
Maximum Series-Parallel Subgraph

Gruia Călinescu1,�, Cristina G. Fernandes2,��, and Hemanshu Kaul3

1 Department of Computer Science, Illinois Institute of Technology, Chicago, IL
60616, USA

calinescu@iit.edu
2 Department of Computer Science, University of São Paulo, Rua do Matão, 1010,

05508-090 São Paulo, Brazil
cris@ime.usp.br

3 Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL
60616, USA
kaul@iit.edu

Abstract. Consider the NP-hard problem of, given a simple graph G, to
find a series-parallel subgraph of G with the maximum number of edges.
The algorithm that, given a connected graph G, outputs a spanning tree
of G, is a 1

2
-approximation. Indeed, if n is the number of vertices in G,

any spanning tree in G has n−1 edges and any series-parallel graph on n
vertices has at most 2n−3 edges. We present a 7

12
-approximation for this

problem and results showing the limits of our approach.

1 Introduction

The Maximum Series-Parallel Subgraph (MSP) problem is: given a simple
graph G, find a series-parallel subgraph of G with the maximum number of
edges. This problem is known to be NP-hard [3].

The algorithm that, given a connected graph G, outputs a spanning tree
of G, is a 1/2 -approximation. Indeed, if n is the number of vertices in G, any
spanning tree in G has n−1 edges and any series-parallel graph on n vertices
has at most 2n−3 edges. We present a 7/12 -approximation for this problem.

We apply a method, previously used for the Maximum Planar Subgraph prob-
lem [4], of producing a subgraph whose blocks (maximal 2-connected compo-
nents) have a very simple structure. The way to produce such a subgraph also
has similarities to some approximation algorithms for the Minimum Steiner Tree
problem [1,6].

A novelty of this work is that we allow blocks to have unbounded size. Indeed,
using only blocks of bounded size does not lead to an improvement (as we show
later). This is a main difference to the works on Maximum Planar Subgraph
and Minimum Steiner Tree [1,4,6]. A second difference, when compared to the

� Research supported in part by NSF grant CCF-0515088, and performed in part while
on sabbatical at University of Wisconsin Milwaukee.

�� Research supported in part by CNPq 312347/2006-5, 485671/2007-7, and
486124/2007-0.

C. Paul and M. Habib (Eds.): WG 2009, LNCS 5911, pp. 54–65, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Maximum Series-Parallel Subgraph 55

Maximum Planar Subgraph algorithms, is that, to assure a good performance,
our algorithm has to sometimes throw away or shrink previously selected blocks.
We show ahead a family of examples that indicates that such an approach is
necessary.

We call spruces the very simple series-parallel graphs that we admit as non-
bridge blocks in the subgraph we produce. (We define spruces in the next subsec-
tion; a bridge consists of two adjacent vertices.) We prove that a subgraph whose
non-bridge blocks are spruces, and with maximum number of edges among such
subgraphs, achieves a ratio of 2/3, and this ratio is tight. Unfortunately, com-
puting such a subgraph is NP-hard, as we also show. So our algorithm in fact
computes only a large such subgraph. The ratio our algorithm achieves is 7/12,
which happens to be the average between 1/2 and 2/3. This is a coincidence
though, because our analysis compares directly the algorithm’s output to an
optimal solution.

In a related work, Cai [2] considered the variant of the problem where one
is given a complete weighted graph, and wants to find a maximal series-parallel
graph of minimum weight. He presented a 1.655-approximation for this variant
when the input graph is a set of points in the plane with their distances as
weights.

1.1 Preliminaries

Two edges of a multigraph are parallel if they have the same endpoints, and they
are series edges if there is some vertex of degree two incident to both of them. A
multigraph is series-parallel if it arises from a forest by repeated replacing edges
by parallel or series edges [7].

All of our graphs are undirected and simple, unless otherwise specified. From
the definition above, one can see that a maximal series-parallel graph can be
constructed by the following procedure. Start with two adjacent vertices s and t,
and then repeat the following: add one new vertex and make it adjacent to two
existing adjacent vertices. (Such graphs are also called 2-trees in the literature,
and series-parallel graphs are also known as partial 2-trees.)

Based on the construction above, a normalized tree decomposition of a max-
imal series-parallel graph is built as follows (see Fig. 1 for an example). Start
with one node with bag {s, t}, the root of our tree decomposition. We maintain
the invariant that, for any edge of the series-parallel graph, there is exactly one
node in the tree decomposition whose bag consists of the endpoints of the edge.
Whenever a vertex z is added to the series-parallel graph, and made adjacent to
existing adjacent vertices x and y, add to the tree decomposition three nodes:
one with bag {x, y, z}, child of the node with bag {x, y}, and two “twin” chil-
dren of this new node, with bags {x, z} and {y, z}. In this tree decomposition,
all even-level nodes have bags of size two, all odd-level nodes have bags of size
three, and no leaf is in an odd level. For a normalized tree decomposition T
of a maximal series-parallel graph H with |V (H)| = n, there are exactly n−2
odd-level nodes in T .

56 G. Călinescu, C.G. Fernandes, and H. Kaul

(a) (b)

s t

a

b

c

d

e

f

g

h

st

sat

sb

sbt

sa at bt

sca sda sea aft

sc sd se afca da ea ft

cga cha

cg chga ha

Fig. 1. (a) A maximal series-parallel graph, obtained by starting with the two adjacent
vertices s and t, and then adding in order vertices a, b, c, d, e, f, g, h. (b) Its normalized
tree decomposition.

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

������

�
�
�
��
�
�
��
�
�
�

�
�
�
�

�
�
�
�

��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

����

��
��
��
��

����

����

����
�
�
�
�

��
��
��
��
����������

(b)(a) u

v

wz

Fig. 2. (a) A graph with several spruces. (b) A connected spruce structure.

A spruce is a graph that has exactly two base vertices and at least one tip
vertex, in which every tip vertex is adjacent to exactly the two base vertices.
If the two base vertices are adjacent, the spruce is complete; otherwise it is
incomplete. The gain of a spruce S is its cyclomatic number, and it is denoted
gain(S); this is the number of tips for complete spruces, and one less than the
number of tips for incomplete spruces.

Fig. 2(a) depicts in solid lines a complete spruce with base vertices z and w,
and six tip vertices including u and v. Another spruce contained in the same
graph has base vertices u and v, and four tips including z and w; this second
spruce is incomplete.

A spruce cactus is a graph such that each of its blocks is a spruce. A spruce
structure is a graph each of whose blocks is a spruce or a bridge edge. See an
example in Fig. 2(b).

Fact 1. Spruce cactuses/structures are series-parallel graphs.

We can view a spruce cactus as a collection of spruces — those giving the blocks
of the spruce cactus. A spruce cactus is well-behaved if it is a collection of spruces
that do not share tips. We define the gain of a spruce cactus to be its cyclomatic
number.

Maximum Series-Parallel Subgraph 57

Fact 2. The gain of a spruce cactus equals the sum of the gains of its spruces.

Before we proceed with the algorithm, we first elaborate on the need of spruces
of unbounded size. First, if the input graph is a complete spruce with n−2 tips
(and 2n−3 edges), any approach which uses blocks of size bounded by, say, k,
results in an output with gain at most k−2 and a total of n + k− 3 edges. With
n large and k fixed, this is only a 1/2 -approximation.

Our algorithm discards and shrinks selected spruces. Why one has to do this
becomes clear from the following example, depicted in Fig. 3(a). The optimum
has n vertices and 2n−3 edges. It contains a spruce with base vertices x and y
and circa

√
n tips. For each of its tips v, there are two complete spruces, one

with base vertices x and v, and the other with base vertices v and y, each with
circa

√
n/2 tips. If an algorithm mistakenly (or greedily) selects the spruce with

base vertices x and y, then it cannot add any more spruces and it ends up with
circa n+

√
n edges — asymptotically not better than a 1/2 -approximation.

�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

.
.

.

.

.
.

.

.

(a) (b)(b)

x y

√
n tips

√
n

2
tips

Fig. 3. (a) A graph where a naive greedy strategy that does not discard previously
selected spruces fails to achieve a ratio better than 1/2. (b) The only two types of
degenerate spruces.

For the weighted version of our problem, the algorithm that returns a max-
imum weight spanning tree is a 1/2-approximation. This follows from Lemma
3, which is also used in the analysis of our algorithm. Precisely, for any sub-
graph H ′ of an edge-weighted graph H , let w(H ′) denote the sum of w(e) for
all e in E(H ′). The proof of the next lemma follows closely that of Lemma 17
in [5].

Lemma 3. Let F be a maximum weight forest in weighted simple series-parallel
graph H. Then w(H) ≤ 2 w(F), with the inequality being strict if w(H) > 0.

Proof. We use the greedy algorithm to construct F , first sorting the edges of H
into non-increasing order by weight. Let Eh be the set of the first h edges in
this ordering, 1 ≤ h ≤ m, where m = |E(H)|. By wh we denote the weight of
the hth edge in this ordering and we put wm+1 = 0. Starting with F = ∅, the
greedy spanning tree algorithm scans the edges in the given order and adds an
edge to F as long as it does not create any cycles.

58 G. Călinescu, C.G. Fernandes, and H. Kaul

Let F be the set of edges chosen by the greedy algorithm and let Fh = Eh∩F .
Then, by rearranging the terms,

w(F) =
m∑

h=1

|Fh|(wh − wh+1), and w(H) =
m∑

h=1

|Eh|(wh − wh+1).

It is therefore enough to show that |Eh| < 2 |Fh| for 1 ≤ h ≤ m. If this holds, of
course w(H) ≤ 2 w(F), and if w1 > 0, the inequality is strict.

Choose an h such that 1 ≤ h ≤ m. Let p1, p2, . . . , pk be the number of vertices in
the non-trivial components of Fh. Of course, |Fh| =

∑k
z=1(pz−1). Also note that

k ≥ 1, as Fh has at least one edge. Any edge of Eh must have its two endpoints in
the same component of Fh. (Otherwise, the edge could have been selected by the
greedy algorithm, merging two components of Fh.) Obviously this component is
non-trivial. We associate each edge of Eh with the (non-trivial) component of Fh

which contains both of its endpoints. The edges of Eh associated with a compo-
nent of Fh are a subset of the edges of the graph induced in H by the vertices
of this component. Thus, the number of edges associated with the zth non-trivial
component is at most 2pz−3, because this graph is series-parallel . But then, as
k ≥ 1, we have that |Eh| ≤

∑k
z=1(2pz−3) <

∑k
z=1 2(pz−1) = 2 |Fh|.

2 A Local Improvement Algorithm

We may assume the input graph G is connected. Our local improvement algo-
rithm, when running on G, keeps a set Q of spruces in G that form a well-behaved
spruce cactus. We abuse notation and sometimes think of Q as the spruce cactus
it forms.

The algorithm uses a slightly modified notion of gain. (One could also get an
approximation ratio higher than 1/2 by only using gain in the algorithm, but we
get a higher ratio.) For a spruce S, the adjusted gain of S is denoted by ĝain(S),
and is defined as ĝain(S) = gain(S) if S is complete, and ĝain(S) = gain(S)−1
if S is incomplete. We call a spruce degenerate if its adjusted gain is non-positive.
See Fig. 3(b).

For each component C of Q, the algorithm keeps a weighted tree TC whose
vertex set is V (C) and edge set is as follows. For each spruce S in C with base
vertices x and y, and tips v1, v2, . . . , vk, there is an edge xy in TC and edges xvi

for i = 1, . . . , k. The weight of the edges is given as follows: w(xy) = ĝain(S), and
w(xvi) = 1 for all i. Note that TC is indeed a tree. For any two vertices x and y
of C, let indexQ(x, y) be an edge in TC of minimum weight in the path in TC

from x to y. If x and y are in different components of Q, then let indexQ(x, y)
be undefined and consider its weight to be zero.

Let v1, v2, . . . , vk be all vertices isolated in Q that are adjacent in G to
both x and y. If k ≥ 1, let SQ(x, y) be the spruce with base vertices x and
y, tips v1, v2, . . . , vk, and the edge xy if it exists in G. Otherwise let SQ(x, y) be
undefined.

Maximum Series-Parallel Subgraph 59

��

�
�
�
�

���� ��
��
��
��
��

��
��
��
��

��

��
��
��
��
��

����

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��
��

�
�
�
�

��
��
��
��

����

�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�

��

��

�
�
�
�

���� ��
��
��
��
��

��
��
��
��

��

��
��
��
��
��

����

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��
��

�
�
�
�

��
��
��
��

����

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��

��

��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
� �

�
�
�

��
��
��
��

����

��

�
�
�
�
��
��
��
��
�
�
�
�

��

�
�
�
�

��������
�
�
�
�

�
�
�
�

����

����
��
��
��
��

����

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

��
�
�
�
�

��
��
��
��

��
��
��
��

����

�
�
�
�

�
�
�
�
��
��
��
��
�
�
�
�

����

��

��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� �

�
�
�

�
�
�
�

��
��
��
��

��
�
�
�
�

�
�
�
�
��
��
��
��

��

�
�
�
�

��������
��
��
��
��

�
�
�
�

����

��
��
��
��
��

����

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��
��

�
�
�
�

��
��
��
��

����

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��

��

�
�
�
�

��������
��
��
��
��

�
�
�
�

����

��
��
��
��
��

����

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��
��

�
�
�
�

��
��
��
��

����

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��

��

�
�
�
�

��������
�
�
�
�

�
�
�
�

����

����
��
��
��
��

����

��
��
��
��

�
�
�
�
��
��
��
��

��
�
�
�
�

��
��
��
��

��
��
��
��

����

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

����

�
�
�
�

�
�
�
�

(a)

(b)

(c)

x

xx

x

x = x′

y

y

y

y

y

x′

y′

y′

2

2

2

2

2
2

2

TC

TC

Fig. 4. Examples of local improvement, with SQ(x, y) given by the dashed lines in each
case. (a) For such x and y, line 4 of the algorithm is executed resulting in Q as shown
in the right. (b) For such x and y, line 7 of the algorithm is executed resulting in Q
as shown in the right. The weighted tree TC before the improvement is in the middle,
with weights 1 except for those written in the figure. (c) For such x and y, line 7 and
line 13 of the algorithm are executed resulting in Q as shown in the right.

The algorithm is shown in pseudocode later. We exemplify some of its cases in
Fig. 4. Initially Q = ∅. The algorithm proceeds in iterations, each doing a local
improvement. In each iteration, Q is updated as follows. If there are two vertices x
and y of G for which SQ(x, y) is defined and ĝain(SQ(x, y)) > w(indexQ(x, y)),
then obtain a new Q′ as follows, else go to the final phase. If indexQ(x, y) is
undefined, then let Q′ be obtained from Q by adding SQ(x, y), and start a new
iteration with Q′ in the place of Q. Otherwise, let x′ and y′ be the endpoints
of indexQ(x, y), and C be the component of Q containing x, x′, y, and y′. Let S′

be the spruce in Q containing x′ and y′. Note that such spruce exists by the
construction of TC . If x′ and y′ are the base vertices of S′, then remove S′ from Q
and add SQ(x, y) to obtain Q′. Otherwise, by the construction of TC , between x′

and y′ one is a base vertex of S′, and the other is a tip of S′. Exchange x′ and y′

if needed so that x′ is a base vertex of S′. Remove from S′ the two edges incident
to y′. If the resulting S′ is degenerate or is a single edge, then remove S′ from Q.
Moreover, add SQ(x, y) to obtain Q′, and start a new iteration with Q′ in the
place of Q.

Observe that, in this iterative part of the algorithm, we maintain the invariant
that Q is a set of non-degenerate spruces that form a spruce cactus. Indeed, this
follows by induction. It is enough to note that ĝain(SQ(x, y)) > 0, and x and y
are in different components, either from the start, or after we removed part or
all of the spruce S′ from Q.

60 G. Călinescu, C.G. Fernandes, and H. Kaul

The final phase consists of the following. Let Q now be the set of non-
degenerate spruces produced by the iterative phase. Obtain a spanning con-
nected subgraph of G from Q by adding bridges and let it be the output of the
algorithm.
Construct-Spruce-Structure (G)
1 Q← ∅
2 while there are x and y such that SQ(x, y) is defined

and ĝain(SQ(x, y)) > w(indexQ(x, y)) do
3 if indexQ(x, y) is undefined
4 then Q← Q ∪ {SQ(x, y)}
5 else let x′ and y′ be the endpoints of indexQ(x, y)
6 let S′ be the spruce in Q containing x′ and y′

7 Q← Q \ {S′} ∪ {SQ(x, y)}
8 if x′ or y′ is a tip of S′

9 then let z be one between x′ and y′ that is a tip of S′

10 let {e, f} be the two edges of S′ incident to z
11 S ← S′ − {e, f}
12 if S is not degenerate neither a single edge
13 then Q← Q ∪ {S}
14 add bridges to Q to obtain a connected spanning subgraph of G
15 return Q

2.1 Running Time Analysis

The main result of this section is the very technical Lemma 4 below, which
shows that each iteration makes some “progress”. Unfortunately, the definition
of “progress” is not straightforward, for the following reason.

A natural measure of progress would be the gain of Q (that is, its cyclomatic
number). If gain(Q) increased in every iteration, then it would have been easy
to conclude that the algorithm runs a polynomial number of iterations. However
this is not the case, and a more careful analysis is required. Let us give some
intuition in this paragraph. One can check that, in most of the cases, the gain
of Q increases. Also, it never decreases and, in the iterations in which the gain
of Q is maintained, the number of components increases — more components are
helpful since more, or bigger, spruces become eligible to improve the current Q.

Define Φ(Q) = 3 gain(Q) + c(Q), where c(Q) is the number of components of
Q when Q is seen as a spanning subgraph of G.

Lemma 4. Every iteration of the algorithm increases the parameter Φ.

From this lemma, whose proof we omit, we conclude that the number of iterations
is polynomially bounded, because Φ(Q) is a non-negative integer and gain(Q) ≤
(2n−3)− (n−1) = n−2, which means Φ(Q) is bounded by 3(n−2) + n = 4n−6.

Also, each iteration can be easily implemented in polynomial time, as there
are only O(n2) pairs x, y for which SQ(x, y) must be computed and, if possible,
used in updating Q.

Maximum Series-Parallel Subgraph 61

2.2 Approximation Ratio Analysis

Let m be the number of edges in the graph Q returned by the algorithm. Then

m = n − 1 +
∑

S∈Q gain(S).

Let A be an optimal solution for G and q be such that A has 2n − 3 − q edges.
Thus, the algorithm achieves a ratio that is a constant greater than 1/2 if

(i)
∑

S∈Q gain(S) is at least a fraction of n, or
(ii) q is at least a fraction of n.

The analysis aims to prove that (i) or (ii) holds. Precisely, it will be shown that

6
∑

S∈Q gain(S) + 3q ≥ n − 2. (1)

From this, it is easy to derive the 7/12 ratio:

m = n−1 +
∑

S∈Q gain(S) ≥ n−1 + 1
6 (n − 2 − 3q) ≥ 7

12 (2n − 3 − q).

The proof of Inequality (1) is not straightforward. We start by giving an
overview. First we will derive a set M of spruces from A and prove that

∑
S∈M ĝain(S) + 3q ≥ n − 2.

This is done in Lemma 5, later. Then, to achieve Inequality (1), it remains to
prove that

6
∑

S∈Q gain(S) ≥ ∑
S∈M ĝain(S). (2)

Consider Q to be the set of spruces when the algorithm finishes the iterations,
and before the final phase (of adding bridges). Let t be the number of components
of Q, and n′ be the number of vertices in spruces of Q. Inequality (2) is a
consequence of the following two inequalities:

4
∑

S∈Q gain(S) ≥ ∑
S∈M ĝain(S) − (n′ − t),

which is given by Lemma 6, below, and
∑

S∈Q gain(S) ≥ 1
2 (n′ − t),

which is given by Lemma 7.
In what follows, we present the description of the set M of spruces, and

proceed to Lemmas 5, 6, and 7.
Let A+ be a maximal series-parallel graph containing A. Call the edges of A+

not in A of missing edges. As A+ is maximal, it can be obtained by the incremen-
tal procedure described in the preliminaries. For each edge xy of A+ for which
this procedure added at least one new vertex adjacent to x and y, consider a
spruce S+

xy in A+ that has x and y as base vertices, and as tips all the vertices ad-
jacent to x and y that were added in the procedure. As an example, in Fig. 1(a),
spruce S+

as has a and s as base vertices, and tips c, d, e. Let Sxy be a maximal
spruce of A contained in S+

xy, if such a spruce exists. Let M = {M1, M2, . . . , Mk}
be the set of all such spruces Sxy. First, note that the spruces in M do not share
tips. Also,

62 G. Călinescu, C.G. Fernandes, and H. Kaul

Lemma 5.
∑

S∈M ĝain(S) + 3q ≥ n − 2.

Proof. Observe that, as all S+
xy are complete, the sum of gain(S+

xy) for all x
and y (for which S+

xy is defined) equals the cyclomatic number of A+, which is
2n − 3 − (n−1) = n − 2. Let us first argue that

∑
S∈M gain(S) ≥ n − 2 − 2q.

Indeed each missing edge e decreases the sum of gain(S+
xy) by at most two,

because the edge e might appear in two spruces S+
xy (once as xy and once as an

edge incident to a tip of S+
xy). Note also that a spruce S+

xy for which Sxy is not
a spruce corresponds to a term in the sum of gain(S+

xy) that will become zero
or negative after these discounts, so it does not hurt to drop it from the sum.
Finally, the sum

∑
S∈M ĝain(S) is equal to the sum

∑
S∈M gain(S) minus the

number of incomplete spruces in M , which is bounded above by q. Therefore,
the lemma holds.
We proceed to Lemma 6.

Lemma 6. 4
∑

S∈Q gain(S) ≥ ∑
S∈M ĝain(S) − (n′ − t).

Proof. For i = 1, 2, . . . , k, let Ui be the set of tips of Mi that are in some
spruce of Q. Let Si be obtained from Mi after the removal of its tip vertices
in Ui. Note that Si might not be a spruce (it might be empty or a single edge).
If Si is a spruce, then ĝain(Si) = ĝain(Mi) − |Ui|. To simplify, set ĝain(Si) = 0
if Si is not a spruce.

The proof of this lemma has two steps. The first one consists of the following
simple observation. As

∑
i |Ui| ≤ n′, we have that

∑

S∈M

ĝain(S) =
∑

i

ĝain(Mi) ≤ n′ +
∑

i

ĝain(Si), (3)

because the spruces Mi do not share tips.
Let x and y be the base vertices of a spruce Mi from M . If x and y are in

different components of Q, then Si has to be a degenerate spruce or it is not a
spruce (otherwise the algorithm would have included it in Q).

For each component C of Q, consider the following weighted simple graph
H = HC on its set of vertices. For two vertices x and y in C that are the
base vertices of a spruce Si, the edge xy is present in H and it has weight
w(xy) = ĝain(Si). Observe that H is a simple series-parallel graph. (It is a
subgraph of A+.)

Now, for the second step, let FC be such a maximum weight forest in H . Recall
that the algorithm constructs a weighted tree TC on the same set of vertices;
we treat the edges of TC as distinct from the edges of FC though both sets of
edges have weight w. For each two vertices x and y with xy in FC , there is a
spruce Si such that w(xy) = ĝain(Si). Now, the spruce SQ(x, y) was considered
by the algorithm. Since Q is the set of spruces just before the final phase of
the algorithm, SQ(x, y) was not added to Q and therefore ĝain(SQ(x, y)) ≤
w(indexQ(x, y)). Note that ĝain(SQ(x, y)) ≥ ĝain(Si) as all the tips of Si, being
isolated vertices in Q, are also in SQ(x, y). Thus, putting all this together, we
have that w(xy) = ĝain(Si) ≤ ĝain(SQ(x, y)) ≤ w(indexQ(x, y)), for every x

Maximum Series-Parallel Subgraph 63

and y such that xy ∈ FC . But then, in the multigraph whose vertex set is C
and the edge set is the disjoint union of E(FC) and E(TC), the tree TC is a
maximum weight tree [8]. Also, as FC is a forest in this multigraph, we have
that w(FC) ≤ w(TC).

Note that, for any spruce S in Q, the total weight of the edges of TC obtained
from S is 2 gain(S), which holds both if S is complete or not. Let C be the
collection of connected components of Q. Also, for C in C, let QC be the (non-
empty) set of spruces in C. By summing up for all spruces in Q, we obtain
that

2
∑

C∈C
gain(QC) =

∑

C∈C
w(TC) ≥

∑

C∈C
w(FC) ≥ 1

2

∑

C∈C
w(HC) +

1
2

t,

where the last inequality comes from Lemma 3 and the fact that all weights are
integers. Thus

2
∑

S∈Q

gain(S) = 2
∑

C∈C
gain(QC) ≥ 1

2

∑

i

ĝain(Si) +
1
2

t.

and this, together with (3), implies the lemma.
Now we proceed to Lemma 7.

Lemma 7.
∑

S∈Q gain(S) ≥ 1
2 (n′ − t).

Proof. As in the previous proof, C is the collection of connected components
of Q, and QC is the (non-empty) set of spruces in C, for C in C. Let n(C) be
the number of vertices in C.

It is enough to prove that gain(QC) ≥ (n(C)−1)/2 for all C in C. So, consider
a C in C, and recall that Q does not have degenerate spruces. Let us prove by
induction on the number of spruces in QC that gain(QC) ≥ (n(C)−1)/2.

If QC has only one spruce S, then if S is complete, n(S) = gain(S)+2, and
thus gain(S) = n(S)−2 ≥ (n(S)−1)/2 because n(S) ≥ 3. If S is incomplete,
n(S) = gain(S)+3, and thus gain(S) = n(S)−3 ≥ (n(S)−1)/2 because, as S is
not degenerate, n(S) ≥ 5.

Now suppose that QC has more than one spruce, and let S be a spruce in QC

with at most one vertex in common with the others spruces in QC . (There is
always one such spruce because QC is a spruce cactus.) Let C′ be the connected
subgraph of Q corresponding to the union of the spruces in QC′ = QC \ {S}.
By induction, gain(QC′) ≥ (n(C′)−1)/2. If S is complete, n(C) = n(C′) +
gain(S) + 1, and gain(QC) = gain(QC′) + gain(S) ≥ (n(C′)−1)/2 + gain(S) =
(n(C) − gain(S) − 2)/2 + gain(S) = (n(C) + gain(S) − 2)/2 ≥ (n(C)−1)/2,
because gain(S) ≥ 1. If S is incomplete, n(C) = n(C′) + gain(S) + 2, and
gain(QC) = gain(QC′)+gain(S) ≥ (n(C′)−1)/2+gain(S) = (n(C)−gain(S)−
3)/2 + gain(S) = (n(C) + gain(S) − 3)/2 ≥ (n(C)−1)/2, because gain(S) ≥ 2,
as S is non-degenerate.
Having finished this proof, based on the discussion at the beginning of the sub-
section, we obtain the main result of the paper:

64 G. Călinescu, C.G. Fernandes, and H. Kaul

Theorem 1. There is a polynomial-time 7
12 -approximation for Maximum

Series-Parallel Subgraph.

As an aside, observe that if we allowed the algorithm to include in Q the de-
generate spruce which is a 4-cycle, then Lemma 7 would not hold anymore. Yet
a weaker version of it would, with 1/3 instead of 1/2, and this would also lead
to an approximation ratio greater than 1/2. We introduced the adjusted gain
concept specifically to forbid 4-cycles, so that Lemma 7 holds with 1/2.

The analysis is tight. We will describe a family of graphs that proves this.
Follow the description looking at Fig. 5. There is a graph Gk in this family
for each even positive integer k. The graph Gk is the union of two edge-disjoint
series-parallel graphs H1 and H2. The first one, H1, is a path of length 8+k, with
a triangle on top of each of its edges (for a total of 7+k triangles and 3(7+k)
edges). We call this path the defining path of H1. In Fig. 5, the bottom edges
form the defining path of H1. The first 7 triangles on top of this path (shown by
the darker edges) play a different role than the remaining k triangles. Call top
the vertex in each of these triangles that is not on the defining path, and round
the tops of the last k triangles plus the first and fourth top vertices. See the white
circle vertices in Fig. 5. The final k vertices of the defining path are alternately
named square and triangular vertices. The second and fifth top vertices are also
square vertices, and the third and sixth are also triangular vertices. See Fig. 5.
We will use these marks to describe the second graph.

The second graph, H2, consists of three big spruces on the marked vertices of
H1, with a pair of new extra vertices per tip t, each of them adjacent to t and
to one of the spruce base vertices. Each spruce is on one of the types of marked
vertices in H1. Let us now describe the first of the three big spruces, the one on
the round vertices of H1. This spruce has as base vertices the two first round
vertices in H1, and has as tips each of the other round vertices in H1, for a total
of k tips. In Fig. 5, this spruce is shown by the dotted edges, plus the “round”
triangle with straight edges. For this triangle, we show also the two extra new
vertices — the black small circle vertices, incident to the dashed edges.

The second big spruce is on the square vertices of H1. Its base vertices are
the two square top vertices, and its tips are the other k/2 square vertices of H1.
The third big spruce is defined similarly on the triangular vertices of H1. This

t

Fig. 5. Part of the graph G4: the graph H1 (the bottom path and the triangles on top
of it), the first big spruce in H2 (the subgraph induced by the white round vertices),
and two extra vertices (the black small circle vertices)

Maximum Series-Parallel Subgraph 65

completes the description of H2, which, summarizing, consists of these three big
spruces, plus the extra new vertices adjacent to the endpoints of the edges of
these spruces incident to their tips. (In Fig. 5, we show only two of the extra
vertices, the black small circle vertices.)

As we said, Gk consists of these two graphs H1 and H2. Note that both
of them are indeed series-parallel. Thus, the number of edges in H2, which is
(2k+1) + 2(k+1) + 8k = 12k+3, is a lower bound on the size of a maximum
series-parallel subgraph of Gk. Moreover, one can verify that our algorithm in
the iterative phase can produce as Q the graph H1, and output a graph with
|E(H1)| + 4k = 3(7+k) + 4k = 7k+21 edges. In this case, the ratio achieved is
no more than (7k+21)/(12k+3), which approaches 7/12 as k gets large.

References

1. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem.
Journal of Algorithms 17, 381–408 (1994)

2. Cai, L.: On spanning 2-trees in a graph. Discrete Applied Mathematics 74(3), 203–
216 (1997)

3. Cai, L., Maffray, F.: On the spanning k-tree problem. Discrete Applied Mathemat-
ics 44, 139–156 (1993)

4. Călinescu, G., Fernandes, C.G., Finkler, U., Karloff, H.: A better approximation
algorithm for finding planar subgraphs. Journal of Algorithms 27(2), 269–302 (1998)

5. Călinescu, G., Fernandes, C.G., Karloff, H., Zelikovski, A.: A new approximation
algorithm for finding heavy planar subgraphs. Algorithmica 36(2), 179–205 (2003)

6. Robins, G., Zelikovsky, A.: Improved steiner tree approximation in graphs. In: Pro-
ceedings of the Tenth ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
770–779 (2000)

7. Schrijver, A.: Combinatorial Optimization, vol. A. Springer, Heidelberg (2003),
http://homepages.cwi.nl/~lex/files/dict.ps

8. Tarjan, R.E.: Data Structures and Networks Algorithms. Society for Industrial and
Applied Mathematics (1983)

http://homepages.cwi.nl/~lex/files/dict.ps

	Maximum Series-Parallel Subgraph
	Introduction
	Preliminaries

	A Local Improvement Algorithm
	Running Time Analysis
	Approximation Ratio Analysis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

