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Abstract. Rank-width is a graph complexity measure that has many
structural properties. It is known that the rank-width of an undirected
graph is the maximum over all induced prime graphs with respect to split
decomposition and an undirected graph has rank-width at most 1 if and
only if it is a distance-hereditary graph. We are interested in an extension
of these results to directed graphs. We give several characterizations of
directed graphs of rank-width 1 and we prove that the rank-width of
a directed graph is the maximum over all induced prime graphs with
respect to displit decomposition, a new decomposition on directed graphs.

1 Introduction

Rank-width [18,19] is a graph complexity measure introduced by Oum and Sey-
mour in their investigations on recognition algorithms for undirected graphs of
clique-width [4] at most k, for fixed k. It is known that a class of graphs has
bounded rank-width if and only if it has bounded clique-width [19]. However,
rank-width has better algorithmic properties: undirected graphs of rank-width
at most k can be recognized by a cubic-time algorithm [13] and are characterized
by a finite list of undirected graphs to exclude as vertex-minors [18].

Another interesting fact is that rank-width is related to split decomposition.
The split decomposition, introduced by Cunningham [5], is a generalisation of
the well known modular decomposition [10,16]. It was defined on graphs (directed
or not), but only the undirected case has been widely studied in literature. Split
decomposition of undirected graphs can be computed in linear time [7], and can
be used in several problems such as: circle graph recognition [9,21], parity graph
recognition [3,7], and solving some optimization problems [5,3,11,20]. The rank-
width of an undirected graph is the maximum over the rank-width of its induced
prime graphs with respect to split decomposition. Moreover, undirected graphs
of rank-width at most 1 are exactly distance hereditary graphs [18], which are
graphs that are completely decomposable by the split decomposition.

Despite all these positive results of rank-width on clique-width, clique-width
has an undeniable advantage on rank-width: it is defined for undirected as well
as directed graphs and its definition can be extended to relational structures. In
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his investigations for an extension of rank-width to relational structures, Kanté
defined in [15] a notion of rank-width for directed graphs, called GF(4)-rank-
width, and that generalized the rank-width of undirected graphs. He, moreover,
generalized two results on undirected graphs: directed graphs of GF(4)-rank-
width k can be recognized by a cubic-time algorithm and are also characterized
by a finite list of directed graphs to exclude as vertex-minors. It is thus natural to
ask whether we can generalize all the results known for rank-width of undirected
graphs.

In this paper, we are interested in a characterization of directed graphs of
GF(4)-rank-width 1, similar to the one for undirected graphs. In the literature,
there exist several characterizations of undirected graphs of rank-width 1 that
we recall in the following.

Theorem 1 ([1,12,18]). Let G be a connected undirected graph. Then the fol-
lowing conditions are equivalent:

1. G is completely decomposable by the split decomposition ( i.e., every node in
the split decomposition tree is degenerated).

2. G can be obtained from a single vertex by creating twins or adding pendant
vertices.

3. G has rank-width 1.
4. For every W ⊆ VG with |W | ≥ 4, G[W ] has a non trivial split.
5. G is (house, hole, domino, gem)-free.
6. G is distance hereditary ( i.e., for every x, y ∈ VG, every chordless path

between x and y has the same length).

The main result of this paper is the extension of Theorem 1 to directed graphs
(Theorem 6). We will show in particular that directed graphs of GF(4)-rank-
width 1 are obtained by orienting in a certain way distance hereditary graphs
and are exactly directed graphs completely decomposable by the displit decom-
position, a new decomposition that generalizes split decomposition. As a conse-
quence we get that the GF(4)-rank-width of a directed graph is the maximum
over the GF(4)-rank-width of its induced prime graphs with respect to displit
decomposition.

The paper is organized as follows. We give some notations in Section 2 and
recall the notion of GF(4)-rank-width in Section 3. In Section 4 we define the
notion of displit decomposition and derive some basic properties. In Section
5 we prove our main result. We conclude by a comparison between the split
decomposition of directed graphs introduced by Cunningham [5] and the displit
decomposition.

2 Preliminaries

When the context is clear we will write u to denote the set {u}. We denote by 2V

the power-set of a set V and we let � be the set of natural integers. A function
f : 2V → � is said symmetric if for any X ⊆ V, f(X) = f(V \X); it is said
sub-modular if for any X, Y ⊆ V, f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).
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For sets R and C, an (R, C)-matrix is a matrix where the rows are indexed by
elements in R and columns indexed by elements in C. For an (R, C)-matrix M ,
if X ⊆ R and Y ⊆ C, we let M [X, Y ] be the sub-matrix of M where the rows
and the columns are indexed by X and Y respectively. If M is an (X, Y )-matrix,
M t denotes the transposed (Y, X)-matrix. A Y -vector is an (X, Y )-matrix where
|X | = 1. The matrix rank function is denoted by rk.

A directed graph (or digraph) G is a couple (VG, EG) where VG is the set of ver-
tices and EG, the set of edges, is a set of ordered pairs (x, y) with x, y ∈ VG and
x 	= y. We consider undirected graphs as special cases of directed graphs where
(x, y) ∈ EG ⇔ (y, x) ∈ EG (edges are denoted xy in this case). Unless otherwise
specified, a graph is considered as directed. If G is a digraph and x a vertex of G,
we denote by N+

G (x) the set {y | (x, y) ∈ EG}, by N−
G (x) the set {y | (y, x) ∈ EG}

and by NG(x) the set N+
G (x) ∪ N−

G (x). The degree of x is |NG(x)|.
For a graph G, we denote by G[X ] the sub-graph of G induced by X ⊆ VG and

we let G − X be the sub-graph G[VG\X ]. If G is a digraph, let u(G) be the undi-
rected graph obtained from G by forgetting the directions of edges, i.e., u(G) =
(VG, EG∪{(y, x) | (x, y) ∈ EG}). A digraphG is said strongly connected if for every
pair x, y ∈ VG, there is a sequence x0 = x, x1, . . . xk = y such that (xi, xi+1) ∈ EG

for every i ∈ {0, . . . k − 1}, and it is said connected if u(G) is connected.
An undirected graph is acyclic if it does not contain simple cycles of length

at least 3. A tree is an acyclic connected undirected graph. In order to avoid
confusions, the vertices of trees will be called nodes. The nodes of degree at
most 1 in trees are called leaves and denoted by LT . A sub-cubic tree is a tree
such that the degree of each node is at most 3.

A layout of a set V is a pair (T,L) of an undirected tree T and a bijective
function L : V → LT . For each edge (u, v) of T , we let Xuv be the set of leaves
reachable from u by a path going through v. Each edge (u, v) of T induces
a bipartition {Xuv, LT \Xuv} of LT , and thus a bipartition {Xuv, V \Xuv} =
{L−1(Xuv),L−1(LT \Xuv)} of V .

3 Rank-Width of Digraphs

In [15] Kanté defined a notion of rank-width for digraphs named GF(4)-rank-
width. This notion is based on a function, called cut-rank function, that measures
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how some bipartitions of sets of vertices are connected. The cut-rank function is
based on a representation of digraphs by matrices over the field GF(4). We recall
that GF(4) has four elements {0, 1, �, �2} with the property that 1 + �+ �

2 = 0
and �

3 = 1 and is of characteristic 2.
For a digraph G, we denote by MG the (VG, VG)-matrix over GF(4) where:

MG[x, y] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if (x, y) /∈ EG and (y, x) /∈ EG

� if (x, y) ∈ EG and (y, x) /∈ EG

�
2 if (y, x) ∈ EG and (x, y) /∈ EG

1 if (x, y) ∈ EG and (y, x) ∈ EG.

For every subset X of VG, we let cutrk(4)
G (X), called cut-rank function, be

rk
(
MG[X, VG\X]

)
.

Lemma 1 ([15]). For every digraph G, the function cutrk(4)
G is symmetric and

sub-modular.

Definition 1 (GF(4)-Rank-Width). A sub-cubic layout of a digraph G is a
layout (T,L) of VG where T is sub-cubic. Let (T,L) be a sub-cubic layout of a
digraph G. The GF(4)-rank-width of an edge (u, v) of T is cutrk(4)

G (Xuv). The
GF(4)-rank-width of a sub-cubic layout (T,L) is the maximum GF(4)-rank-width
over all edges of T . The GF(4)-rank-width of G, denoted by rwd(4)(G), is the
minimum GF(4)-rank-width over all sub-cubic layouts of G.

Observation 1. Since GF(4) is an extension of GF(2), for every undirected
graph G, we have rwd(4)(G) = rwd(G), where rwd(G) denotes the rank-width of
G.

4 Displit Decomposition

4.1 Bi-Partitive Families

Two bipartitions {X1, X2} and {Y1, Y2} of a set V overlap if Xi ∩ Yj 	= ∅ for
every i, j ∈ {1, 2}.
Definition 2 (Bi-Partitive Family). Let V be a finite set and let F be a
family of bipartitions of V . Then F is bi-partitive if:

– {∅, V } 	∈ F ,
– for all v ∈ V , {{v}, V \{v}} ∈ F and
– for all {X1, X2} ∈ F and {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2}

overlap, then {Xi ∩ Yj , V \(Xi ∩ Yj)} ∈ F , for every i, j ∈ {1, 2}.
A member {X1, X2} of a bi-partitive family F is trivial if |X1| ≤ 1 or |X2| ≤ 1,
and is strong if there is no {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2} overlap.
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Bi-partitive families have been studied in [6]. They are very close to partitive
families [2,16] introduced in order to generalize properties of modular decompo-
sition. An example of a bi-partitive family is the family of splits1 in a strongly
connected digraph [5]. The following proposition gives another example of a
bi-partitive family.

Proposition 1 (Folklore). Let f : 2V → � be a symmetric and sub-modular
function and let m = min

∅�X�V
f(X). Then the family F = {{X, V \X} | f(X) =

m} is bi-partitive.

Proof. Let {X, V \X} and {Y, V \Y } be in F such that {X, V \X} and {Y, V \Y }
overlap. Thus f(X ∩ Y ) + f(X ∪ Y ) ≤ 2m. Since X ∩ Y and X ∪ Y are non-
empty, f(X ∩Y ) ≥ m and f(X ∪Y ) ≥ m. Thus f(X ∩Y ) = f(X ∪Y ) = m and
{X ∩ Y, V \(X ∩ Y )} and {X ∪ Y, V \(X ∪ Y )} are in F . �

A major result on bi-partitive families, that we recall in the following theorem,
is that every bi-partitive family can be represented by a unique labeled tree.

Theorem 2. Let F be a bi-partitive family on a finite set V . Then there is
a unique layout (T,L) of V , called the representative layout, such that each
internal node of T has at least 3 neighbors, is marked degenerate, linear or
prime and:

– For every (u, v) ∈ ET , the bipartition {Xuv, V \Xuv} is a strong bipartition
in F and there is no other strong bipartition in F .

– For every internal node u of T :
• If u is degenerated, then for every ∅ � W � NT (u), the bipartition
{∪v∈W Xuv, V \ ∪v∈W Xuv} is in F .

• If u is linear, there is an ordering v1, . . . , vk of NT (u) such that for
every 1 ≤ i ≤ j < k, the bipartition {∪�∈{i,...,j}Xuv� , V \∪�∈{i,...,j}Xuv�}
is in F .

– There is no other bipartition in F .

(By convention, an internal node of degree 3 is always degenerated.)

Remark 1. Theorem 2 is proved in [6] using a different formalism. It follows
also directly from results on partitive families [2,16] using the simple bijection
f(F) = {X ⊆ V \{v} | {X, V \X} ∈ F} between bi-partitive families on V and
partitive families on V \{v}, where v ∈ V is fixed.

Remark 2. If F is a bi-partitive family with the additional property:

– for all {X1, X2} ∈ F and {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2}
overlap, {X1ΔY1, X1ΔY2} ∈ F 2,

1 A split in a digraph G is a bipartition {X, VG\X} of VG, where ∅ � X � VG, such
that for every u, v ∈ X, (N+

G (u) \ X �= ∅) ∧ (N+
G (v) \ X �= ∅) ⇒ (N+

G (u) \ X =
N+

G (v) \X), and (N−
G (u) \X �= ∅)∧ (N−

G (v) \X �= ∅) ⇒ (N−
G (u) \X = N−

G (v) \X).
2 For two sets X and Y , we let XΔY be the set X\Y ∪ Y \X.
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Fig. 1. Schematic view of a displit (left) and a Cunningham’s split (right)

then F is said to be strongly bi-partitive. The representative layout of a strongly
bi-partitive family has no linear node. Cunningham showed that the family
of splits in a connected undirected graph is strongly bi-partitive [5]. Another
example is the family of bi-joins in an undirected graph [17].

4.2 Displits

Definition 3 (Displit). Let G be a digraph. A bipartition {X1, X2} of VG is a
displit if X1 	= ∅, X2 	= ∅ and cutrk(4)

G (X1) ≤ 1.

Figure 1 shows a comparison between displits and splits on digraphs. A digraph
G is degenerated (for the displit decomposition) if every bipartition of VG is a
displit, and G is prime if every displit in G is trivial. Finally G is linear if there
is an ordering x1, . . . , xn of its vertices such that the family of displits in G is
{{{xi, . . . , xj}, VG\ {xi, . . . , xj}} | 1 ≤ i ≤ j < n}. By convention, a graph with
at most 3 vertices is only degenerated.

By Proposition 1, the family of displits in a connected digraph is bi-partitive.
By Theorem 2, this family can be represented by a unique labeled layout, that
we call displit decomposition.

Observation 2. If {X1, X2} is a displit in G, then {X1, X2} is a split in u(G).
The converse is not necessarily true.

4.3 Quotient Graphs

Let (T,L) be a displit decomposition of a connected digraph G and let u be an
internal node of T . We recall that for every node v in NT (u), Xuv is the set of
leaves reachable from u by a path going through v. The set {Xuv = L−1(Xuv) |
v ∈ NT (u)} is a proper partition of VG, and for every v ∈ NT (u), {Xuv, VG\Xuv}
is a displit.

For every v ∈ NT (u), we choose a vertex xv in Xuv such that xv is adjacent
to a vertex in VG\Xuv. Such a xv always exists since G is connected. Let C(u)
be the graph of vertex set NT (u) and of edge set {(v, w) | (xv, xw) ∈ EG}. It is
worth noticing that C(u) is isomorphic to G[{xv | v ∈ NT (u)}], and that C(u)
is not unique for a node u. Then we will consider C(u) as an induced sub-graph
of G. We now prove or state some technical lemmas.
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Lemma 2. Let {X, Y } be a displit in G, and let x ∈ X and y ∈ Y such that
x is adjacent to y. Let {X ′, Y ′} be a bipartition of VG with Y ′ ⊆ Y . Then
cutrk(4)

G (Y ′) = cutrk(4)
G′ (Y ′), where G′ = G[Y ∪ {x}].

Proof. Obviously cutrk(4)
G′ (Y ′) ≤ cutrk(4)

G (Y ′). By definition of displits, there is
an X-vector A and a Y -vector B such that MG[X, Y ] = At ·B. Since x is adjacent
to a vertex in Y , A[x] 	= 0. Thus MG[X, Y ′] = A[x]−1 · At · MG[{x}, Y ′]. There-
fore, rk(MG[X ′\(X\{x}), Y ′]) = rk(MG[X ′, Y ′]) since all rows in MG[X, Y ′] are
generated by the row MG[{x}, Y ′]. �

Lemma 3. Let (T,L) be a displit decomposition of a digraph G and let u be a
node of T . If u is prime (resp. degenerated, linear), then C(u) is prime (resp.
degenerated, linear).

Proof. Let {X, Y } be a bi-partition of VC(u), let X ′ = ∪v∈XXuv and let Y ′ =
VG\X ′. We show that {X, Y } is a displit in C(u) if and only if {X ′, Y ′} is a
displit in G. Trivially, if {X ′, Y ′} is a displit in G, then {X, Y } is a displit in
C(u).

Now suppose that {X, Y } is a displit in C(u). {X ′, Y ′} does not overlap
{Xuv, VG\Xuv} for every v ∈ NT (u). We apply |NT (u)| times Lemma 2, for all
{Xuv, VG\Xuv}. Thus {X ′, Y ′} is a displit if and only if {X, Y } is a displit. �

The following lemmas give characterization of degenerated and linear digraphs.
(Proofs are omitted.)

Lemma 4. If G is degenerated with at least 4 vertices, then either u(G) is a
star, or G is C′

3 where each of the 3 vertices is substituted by a complete graph
(maybe with 0 vertex).

Lemma 5. If G is linear and has at least 4 vertices, then there is an ordering
(x1, . . . , xn) of vertices of VG, and a function f : VG → {0, 1, 2} such that for all
j > i:

– (xi, xj) ∈ EG if f(xi) ≡ f(xj) (mod 3) or f(xi) ≡ f(xj) + 1 (mod 3),
– (xj , xi) ∈ EG if f(xi) ≡ f(xj) − 1 (mod 3) or f(xi) ≡ f(xj) + 1 (mod 3),
– there are no other edges in the graph.

Theorem 3. Let G be a connected digraph with at least 3 vertices, and let (T,L)
be its displit decomposition. Then rwd(4)(G) = max{rwd(4)(C(u)) | u ∈ VT \LT }.
Proof. Let m = max{rwd(4)(C(u)) | u ∈ VT \LT}. Obviously m ≤ rwd(4)(G)
(since C(u) is an induced sub-graph of G). For every u ∈ VT \LT , let (Tu,Lu) be
a sub-cubic layout of C(u) of GF(4)-rank-width at most m. We suppose w.l.o.g.
that the Tu are pairwise disjoint. We construct a sub-cubic layout (T ′,L′) of G of
GF(4)-rank-width at most m. Let T ′ be the union of all Tu (for u ∈ VT \LT ), after
the identification of the vertices u in Tv and v in Tu for every (u, v) ∈ ET−LT , and
after contraction of every vertex of degree 2. For all x ∈ VG, let L′(x) = Lu(L(x))
where {u} = NT (L(x)).

It is not hard to see that (T ′,L′) is a sub-cubic layout of G. Moreover, by
Lemma 2, in T ′ every edge has GF(4)-rank-width at most m. �
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4.4 Decomposition Algorithm

It is known that the split decomposition of an undirected graph can be computed
in linear time [7], and the split decomposition of a digraph in time O(m log(n))
[14]. We present here a simple O(nm) algorithm to compute the displit decom-
position of a digraph. This algorithm is a simple adaptation of [9]. Due to space
limitation, we present only the main lines, stated in the following two lemmas
without proofs.

Lemma 6. Let x and y be two vertices of a connected digraph G. We can com-
pute in time O(n + m) a non trivial displit {X, Y } such that x ∈ X and y ∈ Y
(if it exists).

Lemma 7. Given a digraph G, we can compute in time O(nm) a family F of
non overlapping displits such that for every displit {X, Y } in G, either {X, Y } ∈
F , or there is a bipartition {X ′, Y ′} ∈ F such that {X, Y } and {X ′, Y ′} overlap.

The family constructed in the previous lemma contains obviously all strong
displits in G. A final O(nm) procedure finds every non-strong displits in F . This
leads to the following theorem.

Theorem 4. The displit decomposition of every digraph can be computed in
time O(nm).

5 Digraphs of GF(4)-Rank-Width 1

In [15] Kanté defined a notion of vertex-minor for digraphs that extended the
one for undirected graphs. He also characterized the class of digraphs of GF(4)-
rank-width at most k in the following.

Theorem 5 ([15]). For each k, there is a finite list Ck of digraphs having at
most (6k+1 − 1)/5 vertices such that a digraph G has GF(4)-rank-width at most
k if and only if no digraph in Ck is isomorphic to a vertex-minor of G.

When k = 1, the digraphs to exclude as vertex-minors have at most 7 vertices.
However, we do not know any polynomial-time algorithm that checks whether
a given graph is a vertex-minor of another. We will give in this section several
characterizations of digraphs of GF(4)-rank-width 1. As a consequence we get
an algorithm for recognizing digraphs of GF(4)-rank-width 1.

A vertex x of a digraph G is a pendant vertex of another vertex y if y is the only
neighbor of x in G. Two vertices x and y of a digraph G are called dtwins if x and
y verify one of the following exclusive conditions (A = N+

G−y(x), B = N−
G−y(x)):

1. N+
G−x(y) = A, N−

G−x(y) = B or,
2. N+

G−x(y) = B, N−
G−x(y) = (B\A) ∪ (A\B) or,

3. N+
G−x(y) = (A\B) ∪ (B\A), N−

G−x(y) = A.
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We say that a digraph is completely decomposable by the displit decomposition if
every node in the displit decomposition is degenerated or linear. The main result
of this paper is the following theorem, analogous to Theorem 1.

Theorem 6. Let G be a connected digraph with at least 2 vertices. Then the
following conditions are equivalent:

1. G is completely decomposable by the displit decomposition.
2. G can be obtained from a single vertex by creating dtwins or adding pendant

vertices.
3. G has GF(4)-rank-width 1.
4. For every W ⊆ V with |W | ≥ 4, G[W ] has a non-trivial displit.
5. u(G) is distance-hereditary and for every W ⊆ V with |W | ≤ 5, we have

rwd(4)(G[W ]) ≤ 1.

Condition 5 gives a characterization of digraphs of GF(4)-rank-width 1 by for-
bidden induced sub-graphs: a digraph has GF(4)-rank-width 1 if and only if it is
(H, C)-free, where H is the set of digraphs G such that u(G) is a house, a gem,
a domino or a hole (Ck, k ≥ 5), and C is the set of connected digraphs G with at
most 5 vertices such that rwd(4)(G) > 1 and for every x ∈ VG, rwd(4)(G−x) ≤ 1.

Before proving Theorem 6, let us state and prove two technical propositions.
The following is immediate from the definitions.

Proposition 2. Let x and y be two vertices of a digraph G. Then {x, y} is a
displit if and only if x and y are dtwins or x is a pendant vertex of y or y is a
pendant vertex of x.

The following proposition is a straightforward adaptation of [18, Proposition
7.1].

Proposition 3. Let x and y be dtwins of a digraph G such that G − x has at
least one edge. Then rwd(4)(G − x) = rwd(4)(G).

Proof. By definition of GF(4)-rank-width we have rwd(4)(G − x) ≤ rwd(4)(G).
We will prove that rwd(4)(G−x) ≥ rwd(4)(G). Let (T,L) be a sub-cubic layout of
GF(4)-rank-width k = rwd(4)(G−x) of G−x. By definition, there is a bijection
L between VG−x and LT . Let v = L(y) and let u ∈ VT such that uv ∈ ET . Let T ′

be obtained from T as follows: VT ′ is the set VT ∪{u′, w} (where u′ and w are two
new nodes) and ET ′ the set (ET \{uv}) ∪ {uu′, u′v, u′w}. We let L′ : VG → LT ′

be such that L′(x) = w and for every z ∈ VG\x, L′(z) = L(z).
It is clear that (T ′,L′) is a sub-cubic layout of G. We claim that the GF(4)-

rank-width of (T ′,L′) is equal to the GF(4)-rank-width of (T,L).
It is clear that the GF(4)-rank-width of the edges u′v and u′w are at most

1. Since x and y are dtwins, the GF(4)-rank-width of the edge uu′ is at most 1
(Proposition 2). Moreover, the other edges of T ′ are in T , then their GF(4)-rank-
width in (T ′,L′) is equal to their GF(4)-rank-width in (T,L) (Lemma 2). Since
G−x has at least one edge we have rwd(4)(G−x) ≥ 1. Therefore rwd(4)(G−x) ≥
rwd(4)(G). �
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We can now begin the proof of Theorem 6.

Proof (Proof of Theorem 6). 1 → 2). By induction on |VG|. It is trivial if |VG| ≤ 2.
Otherwise, let (T,L) be the displit decomposition of G, and let u be a leaf in T −
LT . If u is degenerated, let {v, w} ⊆ NT (u)∩LT . Otherwise, u is linear and has at
least 4 neighbors. Let v1, . . . vk be its ordering. If NT (u)\LT ⊆ {v2, . . . , vk−1},
take v = v1 and w = vk. Otherwise, take v = v2 and w = v3. In all cases,
{L−1({v, w}), VG\L−1({v, w})} is a displit. By Proposition 2, either x = L−1(v)
and y = L−1(w) are dtwins, or one is a pendant vertex of the other. If x and y
are dtwins or x is a pendant vertex of y, we let G′ = G−x, otherwise G′ = G−y.
By induction G′ is obtained from a single vertex by creating dtwins or adding
pendant vertices.

2 → 3). By induction on |VG|. It is trivial if |VG| ≤ 2. Otherwise, let x ∈ VG

be the last added vertex. If x is a pendant vertex, let {y} = NG(x), otherwise
let y be the dtwin of x. By induction, rwd(4)(G − x) = 1. Using Proposition 3,
rwd(4)(G) = 1.

3 → 4). If rwd(4)(G) ≤ 1, then for every W ⊆ VG, rwd(4)(G[W ]) ≤ 1. When
|W | ≥ 4, a sub-cubic layout of G[W ] has an edge (u, v) such that {Xuv, V \Xuv}
is non-trivial, and thus G[W ] has a non-trivial displit.

4 → 1). Suppose that G is not completely decomposable. Then the displit
decomposition of G has a prime node u. By definition of a representative layout,
the degree of u is at least 4. By Lemma 3, the quotient graph C(u) is prime and
is an induced sub-graph of G with at least 4 vertices.

3 → 5). By Observation 2, rwd(u(G)) = 1 since the layout of GF(4)-rank-
width 1 for G is a layout of rank-width 1 for u(G). Thus by Theorem 1, u(G) is
distance hereditary. Moreover, for every W ⊆ V , we have rwd(4)(G[W ]) ≤ 1.

5 → 3). Due to space limitation we will give only a sketch of the proof. Suppose
that G is a digraph such that rwd(4)(G) > 1 and such that u(G) is distance
hereditary. Let W be a minimal subset of VG such that rwd(4)(G[W ]) > 1.
Working on the split decomposition of u(G[W ]), one can show successively that:

– u(G[W ]) has no pendant vertex,
– if u(G[W ]) has a false twin, then G[W ] has at most 4 vertices,
– if u(G[W ]) has no false twin and no pendant vertex, then u(G) is complete,
– and if u(G[W ]) is complete, then G[W ] has at most 5 vertices.

Thus there is a W ⊆ VG of size at most 5 such that rwd(4)(G[W ]) > 1. �

As a corollary of Theorems 4 and 6, we get an algorithm for recognizing digraphs
of GF(4)-rank-width 1.

Corollary 1. Digraphs of GF(4)-rank-width 1 can be recognized in time O(nm).

6 Concluding Remarks

Differences with Cunningham’s split decomposition of digraphs. Cunningham
showed that the family of splits in a strongly connected digraph is bi-partitive.
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He also gave a characterization of degenerated and linear digraphs for the split
decomposition: a digraph is degenerated for the split decomposition if and only
if it is complete or is a star, and is linear if and only if it is a circle of transitive
tournaments (CTT) [5].

The displit decomposition and the split decomposition of digraphs are both
generalization of the split decomposition of undirected graphs. A first difference
is that for the displit decomposition the graph has only to be connected.

The quotient graphs of the displit decomposition are induced sub-graphs of
the original graph; this is not necessarily true for the split decomposition of
digraphs.

Finally, the split decomposition and the displit decomposition are mutually
exclusive. For all k ≥ 3, the graph C′

k is linear for the split decomposition
(and thus completely decomposable) since it is a CTT, but it is prime for the
displit decomposition since u(C′

k) is prime for the split decomposition. In the
other hand, we can construct an infinite family of graphs linear for the displit
decomposition and prime for the split decomposition.

Links between bi-rank-width and Cunningham’s split decomposition. Kanté de-
fined another digraph parameter called bi-rank-with, and showed relations be-
tween GF(4)-rank-width and bi-rank-width [15]. A strongly connected digraph
is completely decomposable by Cunningham’s split decomposition if and only if
it has bi-rank-width 2. It is open to find another characterization for digraphs
of bi-rank-width 2.

Generalization to 2-structures. A 2-structure is a complete digraph with labels
on edges. We mention that GF(4)-rank-width and displit decomposition can be
generalized to 2-structures over finite fields. For a field �, we obtain a decompo-
sition for 2-structures over � with a characterization theorem similar to Theorem
6. An interesting case is GF(3), which gives a decomposition theory for oriented
graphs (i.e., directed anti-symmetric graph).
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