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Abstract. We overview algorithmic results for classes of sparse graphs
emphasizing new developments in this area. We focus on recently in-
troduced classes of graphs with bounded expansion and nowhere-dense
graphs and relate algorithmic meta-theorems for these classes of graphs
to their analogues for proper minor-closed classes of graphs, classes of
graphs with bounded tree-width, locally bounded tree-width and locally
excluding a minor.

1 Introduction

It is well-known that many hard problems are tractable for classes of graphs
with restricted structure. A classical example of this phenomenon is the result
of Courcelle [5] that every graph property that can be described by a monadic
second order logic formula can solved in linear time for graphs with bounded
tree-width. In particular, some NP-hard problems including graph coloring or
vertex domination can be solved in linear time for graphs with bounded tree-
width.

In this paper, we focus on algorithmic meta-theorems for classes of graphs
whose structure is limited in some sense. To motivate the results we want to
present, let us switch from the algorithmic to the structural point of view and
look at the chromatic number. Graphs with bounded tree-width are degenerate
and thus their chromatic number is bounded. Similarly, the chromatic number
of planar graphs and more generally graphs that can be embedded on a fixed
surface is bounded. Graphs with bounded tree-width, planar graphs and graphs
that can be embedded on a fixed surface form minor-closed classes of graphs. A
general experience says that most structural (and algorithmic) properties that
hold both for classes of graphs with bounded tree-width and for classes of graphs
embedded on a fixed surface are also true for classes of graphs excluding a fixed
minor. The chromatic number being bounded is an example.
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However, the chromatic number is not bounded only for classes of graphs
excluding a fixed minor. Other classes of graphs with bounded chromatic number
include graphs with bounded maximum degree or d-degenerate graphs (for fixed
integer d). Since any graph is a minor of a cubic graph, these classes of graphs
are clearly not minor-closed. A more tricky example of such class is the class of
graphs obtained from planar graphs by adding at most two (not necessarily non-
crossing) edges to each face. Still it turns out that some algorithmic properties
of planar graphs also hold for the above mentioned graph classes.

Based on these examples, one would maybe guess that the only requirement
we need is that the number of edges of a graph is bounded by the function linear
in the number of its vertices, i.e., its average degree is bounded. This is however
not sufficient since the average degree can be decreased by adding a sparse part
to the graph (a set of isolated vertices being the simplest example, but one can
easily think of more sophisticated ways which also preserve connectivity or other
parameters). Similarly, the maximum average degree is not fine enough since sub-
dividing each edge of an input graph decreases maximum average degree below
four but most of the structural properties of an input graph are preserved. So,
one needs a more robust structural parameter to capture the common properties
of the above graph classes that are essential for the algorithmic results we are
interested in.

A framework of classes of graphs with bounded expansion and a more general
framework of classes of nowhere-dense graphs that have been introduced in a
series of papers by Nešetřil and Ossona de Mendéz [19,20,21,22,23,24,25] seems
to be the right one to be considered in this setting. In this paper, we will survey
known structural and algorithmic results, including recent results of the authors
and Thomas on decidability of first order logic properties, for classes of graphs
with bounded expansion and classes of nowhere-dense graphs and relate these
results to the earlier results for other graph classes. We will also provide proofs
of some easier facts and those that are essential for algorithmic applications.

2 Definitions

In this section, we present definitions and notions important for our exposition.
Though some of the notions we present are fairly standard, we decided to include
them for the sake of completeness.

2.1 Graph Decompositions, Graph Minors

The graph minor project of Robertson and Seymour is one of the basic stones of
modern graph theory. In this subsection, we recall some definitions and results
from this area which we need in our further exposition.

A tree-decomposition of a graph G is a tree T whose vertices correspond to
subsets of vertices of G, referred to as bags, and the following three properties
hold:

1. every vertex of G is in at least one of the bags,
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2. for every edge of G, there is a bag containing both its end-vertices, and
3. if a vertex v of G is contained in the bags associated with vertices u and u′

of T , then v is contained in all the bags associated with the vertices on the
path between u and u′ in T .

The order of a tree-decomposition T is the maximum size of a bag associated
to a vertex of T decreased by one. The tree-width tw(G) of a graph G is the
minimum order of a tree-decomposition of G. Graphs with tree-width zero are
edge-less and those with tree-width at most one are forests.

More restricted width parameter is the tree-depth. The tree-depth td(G) of a
graph G is the minimum depth of a rooted tree T with the same vertex set as
G that for every edge vv′ of G, v is an ancestor of v′ or v′ is an ancestor of v.
To fix our terminology, the depth of a rooted tree T is the maximum number of
vertices in a path from the root to a vertex of T , e.g., the depth of the one-vertex
rooted tree is one. Vertices on the path from a vertex v to the root are ancestors
of v. Those vertices v′ such that v is an ancestor of v′ are descendents of v.

It is not hard to see that the tree-width of a graph G is bounded by its tree-
depth decreased by one (consider the optimum tree T from the definition of the
tree-depth, form bags as sets of vertices on the paths from the root to the leaves
and associate them with vertices of a path in the order in which the leaves of T
are visited during the depth-first search). On the other hand, the tree-depth of a
graph is not bounded by any function of its tree-width (the tree-depth of the n-
vertex path is �log2(n+1)�). In fact, the tree-depth of a graph G is proportional
to the length � of the longest path in G since �log2(� + 2)� ≤ td(G) ≤ (

�+3
2

)− 1.
It also holds [3] that td(G) ≤ (tw(G) + 1) log2(n + 1) where n is the number of
vertices of G.

An alternative definition of the tree-depth can be given by means of a vertex-
coloring [26]. The ranking number of a graph G, as defined in [2], is the minimum
number k of colors 1, . . . , k needed to color the vertices of G such that any path
joining two vertices of the same color contains a vertex with a bigger color. It
can be shown that the tree-depth of a graph G is equal to its ranking number
(to obtain the coloring, color the vertices of the tree T from the definition of
the tree-depth based on their distance from the root, giving the root the largest
color; to obtain a decomposition, proceed conversely).

A minor of a graph G is a graph obtained by deleting vertices and edges and
contracting edges. Recall that the operation of contracting an edge e consists of
removing e, identifying its end-vertices and deleting any loops and parallel edges
that arise. A class G of graphs is minor-closed if every minor of a graph from G
is also contained in G. Examples of minor-closed classes of graphs include graphs
embeddable in a fixed surface, graphs with tree-width at most k for an integer k,
graphs with tree-depth at most k and many others. Proper minor-closed classes
of graphs are degenerate, i.e., for every proper minor-closed class G, there exists
an integer k such that every graph G ∈ G is k-degenerate which means that G
and each of its subgraphs has a vertex of degree at most k.

One of the main results in the graph minor series of Robertson and Sey-
mour [30] asserts that every minor-closed class G of graphs has a finite list of
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obstructions, i.e., there exist G1, . . . , Gk such that G ∈ G if and only if G does
not contain any of the graphs G1, . . . , Gk as a minor (these graphs are also called
obstructions). E.g., the tree-width of a graph G is at most one if and only if G
does not contain K3 as a minor, and at most two if and only if G does not contain
K4 as a minor. The complete list containing four obstructions for graphs with
tree-width at most three was given in [1]. A minor-closed class of graphs can
contain graphs with arbitrary big tree-width (planar graphs being an example),
but it is known that the tree-width of graphs in a minor-closed class G of graphs
is bounded if and only if one of the obstructions for G is planar [29].

2.2 Local Parameters

First order logic graph properties are of localized nature as we discuss in Subsec-
tion 4.2. Because of this, graphs with locally restricted structure are important
from the algorithmic point of view: classes of graphs with locally bounded tree-
width were introduced by Eppstein [12] (using somewhat different notation) and
classes of graphs locally excluding a minor were defined by Dawar, Grohe and
Kreutzer [6].

Before we define these graph classes, we need to recall several definitions. If
G is a graph and v is a vertex of G, then Nd(v) is the d-neighborhood of v, i.e.,
the set of vertices of G at distance at most d from v. If A is a set of vertices of a
graph G, then G[A] is the subgraph of G induced by A, i.e., the subgraph with
vertex set A that contains all edges of G with both end-vertices from A.

We say that a class G of graphs has locally bounded tree-width if there exists
a function f : N → N such that the tree-width of G[Nd(v)] is at most f(d) for
every graph G ∈ G, every vertex v of G and every d ≥ 1. Similarly, a class G
of graphs locally excludes a minor if there exists an infinite sequence of graphs
H1, H2, . . . such that for every graph G ∈ G, every vertex v of G and every d ≥ 1,
the graph G[Nd(v)] does not contain Hd as a minor.

Observe that every class of graphs with locally bounded tree-width locally
excludes a minor. Similarly, every proper minor-closed class of graphs locally
exclude a minor. We later define other locally restricted graph classes.

2.3 Grad and Expansion

We now present the framework of classes of graphs with bounded expansion and
classes of nowhere-dense graph which was introduced by Nešetřil and Ossona de
Mendéz in [24]. An r-shallow minor of a graph G is a graph obtained from G by
removing some vertices and edges of G and contracting several vertex-disjoint
subgraphs of radius at most r. Recall that the radius of a graph is the minimum
r such that G = G[Nr(v)] for some vertex v of G, i.e., every vertex of G is at
distance at most r from v. If G is a class of graphs, then G � r is the class of all
r-shallow minors of graphs contained in G.

The edge-density of a graph G is ||G||/|G|, i.e., the ratio of the number of
edges of G and the number of its vertices. The grad �r(G) with rank r (greatest
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reduced average density) of a graph G is the maximum edge-density of an r-
shallow minor of G. Observe that if d ≥ 2�0(G), then a graph G is d-degenerate.
A class G of graphs has bounded expansion if there exists a function f : N → N

such that �r(G) ≤ f(r) for every graph G ∈ G and every r ≥ 1.
Let us give few examples of classes of graphs with bounded expansion. Since

every proper minor-closed class G of graphs is degenerate, the grads of all ranks
of graphs contained in G are bounded by a constant. Hence, all proper minor-
closed classes of graphs have bounded expansion. Another example of a class
of graphs with bounded expansion are graphs with bounded maximum degree:
if G has maximum degree Δ, then �r(G) ≤ Δ(Δ − 1)r/2. Hence, classes of
graphs with bounded maximum degree have also bounded expansion. Another
example is the class of graphs that can be embedded to the plane in such a way
that each edge is crossed by at most one other edge; this class contains graphs
with arbitrary large degrees and is not minor-closed. Other examples of classes
of graphs with bounded expansion can be found in [27].

Analogously to already introduced definitions, a class G of graphs has lo-
cally bounded expansion if there exists a function f : N × N → N such that
�r(G[Nd(v)]) ≤ f(r, d) for every graph G ∈ G, every vertex v of G and any
two integers r and d. It can be shown that every class G of graphs with locally
bounded expansion has almost bounded expansion in the following sense: for
every ε > 0, there exist functions fr(n) : N → N such that fr(n) ∈ O(nε) for
every r = 0, 1, . . . and �r(G) ≤ fr(n) for every n-vertex graph G ∈ G.

This leads us to the definition of nowhere-dense graphs. If G is a class of
graphs and f a real-valued function on the set of all graphs, then

lim sup
G∈G

f(G)

is the supremum of all reals α such that there exists an infinite sequence of
distinct graphs G1, G2, . . . from G with α = limk→∞ f(Gk). The trichotomy
theorem of Nešetřil and Ossona de Mendéz [24] asserts the following:

Theorem 1. For every infinite class G of graphs, the following holds:

lim
r→∞ lim sup

G∈G�r

log ||G||
log |G| ∈ {0, 1, 2} . (1)

Let us give the proof of this (at the first sight very surprising) theorem since it
gives more insight into the structure of classes of graphs achieving each of the
values of the limit.

Proof. If there exists a constant C such that every graph in G has at most C

edges, then limk→∞
log ||Gk||
log |Gk| = 0 for every infinite sequence G1, G2, . . . of distinct

graphs from G � r (the number of vertices of the graphs Gi must grow to the
infinity but the number of their edges is bounded by C).

If there is no constant C bounding the number of edges of every graph in G,
proceed as follows: choose G1 to be K2, clearly, K2 ∈ G � 0. If G1, G2, . . . , Gk

have already been fixed, choose Gk to be any graph of G � 0 containing more
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edges than Gk−1 and subject to this with the minimum number of vertices.
Observe that |Gk| ≤ 2||Gk|| for every k (otherwise, Gk contains an isolated
vertex which contradicts our choice of Gk). It follows that

lim inf
k→∞

log ||Gk||
log |Gk|| ≥ 1 .

Since G � 0 ⊆ G � 1 ⊆ · · ·, it follows that if the limit in (1) is not equal to zero,
then the limit is at least one.

Assume now that the limit given in (1) is greater than 1 for G. Hence, there
exist r, ε > 0 and an infinite sequence of graphs G1, G2, . . . ∈ G � r such that
||Gk|| ≥ |Gk|1+ε. We now apply the following result from [8, Lemma 3.13]: for
every ε > 0, there exist an integer d and δ > 0 such that every n-vertex graph
with average degree nε contains Knδ as a d-shallow minor. It follows that the
class G � rd contains complete graphs of arbitrary order and the limit (1) is at
least two. Since ||G|| ≤ |G|2/2 for every graph G, the limit in (1) is at most two
and the proof of the theorem is completed.

The classes G of graphs with the limit (1) equal to 0 or 1 are called classes of
nowhere-dense graphs. It follows that every class of graphs with locally bounded
expansion is a class of nowhere-dense graphs.

We finish this section with Figure 1 where the reader can find inclusions
between graph classes we have introduced in this section.

Star forests Path forests

Bounded tree-depth Outerplanar graphs

Bounded tree-width Planar graphs
Bounded degree

Bounded genus

Excluding a minor Locally bounded tree-width

Bounded expansion Locally excluding a minor

Locally bounded expansion

Nowhere dense

Fig. 1. Overview of inclusions between various graph classes
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3 Structural Properties

In this section, we will introduce the notion of fraternal augmentations of orien-
tations of graphs as defined by Nešetřil and Ossona de Mendéz in [20]. Since all
the algorithms for classes of graphs with bounded expansion as well as classes
of nowhere dense graphs are based on this notion, we decided to present it with
full detail. The proofs follow the lines of those given in [20].

3.1 Orientations with Small In-Degree

Every graph G admits an orientation with maximum in-degree at most �0(G).
The purpose is to develop a technique of augmenting orientations with small in-
degrees preserving the fact that the grads remain small. To achieve this, we will
need the following definition and lemma. Two vertices v and v′ of a digraph1 �G
are k-reachable for an integer k, if there exists a vertex w and oriented paths P
and P ′ from v and v′ to w of lengths � and �′, respectively, such that � + �′ ≤ k.
The paths P and P ′ form an (�, �′)-wedge between v and v′.

We now state a key lemma for our further considerations.

Lemma 1. There exist polynomials Pk(x, y), k = 1, 2, . . ., with the following
properties. Let G be a graph and �G an orientation of G with maximum in-degree
Δ−. If Hk is the graph with the vertex set of G and two vertices adjacent if they
are k-reachable, then

�0(Hk) ≤ Pk(Δ−,�k−1(G)) .

Proof. The proof proceeds by induction on k. If k = 1, then the graphs H1 and
G are the same (observe that two vertices are 1-reachable if and only if they are
adjacent in �G). Hence, �0(H1) = �0(G) and we can set P1(x, y) = y.

Assume now that k > 1. Consider a proper vertex coloring of Hk−1 with
2Pk−1(Δ−,�k−2(G)) + 1 colors (the existence of this coloring follows from the
fact that Hk−1 is 2Pk−1(Δ−,�k−2(G))-degenerate). Color now the arcs uv of
�G with pairs [α, β] of colors where α is the color of v and the color β is chosen
in such a way that no two arcs coming to the same vertex have the same color.
Since Δ− choices of colors β suffice at each vertex, the arcs of �G can be colored
with at most (2Pk−1(Δ−,�k−2(G)) + 1)Δ− colors. Let K be this number of
colors.

A type of an (�, �′)-wedge formed by paths P and P ′ of lengths � and �′ is the
pair of two sequences of lengths � and �′ formed by the colors of the arcs of P
and P ′, respectively. Fix two integers � and �′ such that �+�′ = k and 0 < � ≤ �′.
Observe that the type of any (�, �′)-wedge contains mutually distinct colors since
the vertices with incoming arcs in an (�, �′)-wedge have mutually distinct colors
(they are (k − 1)-reachable).

1 We allow digraphs to have parallel arcs oriented in the opposite way. If we want to
exclude parallel arcs, we will say that a digraph is simple.
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Fix now two sequences σ and σ′ of arc colors with lengths � and �′ such that
�G contains an (�, �′)-wedge of type [σ, σ′]. Let F be the set of all arcs contained
in an oriented path whose arcs are colored with the colors as in σ (respecting
the order of the colors) and F ′ the set of all arcs contained in an oriented path
whose arcs are colored as in σ′. Finally, F ′′ is the set of the arcs of F ′ that do
not have the last color of σ′.

Now consider two paths P and Q of lengths � with arc colors as in σ. Since
the colors of all the �+1 vertices of P are mutually distinct as well as the colors
of the � + 1 vertices of Q and no vertex has two incoming arcs with the same
color, P and Q are either vertex-disjoint or P ∩Q is the initial sequence of both
the paths. Hence, the arcs of F form (vertex-disjoint) out-branchings of depth �

in �G. The analogous reasoning also applies to F ′ and thus the arcs of F ′ form
out-branchings of depth �′.

Consider now two paths P and P ′ of lengths � and �′ with arc colors as in
σ and σ′, respectively. Since only the pair of the first vertices of P and P ′ or
the pair of last vertices (or both these pairs) can have the same color, either P
and P ′ are vertex-disjoint, or they share their first vertices, or they share their
last vertices, or they share both their first and last vertices. Hence, F ∪F ′′ form
out-branchings rooted at their original vertices.

Let �G′ be the graph obtained from �G by removing vertices not incident with
arcs of F ∪F ′′ and contracting the out-branchings of F ∪F ′′. Since every leaf of
any out-branching of F ∪ F ′′ is at distance at most max{�, �′ − 1} ≤ k − 1, the
graph �G′ is a (k − 1)-shallow minor of G (after disregarding the orientations of
its arcs). If v and v′ are k-reachable because of an (�, �′)-wedge of type [σ, σ′],
then v and v′ are roots of out-branchings in F ∪ F ′′ and they are adjacent after
contracting these out-branchings (through the arc with the last color in σ′). We
conclude that the edges between vertices v and v′ that are k-reachable because
of an (�, �′)-wedge of type [σ, σ′] can be oriented in such a way that the in-degree
of any vertex is at most �k−1(G).

Ranging through all choices of � + �′ = k with � > 0 and �′ > 0 and all
choices of σ and σ′, we obtain an upper bound of 2(k − 1)Kk �k−1 (G) on the
number of incoming arcs added to Hk. If � = 0 and �′ = k, then we just orient
the new edges based on the direction of the paths they correspond to which
increases the in-degree of each vertex by at most (Δ−)k. Taking into account
the edges present in Hk−1, we obtain that Hk has an orientation of its edges
with maximum in-degree at most

�0(Hk−1) + (Δ−)k + 2(k − 1)Kk �k−1 (G)

which is bounded by

2(k − 1)((2Pk−1(Δ−,�k−1(G)) + 2)(Δ− + 1))k �k−1 (G) .

The sought polynomial Pk(x, y) can be set to be equal to 4(k− 1)((Pk−1(x, y)+
1)(x + 1))ky.
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We now define a crucial notion of transitive fraternal augmentations. If �G is
a simple digraph, then the transitive fraternal augmentation of �G is a simple
digraph obtained from �G by adding the following arcs:

1. transitive arcs: if uv and vw are arcs of �G, then the arc uw is added unless
�G already contains the arc uw or the arc wu.

2. fraternal arcs: if uv and u′v are arcs of �G, then the arc uu′ or the arc u′u
is added unless �G already contains the arc uu′ or the arc u′u.

Our aim is to add fraternal arcs (where it is possible to make a choice which
arc to add) in such a way that the maximum in-degree of �G does not increase
significantly. To choose the fraternal arcs, we can apply Lemma 1. However, we
would like to iterate the process and thus we need to have a bound on grads
of the transitive fraternal augmentation. Such a bound is given in the following
theorem from [20]:

Theorem 2. There exists polynomial Q1(x, y), Q2(x, y), . . . with the following
properties. Let G be a graph and �G an orientation of G with maximum in-
degree Δ−. If H is the graph containing all the edges of the transitive fraternal
augmentation of �G, then the following holds for every r ≥ 1:

�r(H) ≤ Qr(Δ−,�2r+1(G))

Proof. Let V1, . . . , Vn be subsets of vertices of H such that the radius of H [Vi]
is at most r for every i = 1, . . . , n. Let vi be the center of H [Vi]. Consider the
shortest distance tree Ti in H [Vi] rooted at vi and orient the edges of Ti in the
direction from vi. We now modify the simple digraph �G in another digraph �G′

which need not be simple. If the arc uw of Ti corresponds to an edge of G,
add the arc uw to �G. If the arc uw is a transitive edge corresponding to arcs
wv and vu, add the arc vw. If the arc uw is a transitive edge corresponding to
arcs uv and vw, no action is required. Finally, if the arc uw is a fraternal edge
corresponding to arcs uv and wv, add arcs uv and vw.

Observe that the maximum in-degree of �G′ is at most 2Δ−+1: if an arc leading
to v is added because of an arc uw of some Ti, then both u and w are in the
same Vi and uv or wv is an arc of �G. Since the sets Vi are disjoint, at most Δ−

arcs leading to v can be added. The extra one in the estimate corresponds to an
arc added because of the tree containing v.

If the subgraphs H [Vi] and H [Vj ] are joined by an edge in H , then vi and vj

are 2(r +1)-reachable in �G′. In particular, the subgraph H ′ obtained from H by
removing the vertices not contained in V1∪· · ·∪Vn and contracting the subgraphs
H [Vi] is a subgraph of the graph H2r+2 as defined in Lemma 1. Consequently,
�0(H ′) ≤ P2r+2)(2Δ−,�2r+1(G)) and thus �r(H) ≤ P2(r+1)(2Δ−,�2r+1(G)).

Theorem 2 guarantees us that there is a choice of fraternal arcs to be added
such that the maximum in-degree of the transitive fraternal augmentation of �G
is at most (Δ−)2 + 2Q0(Δ−,�1(G)). Moreover, since the grads of the transitive
fraternal augmentations are bounded by polynomials in Δ− and grads of G,
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the process can be iterated. In particular, we obtain the following corollaries.
Note that since the existence of an orientation with small maximum in-degree
is guaranteed by the fact that the grad with rank 0 is bounded, we can use a
greedy algorithm to construct it.

Corollary 1. Let G be a class of graphs with bounded expansion. There exist
Δ0, Δ1, . . . such that every graph G ∈ G has an orientation �G0 with maximum
in-degree Δ0 and �Gi has a transitive fraternal augmentation �Gi+1 with maximum
in-degree Δi+1 for every i ≥ 0. Moreover, for every i, �Gi can be computed in
time linear in the number of vertices of G.

Corollary 2. Let G be a class of nowhere dense graphs. For every ε > 0, there
exist functions fi : N → N, i = 0, 1, . . ., fi(n) ∈ O(nε), such that every n-vertex
graph G ∈ G has an orientation �G0 with maximum in-degree f0(n) and �Gi has
a transitive fraternal augmentation �Gi+1 with maximum in-degree fi+1(n) for
every i ≥ 0. Moreover, for every i, �Gi can be computed in time O(n1+ε) in the
number of vertices of G.

3.2 Low Tree-Width and Low-Tree-Depth Coloring

We now mention one structural result on a special type of vertex colorings of
graphs which is important for algorithmic applications and is of independent
interest. In [7], DeVos et al. established the existence of low tree-width color
with bounded number of colors for proper minor-closed classes of graphs:

Theorem 3. Let G be a proper minor-closed class of graphs. For every k, there
exists K such that every graph G ∈ G has a vertex coloring with K colors such
that any k′ color classes, 1 ≤ k′ ≤ k, induce a subgraph of G with tree-width at
most k′ − 1.

Theorem 3 was strengthened by Nešetřil and Ossona de Mendéz in [20] in two
directions: first, the result holds for more general graph classes and second it
guarantees the existence of low tree-depth colorings.

Theorem 4. Let G be a class of graphs with bounded expansion. For every k,
there exists K such that ever graph G ∈ G has a vertex coloring with K colors
such that any k′ color classes, 1 ≤ k′ ≤ k, induce a subgraph of G with tree-depth
at most k′. Moreover, such a coloring can be constructed in linear time for any
graph G from G.

Theorem 4 is implied by the following lemma; we provide its short proof for
completeness.

Lemma 2. For every p ≥ 1 and d ≥ 1, the following holds: if �G0 is an ori-
entation of G, �G1, �G2, . . . a series of its transitive fraternal augmentations and
H a connected subgraph of G with tree-depth at most d, then �G3pd[V (H)] either
contains a clique of order p or an out-branching T of depth at most p such that
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1. the end-vertices of every edge of H are joined by a directed path in T , and
2. if two vertices u and u′ are joined by a directed path in T , then �G3pd[V (H)]

contains the arc uu′ or the arc u′u.

Proof. Fix p and let the proof proceed by induction on d. If d = 1, H is a single
vertex and the claim clearly holds. Assume that d > 1 and let v be a vertex
of H such that the tree-depth of each component of H \ v is at most d − 1.
Let V1, . . . , Vk be the vertex sets of the components of H \ v. By induction,
�G3pd−3p[Vi] either contains a clique of order p or an out-branching Ti such that
any edge of G[Vi] joins a vertex with one of its ancestors and directed paths in Ti

give rise to arcs in �G3pd−3p[Vi]. If �G3pd−3p[Vi] for some i contains a clique of order
p, then so does �G3pd[V (H)]. Hence, we assume the existence of out-branchings
Ti for all i = 1, . . . , k.

Let ri be the root vertex of Ti, i = 1, . . . , k. We claim that ri and v are adjacent
in �G3pd−2p−1: since H is connected, v is adjacent to one of the descendants of ri

in Ti, say w. Let riw1 . . . w� be the oriented path in Ti from ri to w = w�. Since
the depth of Ti is at most p, � ≤ p − 1. Applying the transitive or the fraternal
rule (depending on the orientation of the arc between v and w�), we obtain that
�G3pd−3p+1[Vi] contains an arc between v and w�−1. Repeating the argument,
we get that the vertices v and ri are adjacent in �G3pd−3p+p−1[Vi] = �G3pd−2p−1.
Observe that we have actually proven that if v is adjacent to a vertex u of an
out-branching Ti in �G3pd−3p, then v is adjacent in �G3pd−2p−1 to all the vertices
on the path from ri to u.

Let q be the first index such that the in-degree of v is the same in �G3pd−2p−1+q

and �G3pd−2p−1+q+1. If q ≥ p, then the in-degree of v in �G3pd−2p−1+p is at least
p and thus �G3pd−p contains a clique of order p (on the in-neighbors of v in
�G3pd−p−1). Consequently, �G3pd[V (H)] contains a clique of order p. Hence, we
can assume that q ≤ p − 1.

Let W be the set of vertices w of H such that �G3pd−2p−1+q contains the arc
wv and all the vertices on the path from the ri to w in the out-branching Ti

containing w are in-neighbors of v. Since �G3pd−2p+q contains an arc between any
two vertices of W by the fraternity rule, �G3pd−2p+q[W ∪{v}] contains a directed
Hamilton path, say w1, . . . , w�. Observe that w� = v because of the choice of W .

Let T ′
1, . . . , T

′
k′ be the out-branchings obtained from Ti by removing the ver-

tices contained in W and let r′1, . . . , r′k′ be their roots. Consider now the out-
branching T in �G3pd−2p+q formed by the path w1 . . . w�, the out-branchings
T ′

1, . . . , T
′
k′ and the arcs wir

′
j for j = 1, . . . , k′ where i is the maximum index

such that �G3pd−2p+q contains the arc wir
′
j . Such an index i must exist since either

r′j is a root of one of the out-branchings T1, . . . , Tk and thus �G3pd−2p+q contains
the arc w�r

′
j or W contains the in-neighbor of r′j in one of the out-branchings

T1, . . . , Tk. Hence, T is an out-branching contained in �G3pd−2p+q.
We now verify that the end-vertices of every edge uu′ of H are joined by a

directed path in T . If u = v, then either u′ ∈ W (and thus the existence of
the path follows) or u′ is contained in one of the out-branchings T ′

1, . . . , T
′
k′ , say
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T ′
j. Since r′j �∈ W , T contains the arc vr′j (here, we use that all the vertices

between the root of Ti and a vertex of Ti adjacent to v are also adjacent to v in
�G3pd−2p−1 ⊆ �G3pd−2p+q). The case u′ = v is symmetric and thus we can assume
that neither u nor u′ is v.

If neither u nor u′ is contained in W , then, by induction, they are contained in
the same out-branching T ′

j and are joined by a directed path in T . If both u and
u′ are contained in W , then they are clearly joined by a directed path in T since
they are both contained in the path w1 . . . w�. It remains to consider the case
when u ∈ W and u′ �∈ W . Let m the index such that wm = u. Since u and u′ are
adjacent in G, they are contained in the same out-branching Ti. Further assume
that u′ is contained in an out-branching T ′

j . By induction, �G3pd−3p contains
either the arc ur′j or the arc r′ju. If the arc ur′j is present in �G3pd−3p, then r′j is
adjacent to a vertex wm′ with m′ ≥ m in T . If the arc r′ju is present in �G3pd−3p,
then �G3pd−2p+q contains an arc between r′j and v since �G3pd−2p−1+q contains
the arc uv. If �G3pd−2p+q contained the arc r′jv, the choice of q would imply that
�G3pd−2p−1+q also contained the arc r′jv which would imply that r′j should have
been included in W . Otherwise, �G3pd−2p+q contains the arc vr′j , thus the arc vr′j
is also contained in T and u and u′ are joined by a directed path in T .

We have shown that the out-branching T satisfies that any two end-vertices
of an edge of H are joined by a directed path in T . Since q ≤ p − 1, T is
an out-branching in �G3pd−p. We claim that if u0, . . . , um is a directed path in
�G3pd−p, then the vertices u0, . . . , um form a clique in �G3pd−p+m. Proceed by
induction on m: if m = 1, there is nothing to prove. Otherwise, �G3pd−p+m−1

contains a clique on the vertices u1, . . . , um. By the fraternity or transitivity
rule, �G3pd−p+m contains an arc between u0 and each of the vertices u1, . . . , um.
Hence, the vertices u0, . . . , um form a clique in �G3pd−p+m. We conclude that if
the depth of T is at least p, �G3pd[V (T )] = �G3pd[V (H)] contains a clique of order
p, and if the depth of T is less than p, then any two vertices joined by a directed
path in T are adjacent in �G3pd. The proof of the lemma is now finished.

4 Testing Graph Properties

In the final section of the paper, we want to focus on meta-algorithmic results
for classes of graphs with restricted structure. Let us remark that the results we
present in this section readily translate to relational structures by considering
the concept of Gaifman graph. If R is a relational structure with a domain D,
then the Gaifman graph of R is the graph with vertex set D where two distinct
elements x and y of D are joined by an edge if R contains a relation including
both x and y. For instance, if a graph G is viewed as a binary relational structure,
then the Gaifman graph of G is G itself. Graph concepts we have introduced
translate to relational structures by considering corresponding Gaifman graphs;
e.g., the class of relational structures has bounded expansion, if the class of their
Gaifman graphs has bounded expansion. The results we present further also hold
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for corresponding classes of relational structures under the assumption that the
vocabulary is finite, i.e., the number of different types of relations is finite.

4.1 Σ1-Properties

Analogously to Σ1-formulas, which are first-order formulas with existential quan-
tifiers only, a Σ1-property is a property that can be described by Σ1-formula.
The easiest problem of this kind is testing the existence of a subgraph. Epp-
stein [10, 11] constructed a linear-time algorithm for deciding the existence of
a fixed subgraph for planar graphs. He then extended his algorithm to minor-
closed classes of graphs with locally bounded tree-width [12]. All these results
were generalized to classes of graphs with bounded expansion by Nešetřil and
Ossona de Mendéz in [21, 23]. In fact, they established a more general result on
testing arbitrary Σ1-properties:

Theorem 5. Let Φ be a Σ1-property and G a class of graphs with bounded ex-
pansion. There exists a linear time algorithm deciding Φ for graphs G ∈ G.

The main idea of the algorithm is that if Φ holds for G ∈ G, then the witness
assignment to variables can use at most k colors where k is the number of
quantifiers of Φ. Hence, using Theorem 4, we can color vertices with K colors in
such a way that any k colors induce a graph with tree-depth at most k. After
finding the coloring (in linear time), the problem is reduced to deciding Φ for(
K
k

)
subgraphs of an input graph, each subgraph having tree-depth at most k

(which can be solved, e.g., using the classical Courcelle’s result mentioned at the
beginning of the paper).

Following the lines of the above reasoning, we can obtain an analogous results
for classes of nowhere-dense graphs, see [24] for further details. An algorithm is
almost linear, if for any ε > 0 which is part of the input of the algorithm, the
algorithm runs in time O(n1+ε) where n is the number of vertices of an input
graph.

Theorem 6. Let Φ be a Σ1-property and G a class of nowhere dense graphs.
There exists an almost linear time algorithm deciding Φ for graphs G ∈ G.

Let us now focus on a particular case of Σ1-properties, the existence of short
paths between two vertices. Kowalik and Kurowski [17,18] designed a data struc-
ture with linear build-up time and constant query time answering the existence
of a path of length at most d between two vertices of an input planar graph for a
fixed integer d. In fact, they approach readily generalize to classes of graphs with
bounded expansion. Let us sketch the main idea of the algorithm: let G be an
input graph and consider the sequence of its transitive fraternal augmentations
�G0, . . . , �Gd as defined in Corollary 1. If two vertices u and v are joined by a path
of length at most d, then they are either adjacent in �Gd or they have a com-
mon in-neighbor in �Gd (this can easily be proved by induction on d). Since the
maximum in-degree of �Gd is bounded, the existence of an edge joining the two
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vertices or the existence of their common in-neighbor can be done in constant
time.

The data structure can be dynamized using the result of Brodal and Fager-
berg [4] on maintaining orientations with small in-degrees of degenerate graphs,
see [16]. The arguments readily translate to a setting of classes of graphs with
bounded expansion, see [9]:

Theorem 7. Let G be a class of graphs with bounded expansion and d a fixed
integer. There exists a dynamic data structure for answering the existence of a
path of length at most d in a graph G ∈ G with the following parameters:

– the data structure can be built in linear time,
– each query can be answered in constant time,
– an edge can be added to the represented graph in time O(logd n) where n is

its number of vertices, and
– an edge can be removed in constant time.

4.2 First-Order Properties

We now address the complexity of deciding general first-order properties, i.e.,
those properties that can be described by formulas with quantifications over
graph vertices only (quantification over sets of vertices is not allowed). As exam-
ples of first-order properties, we can mention deciding the existence of a dominat-
ing set of a fixed size or the existence of a vertex cover of a fixed size. First-order
properties can always be decided in polynomial time (with degree depending on
the property) but we are interested in fixed parameter results. The first result
in this direction is the result of Seese [31] that every first-order property can
be tested in linear time for any class of graphs with bounded maximum degree.
The result is not that surprising after we realize that first-order properties are
of very localized nature which is captured in the following classical result of
Gaifman [15]:

Theorem 8. Every first-order formula Φ for graphs is equivalent for some r to
a Boolean combination of formulas of the form

∃x1 · · · ∃xk

(
∧i�=jdist(xi, xj) > 2r

∧
∧i=1,...,kΦr(xi)

)

where each Φr(xi) is r-local with respect to xi, i.e., all quantifiers contained in
Φr(xi) have domain restricted to the r-neighborhood of xi.

In the light of Theorem 8, deciding first-order properties for graphs with max-
imum degree Δ decomposes into a linear number of finite problems (the r-
neighborhood of each vertex contains at most Δ(Δ − 1)r−1 vertices) whose
Boolean combination yields the result on whether the formula is satisfied for
an input graph.

Frick and Grohe [13, 14] extended this result by considering classes of graphs
with locally bounded tree-width. They have shown that any first-order property
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can be decided in almost linear time for any class of graphs with locally bounded
tree-width. In the particular case of planar graphs, they were able to obtain
a linear time algorithm using a different covering algorithm. Their algorithm
uses the following covering result of Peleg [28] which has applications in other
algorithms in the area and thus we would like to mention it explicitly.

Lemma 3. Let k ≥ 1 be a fixed integer. There is an algorithm that given r ≥ 1
and a graph G, outputs sets A1, . . . , Am of vertices of G such that

– for every vertex v of G, there exists Ai containing the r-neighborhood of v,
– every Ai is contained in the 2kr-neighborhood of a vertex of G, and
– the sum |A1| + · · · + |Am| is at most O(n1+1/k).

The running time of the algorithm is linear in the sum of the numbers of edges
contained in G[Ai], i = 1, . . . , k.

Another meta-theorem on graphs with locally restricted structure was obtained
by Dawar, Grohe and Kreutzer [6] who showed that deciding first-order prop-
erties Φ is fixed-parameter tractable for classes of graphs locally excluding a
minor, i.e., there exists a polynomial-time algorithm where the exponent does
not depend on Φ. Nešetřil and Ossona de Mendéz [25] gave a linear time algo-
rithm for deciding the existence of a dominating set of a fixed size for classes
of graphs with bounded expansion. Their result indicates that the results we
mention earlier could hold for classes of graphs with bounded expansion. This
turns out to be true as proven by the authors and Thomas in [9]:

Theorem 9. Let Φ be a first order formula and G a class of graphs with bounded
expansion. There exists a linear-time algorithm deciding Φ for graphs G ∈ G.

Theorem 10. Let Φ be a first order formula and G a class of nowhere dense
graphs. There exists an almost linear time algorithm deciding Φ for graphs G ∈ G.
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19. Nešetřil, J., Ossona de Mendéz, P.: First order properties of nowhere dense struc-
tures (manuscript) (2008)
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