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1 Department of Computer Science, University of Durham,
Science Laboratories, South Road, Durham DH1 3LE, England�

{hajo.broersma,pim.vanthof,daniel.paulusma}@durham.ac.uk
2 Institutt for informatikk, Universitet i Bergen,

Postboks 7803, 5020 Bergen, Norway
fomin@ii.uib.no

Abstract. The Hamiltonian Cycle problem asks if an n-vertex graph
G has a cycle passing through all vertices of G. This problem is a classic
NP-complete problem. So far, finding an exact algorithm that solves it in
O∗(αn) time for some constant α < 2 is a notorious open problem. For
a claw-free graph G, finding a hamiltonian cycle is equivalent to finding
a closed trail (eulerian subgraph) that dominates the edges of some as-
sociated graph H . Using this translation we obtain two exact algorithms
that solve the Hamiltonian Cycle problem for the class of claw-free
graphs: one algorithm that uses O∗(1.6818n) time and exponential space,
and one algorithm that uses O∗(1.8878n) time and polynomial space.

1 Introduction

In this paper we study the well-known NP-complete decision problem Hamil-

tonian Cycle (cf. [7]) that asks whether a graph G has a hamiltonian cycle,
i.e., a cycle that passes through all vertices of G. The Hamiltonian Cycle

problem can be seen as a special case of the well-known Traveling Salesman

problem. The input of the latter problem is a complete graph together with an
edge weighting. The goal is to find a hamiltonian cycle of minimum total weight.
Held & Karp [11] present a classic dynamic programming algorithm that solves
the Traveling Salesman problem in O∗(2n) time and O∗(2n) space for graphs
on n vertices. The O∗-notation indicates that we suppress factors of polynomial
order, and we use this notation throughout the paper. The slightly easier Hamil-

tonian Cycle problem can be solved using O∗(2n) time and polynomial space,
as was shown by Karp [13] and independently by Bax [1]. It is a major and
long outstanding open problem if the Hamiltonian Cycle and the Travel-

ing Salesman problem can be solved in O∗(αn) time for some constant α < 2,
even if the polynomial space restriction is dropped.

For some graph classes for which the Hamiltonian Cycle, and consequently
the Traveling Salesman problem, remains NP-complete, faster algorithms
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have been designed. For planar graphs, the Hamiltonian Cycle problem can
be solved in O∗(c

√
n) for some constant c (cf. [19]). The Traveling Salesman

problem can be solved in O∗(1.251n) time for cubic graphs [12] and in O∗(1.890n)
time for graphs with maximum degree 4 [5]. Both algorithms use polynomial
space. For graphs with maximum degree 4, an algorithm with time complex-
ity O∗(1.733n) is known [8], but this algorithm uses exponential space. More
generally, Björklund et al. [2] present an algorithm that solves the Traveling

Salesman problem in O∗((2−ε)n) for graphs with bounded degree, where ε > 0
only depends on the maximum degree but not on the number of vertices. They
show that this bound can be improved further for regular triangle-free graphs.
These algorithms use exponential space. They also present an O∗((2− ε)n) time
algorithm that uses polynomial space for bounded degree graphs in which the
edges have bounded integer weights.

Our Results. We consider the class of claw-free graphs. This is a rich class con-
taining, e.g., the class of line graphs and the class of complements of triangle-free
graphs. It is also an intensively studied graph class, both within structural graph
theory and within algorithmic graph theory; see [6] for a survey. The Hamilto-

nian Cycle problem is NP-complete for claw-free graphs; the authors of [14]
show that the problem is already NP-complete for 3-connected cubic planar
claw-free graphs. We present two exact algorithms that solve the Hamiltonian

Cycle problem for claw-free graphs: our first algorithm uses O∗(1.6818n) time
and exponential space, and our second algorithm uses O∗(1.8878n) time and
polynomial space. Our techniques are based on a (known) transformation of the
problem to the problem of finding a dominating closed trail in a graph and a new,
more careful study of such trails. Hence, these techniques are different from the
ones used in the already known algorithms, and as such may be of independent
interest.

Preliminaries. All graphs in this paper are finite, undirected and without mul-
tiple edges and loops. For notation and terminology not defined in this paper we
refer to [4]. Let G = (V (G), E(G)) be a graph. The neighborhood of a vertex v in
G is denoted by NG(v) := {w ∈ V (G) | vw ∈ E}, and dG(v) = |NG(v)| denotes
the degree of v. A 2-factor of G is a spanning subgraph of G in which all vertices
have degree 2. The subgraph of G induced by some U ⊆ V is denoted by G[U ].

A graph is called triangle-free if it does not contain a subgraph isomor-
phic to the cycle on three vertices. A graph is called claw-free if it has no
induced subgraph isomorphic to the claw, i.e., the four-vertex star K1,3 =
({u, a, b, c}, {ua, ub, uc}). Let G be a claw-free graph. Then, for each vertex v
of G, the set of neighbors of v in G induces a subgraph with at most two com-
ponents. If this subgraph has two components, both of them must be cliques. If
the subgraph induced by NG(x) is connected but not complete, we can perform
an operation called local completion of G at x by adding edges joining all pairs
of nonadjacent vertices in NG(x).

The line graph of a graph H with edges e1, . . . , ep is the graph L(H) with ver-
tices u1, . . . , up such that there is an edge between any two vertices ui and uj if and
only if ei and ej share one end vertex in H . Note that L(K3) = L(K1,3) = K3;
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it is well-known that every connected line graph F �= K3 has a unique H with
F = L(H) (see e.g. [9]). We call H the preimage graph of F . For K3 we let K1,3

be its preimage graph. A graph is called even if all its vertices have even degree.
A graph is called a closed trail (or eulerian) if it is a connected even graph. Let T
be a closed trail in a graph H . If V (H) \ V (T ) is an independent set in H , then
we say that T is a dominating closed trail, abbreviated DCT. Note that the latter
means that every edge of H has at least one vertex in T , so in this context “dom-
inating” means “edge-dominating”. For any integer k ≥ 1, a graph H is called
k-degenerate if every non-empty subgraph of H has a vertex of degree at most k.
We say that H is k-ordered if H allows a vertex ordering π = v1, . . . , v|V (H)| such
that for 1 ≤ i ≤ |V (H)|, H [{v1, . . . , vi}] is connected and vi has at most k neigh-
bors in H [{v1 . . . , vi}].
Paper organization. In Section 2 we translate the Hamiltonian Cycle prob-
lem for claw-free graphs into the problem of finding a dominating closed trail
in triangle-free graphs. In Section 3 we show that every graph with a span-
ning closed trail has a 2-degenerate 3-ordered spanning closed trail. We use this
structural result in Section 4, where we present two exact algorithms for find-
ing a dominating closed trail in a graph. Section 5 contains the conclusions and
mentions some open problems.

2 The Two Exact Algorithms

Here we explain our two algorithms that solve the Hamiltonian Cycle problem
for a claw-free graph G on n vertices. For the first step we do not have to develop
any new theory or algorithms, but can rely on the beautiful existing machinery
from the literature.

Step 1: restrict to the preimage graph H of the closure of G

We recursively repeat the local completion operation, as long as this is possible.
This way we obtain the closure cl(G) of G. Ryjáček [17] showed that the closure of
G is uniquely determined, i.e., that the ordering in which one performs the local
completions does not matter. This means we can obtain cl(G) in polynomial
time. Ryjáček [17] also showed that G is hamiltonian if and only if cl(G) is
hamiltonian. Furthermore he showed that for any claw-free graph G there is
a unique (triangle-free) graph H such that L(H) = cl(G). We can obtain the
preimage graph of a line graph in polynomial time (see e.g. [16]). Hence, we can
efficiently compute the unique graph H with L(H) = cl(G).

Step 2: find a DCT of H

Harary and Nash-Williams [10] showed that the line graph of any connected
graph with at least three vertices is hamiltonian if and only if the graph itself
contains a DCT. This result combined with the results from the previous step
implies that G has a hamiltonian cycle if and only if H has a DCT. In Section 4
we present two exact algorithms for finding such a DCT in a graph with n
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edges: one algorithm that uses O∗(1.6818n) time and exponential space, and one
algorithm that uses O∗(1.8878n) time and polynomial space.

Step 3: translate the DCT of H back into a hamiltonian cycle of cl(G)

Suppose we have obtained a DCT T in Step 2. Then we construct a hamiltonian
cycle of cl(G) by traversing T , picking up the edges (corresponding to vertices
in cl(G)) one by one and inserting dominated edges as soon as an end vertex of
a dominated edge is encountered. For traversing T we use the polynomial-time
algorithm that finds a eulerian tour in an even connected graph (cf. [4]).

Step 4: translate the hamiltonian cycle in cl(G) to one in G

We can do this in polynomial time by using exactly the same method as described
in [3]. There, we show how to translate a 2-factor of cl(G) into a 2-factor of G.
Since a hamiltonian cycle is a connected 2-factor we are done.

From the above it is clear that all steps except the third one can be performed
in polynomial time. Hence, we have found the following.

Theorem 1. The Hamiltonian Cycle problem for a claw-free graph on n
vertices can be solved in O∗(1.6818n) time, using exponential space. It can also
be solved in O∗(1.8878n) time, using polynomial space.

3 Closed Trails of Low Degeneracy and Ordering

A cycle C of a connected graph H is called removable if the graph H − E(C)
is connected and non-separating if H − V (C) is connected. The following useful
result is due to Thomassen and Toft [18].

Theorem 2 ([18]). Any connected graph with minimum degree 3 has an induced
non-separating cycle.

Theorem 2 immediately yields the following result.

Corollary 1. Any connected graph with minimum degree 3 has a removable
cycle.

Proof. Let H be a connected graph with minimum degree 3. By Theorem 2,
H has an induced non-separating cycle C. Since H − V (C) is connected, all
vertices of V (H) \ V (C) belong to the same component of H − E(C). Since
H has minimum degree 3 and C is an induced cycle, every vertex of C has a
neighbor in V (H) \V (C). Hence H −E(C) is connected, so C is removable. ��

Using Corollary 1 we can prove the following theorem, which will help us to
obtain the time complexity of the exact algorithms described in Section 4.

Theorem 3. Every graph with a spanning closed trail contains a 2-degenerate
3-ordered spanning closed trail.
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Proof. We first show that every graph with a spanning closed trail contains a
2-degenerate spanning closed trail. Let H∗ be a counterexample with |E(H∗)|
minimum. Let T be a spanning closed trail in H∗. We repeatedly remove vertices
from T with degree at most 2 in T as long as possible. Let T ′ be the subgraph of
T we obtain this way. Since H∗ is a counterexample, T ′ is not empty. Let T1 be
a component of T ′. Since T ′ has minimum degree at least 3, T1 has a removable
cycle C by Corollary 1. Then C is also a removable cycle of H∗, since H∗ is a
supergraph of T1. This contradicts the minimality of |E(H∗)|.

So, every graph H with a spanning closed trail contains a 2-degenerate span-
ning closed trail T . Suppose T is not 3-ordered. We repeatedly remove vertices
from T with degree at most 3 in T until T becomes disconnected. Let T ′ be the
resulting (connected) subgraph of T . Since T is not 3-ordered, T ′ is not empty.
Let U consist of all vertices of degree at most 3 in T ′. By our procedure, every
vertex of U is a cut-vertex of T ′, and since T is 2-degenerate, U is nonempty. Let
u ∈ U be such that T ′[V (T ′) \ {u}] contains a component D without vertices of
U . Then all vertices of D have degree at least 3, contradicting the 2-degeneracy
of T . ��

4 Two Exact Algorithms for Finding a DCT

We present two exact algorithms for solving the following problem.

Dominating Closed Trail (DCT)

Instance: a connected graph H .
Question: does H have a dominating closed trail?

To solve the DCT problem for an instance H , both algorithms start by branch-
ing on vertices of low degree by the same branching procedure, explained in
Section 4.1. This way both algorithms obtain a set of subproblems. Each sub-
problem has the original graph H as input. However, for some subset of edges
of H it is already decided whether they will be included in or excluded from
the dominating closed trail. Our first algorithm, described in Section 4.2, solves
each of the subproblems using dynamic programming. Our second algorithm, de-
scribed in Section 4.3, solves each of the subproblems by guessing the remaining
edges of a possible dominating closed trail.

4.1 Branching on Vertices of Low Degree

Let H = (V, E) be an instance of the DCT problem. We assign a so-called parity
label �(v) ∈ {0, 1} to each vertex v of H . Note that if H has a dominating closed
trail T , then dT (v) is even for every v ∈ V . After all, a vertex is either not in
T (i.e., dT (v) = 0, in which case all of its neighbors must be in T ), or a vertex
has an even number of incident edges in T (since T is a closed trail). Hence we
initially set �(v) = 0 for every v ∈ V .

The first stage of both algorithms consists of branching on vertices of degree
at most d∗, thus creating a number of subproblems; more specifically, d∗ = 4 for
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our first algorithm, and d∗ = 12 for our second algorithm. The choice of these
values of d∗ is explained in the next sections. During the branching process,
the size of the graphs under consideration decreases, and we might change the
�-labels of certain vertices.

Suppose v is a vertex of degree d ≤ d∗ in H . If �(v) = 0 (respectively
�(v) = 1), then the algorithm branches into 2d−1 subproblems, each subproblem
corresponding to a possible way of choosing an even (respectively odd) number
0 ≤ p ≤ d of edges incident with v that are guessed to be in the dominating
closed trail. We call the chosen edges old trail edges. For each choice W of old
trail edges, we perform the following two operations:

1. set �(w) := �(w) + 1 (mod 2) for every w with vw ∈ W ;
2. delete v and all its d incident edges.

Repeat this procedure as long as the remaining graph contains a vertex of degree
at most d∗. Let H ′ be the resulting graph. Then H ′ has minimum degree d∗ + 1
and each vertex u ∈ V (H ′) has some label �(u) ∈ {0, 1}. Let E(H) = E(H ′) ∪
R(H ′) ∪ W (H ′), where W (H ′) contains all old trail edges and R(H ′) contains
all other edges we removed from H . In the next stage, edges in W (H ′) will be
assumed to be in the dominating closed trail we are looking for, whereas edges in
R(H ′) will be assumed not to be in the dominating closed trail. Suppose R(H ′)
contains an edge e = xy with x, y ∈ V (H) \ V (H ′) such that both x and y
are not incident with any old trail edge. Then e will not be dominated by any
closed trail that we might discover in the next stage. Hence, we discard this
subproblem. For the same reason, we also discard the subproblem if there is a
vertex v ∈ V (H)\V (H ′) incident with an odd number of old trail edges. If these
two cases do not occur, we keep the subproblem and call the tuple (H ′, W (H ′), �)
a stage-2 tuple.

Lemma 1. The branching phase of the algorithm creates T (n1) = O∗(2
d∗−1

d∗ n1).
stage-2 tuples, where n1 is the total number of edges deleted during this phase.

Proof. Since for a vertex v of degree d we remove d edges and create 2d−1

subgraphs, we find T (n1) = 2d−1 · T (n1 − d), which yields T (n1) = O∗(2
d−1

d n1).
Since d ≤ d∗, we end up with O∗(2

d∗−1
d∗ n1) stage-2 tuples. ��

We point out that the time complexity mentioned in Lemma 1 is O∗(1.6818n1)
if d∗ = 4 and O∗(1.8878n1) if d∗ = 12.

4.2 An O∗(1.6818n) Time Algorithm That Uses Exponential Space

Let H = (V, E) be an input of the DCT problem. In case H has vertices of degree
at most 4, we apply the branching procedure described in Section 4.1. Suppose
that during the branching process n1 edges were deleted (possibly n1 = 0). Then,
by Lemma 1, O∗(1.6818n1) stage-2 tuples (H ′, W (H ′), �) have been created.
Each of these stage-2 tuples will be processed using the dynamic programming
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procedure described below. If at least one of them leads to a dominating closed
trail of H , then the algorithm outputs Yes; the algorithm outputs No otherwise.

Let (H ′, W (H ′), �) be a stage-2 tuple. We write H ′ = (V ′, E′). We output Yes

if W (H ′) forms a dominating closed trail of H . If this is not the case, we enter
the dynamic programming phase. In this procedure, we consider each u ∈ V ′

and say that ({u}, �(u)) is an option if u ∈ V ′ is incident with at least one old
trail edge. Otherwise ({u}, �(u)) is not an option. Furthermore, ({u}, �̄(u)) with
�̄(u) = �(u) + 1 (mod 2) is not an option.

Suppose we know for all sets S ⊆ V ′ of size at most k and all labelings
�′ : S → {0, 1} whether (S, �′) is an option or not. Then for each set S ⊆ V ′ of
size k, for each vertex v ∈ V ′ \S, and for each {0, 1}-labeling �′ of S∪{v}, we do
as follows. Let p be the number of old trail edges incident with v. We consider
every possible way of choosing 0 ≤ q ≤ 3 edges incident with v and a vertex in
S. The chosen edges will be referred to as new trail edges. For each choice N of
new trail edges, we set �′(x) := �′(x) + 1 (mod 2) for every x ∈ S with vx ∈ N .
We perform the following three tests.

(1) Check if (S, �′) is an option.
(2) Check if p + q is even if �′(v) = 0 and odd if �′(v) = 1.
(3) If q = 0, check if there is a path from v to S in H only using old trail edges.

Only if tests (1), (2), (3) are all three affirmative, we say that (S ∪ {v}, �′) is an
option. If so, we also check whether

(4) each old trail edge allows a path to a vertex in S ∪ {v} that uses only old
trail edges;

(5) each vertex x in S∪{v} has label �′(x) = 0 and each vertex y ∈ V ′\(S∪{v})
incident with an old trail edge has label �(y) = 0;

(6) there is no edge e = ab in H ′ for some a, b ∈ V ′ \ (S ∪ {v}) such that both
a and b are not incident with an old trail edge.

If the answers to tests (4), (5), (6) are all three affirmative, the algorithm con-
cludes that H has a dominating closed trail (cf. Theorem 4) and returns Yes. If
no Yes-answer has been returned and k < |V ′|, the algorithm considers all sets
S ⊆ V ′ of size k + 1, all vertices v ∈ V ′ \ S and all {0, 1}-labelings �′ of S ∪ {v}.
Otherwise, the algorithm outputs No.

Theorem 4 (Correctness). When run on a connected graph H, the algorithm
returns Yes if H has a dominating closed trail, and returns No otherwise.

Proof. Our algorithm only returns a Yes-answer if it has found a stage-2 tuple
(H ′, W (H ′), �) with some option (S, �) for which tests (4), (5), (6) are all positive.
In that case, let T be the subgraph of H consisting of all old trail edges in W (H ′)
plus all new trail edges that have been added between vertices of S. The dynamic
programming, together with tests (3) and (4), ensures that T is connected. Tests
(1), (2) and (5) together with the definition of a stage-2 tuple ensure that T is
even, and (6) ensures that T is dominating. Hence, T is a dominating closed
trail.
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It remains to show that if H has a dominating closed trail, then the algorithm
outputs Yes. Suppose H has a dominating closed trail T . Due to Theorem 3
we may assume that T is 3-ordered. We show that our algorithm finds T , unless
it finds another dominating closed trail of H first. Let V ′ consist of all vertices
that are not removed in the branching procedure, so V (H ′) = V ′ for the graph
H ′ in every stage-2 tuple. Let T ′ be the subgraph of T with V (T ′) = V (T )∩V ′.
Then there exists a stage-2 tuple (H ′, W (H ′), �) such that W (H ′) is exactly the
set of edges of T that are incident with at least one vertex in V (T ) \ V ′, and
such that �(v) = 0 if v ∈ V ′ \ V (T ′), and �(v) = 0 (respectively �(v) = 1) if
v ∈ V (T ′) and v is incident with an even (respectively odd) number of edges in
W (H ′). Since our algorithm considers all possible stage-2 tuples, it will detect
tuple (H ′, W (H ′), �). As T is 3-ordered, each component of T ′ is 3-ordered. This
means that our dynamic programming procedure based on the number of ways
a vertex can be made adjacent to a set S with at most three edges will find a
labeling �′ such that (Ti, �

′) is an option for each component Ti of T . As these
components are connected to each other via old trail edges, at some moment
(T ′, �) will be formed. Then tests (1)-(6) will all be successful and a Yes-answer
is returned. ��
Below we give the overall running time of our algorithm.

Theorem 5 (Running time). The algorithm runs in O∗(1.6818n) time.

Proof. We first prove that the dynamic programming procedure runs in O∗(3p)
time on any p-vertex graph. Let H ′ = (V ′, E′) be a graph on p vertices. There
are

(
p
k

)
sets S ⊆ V ′ of cardinality k, each of those sets has 2k possible labelings

�, and there are
(
k
0

)
+

(
k
1

)
+

(
k
2

)
+

(
k
3

)
= O(k3) ways to attach a new vertex v to

a subset of cardinality k by using at most 3 edges. Each of the tests (1)-(6) can
be done in polynomial time. Hence the time complexity of this procedure is

O∗
( p∑

k=1

(
p

k

)
· 2k · O(k3)

)
= O∗(3p).

Let H be an instance of the DCT problem having n edges. Suppose we repeat-
edly branch on vertices of degree at most d∗ = 4, and suppose n1 is the number
of edges we delete during this branching phase. Then we obtain O∗(1.6818n1)
stage-2 tuples by Lemma 1. Let (H ′, W (H ′), �) be such a stage-2 tuple, where
H ′ = (V ′, E′) is a graph of minimum degree 5 having n2 := n − n1 edges
and, say, p vertices. As shown above, the dynamic programming procedure uses
O∗(3p) time. Since the minimum degree in H ′ is 5, we obtain n2 ≥ 5p/2,
or equivalently p ≤ 2n2/5. Hence we can process each stage-2 tuple in time
O∗(3

2n2
5 ) = O∗(1.5519n2). This means that the overall running time of our al-

gorithm on a graph H having n = n1 + n2 edges is

O∗(1.6818n1 · 1.5519n2) = O∗(1.6818n).

If we choose d∗ �= 4, then the above upper bound is no longer guaranteed. ��
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4.3 An O∗(1.8878n) Time Algorithm That Uses Polynomial Space

We describe our second algorithm in the proof of the following theorem.

Theorem 6. The DCT problem for a graph H on n edges can be solved in
O∗(1.8878n) time, using polynomial space.

Proof. Let H be an instance of the DCT problem with n edges. We execute the
branching procedure described in Section 4.1, but this time we perform branching
on vertices of degree at most d∗ = 12. Suppose we delete n1 edges during the
branching process. By Lemma 1, this yields O∗(211n1/12) = O∗(1.8878n1) stage-
2 tuples (H ′, W (H ′), �), where each graph H ′ has p vertices of minimum degree
13 and n2 = n − n1 edges. Note that n2 ≥ 13p/2, or equivalently p ≤ 2n2/13.

If H has a dominating closed trail T , then T may be assumed to be 2-
degenerate, due to Theorem 3. Let T ′ denote the (2-degenerate) subgraph of
T that remains after the branching procedure; note that T ′ is a subgraph of
some graph H ′. A 2-degenerate graph on p vertices has at most 2p edges. This
means that we only have to check in every H ′ for every possible subset of edges
up to cardinality 2p whether this subset together with the old trail edges in
W (H ′) forms a dominating closed trail of H . Using Sterling’s approximation
n2! ≈ nn2

2 e−n2
√

2πn2 and the fact p ≤ 2n2/13, the total number of checks can
be estimated as follows:

2p∑

k=1

(
n2

k

)
≤ 2p

(
n2

2p

)
≤ 2p

(
n2
4n2
13

)
= O∗

(( 1
αα(1 − α)1−α

)n2)
,

where α = 4/13, which leads to O∗(1.8539n2) checks. Since each of them can be
performed in polynomial time, the overall running time is

O∗(1.8878n1 · 1.8539n2) = O∗(1.8878n).

If we choose d∗ �= 12, then the above upper bound is no longer guaranteed. It is
clear that this algorithm only needs polynomial space. ��

5 Conclusions

We presented two exact algorithms for the Hamiltonian Cycle problem. Can
we speed up these algorithms by making use of the triangle-freeness of the preim-
age graph? Another (more) interesting open problem is whether we can solve the
Traveling Salesman problem for claw-free graphs in O∗(αn) time for some
constant α < 2. This requires some new ideas as our current approach that
takes the closure of a graph and then makes a transformation to the domain of
triangle-free graphs does not suffice. Can we find an O∗(αn) time algorithm that
solves the Hamiltonian Cycle problem for some constant α < 2 for the class
of bipartite graphs, or equivalently (cf. [15]) for the class of split graphs, or a
superclass of split graphs such as the class of P5-free graphs? As the Hamilto-

nian Cycle problem is already NP-complete for chordal bipartite graphs [15],
this question is interesting for that class as well. We can also try to design fast
exact algorithms for superclasses of claw-free graphs such as K1,4-free graphs.
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Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 193–204.
Springer, Heidelberg (2008)

4. Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (2000)

5. Eppstein, D.: The traveling salesman problem for cubic graphs. Journal of Graph
Algorithms and Applications 11, 61–81 (2007)
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