)
is regular. Let TW be the subtree of T induced by Tb and the weakly regular red com-
ponents of RB(T, v). The upward planar embedding of TW computed by Phase 2 is
switch-regular.

Phase 3 - Adding the strongly regular red components. Let TW be the tree induced
by Tb plus the weakly regular red components. Let C1, C2, . . . , Ck be the strongly reg-
ular red components, and let wi be the attaching vertex of Ci, where i = 1, 2, . . . , k.
Since different strongly regular red components may have the same attaching vertex,
some of the vertices denoted as wi, 1 ≤ i ≤ k, may coincide. We consider the com-
ponents Ci (1 ≤ i ≤ k) one per time. Since Ci is an hourglass, every upward planar
embedding of Ci is switch-regular. Hence, we choose an arbitrary upward planar em-
bedding for Ci and then we add Ci to the embedding by placing Ci inside an insertion
angle si identified as follows. If, when Ci is considered, there are no red components
(weakly or strongly) with attaching vertex wi already added to the embedding, then si is
the external angle of wi; otherwise si is an angle formed by a blue edge of the attaching
path containing wi and a red edge incident to wi. This can be done while maintaining
switch-regularity.

Lemma 7. Let T be a directed tree with a vertex v, such that deg(v) ≥ 3 and RB(T, v)
is regular. Then T is switch-regular.

5 Characterization and Test

The next theorem immediately follows from Lemmas 1, 2, and 7. From Theorem 2 and
Lemma 2 we can prove Lemma 8, which shows that if a directed tree T is switch-regular
then RB(T, u) is regular for each vertex u of T with deg(u) ≥ 3.

Theorem 2. Let T be a directed tree with at least one vertex of degree larger than
two. The following three statements are equivalent: (a) T is switch-regular. (b) T does
not contain 3-hook subdivisions. (c) There exists a vertex v with deg(v) ≥ 3 such that
RB(T, v) is regular.

68 C. Binucci et al.

Lemma 8. Let T be a directed tree and let v1 and v2 be any two vertices of T such that
deg(v1) ≥ 3 and deg(v2) ≥ 3. If RB(T, v1) is regular, then RB(T, v2) is regular.

Proof. Since RB(T, v1) is regular, then by Theorem 2 T does not contain 3-hook
subdivisions. By Lemma 2, RB(T, v) is regular for each v with deg(v) ≥ 3, hence
RB(T, v2) is regular. ��
We now give a short description of the testing algorithm. Based on Theorem 2 the test-
ing algorithm checks that a red-blue decomposition of T is regular. By Lemma 8 it can
test a red-blue decomposition of T with respect to an arbitrarily chosen vertex v with
deg(v) ≥ 3. RB(T, v) can be easily computed by performing two visits of T start-
ing from v. During the first (second) visit only the edges oriented away from (towards)
the root are considered. The blue vertices/edges are those reached/traversed by one of
the two visits. Once RB(T, v) is computed the algorithm verifies that conditions RB1-
RB3 hold. In the following, we assume that T is rooted at v (note that, this does not
imply that all edges are commonly oriented towards or away from v). Hence, each red
component is rooted at its attaching vertex.
– RB1 can be tested by counting the number of distinct attaching paths whose last
attaching vertex is a descendant of v. This is done by a recursive visit of the blue subtree
Tb of RB(T, v). At the generic blue vertex u, if the sum of the values returned by the
recursive invocations of the algorithm on the children of u is larger than 0, this number
is returned; otherwise the value returned is 0 if u is not an attaching vertex and 1 if it is.
RB1 holds if the invocation of the algorithm on v returns at most 2.
– RB2 can be tested by performing a recursive visit of each red component. Let u be
a vertex of a red component C distinct from the attaching vertex w of C and let u′ be
the parent of u; we denote by Tu the subtree of C rooted at u and by T ′

u the subtree
Tu ∪ {(u, u′)}. The algorithm is invoked with a red vertex u of a red component C as a
parameter and returns 0 if T ′

u is a strongly regular red component, 1 if it is a weakly one,
and a value larger than 1 if it is not regular. If u is a leaf the algorithm returns 0. If u is
not a leaf, let sum denote the sum of the values returned by the recursive invocations of
the algorithm on the children of u. If sum = 0, for each child ui of u, T ′

ui
is a strongly

regular red component with backbone {u}. Then, if edges (u, ui) are entering u and
edge (u, u′) is leaving u (or viceversa), the algorithm returns 0. If there exists at least
one edge (u, ui) such that (u, u′) and (u, ui) are both leaving (or both entering) u, then
T ′

u of C is a weakly regular red component with backbone {u′, u} and the algorithm
returns 1. If sum = 1, there exists exactly one subtree T ′

ui
that is a weakly regular red

component with backbone {u, ui, . . . , x}. In this case Tu \T ′
ui

is an hourglass tree with
center u and the path {u′, u, ui, . . . , x} is a backbone of T ′

u: the algorithm returns 1. If
sum > 1 either there exists one subtree T ′

ui
that is not regular, in which case also T ′

u

is not regular, or there exist at least two subtrees T ′
ui

and T ′
uj

that are weakly regular
red components with backbones {u, ui, . . . , x} and {u, uj, . . . , y}, respectively. Also
in this case T ′

u is not regular. In both cases the algorithm returns a value greater than 1.
– RB3 can be checked by scanning the vertices of each attaching path and using infor-
mation previously stored, so to verify that there is no forbidden configuration FC1-FC4.

If the testing algorithm on a directed treeT returns true, a switch-regular upward planar
embedding of T can be computed according to the techniques illustrated in Section 4. It
can be proved that the time complexity of the embedding algorithm is O(n).

Switch-Regular Upward Planar Embeddings of Trees 69

Theorem 3. Let T be a directed tree with n vertices. There exists an O(n) time al-
gorithm to test whether T is switch-regular and, in the affirmative case, to compute a
switch-regular upward planar embedding of T .

6 Conclusions and Open Problems

We addressed the new problem of deciding whether an acyclic digraph admits a spe-
cial kind of upward planar embedding, called switch-regular. Besides the theoretical
interest of this problem, our research is motivated by the relevance of switch-regular
upward planar embeddings in different graph drawing applications. We described dif-
ferent characterizations and a linear-time testing and embedding algorithm for the class
of directed trees. It remains open the question whether the switch-regular upward pla-
narity testing problem for general digraphs is NP-hard or not. We believe that it can also
be interesting to extend our results to other sub-families of planar digraphs.

References

1. Bertolazzi, P., Di Battista, G., Didimo, W.: Quasi-upward planarity. Algorithmica 32(3),
474–506 (2002)

2. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected
digraphs. Algorithmica 6(12), 476–497 (1994)

3. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing
of single-source digraphs. SIAM Journal on Computing 27, 132–169 (1998)

4. Binucci, C., Giacomo, E.D., Didimo, W., Rextin, A.: Switch-regular upward planarity testing
of directed trees. Technical Report RT-001-09, DIEI, Univ. Perugia (2009),
http://www.diei.unipg.it/rt/rt_frames.htm

5. Bridgeman, S.S., Battista, G.D., Didimo, W., Liotta, G., Tamassia, R., Vismara, L.: Turn-
regularity and optimal area drawings of orthogonal representations. Comput. Geom. 16(1),
53–93 (2000)

6. Chan, H.: A parameterized algorithm for upward planarity testing. In: Albers, S., Radzik, T.
(eds.) ESA 2004. LNCS, vol. 3221, pp. 157–168. Springer, Heidelberg (2004)

7. Devillers, O., Liotta, G., Preparata, F.P., Tamassia, R.: Checking the convexity of polytopes
and the planarity of subdivisions. Comput. Geom. 11(3-4), 187–208 (1998)

8. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper
Saddle River (1999)

9. Di Battista, G., Liotta, G.: Upward planarity checking: “faces are more than polygon”. In:
Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 72–86. Springer, Heidelberg (1999)

10. Didimo, W.: Upward planar drawings and switch-regularity heuristics. Journal of Graph Al-
gorithms and Applications 10(2), 259–285 (2006)

11. Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. In:
Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 117–128. Springer, Heidelberg
(2006)

12. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity
testing. SIAM Journal on Computing 31(2), 601–625 (2001)

13. Healy, P., Lynch, K.: Fixed-parameter tractable algorithms for testing upward planarity. In-
ternational Journal of Foundations of Computer Science 17(5), 1095–1114 (2006)

14. Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM
Journal on Computing 25(2), 291–311 (1996)

15. Papakostas, A.: Upward planarity testing of outerplanar dags. In: Tamassia, R., Tollis, I.G.
(eds.) GD 1994. LNCS, vol. 894, pp. 298–306. Springer, Heidelberg (1995)

http://www.diei.unipg.it/rt/rt_frames.htm

A Global k-Level Crossing Reduction Algorithm�

Christian Bachmaier, Franz J. Brandenburg,
Wolfgang Brunner, and Ferdinand Hübner

University of Passau, Germany
{bachmaier,brandenb,brunner,huebnerf}@fim.uni-passau.de

Abstract. Directed graphs are commonly drawn by the Sugiyama algo-
rithm, where crossing reduction is a crucial phase. It is done by repeated
one-sided 2-level crossing minimizations, which are still NP-hard.

We introduce a global crossing reduction, which at any particular time
captures all crossings, especially for long edges. Our approach is based
on the sifting technique and improves the level-by-level heuristics in the
hierarchic framework by a further reduction of the number of crossings
by 5 – 10%. In addition it avoids type 2 conflicts which help to straighten
the edges, and has a running time which is quadratic in the size of the
input graph independently of dummy vertices. Finally, the approach can
directly be extended to cyclic, radial, and clustered level graphs where
it achieves similar improvements over the previous algorithms.

1 Introduction

The Sugiyama framework [12] is the standard drawing algorithm for directed
graphs. It displays them in a hierarchical manner and operates in four phases:
cycle removal (reverse appropriate edges to eliminate cycles), leveling (assign
vertices to levels which define the y-coordinates and introduce dummy vertices
on long edges), crossing reduction (permute the vertices on the levels), and co-
ordinate assignment (assign x-coordinates to the vertices under some aesthetic
criteria). Typical applications are schedules, UML diagrams, and flow charts.

In this paper we focus on the crossing reduction phase, where the vertices on
each level are permuted to minimize the total number of crossings. The common
solution for k-level crossing minimization is a reduction to the one-sided 2-level
crossing minimization problem, which is solved repeatedly in some up and down
sweeps [12, 9]. In the down sweep, the vertices Vi−1 on the upper level are fixed
and the vertices Vi of the lower level are reordered reducing the local number
of edge crossings. In the up sweep the roles are switched. Even the one-sided 2-
level crossing minimization problem is NP-hard [6]. There are many heuristics
for this problem [9]. Bastert and Matuszewski claim [9] that the results of this
level-by-level sweep are far from optimum. “One can expect better results by
considering all levels simultaneously, but k-level crossing minimization is a very
hard problem” [9, page 102]. Our approach addresses this gap. Note that existing
approximation ratios of 2-level algorithms do not translate to k-level graphs.
� Supported by the Deutsche Forschungsgemeinschaft (DFG), grant BR835/15-1.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 70–81, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Global k-Level Crossing Reduction Algorithm 71

An important feature of such algorithms is the guarantee of no type 2 conflicts
which are crossings of two edges between dummy vertices. Among others, the
standard fourth phase algorithm [4] by Brandes and Köpf assumes the absence
of type 2 conflicts. Then it aligns long edges vertically and so achieves a crucial
aesthetic criterion [9] for pleasing hierarchical drawings.

Common 2-level crossing reductions are the barycenter and median heuristics
[9]. They place each vertex v ∈ Vi in the barycenter or median position of its
predecessors in Vi−1. After that Vi is sorted by these values. The idea is that
on these positions the edges get short and, thus, generate few crossings. These
techniques are simple, fast, and avoid type 2 conflicts, but leave many crossings.

Although such 2-level algorithms reduce the crossings between Vi−1 and Vi,
the number of crossings between Vi and Vi+1 (and thus even the overall number
of crossings) can increase while permuting Vi. These heuristics push the crossings
downwards or upwards until they are resolved at level k or 1, respectively. An
extension is centered 3-level crossing reduction, i. e., treating three consecutive
levels Vi−1, Vi, Vi+1 and permuting Vi while the orders of Vi−1 and Vi+1 are fixed
s. t. the crossings between the three levels are reduced. However, this generates
type 2 conflicts. For reaching a global optimum, all these algorithms are restricted
to a local view. Thus, they may tend to get stuck in local optima.

Sifting was first used for vertex minimization in ordered binary decision dia-
grams [11] and later adapted to the one-sided 2-level crossing reduction [10]. The
idea is to keep track of the number of crossings while in a sifting step a vertex
v ∈ Vi is moved along a fixed ordering of the vertices in Vi. Finally v is placed
at its locally optimal position. The method is an extension of the greedy-switch
heuristic [5], where v is swapped iteratively with its current successor. We call
a single swap a sifting swap and the execution of a sifting step for every vertex
in Vi a sifting round. Sifting leaves fewer crossings than the simple heuristics in
general at the expense of a higher running time and potential type 2 conflicts [9].

Matuszewski et al. [10] have extended sifting towards a global view, which
we call ordered k-level sifting. There the vertices are sorted by their degree and
are sifted first in increasing order and then in decreasing order. All neighbors
of the vertices to swap, i. e., on both neighboring levels, are considered. The
heuristic does not sweep level-by-level but is still limited to a local view as
long edges are not treated as a whole. Our centered 3-level sifting does the
same level-by-level instead of ordered by degree. Both algorithms produce similar
results. Jünger et al. [8] presented an exact ILP approach for the NP-hard k-level
crossing minimization, which can be used in practice for small graphs. Moreover,
metaheuristics have been proposed in the literature, such as genetic algorithms,
tabu search, or windows optimization.

In this paper we propose a new and global crossing reduction technique. The
algorithm yields better results than traditional heuristics. It is easily extendable
to more general crossing reduction problems, avoids type 2 conflicts, and runs in
quadratic time in the size of the graph. Most 2-level approaches extensively use
dummy vertices, whose number is up to O(k · |E|) ⊆ O(|V |3) and do not make
use of the edge bundling techniques of [7], which cannot be used for sifting.

72 C. Bachmaier et al.

2 Preliminaries

We suppose that a directed graph without self-loops has passed through the
cycle removal and leveling phases. The outcome is a k-level graph G = (V, E, φ),
where φ : V → {1, 2, . . . , k} is a surjective level assignment of the vertices with
φ(u) < φ(v) for each edge (u, v) ∈ E. For an edge e = (u, v) ∈ E we define
span(e) := φ(v) − φ(u). An edge e is short if span(e) = 1 and long otherwise. A
graph is proper if all edges are short. Each level graph can be made proper by
adding span(e)−1 dummy vertices for each edge e which split e in span(e) many
short edges. Let G′ = (V ′, E′, φ′) denote the proper version of G. As in [4], short
edges are called segments of e. The first and the last segments are the outer and
the others the inner segments. Inner segments connect two dummy vertices.

For a vertex v we denote the set of neighbors from incoming and outgoing
segments by N−(v) := { u ∈ V ′ | (u, v) ∈ E′ } and N+(v) := {w ∈ V ′ | (v, w) ∈
E′ }, respectively. In an ordered proper level graph the vertices on each level as
well as the sets N−(·) and N+(·) are ordered from left to right. Each proper level
graph can be made ordered by choosing an arbitrary ordering for each level and
sorting the sets N−(·) and N+(·) accordingly. In an ordered level graph there
are two conflicting segments if they cross or share a vertex. Conflicts are of type
0, 1 or 2, if they are induced by 0, 1, or 2 inner segments, respectively.

Next we define blocks, which prevent dealing with dummy vertices and so
keep the running time independent of them. A block is a single vertex of V or a
maximum connected subgraph of dummy vertices, i. e., the inner segments of a
long edge. The blocks represent the vertices of a graph related to G′, where the
edges are the outer segments. For a block A define x = upper(A) (y = lower(A))
to be the unique vertex x in A (y in A) with no incoming (outgoing) segments in
A. x and y always exist but may coincide. We define N−(A) := N−(upper(A)),
N+(A) := N+(lower(A)), deg(A) := |N−(A)|+ |N+(A)|, and the set of all level
numbers on which A has (dummy) vertices as levels(A). With block(v) we denote
the block of the vertex v ∈ V ′. Let B be any ordered list of all blocks and let
π : B → {0, . . . , |B| − 1} assign each block its current position in this ordering.

3 Global Sifting

A major drawback of the established crossing reduction algorithms is their local
view. We present a new approach using ideas from [4] and [7]1 and avoiding type
2 conflicts. We treat all dummy vertices of an edge (and each original vertex)
as one block and try to find the best position for the entire block in one step.
This eliminates the problems of classic 2-level approaches which lack this global
view on crossings of long edges. As an initialization the list of blocks B is sorted
arbitrarily and each block A gets π(A) as its position in B (line 1 in Algorithm 1).
At any time during the execution of the algorithm interpreting π(A) for each
1 The authors of [7] use a data structure similar to our blocks and avoid type 2 conflicts.

However, for crossing reduction they proceed level-by-level in the traditional fashion.
Thus, only the running time but not the quality of the result is improved.

A Global k-Level Crossing Reduction Algorithm 73

Algorithm 1. GLOBAL-SIFTING
Input: Proper k-level graph G′ = (V ′, E′, φ′), number ρ of sifting rounds
Output: Graph G′ with vertices ordered by values π(v) for each v ∈ V ′

create list B of all blocks in G′1
for 1 ≤ i ≤ ρ do2

foreach A ∈ B do3
B ← SIFTING-STEP(G′, B, A)4

foreach v ∈ V ′ do π(v) ← π(block(v))5
return G′6

block A as an x-coordinate for each vertex v in A and φ(v) as its y-coordinate
results in a drawing respecting the current ordering of B. All vertices of a block
get the same x-coordinate and, thus, the ordering is type 2 conflict free. These
are important invariants of Algorithm 1.

The main part of the algorithm is the sifting step (line 4). There all positions
for a block A are tested and A is moved to that position where it has the fewest
crossings. This is done for each block A ∈ B (line 3) and repeated a certain
number of times ρ (line 2). In practice, ten rounds suffice. Finally, each vertex
is set to the position of its block (line 5) and the graph is returned (line 6).

3.1 Building the Block List

The graph is partitioned into blocks. Each block A gets an arbitrary but unique
position π(A) in the block list B. As an example consider Fig. 1(a). The input
graph with 7 vertices gets 6 dummy vertices drawn as black circles. The dummy
vertices are combined into 3 blocks and each original vertex forms its own block.
The 10 resulting blocks are shown in Fig. 1(b) with an arbitrary ordering π.

If a given ordering should only be improved in a postprocessing step, a
straightforward initialization strategy is to topologically sort the blocks accord-
ing to the orderings on the levels from left to right in O(|E′|). Our experiments
showed, that a good initial ordering of the blocks leads to better results. However,
these can also be achieved by one or two additional sifting rounds.

3.2 Initialization of a Sifting Step

To improve the performance of one sifting step [3] it is necessary to keep the
adjacency lists N−(A) and N+(A) of each block A ∈ B sorted according to as-
cending positions of the neighboring blocks in B. We store them as arrays for ran-
dom access. Additionally, we store two index arrays I−(A) = I−(upper(A)) and
I+(A) = I+(lower(A)) of lengths |I−(A)| := |N−(A)| and |I+(A)| := |N+(A)|,
respectively. I−(A) stores the indices where upper(A) is stored in each adjacent
block B’s adjacency N+(B). More precisely, let b = N−(A)[i] be a neighbor of
upper(A) with B = block(b). Then I−(A)[i] holds the index at which upper(A)

74 C. Bachmaier et al.

1

2

3

4

5

1

7

2 3

4

5

6

8 9

10

11 12

(a) A level graph
with ten blocks

1

2

3

4

5

1

7

2

8
0

5
0

2
0 0

3
4
0

9
0

4
0

N
+

I
+

6
0

11
0

4
0

2
1

N

I

1
0

6
1

6
0

12
0

11
0 7

1

5
1

7
2

7
0

5
0

10
0

3

4

5

6

N
+

I
+

N
+

I
+

N
+

I
+

N
+

I
+

N

I

10

12 11

8 9

(b) Separate π-positions, ordered adjacency lists N−

and N+, and index arrays I− and I+ for each block

Fig. 1. Blocks as sifting objects

is stored in N+(B) = N+(b). Symmetrically, I+(A) stores the indices at which
lower(A) is stored in the adjacency N−(B) of each adjacent block B. See Fig. 1(b)
for an example. The creation of the four arrays for each block (line 2 of Algo-
rithm 3) can be done in O(|E|) time as Algorithm 2 shows: Traverse the blocks A
in the current order of B and add upper(A) (lower(A)) to the next free position j
of the cleared adjacency array N+(lower(B)) (N−(upper(B))) of each incoming
(outgoing) neighbor B. Both values for I+(B) and I−(A) (I−(B) and I+(A))
and their positions are only known after the second traversal of a segment s.
Thus, we cache the first array position j as an attribute p of s. Benchmarks
have shown that there is a considerable speed-up if only those adjacencies are
updated that are no longer sorted after a sifting step. The theoretical running
time is unaffected by this improvement.

Algorithm 2. SORT-ADJACENCIES
Input: Proper k-level graph G′ = (V ′, E′, φ′), ordered list B of blocks in G′

Output: Ordered sets N ·(A) and I ·(A) for each block A ∈ B
for i ← 0 to |B| − 1 do π(B[i]) ← i; clear arrays N ·(B[i]) and I ·(B[i])1
foreach A ∈ B do2

foreach s ∈ { (u, v) ∈ E′ | v = upper(A) } do3
add v to the next free position j of N+(u)4
if π(A) < π(block(u)) then p[s] ← j // first traversal of s5
else I+(u)[j] ← p[s]; I−(v)[p[s]] ← j // second traversal of s6

foreach s ∈ { (w, x) ∈ E′ | w = lower(A) } do7
add w to the next free position j of N−(x)8
if π(A) < π(block(x)) then p[s] ← j // first traversal of s9
else I−(x)[j] ← p[s]; I+(w)[p[s]] ← j // second traversal of s10

A Global k-Level Crossing Reduction Algorithm 75

3.3 Sifting Step

In a sifting step (Algorithm 3) all positions p in B are tested for a block A ∈ B
(lines 5–8) and then A is moved to the position p∗ which has caused the least
number of crossings. Note that it is not necessary to count the crossings for each
position of A. As in [3] and contrary to classic sifting which always maintains the
absolute number of crossings, we treat the number of crossings of A when put
to the first position as χ = 0. Then, we only compute the change in the number
of crossings when iteratively swapping A with its right neighbor (line 6).

Algorithm 3. SIFTING-STEP
Input: Proper k-level graph G′ = (V ′, E′, φ′), ordered list B of blocks in G′,

block A ∈ B to sift
Output: Updated ordering of B
B′ ← A ≺ B[0] ≺ · · · ≺ B[|B| − 1] // new ordering B′ with A put to front1
SORT-ADJACENCIES(G′, B′)2
χ ← 0; χ∗ ← 0 // current and best number of crossings3
p∗ ← 0 // best block position4
for p ← 1 to |B′| − 1 do5

χ ← χ + SIFTING-SWAP(A,B′[p])6
if χ < χ∗ then7

χ∗ ← χ; p∗ ← p8

return B′[1] ≺ · · · ≺ B′[p∗] ≺ A ≺ B′[p∗ + 1] ≺ · · · ≺ B′[|B′| − 1]9

3.4 Sifting Swap

The sifting swap is the actual computation of the change in the number of cross-
ings when a block A is swapped with its right neighbor B. In contrast to one-sided
crossing reduction, our global approach takes the whole neighborhood of both
blocks into account when the change in the number of crossings is computed.
Lemma 1 states which segments are involved.

Lemma 1. Let B be the block list in the current ordering. Let B ∈ B be the
successor of A ∈ B. If swapping A and B changes the crossings between any two
segments, then one of them is an incident outer segment of A or B. The other
segment is an incident outer segment of the same kind (incoming or outgoing)
of the other block or an inner segment of the other block.

Proof. Note that only segments between the same levels can cross. As no type
2 conflicts occur at least one of the segments of a crossing has to be an outer
segment. Let (a, b) and (c, d) be two segments between the same levels with a �= c
and b �= d. If the two segments cross after swapping A and B but did not cross
before (or vice versa) either a and c or b and d were swapped. Therefore, one of
the segments is adjacent to A or is a part of A and the other is adjacent to B or

76 C. Bachmaier et al.

is a part of B. If b and d were swapped and thus a and c were not, φ(b) = φ(d) is
the upper level of A or B and thus one of the crossing segments is an incoming
outer segment of A or B. The other segment is either an incoming outer segment
or an inner segment of the other block. Note that it cannot be an outgoing outer
segment of this block because then neither a and c nor b and d would have been
swapped. The other case of swapping a and c instead of b and d is symmetric. ��
Proposition 1. Let B be the block list in the current ordering. Let B ∈ B be
the successor of A ∈ B. Let i and j be the two levels framing the incoming
outer segments of A, the other three cases are symmetric. If there is a segment
(u, v) between i and j which is either an incoming outer segment of B or an inner
segment of B, then the incoming segments of A starting at a block left of block(u)
cross (u, v) after the swap of A and B only, the segments starting at block(u)
never cross (u, v), and the segments starting right of block(u) cross (u, v) before
the swap only. There are no other changes of crossings due to Lemma 1.

Algorithm 4 shows the details of a sifting swap. First, the levels at which (sig-
nificant) swaps occur and the direction of the segments changing their crossings
are found (lines 2–6). For each entry (l, d) of the set L the two vertices a and b of
A and B on level l are retrieved. Note that when swapping A and B only a and
b are swapped on their level and that in the level of their neighbors Nd(a) and
Nd(b) no order changes. Thus, the computation of the change in the number of
crossings can be done as in [3] (lines 14–24): The neighbors are traversed from
left to right. If a neighbor of a is found (lines 19, 20) its segment will cross all
remaining s− j incident segments of b after the swap. If a neighbor of b is found
(lines 21, 22) its segment has crossed all remaining r − i incident segments of a
before the swap. Common neighbors present both cases at the same time (line
23). An update of the adjacency after a swap (line 10) is only necessary if a and
b have common neighbors. Algorithm 5 shows how this can be done in overall
O(deg(A) + deg(B)) time similarly to the crossing counting function uswap.

3.5 Time Complexity

Lemma 2. Let G = (V, E, φ) be a level graph. Then
∑

B∈B deg(B) ≤ 4 · |E|.
Proof. Each edge e ∈ E contains at most two outer segments. Each outer seg-
ment increases the degree of its two incident blocks by one each. ��
Theorem 1. One round of global sifting (Algorithm 1) has a time complexity
of O(|E|2) for a non-necessarily proper level graph G = (V, E, φ).

Proof. Let B be the blocks of G. Swapping two blocks A, B ∈ B needs O(deg(A)+
deg(B)) time. Initializing a sifting step takes O(

∑
B∈B deg(B)) = O(|E|) time. A

sifting step of a block A needs O(
∑

B∈B\{A}(deg(A)+deg(B))) = O(|E|·deg(A))
time. Thus, a sifting round positioning each block A ∈ B has time complexity
O(

∑
A∈B(|E| · deg(A)) = O(|E|2). Since |V ′| ≤ k · |E| ∈ O(|E|2) (no empty

levels), traversing all (dummy) vertices in pre- and postprocessing has no effect
on the worst case time complexity. ��

A Global k-Level Crossing Reduction Algorithm 77

Algorithm 4. SIFTING-SWAP
Input: Consecutive blocks A, B
Output: Change in crossing count

begin1
L ← ∅; Δ ← 02
if φ(upper(A)) ∈ levels(B) then L ← L ∪ {(φ(upper(A),−)}3
if φ(lower(A)) ∈ levels(B) then L ← L ∪ {(φ(lower(A),+)}4
if φ(upper(B)) ∈ levels(A) then L ← L ∪ {(φ(upper(B),−)}5
if φ(lower(B)) ∈ levels(A) then L ← L ∪ {(φ(lower(B), +)}6
foreach (l, d) ∈ L do7

let a in A and b in B be the vertices with φ(a) = φ(b) = l8

Δ ← Δ + uswap(a, b, Nd(a),Nd(b))9

UPDATE-ADJACENCY(a, b, Nd(a), Id(a),Nd(b), Id(b))10

swap positions of A and B in B; π(A) ← π(A) + 1; π(B) ← π(B) − 111
return Δ12

end13

function uswap(a, b, Nd(a), Nd(b)) : integer14
let x0 ≺ · · · ≺ xr−1 ∈ Nd(a) be the neighbors of a in direction d15

let y0 ≺ · · · ≺ ys−1 ∈ Nd(b) be the neighbors of b in direction d16
c ← 0; i ← 0; j ← 017
while i < r and j < s do18

if π(block(xi)) < π(block(yj)) then19
c ← c + (s − j); i ← i + 120

else if π(block(xi)) > π(block(yj)) then21
c ← c − (r − i); j ← j + 122

else c ← c + (s − j) − (r − i); i ← i + 1; j ← j + 123

return c24

Algorithm 5. UPDATE-ADJACENCIES
Input: Vertices a, b ∈ V ′, Nd(a), Id(a), Nd(b), Id(b)
Output: Updated adjacencies of a and b and all common neighbors

let x0 ≺ · · · ≺ xr−1 ∈ Nd(a) be the neighbors of a in direction d1

let y0 ≺ · · · ≺ ys−1 ∈ Nd(b) be the neighbors of b in direction d2
i ← 0; j ← 03
while i < r and j < s do4

if π(block(xi)) < π(block(yj)) then i ← i + 15
else if π(block(xi)) > π(block(yj)) then j ← j + 16
else7

z ← xi // = yj8

swap entries at positions Id(a)[i] and Id(b)[j] in N−d(z) and in I−d(z)9

Id(a)[i] ← Id(a)[i] + 1; Id(b)[j] ← Id(b)[j] − 110
i ← i + 1; j ← j + 111

78 C. Bachmaier et al.

4 Simple Global Crossing Reductions

We have extended the barycenter and median crossing reduction strategies to-
wards blocks as well: We iteratively take the π-positions of the blocks in B and
compute the barycenter or median for each block, respectively, and sort B ac-
cording to these values. Our benchmarks show that both are very fast, however,
are not competitive with global sifting in the number of crossings.

Theorem 2. One round of global barycenter or global median has time com-
plexity O(|E| log |E|) or O(|E|), respectively.

Proof. Computing the barycenters or medians for the O(|E|) blocks can be done
in O(|E|) time due to Lemma 2. Sorting the barycenters takes O(|E| log |E|)
time. The medians can be sorted in O(|E|) time using bucket sort. ��

5 Experimental Results

We have compared the iterative one-sided 2-level barycenter (B), median (M),
and sifting (S), iterative centered 3-level sifting (3S), ordered k-level sifting (OS),
and our new global barycenter (GB), global median (GM), and global sifting
(GS) algorithms.

In a nutshell, classic sifting is fast, leaves few type 2 conflicts, but many
crossings. Centered 3-level sifting is fast, leaves few crossings, but many type 2
conflicts. Global sifting leaves even less crossings (Fig. 2) without any type 2
conflicts within a still feasible running time in practice (Fig. 3). Further mea-
surements reflect that the running time of global sifting is independent of the
number of dummy vertices. This parallels the advanced algorithm in [7].

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

2000 4000 6000 8000 10000

C
ro

ss
in

gs
af

te
r

vs
.b

ef
or

e

Graph size |V ′| (75% dummy vertices and |E′| = 2 · |V ′|, i. e., |E| = 5 · |V |)

GM
GB
M
B
S

3S
OS
GS

Fig. 2. Benchmark: number of crossings after vs. before applying the crossing reduction

A Global k-Level Crossing Reduction Algorithm 79

0

2

4

6

8

10

2000 4000 6000 8000 10000

R
un

ni
ng

ti
m

e
in

se
co

nd
s

Graph size |V ′| (75% dummy vertices and |E′| = 2 · |V ′|, i. e., |E| = 5 · |V |)

GS
OS
3S
S

M
B

GM
GB

Fig. 3. Benchmark: running times

6 Applications of the Global Crossing Reduction

The idea of using blocks for long edges can be used in several other algorithms
to improve their performance in a straightforward way. Further, this advances
the drawability of their results as type 2 conflicts are avoided.

Optimal Crossing Reduction Using an ILP. Jünger et al. [8] gave an
ILP formulation for the exact crossing minimization of k-level graphs. Using
pairs of overlapping blocks, i. e., on non-disjoint levels, as variables gives a direct
formulation which naturally excludes type 2 conflicts and uses fewer variables.

Clustered Crossing Reduction. In a clustered level graph vertices are com-
bined to subgraphs in a hierarchical way. The crossing reduction has to ensure
that all (dummy) vertices of a subgraph on the same level are consecutive and
that all subgraphs spanning several levels have a matching ordering on each
level to avoid crossings of subgraphs. This is rather complicated using a 2-level
crossing reduction approach. Using global sifting this is quite simple: Instead of
swapping a vertex with its right neighbor in a sifting swap we swap all blocks of
a subgraph with its right neighbor (which itself is either a block or a subgraph)
and determine the change in the number of crossings. The time complexity stays
the same as in the normal global sifting. If the layout of the subgraphs them-
selves is not fixed, then global sifting can be applied to the subgraphs as well,
e. g., performing a sifting round for each hierarchical layer.

Cyclic and Radial Level Graphs. Level graphs can be extended to cyclic or
radial level graphs. In cyclic level graphs the set of levels is ordered in a cyclic
way, i. e., the first level follows the last one. In radial level graphs each level itself
is ordered in a cyclic way, i. e., the first vertex on each level is the right neighbor
of the last one. See Fig. 4 for clippings of drawings. For both, global sifting is
the first crossing reduction to guarantee the needed absence of type 2 conflicts.

80 C. Bachmaier et al.

(a) Cyclic drawing

6 5

7

parting

parting
2

4

3

A

1

1-

1-

1-

0

0

0

0

0

0

(b) Partings of the block A in a
radial drawing

Fig. 4. Clippings of cyclic and radial drawings

Cyclic levels are normally drawn forming a star in 2D (see Fig. 4(a)). These
drawings explicitly visualize cycles in graphs [2], which is often required in bioin-
formatics. Our global sifting algorithm can be used for cyclic level graphs without
any changes within the same time complexity. Note that one-sided 2-level algo-
rithms cannot be applied here, since each of them pushes most of the crossings
to the next level only. Even the absence of type 2 conflicts cannot be guaranteed
then, because the sweep has to stop at some level.

In a radial level graph the levels are concentric circles (see Fig. 4(b)). These
drawings visualize distances or importance and are the traditional drawings of
social networks. They map structural centrality of the graph to geometric cen-
trality. Our global sifting approach guarantees radially aligned long edges and
can be used with minor modifications: Each block of the block list B has its own
angle. The ordering of B starts at an arbitrary block. Similar to [1], we define
an offset ψ : E → Z for each outer segment. The absolute value |ψ(e)| counts
the crossings of segment e with an imaginary ray splitting up the levels with a
straight halfline from the concentric center to infinity. If ψ(e) < 0 (ψ(e) > 0),
e has clockwise (counter-clockwise) direction read from source to target. When
sifting a block A ∈ B, we have to update the partings, which are the two borders
between the counterclockwise and clockwise segments on the levels above and
below A, see Fig. 4(b). Since we can do this independently of each other and
add the results of the change in crossings to Δ in Algorithm 4, we use the same
technique as in [1]. We sift a block from its current position in counterclockwise
direction. Thus, for few crossings the partings have to follow in this direction on
their levels. The test during the swap whether changing the orientations of some
of the first of the (ordered) incident segments of A by incrementing their offsets,
and thus putting them last, leads to less crossings and counting the difference

A Global k-Level Crossing Reduction Algorithm 81

raises the overall running time to O(|E|3). The radial coordinate assignment
phase in [1] relies on the obtained absence of type 2 conflicts.

7 Summary

We have presented an algorithm for the global crossing reduction problem of k-
level graphs. It produces high quality results with fewer crossings than common
approaches at the expense of a quadratic running time, which is still feasible
in practice. This was an open problem since the introduction of the hierarchical
framework [12] in 1981. For cyclic and radial level crossing reduction we presented
the first algorithms which guarantee the absence of type 2 conflicts. Our approach
can easily be used to simplify and improve several other algorithms concerning
level planarity or crossing reduction.

References

1. Bachmaier, C.: A radial adaption of the sugiyama framework for visualizing hier-
archical information. IEEE Trans. Vis. Comput. Graphics 13(3), 583–594 (2007)

2. Bachmaier, C., Brunner, W.: Linear time planarity testing and embedding of
strongly connected cyclic level graphs. In: Halperin, D., Mehlhorn, K. (eds.) ESA
2008. LNCS, vol. 5193, pp. 136–147. Springer, Heidelberg (2008)

3. Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer,
Heidelberg (2004)

4. Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In:
Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44.
Springer, Heidelberg (2002)

5. Eades, P., Kelly, D.: Heuristics for reducing crossings in 2-layered networks. Ars
Combinatorica 21(A), 89–98 (1986)

6. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11(1), 379–403 (1994)

7. Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of
sugiyama’s algorithm for layered graph drawing. J. Graph Alg. App. 9(3), 305–325
(2005)

8. Jünger, M., Lee, E.K., Mutzel, P., Odenthal, T.: A polyhedral approach to the
multi-layer crossing minimization problem. In: Di Battista, G. (ed.) GD 1997.
LNCS, vol. 1353, pp. 13–24. Springer, Heidelberg (1997)

9. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer,
Heidelberg (2001)

10. Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline
crossing minimization. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 217–
224. Springer, Heidelberg (1999)

11. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proc. IEEE/ACM International Conference on Computer Aided Design, ICCAD
1993, pp. 42–47. IEEE Computer Society Press, Los Alamitos (1993)

12. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst., Man, Cybern. 11(2), 109–125 (1981)

Computation of Non-dominated Points Using
Compact Voronoi Diagrams

Binay Bhattacharya1, Arijit Bishnu2, Otfried Cheong3, Sandip Das2,
Arindam Karmakar2, and Jack Snoeyink4

1 School of Computing Science, Simon Fraser University, Canada
2 Advanced Computing and Microelectronics Unit, Indian Statistical Institute,

203, B.T. Road, Kolkata, India - 700108
3 Department of Computer Science, Korea Advanced Institute of Science and

Technology, Gwahangno 335, Yuseong-gu, Daejeon 305-701, Korea
4 Department of Computer Science,

University of North Carolina at Chapel Hill, USA

Abstract. We discuss in this paper a method of finding skyline or non-
dominated points in a set P of n points with respect to a set S of m
sites. A point pi ∈ P is non-dominated if and only if for each pj ∈
P , j �= i, there exists at least one point s ∈ S that is closer to pi

than pj . We reduce this problem of determining non-dominated points
to the problem of finding sites that have non-empty cells in an additively
weighted Voronoi diagram under convex distance function. The weights
of the said Voronoi diagram are derived from the co-ordinates of the
points of P and the convex distance function is derived from S. In the 2-
dimensional plane, this reduction gives a O((m+n) log m+n log n)-time
randomized incremental algorithm to find the non-dominated points.

1 Introduction

Consider a trip to a conference in a new city! A set P of n hotels (located at fixed
locations) has already been identified from a travel guide. On reaching the city,
the scientist identifies a set S of m sites to visit, say for example the conference
venue, museum, restaurant, garden, beach, etc. The scientist wants to visit all
sites in S but prefers a hotel that has at least one site in S that is closer to it
than any other hotel. Now, which are the most interesting hotels in the set P
with respect to the sites of S in terms of distance? A hotel is interesting if it has
at least one site closer to it than any other hotel. This problem gives rise to the
spatial skyline queries [11]. A point pi ∈ P is a skyline point if it has at least one
site in S that is closer to pi than to any other point in P .

There can be applications of this problem in other areas like identifying a
set of buildings for quick evacuation in case of multiple fires. Here, the set of
buildings is P and the set of multiple fires is S. The set of skyline points is
the buildings among P that are to be evacuated ahead of the other buildings.
Sharifzadeh and Shahabi [11] identify some other applications as well.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 82–93, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Computation of Non-dominated Points Using Compact Voronoi Diagrams 83

1.1 Formal Definition

Let P = {p1, . . . , pn} be a set of n points and S = {s1, . . . , sm} be a set of m
sites in IR2. Let d(x, y) be the usual L2 distance in IRd. Each point pi ∈ P has
m spatial attributes determined by all the m distances {d(pi, s) | s ∈ S}, of the
points in S to pi. Next, we define domination.

Definition 1. (Domination) [11] Given a set P of n points and a query set S
of m sites in the plane, pi ∈ P dominates pj ∈ P (j �= i) with respect to S if
and only if d(pi, s) < d(pj , s), ∀s ∈ S.

In this setting, the distances to the sites of S can be considered feature vectors
that describe the sites pi and pj . The feature vector for pi dominates the vector
for pj if and only if it dominates on all coordinates. If pi dominates pj , then pj

is a non-interesting point (hotel) vis-a-vis pi with respect to S. Note that pi is
not dominated by pj if it has at least one point in S that is closer to it than pj .

We define skyline points as the set of those points in P which are not domi-
nated by any other point in P with respect to S. We denote the set of skyline
points as SP . We will use the terms skyline points and non-dominated points
interchangeably.

Definition 2. (Skyline point) pi ∈ P is a skyline point if and only if we have
the following:

for each pj ∈ P, i �= j, ∃s ∈ S such that d(pi, s) < (pj , s) (1)

Our problem is to extract skyline points of P with respect to S. Consider a brute
force approach. Let h(pi, pj) be the half-plane of pi with respect to pj . For each
pi ∈ P , determine if there is at least a point s ∈ S which lies in h(pi, pj) for all
j �= i. If at least one such s is found for every pj , then pi is a skyline point. This
takes O(nm) time for each pi. With the assumption that n = m, the total time
complexity is O(n3).

1.2 Prior Work

Given two points pi = (p1
i , p

2
i , . . . , p

d
i) and pj = (p1

j , p
2
j , . . . , p

d
j) in IRd, pi domi-

nates pj if and only if pm
i ≤ pm

j for 1 ≤ m ≤ d and pm
i < pm

j for some 1 ≤ m ≤ d.
For a point set P in IRd the skyline query finds those points in P which are not
dominated by any other point. Skyline operator was introduced by Börzsönyi et
al. [1]. They implemented skyline query to update an existing (relational, object-
oriented or object-relational) database system with a new logical operator that
they refer to as the skyline operator. Börzsönyi et al. used divide-and-conquer
techniques and index structures to solve the problem in O(n logd−2 n + n log n)
time where d is the dimensionality of the points. Since the introduction of sky-
line query and skyline operators by Börzsönyi et al. [1], there have been several
works using nearest neighbor search [7], sorting [4] and index structures [9,13].
These works mostly try to show an experimental improvement over the results
of Börzsönyi et al. [1].

84 B. Bhattacharya et al.

The problem of Spatial skyline query, as introduced in this paper, was first
addressed by Sharifzadeh et al. [11]. The basic difference between the work of
Börzsönyi et al. [1] and Sharifzadeh et al. [11] lies in the definition of domination.
Börzsönyi et al. define domination between two points based on their respective
coordinates, whereas Sharifzadeh et al. define domination between two points
with respect to a set of points as given in Section 1.1. Note that the method
of Börzsönyi et al. can be applied to the problem of spatial skyline query, but
then the time complexity would be O(n logm−2 n + n logn) if all the O(nm)
distances are already computed. Sharifzadeh et al. [11] propose an O(m2|SP|+√

n) algorithm for the above problem where |SP| denotes the cardinality of the
solution set. They solve this problem using Voronoi diagram, convex hull and
Delaunay graph. Observe that if we put m = O(1) in the time complexity derived
by Sharifzadeh et al. [11], their worst-case time complexity becomes O(n) which
is highly unlikely. Moreover, Son et al. [12] have shown that the algorithm and
the time complexity analysis of Sharifzadeh et al. [11] is incorrect. They also
proposed a solution whose time complexity is O(n|SP| log |CH(S)| + n log n)
where |SP| and |CH(S)| denote the cardinality of non-dominated points and
convex hull of the set S respectively. If we look at the worst case complexity of
the algorithm devised by Son et al. [12], it turns out to be O(n2 log m+n logn).

1.3 Our Work

As discussed earlier in Section 1.1, the set of skyline points in P is the non-
dominated subset of P with respect to S. In Section 2, we show using lifting
techniques [2] that the set of non-dominated points has a correspondence with
a lower envelope of cones where each point p ∈ P has a corresponding cone in
3-D. In Section 2.1, we show that the non-dominated points of P correspond to
the apices of the lower envelope of the said cones. Computing the lower envelope
of cones is also costly. So, we show in Section 2.2 that the lower envelope of
these cones corresponds to an additively weighted Voronoi diagram for a convex
distance function. The skyline points of P with respect to S are those with non-
empty Voronoi cells under this convex distance function determined by S with
additive weights determined by P .

After having shown the relation of skyline points to the non-empty cells of the
said Voronoi diagram, we proceed in Section 3 along the lines of McAllister et
al. [8], where compact diagrams that avoid the high combinatorial complexity
of Voronoi diagrams under convex distance function are used for solving certain
problems. We show that computing a compact diagram that can be used to find
non-empty Voronoi cells under a convex distance function determined by S with
additive weights determined by P takes O((m + n) log m + n logn) time for a
randomized incremental construction.

2 Reduction to a Voronoi Diagram

In this section we relate point domination to additively weighted Voronoi dia-
grams of a convex distance function in IR2. We will define these terms as we go,

Computation of Non-dominated Points Using Compact Voronoi Diagrams 85

culminating in Theorem 7 at the end of this Section. We state Theorem 7 as
Result 1 here.

Result 1. The non-dominated points of set P with respect to sites S are those
with non-empty Voronoi cells under a convex distance function determined by S
with additive weights determined by P .

A brief sketch relating non-domination and lower envelope of cones to non-
empty Voronoi cells under a convex distance function with additive weights is as
follows. Choose an origin in the convex hull of S. The cones corresponding to P
are obtained as follows. Consider an unit paraboloid with its apex at the origin.
Fix a point p ∈ P . Let its lifted version on the unit paraboloid be p′. Now, for
all sites s ∈ CH(S), consider the discs centered at s and passing through p. Each
such disc, if lifted onto the unit paraboloid, forms a plane passing through p′.
Now, the lifted versions of all such discs form a cone with apex at p′. So, we will
have n such cones. The apices of the lower envelope of cones correspond to the
non-dominated or skyline points.

This scheme can be alternatively interpreted in a Voronoi diagram model as
follows. The lifted coordinates of the points in P are taken as their additive
weights. With the same origin and the unit paraboloid as before, lift each site of
S to planes tangent to the unit paraboloid. Translate these planes to include the
origin and intersect their halfspaces to define a cone. The cross section of this
cone at a unit distance vertically above the origin defines a convex polygon. We
take this convex polygon to define a convex distance function. Thus, the convex
distance function is determined by S. The lower envelope of cones with apices at
the lifted points of P bounds the non-dominated (additively weighted) points,
and can be interpreted as an additively weighted Voronoi diagram for the said
convex distance function. We elucidiate further.

2.1 Dominated Points and the Cone

Let C(x, y) denote a disc with center x and radius equal to d(x, y). For each
point pi ∈ P , consider disc C(sk, pi) centered at each sk ∈ S. Obviously, for any
point p ∈ IR2 inside the disc C(sk, pi) sk is closer to p than to pi. Therefore,
if a point pj dominates pi, then pj ∈ ∩m

k=1C(sk, pi). Let Di = ∩m
k=1C(sk, pi).

We term Di as the dominator region of pi. The significance of such a dominator
region is that any point belonging to Di dominates pi with respect to S. Now
we have the following observations.

Observation 2. For any point pi ∈ P :

(i) Di is nonempty and may overlap with another Dj where j �= i
(ii) Di is a convex region bounded by circular arcs.
(iii) pi is a skyline point if its dominator region Di does not contain any point

pj ∈ P, j �= i in its interior.
(iv) if a point pj ∈ P lies inside the region Di, i �= j, then the dominator region

Dj of pj is a subset of Di, i.e. Dj ⊂ Di

86 B. Bhattacharya et al.

Proof. (i), (ii) and (iii) are trivial. We prove (iv) by contradiction. If pj lies inside
Di then all sks’ are nearer to pj than pi; so pj dominates pi with respect to S.
Assume that Di does not contain Dj . This implies that there is a point z ∈ Dj

and z �∈ Di, such that z dominates pj but not pi. But pj dominates pi. As the
domination relation is transitive there is a contradiction. Hence, we have the
observation. ��
Note that, for any dominator region Di of a point pi, the boundary of Di is
determined by at most m circular arcs. So the total complexity of this configu-
ration of dominator regions for all the points in P can be O(mn) ∼ O(n2) under
the assumption that m = n.

Let CH(S) denote the convex hull of S. Assume that the origin for the sets
S and P lies inside CH(S). Now, lift each point of S and P to points on a unit
paraboloid Ψ , where {Ψ = (x, y, z)|z = x2+y2}[2]. So, any point p = (x, y) in the
plane is lifted to a point p′ = (x, y, x2 + y2) on Ψ . We will refer to this geometric
transformation as paraboloid or lifting transformation. For any sk and pi in the
plane, let s′k and p′i respectively denote the lifted image on the unit paraboloid Ψ .
Now, a paraboloid transformation of a circle C = {(x− c1)2 + (y− c2)2 = r2} in
the two dimensional xy-plane is a curve C′ = {z−2c1x−2c2y+c2

1+c2
2−r2 = 0} on

Ψ [10]. The equation of C′ depicts a plane in 3-dimensional space. Observe that
the disc C(sk, pi) is a plane in 3-d; we denote this plane as C′(sk, pi). Moreover,
each C′(sk, pi) (k = 1, . . . , m) passes through p′i and is parallel to the tangent
plane of the unit paraboloid Ψ at s′k. Now we have an observation linking the
dominator region Di of pi with a cone having its apex at p′i.

Observation 3. For any point pi, the dominator region Di in the 2D plane
is mapped to a cone Ωi in 3-space with its apex at p′i under paraboloid trans-
formation.

Proof. From Observation 2, we know that Di =
m⋂

k=1

C(sk, pi). Now each C′(sk, pi)

is a planepassing throughp′iwhereC′(sk, pi) andp′i are the lifted images ofC(sk, pi)
and pi respectively by paraboloid transformation. The intersections of the upper
half spaces of {C′(sk, pi)| ∀k}’s define a cone Ωi with apex at p′i in 3-space. This
cone in 3-space corresponds to the dominator region in the plane. ��
Let pj dominate pi. We already know from Observation 2 that Dj ⊂ Di. Next,
we explore the relation between Ωi and Ωj where Ωj is the cone corresponding
to the dominator region Dj of pj .

Lemma 4. The cone Ωj corresponding to the dominator region Dj of point pj

contains the cone Ωi corresponding to the dominator region Di of point pi, if pj

dominates pi.

Proof. Consider a point s′k on the unit paraboloid Ψ corresponding to sk ∈ S.
τk is the tangent plane of Ψ at s′k. Translate the plane τk to include p′i and
we denote that plane as τk

i . The projection of the intersection of τk
i and Ψ on

Computation of Non-dominated Points Using Compact Voronoi Diagrams 87

the plane is C(sk, pi). As pj dominates pi, during translation τk will include p′j
before p′i. This is true for all τk(k = 1, . . . , m). Since Ωi is defined by intersection
of the upper half spaces of {τk

i | ∀k = 1, 2, . . . , m}, Ωj will contain Ωi. ��
From Lemma 4, we can conclude that a cone Ωi in 3-space corresponding to
a dominated point pi will be contained in at least one cone Ωj . The following
corollary points out that the lower envelope of cones gives the non-dominated
or skyline points.

Corollary 5. The apices corresponding to the lower envelope of the cones {Ω1,
. . ., Ωn} are the nondominated points, i.e the skyline points of the point set P .

Proof. Follows from Observations 2 and 3 and Lemma 4. ��

2.2 Relation of Lower Envelope of Cones to Additively Weighted
Voronoi Diagrams of a Convex Distance Function

As deduced in Corollary 5, the set of skyline points is nothing but the points of P
corresponding to the apices of the lower envelope of the cones Ωi. Constructing
the entire lower envelope of cones is costly however. So, we explore a relation
between additively weighted Voronoi diagram under a convex distance function
with lower envelope of such cones. To give the details, we need to define convex
distance functions and additively-weighted Voronoi diagrams.

Definition 3. (Convex distance function) Minkowski showed that any convex
set M whose interior contains the origin defines a convex distance function
dM (p, q), where the distance from point p to q with respect to M is the amount
that M must be scaled to include q − p.

dM (p, q) = inf{λ ≥ 0 : q − p ∈ λM}
If M is closed, then the infimum operation can be replaced by the minimum
operation. A distance function may not be a metric, since dM is symmetric if
and only if M is centrally symmetric. (If we denote the reflection of the set M
through the origin by M	, then dM (p, q) = dM�(q, p).) The distance function
dM does always satisfy the triangle inequality for points [3]: dM (p, q)+dM (q, r) ≥
dM (p, r). Note that the boundary of M serves as the unit ball for this distance
function. For a fixed p, the graph of dM (p, q) as a function of q is a cone with
apex at p.

Definition 4. (Additively weighted Voronoi diagram) Given a finite set of points
P = p1, p2, . . . , pn ⊂ IRd, with additive weights ω1, ω2, . . . , ωn, and any distance
function, d(p, q), we can define a generalized Voronoi diagram by labeling each
site q ∈ IRd with its set of closest points.

label(q) = argmin
i∈[1,n]

d(pi, q) + ωi,

and partitioning the plane into maximally connected regions having the same
labels. Voronoi cells are regions with a single closest neighbor and vertices have
degree d + 1 (or more, in degenerate configurations).

88 B. Bhattacharya et al.

(a)

(b)

Fig. 1. A Voronoi diagram of 6 sites in the plane using a convex quadrilateral as
distance function; its view as a lower envelope of cones.

Figure 1(a) illustrates a simple example for 6 distinct sites, all having weight
zero. The distance function is the black convex quadrilateral around the point
at the origin, and each cell is drawn in a different shade. Figure 1(b) shows the
cones for which the Voronoi diagram is the lower envelope. When all weights are
zero, each distinct site has a non-empty cell. The following observation, which
we state without proof, is central to our idea of relating the lower envelope of
cones with additively weighted Voronoi diagrams of a convex distance function.

Observation 6. The cell for a site shrinks if we increase the weight of the site;
we essentially translate the cone upwards until the lifted site disappears from the
lower envelope.

2.3 Reduction of Lower Envelope of Cones to Additively Weighted
Voronoi Diagrams of a Convex Distance Function

We can do the reduction by simply giving a different interpretation of the inequal-
ities defining dominance. Recall that, as per Definition 1, a point p dominates q
(p, q ∈ P) with respect to the set of sites S if and only if ∀s ∈ S, d(p, s) < d(q, s).

Without loss of generality, choose the origin to be some point inside CH(S),
then assign each point p ∈ P a weight ωp = p.x2 + p.y2, which we can use as
the lifting coordinate. If we square both sides of the dominance inequality, we
obtain a linear expression in site coordinates and weights:

(p − s) · (p − s) < (q − s) · (q − s) (2)
if and only if ωp < ωq − 2s · (q − p). (3)

Note that for each s ∈ S, the above inequality gives rise to a (hyper)plane passing
through p′ = (p.x, p.y, ωp), which is the lifted version of p. The intersection of
the halfspaces defined by the points of S gives a cone with apex p′ that contains
all points dominated by p (see Lemma 4). We now show that the collection of all

Computation of Non-dominated Points Using Compact Voronoi Diagrams 89

cones for the points P corresponds to an additively weighted Voronoi diagram
for a convex distance function defined by S.

We claim that if we intersect this cone with a (hyper)plane ω = ωp + 1,
then we obtain a convex polytope that defines a distance function containing
(p.x, p.y, ωp + 1) as its origin. Let M be the projection of this convex polytope
onto the (hyper)plane ω = 0. Note that, moving from this origin (p.x, p.y, ωp+1)
by any vector (v.x, v.y, 0) must leave the polytope, since any v can be expressed
as a convex combination v = −2

∑
1≤i≤m

αisi where reals αi are not all equal to

zero because the sites S = {s1, s2, . . . , sm} contain the origin in their convex
hull. Thus, the Voronoi diagram of distance dM for points p ∈ P with weights
ωp generates the same lower envelope of cones. The sites that are not dominated
with respect to S are those with non-empty cells. From the above discussion,
and Lemma 4 and Observation 6, we get the final result as in Theorem 7.

Theorem 7. The skyline or non-dominated points of set P with respect to sites
S are those with non-empty Voronoi cells under a convex distance function de-
termined by S with additive weights determined by P .

3 Computing Non-dominance in the Plane

Theorem 7 tells us points in P that have non-empty Voronoi cells in an additively
weighted Voronoi diagram of P under a convex distance function determined by
S correspond to the skyline points. We have also described the method to obtain
this convex set M from S at the beginning of Section 2. Note that |M | = O(|S|).
So, our problem of finding skyline points is now transformed into computing non-
empty Voronoi cells in an additively weighted Voronoi diagram under a convex
distance function M . Actually, we want to avoid computing all the edges because,
as seen in Figure 1(a), they are fairly complicated, even when all weights are
zero. The bisector between two points can consist of Θ(|M |) line segments, so the
generalized Voronoi diagram of points P can then have complexity Θ(|P | · |M |).
We can see this from the cone view. So, we use the compact piece-wise linear
Voronoi diagram concept of McAllister et al. [8]. A compact Voronoi diagram
is an approximated version of an abstract Voronoi diagram(AVD) [6] defined
using a convex distance function. An AVD is defined only in terms of bisectors
of pairs of points and are computed using the ordering of the two points along a
bisector and the ordering of these bisectors that pass through a common point.
So, we would compute an additively weighted compact Voronoi diagram under
a convex distance function instead of the additively weighted Voronoi diagram
under a convex distance function. We will show that we can locate empty (or
non-empty) cells in the compact representation also. McAllister et al. [8] showed
that one could compute a compact Voronoi diagram of the point set P having
Θ(|P |) complexity in O(|P |(log |P |+ log |M |)) time. In this diagram, the closest
neighbor of each query point is not a unique candidate but one of two candidates.
To develop the concept of the compact diagram under additive weights, we need
the following preliminaries.

90 B. Bhattacharya et al.

Fig. 2. The spoke diagram (solid lines) depends only on the number of sites, and not on
the complexity of the distance function. The dashed lines indicate the Voronoi diagram
and the solid lines indicate the compact diagram.

3.1 Geometric Preliminaries

We can give a geometric interpretation of the convex distance function between
two points p, a ∈ IR2 using a convex set M . Let Ma

p denote the convex set M
scaled by dM (p, a) and translated to p; i.e. Ma

p = dM (p, a)M + p.

Definition 5. spoke(p, a) is the line segment pa such that a lies on Ma
p .

Definition 6. A set X ∈ IR2 is star shaped with respect to a if a ⊆ X and every
spoke(p, a) with p ∈ X, is contained in X.

Any point k on the bisector between any two sites pi, pj ∈ P in an additively
weighted Voronoi diagram satisfies dM (pi, k)+ωi = dM (pj , k)+ωj where ωi and
ωj are the weights of the points pi and pj respectively. Now, proceeding along
the lines of McAllister et al. [8], we can show that the bisector between any
two points is a continuous curve and it separates the plane into two regions -
one star shaped with respect to pi and the other star shaped with respect to pj .
This in turn leads to the fact that a Voronoi cell of pi is star shaped with respect
to pi. The boundary of the Voronoi cell of pi consists of portions of bisectors
with other points. A finite Voronoi vertex is formed by the intersection of two
adjacent bisectors at a point that is equidistant from pi and the other two points
defining the bisectors under additive weights. Two adjacent bisectors that may
not intersect at a finite point is said to be Voronoi vertex at infinity. Again, as
in Corollary 2.6 of McAllister et al. [8], we can show that by introducing spokes
from the finite and infinite Voronoi vertices around the boundary of the Voronoi
cell of pi in Voronoi diagram of P , the cell of pi is decomposed into regions
bounded by portions of a single pipj-bisector. This follows from the fact that
Voronoi cells are star shaped and the spokes lie in the corresponding Voronoi
cell. Next, we define a compact Voronoi diagram using O(|P |) line segments
(independent of |M |), and this Voronoi diagram breaks the plane into spoke
regions instead of Voronoi regions. In this compact Voronoi diagram, the closest

Computation of Non-dominated Points Using Compact Voronoi Diagrams 91

neighbor of a query point cannot be uniquely determined, but two candidates can
be determined out of which one will be the closest. Notice that each spoke region
is a quadrilateral whose four corners are two Voronoi vertices and two points.
Each quadrilateral lies in the union of the Voronoi cells for the two defining sites.
The compact Voronoi diagram is thus defined in terms of the Voronoi vertices
and the spoke regions induced by the spokes. It follows from McAllister et al.
[8], that the number of Voronoi vertices and spokes would be O(|P |).
Lemma 8. The compact Voronoi diagram of |P | sites under a convex distance
function induced by a convex |M |-gon with additive weights has O(|P |) Voronoi
vertices and O(|P |) spokes.

3.2 Algorithm

For the case with all weights zero, McAllister et al. [8] showed that one could
compute a compact Voronoi diagram of Θ(|P |) complexity in O(|P |(log |P | +
log |M |)) time such that the closest neighbor of each point was one of two can-
didates. The idea is simple if one can locate the vertices efficiently. We need to
simply draw the spokes to each Voronoi vertex from each defining site. Figure 2
shows such a diagram and implicitly includes a vertex at infinity as well. Notice
that the spoke diagram is composed of quadrilaterals whose four corners are
two Voronoi vertices and two points; each quadrilateral lies in the union of the
Voronoi cells for the two defining sites. We now show that this diagram can also
be computed with additive weights.

Two important primitives are needed for our algorithm.

(1) Finding the distance dM (p, q) given weighted points p and q.
(2) Finding the Voronoi vertex for three weighted sites.

Lemma 9. The distance dM (p, q) given weighted points p and q can be found
in O(log |M |) time.

Proof. A binary search on the vertices of the convex polygon M finds dM (p, q)
and hence it requires O(log |M |) time. ��
Next, we show the method of finding the Voronoi vertex.

Lemma 10. A Voronoi vertex for three weighted points can be computed in
O(log |M |) time under a convex distance function dM .

Proof. Let P , Q and R be the points whose corresponding weights are ωP , ωQ

and ωR respectively. For finding the vertex of the weighted voronoi diagram for
a set of points, we consider a set of circles whose centers are the set of points
and radii are the weights corresponding to the points. Assume that the sites P ,
Q and R are ordered in clockwise direction and Pc, Rc and Qc be the respective
circles. We want to compute a vertex v such that the smallest homothet of M
centered at v contains the circles Pc, Qc and Rc. We draw the common inner
tangents in clockwise direction from Pc to Qc and Qc to Rc. If there is an arc of

92 B. Bhattacharya et al.

Qc lying between these two tangents, the vertex of these sites will be at infinity.
Otherwise, there will be a finite vertex. Now we only deal with those portions of
M that touch the circles Pc and Qc when the smallest homothet of M centered
at v contain these circles. Typically, this contact point will be an edge e of
M . Compute the outer tangents to Pc (respectively Qc) that are parallel to e’s
neighboring edges. The clockwise circular arc between the tangential points are
the probable portion of Pc that touches the smallest homothet of M containing
Pc, Qc and Rc. Using the tentative prune and search technique of Kirkpatrick
and Snoeyink [5], we can compute the fixed point and the voronoi vertex in
O(log |M |) time. ��
Our randomized incremental construction of the compact Voronoi diagram fol-
lows the same randomized technique as of McAllister et al. [8]. It maintains
a conflict history DAG where the nodes of the DAG correspond to the spoke
regions. We initialize with the Voronoi diagram of three points. To insert a new
point p into the spoke diagram for k ≤ |M | points, we locate the quadrilateral
shaped spoke region containing p. This corresponds to two points pi and pj any
one of which may be the closest point. We measure the distances dM (pi, p) + ωi

and dM (pj , p) + ωj to the two existing point that define the quadrilateral, and
find out whether p has a non-empty Voronoi cell. If the cell is non-empty, then
the Voronoi cell for new point p will carve out a tree from the existing Voronoi
diagram; the tree topology still shows which Voronoi vertices are together in
quadrilaterals of the spoke diagram. We can explore this tree using a number of
distance and Voronoi vertex computations that is proportional to the number of
spokes that are added or deleted.

If we randomly order the points and then perform incremental construction,
the algorithm locates each point and constructs an expected O(|P |) spokes.
Thus, the total expected time is O(|P |(log |P | + log |M |)). Coupled with the
initial computation of convex hull of S, and the fact that |P | = n and |S| = m,
we have the final result.

Theorem 11. The set of non-dominated or skyline points of a set P of n points
with respect to a set S of m sites can be found in O((m + n) log m + n log n)
expected time.

4 Conclusions

In this paper, we proposed an algorithm for finding the non-dominated points
among a point set P with respect to a set of sites S in IR2. This problem was
initially proposed by Sharifzadeh and Shahabi [11] and termed as spatial skyline
query problem. We give some geometric insights into this problem to design an
efficient algorithm. It would be worthwhile to extend the algorithm to higher
dimensions. We intend to work on the dynamic version of the problem where
the set of skyline points changes dynamically due to insertion and deletion of
sites and data points. Finding non-dominated points under different domination
relations between points will also be interesting to investigate.

Computation of Non-dominated Points Using Compact Voronoi Diagrams 93

References

1. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering, Washington, DC, USA,
pp. 421–430. IEEE Computer Society, Los Alamitos (2001)

2. Brown, K.Q.: Geometric transforms for fast geometric algorithms. Ph.D. thesis,
Dept. Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, Report CMU-CS-80-
101 (1980)

3. Cassels, J.: An Introduction to the Geometry of Numbers. Springer, Heidelberg
(1959)

4. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Pro-
ceedings of the 17th International Conference on Data Engineering, Washington,
DC, USA, pp. 717–816. IEEE Computer Society, Los Alamitos (2003)

5. Kirkpatrick, D., Snoeyink, J.: Tentative prune-and-search for computing fixed-
points with applications to geometric computation. Fundam. Inform. 22, 353–370
(1995)

6. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer,
Heidelberg (1989)

7. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm
for skyline queries. In: Proceedings of VLDB, pp. 275–286 (2002)

8. McAllister, M., Kirkpatrick, D., Snoeyink, J.: A compact piecewise-linear Voronoi
diagram for convex sites in the plane. Discrete Comput. Geom. 15, 73–105 (1996)

9. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in
database systems. ACM Transaction on Database System 30(1), 41–82 (2005)

10. Sack, J.-R., Urrutia, J.: Handbook of computational geometry. North-Holland Pub-
lishing Co., Amsterdam (2000)

11. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB 2006: Proceed-
ings of the 32nd international conference on Very large data bases, pp. 751–762.
VLDB Endowment (2006)

12. Son, W., Lee, M.-W., Ahn, H.-K., Hwang, S.w.: Spatial skyline queries: An efficient
geometric algorithm. CoRR, abs/0903.3072 (2009)

13. Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In:
VLDB 2001: Proceedings of the 27th International Conference on Very Large Data
Bases, pp. 301–310. Morgan Kaufmann Publishers Inc., San Francisco (2001)

Cutting a Convex Polyhedron Out of a Sphere
(Extended Abstract)

Syed Ishtiaque Ahmed, Masud Hasan, and Md. Ariful Islam

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Dhaka-1000, Bangladesh
ishtiaque@csebuet.org, masudhasan@cse.buet.ac.bd, arifulislam@csebuet.org

http://www.buet.ac.bd/cse

Abstract. Given a convex polyhedron P of n vertices inside a sphere Q,
we give an O(n3)-time algorithm that cuts P out of Q by using guillotine
cuts and has cutting cost O(log2 n) times the optimal.

Keywords: Approximation algorithm, guillotine cut, polyhedra cutting.

1 Introduction

The problem of cutting a convex polygon P out of a piece of planar material Q
(P is already drawn on Q) with minimum total cutting length is a well studied
problem in computational geometry. The problem was first introduced by Over-
mars and Welzl in 1985 [12] but has been extensively studied in the last eight
years [1–4, 7, 8, 10, 12–14] with several variations, such as P and Q are convex
or non-convex polygons, Q is a circle, and the cuts are line cuts or ray cuts.

This type of cutting problems have many industrial applications such as in
metal sheet cutting, paper cutting, furniture manufacturing, ceramic industries,
fabrication, ornaments, and leather industries. Some of their variations also fall
under stock cutting problems [3].

If Q is another convex polygon with m edges, this problem with line cuts has
been approached in various ways [2–5, 8, 9, 12, 13]. If the cuts are allowed only
along the edges of P , Overmars and Welzl [12] proposed an O(n3 + m)-time
algorithm for this problem with optimal cutting length, where n is the number
of edges of P . The problem is more difficult if the cuts are more general, i.e.,
they are not restricted to touch only the edges of P . In that case Bhadury and
Chandrasekaran showed that the problem has optimal solutions that lie in the
algebraic extension of the input data field [3] and due to this algebraic nature of
this problem, an approximation scheme is the best that one can achieve [3]. They
also gave an approximation scheme with pseudo-polynomial running time [3].

After the indication of Bhadury and Chandrasekaran [3] to the hardness of
the problem, many have given polynomial time approximation algorithms. Du-
mitrescu proposed an O(log n)-approximation algorithm with O(mn + n log n)
running time [8, 9]. Then Daescu and Luo [5] gave the first constant factor ap-
proximation algorithm with ratio 2.5 + ||Q||/||P ||, where ||P || and ||Q|| are the

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 94–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Cutting a Convex Polyhedron Out of a Sphere 95

perimeters of P and the minimum area bounding rectangle of P respectively.
Their algorithm has a running time of O(n3 + (n + m) log (n + m)). The best
known constant factor approximation algorithm is due to Tan [13] with an ap-
proximation ratio of 7.9 and running time of O(n3 +m). In the same paper [13],
the author also proposed an O(log n)-approximation algorithm with improved
running time of O(n+m). As the best known result so far, very recently, Bereg,
Daescu and Jiang [2] gave a polynomial time approximation scheme (PTAS) for
this problem with running time O(m + n6

ε12).
For ray cuts, Demaine, Demaine and Kaplan [7] gave a linear time algorithm

to decide whether a given polygon P is ray-cuttable or not. For optimally cutting
P out of Q by ray cuts, if Q is convex and P is non-convex but ray-cuttable,
then Daescu and Luo [5] gave an almost linear time O(log2 n)-approximation
algorithm. If P is convex, then they gave a linear time 18-approximation algo-
rithm. Tan [13] improved the approximation ratio for both cases as O(log n) and
6, respectively, but with much higher running time of O(n3 + m). See Table 1
for a summary of these results.

Our results. The generalization of this problem in 3D is very little known. To the
best of our knowledge, the only result is to decide whether a polyhedral object
can be cut out form a larger block using continuous hot wire cuts [10]. In this
paper we attempt to generalize the problem in 3D. We consider the problem of
cutting a convex polyhedron P which is fixed inside a sphere Q by using only
guillotine cuts with minimum total cutting cost. A guillotine cut, or simply a
cut, is a plane that does not pass through P and partitions Q into two smaller
convex pieces. After a cut is applied, Q is updated to the piece that contains P .
The cutting cost of a guillotine cut is the area of the newly created face of Q.
We give an O(n3)-time algorithm that cuts P out of Q by using only guillotine
cuts and has cutting cost no more than O(log2 n) times the optimal cutting cost.
Also see Table 1.

Table 1. Comparison of the results

Dim. Cut Type Q P Approx. Ratio Running Time Reference

2D

Ray

- Non-convex Ray-cuttable? O(n) [7]
Convex Convex 18 O(n) [5]
Convex Non-convex O(log2 n) O(n) [5]
Convex Convex 6 O(n3 + m) [13]
Convex Non-convex O(log n) O(n3 + m) [13]

Line

Convex Convex O(log n) O(mn + n log n) [8, 9]
Convex Convex 2.5 + ||Q||/||P || O(n3 + (n + m) log (n + m)) [5]
Convex Convex 7.9 O(n3 + m) [13]
Convex Convex (1 + ε) O(m + n6

ε12
) [2]

Circle Cornered con. O(log n) O(n) [1]
Circle Cornered con. 6.48 O(n3) [1]

3D Hot-wire - Non-convex Cuttable? O(n5) [10]
Guillotine Sphere Convex O(log2 n) O(n3) This paper

96 S.I. Ahmed, M. Hasan, and Md.A. Islam

2 The Algorithm

The overall idea is as follows. Let C∗ be the optimal cutting cost. We shall have
two phases in our algorithm: box cutting phase and carving phase. In the box
cutting phase, we shall cut a minimum volume rectangular box B containing P
out of Q with cutting cost no more than a constant factor of C∗. Then in the
carving phase we shall cut P out of B with cutting cost bounded by O(log2 n)
times of C∗.

A cut is vertex/edge/face cut if it is tangent to P at a single vertex/a single
edge/a face respectively. We call P to be cornered if it does not contain the
center o of Q, otherwise it is called centered. For cornered P , the D-separation
of P is the minimum-cost (single) cut that separates P from o. A point p of P
is visible from o if the line segment op does not intersect any other point of P .

2.1 Box Cutting Phase

If P is cornered, we first apply a D-separation to Q.

Lemma 1. The D-separation must be either a vertex, an edge or a face cut.
Moreover, if oo′ is the line segment perpendicular to the D-separation at o′, then
o′ must be the corresponding vertex or a point of the corresponding edge or face.

Proof. Let x be the closest point of P from o. Clearly, x is visible from o. A
D-separation must be the plane that can separate o from x and is furthest from
o. This plane is none but the plane perpendicular to ox at x. This plane is also
tangent to P , since otherwise x would not be closest to o. ��
Observe that since P is convex, the D-separation is unique.

Lemma 2. The D-separation can be found in O(n) time.

Proof. By Lemma 1 we need to find the closest point x. To check whether x is
a vertex of P , for each vertex v we draw a plane πv perpendicular to ov at v. If
πv is tangent to P , then πv is the D-separation. Checking πv to be a tangent of
P can be done in O(dv), where dv is the degree of v. Over all v, it is O(n).

To check whether x is a point of an edge e (similarly, a face f) of P , for each
edge e (face f) we draw the line segment oo′ perpendicular to the line le passing
through e (to the supporting plane πf of f). If o′ is a point of le (πf), then
x is o′. ��
For cornered P , after the D-separation is applied, Q is a spherical segment and
let r be the radius of its base circle.

Lemma 3. For cornered P , cost of the D-separation, which is πr2, is at most
C∗.

Cutting a Convex Polyhedron Out of a Sphere 97

Proof. [Sketch only] The proof depends upon the fact that the cuts in an optimal
cutting sequence must be tangents to P . Overmars and Welzl [12] proved this
fact for 2D, whose 3D generalization also holds. The idea is that if c is the first cut
that does not touch P , then the cost of c and the subsequent cuts behaves, while
moving c parallelly, as a concave function in the distance of c from P . Therefore,
the minimum cost is achieved when it touches P or is infinitely away from P .
With the above fact, the authors in [1] proved in 2D that to separate P from o
an optimal cutting sequence must use the D-separation. The 3D generalization
of this fact also holds. The main idea is that, to separate o from P if a single
cut is used that is not a D-separation, then it must have cost more than the
D-separation, since D-separation is the minimum such cut. If more than one cut
are used, then their total cost would be even higher. ��
A similar lemma for centered P is the following.

Lemma 4. For centered P , C∗ ≥ πR2, where R is the radius of Q.

Proof. [Sketch only] Since P contains the center o of Q, any cutting sequence,
starting from the boundary of Q, must wrap P and finally get out of Q by
different location in the boundary of Q. That means the wrapping must enclose
the center o. In the best case when P is the center o, the sequence must traverse
at least 1

2πR2 area to reach P and need to traverse another 1
2πR2 area to finish

the cutting. In the worst case when P is almost the sphere Q, the sequence must
traverse the whole area of Q, which is 4πR2. ��
We next find a minimum volume rectangular bounding box B of P in O(n3)
time by the algorithm of O’Rourke [11]. Then we cut out this box from Q by
applying six cuts along the six faces of B.

Lemma 5. Cost of cutting B out of Q is at most 3C∗ for cornered P and at
most 4C∗ for centered P .

Proof. Let S be the surface of Q. For cornered P , area |S| ≤ 3πr2 ≤ 3C∗ (by
Lemma 3) and for centered P , |S| = 4πR2 ≤ 4C∗ (by Lemma 4). While cutting
along the faces of B, for each cut c let Q′ be the portion of Q that does not
contain P . Let q′ be the portion of the surface of Q′ that is “inherited” from S,
i.e., that was a part of the surface of S. One important observation is that the
cost of c is no more than the area of q′. Moreover, over all six cuts, sum of these
inherited surface area is |S|. Therefore, the lemma holds. ��
Once the minimum area bounding box B has been cut, the lower bound on
cutting cost can be given in terms of the area of B.

Lemma 6. C∗ ≥ 1
6 |B|, where |B| is the area of B.

Proof. Let h be a maximum area face of B. Project P orthogonally from the di-
rection perpendicular to h. P projects to a convex polygon X . In this projection,
h is the minimum area bounding rectangle of X , since otherwise we could rotate

98 S.I. Ahmed, M. Hasan, and Md.A. Islam

the four faces of B that are not perpendicular to h and would get a bounding
rectangle smaller than h, which in turn would give a bounding box smaller than
B, but that is a contradiction that B is the smallest bounding box. It implies
that the area of X is at least 1

2 |h|. Now, C∗ is at least twice the area of X , and
|B| ≤ 6|h|. Therefore, C∗ ≥ 2|X | ≥ 2 · 1

2 |h| ≥ 1
6 |B|. ��

2.2 Carving Phase

Let T = B−P be the portion of B that is “trapped” between the boundaries of P
and B. T is a polyhedral object, convex or non-convex and possibly disconnected.
The inner (outer) surface of T is the surface that touches (does not touch) the
faces of P . Our idea is to apply an edge cut through each edge of P , and we shall
do that in two types of rounds: face rounds and edge rounds. Face rounds will
find polygonal chains that will partition the faces of P into smaller connected
components and edge rounds will apply edge cuts through the edges of those
polygonal chains. There will be O(log n) face rounds. Within each face round
there will be a number of edge rounds but their total cost will be O(C∗ log n).
Once we have applied edge cuts through all the edges of P , each face f of P will
have a small “cap”-like portion of T over it, which we shall cut at a cost of the
area of f to get P , giving a cost of O(C∗) for all faces.

Face Rounds. Let F be a connected face set of l faces of P . At the very first
face round i = 0, F consists of all the faces of P . We find a chain of edges P ′ that
will partition F into two smaller connected face sets F1 and F2 by the following
lemma.

Lemma 7. It is always possible to find in O(l log l) time an orthogonal projec-
tion of P which is non-degenerate w.r.t the faces of F such that the sets of visible
and invisible faces of F contain at least � l

2	 faces each.

Proof. For this proof we shall move on to the surface of an origin-centered sphere
s. For each face f ∈ F , its outward normal is uniquely represented by a point
of s, which we call the normal point of f . Each point of s also represents an
orthogonal projection direction of P . So, an orthogonal projection of P which is
non-degenerate w.r.t the faces of F is represented by a great circle of s that does
not pass through the normal points of the faces of F . We need one such great
circle satisfying an additional criterion that its two hemispheres contain at least
� l

2	 normal points each. There exists infinitely many such great circles and one
of them can be found in O(l log l) time as follows. Take any two antipodal points
that are normal points as poles. Take a great circle g through these two poles
and rotate it around these poles until the number of normal points in its two
hemisphere differ by at most one. If it happens that some normal points fall on
the great circle, then slightly change the poles and the great circle to distribute
those normal points into two hemispheres as necessary. For running time, all we
need to do is to sort the normal points according to their angular distance with
the plane of g at the origin. ��

Cutting a Convex Polyhedron Out of a Sphere 99

We call the projection direction to achieve g by the above lemma the zone
direction of of F . P ′ is the chain of edges in the boundary of the above projection
whose each edge has both adjacent faces (one is visible and another is invisible)
in F . We call P ′ a separating chain of F . We shall apply edge cuts through the
edges of P ′ by the edge rounds as described in the next paragraph. In the next
face round i + 1, we shall apply Lemma 7 for each of F1 and F2 and shall thus
get two separating chains and four connected face sets. We shall repeat the same
procedure for each of these four face sets. We shall continue like this until each
face set has only one face. Clearly, we need O(log n) face rounds.

Edge Rounds. Let P ′ = e1, e2, . . . , ek with its two ends from e1 and ek touching
the outer surface of T . We shall apply edge cuts through the edges of P ′ such
that all of them are parallel to a particular direction. Such a direction can be the
corresponding projection direction. We call this set of k edge cuts a zone of cuts
and its direction the zone cut direction. We shall apply these cuts in log k edge
rounds. At the very first edge round j = 0, we apply an edge cut through ek/2 in
the zone cut direction. This cut will partition the edges of P ′ into two subchains
of size at most �k

2	. In the next round, we apply two edge cuts through the two
middle edges of these two subchains, which will result into four subchains. Then
in the next round we apply four similar cuts to the four subchains. We continue
like this until each subchain has only one edge. Clearly, we need O(log k) edge
rounds for P ′.

Lemma 8. After all the face rounds and the corresponding edge rounds are
completed, all edges of P get an edge cut.

Proof. Let e be an edge that does not get an edge cut. Then the two adjacent
faces of e are in the same face set. But that is a contradiction that each face set
has only one face. ��

Analysis. We define the box area of a face set F as follows. When F contains
all faces of P , its box area is B —the whole surface area of B. Zone of cuts
through the separating chain of F partitions F into F1 and F2 and T into two
components, say T1 and T2, respectively. Then the box area of F1 (F2) is the
outer surface area of T1 (T2), which we denote by by B1 (B2). Observe that
|B1| + |B2| ≤ |B|. Box area of any subsequent face set is similarly defined.
Moreover, two face sets from the same face round have their box areas disjoint
and in any face round sum of all box area is at most |B|.
Lemma 9. Let P ′

m be the separating chain with k edges of an arbitrary face set
Fm to which we apply O(log k) edge rounds. Let Bm be the box area of Fm. At
each edge round j, total cost of 2j cuts is O(|Bm|). Over all log k edge rounds,
total cost is O(|Bm| log n).

Proof. This proof is similar to that of Lemma 5. Consider a particular edge
round j. For each cut c the cost of c is no more than the portion of Bm that is

100 S.I. Ahmed, M. Hasan, and Md.A. Islam

thrown away by c. Moreover, these cuts are pairwise disjoint. Indeed, they can
at best intersect the cut which is in between them and was applied in (j − 1)-th
round. It implies that the total cost of 2j cuts is at most |Bm|. Since k ≤ n, the
second part of the lemma follows. ��
Lemma 10. Let F be the face set consisting of all faces of P to which we shall
apply O(log n) face rounds. At each face round i, total cost of 2i zones of cuts is
O(|B| log n). Over all O(log n) face rounds, the total cost is O(C∗ log2 n).

Proof. At each face round i, we apply 2i zones of cuts to 2i face sets. By the
previous lemma, for a particular face set Fm, 0 ≤ m ≤ 2i, cost of the zone of
cuts applied to it is at most O(|Bm| log n). Since

∑2i

1 |Bm| ≤ |B|, cost of all

zone cuts is
∑2i

1 O(|Bm| log n) = O(|B| log n). Over all O(log n) face rounds, the
total cost is O(|B| log2 n), which by Lemma 6 is O(C∗ log2 n). ��
Running time in face round i involves finding 2i separating chains, each of size
n
2i , plus applying a zone of cuts to each of them. Each separating chain can be
found in O(n

2i log n
2i) time by Lemma 7. Each cut needs to update Q, which

“can be done” in O(n) time assuming that Q is represented by suitable data
structure [6]. It gives that a zone of cuts needs O(n2

2i) time. So, in round i total
time is O(2i(n2

2i + n
2i log n

2i)) = O(n2). Over all O(log n) rounds, it becomes
O(n2 log n).

Theorem 1. Given a convex polyhedron P fixed inside a sphere Q, P can be cut
out of Q by using only guillotine cuts in O(n3) time with cutting cost O(log2 n)
times the optimal, where n is the number of vertices of P .

3 Conclusion

In this paper, we have given an O(n3)-time algorithm that cuts a convex poly-
hedron P with n vertices from a sphere Q, where P is fixed inside Q, by using
guillotine cuts with cutting cost O(log2 n) times the optimal.

This problem is well studied in 2D, where the series of results include several
O(log n) and constant factor approximation algorithms and a PTAS. The key
ingredients of the 2D algorithms involve three major steps: (1) take some ap-
proximate vertex cuts through the vertices of P , (2) use dynamic programming
to find an optimal cutting sequence among the edge cuts and the vertex cuts
taken in step (1), and (3) show that the cutting cost of the sequence obtained
in step (2) is within the desired factor of the optimal. Using the idea of 2D
algorithms may be a way to improve the approximation ratio of our algorithm.
Among the above three steps, it may not be difficult to generalize steps (1)
and (3) for 3D, but the most difficult part we find is the applying a dynamic
programming.

Cutting a Convex Polyhedron Out of a Sphere 101

References

1. Ahmed, S.I., Hasan, M., Islam, M.A.: Cutting a cornered convex polygon out of a
circle. Journal of Computers (to appear),
http://203.208.166.84/masudhasan/cut.pdf

2. Bereg, S., Daescu, O., Jiang, M.: A PTAS for cutting out polygons with lines.
In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 176–185.
Springer, Heidelberg (2006)

3. Bhadury, J., Chandrasekaran, R.: Stock cutting to minimize cutting length. Euro.
J. Oper. Res. 88, 69–87 (1996)

4. Chandrasekaran, R., Daescu, O., Luo, J.: Cutting out polygons. In: CCCG 2005,
pp. 183–186 (2005)

5. Daescu, O., Luo, J.: Cutting out polygons with lines and rays. International Journal
of Computational Geometry and Applications 16, 227–248 (2006)

6. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)

7. Demaine, E.D., Demaine, M.L., Kaplan, C.S.: Polygons cuttable by a circular saw.
Computational Geometry: Theory and Algorithms 20, 69–84 (2001)

8. Dumitrescu, A.: An approximation algorithm for cutting out convex polygons.
Computational Geometry: Theory and Algorithms 29, 223–231 (2004)

9. Dumitrescu, A.: The cost of cutting out convex n-gons. Discrete Applied Mathe-
matics 143, 353–358 (2004)

10. Jaromczyk, J.W., Kowaluk, M.: Sets of lines and cutting out polyhedral objects.
Computational Geometry: Theory and Algorithms 25, 67–95 (2003)

11. O’Rourke, J.: Finding minimal enclosing boxes. International Journal of Computer
and Information Sciences 14(3), 183–199 (1985)

12. Overmars, M.H., Welzl, E.: The complexity of cutting paper. In: SoCG 1985, pp.
316–321 (1985)

13. Tan, X.: Approximation algorithms for cutting out polygons with lines and rays. In:
Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 534–543. Springer, Heidelberg
(2005)

14. Toussaint, G.: Solving geometric problems with the rotating calipers. In: MELE-
CON 1983, Athens, Greece (1983)

http://203.208.166.84/masudhasan/cut.pdf

A Simple Algorithm for Approximate Partial
Point Set Pattern Matching under Rigid Motion

Arijit Bishnu, Sandip Das, Subhas C. Nandy, and Bhargab B. Bhattacharya

Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
203, B.T. Road, Kolkata, India - 700108

Abstract. This paper deals with the problem of approximate point set
pattern matching in 2D. Given a set P of n points, called sample set,
and a query set Q of k points (k ≤ n), the problem is to find a match of
Q with a subset of P under rigid motion (rotation and/or translation)
transformation such that each point in Q lies in the ε-neighborhood of
a point in P . The ε-neighborhood region of a point pi ∈ P is an axis-
parallel square having each side of length ε and pi at its centroid. We
assume that the point set is well-seperated in the sense that for a given
ε > 0, each pair of points p, p′ ∈ P satisfy at least one of the following
two conditions (i) |x(p) − x(p′)| ≥ ε, and (ii) |y(p) − y(p′)| ≥ 3ε, and
we propose an algorithm for the approximate matching that can find a
match (if it exists) under rigid motion in O(n2k2(klogk + logn)) time.
If only translation is considered then the existence of a match can be
tested in O(nk2 log n) time. The salient feature of our algorithm for the
rigid motion and translation is that it avoids the use of intersection of
high degree curves.

1 Introduction
A fundamental problem in pattern matching is to design efficient algorithms for
testing how closely a query set Q of k points resembles a sample set P of n points,
where k ≤ n [11, 17]. In computer vision, remote sensing, finger print and related
applications, point sets represent some spatial features like spots, corners, lines,
curves in the images [16, 17]. In many problems of pattern recognition, such as
registration and identification of an object, a suitably chosen set of points may
efficiently preserve desired attributes of the object. In all such cases, the problem
can be transformed to matching point sets with templates.

It is well-known that in IRd, the fastest known algorithm for exact matching
of a query set of k points in a sample set of n points runs in O(knd) time [18],
and the problem is NP-complete when d is unbounded [1]. Recently, it is shown
that the problem is W [1]-hard [6], and no fixed parameter tractable algorithm
for getting the optimum solution can be designed.

We focus our attention on points in IR2. The problem has several variants [3]
based on (i) class of allowable transformations; (ii) exact or approximate match-
ing; (iii) equal cardinality, subset, or largest common point set matching; (iv)
one-to-one or one-to-many matching. The most simple kind of transformation is
translation. If rotation is allowed along with translation, it is called rigid motion

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 102–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Partial Point Set Pattern Matching 103

or congruence. Other transformations include reflection and scaling. The latter
refers to magnifying (or reducing) the object by a certain factor π. Combination
of rotation, translation and scaling is called similarity. Under these transforma-
tions, the problem can be classified into three groups [3]: (a) exact matching,
(b) partial matching and (c) approximate matching. The exact (partial) pattern
matching problem with k = n (with k ≤ n) is to decide if the patterns exactly
(partially) match under some transformations. The subset or partial matching
is a difficult problem compared to the equal cardinality matching as there can
be

(
n
k

)
possibilities and also no condition can be fixed about the centroid of the

points. The problems of finding the exact and partial matches have received wide
attention [1–3, 5, 18]. The problem of approximate matching of point sets in the
one-to-one case, in which we are interested in this paper, in its most general
setting was solved in the seminal paper by Alt et al. [2] and in some restricted
setting by Arkin et al. [4]. The algorithms in [2, 4] involve intersection of curves
of high degree leading to numerical instability in computation and also the time
complexities of these methods are high. These reasons have given rise to a con-
siderable body of work dealing with different types of matchings and mostly fast
approximation algorithms [7–9, 11–15, 17].

1.1 Background and Motivation

The decision version of the approximate matching of point sets in the one-to-one
case is to test, given two point sets P and Q (|P | = |Q|), if there is a bijection
� : Q → P and a congruence T , such that T (q) ∈ Uε(�(q)), for all q ∈ Q, where
Uε(p) denotes the closed ε-neighborhood of a point p ∈ P . Both the papers [2, 4]
address the problem for equal cardinality, i.e., k = n. The solutions are elegant
and use some geometric facts and bipartite graph matching. For a nice summary
of the work in [2], see [3, 12]. But, the algorithms are difficult to implement
and numerically unstable as they involve computing the intersection of complex
algebraic curves [3, 11, 14]. For finding the said match, the algorithms in [2, 4]
try to find some alignments. They do this with the help of a geometric argument
that in effect is also an if and only if condition for the match. The geometric fact
used is as follows. If there exists a valid matching of Q with P , then there is one
matching where two points qi, qj ∈ Q are matched exactly to the boundaries of
the ε-neighborhoods Uε(pα), Uε(pβ) of two points pα, pβ ∈ P . Now, the anchoring
of qi, qj ∈ Q with pα, pβ ∈ P implies that qi, qj ∈ Q are constrained to belong
to the ε-neighborhoods Uε(pα), Uε(pβ). With this constrained movement of qi

and qj , a third point q� ∈ Q \ {qi, qj} traces out specifically a 6 degree algebraic
curve. Now, intersection of this curve is found with the ε-neighborhood of the
other points in P . Finding this intersection gives rise to the numeric instability
in computation.

The algorithm of Alt et al. [2] is indeed a general algorithm in that it can work
for overlapping and non-overlapping ε-circles and ε-boxes both taking O(n8)
time. For ε-boxes, the algebraic curve will be of degree four. A more interesting
observation was made later by Heffernan and Schirra [12] in which they show
that this O(n8) algorithm is indeed optimal for ε-circles. We show that if instead

104 A. Bishnu et al.

of overlapping ε-circles, non-overlapping ε-boxes are used, the time complexity
is reduced considerably.

1.2 Our Work

The problem that we are concerned in this paper is whether we can avoid finding
the intersection of higher degree algebraic curves and still attain a comparable
time complexity for the approximate point set pattern matching problem as in
[2, 4]. We assume that, the ε-neighborhood region of each point p ∈ P is an
axis-parallel square having each side of length ε (called ε-box) with point p at its
centroid. We show that if the point set is well-separated, i.e., each pair of points
p, p′ ∈ P satisfy either |x(p) − x(p′)| ≥ ε or |y(p) − y(p′)| ≥ 3ε or both, then
a simple algorithm for the approximate matching under rigid motion (i.e., with
translation and rotation) can be designed that runs in O(n2k2(klogk + logn))
time in worst case. Here the ε-boxes are non-overlapping (see Figure 1), and
using an anchoring scheme of a point in Q with a point in P , we can avoid the
intersection of higher degree algebraic curves. If instead of rigid motion, only
translation is permitted for a match, then the existence of a match can be tested
in O(nk2 log n) time.

It needs to be mentioned that, in [4] the equal cardinality case with non-
overlapping ε-boxes was solved in O(n4logn) time using intersection of higher
degree algebraic curves. Our work is more general in the sense that it works for
any k (≤ n), but its limitation is that it works for the well-separated point set
as defined earlier.

2 Preliminaries

The equal cardinality approximate matching in [2] rests on the use of a simple
geometric fact that if there exists a valid matching of Q with a k-subset of P , then
there is one where two points qi, qj ∈ Q are matched exactly to the boundaries
of the ε-neighborhoods Uε(pα), Uε(pβ) of two points pα, pβ ∈ P . This fact allows
for finding an alignment which may lead to a match, if it exists. In line with the
above, we have the following simple lemma.

Lemma 1. If there exists a transformation T (Q) for the said match, then there
exists another transformation T ′(Q), such that one point of Q lies on the left
boundary of the ε-box of a point in P , and one point of Q lies on the top boundary
of the ε-box of a point in P .

Proof. Take the transformation T (Q); obtain T ′(Q) by pushing all the points
towards left (by the same amount) until a point hits the left boundary of an
ε-box (say for a point pα), and then push all the points above until a point hits
the top boundary of an ε-box (say for a point pβ). Note that pα and pβ may or
may not be distinct. ��
Note that, Lemma 1 is a necessary and sufficient condition for the existence of a
match. It needs to be mentioned that there exists a degenerate case where both

Partial Point Set Pattern Matching 105

ε
q i

 - Points in P - Points in Q

q i

2 ε

A B

C

F

D

E

q j

by Lemma 1 and 2

zoneep

zoneeb

ε-box
{

Fig. 1. Pushing scheme of Lemma 1 and Lemma 2

the points appearing on the left and top boundaries may be the same. Here, a
point in Q lies on the top-left corner of the ε-box of a point in P , and each of
the other points in Q lies properly inside some other ε-box. For this special case
finding a match is easier and hence, we are disregarding this special case.

Let Q be the query set satisfying Lemma 1. If we push the points such that
the point lying on the left-boundary of an ε-box reaches the top-left corner of
that box, the one which lies on the top-boundary of some other ε-box, may go
outside of that box. Many other points may also go out of its corresponding
ε-box due to this upward shift. But, using the concept of extended box (as stated
below), the next lemma must be true for the existence of a match.

Definition 1. Consider the ε-box ABCD around a point p. The extended ε-box
of p is a ε × 2ε box which is formed by attaching another ε × ε square CDFE
above the ε-box ABCD as shown in Figure 1. The portion CDFE is called the
extended portion of the ε-box.

Lemma 2. If there exists a transformation T (Q) for the said match, there exists
another transformation T ′(Q), such that (i) one point, say q ∈ Q, lies at the top-
left corner of the ε-box of a point in P , (ii) at least one point lies in the extended
portion of the ε-box (a region like CDFE shown in Figure 1) of a point in P ,
(iii) each of the remaining members in Q lie in the extended ε-box (a region like
AFEB shown in Figure 1) of some point in P .

It needs to be mentioned that, Lemma 2 is only a necessary condition for the
existence of a match, but is not a sufficient condition. The key idea behind
Lemma 2 is based on a relative motion between the ε-boxes and the points from

106 A. Bishnu et al.

the query set. Here, instead of allowing the two points lying on the vertical and
horizontal boundary to move on their respective boundaries and making a third
point trace an algebraic curve, we move the ε-boxes to form the extended ε-
boxes. That allows us to anchor points from the query set with specified points
from the ε-box. We first consider the allowed transformation of Q to be only
translation. Next, we extend it for searching a match under rigid motion of Q.

3 Translation in 2D

Here, a point q ∈ Q is anchored with a point p ∈ P . This anchoring fixes the
unknown translational parameters of the transformation. The anchoring is done
as follows: position q at the top-left corner of the ε-box of p, and check whether
each point in Q \ {q} lies inside the extended box of some point of P . If the
aforesaid checking returns false, then no match exists with q at the top-left
corner of the ε-box of p. But, if it returns true, then a match may or may not
exist. Here, two cases may arise: (i) each member in Q \ {q} lies inside the ε-box
of some point of P , and (ii) the points in Q \ {q} can be partitioned into two
subsets Q1 and Q2, where each member in Q1 lies in the ε-box of some point in
P , and each member in Q2 lies in the extended portion of ε-box of some member
in P . In case (i), a matching is already established. For case (ii), we need to
perform the following procedure to compute the necessary translation (if any)
for the existence of a match.

For each point in Q2, compute the amount of downward shift that is at least
required to pull down it inside the corresponding ε-box, and observe the
maximum among them (say Δ1). Similarly for each point in Q1, compute
the allowable downward shift to ensure that the point is in its corresponding
ε-box, and compute the minimum among them (say Δ2). If Δ1 < Δ2, a
match exists.

We maintain a planar straight line graph (PSLG) data structure with the ε-
boxes corresponding to the members in P . While anchoring a point q with a
point p ∈ P , one needs to perform k point location queries in the PSLG. This
needs O(k logn) time. The computation of Δ1 and Δ2 needs another O(k) time.
As we may need to consider anchoring of each point in Q with each point in P
(see Lemma 1) in the worst case, the overall time complexity result is as follows:

Theorem 1. The worst case time complexity of the approximate matching of Q
with a k-subset of P in 2D when only translation is considered is O(nk2logn).

It needs to be noted that because of Lemma 1, the translation only case can be
solved with only the point location queries, and no intersection of high degree
curves is needed.

Partial Point Set Pattern Matching 107

4 Rigid Motion in 2D

The rigid motion transformation T (Q) under which we are to check is [x
′

y′] =
[tx
ty

] + [cos θ
− sin θ

sin θ
cos θ][

x
y], where tx, ty and θ are unknown. By vertically pushing

Q to the corner by an amount d (< ε), we have altered T (Q) to T ′(Q) as
[x

′
y′] = [tx

ty−d] + [cos θ
− sin θ

sin θ
cos θ][

x
y].

For a given query set Q, we first try to find out T ′(Q) satisfying the condition
stated in Lemma 2. Next, we use T ′(Q) to find out T (Q) for a match as stated
in Lemma 1, if such a match at all exists. We anchor a query point qi ∈ Q
at the corner of the ε-box corresponding to a point p ∈ P and search for a
transformation T ′(Q) (as stated in Lemma 2) by applying rotation with an
appropriate angle. If such an angle of rotation exists, we can find another point
qj ∈ Q such that the circle Cij centered at qi and with radius qiqj intersects the
extended portion of the ε-box corresponding to some member in P . Note that,
more than one ε-boxes may exist, which are cut by the aforesaid circle Cij . For
each such intersection, we need to inspect for a match. Consider one such event
where Cij intersects with the extended box corresponding to p′ (in Figure 2 see
the arc GH in the extended box DCEF). Let the lines qiG and qiH make angles
θ1 and θ2 with the x-axis, respectively. Thus, the arc GH indicates an interval
I = [θ1, θ2] ∈ [0, 2π] of the angle of rotation of Q centering qi at the top-left
corner of the ε-box of p. We find a sub-interval of angle I∗ = [θ∗1 , θ

∗
2] ⊆ I such

that Lemma 2 is satisfied for a rotation of the point set Q by an amount θ ∈ I∗.
In other words, each point in Q\{qi, qj} lies in the extended ε-box of some point

q i

2 ε

A B

C

F

D

E
G

H

q j

p
p’θ1

θ2

Fig. 2. Finding a suitable rotation for a match

108 A. Bishnu et al.

of P . Next, we need to check whether a shift of Q (≤ ε) vertically downward
exists so that Lemma 1 is also satisfied for the rotation angle θ. In other words,
qi remains on the left boundary of the ε-box of p, qj reaches the top-boundary
of the ε-box of p′, and each member in Q \ {qi, qj} enters in the ε-box of some
point in P .

In order to determine I∗, we rotate each point qk ∈ Q \ {qi, qj} around qi,
and observe the extended ε-squares which the circular arc intersects while the
angle of rotation θ is in the interval I (= [θ1, θ2]). Note that, each such qk may
intersect O(n) ε-boxes in the worst case. Thus, finding I∗ may require very high
running time complexity in the worst case. Again, any member in Q \ {qi} may
appear on the top-boundary of any ε-box in a successful matching. In order to
reduce the time complexity of determining the feasible angles of rotation of Q,
we rotate Q around qi, and globally observe the movement of each point in Q.

Consider the k − 1 concentric circles Cij for all qj ∈ Q \ {qi}. Each circle Cij

intersects some extended ε-boxes. Since the point set P is well-separated, the
extended boxes are non-overlapping, and these intersections will contribute a
set of non-overlapping arcs. The arcs corresponding to all the points in Q \ {qi}
will define a circular arc graph G [10]. A clique of size k − 1 in G implies that
the corresponding arcs are on k− 1 different circles. This, in turn says that each
point in Q \ {qi} can be placed inside an extended ε-box. Thus, for each clique
of size k − 1 we need to test for a matching as stated below. As the number of
nodes in G is O(nk) in the worst case, the number of such cliques may also be
O(nk).

Let χ be a k− 1 clique, which corresponds to the rotation angle I∗ = [θ∗1 , θ∗2].
We partition the arcs (corresponding to the points in Q \ {qi}) into two subsets
Q1 and Q2 such that the arcs in Q1 are all inside the ε-boxes, and those in Q2 are
all inside the extended portion of the ε-boxes. If an arc overlaps both the ε-box
and the extended portion of the ε-box, then we break it up into two parts, one
corresponds to the ε-box and the other one corresponds to the extended portion
of the ε-box. If Q2 = φ, we have already obtained a match with qi at the top-
left position of the ε-box of p. If Q1 = φ, then for any arbitrary rotation angle
θ ∈ I∗, a match surely exists under necessary (≤ ε) downward translation. If
both Q1, Q2 �= φ, a match may or may not exist. Below we introduce the notion
of critical angle. The existence of such an angle implies a match.

Definition 2. If one can find a match (under Lemma 1) with the application
of a rotation of Q by the angle θ∗ ∈ I∗ and a suitable vertical downward shift,
then θ∗ is said to be a critical angle.

Thus, after applying rotation of Q with a critical angle θ∗ and then applying a
vertical downward translation, one can bring all the members in Q2 inside its
corresponding ε-box, and all the points in Q1 will not leave its corresponding
ε-box. We first split the angular interval corresponding to a clique into homoge-
neous intervals as defined below. Next, we consider each homogeneous interval,
and compute a critical angle (if any).

Partial Point Set Pattern Matching 109

4.1 Homogeneous Splitting of I∗

Let I∗ = [θ1, θ2] be a k−1 clique, and consider a rotation angle θ ∈ I∗. For each
element q ∈ Q1, we use a function f1

q (θ) to denote the distance of q from the
bottom-boundary of the corresponding ε-box. Similarly, for each element q ∈ Q2,
a function f2

q (θ) denotes the distance of q from the top-boundary of the corre-
sponding ε-box. The functions f i

q(θ) i = 1, 2 are of the form qaq sin(α + θ) − c;
if qa ∈ Q1, c is the y-coordinate of the bottom-boundary of the corresponding
ε-box, and if qa ∈ Q2, c is the y-coordinate of the top-boundary of the corre-
sponding ε-box (see Figure 3(a)).

Observation 1. For a given q ∈ Qi, i = 1 or 2, the univariate function f i
q(θ)

is continuous, and unimodular.

Next, let us define two more functions, namely L(θ) and U(θ) for θ ∈ I∗, where
L(θ) denotes the lower envelope of |Q1| functions, namely f1

q (θ), q ∈ Q1, and
U(θ) denotes the upper envelope of |Q2| functions, namely f2

q (θ), q ∈ Q2.
At a rotation angle θ ∈ I∗, the minimum amount of downward translation

required to place the points in Q2 in the corresponding ε-box is maxq∈Q2f
2
q (θ) =

U(θ). Similarly, the maximum amount of downward translation that may retain
all the points in Q1 in its corresponding ε-box is minq∈Q1f

1
q (θ) = L(θ). Now,

for each of the two functions L and U , we define break-points as follows:

Definition 3. A rotation angle θ is said to be a break-point in the function L
if L(θ) = f1

qa
(θ) = f1

qb
(θ) for two distinct points qa, qb ∈ Q1. Similarly, the

break-points of the U function is defined.

q i x

Y

θ2 θ1

ψ

A B

C

F

D

E

p’

p

p’’

qb

θ

qa

(b)

c

c

f 2q’’(α)

f 2q’(α)

qi

(b)

Fig. 3. (a) Finding a suitable translation for a match, (b) proof of Lemma 3

110 A. Bishnu et al.

Lemma 3. If we plot a pair of functions f1
q′(θ) and f1

q′′(θ) (corresponding to
two different points q′, q′′ ∈ Q1) with respect to θ ∈ I∗, they may intersect in
at most two points. The same result is true for a pair of functions f2

q′(θ) and
f2

q′′(θ) for a pair of points q′, q′′ ∈ Q2.

Proof. Follows from Observation 1. See, also Figure 3(b). ��
Lemma 3 implies that, for a pair of points q′, q′′ ∈ Q2, it may happen that
f2

q′(θ) < f2
q′′(θ) for both θ = θ∗1 and θ∗2 of an interval of rotation angle I∗, but

there exists a sub-interval [φ1, φ2] ∈ I∗, such that f2
q′(θ) < f2

q′′(θ) for θ ∈ [φ1, φ2].

Observation 2. The collection of functions {f1
q (θ), q ∈ Q1} follows a (k, 2)-

Davenport-Schinzel sequence. The same result is true for the collection of func-
tions {f2

q (θ), q ∈ Q2}. See [19] for details.

Lemma 4. The maximum number of break-points in the function L(θ) is
λ2(|Q1|) = 2|Q1|−1, and it can be computed in O(|Q1| log |Q1|) time. Similarly,
the maximum number of break-points in the function U(θ) is λ2(|Q2|) = 2|Q2|−1,
and it can be computed in O(|Q2|log|Q2|) time.

Proof. Follows from Observation 2 [19]. ��
Thus, the entire interval I∗ = [θ∗1 , θ∗2] is split into sub-intervals defined by the
break-points of L(θ) and U(θ), and the number of such sub-intervals is O(k) in
the worst case.

4.2 Computation of Critical-Angle

For a rotation angle θ in a sub-interval [θ1, θ2], the vertical downward shift
will be determined by two points, say qα, qβ ∈ Q, where qα and qβ are such that
f1

qα
(θ) = L(θ) and f2

qβ
(θ) = U(θ). It is also observed that, qα lies in the extended

ε-box of p′, qβ lies in the ε-box of p′′, and the angle
 qaqiqb (= ψ say) does not
change due to the rigid motion. We use δ(a, b) to denote the Euclidean distance
between a pair of points a and b. Now consider the following quantities:

Δ1 = Minimum amount of downward shift required to bring qα inside the ε-box
of p′. Thus, Δ1 = δ(qi, qα)sin(θ + θ1) − (y(p′) + ε

2).
Δ2 = Maximum amount of permissible downward shift keeping qβ inside the

ε-box of p′′. Thus, Δ2 = δ(qi, qβ)sin(θ + θ1 + ψ) − (y(p′′) − ε
2).

Thus, a feasible solution θ (if it exists) must satisfy Δ1 ≤ Δ2. This, on simplifica-
tion, gives δ(qi, qα)sin(θ+θ1)−δ(qi, qβ)(sin(θ+θ1)cos(ψ)+cos(θ+θ1)sin(ψ)) ≤
y(p′) − y(p′′) + ε.

Let A and B be two constants such that (δ(qi, qα) − δ(qi, qβ) cos(ψ)) =
A cos(B) and δ(qi, qβ) sin(ψ) = A sin(B).

Thus, we have A sin(θ + θ1 − B) ≤ y(p′) − y(p′′) + ε.
This implies, θ ≤ sin−1(y(p′)−y(p′′)+ε

A) + B − θ1.

Partial Point Set Pattern Matching 111

If sin−1(y(p′)−y(p′′)+ε
A) + B − θ1 ≤ θ1, the critical angle in the sub-interval

[θ1, θ2] does not exist. Otherwise, for any rotation angle in the interval

[θ1, min(sin−1(y(p′)−y(p′′)+ε
A) + B − θ1, θ2)],

a match can be obtained with a Δ1 unit of downward translation.

4.3 Complexity Analysis

Theorem 2. The time complexity of the proposed algorithm for ε-approximate
matching of Q with a subset of P where the neighbourhood around a point (in
P) is defined as an ε-box, is O(n2k2(logn + klogk)).

Proof. Each point of Q needs to be anchored at the top-left corner of the ε-box
of each point in P . The nodes of the circular arc graph G are obtained in O(nk)
time, and the cliques of graph G can be obtained after getting the circular order
of the nodes; this takes O(nklogn) time.

While processing a clique, the computation of the functions U and L needs
O(klogk) time, and number of elements in U ∪ L is O(k) in the worst case [19].
The algebraic computation for processing each element in U∪L needs O(1) time.
Thus, the overall time complexity result follows. ��

5 Conclusion

An easy to implement and numerically robust algorithm for the approximate
matching of point set is described in this paper, where the ε-neighborhood of
the sample points are axis-parallel squares instead of circles. Our algorithm
works for well-separated points, where each pair of points p, p′ ∈ P satisfy either
|x(p)− x(p′)| ≥ ε or |y(p)− y(p′)| ≥ 3ε or both. Our algorithm does not use the
computation of the intersection of high degree algebraic curves; it only needs to
compute intersections of circles and squares. The worst case time complexity of
the algorithm is shown to be O(n2k2(klogk+logn)). Though the time complexity
of the algorithm is still high, it terminates much faster in all practical instances.
As a measure of comparison we would like to mention that, the same problem
was solved earlier in O(n4logn) for the equal cardinality case (k = n) using
intersection of high degree algebraic curves [4]. The problem for labeled cases
[2] can be solved in O(k2) time using our scheme. For other types of ε-regions
[2, 4], our scheme can be applied with a suitable modification to the shapes of
the extended boxes.

References

1. Akutsu, T.: On determining the congruence of point sets in d dimensions. Compu-
tational Geometry: Theory and Applications 9, 247–256 (1998)

2. Alt, H., Mehlhorn, K., Wagener, H., Welzl, E.: Congruence, similarity and symme-
tries of geometric objects. Discrete Computational Geometry 3, 237–256 (1988)

112 A. Bishnu et al.

3. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and ap-
proximation. In: Handbook of Computational Geometry, pp. 121–153. Elsevier
Science Publishers B.V. North-Holland, Amsterdam (1999)

4. Arkin, E.M., Kedem, K., Mitchell, J.S.B., Sprinzak, J., Werman, M.: Matching
points into pairwise-disjoint noise regions: combinatorial bounds and algorithms.
ORSA Journal on Computing 4, 375–386 (1992)

5. Brass, P., Knauer, C.: Testing the congruence of d-dimensional point sets. Int. J.
Computational Geometry and Applications 12, 115–124 (2002)

6. Cabello, S., Giannopoulos, P., Knauer, C.: On the parameterized complexity of d-
dimensional point set pattern matching. Information Processing Letters 105, 73–77
(2008)

7. Chew, L.P., Goodrich, M.T., Huttenlocher, D.P., Kedem, K., Kleinberg, J.M.,
Kravets, D.: Geometric pattern matching under euclidean motion. Computational
Geometry: Theory and Applications 7, 113–124 (1997)

8. Efrat, A., Itai, A.: Improvements on bottleneck matching and related problems
using geometry. In: Proc. 12th ACM Symposium on Computational Geometry, pp.
301–310. ACM, New York (1996)

9. Gavrilov, M., Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric pattern
matching: a performance study. In: Proc. 15th ACM Symposium on Computational
Geometry, pp. 79–85. ACM, New York (1999)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
NY (1980)

11. Goodrich, M.T., Mitchell, J.S.B., Orletsky, M.W.: Approximate geometric pattern
matching under rigid motions. IEEE Trans. PAMI 21(4), 371–379 (1999)

12. Heffernan, P.J., Schirra, S.: Approximate decision algorithms for point set congru-
ence. Computational Geometry: Theory and Applications 4(3), 137–156 (1994)

13. Imai, K., Sumino, S., Imai, H.: Minimax geometric fitting of two corresponding
sets of points. In: Proc. 5th ACM Symposium on Computational Geometry, pp.
266–275. ACM, New York (1989)

14. Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric matching under noise:
combinatorial bounds and algorithms. In: Proc. 10th SIAM-ACM Symposium on
Discrete Algorithms, pp. 457–465. ACM-SIAM, New York (1999)

15. Irani, S., Raghavan, P.: Combinatorial and experimental results for randomized
point matching algorithms. In: Proc. 12th ACM Symposium on Computational
Geometry, pp. 68–77. ACM, New York (1996)

16. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recog-
nition. Springer, NY (2003)

17. Mount, D.M., Netanyahu, N.S., Moigne, J.L.: Efficient algorithms for robust feature
matching. Pattern Recognition 32, 17–38 (1999)

18. Rezende, P.J., Lee, D.T.: Point set pattern matching in d-dimensions. Algorith-
mica 13, 387–404 (1995)

19. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric
Applications. Cambridge University Press, NY (1995)

Acyclically 3-Colorable Planar Graphs

Patrizio Angelini and Fabrizio Frati

Dipartimento di Informatica e Automazione – Roma Tre University
{angelini,frati}@dia.uniroma3.it

Abstract. In this paper we study the planar graphs that admit an acyclic
3-coloring. We show that testing acyclic 3-colorability is NP-hard for planar
graphs of maximum degree 4 and we show that there exist infinite classes of cu-
bic planar graphs that are not acyclically 3-colorable. Further, we show that ev-
ery planar graph has a subdivision with one vertex per edge that is acyclically
3-colorable. Finally, we characterize the series-parallel graphs such that every 3-
coloring is acyclic and we provide a linear-time recognition algorithm for such
graphs.

1 Introduction

A coloring of a graph is an assignment of colors to vertices such that no two adjacent
vertices have the same color. A k-coloring is a coloring using k colors. Planar graph
colorings have been widely studied from both a combinatorial and an algorithmic point
of view. The existence of a 4-coloring for every planar graph, proved by Appel and
Haken [4,5], is one of the most famous results in Graph Theory. A quadratic-time algo-
rithm is known to compute a 4-coloring of any planar graph [15].

An acyclic coloring is a coloring with no bichromatic cycle. An acyclic k-coloring is
an acyclic coloring using k colors. Acyclic colorings have been deeply investigated in
the literature. From an algorithmic point of view, Kostochka proved in [12] that deciding
whether a graph admits an acyclic 3-coloring is NP-hard. From a combinatorial point
of view, the most interesting result is perhaps the one proved by Alon et al. in [2],
namely that every graph with degree Δ can be acyclically colored with O(Δ4/3) colors,
while there exist graphs requiring Ω(Δ4/3/ 3

√
log Δ) colors in any acyclic coloring.

Acyclic colorings of planar graphs have been first considered in 1973 by Grünbaum,
who proved in [10] that there exist planar graphs requiring 5 colors in any acyclic col-
oring. The same lower bound holds even for bipartite planar graphs [13]. Grünbaum
conjectured that such a bound is tight and proved that 9 colors suffice for constructing
such a coloring. The Grünbaum upper bound was improved to 8 [14], to 7 [1], to 6 [11],
and finally to 5 by Borodin [6].

Since there exist planar graphs requiring 5 colors in any acyclic coloring, it is natural
to study which planar graphs can be acyclically 3- or 4-colored. In this paper we study
the acyclically 3-colorable planar graphs, from both an algorithmic and a combinatorial
perspective. We show the following results.

– In Sect. 3 we prove that deciding whether a planar graph of maximum degree 4 has
an acyclic 3-coloring is an NP-complete problem. An NP-hardness proof for de-
ciding acyclic 3-colorability was known for bipartite planar graphs of degeneracy

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 113–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

114 P. Angelini and F. Frati

2 [12]. The NP-hardness result is not surprising, since an analogous result is
known for deciding (possibly non-acyclic) 3-colorability of planar graphs of degree
4 [9]. However, we show an interesting difference between the class of 3-colorable
planar graphs and the class of acyclically 3-colorable planar graphs, by exhibit-
ing an infinite number of cubic planar graphs not admitting any acyclic 3-coloring
(while K4 is the only cubic graph that can not be 3-colored [8]). We remark that
it is known how to construct acyclic 4-colorings of every cubic (even non-planar)
graph [16].

– In Sect. 4 we prove that every planar graph has a subdivision with one vertex per
edge that is acyclically 3-colorable. Acyclic colorings of graph subdivisions have
been already considered by Wood in [18], where the author observed that every
graph has a subdivision with two vertices per edge that is acyclically 3-colorable.

– In Sect. 5 we consider the problem of determining the planar graphs such that ev-
ery 3-coloring is acyclic. Such a problem has been introduced by Grünbaum [10],
who showed that every 3-coloring of a maximal outerplanar graph is acyclic. We
improve his result by characterizing the series-parallel graphs such that every 3-
coloring is acyclic and by providing a linear-time recognition algorithm. As a side
result, we show a simple algorithm for obtaining an acyclic 3-coloring of any series-
parallel graph.

In Sect. 6 we conclude and we present some open problems. Some proofs are omitted
because of space limitations and can be found in the full version of the paper [3].

2 Preliminaries

A graph G is k-connected if removing any k-1 vertices leaves G connected; 3-connected
and 2-connected graphs are called triconnected and biconnected graphs, respectively.
The degree of a vertex is the number of incident edges. The degree of a graph is the
maximum degree of the vertices of the graph. In a cubic graph (resp. a subcubic graph)
each vertex has degree exactly 3 (resp. at most 3). A subdivision of a graph G is obtained
by replacing each edge of G with a path. A k-subdivision of G is such that any path
replacing an edge of G has at most k internal vertices. The internal (extremal) vertices of
the paths replacing the edges of G are called subdivision vertices (resp. main vertices).

A planar graph is a graph with no K5-minor and no K3,3-minor. A planar graph is
maximal if all its faces are delimited by 3-cycles. An outerplanar graph is a graph ad-
mitting a planar drawing with all the vertices on the outer face. Combinatorially, an out-
erplanar graph is a graph with no K4-minor and no K2,3-minor. An outerplanar graph
is maximal if all its internal faces are delimited by 3-cycles. A series-parallel graph
(SP-graph) is a graph with no K4-minor. SP-graphs are inductively defined as follows.
An edge (u, v) is an SP-graph with poles u and v. Denote by ui and vi the poles of an
SP-graph graph Gi. A series composition of SP-graphs G0, . . . , Gk, with k ≥ 1, is an
SP-graph with poles u=u0 and v=vk, containing graphs Gi as subgraphs, and such that
vi=ui+1, for each i=0, 1, . . . , k − 1. A parallel composition of SP-graphs G0, . . . , Gk,
with k ≥ 1, is an SP-graph with poles u=u0=u1=. . .=uk and v=v0=v1=. . .=vk and con-
taining graphs Gi as subgraphs. The SPQ-tree T of an SP-graph G is the tree, rooted
at any node, representing the series and parallel compositions of G.

Acyclically 3-Colorable Planar Graphs 115

3 Deciding the Acyclic 3-Colorability of Planar Graphs

In this section we study the problem of deciding whether a given planar graph admits
an acyclic 3-coloring. First, we present a very simple proof that Planar Graph Acyclic
3-Colorability is NP-hard. We remark that a proof of NP-hardness for Planar Graph
Acyclic 3-Colorability has been already presented by Kostochka in [12]. We later prove
an analogous complexity result for planar graphs of maximum degree 4.

Theorem 1. Planar Graph Acyclic 3-Colorability is NP-complete.

The membership in NP is trivial. To show the NP-hardness, we sketch a simple re-
duction from Planar Graph 3-Colorability that uses the graph G9 shown in Fig. 1.a as a
gadget. It is easy to see that G9 has only one acyclic 3-coloring (up to a switch of the
color classes), which satisfies the following properties: (P1) u1 and u2 have different
colors; (P2) every path connecting u1 and u2 contains vertices of all the three colors.

The reduction works as follows. Let G be an instance of Planar Graph 3-Colorability
(see Fig. 1.b). Replace each edge (u, v) of G with a copy of G9 by identifying vertices
u and v with u1 and u2, respectively (see Fig. 1.c). Let G′ be the resulting planar graph.
We argue that G admits a 3-coloring if and only if G′ admits an acyclic 3-coloring.

First, suppose that G admits a 3-coloring. For each edge (u, v) of G, color the cor-
responding graph G9 in G′ by assigning the color of u to u1, the color of v to u2, and
by then completing the unique acyclic 3-coloring of G9. The resulting coloring of G′

is acyclic. Namely, assume, for a contradiction, that G′ contains a bichromatic cycle C.
Such a cycle is not entirely contained inside a graph G9 replacing an edge of G in G′

(in fact, the 3-coloring of each graph G9 is acyclic). Hence, C contains vertices of more
than one graph G9. This implies that C contains as a subgraph a simple path p connect-
ing vertices u1 and u2 of a graph G9. However, by property P2 of the G9’s coloring, p
contains vertices of all the three colors, a contradiction.

Second, if G′ admits an acyclic 3-coloring, a coloring of G is obtained from the
acyclic 3-coloring of G′ by assigning to each vertex of G the color of the corresponding
vertex of G′. By property P1, each edge of G connects vertices of distinct colors.

Next, we show that testing whether a planar graph has an acyclic 3-coloring remains
an NP-hard problem even when restricted to planar graphs of degree 4.

1

2u

2v

u

1v

v7 v6 v5

v4

3v

76

3 4 5

1

2

8 8

7

2
3

1

4

5

6

(a) (b) (c)

Fig. 1. (a) Graph G9 and its unique acyclic 3-coloring. (b) A planar graph G. (c) The planar graph
G′ obtained by replacing each edge of G with a copy of G9.

116 P. Angelini and F. Frati

u w

v1

1 1 u1

v1 v2 v3

w3w2=u3=u2w1

(a) (b)

Fig. 2. (a) Graph H1. (b) Graph H3.

Theorem 2. Degree-4 Planar Graph Acyclic 3-Colorability is NP-complete.

The membership in NP is trivial. To show the NP-hardness, we sketch a simple re-
duction from Planar Graph Acyclic 3-Colorability. Consider the family of graphs Hi

defined as follows. H1 is shown in Fig. 2.a. Hi is obtained from a copy of Hi−1 and
a copy of H1 by renaming vertices u1, v1, and w1 of H1 with labels ui, vi, and wi,
respectively, and by identifying vertex wi−1 of Hi−1 and vertex ui of H1. H3 is shown
in Fig. 2.b. Vertices uj , vj , and wj of Hi, for 1 ≤ j ≤ i, are the outlets of Hi. The
family of graphs Hi has been defined in [9] to perform a reduction from Planar Graph
Colorability to Degree-4 Planar Graph Colorability. Here we use the same graph class
to reduce Planar Graph Acyclic 3-Colorability to Degree-4 Planar Graph Acyclic 3-
Colorability. It is easy to see that Hi satisfies the following properties: (P0) Hi admits
an acyclic 3-coloring; (P1) in any acyclic 3-coloring of Hi, the outlets have the same
color c0; (P2) in any acyclic 3-coloring of Hi, for any two outlets xj and yk of Hi,
there exist two bichromatic paths with colors c0 and c1, and with colors c0 and c2,
respectively, where x, y ∈ {u, v, w} and j, k ∈ {1, 2, . . . , i}.

We reduce Planar Graph Acyclic 3-Colorability to Degree-4 Planar Graph Acyclic
3-Colorability. Let G be any instance of Planar Graph Acyclic 3-Colorability (Fig. 3.a).
For each vertex z of G with d neighbors z1, z2, . . . , zd, delete z and its incident edges
from G, introduce a copy H(z) of Hd, and add an edge between outlet vj of H(z)
and zj , for each j=1, 2, . . . , d (Fig. 3.b). We argue that the resulting planar graph G′ of
degree 4 admits an acyclic 3-coloring if and only if G admits an acyclic 3-coloring.

Suppose that G admits an acyclic 3-coloring. Color the outlets zj corresponding to
each vertex z of G with the color of z. By properties P0 and P1, the coloring of each
H(z) can be completed to an acyclic 3-coloring. Any cycle C′ of G′ either is entirely

4

6

7

1

2

9

8

5

3

H(5)

H(1)
H(4)

H(6)

H(7)

H(9)

H(8)

H(3)

H(2)

(a) (b)

Fig. 3. (a) A planar graph G. (b) Graph G′ obtained by replacing each degree-d vertex z of G
with a copy H(z) of Hd. For each graph H(z), only its outlets are shown.

Acyclically 3-Colorable Planar Graphs 117

contained in a graph H(z) (hence C′ is not bichromatic), or contains vertices of several
graphs H(z). In the latter case suppose, for a contradiction, that C′ is bichromatic.
Consider the (possibly non-simple) cycle C of G containing a vertex z if C′ passes
through vertices of H(z) and containing an edge (z1, z2) if C′ contains an edge between
a vertex of H(z1) and a vertex of H(z2). Since the outlets of H(z) have the same color
of z, the colors of the vertices of C are a subset of the colors of the vertices of C′;
since C′ is bichromatic, C is bichromatic, as well, contradicting the assumption that the
coloring of G is acyclic.

Suppose that G′ admits an acyclic 3-coloring. Color G by assigning to each vertex z
the color of the outlets of H(z) (by Property P1, all such outlets have the same color).
Suppose that G contains a bichromatic cycle C with colors c0 and c1. A bichromatic
cycle C′ in G′ is found by replacing each vertex z1 of C with a path with colors c0 and
c1 connecting the outlets of H(z1) adjacent to the outlets of H(z2) and H(z3), where
z2 and z3 are the neighbors of z1 in C. Such a path exists by Property P2. Then, C′ is a
bichromatic cycle in G′, contradicting the assumption that the coloring of G′ is acyclic.

Now we show infinite classes of cubic planar graphs not admitting any acyclic 3-
coloring. Such a result is based on the following lemmata. Denote by K2,3 the complete
bipartite graph whose vertex sets V A

2,3 and V B
2,3 have two and three vertices, respectively.

Denote by K1,1,2 the complete tripartite graph whose vertex sets V A
1,1,2, V B

1,1,2, and
V C

1,1,2 have one, one, and two vertices, respectively.

Lemma 1. Let G be a graph having a vertex z of degree 2 adjacent to two vertices
u and v. Let G′ be the graph obtained by substituting z with a copy of K2,3, where a
vertex uB

2,3 of V B
2,3 is connected to u and a vertex vB

2,3 �=uB
2,3 of V B

2,3 is connected to v
(see Fig. 4.a and Fig. 4.b). Then, G′ has an acyclic 3-coloring if and only if G has an
acyclic 3-coloring.

Proof: Suppose that G has an acyclic 3-coloring. Color each vertex of G′ not in K2,3
as in G, the vertices in V B

2,3 with the color cz of z, and the vertices in V A
2,3 with the two

colors different from cz . Every cycle C′ in G′ either does not pass through vertices of
K2,3 (hence it is also a cycle in G and it is not bichromatic), or it is a subgraph of K2,3
(hence it is not bichromatic), or it passes through vertices of K2,3 and contains a path
P ′ from uB

2,3 to vB
2,3 whose vertices do not belong to K2,3 (except for uB

2,3 and vB
2,3).

However, P ′ is a cycle in G (where uB
2,3 and vB

2,3 are identified to be the same vertex
z), hence it is not bichromatic.

Suppose that G′ has an acyclic 3-coloring. In any acyclic coloring of K2,3, the ver-
tices in V B

2,3 have the same color cz . Color each vertex of G different from z as in G′

and color z with cz . Every cycle C in G either does not pass through z (hence it is also
a cycle in G′ and it is not bichromatic), or passes through z. In the latter case, if C is
bichromatic then each of its vertices has either the color of z or the one of u. However,
one vertex in V A

2,3, say xA
2,3, has the color of u, hence the cycle C′ of G′ obtained from

C by replacing (u, z, v) with (u, uB
2,3, x

A
2,3, v

B
2,3, v) is bichromatic, a contradiction. �

Lemma 2. Let G be a graph having a vertex z of degree 2 adjacent to two vertices u
and v. Let G′ be the graph obtained by substituting z with a copy of K1,1,2, where a
vertex uC

1,1,2 of V C
1,1,2 is connected to u and a vertex vC

1,1,2 �=uC
1,1,2 of V C

1,1,2 is connected

118 P. Angelini and F. Frati

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 4. (a) and (b) Replacement of a degree-2 vertex with a K2,3. (a) and (c) Replacement of a
degree-2 vertex with a K1,1,2. (d) G5. (e) G9. (f) G13. (g) G+

5 . (h) G+
9 . (i) G+

13.

to v (see Fig. 4.a and Fig. 4.c). Then, G′ has an acyclic 3-coloring if and only if G has
an acyclic 3-coloring.

Graph G5 (Fig. 4.d) has no acyclic 3-coloring and has a degree-2 vertex. For i > 0,
replace the degree-2 vertex of G4i+1 with a copy of K2,3, obtaining a graph G4i+5 that
has a degree-2 vertex and, by Lemma 1, is not acyclically 3-colorable. Figs. 4.e–f show
G9 and G13. Replacing the degree-2 vertex of G4i+1 with a copy of K1,1,2 yields a
graph G+

4i+1 that, by Lemma 2, is not acyclically 3-colorable. Figs. 4.g–i show G+
5 ,

G+
9 , G+

13. Graphs G+
4i+1 are cubic, for every i > 0.

4 Acyclic 3-Colorings of Planar Graph Subdivisions

In this section we prove the following theorem.

Theorem 3. Every planar graph has a 1-subdivision that admits an acyclic 3-coloring.

Proof: It suffices to prove the statement for maximal planar graphs. In fact, suppose that
the statement holds for maximal planar graphs. Let G be a planar graph. Augment G to
a maximal planar graph G′ by adding dummy edges. Then G′ has a 1-subdivision G′

s

that has an acyclic 3-coloring c. Remove the edges of G′
s corresponding to subdivided

dummy edges of G′, obtaining a planar graph Gs that is a subdivision of G. Since every
cycle of Gs is also a cycle of G′

s, c is an acyclic 3-coloring of Gs.
Consider a planar drawing of any maximal planar graph G. Let Gs be the planar

graph obtained by subdividing each edge of G with one subdivision vertex. Partition
the vertices of G into disjoint sets V 0, V 1, . . . , V k as follows. Let G0=G; while there
are vertices in Gi, denote by V i the main vertices incident to the outer face of Gi;
remove the vertices in V i and their incident edges from Gi obtaining a graph Gi+1.
Each edge of G is either incident to two vertices in the same set V i or to two vertices
in sets V i and V i+1, for some i ∈ {0, 1, . . . , k − 1}.

Color the main vertices in V i with color cj(i), where j(i) ∈ {0, 1, 2} and j(i) ≡
i mod 3. Color each subdivision vertex adjacent to a vertex in V i and to a vertex in
V i+1 with color cj(i+2). See Fig. 5.a. It remains to color each subdivision vertex adja-
cent to two vertices belonging to the same V i. Consider the outerplanar subgraph Oi

of G induced by the vertices in V i. Augment Oi to maximal by adding dummy edges.
See Fig. 5.b. Let Oi

s be the graph obtained by subdividing each edge of Oi with one
subdivision vertex. Each subdivision vertex of Gs adjacent to two vertices belonging
to the same V i, for some i ∈ {1, 2, . . . , k}, is also a subdivision vertex of Oi

s. Hence,
a coloring of the subdivision vertices of Oi

s determines a coloring of the subdivision

Acyclically 3-Colorable Planar Graphs 119

12

6

1

7
8

4
5

2

11
3

10

17

9

19

2018
13

14

15

16

12

9

5

4

7

6

10

11

6

7

4

5

9

12

11

10

11

12
10

7

4

5

9

6

(a) (b) (c) (d)

Fig. 5. (a) Coloring the main vertices and the subdivision vertices of Gs adjacent to a vertex in
V i and to a vertex in V i+1. Thick edges connect vertices of G in the same V i. (b) Subgraph O2

of G augmented to maximal. (c)–(d) Coloring O2
s at steps x and x + 1 of the algorithm. Not yet

colored subdivision vertices of O2
s are not shown.

vertices of Gs adjacent to two vertices in the same V i. We show how to color the subdi-
vision vertices of Oi

s. The algorithm already chose to color all the main vertices of Oi
s

with color cj(i). Since Oi is maximal, every internal face of Oi
s has three subdivision

vertices. The coloring algorithm consists of several steps. At the first step, consider any
internal face f∗ of Oi

s. Color two of its subdivision vertices with cj(i+1) and the third
one with cj(i+2). At the x-th step, with x ≥ 2, suppose that the subgraph Oi,x

s of Oi
s

induced by the colored subdivision vertices and by their neighbors is biconnected. See
Fig. 5.c. Consider any internal face of Oi

s of which one subdivision vertex has already
been colored. Color the other two subdivision vertices incident to the face, one with
cj(i+1) and the other one with cj(i+2). See Fig. 5.d.

We show that the resulting coloring of Gs is acyclic. Consider any simple cycle C.
If C contains main vertices in V i and V i+1, then C contains two edges (vp, vs) and
(vs, vq), where vp and vq are main vertices in V i and V i+1, respectively, and vs is
a subdivision vertex. However, vp, vq , and vs have color cj(i), cj(i+1), and cj(i+2),
respectively, hence C is not bichromatic. Otherwise, C only contains main vertices in
the same V i. Then, C is also a cycle of Oi

s. We show by induction that the described
coloring of Oi

s is acyclic. The coloring of f∗ is acyclic. Suppose that, after a certain
step of the coloring algorithm for the vertices of Oi

s, the subgraph Oi,x
s of Oi

s induced
by the colored subdivision vertices and by their neighbors is acyclic. When a new face
is considered and two subdivision vertices v1 and v2 are colored with colors cj(i+1) and
cj(i+2), respectively, every cycle either entirely belongs to Oi,x

s , hence by induction it
is not bichromatic, or passes through v1, v2, and their common neighbor, hence it is not
bichromatic. �

5 Acyclic 3-Colorings of Series-Parallel Graphs

In this section we consider the problem of determining which are the SP-graphs such
that every 3-coloring is acyclic. First, we show a simple algorithm to construct an
acyclic 3-coloring of any SP-graph. Let c(x) denote the color assigned to vertex x.

120 P. Angelini and F. Frati

Theorem 4. Every SP-graph G with poles u and v admits an acyclic 3-coloring such
that c(u)�=c(v) and every path connecting u and v, except for edge (u, v), contains a
vertex w with c(w)�=c(u), c(v).

Proof: We prove the statement by induction on the number n of vertices. Case n=2 is
trivial. If n > 2, distinguish two cases: (Case 1) G is a series composition of SP-graphs
G0, · · · , Gk, such that Gi has poles ui and vi, with u0=u, vi=ui+1, and vk=v; (Case 2)
G is a parallel composition of SP-graphs G0, · · · , Gk with poles u and v.

In Case 1, apply induction to construct an acyclic 3-coloring of Gi with colors c0,
c1, and c2 such that c(ui)=cj(i) and c(vi)=cj(i+1), for each i=0, 1, . . . , k − 1, where
j(i) ∈ {0, 1, 2} and j(i) ≡ i mod 3. Apply induction to construct an acyclic 3-
coloring of Gk with colors c0, c1, and c2 such that c(uk)=cj(k), and such that c(vk)=c1,
if c(uk)=c0 or c(uk)=c2, and c(vk)=c2, if c(uk)=c1. By construction, c(u0=u)=c0,
c(u1)=c1, c(u2)=c2. Every path connecting u and v passes through u0, u1, and u2,
hence it is not bichromatic. Further, any simple cycle in G is also a cycle in a compo-
nent Gi. Hence, by induction, the coloring of G is acyclic.

In Case 2, apply induction to construct an acyclic 3-coloring of Gi, for i=0, 1, · · · , k,
with colors c0, c1, and c2 such that c(u)=c0, c(v)=c1, and every path connecting u and
v in Gi, except for edge (u, v), contains a vertex w with c(w)=c2. By construction,
c(u)=c0 and c(v)=c1. Further, every path connecting u and v is also a path in a compo-
nent Gi which, by induction, contains a vertex with color c2, unless it is edge (u, v). Let
C be any simple cycle in G. If all the vertices of C belong to a graph Gi, then C is not
bichromatic by induction. Otherwise, C contains vertices u and v, hence it consists of
two paths P1 and P2 connecting u and v and belonging to two distinct components Gi

and Gj . At most one of P1 and P2, say P1, coincides with edge (u, v). By induction,
P2 contains a vertex of color c2. �
Second, we characterize the SP-graphs that have a 3-coloring in which the poles have
distinct colors and the SP-graphs that have a 3-coloring in which the poles have the
same color.

Corollary 1. Every SP-graph with poles u and v admits a 3-coloring with c(u)�=c(v).

Lemma 3. Every SP-graph G with poles u and v admits a 3-coloring with c(u)=c(v)
if and only if G does not contain edge (u, v).

Proof: The necessity is trivial. We inductively prove the sufficiency. Suppose that G is
a parallel composition of SP-graphs G0, G1, . . . , Gk and that G does not contain edge
(u, v). Then, no component Gi contains (u, v), hence it admits a 3-coloring in which
c(u)=c(v) by induction. Suppose that G is a series composition of graphs
G0, G1, . . . , Gk. Color G0 so that c(u)=c0 and the other pole of G0 has color c1. Such a
coloring exists by Corollary 1. For 1 ≤ i ≤ k− 1, assume that the color of the pole that
Gi shares with Gi−1 has been already determined to be either c1 or c2. Color the pole
that Gi shares with Gi+1 with color c2 or c1, respectively, and color Gi so that its poles
have colors c1 and c2 (such a coloring exists by Corollary 1). Complete the coloring of
G by setting c(v)=c0 and by coloring Gk so that its poles have colors c0 and either c1
or c2. Again, such a coloring exists by Corollary 1. �

Acyclically 3-Colorable Planar Graphs 121

Third, we characterize the SP-graphs that have a 3-coloring in which there exists a
bichromatic path between the poles.

Lemma 4. Let G be an SP-graph with poles u and v. Suppose that G is a parallel com-
position of SP-graphs G0, G1, . . . , Gk. Then, G admits a 3-coloring with c(u)�=c(v)
and with a bichromatic path between u and v if and only if there exists a component
that admits a 3-coloring with c(u)�=c(v) and with a bichromatic path between u and v.

Proof: The necessity comes from the observation that every bichromatic path between
u and v in G is internal to a component Gi. We prove the sufficiency. There exists a Gi

admitting a 3-coloring with c(u)�=c(v) and with a bichromatic path between u and v.
By Corollary 1, all other components can be colored with c(u)�=c(v), thus completing
a 3-coloring of G with the required properties. �

Lemma 5. Let G be an SP-graph with poles u and v. Suppose that G is a series com-
position of SP-graphs G0, G1, . . . , Gk. Then, G admits a 3-coloring with c(u)�=c(v)
and with a bichromatic path between u and v if and only if the following two condi-
tions are satisfied: (1) Each component admits a 3-coloring with a bichromatic path
between its poles and (2) there exists a component Gi with poles ui and vi that admits
a 3-coloring with c(ui)=c(vi) and with a bichromatic path between ui and vi, and a
3-coloring with c(ui)�=c(vi) and with a bichromatic path between ui and vi, or there
exists an odd number of components that admit a 3-coloring in which the poles have
different colors and are connected by a bichromatic path.

Proof: We prove the necessity of (1). Suppose that there exists a Gi that admits no
3-coloring with a bichromatic path between its poles. Every path connecting u and v
contains a path between Gi’s poles, hence it is not bichromatic. We prove the necessity
of (2). Suppose, for a contradiction, that (2) does not hold. Then, in every 3-coloring
of G with a bichromatic path between u and v, there is an even number of components
Gi such that c(ui)�=c(vi), hence c(u)=c(v). We prove the sufficiency. Suppose that
each component Gi admits a 3-coloring with a bichromatic path between its poles.
First, suppose that there exists a component Gi with poles ui and vi that admits a
3-coloring with c(ui)=c(vi) and with a bichromatic path between ui and vi, and a 3-
coloring with c(ui)�=c(vi) and with a bichromatic path between ui and vi. Set c(u0)=c0.
For 0 ≤ j ≤ i − 1, assume that c(uj) has already been determined to be either c0 or
c1; color Gj so that there exists a bichromatic path between uj and vj and so that c(vj)
is either c0 or c1. Analogously, set c(vk)=c1. For k ≥ j ≥ i + 1, assume that c(vj)
has been determined to be either c0 or c1; color Gj so that there exists a bichromatic
path between uj and vj and so that c(uj) is either c0 or c1. Color Gi so that there
exists a bichromatic path between ui and vi; this can be done both if c(ui)=c(vi) and if
c(ui)�=c(vi). Second, suppose that there exists an odd number of components that admit
a 3-coloring in which the poles have different colors and are connected by a bichromatic
path. Each component has either a 3-coloring with a bichromatic path between its poles
and the poles have the same color, or a 3-coloring with a bichromatic path between its
poles and the poles have distinct colors. Color each component with such a coloring, so
that its poles have colors in {c0, c1}. Since an odd number of components have poles
with different colors, c(u)�=c(v). �

122 P. Angelini and F. Frati

Lemma 6. Let G be an SP-graph with poles u and v. Suppose that G is a parallel com-
position of SP-graphs G0, G1, . . . , Gk. Then, G admits a 3-coloring with c(u)=c(v)
and with a bichromatic path between u and v if and only if G does not contain edge
(u, v) and there exists a component admitting a 3-coloring with c(u)=c(v) and with a
bichromatic path between u and v.

Lemma 7. Let G be an SP-graph with poles u and v. Suppose that G is a series compo-
sition of SP-graphs G0, G1, . . . , Gk. Then, G admits a 3-coloring with c(u)=c(v) and
with a bichromatic path between u and v if and only if the following two conditions are
satisfied: (1) Each component admits a 3-coloring with a bichromatic path between its
poles and (2) there exists a component Gi with poles ui and vi admitting a 3-coloring
with c(ui)=c(vi) and with a bichromatic path between ui and vi, and a 3-coloring with
c(ui)�=c(vi) and with a bichromatic path between ui and vi, or there exists an even
number of components admitting a 3-coloring in which the poles have different colors
and are connected by a bichromatic path.

Fourth, we characterize the SP-graphs such that every 3-coloring in which the poles
have distinct colors is acyclic and the SP-graphs such that every 3-coloring in which the
poles have the same color is acyclic.

Lemma 8. Let G be an SP-graph with poles u and v. Suppose that G is a parallel com-
position of SP-graphs G0, G1, . . . , Gk. Then, every 3-coloring of G with c(u)�=c(v) is
acyclic if and only if the following two conditions are satisfied: (1) For each compo-
nent Gi, every 3-coloring with c(u)�=c(v) is acyclic; (2) there exist no two components
admitting a 3-coloring with c(u)�=c(v) and with a bichromatic path between u and v.

Lemma 9. Let G be an SP-graph with poles u and v. Suppose that G is a series com-
position of SP-graphs G0, G1, . . . , Gk. Then, every 3-coloring of G with c(u)�=c(v) is
acyclic if and only if the following two conditions are satisfied: (1) For each compo-
nent Gi with poles ui and vi, every 3-coloring with c(ui)�=c(vi) is acyclic; (2) for each
component Gi with poles ui and vi, every 3-coloring with c(ui)=c(vi) is acyclic.

Lemma 10. Let G be an SP-graph with poles u and v. Suppose that G is a parallel
composition of SP-graphs G0, G1, . . . , Gk. Then, every 3-coloring of G with c(u)=c(v)
is acyclic if and only if one of the following two conditions is satisfied: (1) There exists
a component Gi not admitting any 3-coloring with c(ui)=c(vi); or (2) for each com-
ponent Gi, every 3-coloring with c(u)=c(v) is acyclic and no two components exist
admitting a 3-coloring with c(u)=c(v) and with a bichromatic path between u and v.

Lemma 11. Let G be an SP-graph with poles u and v. Suppose that G is a series com-
position of SP-graphs G0, G1, . . . , Gk. Then, every 3-coloring of G with c(u)=c(v) is
acyclic if and only if the following three conditions are satisfied: (1) For each com-
ponent Gi with poles ui and vi, every 3-coloring with c(ui)�=c(vi) is acyclic; (2) if
k > 2, for each component Gi with poles ui and vi, every 3-coloring with c(ui)=c(vi)
is acyclic; (3) if k=2, for each component Gi with poles ui and vi, every 3-coloring
with c(ui)=c(vi) is acyclic, or there exists a component not admitting any 3-coloring
in which c(ui)=c(vi).

Acyclically 3-Colorable Planar Graphs 123

Fig. 6. Triconnected cubic planar graphs with no acyclic 3-coloring

Finally, we conclude by observing that an SP-graph with poles u and v is such that
every 3-coloring is acyclic if and only if every 3-coloring in which c(u)�=c(v) is acyclic
and every 3-coloring in which c(u)=c(v) is acyclic. The above characterization gives
rise to a linear-time recognition algorithm.

Theorem 5. There exists a linear-time algorithm for deciding whether an SP-graph is
such that every 3-coloring is acyclic.

Proof: The SPQ-tree T of an SP-graph G can be computed in linear-time (see,
e.g., [17]). Then, each node μ of T with poles uμ and vμ can be equipped with val-
ues indicating whether: (i) G(μ) admits a 3-coloring with c(uμ)=c(vμ); (ii) G(μ) ad-
mits a 3-coloring with c(uμ)�=c(vμ) and with a bichromatic path between uμ and vμ,
G(μ) admits a 3-coloring with c(uμ)=c(vμ) and with a bichromatic path between uμ

and vμ, and G(μ) admits a 3-coloring with a bichromatic path between uμ and vμ; and
(iii) every 3-coloring of G(μ) in which c(uμ)�=c(vμ) is acyclic, every 3-coloring of
G(μ) in which c(uμ)=c(vμ) is acyclic, and every 3-coloring of G(μ) is acyclic. Due to
Lemmata 3–11, the computation of such values for μ only requires simple checks on
analogous values for the children of μ in T . �

6 Conclusions

In this paper we have shown several results on the acyclic 3-colorability of planar
graphs. We proved that recognizing acyclic 3-colorable planar graphs of degree 4 is
NP-hard. Further, we exhibited infinite classes of subcubic and cubic planar graphs
with no acyclic 3-coloring, result contrasting with the fact that all cubic planar graphs
have a 3-coloring, except for K4 [8]. However, the following problem is still open.

What is the time complexity of testing whether a sub-cubic graph (resp. a cubic
graph) admits an acyclic 3-coloring?

The problem is interesting even when restricted to triconnected cubic planar graphs.
Moreover, we are aware of only three graphs that are cubic, triconnected, and not acyclic
3-colorable (see Fig. 6). The graphs depicted in Figs. 6.a and 6.b were already known
to have no acyclic 3-coloring. On the other hand, the graph depicted in Fig. 6.c seems
to have gone unnoticed in the literature.

Does an infinite number of triconnected, cubic, and not acyclic 3-colorable planar
graphs exist? What is the time complexity of testing whether a triconnected cubic planar
graph admits an acyclic 3-coloring?

We have shown that it is possible to test in linear time whether every 3-coloring of
an SP-graph is acyclic. Testing and characterizing the same property for general planar
graphs seems to be interesting and non-trivial.

124 P. Angelini and F. Frati

Is it possible to test in polynomial time whether every 3-coloring of a given planar
graph is acyclic?

Finally, we would like to remind a problem that has been already studied in the
literature but that has not been tackled in this paper.

Which is the smallest k such that all planar graphs with girth at least k are acyclic
3-colorable?

The best known lower bound for k is 5 (the second graph of Fig. 6, proposed by
Grünbaum, has girth 4 and is not acyclic 3-colorable [10]), while the best known upper
bound for k is 7, as proved by Borodin, Kostochka, and Woodall [7].

References

1. Albertson, M.O., Berman, D.: Every planar graph has an acyclic 7-coloring. Israel J.
Math. 14, 390–408 (1973)

2. Alon, N., McDiarmid, C., Reed, B.A.: Acyclic coloring of graphs. Random Struct. Algo-
rithms 2(3), 277–288 (1991)

3. Angelini, P., Frati, F.: Acyclically 3-colorable planar graphs. Tech. Report RT-DIA-147-
2009, Dept. of Computer Science and Automation, University of Roma Tre. (2009),
http://web.dia.uniroma3.it/ricerca/rapporti/rt/2009-147.pdf

4. Appel, K., Haken, W.: Every planar map is 4-colorable. Part I. Discharging. Illinois J.
Math. 21(3), 429–490 (1977)

5. Appel, K., Haken, W., Koch, J.: Every planar map is 4-colorable. Part II. Reducibility. Illinois
J. Math. 21(3), 491–567 (1977)

6. Borodin, O.V.: On acyclic colourings of planar graphs. Discr. Math. 25, 211–236 (1979)
7. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: Acyclic colourings of planar graphs with

large girth. J. London Math. Soc. 60(2), 344–352 (1999)
8. Brooks, R.L.: On coloring the nodes of a network. Proc. Cambridge Philos. Soc. 37, 194–197

(1941)
9. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph prob-

lems. Theor. Comput. Sci. 1(3), 237–267 (1976)
10. Grünbaum, B.: Acyclic colorings of planar graphs. Israel J. Math. 14, 390–408 (1973)
11. Kostochka, A.V.: Acyclic 6-coloring of planar graphs. Metody Diskret. Anal. 28, 40–56

(1976)
12. Kostochka, A.V.: Upper Bounds of Chromatic Functions of Graphs. PhD thesis, University

of Novosibirsk, in Russian (1978)
13. Kostochka, A.V., Melnikov, L.S.: To the paper of B. Grünbaum on acyclic colorings. Discrete

Math. 14, 403–406 (1976)
14. Mitchem, J.: Every planar graph has an acyclic 8-coloring. Duke Math. J. 41, 177–181 (1974)
15. Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: Efficiently four-coloring planar

graphs. In: STOC, pp. 571–575 (1996)
16. Skulrattanakulchai, S.: Acyclic colorings of subcubic graphs. Inf. Proc. Lett. 92(4), 161–167

(2004)
17. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J.

Comput. 11(2), 298–313 (1982)
18. Wood, D.R.: Acyclic, star and oriented colourings of graph subdivisions. Discr. Math. Theor.

Comp. Sc. 7(1), 37–50 (2005)

http://web.dia.uniroma3.it/ricerca/rapporti/rt/2009-147.pdf

Reconstruction Algorithm for
Permutation Graphs

Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara

School of Information Science, JAIST, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
{mkiyomi,toshikis,uehara}@jaist.ac.jp

Abstract. PREIMAGE CONSTRUCTION problem by Kratsch and
Hemaspaandra naturally arose from the famous graph reconstruction
conjecture. It deals with the algorithmic aspects of the conjecture. We
present an O(n8) time algorithm for PREIMAGE CONSTRUCTION on
permutation graphs, where n is the number of graphs in the input. Since
each graph of the input has n − 1 vertices and O(n2) edges, the input
size is O(n3). There are polynomial time isomorphism algorithms for per-
mutation graphs. However the number of permutation graphs obtained
by adding a vertex to a permutation graph is generally exponentially
large. Thus exhaustive checking of these graphs does not achieve any
polynomial time algorithm. Therefore reducing the number of preimage
candidates is the key point.

Keywords: the graph reconstruction conjecture, permutation graphs,
polynomial time algorithm.

1 Introduction

The graph reconstruction conjecture proposed by Ulam and Kelly1 has been
studied by many researchers intensively. We call the multi-set {G − v | v ∈ V }
the deck of a graph G = (V, E), where G − v is a graph obtained from G by
removing v and incident edges. More precisely the graphs in a deck are vertex-
unlabeled. Otherwise the argument below has no mean. A graph G is a preimage
of a deck of a graph G′ if G and G′ has the same deck. We also say that a graph
G is a preimage of the n graphs when the deck of G exactly consists of them.
The graph reconstruction conjecture is that there is at most one preimage of
given n graphs (n ≥ 3). No one has given a positive nor a negative proof of
this conjecture, while small graphs are checked positively [15]. Kelly showed the
following lemma.

Lemma 1 (Kelley’s Lemma [11]). Let G be any preimage of the given deck,
and let H be a graph whose number of vertices is smaller than that of G. Then
we can uniquely determine the number of subgraphs in G isomorphic to H from
the deck.
1 Determining the first person who proposed the graph reconstruction conjecture is

difficult, actually. See [9] for the detail.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 125–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

126 M. Kiyomi, T. Saitoh, and R. Uehara

Greenwell and Hemminger extended this lemma to a more general form [8].
We can know the degree sequence of a preimage from these lemmas. Kelly also
showed that the conjecture is true on regular graphs, trees, and disconnected
graphs. Tutte proved that the dichromatic rank and Tutte polynomials are recon-
structible (i.e. looking at the deck, they are uniquely determined) [19]. Bollobás
showed that almost all graphs are reconstructible from three well-chosen graphs
in its deck [2]. About permutation graphs, Rimscha showed that permutation
graphs are recognizable in the sense that looking at the deck of G one can decide
whether or not G belongs to permutation graphs [20]. To be precise Rimscha
showed in the paper that comparability graphs are recognizable. Even’s result [6]
directly gives a proof in the case of permutation graphs. Rimscha also showed in
the same paper that many subclasses of perfect graphs including perfect graphs
themselves are recognizable, and some of subclasses are reconstructible. There
are a lot of papers about the conjecture, and many good surveys about this
conjecture. See for example [3,9].

There are several kinds of algorithmic problems related to the graph recon-
struction conjecture. We consider algorithmic problems proposed by Kratsch and
Hemaspaandra [13] described below.

– Given a graph G and a multi-set of graphs D, check whether D is the deck
of G (DECK CHECKING).

– Given a multi-set of graphs D, determine whether there is a graph whose
deck is D (LEGITIMATE DECK).

– Given a multi-set of graphs D, construct a graph whose deck is D (PREIM-
AGE CONSTRUCTION).

– Given a multi-set of graphs D, compute the number of (pairwise nonisomor-
phic) graphs whose decks are D (PREIMAGE COUNTING).

Kratsch and Hemaspaandra showed that these problems are solvable in poly-
nomial time for graphs of bounded degree, partial k-trees for any fixed k, and
graphs of bounded genus, in particular for planar graphs [13]. In the same paper
they proved many GI related complexity results. Hemaspaandra et al. extended
the results [10]. The authors presented a polynomial time PREIMAGE CON-
STRUCTION algorithm for interval graphs [12].

WepresentanO(n8) timealgorithmforPREIMAGECONSTRUCTIONonper-
mutationgraphs. It is easy to see thateverygraph in thedeckofapermutationgraph
is apermutationgraph.WeproposePREIMAGECONSTRUCTIONalgorithmfor
a deck consisting of permutation graphs. We state our main theorem below.

Theorem 1. There is an O(n8) time PREIMAGE CONSTRUCTION algo-
rithm for a deck D consisting of n permutation graphs.

2 Preliminaries

2.1 Notations

All the graphs in this paper are simple unless stated otherwise. We denote a
complement of graph G by G.

Reconstruction Algorithm for Permutation Graphs 127

x1

x2

xi

xn

y1

y2

yi

yn

Fig. 1. Graph H(2n)

1 2 3 4 5

2 5 1 4 3

L1

L2

Fig. 2. The permutation diagram of permutation (2, 5, 1, 4, 3)

Let G = (V, E) be a graph, and let V ′ ⊂ V is a vertex subset of G. We denote
by G[V ′] the graph induced by V ′ from G.

We denote by NG(v) the neighbor set of vertex v, and by NG[v] the closed
neighbor set of vertex v in graph G. “Closed” means that NG[v] contains v itself.
Vertices u and v are called strong twins if NG[u] is equal to NG[v], and weak
twins if NG(u) is equal to NG(v).

We denote by u(G) the graph obtained by adding one universal vertex to the
graph G such that the vertex connects to every vertex in G.

Let G = (V, E) be a graph. For a vertex v ∈ V , we denote by G− v the graph
obtained by removing v and its incident edges from G. Let S be a set, and s ∈ S.
We denote S \ {s} by S − s.

We define graph H(2n). H(2n) is a bipartite graph (X, Y, E) such that X =
{x1, . . . , xn}, Y = {y1, . . . , yn}, and {xi, yj} ∈ E iff i ≤ j. See Fig. 1.

Let π = (π1, . . . , πn) be a permutation of 1, . . . , n. A permutation diagram of
π is a set of n line segments l1, . . . , ln that connect two parallel lines L1, L2 on
Euclidean plane such that end-points of l1, . . . , ln appear in this order on L1,
and appear in the order of π1, . . . , πn on L2. A permutation diagram defines a
permutation. See Fig. 2. We denote by πV the permutation whose permutation
diagram is obtained by reversing that of π vertically, by πH the permutation
whose permutation diagram is obtained by reversing that of π horizontally, and
by πR the permutation whose permutation diagram is obtained by reversing that
of π both vertically and horizontally2.

2 πV = π−1 holds. If we write π = (πn, . . . , π1), πH = π−1
−1

, and πR = π−1 hold.

128 M. Kiyomi, T. Saitoh, and R. Uehara

2.2 Modular Decomposition

Modular decomposition is a strong tool for developing fast algorithms in many
areas. Here we summarize it. For the detail see for example [4,18].

Let G = (V, E) be a graph. The subset M ⊂ V is a module in G, if for all
vertices u, v ∈ M and w ∈ V \ M , {u, w} ∈ E if and only if {v, w} ∈ E. A
module M in G is trivial if M = V , M = ∅, or |M | = 1. G is called a prime
(with respect to modular decomposition) if G contains only trivial modules. A
module M is strong if it does not overlap any other modules in G, i.e.

M ∩ M ′ = ∅, M ⊂ M ′, or M ′ ⊂ M (for ∀M ′ : module in G)

holds. We call a module that contains at least two vertices a multi-vertex module.
A modular decomposition tree of a graph G is a tree whose each node corre-

sponds to each strong module of G such that for any two nodes N1 and N2 which
correspond to modules M1 and M2 respectively, N1 is an ancestor of N2 if and
only if M1 contains M2. We sometimes say that strong module M1 is a parent of
strong module M2, and M2 is a child of M1, if the node corresponding to M1 is
the parent of the node corresponding to M2 in the modular decomposition tree.

A strong multi-vertex module M in graph G whose child modules are discon-
nected to each other in G[M] is a parallel module. A strong multi-vertex module
M in graph G whose child modules are disconnect to each other in G[M] is a
series module. Let M ′ be a strong multi-vertex module. If M ′ is not a parallel
module, and M ′ is not a series module, then M ′ is called a prime module. A
graph induced by a prime module is connected in both G and G [18]. We say a
strong multi-vertex module M is minimal if every child of M is a module of one
vertex. Note that every graph of the size more than one has at least one minimal
strong multi-vertex module. We introduce a basic lemma.

Lemma 2 (Gallai [7]). A minimal strong multi-vertex module that is a prime
module induces a prime.

Let G = (V, E) be a prime. We say that G is critical if G − v is not a prime for
any v ∈ V . It is known that a critical graph G = (V, E) is isomorphic to H(|V |)
or to H(|V |) [16]. Hence the number of vertices in a critical graph is always even.

2.3 Permutation Graphs

Let π be a permutation of the numbers 1, 2, . . . , n. G(π) = (V, E) is a graph
satisfying that

– V = {1, . . . , n}, and
– {i, j} ∈ E ⇔ (i − j)(π−1

i − π−1
j) < 0.

A graph G is called a permutation graph if there exists a permutation π such that
G is isomorphic to G(π). Equivalently a graph G is a permutation graph if there
exists a permutation π such that G is an intersection model of the permutation
diagram of π.

Reconstruction Algorithm for Permutation Graphs 129

k

2k + 3

k + 1 k k 2k + 3 2k + 2

Fig. 3. Forbidden graphs of permutation graphs are these graphs, the complements of
them, and odd-holes (k ≥ 0)

A permutation graph is a comparability graph and is a co-comparability
graph [6]. Thus if a graph G is a permutation graph, G is also a permutation
graph.

For two permutation graphs G1 = (V1, E1) and G2 = (V2, E2) satisfying
|V1| = |V2| = n, there is an O(n2) time algorithm that determines if G1 and G2
are isomorphic [17].

It is known that a permutation graph G that is a prime with respect to mod-
ular decomposition has a unique representation [4,14]. Note that G(π), G(πV),
G(πH), and G(πR) are isomorphic. Thus the sentence “G has a unique represen-
tation” here means that there are at most four permutations whose representing
graphs are isomorphic to G.

Gallai characterized comparability graphs with the forbidden subgraphs [7].
Since permutation graphs are equivalent to comparability and co-comparability
graphs [6], the characterization of permutation graphs is easily obtained. A graph
G is a permutation graph if and only if G is (Ck+6, T2, X2, X3, X30, X31, X32, X33,
X34, X36, XF2k+3

1 , XFk+1
2 , XFk

3 , XFk
4 , XF2k+3

5 , XF2k+2
6 , co-Ck+6, co-T2, co-X2,

co-X3, co-X30, co-X31, co-X32, co-X33, co-X34, co-X36, co-XF2k+3
1 , co-XFk+1

2 ,
co-XFk

3 , co-XFk
4 , co-XF2k+3

5 , co-XF2k+2
6 , and odd-hole)-free. See Fig. 3.

3 Polynomial Time Reconstruction Algorithm

Our algorithm outputs preimages that are permutation graphs. However it is
possible that a non-permutation graph has a deck that consists of permutation
graphs, though it is exceptional. Since considering this case all the time in the

130 M. Kiyomi, T. Saitoh, and R. Uehara

main algorithm makes it complex, we attempt to get done with this special case
in subsection 3.1.

Then we present a DECK CHECKING algorithm for permutation graphs.
Since an O(n2) time isomorphism algorithm for permutation graphs [17] is
known, developing a polynomial time DECK CHECKING algorithm for per-
mutation graphs is not very difficult.

Next we present our main algorithm. Our main algorithm has two parts.
One is for a preimage G that has a minimal strong multi-vertex module M
such that G[M] is not critical, and the other part is for otherwise. In both the
parts, we construct polynomially many candidates of a preimage, and use DECK
CHECKING algorithm to check whether each candidate is a preimage. Since we
of course do not know the properties of a preimage when we are given a input
deck, we execute both these two parts for the input deck.

3.1 Non-permutation Graph Preimage Case

Let D be a deck consisting of n graphs G1, G2, . . . , Gn. It is clear that G1, G2, . . . ,
Gn have the same number of vertices n − 1, and that the number of vertices in
a preimage G is n. Since the number of the forbidden graphs of the size n is
O(1), we can check if one of them is a preimage of the input graphs in the
polynomial time with DECK CHECKING algorithm which we will describe in
the next subsection. The time complexity is O(n4), since the time complexity of
the DECK CHECKING algorithm is O(n4).

Theorem 2. If n permutation graphs G1, G2, . . . , Gn have a preimage G that
is not a permutation graph, we can reconstruct G from G1, G2, . . . , Gn in O(n4)
time.

3.2 DECK CHECKING

Given a deck D that consists of permutation graphs, and given a preimage
candidate G = (V, E) whose deck consists of permutation graphs, we first prepare
the deck D̂ of G in O(|V |(|V | + |E|)) time. We then add a universal vertex to
every graph in D and D̂ in order to make each graph connected. Note that for
any permutation graph G, u(G) is also a permutation graph. Since the disjoint
union of permutation graphs is clearly a permutation graph, we can check if
D and D̂ are isomorphic in O((|V |(|V | + 1))2)=O(|V |4) time by applying the
isomorphism algorithm for permutation graphs to the disjoint union of graphs
in D and the disjoint union of graphs in D̂. Now we obtain the theorem below.

Theorem 3. There is O(|V |4) time DECK CHECKING algorithm for a deck
that consists of permutation graphs, and a preimage candidate G = (V, E) whose
deck consists of permutation graphs.

Reconstruction Algorithm for Permutation Graphs 131

3.3 Non-critical Case

First we consider the case that a preimage G = (V, E) has a minimal strong
multi-vertex module M such that |M | ≥ 3, and G[M] is not critical. If M is
a prime module, since G[M] is a prime due to Lemma 2, G[M] has a vertex v
such that G[M] − v is a prime, and hence M − v is a minimal strong multi-
vertex module of G[M]− v. If M is not a prime module, due to the definition of
modular decomposition, G[M] is a complete graph, or G[M] consists of isolated
vertices. And thus G[M] also has a vertex v such that M −v is a minimal strong
multi-vertex module of G[M] − v.

We search for a preimage by adding a vertex v to every minimal strong multi-
vertex module M ′ of every graph in the deck to check if M ′ is the desired M −v.
For every candidate, we use the DECK CHECKING algorithm to check if it is
a preimage.

If we can specify NG(v), we can construct a candidate of G. We can easily
specify NG(v) \M ′, since M ′ ∪{v} should be a module in G, i.e. every vertex in
M ′ and v should seem the same from the vertices in V \M ′. Thus the remaining
task is to specify NG(v) ∩ M ′.

Due to the definition of a modular decomposition, M ′ is one of a clique,
a collection of isolated vertices, and a module that induces a prime. It is not
difficult to construct the candidate of G if M ′ is a clique, or M ′ consists of isolated
vertices, since we know the degree sequence of G,3 that is, we know the degree
degG(v) of v in G. To be concrete, we have to connect v to degG(v)−|NG(v)\M ′|
vertices in M ′.

Next we consider the case that G[M ′] is a prime. A permutation graph that is a
prime with respect to modular decomposition has a unique representation [4,14].
Thus there are only O(n2) ways of connection of v and vertices in M ′. Note that
the number of permutation diagrams obtained by adding a line segment to a
permutation diagram is clearly O(n2), since there are O(n) choices for the end-
point on L1, and there are O(n) choices for the end-point on L2. Therefore
by checking each of O(n2) candidates whether it is a preimage with the DECK
CHECKING algorithm, we have a polynomial time algorithm. We show in Fig. 4
the whole algorithm for the case that a preimage has a module that does not
induce a critical graph.

We now mention the time complexity of the algorithm in Fig. 4. There are
n graphs in the deck. Each graph in the deck has O(n) minimal strong multi-
vertex modules. We can compute these modules in O(n + m) time [5]. The time
complexity of DECK CHECKING is O(n4). We can compute a permutation
diagram of a permutation graph in O(n+m) time. Therefore the time complexity
of the algorithm is O(n·n((n+m)+n2 ·n4)) = O(n8). Hence we have the theorem
below.

Theorem 4. If a preimage G = (V, E) that is a permutation graph has a mini-
mal strong multi-vertex module M such that |M | ≥ 3, and G[M] is not critical,
we can reconstruct G in O(n8) time.
3 Kelly’s lemma directly gives the degree sequence of a preimage. See [11].

132 M. Kiyomi, T. Saitoh, and R. Uehara

for each graph G′ in the deck {
for each minimal strong multi-vertex module M ′ of G′ {

prepare a isolated vertex v;
connect v to vertices in V \ M ′ suitably;
if M ′ is a clique, or M ′ are isolated vertices {

connect v to degG(v) − |NG(v) \ M ′| vertices in M ′;
do DECK CHECKING;

} else {
create a unique permutation diagram of G[M ′];
for each way of adding v

do DECK CHECKING;
}

}
}

Fig. 4. The algorithm for the case that a preimage has a module that does not induce
a critical graph

3.4 Critical Case

Lastly we consider the case that for every minimal strong multi-vertex module M
of a preimage G = (V, E), G[M] is critical, or every minimal strong multi-vertex
module has the size two.

Assume that all the minimal strong multi-vertex modules of G have the size
two. Since a module of the size two makes twins, the reconstruction of G is easy
in this case. Any graph G′ in the deck is obtained by removing a vertex that
is one of twins from G. Thus G can be reconstructed by copying a vertex in
G′. We make weak and strong twins of each vertex of every graph in the deck,
and check whether the obtained graph is a preimage by the DECK CHECKING
algorithm. This achieve a polynomial time algorithm.

Now we consider the case that some of minimal strong multi-vertex modules
in G have the size more than two. Let M be a minimal strong multi-vertex
module of G whose size is more than two. Then since G[M] is a critical graph,
G[M] is isomorphic to H(|M |) or H(|M |). x1 and x2 are almost twins in both
the H(|M |) and H(|M |). In fact NH(|M|)(x1) and NH(|M|)(x2) differ only in
y1, and NH(|M|)[x1] and NH(|M|)[x2] also differ only in y1. We denote by v1

and v2 the vertices in M corresponding to x1 and x2 such that |NG[M](v1)| =
|NG[M](v2)| + 1, or |NG[M][v1]| = |NG[M][v2]| + 1 holds. Since M is a module of
G, NG(v1) contains exactly one vertex in addition to the vertices in NG(v2), or
NG[v1] contains exactly one vertex in addition to the vertices in NG[v2].

Now we consider G− v2. G− v2 must be in the deck. Thus we check for every
graph G′ in the deck if it is G − v2. If G′ is G − v2, we can reconstruct G from
G′ by copying a vertex in G′ and removing an edge. We show the algorithm in
Fig. 5.

Reconstruction Algorithm for Permutation Graphs 133

for each graph G′ in the deck {
for each vertex v of G′ {

make weak twin v′ of vertex v;
do DECK CHECKING;
for each edge e of NG(v′) {

remove e;
do DECK CHECKING;
add e;

}
remove v′;
make strong twin v′ of vertex v;
do DECK CHECKING;
for each edge e of NG(v′) {

remove e;
do DECK CHECHEN;
add e;

}
remove v′;

}
}

Fig. 5. The algorithm for the case that a preimage has a module that induces a critical
graph

We mention the time complexity. There are O(n) graphs in the deck. The
number of vertices in each graph is O(n). We have to remove O(n) edges in each
iteration. The time complexity of DECK CHECKING is O(n4). Thus the total
time complexity of the algorithm is O(n · n · n · n4) = O(n7). Thus we have the
theorem below.

Theorem 5. If every minimal strong multi-vertex module of a graph G induces
a critical graph, or if every minimal strong multi-vertex module of a graph G has
the size two, we can reconstruct G in O(n7) time.

Combining Theorem 2,4, and 5, we have the Theorem 1.

4 Concluding Remarks

Since we can use PREIMAGE CONSTRUCTION algorithms for LEGITIMATE
DECK and PREIMAGE COUNTING, we also have the LEGITIMATE DECK
and PREIMAGE COUNTING algorithms running in the same time complex-
ity for permutation graphs. These results do not help directly the proofs of the
graph reconstruction conjecture on permutation graphs. The conjecture on per-
mutation graphs still remains to be open.

134 M. Kiyomi, T. Saitoh, and R. Uehara

We presented a polynomial time algorithm for PREIMAGE CONSTRUC-
TION on permutation graphs. PREIMAGE CONSTRUCTION on interval
graphs is solvable in polynomial time [12]. Kratsch and Hemaspaandra showed
that PREIMAGE CONSTRUCTION on graph class C is GI-hard if the graph
isomorphism is GI-hard on C [13]. Remaining famous graph classes that we can
find in [4] on which graph isomorphism are not GI-hard contain circular-arc
graphs and distance-hereditary graphs (of course there are other non-GI-hard
classes such as threshold graphs. However we mention here higher classes in the
hierarchy of the inclusion relation). It is known that for a distance-hereditary
graph G, there is a distance-hereditary graph obtained by removing a degree
one vertex from G, or there is a distance-hereditary graph obtained by remov-
ing one of twins from G in the deck of G [1]. Hence we can easily develop
a polynomial time algorithm for PREIMAGE CONSTRUCTION on distance-
hereditary graphs (just add a degree one vertex to every vertex in the deck, and
check the resulting graph is a preimage. And, copy every vertex in the deck,
and check the resulting graph is a preimage). PREIMAGE CONSTRUCTION
on circular-arc graphs may be a challenging problem. Ma and Spinrad showed
that a circle graph G has a unique representation if G is a prime with respect
to split decomposition [14]. Split decomposition is a generalization of modular
decomposition. Therefore it may be possible that PREIMAGE CONSTRUC-
TION on circle graphs is solvable in polynomial time in a similar way described
in this paper. Circle graphs contain permutation graphs and distance-hereditary
graphs.

References

1. Bandelt, H., Mulder, H.M.: Distance-hereditary graphs. Journal of Combinatorial
Theory, Series B 41, 182–208 (1986)

2. Bollobás, B.: Almost every graph has reconstruction number three. Journal of
Graph Theory 14, 1–4 (1990)

3. Bondy, J.A.: A graph reconstructor’s manual. In: Surveys in Combinatorics. Lon-
don Mathematical Society Lecture Note Series, vol. 166, pp. 221–252 (1991)

4. Brandstädt, A., Spinrad, J.P.: Graph classes: a survey. SIAM, Philadelphia (1999)
5. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for

sequential modular decomposition. Journal of Algorithms 41, 360–387 (2001)
6. Even, S.: Algorithmic Combinatorics. Macmillan, New York (1973)
7. Gallai, T.: Transitiv orientierbare graphen. Acta Mathematica Hungarica 18, 25–66

(1967)
8. Greenwell, D.L., Hemminger, R.L.: Reconstructing the n-connected components of

a graph. Aequationes Mathematicae 9, 19–22 (1973)
9. Harary, F.: A survey of the reconstruction conjecture. In: Graphs and Combina-

torics. Lecture Notes in Mathematics, vol. 406, pp. 18–28. Springer, Heidelberg
(1974)

10. Hemaspaandra, E., Hemaspaandra, L., Radziszowski, S., Tripathi, R.: Complexity
results in graph reconstruction. Discrete Applied Mathematics 152, 103–118 (2007)

11. Kelly, P.J.: A congruence theorem for trees. Pacific Journal of Mathematics 7,
961–968 (1957)

Reconstruction Algorithm for Permutation Graphs 135

12. Kiyomi, M., Saitoh, T., Uehara, R.: Reconstruction of interval graphs. In: Ngo,
H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 106–115. Springer, Heidelberg
(2009)

13. Kratsch, D., Hemaspaandra, L.A.: On the complexity of graph reconstruction.
Mathematical Systems Theory 27, 257–273 (1994)

14. Ma, T.H., Spinrad, J.P.: An O(n2) algorithm for undirected split decomposition.
Journal on Algorithms 16, 145–160 (1994)

15. McKay, B.D.: Small graphs are reconstructible. Australasian Journal of Combina-
torics 15, 123–126 (1997)

16. Schmerl, J.H., Trotter, W.T.: Critically indecomposable partially ordered sets,
graphs, tournaments and other binary relational structures. Discrete Mathemat-
ics 113, 191–205 (1993)

17. Spinrad, J., Valdes, J.: Recognition and isomorphism of two-dimensional partial
orders. In: Dı́az, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 676–686. Springer,
Heidelberg (1983)

18. Spinrad, J.P.: Efficient Graph Representations. AMS (2003)
19. Tutte, W.T.: On dichromatic polynomials. Journal of Combinatorial Theory 2,

310–320 (1967)
20. von Rimscha, M.: Reconstructibility and perfect graphs. Discrete Mathematics 47,

283–291 (1983)

Harmonious Coloring on Subclasses of
Colinear Graphs�

Kyriaki Ioannidou and Stavros D. Nikolopoulos

Department of Computer Science, University of Ioannina
GR-45110 Ioannina, Greece

{kioannid,stavros}@cs.uoi.gr

Abstract. Given a simple graph G, a harmonious coloring of G is a
proper vertex coloring such that each pair of colors appears together on
at most one edge. The harmonious chromatic number is the least integer
k for which G admits a harmonious coloring with k colors. Extending
previous NP-completeness results of the harmonious coloring problem on
subclasses of chordal and co-chordal graphs, we prove that the problem
remains NP-complete for split undirected path graphs; we also prove that
the problem is NP-complete for colinear graphs by showing that split
undirected path graphs form a subclass of colinear graphs. Moreover, we
provide a polynomial solution for the harmonious coloring problem for
the class of split strongly chordal graphs, the interest of which lies on
the fact that the problem has been proved to be NP-complete on both
split and strongly chordal graphs.

Keywords: Harmonious coloring, colinear coloring, colinear graphs, split
graphs, undirected path graphs, strongly chordal graphs, complexity.

1 Introduction

A harmonious coloring of a simple graph G is a proper vertex coloring such that
each pair of colors appears together on at most one edge, while the harmonious
chromatic number h(G) is the least integer k for which G admits a harmonious
coloring with k colors [5].

Several NP-complete problems on arbitrary graphs admit polynomial solu-
tions when restricted to the classes of strongly chordal graphs and undirected
path graphs and, thus, interval graphs (see e.g. [12,18]). However, the harmo-
nious coloring problem, which is NP-hard on arbitrary graphs [22], remains NP-
complete even when restricted to graphs that are simultaneously interval and
cographs [3]. More specifically, Bodlaender [3] provides a proof that establishes
the NP-completeness of the harmonious coloring problem for disconnected inter-
val graphs and cographs. Recently, we extended Bodlaender’s results by showing
that the problem remains NP-complete for connected interval graphs [1]. Note
that the problem of determining the harmonious chromatic number of connected
� This research is co-financed by E.U.-European Social Fund (80%) and the Greek

Ministry of Development-GSRT (20%).

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 136–148, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Harmonious Coloring on Subclasses of Colinear Graphs 137

cographs is trivial, since in such a graph each vertex must receive a distinct
color as it is at distance at most 2 from all other vertices [5]. Therefore, the
harmonious coloring problem has been proved to be NP-complete on the class
of interval graphs and, thus, on the classes of strongly chordal and undirected
path graphs.

Additionally, the NP-completeness of the problem has been also proved for the
classes of split graphs [1], trees and disconnected bipartite permutation graphs
[9,10], connected bipartite permutation graphs [2], and disconnected quasi-
threshold graphs [2]. Since the problem of determining the harmonious chromatic
number of a connected cograph is trivial, the harmonious coloring problem is poly-
nomially solvable on connected quasi-threshold graphs and threshold graphs.

In this paper we study the complexity status of the harmonious coloring prob-
lem on two subclasses of colinear graphs [17,16]. We first show that the harmo-
nious coloring problem is NP-complete on split undirected path graphs and,
then, we show that the class of split undirected path graphs forms a subclass of
colinear graphs; thus, we obtain the NP-completeness of the harmonious coloring
problem on colinear graphs as well. Moreover, we provide a polynomial solution
for the harmonious coloring problem on split strongly chordal graphs, the in-
terest of which lies on the fact that the problem is NP-complete on both split
graphs and strongly chordal graphs [1,3]. However, the complexity status of the
problem for the class of connected linear graphs still remains an open question;
note that the harmonious coloring problem is NP-complete on disconnected lin-
ear graphs, since it is NP-complete on disconnected quasi-threshold graphs [2]
and quasi-threshold graphs form a subclass of linear graphs [17,16].

2 Background Results

In this section we provide some basic graph theory definitions and give some
background results on colinear coloring, colinear graphs, and linear graphs. For
basic definitions in graph theory refer to [4,15], and for more details on colinear
coloring, colinear and linear graphs refer to [17,16].

2.1 Preliminaries

Let G be a finite undirected graph with no loops or multiple edges. We denote
by V (G) and E(G) the vertex set and edge set of G. An edge is a pair of distinct
vertices x, y ∈ V (G), and is denoted by xy if G is an undirected graph and by−→xy if G is a directed graph. For a set A ⊆ V (G) of vertices of the graph G,
the subgraph of G induced by A is denoted by GA or G[A]. Additionally, the
cardinality of a set A is denoted by |A|. The set N(v) = {u ∈ V (G) : uv ∈ E(G)}
is called the open neighborhood of the vertex v ∈ V (G) in G, sometimes denoted
by NG(v) for clarity reasons. The set N [v] = N(v) ∪ {v} is called the closed
neighborhood of the vertex v ∈ V (G) in G. Also, by G we denote the complement
graph of a graph G.

The greatest integer r for which a graph G contains an independent set of size
r is called the independence number or otherwise the stability number of G and is

138 K. Ioannidou and S.D. Nikolopoulos

denoted by α(G). The cardinality of the vertex set of the maximum clique in G
is called the clique number of G and is denoted by ω(G). A proper vertex coloring
of a graph G is a coloring of its vertices such that no two adjacent vertices are
assigned the same color. The chromatic number χ(G) of G is the least integer
k for which G admits a proper vertex coloring with k colors. For the numbers
ω(G) and χ(G) of an arbitrary graph G the inequality ω(G) ≤ χ(G) holds. In
particular, G is a perfect graph if the equality ω(GA) = χ(GA) holds ∀A ⊆ V (G).

Next, definitions of some graph classes mentioned throughout the paper follow.
A graph is called a chordal graph if it does not contain an induced subgraph
isomorphic to a chordless cycle of four or more vertices. A graph is called a
co-chordal graph if it is the complement of a chordal graph [15]. A hole is a
chordless cycle Cn if n ≥ 5; the complement of a hole is an antihole. Threshold
graphs are defined as those graphs where stable subsets of their vertex sets
can be distinguished by using a single linear inequality. Threshold graphs were
introduced by Chvátal and Hammer [7] and characterized as (2K2, P4, C4)-free.
Quasi-threshold graphs are characterized as the (P4, C4)-free graphs and are also
known in the literature as trivially perfect graphs [15].

A graph G is a split graph if there is a partition of the vertex set V (G) = K+I,
where K induces a clique in G and I induces an independent set. Split graphs
are characterized as (2K2, C4, C5)-free [15]. A chordal graph is an undirected
path graph if it is the vertex intersection graph of undirected paths in a tree
[14,20,21]. A graph is strongly chordal if it admits a strong elimination ordering.
Strongly chordal graphs were introduced by Farber in [11] and are character-
ized completely as those chordal graphs which contain no k-sun as an induced
subgraph (for the definition of a k-sun see Section 4).

2.2 Colinear Coloring and Colinear Graphs

Motivated by the definition of linear coloring on simplicial complexes associated
to graphs, first introduced in the context of algebraic topology [8], we recently
introduced the colinear coloring on graphs [17].

Definition 1. Let G be a graph and let v ∈ V (G). The clique set of a vertex v
is the set of all maximal cliques of G containing v and is denoted by CG(v).

Definition 2. Let G be a graph and let k be an integer. A surjective map κ :
V (G)→ {1, 2, . . . , k} is called a k-colinear coloring of G if the collection {CG(v) :
κ(v) = i} is linearly ordered by inclusion for all i ∈ {1, 2, . . . , k}. Equivalently,
for two vertices v, u ∈ V (G), if κ(v) = κ(u) then either CG(v) ⊆ CG(u) or
CG(v) ⊇ CG(u). The least integer k for which G is k-colinear colorable is called
the colinear chromatic number of G and is denoted by λ(G).

The interest to provide boundaries for the chromatic number χ(G) of an ar-
bitrary graph G through the study of different simplicial complexes associated
to G, which is found in algebraic topology bibliography, drove the motivation
for studying the relation between the chromatic number χ(G) and the colinear
chromatic number λ(G). In Figure 1 we depict a colinear coloring of the well

Harmonious Coloring on Subclasses of Colinear Graphs 139

1 2 1 2

1 2 4 3
1 1 2 2

2K2 C4 P4

λ(2K2) = 2 = χ(2K2) = χ(C4) λ(C4) = 4
= 2 = χ(C4) = χ(2K2) λ(P4) = 2 = χ(P4) = χ(P4)

Fig. 1. Illustrating a colinear coloring of the graphs 2K2, C4 and P4 with the least
possible colors

known graphs 2K2, C4 and P4, using the least possible colors, and show the
relation between the chromatic number χ(G) of each graph G ∈ {2K2, C4, P4}
and the colinear chromatic number λ(G).

In [17] we presented a polynomial time algorithm for colinear coloring which
can be applied to any graph G and, also, we proved the following results.

Proposition 1. ([17]) For any graph G, λ(G) ≥ χ(G).

Proposition 2. ([17]) Let G be a graph. A coloring κ : V (G)→ {1, 2, . . . , k} of
G is a k-colinear coloring of G if and only if either NG[u] ⊆ NG[v] or NG[u] ⊇
NG[v] holds in G, for every u, v ∈ V (G) with κ(u) = κ(v).

Motivated by these results and the Perfect Graph Theorem [15], we studied those
graphs for which the equality χ(G) = λ(G) holds for every induced subgraph
and characterized known graph classes in terms of the χ-colinear and the α-
colinear properties [17]. Moreover, it was interesting to study those graphs which
are characterized completely by the χ-colinear or the α-colinear property. The
outcome of this study was to conclude that these graphs form two new classes
of perfect graphs, which we call colinear and linear graphs, respectively [16].

Definition 3. A graph G is called colinear if and only if χ(GA) = λ(GA), ∀A ⊆
V (G). A graph G is called linear if and only if α(GA) = λ(GA), ∀A ⊆ V (G).

We also showed inclusion relations between the classes of colinear and linear
graphs and other subclasses of co-chordal and chordal graphs [16]. More specifi-
cally, the class of colinear graphs is a subclass of co-chordal graphs, a superclass
of threshold graphs, and is distinguished from the class of split graphs. Addi-
tionally, linear graphs form a subclass of chordal graphs and a superclass of
quasi-threshold graphs. We also proved that any P6-free strongly chordal graph
is a linear graph.

The inclusion relations among the classes of colinear graphs, linear graphs,
and other subclasses of co-chordal and chordal graphs are depicted in Figure 2.
Note that since any P6-free strongly chordal graph is a linear graph, it follows
that split strongly chordal graphs form a subclass of linear graphs. Then, we can
easily obtain that any split strongly chordal graph is a colinear graph, since if a
graph G is strongly chordal then G is also a strongly chordal graph.

140 K. Ioannidou and S.D. Nikolopoulos

���������� 	
 ������� 	

������� 	
 ����� 	
 �������� ���� 	
 �������� ������� 	
 ����� �

����� ��������
����

	
 ����� ��������
�������

 ��������������
� 	

��������

Fig. 2. Illustrating the complexity status of the harmonious coloring problem, and the
inclusion relations, for the classes of colinear graphs, linear graphs, and other subclasses
of co-chordal and chordal graphs

3 Harmonious Coloring on Colinear Graphs

The formulation of the harmonious coloring problem in [5] is equivalent to the
following formulation.

Harmonious Coloring Problem
Instance: Graph G, positive integer K ≤ |V (G)|.
Question: Is there a positive integer k ≤ K and a proper coloring using k colors
such that each pair of colors appears together on at most one edge?

In this section we show that the harmonious coloring problem remains NP-
complete when restricted to the class of colinear graphs, which is a subclass
of co-chordal graphs and a superclass of threshold graphs. The problem is NP-
complete on co-chordal graphs, since it is NP-complete on split graphs [1], and
it has a polynomial solution on threshold graphs. Therefore, it is interesting to
study the complexity of the problem on colinear graphs.

We first show that the problem remains NP-complete even when restricted to
graphs which are simultaneously split graphs and undirected path graphs. Then,
we show that every split undirected path graph is a colinear graph, thus, proving
that the problem is NP-complete on colinear graphs.

The following characterization of undirected path graphs will be used for
obtaining our results. Note that, C denotes the set of all maximal cliques of a
graph G; recall that, C(v) denotes the set of all maximal cliques containing v.

Theorem 1. ([14,20]) A graph G is an undirected path graph if and only if there
exists a tree T whose set of vertices is C, so that for every vertex v ∈ V (G), the
subgraph T [C(v)] of T induced by the vertex set C(v), is a path in T . Such a tree
will be called characteristic tree of G.

Harmonious Coloring on Subclasses of Colinear Graphs 141

We next show that the harmonious coloring problem is NP-complete for split
undirected path graphs by exhibiting a reduction from the chromatic number
problem for general graphs, which is known to be NP-complete [13].

Let G be an arbitrary graph with n vertices v1, v2, . . . , vn and m edges e1, e2,
. . . , em. We construct in polynomial time a split graph Ĝ, where V (Ĝ) = K +
I, as follows: the independent set I consists of n vertices v̂1, v̂2, . . . , v̂n which
correspond to the vertices v1, v2, . . . , vn of the graph G and the clique K consists
of m vertices û1, û2, . . . , ûm which correspond to the edges e1, e2, . . . , em of G.
A vertex ût ∈ K, 1 ≤ t ≤ m, is connected to two vertices v̂i, v̂j ∈ I, 1 ≤ i, j ≤ n,
if and only if the corresponding vertices vi and vj are adjacent in G. Note
that, every ûi ∈ K sees all the vertices of the clique K and two vertices of the
independent set I; thus, |E(Ĝ)| = m(m−1)

2 + 2m.
Moreover, we claim that the constructed split graph Ĝ is also an undirected

path graph. Indeed, we prove this by showing that the graph Ĝ has a charac-
teristic tree. Let C be the set of all maximal cliques of Ĝ. Note that K is a
maximal clique for Ĝ, thus, we have |C| = |I|+1. Every vertex v̂i ∈ I belongs to
exactly one maximal clique, i.e., |C(v̂i)| = 1. Additionally, every vertex ûi ∈ K
belongs to exactly three maximal cliques, one of which is maximal clique K, i.e.,
|C(ûi)| = |N [ûi]| − |K|+ 1 = 3.

Consider now a tree T with vertex set C, such that the maximal clique K is
connected by an edge to every maximal clique C(v̂i) for every v̂i ∈ I, i.e., T is a
star. We now show that T is a characteristic tree for Ĝ. Indeed, for every vertex
v̂i ∈ I, the subgraph T [C(v̂i)] induced by C(v̂i) is a path on one vertex, and
also for every vertex ûi ∈ K, the subgraph T [C(ûi)] is a path on three vertices.
Therefore, the constructed graph Ĝ has a characteristic tree and, thus, from
Theorem 1 it follows that Ĝ is a split undirected path graph.

We claim that the graph G has a chromatic number χ(G) if and only if the split
undirected path graph Ĝ has a harmonious chromatic number h(Ĝ) = χ(G)+m.
Note that the same arguments are used in [1] for proving the NP-completeness
of the problem for split graphs.

Let ci ∈ {1, . . . , χ(G)} be the color assigned to the vertex vi ∈ G, 1 ≤ i ≤ n,
in a minimum coloring of G. We assign the color ci to the vertex v̂i of the set I
and a distinct color from the set {χ(G)+ 1, . . . , χ(G)+ m} to each vertex of the
clique K. Since two adjacent vertices of G receive a different color, the neighbors
of each ûi ∈ K belonging to the independent set have distinct colors. Moreover,
every vertex v̂i ∈ I sees |NG(vi)| vertices of the clique K, where NG(vi) is the
neighborhood of the vertex vi in G. Thus, every pair of colors appears in at most
one edge. In addition, the number of colors assigned to the set I is equal to χ(G)
and the number of colors assigned to the clique is equal to m. This results to a
harmonious coloring of Ĝ using χ(G) + m colors, which is minimum since the
vertices of the set I cannot receive a color assigned to a vertex of the clique K.

Conversely, a harmonious coloring of Ĝ using h(Ĝ) = χ(G)+m colors assigns
m colors to the vertices of the clique K and χ(G) colors to the vertices of the set
I. Note that, χ(G) is the minimum number of colors so that vertices v̂i, v̂j having

142 K. Ioannidou and S.D. Nikolopoulos

a neighbor in common are assigned different colors. Since vi, vj are adjacent in
G, it follows that we have a minimum coloring of G using χ(G) colors.

Thus, we have proved the following result.

Theorem 2. The harmonious coloring problem is NP-complete for split undi-
rected path graphs.

Next, we show the following result.

Theorem 3. Any split undirected path graph is a colinear graph.

Proof. Let G be a split undirected path graph. Assume that G is not a colinear
graph. Then, from Definition 3 there exists an induced subgraph GA of G such
that λ(GA)
= χ(GA); thus, due to Proposition 1, λ(GA) > χ(GA).

From Theorem 1, we obtain that split undirected path graphs are hereditary,
that is, every induced subgraph GA of G is a split undirected path graph. Let
V (GA) = K + I be a partition of the vertex set of GA into a maximal clique
K and an independent set I. Also, from Theorem 1 we have that GA has a
characteristic tree T with vertex set C, where C is the set of all maximal cliques
of GA, such that for every vertex v ∈ V (GA), the subgraph T [C(v)] of T induced
by the vertex set C(v) is a path in T .

In particular, since GA is a split graph, for every vertex v ∈ I, the subgraph
T [C(v)] of T induced by the vertex set C(v) is a vertex in T that corresponds
to the unique maximal clique of GA that v belongs to; we will denote this clique
by Cv, i.e., Cv = NGA [v] and C(v) = {Cv} for every vertex v ∈ I. Also, for
every vertex v ∈ K, the path (Cu, . . . , Cx, K, Cy, . . . , Cz) of T induced by the
vertex set C(v), always passes from the vertex K; equivalently, for every vertex
v ∈ K, the subgraph of T induced by the vertex set C(v), corresponds to the
vertex K and to at most two vertex disjoint paths (Cy, . . . , Cz) and (Cx, . . . , Cu)
where Cy and Cx are adjacent to K in T . Moreover, observe that for any path
(K, Cv1 , Cv2 , . . . , Cvk

) of the characteristic tree T of GA, we have Cv1 \ {v1} ⊇
Cv2 \ {v2} ⊇ . . . ⊇ Cvk

\ {vk}, since Cvi \ {vi} = NGA(vi) ⊂ K, where vi ∈ I for
every i, 1 ≤ i ≤ k.

Let κ : V (GA) → {1, 2, . . . , λ(GA)} be a colinear coloring of GA. In order
to see how a colinear coloring can be assigned to the vertices of GA we refer
to the colinear coloring algorithm presented in [17]. In particular, the algorithm
first constructs the directed acyclic graph (DAG) DGA

associated to the graph
GA and, then, finds a minimum path cover of the transitive DAG DGA

. The
size of the minimum path cover of DGA

equals the colinear chromatic number
λ(GA). Also, the algorithm assigns a colinear coloring κ to the vertices of GA

such that a set of vertices are assigned the same color in κ if and only if they
belong to the same path of the minimum path cover of DGA

. Moreover, the DAG
DGA

associated to the graph GA is constructed as follows: V (DGA
) = V (GA)

and E(DGA
) = {−→xy : x, y ∈ V (DGA

) and NGA
[x] ⊆ NGA

[y]}, where −→xy is a
directed edge from x to y. Note that DGA

is a transitive DAG [17]. For simplicity,
throughout the proof we will denote the DAG DGA

associated to the graph GA

by D.

Harmonious Coloring on Subclasses of Colinear Graphs 143

The following observations will be useful in the rest of this proof. Two vertices
u, v ∈ V (D) are not adjacent in D if and only if neither NGA

[v] ⊆ NGA
[u] nor

NGA
[v] ⊇ NGA

[u]; we call two sets with this property incompatible. In GA

the vertices of I form a clique, therefore, for two vertices u, v ∈ I, u and v
are not adjacent in D if and only if the sets NGA

[u] ∩ K and NGA
[v] ∩ K are

incompatible. Note that, for any two vertices u, v of GA, NGA
[u] ⊆ NGA

[v] if
and only if NGA(u) ⊇ NGA(v). Additionally, for every vertex u ∈ I, we have
NGA(u) ⊂ K.

Having assumed that λ(GA) > χ(GA) = |K|, there exists a minimum path
cover of D with size λ(GA) ≥ |K| + 1. The size of a minimum path cover of
D equals the cardinality of a maximum independent set ID of D [15]; thus,
|ID| ≥ |K|+ 1. Moreover, the independent set ID corresponds to a collection C
of mutually incompatible sets NGA

[v], for all v ∈ ID, that is, C = {NGA
[v] : v ∈

ID}. Thus, |C| ≥ |K| + 1 and the sets of C contain at most |K| vertices of K.
Also, recall that for any two vertices u, v ∈ V (D) such that u ∈ K and v ∈ I,
if uv ∈ E(GA) then NGA

[u] ⊂ NGA
[v]; thus, for any two vertices u, v ∈ V (D)

such that u ∈ K and v ∈ I, u and v are adjacent in GA if and only if u and v
are adjacent in D.

Assume that K ⊂ ID. Then, no vertex v ∈ I can belong to ID since every
vertex of I is adjacent to at least one vertex of K in GA and, thus, in D, due to
our assumption that K is a maximal clique of GA. Thus, not every vertex of K
can belong to ID, since |ID| ≥ |K|+ 1. Assume that a vertex u ∈ K belongs to
ID. Then, no vertex v ∈ I that is adjacent to u in D and, thus, in GA, belongs
to ID; equivalently, u /∈ NGA

[v], for every vertex v ∈ ID. Therefore, if we delete
the vertex u ∈ K from the set ID, we obtain an independent set I ′D = ID \ {u}
and a collection C′ = C \ {NGA

[u]} of at least |K| mutually incompatible sets,
which contain at most |K| − 1 vertices of K. Using the same arguments, if we
delete every vertex of K from the independent set ID, we obtain an independent
set I ′′D, such that I ′′D ⊆ I and |I ′′D| ≥ k + 1 (where k ≤ |K|), which corresponds
to a collection C′′ of at least k + 1 mutually incompatible sets NGA

[v], v ∈ I,
which contain at most k vertices of K.

A collection C′′ of at least k + 1 mutually incompatible sets NGA
[v], v ∈ I,

corresponds to a collection F of at least k+1 mutually incompatible sets NGA(v),
v ∈ I. Since, for every vertex v ∈ I we have NGA(v) = Cv \ {v}, it follows
that a collection F of at least k + 1 mutually incompatible sets NGA(v), v ∈ I,
corresponds to a collection of at least k+1 maximal cliques Cv of GA, v ∈ I, each
of which must belong to a different path (K, Cv1 , Cv2 , . . . , Cvk

) of a characteristic
tree T of GA. However, every vertex z ∈ K belongs to at most two such paths,
therefore, every vertex z ∈ K belongs to at most two sets of the collection F .
Thus, every vertex z ∈ K belongs to at least |C′′| − 2 sets of the collection C′′.

Summarizing, we have a collection C′′ of at least k +1 mutually incompatible
sets NGA

[v], v ∈ I, which contain at most k vertices of K and, also, every vertex
z ∈ K belongs to at least |C′′| − 2 sets of the collection C′′. Recall that for two
vertices u, v ∈ I, the sets NGA

[u] and NGA
[v] are incompatible if and only if

the sets NGA
[u] ∩ K and NGA

[v] ∩ K are incompatible. Therefore, we have a

144 K. Ioannidou and S.D. Nikolopoulos

Fig. 3. A split graph G which is not a colinear graph, since χ(G) = 4 and λ(G) = 5.
Also, G is not an undirected path graph

collection of at least k + 1 mutually incompatible vertex sets on k vertices. It is
easy to see that it is impossible to find a collection of at least k + 1 mutually
incompatible sets on k vertices, if every vertex belongs to at least k sets of the
collection. This is a contradiction to our assumptions. Therefore, G is a colinear
graph. �

Note that, not any split graph is a colinear graph (for example see Fig. 3). From
Theorems 2 and 3, we obtain the following result.

Corollary 1. The harmonious coloring problem is NP-complete on the class of
colinear graphs.

4 Harmonious Coloring on Split Strongly Chordal
Graphs

In this section we show that the harmonious coloring problem admits a poly-
nomial solution on the class of split strongly chordal graphs. Strongly chordal
graphs form a known subclass of chordal graphs [4,11] and were first introduced
by Farber [11]. A graph is strongly chordal iff it admits a strong elimination
ordering; a vertex ordering σ = (v1, v2, . . . , vn) is a strong elimination ordering
of a graph G iff σ is a perfect elimination ordering and also has the property
that for each i, j, k and �, if i < j, k < �, vk, v� ∈ N [vi], and vk ∈ N [vj], then
v� ∈ N [vj] [6,11].

Let us now give the definitions of a k-sun and an incomplete k-sun. An in-
complete k-sun Sk (k ≥ 3) is a chordal graph on 2k vertices whose vertex set can
be partitioned into two sets, U = {u1, u2, . . . , uk} and W = {w1, w2, . . . , wk}, so
that W is an independent set, and wi is adjacent to uj if and only if i = j or
i = j + 1 (mod k); the graph Sk (k ≥ 3) is a k-sun if U is a complete graph.

The following characterization of strongly chordal graphs was proved by Far-
ber [11] and turns up to be useful in obtaining a polynomial solution for the
harmonious coloring problem on split strongly chordal graphs.

Proposition 3. (Farber [11]) A chordal graph G is strongly chordal if and only
if it contains no induced k-sun.

Harmonious Coloring on Subclasses of Colinear Graphs 145

Note also that a bipartite graph G is chordal bipartite if and only if the split
graph obtained from G by making one of its two color classes complete is strongly
chordal [19].

Next, we present a polynomial solution for the harmonious coloring problem
on split strongly chordal graphs. Before describing our algorithm, we first con-
struct a graph HG from a split graph G, which we call neighborhood intersection
graph of G, and we use it in the proposed algorithm.

The neighborhood intersection graph HG of a split graph G. Let G be
a split graph, and let V (G) = K + I be a partition of its vertex set, where
K induces a clique in G and I induces an independent set. We first compute
the open neighborhood NG(v) of each vertex v ∈ I and, then, we construct the
following graph HG, which depicts all intersection relations among the vertices’
open neighborhoods: V (HG) = I and E(HG) = {xy : x, y ∈ I and NG(x) ∩
NG(y)
= ∅}. It is easy to see that the resulting graph HG is unique up to
isomorphism.

The following result is important for proving the correctness of our algorithm.

Lemma 1. The neighborhood intersection graph HG of a split strongly chordal
graph G is a chordal graph.

Proof. Let G be a split strongly chordal graph and let HG be the neighborhood
intersection graph of G. We will show that HG is a chordal graph, i.e., that
HG is a Ck-free graph, for every k ≥ 4. Since G is a split graph, there exists
a partition of its vertex set V (G) = K + I, where K induces a clique and I
induces an independent set in G. By the construction of HG, there is a one to
one correspondence between the vertices of V (HG) and the vertices of V (G)∩ I.

Assume that HG is not a chordal graph and let Ck = (v1, v2, . . . , vk) be a
chordless cycle of HG on k vertices, k ≥ 4; thus, vivj ∈ E(HG) if and only if
j = i + 1 (mod k). Therefore, we have that NG(vi) ∩ NG(vj)
= ∅ if and only
if j = i + 1 (mod k) or, equivalently, there exists at least one vertex wi ∈ K
in G such that wi ∈ NG(vi) ∩ NG(vj) if and only if j = i + 1 (mod k); note
that, the set W = {w1, w2, . . . , wk} consists of distinct vertices, since Ck is a
chordless cycle. Thus, U = {v1, v2, . . . , vk} induces an independent set in G,
W = {w1, w2, . . . , wk} induces a clique in G, and wi is adjacent to vj if and
only if j = i or j = i + 1 (mod k). Therefore, the subgraph of G induced by
the vertices U ∪ W is a k-sun, k ≥ 4. It follows that G is a split graph and,
thus, it is a chordal graph, which contains a k-sun as an induced subgraph. This
is a contradiction to our assumption that G is a strongly chordal graph due to
Proposition 3. Therefore, we conclude that HG is a chordal graph. �

The algorithm for a harmonious coloring of a split strongly chordal
graph. The proposed algorithm computes a harmonious coloring and the har-
monious chromatic number h(G) of a split strongly chordal graph G, and works
as follows:

146 K. Ioannidou and S.D. Nikolopoulos

Input: a split strongly chordal graph G, and a partition of its vertex set V (G) =
K + I, where I induces an independent set in G and K induces a clique.

(i) construct the neighborhood intersection graph HG of G.
(ii) compute a minimum proper vertex coloring κ : V (HG)→ {1, 2, . . . , χ(HG)},

and the chromatic number χ(HG), of the chordal graph HG (see e.g. [15]).
(iii) compute a coloring κ′ : V (G)→ {1, 2, . . . , h(G)} of G, by assigning κ′(v) =

κ(v) to each vertex v ∈ I, and a distinct color κ′(v) from the set {χ(HG)+
1, χ(HG) + 2, . . . , χ(HG) + |K|} to each vertex v ∈ K.

(iv) return the value κ′(v) for each vertex v ∈ V (G) and the size χ(HG) + |K|
of the number of different colors used in κ′; the coloring κ′ is a harmonious
coloring of G, and χ(HG) + |K| equals the harmonious chromatic number
h(G) of G.

Correctness of the algorithm. Let G be a split strongly chordal graph, and
let V (G) = K+I be a partition of its vertex set, where I induces an independent
set in G and K induces a clique. Let HG be the neighborhood intersection graph
of G.

We claim that the split strongly chordal graph G has a harmonious chromatic
number h(G) = |K|+r, where r equals the chromatic number χ(HG) of the graph
HG. Indeed, a harmonious coloring of G, using h(G) = |K| + r colors, assigns
a distinct color from the set {1, 2, . . . , |K|} to each vertex of the clique K, and
also assigns r colors to the vertices of the set I. Note that, r is the minimum
number of colors so that vertices vi, vj ∈ I having a neighbor in common are
assigned different colors. Since vi, vj are adjacent in HG, it follows that r is the
minimum number of colors for which a proper vertex coloring of HG exists, i.e.,
r = χ(HG).

Therefore, the split strongly chordal graph G has a harmonious chromatic
number h(G) = |K| + χ(HG), where χ(HG) is the chromatic number of the
neighborhood intersection graph HG of G. Additionally, it is easy to see that
the coloring κ′ computed by the algorithm is a harmonious coloring of G using
h(G) = |K|+ χ(HG) colors.

Complexity of the algorithm. Let G be a split strongly chordal graph on n
vertices and m edges. Let V (G) = K + I be a partition of its vertex set into a
clique K and an independent set I, and let HG be the neighborhood intersection
graph of G. Step (i) of the algorithm, which includes the construction of the graph
HG, takes O(n3) time. Step (ii) computes a minimum proper vertex coloring of
HG; since from Lemma 1, HG is a chordal graph, the problem is solvable in
O(n+m′) time (see e.g. [15]), where m′ = |E(HG)| = O(n2). Finally, both Steps
(iii) and (iv) can be executed in O(n) time. Therefore, the complexity of the
algorithm is O(n3) time.

Therefore, the following result holds.

Theorem 4. The harmonious coloring problem has a polynomial solution on
split strongly chordal graphs.

Harmonious Coloring on Subclasses of Colinear Graphs 147

5 Concluding Remarks

In this paper we show that the harmonious coloring problem is NP-complete on
the classes of split undirected path graphs and colinear graphs. We also present
a polynomial solution for the same problem on the class of split strongly chordal
graphs. The interest of this result lies on the fact that the harmonious coloring
problem is NP-complete on split graphs and strongly chordal graphs. In addi-
tion, polynomial solutions for the problem are only known for the classes of
threshold graphs and connected quasi-threshold graphs; note that, the harmo-
nious coloring problem is NP-complete on disconnected quasi-threshold graphs.
Since linear graphs form a superclass of both split strongly chordal graphs and
quasi-threshold graphs, the harmonious coloring problem is NP-complete on dis-
connected linear graphs, while it still remains open on connected linear graphs.

References

1. Asdre, K., Ioannidou, K., Nikolopoulos, S.D.: The harmonious coloring problem
is NP-complete for interval and permutation graphs. Discrete Applied Math. 155,
2377–2382 (2007)

2. Asdre, K., Nikolopoulos, S.D.: NP-completeness results for some problems on sub-
classes of bipartite and chordal graphs. Theoret. Comput. Sci. 381, 248–259 (2007)

3. Bodlaender, H.L.: Achromatic number is NP-complete for cographs and interval
graphs. Inform. Proc. Lett. 31, 135–138 (1989)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadel-
phia (1999)

5. Cairnie, N., Edwards, K.: Some results on the achromatic number. J. Graph The-
ory 26, 129–136 (1997)

6. Chang, G.J.: Labeling algorithms for domination problems in sun-free chordal
graphs. Discrete Applied Math. 22, 21–34 (1988)

7. Chvátal, V., Hammer, P.L.: Aggregation of inequalities for integer programming.
Ann. Discrete Math. I, 145–162 (1977)

8. Civan, Y., Yalçin, E.: Linear colorings of simplicial complexes and collapsing. J.
Comb. Theory A 114, 1315–1331 (2007)

9. Edwards, K.J.: The harmonious chromatic number and the achromatic number.
In: Baily, R.A. (ed.) Surveys in Combinatorics, pp. 13–47. Cambridge University
Press, Cambridge (1997)

10. Edwards, K.J., McDiarmid, C.: The complexity of harmonious coloring for trees.
Discrete Applied Math. 57, 133–144 (1995)

11. Farber, M.: Characterizations of strongly chordal graphs. Discrete Math. 43, 173–
189 (1983)

12. Farber, M.: Domination, independent domination, and duality in strongly chordal
graphs. Discrete Applied Math. 7, 115–130 (1984)

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco (1979)

14. Gavril, F.: A recognition algorithm for the intersection graph of paths of a tree.
Discrete Math. 23, 377–388 (1978)

148 K. Ioannidou and S.D. Nikolopoulos

15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980); 2nd edn. Annals of Discrete Mathematics, vol. 57. Elsevier,
Amsterdam (2004)

16. Ioannidou, K., Nikolopoulos, S.D.: Colinear coloring and colinear graphs. Techni-
cal Report TR-2007-06, Department of Computer Science, University of Ioannina
(2007)

17. Ioannidou, K., Nikolopoulos, S.D.: Colinear coloring on graphs. In: Das, S., Uehara,
R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 117–128. Springer, Heidelberg
(2009)

18. Kratsch, D.: Finding dominating cliques efficiently, in strongly chordal graphs and
undirected path graphs. Discrete Math. 86, 225–238 (1990)

19. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

20. Monma, C.L., Wei, V.K.: Intersection graphs of paths of a tree. J. Comb. Theory
B 41, 141–181 (1986)

21. Schäffer, A.A.: A faster algorithm to recognize undirected path graphs. Discrete
Applied Math. 43, 261–295 (1993)

22. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Applied
Math. 38, 364–372 (1980)

Comparing RNA Structures with Biologically
Relevant Operations Cannot Be Done without

Strong Combinatorial Restrictions

Guillaume Blin1, Sylvie Hamel2, and Stéphane Vialette1

1 Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin,vialette}@univ-mlv.fr

2 DIRO - Université de Montréal - QC - Canada
hamelsyl@iro.umontreal.ca

Abstract. Arc-annotated sequences are useful for representing
structural information of RNAs and have been extensively used for com-
paring RNA structures in both terms of sequence and structural similari-
ties. Among the many paradigms referring to arc-annotated sequences and
RNA structures comparison (see [2] for more details), the most important
one is the general edit distance. The problem of computing an edit dis-
tance between two non-crossing arc-annotated sequences was introduced
in [5]. The introduced model uses edit operations that involve either single
letters or pairs of letters (never considered separately) and is solvable in
polynomial-time [12].

To account for other possible RNA structural evolutionary events,
new edit operations, allowing to consider either silmutaneously or sepa-
rately letters of a pair were introduced in [9]; unfortunately at the cost of
computational tractability. It has been proved that comparing two RNA
secondary structures using a full set of biologically relevant edit opera-
tions is NP-complete. Nevertheless, in [8], the authors have used a strong
combinatorial restriction in order to compare two RNA stem-loops with
a full set of biologically relevant edit operations; which have allowed them
to design a polynomial-time and space algorithm for comparing general
secondary RNA structures.

In this paper we will prove theoretically that comparing two RNA
structures using a full set of biologically relevant edit operations cannot
be done without strong combinatorial restrictions.

1 Introduction

In computational biology, comparison of RNA molecules has recently attracted
a lot of interest due to the rapidly increasing amount of known RNA molecules,
especially non-coding RNAs. Very often, arc-annotated sequences, originally in-
troduced in [5], are used to represent RNA structures. An arc-annotated sequence
is a sequence over a given alphabet together with additional structural informa-
tion specified by arcs connecting pairs of positions. The arcs determine the way
the sequence folds into a three-dimensional space.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 149–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

150 G. Blin, S. Hamel, and S. Vialette

The problem of computing an edit distance between two arc-annotated se-
quences was introduced in [5] with a model that used only three edit operations
(deletion, insertion and substitution) either on single letters (letters in the se-
quence with no incident arc) or pairs of letters (letters connected by an arc).
In this model, the two letters of an arc are never considered separately, and
hence the problem of computing the edit distance between two arc-annotated
sequences becomes equivalent (when no pair of arcs are crossing) to the tree edit
distance problem, that can be solved in polynomial-time [12].

To account for other possible RNA structural evolutionary events, new edit
operations, such as creation, deletion or modification of arcs between pairs of
letters, were introduced in [9] at the cost of computational tractability. Indeed,
it has been shown in [4] that in case of non-crossing arcs, the problem of com-
puting the edit distance between two arc-annotated sequences under this model
is NP-hard. Playing the game of applying constraints either on the legal edit
operations or on the allowed alignments, several papers have shed new light on
the borderline between tractability and intractability [8,2]. Of particular impor-
tance, in [8], the authors introduced the notion of conservative edit distance and
mapping between two RNA stem-loops in order to design a polynomial-time al-
gorithm for comparing general secondary RNA structures using the full set of
biological edit operations introduced in [9]. This algorithm is based on a decom-
position in stem-loop-like substructures that are pairwised compared and used
to compare complete RNA secondary structures. As mentionned in [8], whereas
in the very restrictive case of conservative distance and mapping, the computa-
tion of the general edit distance is polynomial-time solvable, it is not known if
the general, i.e., not conservative, edit distance between two stem-loops can be
also computed in polynomial-time.

In this paper, we will show that this strong combinatorial restriction was nec-
essary for the problem to become polynomial since it is NP-hard in the general
case. Despite the fact that this result may be considered as purely theoretical, it
proves that comparing two RNA structures using a full set of biologically relevant
edit operations cannot be done without strong combinatorial restrictions.

2 Preliminaries

Given a finite alphabet Σ, an arc-annotated sequence is formally defined by a
pair (S, P), where S is a string of Σ∗ and P is a set of arcs connecting pairs of
letters of S. In reference to RNA structures, letters are called bases. Bases with
no incident arc are called single bases. In an arc-annotated sequence, two arcs
(i1, j1) and (i2, j2) are crossing, if i1 < i2 < j1 < j2 or i2 < i1 < j2 < j1. An arc
(i1, j1) is embedded into another arc (i2, j2) if i2 < i1 < j1 < j2. Evans [5] (see
[8] for extensions) introduced five different levels of arc structure: Unlimited

– no restriction at all; Crossing – there is no base incident to more than one
arc; Nested – there is no base incident to more than one arc and no two arcs
are crossing; Stem – there is no base incident to more than one arc and given
any two arcs, one is embedded into the other; Plain – there is no arc. There is

Comparing RNA Structures with Biologically Relevant Operations 151

an obvious inclusion relation between those levels: Plain ⊂ Stem ⊂ Nested ⊂
Crossing ⊂ Unlimited. An arc-annotated sequence (S1, P1) is said to occur
in another arc-annotated sequence (S2, P2) if one can obtain the former from
the latter by repeatedly deleting bases (deleting a base that is incident to an arc
results in the deletion of the arc).

Among the many paradigms referring to arc-annotated sequences (see [2] for
more details) we focus in this article on the Longest Arc-Preserving Com-

mon Subsequence (Lapcs for short) [5,10,11] and the general edit distance
(Edit for short) [9,3]. Indeed, as shown in [2], those two paradigms are quite
related since the Lapcs problem is a special case of Edit when considering the
complete set of edit operations defined in [9]. Therefore, the hardness results for
Lapcs stands for Edit.

Formally, the Longest Arc-Preserving Common Subsequence problem
is defined as follows: given two arc-annotated sequences (S1, P1) and (S2, P2),
find the longest – in terms of sequence length – common arc-annotated subse-
quence that occurs in both (S1, P1) and (S2, P2). It has been shown in [9] that the
Lapcs problem is NP-hard even for Nested structures, i.e., Lapcs(Nested,
Nested). Still focussing on Nested structures, Alber et al. [1] proved that the
Lapcs(Nested, Nested) problem is solvable in O(3k |Σ|k kn) time, where n is
the maximum length of the two sequences and k is the length of the common
subsequence searched for.

Here, we focus on the last open problem concerning Lapcs and Edit over
stem-loops by showing, with a unique proof, their hardness. More precisely, we
prove that Lapcs(Stem, Stem) - which may be considered as a very restricted
problem and thus not interesting - is NP-hard in order to infer the NP-hardness
of Edit(Stem, Stem) - which is for sure, according to [8], an interesting problem
that can be used in a very simple way to compare complete RNA secondary
structures. This results also prove that in any future work on comparing RNA
structures with a full set of edit operations it will be necessary to introduce strong
combinatorial restrictions in order to get an exact polynomial-time algorithm
since even with the simpliest model, the general edit distance problem is still
NP-complete. This is why this result is of particular interest since it closes the
only remaining hope in RNA structures comparison.

3 Comparing RNA Stem-Loops Is NP-Complete

In this section, we prove that Lapcs over stem-loops (Lapcs(Stem,Stem)) is
NP-complete (in Theorem 1); therefore answering an open question of [8]. This
last result induces the NP-hardness of Edit over stem-loops.

Theorem 1. Lapcs(Stem,Stem) is NP-complete.

Corollary 1. Comparing RNA structures with a full set of biologically rele-
vant edit operations cannot be done without introducing strong combinatorial
restrictions.

152 G. Blin, S. Hamel, and S. Vialette

In the following, we consider the decision version of the problem which cor-
responds to deciding if there exists an arc-preserving common subsequence of
length greater or equal to a given parameter k′.

It is easy to see that the Lapcs problem is in NP. In order to prove its NP-
hardness, we define a reduction from the NP-complete 3SAT problem [6] which
is defined as follows: Given a collection Cq = {c1, c2, . . . , cq} of q clauses, where
each clause consists of a set of 3 literals (representing the disjunction of those
literals) over a finite set of n boolean variables Vn = {x1, x2, . . . , xn}, is there an
assignment of truth values to each variable of Vn s.t. at least one of the literals
in each clause is true?

Let (Cq, Vn) be any instance of the 3SAT problem s.t. Cq = {c1, c2, . . . , cq}
and Vn = {x1, x2, . . . , xn}. For convenience, let Lj

i denote the jth literal of the
ith clause (i.e. ci) of Cq. In the following, given a sequence S over an alphabet
Σ, let χ(i, c, S) denote the ith occurrence of the letter c in S.

We build two arc-annotated sequences (S1, P1) and (S2, P2) as follows. An
illustration of a full example is given in Figures 1 and 2, where n = 4 and
q = 3. For readability reasons, the arc-annotated sequences resulting from the
construction have been split into several parts and a schematic overview of the
overall placement of each part is provided.

Let S1 = C1
q WqC

1
q−1...C

1
2W2C

1
1W1S

1
MV1P

1
1 V2 P 1

2 ...P 1
q−1VqP

1
q and S2 = C2

q Wq

C2
q−1...C

2
2W2C

2
1W1 S2

MV1P
2
1 V2P

2
2 ...P 2

q−1VqP
2
q s.t. for all 1 ≤ i ≤ q, 1 ≤ k ≤ n,

– C1
i = R3

i QiR
2
i QiX

1
1X1

2 ... X1
nQiR

2
i QiR

1
i with X1

k = xksjxk if xk = Lj
i or

xk = Lj
i ; X1

k = xkxk otherwise;
– P 1

i = Qq+iQq+iR
3
q+iX

1
n...X1

n
2 +1R

2
q+iX

1
n
2
...X1

1 R1
q+iQq+iQq+i s.t. X1

k = xkxk;
– C2

i = X2
1 ...X2

nR3
i QiX

2
1 ... X2

n
2
R2

i X
2
n
2 +1...X

2
1Qi R1

i X
2
1 ...X2

n s.t. ∀1 ≤ j ≤ 3,

χ(j, X2
k , C2

i) = xkxksj (resp. sjxkxk) if xk = Lj
i (resp. xk = Lj

i);
χ(j, X2

k , C2
i) = xkxk otherwise;

– P 2
i = X2

n...X2
1R1

q+iQq+iX
2
n...X2

n
2 +1R

2
q+iX

2
n
2
...X2

1 Qq+iR
3
q+iX

2
n...X2

1 with
X2

k = xkxk.

Moreover, let S1
M = x1x1x2x2...xnxn and S2

M = x1x1x2x2...xnxn. Notice that,
by construction, there is only one occurrence of each {s1, s2, s3} in C2

i .
For all 1 ≤ i ≤ q, let Qi (resp. Qq+i) be a segment of n + 1 symbols yi

(resp. yq+i). Moreover, for all 1 ≤ i ≤ q, let Wi (resp. Vi) be a segment of
20(max{q, n}2) symbols wi (resp. vi). Let us now define P1 and P2.

For all 1 ≤ i ≤ q − 1, (1) add an arc in P1 between χ(1, xk, C1
i) (resp.

χ(1, xk, C1
i)) and χ(1, xk, P 1

i+1) (resp. χ(1, xk, P 1
i+1)), ∀1 ≤ k ≤ n (see Figure

1.d and 2.b); (2) add an arc in P2 between χ(j, xk, C2
i) (resp. χ(j, xk, C2

i)) and
χ((4 − j), xk, P 2

i) (resp. χ((4 − j), xk, P 2
i)), ∀1 ≤ k ≤ n (see Figure 1.c, 2.a and

2.c); (3) add an arc in P2 between χ(1, Rj
i , C

2
i) and χ(1, Rj

q+i, P
2
i), ∀1 ≤ j ≤ 3

(see Figure 1.c, 2.a and 2.c).
Clearly, this construction can be achieved in polynomial-time, and yields to

sequences (S1, P1) and (S2, P2) that are both of type Stem. We now give an
intuitive description of the different elements of this construction.

Comparing RNA Structures with Biologically Relevant Operations 153

Each clause ci ∈ Cq is represented by a pair (C1
i , C2

i) of sequences. The
sequence C2

i is composed of three subsequences representing a selection mech-
anism of one of the three literals of ci. The pair (S1

M , S2
M) of sequences is a

control mechanism that will guarantee that a variable xk cannot be true and
false simultaneously. Finally, for each clause ci ∈ Cq, the pair (P 1

i , P 2
i) of se-

quences is a propagation mechanism which aim is to propagate the selection of
the assignment (i.e. true or false) of any literal xk all over Cq. Notice that all
the previous intuitive notions will be detailed and clarified afterwards.

In the rest of this article, we will refer to any such construction as a snail-
construction. In order to complete the instance of the Lapcs(Stem,Stem)
problem, we define the parameter k′ = 40q(max{q, n}2) + 6qn + 8q + n which
corresponds to the desired length of the solution. In the following, let (S1, P1) and
(S2, P2) denote the arc-annotated sequences obtained by a snail-construction.
We will denote Sd the set of symbols deleted in a solution of Lapcs problem
on (S1, P1) and (S2, P2) (i.e. the symbols that do not belong to the common
subsequence).

We start the proof that the reduction from 3SAT to Lapcs(Stem,Stem) is
correct by giving some properties about any optimal solution.

Lemma 1. In any optimal solution of Lapcs problem on (S1, P1) and (S2, P2),
at least one symbol incident to any arc would be deleted. Moreover, all the symbols
of Vi and Wi, for 1 ≤ i ≤ q, will not be deleted.

Proof. By contradiction, let us suppose that there exist at least one arc s.t. the
two symbols incident to this last are not deleted in a solution of Lapcs problem
on (S1, P1) and (S2, P2). Then, by construction, it induces that at least one
complete sequence Vj or Wj , for a given 1 ≤ j ≤ q, has been deleted. Since
they have the same length, we will consider w.l.o.g. afterwards that Vi has been
deleted. Therefore, since S1 is, by construction, smaller than S2 the length of
this optimal solution is at most |S1| − |Vj | =

∑q
i=1(|C1

i |+ |P 1
i |+ |Vi|+ |Wi|) +

|S1
M |−|Vj| =

∑q
i=1((6n+11)+(6n+7)+(20(max{q, n}2))+(20(max{q, n}2)))+

2n− (20(max{q, n}2)) = q[12n+18+40(max{q, n}2)]+ 2n− (20(max{q, n}2)).
Then, in order for this solution to be optimal, one should have q[12n + 18 +
40(max{q, n}2)] + 2n − (20(max{q, n}2)) ≥ 40q(max{q, n}2) + 6qn + 8q + n.
This can be reduced to 6qn+ 10q− 20(max{q, n}2)+ n ≥ 0. But, one can easily
check that for any n ≥ 3 (which is always the case in 3SAT instances), this is
not true; a contradiction.

Lemma 2. Any optimal solution of Lapcs problem on (S1, P1) and (S2, P2) is
of length 40q(max{q, n}2) + 6qn + 8q + n.

Proof. By construction, in S1 there is (1) ∀1 ≤ i ≤ n, 2q + 1 occurrences of xi

(resp. xi); (2) ∀1 ≤ i ≤ q, 4 occurrences of Qi (resp. Qq+i); (3) ∀1 ≤ i ≤ q, 1
occurrence of each {R1

i , R
2
q+i, R

3
i , R

1
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}; (4) ∀1 ≤ i ≤ q, 2

occurrences of R2
i .

Whereas, in S2, there is (1) ∀1 ≤ i ≤ n, 6q + 1 occurrences of xi (resp. xi);
(2) ∀1 ≤ i ≤ q, 2 occurrences of Qi (resp. Qq+i); (3) ∀1 ≤ i ≤ q, 1 occurrence of
each {R1

i , R
2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}.

154 G. Blin, S. Hamel, and S. Vialette

F
ig

.
1
.
C

on
si
de

ri
ng

C
q

=
(x

1
∨

x
2
∨

x
3
)
∧

(x
1
∨

x
2
∨

x
4
)
∧

(x
2
∨

x
3
∨

x
4
).

Fo
r

re
ad

ab
ili

ty
,
al

l
th

e
ar

cs
ha

ve
no

t
be

en
dr

aw
n,

co
ns

ec
ut

iv
e

ar
cs

ar
e

re
pr

es
en

ti
ng

by
a

un
iq

ue
ar

c
w

it
h

lin
es

fo
r

en
dp

oi
nt

s.
Sy

m
bo

ls
ov

er
a

gr
ey

ba
ck

gr
ou

nd
m

ay
be

de
le

te
d

to
ob

ta
in

an
op

ti
m

al
L
A

P
C

S.
a)

A
sc

he
m

at
ic

vi
ew

of
th

e
ov

er
al

l
ar

ra
ng

em
en

t
of

th
e

co
m

po
ne

nt
s

of
th

e
tw

o
a.

a.
se

qu
en

ce
s.

b)
D

es
cr

ip
ti
on

of
S

1 M
,S

2 M
,P

1 1
,
P

2 1

an
d

th
e

co
rr

es
po

nd
in

g
ar

cs
in

P
1
.
c)

D
es

cr
ip

ti
on

of
C

1 1
,
C

2 1
,
P

1 1
,
P

2 1
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P

2
.
d)

D
es

cr
ip

ti
on

of
C

1 1
,
C

2 1
,
P

1 2
,
P

2 2

an
d

th
e

co
rr

es
po

nd
in

g
ar

cs
in

P
1
.

Comparing RNA Structures with Biologically Relevant Operations 155

F
ig

.
2
.
C

on
si
de

ri
ng

C
q

=
(x

1
∨x

2
∨x

3
)∧

(x
1
∨x

2
∨x

4
)∧

(x
2
∨x

3
∨x

4
).

Fo
r

re
ad

ab
ili

ty
al

lt
he

ar
cs

ha
ve

no
t

be
en

dr
aw

n,
co

ns
ec

ut
iv

e
ar

cs
ar

e
re

pr
es

en
ti
ng

by
a

un
iq

ue
ar

c
w

it
h

lin
es

fo
r

en
dp

oi
nt

s.
Sy

m
bo

ls
ov

er
a

gr
ey

ba
ck

gr
ou

nd
m

ay
be

de
le

te
d

to
ob

ta
in

an
op

ti
m

al
L
A

P
C

S.
a)

D
es

cr
ip

ti
on

of
C

1 2
,
C

2 2
,
P

1 2
,
P

2 2
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P

2
.
c)

D
es

cr
ip

ti
on

of
C

1 2
,
C

2 2
,
P

1 3
,
P

2 3
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P

1
.

d)
D

es
cr

ip
ti
on

of
C

1 3
,
C

2 3
,
P

1 3
,
P

2 3
an

d
th

e
co

rr
es

po
nd

in
g

ar
cs

in
P

2
.

156 G. Blin, S. Hamel, and S. Vialette

Therefore, in any optimal solution there may be only (1) ∀1 ≤ i ≤ n, 2q + 1
occurrences of xi (resp. xi); (2) ∀1 ≤ i ≤ q, 2 occurrences of Qi (resp. Qq+i); (3)
∀1 ≤ i ≤ q, 1 occurrence of each {R1

i , R
2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i, Wi, Vi, s1, s2, s3}.

More precisely, by Lemma 1, and since, by construction, there is an arc in P2
between χ(1, Rj

i , C
2
i) and χ(1, Rj

q+i, P
2
i), ∀j ∈ {1, 2, 3}, in any optimal solution,

∀1 ≤ i ≤ q, only half of the {R1
i , R

2
i , R

3
i , R

1
q+i, R

2
q+i, R

3
q+i} may be conserved.

Moreover, any xi (resp. xi) of S1 except in C1
q , is linked by an arc to another

xi (resp. xi), therefore by Lemma 1, in any optimal solution, ∀1 ≤ i ≤ q − 1,
only half of the occurrences of xi (resp. xi) may be conserved.

Finally, in any optimal solution, only half of the occurrences of {xi, xi} and
one over {s1, s2, s3} in C1

q and S1
M may be conserved. Indeed, by construction,

if this is not the case in C1
q (resp. S1

M), it implies that at least one complete
sequence Qq (resp. V1 or W1) is totally deleted – which is not optimal since it is
of length n + 1 (resp. 20(max{q, n}2)).

On the whole, the maximal total length of any solution is thus equal to
40q(max{q, n}2) + 6qn + 8q + n. Moreover, this solution is composed of (1)
∀1 ≤ i ≤ n, 2q + 1 occurrences of either xi or xi, (2) ∀1 ≤ i ≤ q, 2 occurrences
of Qi and Qq+i, (3) ∀1 ≤ i ≤ q, 1 occurrence of each {Wi, Vi} and either s1, s2

or s3 and (4) ∀1 ≤ i ≤ q, Rj1
i , Rj2

i , Rj3
q+i s.t. {j1, j2, j3} = {1, 2, 3}.

Lemma 3. In any optimal solution of Lapcs problem on (S1, P1) and (S2, P2),
if χ(1, xk, S1

M) (resp. χ(1, xk, S1
M)) for a given 1 ≤ k ≤ n is deleted then, ∀1 ≤

j ≤ q, χ(1, xk, C1
j) (resp. χ(1, xk, C1

j)) is deleted.

Proof. By construction, ∀1 ≤ k ≤ n only one of {xk, xk} may be conserved
between S1

M and S2
M since χ(1, xk, S1

M) < χ(1, xk, S1
M) whereas χ(1, xk, S2

M) <
χ(1, xk, S2

M). By Lemma 1, at least one symbol incident to any arc is deleted.
Therefore, ∀1 ≤ k ≤ n only one of {xk, xk} may be conserved between C1

1
and C2

1 .
Let us suppose that for a given 1 ≤ k ≤ n, χ(1, xk, S1

M) is deleted. According
to the proof of Lemma 2, in any optimal solution, ∀1 ≤ k ≤ n exactly one of
{xk, xk} has to be deleted. Then χ(1, xk, P 1

1) is deleted whereas χ(1, xk, P 1
1) is

conserved.
By construction, in P 2

1 , since according to the proof of Lemma 2, both oc-
currences of Qq+1 and Rj1

1 , Rj2
1 , Rj3

q+1 s.t. {j1, j2, j3} = {1, 2, 3} have to be con-
served, either (1) {R1

1, R
2
1, R

3
q+1}, (2) {R1

1, R
3
1, R

2
q+1} or (3) {R2

1, R
3
1, R

1
q+1} are

conserved.
Let us first consider that {R1

1, R
2
1, R

3
q+1} are conserved. Then one can check

that the only solution is to conserve χ(2, R2
1, C

1
1) since otherwise at least half of

the xk’s would not be conserved. Consequently, the only solution is to conserve,
∀1 ≤ k ≤ n, the first (resp. last) occurrence of any xk or xk in C2

1 (resp. P 2
1) – i.e.

the occurrences appearing before χ(1, Q1, C
2
1) (resp. after χ(2, Qq+1, P

2
1)). Since

by construction, there is an arc between χ(1, xk, C2
1) (resp. χ(1, xk, C2

1)) and
χ(3, xk, P 2

1) (resp. χ(3, xk, P 2
1)), in order for χ(1, xk, P 1

1) to be conserved, one
has to conserved χ(3, xk, P 2

1). Thus, by Lemma 1, χ(1, xk, C2
1) has to be deleted

and, according to the proof of Lemma 2, χ(1, xk, C2
1) has to be conserved.

Comparing RNA Structures with Biologically Relevant Operations 157

Let us now consider that {R1
1, R

3
1, R

2
q+1} are conserved. By a similar reasoning,

one can check that the only solution is to conserve, ∀1 ≤ k ≤ n, the second
occurrence of any xk or xk in C2

1 (resp. P 2
1) – i.e. the occurrences appearing

between χ(1, Q1, C
2
1) and χ(2, Q1, C

2
1) (resp. χ(1, Qq+1, P

2
1) and χ(2, Qq+1, P

2
1)).

Since by construction, there is an arc between χ(2, xk, C2
1) (resp. χ(2, xk, C2

1))
and χ(2, xk, P 2

1) (resp. χ(2, xk, P 2
1)), in order to χ(1, xk, P 1

1) to be conserved, one
has to conserved χ(2, xk, P 2

1). Thus, by Lemma 1, χ(2, xk, C2
1) has to be deleted

and, according to the proof of Lemma 2, χ(2, xk, C2
1) has to be conserved.

Finally, let us consider that {R2
1, R

3
1, R

1
q+1} are conserved. Once again, by a

similar reasoning, one can check that the only solution is to conserve χ(1, R2
1, C

1
1)

since otherwise at least half of the xk’s would not be conserved. Consequently,
the only solution is to conserve, ∀1 ≤ k ≤ n, the last (resp. first) occurrence of
any xk or xk in C2

1 (resp. P 2
1) – i.e. the occurrences appearing after χ(2, Q1, C

2
1)

(resp. before χ(1, Qq+1, P
2
1)). Since by construction, there is an arc between

χ(3, xk, C2
1) (resp. χ(3, xk, C2

1)) and χ(1, xk, P 2
1) (resp. χ(1, xk, P 2

1)), in order
to χ(1, xk, P 1

1) to be conserved, one has to conserved χ(1, xk, P 2
1). Thus, by

Lemma 1, χ(3, xk, C2
1) has to be deleted and, according to the proof of Lemma

2, χ(3, xk, C2
1) has to be conserved.

Therefore, in the three cases, if for a given 1 ≤ k ≤ n, χ(1, xk, S1
M) is conserved

then so does χ(1, xk, C1
1). It is easy to see that, by a similar reasoning, if for a

given 1 ≤ k ≤ n, χ(1, xk, S1
M) is conserved then so does χ(1, xk, C1

1).
With a similar reasoning, by reccurence, since, ∀1 ≤ i ≤ q, 1 ≤ k ≤ n, there

is an arc in P1 between χ(1, xk, C1
i) (resp. χ(1, xk, C1

i)) and χ(1, xk, P 1
i+1) (resp.

χ(1, xk, P 1
i+1)), if χ(1, xk, C1

i) is conserved then χ(1, xk, P 1
i+1) is deleted. And

therefore, with similar arguments, χ(1, xk, C1
i+1) is conserved. Once more, it is

easy to see that this result still holds if χ(1, xk, C1
i) is conserved.

Theorem 2. Given an instance of the problem 3SAT with n variables and q
clauses, there exists a satisfying truth assignment iff the Lapcs of (S1, P1) and
(S2, P2) is of length k′ = 40q(max{q, n}2) + 6qn + 8q + n.

Proof. (⇒) An optimal solution for Cq = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x2∨x3∨x4)
– i.e. x1 = x3 = true and x2 = x4 = false – is illustrated in Figures 1 and 2
where any symbol over a grey background have to be deleted. Suppose we have
a solution of 3SAT, that is an assignment of each variable of Vn satisfying Cq.
Let us first list all the symbols to delete in S1.

For all 1 ≤ k ≤ n, if xk = false then delete, ∀1 ≤ j ≤ q, {χ(1, xk, C1
j),

χ(1, xk, P 1
j)} and χ(1, xk, S1

M); otherwise delete, ∀1 ≤ j ≤ q, {χ(1, xk, C1
j),

χ(1, xk, P 1
j)} and χ(1, xk, S1

M).
For each Lj

i satisfying ci with the biggest index j with 1 ≤ i ≤ q,
if (1) j = 1 then delete {χ(1, R3

i , C
1
i), χ(1, Qi, C

1
i), χ(1, R2

i , C
1
i), χ(2, Qi, C

1
i),

χ(1, s2, C
1
i), χ(1, s3, C

1
i), χ(1, R2

q+i, P
1
i), χ(1, R1

q+i, P
1
i), χ(3, Qq+i, P

1
i),

χ(4, Qq+i, P
1
i)} (cf Figure 1.a);

if (2) j = 2 then delete {χ(1, R2
i , C

1
i), χ(2, Qi, C

1
i), χ(1, s1, C

1
i), χ(1, s3, C

1
i),

χ(3, Qi, C
1
i), χ(2, R2

i , C
1
i), χ(2, Qq+i, P

1
i), χ(1, R3

q+i, P
1
i), χ(1, R1

q+i, P
1
i),

χ(3, Qq+i, P
1
i)} (cf Figure 2.a);

158 G. Blin, S. Hamel, and S. Vialette

if (3) j = 3 then delete {χ(1, s1, C
1
i), χ(1, s2, C

1
i), χ(3, Qi, C

1
i), χ(2, R2

i , C
1
i),

χ(4, Qi, C
1
i), χ(1, R1

i , C
1
i), χ(1, Qq+i, P

1
i), χ(2, Qq+i, P

1
i), χ(1, R3

q+i, P
1
i),

χ(1, R2
q+i, P

1
i)} (cf Figure 2.c);

Let us now list all the symbols in S2 to be deleted.
For all 1 ≤ k ≤ n, if xk = false then delete χ(1, xk, S2

M); otherwise delete
χ(1, xk, S2

M).
For each Lj

i satisfying ci with the biggest index j with 1 ≤ i ≤ q,

if (1) j = 1 then delete ∀1 ≤ k ≤ n {χ(1, R3
i , C

2
i), χ(1, s2, C

2
i), χ(2, xk, C2

i),
χ(2, xk, C2

i), χ(1, s3, C
2
i), χ(3, xk, C2

i), χ(3, xk, C2
i), χ(1, xk, P 2

i), χ(1, xk, P 2
i),

χ(1, R1
q+i, P

2
i), χ(1, R2

q+i, P
2
i), χ(2, xk, P 2

i), χ(2, xk, P 2
i)}. Moreover, if xk=false

with 1 ≤ k ≤ n then delete, {χ(1, xk, C2
i), χ(3, xk, P 2

i)}; otherwise delete
{χ(1, xk, C2

i), χ(3, xk, P 2
i)} (cf Figure 1.a);

if (2) j = 2 then delete ∀1 ≤ k ≤ n {χ(1, R2
i , C

2
i), χ(1, s1, C

2
i), χ(1, xk, C2

i),
χ(1, xk, C2

i), χ(1, s3, C
2
i), χ(3, xk, C2

i), χ(3, xk, C2
i), χ(1, xk, P 2

i), χ(1, xk, P 2
i),

χ(1, R1
q+i, P

2
i), χ(1, R3

q+i, P
2
i), χ(3, xk, P 2

i), χ(3, xk, P 2
i)}. Moreover, if xk=false

with 1 ≤ k ≤ n then delete, {χ(2, xk, C2
i), χ(2, xk, P 2

i)}; otherwise delete
{χ(2, xk, C2

i), χ(2, xk, P 2
i)} (cf Figure 2.a);

if (3) j = 3 then delete ∀1 ≤ k ≤ n {χ(1, R1
i , C

2
i), χ(1, s1, C

2
i), χ(1, xk, C2

i),
χ(1, xk, C2

i), χ(1, s2, C
2
i), χ(2, xk, C2

i), χ(2, xk, C2
i), χ(2, xk, P 2

i), χ(2, xk, P 2
i),

χ(1, R2
q+i, P

2
i), χ(1, R3

q+i, P
2
i), χ(3, xk, P 2

i), χ(3, xk, P 2
i)}. Moreover, if xk=false

with 1 ≤ k ≤ n then delete, {χ(3, xk, C2
i), χ(1, xk, P 2

i)}; otherwise delete
{χ(3, xk, C2

i), χ(1, xk, P 2
i)} (cf Figure 2.c);

By construction, the natural order of the symbols of S1 and S2 allows the corre-
sponding set of undeleted symbols to be conserved in a common arc-preserving
common subsequence between (S1, P1) and (S2, P2). Let us now prove that the
length of this last is k′. One can easily check that this solution is composed of
∀1 ≤ k ≤ n, (1) 2q + 1 occurrences of either xk or xk, (2) ∀1 ≤ i ≤ q, 2 occur-
rences of Qi and Qq+i, (3) ∀1 ≤ i ≤ q, 1 occurrence of each {Wi, Vi} and either
s1, s2 or s3 and (4) ∀1 ≤ i ≤ q, Rj1

i , Rj2
i , Rj3

q+i s.t. {j1, j2, j3} = {1, 2, 3}. Thus,
the length of the solution is 40q(max{q, n}2) + 6qn + 8q + n.

(⇐) Suppose we have an optimal solution – i.e. a set of symbols Sd to delete
– for Lapcs of (S1, P1) and (S2, P2). Let us define the truth assignment of Vn

s.t., ∀1 ≤ i ≤ q, if χ(1, sj , C
1
i)
∈ Sd then Lj

i is true. Let us prove that it is a
solution of 3SAT.

By construction, if Lj
i = xk (resp. xk) then in C1

i , sj appears between xk and
xk whereas in C2

j it appears after xk (resp. before xk). Thus, if χ(1, sj, C
1
i) is not

deleted then xk (resp. xk) in C1
i is deleted if Lj

i = xk (resp. xk). Consequently,
according to the proof of Lemma 3, if χ(1, sj , C

1
i) is not deleted then xk (resp.

xk) in all C1
i′ , with 1 ≤ i′ ≤ q is deleted if Lj

i = xk (resp. xk). Therefore, we can

ensure that one cannot obtain Lj
i and Lj′

i′ being true whereas Lj
i = Lj′

i′ (that is a

Comparing RNA Structures with Biologically Relevant Operations 159

variable cannot be simultaneously true and false). By Lemma 2, we can ensure
that for any 1 ≤ i ≤ q exactly one of {s1, s2, s3} is conserved in C1

i . Therefore,
for any clause ci at least one of its literal is set to true. This ensures that our
solution is a solution of 3SAT.

Lemma 4. Lapcs(Stem, Stem) is solvable in O(2k−1 |Σ|k kn)

Proof. We use a straightforward brute-force algorithm for arc-annotated se-
quences [1]: (i) generate all possible sequences of length k with all possible Stem

arc annotations, and (ii) for each of these arc-annotated candidate sequences,
check whether or not it occurs as a pattern in both S1 and S2.

At the heart of this approach is the fact that it can be decided in O(n k) time
whether or not this sequence occurs as an arc-preserving common subsequence
[7]. It is easily seen that the above algorithm reduces to O(2k−1 |Σ|k km) time
for Lapcs(Stem, Stem). Indeed, there exist |Σ|k sequences of length k and
hence, for a given sequence of length k, there exist

(
k
2i

)
different arc-annotations

with i arcs. Therefore, there exist
∑�k/2

i=0

(
k
2i

)
= 2k−1 arc-annotations of a given

sequence of length k.

4 Future Work

From a computational biology point of view, especially for comparing stems,
one may, however, be mostly interested in the case k (length of the common
subsequence searched) might not be assumed too small compared to n. A first
approach is provided in [1] where it is proved that, given two sequences of length
at most n and nested arc structure, an arc-preserving common subsequence can
be determined (if it exists) in O(3.31k1+k2 n) time; obtained by deleting (together
with corresponding arcs) k1 letters from the first and k2 letters from the second
sequence. Improving the running time of the parameterization in case of stem
arc structures appears to be a promising line of research.

References

1. Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Computing the similarity of two
sequences with nested arc annotations. Theoretical Computer Science 312(2-3),
337–358 (2004)

2. Blin, G., Denise, A., Dulucq, S., Herrbach, C., Touzet, H.: Alignment of RNA
structures. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics (2008) (to appear)

3. Blin, G., Fertin, G., Herry, G., Vialette, S.: Comparing RNA structures: Towards
an intermediate model between the edit and the lapcs problems. In: Sagot, M.-
F., Walter, M.E.M.T. (eds.) BSB 2007. LNCS (LNBI), vol. 4643, pp. 101–112.
Springer, Heidelberg (2007)

4. Blin, G., Fertin, G., Rusu, I., Sinoquet, C.: Extending the hardness of RNA
secondary structure comparison. In: Chen, B., Paterson, M., Zhang, G. (eds.)
ESCAPE 2007. LNCS, vol. 4614, pp. 140–151. Springer, Heidelberg (2007)

160 G. Blin, S. Hamel, and S. Vialette

5. Evans, P.: Algorithms and Complexity for Annotated Sequences Analysis. PhD
thesis, University of Victoria (1999)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: a guide to the theory
of NP-completeness. W.H. Freeman, New York (1979)

7. Gramm, J., Guo, J., Niedermeier, R.: Pattern matching for arc-annotated se-
quences. ACM Transactions on Algorithms 2(1), 44–65 (2006) (to appear)

8. Guignon, V., Chauve, C., Hamel, S.: An edit distance between RNA stem-loops.
In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 335–347.
Springer, Heidelberg (2005)

9. Jiang, T., Lin, G., Ma, B., Zhang, K.: A general edit distance between RNA struc-
tures. Journal of Computational Biology 9(2), 371–388 (2002)

10. Jiang, T., Lin, G., Ma, B., Zhang, K.: The longest common subsequence problem
for arc-annotated sequences. Journal of Dicrete Algorithms, 257–270 (2004)

11. Lin, G., Chen, Z.-Z., jiang, T., Wen, J.: The longest common subsequence prob-
lem for sequences with nested arc annotations. Journal of Computer and System
Sciences 65, 465–480 (2002)

12. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing 18(6), 1245–1262 (1989)

The 1.375 Approximation Algorithm for Sorting by
Transpositions Can Run in O(n log n) Time

Jesun S. Firoz1, Masud Hasan1, Ashik Z. Khan1, and M. Sohel Rahman1,2

1 Department of Computer Science and Engineering, BUET, Dhaka-1000, Bangladesh
2 Department of Computer Science, King’s College London, UK

{jesunsahariar,ashrik}@gmail.com,
{masudhasan,msrahman}@cse.buet.ac.bd

Abstract. We improve the running time from O(n2) to O(n log n) of the ex-
isting best known 1.375−approximation algorithm for sorting by transpositions
with the help of the permutation tree data structure.

1 Introduction

In computational biology, comparison of two genomes is significant because it pro-
vides us some insight on how far away genetically these species are. Various global
rearrangements, such as reversals, transpositions, translocations, fissions, fusions and
block-interchanges, applied on genes have been proposed to determine the evolutionary
distance between two related genomes by comparing the gene orders.

In this paper, we are interested in the transposition operation. A transposition is a
rearrangement operation for a permutation in which a segment is cut out of the permu-
tation and pasted in a different location. Sorting permutation by transpositions was first
studied by Bafna and Pevzner [1], who discussed the first 1.5−approximation algorithm
which had quadratic running time. Eriksson et al. [4] gave an algorithm that sorts any
given permutation of n elements by at most 2

3n transpositions.
Later, Hartman and Shamir used the concept of simplified breakpoint graph to de-

sign another 1.5−approximation algorithm with O(n2) running time [8]. They fur-
ther used the splay tree to implement this simplified algorithm and thereby reducing
the time complexity to O(n

3
2
√

log n) [8,9]. Finally, Elias and Hartman presented an
1.375−approximation algorithm in [3], which is the best known approximation algo-
rithm for sorting by transpositions in the literature so far. The running time of that
algorithm [3] however is O(n2).

Very recently, in [5], Feng and Zhu presented a new data structure named the per-
mutation tree. Using the permutation tree, Feng and Zhu improved the running time of
the 1.5−approximation algorithm of [8] to O(n log n). In this paper, we use the per-
mutation tree data structure and follow the path of Feng and Zhu and make an effort to
improve the running time of the 1.375−approximation algorithm of [3]. In particular,
with the help of the permutation tree data structure we improve the running time of the
sorting by transpositions algorithm of [3] to O(n log n). This improvement in running
time is bound to have serious impact in the relevant research in computational biol-
ogy especially due to huge amount of various genomic data (DNA, RNA, and protein
sequences) becoming available for evolutionary distance measurement.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 161–166, 2010.
© Springer-Verlag Berlin Heidelberg 2010

162 J.S. Firoz et al.

2 Preliminaries

In this section we discuss some preliminary definitions and notations, which mostly
follow from [5,3]. Let L = {1, 2, 3, . . . , n}. A permutation π = (π1π2...πn) of L is an
ordered arrangement of the elements in L. The permutation σ = (1, 2, . . . , n) is called
the identity permutation. Let us define a segment X of π as a sequence of consecutive
elements πi, . . . , πk, k ≥ i. Two segments X = πi, . . . , πk and Y = πj , . . . , πl are
contiguous if j = k+1 or i = l+1. A transposition τ on π is an exchange of two disjoint
contiguous segments. If the segments are X = πi, ..., πj−1 and Y =πj , ..., πk−1, then the
result of applying τ on π, denoted τ.π, is (π1...πi−1πj ...πk−1πi...πj−1πk...πn). We
sometimes use trans(i, j, k) to denote the above transposition operation.

Given a permutation π, the sorting by transpositions problem asks to find a sequence
of transpositions τ1, τ2, ..., τt to transform π into σ such that the number of transposi-
tions t is minimized. The transposition distance of a permutation π, denoted by d(π),
is the smallest possible value of t.

The breakpoint graph [1] is a graph representation of a permutation (i.e. genome).
Let π = (π0...πn−1) be a permutation. The breakpoint graph G(π) is an edge-colored
graph on 2n vertices {l0, r0, l1, r1, . . . , ln−1, rn−1}. For every 0 ≤ i ≤ n− 1, ri and
li+1 are connected by a grey edge, and for every πi, lπi and rπi−1 are connected by a
black edge, denoted by bi.

The breakpoint graph uniquely decomposes into cycles. We denote the number of
cycles in G(π) by c(π). The number of black edges in a cycle of breakpoint graph is
called the length of the cycle. A cycle of length k is called a k−cycle and a k−cycle
is odd/even if k is odd/even. The number of odd cycles is denoted by codd(π), and
we define Δcodd(π, τ) = codd(τ .π) − codd(π). A transposition τ is a k−move if
Δcodd(π, τ) = k. A cycle is called oriented if there is a 2-move that is applied on
three of its black edges; otherwise, it is unoriented. A k-cycle in the breakpoint graph
is called short if k ≤ 3; otherwise, it is called long. π and its corresponding breakpoint
graph G(π) are called simple if G(π) contains only short cycles. A permutation π is
2-permutation (3-permutation) if G(π) is contains only 2-cycles (3-cycles). We gener-
ally transform permutations with long cycles into simple permutations by inserting new
elements into the permutations and thereby splitting the long cycles [6].

Two pairs of black edges (a, b) and (c, d) are said to intersect if their edges occur in
alternated order in the breakpoint graph, i.e., in order a, c, b, d. Cycles C and D inter-
sect if there is a pair of black edges in C that intersects with a pair of black edges in
D. A configuration of cycles is a subgraph of the breakpoint graph that is induced by
one or more cycles. Configuration A is connected if for any two cycles c1 and ck of A
there are cycles c2, . . . , ck−1 ∈ A such that, for each i ∈ [1, k − 1], ci intersects with
ci+1. A component is a maximal connected configuration in a breakpoint graph. The
size of a configuration or a component is the number of cycles it contains. A configu-
ration (similarly, a component) is called unoriented if all of its cycles are unoriented.
A configuration (component) is small if its size is at most 8; otherwise it is big. Small
components that do not have an 11

8 -sequence are called bad small components [3]. In
a configuration, an open gate is a pair of black edges of a 2-cycle or an unoriented 3-
cycle that does not intersect with another cycle of that configuration. A configuration
not containing open gates is referred to as a full configuration.

An (x, y)−sequence of transpositions on a simple permutation (for x ≥ y) is a
sequence of x number of transpositions, such that at least y of them are 2-moves and
that leaves a simple permutation at the end.

The 1.375 Approximation Algorithm 163

A permutation tree [5] is firstly a balanced binary tree T with root r, where each inter-
nal node of T has two children. Let t be a node of T . The left and right children of t are
denoted as L(t) and R(t), respectively. The height of a leaf node is defined to be zero.
The height of an internal node is defined to be H(t) = max{H(L(t)), H(R(t))}+ 1.
Since the tree is balanced, for any node t of T , we have |H(L(t)) − H(R(t))| ≤ 1.
The height of T is defined to be the height of the root H(T) = H(r). Secondly, a per-
mutation tree must correspond to a permutation. The permutation tree corresponding
to π = (π1π2 . . . πn) has n leaf nodes, labeled by π1, π2, . . . , πn respectively. Each
node of T corresponds to an interval of π and is labeled by the maximum number in
the interval. For any internal node t of T , the interval corresponding to t must be the
concatenation of the two intervals corresponding to L(t) and R(t). The number labeled
to t is called the value of t.

Theorem 1. [5] The height of the permutation tree corresponding to π = (π1π2 . . . πn)
is bounded by O(log n).

There are three operations for a permutation tree [5]. They are Build, which builds a
permutation tree corresponding to a given permutation, Join, which joins two trees into
one, and Split, which splits one tree into two. The following theorems report the time
complexity of these three operations.

Theorem 2. [5] Time complexity of the Build operation is O(n).

Theorem 3. [5] If t1 corresponds to (π1π2 . . . πm), and t2 corresponds to (πm+1πm+2
. . . πn), then Join(t1, t2) returns a permutation tree corresponding to (π1π2 . . .
πmπm+1πm+2 . . . πn). The time complexity of Join(t1, t2) is O(H(t1)−H(t2)).

Theorem 4. [5] Let T be a permutation tree corresponding to ρ = (π1π2 . . . πm−1
πmπm+1 . . . πn). Split(T, m) always returns tl corresponding to ρl =((π1π2 . . . πm−1)
and ρr = ((πm . . . πn). Moreover, Split(T, m) takes O(log n) time.

3 Faster Running Time for Elias and Hartman’s Algorithm

As has been mentioned above, the 1.375−approximation algorithm of Elias and Hart-
man (Algorithm 1) is the best approximation algorithm for sorting by transpositions in
the literature. However, the running time of this algorithm is O(n2). Now, our goal is to
improve the running time of this algorithm using the permutation tree data structure. In
what follows we will refer to the algorithm of Elias and Hartman as the EH algorithm.

To achieve our goal we need to be able to use the permutation tree for applying
(x, y)−sequence and k−move. Additionally, given a pair of black edges we can find,
with the help of a permutation tree, another pair of black edges such that these two pairs
intersect. Feng and Zhu [5] used the following lemma to find such a pair of black edges.

Lemma 1. [1] Let bi and bj are two black edges in an unoriented cycle C such that
i < j. Let πk = maxi<m≤j πm and πl = πk + 1. Then the black edges bk and bl−1
belong to the same cycle and the pair 〈bk, bl−1〉 intersects the pair 〈bi, bj〉.
Feng and Zhu suggested that a permutation tree can be used for query and for
transposition as follows. Let π = (π1 . . . πn) be a simple permutation. Assume that
the permutation tree T corresponding to π has been constructed by procedure Build.
Now, Procedure Query(π, i, j) finds a pair of black edges intersecting the pair 〈bi, bj〉
given a permutation π and Procedure Transposition(π, i, j, k), applies a transposition
trans(i, j, k) on π. These two procedures can be implemented as follows.

164 J.S. Firoz et al.

Algorithm 1. EH Algorithm
1: Transform permutation π into a simple permutation π̂ .
2: Check if there is a (2, 2)-sequence. If so, apply it.
3: While G(π̂) contains a 2-cycle, apply a 2-move.
4: π̂ is a 3-permutation. Mark all 3-cycles in G(π̂).
5: while G(π̂) contains a marked 3-cycle C do
6: if C is oriented then
7: apply a 2-move on it.
8: else
9: Try to sufficiently extend C eight times

10: if sufficient configuration has been achieved then

11: apply an
11
8

-sequence.

12: else
13: it must be a small component. If an

11
8

-sequence is still possible apply it.

14: if Applying a
11
8

-sequence is not possible then

15: This must be a bad small component. Unmark all cycles of the component.
16: end if
17: end if
18: end if
19: end while
20: Now, G(π̂) contains only bad small components.While G(π̂) contains

at least 8 cycles,apply an
11
8

-sequence.

21: While G(π̂) contains a 3-cycle,apply a (3,2)-sequence.
22: Mimic the sorting of π using the sorting of π̂.

Query(π, i, j). Split T into three permutation trees: t1, which corresponds to [π1,
. . . , πi]; t2, which corresponds to [πi + 1, . . . , πj]; and t3, which corresponds to
[πj + 1, . . . , πn]. Clearly this can be done in O(log n) time by two splitting oper-
ations of T . The value of the root of t2 is the largest element (let it be πk) in the
interval [πi + 1 . . . πj]. Assume that πl = πk + 1. By Lemma 1, pair 〈bk, bl−1〉
intersects pair 〈bi, bj〉. By Theorems 3 and 4, Query(π, i, j) takes O(log n) time.

Transposition(π, i, j, k). Split T into four permutation trees: t1, which corresponds
to [π1, . . . , πi−1]; t2, which corresponds to [πi, . . . , πj−1]; t3, which corresponds to
[πj , . . . , πk−1]; and t4, which corresponds to [πk, . . . , πn]. Then, join the four trees
by executing Join(Join(Join(t1, t3), t2), t4). Clearly, adjusting the permutation
tree T can be done by three splitting and three joining operations. By Theorems 3
and 4, Transposition(π, i, j, k) takes O(log n) time as well.

Lemma 2. [5] Both Query and Transposition run in O(log n) time.

In what follows, we will show how the results on permutation tree can be applied to
improve the running time of the EH algorithm. In particular we will state and prove a
number of lemmas concerning the running time of different steps of the the EH algo-
rithm, achieving an O(n log n) running time for the algorithm in the sequel.

Lemma 3. Step 1 of the EH algorithm can be implemented in O(n) time.

Proof. A permutation π is made simple by (g, b)-splits acting on the breakpoint graph
G(π). A (g, b)-split for G(π) splits one cycle into two shorter ones. Equivalently, this

The 1.375 Approximation Algorithm 165

operation inserts a new element into π [7]. A breakpoint graph G(π) can be transformed
into G(π̂) containing only 1-cycles, 2-cycles, and 3-cycles by a series of (g, b)-splits [8],
that is, the permutation corresponding to G(π̂) beomces simple. This can be done by
scanning the permutation linearly and inserting a new element when necessary. Thus
Step 1 can be implemented in O(n) time. �
Lemma 4. Step 2 of the EH algorithm can be implemented in O(n log n) time.

Proof. To check whether a (2, 2)-sequence exists, the following steps are executed:

(a) We check whether there are (at least) four 2-cycles. If yes, then we are done; other-
wise we go to the next step.

(b) If there are two intersecting 2-cycles then a (2, 2)-sequence exists and we are
done [3]. Otherwise we go to the following step.

(c) If there are two nonintersecting 2-cycles, we apply a transposition on three of the
four black edges of the two 2-cycles (check all four possibilities). Clearly, this is
a 2-move [2]. Now, there is a (2,2)-sequence iff in the resulting graph there is an
oriented cycle. Otherwise we go to the following step.

(d) In this case the permutation is a 3-permutation. Here, if all cycles are unoriented,
there is no (2,2)-sequence. Otherwise, for each oriented 3-cycle, we need to check
if, after applying a 2-move on it, there is an oriented cycle in the resulting graph.
There is a (2,2)-sequence iff the answer is yes for some cycle.

Clearly, the complexity depends on steps c and d as these two cases involve applying
the 2-move and the transpositions. Hence, by Lemma 2, the result follows. �
Lemma 5. [5] The number of even cycles in a breakpoint graph must be even.

Lemma 6. Step 3 of the EH algorithm can be implemented in O(n log n) time.

Proof. By Lemma 5, there is an even number of 2-cycles in the breakpoint graph for a
simple permutation. A 2-move in Step 3 transforms two 2-cycles into a 1-cycle and a 3-
cycle. The 2-cycles of G(π) can be found in linear time and be eliminated by at most n

2
2-moves. Since a transposition takes O(log n) time (Lemma 2), the result follows. �
Lemma 7. Step 4 of the EH algorithm can be implemented in O(n) time.

Proof. All the 3-cycles can be marked by a linear scan of the breakpoint graph. Clearly,
this takes at most O(n) time. �
Lemma 8. Step 7 of the EH algorithm can be implemented in O(logn) time.

Proof. To apply a 2-move, we use the transposition operation on the permutation tree
which can be done in O(log n) time. �
Lemma 9. Steps 9 to 15 of the EH algorithm can be implemented in O(log n) time.

Proof. There are two types of extensions that are sufficient for extending any cycle C:
Type 1: Extensions closing open gates, and Type 2: Extensions of full configurations
such that the extended configuration has at most one open gate.

To do a sufficient extension of Type 1 (add a cycle that closes an open gate), we need
to pick an arbitrary open gate and find another cycle that intersects with the open gate.
For this, we query the permutation tree with the black edge 〈bi, bj〉 of the open gate

166 J.S. Firoz et al.

under consideration. The query procedure in turn returns the intersecting pair 〈bk, bl−1〉
as stated above. This step takes O(log n) time.

If the configuration is full, i.e., there are no open gates, we do sufficient extension
of Type 2. To do this, we query the permutation tree with each pair of black edges of
each cycle in the configuration, until we find a cycle that intersects with a pair. If such
a cycle is found, we extend the configuration by this cycle to find a component of size
greater than or equal to 9. As there can be atmost 24 such pairs of black edges, this step
takes O(log n) time as well.

Finally, we apply an 11
8 -sequence by using the transposition procedure of permuta-

tion tree which takes O(log n) time. Hence the result follows. �
Lemma 10. The while loop at Step 5 of the EH algorithm can be implemented in
O(n log n) time.

Proof. The loop iterates at most n times and each iteration takes O(log n) time by
Lemmas 8 and 9. �
Lemma 11. Step 20 of the EH algorithm can be implemented in O(n log n) time.

Proof. In this step we apply an 11
8 -sequence while there are at least 8 cycles. Applica-

tion of an 11
8 -sequence takes O(log n) time and this step iterates at most O(n) times.

�
Lemma 12. Step 21 of the EH algorithm can be implemented in O(n log n) time.

Proof. Applying a (3,2)-sequence is essentially equivalent to applying 3 transpositions
such that at least 2 of them are 2-moves. By Lemma 2, each transposition can take at
most O(log n) time. Moreover, there can be no more than n 3-cycles. So, the lemma
follows. �
Lemma 13. [5] Step 22 of the EH algorithm can be implemented in O(n log n) time.

From the above results the following theorem follows easily.

Theorem 5. The EH algorithm implemented with permutation tree runs in O(n log n)
time.

References

1. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discrete Math. 11(2), 224–240
(1998)

2. Christie, D.: Genome rearrangement problem. Ph.D. Thesis, University of Glasgow (1999)
3. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions.

IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 369–379 (2006)
4. Eriksson, H., Eriksson, K., Karlander, J., Svensson, L.J., Wästlund, J.: Sorting a bridge hand.

Discrete Mathematics 241(1-3), 289–300 (2001)
5. Feng, J., Zhu, D.: Faster algorithms for sorting by transpositions and sorting by block inter-

changes. ACM Transactions on Algorithms 3(3) (2007)
6. Gu, Q.-P., Peng, S., Sudborough, I.H.: A 2-approximation algorithm for genome rearrange-

ments by reversals and transpositions. Theor. Comput. Sci. 210(2), 327–339 (1999)
7. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for

sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)
8. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for sorting by

transpositions. Inf. Comput. 204(2), 275–290 (2006)
9. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)

Parallel Algorithms for Encoding and Decoding
Blob Code

Saverio Caminiti and Rossella Petreschi

Computer Science Department, Sapienza University of Rome
Via Salaria, 113 - I00198 Rome, Italy

{caminiti,petreschi}@di.uniroma1.it

Abstract. A bijective code is a method for associating labeled n-trees
to (n − 2)-strings of node labels in such a way that different trees yield
different strings and vice versa. For all known bijective codes, optimal
sequential encoding and decoding algorithms are presented in literature,
while parallel algorithms are investigated only for some of these codes. In
this paper we focus our attention on the Blob code: a code particularly
considered in the field of Genetic Algorithms. To the best of our knowl-
edge, here we present the first parallel encoding and decoding algorithms
for this code. The encoding algorithm implementation is optimal on an
EREW PRAM, while the decoding algorithm requires O(log n) time and
O(n) processors on CREW PRAM.

1 Introduction

A labeled n-tree is an unrooted tree on n nodes, each of which has a distinct
label selected in the set [0, n − 1]. An interesting data structure for represent-
ing these trees can be obtained by encoding them by means of strings of node
labels. This data structure is useful in many practical applications: Genetic Al-
gorithms [20,28], random uniformly distributed trees generation [10], fault dic-
tionary storage [1], and distributed spanning tree maintenance [14].

The näıve method to obtain a string C representing a labeled n-tree T , re-
garded as rooted in a fixed node (e.g., node 0), consists in associating each node
x with its parent p(x): C is a string over the alphabet [0, n − 1] whose i-th el-
ement is p(i). C has cardinality n − 1 since the root has no parent and can be
omitted. It should be noted that an arbitrary string of length n − 1 over the
alphabet [0, n− 1] does not necessarily correspond to a tree (it may represents
a graph which has cycles or is not connected). Here we are interested in those
codes that define a bijection between the set of labeled n-trees and the set of
strings over [0, n− 1]. Since Cayley proved that the number of labeled trees on
n ≥ 2 nodes is nn−2 [8], we know that this kind of one-to-one mapping requires
the length of the string to be equal to n − 2. In his proof of Cayley’s theorem,
Prüfer presented the first bijective string based code for trees [27]. The Prüfer
code proceeds recursively, deleting, at each step, the leaf with smallest label
from the tree; whenever a leaf is deleted, the label of its parent is added to the
codeword. Over the years since then, many codes behaving like the Prüfer one,

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 167–178, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

168 S. Caminiti and R. Petreschi

i.e., recursively eliminating leaves according to some rules, have been introduced
by Neville [22], Moon [21], and Deo and Micikevičius [11].

Other codes, based on ideas completely different from the recursive leaves
elimination, have been presented along the years. Namely, the ϑn bijection by
Eğecioğlu and Remmel [12]; the code due to Kreweras–Moszkowski [19]; the
Chen code [9]; the Blob code, the Happy code, and the Dandelion code due to
Picciotto [26]; and the MHappy code due to Caminiti and Petreschi [6]. In the
last years, almost all these codes have been reinterpreted in a unified framework
where their behavior is described as a transformation of the tree into a functional
digraph [6]. This reinterpretation allowed researchers to highlight strong simi-
larities among a set of codes, now called Dandelion-like codes [24] (the romantic
name comes from the Dandelion code that transforms a tree into a graph similar
to a dandelion flower).

Encoding and decoding in sequential linear time is possible for all bijective
codes presented in this introduction (see [5] for Prüfer-like codes, see [6] for
Dandelion-like codes and [4] for a survey). Concerning parallel algorithms, stud-
ies have been performed and algorithms are known both for Prüfer-like codes [5]
and for Dandelion-like codes [7]. The interested reader may found a complete
survey on all these codes in [3].

In this paper we focus our attention on the Blob code introduced by Pic-
ciotto in her PhD thesis [26]. This code is based on the Orlin’s proof of Cayley’s
theorem and makes explicit a bijection implicitly presented in that proof [23].
In its original description, the Blob code considers all nodes in decreasing la-
bel order, detaches them from their parents and adds them to a macro node
called blob. During this process a string is generated (further details are given in
Section 3). Both the original encoding and decoding algorithms require O(n2)
time. By reinterpreting this code as transformation of the tree into a functional
digraph, Caminiti and Petreschi [6] designed linear time encoding and decoding
sequential algorithms. This reinterpretation also allowed Paulden and Smith to
recognize that the Blob code is indeed equivalent to the Kreweras–Moszkowski
code [24]. Moreover, several experimental analyses have been performed in the
field of Genetic Algorithms to test Blob code performances focusing on certain
desirable properties (namely locality and heritability) [17,18]. Also theoretical
investigations of the Blob code properties have been made [25].

For the best of our knowledge, here we present the first encoding and decoding
parallel algorithms for the Blob code. The encoding algorithm can be parallelized
on an EREW PRAM to run in O(log n) time with O(n/ log n) processors: the
overall cost is linear and the algorithm is optimal. The decoding algorithm costs
O(n log n) on a CREW PRAM since it runs in O(log n) time with O(n) pro-
cessors. Our algorithms exhibit asymptotic behavior similar to that of parallel
algorithms known in the literature for other bijective codes (see Table 1). It re-
mains an open problem to decrease the cost of a decoding algorithm in order to
reach the optimality.

The paper is organized as follows: after a few preliminary definition, in
Section 3, we recall the Blob code both in its original formulation and as

Parallel Algorithms for Encoding and Decoding Blob Code 169

Table 1. Costs of known parallel algorithms for bijective codes. Costs are expressed
as the number of processors multiplied by the maximum time required by a single
processor working on a PRAM (EREW or CREW).

Encoding Decoding

Prüfer-like

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Prüfer O(n) EREW O(n log n) EREW

2nd Neville O(n
√

log n) EREW O(n
√

log n) EREW

3rd Neville O(n) EREW O(n
√

log n) EREW

Stack-Queue O(n
√

log n) EREW O(n
√

log n) EREW

Dandelion-like

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dandelion O(n) EREW O(n log n) CREW

ϑn bijection O(n) EREW O(n log n) CREW

Happy O(n) EREW O(n log n) CREW

MHappy O(n) EREW O(n log n) CREW

reinterpreted in [6]. Our main result is given in Section 4 where we present the
first parallel encoding and decoding algorithms for Blob code.

2 Preliminaries

In this section, we introduce some definitions that will be useful in the rest of
the paper.

Definition 1. Given a function g : [0, n] → [0, n], the functional digraph G =
(V, E) associated with g is a directed graph with V = {0, . . . , n} and E =
{(v, g(v)) for each v ∈ V }.
Lemma 1. A digraph G = (V, E) is a functional digraph if and only if the outer
degree of each node is equal to 1.

It is well known that each connected component of a functional digraph is com-
posed of several trees, each of which is rooted in a node belonging to the core of
the component, which is either a cycle or a loop (see Figure 1a).

Functional digraphs are easily generalizable to represent functions undefined
in some values: if g(x) is not defined, the node x in G does not have any outgoing
edge. In this case, the connected component of G containing x is a tree rooted
at x without cycles or loops (see Figure 1b).

In this paper we only deal with labeled n-trees (simply trees), and each tree
T will always be considered as rooted in the fixed node 0 with all edges ori-
ented upwards from a node v to its parent p(v), i.e., T is the functional digraph
associated with the function p.

The notation PG(u, v) identify the set of nodes in the unique directed path
in G between u and v (both excluded); when no ambiguity arises subscript G is
omitted. As usual in mathematics, we use square brackets to include one or both

170 S. Caminiti and R. Petreschi

Fig. 1. a) A functional digraph associated with a fully defined function; b) A functional
digraph associated with a function undefined in 0, 8, and 9

endpoints. As an example, P (3, 6] represents the set {0, 2, 6, 8} in the digraph of
Figure 1a.

Let us call n-string a string of n elements over the alphabet [0, n + 1].

Definition 2. A code is a method for associating trees to strings in such a way
that different trees yield different strings. A bijective code is a code associating
n-trees to (n− 2)-strings.

3 Blob Code

In this section, we recall the Blob code as described by Piccitto in [26] and then
we reinterpret this code in terms of transformation of a tree into a functional
digraph as done in [6].

Given an n-tree rooted in 0, the encoding algorithm for the Blob code considers
all nodes but 0 in decreasing label order. Each node is detached from its parent
and added to a macro node called blob. This macro node has a parent in the tree
(a normal node) but it contains many other nodes; each node included in the
blob preserves its own subtree, if any, even though this subtree is not necessarily
included in the blob. Some nodes force the blob to change its parent, others do
not. The formers add the parent of blob to the codeword, while the others simply
add their own parents.

Formally the encoding algorithm can be described as follows and an example
of its execution is given in Figure 2.

Algorithm: Blob Encoding

Input: a n-tree T rooted in 0 with edges oriented upward
Output: an (n− 2)-string C

1. Initialize C as an empty vector indexed form 1 to n− 1
2. blob = {n− 1}
3. add edge (blob, p(n− 1)) and delete edge (n− 1, p(n− 1))

Parallel Algorithms for Encoding and Decoding Blob Code 171

Fig. 2. a) A sample tree T rooted in 0; b) An intermediate step of the execution of
the Blob Encoding algorithm. The grey area identifies the blob, question marks in
the code correspond to unassigned values; c) The resulting blob (and the codeword) at
the end of the execution.

4. for v = n− 2 to 1 do
5. if (P (v, 0) ∩ blob)
= ∅) then
6. C[v] = p(v)
7. delete edge (v, p(v))
8. insert v in blob
9. else
10. C[v] = p(blob)
11. delete edge (blob, p(blob)) and add edge (blob, p(v))
12. delete (v, p(v))
13. insert v in blob

Let us now reinterpret the Blob code as done in [6]. For the sake of clearness, we
explicitly report some lemmas (and proofs) in order to better clarify concepts
that will be useful in Section 4. We will call stable (unstable) all nodes that
affirmatively (negatively) satisfy the test of Line 5. Each stable node v let the
blob parent unchanged and its value in the codeword C is simply p(v). Moreover,
it is possible to see that the condition in Line 5 is not strictly connected with
the incremental construction of the blob, but it can be computed a priori as the
following lemma asserts:

Lemma 2. Stable nodes are all nodes v such that v < max(P (v, 0)).

Proof. When node v is considered by the Blob Encoding algorithm set blob
contains all the nodes from v + 1 to n. Then the condition of Line 5 holds if and
only if at least a node greater than v occurs in P (v, 0). �
As a consequence of Lemma 2, we are able to characterize the value written in
the codeword by each unstable node:

Lemma 3. In the codeword, the value corresponding to each unstable node v is
p(z), where z is the smallest unstable node greater than v.

172 S. Caminiti and R. Petreschi

Fig. 3. a) A sample tree T rooted in 0; b) Stable nodes of T marked in grey; c) G =
ϕb(T) and the Blob code representing T .

Proof. In Line 10 of Blob Encoding algorithm the current parent of blob defines
the code value corresponding to an unstable node v. In subsequent lines the blob
becomes child of p(v). It implies p(blob) equal to the parent of the smallest
unstable node greater than v, i.e., p(z). �
Lemma 3 allows us to define a function ϕb that constructs a functional digraph G
from a tree T in the following way: for each unstable node v > 0, remove the edge
(v, p(v)) and add the edge (v, p(z)), where z = min{u |u > v and u is unstable}.
If z does not exist (it must be v = n− 1), edge (n− 1, 0) is added. In Figure 3a
and 3c a tree T and its corresponding graph G = ϕb(T) are depicted. Figure 3b
shows all stable nodes of T .

Lemmas 2 and 3 guarantee that the codeword computed by Blob Encoding

Algorithm is equal to the string C = [g(1), g(2), . . . , g(n− 2)], where g is the
function associated with the functional digraph G = ϕb(T).

Let us now describe how it is possible to reconstruct the original tree T start-
ing from its codeword C, i.e., the decoding algorithm. Obtaining G from C is
straightforward, indeed g(0) is always undefined and g(n− 1) is always 0. Thus,
we will focus on proving that ϕb is invertible so that the tree can be obtained as
T = ϕ−1

b (G). We need the following lemma:

Lemma 4. Each path in T from a stable node v to m = max(P (v, 0)) is pre-
served in G = ϕb(T).

Proof. Let v be a stable node and let assume by contradiction that the path
from v to m = max(P (v, 0)) is in T but not in G = ϕb(T). This means that in
the transformation from T to G at least one node w in P (v, m) has changed its
parent. Since ϕb changes only edges outgoing from unstable nodes, w should be
unstable and then w > max(P (w, 0)). w ∈ P (v, m) implies m ∈ P (w, 0), then w
should be greater than m contradicting m = max(P (v, 0)). �
In order to invert the transformation operated by ϕb, all cycles in G have to
be broken, and stable and unstable nodes have to be recomputed. Each cycle Γ

Parallel Algorithms for Encoding and Decoding Blob Code 173

(loops as regarded as cycles of length 1) is broken deleting the edge outgoing
from γ, the maximum node in Γ . Lemma 4 implies that γ is unstable in T ,
otherwise a node greater than γ would appear in Γ . Notice that γ becomes the
root of its own connected component, while 0 is the root of the only connected
component not containing cycles. We call stable in G each node v such that
v < max(P (v, γv]), where γv is the root of the connected component containing
v. Lemma 4 guarantees that if a node is stable in T it is also stable in G. As
proved in [6] vice versa is also true. Once stable nodes have been identified, the
original tree T can be easily recomputed inverting the changes operated during
the encoding.

The computational complexity of the original Blob Encoding algorithm
is quadratic in the number of nodes of the tree, due to the test in Line 5;
the original decoding algorithm (not reported in this paper) is also quadratic.
Our characterization of stable nodes (Lemma 2) decreases the complexity of
the Blob Encoding algorithm to O(n). Linear complexity for both encoding
and decoding algorithms can be achieved exploiting the transformation of the
tree into a functional digraph. Indeed both ϕb and ϕ−1

b can be implemented in
O(n) sequential time: the computation of maximum nodes in the upper path
(coding) and the cycles identification (decoding) can both be implemented by
simple search techniques [6].

4 Parallel Algorithms

Following the ideas introduced in the previous section, here we present parallel
encoding and decoding algorithms for the Blob code.

4.1 Model of Computation

A wide range of parallel machines have been constructed in the past few years for
executing instructions in parallel. Parallel processors may communicate either
via shared memory or via fixed connections, in synchronous or asynchronous
ways. The machine may be SIMD (all the processors execute the same instruc-
tions at the same time) or MIMD (the processors may execute different instruc-
tions simultaneously). It is possible to have concurrent or exclusive reading and
writing operations. Consequently, each time a parallel algorithm is designed, it
is necessary to specify the underling parallel machine. In this presentation we
choose not to address a specific parallel architecture, but we describe our algo-
rithms referring to the classical synchronous SIMD, shared memory, Exclusive
Write PRAM model. Even though many researchers consider this model too ab-
stract, we are convinced that PRAM is a robust theoretical framework suitable
to describe high level parallel algorithms.

Our choice is supported by the fact that this model is well studied both from a
theoretical and a from practical point of view. Indeed, a great effort in designing
a general purpose computer architecture to implement PRAM algorithms has
been made in the last years, within the project PRAM-On-Chip at the University

174 S. Caminiti and R. Petreschi

Fig. 4. a) Transformation of a tree into a regular binary tree (dummy nodes are marked
in grey); b) Nodes involved in Rake and Unrake operations

of Maryland (see [31]). Moreover, a SIMD multi-thread extension of C language
for providing an easy programming tool to implement PRAM algorithms has
been developed. The results obtained so far seem to confirm the simplicity and
the efficiency of the PRAM model. For more information we refer to [30].

Due to the lack of space, we cannot detail the basic parallel techniques used
in this section (Prefix sum, Pointer Jumping and Parallel Tree Contraction), so
we refer the reader to the classical book by Jájá [16]. Here we only recall Brent’s
theorem:

Brent’s scheduling theorem [2]: let n ∈ N represent the input size and
p(n) be a processor bound function. Let A be an EREW PRAM algorithm
that requires w(n) computational operations and t(n) time. If each of the p(n)
processors can determine in time O(t(n)) which steps of A it needs to simulate,
then parallel algorithm A can be simulated using O(w(n)/p(n) + t(n)) time and
p(n) processors on an EREW PRAM.

In the following costs are expressed as the number of processors multiplied by
the maximum time required by a single processor.

4.2 Encoding Algorithm

Given a tree T , the first step in implementing the encoding phase, according
with the discussion in Section 3, consists in identifying all stable nodes. To this
purpose we compute, for each node v, the maximum value in the ascending path
from v to 0: we call this information μ(v). Stable nodes are those nodes v such
that v < μ(v) (see Lemma 2). In order to efficiently perform μ computation we
use the Rake operation to obtain Parallel Tree Contraction and Decontraction.

Initially T is transformed into a regular binary tree TR, i.e., a tree such that
each internal node has exactly 2 children: for each node v ∈ T with d ≥ 1
children u1, u2, . . . , ud, TR has d + 1 nodes v1, v2, . . . , vd+1 where v1 corresponds
to v while the other nodes are new dummy nodes. Each vi has vi+1 as right child
and ui as left child. Figure 4a show an example of this transformation.

During this process at most O(n) dummy nodes are introduced, thus the
size of the tree does not asymptotically change. Dummy nodes are labeled with
values that do not affect the computation of μ (e.g., negative values). Since TR

is a regular binary tree the Parallel Tree Contraction can be performed using

Parallel Algorithms for Encoding and Decoding Blob Code 175

exclusively Rake operations. For the sake of clearness, from now on we will call TC

the tree that undergoes contraction even though the algorithm does not actually
need to maintain two copies of the regular binary tree. Initially TC = TR and
each node v set μ(v) equal to p(v) in TC (for the root node we set μ(0) = 0).
When a Rake operation is performed to remove a node v and its leaf child f (see
Figure 4b), the value of the other child u is updated as μ(u) = max(μ(u), μ(v)).
As a consequence of this update, the following invariant is preserved at each step
of the contraction process:

(1) For each node v in TC it holds μ(u) = max(PTR(u, x]).

Notice that the path from u to x is considered with respect to the uncontracted
tree TR. Once the contraction is done and the tree is reduced to exactly 3 nodes
(the root 0 and two leaves) the decontraction phase begins. All nodes removed
during rake operations are reinserted backward into the tree by means of Unrake
operations. When an Unrake operation is performed to reinsert node v and its
leaf child f in between nodes x and u (see Figure 4b), the following updates are
performed: μ(v) = max(μ(v), μ(x)) and μ(f) = max(μ(f), μ(v)). So, along the
uncontraction process the following invariant is preserved:

(2) For each node v in TC it holds μ(v) = max(PTR(v, 0]).

We underline that, at the beginning of the uncontraction process, Invariant (2)
holds for all the 3 nodes as a consequence of Invariant (1). To see that Invari-
ant (2) holds for each other node v, let’s consider that, when v is reinserted
by an Unrake operation, the following facts hold: by Invariant (1), value μ(v),
computed during the contraction phase, is equal to max(PTR(u, x]); by Invari-
ant (2), μ(x) = max(PTR(x, 0]); then the new value μ(v) = max(μ(v), μ(x)) =
max(PTR(v, 0]). A similar argument holds for node f reinserted together with v
by the Unrake.

Once μ(v) is known for each node v ∈ T , a vector U containing all unstable
nodes in increasing order can be computed. In order to avoid expensive sorting
algorithms we enumerate unstable nodes by means of Prefix Sum [13] compu-
tation. Finally, in order to obtain the functional digraph G = ϕb(T), we simply
replace the parent of the i-th unstable node in U with the parent of the (i+1)-th
unstable node in parallel. Notice that the last element in U is always node n−1,
and node 0 appears in U (even though we don’t use it).

Algorithm: Blob Parallel Encoding

Input: a n-tree T rooted in 0 represented by its parent vector p
Output: an (n− 2)-string C indexed from 1 to n− 1
1. Compute μ(v) for each v ∈ T

Create U containing all unstable nodes in increasing order
2. for v = 0 to n− 1 in parallel do
3. if v ≥ μ(v) then A[v] = 1 else A[v] = 0
4. Execute Prefix Sum on A
5. for v = 0 to n− 1 in parallel do
6. if v ≥ μ(v) then U [A[v]] = v

176 S. Caminiti and R. Petreschi

Exchange parents
7. for v = 1 to |U | − 2 in parallel do
8. p[U [v]] = p[U [v + 1]]

Generate the codeword
9. for v = 1 to n− 2 in parallel do
10. C[v] = p[v]

The computational complexity of this algorithm is optimal, indeed, Parallel Tree
contraction can be implemented in O(log n) time with O(n/ log n) processors on
an EREW PRAM (for a detailed description see [29]). Details on efficient trans-
formation of a tree into a regular binary tree can be found in [15]. The same
bounds hold for Prefix Sum computation. The four parallel cycles appearing in
the algorithm require O(1) time with n processors and do not imply concurrent
reading or writing. Applying Brent’s theorem all these operations can be sched-
uled on O(n/ log n) processors in O(log n) time. The overall cost is linear and
thus the algorithm is optimal.

4.3 Decoding Algorithm

Let us now focus on the decoding phase. Graph G can be easily obtained from the
codeword, then the most demanding step is the identification of stable and unsta-
ble nodes. We recall that a node v is stable in G if and only if v < max(P (v, γv]),
where γv is the maximum node in the core of the connected component contain-
ing v. In other words we have to compute the maximum value in the ascending
path of each node v, let us call this value η(v).

Differently from the encoding phase, here we cannot use Parallel Tree Con-
traction since the graph is not a tree: the ascending path of a node leads to the
core of its connected component that may be a cycle or a loop. This computation
can be obtained in a Pointer Jumping like fashion: for each node v we follow the
outgoing edge (v, g[v]) searching for the maximum value in the ascending path.
After each step we set g[v] = g[g[v]] and we stop after �log n� steps to avoid
infinite recursion inside cycles. The procedure details are as follows:

Algorithm: Compute η
Input: a functional digraph G represented by g
Output: η(v) for each node v

1. g[0] = 0
2. for v = 0 to n− 1 in parallel do
3. η(v) = 0
4. for step = 1 to �log n� do
5. for v = 0 to n− 1 in parallel do
6. η(v) = max(η(v), g[v], η(g[v]))
7. g[v] = g[g[v]]

Once η has been computed, a vector U containing all unstable nodes in increasing
order can be generated as done in the Blob ParallelEncoding algorithm. The
last step consists in inverting the parent exchanges performed in the encoding.

Parallel Algorithms for Encoding and Decoding Blob Code 177

Algorithm: Blob Parallel Decoding

Input: an (n− 2)-string C indexed from 1 to n− 1
Output: a n-tree T represented by its parent vector p

1. p[0] = g[0] = undefined
2. for v = 1 to n− 2 in parallel do
3. p[v] = g[v] = C[v]
4. p[n− 1] = g[n− 1] = 0
5. Compute η(v) for each node v on vector g

Create U containing all unstable nodes in increasing order
6. for v = 0 to n− 1 in parallel do
7. if v ≥ μ(v) then A[v] = 1 else A[v] = 0
8. Execute Prefix Sum on A
9. for v = 0 to n− 1 in parallel do
10. if v ≥ μ(v) then U [A[v]] = v

Exchange parents backward
11. for v = 2 to |U | − 1 in parallel do
12. p[U [v]] = p[U [v − 1]]
13. p[U [1]] = 0

The more demanding step of Blob Parallel Decoding is the computation
of η realized by algorithm Compute η. It requires O(log n) sequential iterations,
each of which uses O(n) processors. Moreover, for this algorithm the concurrent
read model is required, indeed, in Line 6, several nodes may access the same g[v]
and η(g[v]) concurrently. Once η is known, the computation of vector U , as well
as all the parallel cycles, can be implemented in O(log n) time with O(n/ log n)
processors on a EREW PRAM. The overall cost of Blob Parallel Decoding

is O(n log n) on a CREW PRAM.

References

1. Boppana, V., Hartanto, I., Fuchs, W.K.: Full Fault Dictionary Storage Based on
Labeled Tree Encoding. In: Proc. of IEEE VTS, pp. 174–179 (1996)

2. Brent, R.P.: The Parallel Evaluation of General Arithmetic Expressions. J. of
ACM 21(2), 201–206 (1974)

3. Caminiti, S.: On Coding Labeled Trees. PhD thesis, Sapienza University of Rome
(December 2007)

4. Caminiti, S., Deo, N., Micikevičius, P.: Linear-time Algorithms for Encoding Trees
as Sequences of Node Labels. Congr. Num. 183, 65–75 (2006)

5. Caminiti, S., Finocchi, I., Petreschi, R.: On Coding Labeled Trees. TCS 382(2),
97–108 (2007)

6. Caminiti, S., Petreschi, R.: String Coding of Trees with Locality and Heritabil-
ity. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 251–262. Springer,
Heidelberg (2005)

7. Caminiti, S., Petreschi, R.: Parallel Algorithms for Dandelion-Like Codes. In: Allen,
G., et al. (eds.) ICCS 2009, Part I. LNCS, vol. 5544, pp. 611–620. Springer, Hei-
delberg (2009)

8. Cayley, A.: A Theorem on Trees. Quart. J. of Math. 23, 376–378 (1889)

178 S. Caminiti and R. Petreschi

9. Chen, W.Y.C.: A General Bijective Algorithm for Trees. Proc. of NAS 87, 9635–
9639 (1990)

10. Deo, N., Kumar, N., Kumar, V.: Parallel Generation of Random Trees and Con-
nected Graphs. Congr. Num. 130, 7–18 (1998)

11. Deo, N., Micikevičius, P.: A New Encoding for Labeled Trees Employing a Stack
and a Queue. Bull. of ICA 34, 77–85 (2002)

12. Eğecioğlu, Ö., Remmel, J.B.: Bijections for Cayley Trees, Spanning Trees, and
Their q-Analogues. J. of Comb. Th. 42A(1), 15–30 (1986)

13. Fischer, M.J., Ladner, R.E.: Parallel Prefix Computation. J. of ACM 27(4), 831–
838 (1980)

14. Garg, V.K., Agarwal, A.: Distributed Maintenance of a Spanning Tree Using La-
beled Tree Encoding. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS,
vol. 3648, pp. 606–616. Springer, Heidelberg (2005)

15. Greenlaw, R., Petreschi, R.: Computing Prüfer Codes Efficiently in Parallel.
DAM 102(3), 205–222 (2000)

16. Jájá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)
17. Julstrom, B.A.: The Blob Code: A Better String Coding of Spanning Trees for

Evolutionary Search. In: Proc. of ROPNET, pp. 256–261 (2001)
18. Julstrom, B.A.: The Blob Code is Competitive with Edge-Sets in Genetic Al-

gorithms for the Minimum Routing Cost Spanning Tree Problem. In: Proc. of
GECCO, pp. 585–590 (2005)

19. Kreweras, G., Moszkowski, P.: Tree Codes that Preserve Increases and Degree
Sequences. J. of Disc. Math. 87(3), 291–296 (1991)

20. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1996)

21. Moon, J.W.: Counting Labeled Trees. William Clowes and Sons, London (1970)
22. Neville, E.H.: The Codifying of Tree-Structure. Proc. of Cambridge Phil. Soc. 49,

381–385 (1953)
23. Orlin, J.B.: Line-Digraphs, Arborescences, and Theorems of Tutte and Knuth. J.

of Comb. Th. 25, 187–198 (1978)
24. Paulden, T., Smith, D.K.: Recent Advances in the Study of the Dandelion Code,

Happy Code, and Blob Code Spanning Tree Representations. In: Proc. of CEC,
pp. 2111–2118 (2006)

25. Paulden, T., Smith, D.K.: Some Novel Locality Results for the Blob Code Spanning
Tree Representation. In: Proc. of GECCO, pp. 1320–1327 (2007)

26. Picciotto, S.: How to Encode a Tree. PhD thesis, University of California, San
Diego (1999)

27. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematik
und Physik 27, 142–144 (1918)

28. Reeves, C.R., Rowe, J.E.: Genetic Algorithms: A Guide to GA Theory. Springer,
Heidelberg (2003)

29. Reif, J.H.: Synthesis of Parallel Algorithms. Morgan Kaufmann, San Francisco
(1993)

30. Vishkin, U., Caragea, G.C., Lee, B.: Models for Advancing PRAM and other Al-
gorithms into Parallel Programs for a PRAM-On-Chip Platform. In: Handbook of
Parallel Computing: Models, Algorithms and Applications, ch. 5. CRC Press, Boca
Raton (2008)

31. Wen, X., Vishkin, U.: PRAM-on-Chip: First Commitment to Silicon. In: Proc. of
SPAA, pp. 301–302 (2007)

A Rooted-Forest Partition with Uniform Vertex
Demand�

Naoki Katoh and Shin-ichi Tanigawa

Department of Architecture and Architectural Engineering, Kyoto University,
Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540 Japan

{naoki,is.tanigawa}@archi.kyoto-u.ac.jp

Abstract. A rooted-forest is a graph having self-loops such that each
connected component contains exactly one loop, which is regarded as
a root, and there exists no cycle consisting of non-loop edges. In this
paper, we shall study on a partition of a graph into edge-disjoint rooted-
forests such that each vertex is spanned by exactly d components of the
partition, where d is a positive integer.

1 Introduction

The Tutte-Nash-Williams tree-packing theorem [11, 19] is one of fundamental
results on combinatorial optimization, which asserts that an undirected graph
G = (V, E) contains k edge-disjoint spanning trees if and only if |EG(P)| ≥
k|P|−k holds for any partition P of V , where EG(P) denotes the set of edges of
G connecting between two distinct components of P and |P| denotes the number
of components of P . Equivalently, it is well known that G can be partitioned into
k edge disjoint spanning trees if and only if |E| = k|V |−k and |F | ≤ k|V (F)|−k
for any nonempty F ⊆ E, where V (F) denotes the number of vertices spanned
by F (see e.g. [15, Chapter 51] for more details).

As a variant of the commonly studied trees or forests, a graph is called a
pseudoforest if each connected component contains at most one cycle [5]. An
equivalent formula of the existence of a pseudoforest is described in terms of a
counting condition [4]: |F | ≤ |V (F)| for any F ⊆ E. Whiteley [21] has proved a
generalization of the tree-packing theorem by mixing spanning trees and span-
ning pseudoforests: for two integers k and l with k ≥ l, a graph G = (V, E) can
be partitioned into edge-disjoint l spanning trees and k − l spanning pseudo-
forests if and only if |E| = k|V | − l and |F | ≤ k|V (F)| − l for any nonempty
F ⊆ E. Haas [6] has broadened the range of l: for two integers k and l with
k ≤ l ≤ 2k−1, a graph G = (V, E) satisfies |E| = k|V |− l and |F | ≤ k|V (F)|− l
for any nonempty F ⊆ E if and only if it can be partitioned into l edge-disjoint
trees such that each vertex is spanned by exactly k of them and any distinct l
subtrees (with at least one edge) among them do not span a same vertex subset.
� The first author is supported by Grant-in-Aid for Scientific Research (B) and Grant-

in-Aid for Scientific Research (C), JSPS. The second author is supported by Grant-
in-Aid for JSPS Research Fellowships for Young Scientists.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 179–190, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

180 N. Katoh and S.-i. Tanigawa

Also, Frank and Szegö [3] and Fekete and Szegö [2] have provided constructive
characterizations of these sparse graphs.

This paper focuses on a rooted-forest, that is, a forest such that each connected
component has a unique root. By regarding each self-loop in a graph as a root,
a graph is said to be a rooted-forest if and only if each connected component
contains exactly one loop but there exists no cycle consisting of non-loop edges.
In this setting, a collection of subgraphs of rooted-forests forms a graph class
that lies between forests and pseudoforests.

In this paper, we newly prove a necessary and sufficient condition of a graph
(having self-loops) to be decomposed into edge-disjoint rooted-forests with two
additional (nontrivial) conditions, a precolored condition of roots and a vertex
demand condition. To impose these conditions, throughout the paper, we shall
consider a loop-colored graph G = (V, E), i.e., each loop has some prespecified
color (as shown in Figure 1(a)), and let {c1, c2, . . . , ck} be the set of colors
appearing in the loop set of G. Roughly speaking, the color set of the roots
represents the set of distinct types of supplies, and among k types of roots we
require that every vertex receives d distinct types of supplies through d rooted-
forests.

To define our partition problem more formally, let us introduce the following
terminologies. For F ⊆ E, let L(F) denote the set of loops contained in F . A
subgraph G′ = (V ′, E′) of G is said to be a rooted-forest colored in ci if it satisfies
the following three conditions:

(F1) (V ′, E′ \ L(E′)) is a forest,
(F2) E′ does not contain any loop colored in cj with j
= i, and
(F3) each connected component of G′ contains exactly one loop colored in ci.

G′ is further called a spanning rooted-forest (colored in ci) if E′ spans V in
addition to (F1)∼(F3) (see Figure 1(b)). Also, if G[F] = (V (F), F) forms a
rooted-forest for F ⊆ E, then F is simply called a rooted-forest.

Given a loop-colored graph G = (V, E) and a positive integer d, we generalize
a concept of the forest partition to a partition E = {E1, E2, . . . , Ek} of E into k
components such that

(P1) each Ei is a rooted-forest colored in ci,
(P2) each vertex is spanned by exactly d components, i.e., |{i : δE(v) ∩ Ei
=
∅}| = d holds for each v ∈ V , where δE(v) denotes the set of edges of E
incident to v.

If a partition of E satisfies the two conditions (P1) and (P2), we say that E
(or G) admits a (k, d)-rooted-forest partition. Figure 1(c) shows an example of
a (4, 3)-rooted-forest partition. Finding such a partition may be considered as
a coloring problem of non-loop edges into k colors such that each color induces
a rooted-forest and the number of distinct colors appearing around a vertex is
equal to d.

For an edge set F ⊆ E, let χ(F) be the total number of distinct colors
appearing in L(F). The following forest partition theorem is our main result.

A Rooted-Forest Partition with Uniform Vertex Demand 181

(a)
(b)

(c)

Fig. 1. (a) A loop-colored graph with k = 4. (b) A spanning rooted-forest. (c) A
(4, 3)-rooted-forest partition.

Theorem 1. Let G be a loop-colored graph, k be the number of colors used in
G, and d be a positive integer with d ≤ k. Then, G admits a proper (k, d)-rooted-
forest partition if and only if it satisfies the following counting condition:

(C1) |E| = d|V |, and
(C2) |F | ≤ d|V (F)| − d + min{d, χ(F)} for any nonempty F ⊆ E.

We simply say that G satisfies the counting condition if it satisfies (C1) and
(C2) throughout the paper. Notice that, a set of edges satisfying the counting
condition is a base of the matroid induced by the integer-valued nondecreasing
submodular function μ : 2E → Z defined as

μ(F) = d|V (F)| − d + min{d, χ(F)} (F ⊆ E). (1)

Therefore, Theorem 1 implies that a set of edges admitting a (k, d)-rooted-forest
partition is characterized in terms of a matroid as the well-known characteriza-
tion of forest-partitions in terms of the union of graphic matroids, see e.g. [15].

Motivations. Let us explain a less obvious application of the tree-packing the-
orem to the rigidity theory. The rigidity theory, which concerns with rigidity
and flexibility of structural frameworks, has a wide range of applications, e.g. in
structural engineering, in molecular biology, in computer aided design, in local-
ization problems of sensor networks and so on. One major direction towards the
mathematical developments of the rigidity theory tries to extend combinatorial
characterizations of the static/first-order rigidity of structural frameworks. The
celebrated Maxwell-Laman theorem [10] states that a bar-joint framework in
two dimensional space (see Figure 2(a)) is (bar-inclusionwise) minimally rigid
if and only if the underlying graph G = (V, E) satisfies the following condition:
|E| = 2|V | − 3 and |F | ≤ 2|V (F)| − 3 for any nonempty F ⊆ E. The tree-
packing theorem further tells us the following combinatorial characterizations of
rigid frameworks:

(Recki’s 2spanning-tree partition [14]). G is a graph of a minimally rigid
framework if and only if duplicating any edge results in a graph which can
be partitioned into two edge-disjoint spanning trees.

(Crapo’s proper 3tree2 partition [1]). G is a graph of a minimally rigid
framework if and only if it can be partitioned into three trees such that each

182 N. Katoh and S.-i. Tanigawa

(a)
(b) (c) (d)

Fig. 2. (a) A graph of minimally rigid bar-joint framework in two dimensional space,
where solid/dotted/broken lines indicate a proper 3tree2-partition. (b) A body-bar
framework in three dimensional space. (c) A proper (3, 2)-rooted-forest partition of a
loop-colored graph, and (d) its rigid realization as a bar-joint-slider framework.

vertex is spanned by exactly two of them and any two subtrees of them do not
span a same vertex subset. (A partition satisfying the first condition is called
“3tree2” and the second condition is called “proper” (see Figure 2(a)).)

Tay [18] has provided a proof of Crapo’s theorem without using Laman’s theo-
rem, which indicates a usefulness of tree-packing theorems in the rigidity theory.
A more direct connection between a tree-packing and the rigidity has appeared
in body-bar frameworks, that is, structures consisting of rigid bodies connected
by rigid bars (see Figure 2(b)). Tay [16] has proved, by using the tree-packing
theorem, that a body-bar framework is generically rigid in d-dimensional space
if and only if the underlying graph (obtained by regarding each body as a vertex
and each bar as an edge) contains

(
d+1
2

)
edge-disjoint spanning trees. Tay [17]

and Whiteley [20] independently extended this result; they relate the infinites-
imal rigidity of body-hinge frameworks to edge-disjoint spanning trees of the
underlying graphs, and Katoh and Tanigawa [8] recently proved that this com-
binatorial characterization further apply to panel-hinge frameworks.

Recently investigating the rigidity of frameworks with external constraints is
becoming popular, and in such a context an external constraint imposed on a
vertex can be regarded as a self-loop (or self-loops) when extracting the under-
lying graphs. The following our recent result [9] on bar-joint frameworks under
vertex-slider constraints (called bar-joint-slider frameworks) shows a direct ap-
plication of (k, d)-rooted-forest partitions.

Theorem 2 ([9]). Let G be a loop-colored graph and let d be a mapping from a
color to a direction (i.e. a vector in R2). Then, G can be realized as a minimally
rigid bar-joint-slider framework in two dimensional space such that each loop
colored in c is realized as a slider directed to d(c) if and only if G admits a
proper (k, 2)-rooted-forest partition.

Figures 2 (c) and (d) show an example of a proper (k, 2)-rooted-forest partition
and its bar-joint-slider realization. This result generalizes Crapo’s proper 3tree2-
partition to the case of bar-joint-slider frameworks. As in the two dimensional
case, we strongly believe that our main theorem on (k, d)-rooted-forest partitions

A Rooted-Forest Partition with Uniform Vertex Demand 183

will be able to bridge between the rigidity of higher dimensional frameworks
with external constraints and the corresponding counting conditions.

Contribution. This paper is a succession of our recent paper [9] on the infinites-
imal rigidity of bar-joint-slider frameworks explained above. In that paper, we
have proved Theorem 1 for a special case of d = 2. The proof for k = d given
in Section 3.1 is directly followed from an argument given in [9]. A nontrivial
part of this paper is Section 3.2 for k > d; the argument used in the proof in [9]
cannot be extended to the case of d > 2.

2 Preliminaries

We skip the definition, basic terminologies and fundamental properties of ma-
troids (see e.g. [12]). We will use the following preliminary result concerning
the matroid induced by a nondecreasing submodular function, which can be
found in [12, Chapter 12]. The function f : 2E → R is called submodular
if f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) for any X, Y ∈ 2E and nonde-
creasing if f(X) ≤ f(Y) for any X ⊆ Y ⊆ E. Let f : 2E → Z be an
integer-valued nondecreasing submodular function. It is known that f induces a
matroid on E, denoted by Mf , whose collection of independent sets is written
by I(Mf) = {I ⊆ E : |I ′| ≤ f(I ′) for all nonempty I ′ ⊆ I} ∪ {∅}. For an edge
set F , P(F) denotes the collection of all possible partitions {F0, F1, . . . , Fm} of
F for some integer m with 0 ≤ m ≤ |F | such that Fi
= ∅ for each i = 1, . . . , m
(and F0 may be empty). The following proposition provides an explicit formula
expressing the rank function rf of Mf , which is in the slightly different form
from that given in e.g. [12, Chapter 12] or [15].

Proposition 1. Let f be an integer-valued nondecreasing submodular function
on E satisfying f(F) ≥ 0 for every nonempty F ⊆ E. Then, for any nonempty
F ⊆ E, the rank rf (F) of F in Mf is given by

rf (F) = min{|F0|+
∑m

i=1 f(Fi) : {F0, . . . , Fm} ∈ P(F)}. (2)

Consider the matroid union of Mf and Mg induced by integer-valued non-
decreasing submodular functions f and g on E (see e.g. [15] for the union of
matroids). Pym and Perfect [13] proved that Mf ∨Mg is the matroid induced
by the submodular function f + g, i.e. Mf ∨ Mg = Mf+g, if f(F) ≥ 0 and
g(F) ≥ 0 hold for every F ⊆ E including ∅. Although Mf ∨Mg =Mf+g may
not hold in general in the case of f(∅) < 0 or g(∅) < 0, a sufficient condition for
that equation is known.

Lemma 1 ([9]). Let f and g be integer-valued nondecreasing submodular func-
tions on E satisfying f(F) ≥ 0 and g(F) ≥ 0 for every nonempty F ⊆ E.
Then, Mf ∨ Mg = Mf+g holds if, for any F ⊆ E, there exists a partition
{F0, F1, . . . , Fm} ∈ P(F) that takes the minimum values of (2) for rf (F) and
rg(F) simultaneously.

184 N. Katoh and S.-i. Tanigawa

3 Proof of Theorem 1

3.1 Case of k = d

We shall first consider a special case of Theorem 1: k, the number of colors
appearing in G, is equal to the vertex demand d. Let us denote by c1, c2, . . . , cd

the colors that we shall consider in this subsection. We prove that, if k = d,
then (d, d)-rooted-forest partitions can be characterized in terms of the union of
d matroids.

For a vertex set V , let K(V) be the complete graph on V , and K+(V) be the
loop-colored graph obtained from K(V) by attaching a loop colored in ci to each
vertex for every 1 ≤ i ≤ d. (Namely d|V | loops are inserted in total.) We simply
denote by K+(V) the edge set of K+(V) if it is clear from the context. For an
edge set F , G[F] denotes the graph edge-induced by F , i.e. G[F] = (V (F), F).

For each color ci, let us first consider the following function τi : 2K+(V) → Z;
for F ⊆ K+(V),

τi(F) = |V (F)| − 1 + χi(F), (3)

where χi(F) is defined by χi(F) = 1 if L(F) contains a loop colored in ci and
otherwise χi(F) = 0. Then, it is not difficult to see that τi is submodular. Also
τi is nondecreasing, and hence it induces a matroid, denoted byMτi , on K+(V).

Lemma 2. An edge set F ⊆ K+(V) is a base of Mτi if and only if it is a
spanning rooted-forest colored in ci.

Let us consider how independent sets of
∨d

i=1Mτi can be characterized in terms
of the counting condition. To apply Lemma 1, we just need to show the following
property.

Lemma 3. Let ci be a color and let F ⊂ K+(V). Let m be the total number of
connected components of G[F] and {F1, . . . , Fm} be a partition of F such that, for
each j = 1, . . . , m, Fj is the edge set of a connected component of G[F]. Also,
let F0 = ∅. Then, {F0, F1, . . . , Fm} ∈ P(F) takes the minimum value of (2).
Namely, the rank rτi(F) of F in Mτi can be written as rτi(F) =

∑m
l=1 τi(Fl).

Combining Lemma 1 and Lemma 3, we obtain
∨d

i=1Mτi = M∑
τi

, and the
following lemma follows from

∑
τi =

∑
(|V (F)|−1+χi(F)) = d|V (F)|−d+χ(F).

Lemma 4. Let F ⊆ K+(V). Then, F is a base of
∨d

i=1Mτi if and only if it
satisfies the counting condition.

We are now ready to show Theorem 1 for k = d.

Proof (Proof of Theorem 1 for k = d). Lemma 2 implies that a base of Mτi

is exactly a spanning rooted-forest colored in ci. Hence, an edge set is a base
of

∨d
i=1Mτi if and only if it can be partitioned into d edge subsets Ei each

of which is a spanning rooted-forest colored in ci, and equivalently it admits a
(d, d)-rooted-forest partition. Combining Lemma 4 with this fact, we conclude
that an edge set admits a (d, d)-rooted-forest partition if and only if it satisfies
the counting condition. �

A Rooted-Forest Partition with Uniform Vertex Demand 185

3.2 Case of k > d

Let us first show the necessity of Theorem 1.

Proof (the necessity of Theorem 1). Let {E1, . . . , Ek} be a (k, d)-rooted-forest
partition of E. Note that (P1) implies |Ei| = |V (Ei)| for each i. Also, no-
tice that (P2) implies

∑k
i=1 |V (Ei)| = d|V | since each vertex appears in ex-

actly d sets among V (Ei), i = 1, . . . , k. Therefore, we have |E| = ∑k
i=1 |Ei| =∑k

i=1 |V (Ei)| = d|V |, which implies (C1).
(C2) can be shown in a similar manner. For any F ⊆ E, let Fi = F ∩ Ei, i =

1, . . . , k. Let s = χ(F) and t = |{i : Fi
= ∅}|. Note that s ≤ t. Without loss of
generality, we assume that Fi
= ∅ for 1 ≤ i ≤ t (and Fi = ∅ for t + 1 ≤ i ≤ k),
and assume L(Fi)
= ∅ for 1 ≤ i ≤ s (and L(Fi) = ∅ for s + 1 ≤ i ≤ k). Then,
by (P1), we have the following fact: |Fi| ≤ |V (Fi)| for each 1 ≤ i ≤ s, while
|Fi| ≤ |V (Fi)| − 1 for each s + 1 ≤ i ≤ t. Also, since each vertex of V (F) is
spanned by at most d sets among Fi, i = 1, . . . , t by (P2), we have∑t

i=1 |V (Fi)| ≤ d|V (F)|. (4)

To see (C2), suppose for a contradiction that F � E violates the counting
condition, i.e., |F | ≥ μ(F) + 1 = d|V (F)| − d + min{d, s}+ 1 (recall s = χ(F)).
Then, we have |F | = ∑t

i=1 |Fi| ≤
∑s

i=1 |V (Fi)|+
∑t

i=s+1 |V (Fi)|−1 ≤ t|V (F)|−
(t− s), and hence

d|V (F)| − d + min{d, s}+ 1 ≤ |F | ≤ t|V (F)| − (t− s). (5)

On the other hand, by using (4), we also have |F | = ∑t
i=1 |Fi| ≤ (

∑t
i=1 |V (Fi)|)−

(t− s) ≤ d|V (F)| − (t− s), and hence

d|V (F)| − d + min{d, s}+ 1 ≤ |F | ≤ d|V (F)| − (t− s). (6)

If t < d, then (5) implies 0 ≥ (d − t)|V (F)| − d + min{d, s} + 1 + (t − s) ≥
min{d, s} − s + 1 = 1 since |V (F)| ≥ 1 and s ≤ t < d. This is a contradiction.

If t ≥ d, then t + min{d, s} ≥ d + s holds for any t and s (with t ≥ d and
t ≥ s). Hence, (6) implies 1 ≤ 0, which is a contradiction. �

To show the sufficiency, we need some terminologies. Suppose that a loop-
colored graph G = (V, E) satisfies the counting condition. An edge set F ⊆ E is
called tight if |F | = μ(F). A tight set F is said to be small if |V (F)| = 1 (and
hence F consists of loops attached to a vertex), and otherwise large. Also, a tight
set is connected if it induces a connected subgraph, and otherwise disconnected.
We need the following easy observation.

Lemma 5. Let G be a loop-colored graph satisfying the counting condition. Sup-
pose that G is disconnected. Then, each connected component of G satisfies the
counting condition.

186 N. Katoh and S.-i. Tanigawa

Let us start the proof of the sufficiency of our main theorem.

Proof (the sufficiency of Theorem 1). By Lemma 5, we can assume that G is con-
nected. Also, we can assume |V | ≥ 2 since Theorem 1 trivially holds if |V | = 1.

The proof is done by induction on |E \L(E)|. The following two lemmas cope
with the case when G have a large tight set.

Lemma 6. If G contains a large tight set F with χ(F) < d, then G admits a
(k, d)-rooted-forest partition.

Lemma 7. If G contains a large and connected tight set F with χ(F) ≥ d and
V (F) � V , then G admits a (k, d)-rooted-forest partition.

By the previous two lemmas, we now concentrate on G which contains no large
and connected tight set F with V (F) � V . Let us assume that G is a counterex-
ample of the statement of Theorem 1, and prove a property of this counterex-
ample in the next lemma. We then prove that the existence of a counterexample
G implies a contradiction.

Lemma 8. Suppose that G admits no (k, d)-rooted-forest partition (i.e., G is a
counterexample). Let l be a loop colored in ci attached to a vertex v in G. Then,
any vertex u adjacent to v possesses (at least) one of the following properties in
G: (i) u is incident to a loop colored in ci, or (ii) u is incident to d loops.

Proof. Let e be an edge connecting u and v in G. Consider the following opera-
tion that generates a new graph: remove e and then insert a new loop l′ colored
in ci to u. If the resulting graph, denoted by G′, satisfies the counting condition,
then G′ admits a (k, d)-rooted-forest partition E ′ = {E′

1, . . . , E
′
k} by induction.

Define E as {E′
1, . . . , E

′
i−1, E

′
i \ {l′} ∪ {e}, E′

i+1, . . . , Ek}. Then, it is not difficult
to see that E is a (k, d)-rooted-forest partition of E, contradicting that G is a
counterexample.

Therefore, G′ cannot satisfy the counting condition, and there exists an edge
subset C in G′ satisfying |C| ≥ μ(C) + 1. Let us take C as an inclusionwise
minimal edge subset satisfying this inequality. Clearly l′ ∈ C (since otherwise
an edge subset of G violates the counting condition). We claim

v /∈ V (C). (7)

To see this, suppose v ∈ V (C). Let C′ = C \ {l′}∪{e, l}. We then have V (C′) =
V (C) by v ∈ V (C), and we also have |C′| ≥ |C| by l′ ∈ C and e /∈ C. Also,
χ(C′) = χ(C) holds since l has the same color as l′. Thus, |C′| ≥ |C| ≥ d|V (C)|−
d+min{d, χ(C)}+1 = d|V (C′)|−d+min{d, χ(C′)}+1 = μ(C′)+1, contradicting
that G satisfies the counting condition since C′ ⊆ E. Hence (7) holds.

(7) implies V (C) � V . Consider C \ {l′}. Then, by C \ {l′} ⊂ E, |C \ {l′}| ≤
μ(C \ {l′}) holds. Combining this inequality, |C| ≥ μ(C) + 1, and μ(C \ {l′}) ≤
μ(C), we obtain |C \ {l′}| = μ(C \ {l′}). Therefore, C \ {l′} is a tight set with
V (C \ {l′}) � V . Recall that G cannot have any large connected tight set F
with V (F) � V by Lemmas 6 and 7. Moreover, Lemma 5 implies that every

A Rooted-Forest Partition with Uniform Vertex Demand 187

connected component of a disconnected tight set is again a tight set. Hence the
minimality of C implies that C \ {l′} is connected. As a result, C \ {l′} must be
a small tight set that spans u, i.e., C \ {l′} consists of a set of loops attached
to u. Recall that C violates the counting condition. Namely, adding a loop l′

colored in ci into C \ {l′} violates the counting condition, implying that either
C \ {l′} contains a loop colored in ci or C \ {l′} consists of d loops according to
the definition of μ (see (1)). �
By using the last lemma, we now show that the existence of a counterexample
derives a contradiction. Suppose, for a contradiction, that G admits no (k, d)-
rooted-forest partition. If G has a vertex incident to d loops, then the properties
(i) and (ii) of Lemma 8 imply that any vertex adjacent to v is also incident to
d loops. Since G is connected (due to Lemma 5), we see that every vertex of
G is incident to d loops. In total we have d|V | loops in G. However, since G is
connected with |V | ≥ 2, E \ L(E)
= ∅ holds. Therefore, we obtain |E| > d|V |,
contradicting that G satisfies the counting condition (C1).

Hence G has no vertex v incident to d loops. The property (i) of Lemma 8
then implies that, if there is a vertex incident to a loop colored in ci, then any
adjacent vertex also has a loop colored in ci. Since G is connected, continuing
this process, we eventually see that every vertex is incident to a loop colored
in ci. As a result, every vertex is incident to k loops (k denotes the number of
colors appearing in the set of loops of G). By k ≥ d, this contradicts that G has
no vertex incident to d loops.

This completes the proof of Theorem 1. �
Note that the above proof is constructive, i.e., it provides an explicit way to
construct a (k, d)-rooted-forest partition.

4 Algorithms

In this section we shall briefly discuss how to check whether a loop-colored
graph satisfies the counting condition (i.e. (C1) and (C2)) or not. Imai [7] has
shown that, for a given graph H = (V, E) and two integers k and l, it can be
decided whether H satisfies |F | ≤ k|V (F)| − l for every nonempty F ⊆ E in
polynomial time. Our algorithm is an extension of Imai’s technique. Based on
this algorithm, we can show how to compute a large and connected tight set,
and provide an algorithm for constructing a (k, d)-rooted-forest partition. Due
to the space limitation, we omit the detailed description.

We use the following conventional notations. In a digraph D = (U, A) with a
node set U and an arc set A, a = (u, v) ∈ A indicates an arc from u to v and
called a leaving arc from u (and an entering arc to v). Similarly, for any S ⊆ U ,
a = (u, v) is a leaving arc from S if u ∈ S and v /∈ S. A network N = (D, c) is a
pair of a digraph D and a capacity function c on A. In the subsequent discussions
we will focus on a network having two designate nodes s and t, called a source
and a sink, respectively. An s− t flow f is a function on A with 0 ≤ f(a) ≤ c(a)
for every a ∈ A satisfying the flow conservation law at each node (except for s

188 N. Katoh and S.-i. Tanigawa

and t). The value of f is the sum of f(a) over all leaving arcs a from s. For any
S ⊆ U with s ∈ S and t /∈ S, the set δN (S) of arcs leaving from S is called an
s− t cut, and its weight is defined as the sum of c(a) over all a ∈ δN (S).

Let us first claim our result.

Theorem 3. Let G = (V, E) be a loop-colored graph, k be the number of colors
appearing in G, d be an integer with d ≤ k. Then, one can check whether G
satisfies the counting condition or not in O(d3|V |2) time.

Proof. Since (C1) can be trivially checked from the input, we assume that |E| =
d|V | holds. Now let us consider how to check (C2).

To explain the basic idea, let us first consider how to decide whether G satisfies
|F | ≤ d|V (F)| for every F ⊆ E. We shall define an auxiliary network N1 =
(D1, c1) as follows. The node set of D1 is defined as E ∪V ∪{s, t}, where s and t
are a sink and a source, respectively, and the arc set A1 of D1 is defined as A1 =
{(e, v) ∈ E × V : e is incident to v in G} ∪ {(s, e) | e ∈ E} ∪ {(v, t) | v ∈ V }.
Namely, each non-loop edge has two leaving arcs while a loop has one leaving
arc in N1 (see Figures 3(a) and (b) for an example). The capacity function c1 on
A1 is defined as c1(a) =∞ if a ∈ E×V , c1(a) = 1 if a ∈ {s}×E, and c1(a) = d
if a ∈ V × {t}. Then, the network N1 has the following property on s − t cuts.
For any F ⊆ E and for any node subset S ⊆ E ∪ V ∪ {s} of N1 with s ∈ S and
S ∩E = F , the weight of the s− t cut δN1(S) is at least |E \ F |+ d|V (F)|, and
moreover this value can be achieved when S∩V is the set of all vertices spanned
by F in G. Therefore, the max-flow min-cut theorem implies that |F | ≤ d|V (F)|
holds for any F ⊆ E if and only if the value of a maximum s − t flow in N1 is
equal to |E| (see [7, Lemma 2.2] for more details). Thus, one can check whether
G satisfies |F | ≤ d|V (F)| for every F ⊆ E by a maximum flow algorithm.

Checking |F | ≤ d|V (F)| − d can be performed by extending the above tech-
nique. For an edge e ∈ E, define a capacity function c1,e on A1 as c1,e(a) = d+1
if a = (s, e) and otherwise c1,e(a) = c1(a). Let N1,e = (D1, c1,e). Namely, we
increase the capacity of the arc (s, e) from 1 to d + 1. Suppose that there ex-
ists a maximum s − t flow f in N1 whose value is equal to |E|. Then, as in
the case of N1, it can be observed from the max-flow min-cut theorem that
|F | ≤ d|V (F)| − d holds for any e ∈ F ⊆ E if and only if the value of a
maximum flow in N1,e is equal to |E| + d. Therefore, one can check whether
G = (V, E) satisfies |F | ≤ d|V (F)| − d for any F ⊆ E by computing the values
of maximum s− t flows in N1,e for all e ∈ E (see [7, Theorem 2.1]). Observe that
one can compute a maximum s − t flow of N1,e from that of N1 by at most d
applications of a flow augmentation. Thus, we have a way to check the condition
|F | ≤ d|V (F)| − d in Tmax flow(N1)+ O(d|E||A1|) time, where Tmax flow(N1) is
the time for computing a maximum s− t flow in N1.

In order to take into account the term, min{F, χ(F)}, appearing in our count-
ing condition (C2), we shall insert a gadget into N1. Let us define a network
N2 = (D2, c2) as follows. The node set of D2 is L(E) ∪ C ∪ {s, t, n}, where C
denotes the set {c1, . . . , ck} of colors appearing in G, s and t are a source and
a sink, respectively, and n is a special node. The arc set A2 of D2 is defined as
A2 = {(e, c) ∈ L(E) × C : e is colored in c} ∪ {(s, e) | e ∈ L(E)} ∪ {(c, n) | c ∈

A Rooted-Forest Partition with Uniform Vertex Demand 189

v1

v2
v3

v4
l1

l2 l3

l4

e1

e2

e3
e4

(a)

v1

v2

v3

v4

l1

l2

l3

l4

e1

e2

e3

e4

s t

(b)

l1

l2

l3

l4

c1

c2

c3

s t

n

(c)

v1

v2

v3

v4

l1

l2

l3

l4

e1

e2

e3

e4

c1

c2

c3

s t

n

(d)

Fig. 3. (a)A loop-colored graph G = (V, E) with k = 3, (b)D1 = (E ∪ V ∪ {s, t}, A1),
(c)D2 = (L(E) ∪ C ∪ {s, t, n}, A2), and (d)D = (E ∪ V ∪ C ∪ {s, t, n}, A1 ∪ A2)

C}∪ {(n, t)} (see Figure 3(c)). Also, the capacity function c2 on A2 is defined as
c2(a) =∞ if a ∈ L(E)×C, c2(a) = 1 if a ∈ {s}×L(E), c2(a) = 1 if a ∈ C×{n},
and c2(a) = d if a = (n, t). Then, the network N2 has the following property:
for any nonempty F ⊆ L(E) and for any node subset S ⊆ L(E) ∪ C ∪ {s, n} of
N2 with s ∈ S and S ∩ L(E) = F , the weight of the s− t cut δN2(S) is at least
|L(E) \ F |+ min{d, χ(F)} (and this value can be achieved).

We now put N1 and N2 together by overlapping the node set L(E) ∪ {s, t},
and denote the resulting network by N = (D, c). Namely, D is a digraph on
E ∪ V ∪ C ∪ {s, t, n} whose arc set is A = A1 ∪ A2 (see Figure 3(d)), and c
is a capacity function defined as c(a) = ∞ if a ∈ E × (V ∪ C), c(a) = 1 if
a ∈ {s} × E, c(a) = d if a ∈ V × {t}, c(a) = 1 if a ∈ C × {n}, and c(a) = d if
a = (n, t). Then, for any F ⊆ E and any node subset S of N with s ∈ S and
S∩E = F , the weight of the cut δN (S) is at least |E\F |+d|V (F)|+min{d, χ(F)}
(and this value can be achieved). Therefore, by the max-flow min-cut theorem,
|F | ≤ d|V (F)|+ min{d, χ(F)} holds for any F ⊆ E if and only if the value of a
maximum s− t flow in N is equal to |E|.

The extension of this algorithm for coping with the term −d (i.e. check-
ing |F | ≤ d|V (F)| − d + min{d, χ(F)}) can be done in the same technique
as above; the algorithm checks whether the value of a maximum flow of N
can be augmented from |E| to |E| + d when increasing the capacity of an
arc (s, e) from 1 to d + 1 for each e ∈ E. Therefore, one can check whether
|F | ≤ d|V (F)| − d + min{d, χ(F)} is satisfied for any nonempty F ⊆ E in
Tmax flow(N) + O(d|E||A|) time.

It can be shown that a maximum s−t flow of N can be computed in O((d(|E|+
|V |))3/2) time by replacing each arc a with the capacity c(a) by c(a) parallel arcs
with unit capacity (see e.g. [15, Corollary 9.6.a]). Therefore, putting |E| = d|V |
and |A| = O(d|V |), we obtain an O(d3|V |2) time algorithm. This completes the
proof.

Although the detailed description is omitted in this extended abstract, we can
provide an algorithm for constructing (k, d)-rooted-forest partition based on the
proof of Theorem 1 and this auxiliary graph.

Theorem 4. Let G = (V, E) be a loop-colored graph satisfying the counting
condition, k be the number of colors used in G, and d be an integer with d ≥ k.
Then, one can find a (k, d)-rooted-forest partition in polynomial time.

190 N. Katoh and S.-i. Tanigawa

References

1. Crapo, H.: On the generic rigidity of plane frameworks. Technical report, Institut
National de Recherche en Informatique et en Automatique (1990)

2. Fekete, Z., Szegö, L.: A note on [k, l]-sparse graphs. In: Graph Theory in Paris; A
Conference in Memory of Claude Berge, pp. 169–177 (2004)

3. Frank, A., Szego, L.: Constructive characterizations for packing and covering with
trees. Discrete Applied Mathematics 131(2), 347–371 (2003)

4. Gabow, H., Tarjan, R.: A linear-time algorithm for finding a minimum spanning
pseudoforest. Information Processing Letters 27(5), 259–263 (1988)

5. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid
sums and applications. Algorithmica 7(1), 465–497 (1992)

6. Haas, R.: Characterizations of arboricity of graphs. Ars Combinatoria 63, 129–138
(2002)

7. Imai, H.: Network flow algorithms for lower truncated transversal polymatroids.
Journal of the Operations Research Society of Japan 26(3), 186–210 (1983)

8. Katoh, N., Tanigawa, S.: A proof of the molecular conjecture. In: Proceedings of
the 25th annual symposium on Computational geometry, pp. 296–305. ACM, New
York (2009)

9. Katoh, N., Tanigawa, S.: On the infinitesimal rigidity of bar-and-slider frameworks.
In: Dong, Y., Du, D.-Z. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 524–533. Springer,
Heidelberg (2009)

10. Laman, G.: On graphs and rigidity of plane skeletal structures. Journal of Engi-
neering mathematics 4(4), 331–340 (1970)

11. Nash-Williams, C.: Edge-disjoint spanning trees of finite graphs. Journal of the
London Mathematical Society 1(1), 445 (1961)

12. Oxley, J.: Matroid theory. Oxford University Press, USA (1992)
13. Pym, J., Perfect, H.: Submodular functions and independence structures. J. Math.

Anal. Appl. 30(1-31), 33 (1970)
14. Recski, A.: Network theory approach to the rigidity of skeletal structures. Part

II. Laman’s theorem and topological formulae. Discrete Appl. Math. 8(1), 63–68
(1984)

15. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency. Springer,
Heidelberg (2003)

16. Tay, T.: Rigidity of multi-graphs. I. Linking rigid bodies in n-space. Journal of
combinatorial theory. Series B 36(1), 95–112 (1984)

17. Tay, T.: Linking (n−2)-dimensional panels in n-space II:(n−2, 2)-frameworks and
body and hinge structures. Graphs and Combinatorics 5(1), 245–273 (1989)

18. Tay, T.: A new proof of Lamans theorem. Graphs and combinatorics 9(2), 365–370
(1993)

19. Tutte, W.: On the problem of decomposing a graph into n connected factors. J.
London Math. Soc. 36, 221–230 (1961)

20. Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM Journal
on Discrete Mathematics 1, 237 (1988)

21. Whiteley, W.: Some matroids from discrete applied geometry. Contemporary Math-
ematics 197, 171–312 (1996)

A Simple and Faster Branch-and-Bound
Algorithm for Finding a Maximum Clique�

Etsuji Tomita��, Yoichi Sutani, Takanori Higashi,
Shinya Takahashi, and Mitsuo Wakatsuki

Advanced Algorithms Research Laboratory,
Department of Information and Communication Engineering

The University of Electro-Communications
Chofugaoka 1-5-1, Chofu, Tokyo 182-8585, Japan

tomita@ice.uec.ac.jp

Abstract. This paper proposes new approximate coloring and other
related techniques which markedly improve the run time of the branch-
and-bound algorithm MCR (J. Global Optim., 37, 95–111, 2007), pre-
viously shown to be the fastest maximum-clique-finding algorithm for a
large number of graphs. The algorithm obtained by introducing these
new techniques in MCR is named MCS. It is shown that MCS is suc-
cessful in reducing the search space quite efficiently with low overhead.
Consequently, it is shown by extensive computational experiments that
MCS is remarkably faster than MCR and other existing algorithms. It
is faster than the other algorithms by an order of magnitude for several
graphs. In particular, it is faster than MCR for difficult graphs of very
high density and for very large and sparse graphs, even though MCS is
not designed for any particular type of graphs. MCS can be faster than
MCR by a factor of more than 100,000 for some extremely dense random
graphs.

1 Introduction

A clique is a subgraph in which all pairs of vertices are adjacent to each other.
Finding a maximum clique in a graph is an NP-hard problem, and it is difficult
to obtain the exact solution efficiently [3]. It is also difficult to obtain even a
satisfactory approximate solution [12]. Nevertheless, many practical problems
can be formulated as maximum clique problems (e.g., see [3], [6], [1], [5], [15],
and others). Therefore, it is required to develop exact maximum-clique-finding
algorithms that run very fast in practice.

� This research was supported in part by Grants-in-Aid for Scientific Research Nos.
16300001, 19500010, and 21300047 from the Ministry of Education, Culture, Sports,
Science and Technology, Japan. It was also partially supported by a Special Grant
for the Strategic Information and Communications R&D Promotion Programme
(SCOPE) Project from the Ministry of Internal Affairs and Communications, Japan.

�� Corresponding author. The author is also with the Research and Development
Initiative, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 191–203, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

192 E. Tomita et al.

One standard approach to develop a fast algorithm is based on the branch-
and-bound method, where the focus is on reducing the search space efficiently
with low overhead. We developed a simple branch-and-bound algorithm that is
referred to as MCR [23]; that was successful in reducing the search space with
low overhead.

Here, simplicity is very important to make the overhead as low as possible. It
was shown in computational experiments that MCR clearly outperformed other
existing algorithms in finding a maximum clique. However, it is not sufficiently
fast to solve large practical problems. Hence, much faster algorithms are still in
great demand.

In this paper, we propose a new approximate coloring that can play a crucial
role in the branch-and-bound algorithm. Subsequently, we introduce a new ad-
junct ordered set of vertices for approximate coloring. Following this ordered set
of vertices, we present a new technique for reconstructing the adjacency matrix
of a graph. The algorithm that is obtained by introducing these new techniques
in MCR is named MCS. While MCS inherits the simplicity of MCR to a large
extent, MCS is much more successful in reducing the search space quite effi-
ciently. The main difference between the search spaces of MCR and MCS lies
in the new approximate coloring together with the adjunct ordered set of ver-
tices introduced in MCS. The resulting overhead in MCS is still low due to the
simplicity of the newly introduced techniques. Consequently, extensive compu-
tational experiments have shown that MCS is remarkably faster than MCR and
other algorithms. MCS is faster than other algorithms by an order of magnitude
for several graphs. In particular, it is faster than MCR for difficult graphs with
very high density and for very large and sparse graphs, even though MCS is not
designed for any particular type of graphs.

MCR is only briefly described in Sect. 3 due to the page limitation, and the
reader is advised to refer to [23] for further details.

2 Definitions and Notation

(1) We consider a simple undirected graph G = (V, E) with a finite set V of
vertices and a finite set E of edges that comprises unordered pairs (v, w)(=
(w, v)) of distinct vertices. The set V of vertices is considered to be ordered,
and the i-th element in it is denoted by V [i]. A pair of vertices v and w are
said to be adjacent if (v, w) ∈ E.

(2) For a vertex v ∈ V , let Γ (v) be the set of all vertices that are adjacent to v
in G = (V, E), i.e., Γ (v) = {w ∈ V |(v, w) ∈ E}. We call |Γ (v)| the degree of
v. Here, the number of elements in a set S is denoted by |S|.

(3) For a subset R ⊆ V of vertices, G(R) = (R, E ∩ (R × R)) is an induced
subgraph. An induced subgraph G(Q) is said to be a clique if (v, w) ∈ E
for all v, w ∈ Q ⊆ V , with v
= w. In this case, we may simply say that Q
is a clique. The largest clique in a graph is called a maximum clique, and
the number of vertices in a maximum clique in an induced subgraph G(R)
is denoted by ω(R).

A Simple and Faster Algorithm for Finding a Maximum Clique 193

3 Maximum Clique Algorithm MCR

3.1 Branch-and-Bound Algorithm

The basic branch-and-bound algorithm MCR [23] begins with a small clique and
continues finding larger and larger cliques until one is found that can be verified
to have the maximum size. To be more precise, we maintain global variables
Q and Qmax, where Q consists of the vertices of the current clique and Qmax

consists of the vertices of the largest clique found so far. Let R ⊆ V consist of
vertices (candidates) that may be added to Q. We begin the algorithm by letting
Q := ∅, Qmax := ∅, and R := V (the set of all vertices). We select a certain
vertex p from R, add it to Q (Q := Q∪ {p}), and then compute Rp := R∩Γ (p)
as the new set of candidate vertices. This procedure is applied recursively while
Rp
= ∅.

When Rp = ∅ is reached, Q constitutes a maximal clique. If Q is maximal and
|Q| > |Qmax| holds, we replace Qmax by Q. We then backtrack by removing p
from Q and R. We select a new vertex p from the resulting R and continue the
same procedure until R = ∅.

3.2 Greedy Approximate Coloring
In order to prune unnecessary searching, we used greedy approximate coloring
of the vertices in MCR. That is, each p ∈ R is sequentially assigned a minimum
possible positive integer value No[p], called the Number or Color of p, such that
No[p]
= No[r] if (p, r) ∈ E. Consequently, we have that ω(R) ≤ Max{No[p]|p ∈
R}.

Hence, if |Q|+ Max{No[p]|p ∈ R} ≤ |Qmax| holds, we need not continue the
search for R.

After Numbers (Colors) are assigned to all vertices in R, we sort the vertices
in ascending order with respect to their Numbers. We refer to the numbering
and sorting procedure as NUMBER-SORT [23]. In each step, select a vertex p
in R, beginning from the last (right) vertex and ending at the first (left) vertex.
As the result, a vertex with the maximum Number is selected in constant time
in each step. This is the reason why we sort the vertices in R with respect to
their Numbers.

Let Max{No[r]|r ∈ R} = maxno and Ci ={r ∈ R|No[r] = i}, where i =
1, 2, . . . , maxno. In other words, Ci is a set of vertices whose Number (Color)
is i. Thus, when the NUMBER-SORT has been applied to R, we have that
R = C1 ∪ C2 ∪ . . . ∪ Cmaxno , where the vertices in R are ordered in a manner
such that first appear the vertices in C1, and then the vertices in C2 follow, and
so on.

3.3 Initial Sorting and Initial Numbering
In the first stage of algorithm MCQ [24], which is a predecessor of MCR, vertices
are sorted in descending order with respect to their degrees and are assigned sim-
ple initial Numbers, At the beginning of MCR, vertices are sorted and assigned

194 E. Tomita et al.

initial Numbers in a similar but more sophisticated manner. To be more pre-
cise, the steps from {SORT} to just above EXPAND(V, No) in Fig.4 (Algorithm
MCR) in [23] is named EXTENDED INITIAL SORT-NUMBER to V .

4 New Algorithm

4.1 New Approximate Coloring
Approximate coloring is generally quite effectively used in branch-and-bound al-
gorithms for finding a maximum clique. Here, we should note that the
minimization of the number of colors is not necessarily most important. It
is more important to reduce the number of vertices from which searching is nec-
essary. In this paper, we propose a new approximate coloring following greedy
approximate coloring in Sect. 3.2 along this line [10].

Because of the bounding condition mentioned in Sect. 3.2, if No[r] ≤ |Qmax|−
|Q|, then it is not necessary to search from vertex r. The number of vertices to
be searched can be reduced if the Number No[p] of vertex p for which No[p] >
|Qmax|− |Q| can be changed to a value less than or equal to |Qmax|− |Q|. When
we encounter such vertex p with No[p] > |Qmax|−|Q|, we attempt to change it’s
Number in the following manner. Let Nop denote the original value of No[p].

[Re-NUMBER p]

0) Let Noth := |Qmax| − |Q|. (Noth stands for Nothreshold.)
1) Attempt to find a vertex q in Γ (p) such that No[q] = k1 ≤ Noth, with
|Ck1 | = 1.

2) If such q is found, then attempt to find Number k2 such that no vertex in
Γ (q) has Number k2.

3) If such number k2 is found, then change the Number of q and p so that
No[q] = k2 and No[p] = k1.

(If no vertex q with Number k2 is found, nothing is done.)
When the vertex q with Number k2 is found, No[p] is changed from Nop to

k1 (≤ Noth); thus, it is no longer necessary to search from p.
The exact procedure Re-NUMBER is shown in Fig. 1. To save time, we use

it only when No[p] = maxno. The new approximate coloring is described in
the first part of Fig. 2 under the heading {NUMBER}; it can be seen that Re-
NUMBER follows the conventional greedy approximate coloring. The second
part of Fig. 2, under the heading {SORT}, describes the sorting of the vertices
in R in ascending order with respect to their Numbers (Refer to the end of
Sect. 3.2). Note that as shown in Fig. 2, vertex r with No[r] ≤ Noth need not
be sorted since the searching operation need not begin from r according to the
bounding condition.

In Fig. 2, assume that Va is identical to R for a while (until Va is introduced
in Sect. 4.2).

We employ the new procedure Re-NUMBER-SORT (in Fig. 2) instead of the
procedure NUMBER-SORT used in MCR [23] in order to make more effective
use of the bounding condition.

A Simple and Faster Algorithm for Finding a Maximum Clique 195

procedure Re-NUMBER(p,Nop, Noth, C1, C2, ..., Cmaxno)
begin

for k1 := 1 to Noth − 1 do
if |Ck1 ∩ Γ (p)| =1 then

q := the element in (Ck1 ∩ Γ (p)) ;
for k2 := k1 + 1 to Noth do

if Ck2 ∩ Γ (q) = ∅ then
{Exchange the Numbers of p and q.}
CNop := CNop − {p};
Ck1 := (Ck1 − {q}) ∪ {p};
Ck2 := Ck2 ∪ {q};
return

fi
od

fi
od

end { of Re-NUMBER}
Fig. 1. Procedure Re-NUMBER

The time complexity of Re-NUMBER-SORT is O(|R|3), while that of
NUMBER-SORT [23] is O(|R|2). Here, |R| is the number of vertices of the
concerned subgraph G(R).

4.2 Adjunct Ordered Set of Vertices for Approximate Coloring

As noted in [7], [24], and [23], the ordering of vertices is crucial in algorithms for
finding a maximum clique. The result of approximate coloring greatly depends
on the order of vertices because sequential coloring is the main component in
the procedure. In MCR, the vertices are sorted in descending order mainly with
respect to their degrees. When Numbering procedures are applied, the vertices
are sorted in ascending order with respect to their Numbers, and the initial order
of the vertices with the same Number is inherited in the subsequent subprob-
lems [23]. However, the application of Re-NUMBER, which is described in Sect.
4.1, changes the Numbers of the vertices, thereby making the vertices disordered
with respect to their degrees. We can reduce the search space by sorting vertices
in R in descending order with respect to their degrees before every application of
approximate coloring. That is, the reduction of the search space is most effective
if the minimum possible Number is assigned to a vertex with the maximum de-
gree in each step of greedy approximate coloring [9], [20]. However, the sorting of
vertices is a computational burden and reduces the overall running time only for
dense graphs [20]. The aim of the present study is to develop a faster algorithm
whose use is not confined to any particular type of graphs. So, in addition to the
ordered set R of vertices, we simply introduce a new particular adjunct ordered
set Va of vertices that preserves the order of the vertices sorted in descending

196 E. Tomita et al.

procedure Re-NUMBER-SORT(Va, R, No)
begin
{NUMBER}

maxno := 0;
C1 := ∅;
for i := 1 to |Va| do
{ Conventional greedy approximate coloring }
p := Va[i] ;
k := 1;
while Ck ∩ Γ (p) �= ∅

do k := k + 1 od
if k > maxno then

maxno := k;
Cmaxno := ∅

fi
Ck := Ck ∪ {p};
{ - Re-NUMBER starts - }
Noth := |Qmax| − |Q|;
if (k > Noth) and (k = maxno) then

Re-NUMBER(p, k, Noth, C1, C2, ..., Cmaxno) ;
if Cmaxno = ∅ then

maxno := maxno − 1
fi

fi
{ - Re-NUMBER ends - }

od
{SORT (vertices in R in ascending order w.r.t. their Numbers)}

i := |Va|;
if Noth < 0 then Noth := 0 fi
for k := maxno downto Noth + 1 do

for j := |Ck| downto 1 do
R[i] := Ck[j];
No[R[i]] := k;
i := i − 1

od
od
if i �= 0 then

R[i] := Ck−1[|Ck−1|];
No[R[i]] := Noth

fi
end { of Re-NUMBER-SORT }

Fig. 2. Procedure Re-NUMBER-SORT

order with respect to their degrees in the first stage [22]. We apply the procedure
Re-NUMBER-SORT shown in Fig. 2 to the vertices in Va, begining from the
first (left) vertex and ending at the last (right) vertex. Thus, we can avoid the
undesirable effect of Re-NUMBER.

A Simple and Faster Algorithm for Finding a Maximum Clique 197

procedure MCS(G = (V, E))
begin

global Q := ∅; global Qmax := ∅;
{EXTENDED INITIAL SORT-NUMBER}
Apply EXTENDED INITIAL SORT-NUMBER to V (see Sect. 3.3);
Reconstruct the adjacency matrix as described in Sect. 4.3;
EXPAND (V, V, No);
output Qmax {Maximum clique}

end { of MCS }
procedure EXPAND(Va, R, No)
begin

while R �= ∅ do
p := the last vertex in R (i.e., a vertex with the maximum Number in R);
if |Q| + No[p] > |Qmax| then

Q := Q ∪ {p};
Vp := Va ∩ Γ (p); {preserving the order}
if Vp �= ∅ then
Re-NUMBER-SORT(Vp, newR, newNo);
{The initial values of newR and newNo have no significance}
EXPAND(Vp, newR, newNo)

else if |Q| > |Qmax| then Qmax := Q fi
fi

else return
fi
Q := Q − {p};
R := R − {p};
Va := Va − {p} {preserving the order}

od
end { of EXPAND }

Fig. 3. Algorithm MCS

As mentioned in Sect. 3.1, we select a vertex in the ordered set R for searching,
beginning from the last (right) vertex and continuing up to the first (left) vertex,
as shown in Fig. 3.

4.3 Reconstruction of the Adjacency Matrix
Each graph is stored as an adjacency matrix in the computer memory. Sequential
numbering in Re-NUMBER-SORT is carried out according to the initial order of
vertices in the adjunct ordered set Va, as described in Sect. 4.2. Taking this into
account, we rename the vertices of the graph and reconstruct the adjacency
matrix so that the vertices are consecutively ordered in a manner identical to the
initial order of vertices obtained at the beginning of MCR. The above-mentioned
reconstruction of the adjacency matrix results in a more effective use of the cache
memory since it facilitates the use of localized memory.

4.4 Algorithm MCS
The new algorithm obtained by introducing the techniques described in Sects. 4.1–
4.3 in MCR is named MCS and is shown in Fig. 3.

198 E. Tomita et al.

4.5 Effectiveness of the Reduction of the Search Space

We confirm the effectiveness of the algorithm MCS in reducing the search space.
Some characteristic results of computational experiments conducted under the
conditions described in Sect. 5 (Computational experiments) for MCR and MCS
are listed in Table 1.

Table 1. Comparison of branches

Graph Branches × 10−3 CPU time
Name ω MCR MCS (MCR/MCS)b (MCR/MCS)t

r200.9 40–44 97,627 6,608 15 9
r200.95 58–66 104,801 2,735 38 22
r200.98 90–103 2,357 4 589 155
r300.98 120 4.03 × 106 31,619 127 108
r500.994 263 > 4.29 × 106 70 > 61, 286 > 256, 410
MANN a45 345 2,952 225 13 11
p hat500-3 50 138,300 7,923 18 12
p hat700-3 62 3,733,665 88,168 42 29
san400 0.9 1 100 74 2 37 28
gen200 p0.9 44 44 583 35 17 12
gen200 p0.9 55 55 2,335 112 21 13
gen400 p0.9 55 55 > 4.29 × 106 2,894,935 > 1.5 100
gen400 p0.9 65 55 > 4.29 × 106 3,332,982 > 1.3 > 66

Table 1 lists the number of branches, that is, the total number of EXPAND()
calls excluding the first call, of MCR and MCS for random graphs r200.9 –
r500.994 and several DIMACS benchmark graphs in the leftmost column. The
random graphs r200.9, r200.95, and r200.98 are graphs with 200 vertices and
with edge probabilities 0.9, 0.95, and 0.98, respectively. The number of branches
specified for r200.9 is the average over 10 graphs, and the number of branches
given for r200.95 and r200.98 is the average over 100 graphs. The second column
(ω) lists the ranges of the maximum clique sizes obtained.

In Table 1, the values for graphs with names of the form rn.p (n = 300, 500
and p = 0.98, 0.994) are obtained from one random graph with n vertices and
with edge probability p (4.29 × 109 = 232). The number of branches is related
to the size of the search space. The fifth column (MCR/MCS)b lists the ratio
of the number of branches of MCR to that of MCS.

The ratio of the CPU time required by MCR to that of MCS for each graph
is given in the last column (MCR/MCS)t for reference and has been obtained
from Tables 2 and 3 in Sect. 5.

Table 1 confirms that MCS is quite successful in reducing the search space. In
addition, we can see that the reduction of the search space by MCS effectively con-
tributes to the reduction of the running time. We have confirmed that the search
space of MCS is considerably smaller than that of MCR for all graphs in Sect. 5.

A Simple and Faster Algorithm for Finding a Maximum Clique 199

5 Computational Experiments

We carried out computational experiments in order to demonstrate the overall
superiority of MCS over MCR. Both MCR and MCS were implemented in exactly
the same manner in the programming language C. The computer used, which
had a Linux operating system, is described in Appendix. We also executed the
DIMACS benchmark program dfmax [13], [14] as a standard. The computation
times for other algorithms are calibrated using the ratios shown in Appendix.

5.1 Results for Random Graphs

Random graphs are generated for each pair of n (number of vertices) and p (edge
probability) listed in Table 2. These graphs are generated such that there exists
an edge with probability p for each pair of vertices. The average CPU times [sec]
required to solve these graphs when using dfmax, MCR, and MCS are listed in
Table 2. The CPU times are averaged over 10 random graphs for each pair of
n and p. However, when the CPU time [sec] is greater than 105, the individual
value of the graph, instead of the average, is listed. The CPU times required
to solve the graphs with n ≤ 200 and p ≥ 0.95 are averaged over 100 graphs
because of the large variations in these graphs and the short running time of
MCR and MCS. For graphs with n ≥ 300 and p ≥ 0.9, the CPU time for only
one graph is considered for each pair of n and p (105 seconds � 1.16 days, and
107 seconds � 116 days). The third column (ω) lists the ranges of the sizes of
the maximum cliques obtained.

The calibrated CPU times for New [16] and COCR [18] are also listed for
reference. The boldface entries indicate the fastest time in the row. In Table 2,
it is observed that MCS is faster than MCR for all graphs. MCS is particularly
faster than MCR for dense graphs. MCS is the fastest for all the random graphs
listed in Table 2, except for that with [n = 200, p = 0.9]. For this exceptional
graph, COCR is approximately twice as fast as MCS. COCR is specially designed
for solving the maximum clique problem for dense graphs. For the graphs with
p ≥ 0.99 in Table 2, MCS is faster than MCR by a factor of greater than 100,000.

Regarding dfmax, it was stated in [14] that “It ... may be hard to beat on
sparser graphs, especially random ones.” Prior to the development of MCQ [24],
dfmax was widely recognized as the fastest maximum clique algorithm for sparse
graphs, as stated in [8] and [16]. MCQ and its successors are faster than dfmax,
even for sparse graphs. MCS is the only algorithm that is more than twice as
fast as dfmax for sparse graphs with 10,000 or more vertices (Table 2).

5.2 Results for DIMACS Benchmark Graphs

Table 3 lists the CPU times required by MCS and other algorithms to solve
the DIMACS benchmark graphs [13], where the calibrated CPU times for New
[16] and ILOG [17] are included for reference. In this table, density represents
the edge density of the graph. The boldface entries indicate the fastest time
among the times obtained within the time limits in the row. From this table, it is

200 E. Tomita et al.

Table 2. CPU time[sec] for random graphs

Graph dfmax MCR MCS New COCR
n p ω [13] [23] [16] [18]

0.8 19-21 0.140 0.014 · 0.008 0.065 0.150
100 0.9 29-32 3.67 0.038 ◦ 0.013 0.663 0.196

0.95 39-48 23.736 0.011 ◦ 0.003 0.196
0.98 56-68 26.5401 0.0012 0.0009

0.8 23 6.88 0.55 ◦ 0.23 0.75
150 0.9 36-39 1058.96 5.26 1.00 1.16

0.95 50-59 37,436.79 3.94 � 0.35
0.98 73-85 > 105 0.243 �◦ 0.006

0.8 24-27 192.7 12.3 · 4.5 147.3 8.7
200 0.9 40-44 > 105 647 74 ◦ 37

0.95 58-66 > 105 1,272 �◦ 59
0.98 90-103 > 105 30.9 �� 0.2

0.6 15-16 144.1 1.4 1.0 3.5 5.0
0.7 19-21 26,236 23 · 12 121

300 0.8 28-29 > 105 1,264 ◦ 394
0.9 49 1,475,387 �◦ 62,607
0.98 120 284,534 �� 2,623

0.5 13-14 9.0 3.6 2.8 7.3 17.4
500 0.6 17 242 63 · 40 183

0.7 22-23 24,998 3,268 ◦ 1,539
0.994 263 > 1.5 × 107 > 107 ����� 39

0.4 12 33.3 16.1 13.2 23.2
0.5 15 1,107 395 290

1,000 0.6 19-20 106,776 24,986 · 15,317
0.66 23 555,089 ◦ 275,964
0.998 618 > 107 ����� 46

2,000 0.9995 1,453 > 107 ����� 61

0.1 7 6.3 5.3 · 3.3
5,000 0.2 9 259 197 138

0.3 12 14,008 8,668 5,818

10,000 0.1 7-8 137 100 · 60
0.2 10 9,417 8,055 · 4,389

15,000 0.1 8 793 511 · 327

20,000 0.1 8 2,665 1,737 1,179

Entries marked �����, ��,�◦, �, ◦, and · are respectively at least
100,000, 100, 20, 10, 2, and 1.5 times faster than any of the others in the
same row.

confirmed that MCS is almost always faster than MCR and the other algorithms
in Table 3.

MCS is almost always considerably faster than χ+DF [8], COCR [18], MIPO
[2], SQUEEZE [4], and Target [21] (see Table 4 in [23]). Although COCR is
specially designed to efficiently find a maximum clique in dense graphs, MCS

A Simple and Faster Algorithm for Finding a Maximum Clique 201

Table 3. CPU time[sec] for DIMACS benchmark graphs (2)

Graphs dfmax MCR MCS New ILOG
Name n density ω [13] [23] [16] [17]
brock400 1 400 0.75 27 22,051 1,771 ◦ 693 8,401
brock400 2 400 0.75 29 13,519 726 ◦ 297 5,860
brock400 3 400 0.75 31 14,795 1,200 ◦ 468 3,316
brock400 4 400 0.75 33 10,633 639 ◦ 248 4,483
brock800 1 800 0.65 23 > 105 17,789 · 9,347 > 10, 667
brock800 2 800 0.65 24 > 105 16,048 · 8,368 > 10, 667
brock800 3 800 0.65 25 91,031 10,853 · 5,755 > 10, 667
brock800 4 800 0.65 26 78,737 7,539 · 3,997 > 10, 667
MANN a27 378 0.990 126 > 105 2.5 ◦ 0.8 > 2, 232 13.7
MANN a45 1,035 0.996 345 > 105 3,090 � 281 > 10, 667
p hat300-3 300 0.744 36 779.7 10.8 ◦ 2.5 30.2
p hat500-2 500 0.505 36 132.9 3.1 ◦ 0.7 95.7 24.2
p hat500-3 500 0.752 50 > 105 1,788 � 150 9,441
p hat700-2 700 0.498 44 5,299.9 44.4 • 5.6 189.5
p hat700-3 700 0.748 62 > 105 68,187 �◦ 2,392 > 10, 667
p hat1000-2 1,000 0.489 46 > 105 2,434 � 221 12,478
p hat1500-2 1,500 0.506 65 > 105 722,733 �◦ 16,512 > 10, 667
san200 0.9 1 200 0.900 70 > 105 1.20 0.22 ◦ 0.06 0.77
san200 0.9 2 200 0.900 60 > 105 4.2 ◦ 0.4 1.0 1.9
san400 0.7 1 400 0.700 40 > 105 1.76 ◦ 0.54 > 2, 232 17.2
san400 0.7 2 400 0.700 30 > 105 0.33 ◦ 0.13 112.97 50.0
san400 0.7 3 400 0.700 22 > 105 3.6 ◦ 1.4 202.4
san400 0.9 1 400 0.900 100 > 105 3.4 �◦ 0.1 1,259.3
san1000 1,000 0.502 15 > 105 4.8 2.1 �◦ 0.1 76.1
sanr200 0.7 200 0.702 18 3.06 0.57 · 0.34 3.15 3.2
sanr200 0.9 200 0.898 42 86,954 289 • 41 111
sanr400 0.7 400 0.700 21 2,426 379 ◦ 181 2,325
gen200 p0.9 44 200 0.900 44 48,262 5.39 � 0.47
gen200 p0.9 55 200 0.900 55 9,281.0 15.0 � 1.2
gen400 p0.9 55 400 0.900 55 5,846,951 �� 58,431
gen400 p0.9 65 400 0.900 65 > 107 �•151,597
gen400 p0.9 75 400 0.900 75 > 107 �◦294,175
C250.9 250 0.899 44 > 105 44,214 � 3,257

Entries marked ��,�•, �◦, �, •, ◦, and · are respectively at least
100, 50, 20, 10, 5, 2, 1.5 times faster than any of the others within
the time limits in the same row.

is faster than COCR by 3.5 times for MANN a27, whose density is very high
(density = 0.990). Further, MCS is confirmed to be much faster than MC of
Wood [26] and CP+SDP of Hoeve [11], as is evident in [17].

6 Concluding Remarks

Our new algorithm, MCS, retains the simplicity of our earlier algorithms while
further reducing the search space quite efficiently with low overhead ; hence, it
runs remarkably faster than MCR and the other algorithms.

202 E. Tomita et al.

Owing to the page limitation of this paper, we cannot describe the details of
the individual contribution of techniques in Sects. 4.1-4.3, but it is noted that
effectiveness of MCS is established by the combination of all of these techniques.
For example, a single introduction of the new approximate coloring (in Sect. 4.1)
in MCR results in requiring more than 105 seconds to solve MANN a45 [10]. A
single introduction of the adjunct ordered set Va (in Sect. 4.2) in MCR is almost
always effective, but is not effective for MANN a45 [22].

Our present techniques can be useful for generating large maximal cliques
[25]. Some theoretical analysis of maximum-clique-finding algorithms is on the
way based upon [25] and [19].

Acknowledgements. We thank T. Nakagawa for his contribution to the com-
putational experiments. We express our sincere gratitude to E. Harley and the
referees for their helpful detailed comments. Useful discussions and kind help by
T. Akutsu and others are also acknowledged.

References

1. Bahadur, D.K.C., Tomita, E., Suzuki, J., Horimoto, K., Akutsu, T.: Protein thread-
ing with profiles and distance constraints using clique based algorithms. J. Bioin-
formatics and Computational Biology 4, 19–42 (2006)

2. Balas, E., Ceria, S., Cornuéjols, G., Pataki, G.: Polyhedral methods for the maxi-
mum clique problem. In: Johnson, Trick (eds.) [13], pp. 11–28 (1996)

3. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique prob-
lem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization,
Supplement vol. A, pp. 1–74 (1999)

4. Bourjolly, J.-M., Gill, P., Laporte, G., Mercure, H.: An exact quadratic 0-1 algo-
rithm for the stable set problem. In: Johnson, Trick (eds.) [13], pp. 53–73 (1996)

5. Brown, J.B., Bahadur, D.K.C., Tomita, E., Akutsu, T.: Multiple methods for pro-
tein side chain packing using maximum weight cliques. Genome Inform. 17, 3–12
(2006)

6. Butenko, S., Wilhelm, W.E.: Clique-detection models in computational biochem-
istry and genomics - invited review -. European J. Operational Research 173, 1–17
(2006)

7. Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique prob-
lem. Operations Research Letters 9, 375–382 (1990)

8. Fahle, T.: Simple and Fast: Improving a branch-and-bound algorithm for maximum
clique. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 485–
498. Springer, Heidelberg (2002)

9. Fujii, T., Tomita, E.: On efficient algorithms for finding a maximum clique. Tech-
nical Report of IECE, AL81-113, pp. 25–34 (1982)

10. Higashi, T., Tomita, E.: A more efficient algorithm for finding a maximum clique
based on an improved approximate coloring. Technical Report of Univ. Electro-
Commun, UEC-TR-CAS5-2006 (2006)

11. van Hoeve, W.J.: Exploiting semidefinite relaxations in costraint programming.
Computers & Operations Research 33, 2787–2804 (2006)

12. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

A Simple and Faster Algorithm for Finding a Maximum Clique 203

13. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability, DIMACS
Series in Discr. Math. and Theoret. Comput. Sci., vol. 26. American Math. Soc.,
Providence (1996)

14. http://www.cs.sunysb.edu/~algorith/implement/dimacs/distrib/color/

graph/form
15. Matsunaga, T., Yonemori, C., Tomita, E., Muramatsu, M.: Clique-based data min-

ing for related genes in a biomedical database. BMC Bioinformatics 10 (2009)
16. Österg̊ard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete

Applied Math. 120, 197–207 (2002)
17. Régin, J.C.: Using constraint programming to solve the maximum clique problem.

In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 634–648. Springer, Heidelberg
(2003)

18. Sewell, E.C.: A branch and bound algorithm for the stability number of a sparse
graph. INFORMS J. Computing 10, 438–447 (1998)

19. Shindo, M., Tomita, E.: A simple algorithm for finding a maximum clique and its
worst-case time complexity. Systems and Computers in Japan 21, 1–13 (1990)

20. Shindo, M., Tomita, E., Maruyama, Y.: An efficient algorithm for finding a maxi-
mum clique. Technical Report of IEC, CAS86-5, pp. 33–40 (1986)

21. Stix, V.: Target-oriented branch and bound method for global optimization. J.
Global Optim. 26, 261–277 (2003)

22. Sutani, Y., Tomita, E.: Computational experiments and analyses of a more efficient
algorithm for finding a maximum clique. Technical Report of IPSJ, 2005-MPS-57,
pp. 45–48 (2005)

23. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. J. Global Optim. 37, 95–111
(2007); J. Global Optim. 44, 311 (2009)

24. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maxi-
mum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003.
LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)

25. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gener-
ating all maximal cliques and computational experiments (An invited paper in the
Special Issue on COCOON 2004). Theoret. Comput. Sci. 363, 28–42 (2006); The
preliminary version appeared in Tomita, E., Tanaka, A. Takahashi, H.: The worst-
case time complexity for generating all maximal cliques. In: Chwa, K.-Y., Munro,
J.I.J.(eds.) COCOON 2004. LNCS, vol. 3106, pp.161–170. Springer, Heidelberg
(2004)

26. Wood, D.R.: An algorithm for finding a maximum clique in a graph. Operations
Research Letters 21, 211–217 (1997)

Appendix
Clique Benchmark Results
Type of Machine: Pentium4 3.6 GHz, Compiler and flags used: gcc -O2.
Our user time (T1) for DIMACS benchmark instances: r100.5, r200.5, r300.5,
r400.5, and r500.5 are 2.13×10−3, 6.35×10−2, 0.562, 3.48, and 13.3 seconds,
respectively. From Österg̊ard’s [16] user time (T2) and Sewell’s [18] user time
(T3) for the same instances, we obtained the average values of T2/T1 and T3/T1
as 4.48 and 86.76, respectively, in the same way as in [23]. For Régin’s [17] user
time (T5), we obtained the average value of T5/T1 to be 1.35 by referring to the
χ + DF (Fahle’s) [8] running time in [17].

http://www.cs.sunysb.edu/~algorith/implement/dimacs/distrib/color/graph/form
http://www.cs.sunysb.edu/~algorith/implement/dimacs/distrib/color/graph/form

On Some Simple Widths

Ling-Ju Hung and Ton Kloks�

Department of Computer Science and Information Engineering
National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan

hunglc@cs.ccu.edu.tw

Abstract. The G-width of a class of graphs G is defined as follows. A
graph G has G-width k if there are k independent sets N1, . . . , Nk in
G such that G can be embedded into a graph H ∈ G such that for
every edge e in H which is not an edge in G, there exists an i such
that both endpoints of e are in Ni. For the class C of cographs we show
that C-width is NP-complete. We show that the recognition is fixed-
parameter tractable, and we show that there exists a finite obstruction
set. We introduce simple-width as an alternative for rankwidth and we
characterize the graphs with simple-width at most two.

1 Cograph-Width

Definition 1 ([1]). Let G be a class of graphs which contains all cliques. The
G-width of a graph G is the minimum number k of independent sets N1, . . . , Nk

in G such that there exists an embedding H ∈ G of G with the property that for
every edge e = (x, y) in H which is not an edge of G, there exists an i with
x, y ∈ Ni.

Definition 2 ([2]). A graph is a cograph if it has no induced P4, i.e. an induced
path with 4 vertices.

Theorem 1 ([3]). A graph G = (V, E) is a cograph if and only if for every
W ⊆ V with |W | ≥ 2, there exists a partition {W1, W2} of W with Wi
= ∅,
i = 1, 2, such that either

(a) every vertex x ∈W1 is adjacent to every vertex y ∈ W2, or
(b) no vertex x ∈ W1 is adjacent to any y ∈ W2.

The G-width has been investigated for blockgraphs, threshold graphs, and for
trivially perfect graphs [4,5]. In this paper we investigate the width-parameter
for the class C of cographs, henceforth called the cograph-width, or C-width. If a
graph G has cograph-width k then we call G also a k-probe cograph. We refer to
the partitioned case of the problem when a collection of, possibly overlapping,
independent sets Ni, i = 1, . . . , k is a part of the input. We call such a collection
of independent sets a witness .
� This author is supported by the National Science Council of Taiwan under grants

NSC 97–2811–E–194–001 and NSC 98–2218–E–194–004.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 204–215, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Some Simple Widths 205

Theorem 2. A graph G = (V, E) is a k-probe cograph if and only if there exist
independent sets Ni, i = 1, . . . , k, such that for every W ⊆ V with |W | ≥ 2 there
exists a partition {W1, W2} with Wi
= ∅ (i = 1, 2), such that either

i. for every x ∈ W1 and y ∈ W2 either (x, y) ∈ E(G) or x, y ∈ Ni for some
i ∈ {1, . . . , k}, or

ii. no x ∈W1 is adjacent to any y ∈W2.

Proof. Assume that G is a k-probe cograph. If G has at most 3 vertices then,
by definition, G is a cograph and thus also a k-probe cograph for any k ≥ 0. We
prove the claim by induction on the number of vertices. By definition there exist
independent sets Ni, i = 1, . . . , k and an embedding H ∈ C such that, for every
edge e = (x, y) ∈ E(H) which is not an edge in G there exists an i ∈ {1, . . . , k}
with {x, y} ⊆ Ni.

Let W ⊆ V with |W | ≥ 2. There exists a partition {W1, W2} of W , with
Wi
= ∅, such that either (a) or (b) in Theorem 1 holds for the graph H . It
follows that either i. or ii. holds for G with that same partition of W .

For the converse, let W ⊆ V with |W | ≥ 2. If i. holds, then we may add all
edges between W1 and W2. Also, ii. implies (b) in Theorem 1. By induction,
there exist embeddings of G[W1] and G[W2] into cographs, which implies by
Theorem 1 that G[W], and thus also G can be embedded. Thus G is a k-probe
cograph. �
Theorem 2 is a characterization which can be formulated in monadic second-
order logic. We now prove that k-probe cographs have rankwidth at most 2k. It
is known that problems which can be formulated in C2MS-logic can be solved
in O(n3) time on graphs with bounded rankwidth [6]. Thus k-probe cographs
can be recognized in O(n3) time. Alternatively, we can draw the same conclusion
from Theorem 6. An explicit description of a recognition algorithm is described
in [7].

Theorem 3. k-Probe cographs have rankwidth at most 2k.

Proof. Consider a rank-decomposition (T, τ) with width 1 for an embedding H
of G. Consider an edge e in T and assume that Me, minus the zero rows and
columns is an all 1s-matrix. Each independent set Ni ‘creates’ a 0-submatrix
in Me. Note that there are at most 2k different neighborhoods from the set of
leaves in one component of T − e to the set of leaves in the other component
of T − e. It follows that the rank of Me is at most 2k. �

2 Partitioned k-Probe Cographs

Cographs are called ‘complement-reducible graphs.’ In the same vein, we show
that partitioned probe cographs are ‘dual reducible.’

Let (G,N) be a partitioned graph with a witness

N = {Ni | i = 1, . . . , k}
of k, possibly overlapping, independent sets.

206 L.-J. Hung and T. Kloks

Definition 3. The dual (Gd,N) is the partitioned graph obtained from Ḡ by
deleting all edges (x, y) of Ḡ for which there is an i ∈ {1, . . . , k} such that
x, y ∈ Ni.

Proposition 1. A partitioned graph (G,N) is a partitioned k-probe cograph if
and only if its dual (Gd,N) is likewise (with ‘the same’ witness N of k indepen-
dent sets).

Theorem 4. There exists a polynomial-time algorithm to check whether a par-
titioned graph (G,N) with a witness N of k independent sets, is a partitioned
k-probe cograph.

Proof. If G is disconnected then we can check each component individually.
Assume G is connected. Assume also that G is a partitioned k-probe cograph
and let H be an embedding of G. Then H is also connected and thus H̄ is
disconnected, since H is a cograph. Since the dual Gd is obtained from H̄ by
deleting some of the edges, also Gd is disconnected. By Proposition 1, Gd is a
partitioned k-probe cograph and we can check that by inspecting the components
of Gd. �
Remark 1. Note that the algorithm described in Theorem 4 is fully polynomial.
The algorithm can be implemented to run in O(kn3) time.

There exists a list of forbidden induced subgraphs for the class of partitioned
1-probe cographs [8]. We extend this as follows. First we show that partitioned
k-probe cographs are well-quasi-ordered by the induced subgraph relation.

Theorem 5. Let k be a natural number. Partitioned k-probe cographs are well-
quasi-ordered by the induced subgraph relation.

Proof. A cotree is a binary tree with a bijection from the leaves to the vertices of
the graph and internal nodes labeled as join- or union-operators [3]. Two vertices
are adjacent in the graph if and only if their lowest common ancestor is a join-
node. For partitioned k-probe cographs we equip each leaf with a label which is a
0/1-vector of length k. Two vertices are adjacent if their lowest common ancestor
is a join-node and their labels have no common 1. Kruskal’s theorem [9] states
that the class of finite trees labeled by a well-quasi-ordering, is well-quasi-ordered
with respect to this lowest-common-ancestor embedding. This proves the claim.
(See [10] for a detailed discussion and extensions to the countable case.) �
Theorem 6. Let k be a natural number. The class of k-probe cographs can be
characterized by a finite set of forbidden induced subgraphs.

Proof. Consider a sequence [G1, G2, . . .] of graphs such that no Gi is a k-probe
cograph. Assume that for each vertex x in Gi = (Vi, Ei) the subgraph induced
by Vi − x is a k-probe cograph (i = 1, 2, . . .). Equip each Gi with a ‘root’ ri

which is a vertex of Gi.
For i = 1, 2, . . ., consider labeled cotrees of Gi − ri as in Theorem 5. Extend

the labels at the leaves with an additional entry 0 or 1 that indicates whether

On Some Simple Widths 207

the vertex that is mapped to the leaf is adjacent to ri or not. Consider the well-
quasi-ordering of these labeled trees by the lowest-common-ancestor ordering.
Kruskal’s theorem implies that there must exist i < j such that Gi is an induced
subgraph of Gj . This proves the theorem. �
Remark 2. Note that a similar proof shows that partitioned k-probe cographs
can be characterized by a finite set of forbidden induced partitioned subgraphs.
This extends the result of [8] for 1-probe cographs.

We introduce simple-width after the next intermezzo.

3 C-width Is NP-Complete

Let T be the class of complete graphs (cliques). We first note that T -width is
NP-complete.

Theorem 7 ([5]). T -Width is NP-complete.

Theorem 8. C-width is NP-complete.

Proof. Let G = (V, E) be a graph with n vertices and m edges. Label the vertices
1, . . . , n. For each vertex i of G add a clique Ci with n2 vertices and make every
vertex of Ci adjacent to each vertex � with � ≤ i. Let G′ be the graph constructed
in this way. Note that, when we add edges between nonadjacent vertices of V we
obtain an embedding of G′ into a cograph; namely then every connected induced
subgraph has a universal vertex, and this property implies that. We show that
this is the only feasible embedding.

For each nonedge {i, j} with i < j in G we now have a collection of P4’s
using i, j, and the cliques Ci and Cj . Assume that there is an embedding of G′

into a cograph with i and j not adjacent. Then each vertex of Ci is adjacent
to each vertex of Cj or to j. Thus each vertex of Ci must be in one of the
independent sets Ns, s = 1, . . . , k, and no two are in the same since Ci is a
clique. Then k ≥ n2 which is a contradiction, because making a clique of G
creates a cograph embedding which demands at most

(
n
2

)−m independent sets.
Thus the only feasible embedding makes a clique of G. That is, the C-width of G′

is the same as the T -width of G, and by Theorem 7 this is hard to compute. �

4 Simple-Width

Inspired by results of Oum et al. [6] on rankwidth of graphs, we introduce the
concept of simple-width.

We begin with the definition of a tree-decomposition of a graph.

Definition 4. A tree-decomposition of a graph G = (V, E) is a pair (T, f)
where T is a ternary tree and f a bijection from the leaves of T to the vertices
of G.

208 L.-J. Hung and T. Kloks

Definition 5. Let (T, f) be a tree-decomposition of a graph G = (V, E). Let e
be a line in T and consider the two sets A and B of leaves of the two subtrees
of T − e. The cutmatrix Me is the submatrix of the adjacency matrix of G with
rows indexed by the vertices of A and columns indexed by the vertices of B.

Note that we identify the cutmatrix with its transpose. Oum et al. define the
rankwidth via the rank of the cutmatrix over GF (2). Instead, we count the
maximum of the number of different rows and the number of different columns.

Definition 6. The simple-width of a line e in a tree-decomposition (T, f) is the
maximum of the number of different rows of the cutmatrix Me and the number
of different columns of Me. The simple-width of (T, f) is the maximum simple-
width over all lines e in T . The simple-width of G is the minimum simple-width
over all tree-decompositions of G.

Remark 3. Simple-width is not clearly defined for graphs that consist of a single
vertex. We now define the simple-width of a graph with a single vertex as zero.
Any graph with at least two vertices has simple-width at least 1.

Example 1. Consider a 4-cycle C. Since there is only one ternary tree T with 4
leaves, there are only two tree-decompositions for C. Consider the central line
e of T . One tree-decomposition maps an edge of C to one part of T − e and
the edge disjoint from it to the other part. The central line gets a cutmatrix
Me =

(
1 0
0 1

)
. The other tree-decomposition maps one diagonal of C to one part

of T−e and the other diagonal to the other part of T−e. This tree-decomposition
has cutmatrix Me =

(
1 1
1 1

)
. However, every vertex of C has at least one neighbor

and at least one nonneighbor. Thus, if e′ is incident with a leaf of T , then e′ has
simple-width two. Thus the simple-width of C is two.

The consensus is that a tree-decomposition with a smaller width is more
desirable.

Obviously, if a graph G has a tree-decomposition with simple-width k, then this
is also a tree-decomposition with rankwidth at most k. Thus the rankwidth of a
graph is at most the simple-width. Conversely, if the rankwidth of a graph is k,
then the vector space over GF (2) spanned by the columns of a cutmatrix, has a
basis with k elements. Consequently, the number of different columns is at most
2k because there are only 2k different linear combinations of the k basisvectors
with coefficients in GF (2). Since row-rank equals column-rank, we have also at
most 2k different rows.

Theorem 9. For any graph G

r(G) ≤ s(G) ≤ 2r(G)

where s(G) is the simple-width and r(G) is the rankwidth of G.

It is easy to see that these bounds are tight.
The graphs of rankwidth at most one are exactly the distance-hereditary

graphs [6]; this is the smallest, and only recognized case for rankwidth. To get a
feeling for simple-width we study the class of graphs with simple-width at most
two.

On Some Simple Widths 209

Basics

Definition 7. Consider a 0, 1-matrix M . Let M ′ be the maximal submatrix of
M with no two rows equal and no two columns equal. The shape of M is a
class of matrices equivalent to M ′ under permuting rows, permuting columns,
and taking the transpose.

One basic concept that will be useful throughout the rest of this paper is that
of a twin. A twin is a module with two vertices. A module is a set M of vertices
such that

x, y ∈M ⇒ N(x) −M = N(y)−M.

Definition 8. A twin is a pair of vertices x and y such that {x, y} is a module.
The pair is a true twin if x and y are adjacent and a false twin otherwise.

Cographs can be characterized as those graphs for which every nontrivial induced
subgraph has a twin [11]. Tibor Gallai proved that a (finite) graph G is a cograph
if and only if G has a tree-decomposition (T, f) rooted at an edge, such that the
leaves of every subtree induce a module in G. Consider a subtree B rooted at
some edge e and consider the cutmatrix Me with rows indexed by the vertices
of B. Since the leaves of B induce a module, all the rows of Me are the same.
Thus Me has a shape equivalent to

(
1 0

)
or a submatrix thereof. This implies

the following:

Theorem 10. If G is a cograph then the simple-width of G is at most 2.

Apropos , a more precise characterization is the following.

Lemma 1. A graph G is a cograph if and only if G has a tree-decomposition
(T, f) such that every cutmatrix, or its transpose, can be reduced to

(
1 0

)
, or a

submatrix of that, by removing copies of the same row or column and by permut-
ing columns.

Proof. The direction ⇒ follows from Gallai’s characterization.
Assume G has a tree-decomposition (T, f) as stated. We show that every non-
trivial induced subgraph H has a twin. If H has only two or three vertices then
the claim is obvious: H is a cograph since it has no induced P4. Otherwise, notice
that a tree-decomposition for H can be obtained as follows. Remove branches
from T if the leaves are mapped to vertices which are not in H . This gives a tree
T ′ with possibly some internal vertices of degree 2; we could easily get rid of
those but we may as well leave them in T ′ since they harm nobody. Consider a
line e in T ′ such that both branches have at least 2 leaves; since H has at least 4
vertices, such a line exists. The cutmatrix M ′

e is a submatrix of the correspond-
ing cutmatrix Me for G, since it is obtained from Me by the deletion of some
rows and columns. Thus M ′

e or its transpose has a shape
(

1 0
)

or
(

0
)

or
(

1
)
.

In other words, at least one of the branches at e, say B induces a module. We
may assume, by induction on the number of vertices of H , that the leaves of B
induce a cograph, and because B contains at least 2 vertices, it contains a twin.
Since B is a module, this twin is a twin in H . �

210 L.-J. Hung and T. Kloks

Howorka defines distance-hereditary graphs G = (V, E) as follows [12]:

A graph is distance hereditary if for each nonadjacent pair of vertices
x and y in any connected subgraph, all induced x, y-paths in the graph
have the same length.

We have the following characterization.

Theorem 11 ([13]). A graph G is distance hereditary if and only if every in-
duced subgraph has a twin, or a pendant vertex, or an isolated vertex.

Equivalently, a graph is distance hereditary if and only if it is split decomposable
and this is actually the same statement as the corollary below.

Corollary 1 ([6]). A graph G = (V, E) is distance hereditary if and only if G
has a tree-decomposition (T, f) such that every cutmatrix Me has a shape which is a
submatrix of

(
1 0
0 0

)
, where the 1 stands for an all ones block and the zeros stand for

all zero blocks. Thus distance-hereditary graphs have simple-width at most 2.

Remark 4. ‘Having the same shape’ is an equivalence relation. Also notice this
monotonicity property: if a matrix M ′ is a submatrix of a matrix M , then the
number of different rows (columns) of M ′ cannot be more than the number
of different rows (columns) of M ; thus, loosely speaking, the shape of M ′ is a
submatrix of the shape of M .

Lemma 2. The complement of a distance-hereditary graph has simple-width at
most 2.

Proof. Let G = (V, E) be distance hereditary. Let (T, f) be a tree-decomposition
of G such that for every line e in T the cutmatrix Me has rank ≤ 1; i.e. after
the deletion of zero-rows and zero-columns, all remaining entries are 1. In other
words Me is equivalent to a submatrix of

(
1 0
0 0

)
.

Now consider the complement Ḡ of G. Any cutmatrix Me of (T, f) changes
into the complement M̄e. Thus M̄e is equivalent to a submatrix of

(
1 1
1 0

)
. This

proves the claim. �
In general we have that for any graph G

s (G) = s
(
Ḡ
)
.

Remark 5. Notice that the rank of
(

1 1
1 0

)
is 2 while the rank of

(
1 0
0 0

)
is one; the

rankwidth of the complement of a distance-hereditary graph is (in general) 2.

5 Graphs with Simple-Width 2

Lemma 3. Let G be a graph with simple-width 2. Let (T, f) be a tree-
decomposition realizing this width. Then every cutmatrix is equivalent to one
of the following:(

0
)
,

(
1
)
,

(
1 0

)
,

(
1 0
0 0

)
,

(
1 1
1 0

)
, or

(
1 0
0 1

)
.

On Some Simple Widths 211

Proof. A simple case-analysis proves this. �
Lemma 4. If H is an induced subgraph of G then

s(H) ≤ s(G).

Proof. If H is only a single vertex then there is nothing to prove. Otherwise,
consider a tree-decomposition (T, f) for G and take the minimal subtree T ′ that
spans all leaves mapped to vertices of H . Take the induced bijection f ′ from the
leaves of T ′ to the vertices of H . Some points of T ′ may have only two neighbors.
We may repeatedly delete a point like that and connect its two neighbors by a
line. For simplicity we call this new tree, which is homeomorphic to the old one,
again T ′. Any cutmatrix of (T ′, f ′) is a submatrix of a corresponding cutmatrix
of (T, f), thus the simple-width of H is no larger than the simple-width of G. �
Lemma 5. Let G be nontrivial. Then s(G) = 1 if and only if G is a clique or
an independent set. ‘Creating a twin’ of a vertex x in a graph G is the operation
of adding a new vertex x′ and adding edges incident with x′ such that x′ becomes
a twin of x. Assume G is nontrivial, and not an independent set nor a clique
and let G′ be obtained from G by creating a twin, then

s(G′) = s(G) ≥ 2.

Proof. Since G is an induced subgraph of G′, s(G) ≤ s(G′).
If a graph G is not a clique and not an independent set then it has a vertex ω
which has some neighbors as well as some nonneighbors. Consider the leaf in a
tree-decomposition that is mapped to ω and let e be the line incident with this
leaf. This cutmatrix has one row (or one column) and some entries are zero and
some are one. Thus the simple-width of this cutmatrix is two. This proves that

s(G) ≥ 2.

Consider a tree-decomposition (T, f) of G. We may add x′ as a leaf in this de-
composition, by subdividing the edge from x to its neighbor in T , and making x′

adjacent to the subdivision vertex. The cutmatrix of any edge in T that is not
incident with x or with x′ is obtained from the corresponding matrix in (T, f)
by making a copy of the row (or column) that represents x. The cutmatrix of an
edge incident with x or with x′ contains only one row (or only one column), thus
the simple-width of this cutmatrix is at most two. This proves the claim. �
Lemma 6. Assume that G is nontrivial and that s(G) ≤ 2. Assume furthermore
that G has no twin, no pendant vertex, and no isolated vertex. Then G has two
vertices x and y such that N [x] ∪N [y] = V and either

N(x) ∩N(y) = ∅ or N(y) ⊂ N [x].

Proof. Since G is nontrivial and has no twin, G is not a clique nor an independent
set. Thus we may assume that s(G) = 2. Also, G has at least 4 vertices, otherwise
it has a twin.

212 L.-J. Hung and T. Kloks

Consider a tree-decomposition (T, f) of G. It is well-known that any ternary tree
T with at least three leaves has two leaves that have the same neighbor. Let x
and y be the vertices mapped to two such leaves. Then the tree T has a line e
with a cutmatrix Me which has two rows x and y. Since x and y are not twins,
and neither x nor y is isolated or pendant, Me is equivalent to(

1 0
0 1

)
or to

(
1 1
1 0

)
and this proves the claim. �

Remark 6. The second case occurs when Ḡ is distance hereditary. The first case
sprouts a ‘new’ class of graphs that we baptize as the class of 2-cographs .

2-Cographs

Lemma 7. Let G = (V, E) be a graph and assume that the vertices of G can
be colored black and white such that for every W ⊆ V with at least two vertices
there is a partition into nonempty subsets W1 and W2 such that either

(a) w1 ∈ W1 and w2 ∈W2 are adjacent if and only if they have the same color,
or

(b) w1 ∈ W1 and w2 ∈W2 are adjacent if and only if they have different colors.

Then s(G) ≤ 2.

Proof. We claim that there is a rooted binary tree-decomposition with the fol-
lowing property π: Let T ′ be any subtree and let e be the line connecting the
root of T ′ with its parent. Let Me be the cutmatrix with rows indexed by the
vertices in the leaves of T ′. Then Me is equivalent to a submatrix of

(
1 0
0 1

)
such

that the row
(

1 0
)

represents the rows of the black vertices in T ′ and the row(
0 1

)
represents the rows of the white vertices in T ′.

Let {V1, V2} be a partition of V into nonempty subsets V1 and V2 as stated.
We may assume that there exist rooted tree-decompositions (T1, f1) and (T2, f2)
for G[V1] and G[V2] as claimed. Create a new root r , and make the roots of T1
and T2 the two children of r. This creates the tree-decomposition (T, f) for G.
We claim that this tree-decomposition satisfies the stated property π and that
it has simple-width 2.

Any of the two lines incident with r has a shape which is equivalent to a
submatrix of

(
1 0
0 1

)
by the assumption on the partition. (It is a proper submatrix

if one of V1 and V2 has only black or only white vertices.) Now consider a line e
of T1 and let B1 and B2 be the two branches of T − e such that B2 contains r.
Consider the cutmatrix Me of (T1, f1) with rows indexed by the vertices of B1.
According to the induction assumption Me has a shape as above. The vertices
of V2 are added to this matrix as columns. By the assumption on the partition
{V1, V2} the shape of the new matrix Me is as above, also. �

On Some Simple Widths 213

Remark 7. Note that a cograph has a coloring like that; just color all vertices
black. Also note that in a graph with a coloring like that, the black vertices, and
also the white vertices, induce a cograph.

Let us call graphs that have a 2-coloring as in Lemma 7 2-cographs.

Lemma 8. There exists an O(n3) algorithm to recognize 2-cographs.

Proof. The characterization can be formulated in monadic-second order logic.
The claim follows since 2-cographs have bounded rankwidth [6]. �
Lemma 9. Assume G has a tree-decomposition (T, f) with simple-width 2. Let
x and y be two vertices mapped to leaves that have a common neighbor in T .
Assume the cutmatrix with rows x and y has a shape

(
1 0
0 1

)
. Color vertices of

N(x)−y black and color vertices of N(y)−x white. Then x and y can be colored
differently black and white, such that this coloring of G satisfies the property of
Lemma 7.

Proof. Consider (T, f) and root this at the common neighbor r of the leaves
mapped to x and y. Let e be the line that is incident with r but not with x or
y and let V1 and V2 be the two sets of leaves in the two subtrees rooted at the
other endpoint r′ of e.

Let e1 be the line incident with r′ and the root of V1. Consider the matrix Me1

with rows indexed by vertices of V1. Two of the columns are x and y. Thus they
partition the rows into black and white (possibly one set is empty). In any case,
x and y provide two different columns and since s(G) ≤ 2 every other column,
corresponding to a vertex of V2, is equal to the column of x or to the column
of y. It follows that all black vertices of V1 have the same neighbors in V2 and
that all white vertices of V1 have the same neighbors in V2. By symmetry, the
same holds for the vertices of V2.

Consider the submatrix with rows V1 and columns V2. We consider two cases;

(a) either the black vertices of V1 are adjacent to the black vertices of V2 and
the white vertices of V1 are adjacent to the white vertices of V2, or

(b) the black vertices of V1 are adjacent to the white vertices of V2 and the white
vertices of V1 are adjacent to the the black vertices of V2.

In the first case we color x black and y white and in the second case we color x
white and y black. Then in both cases any of the two partitions {V1 +{x, y}, V2}
and {V1, V2 + {x, y}} is ‘good;’ that is, they satisfy the conditions of Lemma 7.
We prove that, with this coloring, every induced subgraph has a good partition.

Let W ⊆ V . If W has vertices in both V1 and V2, and possibly also in {x, y},
then we can take the partition induced by one of the two partitions above.

Assume W has no vertices in V2. If x and/or y is in W , then we can take one
part of the partition equal to W ∩ {x, y}
= ∅. This is a good partition as long
as W − {x, y}
= ∅.

Assume that W contains only vertices of V1. Take the root t of the minimal
subtree that spans all vertices of W . The two subtrees at t partition W into W1

214 L.-J. Hung and T. Kloks

and W2. Consider the edge e∗ incident with t and the subtree of W1. Consider
the cutmatrix Me∗ with the vertices of W1 as rows. Then all black vertices of
W1 have the same neighbors in the rest of the graph and all white vertices of W1
have the same neighbors in the rest of the graph, since this is dictated by the
two different columns of x and y. The same holds for the vertices of W2 and this
proves that the edges between W1 and W2 satisfy the condition of Lemma 7. �
Theorem 12. Assume G has simple-width at most 2. Then either

(i) G is distance hereditary, or
(ii) Ḡ is distance hereditary, or
(iii) G is a 2-cograph.

Proof. Consider a tree-decomposition (T, f) of G with simple-width 2. Assume
T has a line e such that the cutmatrix Me has a shape equivalent to

(
1 0
0 1

)
. Let

{V1, V2} be the induced partition of V and let the rows of Me be indexed by V1.
Obviously, V1 and V2 both have at least two vertices. Consider a pair of leaves x
and y in V1 with a common neighbor in T . Consider the cutmatrix Me′ with
rows x and y. Neither of the rows can consist of only zeros, since this would
imply a zero-row in Me as well. It can also not contain a row with only ones,
since this would imply a similar row in Me. It follows that either x and y are
twins, or that Me′ =

(
1 0
0 1

)
. If there is a pair of leaves such that the cutmatrix

has this shape, then the graph is a 2-cograph, by Lemma 9. This proves that the
graph is obtained from a 2-cograph by creating twins. It is easy to see that the
class of 2-cographs is closed under the operation of creating twins.

We may now assume that (T, f) has no cutmatrix with shape
(

1 0
0 1

)
. Assume

that there is a line e such that the cutmatrix Me has a shape
(

1 1
1 0

)
. Let {V1, V2}

be the partition induced by the rows and columns and assume that the rows
of Me are indexed by V1. Consider any other line e′ of T , say in the branch
containing V1, and assume that the cutmatrix Me′ is equivalent to

(
1 0
0 0

)
. We

may assume that V2 is a subset of the columns of Me′ . But this is a contradiction
since V2 has a vertex adjacent to all vertices of V1 so Me′ must have an all 1s
column.

It follows that every cutmatrix is a submatrix of
(

1 1
1 0

)
, in other words, Ḡ is

distance hereditary.
The only remaining case occurs when G is distance hereditary. �

Corollary 2. There exists an efficient algorithm for the recognition of graphs
with simple-width at most 2.

A graph is a 2-cograph if and only if it has no induced C5, bull, gem, or co-
gem, i.e., the switching class of C5; see [14] for an alternative description of
this class of graphs. Note that the class is closed under switching [15]. If we
let Gx be the graph in the switching class of G for which the vertex x is isolated,
then G is a 2-cograph if and only if every, or also if some, Gx is a cograph.
Alternatively, we have that a graph is a 2-cograph if and only if every nontrivial
induced subgraph has a twin or an antitwin. We conclude that 2-cographs are
perfect because minimal imperfect graphs have no twins nor antitwins [16,17].
Thus graphs with simple-width at most 2 are perfect.

On Some Simple Widths 215

References

1. Chandler, D.B., Chang, M.S., Kloks, T., Peng, S.L.: Probe graphs (manuscript,
2009), http://www.cs.ccu.edu.tw/~hunglc/ProbeGraphs.pdf

2. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar. 18,
25–66 (1967)

3. Corneil, D.G., Lerchs, L.H.: Stewart-Burlingham: Complement reducible graphs.
Discrete Applied Mathematics 3, 163–174 (1981)

4. Chang, M.S., Hung, L.J., Kloks, T., Peng, S.L.: Block-graph width. In: Chen, J.,
Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 150–157. Springer, Heidel-
berg (2009)

5. Hung, L.J., Kloks, T., Lee, C.M.: Trivially-perfect width. In: Fiala, J., Kratochv́ıl,
J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 301–311. Springer, Hei-
delberg (2009)

6. Oum, S.: Graphs of bounded rank-width. PhD thesis, Princeton University (2005)
7. Hung, L.J., Kloks, T.: On the cograph-width of graphs (manuscript, 2009)
8. Le, V.B., de Ridder, H.N.: Characterizations and linear-time recognition of probe

cographs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS,
vol. 4769, pp. 226–237. Springer, Heidelberg (2007)

9. Kruskal, J.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society 95, 210–225 (1960)

10. Thomassé, S.: On better-quasi-ordering countable series-parallel orders. Transac-
tions of the American Mathematical Society 352, 2491–2505 (2000)

11. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A survey. SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

12. Howorka, E.: A characterization of distance-hereditary graphs. Quarterly Journal
of Mathematics 28, 417–420 (1977)

13. Chang, M.S., Hsieh, S.Y., Chen, G.H.: Dynamic programming on distance-
hereditary graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS,
vol. 1350, pp. 344–353. Springer, Heidelberg (1997)

14. Cameron, P.J.: Two-graphs and trees. Discrete Mathematics 127(1-3), 63–74 (1994)
15. Seidel, J.J.: Geometry and combinatorics. In: Corneil, D.G., Mathon, R. (eds.)

Selected works of J. J. Seidel. Academic Press, London (1991)
16. Lovász, L.: Normal hypergraphs and the weak perfect graph conjecture. Discrete

Mathematics 2, 253–267 (1972)
17. Olariu, S.: No antitwins in minimal imperfect graphs. Journal of Combinatorial

Theory, Series B 45, 255–257 (1988)

http://www.cs.ccu.edu.tw/~hunglc/ProbeGraphs.pdf

A New Model for a Scale-Free Hierarchical
Structure of Isolated Cliques�

Takeya Shigezumi1, Yushi Uno2, and Osamu Watanabe1

1 Tokyo Institute of Technology, Tokyo 152-8552, Japan
2 Osaka Prefecture University, Sakai 599-8531, Japan

Abstract. Scale-free networks are usually defined as the ones that have
power-law degree distributions. Since many of real world networks such
as the World Wide Web, the Internet, citation networks, biological net-
works, and so on, have this property in common, scale-free networks
have attracted interests of researchers so far. They also revealed that
such networks have some typical properties such as high cluster coeffi-
cient and small diameter as well, and a lot of network models have been
proposed to explain them. Recently, some new observations for a real
world network are reported [12]. It tries to find a special kind of cliques
from a network and introduces observations; 1. the size distributions of
cliques show a power-law, 2. the degree distribution of the network af-
ter contracting those cliques show a power-law, and 3. by regarding the
contracted network as the original, 1 and 2 are observed repeatedly. In
this paper, we propose a new network model constructed by a ‘clique ex-
pansion’ procedure, to explain these new hierarchical structure of cliques.

Keywords: scale-free network, isolated cliques, webgraph, web structure
modelling.

1 Introduction

Cluster structures have been observed on many real world networks. A com-
munity structure that is often seen in large web networks is one of the typical
examples of such cluster structures, but it seems to have some specific structural
property. In order to analyze this property, Uno et al. [12] adopted “isolated
cliques” and investigated the distribution and the structure of isolated cliques in
some large web networks. An isolated clique (of size k) [5] is a clique consisting of
k nodes that does not have more than k edges to its outside (see the next section
for the precise definition). That is, an isolated clique is, while it is maximally
dense in its inside, sparsely connected to its outside. Furthermore, there is an
efficient algorithm [5] that can extract all of isolated cliques from a given graph.
Uno et al. used this algorithm to analyze an undirected graph (which we call
a “webgraph” here) representing some web network links, and they found some
interesting properties that are summarized as follows.
� This research was supported in part by JSPS Global COE program “Computation-

ism as a Foundation for the Sciences”.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 216–227, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques 217

Observation 1. The size distribution of isolated cliques in the webgraph follows
a power-law distribution with an exponent that is larger than the exponent for
the degree distribution.

Observation 2. Contract each isolated clique to one node and obtain a reduced
graph. Then the degree distribution of this reduced graph follows follows almost
the same power-law as the degree distribution of the original graph. Furthermore,
the reduced graph has again many isolated cliques whose size distribution follows
the power-law with almost the same or larger exponent as the isolated clique size
distribution of the original graph.

Observation 3. This contraction can be conducted for several times (at least
five times) until the number of isolated cliques becomes very small. Then in those
reduced graphs, more or less almost the same degree distribution and isolated
clique size distribution can be observed (Figure 1).

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 10 100 1000 10000

nu
m

be
r

of
 i-

cl
iq

ue

size of i-clique

ic00
ic01
ic02
ic03
ic04
ic05
ic06
ic07
ic08
ic09

Fig. 1. The size distribution of isolated cliques on the
reduced graph

We may call this ob-
served structure
as hierarchical clique
structure. Let us also
call the final reduced
graph that has no
isolated cliques as a
prime network. Al-
though many scale-
free network models
have been proposed
to explain networks
in the real world,
e.g., [1,7], most of
them can only gen-
erate graphs with-
out large cliques (not
to mention, isolated
cliques), and up until
now, no models have
been proposed for the hierarchical clique structure. Recently, a different type
of some hierarchical structure, called a fractal property, has been also studied
by Song et al. [10]. They observed that the power-law degree distribution on
the reduced graph obtained by contracting randomly and greedily chosen con-
nected subgraph. They also proposed a model to represent this fractal property
[11], however, that model generates a tree so has neither cliques nor hierarchical
clique structure. On the other hand, it may be possible that this hierarchical
clique structure and the structure of a prime network are independent. The pur-
pose of this paper is to provide some model or method for adding the hierarchical
clique structure to any given scale-free network. Thus, for example, we may use
the BA model by Barabási and Albert [3] as a prime network model, and based

218 T. Shigezumi, Y. Uno, and O. Watanabe

on it a network with the hierarchical clique structure can be constructed by our
method.

For explaining some of the features of our method, we introduce some basic
notations (see the next section for their precise definitions). For a given graph
W , its reduced graph C(W) is a graph obtained by contracting all isolated cliques
of W into one vertex, where the contraction is made as shown in Figure 2.

Fig. 2. Examples of the contraction of an isolated clique

Let W 0 denote the
original webgraph and
define W 1 = C(W 0),
W 2 = C(W 1), . . . , and
so on. Uno et al. [12] ob-
served that W i follows
almost the same power-
law degree distributions
as W 0 for several times
(at least five times), and
its isolated clique size distributions follows a power-law distribution with slightly
larger exponent than W 0.

Now our method is, roughly speaking, to use some randomized procedure to
create E(G) from a given graph G so that (i) both G and E(G) follow the same
degree distribution, and (ii) E(G) contains isolated cliques whose size distribution
follows the power-law distribution with exponent that is about +1 larger than
the one for the degree distribution (of G). Consider a graph G0 that is obtained
by any model for scale-free networks (where we may assume that no isolated
clique exists in G0), and define G1 = E(G), G2 = E(G1), . . . , to Gt for some
sufficiently large t. Then we show that the graph W 0 � Gt has the following
property;that is, each W i that is obtained from this W 0 by the contraction
follows the same power-law degree and isolated clique size distributions as W 0.

Technically an interesting point in our analysis is that C(·) is not necessarily
the inverse of E(·). Thus, the fact that W i has the desired degree and isolated
clique size distributions is not immediate from the above properties (i) and (ii)
of E(·).

The organization of this paper is as follows. We give basic definitions of graphs,
scale-free property and basic notations in Section 2. We explain our model pre-
cisely in Section 3, and give analysis in Section 4. In Section 5, we give some
previous and related works. Finally, we conclude the paper giving some future
topics in Section 6.

2 Preliminaries

Throughout this paper, we consider only simple undirected graphs without mul-
tiple edges and self loops, and we denote a graph as G = (V, E), where V is
a set of vertices and E is a set of unordered pairs e = {u, v} of V denoting
edges. For any graph G = (V, E), let V [G] = V and E[G] = E denoting the
set of vertices and edges respectively. For any vertex v ∈ V , a vertex u is called

A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques 219

adjacent to v if there is an edge {u, v} in E. The neighborhood of a vertex v is
a set NG(v) = {u ∈ V [G] | {u, v} ∈ E[G]}, i.e., the set of adjacent vertices of v
in G. The degree of v is |NG(v)|, which is denoted by dG(v) and the maximum
degree of G is maxv∈V dG(v) and denoted by Δ. A graph G′ = (V ′, E′) is called
a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ (V ′ × V ′) ∩ E. A subgraph of G
is called a clique if every pair of vertices in this subgraph has an edge between
them. A clique C is called c-isolated if the number of outgoing edges from V (C)
to V \V (C) is less than c|V (C)|. Although finding large cliques in a graph is in-
tractable, finding isolated cliques is not so hard. Furthermore, 1-isolated clique
can be enumerated in linear time [5], and it is investigated in [12]. Note that very
few overlaps occur among 1-isolated cliques and they are easy to be separated.
We consider a process of contracting an isolated clique of G into one vertex. We
use C(G) to denote a reduced graph obtained from G by contracting all isolated
cliques in G.

The scale-free property is considered as one of the basic properties characteriz-
ing real world large graphs. We say that G is ‘scale-free’ if its degree distribution
follows power-law, i.e., a distribution proportional to k−γ for some constant γ.
Let us make these notions more precise for our discussion. The degree distribu-
tion of G is a sequence {nk

n }k≥1, where nk is the number of vertices with degree
k and nk

n is the ratio of them among n vertices in G. Then we say that G’s degree
distribution follows a power-law if nk/n = Θ(k−γ) for some γ, that is, there are
some constants c1 and c2 such that c1k

−γ ≤ nk/n ≤ c2k
−γ for all 1 ≤ k ≤ Δ.

In this paper, we extend this notion to isolated clique size distributions. The
isolated clique size distribution of G is a sequence {ms

m }s≥1, where ms is the
number of isolated cliques of s vertices and m is the total number of isolated
cliques. We say that G’s isolated clique size follows a power-law if the sequence
{ms

m }s≥1 satisfies ms/m = Θ(s−γ) for some γ.
It does not make sense for discussing the above properties for any fixed finite

graph G. Thus, in this paper, we will consider a family of graphs consisting
of infinite number of graphs defined in a certain way and discuss power-law
properties with constants c1 and c2 that are independent from k and the choice
of a graph in the family. Thus, when claiming for example that G’s degree
distribution follows a power-law with some exponent γ, we formally imply that its
degree sequence {nk/n}k≥1 satisfies nk/n = Θ(k−γ) under some fixed constants
c1 and c2 for all graphs in our assumed graph family.

3 Model

The main idea of our model is as follows. Let G0 be a prime scale-free graph
generated by a certain scale-free model, e.g., BA model. Consider that a vertex in
G0 is either a “node” that represents an 1-isolated clique or a “(simple) vertex”,
otherwise. We decide whether a vertex in G0 is a “node” or a simple vertex
randomly. We replace each node by an isolated clique whose size is the same as
the degree of the original node as shown in the Figure 3. Then we regard these
new vertices in the isolated clique could be “nodes” or vertices, so, we decide

220 T. Shigezumi, Y. Uno, and O. Watanabe

them recursively. In order to technically simplify our analyses and discussions,
we here replace 1-isolated cliques by (1 + ε)-isolated cliques. However, remark
that we can obtain almost similar results even if we used 1-isolated clique. From
now, we consider (1+ε)-isolated cliques and we simply call them isolated cliques.

Fig. 3. Replacing a “node” of degree 4 by an isolated
clique of size 4

We now explain this idea
precisely. Let G0 = (V 0, E0)
and a parameter p0 be in-
puts of our model. Let us as-
sume G0 is a prime scale-
free graph, i.e., any cliques of
G0 must be non-isolated and
its degree distribution follows
a power-law. From a given
graph G0, we expand it to Gi

recursively and randomly. For
Gi = (V i, Ei) (i ≥ 0), con-
sider two subsets U i and Ai of
V i such that Ai ⊆ U i ⊆ V i,
where Ai denotes a set of “nodes” and U i denotes a set of candidates of being
“nodes”. At the first step, all of vertices of G0 are candidate, i.e., U0 = V 0.
First, decide a set of contracted isolated cliques Ai ⊆ U i randomly. Consider a
vertex v in U i with degree k. We choose v into Ai with probability pk = p0

k . It
is independent to the choice of other vertices. Second, for each v ∈ Ai, let Cv

be a clique of size k = dGi(v). Let us define Gi+1 = (V i+1, Ei+1) and U i+1 as
follows.

V i+1 = V i −Ai +
⋃

v∈Ai

V [Cv],

Ei+1 =
{{u, v} ∈ Ei | u, v ∈ (V i −Ai)

}
+

⋃
v∈Ai

⎛⎝E[Cv] +
dGi (v)⋃

i=1

{{ui, vi} | (∗)}
⎞⎠ ,

((∗) : {u1, . . . , udGi(v)} = N(v) and {v1, . . . , vdGi (v)} = V [Cv].)

U i+1 =
⋃

v∈Ai

V [Cv].

Let us denote above expansion procedure by a function E(·), i.e., (Gi+1, U i+1) =
E(Gi, U i) for any i ≥ 0. In this paper, we always set U0 = V 0, so the obtained
(G1, U1), (G2, U2), . . . is a sequence of random graphs. We omit U i and simply
write them as Gi = E(Gi−1) if no confusion arises.

When At = ∅ for some t, we let H = Gt be an output of our model. We choose
the parameter p0 as p0 < 1, since otherwise, t may become infinite with positive
probability. (The recursive procedure will not stop with positive probability.)
This can be obtained by the classical analysis of the branching processes. (See

A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques 221

a literature e.g. [2].) Note that throughout our expansion procedure, the degree
of vertices expanded from a vertex is the same as the original one.

4 Analysis

Here we consider one vertex in V 0 and investigate the number of vertices in
V i expanded from this vertex. It is easy to see that the process of generating
vertices from this vertex obeys the following branching process (as known as
Galton-Watson process) starting with one node. (i) start from a single node
that is in U0(= V 0). (ii) at each step i, on each node in U i, the decision of
“expansion” is made with probability pk independently, where k is the degree
of the starting vertex on G0 and pk = p0

k ; (iii) those decided not to expand
become leaves, and those decided to expand become inner nodes after adding
new k children that are regarded as nodes in U i+1; and (iv) repeat (ii) and
(iii) until no open node exists. Let T denote a tree generated by this expansion
process. Note that we should consider forest {Tv}v∈V 0 , a set of trees starting
from each node v ∈ V 0, for the analysis of the number of nodes or the number
of isolated cliques. However, we will focus on one tree since each tree is created
independently random and the number of total nodes or isolated cliques are the
sum of them in each tree.

It is well known that if pkk < 1, then T is finite with probability 1 (see e.g.
[4]). We defined p0 < 1 and thus pkk = p0 < 1 in our model, so our expansion
procedure generates a finite tree with probability 1.

The initial node is called a root node and a node with no child node is called a
leaf node. For each node v of T , we define its height h(v) and level l(v) inductively
as follows.

h(v) =

{
0, if v is a root node, and
h(v′) + 1 where v is a parent node of v;

l(v) =

{
0, if v is a leaf node, and
max{l(v1), . . . , l(vk)} + 1 where v1, . . . , vk are a child nodes of v.

The height of a tree is the maximum height of nodes in T and note that the
height of a tree equals to the level of the root node of the tree.

An example of a tree representing an expansion procedure and corresponding
height and level of nodes are shown in Figure 4. Let H0 = H and H1 = C(H0),
H2 = C(H1), . . ., and so on. As shown in Figure 4, we can easily obtain the
following observation.

Observation 4. The number of leaves (which has level 0) in the tree represents
the number of nodes in Gt(= H0) expanded from one vertex; and for l ≥ 1, the
number of nodes in the tree with level l represents the number of isolated cliques
in H l−1 expanded from the vertex. The number of nodes in the tree with height
i represents the number of nodes in Gi expanded from the vertex.

222 T. Shigezumi, Y. Uno, and O. Watanabe

1

1 2

level 3Height 0

Height 1

Height 2

Height 3

1

1 2

3

1

1 2

3

1

1 2

3

1

1 2

3

Fig. 4. Expansion and contraction

So, we will analyse the number of nodes with level l for any l ≥ 0 in this
section. For any l ≥ 0, define the following values:

M(l) = the expected number of level l nodes in T ,
q(l) = Pr[T has a node of level l] = Pr[the height of T ≥ l],
P (l) = Pr[the height of T is l] = Pr[the level of the root of T is l].

4.1 Degree Distribution of Gt

Let Vk be a set of vertices with degree k in G and let nk = |Vk|. For vertices with
degree 1, these vertices does not change throughout our expansion procedure.
So, we will consider vertices of degree larger than or equals to two in the rest of
the paper. Let us consider random variables Nk for k ≥ 2 and Nv for v ∈ V [G].
Nk denotes the number of vertices with degree k in H = (Gt) and Nv denotes
the number of vertices expanded from v in H . So, we have Nk =

∑
v∈Vk

Nv. In
this section, we have the following theorem.

Theorem 1. The expected number of vertices with degree k in H is;

E[Nk] =
(

1 +
p0

1− p0

(
1− 1

k

))
nk.

Proof. By observation 4, the expected number of leaves expanded from v is
M(0), i.e. E[Nv] = M(0). If v0 is not expanded, then the number of leaves is 1,

A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques 223

and this occurs with probability 1− pk. Otherwise, the number of leaf nodes are
sum of the number of leaf nodes in subtrees under the k child nodes. Thus, we
have

M(0) = pk · kM(0) + (1 − pk) · 1.

Hence

M(0) =
1− pk

1− pkk
=

(
1 +

p0

1− p0

(
1− 1

k

))
.

Since E[Nk] =
∑

v∈Vk
E[Nv] = |Vk|M(0), the expected number of vertices with

degree k in H is;

E[Nk] =
(

1 +
p0

1− p0

(
1− 1

k

))
nk.

�
Here, let N denote the total number of nodes in H to consider the degree

distribution of H . Since N is the sum of the Nk for all k,

E[N] =
∞∑

k=1

E[Nk] =
(

1 +
p0

1− p0

)
|V | − p0

1− p0

∞∑
k=1

nk

k
=

(
1− p0C

1− p0

)
|V |,

where C is a constant satisfying C|V | = |V | −∑∞
k=1

nk

k .
So, Theorem 1 gives the following expected degree distribution;

E[Nk]
E[N]

=

(
1 + p0

1−p0

(
1− 1

k

))
nk(

1 + p0
1−p0

)
|V | −

{
p0

1−p0
C
} =

(
1 + p0

1−p0

(
1− 1

k

))
nk(

1− p0C
1−p0

)
n

.

Let c1 and c2 be c1 =
(
1 + p0

2(1−p0)

)
/C′ and c2 =

(
1 + p0

(1−p0)

)
/C′. Then we

obtained

c1
nk

n
≤ E[Nk]

E[N]
≤ c2

nk

n
.

Corollary 1. If the input graph G has the power-law degree distribution with
exponent γ, nk/n = Θ(k−γ), the expected degree distribution of H also follows
the power-law distribution, i.e., E[Nk]/E[N] = Θ(k−γ).

4.2 Degree and Isolated Clique Size Distributions of Hi

In this section, we analyze the expected degree distribution and the expected
number of isolated cliques in Hi. We must note that the contraction procedure
C(·) is not an inverse procedure of the expansion E(·). It is easy to observe the
fact by an example of the Figure 4.

Let us denote the number of isolated cliques of size k in Hi by Mk(Hi),
and the number of vertices with degree k in Hi by Nk(Hi). First, we have the
following obvious bound.

224 T. Shigezumi, Y. Uno, and O. Watanabe

Theorem 2. Let C′
1 = 1 and C′

2 = 1 + p0
1−p0

. Then, for any i,

C′
1nk ≤ E[Nk(Hi)] ≤ C′

2nk.

Proof. It is clear that C′
1nk = Nk(G0) ≤ Nk(Hi) ≤ Nk(H0) ≤ C′

2nk. �

Corollary 2. Consider an input graph G has a power-law degree distribution
with exponent γ, nk

n = Θ(k−γ), and G has no isolated cliques. Then the expected
degree distribution of Hi also follows the power-law distribution with exponent
γ.

For the expected number of isolated cliques of size k in Hi, we have the
following bounds.

Theorem 3. Let C1 and C2 be C1 =
(
1− p0

2(1−p0)2

)
and C2 = e−p0

1−p0
. Then for

any i ≥ 0,
C1p

i+1
0

nk

k
≤ E[Mk(Hi)] ≤ C2p

i+1
0

nk

k
.

Note that there is also an obvious lower bound that E[Mk(Hi)] ≥ 0 and if we let
p0 < 1

2 , then C1 > 0.

Proof. As mentioned in Observation 4, we will consider the distribution of the
number of nodes which has level i. In the literature, e.g., [4], the distribution of
the number of nodes with height i is mentioned. However, the analysis of the
distribution of the number of nodes which has level i has not been provided
before.

Firstly, we show E[Mk(Hi)] = nkM(i + 1) and secondly, we give lower and
upper bound for M(l).

The expected number of isolated cliques expanded from one vertex and on Hi

equals to M(i+1), so the total number of isolated cliques of size k is E[Mk(Hi)] =
nkM(i + 1).

P (l) denotes the probability such that the root has level l. Clearly, this con-
tributes P (l) to M(l). Then consider the other case. Since M(l) is 0 if the
root was not expanded; thus, consider the situation that the root was expanded
(which occurs with prob. pk). Let v1, . . . , vk denote the child nodes of the root
and let T1, . . . , Tk denote the trees rooted by these nodes. Then we may re-
gard that each Ti follows the same probability distribution as T ; thus, we
may use M(l) for the expected number of level l nodes of Ti. Hence we have
M(l) = pkM(l) + P (l). Since the number of nodes on tree T is finite with
probability 1, we have;

M(l) =
P (l)

1− pk
. (1)

From now on, we consider P (l).

Lemma 1. We have P (1) = p0
k (1− p0

k)k and for any l > 1

P (l) ≤ pl
0

k

(
1− p0

k

)k

A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques 225

Proof. Since q(1) = pk and q(2) = pk(1− p0
k)k, P (1) = q(1)−q(2) = p0

k (1− p0
k)k.

By the definition of q(l), we have

q(l) = p
{
1− (1− q(l − 1))k

}
for any l ≥ 1.

For any 0 < x < y < 1, it is easy to show that

(1− x)k − (1 − kx) < (1− y)k − (1 − ky)

and that g(l) < g(l − 1),

P (l) = q(l)− q(l + 1) = pk

[{
1− (1− q(l − 1))k

}
−

{
1− (1− q(l))k

}]
≤ pk [{1− (1− kq(l − 1))} − {1− (1− kq(l))}]
= pkk (q(l − 1)− q(l)) = p0P (l − 1).

Hence we obtained P (l) ≤ pl−1
0 P (1) = pl

0
k (1− p0

k)k. �
To analyse the lower bound of P (l), we need to consider the upper and lower

bound of q(l).

Lemma 2. For q(l) , we have

f(l)
k
≤ q(l) ≤ pkpl−1

0 .

where f(l) = p0(1− e−f(l−1)) and f(1) = p0.

Proof. Proof can be easily done by e−xk ≤ (1 − x)k ≤ 1 − kx and induction on
l, hence omitted. �

Second, we give a lower bound of f(l).

Lemma 3. f(l) ≥ pl
0 − 1

2

(∑2l−1
j=l+1 pj

0

)
> pl

0

(
1− p0

2(1−p0)

)
.

Proof. The proof is also easy by
(
1− x

2

)
x ≤ 1− e−x and induction on l. Due to

the space limit we omit the proof. For details, see [9]. �
Hence, the lower bound of P (l) is

P (l) = q(l)− q(l + 1) ≥ f(l)
k
− pkpl

0 ≥
1
k

pl
0

(
1− p0 − p0

2(1− p0)

)
.

By equation (1), We finally obtain

pl
0

k

(
1− p0

2(1− p0)2

)
≤M(l) ≤ pl

0

k

(1− p0
k)k

1− p0
<

pl
0

k

e−p0

1− p0
.

Now let C1 =
(
1− p0

2(1−p0)2

)
and C2 = e−p0

1−p0
. By Ex[Mk(Hi)] = nkM(i + 1),

we obtain Theorem 3.

C1p
i+1
0

nk

k
≤ Ex[Mk(Hi)] ≤ C2p

i+1
0

nk

k
. �

226 T. Shigezumi, Y. Uno, and O. Watanabe

By Theorem 3, the expected number of isolated cliques in Hi is proportional
to pi+1

0
nk

k for any size k. The total number of isolated cliques in Hi is also
proportional to pi+1

0
∑

k>1
nk

k . The ratio of the isolated clique of size k among
all isolated cliques in Hi can be written as

Cpi+1
0

nk

k
pi+1
0

∑
k>1

nk

k

=
C

M

nk

k

for some constant C. Note that M =
∑

k>1
nk

k is a constant independent to k.
Hence, if nk

n = Θ(k−γ), C
M

nk

k = Θ(k−γ/k) = Θ(k−(γ+1)).

Corollary 3. Consider an input graph G has a power-law degree distribution
with exponent γ, nk

n = Θ(k−γ), and G has no isolated cliques. Then the expected
size distribution of isolated cliques in Hi also follows the power-law distribution
with exponent γ + 1.

5 Related Works

In this paper, we investigated a model of the community structure with isolated
cliques. Many kinds of other community structure have been introduced and
investigated.

Web mining using complete bipartite graph (CBG) has been investigated by
Kleinberg [6]. They assumed that web communities contain at least one CBG
which is called the core of the community. Reddy and Kitsuregawa [8] relaxed
the criteria of existence of a community by defining a dense bipartite graph
structure (DBG). They investigated a community hierarchy of the World Wide
Web extracting all DBG found in the WWW.

Many other models have been presented, however, there were only few math-
ematical analysis of the size distribution of communities for these models.

Recently, a different type of some hierarchical structure, called the fractal
property, has been also studied by Song et al. [10]. They observed that the
power-law degree distribution on the reduced graph obtained by contracting
randomly and greedily chosen connected subgraph. They also proposed a model
to represent this fractal property [11], however, their minimal model generates
a tree so has neither cliques nor hierarchical clique structure.

6 Concluding Remarks

In this paper, we proposed a new model to explain the hierarchical clique struc-
ture and its scale-free properties. Our model provides a graph with the similar
properties to the ones that are observed in the World Wide Web.

However, our model generates a special kind of isolated cliques such that each
member of the clique has exactly one outgoing edge. It is possible to consider
some modifications of our model to this problem, randomly connect outgoing

A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques 227

edges of the isolated cliques for example. In our model, we used some other
model to generate a prime network (G0). If we use a single vertex or a clique
as a prime network, it generates a regular graph in our current model. We are
trying to make more general model which can generate graphs with scale-free
property and the hierarchical clique structure from one node or one clique.

Uno et al. also investigates the hierarchical structure of isolated stars [12,13],
we also apply our approach to them.

References

1. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Review of
Modern Physics 74, 47–97 (2002)

2. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Heidelberg (1972)
3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Sci-

ence 286(5439), 509–512 (1999)
4. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn.

Wiley, Chichester (1968)
5. Ito, H., Iwama, K., Osumi, T.: Linear-time enumeration of isolated cliques. In:

Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 119–130. Springer,
Heidelberg (2005)

6. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

7. Newman, M.E.J.: The structure and function of complex networks. SIAM Re-
view 45, 167–256 (2003)

8. Krishna Reddy, P., Kitsuregawa, M.: Building a community hierarchy for the web
based on bipartite graphs. In: Proceedings of the 13th IEICE Data Engineering
Workshop, pages C4–1 (2002)

9. Shigezumi, T., Uno, Y., Watanabe, O.: A new model for a scale-free hierarchical
structure of isolated cliques. Dept. of Math. and Comp. Sciences Tokyo Institute
of Technology Research Reports, Series C (2009)

10. Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Na-
ture 433(7024), 392–395 (2005)

11. Song, C., Havlin, S., Makse, H.A.: Origins of fractality in the growth of complex
networks. Nature Physics 2(4), 275–281 (2006)

12. Uno, Y., Kiyotani, T., Oguri, F.: Investigating web structure by cliques and stars.
RIMS Kokyuroku 1644, 44–54 (2009)

13. Uno, Y., Ota, Y., Uemichi, A.: Web structure mining by isolated stars. In: Aiello,
W., Broder, A., Janssen, J., Milios, E.E. (eds.) WAW 2006. LNCS, vol. 4936, pp.
149–156. Springer, Heidelberg (2008)

The Covert Set-Cover Problem with Application
to Network Discovery

Sandeep Sen and V.N. Muralidhara

Department of Computer Science and Engineering,
Indian Institute of Technology, Delhi, India

{ssen,murali}@cse.iitd.ernet.in

Abstract. We address a version of the set-cover problem where we do
not know the sets initially (and hence referred to as covert) but we can
query an element to find out which sets contain this element as well as
query a set to know the elements. We want to find a small set-cover using
a minimal number of such queries. We present a Monte Carlo randomized
algorithm that approximates an optimal set-cover of size OPT within
O(log N) factor with high probability using O(OPT · log2 N) queries
where N is the number of elements in the universal set.

We apply this technique to the network discovery problem that in-
volves certifying all the edges and non-edges of an unknown n-vertices
graph based on layered-graph queries from a minimal number of vertices.
By reducing it to the covert set-cover problem we present an O(log2 n)-
competitive Monte Carlo randomized algorithm for the covert version
of network discovery problem. The previously best known algorithm has
a competitive ratio of Ω(

√
n log n) and therefore our result achieves an

exponential improvement.

1 Introduction

Given a ground set S with n′ elements and a family of sets S1, S2 . . . Sm′ where1

Si ⊂ S, a cover C is a collection of sets from this family whose union is S. It
is known that finding a cover consisting of the minimum number of sets is a
computationally intractable problem [9]. There are many strategies [11,6,10] to
approximate the smallest cover within a factor of O(log n′) which is known to be
the best possible unless P = NP [7].

In this paper, we consider the following version of the set cover problem.
Although we know m′, n′, we do not know the elements nor the cardinality of
any of the sets Si. We are allowed to query an element e ∈ S that returns all sets
Si that contain e which we refer to as a hitting-set query; we can also query a
set to know its elements. We would like to compute a small set cover of S using
a minimal number of such queries. More specifically, if OPT is the minimum
size of a set cover for any instance of the problem, we would like to find a set

1 We have chosen n′, m′ as notations to keep them distinct from graphs with n vertices
and m edges.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 228–239, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Covert Set-Cover Problem with Application to Network Discovery 229

cover of size O(OPT · polylog n′) using only O(OPT · polylog n′) queries. Note
that by using min{m′, n′} queries, we can reduce it to the standard version but
the number of queries may not satisfy O(OPT · polylog n′). By restricting the
number of queries to be close to OPT , an algorithm cannot afford to learn the
contents of all the sets, yet it is required to find a cover close to the optimal.

This formalisation is also distinct from the online problems addressed in [1,2]
where the sets are known but the adversary chooses a set of the ground set for
which a minimal cover must be computed. An adversary chooses the elements one
after the other and the online algorithm must maintain a cover of the elements
revealed upto a given stage. There is no apparent relationship between the two
versions. In one case, the initial sets are not known but the algorithm can choose
the elements for hitting set queries whereas in the online case, the sets are known
but the adversary chooses the elements. Moreover, the number of queries is also
a measure of performance in the version considered here.

Our research is motivated by the problem of discovering the topologies of
large networks such as the Internet. For large networks such as the Internet
which changes frequently, it is very difficult and costly to obtain the topology
accurately. Nevertheless, such information about the network is very useful -
for example, the robustness properties of the network or studying the routing
aspects.

In order to create the topology of the network, one of the techniques used is
to obtain local views of the network from various locations and combine them
to determine the topology of the network. One can view this technique as an
approach for discovering the topology of the network by some queries. Here, a
query corresponds to the local view of the network from one specific location.
In the real world scenario, the cost of answering a query is usually very high, so
the objective of the network discovery problem is to find the map of the network
using a minimal number of queries.

Note that in the network discovery problem, we have to confirm the existence
and non-existence of an edge between any pair of vertices. So, any query at a
vertex should implicitly or explicitly confirm the absence or presence of edges
between some pair of vertices. The Layered Graph Query Model and Distance
Query Model are the most widely studied query models.

Layered Graph Query Model : A query at a vertex v yields the set of all edges
on shortest paths from the vertex v to any other vertex reachable from v in the
graph. More specifically, we obtain information about an edge (x, y), iff d(v, x)
and d(v, y) are consecutive where d(v, x) is the level of x (from v, see Fig. 1).

Distance Query Model : A query at a vertex v yields the distances of v to ev-
ery vertex of the graph, i.e. a query at a vertex v returns a vector v, where the
ith component indicate the distance to ith vertex from vertex v. It is easy to see
that it is a weaker query model as compared to Layered Graph Query Model. In the
DistanceQueryModel, an edge may be discoveredby a combination of queries as il-
lustrated inFig 2. In the example shown inFig 2, queryatvertex1discovers thenon-
edges {(1, 4), (1, 5), (1, 6), (2, 6), (3, 6)} and edges {(1, 2), (1, 3)}. A query at ver-
tex 6 discovers the non-edges {(1, 4), (1, 5), (1, 6), (2, 6), (3, 6), (4, 2), (5, 2), (3, 2)}

230 S. Sen and V.N. Muralidhara

(c)(a)

v7

v4

v3v2

v5

v1

v3v2

v6
v7v5v4

v4 v5 v6 v7

v1

v2

v1

v6

(b)

Fig. 1. A query at a vertex v1 in the layer graph model (a) yields certificate for the
edges in (b) and non-edges in (c)

(c)

5

3
4

2

1
06

4

3
1
2

1

3

4 5

6

(b)
3

1

0

2

2

1

2
3

4 5

6(a)

Fig. 2. The edges (5, 3) and (4, 3) of the graph (a) is discovered by the combination
of queries at vertex 1 in (b) and at vertex 6 in (c) in the distance query model - the
distances are depicted via layers of the graph.

and edges {(3, 1), (1, 2), (6, 4), (6, 5)}. Combining these two queries,we discover the
edges (5, 3) and (4, 3). In the off-line version of network discovery problem, the net-
work is initially known to the algorithm. Unlike the online problem, here the goal
is to compute a minimum number of queries that suffice to discover the network.
Given a network, we can verify whether what we have been given is the correct in-
formation. Thus, we refer to the off-line version of network discovery problem as
network verification.

1.1 Prior Work in Network Discovery

Bejerano and Rastogi [5] studied the problem of verifying all edges of a graph with
as few queries as possible in a model similar to the Layered Graph QueryModel. For
a graph with n vertices, they give a set-cover based O(log n)-approximation algo-
rithm and show that the problem is NP-hard. In contrast to Bejerano and Rastogi,
we are interested in verifying (or discovering) both the edges and the non-edges
of a graph. It turns out that the network verification problem was considered as
a problem of placing landmarks in graphs [8]. The problem was shown to be NP-
complete and an O(log n)-approximation algorithm was presented. Beerliova et al.
[3] proved anΩ(log n) lower bound on the approximation factor for anypolynomial

The Covert Set-Cover Problem with Application to Network Discovery 231

timealgorithmfor thenetworkverification in theLayeredGraphQueryModelunless
P = NP .

In the online version of the problem, the network (graph) is unknown to the
algorithm. To decide the next query, the algorithm can only use the knowledge
about the network it has gained from the answers of previously asked queries.
Thus, the difficulty in selecting good queries arises from the fact that we only
have the partial information about the network.

For the network discovery problem, Beerliova et al.[4] have shown an Ω(
√

n)
lower bound on the competitive ratio of any deterministic online algorithm and
an Ω(log n) lower bound for any randomized algorithm for the Distance Query
Model. The best known algorithm in the Distance Query Model is a randomized
online algorithm which is O(

√
n log n)-competitive [4]. In contrast, for the Lay-

ered Graph Query Model, Beerliova et al.[4] have shown that no deterministic
online algorithm can be (3 − ε) competitive for any ε > 0. The best known
algorithm in this model before this work is an O(

√
n log n)-competitive online

randomized algorithm [4] that leaves an exponential gap between the best known
lower and upper bounds for the Layered Graph Query Model.

In this paper, we present a randomized Monte Carlo online algorithm with a
competitive ratio O(log2 n) for the Layered Graph Query Model thereby nearly
closing this exponential gap.

1.2 Our Results and Techniques

The network verification problem can be solved by reducing it to an appropriate
instance of the set-cover problem (or hitting set problem). Hence, we obtain an
O(log n) approximation algorithm for the network verification problem which is
the best that we can hope to do unless P = NP . In the online network discovery
problem, we do not know the graph a priori and hence the above reduction
cannot be used directly. In particular, the sets are not known explicitly, so we
first develop an algorithm for solving the covert version of the set-cover problem
using queries.

We present an algorithm that computes a set-cover of size at most O(log(m′+
n′) ·OPT) using at most O(log2(m′ + n′) ·OPT) queries with high probability.
Using this, we obtain an O(log2 n)-competitive Monte Carlo randomized algo-
rithm for the network discovery problem in the Layered Graph Query Model.
This is a significant improvement from the previously best known O(

√
n log n)-

competitive algorithm ([3]).
Our algorithm for the set-cover simulates the greedy set-cover algorithm with-

out any information about the contents of any of the sets initially. We use esti-
mation using random sampling to choose the (near) largest cardinality set which
is the basis of the greedy algorithm. We have to compensate for the inaccuracies
in sampling by using a more careful amortisation argument for proving the ap-
proximation factor. The greedy algorithm is modified to run in O(log(n′ + m′)
rounds instead of the conventional OPT · log n′ stages.

232 S. Sen and V.N. Muralidhara

2 Preliminaries

Let G = (V, E) be a connected, undirected, unweighted graph representing a
network of n vertices. For two distinct nodes u, v ∈ V , we say that (u, v) is an
edge if (u, v) ∈ E and non-edges if (u, v) /∈ E. The set of non-edges in G is
denoted by E.

We assume that the set V of nodes is known in advance and it is the presence
or absence of edges that need to be discovered or verified. A query at node v is
denoted by query(v).

We say that a query(v) certifies (u, v) if by using the answers to the query(v),
one can confirm the presence or absence of the edge (u, v) in the graph, i.e.
query(v) implicitly or explicitly confirms whether (u, v) ∈ E or (u, v) ∈ E. We
associate two sets with each query(v) as follows. For a given vertex v ∈ V , let
Qv denotes the set of all (u, v) ∈ V × V such that query(v) certifies (u, v) .
For a given (u, v) ∈ V × V , let H(u,v) denote the set of all vertices v such that
query(v)certifies (u, v) . The two definitions can be considered duals of each
other.

Qv = {(u, v) ∈ V × V | query(v) certifies (u, v)} ∀v ∈ V

H(u,v) = {v ∈ V | query(v) certifies (u, v)}∀(u, v) ∈ V × V.

The above formulation of the network discovery problem can be reduced to the
set-cover problem in which given a collection of sets Qv of E ∪E, the goal is to
find a (minimum size) subset V ′ ⊂ V such that ∪v∈V ′Qv = E ∪ E. Therefore,
querying the vertices of the set-cover will certify all the edges and non-edges
that can be used to discover the network.

In the related hitting-set problem, given a collection of sets H(u,v) of V , the
goal is to find a (minimum size) subset V ′ ⊂ V such that for any given set H(u,v),
there exists a vertex v′ ∈ V ′ such that v′ ∈ H(u,v). It may be noted that the
(offline) hitting-set problem is often solved by reducing it to the corresponding
set-cover problem.

In the offline verification problem, given any query model, one can find the
above sets exactly as the graph is known. So the network verification problem
can be solved by reducing it to the corresponding set-cover problem (or hitting
set problem). Hence, we get an O(log n) competitive algorithm for the network
verification problem. As mentioned earlier this is the best that we can hope to
do for this problem unless P = NP .

In the online network discovery problem, since we do not know the graph
a priori, we cannot compute the above sets explicitly without querying all the
vertices 2 To circumvent this problem, we develop an algorithm for approximat-
ing the set-cover using the related hitting-set queries. It can be easily seen (c.f.
Section 6), that H(u,v) can be obtained from Qu and Qv in the context of the
network discovery problem.
2 While this may be necessary for some graphs like the complete graphs, in general

this will lead to poor competitive ratio.

The Covert Set-Cover Problem with Application to Network Discovery 233

3 Approximating Set-Cover Sets Using Hitting-Set
Queries

In the conventional greedy set-cover algorithm, we choose a set smax that covers
the maximum number of uncovered elements, say nmax, and add it to the cover.
This leads to a log n′ approximation. Instead, if we choose any set that covers
at least half of nmax uncovered elements, then it gives a 2 log n′ approximation.
Recall that m′, n′ denote the number of elements and the number of sets respec-
tively. More generally, if we choose a set that cover at least 1

c′ nmax elements,
then we obtain a c′ log n′ approximation. We consider a version of this Relaxed
Greedy-Set-Cover (RGSC) where we repeat the following in stages 1, 2, . . . log n′.
At any stage we identify all the sets that contain at least 1

2nmax uncovered el-
ements. We can consider the sets of in an arbitrary, but fixed ordering O and
include those sets that contribute at least 1

2nmax uncovered elements by deleting
elements that have been already covered by sets chosen earlier. Note that the
sets that will be included will depend on O - however, at the end of this stage,
there will not be any set that contains nmax/2 or more uncovered elements. Since
any such ordering O corresponds to a valid run of RGSC, this will yield a 2 log n′

approximation guarantee.
Our algorithm is based around simulating this approach, where we try to

estimate the value of nmax indirectly using random sampling. In round i,3 we
check for nmax ∈ [n′

2i−1 , n′
2i−2] by choosing a random set of uncovered elements

of an appropriate size. Using hitting set queries, we find the sets containing
these randomly chosen elements. We choose an appropriate number of uncovered
elements that will hit the sets having n′

2i−2 elements with high probability. We
consider the sets in a fixed order and if a set contains more than at least a
threshold number of randomly picked elements, then we include the set in the
set-cover. Because of the estimation using random sampling, we lose a factor
c′ > 2 in the underlying RGSC as we may choose some sets which contain fewer
than nmax/2 uncovered elements (but at least nmax

c′).
Algorithm Pseudo Greedy described below, selects all sets containing at

least nmax/2 uncovered elements and discards the sets containing less than
1
c′ nmax uncovered elements for 4 < c′ < 8 with high probability.

We assume that the sets are numbered in some canonical order. In the spe-
cific application of the network discovery problem, this ordering is implicit
({v1, v2, . . . vn}, this induces a canonical ordering on the collection Qv of sets).
In the general setting, we assume that such an ordering exits or it can be easily
computed.

In Algorithm 1, N denotes the cardinality of the ground set plus the number
sets in the given family (N = n′+m′). In the case of Network Discovery problem,
N = O(|V |2). In round i, we try to identify the sets containing at least n′

2i+1

uncovered elements.

3 The notation nmax will refer to the maximum in the current round i.

234 S. Sen and V.N. Muralidhara

Algorithm 1. Pseudo-Greedy
for i = 0, 1 . . . do

1: Let ni be the number of elements left in this round and si = min{n′
2i , ni}. Choose

a random sample Ri of size (4αni/si) log N .
Comment: α is a constant whose value will be determined in the analysis.

2: If si ≤ α log N then solve the hitting set problem directly using at most ni hitting
set queries and run the explicit greedy set-cover algorithm.

3: Else (if si > α log N), let Si be the sets that contain more than α log N sampled
elements.
If Si is empty, increment i and go to step 1.

4: Process Si = {X1, X2, . . .} in some predefined order until all sets are exhausted.

(i) Let Rj be the union of elements of Ri that are contained in the sets chosen
among X1, X2, . . . Xj .

(ii) Include Xj+1 in set-cover if

|Xj+1 ∩ (Ri − Rj)| ≥ α log N

else discard.
(iii) Update Rj to Rj+1. using set queries.

5: Update the elements covered by the sets chosen in this round using set queries.

4 Analysis

We begin with a rough intuition behind the previous algorithm. If the largest
set has size n′/t then the minimum number of sets in any set cover is Ω(t).
Therefore we can afford to query a sample of size approximately O(t ·polylog n′)
elements without blowing up the competitive ratio. In this context note that a
uniform random sample of size O(t · polylog n′) will have θ(polylog n′) elements
common with a set of size n′/t with high probability. However, if there are Ω(t)
sets of size O(n′/t), we cannot afford to sample repeatedly for finding these sets.
The above observations form the crux of the analysis that are now formalized.

Lemma 1. In round i, in Step 3, the following holds with high probability
(i) If a set T contains at least si/2 elements then with high probability it will
have at least α log N sampled elements.
(ii) Any set T chosen in Step 3 will contain at least 1

c′ si elements for 4 < c′ < 8
with high probability.

Proof. Let T be a set where m ≥ |T | ≥ m/2. Suppose we sample every element
independently with probability p. The expected number of sampled elements Y
is such that mp ≥ Y ≥ mp/2. From Chernoff bounds,

Pr[(1 + ε)mp ≥ Y ≥ (1− ε)mp/2] ≥ 1− 2e−mpε2/4

Choosing ε = 1/2, we get

Pr[3/2mp ≥ Y ≥ mp/4] ≥ 1− 2e−mp/16

The Covert Set-Cover Problem with Application to Network Discovery 235

In round i, each element is picked independently with probability (4α/si) log N ,
therefore, the expected number of hits in a set of size m is (4mα/si) log N . From
Chernoff bounds, by substituting m = si,

Pr[6α log N ≥ Y ≥ α log N] ≥ 1− 2e−α/4 log N = 1− 2/Nα/4

Since the number of such T is less than N , the algorithm picks all sets containing
at least si/2 uncovered elements with high probability. On the other hand, T be
any set chosen in Step 3 of the algorithm. Then, by applying Chernoff bound,
we get,

Pr[T < si/c′] ≤ e−(c′−2)α/8 log N = 1/N (c′−2)α/8

for all 4 < c′ < 8.

Lemma 2. If round i takes O(ni

si
· f(N)) steps, then the set-cover can be found

using O(ng · f(N)) queries where ng is the size of the set-cover returned by the
underlying RGSC Algorithm.

Proof. In round i, we include all those sets in the cover that covers at least
si/2 additional elements. In round i, let us distribute the cost uniformly to
the remaining elements, i.e., each of the ni elements is charged O(f(N)/si).
If an element is covered by a set chosen in round i then it is not charged in
the subsequent rounds. So the total cost over all the rounds for element x is
C(x) ≤ f(N) ·

(
1

|s(x)| + 1
si

+ 1
2si

+ 1
4si

+ . . .
)

where s(x) is the set that first
covers element x and si/c′ ≤ |s(x)| ≤ si. The constant c′ refers to the constant
in the previous lemma. Therefore∑

x

C(x) ≤ f(N)
∑

x

3c′

|s(x)| = 3c′f(N) ·
∑
s(x)

∑
x∈s(x)

1
|s(x)|

The summation represents the cost of the underlying RGSC algorithm and there-
fore, it is bounded by 3c′f(N) · ng (see Lemma 3 in the Appendix).
Note that the underlying RGSC algorithm is a c′ log N approximation to the
set-cover.

Theorem 1. Algorithm 1 returns a set-cover of size at most O(log N · OPT)
using at most O(log2 N ·OPT) queries with high probability.

Proof. In our algorithm, f(N) is O(log N). When si < α log N , we solve the
problem directly using at most ni hitting set queries, and explicitly run the
greedy set-cover. Since the largest set has size n′/2i, the size of the cover is at
least Ω(n′/ log N) and therefore, the number of queries is O(log N · OPT). In
order to prove the theorem, we will show that the bound on ng in Lemma 2 is
O(log N ·OPT). So, we must establish that the sets shortlisted in Step 3 of the
Algorithm and finally included in the cover in Step 4 are only those sets (on the
basis of their estimates) that covers at least si/c′ uncovered elements. There is a
potential complication if the ordering that we choose is arbitrary - in particular,
we must guard against oversampling of the uncovered elements of any set. For

236 S. Sen and V.N. Muralidhara

simplicity, let us assume that we consider the sets of Si in increasing order of
their indices.

Let X1, X2 . . . be the sets of Si in the canonical ordering that contain at
least si/c′ elements. We define X ′

i as all the uncovered elements in Xi after
X1, X2, . . .Xi−1 have been considered. We consider X ′

i to be under-sampled if
|X ′

i| ≥ si but the number of sampled elements intersecting X ′
i (not including

Xi −X ′
i) is less than α log n. We analogously define oversampling for X ′

i.
We say that a bad event has occurred in round j, if any of the sets X ′

i is
under-sampled or oversampled and let the complement of this event be Zi. From
Lemma 1, we can bound the probability of under sampling and over sampling
such that Pr[Zi] ≥ 1−3/N (α/4)−1 (by choosing c′ > 4). Let Ai be the event that
no under-sampling or oversampling occurs for X ′

1, X
′
2 . . . X ′

i. Then,

Pr[Ai] = Pr[Ai−1

⋂
Zi] = Pr[Zi|Ai−1] · Pr[Ai−1]

Therefore,

Pr[Ai] ≥ Pr[Ai−1] · (1− 3/N (α/4)−1) ≥
(
1− 2/Nα/4−1

)i

for i ≤ N

By choosing sufficiently large α this is at least 1 − 1/N2. Since this holds for
all j ≤ O(log N) rounds, this also bounds the failure probability of our algo-
rithm. We say that the algorithm fails if in any of rounds, it does not pick all
sets containing at least si/2 uncovered elements or picks any set containing less
than si/c′ uncovered elements. Since we do not verify this property, we obtain
a Monte Carlo algorithm.

Remarks: The sizes of sets that will be chosen will satisfy the the above men-
tioned bounds with high probability; otherwise, the algorithm will be deemed to
have failed. Note that the bound of Lemma 2 also holds with the same proba-
bility. A deterministic algorithm picks all the sets of size at least si/2, and while
our randomized algorithm chooses all sets of size at least si/2, it may pick some
sets which are little smaller (but greater than si/c′).

5 Network Discovery

The off-line problem of network verification can be reduced to a set-cover prob-
lem. In the online version, we do not want to compute the sets explicitly since
this will lead to a poor competitive ratio in many situations. So we solve the
problem by using hitting-set queries as described in the previous section that
gives us an estimate of the set sizes. In our setting, the hitting-set problem is
defined on the sets H(u,v) and the set-cover problem on the sets Qv. During
any stage, random sampling is done on the set of unresolved edges to obtain
estimates of Qv by querying Qxy where (x, y) is a sampled edge.

Recall that in Layered Graph Query Model, a query at a vertex v yields the
set of all edges on shortest paths between v and any other vertex. Now, we

The Covert Set-Cover Problem with Application to Network Discovery 237

observe that this query model is equivalent to the model in which a query at
vertex v yields all edges and non-edges between vertices of different distances
from v. Note that an edge connects two vertices of different distance from v if
and only if it lies on a shortest path between v and one of these two vertices. The
shortest path rooted at v implicitly confirms the absence of all edges between
vertices of different distance from v. So given an edge or non-edge whose status
is not yet resolved, say (v, u), we query both the end points v and u to determine
the distances of all nodes to u and v. From this we can deduce the set H(u,v)
of nodes from which the edge or non-edge between u and v can be discovered:
H(u,v) = {x ∈ V |d(u, x)
= d(v, x) d(s, x) = distance from s to x}.

Algorithm Pseudo Greedy described in the previous section above translates
to the following in the context of the network discovery problem. Randomly pick
a undiscovered edge and query the set H(u,v). Let n be the number of vertices in
the graph and let Q denote the query set- this is the (approximately minimal)
set of vertices which will be used to discover the network. If v is contained in
at least α log n of the queried sets, include v in the set-cover Q. Actually, like
the general set-cover problem, it is a two stage process where we first shortlist
and then subsequently run through this list in some predefined ordering, say
according to the labels of the vertices. As before, we solve the set-cover problem
on Qv using a sequence of H(u,v) hitting set queries. The reader can easily work
out the details that we omit to avoid repetition.

In the following algorithm N = O(n2). The algorithm takes O(log n) stages
and in each stage we make O(log n · OPT) queries, where OPT is the optimum
number of queries required to solve the network verification problem. Since this
is also optimum for the online problem, Algorithm Network Discovery makes
O(log2 n ·OPT) queries. The algorithm yields a set O(log n ·OPT) Qv queries that
suffices to discover the given network. Therefore the overall number of queries
for the online discovery is still O(log2 n · OPT).

Algorithm 2. Network Discovery
for i = 0, 1 . . . do

1: Let ni be the number of edges and non-edges which needs to be discovered and

si = min{ (n
2)
2i , ni}. Choose a random sample of Ri of size (4αni/si) log N .

2: If si ≤ α log N then find H(u,v) for each of the undiscovered edge/non-edge and
solve the network discovery problem by reducing it explicitly to the set-cover prob-
lem.

3: If si > α log N , for each sampled edge/non-edge (u, v), find the set H(u,v).
4: Consider the vertices {v1, v2, . . .} in this order and include vj in Q (Qvj is in the set-

cover) only if Qvj contains more than α log N sampled edge/non-edge. (vj ∈ H(u,v)

for at least α log N of the (u, v) ∈ Ri).
(The actual implementation of this is similar to Steps 3-4 of the Algorithm Pseudo
Greedy.)

From our earlier analysis of the covert set-cover problem it follows that

Theorem 2. There is a O(log2 n)-competitive randomized Monte Carlo algo-
rithm for the network discovery problem in the Layered Graph Query Model.

238 S. Sen and V.N. Muralidhara

6 Conclusion and Open Problem

The algorithm described in the last section gave a O(log2 n) algorithm for the
network discovery problem – Can we improve this to O(log n) ? We can consider
a weighted version of the network discovery problem, where each query at a
vertex costs say wv, it is not clear whether we can extend our approach to solve
the weighted version of the problem.

We note that in the Distance Query Model, by querying both v and u, we can
discover if u or v is a edge or non-edge. If it is a non-edge, then we can find the
set H(u,v) – a vertex w is in this set if d(u, w) − d(v, w) ≥ 2. But if (u, v) is an
edge, then we can not find the set H(u,v). It is not clear how to determine the
partial witnesses, using set-cover queries as before. Therefore, it remains open if
we can we improve the known O(

√
n logn) bound for network discovery problem

to O(poly(log n)) approximation randomized algorithm in the Distance Query
Model?

Acknowledgement. The first author is thankful to Rajeev Raman and Thomas
Erlebach for introducing him to the problem and subsequent technical
discussions.

References

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover
problem, pp. 100–105 (2003)

2. Awerbuch, B., Azar, Y., Fiat, A., Leighton, F.T.: Making commitments in the face
of uncertainty: How to pick a winner almost every time (extended abstract), pp.
519–530 (1996)

3. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihǎlák, M.,
Shankar Ram, L.: Network discovery and verification. In: Kratsch, D. (ed.) WG
2005. LNCS, vol. 3787, pp. 127–138. Springer, Heidelberg (2005)

4. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalák, M.,
Shankar Ram, L.: Network discovery and verification. IEEE Journal on Selected
Areas in Communications 24(12), 2168–2181 (2006)

5. Bejerano, Y., Rastogi, R.: Robust monitoring of link delays and faults in ip net-
works. In: INFOCOM (2003)

6. Jonson, D.S.: Approximation algorithms for combinatorial problem. Journal of
Computer and System Sciences (9), 256–278 (1974)

7. Feige, U.: A threshold of ln for approximating set cover. J. ACM 45(4), 634–652
(1998)

8. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Ap-
plied Mathematics 70(3), 217–229 (1996)

9. Grey, M.R., Jonson, D.S.: Computers and intractability. Freeman, New York (1979)
10. Vazirani, V.V.: Approximation algorithms. Springer, New York (2001)
11. Chatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Oper-

ations Research (4), 233–235 (1979)

The Covert Set-Cover Problem with Application to Network Discovery 239

Appendix A

Chernoff bounds
If a random variable X is the sum of n iid Bernoulli trials with a success prob-
ability of p in each trial, the following equations give us concentration bounds
of deviation of X from the expected value of np. These are useful for small
deviations from a large expected value.

Prob(X ≤ (1− ε)pn) ≤ exp(−ε2np/2) (1)

Prob(X ≥ (1 + ε)np) ≤ exp(−ε2np/4) (2)

for all 0 < ε < 1.

Greedy set-cover
For completeness, we also sketch the proof of approximation factor of RGSC(θ)
for θ < 1, such that at any step, the size of the set chosen is at least θ · nmax.

Let us number the elements of S in the order they were covered by the greedy
algorithm (wlog, we can renumber such that they are x1, x2 . . .). We will appor-
tion the cost of covering an element e ∈ S as w(e) = 1

U−V where e is covered for
the first time by U and V is set of elements covered till then. This is also called
the cost-effectiveness of set U . The total cost of the cover is∑

U

∑
e∈U

1
n(U)

where n(U) is the number of uncovered elements in U when U was chosen and
e is covered for the first time. This can be rewritten as

∑
i w(xi).

Lemma 3

w(xi) ≤ Co/θ

n− i + 1

where Co is the number of sets in the optimum cover.

In the iteration when xi is covered for the first time, the number of uncovered
elements is ≥ n− i + 1. The pure greedy choice is more cost effective than any
left over set of the optimal cover. Suppose Si1 , Si2 . . . Sik

are the unselected sets
of the minimum set-cover. Then, at least one of them has a cost-effectiveness
of ≤ k

n−i+1 ≤ Co

n−i+1 . It follows that the set chosen by RGSC(θ) achieves a

cost-effectiveness of Co

(n−i+1)θ . So w(xi) ≤ Co/θ
n−i+1 .

Thus the cost of the greedy cover is
∑

i
Co/θ

n−i+1 which is bounded by Co/θ ·Hn.
Here Hn = 1

n + 1
n−1 + . . . 1.

Variants of Spreading Messages

T.V. Thirumala Reddy, D. Sai Krishna, and C. Pandu Rangan

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai 600036, India
{tiru114,dsaikris86,prangan55}@gmail.com

Abstract. In a distributed computing environment a faulty node could
lead other nodes in the system to behave in a faulty manor. An initial set
of faults could make all the nodes in the system become faulty. Such a set
is called an irreversible dynamo. This is modelled as spreading a message
among individuals V in a community G = (V, E) where E represents the
acquaintance relation. A particular individual will believe a message if
some of the individual’s acquaintances believe the same and forward the
believed messages to its neighbours. We are interested in finding the
minimum set of initial individuals to be considered as convinced, called
the min-seed, such that every individual in the community is finally
convinced. We solve for min-seed on some special classes of graphs and
then give an upper bound on the cardinality of the min-seed for arbitrary
undirected graphs. We consider some interesting variants of the problem
and analyse their complexities and give some approximate algorithms.

Keywords: Vertex Cover, Bipartite Graphs, Approximate Algorithms,
Fault Tolerance, NP-complete.

1 Introduction

In a distributed computing environment a node could become faulty. A faulty
node could make some other nodes in the system behave in a faulty manor. In
order to design a fault tolerant system, we need to examine some faulty nodes
as well as the cumulative effect of these initial faulty nodes on other nodes of
the system. We are interested in the patterns of the initial faults that can occur
and then could lead all the other nodes in the system behave in a faulty manor.
The initial set of faults that leads all the nodes to become faulty is called a
dynamic monopoly in the system. Faults can be temporary or permanent. If
we consider the faults of the system as permanent then the problem is called
as the irreversible dynamo[1]. This problem is modelled in graph theory as the
Spreading Message problem.

In the Spreading Message problem we have a set of individuals representing
the vertices in a graph and the acquaintance relation of individuals represents
the edges of the graph. An individual believes a message when he/she receives it
from his acquaintances, who are already convinced by the message. Every vertex

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 240–251, 2010.
� Springer-Verlag Berlin Heidelberg 2010

Variants of Spreading Messages 241

v has a threshold α (v). A vertex is considered as convinced, if at least α (v) of
its neighbours are already convinced. We are interested in finding a minimum
cardinality set of individuals to be convinced who can eventually convince all
the individuals. We can now observe that in the spreading messages problem,
vertices represent nodes in a distributed environment and a convinced vertex
represents a faulty node. The threshold function α (v) represents fault tolerance
of an individual node. This problem was considered by Peleg [2], where there were
white and black nodes corresponding to good and faulty nodes. The problem was
largely studied on random graphs [3]. A variant of the problem is to consider the
majority scenarios, where a vertex will be convinced if majority of its neighbours
are convinced. Majority scenarios like strict majority and week majority were
considered in the past on tori[4], butterfly graph[5] and chordal rings[6]. The
problem with an arbitrary threshold function was first considered by Ching-
Lueh Chang and Yuh-Dauh Lyuu [7,8], where it is shown to be NP-complete on
arbitrary undirected graphs.

In our paper, we give an upper bound on min-seed of unbounded spreading
messages of an arbitrary undirected graph and shows that the problem is NP-
Complete on bipartite graphs. Then we provide polynomial time algorithms for
the unbounded spreading messages problem on special classes of graphs like trees,
cliques, complete bipartite graphs, threshold graphs and chain graphs. The first
variant we consider is spreading messages within one round. For this variant we
give a lower bound and an (H (αM) + H (Δ)) approximation algorithm, where
H (n) represents the sum of first n terms in the harmonic series, αM represents
the maximum threshold of vertices in the graph and Δ represents the maximum
degree of a graph. We also show that this variant is APX-Complete on bounded
degree 3 graphs and on p-claw free graphs we provide an αM ·(p−1)

αm
approximation

algorithm, where αm represents minimum threshold of vertices in the graph.
Another variant we consider is spreading messages within k rounds. We show that
this variant is NP-complete on arbitrary undirected graphs. Then we introduce
spreading messages problem with real thresholds and belief factors. We show that
this variant is NP-Complete on cliques and complete bipartite graphs. Finally we
consider spreading messages with each individual having r radius of coverage and
we give an (H (αM) + H (n)) approximation algorithm for arbitrary undirected
graphs.

2 Notation and Definitions

A simple graph is a collection of vertices V and edges E represented as G =
(V, E), where each edge is an unordered pair of distinct vertices. In this paper
we are considering only simple undirected connected graphs. We also assume that
|V | > 1 for the graphs we consider. The set of neighbours of a vertex v is denoted
by N(v) and N [v] = N(v) ∪ {v}. The distance between two vertices in a graph
is the number of edges in a shortest path connecting them. N r(v) is the set of all
vertices whose distance from v is less than or equal to r and N r [v] = N r(v)∪{v}.
For a subset S ⊆ V , NS(v) = N(v) ∩ S and NS [v] = NS(v) ∪ {v}. The degree

242 T.V. Thirumala Reddy, D. Sai Krishna, and C. Pandu Rangan

of a vertex v, d(v), is defined as d (v) = |N (v) |. The maximum degree of G,
Δ = max

v∈V
{d (v)}. Two vertices u and v are called twin vertices if N (u) = N (v).

If uv ∈ E then they are called true twin vertices otherwise they are called false
twin vertices. Let G = (V, E) be a simple undirected graph. Let α : V → N be
a threshold function such that 1 ≤ α (v) ≤ d (v) for all v ∈ V , where a vertex v
is convinced if at least α (v) of neighbours of v are already convinced.

Definition 1. Let S0 ⊆ V be a vertex subset. Then spreading of a message will
happen in rounds. Let C0 = S0 ⊆ V the initial set of vertices considered directly
convinced.

S1 = {x|α (x) ≤ |C0 ∩N (x) |} ∪ S0 , C1 = S1 ∪C0

· · ·
Si = {x|α (x) ≤ |Ci−1 ∩N (x) |} ∪ Si−1 , Ci = S1 ∪ Ci−1

Unbounded Spreading Messages: S0 is called seed if and only if
⋃∞

i=0 Si =
V . min-seed (G, α,∞) is defined as minS (|S|) for all possible seeds S. A seed
S with |S| = min-seed (G, α,∞) is called as an optimum seed.

Bounded Spreading Messages with in k Rounds: S0 is called seed if and
only if

⋃k
i=0 Si = V . min-seed (G, α, k) is defined as minS (|S|) for all seeds S.

Unbounded Spreading Messages With Real Thresholds and Belief
Factors: Let β : E → R+ be a mapping such that 0 < β (u, v) ≤ 1 and
α : V → R+ be a mapping such that 1 ≤ α (v) ≤

∑
u∈N(v)

β (u, v) , for all v ∈ V .

For an edge (u, v), β (u, v) is call belief factor of (u, v). In any round C denotes
the set of convinced vertices and Nc (v) denote the set of convinced neighbours
of a vertex v. A vertex v is convinced by a message if

∑
u∈Nc(v)

β (u, v) ≥ α (v). A

set S0 ⊆ V is called seed if and only if
⋃∞

i=0 Si = V . min-seed(G, α, β,∞) is
defined as minS (|S|) for all seeds S.

3 Unbounded Spreading Messages

3.1 Complexity

Theorem 1. min-seed (G, α,∞) is NP-Complete, when G is a bipartite graph.

Proof. We prove that the decision version of the min-seed (G, α,∞) problem is
NP-Complete when G is a bipartite graph, by giving a reduction from the Set

Cover problem.
Construction: Given an instance of the Set Cover problem with an uni-

versal set U = {x1, x2, x3, ..., xn}, a set of subsets S = {S1, S2, ..., Sm} and
an integer s, where Si ⊆ U . Construct a bipartite graph G = (X, Y, E), with
|X | = {s1, s2, s3, ..., sm} and |Y | = {x1, x2, x3, ..., xn}. That is the vertex set X

Variants of Spreading Messages 243

contains a vertex for every set of S and the vertex set Y contains a vertex for
every element of U . If the element xj ∈ Si then connect the vertex si to the
vertex xj . Set α(si) = d(si), ∀si ∈ X and α(xj) = 1, ∀xj ∈ Y . Now we prove
that there is a solution for Set Cover problem of size s if and only if there is
a solution of size s to the corresponding min-seed (G, α,∞) instance.

Let there exist a solution for Set Cover problem with size s. Now the solu-
tion for the min-seed(G, α,∞) problem is: for every set Si in the Set Cover

solution, choose the vertex si of X in the seed. These s vertices of X first con-
vince all the vertices of Y . Then the remaining vertices of X get convinced.
Because ∀si ∈ X, α(si) = d(si) and all the neighbours of si (vertices of Y) are
convinced.

Let there exist a solution for min-seed(G, α,∞) with size s. If the vertex si

of X is in the min-seed(G, α,∞) then include set Si in set cover solution. If a
vertex xj ∈ Y is in min-seed(G, α,∞) then choose any neighbour of the vertex
xj . Let say the vertex sk of X is chosen, then include the set Sk in set cover
solution. Now we prove that the sets chosen cover all the elements of U . Let us
assume that some element xj ∈ U not covered. Consider the possibilities of how
the vertex xj ∈ Y is convinced. Definitely the vertex xj and the neighbours of
xj are not in min-seed(G, α,∞) solution, so the vertex xj must be convinced
by its neighbours. Neighbours of the vertex xj are convinced if and only if the
vertex xj is convinced because ∀si ∈ N(xj), α(si) = d(si). This implies that the
vertex xj never gets convinced, which is a contradicting statement. Therefore
the sets we chosen is a Set Cover solution. �
Theorem 2. Vertex Cover is the upper bound for min-seed(G, α,∞).

Proof. First we show how to construct an instance of the min-seed(G, α,∞)
problem from Vertex Cover problem, then we prove that the Vertex Cover

is upper bound for the min-seed(G, α,∞).
Construction: Given an instance of Vertex Cover problem with a graph

G = (V, E) and a positive integer s, construct an instance of the min-seed prob-
lem with the same graph G. Define α(v) = d(v) for all v ∈ V . Now we prove
that there is a solution for Vertex Cover problem of size s if and only if there
is a solution of size s to the corresponding min-seed (G, α,∞) instance.

Let there exist a solution for Vertex Cover problem with s vertices. These
s vertices also give us a solution for min-seed(G, α,∞), because if a vertex
v is not in the Vertex Cover then all its neighbours must be there in the
Vertex Cover. So all the vertices not in Vertex Cover get convinced if we
convince vertices in Vertex Cover.

Let there exist a solution for min-seed(G, α,∞) with size s. Now we prove
that these s vertices gives a solution for Vertex Cover. Let us assume that
some edge (u, v) is not covered. Both vertices u and v are not in the min-seed

solution. Now consider the possibilities of how the vertices u and v get convinced.
In order to convince the vertex u, first the vertex v must be convinced. Similarly,
in order to convince the vertex v, first vertex u must be convinced. This leads
to a contradiction that neither of the vertex u nor the vertex v gets convinced.
So one of the vertices u, v must be there in min-seed(G, α,∞) solution.

244 T.V. Thirumala Reddy, D. Sai Krishna, and C. Pandu Rangan

As we are setting α(v) to the maximum possible value ∀v ∈ V ,
min-seed(G, α′,∞) � min-seed(G, α,∞), where α′ is any threshold function
from V → N. �

Corollary 1. Upper Bound for min-seed(G, α, 1) is Vertex Cover of G.

3.2 Exact Algorithms

Lemma 1. Let v be a vertex in G = (V, E) such that α (v) = 1 then there is an
optimum seed without v.

Lemma 2. Let G = (V, E) be a graph, u, v ∈ V be two false twin(or true twin)
vertices such that α (v) ≤ α (u). Let S be an optimum seed such that v ∈ S and
u /∈ S. Then there exists an optimum seed S′ such that u ∈ S and v /∈ S.

Lemma 3. Let G = (V, E) be a graph, u, v ∈ V be two vertices such that
N (v) ⊂ N (u). Let S be an optimum seed such that v ∈ S and u /∈ S. Then
there exists an optimum seed S′ such that u ∈ S′ and v /∈ S′.

Trees

Theorem 3. min-seed (T, α,∞) can be calculated in O (n) time, where T is a
tree and n is the number of vertices in T .

Theorem 4. min-seed (Cn, α,∞) where Cn is a cycle can be calculated in O (n)
time.

Complete Graphs
Let 〈α1, α2 . . . αm〉 be distinct threshold values taken by vertices in the complete
graph Kn with n vertices in ascending order. We define Vi = {x|α (x) = αi} , i ≤
i ≤ m as a partition of vertices of Kn.

Definition 2. A seed S of (Kn, α) is called a greedy seed if and only if ∀x ∈ S
and 1 ≤ h ≤ m, if x ∈ Vh then Vi ⊆ S, ∀i > h. That means that all the seed
vertices are concentrated in vertices of larger threshold values in a greedy seed.

Lemma 4. There exists a greedy seed for (Kn, α) of minimum cardinality k.

Theorem 5. min-seed (Kn, α,∞) can be calculated in O (
n2

)
time.

Theorem 6. min-seed (Kmn, α,∞) can be calculated in O (|V |2 · log |V |) time.

Working with the sorted sequence of threshold values which we can get in linear
time using bucket sort we can compute min-seed (Kn, α,∞) in linear time.

Corollary 2. min-seed (G, α,∞), where G is a complete graph Kn can be cal-
culated in O (n) time.

For proofs and algorithm on Threshold Graphs please refer extended version [9].

Variants of Spreading Messages 245

4 Spreading Messages within One Round

4.1 Complexity

Theorem 7. Lower bound for cardinality of min-seed(G, α, 1) is the cardinality
of minimum Dominating Set of G.

Proof. First we show how to reduce the Dominating Set problem to the
min-seed(G, α, 1) problem, then we prove that Dominating Set is lower bound
for the min-seed(G, α, 1).

Construction: Given an instance of the Dominating Set problem with a
graph G = (V, E) and a positive integer s, construct an instance of
min-seed(G, α, 1) problem with the same graph G. Define α(v) = 1 for all v ∈ V .
Now we prove that there is a solution for Dominating Set problem of size s if
and only if there is a solution of size s to the corresponding min-seed (G, α, 1)
instance.

Let there exist a solution for the Dominating Set problem with s vertices.
These s vertices also give us a seed, because if a vertex v is not in the Domi-

nating Set then one of its neighbours must be there in the Dominating Set.
So all vertices not in Dominating Set get convinced if we convince vertices in
Dominating Set in one round.

Let there exist a solution for the min-seed(G, α, 1) of size s. Now we prove
that these s vertices also give a Dominating Set. Let us assume that some ver-
tex v is not dominated by any vertex. The vertex v and the vertices in N(v) are
not in min-seed(G, α, 1) solution. The vertices belongs to N(v) get convinced
in one round but in order to convince v we need two rounds. This leads to a
contradiction. So either v or a vertex from N(v) must be there in the min-seed

solution.
As we are setting α(v) to the minimum possible value ∀v ∈ V ,

min-seed(G, α′, 1) ≥ min-seed(G, α, 1) where α′ is any threshold function from
V → N. �

Corollary 3. Computing min-seed(G, α, 1) is NP-Complete.

4.2 Approximation

Theorem 8. If there is an ε > 0 such that a polynomial time algorithm can approx-
imate min-seed(G, α, 1) within (1− ε) ln |V |, then NP ⊆ TIME(nO(log log |V |)).

Proof. In theorem 7 we have shown that how to reduce every instance of the
Dominating Set to an instance of min-seed(G, α, 1). We know that every
instance of the Set Cover problem can be reduced to the Dominating Set

problem. Feige proved the threshold of ln(n) approximation for Set Cover[10].
Therefore the same theorem holds true here. �

We now give an (H(αM)+H(Δ)) approximation algorithm for min-seed(G, α, 1).
Therefore, (H(αM) + H(Δ)) is the upper bound for min-seed(G, α, 1).

246 T.V. Thirumala Reddy, D. Sai Krishna, and C. Pandu Rangan

Algorithm 1. Algorithm to compute min-seed(G, α, 1).
Require: A graph G = (V , E), a function α : V → N.
1: S ← ∅ {S is the seed}
2: C ← ∅ {C is the set of vertices that are convinced. At the end of the

algorithm C must be equal to V}
3: i ← 0
4: while C �= V do
5: i ← i + 1
6: Choose a vertex v /∈ S which maximizes |N [v] ∩ (V \ C)|
7: S ← S ∪ {v}
8: if v /∈ C1 ∪ C2 ∪ ... ∪ Ci−1 then
9: Ci ← {v} ∪ set of vertices newly convinced by choosing v

10: else
11: Ci ← set of vertices newly convinced by choosing v
12: end if
13: C ← C ∪ Ci

14: end while
15: return S {S is the seed}

Lemma 5. Algorithm 1 runs in polynomial amount of time.

Proof. The while loop at line number 4 of Algorithm 1 can execute maximum
|V |−1 times. For each v ∈ V step 6 can take linear time. In worst case Algorithm
1 takes O(n3) time. �

Let the while loop of Algorithm 1 execute s times and let the vertices chosen
as the seed be v1, v2, ..., vs. Therefore the size of the seed given by Algorithm 1
is s. Now for i = 1 to s and ∀u ∈ (N [vi]∩ (V −C1 ∪C2 ∪ ...∪Ci−1)) assign cost

1
|N [vi]∩(V −C1∪C2∪...∪Ci−1)| .

For every v ∈ V , at most α(v) values are assigned. Let the values assigned to
v be d1

v, d
2
v, ..., d

α(v)
v . Define c′v =

∑
1≤i≤α(v)

di
v and cv = max

1≤i≤α(v)
di

v.

Lemma 6. d1
v ≤ d2

v ≤ ... ≤ d
α(v)
v and c′v ≤ α(v)cv .

Proof. From Algorithm 1 it is obvious that, for 1 ≤ i < s

|N [vi] ∩ (V \ C1 ∪ C2 ∪ ... ∪ Ci−1)| ≥ |N [vi+1] ∩ (V \ C1 ∪C2 ∪ ... ∪ Ci)|.
Therefore, ∀v ∈ V di

v ≤ di+1
v , until di+1

v is defined and ∀v ∈ V \ S, cv = d
α(v)
v .

Now from the definition of c′v, we have

∀v ∈ V , c′v =
∑

1≤i≤α(v)

di
v ≤ α(v)cv . �

Let |X | be the size of the seed given by Algorithm 1 and let |X∗| be the optimal
solution.

Variants of Spreading Messages 247

Lemma 7. |X | =
∑
v∈V

c′v.

Lemma 8. For all v ∈ V , c′v ≤ H(α(v)).

Proof. From the definition of c′v, we know that c′v =
∑

1≤i≤α(v)

di
v. Define αi

v be

the remaining threshold value of v after choosing v1, v2, ..., vi−1. Therefore,

α(v) = α0
v ≥ α1

v ≥ α2
v ≥ ... ≥ αs

v.

From the definition of αi
v, we have

αi−1
v ≤ |N [v] ∩ (V \C1 ∪C2 ∪ ... ∪Ci−1)| ≤ |N [vi] ∩ (V \C1 ∪C2 ∪ ... ∪Ci−1)|.

Therefore,

c′v =
∑

1≤i≤α(v)

di
v =

∑
1≤i≤s

(αi−1
v − αi

v)
1

|N [vi] ∩ (V \ C1 ∪ C2 ∪ ... ∪Ci−1)|

≤
∑

1≤i≤s

(αi−1
v − αi

v)
1

αi−1
v

≤ H(α(v). �

Lemma 9.
∑
v∈V

c′v ≤
∑

v∈X∗

∑
u∈N(v)

cu +
∑

v∈X∗
c′v.

Proof. We know that X∗ is the optimal solution for min-seed(G, α, 1). We can
divide

∑
v∈V

c′v as,

∑
v∈V

c′v =
∑

v∈X∗
c′v +

∑
v∈V \X∗

c′v.

From lemma 6, we have c′v ≤ α(v)cv . Therefore,∑
v∈V \X∗

c′v ≤
∑

v∈V \X∗
α(v)cv .

As X∗ is a seed ∀v ∈ V \X∗, |N(v) ∩X∗| ≥ α(v). Therefore,∑
v∈V \X∗

α(v)cv ≤
∑

v∈V \X∗
|N(v) ∩X∗|cv

=
∑

v∈V \X∗

∑
1≤i≤|N(v)∩X∗|

cv

=
∑

u∈X∗

∑
v∈N(u)∩V \X∗

cv

≤
∑

u∈X∗

∑
v∈N(u)

cv.

248 T.V. Thirumala Reddy, D. Sai Krishna, and C. Pandu Rangan

Therefore, ∑
v∈V

c′v =
∑

v∈X∗
c′v +

∑
v∈V \X∗

c′v

≤
∑

v∈X∗
c′v +

∑
v∈V \X∗

α(v)cv

≤
∑

v∈X∗
c′v +

∑
u∈X∗

∑
v∈N(u)

cv. �

Lemma 10.
∑

u∈N(v)

cu ≤ H(Δ).

Proof. Let v be a vertex in V . Define zi
v be the number of unconvinced neigh-

bours in N(v) ∩ (V \ C1 ∪ C2 ∪ ... ∪ Ci), where 1 ≤ i ≤ s. Therefore,

|N(v)| = z0
v ≥ z1

v ≥ z2
v ≥ ... ≥ zs

v.

From Algorithm 1 and from the definition of cv, we have∑
u∈N(v)

cu =
∑

1≤i≤s

(zi−1
v − zi

v)
1

|N [vi] ∩ (V \ C1 ∪C2 ∪ ... ∪ Ci−1)| .

From Algorithm 1, we know that

zi−1
v ≤ |N [vi] ∩ (V \ C1 ∪ C2 ∪ ... ∪ Ci−1)|.

Therefore,∑
u∈N(v)

cu =
∑

1≤i≤s

(zi−1
v − zi

v)
1

|N [vi] ∩ (V \C1 ∪C2 ∪ ... ∪ Ci−1)|

≤
∑

1≤i≤s

(zi−1
v − zi

v)
1

zi−1
v

≤ H(|N(v)|) ≤ H(Δ). �

Theorem 9. Algorithm 1 is (H(αM) + H(Δ)) approximation algorithm for
min-seed(G, α, 1).

Proof. From lemma 7 and lemma 9, we have

|X | =
∑
v∈V

c′v ≤
∑

v∈X∗

∑
u∈N(v)

cu +
∑

v∈X∗
c′v.

From lemma 8 and lemma 10, we have

c′v ≤ H(αM) and
∑

u∈N(v)

cu ≤ H(Δ).

Therefore,

|X | ≤
∑

v∈X∗
H(αM) +

∑
v∈X∗

H(Δ)

= (H(αM) + H(Δ))|X∗|. �

Variants of Spreading Messages 249

4.3 Bounded Degree Graphs

Definition 3. Given two NP optimization problems P and Q and a polynomial
transformation f from instances of P to instances of Q, we say that f is an
L− reduction if there are positive constants a and b such that for every instance
x of P

1. optQ(f(x)) ≤ a · optP (x),
2. for every feasible solution y of f(x) with objective value mQ(f(x), y) = c2 we

can in polynomial time find a solution y′ of x with mP (f(x), y′) = c1 such
that |optP (x) − c1| ≤ b · |optQ(f(x))− c2|.

To show the APX-completeness of a problem P ∈ APX , it is enough to show
that there is an L-reduction from some APX-complete problem to P .

Theorem 10. min-seed(G, α, 1) is APX−Complete for bounded degree graphs.

Proof. From Theorem 9 if the degree of a graph G is bounded by constant then
Algorithm 1 gives a constant approximation ratio. This implies that
min-seed(G, α, 1) belongs to APX . For proving APX − Complete we have to
give a L − reduction from known APX − complete problem. We know that
Dominating Set on bounded degree graphs is APX − Complete. The reduc-
tion used in Theorem 7 to show NP − complete also acts as the reduction to
show APX − Complete with a constant a = 1 and b = 1 (See Definition 3). �

4.4 p-Claw Free Graphs

Definition 4. A graph G = (V, E) is called a p-claw free graph if for all the
vertices v, the subgraph induced by N (v) does not have an independent set of
size p.

Alternately, a graph G = (V, E) is called a p-claw free graph if there is no
induced subgraph of G isomorphic to the star graph K1p.

Lemma 11. Let G = (V, E) be any p-claw free graph and let α : V → N be
any threshold function. Let |D∗

α| be any optimal solution for min-seed(G, α, 1)
and S be any Maximal Independent Set of G. Let αm be the minimum threshold
value of S vertices. Then |S| ≤ p−1

αm
|D∗

α|.
Proof. For all u ∈ S \D∗

α, define cu = |(D∗
α \S)∩N(v)|. Let αm is the minimum

threshold of S vertices then ∑
u∈S\D∗

α

cu ≥ αm|S \D∗
α|

For all v ∈ D∗
α \ S, define dv = |(S \D∗

α) ∩N(v)|. We know that ∀v ∈ D∗
α there

are at most (p− 1) independent vertices in its neighbourhood and dv ≤ p− 1.∑
v∈D∗

α\S

dv ≤ (p− 1)|D∗
α \ S|

250 T.V. Thirumala Reddy, D. Sai Krishna, and C. Pandu Rangan

Now consider the definitions of cu and dv,∑
u∈S\D∗

α

cu = {(u, v) ∈ E such that u ∈ S \D∗
α and v ∈ D∗

α \ S} =
∑

v∈D∗
α\S

dv.

Therefore,

αm|S \D∗
α| ≤

∑
u∈S\D∗

α

cu =
∑

v∈D∗
α\S

dv ≤ (p− 1)|D∗
α \ S|

αm|S \D∗
α| ≤ (p− 1)|D∗

α \ S|
αm(|S| − |S ∩D∗

α|) ≤ (p− 1)(|D∗
α| − |D∗

α ∩ S|)
αm|S| − αm|S ∩D∗

α| ≤ (p− 1)|D∗
α| − (p− 1)|D∗

α ∩ S|
αm|S| ≤ (p− 1)|D∗

α| − (p + αm − 1)|D∗
α ∩ S|

αm|S| ≤ (p− 1)|D∗
α|

|S| ≤ p− 1
αm
|D∗

α|. �

Algorithm 2. Algorithm to compute min-seed(G, α, 1).
Require: A graph G = (V , E), a function α : V → N.
1: D ← ∅ {D is the seed}
2: C ← ∅ {C is the set of vertices that are convinced.}
3: i ← 0
4: while C �= V do
5: i ← i + 1
6: Choose a Maximal Independent Set Si from V \ C
7: C ← C ∪ Si ∪ { set of vertices newly convinced by choosing v}
8: D ← D ∪ Si

9: end while
10: return D {D is the seed}

Lemma 12. Algorithm 2 is a αM (p−1)
αm

approximation algorithm for
min-seed(G, α, 1) on p-claw free graphs, where αM is the maximum threshold
in G.

Proof. Let D be the solution given by Algorithm 2 and let D∗
α be the optimal

solution for min-seed(G, α, 1). Let the while loop of Algorithm 2 execute k times
and let the Maximal Independent Sets chosen be S1, S2, ..., Sk. From lemma 11,
we have

|Si| ≤ p−1
αm
|D∗

α|, where 1 ≤ i ≤ k.

By summation of all Maximal Independent Sets, we have

|S1|+ |S2|+ ... + |Sk| ≤ k(p−1)
αm
|D∗

α|.

Variants of Spreading Messages 251

From Algorithm 2, we know that |D| = |S1|+ |S2|+ ... + |Sk|.
Therefore,

|D| ≤ k(p−1)
αm
|D∗

α|.
The maximum possible value for k is αM .
Therefore,

|D| ≤ αM (p−1)
αm

|D∗
α|. �

For definitions and detailed results on other variants please refer extended version
[9].

5 Conclusion

In this paper we provided exact algorithms for Spreading Messages problem
on several special graph classes and we also provided some complexity results.
Then we considered several variants of the problem and provided complexity
results and approximation algorithms for the variants of this problem.

No approximation algorithm exists for the unbounded spreading messages
problem. We proved that min-seed(G, α,∞) is NP-Complete on Bipartite Graphs
and solved in polynomial time on Complete Bipartite Graphs. So, it is also inter-
esting to look at this problem on Bipartite Permutation Graphs.

References

1. Chang, C.-L., Lyuu, Y.-D.: On irreversible dynamic monopolies in general graphs.
CoRR abs/0904.2306 (2009)

2. Peleg, D.: Size bounds for dynamic monopolies. Discrete Applied Mathemat-
ics 86(2-3), 263–273 (1998)

3. Watts, D.: A simple model of global cascades on random networks. P. Natl. Acad.
Sci. USA 99(9), 5766–5771 (2002)

4. Flocchini, P., Lodi, E., Luccio, F., Santoro, N.: Irreversible dynamos in tori. In:
Pritchard, D., Reeve, J.S. (eds.) Euro-Par 1998. LNCS, vol. 1470, pp. 554–562.
Springer, Heidelberg (1998)

5. Luccio, F., Pagli, L., Sanossian, H.: Irreversible dynamos in butterflies. In: Gavoille,
C., Bermond, J.C., Raspaud, A. (eds.) SIROCCO, pp. 204–218. Carleton Scientific
(1999)

6. Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal
rings. Discrete Applied Mathematics 113(1), 23–42 (2001)

7. Chang, C.L., Lyuu, Y.D.: Spreading messages. Theor. Comput. Sci. 410(27-29),
2714–2724 (2009)

8. Chang, C.L., Lyuu, Y.D.: Spreading of messages in random graphs. In: Downey,
R., Manyem, P. (eds.) Fifteenth Computing: The Australasian Theory Symposium
(CATS 2009), Wellington, New Zealand, ACS. CRPIT, vol. 94, pp. 3–7 (2009)

9. Reddy, T., Krishna, S., Rangan, P.: Variants of spreading messages (2010),
http://www.cse.iitm.ac.in/~tiru/tiru/Publications_files/var_12page.pdf

10. Feige, U.: A threshold of ln for approximating set cover. J. ACM 45(4), 634–652
(1998)

http://www.cse.iitm.ac.in/~tiru/tiru/Publications_files/var_12page.pdf

On Finding a Better Position of a Convex
Polygon Inside a Circle to Minimize the

Cutting Cost

Syed Ishtiaque Ahmed, Md. Mansurul Alam Bhuiyan, Masud Hasan, and
Ishita Kamal Khan

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Dhaka-1000, Bangladesh
ishtiaque@csebuet.org, {mansurul1985,ishitactg}@yahoo.com,

masudhasan@cse.buet.ac.bd

Abstract. The problem of cutting a convex polygon P out of a planar
piece of material Q (P is already drawn on Q) with minimum total
cutting cost is a well studied problem in computational geometry that
has been studied with several variations such as P and Q are convex or
non-convex polygons, Q is a circle, and the cuts are line cuts or ray cuts.
In this paper, we address this problem without the restriction that P is
fixed inside Q and consider the variation where Q is a circle and the cuts
are line cuts. We show that if P can be placed inside Q such that P does
not contain the center of Q, then placing P in a most cornered position
inside Q gives a cutting cost of 6.48 times the optimal. We also give an
O(n2)-time algorithm for finding such a position of P , a problem that
may be of independent interest. When any placement of P must contain
the center of Q, we show that P can be cut of Q with cost 6.054 times
the optimal.

Keywords: Polygon cutting, line cut, cutting cost, most cornered posi-
tion, cornerable and non-cornerable polygon

1 Introduction

Let P be a convex polygon and Q be a circle where the circumcircle of P is
no bigger than Q. We consider the problem of finding a position of P inside
Q so that the total cost of cutting P out of Q by using line cuts is minimum.
A line cut, or simply a cut, is a line segment with two endpoints that lie on
the boundary of Q and does not intersect P . A cut always divides Q into two
portions, lying to the left and right side of the cut. After a cut is applied, we
update Q as the portion that contains P . The cost of a cut is its length.

Related Works. The problem has its origin in the problem of cutting a convex
polygon P out of another polygon Q. Overmars and Welzl [10] first introduced
this problem by cutting P out of Q with line cuts where the cuts are allowed

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 252–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Finding a Better Position of a Convex Polygon 253

only along the edges of P . Given P and Q with n and m edges respectively, they
proposed an O(n3 +m)-time algorithm for this problem [10]. They also proposed
another version of this problem where the line cuts are not restricted to touch
the polygonal edges [10]. Bhaduri and Chandrasekaran [4] indicated that one can
give only an approximation algorithm for this problem and presented an approx-
imation scheme with pseudo-polynomial running time. The first polynomial-time
approximation algorithm for this problem was given by Dumitrescu [7], who pre-
sented an O(log n)-approximation algorithm with O(mn+n log n) running time.
Introducing a constant factor approximation algorithm for this problem, Daescu
and Luo [5] gave an algorithm with ratio 2.5 + ||Q||/||P ||, where ||P || is the
perimeter of P and ||Q|| is the perimeter of a minimum bounding rectangle of
P . This algorithm has running time O(n3 +(n+m) log (n + m)). Later, Tan [11]
gave a 7.9-approximation algorithm for this problem. As the best known result
so far, Bereg et. al. [3] gave a polynomial time approximation scheme (PTAS)
for this problem with running time O(m + n6/ε12). Recently, Ahmed et.al. [1]
have given similar constant factor and O(log n)-factor approximation algorithms
where Q is a circle. As observed in [1], algorithms for Q being a convex polygon
are not easily transfered for Q being a circle, as the running time of the formers
depend upon the number of edges of Q.

For ray cuts, Demaine, Demaine and Kaplan [6] gave a linear time algorithm to
decide whether a given polygon P is ray-cuttable or not. For optimally cutting P
out of Q by ray cuts, if Q is convex, and P is non-convex but ray-cuttable, Daescu
and Luo [5] gave an almost linear time O(log2 n)-approximation algorithm. If P
is convex, then they gave a linear time 18-approximation algorithm. Tan [11]
improved the approximation ratio for both cases to O(log n) and 6, respectively,
but with much higher running time of O(n3 + m).

There also exist a few results on generalization of this problem to 3D. Jarom-
czyk and Kowaluk [9] have studied the problem of deciding whether a polyhedral
object can be cut out from a larger block using continuous hot wire cuts and
they have given an O(n5)-time algorithm that can decide the existence of such
a cutting sequence. Ahmed et. al. [2] have studied a more relevant problem in
3D. Given a convex polyhedron P fixed inside a sphere Q, they have given an
O(log2 n)-approximation algorithm for cutting P out of Q by using guillotine
cuts. Their algorithm runs in O(n3) time. See Table 1 for a summary of these
results.

Our Results. In this paper, we allow moving P arbitrarily inside Q. Let o be
the center of Q. We call P to be cornerable if it is possible to place P inside Q
such that P does not contain o. If no such placement of P is possible, then P is
called non-cornerable. A cornered position of P inside Q is such that at least one
vertex of P is on the boundary of Q. Note that a cornered position is applied for
both cornerable and non-cornerable P . When P is cornerable, a most cornered
position of P inside Q is such that P does not contain o and the distance of o
from the closest point of P is maximum.

254 S.I. Ahmed et al.
T
a
b
le

1
.
C

om
pa

ri
so

n
of

th
e

re
su

lt
s

D
im

.,
m

ov
em

en
t

C
ut

T
yp

e
Q

P
A

pp
ro

x.
R

at
io

R
un

ni
ng

T
im

e
R

ef
er

en
ce

2D
,
P

fix
ed

R
ay

-
N

on
-c

on
ve

x
R

ay
-c

ut
ta

bl
e?

O
(n

)
[6

]
C

on
ve

x
C

on
ve

x
18

O
(n

)
[5

]
C

on
ve

x
N

on
-c

on
ve

x
O

(l
og

2
n
)

O
(n

)
[5

]
C

on
ve

x
C

on
ve

x
6

O
(n

3
+

m
)

[1
1]

C
on

ve
x

N
on

-c
on

ve
x

O
(l
og

n
)

O
(n

3
+

m
)

[1
1]

L
in

e

C
on

ve
x

C
on

ve
x

O
(l
og

n
)

O
(m

n
+

n
lo

g
n
)

[7
,8

]
C

on
ve

x
C

on
ve

x
2.

5
+

||Q
||/

||P
||

O
(n

3
+

(n
+

m
)l

og
(n

+
m

))
[5

]
C

on
ve

x
C

on
ve

x
7.

9
O

(n
3

+
m

)
[1

1]
C

on
ve

x
C

on
ve

x
(1

+
ε)

O
(m

+
n
6

ε
1
2
)

[3
]

C
ir
cl

e
C

or
ne

re
d

co
nv

ex
O

(l
og

n
)

O
(n

)
[1

]
C

ir
cl

e
C

or
ne

re
d

co
nv

ex
6.

48
O

(n
3
)

[1
]

3D
,
P

fix
ed

H
ot

-w
ir
e

-
N

on
-c

on
ve

x
C

ut
ta

bl
e?

O
(n

5
)

[9
]

G
ui

llo
ti
ne

Sp
he

re
C

on
ve

x
O

(l
og

2
n
)

O
(n

3
)

[2
]

2
D

,
P

m
o
v
e
s

L
in

e
C

ir
c
le

C
o
n
v
e
x

M
o
st

c
o
rn

e
re

d
p
o
si

ti
o
n

O
(n

2
)

T
h
is

p
a
p
e
r

li
n
e

C
ir

c
le

C
o
n
v
e
x

c
o
rn

e
ra

b
le

6
.4

8
O

(n
3
)

T
h
is

p
a
p
e
r

li
n
e

C
ir

c
le

C
o
n
v
e
x

n
o
n
-c

o
rn

e
ra

b
le

6
.0

5
4

O
(n

3
)

T
h
is

p
a
p
e
r

On Finding a Better Position of a Convex Polygon 255

Let C∗ be the optimal cost of cutting P out of Q over all position of P . We
show that when P is cornerable and is placed in a most cornered position, P can
be cut out of Q in maximum cutting cost of 6.48C∗. We also give an O(n2)-time
algorithm for finding a most cornered position of P . For non-cornerable P , we
find a cornered position of P from where it can be cut out in maximum cutting
cost of 6.054C∗. (See Table 1).

Outline. First we will give for cornerable and non-cornerable P lower bounds on
optimal cutting cost over all possible placements of P . Then for a cornerable P
we will first find a most cornered position of P and will separate the minimum
circular segment that contains P . Then we will cut a minimum bounding rect-
angle Rb of P from that circular segment. Finally, we will use known constant
factor approximation algorithm for cutting P out of Rb. For a non-cornerable P
we will find the minimum bounding rectangle Rb of P and will cut it from Q.
Then the remaining procedure is same as that for a cornerable P .

We organize the rest of the paper as follows. Section 2 gives some preliminaries
and lower bounds on C∗. Section 3 deals with cornerable P , where we give
algorithms for finding the most cornered position of P and cutting P out of
Q from that position and derive the approximation ratio. Section 4 deals with
non-cornerable P . Finally, Section 5 concludes with directions to future works.

2 Lower Bounds

We start with some preliminaries. Consider a fixed position of P inside Q. Let
x be the closest point on the boundary of P from o. x is called the critical point
of P . If x is a vertex v of P , then v is called a critical vertex and if x is a
point of an edge e, then e is called a critical edge. Observe that for cornerable
P , since P is convex, P has either only one critical vertex or only one critical
edge. We define the D-separation of P (w.r.t its fixed position) to be a single cut
that creates the smallest possible circular segment of Q containing P . A crucial
observation is that the D-separation is a tangent to P that passes through the
critical vertex or the critical edge and is perpendicular to the line segment ox at
x, since otherwise x would not be closest to o.

Let C∗ be the cost of an optimal cutting sequence over all positions of P .
Let |P | be the perimeter of P . An easy lower bound on C∗ for both cornerable
and non-cornerable P is that C∗ ≥ |P |. This lower bound can be improved for
both cornerable and non-cornerable P , which we do in the next two lemmas.
The first lemma gives a lower bound that works for a non-cornerable P as well
as a cornerable P when it contains o inside it. Let R be the radius of Q.

Lemma 1. If P contains o, then C∗ ≥ 2R.

Proof. An optimal cutting sequence must cut along the boundary of P . More-
over, if P contains o, then it must have two disjoint subsequences, each starting
from a point of Q and ending at a point of P where it first touches P (possibly
one subsequence having its second end point in the other subsequence). Let a

256 S.I. Ahmed et al.

n

a

b
Q

o

P

m

Fig. 1. Lower bound on C∗ for non-cornerable P

and m be two such points of P and let b and n be the two corresponding points
on Q. (See Fig. 1, where the two subsequences are shown in bold.) Now for one
subsequence, let l1 be the length of the shortest polygonal chain from a to b
that is created by the cuts in the subsequence. Then clearly, |ao|+ l1 ≥ R. Sim-
ilarly, for the other subsequence let l2 be the length of the shortest polygonal
chain from m to n. Then |mo| + l2 ≥ R. Furthermore, |ao| + |om| ≤ |P |. So,
C∗ ≥ |P |+ l1 + l2 ≥ |ao|+ |om|+ l1 + l2 ≥ 2R. �
Imagine a most cornered position of a cornerable P inside Q. Let D be the
corresponding circular segment and D∗ be the cost of the corresponding single
cut that creates D. D∗ is the minimum cost of a D-separation over all possible
positions of P . Now we give a lower bound for cornerable P when it does not
contain o.

Lemma 2. When a cornerable P does not contain o, C∗ ≥ D∗.

Proof. The authors in [1] proved that when P is placed such that it does not
contain o, the optimal cutting cost for that position is at least the D-separation
of P from o. Since D∗ is the minimum of all possible D-separations of P , the
lemma follows. �

3 Cornerable P

3.1 Most Cornered Position of P

Assume that P is cornerable. Our idea of finding the most cornered position of
P is as follows. Remember that in a most cornered position, P must have at
least one vertex incident on the boundary of Q. For each vertex v of P we will
first position P , if possible, such that v is incident on the boundary of Q. We
call this position of P a base position w.r.t v and we call v the anchor of this
base position. From a particular base position of P with anchor v, we rotate
P around v clockwise until another vertex hits the boundary of Q. We call this
position the right most base position of P w.r.t v. Similarly, if we rotate v counter

On Finding a Better Position of a Convex Polygon 257

clockwise until another vertex hits the boundary of Q, then we get the left most
base position of P w.r.t v. To find the most cornered position of P w.r.t v, we
need to rotate P around v from one of its extreme base positions, say the right
one, in counter clockwise to its left most base position. During this rotation, we
keep track of when a vertex or an edge becomes critical. A vertex or an edge can
be critical for infinitely many positions. However, observe that all of them are
consecutive in the rotation, because once a vertex or an edge has lost its critical
property, it never becomes critical again. Moreover, remember that at any time
either only one vertex or only one edge can be critical. Over the period when
a vertex or an edge remains critical, we will find its furthest position from o.
Maximum among all such position will give the most cornered position of P w.r.t
that critical vertex or critical edge and w.r.t v. Considering all vertices (other
than v) and edges one by one w.r.t v, we can find the most cornered position of
P w.r.t v. Then we repeat the same procedure with other vertices as an anchor
and take the most cornered position of P among them.

Now we come to exact detail. We give some more preliminaries. Let u
= v
be a vertex with two supporting lines l1 and l2 passing through its two adjacent
edges. Consider the pair of two opposite cones that are created by l1 and l2 and
neither of which contains P . Let that pair of cone be Cu. Rotate this pair by
π/2, i.e., rotate each of l1 and l2 around u. By this rotation, let l1, l2 and Cu

become l1
′, l2

′ and Cu
′ respectively. See Fig. 2(a).

First we determine exactly when a vertex or an edge can become critical.

Lemma 3. For a particular position of P during its rotation around v, the
vertex u of P will be critical iff Cu

′ contains o.

Proof. If Cu
′ contains o, i.e., contains the line segment ou, then the line per-

pendicular to ou is contained within Cu and is also a tangent to P at u. On
the other hand, for a particular position of P , if u is critical then the tangent
of P at u corresponding to the D-separation must be within Cu. Therefore, its
perpendicular line segment ou is in Cu

′. �
Let us denote the range of rotation in which u remains critical by Ru. Observe
that Ru may not exist for some u.

Corollary 1. Ru can be found in O(1) time.

Proof. All we need to do is to find the two positions of P (which may not exist)
when l1

′ and l2
′ intersect o. This can be easily done by computing and then

comparing the angles of o with l1
′ and l2

′ at u. �
Lemma 4. Within Ru, the minimum D-separation passing through u can be
found in O(1) time.

Proof. Consider the circle cu with center v and passing through u. We need
the position of u where the length of ou is the maximum. Since u moves along
a circle, clearly that position of u can be found in constant time from cu, Ru

and o. �

258 S.I. Ahmed et al.

(a) (b)

P

o

u

v

C′
u

CuCu
u

l2l1

v

o

v

w

l2
o

Se

e

P

u

l1

l2
′

l1
′

C′
u

P

Fig. 2. Critical positions for a vertex and an edge

Now we find similar results for a critical edge e = uw. Let l1 and l2 be the two
lines that are perpendicular to e at u and w respectively. Let Se be the infinite
half strip which is bounded by e, l1, and l2 and contains the outward normal of
e. See Fig. 2(b).

Lemma 5. For a particular position of P during its rotation around v, an edge
e is critical iff Se contains o.

Proof. Assume that Se contains o. If op is the line segment that is perpendicular
to the supporting line of e at p, then p is a point of e. So, e is critical. On the
other hand, if e is critical, then let x be the point of e that is closest from o. The
line segment ox is perpendicular to e at x. So, ox is in Se. �
Let us denote the range of rotation in which e remains critical by Re. Again, Re

may not exist for some e.

Corollary 2. Re can be found in O(1) time.

Lemma 6. Within Re, the minimum D-separation passing through e can be
found in O(1) time.

Proof. Let t be the line passing through e and let p be the point on t such that vp
is perpendicular to t. p may or may not be a point on e. Let cp be the circle with
center v and passing through p. Then t is the tangent of cp at p and let h be the
perpendicular distance of o from t. While rotating P within Re, since p moves
along cp, the function of h is unimodal in the rotation angle. More precisely, from
the boundary position Re, where o is on l1, if we rotate P counter clockwise,
then h gradually increases to the maximum and then gradually decreaes until
it hits l2. Moreover, some elementary geometry proves that the function of h is
elliptical (see Appendix for a complete proof.) So, within Re, the position of e
at which h is maximum can be found in constant time. �

On Finding a Better Position of a Convex Polygon 259

Theorem 1. A most cornered position of P inside Q can be found in O(n2)
time.

Proof. By the above lemmas and corollaries, for a fixed anchor v, as long as a
vertex u or an edge e remains critical the corresponding minimum D-separation
passing through u or e can be found in constant time, whose maximum over all
O(n) vertices and edges can be found in O(n) time. Since any vertex can be an
anchor, total time for computing D∗ is O(n2). �
Corollary 3. Deciding whether P is cornerable or not can be done in O(n2)
time.

Proof. P is cornerable iff a most cornered position of P does not contain o inside
it. By Theorem 1, a most cornered position of P can be found in O(n2) time.
Then, in that position of P , finding the containment of o by P can be done in
O(n) time. �

3.2 Cutting Cornerable P

After we have placed P in a most-cornered position, we execute the first cut along
D∗ to find the minimum circular segment D containing P . We use the rotating
calipers technique [12] to determine the minimum area bounding rectangle Rb of
P . We introduce four more cuts along the edges of Rb (in any sequence) to cut
Rb out of D. Next we apply the dynamic programming technique of Tan [11] for
cutting P out of Rb.

Theorem 2. A cornerable convex polygon P can be cut out of a circle Q in
O(n3) time with cutting cost 6.48C∗.

Proof. After getting the smallest D from the most cornered position of P , getting
Rb by using rotating calipers takes O(n) time [12]. The dynamic programming
technique of [11] takes O(n3) time. Hence the overall running time is O(n3).

After placing P at a most cornered position, our first cut is along D∗, which
is smaller than C∗ by Lemma 2. At this moment the perimeter of D is at most
π
2 D∗ + D∗ = 2.57D∗. Now, one crucial observation is that while cutting Rb

from D, each of the four cuts throws away some portion of the perimeter of D,
whose length is larger than the corresponding cut. So, total cost of those four
cuts is smaller than the perimeter of D, which is at most 2.57C∗. Finally, Tan’s
algorithm [11] has a cost of (1.5 +

√
2)C∗. Hence the overall cutting cost of our

algorithm is bounded by 6.48C∗. �
Observe that some portion of Rb may remain outside of D. But in that case,
the cost of cutting Rb is still bounded by 2.57C∗. Moreover, in that case the
resulting shape, which may not be a rectangle, will be smaller then Rb. Since
Tan’s algorithm [11] cuts P out of a rectangle, applying this algorithm on this
smaller shape will give a cutting cost even smaller than (1.5 +

√
2)C∗.

Remember from Lemma 1 that if a cornerable P is placed with the center o of
Q inside of it, then any cutting sequence must have cost at least 2R. It suggests

260 S.I. Ahmed et al.

that the most cornered position is, possibly, the best position for a cornerable
P , since moving P anywhere else brings it closer to o. Moreover, for such a
placement of P , an algorithm similar to that of our algorithm given above would
give an inferior approximation ratio. Based on these observations we have the
following conjecture.

Conjecture 1. Any algorithm for cutting a cornerable P with better approxima-
tion ratio must start with a most cornered position of P .

4 Non-cornerable P

Assume that P is non-cornerable. First we compute Rb of P by rotating calipers
[12]. We place Rb along with P arbitrarily inside Q. We apply four cuts along
the edges of Rb (in any sequence). Then we apply Tan’s algorithm [11] to cut P
out of Rb.

Theorem 3. A non-cornerable convex polygon P can be cut out of a circle Q
in O(n3) time with a cutting cost of 6.054C∗.

Proof. Computing Rb takes O(n) time [12]. Then Tan’s algorithm takes O(n3)
time.

We now derive the ratio. Since P must contain the center o, by Lemma 1
C∗ ≥ 2R. First we see the cost of cutting Rb. Let the four cuts applied to cut
Rb be c1, . . . , c4. Now remember that each of c1, c2, c3 and c4 throws a portion
of the boundary of Q whose length is no smaller than the corresponding cut. So,
total cost of c1 c2, c3 and c4 is no more than the perimeter of Q, i.e, ≤ 2πR.
(This argument is similar to that in the proof of Theorem 2.)

Thus the total cost of cutting Rb, which we denote by CRb
, is

CRb
= |c1|+ |c2|+ |c3|+ |c4|
≤ 2πR

≤ πC∗, by Lemma 1

With Tan’s cutting cost of (1.5 +
√

2)C∗ for cutting P out of Rb, total cutting
cost becomes,

CRb
+ (1.5 +

√
2)C∗

≤ (3.14 + (1.5 +
√

2))C∗

= 6.054C∗ �

5 Conclusion

In this paper we address the problem of cutting a convex polygon P from a circle
Q, where P can move freely inside of P , by using line cuts with minimum total
cutting cost. We first find the most cornered position of P towards the boundary

On Finding a Better Position of a Convex Polygon 261

of Q in O(n) time. Then we give a constant factor approximation algorithm that
cuts P out of Q. If it is possible to position P without having the center of Q
inside of P , then our algorithm has approximation ratio 6.48; otherwise it has
the ratio of 5.65. In both cases our algorithm runs in O(n3) time.

There remains several directions for future research.

1. An immediate direction for research is to work with Q as a convex polygon,
which we think would be more difficult due to non-regularity of the boundary
of Q.

2. Another immediate direction is to generalize the problem in 3D, where P
would be a convex polyhedron and Q would be a sphere.

3. It might be possible to improve the running times of our algorithm. In par-
ticular, improving O(n2) for finding a most cornered position of P would be
interesting.

References

1. Ahmed, S.I., Hasan, M., Islam, M.A.: Cutting a cornered convex polygon out of a
circle. Journal of Computers (to appear),
http://203.208.166.84/masudhasan/cut.pdf

2. Ahmed, S.I., Hasan, M., Islam, M.A.: Cutting a convex polyhedron out of a sphere.
In: 7th Japan Conference on Computational Geometry and Graphs, JCCGG 2009
(2009); Also in 4th Annual Workshop on Algorithms and Computation (WALCOM
2010), Dhaka, Bangladesh, February 10-12, 2010,
http://arxiv.org/abs/0907.4068

3. Bereg, S., Daescu, O., Jiang, M.: A PTAS for cutting out polygons with lines.
In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 176–185.
Springer, Heidelberg (2006)

4. Bhadury, J., Chandrasekaran, R.: Stock cutting to minimize cutting length. Euro.
J. Oper. Res. 88, 69–87 (1996)

5. Daescu, O., Luo, J.: Cutting out polygons with lines and rays. International Journal
of Computational Geometry and Applications 16, 227–248 (2006)

6. Demaine, E.D., Demaine, M.L., Kaplan, C.S.: Polygons cuttable by a circular saw.
Computational Geometry: Theory and Algorithms 20, 69–84 (2001)

7. Dumitrescu, A.: An approximation algorithm for cutting out convex polygons.
Computational Geometry: Theory and Algorithms 29, 223–231 (2004)

8. Dumitrescu, A.: The cost of cutting out convex n-gons. Discrete Applied Mathe-
matics 143, 353–358 (2004)

9. Jaromczyk, J.W., Kowaluk, M.: Sets of lines and cutting out polyhedral objects.
Computational Geometry: Theory and Algorithms 25, 67–95 (2003)

10. Overmars, M.H., Welzl, E.: The complexity of cutting paper. In: SoCG 1985, pp.
316–321 (1985)

11. Tan, X.: Approximation algorithms for cutting out polygons with lines and rays. In:
Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 534–543. Springer, Heidelberg
(2005)

12. Toussaint, G.: Solving geometric problems with the rotating calipers. In: MELE-
CON 1983, Athens, Greece (1983)

http://203.208.166.84/masudhasan/cut.pdf
http://arxiv.org/abs/0907.4068

262 S.I. Ahmed et al.

Appendix

Claim. Within Ru, h is elliptical.

Proof. W.l.o.g after necessary translation assume that the equation of cp is

cp : x2 + y2 = r2,

where r = |vp| is the radius of the cp. Let, (x1, y1) and (x2, y2) be the coordinates
of p and o, respectively. Then the equation of t is

t : m1x1 + y1 − c1 = 0,

where m1 = x1/y1 and c1 = r2/y1. The distance function h from (x2, y2) to the
tangent t passing through x1, y1 is given by

h = ‖m1x2 + y2 − c1‖/√((m1)2 + 1)

Now,
√

((m1)2 + 1) = r/y1 (as (x1, y1) is a point on C). Hence we get

h = ‖x1x2 + y1y2 − r2‖/r

After replacing y1 by
√

(r2 − (x1)2) we get,

k1h
2 + k2(x1)2 + k3hx1 + k4x1 + k5h + k6 = 0,

where k1, k2, k3, k4, k5, k6 are constants in terms of x2, y2 and r, and this is an
elliptical function. �

Real Root Isolation of Multi-Exponential
Polynomials with Application�

Ming Xu1,2, Liangyu Chen1, Zhenbing Zeng1, and Zhi-bin Li1,2

1 Shanghai Key Laboratory of Trustworthy Computing,
2 Computer Science and Technology Department,

East China Normal University, Shanghai 200062, China
lizb@cs.ecnu.edu.cn

Abstract. Real root isolation problem is to compute a list of disjoint
intervals, each containing a distinct real root and together containing all.
Traditional methods and tools often attack the root isolation for ordi-
nary polynomials. However many other complex systems in engineering
are modeling with non-ordinary polynomials. In this paper, we extend
the pseudo-derivative sequences and Budan–Fourier theorem for multi-
exponential polynomials to estimate the bounds and counts of all real
roots. Furthermore we present an efficient algorithm for isolating all real
roots under given minimum root separation. As a proof of serviceability,
the reachability of linear systems with real eigenvalues only is approxi-
mately computable by this algorithm.

1 Introduction

Real root isolation is fundamental and critical to modern algorithms. Specially
the real root isolation for polynomials has been implemented and integrated into
many existing tools [1–5]. However there still exist many systems in engineering
modeled with non-ordinary polynomials, so that those traditional methods for
polynomials are hardly applied to these complex systems. A multi-exponential
polynomial, i.e. p∗(x) =

∑n
i=0 pi(x)λx

i where pi(x)s are polynomials and λis are
positive numbers, is a typical one. Applications of real root isolation for multi-
exponential polynomials are numerous. For instance, computing the reachable
region of linear systems ξ′ = Aξ + u is an essential key to safety analysis in
control theory. G. Lafferriere presented the reachable region is computable if
A is a diagonalizable matrix with rational eigenvalues only and the input u is
proper in [6]. For a larger class of linear systems with real eigenvalues only, the
reachability computation can be immediately reduced to the real root isolation
problem of multi-exponential polynomials.

In this paper, we develop the pseudo-derivative sequences for multi-exponential
polynomials inspired by M. Achatz’s work [7]. Based on them, we generalize
Budan–Fourier theorem, which is no longer suitable for polynomials only [8], to

� Supported by NSFC (No. 90718041), Shanghai Leading Academic Discipline Project
(No. B412) and PhD Program Scholarship Fund of ECNU 2009 (No. 2009056).

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 263–268, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

264 M. Xu et al.

estimate the bounds and counts of real roots for given multi-exponential polyno-
mials. Besides a factorization for multi-exponential polynomials is introduced by
Q-linear independence to reduce the complexity of isolation. Finally we present
an algorithm for isolating all real roots of multi-exponential polynomial under
given root separation. Our algorithm mixed of symbolic and numeric computa-
tion can efficiently tackle with vast problems from engineering practice.

The rest of this paper is organized as follows. Section 2 defines the multi-
exponential polynomials and their factorization. Section 3 describes the real root
isolation algorithm for them. Section 4 applies this algorithm to the reachability
problem of linear systems with real eigenvalues only. Section 5 is the conclusion.

2 Multi-Exponential Polynomials

Definition 1. Let p∗(x) =
∑n

i=0 pi(x)λx
i (0 < λ0 < λ1 < · · · < λn ∧ pi(x) ∈

IR[x] \ {0}) be a multi-exponential polynomial (MEP). Then the degree of p∗(x)
is n +

∑n
i=0 deg(pi) and the tail base is λ0, denoted by deg(p∗) and tbase(p∗).

A pseudo-derivative sequence of p∗ can be constructed recursively as follows:⎧⎪⎨⎪⎩
F0 = p∗

(tbase(p∗))x

Fi+1 = F ′
i

(tbase(F ′
i))

x

(1)

until deg(Fi+1) = 0. Let PDS(p∗) = [F0, F1, · · · , Fdeg(p∗)] denote the whole
pseudo-derivative sequence since deg(Fi+1) − deg(Fi) = 1 and PDSM (p∗) =
[F0, F1, · · · , FM] (M ≤ deg(p∗)) denote the partial pseudo-derivative sequence.

Theorem 1. If α is an M -multiple root of Fi, then Fi+j(x) and F
(j)
i (x) share

the same sign in an ε-neighborhood of α for each j (0 ≤ j ≤M).

Proof. On one hand, we can construct a lower triangular transition matrix
(ti;j,k(x))M×M on induction such that⎛⎜⎜⎜⎜⎜⎝

Fi+1(x)
Fi+2(x)

...
Fi+M−1(x)
Fi+M (x)

⎞⎟⎟⎟⎟⎟⎠ = (ti;j,k(x))M×M

⎛⎜⎜⎜⎜⎜⎜⎝

F ′
i (x)

F
(2)
i (x)

...
F

(M−1)
i (x)
F

(M)
i (x)

⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti;1,1(x) = 1
(tbase(F ′

i))
x

ti;j+1,1(x) =
t′i;j,1(x)

(tbase(F ′
i+j))

x

ti;j+1,k(x) =
t′i;j,k(x) + ti;j,k−1(x)

(tbase(F ′
i+j))

x for 1 < k < j + 1

ti;j+1,j+1(x) = ti;j,j(x)
(tbase(F ′

i+j))
x .

Real Root Isolation of Multi-Exponential Polynomials with Application 265

Since (ti;j,k)M×M is nonsingular, Fi(α) = F ′
i (α) = · · · = F

(M−1)
i (α) = 0
=

F
(M)
i (α) if and only if Fi(α) = Fi+1(α) = · · · = Fi+M−1(α) = 0
= Fi+M (α).
On the other hand, we will prove inductively on all 0 ≤ j ≤M that F

(j)
i (x) >

0 if and only if Fi+j(x) > 0 for arbitrary x in (α− ε, α) ∪ (α, α + ε). If j = 0, it
holds trivially; otherwise the following statements are mutually equivalent:

1. F
(j+1)
i (x) > 0.

2. If x < α, then F
(i)
j (x) < 0; else F

(i)
j (x) > 0 by F

(j)
i (α) = 0.

3. If x < α, then Fj+i(x) < 0; else Fj+i(x) > 0 by inductive assumption.
4. F ′

i+j(x) > 0 by Fi+j(α) = 0.
5. Fi+j+1(x) > 0 by the definition of pseudo-derivative sequence.

Therefore sign(Fi+j(x)) = sign(F (j)
i (x)) in (α− ε, α + ε). �

Definition 2. A set of numbers {λ0, λ1, · · · , λn} is Q-linearly independent if no
linear relation a0λ0 + a1λ1 + · · · + anλn = 0 with rational coefficients ais, not
all zero, holds between them.

Given a MEP p∗(x) =
∑n

i=0 pi(x)λx
i , it can be factorized as follows:

1. Choose a Q-linearly independent subset {λ0, μ1, · · · , μk} of {λ0, λ1, · · · , λn}.
2. Define the reverse mapping p∗(x) → p∗∗(x, z0, z1, · · · , zk), i.e. the back-

substitution of each λx
i with

∏k
j=0 z

aij

j as λi = ai0λ0 +
∑k

j=1 aijμj .
3. The factorization of p∗(x) corresponds to that of p∗∗(x, z0, z1, · · · , zk), a mul-

tivariate “polynomial” with rational coefficients and exponentials.

3 Real Root Isolation Algorithm

Definition 3. Given a finite sequence S = [s0, s1, · · · , sm], the number of the
sign variations V(S) is the number of pairs (i, j) with (0 ≤ i < j ≤ m) satisfying:

(sisj < 0) ∧ (
∧

i<j′<j

sj′ = 0).

Theorem 2 (Budan–Fourier theorem for MEPs). The number of MEP
p∗’s real roots (multiplicities counted) during an interval (a, b) is less a nonneg-
ative even number than V([PDS(p∗)]ab) = V([PDS(p∗)]x=a)−V([PDS(p∗)]x=b).

Proof. Assume α ∈ (a, b) is an M -multiple root of Fi(x), by Taylor’s theorem,
Fi(x) =

∑+∞
k=0

(x−α)k

k! F
(k)
i (α) =

∑+∞
k=M

(x−α)k

k! F
(k)
i (α) ≈ (x−α)M

M ! F
(M)
i (α) for

arbitrary x ∈ (α− ε, α) ∪ (α, α + ε). Then we will discuss two distinct cases.

1. One is i = 0. Then V([PDSM (F0)]α−ε
α+ε) = M since sign(Fi(x)) = sign(F (i)

0 (x))
by Theorem 1.

2. The other is i > 0 and Fi−1(α)
= 0, we have V([PDSM (Fi)]α−ε
α+ε) = M simi-

larly. If M is even, V([PDS1(Fi−1)]α−ε
α+ε) = 0; otherwiseV([PDS1(Fi−1)]α−ε

α+ε) =
±1. Hence V([PDSM+1(Fi−1)]α−ε

α+ε) is a nonnegative even number 2Nk.

266 M. Xu et al.

Therefore V([PDS(p∗)]ab) is more a nonnegative even number
∑

k 2Nk than the
number of real roots. �
Corollary 1. A pair of real numbers (l, u) is the real root (lower and upper)
bounds of p∗(x) if V([PDS(p∗)]−∞

l) = 0 = V([PDS(p∗)]u+∞).

Definition 4. Given a function f , let α1, α2, · · · , αn be all roots of f , the min-
imum root separation is

sep(f) = min
1≤i<j≤n

|αi − αj |

with the convention that sep(f) = +∞ in case f has only one root.

Algorithm 1. Assuming sep(p∗) > ε,

L← ISOL(p∗, ε).

Input: p∗(x) is a MEP and ε ∈ Q+.
Output: L = {(a1, b1), · · · , (ak, bk)} is a list of disjoint open intervals with
rational endpoints, satisfying:
(a) k is the number of distinct real roots of p∗;
(b) each (ai, bi) contains exact one distinct real root of p∗.

S1 (Initialization) Compute PDS(p∗) := [F0, F1, · · · , Fdeg(p∗)].
S2 (Bound) Compute the upper and lower bounds u, l ∈ Q+, containing all real

roots of p∗. Let L′ := {(l, u)} and L, L′′ := ∅.
S3 (Refinement) For each I = (a, b) ∈ L′:

(a) If V([PDS(p∗)]ab) = 1, then set L := L ∪ {I}.
(b) If V([PDS(p∗)]ab) > 1, then set the average c := a+b

2 .
i. If p∗(c) = 0, then L := L ∪ {(max{a, c − ε}, min{c + ε, b})} and

L′′ := L′′ ∪ {(a, max{a, c− ε}), (min{c + ε, b}, b)}.
ii. Otherwise L′′ := L′′ ∪ {(a, c), (c, b)}.

Finally set L′ := L′ \ {I}.
S4 (Reduction) For each I = (a, b) ∈ L′′:

(a) If ‖ I ‖≤ ε and p∗(a)p∗(b) < 0, then L := L ∪ {I}.
(b) If ‖ I ‖> ε, then L′ := L′ ∪ {I}.
Finally set L′′ := L′′ \ {I}.

S5 (Recursion) If L′ = ∅, rearrange L and RETURN it; else GOTO S3. �

This algorithm has the complexity of V([PDS(p∗)]lu)
2 lg2(

u−l
ε) in the worst case.

4 Application of Approximate Reachability Analysis

The linear system we concern is of the form

ξ′(t) = Aξ(t) + u(t) (3)

Real Root Isolation of Multi-Exponential Polynomials with Application 267

where

– ξ(t) ∈ IRn is the system state at time t;
– A ∈ IRn×n is a matrix with real eigenvalues only;
– u(t) : IR→ IRn is a vector of multi-exponential polynomials.

Assuming ξ(0) is the initial state, the whole solution of (3) is

ξ(t) = eAtξ(0) +
∫ t

0
eA(τ−t)u(τ)dτ . (4)

In particular, given a matrix A with real eigenvalues only, with the Jordan form
J = T−1AT, all entries in eAt = TeJtT−1 are MEPs in t. Hence all ξis are
MEPs in t too since MEPs are closed under addition, multiplication, differential
and integral calculus. For (3), a cell Ω is reachable from ξ(0) if there exists a
time t0 such that ξ(t0) ∈ Ω.

Algorithm 2. Assuming the tolerance is δ,

S ← REACH(ξ, Ω, δ).

Input: ξ(t) is a vector of MEPs; Ω ⊆ IRn is a target cell characterized by
polynomial equations and inequalities; and δ ∈ Q+.
Output: S = [I1, I2, · · · , Is], a list of sample intervals, satisfies that each Ij

contains at least one point in Ω that is reachable from ξ(0).

Without loss of generality, it is enough to decide whether Ω ≡ ∧i(fi(ξ) =
0)

∧∧j(gj(ξ) > 0) is reachable. fi(t)s and gj(t)s are MEPs after substituting
ξ(t) into fis and gjs. Set S, S′ := ∅. We will discuss two distinct cases.

C1 One is that Ω ≡ ∧l
i=1(fi = 0)

∧∧j(gj > 0) (l > 0).
(a) Assuming sep(fi) > δ, isolate eachfi. in its isolation listLi =[Ii,1, · · · , Ii,si]

by calling Algorithm 1 and bisecting each Ii,ji ensuring ‖ Ii,ji ‖< δ.
(b) For each [I1,j1 , I2,j2 , · · · , Il,jl

] ∈ L1 × L2 × · · · × Ll, if there exists an
intersection (a, b) = ∩1≤i≤lIi,ji
= ∅ and fi(a)fi(b) < 0 for all i, then
(a, b) contains a common root of all fis and set S′ := S′ ∪ {(a, b)}.

(c) For each (a, b) ∈ S′, if gj(a) > 0 and gj(b) > 0 for all j, (a, b) is a
sample interval satisfying all Ω’s constraints under the tolerance δ, set
S := S ∪ {(a, b)}.

C2 Otherwise Ω ≡ ∧j(gj > 0) depicted by inequalities only, then it is one n-
dimension cell. The cell Ω is reachable if and only if its boundary ∂Ω is
passable, i.e. ∂Ω is reachable in an open interval I with one endpoint in Ω.
Let PS(G) := 2G \ {∅}. Construct the boundary ∂Ω ≡ ⋃

G′∈PS(G) ΩG′ where
ΩG′ ≡ ∧gj∈G′(gj = 0)

∧∧gj′ /∈G′(gj′ > 0). Now it is necessary to just check
the reachability of each ΩG′ , which is similar to C1.

Let (a, b) be a reachable sample interval for ΩG′ . If gj(a) > 0 for all
gj ∈ G′ or gj(b) > 0 for all gj ∈ G′, then (a, b) would be a passable sample
interval for ΩG′ and set S := S ∪ {(a, b)}. �

268 M. Xu et al.

Example 1. Consider a linear system with real eigenvalues only as follows:{
x′ = 2x + y + e

√
2t

y′ = −x + et .
(5)

Let the initial state be the origin (0, 0)T and the target region be depicted by
f = x− y − 1 = 0. Its unique solution is{

x = (−4− 3
√

2− t−√2t + 1
2 t2)et + (4 + 3

√
2)e

√
2t

y = (3 + 2
√

2 + 2t +
√

2t− 1
2 t2)et + (−3− 2

√
2)e

√
2t .

(6)

Then, by substitution, f = −1+ (−7− 5
√

2− 3t− 2
√

2t+ t2)et +(7+5
√

2)e
√

2t.
Since V([PDS(f)]t=−∞) = V([PDS(f)]x=−3) = 3 and V([PDS(f)]t=+∞) =

V([PDS(f)]x=1) = 0, all real roots of f lie in (−3, 1). Furthermore
V([PDS(f)]t=−1) = 1 and V([PDS(f)]t=−2) = 2. Hence the system reaches the
target region thrice at times (−3,−2), (−2,−1), (−1, 1). �

5 Conclusion

Complex systems modeled by non-ordinary polynomials are ubiquitous and
widely-used but have few research on them. In this paper, based on pseudo-
derivative sequences, we generalize Budan–Fourier theorem and present a prac-
tical algorithm for isolating all real roots of given multi-exponential polynomial.
An application of linear system reachability shows the efficiency of our approach.

References

1. Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)
2. Collins, G.E., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G.E.,

Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, pp. 83–94.
Springer, Heidelberg (1983)

3. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

4. Yang, L., Hou, X., Zeng, Z.: A complete discrimination system for polynomials.
Science in China (Ser. E) 39, 628–646 (1996)

5. Tsigaridas, E.P., Emiris, I.Z.: Univariate polynomial real root isolation: Continued
fractions revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp.
817–828. Springer, Heidelberg (2006)

6. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computaion for fam-
ilies of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)

7. Achatz, M., McCallum, S., Weispfenning, V.: Deciding polynomial-exponential
problems. In: ISSAC 2008, pp. 215–222. ACM Press, New York (2008)

8. Akritas, A.G.: Elements of Computer Algebra with Applications. Wiley, New York
(1989)

FPT Algorithms for Connected Feedback
Vertex Set

Neeldhara Misra, Geevarghese Philip, Venkatesh Raman,
Saket Saurabh�, and Somnath Sikdar

The Institute of Mathematical Sciences, India
{neeldhara,gphilip,vraman,saket,somnath}@imsc.res.in

Abstract. We study the recently introduced Connected Feedback

Vertex Set (CFVS) problem from the view-point of parameterized
algorithms. CFVS is the connected variant of the classical Feedback

Vertex Set problem and is defined as follows: given a graph G = (V, E)
and an integer k, decide whether there exists F ⊆ V , |F | ≤ k, such that
G[V \ F] is a forest and G[F] is connected. We show that Connected

Feedback Vertex Set can be solved in time O(2O(k)nO(1)) on gen-
eral graphs and in time O(2O(

√
k log k)nO(1)) on graphs excluding a fixed

graph H as a minor. Our result on general undirected graphs uses, as
a subroutine, a parameterized algorithm for Group Steiner Tree, a
well studied variant of Steiner Tree. We find the algorithm for Group

Steiner Tree of independent interest and believe that it could be useful
for obtaining parameterized algorithms for other connectivity problems.

1 Introduction

Feedback Vertex Set (FVS) is a classical NP-complete problem and has
been extensively studied in all subfields of algorithms and complexity. In this
problem we are given an undirected graph G = (V, E) and a positive integer k
as input, and the goal is to check whether there exists a subset F ⊆ V of size at
most k such that G[V \ F] is a forest. This problem originated in combinatorial
circuit design and found its way into diverse applications such as deadlock pre-
vention in operating systems, constraint satisfaction and Bayesian inference in
artificial intelligence. We refer to the survey by Festa, Pardalos and Resende [12]
for further details on the algorithmic study of feedback set problems in a vari-
ety of areas like approximation algorithms, linear programming and polyhedral
combinatorics.

In this paper we focus on the recently introduced connected variant of Feed-

back Vertex Set, namely, Connected Feedback Vertex Set (CFVS).
Here, given a graph G = (V, E) and a positive integer k, the objective is to check
whether there exists a vertex-subset F of size at most k such that G[V \ F] is
a forest and G[F] is connected. Sitters and Grigoriev [21] recently introduced
this problem and obtained a polynomial time approximation scheme (PTAS) for

� This work was done while the author was at the University of Bergen, Norway.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 269–280, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

270 N. Misra et al.

CFVS on planar graphs. We find it a bit surprising that the connected version
of FVS has not been studied in the literature until now. This is in complete
contrast to the fact that the connected variants of other problems, like Vertex

Cover—Connected Vertex Cover, and Dominating Set—Connected

Dominating Set are extremely well-studied in the literature (See, e.g, [17],
[14], respectively.). In this paper, we initiate the algorithmic study of CFVS
from the view-point of parameterized algorithms.

Parameterized complexity is a two-dimensional generalization of “P vs. NP”
where, in addition to the overall input size n, one studies how a secondary mea-
surement (called the parameter), that captures additional relevant information,
affects the computational complexity of the problem in question. Parameterized
decision problems are defined by specifying the input, the parameter, and the
question to be answered. The two-dimensional analogue of the class P is de-
cidability within a time bound of f(k)nc, where n is the total input size, k is
the parameter, f is some computable function and c is a constant that does
not depend on k or n. A parameterized problem that can be decided in such a
time-bound is termed fixed-parameter tractable (FPT). For general background
on the theory of fixed-parameter tractability, see, e.g, the textbook by Flum and
Grohe [13].

FVS has been extensively studied in the context of parameterized algorithms.
The earliest known FPT algorithms for FVS go back to the early 90’s (e.g, [2]).
After several rounds of improvements, the current best FPT algorithm for FVS
runs in time O(5kkn2) [5].

In this paper, we show that CFVS can be solved in time O(2O(k)nO(1)) on
general graphs and in time O(2O(

√
k log k)nO(1)) on graphs excluding a fixed graph

H as a minor. Most of the known FPT algorithms for connectivity problems
enumerate all minimal solutions and then try to connect each solution using an
algorithm for the Steiner Tree problem. For instance, this is the case with the
existing FPT algorithms for Connected Vertex Cover(e.g, [17]). The crucial
observation which the algorithms for Connected Vertex Cover rely on is
that there are at most 2k minimal vertex covers of size at most k. However, this
approach fails for CFVS as the number of minimal feedback vertex sets of size at
most k is Ω(nk) (consider a graph that is a collection of k vertex-disjoint cycles
each of length approximately n/k). To circumvent this problem, we make use
of “compact representations” of feedback vertex sets. A compact representation
is simply a collection of families of mutually disjoint sets, where each family
represents a number of different feedback vertex sets. This notion was defined
by Guo et al. [16] who showed that the set of all minimal feedback vertex sets of
size at most k can be represented by a collection of set-families of size O(2O(k)).

We use compact representations to obtain an FPT algorithm for CFVS in
Section 3. In order to do this we need an FPT algorithm for a general version
of Steiner Tree, namely Group Steiner Tree (GST), which is defined as
follows: Given a graph G = (V, E); |V | = n, |E| = m, subsets Ti ⊆ V , 1 ≤ i ≤ l,
and an integer p, does there exist a subgraph of G on p vertices that is a tree T
and includes at least one vertex from each Ti? Observe that when the Ti’s are

FPT Algorithms for Connected Feedback Vertex Set 271

each of size one, then GST is the Steiner Tree problem. Our FPT algorithm for
GST runs in polynomial space and uses a Turing-reduction to a directed version
of Steiner Tree, called Directed Steiner Out-Tree, which we show to
be fixed-parameter tractable. We note that GST is known to be of interest to
database theorists, and that it has been studied in [10], where an algorithm with
running time O(3l · n + 2l · (n + m)) (that uses exponential space) is discussed.

We also show that CFVS does not admit a polynomial kernel (See Section 2)
on general graphs but has a quadratic kernel on the class of graphs that exclude
a fixed graph H as minor. Finally, in Section 4 we design a subexponential-time
algorithm for CFVS on graphs excluding some fixed graph H as a minor using the
theory of bidimensionality. This algorithm is obtained using an O∗(wO(w))-time
algorithm that computes an optimal connected feedback vertex set in graphs of
treewidth at most w.

2 Preliminaries

In this section we state some basic definitions related to parameterized complex-
ity and graph theory, and give an overview of the notation used in this paper. To
describe running times of algorithms we sometimes use the O∗ notation. Given
f : N → N, we define O∗(f(n)) to be O(f(n) · p(n)), where p(·) is some poly-
nomial function. That is, the O∗ notation suppresses polynomial factors in the
running-time expression.

A parameterized problem Π is a subset of Γ ∗ × N, where Γ is a finite alpha-
bet. An instance of a parameterized problem is a tuple (x, k), where k is called
the parameter. A central notion in parameterized complexity is fixed-parameter
tractability (FPT) which means, for a given instance (x, k), decidability in time
f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial in the
input size. The notion of kernelization is formally defined as follows.

Definition 1. [Kernelization] [13,20]
A kernelization algorithm for a parameterized problem Π ⊆ Γ ∗ × N is an algo-
rithm that, given (x, k) ∈ Γ ∗ ×N, outputs, in time polynomial in |x|+ k, a pair
(x′, k′) ∈ Γ ∗ × N such that (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b)
|x′|, k′ ≤ g(k), where g is some computable function. The output instance x′ is
called the kernel, and the function g is referred to as the size of the kernel. If
g(k) = kO(1) (resp. g(k) = O(k)) then we say that Π admits a polynomial (resp.
linear) kernel.

We say that a graph G (undirected or directed) contains a graph H if H is a
subgraph of G. Given a directed graph (digraph) D = (V, A), we let V (D) and
A(D) denote the vertex and arc set of D, respectively. A vertex u ∈ V (D) is
an in-neighbor (out-neighbor) of v ∈ V (D) if uv ∈ A (vu ∈ A, respectively).
The in- and out-neighborhood of a vertex v are denoted by N−(v) and N+(v),
respectively. The in-degree d−(v) (resp. out-degree d+(v)) of a vertex v is |N−(v)|
(resp. |N+(v)|). We say that a subdigraph T of D with vertex set VT ⊆ V (D) is
an out-tree if T is an oriented tree (see [1]) with only one vertex r of in-degree

272 N. Misra et al.

zero (called the root). The vertices of T of out-degree zero are called leaves and
every other vertex is called an internal vertex.

3 Connected Feedback Vertex in General Graphs

In this section we give an FPT algorithm for CFVS on general graphs. We start
by describing an FPT algorithm for the Group Steiner Tree problem which
is crucially used in our algorithm for CFVS.

3.1 Group Steiner Tree

The Group Steiner Tree (GST) problem is defined as follows:

Input: An undirected graph G = (V, E); vertex-disjoint subsets
S1, . . . , Sl ⊆ V ; and an integer p.

Parameter: The integer l.
Question: Does G contain a tree on at most p vertices that includes at

least one vertex from each Si?

Our fixed-parameter algorithm for GST first reduces it to Directed Steiner

Out-Tree (defined below) which we then show to be fixed-parameter tractable.

Input: A directed graph D = (V, A); a distinguished vertex r ∈ V ; a
set of terminals S ⊆ V ; and an integer p.

Parameter: The integer l = |S|.
Question: Does D contain an out-tree on at most p vertices that is rooted

at r and that contains all the vertices of S?

Lemma 1. The GST problem Turing-reduces to the Directed Steiner Out-

Tree problem.

Proof. Given an instance (G = (V, E), S1, . . . , Sl, p) of GST, construct an in-
stance of Directed Steiner Out-Tree as follows. Let S = {s1, s2, . . . , sl}
be a set of l new vertices, that is, si /∈ V for 1 ≤ i ≤ l. Let V ′ = V ∪ S and
A = {uv, vu : {u, v} ∈ E} ∪⋃l

i=1{xsi : x ∈ Si}. Finally, let D = (V ′, A). It is
easy to see that G contains a tree on at most p vertices that includes at least one
vertex from each Si if and only if there exists a vertex r ∈ V ′ and an out-tree in
D rooted at r on at most p + l vertices containing all vertices of S. �
Lemma 2. Directed Steiner Out-Tree can be solved in O(2l · nO(1)) time
using polynomial space.

Nederlof [19] uses the Inclusion-Exclusion Principle and a notion of branch-
ing walks to give an algorithm for the Steiner Tree problem that runs in
O(2l · nO(1)) time using polynomial space, where l is the number of terminals.
Essentially the same algorithm works for Directed Steiner Out-Tree, with
the same resource bounds; we omit the details due to space constraints.

FPT Algorithms for Connected Feedback Vertex Set 273

Lemmas 1 and 2 together imply:

Lemma 3. The Group Steiner Tree problem can be solved in O(2l · nO(1))
time using polynomial space.

3.2 An FPT Algorithm for CFVS

Our FPT algorithm for CFVS uses as a subroutine an algorithm (due to Guo
et al. [16]) for enumerating an efficient representation of minimal feedback vertex
sets of size at most k. Strictly speaking, the subroutine enumerates all compact
representations of minimal feedback sets. A compact representation for a set of
minimal feedback sets of a graph G = (V, E) is a set C of pairwise disjoint subsets
of V such that choosing exactly one vertex from every set in C results in a minimal
feedback set for G. Call a compact representation a k-compact representation if
the number of sets in the representation is at most k. Clearly, any connected
feedback set of size at most k must necessarily pick vertices from the sets of
some k-compact representation. Given a graph G = (V, E) and a k-compact
representation S1, . . . , Sr, where r ≤ k, the problem of deciding whether there
exists a connected feedback vertex set that contains at least one vertex from
each set Si reduces to the Group Steiner Tree problem where the Steiner
groups are the sets of the compact representation.

Our algorithm therefore cycles through all k-compact representations and for
each such representation uses the algorithm for Group Steiner Tree to check
if there is a tree on at most k vertices that includes one vertex from each set Si of
the compact representation. If the answer is no for all k-compact representations,
the algorithm reports that the given instance is a no-instance. If the answer is
yes for some compact representation, the algorithm returns the tree found. Since
one can enumerate all compact representations in time O(ck ·m) [16], we have:

Theorem 1. Given a graph G = (V, E) and an integer k, one can decide
whether G has a connected feedback set of size at most k in time O(ck · nO(1)),
for some constant c.

Although CFVS is fixed-parameter tractable, it is unlikely to admit a polynomial
kernel as the following theorem shows. This is in contrast to Feedback Vertex

Set which admits a quadratic kernel [22].

Theorem 2. The CFVS problem does not admit a polynomial kernel unless the
Polynomial Hierarchy collapses to Σ3.

Proof. The proof follows from a polynomial-time parameter-preserving reduction
from Connected Vertex Cover, which does not admit a polynomial kernel
unless the Polynomial Hierarchy collapses to the third level [11]. This would
prove that CFVS too does not admit a polynomial kernel [4]. Given an instance
(G = (V, E), k) of the Connected Vertex Cover problem, construct a new
graph G′ as follows: V (G′) = V (G) ∪ {xuv /∈ V (G) : {u, v} ∈ E(G)}; if {u, v} ∈
E(G) then add the edges {u, v}, {u, xuv}, {xuv, v} to E(G′). This completes the
construction of G′. It is easy to see that G has a connected vertex cover of size

274 N. Misra et al.

at most k if and only if G′ has a connected feedback vertex set of size at most
k. This completes the proof of the theorem. �
Interestingly, the results from [15] imply that CFVS has polynomial kernel on a
graph class C which excludes a fixed graph H as a minor(See Section 4.1).

We note in passing that the algorithm for enumerating compact representa-
tions can be improved using results from [6]. The authors of [6] describe a set of
reduction rules such that if a yes-instance of the Forest Bipartition problem
(defined below) is reduced with respect to this set of rules then the instance has
size at most 5k + 1.

Forest Bipartition

Input: An undirected graph G = (V, E), possibly with multiple edges
and loops and a set S ⊆ V such that |S| = k + 1 and G \ S is
acyclic.

Parameter: The integer k.
Question: Does G have a feedback vertex set of size at most k contained

in V \ S?

Thus in a yes-instance of Forest Bipartition that is reduced with respect to
the rules in [6], we have |V \S| ≤ 4k. Using this bound in the algorithm described
by Guo et al. [16], one obtains a O∗(ck)-time algorithm for enumerating compact
representations of minimal feedback vertex sets of size at most k, where c = 52.
The constant c in [16] is more than 160.

Theorem 3. [6,16] Given a graph G = (V, E) and an integer k, the compact
representations of all minimal feedback vertex sets of G of size at most k can be
enumerated in time O(52k · |E|).

4 A Subexponential FPT Algorithm for CFVS on
H-Minor-Free Graphs

In the last section, we obtained an O∗(ck) algorithm for CFVS on general graphs.
In this section we show that CFVS on the class of H-minor-free graphs admits
a sub-exponential time algorithm with running time O(2O(

√
k log k)nO(1)). This

section is divided into three parts. In the first part we give essential definitions
from topological graph theory, and in the second part we show that CFVS can
be solved in time O(wO(w)nO(1)) on graphs with treewidth bounded by w. In
the last part we present an algorithm with the stated running time for CFVS on
H-minor-free graphs, by bounding the treewidth of the input graph using the
known “grid theorems”.

4.1 Definitions and Terminology

We use terminology from [9]. Given an edge e in a graph G, the contraction of
e is the result of identifying its endpoints in G and then removing all loops and

FPT Algorithms for Connected Feedback Vertex Set 275

duplicate edges. A minor of a graph G is a graph H that can be obtained from
a subgraph of G by contracting edges. A graph class C is minor-closed if any
minor of any graph in C is also an element of C. A minor-closed graph class C is
H-minor-free or simply H-free if H /∈ C.

A tree decomposition of a graph G = (V, E) is a pair (T = (VT , ET),X =
{Xt}t∈VT) where T is a tree and the Xt are subsets of V such that:

1.
⋃

u∈VT
Xt = V ;

2. for each edge e = {u, v} ∈ E there exists t ∈ VT such that u, v ∈ Xt; and
3. for each vertex v ∈ V , the subgraph T [{t | v ∈ Xt}] is connected.

The width of a tree decomposition is maxt∈VT |Xt| − 1 and the treewidth of
G = (V, E), denoted tw(G), is the minimum width over all tree decompositions
of G.

A tree decomposition is called a nice tree decomposition [3] if the following
conditions are satisfied:

– Every node of the tree T has at most two children. A node that has no
children is called a leaf node. The non-leaf nodes are of three kinds:
• If a node t has two children t1 and t2, then Xt = Xt1 = Xt2 , and t is

called a join node.
• if a node t has one child t1, then either |Xt| = |Xt1 | + 1 and Xt1 ⊂ Xt

(t is called an introduce node), or |Xt| = |Xt1 | − 1 and Xt ⊂ Xt1 (t is
called a forget node).

It is possible to transform a given tree decomposition into a nice tree decompo-
sition in time O(|V |+ |E|) [3].

4.2 Connected FVS and Treewidth

In this section we show that the Connected Feedback Vertex Set problem
is FPT with the treewidth of the input graph as the parameter. That is, we show
that the following problem is FPT:

Input: An undirected graph G = (V, E); an integer k; and a nice tree
decomposition of G of width w.

Parameter: The treewidth w of the graph G.
Question: Does there exist S ⊆ V such that G \ S is acyclic, G[S] is

connected, and |S| ≤ k?

We design a dynamic programming algorithm on the nice tree decomposition
with running time O(wO(w) · nO(1)) for this problem. See, e.g, Moser [18] for
a detailed exposition of this paradigm; in particular, our algorithm is similar
in spirit to the algorithm given in [18] for the Connected Vertex Cover

problem.
Let (T = (I, F) , {Xi|i ∈ I}) be a nice tree decomposition of the input graph

G of width w and rooted at r ∈ I. We let Ti denote the subtree of T rooted at

276 N. Misra et al.

i ∈ I, and Gi = (Vi, Ei) denote the subgraph of G induced on all the vertices of
G in the subtree Ti, that is, Gi = G[

⋃
j∈V (Ti) Xj].

For each node i ∈ I we compute a table Ai, the rows of which are 4-tuples
[S, P, Y, val]. Table Ai contains one row for each combination of the first three
components which denote the following:

– S is a subset of Xi.
– P is a partition of S into at most |S| labelled pieces.
– Y is a partition of Xi \ S into at most |Xi \ S| labelled pieces.

We use P (v) (resp. Y (v)) to denote the piece of the partition P (resp. Y) that
contains the vertex v. We let |P | (resp. |Y |) denote the number of pieces in the
partition P (resp. Y). The last component val , also denoted as Ai [S, P, Y], is
the size of a smallest feedback vertex set Fi ⊆ V (Gi) of Gi which satisfies the
following properties:

– If S = ∅, then Fi is connected in Gi.
– If S
= ∅, then
• Fi ∩Xi = S.
• All vertices of S that are in any one piece of P are in a single con-

nected component of Gi[Fi]. Moreover Gi[Fi] has exactly |P | connected
components.
• All vertices of Xi \ S that are in the same piece of Y are in a single

connected component (a tree) of Gi[Vi \ Fi]. Moreover Gi[Vi \ Fi] has at
least |Y | connected components.

If there is no such set Fi, then the last component of the row is set to ∞.
We fix an arbitrary ordering of the vertices of Xi, and compute the table Ai

for each node i ∈ I of the tree decomposition. Since there are at most w + 1
vertices in each bag Xi, there are no more than

w+1∑
i=0

(
w + 1

i

)
ii · (w + 1− i)w+1−i ≤ (2w + 2)2w+2

rows in any table Ai. We compute the tables Ai starting from the leaf nodes of
the tree decomposition and going up to the root.

Leaf Nodes. Let i be a leaf node of the tree decomposition. We compute the
table Ai as follows. For each triple (S, P, Y) where S is a subset of Xi, P a
partition of S, and Y a partition of Xi \ S:
– Set Ai [S, P, Y] =∞ if at least one of the following holds:
• Gi \ S contains a cycle (i.e., S is not an FVS of Gi).
• At least one piece of P is not connected in Gi[S] or if Gi[S] has less

than |S| connected components.
• At least one piece of Y is not connected in Gi[Vi \ S] or if Gi[Vi \ S]

has less than |Y | connected components.
– In all other cases, set Ai [S, P, Y] = |S|.

FPT Algorithms for Connected Feedback Vertex Set 277

It is easy to see that this computation correctly determines the last compo-
nent of each row of Ai for a leaf node i of the tree decomposition.

Introduce Nodes. Let i be an introduce node and j its unique child. Let x ∈
Xi \Xj be the introduced vertex. For each triple (S, P, Y), we compute the
entry Ai[S, P, Y] as follows.

Case 1. x ∈ S. Check whether N(x)∩S ⊆ P (x); if not, set Ai[S, P, Y] =∞.

– Subcase 1. P (x) = {x}. Set Ai[S, P, Y] = Aj [S \ {x}, P \ P (x), Y] + 1.
– Subcase 2: |P (x)| ≥ 2 and N(x) ∩ P (x) = ∅. Set Ai[S, P, Y] =∞, as no

extension of S to an fvs for Gi can make P (x) connected.
– Subcase 3: |P (x)| ≥ 2 and N(x)∩P (x)
= ∅. Let A be the set of all rows

[S′, P ′, Y] of the table Aj that satisfy the following conditions:
• S′ = S \ {x}.
• P ′ = (P \ P (x)) ∪Q, where Q is a partition of P (x) \ {x} such that

each piece of Q contains an element of N(x) ∩ P (x).
Set Ai[S, P, Y] = min[S′,P ′,Y]∈A{Aj [S′, P ′, Y]}+ 1.

Case 2. x /∈ S. Check whether N(x)∩(Xi\S) ⊆ Y (x); if not, set Ai[S, P, Y] =
∞.

– Subcase 1: Y (x) = {x}. Set Ai[S, P, Y] = Aj [S, P, Y \ Y (x)].
– Subcase 2: |Y (x)| ≥ 2 and N(x) ∩ Y (x) = ∅. Set Ai[S, P, Y] =∞, as no

extension of S to an fvs Fi for Gi can make Y (x) a connected component
in Gi[Vi \ Fi].

– Subcase 3: |Y (x)| ≥ 2 and N(x)∩Y (x)
= ∅. Let A be the set of all rows
[S, P, Y ′] of the table Aj where Y ′ = (Y \Y (x))∪Q, and Q is a partition
of Y (x) \ {x} such that each piece of Q contains exactly one element of
N(x) ∩ Y (x). Set Ai[S, P, Y] = min[S,P,Y ′]∈A{Aj [S, P, Y ′]}.

Forget Nodes. Let i be a forget node and j its unique child node. Let x ∈
Xj \Xi be the forgotten vertex. For each triple (S, P, Y) in the table Ai, let
A be the set of all rows [S′, P ′, Y] of the table Aj that satisfy the following
conditions:
– S′ = S ∪ {x}, and
– P ′(x) = P (y) ∪ {x} for some y ∈ S.

Let B be the set of all rows [S, P, Y ′] of the table Aj such that Y ′(x) =
Y (z) ∪ {x} for some z ∈ S. Set

Ai[S, P, Y] = min
{

min
[S′,P ′,Y]∈A

Aj [S′, P ′, Y], min
[S,P,Y ′]∈B

Aj [S, P, Y ′]
}

.

Join Nodes. Let i be a join node and j and l its children. For each triple
(S, P, Y) we compute Ai[S, P, Y] as follows.
– Case 1. S = ∅. If both Aj [∅, P, Y] and Al[∅, P, Y] are posi-

tive finite, then set Ai[∅, P, Y] = ∞. Otherwise, set Ai[∅, P, Y] =
max{Aj[∅, P, Y], Al[∅, P, Y]}.

278 N. Misra et al.

– Case 2. S
= ∅. Let A denote the set of all pairs of triples
〈(S, P1, Y1), (S, P2, Y2)〉, where (S, P1, Y1) ∈ Aj and (S, P2, Y2) ∈ Al

with the following property: Starting with the partitions Qp = P1 and
Qy = Y1 and repeatedly applying the following set of operations, we
reach stable partitions that are identical to P and Y . The first operation
that we apply is:

If there exist vertices u, v ∈ S such that they are in different
pieces of Qp but are in the same piece of P2, delete Qp(u) and
Qp(v) from Qp and add Qp(u) ∪Qp(v).

To describe the second set of operations, we need some notation. Let Z =
Xi \ S and let the connected components of Gi[Z] be C1, . . . , Cq. First
contract each connected component Ci to a vertex ci, the representative
of that component, and let C = {c1, . . . , cq}. Note that for each 1 ≤ i ≤ q,
the component Ci is not split across pieces in either Y1 or Y2. Denote
by Y ′

1 and Y ′
2 the partitions obtained from Y1 and Y2, respectively, be

replacing each connected component Ci by its representative vertex ci.
Let Qy = Y ′

1 . Repeat until no longer possible:
If there exist ca, cb ∈ C that are in different pieces of Qy but in
the same piece of Y2 then delete Qy(ca), Qy(cb) from Qy and add
Qy(ca) ∪ Qy(cb) provided the following condition holds: for all
ce ∈ C\{ca, cb} either Y2(ce)∩Qy(ca) = ∅ or Y2(ce)∩Qy(cb) = ∅.

If this latter condition does not hold, move on to the next pair of triples.
Finally expand each ci to the connected component it represents.
Set

Ai[S, P, Y] = min
〈(S,P1,Y1),(S,P2,Y2)〉∈A

{Aj[S, P1, Y1] + Al[S, P2, Y2]− |S|}.

The stated conditions ensure that u, v ∈ S are in the same piece of P if
and only if for each 〈(S, P1, Y1), (S, P2, Y2)〉 ∈ A, they are in the same
piece of P1 or of P2 (or both). Similarly, the stated conditions ensure
that merging solutions at join nodes do not create new cycles. Given
this, it is easy to verify that the above computation correctly determines
Ai [S, P, Y].

Root Node. We compute the size of a smallest CFVS of G from the table Ar

for the root node r as follows. Find the minimum of Ar[S, P, Y] over all
triples (S, P, Y), where S ⊆ Xr, P a partition of S such that P consists of a
single (possibly empty) piece and Y is a partition of Xr \ S. This minimum
is the size of a smallest CFVS of G.

This concludes the description of the dynamic programming algorithm for CFVS
when the treewidth of the input graph is bounded by w. From the above de-
scription and the size of tables being bounded by (2w + 2)2w+2, we obtain the
following result.

Lemma 4. Given a graph G = (V, E), a tree-decomposition of G of width w,
one can compute the size of an optimum connected feedback vertex set of G (if
it exists) in time O((2w + 2)2w+2 · nO(1)).

FPT Algorithms for Connected Feedback Vertex Set 279

4.3 FPT Algorithms for H-Minor Free Graphs

We first bound the treewidth of the yes instance of input graphs by O(
√

k).

Lemma 5. If (G, k) is a yes-instance of CFVS where G excludes a fixed graph
H as a minor, then tw(G) ≤ cH

√
k, where cH is a constant that depends only

on the graph H.

Proof. By [7], for any fixed graph H , every H-minor-free graph G that does
not contain a (w × w)-grid as a minor has treewidth at most c′Hw, where c′H
is a constant that depends only on the graph H . Clearly a (w × w)-grid has
a feedback vertex set of size at least c1w

2, where c1 is a constant independent
of w. Therefore if G has a connected feedback vertex set of size at most k, it
cannot have a (w×w)-grid minor, where w >

√
k/c1. Therefore tw(G) ≤ c′Hw ≤

c′H · (
√

k/c1 + 1) ≤ cH

√
k, where cH = (c′H + 1)/

√
c1. �

Theorem 4. CFVS can be solved in time O(2O(
√

k log k) + nO(1)) on H-minor-
free graphs.

Proof. Given an instance (G, k) of CFVS, we first find a tree-decomposition of G
using the polynomial-time constant-factor approximation algorithm of Demaine
et al. [8]. If tw(G) > cH

√
k, then the given instance is a no-instance; else, use

Lemma 4 to find an optimal CFVS for G. All this can be done in O(2O(
√

k log k) ·
nO(1)). To obtain the claimed running time bound we first apply the results
from [15] and obtain an O(k2) kernel for the problem in polynomial time and
then apply the algorithm described. �

5 Conclusion

We conclude with some open problems. The obvious question is to obtain an
O∗(ck) algorithm for CFVS in general graphs with a smaller value of c. Also the
approximability of CFVS in general graphs is unknown. Is there a constant-factor
approximation algorithm for CFVS? If not, what is the limit of approximation?
Is there an O∗(cw) algorithm for CFVS, for a constant c, for graphs of treewidth
at most w? Note that this question is open even in the context of finding a
(unconnected) feedback vertex set in graphs of treewidth at most w.

References

1. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer, Heidelberg (2009)

2. Bodlaender, H.L.: On disjoint cycles. In: Schmidt, G., Berghammer, R. (eds.) WG
1991. LNCS, vol. 570, pp. 230–238. Springer, Heidelberg (1992)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

280 N. Misra et al.

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels (extended abstract). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)

5. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the
feedback vertex set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007)

6. Dehne, F., Fellows, M., Langston, M.A., Rosamond, F., Stevens, K.: An O(2O(k)n3)
FPT-Algorithm for the Undirected Feedback Vertex Set problem. In: Wang, L. (ed.)
COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)

7. Demaine, E.D., Hajiaghayi, M.: Linearity of grid minors in treewidth with appli-
cations through bidimensionality. Combinatorica 28(1), 19–36 (2008)

8. Demaine, E.D., Hajiaghayi, M., ichi Kawarabayashi, K.: Algorithmic graph mi-
nor theory: Decomposition, approximation, and coloring. In: Proceedings of FOCS
2005, pp. 637–646. IEEE Computer Society, Los Alamitos (2005)

9. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
10. Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X., Lin, X.: Finding top-k min-cost

connected trees in databases. In: ICDE, pp. 836–845. IEEE, Los Alamitos (2007)
11. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs.

In: Albers, S., et al. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer,
Heidelberg (2009)

12. Festa, P., Pardalos, P.M., Resende, M.G.: Feedback set problems. In: Handbook of
Combinatorial Optimization, pp. 209–258. Kluwer Academic Publishers, Dordrecht
(1999)

13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

14. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster
than 2n. Algorithmica 52(2), 153–166 (2008)

15. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Proceedings of SODA 2010 (2010) (to appear)

16. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal
of Computer and System Sciences 72(8), 1386–1396 (2006)

17. Mölle, D., Richter, S., Rossmanith, P.: Enumerate and expand: Improved algo-
rithms for connected vertex cover and tree cover. Theory of Computing Sys-
tems 43(2), 234–253 (2008)

18. Moser, H.: Exact algorithms for generalizations of vertex cover. Master’s thesis,
Institut für Informatik, Friedrich-Schiller-Universität (2005)

19. Nederlof, J.: Fast polynomial-space algorithms using möbius inversion: Improving
on steiner tree and related problems. In: Albers, S., et al. (eds.) ICALP 2009, pp.
713–725. Springer, Heidelberg (2009)

20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford
(2006)

21. Sitters, R., Grigoriev, A.: Connected feedback vertex set in planar graphs. In: Paul,
C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911. Springer, Heidelberg (2009)

22. Thomassé, S.: A quadratic kernel for feedback vertex set. In: Proceedings of SODA
2009, pp. 115–119. Society for Industrial and Applied Mathematics (2009)

A Simple and Fast Algorithm for Maximum
Independent Set in 3-Degree Graphs

(Extended Abstract)

Mingyu Xiao�

School of Computer Science and Engineering
University of Electronic Science and Technology of China

Chengdu, China
myxiao@gmail.com

Abstract. We present a simple O∗(1.0885n)-time algorithm for finding
a maximum independent set in an n-vertex graph with degree bounded
by 3, which improves most previous running time bounds obtained with
far more complicated algorithms. In this paper, we use a nontraditional
measure to analyze the problem size and some uniform branching rules
to avoid tedious case analysis. Those techniques help us to design simple
and fast algorithms with moderately complicated analysis.

1 Introduction

The maximum independent set problem (MIS), to find a maximum set of ver-
tices in a graph such that there is no edge between any two vertices in the set,
is one of the basic NP-hard optimization problems and has been well studied in
the literature, in particular in the line of research on worst-case analysis of algo-
rithms for NP-hard optimization problems. In 1977, Tarjan and Trojanowski [1]
published the first algorithm for this problem, which runs in O∗(2n/3) time
and polynomial space. Later, the running time was improved to O∗(20.304n)
by Jian [2]. Robson [3] obtained an O∗(20.296n)-time polynomial-space algo-
rithm and an O∗(20.276n)-time exponential-space algorithm. In a technical re-
port [4], Robson also claimed better running times. Recently, Fomin et al. [5]
got a simple O∗(20.288n)-time polynomial-space algorithm by using the “Measure
and Conquer” method. There is also a considerable amount of contributions to
the maximum independent set problem in sparse graphs, especially in degree-3
graphs [6,7,8,9]. We summarize currently published results on low-degree graphs
as well as general graphs in Table 1.

In the literature, there are several methods for designing algorithms for find-
ing maximum independent sets in graphs. One method is to find a minimum

� This work was supported in part by the National Natural Science Foundation of
China Grant (No. 60903007) and the UESTC Youth Science Funds (No. JX0843).
Part of the work was done when the author was a Ph.D. student in Department of
Computer Science and Engineering, the Chinese University of Hong Kong.

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 281–292, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

282 M. Xiao

Table 1. Published exact algorithms for the maximum independent set problem

Authors Running times References Notes

Tarjan & Trojanowski O∗(1.2600n) for MIS 1977 [1] n: number of vertices
Jian O∗(1.2346n) for MIS 1986 [2]
Robson O∗(1.2109n) for MIS 1986 [3] Exponential space
Beigel O∗(1.0823m) for MIS 1999 [6] m: number of edges

O∗(1.1259n) for 3-MIS 3-MIS: MIS in degree-3 graphs
Chen et al. O∗(1.1254n) for 3-MIS 2003 [7]
Xiao et al. O∗(1.1034n) for 3-MIS 2005 [8] Published in Chinese
Fomin et al. O∗(1.2210n) for MIS 2006 [5]
Fomin & Høie O∗(1.1225n) for 3-MIS 2006 [10]
Fürer O∗(1.1120n) for 3-MIS 2006 [11]
Razgon O∗(1.1034n) for 3-MIS 2006 [12]
Bourgeois et al. O∗(1.0977n) for 3-MIS 2008 [9]
Razgon O∗(1.0892n) for 3-MIS 2009 [13]

vertex cover (a set of vertices such that each edge in the graph has at least one
endpoint in the set), and then to get a maximum independent set by taking all
the remaining vertices, such as the algorithms presented in [7,14]. In this kind
of algorithms, the dominating part of the running time is the running time for
finding a minimum vertex cover. Another method is based on the search tree
method. We will use a branch-and-reduce paradigm. We choose a parameter,
such as the number of vertices or edges or others, as a measure of the size of the
problem. When the parameter is zero or a negative number, the problem can be
solved in polynomial time. We branch on the current graph G into several graphs
G1, G2, · · · , Gl such that the parameter ri of graph Gi is less than the parameter
r of graph G (i = 1, 2, · · · , l), and a maximum independent set in G can be found
in polynomial time if a maximum independent set in each of the l graphs G1,
G2, · · · , Gl is known. With this method, we can build up a search tree, and the
exponential part of the running time of the algorithm corresponds to the size
of the search tree. The running time analysis leads to a linear recurrence for
each node in the search tree that can be solved by using standard techniques.
Let C(r) denote the worst-case size of the search tree when the parameter of
graph G is r, then we get the recurrence relation C(r) ≤ ∑l

i=1 C(ri). Solving
the recurrence, we get C(r) = [α(r, r1, r2, · · · , rl)]r, where α(r, r1, r2, · · · , rl) is
the largest root of the function f(x) = 1 −∑l

i=1 x−ri . As for the measure (the
parameter r), a natural one is the number of vertices or edges in the graph.
Most previous algorithms for the maximum independent set problem were an-
alyzed by using the number of vertices as a measure [1,2,3,5]. The number of
edges is considered in Beigel’s algorithm [6]. There are also some other measures.
Xiao et al. [8] used the number of degree-3 vertices as a measure to analyze al-
gorithms and got an O∗(1.1034n)-time algorithm for MIS in degree-3 graphs.
Unfortunately, that paper was published in Chinese. Recently, Razgon [12] also
got an O∗(1.1034n)-time algorithm for MIS in degree-3 graphs by measuring
the number of degree-3 vertices. But the two algorithms are totally different.
Fürer [11] designed an algorithm for MIS in degree-3 graphs by tackling m− n,

Maximum Independent Set in 3-Degree Graphs 283

where m is the number of edges and n the number of vertices. Based upon a
refined branching with respect to Fürer’s algorithm, Bourgeois et al. [9] got an
O∗(1.0977n)-time algorithm for MIS in degree-3 graphs. Currently, the best pub-
lished result on this problem is Razgon’s O∗(1.0892n)-time algorithm [13]. In a
recent technical report, Bourgeois et al. [15] claimed an algorithm with running
time O∗(1.0854n).

Most fast algorithms for the maximum independent set problem are obtained
via careful examinations of the structures in the graph. In those algorithms,
a long list of reduction and branching rules are used, which is derived from a
somewhat tedious and complicated case analysis. In this paper, we use a new
measure and some new branching rules to design a quite simple (does not contain
many branching rules) and fast algorithm. We will use r = sumv∈V (dv) as a
measure to analyze our algorithm, where dv = max(0, d(v) − 2) and d(v) is the
degree of vertex v. When the graph is a degree-3 graph, measure r is the number
of degree-3 vertices in the graph. Our algorithm runs in O∗(1.0885n) time, which
slightly improves the best published result of O∗(1.0892n) [13]. Some techniques
in this paper can also be used to simplify previous algorithms. Furthermore, our
result can be used to solve the k-vertex cover problem (to decide if the graph
has a vertex cover of size k) in degree-3 graphs in O∗(1.1849k) time.

2 Preliminaries

We shall try to be consistent in using the following notation. The number of
vertices in a graph will be denoted by n and the measure will be denoted by r.
For a vertex v in a graph, d(v) is the degree of v, N(v) the set of all neighbors
of v, N [v] = N(v) ∪ {v} the set of vertices with distance at most 1 from v,
and N2(v) the set of vertices with distance exactly 2 from v. We say edge e is
incident on a vertex set V ′, if at least one endpoint of e is in V ′. A component
of a graph always means a connected component of the graph. In our algorithm,
when we remove a set of vertices, we also remove all the edges that are incident
on it. Throughout the paper we use a modified O notation that suppresses all
polynomially bounded factors. For two functions f and g, we write f(n) =
O∗(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.

Our algorithms are based on the branch-and-reduce paradigm. We will first
apply some reduction rules to reduce the size of instances of the problem. Then
we apply some branching rules to branch on the graph by including some vertices
in the independent set or excluding some vertices from the independent set. In
each branch, we will get a maximum independent set problem in a graph with
a smaller measure. Next, we introduce the reduction rules and branching rules
that will be used in our algorithms.

2.1 Reduction Rules

There are several standard preprocesses to reduce the size of instances of the
problem. Folding a degree-1 or degree-2 vertex and removing a dominated ver-
tex [14,5] are frequently used rules. Besides these reduction rules, we still need

284 M. Xiao

to reduce some other local structures called 2-3 structure, 3-3 structure and 3-4
structure.

Folding a degree-1 vertex
Folding a degree-1 vertex v means removing v and u from the graph, where u is
the unique neighbor of v.

Folding a degree-2 vertex
Folding a degree-2 vertex v (with two neighbors a and b) means

(a) removing v, a and b from the graph, when a and b are adjacent.
(b) removing v, a and b from the graph and introducing a new vertex s that is
adjacent to all neighbors of a and b in G (except the removed vertex v), when a
and b are nonadjacent.

Please refer to Figure 1 for an illustration of the operation in case (b) of folding
a degree-2 vertex. Let α(G) denote the size of a maximum independent set of
graph G and G�(v) the graph after folding a degree-1 or degree-2 vertex v in G.
Then we have the following lemma.

Lemma 1. For any degree-1 or degree-2 vertex v in graph G,
α(G) = 1 + α(G�(v)).

The correctness of folding a degree-1 or degree-2 vertex has been discussed in
many previous papers. In fact, general folding rules are known in the literature,

v

321

ba

321

s

Folding a degree-2 vertex

cba

uv

321 4
321 4

s

Folding a 2-3 structure

cba

wv

321 4

u

321 4

s

Folding a 3-3 structure

Fig. 1. Illustrations of folding operations of case (b)

Maximum Independent Set in 3-Degree Graphs 285

which can deal with a vertex of degree ≥ 3 or a set of independent vertices [14,5].
In this paper, we still need to fold the following three local structures called 2-3
structure, 3-3 structure and 3-4 structure.

Let v and u be two independent degree-3 vertices, if they have three common
neighbors a, b and c, then we say that the five vertices compose a 2-3 structure (see
Figure 1), and denote it by {v, u}-{a, b, c}. Let v be a degree-3 vertex, and u and w
two adjacent vertices of degree≥ 3. If N(u)∪N(w)−{u, w} = N(v), then we say
that the six vertices {v, u, w} ∪N(v) compose a 3-3 structure (see Figure 1), and
denote it by {v, u, w}-{a, b, c},where {a, b, c} = N(v). Let u, v and w be three inde-
pendent vertices of degree≥ 3. Let N(u, v, w) = N(u)∪N(v)∪N(w)−{u, v, w}.
If |N(u, v, w)| = 4, then the seven vertices {u, v, w} ∪ N{u, v, w} compose a 3-4
structure. It is denoted by {v, u, w}-{a, b, c, d}, where {a, b, c, d} = N{u, v, w}.
Folding a 2-3 structure, 3-3 structure or 3-4 structure
Let A-B be a 2-3 structure or 3-3 structure or 3-4 structure. Folding A-B means

(a) removing A ∪B from the graph, when B is not an independent set.
(b) removing A∪B from the graph and introducing a new vertex s that is adjacent
to all neighbors of vertices in B (except the removed vertices), when B is an
independent set.

Lemma 2. If graph G has a 2-3 structure or 3-3 structure, then

α(G) = 2 + α(G�
2),

where G�
2 is the graph after folding a 2-3 structure or 3-3 structure in G.

If graph G has a 3-4 structure, then

α(G) = 3 + α(G�
3),

where G�
3 is the graph after folding a 3-4 structure in G.

A degree-2 vertex can be regarded as a 1-2 structure. In fact, degree-2 vertex,
2-3 structure and 3-4 structure are special cases described in Lemma 2.4 in [14].
The 3-3 structure is introduced for the first time. The correctness of folding A-B
(a 1-2 structure, 2-3 structure, 3-3 structure or 3-4 structure) follows from the
observation: When B is not an independent set, there is a maximum independent
set that contains A (two independent vertices in A, when A-B is a 3-3 structure).
When B is an independent set, there is a maximum independent set that contains
either B or A (B or two independent vertices in A, when A-B is a 3-3 structure).
We omit the detailed proofs here.

Dominance
If there are two vertices v and u such that N [u] ⊆ N [v], we say u dominates v.

Lemma 3. If vertex v is dominated by any other vertices in graph G, then
α(G) = α(G− {v}).

Definition 1. A graph is called a reduced graph, if it has no degree-1 vertex,
degree-2 vertex, dominated vertex, 2-3 structure, 3-3 structure or 3-4 structure.

286 M. Xiao

2.2 Branching Rules

Next we introduce two branching techniques, branching on a bottle and branching
on a 4-cycle, which are simple and obvious, but can be used to avoid tedious
branching rules in the algorithms.

Let a be a degree-3 vertex, and b, c, d the three neighbors of a. If two neighbors
of a, say c and d, are adjacent, then we say that the four vertices compose a
bottle and denote it by b-a-{c, d}.
Lemma 4. Let b-a-{c, d} be a bottle in graph G, then there is a maximum in-
dependent set S in G such that either a ∈ S or b ∈ S.

Proof. If b is not in a maximum independent set, we can directly remove b from
the graph. In the remaining graph a becomes a degree-2 vertex and the two
neighbors of it are adjacent. In this case, there is a maximum independent set
that contains a.

Based on Lemma 4, we get the following branching rule.

Branching on a bottle
Branching on a bottle b-a-{c, d} means branching by either including a in the
independent set or including b in the independent set.

Note. In fact, we can fold a bottle by using the general folding rule mentioned
in [5] (also in [6]), but that folding rule is helpless for our analysis, especially
when the three neighbors of the degree-3 vertex are high-degree vertices.

Let a, b, c and d be four vertices in graph G, if G has four edges ab, bc, cd and
da, then we say that abcd is a 4-cycle in G.

Lemma 5. Let abcd be a 4-cycle in graph G, then for any independent set S in
G, either a, c /∈ S or b, d /∈ S.

Proof. Since any independent set contains at most 2 vertices in a 4-cycle and the
two vertices cannot be adjacent, we know the lemma holds.

Based on Lemma 5, we get the following branching rule.

Branching on a 4-cycle
Branching on a 4-cycle abcd means branching by either excluding a and c from
the independent set or excluding b and d from the independent set.

3 A Simple Algorithm

Our algorithm for the maximum independent set problem is described in
Figure 2. It works as follows. When the graph is not a reduced graph, we apply
our reduction rules to reduce the graph in Step 2 ∼ 5. When the graph cannot
be reduced, we apply our branching rules. If there is a bottle, we branch on a
bottle in Step 6. Else if there is a 4-cycle, we branch on a 4-cycle in Step 7.
Else in Step 8, we greedily select a vertex of maximum degree and branch on it
by including it in the independent set or excluding it from the independent set.

Maximum Independent Set in 3-Degree Graphs 287

Input: A graph G.
Output: The size of a maximum independent set in G.

1. If {G has a component P of at most 15 vertices}, return t+MIS(G−P),
where t is the size of a maximum independent set in P .

2. Else if {∃v ∈ V : d(v) = 1 or 2}, return 1 + MIS(G�(v)).
3. Else if {∃v, u ∈ V : N [u] ⊆ N [v]}, return MIS(G − {v}).
4. Else if {there is a 2-3 structure or 3-3 structure}, return 2 + MIS(G�

2).
5. Else if {there is a 3-4 structure}, return 3 + MIS(G�

3).
6. Else if {there is a bottle b-a-{c, d}}, return max{1+MIS(G−N [a]), 1+

MIS(G − N [b])}.
7. Else if{there is a 4-cycle abcd}, return max{MIS(G−{a, c}), MIS(G−

{b, d})}.
8. Else, pick up a vertex v of maximum degree, and return max{MIS(G−

{v}), 1 + MIS(G − N [v])}.

Note: With a few modifications, the algorithm can provide a maximum inde-
pendent itself.

Fig. 2. The Algorithm MIS(G)

4 The Analysis

To analyze the time complexity of our algorithm, we will consider recurrence re-
lations related to measure r = sumv∈V (dv) in the corresponding graph, where
dv = max(0, d(v)− 2) and d(v) is the degree of vertex v. When measure r = 0, the
graph has only degree-0, degree-1 and degree-2 vertices and the maximum indepen-
dent set problem can be solved in linear time. We use C(r) to denote the worst-case
size of the search tree in our algorithm when the measure of the graph is r, and con-
sider how much the measure can be reduced in each branch of our search tree. To
make the measure reduction clearer, we adopt a notation to indicate how much r
is reduced from a vertex or a set of vertices in an operation. For example, when we
remove a degree-d (d ≥ 3) vertex v from the graph, we have v → d − 2. Further-
more, if all the neighbors of v are vertices of degree > 2, then in this operation we
still have N(v)→ d. Totally, we will reduce r by at least d− 2 + d = 2d− 2. Next,
we analyze how much r can be reduced in each step of our algorithm.

Lemma 6. After folding a degree-1 or degree-2 vertex, measure r will not
increase.

Lemma 7. Let G be a graph having no degree-1 or degree-2 vertex, then after
folding a 2-3 structure or 3-3 structure or 3-4 structure, or removing a dominated
vertex from G, measure r will be reduced by at least 4.

Proof. In each case, a degree-3 vertex is removed (or an even better case occurs),
then r will be reduced by at least 4.

288 M. Xiao

Lemma 8. Let G be a connected graph. If G has at least x degree-1 vertices
and the measure of G is at least x, then after iteratively folding degree-1 vertices
until the graph has no degree-1 vertex, measure r will be reduced by at least x.

Proof. Let V ′
= ∅ be the set of vertices of degree≥ 2 in the remaining graph after
iteratively folding degree-1 vertices (the lemma obviously holds, when V ′ = ∅).
Assume there are y edges between V ′′ = V −V ′ and V ′. After removing V ′′, we
get V ′ → y. We will prove that V ′′ → x− y. To prove that, we first construct a
new graph G′ from G by contracting V ′ into a single vertex v and removing all
self-loops incident on it (keeping parallel edges).

Since all the x degree-1 vertices of G are in V ′′, G′ has at least x′ degree-1
vertices, where x′ = x + 1 when v is a degree-1 vertex and x′ = x when v is not
a degree-1 vertex. Note that the measure of a tree with x′ degree-1 vertices is at
least x′−2. The measure of G′ is also at least x′−2 (G′ is a connected graph). We
consider the following three cases. Case 1: y = 1. For this case, v is a degree-1
vertex and x′ = x + 1. The measure of G′ is at least x′ − 2 = x − 1, and then
we will get V ′′ → x− 1. Case 2: y = 2. For this case, v is a degree-2 vertex and
x′ = x, and the measure of G′ is at least x− 2. We will get V ′′ → x− 2. Case 3:
y ≥ 3. For this case, v is a degree-y vertex and x′ = x. The measure of G′ is at
least x−2. Excepting y−2 counted from v, there are still x−2− (y−2) = x−y
left, which implies V ′′ → x− y.

Therefore, after removing V ′′, r will be reduced by at least x.

Corollary 1. Let G be a graph having no connected path component. If G has
any degree-1 vertex, then we can reduce r by at least 1 by iteratively folding
degree-1 vertices. If G has exactly 2 degree-1 vertices, then we can reduce r by
at least 2 by iteratively folding degree-1 vertices.

Lemma 9. Let G be a reduced graph and v a degree-3 vertex in G. Then no
degree-0 vertex or component of a 1-path or component of a 2-path is created
after removing N [v].

Proof. If a degree-0 vertex u is created, then G has a 2-3 structure {v, u}-N(v).
If a 1-path ab is created, then there is a 3-3 structure {v, a, b}-N(v). If a 2-path
abc is created, then there is a 3-4 structure {a, c, v}-N(v) ∪ {b}.

Lemma 10. Let G be a connected reduced graph of more than 8 vertices and
v a degree-3 vertex in G. Then after removing N [v], measure r will be reduced
by at least 8. Furthermore, if each 3-cycle in G contains at least one vertex of
degree ≥ 4, then after removing N [v], measure r will be reduced by at least 10.

Proof. There is at most one edge with both endpoints in N(v), otherwise v
will dominate a neighbor of it. Therefore, there are at least four edges between
N(v) and N2(v). If |N2(v)| ≥ 4, r will be reduced by 4 + 4 = 8 directly after
removing N [v] (v → 4 and N(v)→ 4). If |N2(v)| ≤ 3, it is impossible to create a
component of a l-path (l ≥ 3) after removing N [v]. By Lemma 8 and Corollary 1
and Lemma 9 we know that eventually r will be reduced by at least 8.

Maximum Independent Set in 3-Degree Graphs 289

Next, we assume that in each 3-cycle in G there is a vertex of degree ≥ 4. We
distinguish the following two cases. Case 1: All vertices in N(v) are degree-3
vertices. In this case, no pair of vertices in N(v) are adjacent and there are exactly
six edges between N(v) and N2(v), which means at most 3 degree-1 vertices will
be created after removing N [v]. It is impossible to create a component of a path
after removing N [v] (Obviously, no path of length ≥ 4 will be created. Lemma 9
shows no path of length ≤ 2 will be created. If a 3-path is created, then the
graph G is an 8-vertex graph). So by Corollary 1, if a component with 1 or 2
degree-1 vertices is created after removing N [v], we can further reduce r by 1
or 2 by further reducing degree-1 vertices in the component. If a component
with 3 degree-1 vertices is created, then the component also contains at least
3 degree-3 vertices, otherwise the only possibility of the component is that it
has 4 vertices: a degree-3 vertex adjacent to three degree-1 vertices, which also
implies a contradiction — the graph G has only 8 vertices. By Lemma 8, we still
can further reduce r by least 3. In any case, totally we can reduce r by at least
4 + 6 = 10. Case 2: There is a vertex of degree ≥ 4 in N(v). Then there are at
least five edges between N(v) and N2(v) (note that there is at most one edge
with both endpoints in N(v)). By Lemma 8 and Lemma 9 we know that r will
be reduced by at least 5 + 5 = 10.

Lemma 11. Let G be a connected reduced graph of more than 8 vertices and v
a vertex of degree ≥ 4 in G. Then after removing N [v], measure r will be reduced
by at least 10.

The detailed proof of this lemma can be found in the full version of this paper.
We remove it from this version due to space limited.

Lemma 12. Let G be a connected reduced graph of more than 8 vertices. If G
has a bottle, then algorithm MIS(G) will branch on a bottle with recurrence
relation

C(r) ≤ 2C(r − 8), (1)

where C(r) is the worst-case size of the search tree in our algorithm.
Moreover, if each 3-cycle in G contains at least one vertex of degree ≥ 4, then

MIS(G) will branch on a bottle with recurrence relation

C(r) ≤ 2C(r − 10). (2)

Proof. Let the bottle called by our algorithm be b-a-{c, d}. Our algorithm will
branch by either removing N [a] or N [b]. By Lemma 10 and Lemma 11, we get
(1) and (2) directly.

Lemma 13. Let G be a connected bottle-free reduced graph of more than 8 ver-
tices. If G has a 4-cycle, then algorithm MIS(G) will branch on a 4-cycle with
recurrence relation

C(r) ≤ 2C(r − 8). (3)

290 M. Xiao

Moreover, if each 3-cycle or 4-cycle in G contains at least one vertex of degree
≥ 4, then MIS(G) will branch on a 4-cycle with recurrence relation

C(r) ≤ 2C(r − 10). (4)

The detailed proof of this lemma can be found in the full version of this paper.
We remove it from this version due to space limited.

Lemma 14. Let G be a reduced graph that has no bottle or 4-cycle. If G has a
vertex of degree ≥ 4, then algorithm MIS(G) will branch on a vertex of maxi-
mum degree with recurrence relation

C(r) ≤ C(r − 6) + C(r − 14). (5)

Proof. Our algorithm will select a vertex v of maximum degree and branch on
it by excluding it from the independent set or including it in the independent
set. In the former branch, v is removed and r decreases by at least 2 + 4 = 6. In
the latter branch, N [v] is removed. Since G has no bottle or 4-cycle, there are
at least 8 vertices in N2(v). Then in this branch, r will be reduced by at least
6 + 8 = 14. Therefore, we get (5).

Lemma 15. Let G be a connected reduced graph of more than 15 vertices that
has no bottle or 4-cycle. If G is also a 3-regular graph, then algorithm MIS(G)
can branch with recurrence relation

C(r) ≤ C(r − 10) + C(r − 16) + C(r − 20) + C(r − 24). (6)

Proof. Our algorithm will select a degree-3 vertex and branch on it. Since G is
a 3-regular graph that has no 3-cycle or 4-cycle, there are exactly 6 vertices in
N2(v). In the branch where N [v] is removed, 10 degree-3 vertices are reduced.
So we can branch with recurrence relation

C(r) ≤ Q1(r − 4) + Q2(r − 10), (7)

where Q1 ≤ C is some function corresponding to the size of the branch where v
is removed and Q2 ≤ C some function corresponding to the size of the branch
where N(v) is removed. Next, we focus on refining analysis of Q1 and Q2.

In the branch where v is removed, 3 nonadjacent degree-2 vertices are created.
Our algorithm will fold the three degree-2 vertices in the next step. Let G′ be the
resulted graph. Then G′ has exactly 3 degree-4 vertices (note that the original
graph has no 3-cycle or 4-cycle, and then it is impossible to create a degree-3
vertex after folding a degree-2 vertex), and each 3-cycle and 4-cycle in the current
graph contains at least one degree-4 vertex. If G′ has a bottle or 4-cycle, we can
branch with Q1(r) ≤ 2C(r−10) by Lemma 12 and Lemma 13. If G′ has no bottle
or 4-cycle, we will branch on a degree-4 vertex v′. We further distinguish three
different cases. Case 1: The other two degree-4 vertices are adjacent to v′. In
this case, we have |N2(v′)| ≥ 8 (the three degree-4 vertices may form a triangle).
In the branch where v′ is removed, r is reduced by at least 6, and in the branch

Maximum Independent Set in 3-Degree Graphs 291

where N [v′] is removed, r is reduced by at least 8 + 8 = 16. Furthermore, in the
branch where v′ is removed, two nonadjacent degree-2 vertices are created, and
then we can further branch with (5) at least. In total, we get

Q1(r) ≤ C(r − 6− 6) + C(r − 6− 14) + C(r − 16) (8)
= C(r − 12) + C(r − 16) + C(r − 20). (9)

Case 2: There is only one degree-4 vertex adjacent to v′. Since there is no bottle
and 4-cycle, we get |N2(v′)| ≥ 9. In the branch where N [v′] is removed, r is
reduced by 7 + 9 = 16. In the branch where v′ is removed, we also can further
branch with (5) at least. Therefore, we get (8). Case 3: There is no degree-4
vertex adjacent to v′. We will branch on v′ with (5) directly, and in the branch
where v′ is removed, some other degree-4 vertices are left. We can further branch
with (5) at least. Then we get Q1(r) ≤ C(r−6−6)+C(r−6−14)+C(r−14) =
C(r − 12) + C(r − 14) + C(r − 20).

In the branch where N [v] is removed, six degree-2 vertices are created. We
distinguish the following two cases. Case 1: there are some degree-4 vertices
created after folding degree-2 vertices. Case 2: the graph is a 3-regular graph
after folding degree-2 vertices. For Case 1, we can further branch with (5), i.e.
Q2(r) ≤ C(r − 6) + C(r − 14). For Case 2, we only get Q2(r) ≤ C(r). But
in the branch where v is removed, we will get a triangle with three vertices
being degree-4 vertices after folding degree-2 vertices. Then for this case, we will
branch with (8).

Among all the cases the worst one is that we branch with Q2(r) ≤ C(r) and
(8). Therefore, we get C(r) ≤ Q1(r−4)+Q2(r−10) ≤ C(r−4−12)+C(r−4−
16)+C(r− 4− 20)+C(r− 10) = C(r− 10)+C(r− 16)+C(r− 20)+C(r− 24),
as claimed in the lemma.

Among all the cases in our algorithm, the worst running time corresponds to
recurrence relation (6). The only positive root of function f(x) = 1 − x−10 −
x−16 − x−20 − x−24 is 1.0884 · · ·. As mentioned in the introduction, C(r) =
O(1.0885r) will satisfy (6). Therefore, we get

Theorem 1. Algorithm MIS(G) can find a maximum independent set in a
degree-3 graph in O∗(1.0885n) time.

5 Concluding Remarks

In this paper, we have presented a simple O∗(1.0885n)-time algorithm for the
maximum independent set problem in degree-3 graphs. This algorithm also im-
plies that we can decide if a graph with degree bounded by 3 has a vertex cover
of size at most k in O∗(1.08852k) = O∗(1.1849k) time.

Unlike most previous algorithms, our algorithms do not contain many branch-
ing rules. We use two new branching techniques, called branching on a bottle and
branching on a 4-cycle, to avoid tedious examinations of the local structures. The
branching rules catch the structural properties of small cycles in graphs, which

292 M. Xiao

make our algorithms simple and practical. Many previous algorithms can apply
these two new branching rules to simplify the description and analysis.

Our algorithm for the maximum independent set problem is analyzed by mea-
suring r = sumv∈V (dv). The idea comes from the observation that when the
graph has no vertex of degree ≥ 3, i.e. r = 0, the problem can be solved in poly-
nomial time. We have checked that our algorithm MIS(G) can also be analyzed
by measuring parameter m− n + t to get the same running time bound, where
m is the number of edges, n the number of vertices, and t the number of tree
components in the graph.

References

1. Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM J. on
Computing 6(3), 537–546 (1977)

2. Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem.
IEEE Transactions on Computers 35(9), 847–851 (1986)

3. Robson, J.: Algorithms for maximum independent sets. J. of Algorithms 7(3), 425–
440 (1986)

4. Robson, J.: Finding a maximum independent set in time O(2n/4). Technical Report
1251-01, LaBRI, Université Bordeaux I (2001)

5. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: a simple O(20.288n)
independent set algorithm. In: SODA, pp. 18–25. ACM Press, New York (2006)

6. Beigel, R.: Finding maximum independent sets in sparse and general graphs. In:
SODA, pp. 856–857. ACM Press, New York (1999)

7. Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: Im-
proved upper bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005)

8. Xiao, M.Y., Chen, J.E., Han, X.L.: Improvement on vertex cover and independent
set problems for low-degree graphs. Chinese Journal of Computers 28(2), 153–160
(2005)

9. Bourgeois, N., Escoffier, B., Paschos, V.T.: An O∗(1.0977n) exact algorithm for
max independent set in sparse graphs. In: Grohe, M., Niedermeier, R. (eds.) IW-
PEC 2008. LNCS, vol. 5018, pp. 55–65. Springer, Heidelberg (2008)

10. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Pro-
cess. Lett. 97(5), 191–196 (2006)

11. Fürer, M.: A faster algorithm for finding maximum independent sets in sparse
graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 491–501. Springer, Heidelberg (2006)

12. Razgon, I.: A faster solving of the maximum independent set problem for graphs
with maximal degree 3. In: Broersma, H., Dantchev, S.S., Johnson, M., Szeider, S.
(eds.) ACiD. Texts in Algorithmics, vol. 7, pp. 131–142. King’s College, London
(2006)

13. Razgon, I.: Faster computation of maximum independent set and parameterized
vertex cover for graphs with maximum degree 3. J. of Discrete Algorithms 7(2),
191–212 (2009)

14. Chen, J., Kanj, I., Xia, G.: Simplicity is beauty: Improved upper bounds for vertex
cover. Technical Report TR05-008, School of CTI, DePaul University (2005)

15. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: Fast algorithms
for max independent set in graphs of small average degree. CoRR abs/0901.1563
(2009)

Pathwidth and Searching in Parameterized
Threshold Graphs

D. Sai Krishna1, T.V. Thirumala Reddy1, B. Sai Shashank2,
and C. Pandu Rangan1

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai 600036, India
2 Department of Computer Science and Engineering,

Indian Institute of Technology Guwahati,
Guwahati 781039, India

{dsaikris86,tiru114,shashank920045,prangan55}@gmail.com

Abstract. Treewidth and pathwidth are important graph parameters
that represent how close the graph is to trees and paths respectively.
We calculate treewidth and pathwidth on parameterized chordal and
threshold graphs. We define a chordal + 1v graph as a graph that can
be made into a chordal graph by removing a vertex. We give polynomial
time algorithms for computing the treewidth of a chordal + 1v graph,
pathwidth of a threshold + 1v graph and a threshold + 2e graph. The
mixed search number of a graph is the minimum number of cops required
to capture a single robber, who is hiding in the graph. We apply the
algorithm to compute the pathwidth in order to compute the mixed
search number of a threshold + 1v graph.

Keywords: Graph searching, treewidth, pathwidth, parameterization,
threshold graphs.

1 Introduction

Treewidth is an important graph parameter which measures the tree-like nature
of a graph. It is closely related to chordal graphs. Similarly, pathwidth measures
path-like nature of a graph. Pathwidth is closely related to interval graphs. Com-
puting treewidth and pathwidth of a general graph is known to be NP-complete
[1]. Dynamic programming techniques on tree decompositions have allowed sig-
nificant improvements on some graph algorithms like Hamiltonian Circuit,

Independent Set, Vertex Cover, etc. Each problem that can be formulated
in Monadic Second Order Logic (MSOL) can be solved in linear time on graphs
of bounded treewidth. See [3] for a survey. Computing these decompositions and
widths effectively for the required class of graphs is the key subproblem in these
algorithms [2]. This makes it interesting to solve treewidth and pathwidth of
special classes of graphs. Some instances of an NP-complete problem are poly-
nomially solvable and some instances are difficult. Parameterization provides a

Md.S. Rahman and S. Fujita (Eds.): WALCOM 2010, LNCS 5942, pp. 293–304, 2010.
� Springer-Verlag Berlin Heidelberg 2010

294 D. Sai Krishna et al.

formal way to study instances that are polynomially solvable and instances that
are difficult. See [7] for a complete analysis. A parameterization of an alphabet
Σ∗, is a mapping k : Σ∗ → N that is a polynomial time computable function.
Graphs that become chordal by removing some k vertices are called chordal+kv
graphs. This number k is considered as a parameterization of the input graph.
Graph theoretic problems on graphs like split+ kv graphs, which are also called
parameterized graph classes have been studied in the past [4,13,16].

Graph searching is a scenario where cops need to capture one robber who hides
in the vertices of the graph. Both the robber and the cops can move with infinite
speed along the edges of the graph. The robber is invisible to the cops, but the
cops are visible to the robber. However, the cops can jump between vertices
in the graph and obstruct the movement of the robber. Mixed search number
of a graph G, miams (G) is the minimum number of cops required to capture
this robber hiding in G. It has been studied extensively [12,11,9]. In a computer
network setting, the graph searching problem serves as a mathematical model
for protecting networks against viruses and other unwanted agents, like spyware
or eavesdroppers. A practical example is the problem of finding a successful
strategy for a group of collaborating software programs that are designed to
clean the network from a virus [6].

In our paper, we prove in section 3 that the polynomial time algorithm for
treewidth of split + 1v graphs [15] given by Federico Mancini, can be used for
computing treewidth of chordal + 1v graphs. In section 4 we give a polynomial
time algorithm which computes pathwidth of threshold+1v graphs by modifying
the interval ordering of the threshold part of the graph. Threshold graphs have
many important mathematical properties and several applications like psychol-
ogy, scheduling and synchronization of parallel processes [14]. Similarly we give
a polynomial time algorithm for pathwidth of threshold + 2e graphs. Finally,
we calculate miams (G) for threshold + 1v graphs in section 6 by searching for
a special kind of path decomposition called good path decomposition, which was
introduced by Pinar Heggernes and Rodica Mihai [11].

2 Notations and Definitions

A simple graph is a collection of vertices V and edges E represented as G =
(V, E), where each edge is an unordered pair of distinct vertices. The set of neigh-
bors of a vertex v is denoted by N (v). The induced subgraph of G by a vertex set
S ⊆ V is G (S) = (S, E′) where E′ = {(u, v) ∈ E|u ∈ S and v ∈ S and u
= v}.
A class of graphs F is called h ereditary if G = (V, E) ∈ F ⇒ ∀S ⊆ V, G (S) ∈ F.
Number ω (G) represents maximum clique size of G. A vertex v is called simpli-
cial if N (v) forms a clique in the graph. A graph G = (V, E) is called chordal
or triangulated if every cycle in G with more than 3 vertices has a chord. A
minimum set of edges F to be added to a graph G to make it a chordal graph G′

is called a set of fill edges. The graph G′ is called a minimum chordal completion
of G. A graph G = (V, E) is called split if and only if V = K ∪ I such that
K ∩ I = φ where K is a clique in G and I is an independent set in G. A graph

Pathwidth and Searching in Parameterized Threshold Graphs 295

G = (V, E) is called interval if and only if G is connected and ∃Π, σ where
Π = {I1, I2, . . .} is a set of intervals and σ : V → Π is a bijection such that
∀u, v ∈ V and u
= v | (u, v) ∈ E ⇔ σ (u)

⋂
σ (v)
= φ. A minimum set of edges F

to be added to a graph G to make its interval is called a minimum interval com-
pletion of G. A graph G = (V, E) is called a threshold graph iff it is a split graph
and there exists a split partition V = K∪I where K = {a1, a2, . . .} is a maximum
clique and I = {b1, b2, . . .} is an independent set such that N (b1) ⊆ N (b2) ⊆ . . .
and N (a1) ⊇ N (a2) ⊇ . . .

T ree decomposition of a graph G = (V, E) is an ordered pair D = (X, T)
where X is a collection of some subsets of V and T = (I, Et) is a tree with the
following properties. Let X = {X1, X2, ..Xm} be some subsets of V also called
bags in tree decomposition D and I = {1, 2, ...m} vertex set of tree T .

⋃
i∈I Xi =

V , ∀ (u, v) ∈ E : ∃i ∈ I such that u, v ∈ Xi and ∀v ∈ V : T ({i|v ∈ Xi})
is a connected subtree of T . Width (D) = maxm

i=1{|Xi|} − 1. Treewidth of
G = (V, E) is defined as tw (G) = minD {width (D)}. A tree decomposition
with width as the treewidth is called an optimal tree decomposition. Treewidth is
alternately defined as minH{ω (H)}−1 where H is a minimal chordal completion
of G. Pathwidth also can be defined in a similar way. Pathwidth is alternately
defined as min{ω (H)} − 1 where H is a minimal interval completion of G.

Proposition 1. We have the following properties for treewidth and pathwidth.

1. Treewidth of a chordal graph G is ω (G)−1. An optimum tree decomposition
of a chordal graph G is called a clique tree if all bags in the decomposition
are maximal cliques in G.

2. By removing all vertices in any of the internal bags of a clique tree, the graph
would be disconnected [10].

3. Fill edges are not added to any simplicial vertex in any chordal completion
of G [15].

4. Pathwidth of an interval graph G is ω (G) − 1. An optimum path decompo-
sition of an interval graph G exists, called a clique path, if all bags in the
decomposition are maximal cliques in G [10].

Let F be a hereditary graph class. We define F+kv as a class of graphs obtained
by adding at most k vertices to a graph in F, i.e G ∈ F + kv iff ∃Vk, where
|Vk| = k vertices such that G \ Vk ∈ F. Vk is called a modulator of G. We can
also define the parameterized graph class, F + kv graphs, in the same way. Let
G = (V, E) ∈ F + 1v with modulator Vk = {x} and let ω (G− x) = α. We use
N (v) as neighborhood of v in G− x for a vertex v.

Proposition 2. [15] We observe that

1. If G ∈ chordal + 1v then tw (G) ∈ {α− 1, α}.
If ω (G) = α + 1 then tw (G) = α.

2. If G ∈ interval + 1v then pw (G) ∈ {α− 1, α}.
If ω (G) = α + 1 then pw (G) = α.

296 D. Sai Krishna et al.

3 Treewidth of Chordal + 1v Graphs

Let G = (V, E) ∈ chordal + 1v with modulator Vk = {x} and let ω (G− x) = α.
We use N (v) as the neighborhood of v in G − x for a vertex v. If ω (G) = α,
then we construct a simpler graph G′ from G. If a vertex v is simplicial and not
adjacent to x then we remove v from the graph. We repeat the above process for
all simplicial vertices not adjacent to x until no such vertex v exists. We call the
resultant graph G′. Observe that degree of all the vertices removed is at-most
α− 1. In order to calculate the treewidth of G′ we analyze the properties of the
graph G′. Observe that G′ is also a chordal+1v graph. Treewidths of G′ and G
are related by the following lemma tw (G′) < α⇐⇒ tw (G) < α in [15].

Lemma 1. Let D (G′ − x) = ({X1, X2 . . . Xm} , T) be an optimal clique-tree
decomposition of G′ − x with maximal cliques {X1, X2 . . . Xm}.
– NG′ (x)

⋂
Xi
= φ for all leaf bags Xi of D.

– G′ −Xj is connected for all internal bags Xj of D.

For proof refer extended version[5].

Lemma 2. tw (G′) = ω (G′ − x) = α′.

For proof refer extended version[5].

Theorem 1. Treewidth for chordal+1v graph G = (V, E) can be computed in
polynomial time.

Proof is similar to [15]. For detailed proof refer extended version[5].

4 Pathwidth of Threshold + 1v Graphs

Let G = (V, E) ∈ threshold+1v with modulator Vk = {x} and let ω (G− x) = α.
We use N (v) as the neighborhood of v in G− x for a vertex v. If ω (G) = α + 1
then pw (G) = α. We can see that {x}, α, ω (G) can be found in O (|V | · |E|)
time since all maximal cliques of a chordal graph can be listed in that time. From
now on we assume ω (G) = α otherwise pw (G) = α. Consider a split partition
V −x = K ∪ I where K = {a1, a2, . . .} is a maximum clique and I = {b1, b2, . . .}
such that N (b1) ⊆ N (b2) ⊆ . . . and N (a1) ⊇ N (a2) ⊇ We arrange the
intervals of K in 〈a1, a2, . . .〉 order from bottom to top and left to right in α
levels to form a stair case pattern and intervals of I also in 〈b1, b2, . . .〉 order
from bottom to top and left to right in the corresponding level to get an interval
ordering σ of G−x. We number the bottom level as level1 and topmost level as
levelα. Observe that σ represents an optimal path decomposition of G− x with
width α − 1 and can be constructed in O (|V |+ |E|). Let ni be the number of
vertices in leveli and mi be the number of vertices in leveli adjacent to x. We
have ai is the K vertex in leveli. For example in Figure 1, 2, we have α = 6,
K = {0, 1, 2, 3, 4, 5} and I = {6, 7, 8, 9}. We have n2 = 2, m2 = 1, a1 is vertex 5
and a2 is vertex 4.

Pathwidth and Searching in Parameterized Threshold Graphs 297

Fig. 1. A threshold + 1v Graph G Fig. 2. Interval ordering σ of G − x

Fig. 3. mα = 0 Fig. 4. mα ≥ 2

Lemma 3. If mα = 0 then pw (G) = α− 1.

Proof. We construct interval ordering of G from σ. We put interval x in levelα to
the left of levelα vertices. We make the interval of x intersect with all the intervals
except the intervals in levelα. We get an interval completion with maximum
clique size α since x and the vertices in level(α−1) form a clique of size at most
α and no other larger clique is formed. See Figure 3. �
Lemma 4. If mα ≥ 2 then pw (G) = α.

Proof. Consider any two vertices a and b among mα vertices adjacent to x in
levelα. We can see that N (a) = N (b) and N (a) forms a clique of size α−1. For
all y ∈ N (a), if xy /∈ E then vertices {x, a, y, b} form an induced subgraph C4.
At-least one of these cycles exist. If not, x is adjacent to all N (a) and a forms a
clique of size α + 1. To make G interval we need to add ab or xy, ∀y, xy /∈ E as
chords. In either of the cases a clique of size α + 1 is formed. See Figure 4. �
If mα = 1 then without loss of generality we assume aα to be leftmost interval
in levelα vertices in σ.

Lemma 5. If mα = 1, xaα−1 /∈ E then pw (G) = α− 1.

Proof. We construct interval ordering σ′ of G from σ. We put interval x in level0
to the left of the levelα vertices. We make the interval of x intersect with all
the intervals except the intervals in levelα and aα−1. Make the interval of x

298 D. Sai Krishna et al.

Fig. 5. xaα−1 /∈ E Fig. 6. xaα−i /∈ E

intersect with aα in levelα by extending the interval of aα to the left in σ′. We
get an interval completion with maximum clique size α since x and vertices in
level(α−1) form a clique of size at most α and no other larger clique is formed.
See Figure 5. �
If mα = 1, xaα−1 ∈ E then we proceed incrementally checking next levels.

Lemma 6. If mα = 1, xaα−1 ∈ E and mα−1 ≥ 2 then pw (G) = α.

Proof. Since xaα−1 ∈ E and mα−1 ≥ 2, x is adjacent to at-least one I vertex in
level(α−1) say zα−1. N (zα−1) ⊂ N (aα−1) and |N (zα−1) | = α − 2. Assume for
the sake of contradiction pw (G) = α− 1 and let H be a corresponding interval
completion. In H , if zα−1 and aα−1 are adjacent then consider adding zα−1aα−1
edge to G to get G′. We get interval representation of G′ by putting zα−1 in levelα
above aα−1. Therefore mα = 2 in G′ and so by Lemma 4, pw (G′) = α = pw (G′),
giving rise to a contradiction. Hence zα−1 and aα−1 are not intersecting in any
optimal interval completion of G. Therefore the intervals of N (zα−1)∪{x} should
come in between intervals of zα−1 and aα−1 forming a clique {x} ∪ K of size
α + 1. �
Lemma 7. If mα−j = 1 for all 0 ≤ j ≤ i− 1, xaα−i /∈ E then pw (G) = α− 1.

Proof. We construct interval ordering σ′ of G from σ. Without loss of generality
we assume aα−j to be leftmost interval in level(α−j) vertices in σ, 0 ≤ j ≤ i− 1.
We make the interval of x intersect with all the intervals except the intervals
in levelα to levelα−i. For 0 ≤ j ≤ i − 1, we make the interval of x intersect
with aα−j in level(α−j) by extending the intervals of aα−j to the left. We get
an interval completion with maximum clique size α since x and the vertices in
level(α−i) forms a clique of size at most α and no other larger clique is formed.
See figure 6. �
Lemma 8. If mα−j = 1 for all 0 ≤ j ≤ i− 1, xaα−i ∈ E and mα−i ≥ 2 then
pw (G) = α− 1.

Proof. We prove by induction on i. For i = 1 th claim follows by Lemma 6. We
assume the claim to be true for all 0 ≤ j ≤ i−1. Since xaα−i ∈ E and mα−i ≥ 2,
x is adjacent to at-least one I vertex in level(α−i) say zα−i. N (zα−i) ⊂ N (aα−i)
and |N (zα−i) | = α − i − 1. Assume for the sake of contradiction pw (G) =
α− 1 and let H be a corresponding interval completion. In H if zα−i, aα−i are
adjacent then consider adding zα−iaα−i edge to G to get G′. We get the interval

Pathwidth and Searching in Parameterized Threshold Graphs 299

Table 1. A sketch of the algorithm for pathwidth of threshold + 1v graph

Condition pw (G) Lemma

mα = 0 α − 1 3
mα ≥ 2 α 4
mα = 1 xaα−1 /∈ E α − 1 5

xaα−1 ∈ E mα−1 ≥ 2 α 6
mα−1 = 1 xaα−2 /∈ E α − 1 7

xaα−2 ∈ E mα−2 ≥ 2 α 8
. . .

... 7, 8
xa1 /∈ E α − 1 7

Now, x is adjacent to all K vertices, ω (G) = α + 1 xa1 ∈ E α

representation of G′ by putting zα−i in level levelα−i−1 above aα−i and therefore
mα−i−1 = 2 in G′. So, by the induction hypothesis pw (G′) = α = pw (G′) giving
rise to a contradiction. Hence zα−i and aα−i are not intersecting in any optimal
interval completion of G. Therefore the intervals of N (zα−i) ∪ {x} should come
in between the intervals of zα−i and aα−i forming a clique {x}∪K of size α+1,
which is a contradiction. �
Now, we give our algorithm for pathwidth of threshold+1v graphs. We first check
the value of mα. If it is 0 we return α − 1 by Lemma 3. If mα ≥ 2 we return α by
Lemma 4. If mα = 1 then we further split into two cases xaα−1 /∈ E and xaα−1 ∈ E
and proceed to lower levels. A sketch of the algorithm is presented in table 1. We
take the meaning of row 6 as we report the pathwidth as α if mα = 1, xaα−1 ∈ E,
mα−1 = 1, xaα−1 ∈ E and mα−2 ≥ 2 holds, likewise for all the other rows.

Theorem 2. Pathwidth for threshold+1v graph G = (V, E) can be solved in
quadratic time.

Proof. By the above lemmas we can verify correctness of algorithm presented in
Table 1. The interval ordering σ of G − x can be constructed in O(|V | + |E|)
time. Values mi and ni for 1 ≤ i ≤ α can be calculated in O(|V | · |E|) time.
There is a loop which runs for each level, checking conditions in constant time.
We have α ≤ |V | the number of levels. Hence we can check all conditions in
O(|V | · |E|) time �

5 Pathwidth of Threshold + 2e Graphs

Let G = (V, E) ∈ threshold+2e with modulator Ek = {e1, e2} and let ω (G \ Ek)
= α. If both edges {e1, e2} have a common vertex then this graph can be treated
as threshold + 1v graph and we can find its pathwidth as given in section 3.

Theorem 3. Pathwidth for threshold+2e graph G = (V, E) can be calculated in
O(|E|3) time.

For proof refer extended version[5].

300 D. Sai Krishna et al.

6 Mixed Search Number of Threshold+1v Graphs

Graph searching is a scenario where cops need to capture one robber who hides in
the vertices of the graph. The robber and the cops can move with infinite speed
along the edges of the graph, the robber is invisible to the cops, but the cops are
visible to the robber. However the cops can jump between vertices in the graph
and obstruct the movement of the robber. A robber is said to be captured if he
is not allowed to move and his location is known to the cops. The mixed search
number of a graph G, miams (G), is the minimum number of cops required to
capture this robber hiding in G. Since the robber is invisible, the strategy of the
cops does not depend on the position of the robber. Therefore, whatever may
be the strategy of the robber, the cops strategy must be the same. Hence cops
strategy is a pre-determined strategy. If the cops ensure that the robber is not
hiding in a vertex v then they need to protect the vertex v, called a cleared
vertex, from the robber re-entering it. If the robber can enter the vertex v then
v is said to be a re-contaminated vertex.

One of the pre-determined strategies is to corner the robber to a vertex and
capture him. Such a strategy is called a monotone strategy. In such a strategy
the cops must be careful about recontamination so they may use some cops
to avoid recontamination. In [12], Andrea and LaPaugh showed that avoiding
recontamination will not cost cops, i.e for any graph there is monotone search
strategy with optimum number of cops where cops restrict the space where the
robber can move to smaller and smaller parts and finally capture the robber.
This problem was considered on interval graphs, split graphs and on permutation
graphs in [8,11]. Mixed search number is closely related to path decompositions.
One can view a search strategy as placing cops on vertices of a bag in a path
decomposition and proceeding to next bag upto the last bag to monotonically
capture the robber. Not all path decompositions will give a valid search strategy
and only some of those valid ones will use optimum number of cops. These kinds
of path decompositions are characterized by Pinar Heggernes in [11] and are
called good path decompositions.

Definition 1. [15] A path decomposition PG = 〈Y1, Y2, . . . Ym〉 of a graph G =
(V, E) with width pw (G) and no redundant bags is called a good path decompo-
sition if |Yi−1 ∩ Yi ∩ Yi+1| < pw (G) and |Yi−1| = |Yi| = |Yi+1| = pw (G) + 1, for
all 1 ≤ i ≤ m− 1. If |Yi−1 ∩ Yi ∩ Yi+1| = pw (G) then they are called conflicting
bags. If PG has redundant bags then the path decomposition obtained from PG by
removing all redundant bags should be good.

Proposition 3. [15] Let G be an arbitrary undirected simple graph then

1. miams (G) ∈ {pw (G) , pw (G) + 1}.
2. Monotone invisible active mixed search number, miams (G) = pw (G) if and

only if there exists a good path decomposition for G.

We compute mixed search number of threshold + 1v graphs by constructing a
good path decomposition (if it exists) where no three bags conflict. Let

Pathwidth and Searching in Parameterized Threshold Graphs 301

G = (V, E) ∈ threshold + 1v with modulator Vk = {x} and let ω (G− x) = α,
We use N (v) as neighborhood of v in G−x for a vertex v. We have miams (G) ∈
{α− 1, α, α + 1}.
Lemma 9. If nα ≥ 3 then miams (G− x) = α otherwise α− 1.

For proof refer extended version[5].

Lemma 10. If mα ≥ 3 then miams (G) = α + 1.

For proof refer extended version[5].

Lemma 11. If mα = 2 then miams (G) = α.

For proof refer extended version[5].
If mα = 1 then without the loss of generality let aα be the vertex in levelα,

which is adjacent to x, and aα to be the leftmost interval among levelα vertices.

Lemma 12. If mα = 1 and pw (G) = α then miams (G) = α.

For proof refer extended version[5].
If mα = 1 and pw (G) = α − 1 then we have stopped in some levelα−i,

i
= α such that xaα−i /∈ E during the calculation of pw (G). We call it ipw.
If ipw
= 1. Then we construct a path decomposition where the interval of x is
made adjacent to all K vertices and all the vertices from level0 upto levelα−ipw

except the interval of aα−ipw giving a good path decomposition since the newly
formed α bag cannot conflict with the bag at the left or the right. If ipw = 1,
then by the following lemma we calculate the mixed search number.

Lemma 13. Let mα = 1, pw (G) = α − 1 and ipw = 1. If mα−1 ≥ 3 then
miams (G) = α, otherwise, miams (G) = α− 1.

Proof. If mα−1 < 3 then the path decomposition that we get is good where the
interval of x is made to intersect with the intervals of all K vertices and all
the vertices from level0 upto levelα−1 except the interval of aα−1. Otherwise,
consider any three vertices a, b and c among mα−1 vertices adjacent to x in
levelα−1. We can see that N (a) = N (b) = N (c) and N (a) forms a clique of
size α − 2. Let σ′ be an interval completion of G which represents a good path
decomposition with width α− 1 and let Ia, Ib, Ic be intervals of a, b and c in it.
In σ′ we have three cases

Case A: Ia, Ib and Ic intersect then the intervals of N (a) should also intersect
with them forming a clique of size α + 1 which contradicts the fact that σ′ has
width α− 1.

Case B: Ia, Ib intersect and Ia and Ic do not intersect then N (a)∪{x} should
come in the middle of Ia and Ib. Therefore N (a)∪{x, a, b} forms a clique of size
α + 1 which contradicts the fact that σ′ has width α− 1.

Case C: Ia, Ib and Ic do not intersect then intervals of N (a) ∪ {x} should
intersect with Ia, Ib and Ic forming three cliques of size α, which are conflicting.

�

302 D. Sai Krishna et al.

Lemma 14. Let mα = 0 and nα = 1. Now, if mα−1 ≥ 3 then miams (G) = α
otherwise, miams (G) = α− 1.

For proof refer extended version[5].

Lemma 15. If mα = 0 and nα ≥ 2 then miams (G) = α.

For proof refer extended version[5].

Lemma 16. Let mα = 0, nα = 2 and xaα−1 /∈ E. If mα−1 ≥ 3 then miams (G)
= α otherwise miams (G) = α− 1.

Proof. If mα−1 < 3, then the path decomposition that we get is good where the
interval of x is made to intersect with the intervals of all the vertices from level0
upto levelα−1 except the interval of aα−1. Otherwise, consider any three vertices
a, b and c among mα−1 vertices adjacent to x in levelα−1. By a proof similar to
Lemma 13 miams (G) = α. �
From now on we assume mα = 0, nα = 2, xaα−1 ∈ E and mα−1 < 3. If mα−1 ≥ 3
then miams (G) = α by a proof similar to Lemma 16.

Lemma 17. Let G′ be the graph formed by adding an edge between two levelα−1
vertices a and b, which are adjacent to x. Now, if mα−1 = 2 then miams (G) =
miams (G′).

For proof refer extended version[5].
If mα−1 = 1 then we go to next lower levels levelα−i and check for xaα−i ∈ E

and mα−i ≥ 2.

Lemma 18. If mα = 0, mα−j = 1 for all 0 < j ≤ i − 1, xaα−i /∈ E then
miams (G) = α− 1.

Proof. The proof is similar to the proof of Lemma 16 where mα−1 < 3. �
Lemma 19. Let G′ be the graph formed by adding an edge between two levelα−i

vertices vertices a and b, which are adjacent to x. Now, if mα = 0, mα−j = 1
for all 0 < j ≤ i− 1, xaα−i ∈ E, mα−i ≥ 2 then miams (G) = miams (G′).

Proof. The proof is similar to the proof of Lemma 17. �
Now, to calculate the mixed search number of threshold + 1v graphs we first
check the value of mα. If mα ≥ 3 we return α + 1 (by Lemma 10). If mα = 2
we return α (by Lemma 11) and so on. A sketch of the algorithm is presented
in table 2. We take the meaning of row 6 as the algorithm reports miams (G)
as α − 1 if mα = 1, pw (G) = α − 1, ipw = 1 and mα−1 < 3 holds, likewise for
all the other rows.

Theorem 4. Mixed search number for a threshold+1v graph G = (V, E) can be
calculated in O(|V | · |E|) time.

Pathwidth and Searching in Parameterized Threshold Graphs 303

Table 2. A sketch of the algorithm for miams (G) of threshold + 1v graph G

Condition miams (G) Lemma

mα ≥ 3 α + 1 10
mα = 2 α 11
mα = 1 pw (G) = α α 12

pw (G) = α − 1 ipw �= 1 α − 1
ipw = 1 mα−1 ≥ 3 α 13

mα−1 < 3 α − 1 13
Loop

mα = 0 nα = 1 mα−1 ≥ 3 α 14
mα = 0 nα = 1 mα−1 ≤ 2 α − 1 14

nα ≥ 3 α 15
nα = 2 xaα−1 /∈ E mα−1 ≥ 3 α 16

mα−1 < 3 α − 1 16
xaα−1 ∈ E mα−1 ≥ 3 α 16

mα−1 = 2 miams (G′) 17
mα−1 = 1 xaα−2 /∈ E α − 1 18

. . .
... 18, 19

Now, x is adjacent to all K vertices, Contradiction xa1 ∈ E α

Proof. By above lemmas and table 2 we can verify the correctness of our al-
gorithm. The interval ordering σ of G − x can be constructed in O(|V | + |E|)
time. Values mi, ni i ≤ i ≤ α, pw (G) and ipw can be calculated in O(|V | · |E|)
time. There is a loop which runs for each level checking conditions in constant
time. We have α ≤ |V | number of levels hence we can check all conditions in
O(|V | · |E|) time. Observe that if for any instance of the problem, we had to call
miams (G′) recursively for tha first time at levelα−i. Then we know it will be
called recursively upto levelα−1 which will return α always. Hence miams (G′)
call can be replaced by reporting α in our algorithm. �

7 Conclusion

In this paper we have shown that the treewidth of chordal + kv graphs is poly-
nomial for k = 1, although it may seem hard for higher values of k. Also, it
interests one to examine the treewidth of split + kv graphs for k ≥ 2. We have
also shown thet the pathwidth of a threshold + 1v graph and a threshold + 2e
graph can be solved in polynomial time. It would be interesting to see if FPT
algorithms exists for threshold + kv and threshold + ke graphs. Computing the
pathwidth and the mixed search number of an interval + kv graph is also in-
teresting because the class of threshold graphs is a proper subset of the class of
interval graphs and also because on the class of interval graphs these problems
are polynomial.

304 D. Sai Krishna et al.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

2. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21
(1993)

3. Bodlaender, H.L.: Treewidth: Characterizations, applications, and computations.
In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 1–14. Springer, Heidelberg
(2006)

4. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3),
415–429 (2003)

5. Sai Krishna, D., Thirumala Reddy, T.V., Sai Shashank, B., Pandu Rangan,
C.: Pathwidth and searching in parameterized threshold graphs (to appear in
LNCS) (2010), http://www.cse.iitm.ac.in/~dsaikris/Site/Research_files/

psptg_full.pdf

6. Flocchini, P., Huang, M.J., Luccio, F.L.: Contiguous search in the hypercube for
capturing an intruder. IPDPA 01, 62 (2005)

7. Flum, J., Grohe, M.: Parameterized Complexity Theory, 1st edn. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, Heidelberg (2006)

8. Fomin, F.V., Heggernes, P., Mihai, R.: Mixed search number and linear-width of
interval and split graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG
2007. LNCS, vol. 4769, pp. 304–315. Springer, Heidelberg (2007)

9. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

10. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of Dis-
crete Mathematics, vol. 57. North-Holland Publishing Co., Amsterdam (2004)

11. Heggernes, P., Mihai, R.: Mixed search number of permutation graphs. In:
Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp. 196–207.
Springer, Heidelberg (2008)

12. LaPaugh, A.S.: Recontamination does not help to search a graph. J. ACM 40(2),
224–245 (1993)

13. Lozin, V.V., Milanic, M.: Tree-width and optimization in bounded degree graphs.
In: Graph-Theoretic Concepts in Computer Science, 32nd International Workshop,
WG, Bergen, Norway, June 22-24, Revised Papers, pp. 45–54 (2007)

14. Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. Annals of
Discrete Mathematics, vol. 56. Elsevier Science Publishers B.V., North Holland,
Amsterdam (1995)

15. Mancini, F.: Minimum fill-in and treewidth of split+ke and split+kv graphs. In:
Tokuyama, T. (ed.) ISAAC2007. LNCS, vol. 4835, pp. 881–892. Springer, Heidelberg
(2007)

16. Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput.
Sci. 351(3), 407–424 (2006)

http://www.cse.iitm.ac.in/~dsaikris/Site/Research_files/psptg_full.pdf
http://www.cse.iitm.ac.in/~dsaikris/Site/Research_files/psptg_full.pdf

Author Index

Ahmed, Syed Ishtiaque 94, 252
Angelini, Patrizio 113
Asano, Tetsuo 9

Bachmaier, Christian 70
Bhattacharya, Bhargab B. 102
Bhattacharya, Binay 82
Bhuiyan, Md. Mansurul Alam 252
Binucci, Carla 58
Bishnu, Arijit 82, 102
Blin, Guillaume 149
Brandenburg, Franz J. 70
Brunner, Wolfgang 70

Caminiti, Saverio 167
Chen, Liangyu 263
Cheong, Otfried 82

Das, Sandip 82, 102
Didimo, Walter 58
Di Giacomo, Emilio 35, 58

Firoz, Jesun S. 161
Fox, Jacob 1
Frati, Fabrizio 1, 113

Ghosh, Subir Kumar 21

Hamel, Sylvie 149
Hasan, Masud 94, 161, 252
Higashi, Takanori 191
Hikino, Takashi 47
Hübner, Ferdinand 70
Hung, Ling-Ju 204

Ioannidou, Kyriaki 136
Islam, Md. Ariful 94

Karmakar, Arindam 82
Katoh, Naoki 179
Khan, Ashik Z. 161
Khan, Ishita Kamal 252
Kiyomi, Masashi 125
Kloks, Ton 204
Krishna, D. Sai 240, 293

Li, Zhi-bin 263
Liotta, Giuseppe 35

Misra, Neeldhara 269
Mulzer, Wolfgang 9
Muralidhara, V.N. 228

Nandy, Subhas C. 102
Nikolopoulos, Stavros D. 136
Nishizeki, Takao 47

Pach, János 1
Petreschi, Rossella 167
Philip, Geevarghese 269
Pinchasi, Rom 1

Rahman, M. Sohel 161
Raman, Venkatesh 269
Rangan, C. Pandu 240, 293
Reddy, T.V. Thirumala 240, 293
Rextin, Aimal 58

Saitoh, Toshiki 125
Saurabh, Saket 269
Sen, Sandeep 228
Shashank, B. Sai 293
Shigezumi, Takeya 216
Sikdar, Somnath 269
Snoeyink, Jack 82
Sutani, Yoichi 191

Takahashi, Shinya 191
Tanigawa, Shin-ichi 179
Tomita, Etsuji 191

Uehara, Ryuhei 125
Uno, Yushi 216

Vialette, Stéphane 149

Wakatsuki, Mitsuo 191
Wang, Yajun 9
Watanabe, Osamu 216

Xiao, Mingyu 281
Xu, Ming 263

Zeng, Zhenbing 263
Zhou, Xiao 47

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Crossings between Curves with Many Tangencies
	Introduction
	Levels – Proof of Theorem 1
	Constructive Upper Bound – Proof of Theorem 2
	Concluding Remarks
	References

	Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon
	Introduction
	Finding a Simple Path on a Tree Using Eulerian Tours
	Shortest Paths in Polygons
	A Shortest-Path Algorithm Using a Dual Graph
	A Shortest-Path Algorithm Using Point Location

	Concluding Remarks
	References

	Approximation Algorithms for Art Gallery Problems in Polygons and Terrains
	Problems and Results
	Approximation Algorithms in Polygons
	Approximation Algorithms on Terrains
	References

	The Hamiltonian Augmentation Problem and Its Applications to Graph Drawing
	Introduction
	Hamiltonian Augmentations and Point-Set Embeddings
	Point-Set Embeddings with Mapping
	Point-Set Embeddings without Mapping

	Point-Set Embedding without Mapping: Optimal Curve Complexity and Polynomial Area
	Flat Division Vertices
	Monotone Topological Book Embeddings

	Point-Set Embeddings with Curve Complexity 1
	Colored Hamiltonicity and Colored Point-Set Embeddability
	Colored Hamiltonicity
	Colored Point-Set Embeddings
	More Points Than Vertices

	Other Applications of Hamiltonicity to Graph Drawing
	Simultaneous Embeddings
	Radially Layered Drawings

	References

	Graph Drawing
	Small Grid Drawings of Planar Graphs with Balanced Bipartition
	Introduction
	Planar Graph
	Series-Parallel Graph
	Conclusions
	References

	Switch-Regular Upward Planar Embeddings of Trees
	Introduction
	Basic Definitions
	3-Hooks and Red-Blue Decompositions
	Red-Blue Decompositions and Switch-Regularity
	Characterization and Test
	Conclusions and Open Problems
	References

	A Global k-Level Crossing Reduction Algorithm
	Introduction
	Preliminaries
	Global Sifting
	Building the Block List
	Initialization of a Sifting Step
	Sifting Step
	Sifting Swap
	Time Complexity

	Simple Global Crossing Reductions
	Experimental Results
	Applications of the Global Crossing Reduction
	Summary
	References

	Computational Geometry
	Computation of Non-dominated Points Using Compact Voronoi Diagrams
	Introduction
	Formal Definition
	Prior Work
	Our Work

	Reduction to a Voronoi Diagram
	Dominated Points and the Cone
	Relation of Lower Envelope of Cones to Additively Weighted Voronoi Diagrams of a Convex Distance Function
	Reduction of Lower Envelope of Cones to Additively Weighted Voronoi Diagrams of a Convex Distance Function

	Computing Non-dominance in the Plane
	Geometric Preliminaries
	Algorithm

	Conclusions
	References

	Cutting a Convex Polyhedron Out of a Sphere
	Introduction
	The Algorithm
	Box Cutting Phase
	Carving Phase

	Conclusion
	References

	A Simple Algorithm for Approximate Partial Point Set Pattern Matching under Rigid Motion
	Introduction
	Background and Motivation
	Our Work

	Preliminaries
	Translation in 2D
	Rigid Motion in 2D
	Homogeneous Splitting of I*
	Computation of Critical-Angle
	Complexity Analysis

	Conclusion
	References

	Graph Algorithms I
	Acyclically 3-Colorable Planar Graphs
	Introduction
	Preliminaries
	Deciding the Acyclic 3-Colorability of Planar Graphs
	Acyclic 3-Colorings of Planar Graph Subdivisions
	Acyclic 3-Colorings of Series-Parallel Graphs
	Conclusions
	References

	Reconstruction Algorithm for Permutation Graphs
	Introduction
	Preliminaries
	Notations
	Modular Decomposition
	Permutation Graphs

	Polynomial Time Reconstruction Algorithm
	Non-permutation Graph Preimage Case
	DECK CHECKING
	Non-critical Case
	Critical Case

	Concluding Remarks
	References

	Harmonious Coloring on Subclasses of Colinear Graphs
	Introduction
	Background Results
	Preliminaries
	Colinear Coloring and Colinear Graphs

	Harmonious Coloring on Colinear Graphs
	Harmonious Coloring on Split Strongly Chordal Graphs
	Concluding Remarks
	References

	Computational Biology and Strings
	Comparing RNA Structures with Biologically Relevant Operations Cannot Be Done without Strong Combinatorial Restrictions
	Introduction
	Preliminaries
	Comparing RNA Stem-Loops Is NP-Complete
	Future Work
	References

	The 1.375 Approximation Algorithm for Sorting by Transpositions Can Run in $O(n log n)$ Time
	Introduction
	Preliminaries
	Faster Running Time for Elias and Hartman's Algorithm
	References

	Parallel Algorithms for Encoding and Decoding Blob Code
	Introduction
	Preliminaries
	Blob Code
	Parallel Algorithms
	Model of Computation
	Encoding Algorithm
	Decoding Algorithm

	References

	Combinatorial Optimization
	A Rooted-Forest Partition with Uniform Vertex Demand
	Introduction
	Preliminaries
	Proof of Theorem 1
	Case of $k = d$
	Case of $k > d$

	Algorithms
	References

	A Simple and Faster Branch-and-Bound Algorithm for Finding a Maximum Clique
	Introduction
	Definitions and Notation
	Maximum Clique Algorithm MCR
	Branch-and-Bound Algorithm
	Greedy Approximate Coloring
	Initial Sorting and Initial Numbering

	New Algorithm
	New Approximate Coloring
	Adjunct Ordered Set of Vertices for Approximate Coloring
	Reconstruction of the Adjacency Matrix
	Algorithm MCS
	Effectiveness of the Reduction of the Search Space

	Computational Experiments
	Results for Random Graphs
	Results for DIMACS Benchmark Graphs

	Concluding Remarks
	References
	Appendix

	Graph Algorithms II
	On Some Simple Widths
	Cograph-Width
	Partitioned k-Probe Cographs
	C-width Is NP-Complete
	Simple-Width
	Graphs with Simple-Width 2
	References

	A New Model for a Scale-Free Hierarchical Structure of Isolated Cliques
	Introduction
	Preliminaries
	Model
	Analysis
	Degree Distribution of Gt
	Degree and Isolated Clique Size Distributions of Hi

	Related Works
	Concluding Remarks
	References

	Approximation Algorithms
	The Covert Set-Cover Problem with Application to Network Discovery
	Introduction
	Prior Work in Network Discovery
	Our Results and Techniques

	Preliminaries
	Approximating Set-Cover Sets Using Hitting-Set Queries
	Analysis
	Network Discovery
	Conclusion and Open Problem
	References
	Appendix

	Variants of Spreading Messages
	Introduction
	Notation and Definitions
	Unbounded Spreading Messages
	Complexity
	Exact Algorithms

	Spreading Messages within One Round
	Complexity
	Approximation
	Bounded Degree Graphs
	p-Claw Free Graphs

	Conclusion
	References

	On Finding a Better Position of a Convex Polygon Inside a Circle to Minimize the Cutting Cost
	Introduction
	Lower Bounds
	Cornerable P
	Most Cornered Position of P
	Cutting Cornerable P

	Non-cornerable P
	Conclusion
	References
	Appendix

	Real Root Isolation of Multi-Exponential Polynomials with Application
	Introduction
	Multi-Exponential Polynomials
	Real Root Isolation Algorithm
	Application of Approximate Reachability Analysis
	Conclusion
	References

	Parameterized Complexity
	FPT Algorithms for Connected Feedback Vertex Set
	Introduction
	Preliminaries
	Connected Feedback Vertex in General Graphs
	Group Steiner Tree
	An FPT Algorithm for CFVS

	A Subexponential FPT Algorithm for CFVS on H-Minor-Free Graphs
	Definitions and Terminology
	Connected FVS and Treewidth
	FPT Algorithms for H-Minor Free Graphs

	Conclusion
	References

	A Simple and Fast Algorithm for Maximum Independent Set in 3-Degree Graphs
	Introduction
	Preliminaries
	Reduction Rules
	Branching Rules

	A Simple Algorithm
	The Analysis
	Concluding Remarks
	References

	Pathwidth and Searching in Parameterized Threshold Graphs
	Introduction
	Notations and Definitions
	Treewidth of Chordal+1v Graphs
	Pathwidth of Threshold+1v Graphs
	Pathwidth of Threshold+2e Graphs
	Mixed Search Number of Threshold+1v Graphs
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

