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Abstract. Algorithms based on a bottom-up traversal of a tree decom-
position are used in literature to develop very efficient algorithms for
graphs of bounded treewidth. However, such algorithms can also be used
to efficiently solve problems on chordal graphs, which in general do not
have a bounded treewidth. By combining this approach with a sparsi-
fication technique we obtain the first linear-time algorithm for chordal
graphs that solves the k-disjoint paths problem. In this problem k pairs
of vertices are to be connected by pairwise vertex-disjoint paths. We also
present the first polynomial-time algorithm for chordal graphs capable
of finding disjoint paths solving the k-disjoint paths problem with mini-
mal total length. Finally, we prove that the version of the disjoint paths
problem, where k is part of the input, is NP-hard on chordal graphs.

1 Introduction

In the k-disjoint paths problem (k-DPP), k pairs of vertices are to be connected
by pairwise vertex-disjoint paths. This appears to be a hard problem since, for
many classes of graphs, efficient algorithms are unknown or do not exist. Indeed,
Fortune, Hopcroft, and Wyllie [3] have shown that the problem is NP-hard on
directed graphs, even if k is restricted to 2. As shown by Lynch [9] and by Knuth
(see the paper of Karp [7]) the same is true on undirected graphs for the disjoint
paths problem (DPP), where k, in contrary to the k-DPP, is part of the input. It
is a common approach in combinatorial optimization to construct for NP-hard
problems so-called fixed parameter algorithms that solve the original problem in
polynomial time if one or more of the input parameters are fixed. We present
a linear time algorithm for the k-DPP, which then can be considered also as a
fixed parameter algorithm for the DPP.

As usual in graph theory, we let n and m denote the number of vertices and
edges, respectively, of the graph under consideration. For every fixed k, Robert-
son and Seymour, in their series of papers, developed a polynomial algorithm for
the k-DPP on undirected graphs. Perković and Reed [13] presented an algorithm
with an improved running time. Unfortunately, the constants hidden in the O-
notation of the running time of the algorithms above are extremely large and
make these algorithms unfeasible in practice. Algorithms with better practical
running times are known for several classes of graphs such as undirected graphs
of bounded treewidth [16] and directed acyclic graphs [3]. However, for many
classes of graphs, e.g., for general, for planar, or for chordal undirected graphs,
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algorithms more efficient than the algorithm of Perković and Reed are known
only for the special case k = 2. The first polynomial-time algorithms for the
case k = 2 on general undirected graphs are given, e.g., in [11,17,18,19]. Perl
and Shiloach [14] presented the first polynomial-time algorithm for the 2-DPP
on undirected chordal graphs and on undirected planar graphs, namely with a
linear running time. A simpler algorithm for chordal graphs can be found in [8].

The importance of chordal graphs is due to several facts. On the one hand,
chordal graphs have nice properties that can be used to design efficient algo-
rithms for many problems. For example, as shown by Fulkerson and Gross [4],
chordal graphs are exactly the set of graphs with a perfect elimination order,
and this order can be used to compute a maximal independent set, a maximum
clique or an optimal coloring on chordal graphs in linear time [5]. On the other
hand, concerning the practical relevance of chordal graphs, Gavril [6] has shown
that the set of chordal graphs is equal to the set of subtree graphs, where a sub-
tree graph is the intersection graph of a family of subtrees of a tree. Let us call a
tuple (G1, . . . , Gk, G) of graphs to be an intersection model for the intersection
graph of G1, . . . , Gk if the latter are subgraphs of G. Many practical problems in
different areas such as computer science and genetics can be modeled by an inter-
section model and solved by a transformation to problems on the corresponding
intersection graph; e.g., see [15]. In general, it seems that translating a prob-
lem on an intersection model into a problem on the corresponding intersection
graph makes the problem easier to solve. However, in this paper we study the
reverse direction. We translate the k-DPP on a chordal graph into a problem on
the corresponding intersection model (T1, . . . , Tk, T ) or, more precisely, on a tree
decomposition defined by this model, and we derive a simple approach to solve
the k-DPP on chordal graphs. From another point of view our paper shows that
algorithms based on a bottom-up traversal of a tree decomposition are useful not
only for graphs of bounded treewidth, but can also be used for efficiently solving
different problems on chordal graphs, even on those of unbounded treewidth. We
only use the fact that we can choose the so-called bags of a tree decomposition
as cliques. Following a similar approach, Okamato, Uno, and Uehara [12] have
recently shown that the number of independent sets in a chordal graph can be
counted in linear time.

In Section 2 we present an algorithm for solving the k-DPP on a chordal graph
with a running time of O(n2k+2 +m). As shown in Section 3, this algorithm can
be modified to connect given pairs of vertices by pairwise disjoint paths such that
the number of edges used by the paths is minimized among all such solutions.
Note that so far no polynomial-time algorithm was known for solving this latter
problem for every fixed k on chordal graphs.

In Section 4, as the main result of our paper, we show that the tree decomposi-
tion based algorithm of Section 2 can be combined with a sparsification technique
in order to reduce the running time for solving the k-DPP on chordal graphs to
O(m+(2k)4k+2n). This means that we obtain a linear fixed parameter algorithm
for the DPP. Moreover, the additional constants hidden in the O-notation are of
moderate size. For every fixed k, we obtain a running time which improves the
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running time of the previous best known algorithm for solving the k-DPP on
chordal graphs, namely the algorithm of Perković and Reed mentioned earlier
in this introduction for solving the problem on general graphs. Moreover, our
algorithm is easy to implement and—for small values of k—it is practical. It
is not surprising that the running time increases exponentially in k since—as
a further new result—we can proof that the DPP (with k being non-fixed) is
NP-hard even for chordal graphs. Details can be found in Section 5.

2 The k-Disjoint-Paths Problem

Many graph problems can be solved in polynomial time by traversing a so-called
tree decomposition bottom-up if the so-called treewidth is taken to be a constant.

Definition 1. A tree decomposition for a graph G = (V, E) is a pair (T, B),
where T = (VT , ET ) is a tree and B is a mapping that maps each node w of VT

to a subset B(w) of V —called the bag of w—such that (1) ∪w∈VT B(w) = V ,
(2) for each edge e ∈ E, there exists a node w ∈ VT with e ⊆ B(w), (3)
B(x) ∩ B(y) ⊆ B(w) for all w, x, y ∈ VT with w being a node on the path from
x to y in T . The treewidth of T is the maximal cardinality of a bag minus one
and the size of a tree decomposition is the sum of the cardinalities of its bags.

The treewidth of a graph G, denoted by tw(G), is the smallest width of a tree
decomposition for G. One of the problems that can be solved efficiently on graphs
with constant treewidth is the k-disjoint paths problem [16]. Unfortunately, the
treewidth of chordal graphs is not bounded by a constant but we can find a very
special tree decomposition that helps us to solve the k-DPP even on chordal
graphs. For a set U ⊆ V of a graph G = (V, E), we define G[U ] to be the
subgraph of G induced by the vertices in U .

Definition 2. A clique tree for a graph G = (V, E) is a tree decomposition
(T, B) with the additional property that (4) B is a bijection between the nodes
of T and {U ⊆ V | G[U ] is a maximal clique in G}.
It is well known that chordal graphs are exactly the graphs that have a clique
tree [2,6,20] and that a clique tree of linear size can be constructed in linear time
[1]. As one can show by using property (4) a clique tree has O(|V |) nodes. As
input of our algorithm we will take a weak clique tree that is defined as a clique
tree if we replace (4) by the following property: (4’) the vertices of each bag
induce a clique in G. More precisely, our algorithm starts with constructing, for
the graph G = (V, E) on which we search for k disjoint paths, in O(|V | + |E|)
time a weak clique tree (T, B) of size O(|V | + |E|) for G with T being a rooted
tree having O(|V |) nodes. For example we can take a standard clique tree. We
call the vertices to be connected by disjoint paths the terminals of G. For a node
w of T , we let G(w) be the subgraph of G induced by all vertices contained in at
least one set B(w′) for a descendant w′ of w in T , where w is also a descendant
of itself. In order to obtain a simpler description of our algorithm, we describe
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our problem as a coloring problem. A coloring of a graph G′ or a vertex set
U is a mapping that assigns a color to some of the vertices in G′ and in U ,
respectively. For an instance of the k-DPP, we always define an initial coloring
that, for each pair of terminals to be connected, colors both terminals with the
same color different from the colors of the other terminals. In general, we call
a coloring C2 of a vertex set V2 an extension of a coloring C1 of a vertex set
V1 ⊆ V2 if all colored vertices of V1 are also colored by C2 with the same color.
Let us call a coloring of a graph G legal if it is an extension of the initial coloring
of the terminals and if, for each pair t1 and t2 of terminals sharing a color c,
there is a path from t1 to t2 in the subgraph of G induced by the vertices of color
c. Moreover, we call a legal coloring good with respect to a (weak) clique tree
(T, B) for G if each bag of a node in T contains at most two vertices of color c.

For a node w with a father p(w), let us call the set of vertices in B(w)∩B(p(w))
the transition set of w denoted by A(w). On the one hand, our algorithm will
need to know the colors of all vertices in a bag for finally obtaining a complete
coloring of G. On the other hand, our algorithm will extend stepwise colorings
of G(w) for a node w to colorings of G(p(w)) and for determining the colors for
the new vertices of this extension (namely the vertices in G(p(w)) − G(w)) it
only needs to know the colors of the vertices in A(w). Thus, we define a full and
a reduced characteristic for a node w of T as a coloring of the nodes in B(w) and
A(w), respectively, such that for each color c at most two vertices are colored
with c. Let Z be a full or a reduced characteristic of a node w. Then Z is valid
if and only if

1. there exists a good coloring C of G(w) extending Z and the initial coloring
of the terminals in G(w).

2. for each color c the following is true: if there is exactly one terminal in G(w)
of color c, a vertex in A(w) is colored with c by Z.

A coloring C with properties 1 and 2 is then called conform to Z. We also call
two characteristics compatible if one characteristic is an extension of the other.

There is a connection between the k-DPP and good colorings: If the k-DPP
has a solution, take a solution with minimal total length. Then a coloring that
colors the vertices of each path of the solution with the color of its endpoints is
a good coloring because the following is true: if one of the disjoint paths visits
three vertices v1, v2, and v3 of one bag in this order, we obtain a shorter path
by replacing the subpath from v1 to v3 by edge {v1, v3}. In the reverse direction
assume that we are given a good coloring conform to a valid full characteristic of
the root of T . Then disjoint paths connecting the terminals of the same color can
be obtained by a depth-first search on each subgraph induced by the vertices of
one color. Hence, we can solve the k-DPP by computing a good coloring conform
to a valid full characteristic of the root of T .

For all nodes of T , we want to determine bottom-up all valid full and all
valid reduced characteristics. If we restrict a coloring of G(w) conform to a valid
full characteristic of a node w to the graph G(w′) for a descendant w′ of w,
this restricted coloring is conform to a valid full as well as to a valid reduced



194 F. Kammer and T. Tholey

characteristic of w′. In the reverse direction, a full characteristic Z of a node w
is valid if and only if

– the terminals in B(w) are colored by Z with their original color,
– for each child w′ of w, the reduced characteristic of w′ compatible to Z is

valid,
– each color is used by Z to color at most two vertices, and
– for each color c, the following is true: if there is exactly one terminal in G(w)

of color c, a vertex in A(w) is colored with c by Z.

Because of the above conditions there exists a good coloring of G(w) extending
Z; in particular, using the last condition we can conclude by induction that, for
each pair of terminals t1 and t2 sharing a color c, there is a path from t1 to t2
in the subgraph of G induced by the vertices of color c. By iterating over all
valid full characteristics of a node w in T we can easily compute a lookup-table
storing 1 for each valid reduced characteristic of w and 0 for each non-valid
reduced characteristic of w. The time for updating the whole table for w is of
size O(� · tw(G) deg(w)), where � is the number of full characteristics of w.

Hence, by a bottom-up traversal of T we can find a good coloring for G
if such a coloring exists. We next analyze the running time of our algorithm.
For each node, we can test whether a certain full characteristic is valid in at
most O((tw(G) + k) deg(w)) time by testing the four properties listed above.
For testing the last condition, note the following: in O(k deg(w)) time, we can
update the set of colors c for which there is exactly one terminal of color c in
G(w) if we are given the corresponding sets for the children of w. There are at
most (tw(G) + 1)2k full characteristics for a node w since for each color we can
choose twice either no vertex or one of the ≤ tw(G) + 1 vertices in B(w). Since
the time needed to initialize the lookup-table for the reduced characteristics of a
node w is bounded linear in O(|A(w)|) times the number of full characteristics,
we obtain the next lemma.

Lemma 3. The k-DPP can be solved in O((tw(G)+1)2k(tw(G)+k)|V |+ |E|) =
O(|V |2k+2 + |E|) time on a chordal graph G = (V, E).

3 Shortest k-Disjoint Paths

Define the weight of a coloring as the number of edges whose endpoints are both
colored and have the same color. The cost of a characteristic Z of a node w is the
minimal possible weight of a coloring of G(w) conform to Z. In order to output
disjoint paths using a minimal number of edges, we also have to compute the
costs of the characteristics. Given, for a full characteristic Z of a node w, the
costs W (Z1), . . . , W (Z�) of the reduced characteristics Z1, . . . , Z� of the children
of w compatible to Z, one can compute the cost W (Z) of Z as follows: Initialize
W (Z) with W (Z1)+W (Z2)+ . . .+W (Z�). Subsequently, for each color c used by
Z to color two vertices v1, v2 ∈ B(w), add one minus the number of children of w
with their bags containing both, v1 and v2. This update takes O(min{k, |B(w)|}·
deg(w)) time and does not increase the asymptotic running time.
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Theorem 4. On a chordal graph G = (V, E) one can find in O(|V |2k+2 + |E|)
time paths solving an instance of the k-DPP using a minimal number of edges
among all sets of paths solving the instance.

4 A Speedup

In this section we present a speed-up of the algorithm in Section 2. Once again,
we first construct in O(|V |+|E|) time a weak clique tree (T, B) of size O(|V |+|E|)
for our input graph G = (V, E) with T having O(|V |) nodes. We assume that
there is no edge {t1, t2} in G for a pair {t1, t2} of terminals that are to be
connected in G. Otherwise, our problem would be reduced to the (k − 1)-DPP
on G[V − {t1, t2}]. For each pair (t1, t2) of terminals t1 and t2 that should be
connected by a path, let us choose Γ (t1) and Γ (t2) as the unique pair of nodes
in T with their bags containing t1 and t2, respectively, such that the distance
between the nodes is minimal. We choose for an arbitrary terminal t the node
Γ (t) as the root of T . Let f be a fixed bijection from V to {1, . . . , |V |} assigning
the highest numbers to the terminals of G. For nodes w1 and w2 of T and for
a vertex v of G, we define the (w1, w2)B-count of v as a tuple (a, f(v)), where
a is the number of nodes w′ on the path from w1 to w2 in T whose bags B(w′)
contain v. We say that a vertex v1 with (w1, w2)B-count (a1, b1) has a larger
(w1, w2)B-count than a vertex v2 with (w1, w2)B-count (a2, b2) if and only if
either a1 = a2 and b1 > b2 or a1 > a2 holds. For a node w ∈ T , we let
I(w) = {t | t is terminal with Γ (t) contained in the subtree of T rooted in w}.

In order to improve the efficiency of the algorithm presented in Section 2,
we replace (T, B) by a new tuple (T ∗, B∗), where T ∗ will be a subtree of T
and where B∗ will be a function that maps each node w of T ∗ to a subset of
B(w) of size ≤ 4k2. In order to describe (T ∗, B∗) more precisely, we need some
further definitions. A bag B(w) of a node w is called small if |B(w)| ≤ 2k and big
otherwise. For each node w of T and for each terminal t, we define D(w, t) as the
set of the min{2k, |B(w)|} vertices of B(w) with the largest (w, Γ (t))B-count.
We also let D(w) be the union of D(w, t) over all t ∈ I(w) and of the set of all
terminals in B(w) \ I(w).

We now obtain T ∗ from T by deleting all nodes w with I(w) = ∅. We choose
the same root for T ∗ as for T and, for each node w, we insert the vertices of
D(w) into B∗(w). Moreover, for each child w′ of w, we insert an arbitrary subset
of D(w) ∩ B(w′) of size min{2k, |D(w) ∩ B(w′)|} into B∗(w′). Let t ∈ I(w′).
Keep in mind that, if |B(w) ∩ B(w′)| ≥ 2k, then D(w, t)—and consequently
also B∗(w)—contains 2k vertices of B(w′) since these vertices have the largest
(w, Γ (t))B-count. Thus, if |B(w) ∩ B(w′)| ≥ 2k, the rules for node w add 2k
vertices of B∗(w) to B∗(w′), i.e., |B∗(w) ∩ B∗(w′)| ≥ 2k. Note that by our
definition B(w) = B∗(w) holds for each small bag B(w). We also can conclude:

Lemma 5. Let v be a vertex of G, w′ be a node of T ∗ with v ∈ B∗(w′), and
w′′ be the node of lowest depth with v ∈ B(w′′). Then v ∈ B∗(w) holds for each
node w on the path from w′ to w′′ in T ∗.
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Proof. Since B(w) and B∗(w) share the same terminals, Lemma 5 holds if v is a
terminal. If it is not, we merely need to show that, for each node w on the path
from w′ to w′′ in T with v ∈ B(w), the following holds: if w has a father x with
v ∈ B(x), we also have v ∈ B∗(x). Since B∗(x) = B(x) if B(x) is small, we only
need to consider the case, where B(x) is big. Let us consider the case, where
B(w) is small. Because of v ∈ B∗(w) there is a t ∈ I(w) for which v ∈ D(w, t) or
v ∈ D(x, t) holds. Since |B(w)| ≤ 2k, v ∈ D(w, t)∩B(x) also implies v ∈ D(x, t).
Consequently, v ∈ B∗(x). Let us finally consider the case where both, B(w) and
B(x), are big. If the insertion rule for x inserts v into B∗(w), we have v ∈ B∗(x).
Otherwise, the only reason for v being contained in B∗(w) is that v ∈ D(w, t)
for a terminal t ∈ I(w). Then v must also be one of the vertices with the 2k
largest (x, Γ (t))B-counts and therefore is also contained in B∗(x). �

Corollary 6. For each vertex v of G, the subtree of T ∗ induced by the nodes w
with v ∈ B∗(w) is connected.

Let G∗ be the graph obtained from G by removing all vertices v and all edges
{v1, v2} from G for which there is no longer any node w with v ∈ B∗(w) and
{v1, v2} ⊆ B∗(w), respectively.

Lemma 7. (T ∗, B∗) is a weak clique tree for G∗ of width 4k2 − 1.

Proof. By our construction and Corollary 6 all properties of a weak clique
tree hold for (T ∗, B∗). Concerning the treewidth, for the root r of T , we have
|B∗(r)| ≤ |D(r)| ≤ 4k2 since |I(r)| = 2k. By our choice of r there is a ter-
minal t1 with Γ (t1) = r. We have |D(w)| ≤ 4k2 − 2k for all nodes w 	= r in
T since the subtree of T rooted in w does not contain Γ (t1). Consequently,
|B∗(w)| ≤ 4k2. �

Lemma 8. The k-DPP has a solution on G if and only if this is true for G∗.

Proof. Clearly, an instance of the k-DPP is solvable on G if this true for G∗. For
the reverse direction we merely need to show that a solution of the k-DPP on G
allows us to construct a good coloring of G∗ with respect to (T ∗, B∗). Moreover,
for a legal coloring C and a pair of terminals t1 and t2 colored with c by C, let
us call a pair of incident nodes w1 and w2 on the unique path from Γ (t1) to
Γ (t2) a color break with respect to c (and C) if no vertex in B∗(w1) ∩ B∗(w2)
is colored with c. Let C be the set of all legal colorings of G that color at most
two vertices of each bag in (T ∗, B∗) with the same color. The solvability of the
k-DPP implies C 	= ∅ since there exists—as shown in Section 2—at least one
good coloring with respect to (T, B) and since each good coloring is contained
in C. In the reverse direction, our Lemma holds if there is a C ∈ C without any
color break since C then is a good coloring of G∗ with respect to (T ∗, B∗).

Assume now that we can find no coloring in C without color breaks. Let us
choose a fixed numbering with 1, . . . , k for the colors assigned to the terminals
and a coloring C ∈ C such that the lowest number among the colors with a color
break is as large as possible. Moreover, if c is the color with the lowest number
for which there is a color break and if t1 and t2 are the terminals of color c, we
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choose the coloring C ∈ C with the above properties such that there is a maximal
distance between Γ (t1) and the node wσ0 of the first color break (wσ0 , wσ0+1)
on the path p = (w1, w2, w3, . . .) from Γ (t1) to Γ (t2) in T . Let v be a vertex of
color c with v ∈ B(wσ0 ) ∩ B(wσ0+1) and v 	∈ B∗(wσ0 ) ∩ B∗(wσ0+1).

Assume |B∗(wσ0) ∩ B∗(wσ0+1)| < 2k. Then |B(wσ0 ) ∩ B(wσ0+1)| < 2k. Let
w ∈ {wσ0 , wσ0+1} be the father of the other node w′ ∈ {wσ0 , wσ0+1} and t ∈
{t1, t2}∩I(w′). We can conclude v ∈ D(w, t) and consequently v ∈ B∗(w). Since
|B(wσ0 ) ∩ B(wσ0+1)| < 2k, the rule for w adds all vertices of D(w, t) ∩ B(w′)
including v into B∗(w′), a contradiction to v 	∈ B∗(wσ0 ) ∩ B∗(wσ0+1).

Hence |B∗(wσ0 ) ∩ B∗(wσ0+1)| ≥ 2k. Since no vertex in B∗(wσ0 ) ∩ B∗(wσ0+1)
is colored with c and since C is a coloring which uses each color at most twice in
a bag of (T ∗, B∗) and thus in B∗(wσ0)∩B∗(wσ0+1), it follows that there must be
an uncolored vertex in B∗(wσ0)∩B∗(wσ0+1). Let us define u to be the uncolored
vertex in B∗(wσ0 )∩B∗(wσ0+1) that among all uncolored vertices has the largest
(wσ0+1, Γ (t2))B-count. We next show that we can construct a coloring C∗ ∈ C
without any new color breaks for the colors different from c for which—if it has
a color break with respect to c—the first such color break occurs after the pair
{wσ0 , wσ0+1} on p. This leads to a contradiction to our choice of C and proofs
our lemma.

After having initially set C∗ = C we modify C∗ as follows. First of all, we
color u with c. We then define wσ−1 and wσ1 as the first and the last node on p,
respectively, such that u ∈ B∗(wσ−1)∩B∗(wσ1). Let S be the set consisting of u
and all vertices colored with c by C contained in a bag of {B(wσ−1), . . . , B(wσ1 )}.

Second, modify C∗ as follows: For the set X of all nodes reachable from
one of the nodes in {wσ−1 , . . . , wσ1} without visiting wσ−1−1 or wσ1+1, uncolor
all c-colored vertices in B∗(X) apart from u, the vertex v′ ∈ S ∩ B∗(wσ−1)
with the largest (wσ−1 , Γ (t1))B∗ -count, and the vertex v′′ ∈ S with the largest
(wσ1 , Γ (t2))B-count. Note that v′′ ∈ B(wσ1+1) or wσ1 = Γ (t2).

Third, if v′′ ∈ B(wσ0+1) \ D(wσ0+1, t2), no vertex is colored with c by C
in D(wσ0+1, t2). Then, let ũ be the vertex of highest (wσ0+1, Γ (t2))B-count in
D(wσ0+1, t2) not colored by C, let wσ2 be the last node on p with ũ ∈ B(wσ2),
and let v′′′ be the vertex in B(wσ2) with C(v′′′) = c that among all such vertices
has the largest (wσ2 , Γ (t2))B-count. In particular, v′′′ ∈ B(wσ2+1) or we have
wσ2 = Γ (t2) and v′′′ = t2. If v′′ ∈ B(wσ0+1) \ D(wσ0+1, t2) and v′′ 	= u 	= ũ, so-
called extra modifications of C∗ are required: For the set Y of all nodes reachable
from one of the nodes in {wσ1 , . . . , wσ2} without visiting wσ1−1 or wσ2+1, change
C∗ by uncoloring v′′ and all c-colored vertices in B∗(Y ). See Fig. 1. (Some ranges
are explained later in more detail.) Coloring v′ with c guarantees that there is
no new color break between Γ (t1) and wσ0 on p.

Let us first consider the case, where no extra modifications are applied. By
coloring v′′ with c we can guarantee that C∗ is a legal coloring. Hence, if C∗ does
not belong to C, there is a bag B∗(w) containing u, v′, v′′ and |{u, v′, v′′}| = 3.
By Corollary 6 we can choose w w.l.o.g. as a node on p. Due to our choice of
v′ we know that v′ ∈ B∗(wσ−1 ). There is no node w′ on the subpath of p from
wσ0+1 to Γ (t2) with v′ ∈ B∗(w′) since otherwise v′ ∈ B∗(wσ0 ) ∩ B∗(wσ0+1)
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by Corollary 6. Thus, w is on the subpath of p from Γ (t1) to wσ0 . Note that
v′′ ∈ B∗(w) implies v′′ ∈ B(w). We consider two subcases:

– wσ0+1 is the father of wσ0 . Since v′′ ∈ B(wσ1 ), we also have v′′ ∈ B(wσ0 ) ∩
B(wσ0+1). Therefore, v′′ ∈ B∗(wσ0)∩B∗(wσ0+1) according to Lemma 5 and
we obtain a contradiction since (wσ0 , wσ0+1) is a color break.

– wσ0 is the father of wσ0+1. Since no extra modifications are applied and since
u 	= v′′, we have v′′ /∈ B(wσ0+1) or v′′ ∈ D(wσ0+1, t2) ⊆ B∗(wσ0+1) or u = ũ.
In the first case, v′′ has a smaller (wσ1 , Γ (t2))B-count than u. In the second
case, we have v′′ ∈ B∗(wσ0 ) ∩ B∗(wσ0+1) by Corollary 6. If only the third
case holds, because of u ∈ D(wσ0+1, t2) and v′′ /∈ D(wσ0+1, t2), vertex u has
a larger (wσ1 , Γ (t2))B-count than v′′. Consequently, a contradiction occurs
in each case.

Let us finally assume that the extra modifications are being applied. Then u 	= ũ
and hence ũ /∈ B∗(wσ0 ). Like in the previous case without extra modifications,
v′ can not be contained in one of the bags B∗(wσ0+1), . . . , B∗(Γ (t2)). Thus,
no bag of (T ∗, B∗) contains v′ and ũ. Since D(wσ0+1, t2) ∩ {v′′, ũ} = {ũ}, the
(wσ0+1, Γ (t2))B-count of v′′ is smaller than that of ũ. Therefore and because of
v′′ ∈ B(wσ0+1), the (wσ1 , Γ (t2))B-count of v′′ is smaller than that of ũ. Note
that v′′′ /∈ B(wσ1 ) since otherwise v′′′ ∈ S and the fact that v′′′ ∈ B(wσ2+1)
or v′′′ = t2 would imply that v′′′ has a larger (wσ1 , Γ (t2))B-count than that of
ũ and that of v′′. Thus, no bag of (T, B) contains u and v′′′. Consequently, C∗

colors at most two vertices in each bag of (T ∗, B∗). Our choice of v′′′ guarantees
that C∗ is a legal coloring.

We have shown that C∗ ∈ C and that the distance between Γ (t1) and the first
node of a color break on p with respect to c and C∗—if indeed there is a color
break—is larger than the corresponding distance for C. This is a contradiction
to our choice of C. �

We can therefore solve the k-DPP on a chordal graph G as follows: we first
determine for each node w of T the set I(w) and subsequently all sets D(w, s)
and D(w) (s ∈ I(w)). This can easily be done in a bottom-up traversal of T in at

v′

u

v′′

ũ

v′′′

Γ (t2)wσ1 wσ1+1 wσ2 wσ2+1wσ−1Γ (t1) wσ0 wσ0+1

∈ B∗ ∈ B, possibly ∈ B∗ possibly ∈ B, B∗ /∈ B∗, possibly ∈ B

Fig. 1. The ranges of the variables in the case where the extra modifications are applied.
Black lines represent vertices uncolored by C.
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most O(m+ k3n) time. Hence, we can replace G and (T, B) by G∗ and (T ∗, B∗)
in the same running time. We then apply the algorithm of the Section 2 on G∗.

Theorem 9. The k-DPP on chordal graphs with n vertices and m edges can be
solved in O(m + (4k2)2k+1n) = O(m + (2k)4k+2n) time.

5 Hardness of the Disjoint-Paths Problem

Theorem 10. The disjoint-paths problem on chordal graphs is NP-hard.

Proof. We can prove the theorem by a reduction from a restricted case of 1-
in-3 SAT. In 1-in-3 SAT we are given a formula in conjunctive normal form
with 3 variables per clause and we have to find an assignment of the variables
such that exactly one of the three literals is true in every clause. A formula in
conjunctive normal form is monotone if every literal is positive and it is cubic if
every variable occurs exactly three times. In [10] it is shown that 1-in-3 SAT is
NP-complete even on monotone and cubic formulas. We now reduce an instance
of 1-in-3 SAT consisting of a monotone and cubic formula F to an instance of
the DPP on a chordal graph G. Fig. 2 should represent a clique tree of G. Each
subgraph induced by the vertices of a bag should be a clique whose edges are
colored gray in Fig. 2—however, not all existing edges are shown in the figure.
Black lines represent paths of length 0. Therefore, the endpoints of black lines
represent the same vertex even if they appear in different shapes.

In detail, we construct G as follows: For each variable x and each clause C in
F , we introduce a variable and a clause gadget, respectively, as shown in Fig. 2.
A variable gadget has six terminals a1, a2, a3, b1, b2, b3 and a clause gadget six
terminals y1, y2, y3, z1, z2, z3. Each gadget is connected to one big clique Γ—see
the rightmost bag Fig. 2. Γ contains 6� vertices where � is the number of clauses.
We next divide the terminals into pairs such that the resulting instance of the
DPP has a solution if and only if F has a satisfying assignment. If a clause
C contains a variable x as the i-th variable and if it is the j-th occurrence of
variable x in F that is part of C, the pairs (aj , yi) and (bj , zi) are added to
our instance of the DPP, where the four terminals aj , bj, yi, and zi belong to
the gadgets for x and C. Moreover, we identify one triangular and one square
vertex in the gadget of x with one triangular and one square vertex, respectively,
in the gadget of C different from the triangular and square vertices chosen for
other variables or clauses. For a simpler notation, the terminals a1, a2 and a3

shown in Fig. 2 are called A-terminals and the remaining terminals B-, Y - and
Z-terminals, respectively.

Let us consider a satisfying assignment of F . For a variable x, we construct
in the gadget of x six paths from terminals to the triangular and square vertices
such that, if x is set to true, the paths starting in the A-terminals are routed
exclusively to the triangular vertices; otherwise, they are routed exclusively to
the square vertices. Since each clause C has exactly one true variable, for each
clause gadget, exactly one path from an A-terminal to the gadget of C arrives
at a triangular vertex, whereas the other two paths from an A-terminal to the
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Fig. 2. Reduction from (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x3 ∨ x4)

gadget of C arrive at a square vertex. Thus, we can forward the three paths to
the Y -terminals of C. Similarly, we can forward the paths from the B-terminals
to the Z-terminals. Hence, we have found a solution to our instance of the DPP.

Let us now consider a solution of our DPP. It remains to show that F can be
satisfied. In our construction, the number of vertices in the big clique Γ is equal
to the number of pairs that have to be connected in our instance. Moreover, each
path has to use at least one and therefore exactly one vertex of Γ . Note that for
each clause C and each variable x of C, Γ contains exactly two vertices common
with the gadgets of C and x, respectively: one triangular and one square vertex.
Thus, these two vertices must be the two vertices visited by the two paths con-
necting two pairs of terminals in the gadgets of C and x. As a consequence, for
any fixed variable gadget the paths starting from the A-terminals must pass ei-
ther exclusively through the triangular vertices or exclusively through the square
vertices of this gadget—see the variable gadget in Fig. 2. We define a variable x
of F to be true if the paths of the A-terminals from the gadget of x pass through
the triangular vertices. Since the A-terminals are connected to the Y -terminals,
exactly one path from an A-terminal uses a triangular vertex of each clause
gadget, i.e., exactly one variable of each clause is set to true. �
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