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Abstract. We study the problem of finding a minimum tree spanning
the faces of a given planar graph. We show that a constant factor ap-
proximation follows from the unconnected version if the minimum degree
is 3. Moreover, we present a polynomial time approximation scheme for
both the connected and unconnected version.

1 Introduction

Given a planar graph, what is the smallest subgraph connecting all the faces?
The simplicity and naturalness of this question is the main motivation for the
study in this paper. Bodlaender et al. [5] call this the face cover tree problem and
to the best of our knowledge they were the first to study it. They show that the
problem can be solved efficiently for edge-weighted graphs of bounded treewidth.
In this paper we consider unweighted planar graphs with the minimum degree
at least three. This is a natural restriction since allowing vertices of degree two
makes its complexity polynomially equivalent to the problem with polynomially
bounded edge weights.

Interestingly, the problem does not depend on the embedding since any tree
hitting all faces will, in fact, hit all cycles of the graph.

Lemma 1. Let G be a connected planar graph and T ⊆ G be a tree such that,
for a given embedding of G, every face has at least one vertex in T . Then, every
cycle of G has a vertex in T .

Proof. Every cycle separates the embedded graph in an inner and outer part.
Each of the two parts contains at least one face. Therefore, the cycle and the
tree must have at least one vertex in common. ��
The problem of finding the smallest set of vertices hitting all cycles is well-
studied and known as the feedback vertex set problem. A natural variant for
planar graphs is the problem of hitting all faces with a minimum number of ver-
tices. By Lemma 1, the connected versions of these two problems are equivalent
and independent of the embedding. This is the problem we study here and call
it the connected feedback vertex set problem.
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Planar Feedback Vertex Set (Planar FVS): Given an unweighted planar
graph, find the smallest set S of vertices such that every cycle of the graph has
at least one vertex in S.
Face Hitting Set (FHS): Given an unweighted planar graph with an embed-
ding, find the smallest set S of vertices such that every face of the graph has at
least one vertex in S.
Connected Planar Feedback Vertex Set (Connected Planar FVS): Given
an unweighted planar graph, find the smallest tree T such that every cycle (or
equivalently, every face in an embedding) of the graph has a vertex in T .

1.1 Related Results

The feedback vertex set problem is extensively studied. It is APX-hard in general
graphs and can be approximated efficiently within a factor 2; see Becker and
Geiger [4] and Bafna et al [1]. For planar graphs the problem is NP-hard [12]
and a PTAS was given by Demaine and Hajiaghayi [8]. Goemans and Williamson
apply the primal-dual method to obtain a (9/4)-approximation [13], which was
later reduced to 2 by Chudak et al [7].

Regarding the connectivity constraint, two obvious related problems, are the
problem of spanning all vertices and the problem of spanning all the edges of the
graph. The latter is known as connected vertex cover and was introduced in 1977
by Garey and Johnson [11], who showed it to be NP-hard even when restricted
to planar graphs with maximum degree 4. The 2-approximation algorithm for
vertex cover in general graphs by Savage [14] transfers directly to the connected
problem. Recently, Escoffier et al. [10] have shown that connected vertex cover
admits a PTAS for planar graphs. A PTAS for connected dominating set in
planar graphs was given in [8] as well.

1.2 Our Results

We give an overview on structural properties, complexity and approximabil-
ity results for the connected feedback vertex set problem in planar graphs. We
show that if the minimum vertex degree is three, then the ratio between the
connected and unconnected problem is bounded by a constant. This provides a
polynomial time constant approximation algorithm for connected planar FVS.
Another interesting consequence of this structural result is that the diameter
of a 3-polytope is in the order of the smallest set of vertices hitting all facets.
Further, we show that FHS and connected planar FVS are strongly NP-hard
and give polynomial time approximation schemes for both problems. Along the
text we pose several interesting open questions.

2 Structural Results

2.1 Insightful Observations

We start with some simple lemmas to get an insight in the relation between
FVS and FHS and the dependence on the embedding. Then we give the main
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result of this section on the relation between connected and unconnected FVS
in planar graphs. We end with a small discussion on the application to diameters
of polytopes.

Lemma 2. For any planar graph G and embedding ΓG with at least two faces
we have FHS(ΓG) ≤ FVS(G). Otherwise, FHS(ΓG) = 1 and FVS(G) = 0.

Lemma 3. For any planar graph G with faces F we have FVS(G) ≤ |F | − 1
and this bound is tight.

The proofs of Lemmas 2 and 3 are not complicated and we leave those for a
reader.

Lemma 4. For any planar graph G and embedding ΓG we have FVS(G) ≤
2FHS(ΓG) − 1 and this bound is tight for 0, 1 or 2-connected graphs. If G is
3-connected then FVS(G) ≤ 2FHS(ΓG) − 2.

Proof. Let S1 be a minimum FHS in ΓG. Now consider the graph H containing
all uncovered cycles and let FH be its faces. Each face f in H must contain a
point from S1 in its interior. Hence, |S1| ≥ |FH |. Let S2 be a minimum FVS in
H . Then by Lemma 3 |S2| ≤ |FH | − 1 ≤ |S1| − 1. Note that S1 ∪ S2 is a FVS in
G. Hence, FVS(G) ≤ |S1| + |S2| ≤ 2|S1| − 1 = 2FHS(ΓG) − 1. ��
For 3-connected graphs the embedding is unique and so is the minimum value
of FHS. In general the optimal value differs by at most a factor two for different
embeddings and this bound is tight; see Figure 1(A).

Lemma 5. Let Γ1, Γ2 be two embeddings of planar graph G. Then FHS(Γ1) ≤
2FHS(Γ2) − 1.

Proof. If G contains only one face (i.e., it is a forest), then FHS(Γ1)=FHS(Γ2)=
1. In the other case Lemma 2 says FHS(Γ1) ≤ FVS(G). By Lemma 4 we have
FVS(G) ≤ 2FHS(Γ2) − 1. Combining these inequalities the lemma follows. ��

(A) (B)

Fig. 1. (A) Tight example for the dependence on the embedding. If all k triangles
are directed inwards, the optimal FHS has size k + 1. If all are directed outwards the
optimal value is 2k + 1. (B) In an infinite honeycomb graph the ratio between FHS
and the connected FVS is 3.
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2.2 FVS and FHS in Planar Graphs with Minimum Degree 3

The minimum FHS may be arbitrarily much smaller than the connected FVS
if we allow vertices of degree 2. However, restricting to a minimum degree of
3 ensures a constantly bounded ratio between the connected and unconnected
problem.

Theorem 1. Let G be a connected planar graph with minimum degree 3 and
let OptC be the optimal value for connected planar FVS. Further, let Opt be
the optimal value for FHS, for some given embedding of G. Then, OptC = 0 if
Opt = 1 and OptC ≤ 11Opt− 14 otherwise.

Proof. The case Opt = 1 is trivial. Now assume Opt ≥ 2. The outline of the
proof is as follows. Given a planar graph G = (V, E) plus embedding, let S be
a face hitting set and T be a minimum Steiner tree on S. We will construct
curves in the embedding that go from edges in T to vertices in S such that no
two curves intersect. On one hand, the number of curves will be Ω(|T |). On the
other hand, we will see that non-intersection of curves implies that their number
is O(|S|). Combined we get |T | = O(|S|).

To simplify the construction of curves we define a graph G′ that follows from
G after contractions of edges. We can partition T in a collection P of at most
2|S| − 2 paths such that any two paths may only have an endpoint in common.
By minimality of T , any path is a shortest path between its endpoints. We leave
any path Pi ∈ P of length 1, 2 or 3 unchanged, where the length is the number
of edges. If the length Pi is two, we denote its inner vertex by qi. If the length is
three we denote one of its inner vertices by qi. Any path Pi of length at least four
is reduced to length exactly four by contracting all points that are at distance
at least two from the two endpoints of Pi in a single point qi. Let the resulting
(multi) graph be G′ = (V ′, E′). The following properties are easy to verify. A
short justification is given below.

(i) All points q1, q2, . . . , are different.
(ii) If length(Pi) ≤ 3 then degree(qi) ≥ length(Pi).
(iii) If length(Pi) ≥ 4 then degree(qi) ≥ length(Pi) − 1.
(iv) Solution S is a FVS for G′ as well.
(v) For any v ∈ V ′, degree(v) ≥ 3.

Explanation: (i) Paths only share endpoints and these are not contracted, i.e.,
no edge was contracted to any of those points. (ii) Obvious. (iii) Every point
on Pi has at least one edge not in Pi. (iv) A contraction creates no extra faces.
Vertices in S are not contracted. (v) The contraction of two adjacent points with
degrees d1, d2 ≥ 3 results in a point with degree d1 + d2 − 2 ≥ 4.

Claim. There are no multiple edges in G′.

Proof. Since G is a simple graph, a multiple edge can only appear if at least
one of the two endpoints is a contracted point. More precisely, either (i) there
are edges (u1, v) and (u2, v) in E such that u1 and u2 are contracted in a single
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points qi, or (ii) there are edges (u1, v1) and (u2, v2) in E such that u1 and u2

are contracted in qi and v1 and v2 are contracted in qj .
In case (i), the point v cannot be on the part of Pi between u1 and u2 since

then all three points would be contracted in qi. Therefore, the edges (u1, v) and
(u2, v) plus the part of Pi between u1 and u2 form a simple cycle C in G. By
Lemma 1, C must have a vertex from T and this can only be v. But then, we
can strictly reduce the length of the T as follows. Remove from T the path from
u1 to u2. Assume, w.l.o.g., that u1 and v are in the same component. Now add
edge (u2, v) and remove the remaining redundant path to u1. The argument for
(ii) is similar. The edges edges (u1, v1), (u2, v2) plus the part of Pi between u1

and u2 and the part of Pj between v1 and v2 form a simple cycle in G and must
therefore contain a point from T . But there is no such point on these parts by
definition. ��

Note that a face in G′ may have more than one vertex from S. For each face
f we fix one vertex s(f) ∈ S. Now, consider a point qi and let Ni be the set
of neighboring edges whose endpoints are not in S. For each i with |Ni| ≥ 2
we do the following. Consider two edges from Ni that are consecutive in the
embedding, i.e., they appear consecutively among edges from Ni when we walk
around qi. Let f be a face that touches qi between these edges. We draw a curve
inside f from qi to s(f). Call this a face-curve. We do this for all |Ni| pairs of
consecutive edges of qi. If, on the other hand, |Ni| = 0 or |Ni| = 1 we add a
curve from qi to each neighbor that is an element from S. Call these edge curves.
Finally, for each path Pi of length one in G we define the point in the plane on
the middle of edge Pi as ri and draw one curve from ri to s(f), where f is a
face adjacent to ri. These curves are also called face-curves. Note that for each
path Pi ∈ P , we either defined a vertex qi in G′ or defined a point ri in the
embedding of G′.

We define the bipartite (multi-)graph H = (Π ∪ Σ,A) as follows. Let Π =
{π1, . . . , π|P|} and Σ = {σ1, . . . , σ|S|}. For each curve defined in the process
above there is an edge in H , i.e., for each curve from qi or ri to sj there is an
edge (πi, σj).

Claim. The graph H is planar and degree(πi) ≥ length(Pi)− 1 for each Pi ∈ P .

Proof. The first follows directly from the following observations. All points qi

and ri are different and none coincides with points from S. Each curve either
lies inside a single face or corresponds to a single edge. All curves inside a face
have a common endpoint.

If length(Pi) = 1 then degree(πi) = 1. If length(Pi) ∈ {2, 3} then degree(qi) ≥
3. Now, either |Ni| ≥ 2 in which case we added |Ni| face-curves, or |Ni| ≤ 1 in
which case we added degree(qi) − |Ni| ≥ 3 − 1 = 2 edge-curves. Now assume
length(Pi) ≥ 4. Note that in that case no neighbor of qi can be a vertex s ∈ S,
since in that case we can reduce the length of T ⊆ G by adding edge (qi, s)
and removing the path in T from qi to one of the two endpoints of Pi. Hence,
|Ni| ≥ degree(qi) ≥ length(Pi) − 1. ��
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We will show that H has few edges. Consider the embedding of H defined nat-
urally by the curves in the embedding of G′. In general, H may have faces of
length two and may be disconnected. To facilitate the analysis we add edges to
H until it is connected. Note that we can always do this without creating new
faces of length two. Denote the new graph by H ′. We prove through Claim 2.2
that H ′ does not have many edges by showing that it has no faces of length two.
In the proof we use the next general statement on planar graphs.

Claim. Let G = (V, E) be a simple planar graph with |V | ≥ 3 and s, w ∈ V such
that degree(v) ≥ 3 for all v ∈ V \ {s, w} and degree(w) ≥ 1. Then, there is at
least one face that does not contain s on its boundary.

Proof. Remove s from G and consider a component C containing some v ∈
V \ {s, w}. Since |V | ≥ 3 this component exists. If w ∈ C then its degree is at
least one. Any other vertex has degree at least two. The sum of the degrees in
C is then at least 2n′ − 1, with n′ the number of vertices in C. But then C is
not a forest and must therefore have a cycle. Since s is not on the cycle there is
a face not connected to s. ��

Claim. There are no faces of length two in H ′.

Proof. Suppose there is a face f of length two in H ′. Since H ′ is connected, there
cannot be a point σj ∈ Σ inside f since it has to be connected to at least one
of the two points of f , in which case f has length larger than two. Given that
f has no points from Σ in its interior, the two curves in G′ that correspond to
the two edges of f do not enclose a point from S. We will show that this leads
to a contradiction.

For each ri we defined exactly one curve. So the two curves do not start
from a point ri. For each qi we either defined edge-curves (at most one to each
neighbor) or defined face-curves. Therefore the two curves must both be face-
curves. Assume they go from qi to sj . Let J ⊆ G′ be the graph induced by all
vertices enclosed by the two curves and including qi and sj . We know that sj

is the only vertex from S in J and, by construction, there is at least one edge
(qi, w) ∈ Ni in J . Since w /∈ S we have w 	= sj and J has at least three vertices:
qi, w and sj . Further, any vertex v /∈ {qi, sj} in J has degree at least 3 in J . By
Claim 2.2, graph J ⊆ G′ has no multiple edges. Now, it follows from Claim 2.2
that there must be a face of J that is not connected to sj. A contradiction. ��

The proof of Theorem 1 now easily follows from an upper and lower bound on
the number of edges |A| in H . By Claim 2.2 we have

|A| =
∑

πi∈Π

degree(πi) ≥
∑

Pi∈P
(length(Pi) − 1) = |T | − |P|. (1)

Since we assumed |S| ≥ 2, the number of vertices in H is |Π |+ |Σ| ≥ 1 + 2 = 3.
Let n, m, f be, respectively, the number of vertices, the number of edges, and
the number of faces in H ′. Each face in H ′ is bounded by at least three edges so
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2m ≥ 3f . Since H ′ is connected we know from Euler’s formula that n+f = m+2.
Hence, 2m ≥ 3f = 3m + 6 − 3n implying m ≤ 3n− 6. We obtain,

|A| ≤ m ≤ 3n − 6 = 3(|Π | + |Σ|) − 6.

Combined with (1) we get that

|T | − |P| ≤ |A| ≤ 3(|Π | + |Σ|) − 6 = 3(|P| + |S|) − 6. (2)

In the definition of P we remarked that |P| ≤ 2|S| − 2. This combined with (2)
gives

|T | ≤ 4|P| + 3|S| − 6 ≤ 4(2|S| − 2) + 3|S| − 6 = 11|S| − 14.

If S is an optimal solution for the unconnected problem, then

OptC ≤ |T | ≤ 11|S| − 14 = 11Opt− 14. ��

Question 1. What is the right ratio for Theorem 1? We conjecture it is 3. See
Figure 1(B).

2.3 Diameter of Polytopes

The 1-skeleton of a 3d-polytope is a 3-connected planar graph and vice versa. We
proved that the smallest tree spanning all facets is in the order of the number
of points hitting all facets. An easy corollary is that the diameter is not much
larger. The famous Hirsch conjecture states that the diameter of any d-polytope
is at most n − d, with n the number of facets. It is known to be true for d = 3.
Note that the face hitting set may be much smaller than the number of faces.
We believe the next easy corollary is of its own interest.

Corollary 1. The diameter of a 3-dimensional polytope P is O(FHS(P)).

Proof. Let s1, s2 be vertices of the polytope P and S a smallest set covering all
the facets. If si /∈ S we add a hyperplane that just cuts off si. The new polytope
P ′ has at most two extra facets and we can cover all facets by at most |S| + 2
vertices. These vertices are spanned by tree of size at most 11(|S| + 2) − 14 =
11|S| + 4. Clearly, the tree in P ′ induces a tree in P of at most the same size
and which connects s1 and s2. ��

A similar statement for higher dimensions should depend on the dimension d. For
example, the facets of a d-dimensional cube are covered by two opposite vertices
while the diameter is d. Hence, the diameter of a d-cube P is d/2·FHS(P), where
FHS is the minimum facet hitting set. Barnette [3] proved that the diameter of
a d-polytope is O(2d(n − d)). Can we replace the n by the minimum FHS?

Question 2. Is there a function f(d) such that for any d-dimensional polytope
P , the diameter is bounded by f(d)FHS(P)?
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3 Complexity and Approximation

3.1 NP-Hardness of FHS and Connected FVS

Bodlaender et al. [5] show that connected FVS with maximum degree 4 is NP-
hard even if every edge has either unit length or an input dependent length K.
They reduce from the connected vertex cover problem in planar graphs. Garey
and Johnson[11] show that the latter problem is already NP-hard if the maximum
degree is 4. To prove NP-hardness for unit lengths we modify the original proof
from [11]. NP-hardness of FHS follows easily from the reduction we use for the
connected version.

Theorem 2. FHS is NP-hard in planar graphs with maximum degree 6 and
connected FVS is NP-hard in planar graphs with maximum degree 9.

Proof. We concentrate on the proof for the connected FVS problem and we leave
the proof for FHS to the extended journal version of this paper. We reduce from
the vertex cover problem in planar graphs with maximum degree 3, which is
known to be NP-hard [11]. Given a planar graph G = (V, E) with maximum
degree 3, we fix some embedding. Let F be the set of faces. We replace each
edge by a graph on 10 vertices as in Figure 2. Call this a bridge. Let the size of a
face be the length of a closed walk along the edges of the face. In each face f of
size k we add two rings: an outside ring on 5k vertices and an inside ring on 15k
vertices. Connections between the rings and bridges are illustrated in Figure 2.
To enhance the counting we do this for the outer face as well. (Not shown in the
figure.) The newly constructed graph G′ has maximum vertex degree 9. We claim
that G has a vertex cover of size s if and only if G′ has a connected feedback
vertex set of size s + 12|E|+ |F |. We omit this technical proof and present it in
the full length journal version of this paper. ��

G’ G

Fig. 2. The reduction. Construction for the outer face is not shown. The encircled
vertices indicate a vertex cover in G and a connected feedback vertex set in G′.

3.2 Approximation Schemes for FHS and Connected FVS

First, we consider the connected FVS. We assume that the minimum vertex
degree in the graph is at least 3. The polynomial time approximation scheme
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is a Baker’s type algorithm; see Baker [2]. First, we define levels of the planar
embedding following the recursive procedure: define level 1 of the embedding
as the set of vertices incident to the exterior face of the embedding; assume we
constructed level j, then level j + 1 is defined as the set of vertices incident to
the exterior face of the embedding after removal of the first j levels.

Given a desired approximation precision ε > 0, let k = 2
(log n)/ε�. Let T
be a minimum tree hitting all faces in G and let OPT = |V (T )| − 1. For any
0 ≤ j ≤ k− 1 define set Vj as the union of levels i such that i ≡ j mod k. Since
sets Vj , 0 ≤ j ≤ k−1, define a partition of V (G) into k subsets, there is a subset
V� containing at most OPT/k vertices from T . Denote q = |V� ∩ V (T )|. Notice
that we do not know in advance values 	 and q. So, the algorithm enumerates
all possibilities for those values and chooses the values providing the shortest
tree hitting all faces. As 1 ≤ 	 ≤ k and 1 ≤ q ≤ OPT/k, this enumeration adds
a factor O(n) in the running time. From now, we assume that the algorithm
picked correct values 	 and q.

Consider k + 1 consecutive levels with the first and the last levels from V�.
We call a subgraph induced by such set of levels a slice. Clearly, any slice is
a (k + 1)-outerplanar graph. By Bodlaender et al [5], the minimum FHS in k-
outerplanar graphs can be found in time O(n3 + 29.5539k). Thus, by definition
of k, we can solve the problem on any slice in polynomial time. Using the same
algorithm as in [5], we can solve in polynomial time even more general problem:
given a slice and an arbitrary number 1 ≤ r ≤ n, we have to find a minimum
forest of at most r components that hits all faces of the slice. We omit the proof
of this simple adjustment.

Notice that T can be seen as a collection of at most q +1 trees such that each
of these trees is located in exactly one slice. Given the minimum forests for each
slice and each number of components, by straightforward dynamic program we
find the minimum forest hitting all faces of G with at most q + 1 components,
each located in exactly one slice. Let T ′ be such forest. Notice, E(T ′) ≤ OPT .

Now, we have a forest T ′ of at most q +1 components that hits all faces in G.
Moreover, this forest is shorter than tree T . The only question remains: how to
connect the components of T ′ at small cost? For any two components S and S′ of
T ′, let distance d(S, S′) be defined as the length of the shortest path connecting
S and S′. On this metric, take a minimum spanning tree M . If (S, S′) ∈ E(M),
we connect S and S′ with the corresponding shortest path. In this way we obtain
a connected graph that hits all faces. Hence, we can find a tree of length at most
OPT +

∑
(S,S′)∈E(M) d(S, S′).

Lemma 6.
∑

(S,S′)∈E(M) d(S, S′) ≤ εOPT .

Proof. As T ′ has at most q+1 components, M contains at most q edges. Assume
there is an edge (S, S′) in M of length greater than εOPT/q. Since OPT ≥ qk ≥
2 logn/ε, we have that d(S, S′) > 2 logn. Consider the corresponding shortest
path between S and S′. Take a vertex v in the middle of this path. Let the set
of faces of G which are not incident to v be referred as F . Consider the distance
from v to f ∈ F by mean the length of the shortest path from v to the furthest
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vertex incident to f . By choice of v and the assumption that d(S, S′) > 2 log n,
the distance from v to any face from F is greater than log n. Therefore, the
subgraph of G induced by all vertices on distance at most 1 + log n from v is
a tree. Since minimum degree in G is at least 3, the number of vertices in such
tree is more than n. A contradiction.

Now, we summarize the main results of this section in the following theorem and
corollary.

Theorem 3. Given a planar graph G of minimum degree 3 and ε > 0, the
algorithm above constructs in polynomial time a tree hitting all faces of G with
length at most (1 + ε)OPT .

Applying literally the same modifications to the Baker’s algorithm as in Epp-
stein [9] and Bodlaender and Grigoriev [6] we derive the following corollary.

Corollary 2. The connected feedback vertex set face hitting set problem on
graphs embeddable on a surface of bounded genus and having minimum vertex
degree 3 admits a polynomial time approximation scheme.

Without the connectivity constraint the problem becomes much easier. A PTAS
for FHS follows directly from the discussion above and we leave the proof to the
reader.

Theorem 4. The face hitting set problem on graphs embeddable on a surface of
bounded genus admits a polynomial time approximation scheme.
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