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Abstract. In this paper we consider two problems: the edge coloring
and the strong edge coloring problems on unit disk graphs (UDGs).
Both problems have important applications in wireless sensor networks
as they can be used to model link scheduling problems in such networks.
It is well known that both problems are NP-complete, and approximation
algorithms for them have been extensively studied under the centralized
model of computation. Centralized algorithms, however, are not suitable
for ad-hoc wireless sensor networks whose devices typically have limited
resources, and lack the centralized coordination.

We develop local distributed approximation algorithms for the edge
coloring and the strong edge coloring problems on unit disk graphs.
For the edge coloring problem, our local distributed algorithm has ap-
proximation ratio 2 and locality 50. We show that the locality upper bound
can be improved to 28 while keeping the same approximation ratio, at the
expense of increasing the computation time at each node. For the strong
edge coloring problem on UDGs, we present two local distributed al-
gorithms with different tradeoffs between their approximation ratio and
locality. The first algorithm has ratio 128 and locality 22, whereas the sec-
ond algorithm has ratio 10 and locality 180.

1 Introduction

The edge coloring problem is to color the edges of a given graph G using the
minimum number of colors so that no two edges of the same color are adjacent.
The strong edge coloring problem is to color the edges of a given graph G
with the minimum number of colors so that no two edges with the same color are
of distance less than 2. The edge coloring and the strong edge coloring
problems are known to be NP-complete even on restricted classes of graphs [4,9].
Since both problems have numerous applications in networks where they model
channel assignments/scheduling problems (see [1,2,3,7,11,12], among others), it
is natural to seek approximation algorithms for them.

For the edge coloring problem, Vizing’s theorem [13] showed that any graph
with maximum degree Δ has an edge coloring that uses at most Δ + 1 colors;
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however, his result was nonconstructive. Misra and Gries [10] gave a polynomial-
time constructive proof of Vizing’s theorem, thus showing that the problem can
be approximated to within an additive constant of 1. Ramanathan [11] gave a very
simple centralized greedy algorithm for the problem of ratio 2. Under the distribu-
tive model of computation, Gandam et al. [3] gave a distributed approximation
algorithm based on Misra and Gries’ [10] constructive proof of Vizing’s theorem
that approximates the problem to within an additive constant of 1. Kodialam and
Nandagopal [7] gave a simple distributive algorithm of ratio 2, which was based
on the centralized greedy algorithm of Ramanathan [11].

For the strong edge coloring problem on planar graphs, Barrett el al. [1]
gave a centralized algorithm that approximates the strong edge coloring
problem to ratio 17. This ratio has recently been improved to 2 by Ito et al. [5].

The assumed underlying graph model and the assumed computational model
in the above results, however, do not seem appropriate for ad-hoc wireless sensor
networks. In wireless sensor networks, devices can in principal communicate if
they are in each other’s transmission range. Therefore, a general graph model,
or even a plane (embedded planar) graph model, is too flexible in the sense that
it does not reflect the restrictions on the connectivity of such networks. More-
over, the topology of such networks undergoes constant change, and the devices
in those ad-hoc networks have limited energy/power. Therefore, any assumed
computational model should take into account the decentralized nature of such
networks, and should be sensitive to issues such as scalability, robustness, and
fault tolerance. In terms of the underlying graph model, when studying wire-
less sensor networks, it is natural to embed them in a Euclidean metric space.
A common simple embedding assumes that the space is two dimensional, and
that the transmission range of all devices is the same. In that case, the net-
work is modeled as a Unit Disk Graph, abbreviated UDG henceforth, in the
Euclidean plane: the nodes of the UDG correspond to the mobile wireless de-
vices, and its edges connect pairs of nodes whose corresponding devices are in
each other’s transmission range equal to one unit. While this model is ideal-
ized, it has the advantage of being easier to work with. Meaningful theoreti-
cal and practical results can be derived under this model that, hopefully, will
carry (at least partially) to more general models. Moreover, there are real ex-
amples where such models make sense: boats on water surfaces, vehicles in a
relatively flat desert, etc.... In terms of the computational model, most of the
above issues (scalability, robustness, fault tolerance) can be dealt with under the
local distributed computational model, as defined by Linial [8]. A distributed
algorithm is said to be k-local (where k ≥ 0 is an integer) if the computa-
tion at each node of the graph depends solely on the initial state (in our case
the ID and coordinates) of the nodes at distance (number of edges) at most
k from the node (i.e., within k hops from the node). An algorithm is called
local if it is k-local for some integer constant k. Efficient local distributed algo-
rithms are naturally fault-tolerant and robust because faults and changes can be
handled locally by such algorithms. These algorithms are also scalable because
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the computation performed by a device is not affected by the total size of the
network.

Local distributed algorithms for the edge coloring problems on UDGs have
been considered in [2]. However, the results in [2] only deal with a restricted
subclass of UDGs called the “Yao-Like” subgraphs, and give an approximation
algorithm for the edge coloring problem within an additive constant of 1 from
the optimal solution. For the strong edge coloring problem on UDGs, we
are only aware of the distributed approximation algorithm given by Barrett [1]
which achieves an O(1) ratio; however, this algorithm is distributed but not local.

In this paper we develop local distributed approximation algorithms for the
the edge coloring and the strong edge coloring problems on UDGs.
For the edge coloring problem, we present a local distributed algorithm of
approximation ratio 2 and locality 50; this algorithm works for a generalization
of UDGs, called quasi-UDGs. We show that the locality upper bound can be
improved to 28, while keeping the same approximation ratio, at the expense of
increasing the computation time at each node. For the strong edge coloring
problem on UDGs, we present two local distributed algorithms with different
tradeoffs between their approximation ratio and locality. The first algorithm has
approximation ratio 128 and locality 22, whereas the second algorithm has ratio
10 and locality 180.

2 Definitions and Notations

We assume familiarity with the basic graph-theoretic notations and terminologies.
Given a set of nodes S in the Euclidean plane, the Euclidean graph E on S is

the complete graph whose node-set is S. The unit disk graph, shortly UDG, G
on S is the subgraph of E with the same node-set as E , and such that (u, v) is
an edge of G if and only if |(u, v)| ≤ 1, where |(u, v)| is the Euclidean length of
edge (u, v).

Let 0 < r ≤ 1 be a constant. The quasi-UDG on S with parameter r, is the
subgraph G of E with the same node-set as E , and such that for any two nodes
u and v in G: if |(u, v)| ≤ r then |(u, v)| is an edge of G, if r < |(u, v)| ≤ 1 then
(u, v) may or may not be an edge of G, and if |(u, v)| > 1 then (u, v) is not an
edge of G. Clearly, a UDG is a quasi-UDG with r = 1.

Let H be a graph. We denote by V (H) and E(H) the set of nodes and the
set of edges of H , respectively. The length of a path P in H , denoted |P |, is the
number of edges in P . A shortest path between two nodes u and v in H is a
path between u and v with the minimum length. A node v is said to be an i-hop
neighbor of u in H , if the length of a shortest path between u and v in H is at
most i. If u is an i-hop neighbor of v in H , we will say that the hop distance
between u and v in H is at most i. For a node u ∈ H , and a natural number i,
define Ni[u] to be the set of i-hop neighbors of u in H .

For two edges e and e′ in H , the distance between e and e′ is the minimum
length of a path, among all paths in H connecting an endpoint of e to an endpoint
of e′. Two distinct edges are adjacent if their distance is 0, or equivalently, if they
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share an endpoint. An edge coloring of H is an assignment of colors1 to the edges
in E(H) such that no two adjacent edges in H are assigned the same color. A
strong edge coloring of a graph H is an assignment of colors to the edges in
E(H) such that no two edges of distance at most 1 are assigned the same color.
A minimum edge coloring of H is an edge coloring of H that uses the minimum
number of colors. Similarly, a minimum strong edge coloring of H is a strong
edge coloring of H that uses the minimum number of colors.

An approximation algorithm for a minimization problem Q is an algorithm
that for each instance of Q computes a solution to the instance. The ratio of an
approximation algorithm for a minimization problem is the maximum value, over
all instances of the problem, of the size of the solution to the instance returned
by the algorithm over the minimum-size solution to the instance.

The algorithms designed in this paper are k-local distributed algorithms. Each
node in these algorithms starts by computing its k-hop neighbors, and performs
only local computations afterwards. For a fixed k, it was shown in [6] that the
k-hop neighborhoods of the nodes in a UDG (or a quasi-UDG) can be computed
by a local distributed algorithm in which the total number of messages sent by
all the nodes in the UDG is O(n), where n is the number of nodes in the UDG.
Therefore, the message complexity of each of the presented local distributed
algorithms is O(n).

3 Preliminaries

Let α > 2 be a constant. Fix an infinite square tiling (i.e., a grid) T of the plane
of tile dimensions α × α.

Let T1 be the translation with vector (0, 0) (the identity translation), T2 the
translation of vector (α/2, 0) (horizontal translation), T3 the translation of vec-
tor (0, α/2) (vertical translation), and T4 the translation of vector (α/2, α/2)
(diagonal translation). We have the following simple lemma whose proof can be
easily verified by the reader (note that α > 2).

Fact 3.1. Let G be a quasi-UDG, and let (u, v) be any edge in G. There exists
a translation T in {T1, T2, T3, T4} such that the translations of the nodes u and
v under T , i.e., T (u) and T (v), reside in the interior of the same tile of T .

The following lemma uses a folklore packing argument to bound the length of a
path between two nodes in a UDG that reside within a region of bounded area
of the plane (see for example [14]).

Lemma 3.1. Let G be a quasi-UDG of parameter 0 < r ≤ 1. Let H be a
connected induced subgraph of G residing in a region R of the plane. Let R′ be a
region of area a′ that contains R such that for any node p in R the disk centered
at p and of radius r/2 is contained in R′. Then for any two nodes u and v of
H, there exists a path in H between u and v of length at most �8a′/(πr2)�.
1 Without loss of generality, we shall assume that the colors are natural numbers.
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4 Edge Coloring

In this section we present a local distributed algorithm that approximates the
edge coloring problem on quasi-UDGs which are a super class of UDGs. The
idea behind the algorithm is to tile the plane as discussed in Section 3, and
then to have the nodes residing in the same tile color the edges interior to their
tile using the greedy algorithm given in [7,11]. This is a proper coloring since
two edges contained in two distinct tiles are not adjacent. However, not every
edge in the graph is interior to a tile because an edge may cross the horizontal
or vertical (or both) boundary of a tile. To deal with this issue, we affect an
appropriate set of translations to the nodes so that, for any edge in the graph,
its translation under at least one of the translations is contained in some tile.
This ensures that every edge of the graph will eventually be colored appropri-
ately. Implementing this algorithm under a centralized model of computation
is straightforward. However, implementing this algorithm under a localized dis-
tributed model poses some potential issues since the effect of the color of an edge
over other edges needs to be limited, and some consensus problems need to be
resolved.

We use the tiling T described in Section 3. Let G be a quasi-UDG with
parameter r, where 0 < r ≤ 1. Each node p ∈ G executes the algorithm
EdgeColoring-APX given in Figure 1.

Lemma 4.1. The algorithm EdgeColoring-APX is a k-local distributed algo-
rithm, where k = �(22α2 + 8r2 + 32αr)/(πr2)�.

1: p collects the coordinates of the nodes in Nk[p] in G, where k = �(22α2 + 8r2 +
32αr)/(πr2)�

2: for round i = 1, 2, 3, 4 do
3: let Gi(p) be a copy of the subgraph of G consisting of the set Ei(p) of uncolored

edges whose endpoints are in Nk[p], and such that, for any edge (u, v) ∈ Ei(p),
Ti(u) and Ti(v) are in the same tile of T

4: let C1
i (p), . . . , C�

i (p), where � ≥ 1, be the connected components of Gi(p)
5: for j = 1, . . . , � do
6: p orders all the edges in Cj

i (p) using the lexicographic order into the sequence
of edges Ej

i (p)
7: for each edge e in Ej

i (p) do
8: color e in Gi(p) with the smallest available color, i.e., the smallest color

that has not been used in the previous rounds to color any of the edges
adjacent to e

9: end for
10: end for
11: for each edge e ∈ Gi(p) incident on p do
12: p colors e in G with the same color in Gi(p)
13: end for
14: end for

Fig. 1. The algorithm EdgeColoring-APX



Local Algorithms for Edge Colorings in UDGs 207

Proof. It is clear that the computation at each node depends solely on the co-
ordinates of its k-hop neighbors, where k = �(22α2 + 8r2 + 32αr)/(πr2)�. ��

For each i ∈ {1, 2, 3, 4}, let Gi be the subgraph of G consisting of the edges
(u, v) ∈ G such that Ti(u) and Ti(v) are in the same tile of T ; we call each
connected component C in Gi an i-cluster, and we say that i is the label of C.
Note that, by definition, any two distinct i-clusters are disjoint. A cluster is an
i-cluster for some i ∈ {1, 2, 3, 4}. A sequence of clusters is said to be a poten-
tial affecting sequence, if the labels of the clusters on this sequence are strictly
increasing, and each two consecutive clusters in the sequence are adjacent, i.e.,
share at least one node in G. Note that a potential affecting sequence of clusters
has length at most 4. The notion of a potential affecting sequence will be used
to confine the “effect” of the color of an edge on the color of another edge, as
shown by the following lemma whose proof is omitted for lack of space:

Lemma 4.2. Let S = (C1, C2, C3, C4) be a potential affecting sequence of clus-
ters (we allow Ci, i ∈ {1, 2, 3, 4}, to be empty). Then for any two nodes u and v
in S, u is a k-hop neighbor of v in G, where k = �(22α2 + 8r2 + 32αr)/(πr2)�
and r is the parameter of the quasi-UDG G.

Lemma 4.3. The algorithm EdgeColoring-APX is an approximation algo-
rithm of ratio 2 for the edge coloring problem on quasi-UDGs.

Proof. We first show that the algorithm computes an edge coloring of a given
quasi-UDG G.

Let u be a node in G. By Fact 3.1, every edge incident on u belongs to one
of the subgraphs Gi(u), i ∈ {1, 2, 3, 4}, defined in line 3 of algorithm. Since u
applies the greedy algorithm to the edges of Gi(u) coloring an edge in Gi(u)
with a color that has not been used so far by an edge incident on it, node u will
color its incident edges properly. Therefore, it suffices to show that for any edge
(u, v), both u and v assign the same color to edge (u, v) to conclude that the
coloring of G by the algorithm is consistent, and hence is an edge coloring of G.

For an edge e ∈ G, define label(e) to be the minimum i ∈ {1, 2, 3, 4} such that
e is contained in an i-cluster. We say that an edge e directly affects another edge
e′ if e and e′ are adjacent and either label(e) < label(e′) or label(e) = label(e′)
and e comes before e′ in the lexicographic order. We say that an edge e affects
an edge e′ if there exists an affecting sequence of edges (e = e0, e1, . . . , ej = e′)
such that for � = 0, . . . , j − 1, e� directly affects e�+1. Observe that the labels of
the edges in any affecting sequence must be non-decreasing. Therefore, all the
edges with the same label i in an affecting sequence form a connected subgraph
of G, and hence are contained within a single i-cluster. It follows that, for any
edge e ∈ G, any affecting sequence of edges containing e must be contained in
some potential affecting sequence of clusters that contains e.

By looking at how the algorithm works, if the color of an edge e “influences”
the color of an edge e′, then edge e affects e′. For a potential affecting sequence S
and an edge (u, v) in some cluster in S, both u and v in the algorithm collect the
coordinates of all their k-hop neighbors, where k = �(22α2 +8r2 +32αr)/(πr2)�.
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Therefore, by Lemma 4.2, both u and v have collected the coordinates of every
node in S. It follows that both u and v must assign edge (u, v) the same color
because both u and v have the coordinates of the endpoints of all edges affecting
(u, v) and will color these edges in the same order using the same algorithm.

This shows that the algorithm computes a proper edge coloring of G.
To prove that the algorithm has approximation ratio 2, let apxG be the number

of colors used by the algorithm to color the edges of G, and let optG be the
number of colors in a minimum edge coloring of G. Note that optG ≥ Δ, where
Δ is the maximum degree of G. Let e = (u, v) be the edge with the highest color
number, i.e., color(e) = maxe′∈E(G) color(e′). Let Δu and Δv be the degrees of
nodes u and v. Since color(e) is the smallest color number that is not used by
any edge incident on u or v, it follows that color(e) ≤ (Δu − 1) + (Δv − 1) + 1.
Since e has the highest color number among all edges in G, we have apxG ≤
(Δu − 1) + (Δv − 1) + 1 ≤ 2 · Δ − 1 ≤ 2 · optG − 1. ��

Theorem 4.1. The algorithm EdgeColoring-APX is a k-local distributed ap-
proximation algorithm for the edge coloring problem on quasi-UDGs, where
k = �(22α2 + 8r2 + 32αr)/(πr2)�, 0 < r ≤ 1 is the quasi-UDG parameter, and
α > 2 is a constant. For a UDG (r = 1), and by choosing α to be slightly larger
than 2, the algorithm EdgeColoring-APX is a 50-local distributed approxima-
tion algorithm for edge coloring of ratio 2.

The above upper bound on the locality of the algorithm (i.e., k) can be improved
by using smaller dimensions for the tiles; this will reduce the size of the region
containing any affecting sequence, and hence decrease the upper bound on k.
However, if we decrease the dimensions of the tiles, the above set of translations
will no longer be sufficient to color all the edges in G (some edges may no longer
reside in the interior of a tile under any of the above translations). To overcome
this problem, we will need to use a family of translations, rather than a single
translation, along each of the horizontal, vertical, and diagonal, directions. By
fixing the dimensions of the tiles to be (1 + ε) × (1 + ε), where ε > 0 is a
constant, and picking an appropriate family of translations, we can prove that,
in the worst case, any affecting sequence will be contained in a region whose
area is at most r2 + (3ε + 5)r + ε2 + 5ε + 5. This will give an upper bound of
8(r2 + (3ε + 5)r + ε2 + 5ε + 5)/(πr2) on k. In Table 1 we show the values of k
corresponding to the values ε = 0.1, . . . , 0.9, and the asymptotic value of k when
ε → 0. We note that, as ε decreases, the number of translations needed increases,
and hence, the local computation time at the nodes increases.

Theorem 4.2. For any constant ε > 0, there exists a k-local distributed approx-
imation algorithm of ratio 2 for the edge coloring problem on quasi-UDGs,

Table 1. Locality for different tile sizes

ε 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 → 0

k 48 45 43 41 38 36 34 32 30 28
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where k = �8(r2+(3ε+5)r+ε2+5ε+5)/(πr2)�, and 0 < r ≤ 1 is the quasi-UDG
parameter.

5 Strong Edge Coloring

In this section we present local distributed algorithms that approximate the
strong edge coloring problem on UDGs. Although the same approach used
for the edge coloring problem—in the previous section—works for the strong
edge coloring problem, this approach does not lead to good bounds on the lo-
cality of the algorithm. Therefore, we will adopt a different approach here. We note
that the techniques in this section can be extended to quasi-UDGs; however, for
simplicity, we restrict our attention to UDGs.

The local distributed algorithms we present use a centralized algorithm as a
building block. We start by presenting this centralized algorithms.

5.1 The Centralized Algorithm

Barrett et al. [1] proposed a centralized greedy algorithm for approximating the
strong edge coloring problem on UDGs that works as follows. The nodes
are first ordered using a lexicographic order. This lexicographic order on the
nodes is used to induce a certain order on the edges (a bottom-up order). The
edges are then considered with respect to this order, and an edge e is colored
with the smallest color that has not been used to color any edge of distance at
most 1 from e. If optG is the number of colors in a minimum strong edge coloring
of G, then it was proved in [1] that the greedy algorithm computes a strong edge
coloring of G that uses at most 8optG + 1 colors. We will refer to the algorithm
in [1] as the Centralized-StrongEdgeColoring algorithm.

We can show that, irrespective of the ordering in which the edges in G are con-
sidered, the algorithm Centralized-StrongEdgeColoring produces a strong
edge coloring of G that uses at most 10optG colors. This property will be essen-
tial to bounding the approximation ratio of the algorithm we present in Subsec-
tion 5.3. The proof of this upper bound on the ratio is very similar to the proof
given in [1] that the algorithm Centralized-StrongEdgeColoring has ratio
8optG + 1 when the specific bottom-up ordering is used.

Theorem 5.1. For any orderingO of the edges in G, the algorithm Centralized-
StrongEdgeColoring, when it considers the edges in G with respect to the order-
ing O, has approximation ratio 10.

5.2 The Local Distributed Algorithm

In this subsection we present a local distributed algorithm that approximates the
strong edge coloring problem on UDGs. The approach is similar in flavor
to the one used in Section 4. Using a different approach, we shall improve on
the approximation ratio significantly at the expense of worsening the locality in
Subsection 5.3.
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Consider the same rectilinear tiling T of the plane discussed in Section 4
whose tiles are α×α squares, where α > 2. We can label the tiles in T with the
labels 1, 2, 3, 4, so that any two tiles with the same label are separated by at
least one tile. We denote by label(t) the label of a tile t ∈ T .

Fact 5.1. Let G be a UDG, and let e and e′ be two edges in G such that the
endpoints of e reside in the interior of a tile t, and the endpoints of e′ reside in
the interior of a tile t′, where t 
= t′, and such that label(t) = label(t′). Then the
distance between e and e′ is at least 2.

Proof. (Sketch) The statement follows from the facts that: (1) any two different
tiles with the same label are separated by at least one tile, and (2) the dimension
of a tile is greater than 1. ��

Let T1, T2, T3, and T4, be the translations described in Section 4, and note that
since α > 2, Lemma 3.1 still holds true. Let C1

i , C2
i , C3

i , and C4
i , for i = 1, 2, 3, 4,

be 16 mutually disjoint color classes. We assume that each of the color classes
contains enough colors to color the edges of G, and that the colors in each class
are ordered from smallest to largest.

Suppose that A is a centralized approximation algorithm of ratio ρA for the
strong edge coloring problem on UDGs. Intuitively, the algorithm can be
summarized as follows. The algorithm runs in 4 rounds, each round corresponds
to one of the above translations. Different color classes are used in different
rounds to ensure that edges that are colored in different rounds do not conflict.
In a given round i, translation Ti is applied to all the edges, and only the edges
whose translations are interior to the tiles in T are colored as follows: the edges
whose translations are in the same connected component of a tile of label j
are colored with colors from class Cj

i , using the centralized algorithm A. This
ensures that edges whose translations end up in tiles of different labels are colored
differently. Since different tiles of the same label are far enough from each other,
and the centralized algorithm A is used to color the edges within the same tile,
edges that are colored in the same round are colored properly.

More formally, eachnodep inGapplies the algorithmStrong-Edge-Coloring-
APX given in Figure 2.

Lemma 5.1. The algorithm Strong-Edge-Coloring-APX is a k-local dis-
tributed algorithm, where k = �8(α + 1)2/π�.

Lemma 5.2. The algorithm Strong-Edge-Coloring-APX computes a valid
strong edge coloring of G.

Lemma 5.3. The algorithm Strong-Edge-Coloring-APX approximates the
strong edge coloring problem on UDGs to a ratio 16 · ρA, where ρA is the
approximation ratio of A.

Proof. Let j be the round among the 4 rounds of the algorithm in which the
maximum number of colors, apxj , is used. It follows from the choice of j that
the total number of colors used by the algorithm, call it apxG, is at most 4 ·apxj .
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1: p collects the coordinates of the nodes in Nk[p] in G, where k = �8(α + 1)2/π�
2: for round i = 1, 2, 3, 4 do
3: p applies translation Ti and computes its virtual coordinates under Ti

4: if Ti(p) is interior to some tile t0 with label �0 ∈ T , where �0 ∈ {1, 2, 3, 4}, p
determines the set Si(p) of all the nodes in Nk[p] whose translations under Ti

reside in the same connected component as Ti(p) in the interior of tile t0; Let
Hi(p) be the subgraph of G induced by Si(p)

5: p applies the algorithm A to the subgraph Hj(p) to compute a strong edge
coloring of Hj(p), using only colors from the color class Cj

�0
, and starting with

the smallest color in Cj
�0

; if an edge e ∈ Hj(p) has already been colored in a
previous round, p overwrites the previous color of e

6: end for

Fig. 2. The algorithm Strong-Edge-Coloring-APX

Let �j be the label of the color class from which the maximum number of colors,
apxj

�j
is used in round j. Since there are 4 labels, it follows that apxj

�j
≤ 4 ·apxj,

and hence, apxG ≤ 16 · apxj
�j

. Let optG be the number of colors in a minimum
strong edge coloring of G.

From the way the algorithm works, in round j, every set of nodes S in G
whose translations are in the same connected component in the interior of some
tile with label �j, apply the algorithm A to compute a strong edge coloring of the
edges of the subgraph of G induced by S, using the same set of colors Cj

�j
, and

in the same order (all starting with the smallest color in Cj
�j

). Therefore, there
exists a set of nodes Sj in G, whose translations reside in the same connected
component in the interior of some tile, such that algorithm A uses apxj

�j
colors

to properly color the edges of the subgraph Hj induced by Sj . Since A has
approximation ratio ρA, a minimum strong edge coloring of Hj requires at least
apxj

�j
/ρA colors. Since Hj is an induced subgraph of G, a minimum strong edge

coloring of G requires at least apxj
�j

/ρA colors. It follows that optG ≥ apxj
�j

/ρA,
and 16 · apxj ≤ 16 · ρA · optG. This shows that the algorithm properly colors
the edges of G using no more than 16 · ρA · optG colors, and hence has ratio
16 · ρA. ��

Theorem 5.2. There exists a 22-local distributed algorithm that, given a UDG
G, computes a strong edge coloring of G using at most 128 · optG + 16 colors,
where optG is the number of colors in a minimum strong edge coloring of G.

Proof. Since a node p in the algorithm Strong-Edge-Coloring-APX can con-
sider the edges in Hp in any order, p can order these edges according to the
bottom-up ordering used in [1]. Under this specific ordering, as was mentioned
before, the algorithm Centralized-StrongEdgeColoring computes a strong
edge coloring of Hp using at most 8 · optHp + 1 colors, where optHp is the
number of colors in a minimum strong edge coloring of Hp. Using the algo-
rithm Centralized-StrongEdgeColoring as the subroutine A in the algorithm
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Strong-Edge-Coloring-APX, and setting α to a value slightly larger than 2,
the statement follows from Lemma 5.1, Lemma 5.2, and Lemma 5.3. ��

5.3 The Improved Algorithm

In this subsection we present a local distributed algorithm for the strong edge
coloring problem on UDGs with a smaller approximation ratio, but larger
locality, than the algorithm presented in Subsection 5.2. The algorithm uses the
same tiling T , but we require that α > 3. The tiles are labeled with the labels
1, 2, 3, 4 as in Subsection 5.2.

Each node is assigned to the tile which contains it. Ambiguities caused by
nodes on the boundaries of tiles are resolved by assigning them to the tile with the
smallest label which contains them (any other resolving method works as well).
We observe that two tiles of the same label have a Euclidean distance more than
3. Therefore, if we place a bounding square box of dimensions (α + 1)× (α + 1)
centered at each tile, two bounding boxes of two tiles with the same label have a
Euclidean distance larger than 1. Consequently, two edges contained in different
bounding boxes of two tiles with the same label have distance at least 2, and
can be colored in the same round. The improved algorithm is given in Figure 3.

1: p collects the coordinates of the nodes in Nk[p] in G, where k = �(32α2 + 80α +
40)/π�

2: for round i = 1, 2, 3, 4 do
3: let Gi(p) be a copy of the subgraph of G consisting of the set Ei(p) of uncolored

edges whose endpoints are in Nk[p], and such that, for any edge (u, v) ∈ Ei(p),
u and v are in the bounding box of some tile of label i

4: p colors all the uncolored edges in Gi(p) using the algorithm Centralized-
StrongEdgeColoring

5: for each edge e ∈ Gi(p) incident on p do
6: p colors e in G with the same color in Gi(p)
7: end for
8: end for

Fig. 3. The algorithm Improved-StrongEdgeColoring-APX

Lemma 5.4. The algorithm is a k-local distributed algorithm, where k=�(32α2

+ 80α + 40)/π�, that computes a strong edge coloring of a given UDG.

Lemma 5.5. The algorithm is an approximation algorithm of ratio 10 for the
strong edge coloring problem on UDGs.

Proof. By Lemma 5.4, the algorithm Improved-StrongEdgeColoring-APX
is an approximation algorithm for the strong edge coloring problem on
UDGs. To prove that the algorithm has ratio 10, note that the algorithm
Improved-StrongEdgeColoring-APX is equivalent to the algorithm
Centralized-StrongEdgeColoring applied to the edges of G in the order they
were colored by the algorithm Improved-StrongEdgeColoring-APX. It fol-
lows from Theorem 5.1 that the algorithm has ratio 10. ��



Local Algorithms for Edge Colorings in UDGs 213

Theorem 5.3. Given a UDG G and a constant α > 3, the algorithm Improved-
StrongEdgeColoring-APX is a a k-local distributed algorithm, where k =
�(32α2 + 80α + 40)/π�, that computes a strong edge coloring of G using at most
10optG colors, where optG is the number of colors in a minimum strong edge col-
oring of G. By choosing α to be slightly larger than 3, the algorithm Improved-
StrongEdgeColoring-APX is a 180-local distributed algorithm of ratio 10.
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