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Preface

The 35th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2009) took place at Montpellier (France), June 24–26 2009. About
80 computer scientists from all over the world (Australia, Belgium, Canada,
China, Czech Republic, France, Germany, Greece, Israel, Japan, Korea, The
Netherlands, Norway, Spain, UK, USA) attended the conference.

Since 1975, it has taken place 20 times in Germany, four times in The Nether-
lands, twice in Austria, as well as once in Italy, Slovakia, Switzerland, the Czech
Republic, France, Norway, and the UK. The conference aims at uniting theory
and practice by demonstrating how graph-theoretic concepts can be applied to
various areas in computer science, or by extracting new problems from applica-
tions. The goal is to present recent research results and to identify and explore
directions of future research. The conference is well-balanced with respect to
established researchers and young scientists.

There were 69 submissions. Each submission was reviewed by at least three,
and on average four, Program Committee members. The Committee decided to
accept 28 papers. Due to the competition and the limited schedule, some good
papers could not be accepted.

The program also included excellent invited talks: one given by Daniel Kràl on
“Algorithms for Classes of Graphs with Bounded Expansion,” the other by David
Eppstein on “Graph-Theoretic Solutions to Computational Geometry Problems.”
The proceedings contains two survey papers on these topics.

For the second year, the Best Student Paper was awarded. The recipients
of the 2009 edition were Zhentao Li and Ignasi Sau for their paper “Graph
Partitioning and Traffic Grooming with Bounded Degree Request Graph.”

We wish to thank all those who contributed to the success of WG 2009,
especially the authors for submitting high-quality papers, the referees and the
Program Committee for their work, the speakers for their pedagogical talks and
all the participants. We are grateful to all those who helped in the organization,
especially the members and students of the ALGCO team of the LIRMM (Lab-
oratoire d’Informatique, Robotique et Microélectronique de Montpellier), Céline
Berger and Elisabeth Greverie. Special thanks to Alexandre Pinlou, who led all
the local organization.

We should thank the EasyChair team for the service they offer, which saves to
the Program Committee a lot of time. Finally, we would like to thank our sponsors:
the LIRMM, Montpellier 2 University, the CNRS (Centre National de la Recherche
Scientifique), the town of Montpellier and the Languedoc Roussillon district.

September 2009 Christophe Paul
Michel Habib



Conference Organization

The Tradition of WG

1975 U. Pape – Berlin, Germany
1976 H. Noltemeier – Göttingen, Germany
1977 J. Mühlbacher – Linz, Austria
1978 M. Nagl, H.J. Schneider – Castler Feuerstein, Germany
1979 U. Pape – Berlin, Germany
1980 H. Noltemeier – Bad Honnef, Germany
1981 J. Mühlbacher – Linz, Austria
1982 H.J. Schneider, H. Göttler – Neuenkirchen, Germany
1983 M. Nagl, J. Perl – Haus Ohrbeck near Onasbrück, Germany
1984 U. Pape – Berlin, Germany
1985 H. Noltemeier – Castle Schwanberg near Würzburg, Germany
1986 G. Tinhofer, G. Schmidt – Bernried near Munich, Germany
1987 H. Göttler, H.J. Schneider – Kloster Banz near Bamberg, Germany
1988 J. van Leeuwen – Amsterdam, The Netherlands
1989 M. Nagl – Castle Rolduc, The Netherlands
1990 R.H. Möhring – Berlin, Germany
1991 G. Schmidt, R. Berghammer – Fischbachau near Munich, Germany
1992 E.W Mayr – Wiesbaden-Naurod, Germany
1993 J. van Leeuwen – Utrecht, The Netherlands
1994 G. Tinhofer, E.W. Mayr, G. Schmidt – Herrsching near Munich, Germany
1995 M. Nagl – Aachen, Germany
1996 G. Ausiello, A. Marchetti-Spaccamela – Como, Italy
1997 R.H. Möhring – Berlin, Germany
1998 J. Hromkovič, O. Sýkora – Smolenice Castle, Slovak Republic
1999 P. Widmayer – Ascona, Switzerland
2000 D. Wagner – Konstanz, Germany
2001 A. Brandstädt, Boltenhagen near Rostock, Germany
2002 L. Kučera – Český Krumlov, Czech Republic
2003 H.L. Bodlaender – Elspeet, The Netherlands
2004 J. Hromkovič, M. Nagl – Bad Honnef, Germany
2005 D. Kratsch – Metz, France
2006 F.V. Fomin – Bergen, Norway
2007 A. Brandstädt, D. Kratsch, H. Müller – Dornburg near Jena, Germany
2008 H. Broersma, T. Erlebach – Durham, UK
2009 C. Paul, M. Habib – Montpellier, France



VIII Organization

Program Chairs

Michel Habib (Co-chair) LIAFA, Université Paris-Diderot, Paris,
France

Christophe Paul
(Co-chair) CNRS - LIRMM - Université de

Montpellier 2, France

Program Committee

Hans L. Bodlaender Universiteit Utrecht, The Netherlands
Andreas Brandstädt University of Rostock, Germany
Leizhen Cai The Chinese University of Hong Kong, China
Feodor F. Dragan Kent State University, USA
Jirí Fiala Charles University, Prague, Czech Republic
Pinar Heggernes University of Bergen, Norway
Michael Kaufmann Universität Tübingen, Germany
Dieter Kratsch University of Metz, France
Alberto Marchetti

Spaccamela Università di Roma La Sapienza, Italy
Ernst Wilhelm Mayr Technische Universität München, Germany
Ross McConnell Colorado State University, United States of

America
Haiko Müller University of Leeds, United Kingdom
Rolf Niedermeier Friedrich-Schiller-Universität Jena, Germany
Sang-Il Oum KAIST, Republic of Korea
Dimitrios M. Thilikos National and Kapodistrian University of

Athens, Greece
Ioan Todinca LIFO - Université d’Orléans, France
Bernhard Westfechtel Universität Bayreuth, Germany

Local Organization

Stéphane Bessy
Jean Daligault
Philippe Gambette
Émeric Gioan
Daniel Gonçalves
Chistophe Paul
Anthony Perez
Alexandre Pinlou (Chair)
Stéphan Thomassé



Organization IX

External Reviewers

Bampas, Evangelos
Bang-Jensen, Jørgen
Barat, Janos
Basavaraju, Manu
Bayer, Daniel
Bessy, Stéphane
Betzler, Nadja
Brandstadt, Andreas
Brass, Peter
Bui-Xuan, Binh-Minh
Chapelle, Mathieu
Chepoi, Victor
Chudnovsky, Maria
Corneil, Derek
Daligault, Jean
Dijk, Thomas C. van
Dom, Michael
Dorn, Britta
Dorn, Frederic
Durocher, Stephane
Effinger, Philip
Escoffier, Bruno
Fomin, Fedor
Fouquet, Jean-Luc
Fraigniaud, Pierre
Gaspers, Serge
Gerasch, Andreas
Geyer, Markus
Giannopoulou, Archontia
Gioan, Emeric
Golovach, Petr
Grandoni, Fabrizio
Guo, Jiong
Hoang, Chinh
Kaminski, Marcin
Kim, Seog-Jin
Knipe, David
Kolliopoulos, Stavros
Komusiewicz, Christian
Kral, Daniel
Lau, Lap Chi
Le, Van Bang

van Leeuwen, Erik Jan
Liedloff, Mathieu
Limouzy, Vincent
Lipshteyn, Marina
Mancini, Federico
Matamala, Martín
Mazoit, Frédéric
Meister, Daniel
Mnich, Matthias
de Montgolfier, Fabien
Moscardelli, Luca
Moser, Hannes
Nikolopoulos, Stavros
Nisse, Nicolas
Palios, Leonidas
Papadopoulos, Charis
Perez, Anthony
Pettie, Seth
Pinlou, Alexandre
Rao, Michael
Richerby, David
van Rooij, Johan M. M.
Rossmanith, Peter
Rue, Juanjo
Samal, Robert
Sau, Ignasi
Saurabh, Saket
Serna, Maria
Sritharan, Sri
Suchan, Karol
Telle, Jan Arne
Tittmann, Peter
Uetz, Marc
Uhlmann, Johannes
Vanherpe, Jean-Marie
Vaxès, Yann
Villanger, Yngve
Voloshin, Vitaly
Wanke, Egon
Xiang, Yang
Yamazaki, Koichi
Yeh, Roger



Table of Contents

Graph-Theoretic Solutions to Computational Geometry Problems
(Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

David Eppstein

Algorithms for Classes of Graphs with Bounded Expansion
(Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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Graph-Theoretic Solutions
to Computational Geometry Problems

David Eppstein

Computer Science Department, University of California, Irvine

Abstract. Many problems in computational geometry are not stated in graph-
theoretic terms, but can be solved efficiently by constructing an auxiliary graph
and performing a graph-theoretic algorithm on it. Often, the efficiency of the al-
gorithm depends on the special properties of the graph constructed in this way. We
survey the art gallery problem, partition into rectangles, minimum-diameter clus-
tering, rectilinear cartogram construction, mesh stripification, angle optimization
in tilings, and metric embedding from this perspective.

1 Introduction

Graph algorithms and computational geometry form separate communities with sepa-
rate conferences such as the International Workshop on Graph-Theoretic Concepts in
Computer Science and the ACM Symposium on Computational Geometry, respectively,
but they also meet in broader algorithms conferences, and there has been much interplay
between the research topics in the two areas.

Many classical graph algorithm problems have geometric analogues, algorithmic
problems on graphs defined by a geometric input. In most cases, problems of this type
can be solved directly by constructing the graph and then applying a general-purpose
graph algorithm, but can be sped up by examining the graph algorithm’s structure more
closely and applying appropriate geometric data structures. A notable instance of this
phenomenon is the Euclidean minimum spanning tree (the spanning tree of a complete
graph in which the vertices represent points and edge lengths are Euclidean distances):
by using a Delaunay triangulation in place of a complete graph, the quadratic time of
a naive algorithm can be improved to O(n logn) [67]. Other work along these lines
includes algorithms for Euclidean matching [1, 71] and bipartiteness testing [26].

Graph drawing, the visualization of graphs via geometric graph representations [19,
45, 59], forms another community represented by the annual International Symposium
on Graph Drawing. Most work in the area concerns drawings in which a graph’s ver-
tices are represented as geometric points, disks, or polygons, and its edges are repre-
sented as line segments or curves. Researchers in this area seek algorithms that optimize
mathematical stand-ins for their aesthetic quality and readability such as the number of
crossings, the number of bends in non-straight edges, the angles formed by adjacent
edges, the area of the drawing, or the amount of symmetry that the drawing displays;
the interplay between these different measures provides much scope for research.

Geometric techniques have sometimes also been applied to solve problems that were
originally defined in purely graph-theoretic terms. One instance concerns parametric

C. Paul and M. Habib (Eds.): WG 2009, LNCS 5911, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 D. Eppstein

minimum spanning trees, minimum spanning trees of graphs whose edge weights are
linear functions of a parameter. Dey proved [18] that O(mn1/3) different trees may be
formed in this way from a parametric graph with m edges and n vertices, using the
crossing number inequality that s simple plane curves with n shared endpoints have
Ω(s3/n2) crossings [4, 50], while the best known lower bound, Ω(mα(n)), involves a
reduction from another geometric problem, lower envelopes of line segments [22].

In this paper we survey connections between computational geometry and graph al-
gorithms of yet another type: problems in computational geometry that, although not
initially defined graph-theoretically, may be solved by constructing an auxiliary graph
from the input, applying a purely graph-theoretic algorithm to this auxiliary graph, and
translating the output of this algorithm back into geometric terms. We discuss prob-
lems including the art gallery problem, partition into rectangles, minimum-diameter
clustering, rectilinear cartogram construction, mesh stripification, angle optimization in
tilings, and metric embedding. The ordering of the problems is roughly chronological,
and the selection of topics is idiosyncratic and (especially for the later problems) largely
drawn from the author’s own research rather than being comprehensive.

2 Art Gallery Problems

Most computer scientists are familiar both with Chvátal’s art gallery theorem [13, 61]
that every n-vertex simple polygon has a set of �n/3� guard points from which the
whole polygon may be seen, and with Fisk’s elegant graph-theoretic proof [36]. One
begins the proof by adding a maximal set of non-crossing diagonals to the polygon,
partitioning it into triangles. Graph-theoretically, the vertices, sides, and added diago-
nals of the polygon form a maximal outerplanar graph; the weak dual of this graph (the
adjacency graph of the triangles, omitting the outer face) is a tree (Figure 1, center).
Every maximal outerplanar graph may be colored with three colors, as may be proven
by induction: the result is clearly true when the graph is a triangle, and any larger max-
imal planar graph may be colored by removing a leaf from the dual tree, coloring the
remaining graph, restoring the leaf, and observing that the restored vertex has only two
neighbors and therefore has a free color available. Each triangle has one vertex of each
color, so each color class forms a valid guard set, and the smallest of the color classes
has at most �n/3� vertices. This proof technique translates into an efficient algorithm:
polygons may be triangulated in linear time [10], and the induction proof leads to a
linear-time algorithm for 3-coloring maximal planar graphs.

A less well-known variant of the art gallery problem concerns simple orthogonal
polygons, simple polygons all of whose sides are parallel to the coordinate axes. Sim-
ple orthogonal polygons need only �n/4� guards, as can be shown again by graph col-
oring. Every simple orthogonal polygon can be partitioned by diagonals into convex
quadrilaterals [46]; the resulting tree of quadrilaterals can be viewed as a special type
of squaregraph, a planar graph in which every bounded face has four sides and every
vertex either belongs to the unbounded face or has at least four incident edges [12, 6].
Adding the two diagonals of each quadrilateral to a squaregraph forms a kinggraph [12]
(Figure 1, right). As with maximal outerplanar graphs, the kinggraphs derived from
simple orthogonal polygons may be shown to be 4-chromatic by removing leaves of the
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Fig. 1. The art gallery problem. Left: a comb polygon requiring �n/3� guards. Center: triangulat-
ing an input polygon produces a maximal outerplanar graph, the weak planar dual of which is a
tree. Right: The kinggraph formed by adding diagonals (dashed) to a partition of an orthogonal
polygon into convex quadrilaterals.

dual tree.1 In any four-coloring, each quadrilateral has a vertex of each color, so each
color class forms a guard set, and the smallest color class has at most �n/4� guards.
This bound is tight: a comb-shaped orthogonal polygon requires �n/4� guards, just as
a comb-shaped simple polygon requiring �n/3� guards shows that the bound for the
standard art gallery problem is tight (Figure 1, left).

The biggest remaining open problem in art gallery theory concerns edge guards: how
many edges must one select, from a simple polygon, so that every point of the polygon
may be seen from some point on some selected edge? It is not clear, in this case, what
graph one should define on the edges of the polygon to force the color classes of a
coloring of the graph to form edge guard sets.

3 Partition into Rectangles

Many geometric algorithms take as input a complicated polygonal domain and cover
or partition it using simpler shapes [65]; the partitions into triangles and quadrilaterals
from the previous section are important examples. Another problem of this type con-
cerns the partition into rectangles of an orthogonal polygon. The input polygon may
have polygonal holes, unlike the simple orthogonal polygons of the previous section,
and the rectangles are not required to meet edge-to-edge and vertex-to-vertex. The goal
is to minimize the total number of rectangles in the partition (Figure 2).

Rectangular partitions have many applications. In VLSI design, it is necessary to de-
compose masks into the simpler shapes available in lithographic pattern generators [62],
and similar mask decomposition problems also arise in DNA microarray design [39].
Rectangular partitions can simplify convolution operations in image processing [35]
and can be used to compress bitmap images [11]. Closely related matrix decomposi-
tion problems have been applied to radiation therapy planning [21,47], and rectangular
partitions have also been used to design robot self-assembly sequences [51].

Define a good diagonal to be an axis-parallel line segment interior to the input poly-
gon that connects two concave vertices of the polygon. As several authors independently

1 More generally, every kinggraph is 4-chromatic, but a proof is beyond the scope of this survey.



4 D. Eppstein

Fig. 2. Partitioning an orthogonal polygon (left) into the minimum number of rectangles (center).
The right figure shows the axis-parallel diagonals that connect pairs of concave vertices; the
rectangle partition problem may be solved by finding a maximum independent set in the bipartite
intersection graph of these diagonals.

discovered [35, 55, 60], the minimum number of rectangles in a partition of a polygon
with n vertices and h holes is n/2 + h− g− 1, where g is the maximum size of a set
of disjoint good diagonals. To see this, consider the number of corners of rectangles
in a partition, four times the number of rectangles. Let G be a maximal set of disjoint
good diagonals that form a subset of the line segments in some partition of an orthog-
onal polygon, and define a bad vertex to be a nonconvex polygon vertex that is not an
endpoint of G. Each polygon vertex forms at least one rectangle corner. Additionally,
for each bad vertex v, let s be an interior line segment of the partition having v as an
endpoint. Then either s crosses a segment in G, and the two corners formed by the cross-
ing that are on the same side as v with respect to the crossed segment can be charged
to v, or s ends at a non-vertex and the two corners formed at its other endpoint can be
charged to v. This charging scheme shows that the number of rectangle corners in the
partition is at least n plus twice the number of bad vertices. The number of noncon-
vex vertices in any orthogonal polygon with h holes is n/2 + 2h−2, so the number of
bad vertices is n/2 + 2h−2|G|−2, and a lower bound of n/2 + h−|G|−1 rectangles
follows. Conversely, if G is any set of disjoint good diagonals, a partition with exactly
n/2 + h− |G|− 1 rectangles may be found by considering the bad vertices for G, one
at a time, and extending a line segment from each bad vertex to the closest previously-
added segment or polygon side. Thus, finding a partition into a minimum number of
rectangles is equivalent to finding a maximum number of disjoint good diagonals.

The intersection graph of the good diagonals is bipartite: each horizontal diagonal
intersects only vertical diagonals and vice versa. Therefore, finding the maximum num-
ber of disjoint good diagonals translates, in graph-theoretic terms, into finding a max-
imum independent set in a bipartite graph. By König’s theorem [49], in any n-vertex
bipartite graph the maximum independent set has size n−M, where M is the cardi-
nality of a maximum matching; an independent set of this size may be found from a
maximum matching by partitioning the vertices according to the lengths of the short-
est alternating paths from an unmatched vertex to the given vertex, and including the
vertices at even levels of this partition. Therefore, the maximum independent set of
the intersection graph, the corresponding maximum set of disjoint good diagonals,
and a partition into a minimum number of rectangles, may all be found in polynomial
time.
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A naive implementation of an algorithm that reduces the problem to a bipartite graph
and then applies a general-purpose bipartite graph matching algorithm would solve the
problem in time O(n2.5), where n denotes the number of vertices of the input polygon:
this is the time needed to apply the Hopcroft–Karp matching algorithm [41] to the
intersection graph of the good diagonals, which may have Θ(n) vertices and Θ(n2)
edges. However, by using geometric range searching data structures to speed up the
search for alternating paths within the matching algorithm, it is possible to improve the
overall running time to O(n3/2 logn) [42, 53, 54].

4 Minimum Diameter Clustering

The diameter of a set of points is the maximum distance of any two of its points. The
problem of finding low-diameter subsets of larger sets of input points [3, 27] may be
formulated in several different ways: one may take as input a number k and produce as
output the subset of k points with minimum diameter, one may take as input a number
D and produce as output the largest subset with diameter at most D, or one may solve
the decision problem in which D and k are both given and the task is to determine
whether there exists a set of k points with diameter at most D. Since there are only
O(n2) potential diameter values and n different values of k, an efficient algorithm for
any one of these tasks leads to efficient algorithms for the other two tasks as well.

Finding the largest size k of a set with diameter at most a given value D has a di-
rect translation to a graph theoretic problem, but the very directness of the translation
means that it is unhelpful: it provides merely a restatement of the problem rather than
conveying any new insight. We may scale the input point set so that D = 2; then what
we seek is the largest clique in a unit disk graph, the intersection graph of unit disks
centered at the points (Figure 3, left); note that a set of disks forming a clique need not
have a common intersection point. Maximum cliques in unit disk graphs may be found
in polynomial time, given a disk representation of the graph [15] but this is just a trivial
restatement of the minimum diameter clustering problem; it is NP-hard to find a disk
representation given only a graph-theoretic description of a unit disk graph [8].

However, just as in the rectangle partition problem, minimum diameter clustering
may be reduced to a more basic graph-theoretic problem, maximum independent sets
in bipartite graphs [3, 15]. Suppose that we know or can guess the two points p and q
forming the diametral pair in a cluster. Then, all the other points of the cluster must
be within the lune formed by intersecting the two circles with pq as radius, centered
on p and q. The largest possible cluster within the lune is the maximum clique of the
unit disk graph with disk centers inside this lune, or equivalently the maximum inde-
pendent set of the complement G of this restricted unit disk graph. But G is bipartite: if
the lune is bisected by line pq, then a point in G can be connected by an edge only to
other points on the other side of the bisection line (Figure 3, right). Therefore, its max-
imum independent set may be found in polynomial time, as discussed in the previous
section.

Based on this idea, one could test all Θ(n2) pairs pq, find the bipartite graph derived
from each pair and apply a bipartite matching algorithm to it, and return the best clus-
ter found from all of these separate tests. However it is more efficient to use dynamic



6 D. Eppstein

Fig. 3. Minimum diameter clustering. Left: a unit disk graph and its largest clique (the five darker
circles in the upper left). Right: for any two specified points, the largest cluster having those two
points as its diametral pair may be found as a maximum independent set of a bipartite graph in
which the two sides of the bipartition are two halves of a lune defined by the two specified points.

graph algorithms to share work between multiple different matching problems [27].
Suppose we seek the size of the largest cluster for a given D. For each point p that
could be an endpoint of a diametral pair, consider the lune defined by a segment of
length D with p as one endpoint. If the defining segment rotates through an angle of
2π around p, the lune rotates with it, and the set of input points inside the lune un-
dergoes a sequence of O(n) discrete changes in which some point joins or leaves the
set. After each change, one may update the maximum matching of the bipartite graph
defined from the lune by a single alternating path search. Thus, the overall algorithm
loops through all n possible choices of p, and performs a nested loop through the O(n)
set insertion and deletion operations defined by rotating a size-D lune around p. For
each set update operation the algorithm performs an alternating path search to update
a maximum matching and the maximum independent set in the bipartite graph defined
from the lune, and when the nested loops terminate the algorithm returns the largest
cluster found in each of these searches. As Aggarwal et al. [3] describe, each step of
an alternating path search may be performed in logarithmic time with the aid of the
circular hull data structure of Hershberger and Suri [40]. Therefore, each alternating
path search takes time O(n logn), the sequence of O(n) alternating path searches for
a single choice of p takes time O(n2 logn), and the overall clustering algorithm takes
time O(n3 logn) [27].

If k rather than D is given as input, the problem may be solved by a binary search
among the O(n2) different distances defined by the input points, that checks for each
distance whether it is the diameter of some k-point cluster. For this variant, the time may
be further improved to O(n logn+ k2n log2 k) by using a k-nearest-neighbor calculation
to reduce the problem to O(n/k) subproblems with O(k) points per subproblem [27].

It appears to be open whether there exist polynomial time algorithms for solving the
analogous minimum diameter clustering problems in higher dimensions (equivalently,
finding maximum cliques in intersection graphs of unit balls in higher dimensions) or
for finding a maximum clique in a unit disk graph when a geometric representation of
the graph is not given.
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Fig. 4. A rectilinear cartogram of five countries in northwestern Europe. Map based on a CC-
BY-SA licensed image by Brianski, Canuckguy, Zaparojdik, Madman2001, Roke, and Ssolbergj,
online at http://commons.wikimedia.org/wiki/File:Blank Map of Europe -w boundaries.svg.

5 Bend Minimization

A rectilinear cartogram [64,72,58] is a diagram in which geographic regions have been
replaced by orthogonal polygons, with approximately the same shapes and in approx-
imately the same positions with respect to each other as they hold geographically, but
in which the areas of the regions have been distorted to represent numerical data about
the regions unrelated to their physical areas. In introducing these diagrams in 1934,
Raisz [64] wrote, “it should be emphasized that the statistical cartogram is not a map,”
and the stylization inherent in using orthogonal polygons helps perform this emphasis.

We have studied algorithms for constructing cartograms that can accomodate arbi-
trary area assignments [31] and in which the adjacencies between regions have desired
orientations [30] but a more basic problem, constructing a cartogram in which the re-
gion shapes are as simple as possible, had already been solved in a different context, that
of graph drawing [69]. Simple shapes such as rectangles aid the viewer in measuring
and comparing areas and hence in understanding the data represented by a cartogram.
We would like to find a cartogram that represents a given map with a minimum number
of bends (corners interior to the boundary between two adjacent regions); for instance,
in Figure 4 there is one bend, between Belgium and Luxembourg; this is optimal, as
Luxembourg is surrounded by only three countries and hence must have at least one
bend on its boundary. As Tamassia [69] shows, this problem of bend minimization can
be solved in polynomial time by translating it into a network flow problem.

To form a flow problem that represents the bends of some given cartogram, construct
a graph that has a single “circulation” vertex, a vertex for each region of the cartogram
(including the exterior of the diagram as one of the regions), and a vertex for each
junction where three or four regions of the cartogram meet (four regions at a junction
may be needed to model places like the Four Corners in the southwest of the U.S.
where four states meet, but five or more regions cannot meet at a single junction in an
orthogonal cartogram). Include edges from the circulation vertex to each other vertex,
between each two vertices that represent adjacent regions, and between two vertices
that represent an incident junction-region pair. Label this graph with flow amounts,
as follows: each junction vertex has four incoming units of flow from the circulation
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vertex, and sends one unit of flow to the vertices representing the regions in the four
quadrants incident to the junction. For each bend in the cartogram, send one unit of flow
from the region that has a convex vertex at the bend to the region that has a concave
vertex. For each interior region having k junctions on its boundary, send 4− 2k units
of flow to the circulation vertex (or equivalently, if 4− 2k < 0, send 2k− 4 units from
the circulation vertex to the region vertex). And for an exterior region with k junctions
on its boundary, send 2k + 4 units of flow to the circulation vertex. The result can be
shown to be a valid circulation: that is, for each vertex of the flow graph, the numbers
of incoming and outgoing flow units are equal. For the junction vertices, this is clear
because the four incoming units are balanced by the four quadrants into which a unit
of flow is sent. An interior region with k junctions and no bends must form a rectangle,
as a junction cannot form a concave corner; thus, it has four incident junction vertices
that send a single unit of flow, and the remaining k−4 incident junctions send two units
of flow into the region, for a total of 2k− 4 incoming units, balancing the flow to the
circulation vertex. Each additional cave corner at a bend causes one unit of incoming
flow from another region, but must be balanced by an additional convex corner; if that
convex corner belongs to a bend, it provides a unit of outgoing flow, and if it belongs
to a junction then that junction sends one fewer unit of incoming flow, in either case
leading to the same total flow balance. A similar argument shows that the flow into and
out of the exterior region vertex is also balanced, from which it follows that the flow
must be balanced at the single remaining vertex, the circulation vertex.

Conversely, as Tamassia shows, one can assign costs and flow capacities to this net-
work in order to force a minimum cost circulation to correspond to a minimum-bend
drawing. Capacity constraints are needed to force the incoming flow to each junc-
tion vertex to be exactly four units; the edges between adjacent region vertices are
assigned unit cost, and all other edges have zero cost. With these constraints and costs,
the flow described above has cost equal to its number of bends. Conversely, any inte-
ger solution to the capacitated circulation problem can be translated into a drawing in
which the total number of bends is equal to the cost of the circulation, so a cartogram
with the minimum number of bends can be found from a minimum-cost circulation,
which can be constructed in polynomial time. The flow graph is an apex graph: if
one vertex, the circulation vertex, is removed, the rest is planar. Therefore, special-
ized techniques for finding flows in planar graphs may be used to speed up this algo-
rithm [38, 43, 57].

6 Mesh Stripification

Stripification refers to the problem in computer graphics of partitioning a triangulated
surface model of a three-dimensional object into triangle strips, sequences of triangles
meeting edge-to-edge [5, 29, 34, 73]. Such a partition allows for fast rendering by re-
quiring the coordinates of only one vertex per triangle to be transmitted to the graphics
hardware; the other two vertex locations may be found from the previous triangle in the
strip. Triangle strips aid in data compression of geometric models: a predicted location
that aids in compressing the coordinates of each successive vertex may be found by
extrapolation from the previous triangle in a strip [17]. Additionally, if a mesh can be
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Fig. 5. Left: a single strip in a triangulated torus, rendered by M. Gopi, from [25]. Right: a local
move at a vertex allows three cycles to be merged into a single cycle.

represented as a single cyclic triangle strip, as in Figure 5 (left), the structure of the
strip may be used to cover the surface of the model with a space-filling curve [29],
and contractions of the boundary edges of the strip can be used for topology-preserving
simplifications of the model [20].

Finding such a strip may be viewed graph-theoretically, as finding a Hamiltonian
cycle in the 3-regular dual graph of the triangulation, a graph with one vertex per tri-
angle and one edge for each pair of adjacent triangles. However, this is problematic
for two reasons. First, the Hamiltonian cycle problem is NP-complete and the known
exponential-time algorithms for the problem [25, 44] are only capable of solving it
within a reasonable time for models of at most a few hundred triangles. Second, and
more importantly, not all triangulated models, even with spherical topology, have sin-
gle triangle strips of this type. Tutte’s counterexample to Tait’s conjecture that 3-regular
polyhedra are Hamiltonian [68, 70] dualizes to become a triangulated mesh that cannot
be represented as a single cycle of triangles.

However, it is important to realize that the dual graph does not uniquely represent
the geometry: we may change the triangulation, and hence change the graph, without
changing the model’s shape. The dual graph of any triangulated model is both 3-regular
and bridgeless; therefore, by a theorem of Petersen [63], it has a perfect matching, which
may be found efficiently [7]. The set of edges complementary to the matching forms
a partition of the triangulation into a collection of disjoint cycles [29]; however, there
may be more than one of these cycles. As we observed [29], in many cases a local move
at a vertex of the triangulation, that swaps matched and unmatched edges connecting
the triangles sharing that vertex, may reduce the number of cycles (Figure 5, right).
If no such move is available, two adjacent triangles from two different cycles may be
bisected across their shared edge, leading to a new triangulation of the same surface
with the property that a cycle-reducing local move is available at the newly created
vertex. By repeating this subdivision process, one eventually reaches a triangulation
that covers a surface identical to the input model, but one that has a different dual graph
than the input and that can be represented as a single strip. Although theoretically this
could increase the total number of triangles by as much as a factor of 3/2, in practice
we saw at most a 2% increase.
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Fig. 6. Two drawings of the squaregraph dual to a 5-chromatic triangle-free circle graph described
by Ageev [2], from [6]

7 Angle Optimization of Tilings

The planar dual of any arrangement of lines in the plane may be represented as a tiling
of a convex subset of the plane by centrally symmetric convex polygons; this tiling
has one polygon for each crossing point of the arrangement, which may be chosen to
have unit-length edges perpendicular to the lines crossing at that point. De Bruijn [16]
used this construction to form aperiodic tilings (including the rhombic Penrose tiling)
from overlaid families of evenly-spaced parallel lines. More generally the dual of a
weak pseudoline arrangement (a set of curves that are the image of a line under a
homeomorphism of the plane, that have at most one point of intersection per pair of
curves, and that cross each other at their intersection points), may be represented as
a tiling of a nonconvex simple polygon by centrally-symmetric polygons, and every
such tiling arises in this way [24,28]; this provides a convenient method for visualizing
squaregraphs, which are the duals of triangle-free hyperbolic line arrangements [6].

However, the tilings obtained directly from this construction may be hard to read
due to having polygons with very sharp angles, as is true for instance for the tiling
in Figure 6 (left). In unpublished work with Kevin Wortman [32], we considered the
problem of finding a combinatorially equivalent tiling that maximizes the minimum
angle in the tiling (the so-called angular resolution [9, 56]), such as the one in Figure 6
(right); we showed that this optimal tiling could be found by a parametric shortest path
computation in an auxiliary graph derived from the input.

Our algorithm constructs a graph in which the edges have weights that are linear
functions of a parameter λ that represents the angular resolution of the drawing. In a
tiling of this type, one can define an equivalence relation on the sides of tiles in which
opposite pairs of sides on the same side are equivalent; the equivalence classes form
zones of line segments that are required to be parallel and to have the same length. Our
graph has one vertex per zone, and an additional start vertex that has a zero-length edge
to each other vertex; the distance from the start vertex to a zone’s vertex represents the
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adjustment in angle for the segments in the zone between an initial tiling and the optimal
tiling. The constraint that the angle between two sides of a polygon be at least λ can then
be expressed by the existence of an edge between the vertices representing the zones
containing the two sides, with length θi−θ j−λ, where θi and θ j are the angles formed
by the two zones in the initial tiling. Similarly, the constraint that an interior angle be
convex can be expressed by an edge with length π+θi−θ j. With these vertices and edge
lengths, it can be shown that there exists a tiling with angular resolution at least λ if and
only if the result of substituting that value into each edge weight function is a graph with
no negative cycles. Therefore, the optimal angular resolution is the largest value of λ
giving no negative cycles. Due to the special form of the weights in the parametric graph
(each weight is either constant or a constant minus λ) this parametric negative cycle
detection problem can be solved in O(n3) time by an algorithm of Karp and Orlin [48].
The translation from the tiling angular resolution problem to the parametric negative
cycle detection problem and back can be performed within the same time bound.

8 Metric Embedding into Stars

There has been a large amount of interest recently within the theoretical computer sci-
ence community in problems of embedding unstructured metric spaces (which may be
specified, for instance, as a distance matrix) into simpler and more highly constrained
metrics, with low distortion [52]. Such embeddings may be used, for instance, in ap-
proximation algorithms: one can design an approximation algorithm for the constrained
class of metrics, and apply it to arbitrary metrics, incurring the distortion of the embed-
ding as a penalty factor in the approximation ratio of the algorithm. The construction of
graph spanners [23] may also be seen as an instance of this type of problem: one wishes
to approximate a metric describing the shortest paths in an arbitrary graph, by a more
highly constrained metric of shortest paths in a sparse graph. Most work in this area
has concentrated on finding embeddings that guarantee low but non-optimal distortion;
however there has also been some work on finding the best possible embedding [33,37].
In particular, we describe here our work on finding optimal embeddings into star met-
rics, which (as in the angle optimization of the previous section) involves translating
the problem into one of parametric negative cycle detection in an auxiliary graph.

Following [33], we define a star metric to be a metric space in which there exists a
distinguished point h (the hub) of the metric) such that, for every two points p and q, h
lies on a shortest path from p to q. Expressed algebraically: d(p,q) = d(p,h)+d(h,q).
Thus, in contrast to arbitrary n-point finite metric spaces which have n(n−1)/2 degrees
of freedom, a star metric has only n−1 degrees of freedom. We wish to find a map from
an arbitrary finite metric space (represented as a distance matrix D) to a star metric space
(represented as a vector H of distances from each point to the hub) that minimizes the
distortion of the embedding; we do not require that the hub be the image of any point
in the input space. By scaling H, if necessary, we can assume without loss of generality
that the map does not decrease any distance; thus, what we seek is a vector H satisfying
the constraint that, for all p and q, D[p,q]≤ H[p]+ H[q], and minimizing the dilation

δ = max
p,q

H[p]+ H[q]
D[p,q]

.
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Fig. 7. The parametric network into which an optimal star embedding problem is translated.
From [33].

This is a linear program: it may be rephrased as the problem of finding H and δ sub-
ject to the linear nondecreasing-distance constraints and the linear constraints that, for
each p and q, D[p,q]δ−H[p]−H[q]≥ 0, and, among all tuples of H and δ that satisfy
the constraints, finding the tuple minimizing δ. However, it may be solved more effi-
ciently, in strongly polynomial time, by transforming it into a parametric negative cycle
detection problem.

Specifically, as our paper shows, we may find the optimal star embedding using an
auxiliary graph defined from the input, having two vertices p and p for each metric
space point p, as well as a special start vertex s. There is an edge with length zero from
s to each vertex p and from each vertex p to the corresponding p. In addition, for each
pair of points p and q, there is an edge of length −D[p,q] from p to q and another edge
of length λD[p,q] from p to q. As we show, the optimal dilation δ is the smallest value
that can be assigned to λ such that the resulting graph has no negative cycles, and for
this value of λ the distance D[p] of p from the hub in the optimal embedding may be
computed as half of the difference between the two distances from s to p and p.

Thus, the star metric embedding problem may be solved optimally by a single para-
metric negative cycle detection calculation similar to that in the previous section. How-
ever, in this case the edge weight functions of the parametrized network no longer have
the special form needed to apply the Karp–Orlin algorithm; instead, we developed a
more general algorithm that solves any parametric negative cycle detection problem in
strongly polynomial time. The basic idea of the algorithm is to use a matrix squaring
method of Savage [66] to calculate the parametrized function representing the weights
of paths between each pair of vertices; after i iterations of squaring a matrix whose en-
tries represent these functions, they will correctly describe the lengths of the shortest
path between each pair of vertices among paths constrained to have at most 2i hops.
After each matrix-squaring step, the entries of the matrix will not be linear functions
but rather more general piecewise linear concave functions; we perform a binary search
among the set of breakpoints of these functions to narrow down the range of values of
λ within which the optimal value must lie, allowing us to simplify the functions to be
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linear once again. Each binary search step involves applying the Bellman-Ford algo-
rithm to determine whether a specific value of λ causes the parametrized graph to have
a negative cycle. The negative cycle detection algorithm resulting from this parametric
search procedure has total running time O(n3 log2 n), which is therefore also the time
for using this approach to solve the optimal star metric embedding problem.

9 Conclusions

As we have seen, a graph-theoretic point of view can be useful in many algorithmic
problems that do not, initially, seem to have much to do with graphs. The graph prob-
lems occurring in the solutions of the geometry problems discussed here are mostly
well-known and classical: they include the maximum independent set and maximum
clique problems, maximum cardinality matching, shortest paths, and minimum cost
flow. However, sometimes these problems occur in a somewhat different form than they
have been studied elsewhere in the literature: the star metric embedding problem, for
instance, required parametric negative cycle detection at a level of generality that had
previously not been considered.

Special classes of graphs, and specialized algorithms that take advantage of these
special classes, seem to be ubiquitous in this area. In the examples here, we have seen
natural applications of trees, maximal outerplanar graphs, squaregraphs and kinggraphs,
bipartite graphs, unit disk graphs, apex graphs, and 3-regular bridgeless graphs. The
simple coloring algorithm for maximal outerplanar graphs described in the section on
the art gallery theorem generalizes to chordal graphs (maximal outerplanar graphs are
chordal) and to perfectly orderable graphs [14].

There are undoubtedly many more applications of graph-theoretic concepts in com-
putational geometry waiting to be discovered, and it is important that the lines of
communication remain open between the graph algorithm and computational geometry
communities, so that computational geometers will know where to find the algorithms
they need and so that graph algorithms researchers can focus their efforts on the prob-
lems and graph classes with the greatest benefit in geometric applications.
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Abstract. We overview algorithmic results for classes of sparse graphs
emphasizing new developments in this area. We focus on recently in-
troduced classes of graphs with bounded expansion and nowhere-dense
graphs and relate algorithmic meta-theorems for these classes of graphs
to their analogues for proper minor-closed classes of graphs, classes of
graphs with bounded tree-width, locally bounded tree-width and locally
excluding a minor.

1 Introduction

It is well-known that many hard problems are tractable for classes of graphs
with restricted structure. A classical example of this phenomenon is the result
of Courcelle [5] that every graph property that can be described by a monadic
second order logic formula can solved in linear time for graphs with bounded
tree-width. In particular, some NP-hard problems including graph coloring or
vertex domination can be solved in linear time for graphs with bounded tree-
width.

In this paper, we focus on algorithmic meta-theorems for classes of graphs
whose structure is limited in some sense. To motivate the results we want to
present, let us switch from the algorithmic to the structural point of view and
look at the chromatic number. Graphs with bounded tree-width are degenerate
and thus their chromatic number is bounded. Similarly, the chromatic number
of planar graphs and more generally graphs that can be embedded on a fixed
surface is bounded. Graphs with bounded tree-width, planar graphs and graphs
that can be embedded on a fixed surface form minor-closed classes of graphs. A
general experience says that most structural (and algorithmic) properties that
hold both for classes of graphs with bounded tree-width and for classes of graphs
embedded on a fixed surface are also true for classes of graphs excluding a fixed
minor. The chromatic number being bounded is an example.
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However, the chromatic number is not bounded only for classes of graphs
excluding a fixed minor. Other classes of graphs with bounded chromatic number
include graphs with bounded maximum degree or d-degenerate graphs (for fixed
integer d). Since any graph is a minor of a cubic graph, these classes of graphs
are clearly not minor-closed. A more tricky example of such class is the class of
graphs obtained from planar graphs by adding at most two (not necessarily non-
crossing) edges to each face. Still it turns out that some algorithmic properties
of planar graphs also hold for the above mentioned graph classes.

Based on these examples, one would maybe guess that the only requirement
we need is that the number of edges of a graph is bounded by the function linear
in the number of its vertices, i.e., its average degree is bounded. This is however
not sufficient since the average degree can be decreased by adding a sparse part
to the graph (a set of isolated vertices being the simplest example, but one can
easily think of more sophisticated ways which also preserve connectivity or other
parameters). Similarly, the maximum average degree is not fine enough since sub-
dividing each edge of an input graph decreases maximum average degree below
four but most of the structural properties of an input graph are preserved. So,
one needs a more robust structural parameter to capture the common properties
of the above graph classes that are essential for the algorithmic results we are
interested in.

A framework of classes of graphs with bounded expansion and a more general
framework of classes of nowhere-dense graphs that have been introduced in a
series of papers by Nešetřil and Ossona de Mendéz [19,20,21,22,23,24,25] seems
to be the right one to be considered in this setting. In this paper, we will survey
known structural and algorithmic results, including recent results of the authors
and Thomas on decidability of first order logic properties, for classes of graphs
with bounded expansion and classes of nowhere-dense graphs and relate these
results to the earlier results for other graph classes. We will also provide proofs
of some easier facts and those that are essential for algorithmic applications.

2 Definitions

In this section, we present definitions and notions important for our exposition.
Though some of the notions we present are fairly standard, we decided to include
them for the sake of completeness.

2.1 Graph Decompositions, Graph Minors

The graph minor project of Robertson and Seymour is one of the basic stones of
modern graph theory. In this subsection, we recall some definitions and results
from this area which we need in our further exposition.

A tree-decomposition of a graph G is a tree T whose vertices correspond to
subsets of vertices of G, referred to as bags, and the following three properties
hold:

1. every vertex of G is in at least one of the bags,
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2. for every edge of G, there is a bag containing both its end-vertices, and
3. if a vertex v of G is contained in the bags associated with vertices u and u′

of T , then v is contained in all the bags associated with the vertices on the
path between u and u′ in T .

The order of a tree-decomposition T is the maximum size of a bag associated
to a vertex of T decreased by one. The tree-width tw(G) of a graph G is the
minimum order of a tree-decomposition of G. Graphs with tree-width zero are
edge-less and those with tree-width at most one are forests.

More restricted width parameter is the tree-depth. The tree-depth td(G) of a
graph G is the minimum depth of a rooted tree T with the same vertex set as
G that for every edge vv′ of G, v is an ancestor of v′ or v′ is an ancestor of v.
To fix our terminology, the depth of a rooted tree T is the maximum number of
vertices in a path from the root to a vertex of T , e.g., the depth of the one-vertex
rooted tree is one. Vertices on the path from a vertex v to the root are ancestors
of v. Those vertices v′ such that v is an ancestor of v′ are descendents of v.

It is not hard to see that the tree-width of a graph G is bounded by its tree-
depth decreased by one (consider the optimum tree T from the definition of the
tree-depth, form bags as sets of vertices on the paths from the root to the leaves
and associate them with vertices of a path in the order in which the leaves of T
are visited during the depth-first search). On the other hand, the tree-depth of a
graph is not bounded by any function of its tree-width (the tree-depth of the n-
vertex path is �log2(n+1)�). In fact, the tree-depth of a graph G is proportional
to the length � of the longest path in G since �log2(� + 2)� ≤ td(G) ≤

(
�+3
2

)
− 1.

It also holds [3] that td(G) ≤ (tw(G) + 1) log2(n + 1) where n is the number of
vertices of G.

An alternative definition of the tree-depth can be given by means of a vertex-
coloring [26]. The ranking number of a graph G, as defined in [2], is the minimum
number k of colors 1, . . . , k needed to color the vertices of G such that any path
joining two vertices of the same color contains a vertex with a bigger color. It
can be shown that the tree-depth of a graph G is equal to its ranking number
(to obtain the coloring, color the vertices of the tree T from the definition of
the tree-depth based on their distance from the root, giving the root the largest
color; to obtain a decomposition, proceed conversely).

A minor of a graph G is a graph obtained by deleting vertices and edges and
contracting edges. Recall that the operation of contracting an edge e consists of
removing e, identifying its end-vertices and deleting any loops and parallel edges
that arise. A class G of graphs is minor-closed if every minor of a graph from G
is also contained in G. Examples of minor-closed classes of graphs include graphs
embeddable in a fixed surface, graphs with tree-width at most k for an integer k,
graphs with tree-depth at most k and many others. Proper minor-closed classes
of graphs are degenerate, i.e., for every proper minor-closed class G, there exists
an integer k such that every graph G ∈ G is k-degenerate which means that G
and each of its subgraphs has a vertex of degree at most k.

One of the main results in the graph minor series of Robertson and Sey-
mour [30] asserts that every minor-closed class G of graphs has a finite list of
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obstructions, i.e., there exist G1, . . . , Gk such that G ∈ G if and only if G does
not contain any of the graphs G1, . . . , Gk as a minor (these graphs are also called
obstructions). E.g., the tree-width of a graph G is at most one if and only if G
does not contain K3 as a minor, and at most two if and only if G does not contain
K4 as a minor. The complete list containing four obstructions for graphs with
tree-width at most three was given in [1]. A minor-closed class of graphs can
contain graphs with arbitrary big tree-width (planar graphs being an example),
but it is known that the tree-width of graphs in a minor-closed class G of graphs
is bounded if and only if one of the obstructions for G is planar [29].

2.2 Local Parameters

First order logic graph properties are of localized nature as we discuss in Subsec-
tion 4.2. Because of this, graphs with locally restricted structure are important
from the algorithmic point of view: classes of graphs with locally bounded tree-
width were introduced by Eppstein [12] (using somewhat different notation) and
classes of graphs locally excluding a minor were defined by Dawar, Grohe and
Kreutzer [6].

Before we define these graph classes, we need to recall several definitions. If
G is a graph and v is a vertex of G, then Nd(v) is the d-neighborhood of v, i.e.,
the set of vertices of G at distance at most d from v. If A is a set of vertices of a
graph G, then G[A] is the subgraph of G induced by A, i.e., the subgraph with
vertex set A that contains all edges of G with both end-vertices from A.

We say that a class G of graphs has locally bounded tree-width if there exists
a function f : N → N such that the tree-width of G[Nd(v)] is at most f(d) for
every graph G ∈ G, every vertex v of G and every d ≥ 1. Similarly, a class G
of graphs locally excludes a minor if there exists an infinite sequence of graphs
H1, H2, . . . such that for every graph G ∈ G, every vertex v of G and every d ≥ 1,
the graph G[Nd(v)] does not contain Hd as a minor.

Observe that every class of graphs with locally bounded tree-width locally
excludes a minor. Similarly, every proper minor-closed class of graphs locally
exclude a minor. We later define other locally restricted graph classes.

2.3 Grad and Expansion

We now present the framework of classes of graphs with bounded expansion and
classes of nowhere-dense graph which was introduced by Nešetřil and Ossona de
Mendéz in [24]. An r-shallow minor of a graph G is a graph obtained from G by
removing some vertices and edges of G and contracting several vertex-disjoint
subgraphs of radius at most r. Recall that the radius of a graph is the minimum
r such that G = G[Nr(v)] for some vertex v of G, i.e., every vertex of G is at
distance at most r from v. If G is a class of graphs, then G 
 r is the class of all
r-shallow minors of graphs contained in G.

The edge-density of a graph G is ||G||/|G|, i.e., the ratio of the number of
edges of G and the number of its vertices. The grad 
r(G) with rank r (greatest
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reduced average density) of a graph G is the maximum edge-density of an r-
shallow minor of G. Observe that if d ≥ 2
0(G), then a graph G is d-degenerate.
A class G of graphs has bounded expansion if there exists a function f : N → N

such that 
r(G) ≤ f(r) for every graph G ∈ G and every r ≥ 1.
Let us give few examples of classes of graphs with bounded expansion. Since

every proper minor-closed class G of graphs is degenerate, the grads of all ranks
of graphs contained in G are bounded by a constant. Hence, all proper minor-
closed classes of graphs have bounded expansion. Another example of a class
of graphs with bounded expansion are graphs with bounded maximum degree:
if G has maximum degree Δ, then 
r(G) ≤ Δ(Δ − 1)r/2. Hence, classes of
graphs with bounded maximum degree have also bounded expansion. Another
example is the class of graphs that can be embedded to the plane in such a way
that each edge is crossed by at most one other edge; this class contains graphs
with arbitrary large degrees and is not minor-closed. Other examples of classes
of graphs with bounded expansion can be found in [27].

Analogously to already introduced definitions, a class G of graphs has lo-
cally bounded expansion if there exists a function f : N × N → N such that

r(G[Nd(v)]) ≤ f(r, d) for every graph G ∈ G, every vertex v of G and any
two integers r and d. It can be shown that every class G of graphs with locally
bounded expansion has almost bounded expansion in the following sense: for
every ε > 0, there exist functions fr(n) : N → N such that fr(n) ∈ O(nε) for
every r = 0, 1, . . . and 
r(G) ≤ fr(n) for every n-vertex graph G ∈ G.

This leads us to the definition of nowhere-dense graphs. If G is a class of
graphs and f a real-valued function on the set of all graphs, then

lim sup
G∈G

f(G)

is the supremum of all reals α such that there exists an infinite sequence of
distinct graphs G1, G2, . . . from G with α = limk→∞ f(Gk). The trichotomy
theorem of Nešetřil and Ossona de Mendéz [24] asserts the following:

Theorem 1. For every infinite class G of graphs, the following holds:

lim
r→∞ lim sup

G∈G�r

log ||G||
log |G| ∈ {0, 1, 2} . (1)

Let us give the proof of this (at the first sight very surprising) theorem since it
gives more insight into the structure of classes of graphs achieving each of the
values of the limit.

Proof. If there exists a constant C such that every graph in G has at most C

edges, then limk→∞
log ||Gk||
log |Gk| = 0 for every infinite sequence G1, G2, . . . of distinct

graphs from G 
 r (the number of vertices of the graphs Gi must grow to the
infinity but the number of their edges is bounded by C).

If there is no constant C bounding the number of edges of every graph in G,
proceed as follows: choose G1 to be K2, clearly, K2 ∈ G 
 0. If G1, G2, . . . , Gk

have already been fixed, choose Gk to be any graph of G 
 0 containing more



22 Z. Dvořák and D. Král’

edges than Gk−1 and subject to this with the minimum number of vertices.
Observe that |Gk| ≤ 2||Gk|| for every k (otherwise, Gk contains an isolated
vertex which contradicts our choice of Gk). It follows that

lim inf
k→∞

log ||Gk||
log |Gk||

≥ 1 .

Since G 
 0 ⊆ G 
 1 ⊆ · · ·, it follows that if the limit in (1) is not equal to zero,
then the limit is at least one.

Assume now that the limit given in (1) is greater than 1 for G. Hence, there
exist r, ε > 0 and an infinite sequence of graphs G1, G2, . . . ∈ G 
 r such that
||Gk|| ≥ |Gk|1+ε. We now apply the following result from [8, Lemma 3.13]: for
every ε > 0, there exist an integer d and δ > 0 such that every n-vertex graph
with average degree nε contains Knδ as a d-shallow minor. It follows that the
class G 
 rd contains complete graphs of arbitrary order and the limit (1) is at
least two. Since ||G|| ≤ |G|2/2 for every graph G, the limit in (1) is at most two
and the proof of the theorem is completed.

The classes G of graphs with the limit (1) equal to 0 or 1 are called classes of
nowhere-dense graphs. It follows that every class of graphs with locally bounded
expansion is a class of nowhere-dense graphs.

We finish this section with Figure 1 where the reader can find inclusions
between graph classes we have introduced in this section.

Star forests Path forests

Bounded tree-depth Outerplanar graphs

Bounded tree-width Planar graphs
Bounded degree

Bounded genus

Excluding a minor Locally bounded tree-width

Bounded expansion Locally excluding a minor

Locally bounded expansion

Nowhere dense

Fig. 1. Overview of inclusions between various graph classes
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3 Structural Properties

In this section, we will introduce the notion of fraternal augmentations of orien-
tations of graphs as defined by Nešetřil and Ossona de Mendéz in [20]. Since all
the algorithms for classes of graphs with bounded expansion as well as classes
of nowhere dense graphs are based on this notion, we decided to present it with
full detail. The proofs follow the lines of those given in [20].

3.1 Orientations with Small In-Degree

Every graph G admits an orientation with maximum in-degree at most 
0(G).
The purpose is to develop a technique of augmenting orientations with small in-
degrees preserving the fact that the grads remain small. To achieve this, we will
need the following definition and lemma. Two vertices v and v′ of a digraph1 �G
are k-reachable for an integer k, if there exists a vertex w and oriented paths P
and P ′ from v and v′ to w of lengths � and �′, respectively, such that � + �′ ≤ k.
The paths P and P ′ form an (�, �′)-wedge between v and v′.

We now state a key lemma for our further considerations.

Lemma 1. There exist polynomials Pk(x, y), k = 1, 2, . . ., with the following
properties. Let G be a graph and �G an orientation of G with maximum in-degree
Δ−. If Hk is the graph with the vertex set of G and two vertices adjacent if they
are k-reachable, then


0(Hk) ≤ Pk(Δ−,
k−1(G)) .

Proof. The proof proceeds by induction on k. If k = 1, then the graphs H1 and
G are the same (observe that two vertices are 1-reachable if and only if they are
adjacent in �G). Hence, 
0(H1) = 
0(G) and we can set P1(x, y) = y.

Assume now that k > 1. Consider a proper vertex coloring of Hk−1 with
2Pk−1(Δ−,
k−2(G)) + 1 colors (the existence of this coloring follows from the
fact that Hk−1 is 2Pk−1(Δ−,
k−2(G))-degenerate). Color now the arcs uv of
�G with pairs [α, β] of colors where α is the color of v and the color β is chosen
in such a way that no two arcs coming to the same vertex have the same color.
Since Δ− choices of colors β suffice at each vertex, the arcs of �G can be colored
with at most (2Pk−1(Δ−,
k−2(G)) + 1)Δ− colors. Let K be this number of
colors.

A type of an (�, �′)-wedge formed by paths P and P ′ of lengths � and �′ is the
pair of two sequences of lengths � and �′ formed by the colors of the arcs of P
and P ′, respectively. Fix two integers � and �′ such that �+�′ = k and 0 < � ≤ �′.
Observe that the type of any (�, �′)-wedge contains mutually distinct colors since
the vertices with incoming arcs in an (�, �′)-wedge have mutually distinct colors
(they are (k − 1)-reachable).

1 We allow digraphs to have parallel arcs oriented in the opposite way. If we want to
exclude parallel arcs, we will say that a digraph is simple.



24 Z. Dvořák and D. Král’

Fix now two sequences σ and σ′ of arc colors with lengths � and �′ such that
�G contains an (�, �′)-wedge of type [σ, σ′]. Let F be the set of all arcs contained
in an oriented path whose arcs are colored with the colors as in σ (respecting
the order of the colors) and F ′ the set of all arcs contained in an oriented path
whose arcs are colored as in σ′. Finally, F ′′ is the set of the arcs of F ′ that do
not have the last color of σ′.

Now consider two paths P and Q of lengths � with arc colors as in σ. Since
the colors of all the �+1 vertices of P are mutually distinct as well as the colors
of the � + 1 vertices of Q and no vertex has two incoming arcs with the same
color, P and Q are either vertex-disjoint or P ∩Q is the initial sequence of both
the paths. Hence, the arcs of F form (vertex-disjoint) out-branchings of depth �

in �G. The analogous reasoning also applies to F ′ and thus the arcs of F ′ form
out-branchings of depth �′.

Consider now two paths P and P ′ of lengths � and �′ with arc colors as in
σ and σ′, respectively. Since only the pair of the first vertices of P and P ′ or
the pair of last vertices (or both these pairs) can have the same color, either P
and P ′ are vertex-disjoint, or they share their first vertices, or they share their
last vertices, or they share both their first and last vertices. Hence, F ∪F ′′ form
out-branchings rooted at their original vertices.

Let �G′ be the graph obtained from �G by removing vertices not incident with
arcs of F ∪F ′′ and contracting the out-branchings of F ∪F ′′. Since every leaf of
any out-branching of F ∪ F ′′ is at distance at most max{�, �′ − 1} ≤ k − 1, the
graph �G′ is a (k − 1)-shallow minor of G (after disregarding the orientations of
its arcs). If v and v′ are k-reachable because of an (�, �′)-wedge of type [σ, σ′],
then v and v′ are roots of out-branchings in F ∪ F ′′ and they are adjacent after
contracting these out-branchings (through the arc with the last color in σ′). We
conclude that the edges between vertices v and v′ that are k-reachable because
of an (�, �′)-wedge of type [σ, σ′] can be oriented in such a way that the in-degree
of any vertex is at most 
k−1(G).

Ranging through all choices of � + �′ = k with � > 0 and �′ > 0 and all
choices of σ and σ′, we obtain an upper bound of 2(k − 1)Kk 
k−1 (G) on the
number of incoming arcs added to Hk. If � = 0 and �′ = k, then we just orient
the new edges based on the direction of the paths they correspond to which
increases the in-degree of each vertex by at most (Δ−)k. Taking into account
the edges present in Hk−1, we obtain that Hk has an orientation of its edges
with maximum in-degree at most


0(Hk−1) + (Δ−)k + 2(k − 1)Kk 
k−1 (G)

which is bounded by

2(k − 1)((2Pk−1(Δ−,
k−1(G)) + 2)(Δ− + 1))k 
k−1 (G) .

The sought polynomial Pk(x, y) can be set to be equal to 4(k− 1)((Pk−1(x, y)+
1)(x + 1))ky.
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We now define a crucial notion of transitive fraternal augmentations. If �G is
a simple digraph, then the transitive fraternal augmentation of �G is a simple
digraph obtained from �G by adding the following arcs:

1. transitive arcs: if uv and vw are arcs of �G, then the arc uw is added unless
�G already contains the arc uw or the arc wu.

2. fraternal arcs: if uv and u′v are arcs of �G, then the arc uu′ or the arc u′u
is added unless �G already contains the arc uu′ or the arc u′u.

Our aim is to add fraternal arcs (where it is possible to make a choice which
arc to add) in such a way that the maximum in-degree of �G does not increase
significantly. To choose the fraternal arcs, we can apply Lemma 1. However, we
would like to iterate the process and thus we need to have a bound on grads
of the transitive fraternal augmentation. Such a bound is given in the following
theorem from [20]:

Theorem 2. There exists polynomial Q1(x, y), Q2(x, y), . . . with the following
properties. Let G be a graph and �G an orientation of G with maximum in-
degree Δ−. If H is the graph containing all the edges of the transitive fraternal
augmentation of �G, then the following holds for every r ≥ 1:


r(H) ≤ Qr(Δ−,
2r+1(G))

Proof. Let V1, . . . , Vn be subsets of vertices of H such that the radius of H [Vi]
is at most r for every i = 1, . . . , n. Let vi be the center of H [Vi]. Consider the
shortest distance tree Ti in H [Vi] rooted at vi and orient the edges of Ti in the
direction from vi. We now modify the simple digraph �G in another digraph �G′

which need not be simple. If the arc uw of Ti corresponds to an edge of G,
add the arc uw to �G. If the arc uw is a transitive edge corresponding to arcs
wv and vu, add the arc vw. If the arc uw is a transitive edge corresponding to
arcs uv and vw, no action is required. Finally, if the arc uw is a fraternal edge
corresponding to arcs uv and wv, add arcs uv and vw.

Observe that the maximum in-degree of �G′ is at most 2Δ−+1: if an arc leading
to v is added because of an arc uw of some Ti, then both u and w are in the
same Vi and uv or wv is an arc of �G. Since the sets Vi are disjoint, at most Δ−

arcs leading to v can be added. The extra one in the estimate corresponds to an
arc added because of the tree containing v.

If the subgraphs H [Vi] and H [Vj ] are joined by an edge in H , then vi and vj

are 2(r +1)-reachable in �G′. In particular, the subgraph H ′ obtained from H by
removing the vertices not contained in V1∪· · ·∪Vn and contracting the subgraphs
H [Vi] is a subgraph of the graph H2r+2 as defined in Lemma 1. Consequently,

0(H ′) ≤ P2r+2)(2Δ−,
2r+1(G)) and thus 
r(H) ≤ P2(r+1)(2Δ−,
2r+1(G)).

Theorem 2 guarantees us that there is a choice of fraternal arcs to be added
such that the maximum in-degree of the transitive fraternal augmentation of �G
is at most (Δ−)2 + 2Q0(Δ−,
1(G)). Moreover, since the grads of the transitive
fraternal augmentations are bounded by polynomials in Δ− and grads of G,
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the process can be iterated. In particular, we obtain the following corollaries.
Note that since the existence of an orientation with small maximum in-degree
is guaranteed by the fact that the grad with rank 0 is bounded, we can use a
greedy algorithm to construct it.

Corollary 1. Let G be a class of graphs with bounded expansion. There exist
Δ0, Δ1, . . . such that every graph G ∈ G has an orientation �G0 with maximum
in-degree Δ0 and �Gi has a transitive fraternal augmentation �Gi+1 with maximum
in-degree Δi+1 for every i ≥ 0. Moreover, for every i, �Gi can be computed in
time linear in the number of vertices of G.

Corollary 2. Let G be a class of nowhere dense graphs. For every ε > 0, there
exist functions fi : N→ N, i = 0, 1, . . ., fi(n) ∈ O(nε), such that every n-vertex
graph G ∈ G has an orientation �G0 with maximum in-degree f0(n) and �Gi has
a transitive fraternal augmentation �Gi+1 with maximum in-degree fi+1(n) for
every i ≥ 0. Moreover, for every i, �Gi can be computed in time O(n1+ε) in the
number of vertices of G.

3.2 Low Tree-Width and Low-Tree-Depth Coloring

We now mention one structural result on a special type of vertex colorings of
graphs which is important for algorithmic applications and is of independent
interest. In [7], DeVos et al. established the existence of low tree-width color
with bounded number of colors for proper minor-closed classes of graphs:

Theorem 3. Let G be a proper minor-closed class of graphs. For every k, there
exists K such that every graph G ∈ G has a vertex coloring with K colors such
that any k′ color classes, 1 ≤ k′ ≤ k, induce a subgraph of G with tree-width at
most k′ − 1.

Theorem 3 was strengthened by Nešetřil and Ossona de Mendéz in [20] in two
directions: first, the result holds for more general graph classes and second it
guarantees the existence of low tree-depth colorings.

Theorem 4. Let G be a class of graphs with bounded expansion. For every k,
there exists K such that ever graph G ∈ G has a vertex coloring with K colors
such that any k′ color classes, 1 ≤ k′ ≤ k, induce a subgraph of G with tree-depth
at most k′. Moreover, such a coloring can be constructed in linear time for any
graph G from G.

Theorem 4 is implied by the following lemma; we provide its short proof for
completeness.

Lemma 2. For every p ≥ 1 and d ≥ 1, the following holds: if �G0 is an ori-
entation of G, �G1, �G2, . . . a series of its transitive fraternal augmentations and
H a connected subgraph of G with tree-depth at most d, then �G3pd[V (H)] either
contains a clique of order p or an out-branching T of depth at most p such that



Algorithms for Classes of Graphs with Bounded Expansion 27

1. the end-vertices of every edge of H are joined by a directed path in T , and
2. if two vertices u and u′ are joined by a directed path in T , then �G3pd[V (H)]

contains the arc uu′ or the arc u′u.

Proof. Fix p and let the proof proceed by induction on d. If d = 1, H is a single
vertex and the claim clearly holds. Assume that d > 1 and let v be a vertex
of H such that the tree-depth of each component of H \ v is at most d − 1.
Let V1, . . . , Vk be the vertex sets of the components of H \ v. By induction,
�G3pd−3p[Vi] either contains a clique of order p or an out-branching Ti such that
any edge of G[Vi] joins a vertex with one of its ancestors and directed paths in Ti

give rise to arcs in �G3pd−3p[Vi]. If �G3pd−3p[Vi] for some i contains a clique of order
p, then so does �G3pd[V (H)]. Hence, we assume the existence of out-branchings
Ti for all i = 1, . . . , k.

Let ri be the root vertex of Ti, i = 1, . . . , k. We claim that ri and v are adjacent
in �G3pd−2p−1: since H is connected, v is adjacent to one of the descendants of ri

in Ti, say w. Let riw1 . . . w� be the oriented path in Ti from ri to w = w�. Since
the depth of Ti is at most p, � ≤ p− 1. Applying the transitive or the fraternal
rule (depending on the orientation of the arc between v and w�), we obtain that
�G3pd−3p+1[Vi] contains an arc between v and w�−1. Repeating the argument,
we get that the vertices v and ri are adjacent in �G3pd−3p+p−1[Vi] = �G3pd−2p−1.
Observe that we have actually proven that if v is adjacent to a vertex u of an
out-branching Ti in �G3pd−3p, then v is adjacent in �G3pd−2p−1 to all the vertices
on the path from ri to u.

Let q be the first index such that the in-degree of v is the same in �G3pd−2p−1+q

and �G3pd−2p−1+q+1. If q ≥ p, then the in-degree of v in �G3pd−2p−1+p is at least
p and thus �G3pd−p contains a clique of order p (on the in-neighbors of v in
�G3pd−p−1). Consequently, �G3pd[V (H)] contains a clique of order p. Hence, we
can assume that q ≤ p− 1.

Let W be the set of vertices w of H such that �G3pd−2p−1+q contains the arc
wv and all the vertices on the path from the ri to w in the out-branching Ti

containing w are in-neighbors of v. Since �G3pd−2p+q contains an arc between any
two vertices of W by the fraternity rule, �G3pd−2p+q[W ∪{v}] contains a directed
Hamilton path, say w1, . . . , w�. Observe that w� = v because of the choice of W .

Let T ′
1, . . . , T

′
k′ be the out-branchings obtained from Ti by removing the ver-

tices contained in W and let r′1, . . . , r′k′ be their roots. Consider now the out-
branching T in �G3pd−2p+q formed by the path w1 . . . w�, the out-branchings
T ′

1, . . . , T
′
k′ and the arcs wir

′
j for j = 1, . . . , k′ where i is the maximum index

such that �G3pd−2p+q contains the arc wir
′
j . Such an index i must exist since either

r′j is a root of one of the out-branchings T1, . . . , Tk and thus �G3pd−2p+q contains
the arc w�r

′
j or W contains the in-neighbor of r′j in one of the out-branchings

T1, . . . , Tk. Hence, T is an out-branching contained in �G3pd−2p+q.
We now verify that the end-vertices of every edge uu′ of H are joined by a

directed path in T . If u = v, then either u′ ∈ W (and thus the existence of
the path follows) or u′ is contained in one of the out-branchings T ′

1, . . . , T
′
k′ , say
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T ′
j. Since r′j �∈ W , T contains the arc vr′j (here, we use that all the vertices

between the root of Ti and a vertex of Ti adjacent to v are also adjacent to v in
�G3pd−2p−1 ⊆ �G3pd−2p+q). The case u′ = v is symmetric and thus we can assume
that neither u nor u′ is v.

If neither u nor u′ is contained in W , then, by induction, they are contained in
the same out-branching T ′

j and are joined by a directed path in T . If both u and
u′ are contained in W , then they are clearly joined by a directed path in T since
they are both contained in the path w1 . . . w�. It remains to consider the case
when u ∈W and u′ �∈W . Let m the index such that wm = u. Since u and u′ are
adjacent in G, they are contained in the same out-branching Ti. Further assume
that u′ is contained in an out-branching T ′

j . By induction, �G3pd−3p contains
either the arc ur′j or the arc r′ju. If the arc ur′j is present in �G3pd−3p, then r′j is
adjacent to a vertex wm′ with m′ ≥ m in T . If the arc r′ju is present in �G3pd−3p,
then �G3pd−2p+q contains an arc between r′j and v since �G3pd−2p−1+q contains
the arc uv. If �G3pd−2p+q contained the arc r′jv, the choice of q would imply that
�G3pd−2p−1+q also contained the arc r′jv which would imply that r′j should have
been included in W . Otherwise, �G3pd−2p+q contains the arc vr′j , thus the arc vr′j
is also contained in T and u and u′ are joined by a directed path in T .

We have shown that the out-branching T satisfies that any two end-vertices
of an edge of H are joined by a directed path in T . Since q ≤ p − 1, T is
an out-branching in �G3pd−p. We claim that if u0, . . . , um is a directed path in
�G3pd−p, then the vertices u0, . . . , um form a clique in �G3pd−p+m. Proceed by
induction on m: if m = 1, there is nothing to prove. Otherwise, �G3pd−p+m−1
contains a clique on the vertices u1, . . . , um. By the fraternity or transitivity
rule, �G3pd−p+m contains an arc between u0 and each of the vertices u1, . . . , um.
Hence, the vertices u0, . . . , um form a clique in �G3pd−p+m. We conclude that if
the depth of T is at least p, �G3pd[V (T )] = �G3pd[V (H)] contains a clique of order
p, and if the depth of T is less than p, then any two vertices joined by a directed
path in T are adjacent in �G3pd. The proof of the lemma is now finished.

4 Testing Graph Properties

In the final section of the paper, we want to focus on meta-algorithmic results
for classes of graphs with restricted structure. Let us remark that the results we
present in this section readily translate to relational structures by considering
the concept of Gaifman graph. If R is a relational structure with a domain D,
then the Gaifman graph of R is the graph with vertex set D where two distinct
elements x and y of D are joined by an edge if R contains a relation including
both x and y. For instance, if a graph G is viewed as a binary relational structure,
then the Gaifman graph of G is G itself. Graph concepts we have introduced
translate to relational structures by considering corresponding Gaifman graphs;
e.g., the class of relational structures has bounded expansion, if the class of their
Gaifman graphs has bounded expansion. The results we present further also hold
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for corresponding classes of relational structures under the assumption that the
vocabulary is finite, i.e., the number of different types of relations is finite.

4.1 Σ1-Properties

Analogously to Σ1-formulas, which are first-order formulas with existential quan-
tifiers only, a Σ1-property is a property that can be described by Σ1-formula.
The easiest problem of this kind is testing the existence of a subgraph. Epp-
stein [10, 11] constructed a linear-time algorithm for deciding the existence of
a fixed subgraph for planar graphs. He then extended his algorithm to minor-
closed classes of graphs with locally bounded tree-width [12]. All these results
were generalized to classes of graphs with bounded expansion by Nešetřil and
Ossona de Mendéz in [21,23]. In fact, they established a more general result on
testing arbitrary Σ1-properties:

Theorem 5. Let Φ be a Σ1-property and G a class of graphs with bounded ex-
pansion. There exists a linear time algorithm deciding Φ for graphs G ∈ G.

The main idea of the algorithm is that if Φ holds for G ∈ G, then the witness
assignment to variables can use at most k colors where k is the number of
quantifiers of Φ. Hence, using Theorem 4, we can color vertices with K colors in
such a way that any k colors induce a graph with tree-depth at most k. After
finding the coloring (in linear time), the problem is reduced to deciding Φ for(
K
k

)
subgraphs of an input graph, each subgraph having tree-depth at most k

(which can be solved, e.g., using the classical Courcelle’s result mentioned at the
beginning of the paper).

Following the lines of the above reasoning, we can obtain an analogous results
for classes of nowhere-dense graphs, see [24] for further details. An algorithm is
almost linear, if for any ε > 0 which is part of the input of the algorithm, the
algorithm runs in time O(n1+ε) where n is the number of vertices of an input
graph.

Theorem 6. Let Φ be a Σ1-property and G a class of nowhere dense graphs.
There exists an almost linear time algorithm deciding Φ for graphs G ∈ G.

Let us now focus on a particular case of Σ1-properties, the existence of short
paths between two vertices. Kowalik and Kurowski [17,18] designed a data struc-
ture with linear build-up time and constant query time answering the existence
of a path of length at most d between two vertices of an input planar graph for a
fixed integer d. In fact, they approach readily generalize to classes of graphs with
bounded expansion. Let us sketch the main idea of the algorithm: let G be an
input graph and consider the sequence of its transitive fraternal augmentations
�G0, . . . , �Gd as defined in Corollary 1. If two vertices u and v are joined by a path
of length at most d, then they are either adjacent in �Gd or they have a com-
mon in-neighbor in �Gd (this can easily be proved by induction on d). Since the
maximum in-degree of �Gd is bounded, the existence of an edge joining the two
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vertices or the existence of their common in-neighbor can be done in constant
time.

The data structure can be dynamized using the result of Brodal and Fager-
berg [4] on maintaining orientations with small in-degrees of degenerate graphs,
see [16]. The arguments readily translate to a setting of classes of graphs with
bounded expansion, see [9]:

Theorem 7. Let G be a class of graphs with bounded expansion and d a fixed
integer. There exists a dynamic data structure for answering the existence of a
path of length at most d in a graph G ∈ G with the following parameters:

– the data structure can be built in linear time,
– each query can be answered in constant time,
– an edge can be added to the represented graph in time O(logd n) where n is

its number of vertices, and
– an edge can be removed in constant time.

4.2 First-Order Properties

We now address the complexity of deciding general first-order properties, i.e.,
those properties that can be described by formulas with quantifications over
graph vertices only (quantification over sets of vertices is not allowed). As exam-
ples of first-order properties, we can mention deciding the existence of a dominat-
ing set of a fixed size or the existence of a vertex cover of a fixed size. First-order
properties can always be decided in polynomial time (with degree depending on
the property) but we are interested in fixed parameter results. The first result
in this direction is the result of Seese [31] that every first-order property can
be tested in linear time for any class of graphs with bounded maximum degree.
The result is not that surprising after we realize that first-order properties are
of very localized nature which is captured in the following classical result of
Gaifman [15]:

Theorem 8. Every first-order formula Φ for graphs is equivalent for some r to
a Boolean combination of formulas of the form

∃x1 · · · ∃xk

(
∧i�=jdist(xi, xj) > 2r

∧
∧i=1,...,kΦr(xi)

)
where each Φr(xi) is r-local with respect to xi, i.e., all quantifiers contained in
Φr(xi) have domain restricted to the r-neighborhood of xi.

In the light of Theorem 8, deciding first-order properties for graphs with max-
imum degree Δ decomposes into a linear number of finite problems (the r-
neighborhood of each vertex contains at most Δ(Δ − 1)r−1 vertices) whose
Boolean combination yields the result on whether the formula is satisfied for
an input graph.

Frick and Grohe [13, 14] extended this result by considering classes of graphs
with locally bounded tree-width. They have shown that any first-order property
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can be decided in almost linear time for any class of graphs with locally bounded
tree-width. In the particular case of planar graphs, they were able to obtain
a linear time algorithm using a different covering algorithm. Their algorithm
uses the following covering result of Peleg [28] which has applications in other
algorithms in the area and thus we would like to mention it explicitly.

Lemma 3. Let k ≥ 1 be a fixed integer. There is an algorithm that given r ≥ 1
and a graph G, outputs sets A1, . . . , Am of vertices of G such that

– for every vertex v of G, there exists Ai containing the r-neighborhood of v,
– every Ai is contained in the 2kr-neighborhood of a vertex of G, and
– the sum |A1|+ · · ·+ |Am| is at most O(n1+1/k).

The running time of the algorithm is linear in the sum of the numbers of edges
contained in G[Ai], i = 1, . . . , k.

Another meta-theorem on graphs with locally restricted structure was obtained
by Dawar, Grohe and Kreutzer [6] who showed that deciding first-order prop-
erties Φ is fixed-parameter tractable for classes of graphs locally excluding a
minor, i.e., there exists a polynomial-time algorithm where the exponent does
not depend on Φ. Nešetřil and Ossona de Mendéz [25] gave a linear time algo-
rithm for deciding the existence of a dominating set of a fixed size for classes
of graphs with bounded expansion. Their result indicates that the results we
mention earlier could hold for classes of graphs with bounded expansion. This
turns out to be true as proven by the authors and Thomas in [9]:

Theorem 9. Let Φ be a first order formula and G a class of graphs with bounded
expansion. There exists a linear-time algorithm deciding Φ for graphs G ∈ G.

Theorem 10. Let Φ be a first order formula and G a class of nowhere dense
graphs. There exists an almost linear time algorithm deciding Φ for graphs G ∈ G.
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Abstract. Inspired by the study of community structure in connection
networks, we introduce the graph polynomial Q (G; x, y), as a bivariate
generating function which counts the number of connected components
in induced subgraphs. We analyze the features of the new polynomial.
First, we re-define it as a subset expansion formula. Second, we give a re-
cursive definition of Q (G; x, y) using vertex deletion, vertex contraction
and deletion of a vertex together with its neighborhood, and prove a uni-
versality property. We relate Q (G; x, y) to the universal edge elimination
polynomial introduced by I. Averbouch, B. Godlin and J.A. Makowsky
(2008), which subsumes other known graph invariants and graph polyno-
mials, among them the Tutte polynomial, the independence and match-
ing polynomials, and the bivariate extension of the chromatic polynomial
introduced by K. Dohmen, A. Pönitz, and P. Tittmann (2003). Finally
we show that the computation of Q (G; x, y) is �P-hard, but Fixed Pa-
rameter Tractable for graphs of bounded tree-width and clique-width.

1 Introduction

1.1 Motivation: Community Structure in Networks

In the last decade stochastic social networks have been analyzed mathematically
from various points of view. Understanding such networks sheds light on many
questions arising in biology, epidemology, sociology and large computer networks.
Researchers have concentrated particularly on a few properties that seem to be
common to many networks: the small-world property, power-law degree distribu-
tions, and network transitivity. For a broad view on the structure and dynamics
of networks, see [30]. M. Girvan and M.E.J. Newman, [19], highlight another
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property that is found in many networks, the property of community structure,
in which network nodes are joined together in tightly knit groups, between which
there are only looser connections.

Motivated by [29], and the third author’s involvement in a project studying
social networks, we were led to study the graph parameter qij (G), the number
of vertex subsets X ⊆ V with i vertices such that G [X ] has exactly j compo-
nents. qij (G), counts the number of degenerated communities which consist of
i members, and which split into j isolated subcommunities.

The ordinary bivariate generating function associated with qij (G) is the two-
variable graph polynomial

Q (G; x, y) =
n∑

i=0

n∑
j=0

qij (G) xiyj.

We call Q (G; x, y) the subgraph component polynomial of G. The coefficient of
yk in Q (G; x, y) is the ordinary generating function for the number of vertex
sets that induce a subgraph of G with exactly k components.

1.2 Q(G; x, y) as a Graph Polynomial

There is an abundance of graph polynomials studied in the literature, and slowly
there is a framework emerging, [20,25,26], which allows to compare graph poly-
nomials with respect to their ability to distinguish graphs, to encode other graph
polynomials or numeric graph invariants, and their computational complexity.
In this paper we study the subgraph component polynomial Q (G; x, y) as a
graph polynomial in its own right and explore its properties within this emerg-
ing framework.

Like the bivariate Tutte polynomial, see [9, Chapter 10], the polynomial
Q (G; x, y) has several remarkable properties. However, its distinguishing power
is quite different from the Tutte polynomial and other well studied polynomials.

Our main findings are 1:

– The Tutte polynomial satisfies a linear recurrence relation with respect to edge
deletion and edge contraction, and is universal in this respect. Q (G; x, y) also
satisfies a linear recurrence relation, but with respect to three kinds of vertex
elimination, and is universal in this respect. (Theorems 2 and 3).

– A graph polynomial in three indeterminates, ξ(G; x, y, z), which satisfies a
linear recurrence relation with respect to three kinds of edge elimation, and
which is universal in this respect, was introduced in [4,5]. It subsumes both
the Tutte polynomial and the matching polynomial. For line graph L(G) of
a graph G, we have Q (L(G); x, y) is a substitution instance of ξ(G; x, y, z)
(Theorem 4).

– Distinguishing power of Q (G; x, y) is incomparable with that of the Tutte
polynomial, the characteristic polynomial and the bivariate chromatic poly-
nomial introduced in [15] (Section 2).

1 More results regarding Q(G; x, y) are available in preprint [36].
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– Also like for the Tutte polynomial, cf. [22], Q(G; x0, y0) has the Difficult
Point Property, i.e. it is P-hard to compute for all fixed values of (x0, y0) ∈
R2 − E where E is a semi-algebraic set of lower dimension (Theorem 5).
In [26] it is conjectured that the Difficult Point Property holds for a wide
class of graph polynomials, the graph polynomials definable in Monadic Sec-
ond Order Logic. The conjecture has been verified for various special cases,
[6,7,8].

– Q(G; x, y) is fixed parameter tractable in the sense of [16] when restricted
to graphs classes of bounded tree-width (Proposition 3) or even to classes
of bounded clique-width (Proposition 4). For the Tutte polynomial, this is
known only for graph classes of bounded tree-width, [2,28,31].

2 Distinguishing Power

We denote by m(G; x) =
∑

i mi(G)xi be the matching polynomial with mi(G)
the number of i-matchings of G, by p(G; x) be the characteristic polynomial, by
χ(G; x) the chromatic polynomial, by T (G; x, y) the Tutte polynomial, and by
P (G; x, y) the bivariate chromatic polynomial introduced in [15].

Fig. 1. Distinguishing power of Q(G; x, y)

Proposition 1. For the graphs Gi; i = 1, . . . 6 from Figure 1, and for P4 and
K1,3 we have

(1) p(G1; x) = p(G2; x) but Q(G1; x, y) �= Q(G2; x, y).
(2) m(G3; x) = m(G4; x) but Q(G3; x, y) �= Q(G4; x, y).
(3) P (G5; x, y) = P (G6; x, y) but Q(G5; x, y) �= Q(G6; x, y).
(4) T (P4; x, y) = T (K1,3; x, y) but Q(P4; x, y) �= Q(K1,3; x, y).

Proposition 2. For the graphs G7 and G8 from Figure 1, we have: Q(G7; x, y)
= Q(G8; x, y) but χ(G7; x) �= χ(G8; x)
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Corollary 1. The distinguishing power of Q(G; x, y) is incomparable neither
with that of the chromatic polynomial nor with that of any generalization of
the chromatic polynomial discussed above (Tutte polynomial, bivariate chromatic
polynomial).

Problem 1. Are there simple graphs distinguished by p(G; x) or m(G; x), which
are not distinguished by Q(G; x, y)?

3 Subset Expansion and Definability in Logic

Q(G; x, y) was defined as a generating function. Let us rewrite the definition of
Q(G; x, y) in a slightly different way. Instead of summation over the number of
the used vertices i, and the number of induced connected components j, we shall
sum over all the possible subsets of vertices:

Q(G; x, y) =
∑
A⊆V

x|A|yk(G[A]) =
∑
A⊆V

(∏
v∈A

x

)⎛⎝ ∏
u∈F (A)

y

⎞⎠ . (1)

where k(G[A]) is the number of connected components of the subgraph of G
induced by A.

This is a subset expansion formula, a term coined in [37]. The relationship
between recursive definitions of graph polynomials and the existence of subset
expansion formulas has been studied from a logical point of view in [20]. Sub-
set expansion formulas can often be used to show that a graph polynomial is
definable in Monadic Second Order Logic, as studied in [23,26] . However, the
exponent k(G[A]) in the left part of Equation (1) causes a problem. To remedy
this, we use, like in [24], an auxiliary order ≺ over the vertices. Then we de-
note by F (A) the subset of the smallest vertices in every respective connected
component. Note that the result does not depend on the used auxiliary order.

Without having to go in the details of graph polynomials definable in Monadic
Second Order Logic2, Equation (1) shows that Q(G; x, y) is a graph polynomial
definable in Monadic Second Order Logic for graphs G = (V, E) with universe
V and a binary edge relation. Therefore all the theorems from [23,27] can be
applied. In particular, the Feferman-Vaught-type theorems from [23] guarantee
existence of reduction formulas like multiplicativity from Theorem 1 not only
for the disjoint union or the join operation, but for a wide class of MSOL-
definable operations. Also, a general theorem from [27] guarantees the existence
of recurrence formulas, for a wide class of recursively defined families of graphs,
as studied also in [33]. Among these we have the wheels Wn, the ladders Ln and
the stars Starn. It should not be difficult to compute the recurrence relations
for these explicitly.

We shall exploit MSOL-definability also for our complexity analysis in Sec-
tion 6.2.
2 The interested reader can consult [17] for the use Monadic Second Order Logic in

finite model theory, and [10] for its use in graph theory.
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4 Recursive Definition and Universality

4.1 Recurrence Relation for Vertex Elimination

We turn now our attention to the investigation of properties of the subgraph
polynomial that support its computation.

Theorem 1 (Multiplicativity). Let G = G1 �G1 be the disjoint union of the
graphs G1 and G2. Then

Q(G; x, y) = Q(G1; x, y) ·Q(G2; x, y).

Theorem 2 (Recurrence relation). Let G = (V, E) be a graph and v ∈ V .
Then the subgraph polynomial satisfies the decomposition formula

Q (G; x, y) = Q (G− v; x, y) + x (y − 1)Q (G−N [v] ; x, y) + xQ (G/v; x, y) ,

where three types of vertex elimination are used:

Fig. 2. Vertex elimination operations

Vertex deletion: For a given vertex v ∈ V (G), let G − v the graph obtained
from G by removal of v and all edges that are incident to v. We call this
operation vertex deletion.

Vertex extraction: Similarly, let G − X be the graph obtained from G by
removal of all vertices of the set X ⊆ V . Let N (v) be the set of vertices
that are adjacent to v in G (the neighborhood of v). We denote by N [v] the
closed neighborhood of a vertex v in G, i.e. the set of all vertices adjacent to
v including v itself. The operation G−N [v] is called vertex extraction.

Vertex contraction: A further special graph operation is needed here – the
contraction of a vertex. That is the graph G/v obtained from G by removal
of v and insertion of edges between all pairs of non-adjacent neighbor vertices
of v.

The proof is available in [36].

4.2 The Universality Property of Q (G; x, y)

The vertex decomposition formula represented in Theorem 2 can be considered as
a vertex equivalent to the well-known edge decomposition (deletion-contraction
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relations). Edge decomposition formulae of the form f (G) = α (e) f (G− e) +
β (e) f (G/e) apply to the Tutte polynomial and derived graph invariants, for in-
stance the number of spanning trees or the reliability polynomial. Indeed, it was
shown by J.G. Oxley and D.J.A. Welsh, [35], that the Tutte polynomial is in a
certain sense universal, meaning that all other graph invariants that satisfy edge
decomposition formulae can be derived from the Tutte polynomial by substitution
of variables. A textbook presentation is given in [9]. A general framework analyz-
ing universality properties of graph polynomials is studied in [20].

It seems natural to ask for the most general vertex decomposition formula.
Let us assume that we try to construct an ordinary generating function f (G)
that counts some type of vertex induced subgraphs with respect to the number
of vertices. Which properties should such a function have? If the subgraphs in
question are composed from subgraphs of the components then we can expect
multiplicativity of f with respect to components of the graph. In order to assign
the value f (G) uniquely to a graph G by application of a decomposition formula
as given in Theorem 2, certain initial values for the null graph and the empty
graph have to be given. Therefore, we presuppose the following five properties
of f :

(a) (Multiplicativity) If G1 and G2 are components of G then

f (G) = f (G1) f (G2) .

(b) (Recurrence relation) Let α, β, γ ∈ R and let v be a vertex of G, then

f (G) = αf (G− v) + βf (G−N [v]) + γf (G/v) . (2)

(c) (Initial condition) There exists δ ∈ R such that f (∅) = δ for the null graph
∅ = (∅, ∅).

(d) (Initial condition) There exists ε ∈ R such that f (E1) = ε for a graph
E1 = ({v} , ∅) consisting of one vertex.

(e) (Order invariance) The result of computing f has to be the same, irrespective
of the order in which we apply the enabled computation steps, in particular,
of the order of the vertices which we use to apply the relation (b).

In general we may choose α, β, γ, δ, ε from a field of characteristic zero or from a
ring. A graph invariant is proper if there are two graphs G1 and G2 with the same
number of vertices such that f(G1) �= f(G2). In [36] it is proved that Q(G; x, y)
is universal among polynomials recursively defined using vertex deletion, vertex
extraction and vertex contraction. More precisely:

Theorem 3 (Universality of Q(G; x, y))

(1) For a graph polynomial f(G; α, β, γ, δ, ε) to be proper and well-defined by
conditions (a)-(d) we have α = 1, δ = 1 and ε = 1 + β + γ.

(2) There is a unique proper graph polynomial U(G; β, γ) which is well-defined
by conditions (a)-(d) and we have
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Q(G; x, y) = U(G; x(y − 1), x) (3)

and

U(G; β, γ) = Q(G; γ,
β

γ
+ 1). (4)

5 Vertex Eliminations vs Edge Elimination

We have seen in Theorem 3 that Q(G; x, y) is universal among the polynomials
defined recursively via deletion, extraction and contraction of vertices. In [4,5]
the polynomial ξ(G; x, y, z) was shown to be universal among the polynomials
defined recursively via deletion, extraction and contraction of edges. In this sec-
tion we will show the connection of G(G; x, y) to the universal edge elimination
polynomial ξ(G; x, y, z).

The polynomial ξ(G; x, y, z) generalizes both the Tutte and the matching
polynomials, as well as the bivariate chromatic polynomial of [15]. We shall use
the recursive decomposition of ξ(G; x, y, z) from [5]:

ξ(G; x, y, z) = ξ(G− e; x, y, z) + yξ(G/e; x, y, z) + zξ(G † e; x, y, z)
ξ(G1 �G2; x, y, z) = ξ(G1; x, y, z)ξ(G2; x, y, z)
ξ(E1; x, y, z) = x

ξ(∅) = 1 (5)

where G1 � G2 denotes the disjoint union of graphs G1 and G2, and the three
edge elimination operations are defined as follows:

Edge deletion: We denote by G − e the graph obtained from G by simply
removing the edge e.

Edge extraction: We denote by G†e the graph induced by V \{u, v} provided
e = {u, v}. This operation removes also all the edges adjacent to e.

Edge contraction: We denote by G/e the graph obtained from G by unifying
the endpoints of e.

Now we rewrite the decomposition of Q(G; x, y) using Theorem 2.

Q(G; x, y) = Q(G− v; x, y) + xQ(G/v; x, y) + x(y − 1)Q(G−N [v]; x, y)
Q(G1 �G2; x, y) = Q(G1; x, y)Q(G2; x, y)
Q(E1; x, y) = xy + 1
Q(∅) = 1 (6)

Theorem 4. Let G = (V, E) be a graph. Let L(G) = (Ve, Ee) denote the line
graph of G. Then the following equation holds:

ξ(G; 1, x, x(y − 1)) = Q(L(G); x, y)

The proof is available in [36].

Problem 2. How does the distinguishing power of ξ(G; x, y, z) compare to the
distinguishing power of Q(G; x, y)?
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6 Computational Complexity of Q(G; x, y)

6.1 Complexity of Evaluation

We deal with a problem of evaluation of Q(−; x, y) at a given point (x, y) ∈ Q2

for arbitrary input graph G.

Theorem 5. For every point (x, y) ∈ Q2, possibly except for the lines xy = 0,
y = 1, x = −1 and x = −2, the evaluation of Q(G; x, y) for an input graph G is
P-hard.

C.Hoffmann in [21] showed the following:

Theorem 6 (Hoffmann 2008). For every point (x, y, z) ∈ Q3, except possibly
for the subsets x = 0, z = −xy, (x, z) ∈ {(1, 0), (2, 0)} and y ∈ {−2,−1, 0}, the
evaluation of ξ(−; x, y, z) for an input graph G is P-hard.

Proof (Proof of Theorem 5:). We use Theorem 6 and our Theorem (4). Under
the conditions of Theorem (4), Hoffmann’s exception sets are mapped to the lines
xy = 0, y = 1, x = −1 and x = −2. It follows that for every point (x, y) ∈ Q2

that does not lay on one of those lines, the polynomial Q(−; x, y) is P-hard to
evaluate even for an input line graph L(G). �

The evaluation of Q(−; x, y) is polynomial time computable for xy = 0 and for
y = 1. It remains open whether it is polynomial time computable for x = −1
and x = −2. One can also ask, whether there is some point (x, y) ∈ Q2, in which
Q(−; x, y) is hard to evaluate for general input graph, but easy for input line
graph.

6.2 Parameterized Complexity

Here we discuss the computational complexity of Q(G; x, y) for input graphs of
bounded tree with, and for input graphs for bounded clique width. We do not
need the exact definitions here. For background on tree-width the reader can
consult [14]. Clique-width was defined in [12]. Both are discussed in [23].

Recall that the subgraph component polynomial is definable using the
MSOL-formalism (formula (1)) with auxiliary order, while the result is order-
independent. Hense, using a general theorem from [23,24], we have

Proposition 3. Q(G; x, y) is polynomial time computable on graphs of tree-
width at most k where the exponent of the run time is independent of k.

Moreover, applying the result of Courcelle, Makowsky and Rotics [11], combined
with the results from [34], we have similar result for graphs of bouded clique
width:

Proposition 4. Q(G; x, y) is polynomial time computable on graphs of clique-
width at most k where the exponent of the run time is independent of k.
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The drawback of the general methods of [23,24] and [11], lies in the huge hid-
den constants, which make it practically unusable. However, an explicit dynamic
algorithm for computing the polynomial Q(G; x, y) on graphs of bounded tree-
width, given the tree decomposition of the graph, where the constants are simply
exponential in k, can be constructed along the same ideas as presented in [18,38].
For the graphs of bounded clique width, given the clique decomposition of the
graph, we know an algorithm with constants doubly-exponential in k. It is open
whether an algorithm with constants simply exponential in k exists. For a com-
parison of the complexity of computing graph polynomials on graphs classes of
bounded clique-width, cf. [28].

7 Conclusions and Open Problems

We have shown that Q(G; x, y) is a universal vertex elimination polynomial. We
have looked at the graph polynomial Q(G; x, y) from various angles and com-
pared its behaviour and distinguishing power with the characteristic polynomial,
the matching polynomial the Tutte polynomial and the universal edge elimina-
tion polynomial. We have not discussed the relationship of Q(G; x, y) to other
graph polynomials, such as the interlace polynomial, [1,3], or the many other
graph polynomials listed in [26].

We have seen that Q(G; x, y) distinguishes between graphs where these poly-
nomials do not. For the chromatic polynomial and its generalizations we have also
shown the opposite direction. We have not found cases where the matching and
the characteristic polynomials do distinguish between graphs where Q(G; x, y)
does not. This is probably due to our lack of computerized tools for searching for
such cases, cf. Problem 1. In Problem 2 we ask about comparing distinguishing
power of Q(G; x, y) and the universal edge elimination polynomial ξ(G; x, y, z).
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Abstract. The Hamiltonian Cycle problem asks if an n-vertex graph
G has a cycle passing through all vertices of G. This problem is a classic
NP-complete problem. So far, finding an exact algorithm that solves it in
O∗(αn) time for some constant α < 2 is a notorious open problem. For
a claw-free graph G, finding a hamiltonian cycle is equivalent to finding
a closed trail (eulerian subgraph) that dominates the edges of some as-
sociated graph H . Using this translation we obtain two exact algorithms
that solve the Hamiltonian Cycle problem for the class of claw-free
graphs: one algorithm that uses O∗(1.6818n) time and exponential space,
and one algorithm that uses O∗(1.8878n) time and polynomial space.

1 Introduction

In this paper we study the well-known NP-complete decision problem Hamil-

tonian Cycle (cf. [7]) that asks whether a graph G has a hamiltonian cycle,
i.e., a cycle that passes through all vertices of G. The Hamiltonian Cycle

problem can be seen as a special case of the well-known Traveling Salesman

problem. The input of the latter problem is a complete graph together with an
edge weighting. The goal is to find a hamiltonian cycle of minimum total weight.
Held & Karp [11] present a classic dynamic programming algorithm that solves
the Traveling Salesman problem in O∗(2n) time and O∗(2n) space for graphs
on n vertices. The O∗-notation indicates that we suppress factors of polynomial
order, and we use this notation throughout the paper. The slightly easier Hamil-

tonian Cycle problem can be solved using O∗(2n) time and polynomial space,
as was shown by Karp [13] and independently by Bax [1]. It is a major and
long outstanding open problem if the Hamiltonian Cycle and the Travel-

ing Salesman problem can be solved in O∗(αn) time for some constant α < 2,
even if the polynomial space restriction is dropped.

For some graph classes for which the Hamiltonian Cycle, and consequently
the Traveling Salesman problem, remains NP-complete, faster algorithms
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have been designed. For planar graphs, the Hamiltonian Cycle problem can
be solved in O∗(c

√
n) for some constant c (cf. [19]). The Traveling Salesman

problem can be solved inO∗(1.251n) time for cubic graphs [12] and inO∗(1.890n)
time for graphs with maximum degree 4 [5]. Both algorithms use polynomial
space. For graphs with maximum degree 4, an algorithm with time complex-
ity O∗(1.733n) is known [8], but this algorithm uses exponential space. More
generally, Björklund et al. [2] present an algorithm that solves the Traveling

Salesman problem in O∗((2−ε)n) for graphs with bounded degree, where ε > 0
only depends on the maximum degree but not on the number of vertices. They
show that this bound can be improved further for regular triangle-free graphs.
These algorithms use exponential space. They also present an O∗((2− ε)n) time
algorithm that uses polynomial space for bounded degree graphs in which the
edges have bounded integer weights.

Our Results. We consider the class of claw-free graphs. This is a rich class con-
taining, e.g., the class of line graphs and the class of complements of triangle-free
graphs. It is also an intensively studied graph class, both within structural graph
theory and within algorithmic graph theory; see [6] for a survey. The Hamilto-

nian Cycle problem is NP-complete for claw-free graphs; the authors of [14]
show that the problem is already NP-complete for 3-connected cubic planar
claw-free graphs. We present two exact algorithms that solve the Hamiltonian

Cycle problem for claw-free graphs: our first algorithm uses O∗(1.6818n) time
and exponential space, and our second algorithm uses O∗(1.8878n) time and
polynomial space. Our techniques are based on a (known) transformation of the
problem to the problem of finding a dominating closed trail in a graph and a new,
more careful study of such trails. Hence, these techniques are different from the
ones used in the already known algorithms, and as such may be of independent
interest.

Preliminaries. All graphs in this paper are finite, undirected and without mul-
tiple edges and loops. For notation and terminology not defined in this paper we
refer to [4]. Let G = (V (G), E(G)) be a graph. The neighborhood of a vertex v in
G is denoted by NG(v) := {w ∈ V (G) | vw ∈ E}, and dG(v) = |NG(v)| denotes
the degree of v. A 2-factor of G is a spanning subgraph of G in which all vertices
have degree 2. The subgraph of G induced by some U ⊆ V is denoted by G[U ].

A graph is called triangle-free if it does not contain a subgraph isomor-
phic to the cycle on three vertices. A graph is called claw-free if it has no
induced subgraph isomorphic to the claw, i.e., the four-vertex star K1,3 =
({u, a, b, c}, {ua, ub, uc}). Let G be a claw-free graph. Then, for each vertex v
of G, the set of neighbors of v in G induces a subgraph with at most two com-
ponents. If this subgraph has two components, both of them must be cliques. If
the subgraph induced by NG(x) is connected but not complete, we can perform
an operation called local completion of G at x by adding edges joining all pairs
of nonadjacent vertices in NG(x).

The line graph of a graph H with edges e1, . . . , ep is the graph L(H) with ver-
tices u1, . . . , up such that there is an edge between any two vertices ui and uj if and
only if ei and ej share one end vertex in H . Note that L(K3) = L(K1,3) = K3;
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it is well-known that every connected line graph F �= K3 has a unique H with
F = L(H) (see e.g. [9]). We call H the preimage graph of F . For K3 we let K1,3
be its preimage graph. A graph is called even if all its vertices have even degree.
A graph is called a closed trail (or eulerian) if it is a connected even graph. Let T
be a closed trail in a graph H . If V (H) \ V (T ) is an independent set in H , then
we say that T is a dominating closed trail, abbreviated DCT. Note that the latter
means that every edge of H has at least one vertex in T , so in this context “dom-
inating” means “edge-dominating”. For any integer k ≥ 1, a graph H is called
k-degenerate if every non-empty subgraph of H has a vertex of degree at most k.
We say that H is k-ordered if H allows a vertex ordering π = v1, . . . , v|V (H)| such
that for 1 ≤ i ≤ |V (H)|, H [{v1, . . . , vi}] is connected and vi has at most k neigh-
bors in H [{v1 . . . , vi}].

Paper organization. In Section 2 we translate the Hamiltonian Cycle prob-
lem for claw-free graphs into the problem of finding a dominating closed trail
in triangle-free graphs. In Section 3 we show that every graph with a span-
ning closed trail has a 2-degenerate 3-ordered spanning closed trail. We use this
structural result in Section 4, where we present two exact algorithms for find-
ing a dominating closed trail in a graph. Section 5 contains the conclusions and
mentions some open problems.

2 The Two Exact Algorithms

Here we explain our two algorithms that solve the Hamiltonian Cycle problem
for a claw-free graph G on n vertices. For the first step we do not have to develop
any new theory or algorithms, but can rely on the beautiful existing machinery
from the literature.

Step 1: restrict to the preimage graph H of the closure of G

We recursively repeat the local completion operation, as long as this is possible.
This way we obtain the closure cl(G) of G. Ryjáček [17] showed that the closure of
G is uniquely determined, i.e., that the ordering in which one performs the local
completions does not matter. This means we can obtain cl(G) in polynomial
time. Ryjáček [17] also showed that G is hamiltonian if and only if cl(G) is
hamiltonian. Furthermore he showed that for any claw-free graph G there is
a unique (triangle-free) graph H such that L(H) = cl(G). We can obtain the
preimage graph of a line graph in polynomial time (see e.g. [16]). Hence, we can
efficiently compute the unique graph H with L(H) = cl(G).

Step 2: find a DCT of H

Harary and Nash-Williams [10] showed that the line graph of any connected
graph with at least three vertices is hamiltonian if and only if the graph itself
contains a DCT. This result combined with the results from the previous step
implies that G has a hamiltonian cycle if and only if H has a DCT. In Section 4
we present two exact algorithms for finding such a DCT in a graph with n
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edges: one algorithm that uses O∗(1.6818n) time and exponential space, and one
algorithm that uses O∗(1.8878n) time and polynomial space.

Step 3: translate the DCT of H back into a hamiltonian cycle of cl(G)

Suppose we have obtained a DCT T in Step 2. Then we construct a hamiltonian
cycle of cl(G) by traversing T , picking up the edges (corresponding to vertices
in cl(G)) one by one and inserting dominated edges as soon as an end vertex of
a dominated edge is encountered. For traversing T we use the polynomial-time
algorithm that finds a eulerian tour in an even connected graph (cf. [4]).

Step 4: translate the hamiltonian cycle in cl(G) to one in G

We can do this in polynomial time by using exactly the same method as described
in [3]. There, we show how to translate a 2-factor of cl(G) into a 2-factor of G.
Since a hamiltonian cycle is a connected 2-factor we are done.

From the above it is clear that all steps except the third one can be performed
in polynomial time. Hence, we have found the following.

Theorem 1. The Hamiltonian Cycle problem for a claw-free graph on n
vertices can be solved in O∗(1.6818n) time, using exponential space. It can also
be solved in O∗(1.8878n) time, using polynomial space.

3 Closed Trails of Low Degeneracy and Ordering

A cycle C of a connected graph H is called removable if the graph H − E(C)
is connected and non-separating if H − V (C) is connected. The following useful
result is due to Thomassen and Toft [18].

Theorem 2 ([18]). Any connected graph with minimum degree 3 has an induced
non-separating cycle.

Theorem 2 immediately yields the following result.

Corollary 1. Any connected graph with minimum degree 3 has a removable
cycle.

Proof. Let H be a connected graph with minimum degree 3. By Theorem 2,
H has an induced non-separating cycle C. Since H − V (C) is connected, all
vertices of V (H) \ V (C) belong to the same component of H − E(C). Since
H has minimum degree 3 and C is an induced cycle, every vertex of C has a
neighbor in V (H) \V (C). Hence H −E(C) is connected, so C is removable. ��

Using Corollary 1 we can prove the following theorem, which will help us to
obtain the time complexity of the exact algorithms described in Section 4.

Theorem 3. Every graph with a spanning closed trail contains a 2-degenerate
3-ordered spanning closed trail.
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Proof. We first show that every graph with a spanning closed trail contains a
2-degenerate spanning closed trail. Let H∗ be a counterexample with |E(H∗)|
minimum. Let T be a spanning closed trail in H∗. We repeatedly remove vertices
from T with degree at most 2 in T as long as possible. Let T ′ be the subgraph of
T we obtain this way. Since H∗ is a counterexample, T ′ is not empty. Let T1 be
a component of T ′. Since T ′ has minimum degree at least 3, T1 has a removable
cycle C by Corollary 1. Then C is also a removable cycle of H∗, since H∗ is a
supergraph of T1. This contradicts the minimality of |E(H∗)|.

So, every graph H with a spanning closed trail contains a 2-degenerate span-
ning closed trail T . Suppose T is not 3-ordered. We repeatedly remove vertices
from T with degree at most 3 in T until T becomes disconnected. Let T ′ be the
resulting (connected) subgraph of T . Since T is not 3-ordered, T ′ is not empty.
Let U consist of all vertices of degree at most 3 in T ′. By our procedure, every
vertex of U is a cut-vertex of T ′, and since T is 2-degenerate, U is nonempty. Let
u ∈ U be such that T ′[V (T ′) \ {u}] contains a component D without vertices of
U . Then all vertices of D have degree at least 3, contradicting the 2-degeneracy
of T . ��

4 Two Exact Algorithms for Finding a DCT

We present two exact algorithms for solving the following problem.

Dominating Closed Trail (DCT)

Instance: a connected graph H .
Question: does H have a dominating closed trail?

To solve the DCT problem for an instance H , both algorithms start by branch-
ing on vertices of low degree by the same branching procedure, explained in
Section 4.1. This way both algorithms obtain a set of subproblems. Each sub-
problem has the original graph H as input. However, for some subset of edges
of H it is already decided whether they will be included in or excluded from
the dominating closed trail. Our first algorithm, described in Section 4.2, solves
each of the subproblems using dynamic programming. Our second algorithm, de-
scribed in Section 4.3, solves each of the subproblems by guessing the remaining
edges of a possible dominating closed trail.

4.1 Branching on Vertices of Low Degree

Let H = (V, E) be an instance of the DCT problem. We assign a so-called parity
label �(v) ∈ {0, 1} to each vertex v of H . Note that if H has a dominating closed
trail T , then dT (v) is even for every v ∈ V . After all, a vertex is either not in
T (i.e., dT (v) = 0, in which case all of its neighbors must be in T ), or a vertex
has an even number of incident edges in T (since T is a closed trail). Hence we
initially set �(v) = 0 for every v ∈ V .

The first stage of both algorithms consists of branching on vertices of degree
at most d∗, thus creating a number of subproblems; more specifically, d∗ = 4 for
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our first algorithm, and d∗ = 12 for our second algorithm. The choice of these
values of d∗ is explained in the next sections. During the branching process,
the size of the graphs under consideration decreases, and we might change the
�-labels of certain vertices.

Suppose v is a vertex of degree d ≤ d∗ in H . If �(v) = 0 (respectively
�(v) = 1), then the algorithm branches into 2d−1 subproblems, each subproblem
corresponding to a possible way of choosing an even (respectively odd) number
0 ≤ p ≤ d of edges incident with v that are guessed to be in the dominating
closed trail. We call the chosen edges old trail edges. For each choice W of old
trail edges, we perform the following two operations:

1. set �(w) := �(w) + 1 (mod 2) for every w with vw ∈W ;
2. delete v and all its d incident edges.

Repeat this procedure as long as the remaining graph contains a vertex of degree
at most d∗. Let H ′ be the resulting graph. Then H ′ has minimum degree d∗ + 1
and each vertex u ∈ V (H ′) has some label �(u) ∈ {0, 1}. Let E(H) = E(H ′) ∪
R(H ′) ∪W (H ′), where W (H ′) contains all old trail edges and R(H ′) contains
all other edges we removed from H . In the next stage, edges in W (H ′) will be
assumed to be in the dominating closed trail we are looking for, whereas edges in
R(H ′) will be assumed not to be in the dominating closed trail. Suppose R(H ′)
contains an edge e = xy with x, y ∈ V (H) \ V (H ′) such that both x and y
are not incident with any old trail edge. Then e will not be dominated by any
closed trail that we might discover in the next stage. Hence, we discard this
subproblem. For the same reason, we also discard the subproblem if there is a
vertex v ∈ V (H)\V (H ′) incident with an odd number of old trail edges. If these
two cases do not occur, we keep the subproblem and call the tuple (H ′, W (H ′), �)
a stage-2 tuple.

Lemma 1. The branching phase of the algorithm creates T (n1) = O∗(2
d∗−1

d∗ n1).
stage-2 tuples, where n1 is the total number of edges deleted during this phase.

Proof. Since for a vertex v of degree d we remove d edges and create 2d−1

subgraphs, we find T (n1) = 2d−1 · T (n1 − d), which yields T (n1) = O∗(2
d−1

d n1).
Since d ≤ d∗, we end up with O∗(2

d∗−1
d∗ n1) stage-2 tuples. ��

We point out that the time complexity mentioned in Lemma 1 is O∗(1.6818n1)
if d∗ = 4 and O∗(1.8878n1) if d∗ = 12.

4.2 An O∗(1.6818n) Time Algorithm That Uses Exponential Space

Let H = (V, E) be an input of the DCT problem. In case H has vertices of degree
at most 4, we apply the branching procedure described in Section 4.1. Suppose
that during the branching process n1 edges were deleted (possibly n1 = 0). Then,
by Lemma 1, O∗(1.6818n1) stage-2 tuples (H ′, W (H ′), �) have been created.
Each of these stage-2 tuples will be processed using the dynamic programming



50 H. Broersma et al.

procedure described below. If at least one of them leads to a dominating closed
trail of H , then the algorithm outputs Yes; the algorithm outputs No otherwise.

Let (H ′, W (H ′), �) be a stage-2 tuple. We write H ′ = (V ′, E′). We output Yes

if W (H ′) forms a dominating closed trail of H . If this is not the case, we enter
the dynamic programming phase. In this procedure, we consider each u ∈ V ′

and say that ({u}, �(u)) is an option if u ∈ V ′ is incident with at least one old
trail edge. Otherwise ({u}, �(u)) is not an option. Furthermore, ({u}, �̄(u)) with
�̄(u) = �(u) + 1 (mod 2) is not an option.

Suppose we know for all sets S ⊆ V ′ of size at most k and all labelings
�′ : S → {0, 1} whether (S, �′) is an option or not. Then for each set S ⊆ V ′ of
size k, for each vertex v ∈ V ′ \S, and for each {0, 1}-labeling �′ of S∪{v}, we do
as follows. Let p be the number of old trail edges incident with v. We consider
every possible way of choosing 0 ≤ q ≤ 3 edges incident with v and a vertex in
S. The chosen edges will be referred to as new trail edges. For each choice N of
new trail edges, we set �′(x) := �′(x) + 1 (mod 2) for every x ∈ S with vx ∈ N .
We perform the following three tests.

(1) Check if (S, �′) is an option.
(2) Check if p + q is even if �′(v) = 0 and odd if �′(v) = 1.
(3) If q = 0, check if there is a path from v to S in H only using old trail edges.

Only if tests (1), (2), (3) are all three affirmative, we say that (S ∪ {v}, �′) is an
option. If so, we also check whether

(4) each old trail edge allows a path to a vertex in S ∪ {v} that uses only old
trail edges;

(5) each vertex x in S∪{v} has label �′(x) = 0 and each vertex y ∈ V ′\(S∪{v})
incident with an old trail edge has label �(y) = 0;

(6) there is no edge e = ab in H ′ for some a, b ∈ V ′ \ (S ∪ {v}) such that both
a and b are not incident with an old trail edge.

If the answers to tests (4), (5), (6) are all three affirmative, the algorithm con-
cludes that H has a dominating closed trail (cf. Theorem 4) and returns Yes. If
no Yes-answer has been returned and k < |V ′|, the algorithm considers all sets
S ⊆ V ′ of size k + 1, all vertices v ∈ V ′ \ S and all {0, 1}-labelings �′ of S ∪ {v}.
Otherwise, the algorithm outputs No.

Theorem 4 (Correctness). When run on a connected graph H, the algorithm
returns Yes if H has a dominating closed trail, and returns No otherwise.

Proof. Our algorithm only returns a Yes-answer if it has found a stage-2 tuple
(H ′, W (H ′), �) with some option (S, �) for which tests (4), (5), (6) are all positive.
In that case, let T be the subgraph of H consisting of all old trail edges in W (H ′)
plus all new trail edges that have been added between vertices of S. The dynamic
programming, together with tests (3) and (4), ensures that T is connected. Tests
(1), (2) and (5) together with the definition of a stage-2 tuple ensure that T is
even, and (6) ensures that T is dominating. Hence, T is a dominating closed
trail.
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It remains to show that if H has a dominating closed trail, then the algorithm
outputs Yes. Suppose H has a dominating closed trail T . Due to Theorem 3
we may assume that T is 3-ordered. We show that our algorithm finds T , unless
it finds another dominating closed trail of H first. Let V ′ consist of all vertices
that are not removed in the branching procedure, so V (H ′) = V ′ for the graph
H ′ in every stage-2 tuple. Let T ′ be the subgraph of T with V (T ′) = V (T )∩V ′.
Then there exists a stage-2 tuple (H ′, W (H ′), �) such that W (H ′) is exactly the
set of edges of T that are incident with at least one vertex in V (T ) \ V ′, and
such that �(v) = 0 if v ∈ V ′ \ V (T ′), and �(v) = 0 (respectively �(v) = 1) if
v ∈ V (T ′) and v is incident with an even (respectively odd) number of edges in
W (H ′). Since our algorithm considers all possible stage-2 tuples, it will detect
tuple (H ′, W (H ′), �). As T is 3-ordered, each component of T ′ is 3-ordered. This
means that our dynamic programming procedure based on the number of ways
a vertex can be made adjacent to a set S with at most three edges will find a
labeling �′ such that (Ti, �

′) is an option for each component Ti of T . As these
components are connected to each other via old trail edges, at some moment
(T ′, �) will be formed. Then tests (1)-(6) will all be successful and a Yes-answer
is returned. ��

Below we give the overall running time of our algorithm.

Theorem 5 (Running time). The algorithm runs in O∗(1.6818n) time.

Proof. We first prove that the dynamic programming procedure runs in O∗(3p)
time on any p-vertex graph. Let H ′ = (V ′, E′) be a graph on p vertices. There
are

(
p
k

)
sets S ⊆ V ′ of cardinality k, each of those sets has 2k possible labelings

�, and there are
(
k
0

)
+
(
k
1

)
+
(
k
2

)
+
(
k
3

)
= O(k3) ways to attach a new vertex v to

a subset of cardinality k by using at most 3 edges. Each of the tests (1)-(6) can
be done in polynomial time. Hence the time complexity of this procedure is

O∗
( p∑

k=1

(
p

k

)
· 2k · O(k3)

)
= O∗(3p).

Let H be an instance of the DCT problem having n edges. Suppose we repeat-
edly branch on vertices of degree at most d∗ = 4, and suppose n1 is the number
of edges we delete during this branching phase. Then we obtain O∗(1.6818n1)
stage-2 tuples by Lemma 1. Let (H ′, W (H ′), �) be such a stage-2 tuple, where
H ′ = (V ′, E′) is a graph of minimum degree 5 having n2 := n − n1 edges
and, say, p vertices. As shown above, the dynamic programming procedure uses
O∗(3p) time. Since the minimum degree in H ′ is 5, we obtain n2 ≥ 5p/2,
or equivalently p ≤ 2n2/5. Hence we can process each stage-2 tuple in time
O∗(3

2n2
5 ) = O∗(1.5519n2). This means that the overall running time of our al-

gorithm on a graph H having n = n1 + n2 edges is

O∗(1.6818n1 · 1.5519n2) = O∗(1.6818n).

If we choose d∗ �= 4, then the above upper bound is no longer guaranteed. ��
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4.3 An O∗(1.8878n) Time Algorithm That Uses Polynomial Space

We describe our second algorithm in the proof of the following theorem.

Theorem 6. The DCT problem for a graph H on n edges can be solved in
O∗(1.8878n) time, using polynomial space.

Proof. Let H be an instance of the DCT problem with n edges. We execute the
branching procedure described in Section 4.1, but this time we perform branching
on vertices of degree at most d∗ = 12. Suppose we delete n1 edges during the
branching process. By Lemma 1, this yields O∗(211n1/12) = O∗(1.8878n1) stage-
2 tuples (H ′, W (H ′), �), where each graph H ′ has p vertices of minimum degree
13 and n2 = n− n1 edges. Note that n2 ≥ 13p/2, or equivalently p ≤ 2n2/13.

If H has a dominating closed trail T , then T may be assumed to be 2-
degenerate, due to Theorem 3. Let T ′ denote the (2-degenerate) subgraph of
T that remains after the branching procedure; note that T ′ is a subgraph of
some graph H ′. A 2-degenerate graph on p vertices has at most 2p edges. This
means that we only have to check in every H ′ for every possible subset of edges
up to cardinality 2p whether this subset together with the old trail edges in
W (H ′) forms a dominating closed trail of H . Using Sterling’s approximation
n2! ≈ nn2

2 e−n2
√

2πn2 and the fact p ≤ 2n2/13, the total number of checks can
be estimated as follows:

2p∑
k=1

(
n2

k

)
≤ 2p

(
n2

2p

)
≤ 2p

(
n2
4n2
13

)
= O∗

(( 1
αα(1− α)1−α

)n2)
,

where α = 4/13, which leads to O∗(1.8539n2) checks. Since each of them can be
performed in polynomial time, the overall running time is

O∗(1.8878n1 · 1.8539n2) = O∗(1.8878n).

If we choose d∗ �= 12, then the above upper bound is no longer guaranteed. It is
clear that this algorithm only needs polynomial space. ��

5 Conclusions

We presented two exact algorithms for the Hamiltonian Cycle problem. Can
we speed up these algorithms by making use of the triangle-freeness of the preim-
age graph? Another (more) interesting open problem is whether we can solve the
Traveling Salesman problem for claw-free graphs in O∗(αn) time for some
constant α < 2. This requires some new ideas as our current approach that
takes the closure of a graph and then makes a transformation to the domain of
triangle-free graphs does not suffice. Can we find an O∗(αn) time algorithm that
solves the Hamiltonian Cycle problem for some constant α < 2 for the class
of bipartite graphs, or equivalently (cf. [15]) for the class of split graphs, or a
superclass of split graphs such as the class of P5-free graphs? As the Hamilto-

nian Cycle problem is already NP-complete for chordal bipartite graphs [15],
this question is interesting for that class as well. We can also try to design fast
exact algorithms for superclasses of claw-free graphs such as K1,4-free graphs.
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Abstract. Consider the NP-hard problem of, given a simple graph G, to
find a series-parallel subgraph of G with the maximum number of edges.
The algorithm that, given a connected graph G, outputs a spanning tree
of G, is a 1

2
-approximation. Indeed, if n is the number of vertices in G,

any spanning tree in G has n−1 edges and any series-parallel graph on n
vertices has at most 2n−3 edges. We present a 7

12
-approximation for this

problem and results showing the limits of our approach.

1 Introduction

The Maximum Series-Parallel Subgraph (MSP) problem is: given a simple
graph G, find a series-parallel subgraph of G with the maximum number of
edges. This problem is known to be NP-hard [3].

The algorithm that, given a connected graph G, outputs a spanning tree
of G, is a 1/2 -approximation. Indeed, if n is the number of vertices in G, any
spanning tree in G has n−1 edges and any series-parallel graph on n vertices
has at most 2n−3 edges. We present a 7/12 -approximation for this problem.

We apply a method, previously used for the Maximum Planar Subgraph prob-
lem [4], of producing a subgraph whose blocks (maximal 2-connected compo-
nents) have a very simple structure. The way to produce such a subgraph also
has similarities to some approximation algorithms for the Minimum Steiner Tree
problem [1,6].

A novelty of this work is that we allow blocks to have unbounded size. Indeed,
using only blocks of bounded size does not lead to an improvement (as we show
later). This is a main difference to the works on Maximum Planar Subgraph
and Minimum Steiner Tree [1,4,6]. A second difference, when compared to the
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Maximum Planar Subgraph algorithms, is that, to assure a good performance,
our algorithm has to sometimes throw away or shrink previously selected blocks.
We show ahead a family of examples that indicates that such an approach is
necessary.

We call spruces the very simple series-parallel graphs that we admit as non-
bridge blocks in the subgraph we produce. (We define spruces in the next subsec-
tion; a bridge consists of two adjacent vertices.) We prove that a subgraph whose
non-bridge blocks are spruces, and with maximum number of edges among such
subgraphs, achieves a ratio of 2/3, and this ratio is tight. Unfortunately, com-
puting such a subgraph is NP-hard, as we also show. So our algorithm in fact
computes only a large such subgraph. The ratio our algorithm achieves is 7/12,
which happens to be the average between 1/2 and 2/3. This is a coincidence
though, because our analysis compares directly the algorithm’s output to an
optimal solution.

In a related work, Cai [2] considered the variant of the problem where one
is given a complete weighted graph, and wants to find a maximal series-parallel
graph of minimum weight. He presented a 1.655-approximation for this variant
when the input graph is a set of points in the plane with their distances as
weights.

1.1 Preliminaries

Two edges of a multigraph are parallel if they have the same endpoints, and they
are series edges if there is some vertex of degree two incident to both of them. A
multigraph is series-parallel if it arises from a forest by repeated replacing edges
by parallel or series edges [7].

All of our graphs are undirected and simple, unless otherwise specified. From
the definition above, one can see that a maximal series-parallel graph can be
constructed by the following procedure. Start with two adjacent vertices s and t,
and then repeat the following: add one new vertex and make it adjacent to two
existing adjacent vertices. (Such graphs are also called 2-trees in the literature,
and series-parallel graphs are also known as partial 2-trees.)

Based on the construction above, a normalized tree decomposition of a max-
imal series-parallel graph is built as follows (see Fig. 1 for an example). Start
with one node with bag {s, t}, the root of our tree decomposition. We maintain
the invariant that, for any edge of the series-parallel graph, there is exactly one
node in the tree decomposition whose bag consists of the endpoints of the edge.
Whenever a vertex z is added to the series-parallel graph, and made adjacent to
existing adjacent vertices x and y, add to the tree decomposition three nodes:
one with bag {x, y, z}, child of the node with bag {x, y}, and two “twin” chil-
dren of this new node, with bags {x, z} and {y, z}. In this tree decomposition,
all even-level nodes have bags of size two, all odd-level nodes have bags of size
three, and no leaf is in an odd level. For a normalized tree decomposition T
of a maximal series-parallel graph H with |V (H)| = n, there are exactly n−2
odd-level nodes in T .
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(a) (b)

s t

a

b

c

d

e

f

g

h

st

sat

sb

sbt

sa at bt

sca sda sea aft

sc sd se afca da ea ft

cga cha

cg chga ha

Fig. 1. (a) A maximal series-parallel graph, obtained by starting with the two adjacent
vertices s and t, and then adding in order vertices a, b, c, d, e, f, g, h. (b) Its normalized
tree decomposition.

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

������

�
�
�
��
�
�
��
�
�
�

�
�
�
�

�
�
�
�

��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

����

��
��
��
��

����

����

����
�
�
�
�

��
��
��
��
����������

(b)(a) u

v

wz

Fig. 2. (a) A graph with several spruces. (b) A connected spruce structure.

A spruce is a graph that has exactly two base vertices and at least one tip
vertex, in which every tip vertex is adjacent to exactly the two base vertices.
If the two base vertices are adjacent, the spruce is complete; otherwise it is
incomplete. The gain of a spruce S is its cyclomatic number, and it is denoted
gain(S); this is the number of tips for complete spruces, and one less than the
number of tips for incomplete spruces.

Fig. 2(a) depicts in solid lines a complete spruce with base vertices z and w,
and six tip vertices including u and v. Another spruce contained in the same
graph has base vertices u and v, and four tips including z and w; this second
spruce is incomplete.

A spruce cactus is a graph such that each of its blocks is a spruce. A spruce
structure is a graph each of whose blocks is a spruce or a bridge edge. See an
example in Fig. 2(b).

Fact 1. Spruce cactuses/structures are series-parallel graphs.

We can view a spruce cactus as a collection of spruces — those giving the blocks
of the spruce cactus. A spruce cactus is well-behaved if it is a collection of spruces
that do not share tips. We define the gain of a spruce cactus to be its cyclomatic
number.
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Fact 2. The gain of a spruce cactus equals the sum of the gains of its spruces.

Before we proceed with the algorithm, we first elaborate on the need of spruces
of unbounded size. First, if the input graph is a complete spruce with n−2 tips
(and 2n−3 edges), any approach which uses blocks of size bounded by, say, k,
results in an output with gain at most k−2 and a total of n + k− 3 edges. With
n large and k fixed, this is only a 1/2 -approximation.

Our algorithm discards and shrinks selected spruces. Why one has to do this
becomes clear from the following example, depicted in Fig. 3(a). The optimum
has n vertices and 2n−3 edges. It contains a spruce with base vertices x and y
and circa

√
n tips. For each of its tips v, there are two complete spruces, one

with base vertices x and v, and the other with base vertices v and y, each with
circa

√
n/2 tips. If an algorithm mistakenly (or greedily) selects the spruce with

base vertices x and y, then it cannot add any more spruces and it ends up with
circa n+

√
n edges — asymptotically not better than a 1/2 -approximation.
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x y

√
n tips

√
n

2
tips

Fig. 3. (a) A graph where a naive greedy strategy that does not discard previously
selected spruces fails to achieve a ratio better than 1/2. (b) The only two types of
degenerate spruces.

For the weighted version of our problem, the algorithm that returns a max-
imum weight spanning tree is a 1/2-approximation. This follows from Lemma
3, which is also used in the analysis of our algorithm. Precisely, for any sub-
graph H ′ of an edge-weighted graph H , let w(H ′) denote the sum of w(e) for
all e in E(H ′). The proof of the next lemma follows closely that of Lemma 17
in [5].

Lemma 3. Let F be a maximum weight forest in weighted simple series-parallel
graph H. Then w(H) ≤ 2 w(F ), with the inequality being strict if w(H) > 0.

Proof. We use the greedy algorithm to construct F , first sorting the edges of H
into non-increasing order by weight. Let Eh be the set of the first h edges in
this ordering, 1 ≤ h ≤ m, where m = |E(H)|. By wh we denote the weight of
the hth edge in this ordering and we put wm+1 = 0. Starting with F = ∅, the
greedy spanning tree algorithm scans the edges in the given order and adds an
edge to F as long as it does not create any cycles.
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Let F be the set of edges chosen by the greedy algorithm and let Fh = Eh∩F .
Then, by rearranging the terms,

w(F ) =
m∑

h=1

|Fh|(wh − wh+1), and w(H) =
m∑

h=1

|Eh|(wh − wh+1).

It is therefore enough to show that |Eh| < 2 |Fh| for 1 ≤ h ≤ m. If this holds, of
course w(H) ≤ 2 w(F ), and if w1 > 0, the inequality is strict.

Choose an h such that 1 ≤ h ≤ m. Let p1, p2, . . . , pk be the number of vertices in
the non-trivial components of Fh. Of course, |Fh| =

∑k
z=1(pz−1). Also note that

k ≥ 1, as Fh has at least one edge. Any edge of Eh must have its two endpoints in
the same component of Fh. (Otherwise, the edge could have been selected by the
greedy algorithm, merging two components of Fh.) Obviously this component is
non-trivial. We associate each edge of Eh with the (non-trivial) component of Fh

which contains both of its endpoints. The edges of Eh associated with a compo-
nent of Fh are a subset of the edges of the graph induced in H by the vertices
of this component. Thus, the number of edges associated with the zth non-trivial
component is at most 2pz−3, because this graph is series-parallel . But then, as
k ≥ 1, we have that |Eh| ≤

∑k
z=1(2pz−3) <

∑k
z=1 2(pz−1) = 2 |Fh|.

2 A Local Improvement Algorithm

We may assume the input graph G is connected. Our local improvement algo-
rithm, when running on G, keeps a set Q of spruces in G that form a well-behaved
spruce cactus. We abuse notation and sometimes think of Q as the spruce cactus
it forms.

The algorithm uses a slightly modified notion of gain. (One could also get an
approximation ratio higher than 1/2 by only using gain in the algorithm, but we
get a higher ratio.) For a spruce S, the adjusted gain of S is denoted by ĝain(S),
and is defined as ĝain(S) = gain(S) if S is complete, and ĝain(S) = gain(S)−1
if S is incomplete. We call a spruce degenerate if its adjusted gain is non-positive.
See Fig. 3(b).

For each component C of Q, the algorithm keeps a weighted tree TC whose
vertex set is V (C) and edge set is as follows. For each spruce S in C with base
vertices x and y, and tips v1, v2, . . . , vk, there is an edge xy in TC and edges xvi

for i = 1, . . . , k. The weight of the edges is given as follows: w(xy) = ĝain(S), and
w(xvi) = 1 for all i. Note that TC is indeed a tree. For any two vertices x and y
of C, let indexQ(x, y) be an edge in TC of minimum weight in the path in TC

from x to y. If x and y are in different components of Q, then let indexQ(x, y)
be undefined and consider its weight to be zero.

Let v1, v2, . . . , vk be all vertices isolated in Q that are adjacent in G to
both x and y. If k ≥ 1, let SQ(x, y) be the spruce with base vertices x and
y, tips v1, v2, . . . , vk, and the edge xy if it exists in G. Otherwise let SQ(x, y) be
undefined.
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(a)

(b)

(c)

x

xx
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x = x′

y
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x′
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y′

2

2

2

2

2
2

2

TC

TC

Fig. 4. Examples of local improvement, with SQ(x, y) given by the dashed lines in each
case. (a) For such x and y, line 4 of the algorithm is executed resulting in Q as shown
in the right. (b) For such x and y, line 7 of the algorithm is executed resulting in Q
as shown in the right. The weighted tree TC before the improvement is in the middle,
with weights 1 except for those written in the figure. (c) For such x and y, line 7 and
line 13 of the algorithm are executed resulting in Q as shown in the right.

The algorithm is shown in pseudocode later. We exemplify some of its cases in
Fig. 4. Initially Q = ∅. The algorithm proceeds in iterations, each doing a local
improvement. In each iteration, Q is updated as follows. If there are two vertices x
and y of G for which SQ(x, y) is defined and ĝain(SQ(x, y)) > w(indexQ(x, y)),
then obtain a new Q′ as follows, else go to the final phase. If indexQ(x, y) is
undefined, then let Q′ be obtained from Q by adding SQ(x, y), and start a new
iteration with Q′ in the place of Q. Otherwise, let x′ and y′ be the endpoints
of indexQ(x, y), and C be the component of Q containing x, x′, y, and y′. Let S′

be the spruce in Q containing x′ and y′. Note that such spruce exists by the
construction of TC . If x′ and y′ are the base vertices of S′, then remove S′ from Q
and add SQ(x, y) to obtain Q′. Otherwise, by the construction of TC , between x′

and y′ one is a base vertex of S′, and the other is a tip of S′. Exchange x′ and y′

if needed so that x′ is a base vertex of S′. Remove from S′ the two edges incident
to y′. If the resulting S′ is degenerate or is a single edge, then remove S′ from Q.
Moreover, add SQ(x, y) to obtain Q′, and start a new iteration with Q′ in the
place of Q.

Observe that, in this iterative part of the algorithm, we maintain the invariant
that Q is a set of non-degenerate spruces that form a spruce cactus. Indeed, this
follows by induction. It is enough to note that ĝain(SQ(x, y)) > 0, and x and y
are in different components, either from the start, or after we removed part or
all of the spruce S′ from Q.
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The final phase consists of the following. Let Q now be the set of non-
degenerate spruces produced by the iterative phase. Obtain a spanning con-
nected subgraph of G from Q by adding bridges and let it be the output of the
algorithm.
Construct-Spruce-Structure (G)
1 Q ← ∅
2 while there are x and y such that SQ(x, y) is defined

and ĝain(SQ(x, y)) > w(indexQ(x, y)) do
3 if indexQ(x, y) is undefined
4 then Q ← Q ∪ {SQ(x, y)}
5 else let x′ and y′ be the endpoints of indexQ(x, y)
6 let S′ be the spruce in Q containing x′ and y′

7 Q ← Q \ {S′} ∪ {SQ(x, y)}
8 if x′ or y′ is a tip of S′

9 then let z be one between x′ and y′ that is a tip of S′

10 let {e, f} be the two edges of S′ incident to z
11 S ← S′ − {e, f}
12 if S is not degenerate neither a single edge
13 then Q ← Q ∪ {S}
14 add bridges to Q to obtain a connected spanning subgraph of G
15 return Q

2.1 Running Time Analysis

The main result of this section is the very technical Lemma 4 below, which
shows that each iteration makes some “progress”. Unfortunately, the definition
of “progress” is not straightforward, for the following reason.

A natural measure of progress would be the gain of Q (that is, its cyclomatic
number). If gain(Q) increased in every iteration, then it would have been easy
to conclude that the algorithm runs a polynomial number of iterations. However
this is not the case, and a more careful analysis is required. Let us give some
intuition in this paragraph. One can check that, in most of the cases, the gain
of Q increases. Also, it never decreases and, in the iterations in which the gain
of Q is maintained, the number of components increases — more components are
helpful since more, or bigger, spruces become eligible to improve the current Q.

Define Φ(Q) = 3 gain(Q) + c(Q), where c(Q) is the number of components of
Q when Q is seen as a spanning subgraph of G.

Lemma 4. Every iteration of the algorithm increases the parameter Φ.

From this lemma, whose proof we omit, we conclude that the number of iterations
is polynomially bounded, because Φ(Q) is a non-negative integer and gain(Q) ≤
(2n−3)− (n−1) = n−2, which means Φ(Q) is bounded by 3(n−2) + n = 4n−6.

Also, each iteration can be easily implemented in polynomial time, as there
are only O(n2) pairs x, y for which SQ(x, y) must be computed and, if possible,
used in updating Q.
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2.2 Approximation Ratio Analysis

Let m be the number of edges in the graph Q returned by the algorithm. Then

m = n− 1 +
∑

S∈Q gain(S).

Let A be an optimal solution for G and q be such that A has 2n− 3− q edges.
Thus, the algorithm achieves a ratio that is a constant greater than 1/2 if

(i)
∑

S∈Q gain(S) is at least a fraction of n, or
(ii) q is at least a fraction of n.

The analysis aims to prove that (i) or (ii) holds. Precisely, it will be shown that

6
∑

S∈Q gain(S) + 3q ≥ n− 2. (1)

From this, it is easy to derive the 7/12 ratio:

m = n−1 +
∑

S∈Q gain(S) ≥ n−1 + 1
6 (n− 2− 3q) ≥ 7

12 (2n− 3− q).

The proof of Inequality (1) is not straightforward. We start by giving an
overview. First we will derive a set M of spruces from A and prove that∑

S∈M ĝain(S) + 3q ≥ n− 2.

This is done in Lemma 5, later. Then, to achieve Inequality (1), it remains to
prove that

6
∑

S∈Q gain(S) ≥
∑

S∈M ĝain(S). (2)

Consider Q to be the set of spruces when the algorithm finishes the iterations,
and before the final phase (of adding bridges). Let t be the number of components
of Q, and n′ be the number of vertices in spruces of Q. Inequality (2) is a
consequence of the following two inequalities:

4
∑

S∈Q gain(S) ≥
∑

S∈M ĝain(S)− (n′ − t),

which is given by Lemma 6, below, and∑
S∈Q gain(S) ≥ 1

2 (n′ − t),

which is given by Lemma 7.
In what follows, we present the description of the set M of spruces, and

proceed to Lemmas 5, 6, and 7.
Let A+ be a maximal series-parallel graph containing A. Call the edges of A+

not in A of missing edges. As A+ is maximal, it can be obtained by the incremen-
tal procedure described in the preliminaries. For each edge xy of A+ for which
this procedure added at least one new vertex adjacent to x and y, consider a
spruce S+

xy in A+ that has x and y as base vertices, and as tips all the vertices ad-
jacent to x and y that were added in the procedure. As an example, in Fig. 1(a),
spruce S+

as has a and s as base vertices, and tips c, d, e. Let Sxy be a maximal
spruce of A contained in S+

xy, if such a spruce exists. Let M = {M1, M2, . . . , Mk}
be the set of all such spruces Sxy. First, note that the spruces in M do not share
tips. Also,
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Lemma 5.
∑

S∈M ĝain(S) + 3q ≥ n− 2.

Proof. Observe that, as all S+
xy are complete, the sum of gain(S+

xy) for all x
and y (for which S+

xy is defined) equals the cyclomatic number of A+, which is
2n − 3 − (n−1) = n − 2. Let us first argue that

∑
S∈M gain(S) ≥ n − 2 − 2q.

Indeed each missing edge e decreases the sum of gain(S+
xy) by at most two,

because the edge e might appear in two spruces S+
xy (once as xy and once as an

edge incident to a tip of S+
xy). Note also that a spruce S+

xy for which Sxy is not
a spruce corresponds to a term in the sum of gain(S+

xy) that will become zero
or negative after these discounts, so it does not hurt to drop it from the sum.
Finally, the sum

∑
S∈M ĝain(S) is equal to the sum

∑
S∈M gain(S) minus the

number of incomplete spruces in M , which is bounded above by q. Therefore,
the lemma holds.
We proceed to Lemma 6.

Lemma 6. 4
∑

S∈Q gain(S) ≥
∑

S∈M ĝain(S)− (n′ − t).

Proof. For i = 1, 2, . . . , k, let Ui be the set of tips of Mi that are in some
spruce of Q. Let Si be obtained from Mi after the removal of its tip vertices
in Ui. Note that Si might not be a spruce (it might be empty or a single edge).
If Si is a spruce, then ĝain(Si) = ĝain(Mi)− |Ui|. To simplify, set ĝain(Si) = 0
if Si is not a spruce.

The proof of this lemma has two steps. The first one consists of the following
simple observation. As

∑
i |Ui| ≤ n′, we have that∑

S∈M

ĝain(S) =
∑

i

ĝain(Mi) ≤ n′ +
∑

i

ĝain(Si), (3)

because the spruces Mi do not share tips.
Let x and y be the base vertices of a spruce Mi from M . If x and y are in

different components of Q, then Si has to be a degenerate spruce or it is not a
spruce (otherwise the algorithm would have included it in Q).

For each component C of Q, consider the following weighted simple graph
H = HC on its set of vertices. For two vertices x and y in C that are the
base vertices of a spruce Si, the edge xy is present in H and it has weight
w(xy) = ĝain(Si). Observe that H is a simple series-parallel graph. (It is a
subgraph of A+.)

Now, for the second step, let FC be such a maximum weight forest in H . Recall
that the algorithm constructs a weighted tree TC on the same set of vertices;
we treat the edges of TC as distinct from the edges of FC though both sets of
edges have weight w. For each two vertices x and y with xy in FC , there is a
spruce Si such that w(xy) = ĝain(Si). Now, the spruce SQ(x, y) was considered
by the algorithm. Since Q is the set of spruces just before the final phase of
the algorithm, SQ(x, y) was not added to Q and therefore ĝain(SQ(x, y)) ≤
w(indexQ(x, y)). Note that ĝain(SQ(x, y)) ≥ ĝain(Si) as all the tips of Si, being
isolated vertices in Q, are also in SQ(x, y). Thus, putting all this together, we
have that w(xy) = ĝain(Si) ≤ ĝain(SQ(x, y)) ≤ w(indexQ(x, y)), for every x
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and y such that xy ∈ FC . But then, in the multigraph whose vertex set is C
and the edge set is the disjoint union of E(FC) and E(TC), the tree TC is a
maximum weight tree [8]. Also, as FC is a forest in this multigraph, we have
that w(FC) ≤ w(TC).

Note that, for any spruce S in Q, the total weight of the edges of TC obtained
from S is 2 gain(S), which holds both if S is complete or not. Let C be the
collection of connected components of Q. Also, for C in C, let QC be the (non-
empty) set of spruces in C. By summing up for all spruces in Q, we obtain
that

2
∑
C∈C

gain(QC) =
∑
C∈C

w(TC) ≥
∑
C∈C

w(FC) ≥ 1
2

∑
C∈C

w(HC) +
1
2

t,

where the last inequality comes from Lemma 3 and the fact that all weights are
integers. Thus

2
∑
S∈Q

gain(S) = 2
∑
C∈C

gain(QC) ≥ 1
2

∑
i

ĝain(Si) +
1
2

t.

and this, together with (3), implies the lemma.
Now we proceed to Lemma 7.

Lemma 7.
∑

S∈Q gain(S) ≥ 1
2 (n′ − t).

Proof. As in the previous proof, C is the collection of connected components
of Q, and QC is the (non-empty) set of spruces in C, for C in C. Let n(C) be
the number of vertices in C.

It is enough to prove that gain(QC) ≥ (n(C)−1)/2 for all C in C. So, consider
a C in C, and recall that Q does not have degenerate spruces. Let us prove by
induction on the number of spruces in QC that gain(QC) ≥ (n(C)−1)/2.

If QC has only one spruce S, then if S is complete, n(S) = gain(S)+2, and
thus gain(S) = n(S)−2 ≥ (n(S)−1)/2 because n(S) ≥ 3. If S is incomplete,
n(S) = gain(S)+3, and thus gain(S) = n(S)−3 ≥ (n(S)−1)/2 because, as S is
not degenerate, n(S) ≥ 5.

Now suppose that QC has more than one spruce, and let S be a spruce in QC

with at most one vertex in common with the others spruces in QC . (There is
always one such spruce because QC is a spruce cactus.) Let C′ be the connected
subgraph of Q corresponding to the union of the spruces in QC′ = QC \ {S}.
By induction, gain(QC′) ≥ (n(C′)−1)/2. If S is complete, n(C) = n(C′) +
gain(S) + 1, and gain(QC) = gain(QC′) + gain(S) ≥ (n(C′)−1)/2 + gain(S) =
(n(C) − gain(S) − 2)/2 + gain(S) = (n(C) + gain(S) − 2)/2 ≥ (n(C)−1)/2,
because gain(S) ≥ 1. If S is incomplete, n(C) = n(C′) + gain(S) + 2, and
gain(QC) = gain(QC′)+gain(S) ≥ (n(C′)−1)/2+gain(S) = (n(C)−gain(S)−
3)/2 + gain(S) = (n(C) + gain(S) − 3)/2 ≥ (n(C)−1)/2, because gain(S) ≥ 2,
as S is non-degenerate.
Having finished this proof, based on the discussion at the beginning of the sub-
section, we obtain the main result of the paper:
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Theorem 1. There is a polynomial-time 7
12 -approximation for Maximum

Series-Parallel Subgraph.

As an aside, observe that if we allowed the algorithm to include in Q the de-
generate spruce which is a 4-cycle, then Lemma 7 would not hold anymore. Yet
a weaker version of it would, with 1/3 instead of 1/2, and this would also lead
to an approximation ratio greater than 1/2. We introduced the adjusted gain
concept specifically to forbid 4-cycles, so that Lemma 7 holds with 1/2.

The analysis is tight. We will describe a family of graphs that proves this.
Follow the description looking at Fig. 5. There is a graph Gk in this family
for each even positive integer k. The graph Gk is the union of two edge-disjoint
series-parallel graphs H1 and H2. The first one, H1, is a path of length 8+k, with
a triangle on top of each of its edges (for a total of 7+k triangles and 3(7+k)
edges). We call this path the defining path of H1. In Fig. 5, the bottom edges
form the defining path of H1. The first 7 triangles on top of this path (shown by
the darker edges) play a different role than the remaining k triangles. Call top
the vertex in each of these triangles that is not on the defining path, and round
the tops of the last k triangles plus the first and fourth top vertices. See the white
circle vertices in Fig. 5. The final k vertices of the defining path are alternately
named square and triangular vertices. The second and fifth top vertices are also
square vertices, and the third and sixth are also triangular vertices. See Fig. 5.
We will use these marks to describe the second graph.

The second graph, H2, consists of three big spruces on the marked vertices of
H1, with a pair of new extra vertices per tip t, each of them adjacent to t and
to one of the spruce base vertices. Each spruce is on one of the types of marked
vertices in H1. Let us now describe the first of the three big spruces, the one on
the round vertices of H1. This spruce has as base vertices the two first round
vertices in H1, and has as tips each of the other round vertices in H1, for a total
of k tips. In Fig. 5, this spruce is shown by the dotted edges, plus the “round”
triangle with straight edges. For this triangle, we show also the two extra new
vertices — the black small circle vertices, incident to the dashed edges.

The second big spruce is on the square vertices of H1. Its base vertices are
the two square top vertices, and its tips are the other k/2 square vertices of H1.
The third big spruce is defined similarly on the triangular vertices of H1. This

t

Fig. 5. Part of the graph G4: the graph H1 (the bottom path and the triangles on top
of it), the first big spruce in H2 (the subgraph induced by the white round vertices),
and two extra vertices (the black small circle vertices)
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completes the description of H2, which, summarizing, consists of these three big
spruces, plus the extra new vertices adjacent to the endpoints of the edges of
these spruces incident to their tips. (In Fig. 5, we show only two of the extra
vertices, the black small circle vertices.)

As we said, Gk consists of these two graphs H1 and H2. Note that both
of them are indeed series-parallel. Thus, the number of edges in H2, which is
(2k+1) + 2(k+1) + 8k = 12k+3, is a lower bound on the size of a maximum
series-parallel subgraph of Gk. Moreover, one can verify that our algorithm in
the iterative phase can produce as Q the graph H1, and output a graph with
|E(H1)| + 4k = 3(7+k) + 4k = 7k+21 edges. In this case, the ratio achieved is
no more than (7k+21)/(12k+3), which approaches 7/12 as k gets large.
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Abstract. Consider an n-node undirected graph G(V, E) with a pre-
assigned port numbering for the outgoing edges of each node. The port
numbers assigned to a node u of degree deg(u) are {0, 1, . . . , deg(u)−1}.
In certain contexts it is necessary to maintain a directed spanning tree of
G, in which case each node needs to remember the port number leading
to its parent. Hence the cost of a spanning tree T is the total number
of bits the nodes need to store in order to remember T . This paper
addresses the question of asymptotically bounding the cost of the optimal
tree, as a function of the graph size. A tight upper bound of O(n) is
established on this cost, thus improving on the best previously known
bound of O(n log log n) [6] and proving the conjecture raised therein. This
is achieved by presenting a polynomial time algorithm for constructing
a spanning tree T of cost O(n) for a given general graph G with an
arbitrary port labeling.

1 Introduction

Many distributed applications make use of pre-defined network representations
for guaranteeing efficient performance. These representations are often designed
to be as compact as possible (cf. [16]) in terms of their memory requirements.
Two notable examples are compact routing schemes [1,3,4,7,17,18,19,20], which
commonly rely on sparse network representations such as partitions, covers and
decompositions, and informative labeling schemes for a variety of applications,
e.g., [5,6,8,9,10,11,12,14,15].

An important special case of a pre-defined network representation is that
of a spanning tree. A number of well-known algorithms for basic distributed
operations, such as broadcast, convergecast and graph exploration (cf. [2,13,16]),
are based on maintaining a spanning tree for the network and using it for efficient
communication.

The problem of compact port-based representations for spanning trees was
introduced in [6], which focused on the problem of providing, during a pre-
processing stage, a compact local encoding of a spanning tree for a given graph.
In particular, it raised the question of the existence of encodings in which the
average number of bits stored at each node is constant.
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More precisely, the following problem was considered in [6]. Consider an n-
node undirected graph G(V, E). Each node u has a pre-assigned port number for
each of its outgoing edges, with the port number of the edge connecting it to the
neighbor v denoted Port(u, v). Denoting the degree of the node u by deg(u), the
port numbers assigned to u’s ports are {0, . . . , deg(u)−1}, or more formally, the
port number Port(u, v) is in {0, . . . , deg(u)−1}, where Port(u, v1) �= Port(u, v2)
for every two distinct neighbors v1 and v2 of u. The port numbers are not
necessarily symmetric, i.e., it could be that Port(u, v) �= Port(v, u). The network
nodes are required to maintain a directed spanning tree of G, with each node
required to remember the port number leading to its parent. For a port number
p, denote by ω(p) the number of bits required to encode p using the standard
binary representation for integers. Formally,

ω(p) =
{

1, if p = 0 ,
�log p�+ 1, if p ≥ 1 .

The cost of a tree T is the total number of bits the nodes need to remember,
denoted Cost(T, G). Formally,

Cost(T, G) =
∑

v∈V, v �=r(T )

ω(Port(v, parent(v, T ))) ,

where r(T ) is the root of the tree T and parent(v, T ) is the parent of v in the
tree T . Define Cost(G) to be min{Cost(T, G)}, where the minimum is taken
over all spanning trees T of G. The question of constructing a spanning tree T
minimizing Cost(T, G) for a given graph G, hence also determining Cost(G),
was shown in [6] to enjoy a polynomial time algorithm.

In this paper, we are interested in bounding the asymptotic behavior of
Cost(G) as a function of the graph size. Define Cost(n) to be max{Cost(G)},
where the maximum is taken over all n-node graphs G. An upper bound of
O(n log log n) on Cost(n) was shown in [6], by presenting a polynomial time al-
gorithm constructing a spanning tree T of cost O(n log log n) for a given n-node
graph G. It was conjectured in [6] that the actual bound is Cost(n) = Θ(n).
In fact, a tight upper bound of O(n) is proved therein for the special cases of
complete graphs with arbitrary labeling and of arbitrary graphs with symmetric
port labeling. In what follows, we confirm the above conjecture for arbitrary
graphs and arbitrary assignments of port numbers, by establishing a tight upper
bound of O(n) on Cost(n). This is achieved by presenting a polynomial time
algorithm for constructing a spanning tree T of cost O(n) for a given general
graph G with an arbitrary port labeling.

2 Construction of a Low Port Tree with Cost O(n)

In this section we present an algorithm for constructing a spanning tree with
cost O(n) for a given graph G(V, E).
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2.1 Escape-Paths

We start by defining some basic notions. For a subtree T of G, we say that the
edge (u, w) is an exit edge of T if u ∈ V (T ) and w /∈ V (T ), and the node u is an
exit node of T if it has an exit edge of T . A tree T rooted at r(T ) is well-oriented
if r(T ) is an exit node of T .

For a directed subtree T of G rooted at r(T ), a path P = (v1, . . . , vk) is said
to be a escape-path of T if

1. v1 = r(T ),
2. v1, . . . , vk ∈ V (T ),
3. (vi, vi+1) ∈ E for every 1 ≤ i ≤ k − 1,
4. vk is an exit node (i.e., it has a neighbor z /∈ V (T )).

Note that the edges of the escape-path P need not be in T .
Define the following order relation on paths in G. Given a path P1 = (v1, . . . , vk)
and a path P2 = (z1, . . . , zr), we say that the path P2 is lighter than P1 if either
r < k or r = k and Port(zr−1, zr) ≤ Port(vk−1, vk). Notice that this lightness
relation is transitive. For a subtree T of G, a path P is said to be a lightest
escape-path of T if it is an escape-path of T and no other escape-path of T is
lighter than P .

2.2 Outline of the Algorithm

The algorithm consists of two phases, a preprocessing phase and a tree construc-
tion phase. Our approach in the construction process of the spanning tree is
based on starting with individual nodes and merging them gradually by taking
a small well-oriented tree T and hanging it on another subtree T̂ by adding an
exit edge from r(T ) to T̂ . Whenever this process succeeds, it leads to a low cost
spanning tree. The complications arise once the process encounters some small
subtree T that is not well-oriented, i.e., whose root has no exit edge. In this case,
the algorithm tries to re-orient the subtree T by finding a lightest escape-path
of T and reversing the relevant edges in that path.

The construction process proceeds in iterations, where in each iteration i the
algorithm chooses a subtree Ti and applies this process on it. For the sake of a
clearer description of the algorithm and its analysis, let us keep a record of this
merging process by remembering, for each iteration i, the basic small subtree
Ti from which we started and the escape-path from the original root r(Ti) to
the selected exit node (which acts as the new root of Ti after the reversal). The
preprocessing stage deals with selecting such escape-paths.

The preprocessing phase. Preprocessing consists of two stages. In the first,
Stage S1, the algorithm chooses for each Ti a lightest escape-path Pi in a naive
way. By the analysis given in [6], these paths yields a tree of cost O(n log log n).
In the second stage of the preprocessing phase, Stage S2, the algorithm builds
cheaper paths that lead to the desired cost of O(n).
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Stage S1 of the preprocessing phase consists of n−1 iterations. The algorithm
maintains a forest F , namely, a collection of (vertex disjoint) subtrees whose
union spans V . Initially, the forest F contains n subtrees, each consisting of a
single vertex. In each iteration i, the algorithm chooses the smallest subtree Ti

in the collection and merges it with another subtree in the collection. At the end
of this stage, the forest F consists of a single tree spanning the entire graph.
In addition, the algorithm also keeps record of the trees T1, . . . , Tn−1 chosen
during the n− 1 iterations. Note that these trees are not necessarily disjoint; it
is possible that V (Ti) ⊂ V (Tj) for some i < j, although partial overlaps may
not occur.

Let us now describe in detail the process of transforming and merging the
subtree Ti, in iteration i of Stage S1. The process consists of two main steps. In
the first step, the algorithm identifies a lightest escape-path Pi of Ti, ending at
an exit node vk. (If the root r(Ti) itself is an exit node, then Pi consists of the
single node v1 = r(Ti).) The algorithm then transforms Ti into a well-oriented
tree T ′

i on the same set of vertices. (If r(Ti) is an exit node then no change
is needed, i.e., T ′

i = Ti and r(T ′
i ) = r(Ti).) In the second step, the algorithm

looks at the set of exit edges of r(T ′
i ), selects the exit edge (r(T ′

i ), z) of minimum
Port(r(T ′

i ), z), sets Outi ← z, and lets T̂ ∈ F be the subtree containing z. The
algorithm then merges the subtrees T ′

i and T̂ into a subtree T̃ by adding the
edge (r(T ′

i ), z), removes Ti and T̂ from F and adds the merged tree T̃ instead.
For convenience, the formal description of the above process is broken into two
procedures (presented in Figure 1): Procedure Transform, performing the first
step, and Procedure Merge, performing the second.

Procedure Transform(G, Ti)

1. T ′
i ← Ti

2. Find a lightest escape-path of Ti, Pi = (v1, . . . , vk).
3. For every 1 ≤ r ≤ k − 1, add the edge (vr, vr+1) of Pi to T ′

i .
In turn, for 2 ≤ r ≤ k, remove from T ′

i the (unique) outgoing edge of vr in
T ′

i , (vr, wr).
4. Return the transformed tree and the escape-path, (T ′

i ,Pi).

Procedure Merge(G, Ti, vk, T ′
i , F )

1. Outi ← node z outside T ′
i with edge to vk of minimal Port(vk, z).

2. Let T̂ ∈ F be the tree in F that contains Outi.
3. T̃ ← (V (T ′

i ) ∪ V (T̂ ), E(T ′
i ) ∪ E(T̂ )).

4. Connect vk to Outi in T̃ .
5. Remove Ti and T̂ from F and add the merged T̃ instead.
6. Return (Outi, F ).

Fig. 1. The procedure for merging the tree Ti with the tree T̂
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The transformation process, performed by Procedure Transform, operates as
follows. Let Pi = (v1, v2, . . . , vk) be a lightest escape-path of Ti. Set T ′

i ← Ti.
For every 1 ≤ j ≤ k − 1, add the edge (vj , vj+1) of Pi to T ′

i . In turn, for
2 ≤ j ≤ k, remove from T ′

i the (unique) outgoing edge of vj in T ′
i , (vj , wj).

Figure 2 illustrates this transformation process.

1

v3 v3

v4 4v v4=r(T’)

2

r(T)=v

v

P(T)

(a) (b) (c)

2

r(T)=v

v

P(T)
1

Fig. 2. (a) The tree T . (b) The lightest escape-path P = (v1, v2, v3, v4) of T (dashed).
The node v4 has an exit edge (not shown in the figure). (c) The tree T ′, with v4 as its
root. T ′ is obtained from T by erasing the edges that connected v2, v3 and v4 to their
parents in T , and replacing them by the edges of P .

In the second stage of the preprocessing phase, Stage S2, the algorithm exam-
ines the chosen trees Ti and their escape-paths Pi in reverse order, from Tn−1 to
T1, and tries to find shortcut paths P∗

i using the nodes in the previously selected
shortcut paths P∗

j for j > i.
Loosely speaking, when considering a tree Ti, the algorithm treats all nodes

in the tree Ti that participate in some shortcut path P∗
j for some j > i as

nodes outside the tree Ti. It then tries to use these new outer nodes in finding
a shortcut path P∗

i of lower cost than the escape-path Pi. The definition of the
shortcut path is similar to that of the escape-path, with a small modification:
instead of the requirement that the last node in the path has a neighbor outside
of V (Ti), we require that the last mode has an edge to a node that participates
in P∗

j for some j > i. The lightest shortcut path is the analogue of the lightest
escape-path, i.e., a path P∗ is said to be a lightest shortcut-path of T if it is a
shortcut-path of T and no other shortcut-path of T is lighter than P∗. If the
algorithm finds a shortcut-path lighter than the original escape-path Pi, then it
replaces the escape-path Pi with the lightest shortcut-path P∗

i .
Hence iteration i of Stage S2 of the preprocessing phase proceeds as follows.

Consider the subtree Ti for 1 ≤ i ≤ n− 1. The algorithm examines all shortcut-
paths (v1, . . . , vk) of the tree Ti such that vk has a neighbor z that belongs to
some shortcut path P∗

j for j > i. If the algorithm finds a shortcut-path lighter
than Pi then it sets P∗

i to be the lightest such path (v1, . . . , vk) and Outi to the
node z that belongs to some shortcut path P∗

j for j > i with minimal Port(vk, z).
The preprocessing phase is described formally in Figure 3. After the prepro-

cessing phase, the algorithm keeps a set of subtrees T1, . . . , Tn−1, a set of shortcut
paths P∗

1 , . . . ,P∗
n−1 and a set of out nodes Out1, . . . , Outn−1.
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Procedure Find Paths(G)

1. F ← {({v}, ∅) | v ∈ V }
2. For i = 1, . . . , n − 1 do: /* Stage S1 */

(a) Let Ti be the smallest-size tree in F .
(b) Invoke (T ′

i ,Pi) ← Transform(G, Ti).
(c) Invoke (Outi, F ) ← Merge(G, Ti, vk, T ′

i , F ).
3. S ← ∅
4. For i = n − 1, . . . , 1 do: /* Stage S2 */

(a) Consider Pi = (v1, . . . , vk).
(b) If there exists a shortcut-path P∗

i (using the nodes in S) lighter than
Pi then do:

i. Set P∗
i to be the lightest shortcut path (z1, . . . , zr) of Ti using the

nodes in S.
ii. Set Outi to be the node z in S with an edge (zr, z) of minimal

Port(zr, z).
(c) Else, set P∗

i ← Pi.
(d) S ← S ∪ V (P∗

i ).
5. Return (T1, . . . , Tn−1,P∗

1 , . . . ,P∗
n−1, Out1, . . . , Outn−1)

Fig. 3. The procedure for finding the transformation paths for all subtrees

Procedure Tree Cons(G, T1, . . . , Tn−1, P∗
1 , . . . , P∗

n−1, Out1, . . . , Outn−1)

1. T ← (V, ∅)
2. For i = 1, . . . , n − 1 do:

(a) Consider P∗
i = (v1, . . . , vk).

(b) For every 1 ≤ j ≤ k − 1, add the edge (vj , vj+1) to T .
In turn, for 2 ≤ j ≤ k, remove from T the (unique) outgoing edge of
vj in T , (vj , wj).

(c) Add to T an edge from vk to Outi.
3. Return T .

Fig. 4. The procedure for constructing a tree with total cost O(n)

Main(G)

1. Invoke (T1, . . . , Tn−1,P∗
1 , . . . ,P∗

n−1, Out1, . . . , Outn−1) ← Find Paths(G).
2. Invoke T ← Tree Cons(G, T1, . . . , Tn−1,P∗

1 , . . . ,P∗
n−1, Out1, . . . , Outn−1).

Fig. 5. Constructing a spanning tree with cost O(n)
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The tree construction phase. The tree construction phase consists of n− 1
iterations. The algorithm maintains a subgraph T which is first initialized to
be T ← (V, ∅). In each iteration i, the algorithm does the following. Let P∗

i =
(v1, . . . , vk). For every 1 ≤ j ≤ k − 1, the algorithm adds the edge (vj , vj+1) to
T . In turn, for 2 ≤ j ≤ k, it removes from T the (unique) outgoing edge of vj in
T , (vj , wj). It then adds to T an edge from vk to Outi. In the end, it returns T .

The tree construction phase is presented formally in Figure 4. The main al-
gorithm is given in Figure 5.

3 Analysis

Let T be the final tree returned by the algorithm. Denote by S the set of all edges
added to T at some iteration in procedure Tree Cons. Notice that E(T ) ⊆ S,
where E(T ) is the set of edges in the final tree T . It could be that E(T ) �= S,
as some of the edges in S might be removed in later iterations. We show that
the total cost of all edges in S, denoted by Cost(S), is O(n), which implies that
Cost(T , G) = O(n). For the analysis, we partition the edges that were added to
S into two subsets, Eout and Eesc, and bound separately the total cost of edges
in each subset by O(n), thus the total cost of all edges in S is also O(n).

For a subtree Tr with P∗
r = (v1, . . . , vk), all edges (vi, vi+1) for 1 ≤ i ≤ k − 1

belong to the subset Eesc and are referred to as escape-edges. The edge from the
node vk to the node Outr is called an out-edge and it belongs to the subset Eout.

Consider an edge (x, y), and let c = Port(x, y). Notice that there are exactly
c neighbors w of x that are “cheaper” than y, i.e., such that Port(x, w) <
Port(x, y). For the sake of the analysis, we employ the following charging rule
on escape-edges. If the algorithm selects the escape-edge (x, y) to the constructed
tree T at some iteration of Procedure Tree Cons, then each such cheaper node
w incurs a charge of 1 upon adding (x, y) to T .

For each node w, we are interested in identifying the subtrees Ti that cause w
to incur a charge. Formally, we say that Ti is a charging subtree of w if w incurs
a charge upon adding the shortcut path P∗

i = (v1, . . . , vk), namely, there exists
some 1 ≤ j ≤ k − 1 such that the escape-edge (vj , vj+1) is more expensive than
(vj , w), or in other words, Port(vj , vj+1) > Port(vj , w). Denote by M(w) the set
of charging subtrees of w. In the analysis we prove that the algorithm guarantees
that every node w has at most one charging subtree, namely, |M(w)| ≤ 1.

For each node w ∈ V , denote by C(w) the charge count of w, namely, the
number of escape-edges for which w incurred a charge. Formally,

C(w) = #{v | Port(v, u) > Port(v, w) and (v, u) ∈ Eesc}.

We now show that the shortcut-paths chosen by the algorithm are disjoint.

Lemma 1. The paths P∗
i for 1 ≤ i ≤ n− 1 are disjoint.

Proof: The proof is straightforward from the construction of P∗
i . Consider some

Ti and Tj where 1 ≤ j < i ≤ n − 1. Assume, towards contradiction, that the
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paths P∗
i and P∗

j intersect, i.e., there exists a node v such that v ∈ P∗
i and

v ∈ P∗
j . Letting P∗

j = (z1, . . . , zr, v, . . .), notice that the path P = (z1, . . . , zr) is
shorter than P∗

j . Moreover, after iteration i of step 4 of Procedure Find Paths,
the node v was added to S. Hence when looking for the lightest shortcut path
for the tree Tj in iteration j of step 4 of Procedure Find Paths, the algorithm
should have chosen P as P∗

j ; contradiction.

The following two lemmas establish that the resulting subgraph T is a tree.

Lemma 2. After iteration i of step 2 of Procedure Tree Cons, all cycles in T
contain an edge (z, w) such that z ∈ P∗

r for some r > i.

Proof: By induction on i. For i = 1, after the first iteration of Procedure
Tree Cons T contains only one edge and the claim is trivial. Assume the claim
holds for every j < i, and consider iteration i of step 2 of Procedure Tree Cons.
By the inductive hypothesis, in the beginning of iteration i all cycles in T contain
a node z such that z ∈ P∗

r for some r ≥ i.
Consider P∗

i = (v1, . . . , vk) and consider a cycle C that contains an edge
(z, w) such that z ∈ P∗

i . Note that during iteration i of step 2(b) of Procedure
Tree Cons, the outgoing edge (z, w) is removed, and therefore the subgraph T no
longer contains the cycle C. In addition, for all edges (vj , vj+1) that are added
to T in iteration i of step 2 of Procedure Tree Cons, the outgoing edge of vj+1
is removed, so clearly no cycle is created. The only exception is for the edge
from vk to Outi. If Outi /∈ Ti, then again no cycle is closed. If Outi ∈ Ti then it
must be that Outi ∈ P∗

r for some r > i. It follows that the claim also holds for
iteration i.

Corollary 1. The final tree T does not contain cycles.

Lemma 3. The number of edges in T in the end of procedure Tree Cons is n−1.

Proof: In step 2(b) of Procedure Tree Cons, the number of edges that are added
to T is equal to the number of edges that are removed from T . In step 2(c) of
Procedure Tree Cons, one edge is added to T . Therefore, one edge is added to T
in each iteration of procedure Tree Cons. As the procedure has n− 1 iterations
overall, the number of edges in T in the end of procedure Tree Cons is n−1.

Corollary 1 and Lemma 3 directly yield the following.

Lemma 4. The subgraph T is a tree.

We now show that each node z has at most one charging subtree.

Lemma 5. The charging trees of every z ∈ V satisfy |M(z)| ≤ 1.

Proof: Consider a node z ∈ V . Assume, towards contradiction, that both
Tr1 , Tr2 ∈ M(z), and without loss of generality assume that r1 > r2. Let
P∗

r1
= (v1, . . . , vk1) and P∗

r2
= (z1, . . . , zk2). As Tr1 , Tr2 ∈ M(z), it must be

that z has an edge to both vi and zj , and moreover, Port(vi, z) < Port(vi, vi+1)
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and Port(zj , z) < Port(zj , zj+1) for some 1 ≤ i ≤ k1 − 1 and 1 ≤ j ≤ k2 − 1.
Notice that the path P = (z1, . . . , zj , z) is lighter than the path P∗

r2
and also

z has an edge to vi ∈ P∗
r1

. Moreover, after iteration r1 in step 4 of Procedure
Find Paths, the node vi was added to S. When looking for a shortcut for the tree
Tr2 in iteration r2 in step 4 of Procedure Find Paths, the algorithm was supposed
to choose P (or some other path lighter than P ) as P∗

r2
; contradiction.

We now turn to the cost analysis of the resulting tree T .

Lemma 6. The charging count of every z ∈ V satisfies 0 ≤ C(z) ≤ 3.

Proof: Consider some node z ∈ V . By Lemma 5, |M(z)| ≤ 1. This means that
z incurs a charge only on one subtree. It remains to show that when z incurs
a charge on some subtree Ti, that charge is at most 3. Assume Ti ∈ M(z). Let
Pi = (v1, . . . , vk) be the lightest escape-path generated by procedure Transform
in the transformation process of Ti. Since Pi is a shortest path from v1 to vk in
G(Ti), we have that z has at most three neighbors in Pi, otherwise the procedure
could have used z to get a shorter path between v1 and vk (this is due to the fact
that if z is adjacent to nodes vl1 , . . . , vlt on Pi, then (v1, . . . , vl1 , z, vlt , . . . , vk)
is an alternate path between v1 and vk, and if t ≥ 4 then this alternate path
is necessarily shorter than the original.). When updating Pi to a lighter path
P∗

i = (z1, . . . , zr), again there can be at most three nodes among z1, . . . , zr that
have an edge to z. Thus C(z) ≤ 3.

For the analysis, we partition the overall cost of S into

Cost(S) = Cout + Cesc ,

where
Cout =

∑
(x,y)∈Eout

ω(Port(x, y))

and
Cesc =

∑
(x,y)∈Eesc

ω(Port(x, y)) .

Lemma 7. Consider some subtree Ti for 1 ≤ i ≤ n − 1. Let P∗
i = (v1, . . . , vk)

and z = Outi. Then Port(vk, z) < |Ti|.

Proof: The proof is straightforward from the definition of Outi. By definition,
Outi is a node z outside Ti (or a node in Ti that participate in some shortcut path
P∗

j for some j > i) with minimal Port(vk, z). So in the worst case, Port(vk, z) =
|Ti| − 1.

Lemma 8. Cout = O(n).

Proof: For each subtree Ti, the algorithm adds at most one edge to Eout, and
by Lemma 7 the cost of this edge is at most �log |Ti|�+ 1. There are n− 1 such
subtrees Ti. In each iteration in step 2 of Procedure Find Paths, the algorithm
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chooses the smallest subtree in the forest F and merges it with another subtree.
As initially F contains n subtrees of size 1, there are at least n/2 iterations with
subtrees of size 1, and at least n/4 subsequent iterations with subtrees of size at
most 2, and so on. It follows that the total cost is

Cout ≤
log n∑
i=1

n

2i
· (i + 1) = O(n) .

Lemma 9. Cesc = O(n).

Proof: Notice that exactly Port(x, y) nodes incur a charge for each edge e =
(x, y) ∈ Eesc, and therefore∑

(x,y)∈Eesc

Port(x, y) =
∑
v∈V

C(v) ≤ 3n ,

where the last inequality follows by Lemma 6. It follows that

Cesc =
∑

(x,y)∈Eesc
Port(x,y)=0

1+
∑

(x,y)∈Eesc
Port(x,y)>0

(�log Port(x, y)�+1)≤n+
∑

(x,y)∈Eesc

Port(x, y)

≤ 4n = O(n).

Finally, Lemmas 8 and 9 yield the desired bound.

Lemma 10. Cost(T , G) = O(n).
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Abstract. We present a fully dynamic algorithm that maintains three
different representations of an interval graph: a minimal interval model
of the graph, the PQ-tree of its maximal cliques, and its modular decom-
position. After each vertex or edge modification (insertion or deletion),
the algorithm determines whether the new graph is an interval graph in
O(n) time, and, in the positive, updates the three representations within
the same complexity.

1 Introduction

In this paper, we are interested in the dynamic recognition and representation
problem for the class of interval graphs. For a family F of graphs, this problem
is to maintain a characteristic representation of dynamically changing graphs as
long as the modified graph belongs to F [3,4,6,8,15,16]. The input of the problem
is a graph G ∈ F with its representation and a modification which is one of the
following: inserting or deleting a vertex (along with the edges incident to it),
inserting or deleting an edge. After any modification, the algorithm determines
whether the new graph belongs to F and, in the positive, updates the chosen
representation.

Related works. The seminal paper for the recognition of interval graphs [1]
solved the problem in linear time by introducing a data structure called PQ-tree.
The algorithm of [1] is not dynamic: even though the consecutiveness constraints
of each vertex are added one by one, the maximal cliques of the graph need to be
computed in advance. The algorithm of [11] also considers the vertices arriving
one by one and updates the PQ-tree. But in order to achieve a linear complexity,
the ordering on the vertices is not arbitrary and must be precomputed statically.
On the opposite, the algorithm of [7] is truly incremental on vertices. In the worst
case, the cost of a vertex insertion may be up to Θ(n). But unfortunately, as
mentioned by the author, the data structure he uses does not allow to treat
vertex deletion, while our algorithm is able to do so, within the same worst case
time complexity. For edge modifications, [9] designed a fully dynamic algorithm
that runs in O(n log n) time per operation. Here, we lower this complexity to
O(n).

C. Paul and M. Habib (Eds.): WG 2009, LNCS 5911, pp. 77–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Our results. Our algorithm treats the insertion of a vertex in an interval
graph in a truly dynamic manner and is the first one also treating the deletion
of a vertex; both operations being handled in O(n) time. We also lower the
complexity of the best dynamic algorithm for edges [9] from O(n log n) to O(n)
per operation, insertion or deletion. In addition, we do not only deal with the
recognition problem but also maintain, within the same complexity, three useful
representations of the graph: a minimal interval model, the PQ-tree and the
modular decomposition.

Beside our algorithmic results, we give new insight into the structure of inter-
val graphs by showing strong connections between the PQ-tree and the modular
decomposition of an interval graph. It should also be noted that Theorem 3
gives a characterisation of the neighbourhood of a vertex in an interval graph.
Complete proofs of all results presented here can be found in [2].

2 Preliminaries

Every graph considered here will be finite, undirected, loopless and simple.
Throughout the paper, V denotes the vertex set of graph G and E its edge
set; we write G = (V, E). n stands for |V | and an edge between x and y is de-
noted indifferently xy or yx. The neighbourhood of a vertex x ∈ V is denoted
N(x) and its non-neighbourhood N(x). K(G) is the set of maximal cliques of G.
A vertex x is simplicial in G iff its neighbourhood is a clique. A subset S � V
of vertices is uniform wrt. vertex x ∈ V \ S if S ⊆ N(x) (S is full) or S ⊆ N(x)
(S is hollow). If S is not hollow, S is linked, and mixed if S is neither hollow nor
full. When there is no confusion, we omit to mention the vertex x referred to.
For a rooted tree T and a node u of T , we denote parent(u) for the parent of u in
T , C(u) for its set of children, Anc(u) for the ancestors of u in T (u ∈ Anc(u)),
and Tu for the subtree of T rooted at u. We sometimes identify the tree and its
set of nodes by denoting u ∈ T . For a linear ordering σ, we denote min(σ) and
max(σ) for respectively the first and last element of σ.

Interval graphs. An interval model of a graph G is a set I of intervals of
the real line along with a mapping from V to I such that two vertices of G
are adjacent iff their corresponding intervals intersect. Interval graphs are the
graphs that admit such a model. In all the models considered in the following,
intervals will be closed and will have integer bounds (the class remains the same
under this restriction). Associating with each vertex the two integer bounds of
its corresponding interval yields an efficient data structure providing adjacency
testing in constant time. Interval graphs are well known to be chordal, that
is, they do not contain any induced cycle of length ≥ 4. One of their nicest
characterisations is the following.

Theorem 1. [5] A graph G is an interval graph iff its maximal cliques can be
linearly ordered such that, for every vertex x of G, the maximal cliques containing
x occur consecutively.
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Such an ordering of the maximal cliques is called a consecutive ordering of G (or
K(G)). Numbering the maximal cliques with their rank in a consecutive ordering
σ and assigning to each vertex x of G the interval of σ consisting of the cliques
containing x results in a model of G. The minimal models are precisely those
that can be obtained this way.

It is shown in [1] that all the consecutive orderings of the maximal cliques of
a graph G can be represented by an O(|K(G)|)-space structure called PQ-tree.
The PQ-tree of G, denoted T c, is a rooted tree whose leaves are the maximal
cliques of G. Its internal nodes are labeled P (degenerate nodes) or Q (prime
nodes). Any Q-node q is assigned two linear orderings, denoted σq and σ̄q, on
the set of its children, σ̄q being the reverse order of σq. A solidification of a
PQ-tree T , is an assignation, to each node u of T , of a linear ordering on its
children: any linear ordering if u is a P -node, σu or σ̄u if u is a Q-node. The
frontier of a solidification s is the prefix order of the leaves of T resulting from
a depth first search where the children of a given node u ∈ T are explored in
the order defined by s. A result of [1] states that the frontier is a one to one
mapping from the set of solidifications of T c onto the set of consecutive orderings
of G.

Modular decomposition. The reader which is not familiar with the basic
notions of modular decomposition theory such as module, strong module, maxi-
mal strong module (whose set is denotedMSM(G)) and prime graph may refer
to [13].

For a module M of G, we define the quotient graph G/M = G[(V \M)∪{a}],
where a ∈ M is called the representative vertex of M . Similarly, for a family P
of pairwise disjoint modules, we define the quotient graph G/P by choosing a
representative vertex for each module in P .

The modular decomposition tree of G is denoted T m, its leaves are the vertices
of G and a node p ∈ T m represents the strong module of G, denoted V (p),
which is the set of leaves of T m

p . The children of a node p of T m are the maximal
strong modules of G[V (p)]. To each node p of T m, we associate its quotient graph
Gp = G[V (p)]/MSM(G[V (p)]). From the well-known modular decomposition
theorem, the quotient Gp is either a stable set, then p is labeled parallel, or
a clique, then p is labeled series, or a prime graph, then p is labeled prime.
The parallel and series nodes are also called degenerate nodes. We will need the
following lemma.

Lemma 1. Let G and H be interval graphs, and x a vertex of G. Gx←H is an
interval graph iff: (i) x is simplicial; or (ii) H is a clique.

3 Three Representations of Interval Graphs

Minimal interval models. of an interval graph G consist of a consecutive
ordering σ of G stored as a list. Each cell contains its position in the list and
each vertex of G is assigned two pointers (possibly the same) toward the cells
representing the first and the last (wrt. σ) maximal clique of G containing x.
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The size of such a structure is O(n + |K(G)|) = O(n) as |K(G)| ≤ n− 1 for any
interval graph.

The PQ-representation. is essentially the same structure as the MPQ-tree
introduced in [10]. In the classic PQ-tree, the maximal clique corresponding to a
leave of T c is stored by the list of its vertices, which results in an O(n+m) space
structure, while the number of nodes in the PQ-tree is only O(n). In the PQ-
representation, the vertices of G are stored in the internal nodes of T c (thanks
to the pointers defined below) instead of being stored in its leaves. Let u be a
node of T c, we denote KT c(u) for the maximal cliques of G corresponding to
the leaves of T c

u. For a subset S ⊆ V of vertices, we denote K(S) for the set of
maximal cliques of G containing S; and for a singleton we denote K(x) instead
of K({x}). For a vertex x ∈ V , we denote ex for the least common ancestor of
the leaves of T c corresponding to the maximal cliques of G containing x.

Lemma 2. [11] For any vertex x of an interval graph G, exactly one of the two
following conditions holds: (i) K(x) = KT c(ex), or (ii) ex is a prime node and

∃(u1, u2) ∈ (C(ex))2 \ {(min(σex), max(σex ))}, u1 <σex
u2 and K(x) =⋃

u1≤v≤u2
KT c(v).

When (ii) is satisfied, we denote e1
x and e2

x for the children u1 and u2 of ex. The
PQ-representation of an interval graph G, denoted PQ(G), is made of T c and
the set of vertices of G, where each vertex x stores a primary pointer toward ex,
and two secondary pointers toward resp. e1

x and e2
x when x satisfies (ii). These

pointers encode which maximal cliques of G (i.e. the leaves of T c) contain x.
Since the number of nodes in T c is O(n) and since each vertex of G stores at
most three pointers, it follows that the total size of the PQ-representation is
O(n).

Notation 1. (cf. Fig 1) Let ρ be the root of T c. For each node u of T c, we
define the following sets:
Xu = {y ∈ V | ey = u and y has no secondary pointers}
Yu = {y ∈ V | ey = u and y has secondary pointers toward the children of u}
u∗ = {y ∈ V | ey ∈ T c

u}

Δu =
{
{y ∈ Yû | e1

y ≤σû
u ≤σû

e2
y} if u �= ρ (where û = parent(u))

∅ if u = ρ
Bu =

⋃
v∈Anc(u) Xv ∪Δv

Note that, by definition, if u is degenerate then Yu = ∅, and if parent(u) is
degenerate then Δu = ∅. Bu is the set of vertices that belong to all the maximal
cliques corresponding to the leaves of T c

u, and u∗ is the set of vertices that are
involved only in those cliques. The maximal clique of G corresponding to a leaf
f ∈ T c is precisely Bf .

The MD-representation. of an arbitrary graph G, denoted MD(G), is its
modular decomposition tree T m along with the quotient graphs Gp of its prime
nodes p and a mapping from the vertices of Gp onto C(p). In the case where G
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Fig. 1. Three representations of an interval graph. In the PQ-representation, the degen-
erate nodes are represented by circles and the prime nodes by rectangles. The primary
pointers are black, while the secondary pointers are grey. The primary pointers of the
vertices that have secondary pointers are not represented. We have u∗

1 = {a, b, c, d},
Xu1 = {c, d}, Xu2 = {k, l}, Yu2 = {g, h, i}, Bv2 = {f, g, h, k, l, m} and Δv1 = {i}.

is an interval graph, the quotient graphs are stored as minimal interval models.
As the model of a prime node p takes O(|C(p)|) space, it yields an O(n) space
representation of G.

3.1 Linear-Time Equivalence of PQ-Representation and
MD-Representation

The equivalence is based on the fact that the PQ-representation of an interval
graph is quite well structured regarding its strong modules.

Theorem 2. Let G be an interval graph. M is a non-trivial strong module of G
iff |M | > 1 and there exists some node u ∈ T c satisfying one of the two following
conditions:
1. M = u∗ or M = u∗ \Xu; or
2. u is prime and ∃u1, u2 ∈ C(u), M = {y ∈ Yu | e1

y = u1 and e2
y = u2}.

Theorem 2 justifies that the MD-representation can be obtained from the PQ-
representation as follows. Hereinafter, we refer to this process as the PQ-MD-
transformation. In a bottom-up manner, for each node u of T c, we compute
T m(G[u∗]). For an internal node u, whose set of children is {u1, . . . , uk}, we
have to consider three different cases:

1. If Xu = ∅ and u is a degenerate node, the root ũ of T m(G[u∗]) is a parallel
node whose children are the roots of the trees T m(G[u∗

1]), . . . , T m(G[u∗
k]).

2. If Xu = ∅ and u is a prime node, the root ũ of T m(G[u∗]) is a prime node.
The interval model of Gũ is made with the list Z of children of u ordered by
σu. The set of simplicial vertices of Gũ is the set S = {v ∈ C(u) | v∗ �= ∅}. For
any v ∈ S, the root of T m(G[v∗]) is made a child of ũ and its corresponding
vertex in Gũ has two pointers toward the cell of v in Z. The non-simplicial
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vertices of Gũ are the classes ȳ of vertices y ∈ Yu having the same secondary
pointers. The child ṽ of ũ corresponding to ȳ is a series node (or a leaf if
|ȳ| = 1) whose children are the vertices of ȳ. The pointers of ṽ toward Z are
the same as the pointers of any y ∈ ȳ.

3. If Xu �= ∅, we first ignore the vertices of Xu and build T m(G[u∗ \Xu]) like
described above. Then, we introduce a new series node whose children are
the leaves representing vertices of Xu and the root of T m(G[u∗ \Xu]).

Processing the leaves of T c takes O(n) time. For a degenerate node u, treatment 1
takes O(|C(u)|) time. In the processing of a prime node, the difficult operation
is to find the equivalence classes ȳ in Yu. To that purpose, we can bucket sort
the vertices y ∈ Yu with the rank of e1

y in Z as primary key, and the rank of e2
y

as secondary key. As we sort |Yu| elements having values between 1 and |C(u)|,
this takes O(|Yu| + |C(u)|) time. It follows that the processing time of a prime
node is O(|Yu|+ |C(u)|). Finally, treatment 3 takes O(|Xu|) time. Thus, the total
computation time of T m(G) is O(

∑
u∈T c |Xu| +

∑
u∈T c |Yu| +

∑
u∈T c |C(u)|) =

O(n).
For lack of space, we do not detail the converse operation that gives the PQ-

representation from the MD-representation. It leans on a bottom-up search of
T m, similar to the one of T c, which also runs in O(n) time.

4 The Dynamic Algorithm

Since our three representations are O(n) time equivalent, and since we want to
get an O(n) time algorithm, we can focus on maintaining only one of them and
get the others within the same complexity. We chose to concentrate on showing
how to maintain the MD-representation. However, when they are more conve-
nient, we will also use the other representations and the equivalence between
them.

Since edge modifications can be handled by one vertex deletion followed by
one vertex insertion, we will not specifically consider them.

For lack of space, we do not present the deletion algorithm but only give
its general idea. When the parent u ∈ T m of the vertex x to be deleted is
degenerate, we simply remove the leaf corresponding to x and make some local
cleaning of the tree, exactly as in [3]. When u is prime, we use the algorithm of
[12] that computes the PQ-tree from an interval model, and we use the PQ-MD-
transformation to get the updated MD-representation. We now concentrate on
vertex insertion.

4.1 Focus on the Key Node

[3] showed that, for an arbitrary graph, the modifications of T m under vertex
insertion are located in the subtree of T m rooted at the insertion node wm,
defined further. Here, we introduce the key node w that plays the same role in
T c and we show that, in order to determine whether G + x is an interval graph,
we can restrict our attention to G[w∗] + x.
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From now on, x will be a vertex to be inserted in an interval graph G, and
we denote G′ for G + x. We will say that a node u ∈ T m (resp. T c) is uniform,
mixed, full, hollow or linked (see definitions p. 78) referring to the set V (u) (resp.
u∗). A node u ∈ T c is saturated iff u∗ and Bu are full.

Definition 1. [3] A node u ∈ T m is proper iff either u is uniform wrt. x, or u
is a mixed node with a (unique) mixed child f such that V (f)∪ {x} is a module
of G′[V (u)∪{x}]. The insertion node, denoted wm, is the least common ancestor
of the non-proper nodes of T m.
Node wm is said to be cut iff wm has no mixed child and either wm is prime
and has a child f such that V (f) ∪ {x} is a module of G′[V (wm) ∪ {x}], or wm

is degenerate.

In the following, we do not consider the trivial case where V is uniform. More-
over, from now on, we only consider the case where wm is not cut and the
neighbourhood of V (wm) is a clique: the other cases are easy to deal with. We
adopt the following definition.

Definition 2. The key node w is the node of T c such that V (wm) = w∗ or
V (wm) = w∗ \Xw.

Note that in Condition 2 of Theorem 2, the neighbourhood of M is not a clique.
Thus, in the present case, V (wm) satisfies Condition 1 of Theorem 2, which
ensures the existence of node w. It is straightforward to see that V (wm) ∪ {x}
is a module of G+x, and since w∗ is a module of G and V (wm) ⊆ w∗, it follows
that w∗ ∪ {x} is a module of G + x. Furthermore, since the neighbourhood of
V (wm) in G is a clique, the neighbourhood of w∗ ∪ {x} in G + x is a clique.
Then, the lemma below follows from Lemma 1.

Lemma 3. G + x is an interval graph iff G[w∗] + x is an interval graph.

4.2 Dynamic Characterisation of Interval Graphs

In this section, we characterise the insertions of a vertex x in an interval graph
G that result in an interval graph. We start with the definitions and notations
we use in our characterisation.

Definition 3. Let u be a prime node of T c and v ∈ C(u). v satisfies the left
(resp. right) property iff ∀y ∈ Yu ∩N(x), e2

y ≥ v (resp. e1
y ≤ v).

Notation 2. If the saturated children of u form an interval of σu, we denote
Iu for this interval and lu (resp. ru), if it exists, for the child of u immediately
preceding (resp. following) Iu.

Lemmas 4 to 7 give some necessary conditions for G+x to be an interval graph,
and Theorem 3 states that they are also sufficient. We omitted the proofs of the
Lemmas since they are too technical to be sketched within the space limitation.
As a general hint, we can say that their statement widely lean on the fact that
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deleting x in all the cliques of a consecutive ordering σ′ of G′ and removing the
obtained cliques that are not maximal in G results in a consecutive ordering of
G. Roughly speaking, this implies that, in σ′, the maximal cliques of the new
graph G′ appear in an order that somehow respects the constraints previously
imposed by the nodes of T c.

Lemma 4. If G + x is an interval graph, any node u ∈ T c
w \ {w} has at most

one mixed child, and w has at most two mixed children. Furthermore, for all
u ∈ T c

w, if Bu is not full, then u has at most one linked child.

The other necessary conditions for G′ to be an interval graph apply only to
prime nodes of T c

w.

Lemma 5. If G + x is an interval graph, for all prime nodes u ∈ T c
w, the set

of saturated children of u is an interval Iu of σu. And if Iu �= ∅, then any node
v1 ∈ C(u) \ (Iu ∪ {lu, ru}) is hollow.

Lemma 6. If G + x is an interval graph, any prime node u �= w of T c
w satisfies

one of the following conditions:
1. Bu is full and Iu �= ∅; and, up to reversing σu, max(σu) ∈ Iu and lu satisfies

the left property.
2. Bu is full and Iu = ∅, or Bu is not full; and, up to reversing σu, max(σu)

satisfies the left property and the nodes of C(u) \ {max(σu)} are hollow.

Lemma 7. If G + x is an interval graph and if w is a prime node, it satisfies
one of the following conditions:
1. Bw is full and Iw �= ∅; and lw and rw satisfy respectively the left and right

property.
2. Bw is full and Iw = ∅; and, one of the two following conditions holds:

(a) there exist two consecutive elements l and r in σw, with l <σw r, that
satisfy respectively the left and right property, and the nodes of C(w) \
{l, r} are hollow, and Δl ∩Δr ⊆ N(x); or

(b) up to reversing σw, max(σw) satisfies the left property and the nodes of
C(w) \ {max(σw)} are hollow.

3. Bw is not full; and, up to reversing σw, max(σw) satisfies the left property
and the nodes of C(w) \ {max(σw)} are hollow.

Theorem 3. G+x is an interval graph iff the conditions of Lemmas 4 to 7 are
satisfied.

Sketch of proof. If the conditions of Lemmas 4 to 7 are satisfied, we can build
a consecutive ordering of G[w∗] + x. To that purpose, we first build, for every
full node u, a consecutive ordering of G[u∗] + x. Then, inductively, in a bottom
up traversal of T c

w, we build, for every mixed node u ∈ T c
w \ {w}, a consecutive

ordering of G[u∗] + x st. the last maximal clique contains x. There are several
cases to be considered. We cannot discuss each of them but we detail, as an ex-
ample, the case where u satisfies Cond. 1 of Lemma 6 and lu is mixed and Blu is
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full. In this case we obtain a consecutive ordering σ′ of G[u∗] + x by appending,
in the order defined by σu, the consecutive orderings of G[v∗] of nodes v <σu lu,
the consecutive ordering of G[l∗u] + x built previously in the induction, and the
consecutive orderings of G[v∗]+x of nodes v >σu lu. Moreover, for any v ∈ C(u),
we add the vertices of Δv ∪Xu to the cliques of G[v∗] (or G[v∗] + x if v ≥σu lu).
Since we use a consecutive ordering of G[l∗u]+x whose last clique contains x, the
cliques of σ′ containing x form an interval. Once we get the consecutive orderings
related to the mixed children of w, as w satisfies the conditions of Lemma 7, a
last induction step allow us to obtain, in a similar way, a consecutive ordering
of G[w∗] + x. �

4.3 Overview of the Algorithm and Complexity

The first step of our algorithm collects some information about T m and T c, and
finds the key node w. The second step checks whether T c

w satisfies the conditions
of Lemmas 4 to 7, that is whether G + x is an interval graph. In the positive,
the third step updates MD(G) by building MD(G′).

Marking step. We first determine for each node of T m whether it is full, mixed
or hollow by a well-known bottom-up marking process of the tree (see [14]), in
O(n) time. Then, we find the insertion node wm by following a path from the
root to w, while the visited node u is proper, we visit its unique mixed child
(see [3]); the first non-proper node found is wm. As we mentionned, the cases
where wm is cut or where the neighbourhood of V (wm) is not a clique are easy
to deal with. We now describe the algorithm in the opposite case. Thanks to the
correspondence between T c and T m, we find the key node w and determine for
each node of T c whether it is full, mixed or hollow. Finally, a simple top-down
search of T c allows us to determine for each node u whether Bu is full, mixed
or hollow. The first step runs in O(n) time.

Testing step. The conditions of Lemma 4 can be tested in O(|C(u)|) time by
a simple search of C(u). The difficulty of checking the conditions of Lemma 5 is
to decide whether the saturated children of u form an interval. To that purpose,
we determine the set S = {v ∈ C(u) | Δv ⊆ N(x)}. We first bucket sort the
vertices of y ∈ Yu∩N (x) by increasing e1

y. As 1 ≤ e1
y ≤ |C(u)|, it takes O(|C(u)|)

time. Examining the vertices of Yu ∩N(x) in this order, we are able to maintain
a partition of the children v of u such that Δv contains none of the vertices
y ∈ Yu ∩ N(x) examined so far; each set of this partition being an interval of
C(u). At the end of the routine, we obtain a partition of S. Then, checking
the conditions of Lemma 5 becomes easy. It can be done in O(|C(u)| + |Yu|)
time. For a child v of a prime node u, it is easy to check whether v satisfies
the left or right property by scanning Yu. It follows that the only difficulty in
checking the conditions of Lemmas 6 and 7 is to check Cond. 2a of Lemma 7. Let
w1 = minσw{e2

y | y ∈ Yw ∩N(x)}. The children of w satisfying the left property
are exactly the nodes v ≤σw w1. In the same way, we find the children of w
satisfying the right property. Then, the couples (f, l) st. f and l resp. satisfy the
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left and right property define an interval of σw. The same technique as the one
used to check the conditions of Lemma 5 determines the couples (f, l) such that
Δf ∩Δl ⊆ N(x). Hence, Cond. 2a of Lemma 7 can be tested in O(|C(w)|+ |Yw |)
time. Finally, since all the conditions can be tested for a node u in O(|C(u)|+|Yu|)
time, we can determine whether G + x is an interval graph in O(n) time.

Insertion step. If G + x is not an interval graph, then the algorithm stops.
Otherwise, the MD-representation is updated. Since V (wm) ∪ {x} is a strong
module of G′ = G + x (cf. [3]), we can obtain MD(G′) by replacing node wm of
MD(G) with the root of MD(G[V (wm)]+x). In order to get MD(G[V (wm)]+x)
we first compute an interval model of G[w∗]+x. In the proof of Theorem 3, it is
shown how to build a consecutive ordering of G[w∗]+x by a bottom-up traversal
of T c

w. At each step, we concatenate the orderings computed for the children of
the current node u, and we assign pointers to the vertices of Xu ∪ Yu; this takes
O(|C(u)|+ |Xu|+ |Yu|) time. Thus, the whole processing of T c

w takes O(n) time.
Once we get an interval model of G[w∗] + x we can easily extract a model of
G[V (wm)] + x, and thanks to the algorithm of [12] that computes the PQ-tree
from an interval model, we get PQ(G[V (wm)] + x) in O(n) time. The PQ-MD-
transformation (see p.81) provides us with MD(G[V (wm)]+x) within the same
complexity. Thus, the total computation time of MD(G′) is O(n).
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Abstract. We study the parameterized complexity of several minimum
label graph problems, in which we are given an undirected graph whose
edges are labeled, and a property Π , and we are asked to find a subset
of edges satisfying property Π that uses the minimum number of labels.
These problems have a lot of applications in networking. We show that
all the problems under consideration are W[2]-hard when parameterized
by the number of used labels, and that they remain W[2]-hard even
on graphs whose pathwidth is bounded above by a small constant. On
the positive side, we prove that most of these problems are FPT when
parameterized by the solution size, that is, the size of the sought edge set.
For example, we show that computing a maximum matching or an edge
dominating set that uses the minimum number of labels, is FPT when
parameterized by the solution size. Proving that some of these problems
are FPT is nontrivial, and requires interesting and elegant algorithmic
methods that we develop in this paper.

1 Introduction

In this paper we consider several minimum label graph problems that are defined
as follows:

Input: A graph G = (V, E) whose edges are associated with labels or
colors specified by a function C : E → C, where C denotes the set of
labels (also referred to as colors in this paper), a graph property Π , and
an integer d.
Output: A set E′ ⊆ E such that the subgraph of G consisting of the
set of edges in E′ satisfies Π , and the number of labels/colors used by
the edges in E′ is at most d.

Minimum label problems have been extensively studied in the last few years.
These problems are motivated by applications from telecommunication networks,
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electrical networks, and multi-modal transportation networks. For example, in
communication networks, there are different types of communication media, such
as optic fiber, cable, microwave, and telephone line. A communication node may
communicate with different nodes by choosing different types of communication
media. Given a set of communication network nodes, the problem of finding
a connected communication network using as few types of communication me-
dia (i.e., labels/colors) as possible is exactly the Minimum Label Spanning

Tree problem, in which the property Π is the property of being a spanning
tree of G (see [5,13] for more details). Among the minimum label problems
that have been extensively studied, we mention the Minimum Label Span-

ning Tree problem [1,2,3,5,8,10,13,14,17,18,19], the Minimum Label Path

problem [2,4,8,16,20] (where Π is the property of being a path between two
designated vertices), the Minimum Label Cut problem [9,20] (where Π is the
property of being a cut between two designated vertices), and the Minimum

Label Perfect Matching problem [11] (where Π is the property of being a
perfect matching).

The previous work on minimum label problems mainly dealt with determining
the classical complexity of these problems and studying their approximabilty.
Some of the previous work, however, dealt with developing exact algorithms for
these problems. For example, Broersma et al. [2] devised two exact algorithms for
the Minimum Label Path and Minimum Label Cut problems with running
time
O(n ·min{|C|d(s,t), 2|C|}) and O(n2 · |C|!), respectively, where C denotes the set
of labels (colors), and d(s, t) denotes the distance between the two designated
vertices s and t.

In the current paper we study the parameterized complexity of several mini-
mum label graph problems, with respect to two natural parameters: the number
of used labels d, and the size of the solution |E′|. The problems under con-
sideration are: Minimum Label Spanning Tree (MLST), Minimum Label

Hamiltonian Cycle (MLHC) (where Π is the property of being a Hamiltonian
cycle), Minimum Label Cut (MLC), Minimum Label Edge Domination

Set (MLEDS) (where Π is the property of being an edge dominating set, that
is, every edges in E \ E′ shares at least one endpoint with some edge in E′),
Minimum Label Perfect Matching (MLPM), Minimum Label Maximum

Matching (MLMM) (where Π is the property of being a maximum matching
of G), and Minimum Label Path (MLP).

From some of the NP-hardness reductions for the above problems, we can de-
rive parameterized intractability results with respect to the parameter d; for
example, the NP-hardness reduction for Minimum Label Spanning Tree

shows that this problem is W[2]-hard [10]. In this paper, we strengthen these in-
tractability results by showing that, even on graphs whose pathwidth is at most
a small constant, when parameterized by the number of used labels d, these
problems remain W[2]-hard. These results are interesting, as very few natural
parameterized problems are known to be (parameterized) intractable on graphs
with bounded pathwidth. When parameterized by the solution size |E′|, we show
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that, with the only exceptions of Minimum Label Path and Minimum Label

Cut, which are W[1]-hard, all other problems are fixed-parameter tractable (on
general graphs). Showing that some of these problems are FPT is non-trivial,
and requires elegant algorithmic methods that we develop in this paper.

All the hardness results will be presented in Section 2, while Section 3 contains
all the fixed-parameter tractability results.

For the background and terminologies on graphs, we refer the reader to
West [15], and for that on parameterized complexity, we refer the reader to
Downey and Fellows’ book [7].

2 Parameterized Hardness Results

First, we show that even on graphs whose pathwidth is at most a small constant,
all the considered minimum label problems are W[2]-hard, when parameterized
by the number of used labels d. These results are very interesting since there are
few problems that are known to be W-hard on graphs of bounded pathwidth.

Theorem 2.1. Parameterized by the number of used labels d:

– Minimum Label Edge Dominating Set and Minimum Label Maximum

Matching are W[2]-hard on trees of pathwidth at most 1;
– Minimum Label Spanning Tree and Minimum Label Path are W[2]-

hard on graphs with pathwidth at most 2;
– Minimum Label Cut and Minimum Label Perfect Matching are

W[2]-hard on graphs with pathwidth at most 3; and,
– Minimum Label Hamiltonian Cycle is W[2]-hard on graphs with path-

width at most 5.

Proof. All the corresponding FPT-reductions are from the W[2]-hard Hitting

Set (HS) problem, defined as follows. Given a ground set S, a collection L of
subsets of S, and a nonnegative integer k, decide if there exists a subset S′

of S of cardinality at most k, such that every subset in L has a non-empty
intersection with S′. We only give one FPT-reduction showing that Minimum

Label Spanning Tree (MLST) is W[2]-hard. The reductions for the other
problems are similar.

For a given instance of HS, we construct a graph G where, for each subset c
in L, there is a star consisting of a root vertex and |c| leaves. The edges in this
star are labeled with the elements of c. Then, we connect the leaves of this star by
a path whose edges have the same label x, where x /∈ S. Finally, we connect all
root vertices by a path whose edges have the same label x. Clearly, the resulting
graph has pathwidth 2. Observe that every size-d solution of the HS-instance
corresponds to a solution of the resulting MLST-instance using d+1 labels, and
vice versa. This gives the W[2]-hardness of MLST.

By reductions from Multicolored Clique, we can show the following
theorem:
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Theorem 2.2. Parameterized by the solution size |E′|:
– Minimum Label Cut is W[1]-hard on graphs with pathwidth at most 4, and
– Minimum Label Path is W[1]-hard on graphs with pathwidth at most 2.

3 Fixed-Parameter Tractability Results

Parameterized by the solution size, Minimum Label Spanning Tree, Mini-

mum Label Perfect Matching, and Minimum Label Hamiltonian Cycle

are all fixed-parameter tractable, since the instance size is bounded by a function
of the parameter. However, it requires much more effort to show that Minimum

Label Maximum Matching (MLMM) and Minimum Label Edge Domi-

nating Set (MLEDS) are fixed-parameter tractable with respect to the same
parameter. We note that we are mainly concerned with establishing the fixed-
parameter tractability of MLMM and MLEDS. Consequently, the running time
of the parameterized algorithms developed in this paper is not very practical,
and can definitely be improved much further.

3.1 Minimum Label Maximum Matching (MLMM)

Let (G, k) be an instance of MLMM, where k is the size of a maximum matching
in G. We denote by e(G) and n(G) the number of edges and vertices, respectively,
in G. Let M be a maximal matching in G, I = V (G) \ V (M), and note that I
is an independent set in G. We denote by G[M ] the subgraph of G induced by
the endpoints of the edges in M .

The algorithm is a search-tree based algorithm: it starts by growing a set
of partial solutions, i.e., matchings, into an optimal solution, i.e., a maximum
matching that uses the minimum number of colors. To do so, the algorithm
branches on some vertices and edges in G to decide whether they belong to an
optimal solution or not. Since the branching will consider all possibilities, we
will maintain the invariant that at least one partial solution, among all partial
solutions we keep, can be extended to an optimal solution. The algorithm can
be split into three stages, each trying to simplify the resulting instance further
by possibly performing more branchings.

Stage 1 Let Mopt be an optimal solution that we are trying to compute. For
every edge e in G[M ] we branch as follows.

– e in Mopt: in this case we include e, decrement k by 1, and remove e and its
endpoints from the graph. We also record that the color C(e) is used in the
optimal solution.

– e is not in Mopt: in this case we simply remove e, that is, we set G := G− e.

For every remaining vertex v in G[M ] we branch as follows.

– v in Mopt: in this case we keep v in the graph.
– v is not in Mopt: in this case we remove v by setting G := G− v.
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Let S be the set of remaining vertices in G[M ], and note that since all the
edges in G[M ] have been removed during the branching, S is an independent
set. Moreover, assuming that our partial solution (branching) is valid (i.e., leads
to an optimal solution), every vertex in S must be an endpoint of an edge in
the optimal solution Mopt. Without loss of generality, and since the parameter k
can only decrease during the branching, we will denote the resulting parameter
by k; this will simplify the notation in the remaining discussion. Assuming that
our branching is valid, we have the following observation.

Observation 3.1. The following are true:

(a) |S| = k, and hence,
(b) for every u ∈ I, deg(u) ≤ k.

Let B = (S, I) be the resulting bipartite graph from G after the branching. The
remaining task amounts to computing a matching with the minimum number of
colors that matches S into I—and hence has size k, under the constraint that
some of the colors have been used.

Analysis of the number of partial solutions enumerated in Stage 1
Since |M | ≤ k, the number of vertices in G[M ] is at most 2k, and the number
of edges in G[M ] is at most

(2k
2

)
= k(2k − 1).

The branching in Stage 1 can be implemented as follows. For each i = 0, . . . , k,
we choose a matching of size i from the edges in G[M ] to be included in Mopt.
For each of the remaining at most (2k− 2i) vertices in G[M ], we branch on it as
indicated above, thus creating at most 22k−2i partial solutions. Therefore, the
number of partial solutions enumerated in Stage 1 is bounded above by:

k∑
i=0

(
k(2k − 1)

i

)
22k−2i = 4k

k∑
i=0

(
k(2k − 1)

i

)
1/4i (1)

≤ 4k

(
k(2k − 1)

k

) k∑
i=0

1/4i (2)

≤ 4k · (e(2k − 1))k ·O(1) (3)
≤ 4k · (2ek)k ·O(1) = O((8ek)k).

Inequality (2) is justified by the fact that the coefficient
(
k(2k−1)

k

)
is the largest

coefficient in the summation. Inequality (3) uses the fact that
(
n
k

)
≤ (en/k)k,

where e is the base of the natural logarithm (for instance, see [6]). It follows that
the number of partial solutions enumerated in Stage 1 is O((8ek)k).

Stage 2 Given the bipartite graph B = (S, I) and the parameter k, we try in
this stage to simplify the instance further by performing more branching. We
say that a matching is monochromatic if all its edges have the same color. If
M ′ is a monochromatic matching, we denote by C(M ′) the color of the edges
in M ′.
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We would like to partition S into groups such that all the vertices in the same
group are matched in Mopt by a monochromatic matching of a distinct color.
For this purpose we try all possible partitions of S. For a fixed partition of S
into � groups S1, . . . , S�, we work under the assumption that the vertices in each
group are matched by a monochromatic matching in Mopt of a distinct color
(with respect to the colors of the other groups). Clearly, there exists at least one
partition of S for which this working hypothesis is true, namely the one induced
by the color classes in Mopt.

Let S1, . . . , S� be a fixed partition of S into � nonempty groups, where 1 ≤
� ≤ k is an integer. It is possible that a group Si uses the color of an edge
that was added to a partial solution in Stage 1. Therefore, for each (possibly
empty) subset Cused of the set of colors of the edges added in Stage 1, we try
all one-to-one mappings from Cused to {S1, . . . , S�}. Fix such a mapping. Then
some groups in {S1, . . . , S�} have been assigned colors, and hence the colors of
the monochromatic matchings sought for these groups are fixed. Clearly, since
we are trying all possible assignments of the used colors to the groups, there will
be an assignment that corresponds to that of Mopt, and we are safe.

Let Si, i ∈ {1, . . . , �}, be a group. If Si has a preassigned color, let ci be this
color and define Mi = {Mi |Mi is a monochromatic matching that matches Si

into I and C(Mi) = ci}. Otherwise, the color of Si is undetermined yet, and in
this case define Mi = {Mi |Mi is a monochromatic matching that matches Si

into I}.
Let h(k) be a function of k to be determined later, and let Si, i ∈ {1, . . . , �},

be a group. We perform more branching to simplify the instance as follows.
If |Mi| ≤ h(k), we branch on every matching in Mi as the matching that

matches Si in Mopt. For each branch corresponding to a matching Mi inMi, we
add the edges in Mi to the potential solution, decrement k by |Si|, remove the
vertices in V (Mi) from the graph, and remove every edge whose color is C(Mi)
from the graph (such an edge can no longer be used). Since we are trying all
possible matchings Mi in Mi, we are safe.

If the total number of colors used by the matchings in Mi is at most h(k),
we branch by trying all possible colors appearing in Mi to determine the color
used in Mopt to match Si (this color has to be one of the colors inMi). For each
such color c, we remove all the edges in Mi whose colors are different from c.
Again, since we are branching on all possible colors in Mi, we are safe.

If all the edges of the matchings inMi have the same color, and if there exists
a vertex v in Si with at most h(k) edges incident on it in the matchings inMi,
we branch on which edge in a matching in Mi matches v in Mopt. For each
branch corresponding to an edge ev, we add ev to the potential solution, remove
the endpoints of ev from the graph, and decrement k by 1. We can now assume
the following.

Assumption 3.2. For each i ∈ {1, . . . , �}:

(i) |Mi| > h(k).
(ii) Either the number of colors appearing in Mi is more than h(k), or it is

exactly 1.
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(iii) If Mi has exactly one color appearing in it, then every vertex in Si has
more than h(k) edges that are incident on it in the matchings in Mi.

In the next stage we show how, given the above assumption, we can easily com-
pute a solution to the resulting instance.

Analysis of the number of partial solutions enumerated in Stage 2
Let cused be the number of colors used in Stage 1. The number of partitions
of S into � groups is at most �|S| ≤ �k. For each partition of S into � groups,
where � ≥ cused, we map the colors used in a one-to-one fashion to a subset of
the � groups. There are at most �!/(� − cused)! ≤ �! such mappings. Therefore,
the total number of partitions of S in which some of the � groups (exactly
cused many groups among them) have been assigned the used colors is at most∑k

�=1 �k�! ≤ kk+1k!.
Now for each Si, i ∈ {1, . . . , �}, we compute at most h(k) + 1 monochromatic

matchings Mi ∈ Mi. To do so, we iterate over each color c, and compute at
most h(k) + 1 monochromatic matchings of color c. For a fixed color c, we
consider the subgraph of B consisting only of the edges incident on Si whose
color is c. Note that each matching in this subgraph that matches Si into I is
a maximum matching. It was shown in [12] how, after computing a maximum
matching in a bipartite graph, every other maximum matching can be computed
in linear time in the number of vertices of the subgraph, per matching. Therefore,
computing at most h(k) + 1 monochromatic matchings of color c that match Si

into I can be done in time O(e(G)
√

n(G) + n(G)h(k)). As a matter of fact,
since whenever we fix a color c for a group Si we only look at the edges of
color c incident on the vertices in Si, and since we totally compute at most
h(k) + 1 matchings incident on the vertices in Si, computing at most h(k) + 1
monochromatic matchings (regardless of the color) incident on the vertices of Si

can be done in time O(e(G)
√

n(G)+n(G)h(k)). Since there are at most k groups,
computing the sets Mi, i = 1, . . . , �, can be done in time O(ke(G)

√
n(G) +

kh(k)n(G)).
To make the graph B satisfy the statements in Assumption 3.2, we do the

following. After computing the setMi for each group Si as indicated above, we
check if |Mi| ≤ h(k). If it is, we branch on every monochromatic matching in
Mi. For each such matching Mi, we remove the endpoints of the edges in Mi,
and hence the group Si from the graph, and decrease the parameter by |Si|.
Since we are branching on every monochromatic matching in Mi, we are safe.
Since there are at most h(k) matchings in Mi, and at most k groups Si, the
total number of enumerations is at most h(k)k.

Now we can assume that the cardinality of each set Mi is at least h(k) + 1.
If there is a set Mi such that the total number of colors appearing in it is

at most h(k), then we branch by trying every color in Mi as the color used to
match Si in Mopt. For each such color c, we remove all the edges incident on Si

whose color is different from c, and we remove every edge whose color is c but
is not incident on a vertex in Si. The total number of enumerations is again at
most h(k)k.
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Finally, if we have a set Mi such that all the matchings in this set have the
same color c, then for every vertex v (if any) in Si whose degree in Mi is at
most h(k), we branch on which edge inMi is used to match v in Mopt. For each
edge in Mi incident on v, we remove the endpoints of the edge from the graph
and decrement k by 1. Since we are trying all possible edges incident on such a
vertex v, we are safe. The total number of enumerations in this case is at most
h(k)k (there are at most k vertices in S).

We can now assume that B satisfies the statements in Assumption 3.2. The
total number of enumerations incurred to make B satisfy the statements in
Assumption 3.2 is at most h(k)k · h(k)k · h(k)k = h(k)3k.

It follows that the number of partial solutions enumerated in Stage 2 is
bounded above by the number of partitions of S, multiplied by the number
of enumerations to make B satisfy the statements in Assumption 3.2. From the
above discussion, it follows that the number of partial solutions enumerated in
Stage 2 is O(kk+1k! + h(k)3k).

Stage 3 Given an instance B = (S, I) and a parameter k such that S is par-
titioned into S1, . . . , S�, where each set Mi associated with Si, for i = 1, . . . , �,
satisfies the statements of Assumption 3.2, the following theorem asserts that,
in time O(k3), we can compute a matching M ′ that matches S into I, and such
that the set of edges in M ′ incident on Si is a monochromatic matching whose
edges are edges from the matchings inMi. The proof is omitted for lack of space.

Theorem 3.1. Let h(k) ≥ k2+k. Assuming that eachMi, i = 1, . . . , �, satisfies
Assumption 3.2, then in time O(k3) we can compute a matching M ′ that matches
S into I, such that the set of edges in M ′ incident on Si, for i = 1, . . . , �, is a
monochromatic matching whose edges are edges from the matchings in Mi.

Analysis of the running time of Stage 3
By Theorem 3.1, computing the matching M ′ takes O(k3) time.

Putting all together. The correctness of the algorithm follows from the fact
that it is enumerating all possible branchings. For each possible branching, either
we reject the instance, or we end up computing a maximum matching that uses
a certain number of colors. The maximum matching we output at the end is
the maximum matching with the minimum number of colors. The running time
of the algorithm is bounded by the number of partial solutions enumerated,
multiplied by the running time spent along each enumeration (path in the search
tree). The number of partial solutions we enumerate is the product of those
enumerated in Stage 1 (O((8ek)k)) and Stage 2 (O(kk+1k! + h(k)3k)), which is
O((8e)k ·k7k) after choosing h(k) = k2+k. Along each path in the search tree we
end up processing the graph G, which takes linear time in its number of vertices
and edges, computing a maximum matching in G, which takes O(e(G)

√
n(G)),

and computing the setsMi in Stage 2, which takes O(ke(G)
√

n(G) + k3n(G)).
Therefore, the running time of the algorithm is O((8e)k · k7k+3e(G)

√
n(G)).

Theorem 3.2. Minimum Label Maximum Matcing is FPT when parame-
terized by the size of the maximum matching in the graph.
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3.2 Minimum Label Edge Dominating Set (MLEDS)

The ideas used by the algorithm are similar in flavor to those used for the
MLMM problem. Therefore, we will omit some details to avoid repetition. We
start with the following easy observation.

Observation 3.3. Let M be a matching in G, and let Q be an edge dominating
set of G. Then |Q| ≥ |M |/2.

Let (G, k) be an instance of MLEDS. Let M be a maximal matching in G,
I = V (G) \ V (M), and note that I is an independent set in G. If |M | > 2k,
then by Observation 3.3, G does not have an edge dominating set of size at most
k, and we can reject the instance (G, k). Therefore, we may assume henceforth
that |M | ≤ 2k.

Similar to what we did for the MLMM problem, we will branch on the edges
and vertices in M to determine which ones contribute to a solution Qopt, which
is an edge dominating set of G of size at most k that uses the minimum number
of colors (if such a solution exists).

For an edge e ∈ G[M ], we branch on e as follows. If e is decided to be in Qopt,
we set G = G − e, decrement k by 1, mark all the edges incident on e in the
graph as dominated, and label both endpoints of e with the label “INused” to
indicate that they are in Qopt, and are endpoints of some edge that is already
decided to be in Qopt. (We will use the label “IN” later to indicate that the
vertex is decided to be in Qopt but has no incident edge that was decided to be
in Qopt yet.) We also indicate that the color of e has been used by storing it in
a set of colors Cused. On the other hand, if e is decided not be in Qopt, we set
G = G− e.

For a vertex v ∈ G[M ] whose status has not been determined yet by the above
branching (i.e., v does not have the label INused), we branch on v as follows. If
v is decided to be an endpoint of an edge in Qopt, we label v as IN , and mark
every edge incident on v as dominated. If v is decided not be an endpoint of an
edge in Qopt, we label it as OUT .

Note that since I is an independent set in G, every edge in G must be domi-
nated by an edge in Qopt with at least one endpoint in G[M ]. In particular, this
is true for every edge in G[M ]. Therefore, after branching on the edges and ver-
tices in G[M ], we need to check that, for every edge e ∈ G[M ] that was decided
not to be in Qopt and subsequently removed from G, at least one of its endpoints
has label IN or INused. If this is not the case, then the partial solution that we
have enumerated is not valid, and we reject it.

Noting that after the above branching all the edges of G[M ] were removed
from G, we end up with a bipartite graph B = (S, I), where S consists of the
vertices in G[M ]. Every vertex in S has one of the following labels: (1) INused

indicating that the vertex is an endpoint of a known edge which was determined
to be in Qopt, (2) IN indicating that the vertex is the endpoint of some edge in
Qopt but this edge has not been determined yet, and (3) OUT indicating that
the vertex is not an endpoint of an edge in Qopt. The edges in B have one of two
possible types: (1) dominated, those are the edges with at least one endpoint
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of label INused or IN , and (2) not dominated, and those are the edges whose
endpoint in S is of label OUT .

Since we are trying all possible branches for the edges and vertices in G[M ],
we are safe. The number of partial solutions enumerated by the branching can
be upper bounded in a similar fashion to that in Stage 1 of the algorithm for
MLMM. The only difference here is that the number of edges in the maximal
matching M is at most 2k, and hence, the number of vertices in G[M ] is at most
4k, and consequently the number of edges in G[M ] is at most 2k(4k− 1). Using
a similar analysis to that in Stage 1 of MLMM, we obtain that the number of
partial solutions enumerated by the above branching is at most (128ek)k.

Now given the instance B = (S, I), and the parameter k (without loss of
generality), we will branch further to simplify the instance. First, observe that
since the number of edges in Qopt is at most k, the number of vertices in S
that are labeled with INused or IN is at most 2k (otherwise, we reject the
enumeration).

Observation 3.4. For every vertex w in I, the number of edges incident on w
whose endpoint in S is labeled with INused or IN is at most 2k.

Note that, for every edge e = {u, v} where u ∈ S has label OUT , e needs to be
dominated by an edge incident on v; therefore, the vertex v must be an endpoint
of some edge in Qopt. Since the number of edges in Qopt is at most k, and B is
bipartite, there can be at most k vertices in I that are neighbors of vertices in
S of label OUT ; let Iin be the set of such vertices. Since (by Observation 3.4)
every vertex in I has at most 2k edges incident on it whose endpoint in S is
labeled INused or IN , we can branch on every such edge incident on a vertex
in Iin to determine if the edge is in Qopt or not. For each such edge, if the
edge is decided to be in Qopt, we include the edge in the solution, label both
its endpoints INused, we remove the edge, decrement k by 1, and update Cused

appropriately; if the edge is decided not be in Qopt, we simply remove it. After
this branching, we check that for every vertex in Iin at least one of the edges
incident on it was decided to be in Qopt; otherwise, we reject the branch. The
number of partial solutions generated by this branching is at most (2k)k.

After branching on the edges incident on the vertices in Iin and removing
them, the vertices in Iin and the vertices in S of label OUT can be removed.
Every remaining vertex in S is either of label INused or IN .

Since a vertex in S of label INused is an endpoint of an edge already in Qopt,
every edge incident on a vertex in INused is dominated. Therefore, if for every
vertex of label IN in S we determine one of its incident edges to be in Qopt, we
obtain an edge dominating set of B. On the other hand, our branching stipulates
that from every vertex in S of label IN we must determine at least one edge
incident on it to be in Qopt. Therefore, our problem reduces to picking for every
vertex of label IN in S exactly one edge incident on it, so that the total number
of colors used is minimized. To do so, we first remove the vertices of label INused

from S, since no edge incident on any of them needs to be considered. At this
point S should have at most k vertices; otherwise, we can reject. Then for every
color c in Cused, and for every vertex v of label IN in S, if there is an edge of
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color c incident on v, we include e in the solution, decrement k, and remove the
vertex from B. (Note that edges whose color is in Cused are gained for free.)

After this step, every vertex in S is of label IN , and there is no edge incident
on any vertex in S whose color appears in Cused. To compute a set of edges of
minimum colors, such that for every vertex in S exactly one edge in this set is
incident on it, we try each partition of S into � groups, � ∈ {1, . . . , k}, such that
all vertices in the same group are incident on edges of the same color in Qopt

(as we did in Stage 2 of the MLMM problem). For each such partition and each
group in this partition, we find a color c such that every vertex in this group is
incident on an edge of color c. If such a choice is not possible for some group,
then we reject the partition.

At the end, we end up with an edge dominating set for G. We output the edge
dominating set of G of size at most k that uses the minimum number of colors,
over all partial solutions generated from all branches.

Since S has at most k vertices at this stage, the total number of partitions of
S is at most kk+1.

It follows that the total number of partial solutions enumerated by the al-
gorithm is O((128ek)k · (2k)k · kk+1) = O((256e)kk3k+1). For each such partial
solution we need to process the graph G during the branching, which takes time
O(n(G) + e(G)). Therefore, the running time of the algorithm is
O((256e)kk3k+1(n(G) + e(G))).

Theorem 3.3. Minimum Label Edge Dominating Set is FPT when pa-
rameterized by the size of the edge dominating set.

4 Concluding Remarks

In this paper, we considered some minimum label graph problems. We showed
that, when parameterized by the number of used labels, most of these problems
are intractable, even on graphs of bounded pathwidth.

On the other hand, we showed that most of these problems become parame-
terized tractable when parameterized by the solution size.

We note that, recently, there has been a lot of interest in studying structured
graph problems, such as problems on colored graphs, due to their applications in
various fields such as networking and computational biology. (The convex recol-
oring problem is such an example in computational biology.) While these prob-
lems are practically very important, they are often computationally hard due to
the structural requirement on the solution sought. Therefore, it is both natural
and interesting to study whether these problems remain intractable with respect
to different parameters, such as the number of colors, the pathwidth/treewidth
of the graph, the solution size, or even with respect to more restrictive param-
eters, such as the vertex cover or the max leaf number. This paper follows this
line of research.

Finally, it is interesting to study the parameterized complexity of other min-
imum label graph problems that have practical applications. A good candidate
would be the Minimum Label Feedback Arc Set problem on directed graphs.
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Abstract. We consider the NP-hard problem of finding a spanning
tree with a maximum number of internal vertices. This problem is a
generalization of the famous Hamiltonian Path problem. Our dynamic-
programming algorithms for general and degree-bounded graphs have
running times of the form O∗(cn) (c ≤ 3). The main result, however, is
a branching algorithm for graphs with maximum degree three. It only
needs polynomial space and has a running time of O(1.8669n) when
analyzed with respect to the number of vertices. We also show that its
running time is 2.1364knO(1) when the goal is to find a spanning tree
with at least k internal vertices. Both running time bounds are obtained
via a Measure & Conquer analysis, the latter one being a novel use of
this kind of analysis for parameterized algorithms.

1 Introduction

Motivation. In this paper we investigate the following problem:

Max Internal Spanning Tree (MIST)

Given: A graph G = (V, E) with n vertices and m edges.
Task: Find a spanning tree of G with a maximum number of internal
vertices.

MIST is a generalization of the well-studied Hamiltonian Path problem: find
a path in a graph such that every vertex is visited exactly once. Clearly, such a
path, if it exists, is also a spanning tree, namely one with a maximum number
of internal vertices. Whereas the running time barrier of 2n has not been bro-
ken for general graphs, there are faster algorithms for cubic graphs (using only
polynomial space). It is natural to ask if for the generalization, MIST, this can
also be obtained.

A second issue is to find an algorithm for MIST with a running time of
the form O∗(cn). 1 The näıve approach gives only an upper bound of O∗(2m). A
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possible application could be the following scenario. Consider cities which should
be connected with water pipes. The possible connections between them can be
represented by a graph G. It suffices to compute a spanning tree T for G. In
T we may have high degree vertices that have to be implemented by branching
pipes which cause turbulences and therefore pressure may drop. To minimize the
number of branching pipes one can equivalently compute a spanning tree with
the smallest number of leaves, leading to MIST. Vertices representing branching
pipes should not be of arbitrarily high degree, motivating us to investigate MIST

on degree-restricted graphs.

Previous Work. It is well-known that the more restricted problem, Hamilto-

nian Path, can be solved within O(n22n) steps and exponential space. This re-
sult has been independently obtained by Bellman [1], and Held and Karp [6]. The
Traveling Salesman problem (TSP) is very closely related to Hamiltonian

Path. Basically, the same algorithm solves this problem, but there has not been
any improvement on the running time since 1962. The space requirements have,
however, been improved and now there are O∗(2n) algorithms needing only poly-
nomial space. In 1977, Kohn et al. [9] gave an algorithm based on generating func-
tions with a running time ofO(2nn3) and space requirements ofO(n2) and in 1982
Karp [8] came up with an algorithm which improved storage requirements toO(n)
and preserved this run time by an inclusion-exclusion approach.

Eppstein [4] studied TSP on cubic graphs. He could achieve a running time of
O(1.260n) using polynomial space. Iwama and Nakashima [7] could improve this
toO(1.251n). Björklund et al. [2] considered TSP with respect to degree-bounded
graphs. Their algorithm is a variant of the classical 2n-algorithm and the space
requirements are therefore exponential. Nevertheless, they showed that for a
graph with maximum degree d there is a O∗((2− εd)n)-algorithm. In particular
for d = 4 there is a O(1.8557n)- and for d = 5 a O(1.9320n)-algorithm.

MIST was also studied with respect to parameterized complexity. The (stan-
dard) parameterized version of the problem is parameterized by k, and asks
whether G has a spanning tree with at least k internal vertices. Prieto and
Sloper [11] proved a O(k3)-vertex kernel for the problem showing FPT -mem-
bership. In [12] the kernel size has been improved to O(k2) and in [5] to 3k.
Parameterized algorithms for MIST have been studied in [3,5,12]. Prieto and
Sloper [12] gave the first FPT algorithm, with running time 24k log k ·nO(1). This
result was improved by Cohen et al. [3] who solve a more general directed version
of the problem in time 49.4k · nO(1). The current fastest algorithm has running
time 8k · nO(1) [5].

Salamon [14] studied the problem considering approximation. He could achieve
a 7

4 -approximation. A 2(Δ− 2)-approximation for the node-weighted version is a
by-product. Cubic and claw-free graphs were considered by Salamon and Wiener [13]
introducing algorithms with approximation ratios 6

5 and 3
2 , respectively.

Our Results. This paper gives two algorithms:

(a) A dynamic-programming algorithm solving MIST in time O∗(3n). We ex-
tend this algorithm and show that for any degree-bounded graph a running
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time of O∗((3−ε)n) with ε > 0 can be achieved. To our knowledge this is the
first algorithm for MIST with a running time bound of the form O∗(cn).2

(b) A polynomial-space branching algorithm solving the maximum degree 3 case
in time O(1.8669n). We also analyze the same algorithm from a parame-
terized point of view, achieving a running time of 2.1364knO(1) to find a
spanning tree with at least k internal vertices (if possible). The latter anal-
ysis is novel in a sense that we use a potential function analysis—Measure
& Conquer—in a way that, to our knowledge, is much less restrictive than
any previous analysis for parameterized algorithms that were based on the
potential function method.

Notions and Definitions. We consider only simple undirected graphs G =
(V, E). The neighborhood of a vertex v ∈ V in G is NG(v) := {u | {u, v} ∈ E}
and its degree is dG(v) := |NG(v)|. The closed neighborhood of v is NG[v] :=
NG(v) ∪ {v} and for a set V ′ ⊆ V we let NG(V ′) :=

(⋃
u∈V ′ NG(u)

)
\ V ′. We

omit the subscripts of NG(·), dG(·), and NG[·] when the graph is clear from the
context. A subcubic graph has maximum degree at most three. For a (partial)
spanning tree T ⊆ E let I(T ) be the set of its internal (non-leaf) vertices and
L(T ) the set of its leaves. An i-vertex u is a vertex with dT (u) = i with respect to
some spanning tree T , where dH(u) := {{u, v} | {u, v} ∈ H} for any H ⊆ E. The
tree-degree of some u ∈ V (T ) is dT (u). We also speak of the T -degree dT (v) when
we refer to a specific spanning tree. A Hamiltonian path is a sequence of pairwise
distinct vertices v1, . . . , vn from V such that {vi, vi+1} ∈ E for 1 ≤ i ≤ n− 1.

The Problem on General Graphs. By means of Dynamic Programming
and the help of an upper bound on the number of connected vertex-subsets of
degree bounded graph (shown by [2]) we show the next statement.

Lemma 1. MIST can be solved in time O∗(3n) and for graphs with maximum
degree Δ, MIST can be solved in time O∗(3(1−εΔ)n) with εΔ > 0.

2 Subcubic Maximum Internal Spanning Tree

2.1 Observations

Let tTi denote the number of vertices u such that dT (u) = i for a spanning tree
T . Then the following proposition can be proved by induction on nT := |V (T )|.

Proposition 1. In any spanning tree T , 2 +
∑

i≥3(i− 2) · tTi = tT1 .

Due to Proposition 1, MIST on subcubic graphs boils down to finding a spanning
tree T such that tT2 is maximum. Every internal vertex of higher degree would
also introduce additional leaves.
2 Before the camera-ready version of this paper was prepared, Nederlof [10] came up

with a polynomial-space O∗(2n) algorithm for MIST on general graphs, answering
a question in a preliminary version of this paper.
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Lemma 2. [11] An optimal solution To to Max Internal Spanning Tree is
a Hamiltonian path or the leaves of To are independent.

The proof of Lemma 2 shows that if To is not a Hamiltonian path and there are
two adjacent leaves, then the number of internal vertices can be increased. In
the rest of the paper we assume that To is not a Hamiltonian path due to the
next lemma which uses the O(1.251n) algorithm for Hamiltonian Cycle on
subcubic graphs [7] as a subroutine.

Lemma 3. Hamiltonian Path can be solved in time O(1.251n) on subcubic
graphs.

Lemma 4. Let T be a spanning tree and u, v ∈ V (T ) two adjacent vertices with
dT (u) = dT (v) = 3 such that {u, v} is not a bridge. Then there is a spanning
tree T ′ ⊃ (T \ {{u, v}}) with |I(T ′)| ≥ |I(T )| and dT ′(u) = dT ′(v) = 2.

Proof. By removing {u, v}, T is separated into two parts T1 and T2. The vertices
u and v become 2-vertices. As {u, v} is not a bridge, there is another edge
e ∈ E \E(T ) connecting T1 and T2. By adding e we lose at most two 2-vertices.
Then let T ′ := (T \ {{u, v}}) ∪ {e} and it follows that |I(T ′)| ≥ |I(T )|. ��

2.2 Reduction Rules

Let E′ ⊆ E. Then, ∂E′ := {{u, v} ∈ E\E′ | u ∈ V (E′)} are the edges outside E′

that have a common end point with an edge in E′ and ∂V E′ := V (∂E′)∩V (E′)
are the vertices that have at least one incident edge in E′ and another incident
edge not in E′. During the algorithm we will maintain an acyclic subset of edges
F which will be part of the final solution. The following invariant will always
be true: G[F ] consists of a tree T and a set P of pending tree edges (pt-edges).
Here a pt-edge {u, v} ∈ F is an edge with one end point u of degree 1 and the
other end point v �∈ V (T ). G[T ∪ P ] will always consist of 1 + |P | components.
Next we present several reduction rules. The order in which they are applied is
crucial: Before a rule is applied the preceding ones were carried out exhaustively.

Cycle: Delete any edge e ∈ E such that E(T ) ∪ {e} has a cycle.
Bridge: If there is a bridge e ∈ ∂E(T ), then add e to F .
Deg1: Let u ∈ V \ V (F ) with d(u) = 1. Then add its incident edge to F .
Pending: If a a vertex v is incident to dG(v)− 1 pt-edges, then remove them.
ConsDeg2: If there are edges {v, w}, {w, z} ∈ E \ E(T ) such that dG(w) =

dG(z) = 2, then delete {v, w}, {w, z} from G and add the edge {v, z} to G.
Deg2: If there is an edge {u, v} ∈ ∂E(T ) such that u ∈ V (T ) and dG(u) = 2,

then add {u, v} to F .
Attach: If there are edges {u, v}, {v, z} ∈ ∂E(T ) such that u, z ∈ V (T ),

dT (u) = 2, 1 ≤ dT (z) ≤ 2, then delete {u, v}. See Fig. 1(a)
Attach2: If there is a vertex u ∈ ∂V E(T ) with dT (u) = 2 and {u, v} ∈ E\E(T )

such that v is incident to a pt-edge, then delete {u, v}.
Special: If there are two edges {u, v}, {v, w} ∈ E\F with dT (u) ≥ 1, dG(v) = 2,

and w is incident to a pt-edge, then add {u, v} to F . See Fig. 1(b).
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Fig. 1. Light edges may be not present. Double edges (dotted or solid, resp.) refer to
edges which are either T -edges or not, resp. Edges attached to oblongs are pt-edges.

We mention that ConsDeg2 can create double edges. In this case simply delete
one of them which is not in F (at most one can be part of F ).

Lemma 5. The reduction rules stated above are sound.

Proof. Let To ⊃ F be a spanning tree of G with a maximum number of internal
vertices. The correctness of the first five reduction rules is easily verified.

Deg2. Since the preceding reduction rules do not apply, we have dG(v) = 3 and
there is one incident edge, say {v, z}, z �= u, that is not pending. Assume
u is a leaf in To. Define another spanning tree T ′

o ⊃ F by setting T ′
o =

(To ∪ {{u, v}}) \ {v, z}. Since |I(To)| ≤ |I(T ′
o)|, T ′

o is also optimal.
Attach. If {u, v} ∈ E(To) then {v, z} �∈ E(To) due to the acyclicity of To and as

T is connected. Then by exchanging {u, v} and {v, z} we obtain a solution
T ′

o with at least as many 2-vertices.
Attach2. Suppose {u, v} ∈ E(To). Let {v, p} be the pt-edge and {v, z} the

third edge incident to v (that must exist and is not pending, since Pending
did not apply). Since Bridge did not apply, {u, v} is not a bridge. Firstly,
suppose {v, z} ∈ E(To). Due to Lemma 4, there is also an optimal solution
T ′

o ⊃ F with {u, v} /∈ E(T ′
o). Secondly, assume {v, z} /∈ E(To). Then T ′ =

(To \ {{u, v}}) ∪ {{v, z}} is also optimal as u has become a 2-vertex.
Special. Suppose {u, v} �∈ E(To). Then {v, w}, {w, z} ∈ E(To) where {w, z} is

the third edge incident to w. Let T ′
o := (To \ {{v, w}}) ∪ {{u, v}}. In T ′

o, w
is a 2-vertex and hence T ′ is also optimal. ��

2.3 The Algorithm

The algorithm we describe here is recursive. It constructs a set F of edges which
are selected to be in every spanning tree considered in the current recursive step.
The algorithm chooses edges and considers all relevant choices for adding them
to F or removing them from G. It selects these edges based on priorities chosen
to optimize the running time analysis. Moreover, the set F of edges will always
be the union of a tree T and a set of edges P that are not incident to the tree
and have one end point of degree 1 in G (pt-edges). We do not explicitly write in
the algorithm that edges move from P to T whenever an edge is added to F that
is incident to both an edge of T and an edge of P . To maintain the connectivity
of T , the algorithm explores edges in the set ∂E(T ) to grow T .

If |V | > 2 every spanning tree T must have a vertex v with dT (v) ≥ 2.
Thus initially the algorithm creates an instance for every vertex v and every
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possibility that dT (v) ≥ 2. Due to the degree constraint there are no more than
4n instances. After this initial phase, the algorithm proceeds as follows.

1. Carry out each reduction rule exhaustively in the given order.
2. If ∂E(T ) = ∅ and V �= V (T ), then G is not connected and does not admit a

spanning tree. Ignore this branch.
3. If ∂E(T ) = ∅ and V = V (T ), then return T .
4. Select {a, b} ∈ ∂E(T ) with a ∈ V (T ) according to the following priorities (if

such an edge exists):
a) there is an edge {b, c} ∈ ∂E(T ),
b) dG(b) = 2,
c) b is incident to a pt-edge, or
d) dT (a) = 1.
Recursively solve the two instances where {a, b} is added to F or removed
from G respectively, and return the spanning tree with most internal vertices.

5. Otherwise, select {a, b} ∈ ∂E(T ) with a ∈ V (T ). Let c, x be the other two
neighbors of b. Recursively solve three instances where
(i) {a, b} is removed from G,
(ii) {a, b} and {b, c} are added to F and {b, x} is removed from G, and
(iii) {a, b} and {b, x} are added to F and {b, c} is removed from G.
Return the spanning tree with most internal vertices.

By a Measure & Conquer analysis taking into account the degrees of the vertices,
their number of incident edges that are in F , and to some extent the degrees of
their neighbors, we obtain the following result.

Theorem 1. MIST can be solved in time O(1.8669n) on subcubic graphs.

Let us provide the measure we use in the analysis. Let D2 := {v ∈ V | dG(v) =
2, dF (v) = 0}, D�

3 := {v ∈ V | dG(v) = 3, dF (v) = �} and D2∗
3 := {v ∈ D2

3 |
NG(v) \NF (v) = {u} and dG(u) = 2}. Then the measure we use is

μ(G) = ω2 · |D2|+ ω1
3 · |D1

3|+ ω2
3 · |D2

3 \D2∗
3 |+ |D0

3 |+ ω2∗
3 · |D2∗

3 |

with the weights ω2 = 0.3193, ω1
3 = 0.6234, ω2

3 = 0.3094 and ω2∗
3 = 0.4144.The

proof of the theorem uses the following result.

Lemma 6. None of the reduction rules increase μ for the given weights.

Let Δ0
3 := Δ0∗

3 := 1 − ω1
3 , Δ1

3 := ω1
3 − ω2

3 , Δ1∗
3 := ω1

3 − ω2∗
3 , Δ2

3 := ω2
3 , Δ2∗

3 :=
ω2∗

3 and Δ2 = 1 − ω2. We define Δ̃i
3 := min{Δi

3, Δ
i∗
3 } for 1 ≤ i ≤ 2, Δ�

m =
min0≤j≤�{Δj

3}, and Δ̃�
m = min0≤j≤�{Δ̃j

3}.

Proof. (of Theorem 1) As the algorithm deletes edges or moves edges from E \F
to F , cases 1–3 do not contribute to the exponential function in the running
time of the algorithm. It remains to analyze cases 4 and 5, which we do now.
Note that after applying the reduction rules exhaustively, we have that for all
v ∈ ∂V E(T ), dG(v) = 3 (Deg2) and for all u ∈ V , dP (u) ≤ 1 (Pending).
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4.(a) Obviously, {a, b}, {b, c} ∈ E \ E(T ), and there is a vertex d such that
{c, d} ∈ E(T ); see Figure 2(a). We have dT (a) = dT (c) = 1 due to the
reduction rule Attach. We consider three cases.

dG(b) = 2. When {a, b} is added to F , Cycle deletes {b, c}. We get an
amount of ω2 and ω1

3 as b drops out of D2 and c out of D1
3 (Deg2).

Also a will be removed from D1
3 and added to D2

3 which amounts to a
reduction of at least Δ̃1

3. When {a, b} is deleted, {b, c} is added to E(T )
(Bridge). By a symmetric argument we get a reduction of ω2 +ω1

3 + Δ̃1
3

as well. In total this yields a (ω2 + ω1
3 + Δ̃1

3, ω2 + ω1
3 + Δ̃1

3)-branch.
dG(b) = 3 and there is one pt-edge incident to b. Adding {a, b} to F de-

creases the measure by Δ̃1
3 (from a) and 2ω1

3 (deleting {b, c}, then Deg2
on c). By Deleting {a, b} we decrease μ by 2ω1

3 and by Δ̃1
3 (from c). This

amounts to a (2ω1
3 + Δ̃1

3, 2ω1
3 + Δ̃1

3)-branch.
dG(b) = 3 and no pt-edge is incident to b. Let {b, z} be the third edge

incident to b. In the first branch the measure drops by at least ω1
3 +

Δ̃1
3 from c and a (Deg2), 1 from b (Deg2). In the second branch we

get ω1
3 + Δ2. Observe that we also get an amount of at least Δ̃1

m from
q ∈ NT (a) \ {b} if dG(q) = 3. If dG(q) = 2 we get ω2. It results a
(ω1

3 + Δ̃1
3 + 1, ω1

3 + Δ2 + min{ω2, Δ̃
1
m})-branch.

Note that from this point on, for all u, v ∈ V (T ) there is no z ∈ V \V (T )
with {u, z}, {z, v} ∈ E.

4.(b) As the previous case does not apply, the other neighbor c of b has dT (c) =
0, and dG(c) ≥ 2 (Pending), see Figure 2(b). Additionally, observe that
dG(c) = 3 due to ConsDeg2 and that dP (c) = 0 due to Special. We
consider two subcases.

dT (a) = 1. When we add {a, b} to F , then {b, c} is also added due to Deg2.
The reduction is at least Δ̃1

3 from a, ω2 from b and Δ0
3 from c. When

{a, b} is deleted, {b, c} becomes a pt-edge. There is {a, z} ∈ E \ E(T )
with z �= b, which is subject to a Deg2 reduction rule. We get at least
ω1

3 from a, ω2 from b, Δ0
3 from c and min{ω2, Δ̃

1
m} from z. This is a

(Δ̃1
3 + Δ0

3 + ω2, ω
1
3 + Δ0

3 + ω2 + min{ω2, Δ̃
1
m})-branch.

dT (a) = 2. Similarly, we obtain a (Δ2∗
3 + ω2 + Δ0

3, Δ
2∗
3 + ω2 + Δ0

3)-branch.
4.(c) In this case, dG(b) = 3 and there is one pt-edge attached to b, see Fig-

ure 2(c). Note that dT (a) = 2 can be ruled out due to Attach2. Thus,
dT (a) = 1. Let z �= b be such that {a, z} ∈ E \E(T ). Due to the priorities,
dG(z) = 3. We distinguish between the cases where c, the other neighbor
of b, is incident to a pt-edge or not.

dP (c) = 0. First suppose dG(c) = 3. Adding {a, b} to F allows a reduction
of 2Δ1

3 (due to case 4.(b) we can exclude Δ1∗
3 ). Deleting {a, b} implies

that we get a reduction from a and b of 2ω1
3 (Deg2 and Pending). As

{a, z} is added to F we reduce μ(G) by at least Δ̃1
3 as the state of z

changes. Now due to Pending and Deg1 we include {b, c} and get Δ0
3

from c. We have at least a (2Δ1
3, 2ω1

3 + Δ̃1
3 + Δ0

3)-branch.
If dG(c) = 2 we consider the two cases for z also. These are dP (z) =
1 and dP (z) = 0. The first entails (ω1

3 + Δ1∗
3 , 2ω1

3 + Δ̃1
3 + ω2 + Δ̃2

m).
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Note that when we add {a, b} we trigger Attach2. The second is a
(Δ1

3 + Δ1∗
3 , 2ω1

3 + Δ0
3 + ω2 + Δ̃2

m)-branch.
dP (c) = 1. Let d �= b be the other neighbor of c that does not have degree

1. When {a, b} is added to F , {b, c} is deleted by Attach2 and {c, d}
becomes a pt-edge (Pending and Deg1). The changes on a incur a
measure decrease of Δ1∗

3 and those on b, c a measure decrease of 2ω1
3 .

When {a, b} is deleted, {a, z} is added to F (Deg2) and {c, d} becomes
a pt-edge by two applications of the Pending and Deg1 rules. Thus,
the decrease of the measure is at least 3ω1

3 in this branch. In total, we
have a (Δ1∗

3 + 2ω1
3, 3ω1

3)-branch here.
4.(d) Now, dG(b) = 3, b is not incident to a pt-edge, and dT (a) = 1. See

Figure 2(c). There is also some {a, z} ∈ E \ E(T ) such that z �= b. Note
that dT (z) = 0, dG(z) = 3 and dP (z) = 0. Otherwise either Cycle or
cases 4.(b) or 4.(c) would have been triggered. From the addition of {a, b}
to F we get Δ1

3+Δ0
3 and from its deletion ω1

3 (from a via Deg2), Δ2 (from
b) and at least Δ0

3 from z and thus, a (Δ1
3 + Δ0

3, ω
1
3 + Δ2 + Δ0

3)-branch.
5. See Figure 2(d). The algorithm branches in the following way: 1) Delete
{a, b}, 2) add {a, b}, {b, c}, and delete {b, x}, 3) add {a, b}, {b, x} and
delete {b, c}. Due to Deg2, we can disregard the case when b is a leaf.
Due to Lemma 4 we also disregard the case when b is a 3-vertex. Thus by
branching in this manner we find at least one optimal solution.
The reduction in the first branch is at least ω2

3 +Δ2. We get an additional
amount of ω2 if d(x) = 2 or d(c) = 2 from ConsDeg2. In the second
we have to consider also the vertices c and x. There are exactly three
situations for h ∈ {c, x} α) dG(h) = 2, β) dG(h) = 3, dP (h) = 0 and γ)
dG(h) = 3, dP (h) = 1. We will only analyze branch 2) as 3) is symmetric.
We first get a reduction of ω2

3 + 1 from a and b. We reduce μ due to
deleting {b, x} by: α) ω2 + Δ̃2

m, β) Δ2, γ) ω1
3 + Δ̃2

m. Next we examine the
amount by which μ will be decreased by adding {b, c} to F . We distinguish
between the cases α, β and γ: α) ω2 + Δ̃2

m, β) Δ0
3, γ) Δ̃1

3.
For h ∈ {c, x} and W ∈ {α, β, γ} let 1h

W be the indicator function which
is set to one if we have situation W at vertex h. Otherwise it is zero. Now
the branching tuple can be stated the following way :
(ω2

3 + Δ2 + (1x
α + 1c

α) · ω2,
ω2

3 + 1 + 1x
α · (ω2 + Δ̃2

m) + 1x
β ·Δ2 + 1x

γ · (ω1
3 + Δ̃2

m) + 1c
α · (ω2 + Δ̃2

m) + 1c
β ·

Δ0
3 + 1c

γ · Δ̃1
3),

ω2
3 + 1 + 1c

α · (ω2 + Δ̃2
m) + 1c

β ·Δ2 + 1c
γ · (ω1

3 + Δ̃2
m) + 1x

α · (ω2 + Δ̃2
m) + 1x

β ·
Δ0

3 + 1x
γ · Δ̃1

3)
The amount of (1x

α + 1c
α) · ω2 comes from possible applications of Cons-

Deg2.

Observe that every instance created by branching is smaller than the original
instance in terms of μ. Together with Lemma 6 we see that every step of the
algorithm only decreases μ. Now if we evaluate the upper bound for every given
branching tuple for the given weights we can conclude that MIST can be solved
in time O∗(1.8669n) on subcubic graphs. ��
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Fig. 2. Light edges may be not present. Double edges (dotted or solid, resp.) refer to
edges which are either T -edges or not, resp. Edges attached to oblongs are pt-edges.

Let us now turn to a parameterized analysis of the algorithm. For general
graphs, the smallest known kernel has size 3k. This can be easily improved to
2k for subcubic graphs.

Lemma 7. MIST on subcubic graphs has a 2k-kernel.

Applying the algorithm of Theorem 1 on this kernel for subcubic graphs would
lead to a running time of 3.4854knO(1). However, we can achieve a faster pa-
rameterized running time by applying a Measure & Conquer analysis which is
customized to the parameter k. We would like to put forward that our use of the
technique of Measure & Conquer for a parameterized algorithm analysis goes be-
yond previous work as our measure is not restricted to differ from the parameter
k by just a constant. We first demonstrate our idea with a simple analysis.

Theorem 2. Deciding whether a subcubic graph has a spanning tree with at
least k internal vertices can be done in time 2.7321knO(1).

Proof. Consider the algorithm described earlier, with the only modification that
the parameter k is adjusted whenever necessary (for example, when two pt-
edges incident to the same vertex are removed), and that the algorithm stops
and answers Yes whenever T has at least k internal vertices. Note that the as-
sumption that G has no Hamiltonian path can still be made due to the 2k-
kernel of Lemma 7: the running time of the Hamiltonian path algorithm is
1.2512knO(1) = 1.5651knO(1). The running time analysis of our algorithm re-
lies on the following measure: κ := κ(G, F, k) := k − ω · |X | − |Y |
where X := {v ∈ V | dG(v) = 3, dT (v) = 2}, Y := {v ∈ V | dG(v) = dT (v) ≥ 2}
and ω = 0.45346. Let U := V \ (X ∪ Y ). Note that a vertex which has already
been decided to be internal, but that still has an incident edge in E \ T , con-
tributes a weight of 1 − ω to the measure. Or equivalently, such a vertex has
been only counted by ω. None of the reduction and branching rules increases κ
and we have that 0 ≤ κ ≤ k at any time of the execution of the algorithm. By a
simple case analysis and evaluating the branching factors, the proof follows. ��

This analysis can be improved by also measuring vertices of degree 2 and vertices
incident to pt-edges differently.

Theorem 3. Deciding whether a subcubic graph has a spanning tree with at
least k internal vertices can be done in time 2.1364knO(1).
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Table 1. Analysis of the branching for the running time of Theorem 3

add delete branching tuple
Case 4.(a), dG(b) = 2

a b c

a : U → X
symmetric (1 + ω1 − ω2, 1 + ω1 − ω2)b : Z → U

c : U → Y

Case 4.(a), dG(b) = 3, b is incident to a pt-edge

a b c

a : U → X
symmetric (2 + ω1 − ω3, 2 + ω1 − ω3)b : W → Y

c : U → Y

Case 4.(a), dG(b) = 3, b is not incident to a pt-edge

a b c

a : U → X a : U → Y
(2 + ω1, 1 + ω2)b : U → Y b : U → Z

c : U → Y

Case 4.(b), dT (a) = 1

a b c

a : U → X a : U → Y
(1 + ω1 − ω2, 1 + ω3 − ω2)b : Z → Y b : Z → U

c : U → W

Case 4.(b), dT (a) = 2

a b c

a : X → Y a : X → Y
(2 − ω1 − ω2, 1 − ω1 − ω2 + ω3)b : Z → Y b : Z → U

c : U → W

Case 4.(c)

a b c

a : U → X a : U → Y
(2ω1 − ω3, 2)b : W → X b : W → Y

c : U → W

Case 4.(d)

a b c

a : U → X a : U → Y
(ω1, 1 + ω2)b : U → Z

Case 5, dG(x) = dG(c) = 3 and there is q ∈ (X ∩ (N(x) ∪ N(c)), w.l.o.g. q ∈ N(c)

a b c

x a : X → Y a : X → Y
(2 − ω1, 3 − 2ω1, 1 − ω1 + ω2)b : U → Y b : U → Z

(2nd branch)
q : X → Y

Case 5, dG(x) = dG(c) = 3

a b c

x a : X → Y a : X → Y
(1 − ω1 + ω2, 2 − ω1 + ω2, 2 − ω1 + ω2)b : U → Y b : U → Z

c/x : U → Z
There are 3 branches; 2 of them (add) are symmetric.

Case 5, dG(x) = 2 or dG(c) = 2 and

a b c

x a : X → Y a : X → Y
(2 − ω1, 2 − ω1, 2 − ω1)b : U → Y b : U → Z

When {a, b} is deleted, ConsDeg2 additionally decreases k by 1
and removes a vertex of Z.
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We consider a more detailed measure:
κ := κ(G, F, k) := k − ω1 · |X | − |Y | − ω2|Z| − ω3|W |, where

– X := {v ∈ V | dG(v) = 3, dT (v) = 2} is the set of vertices of degree 3 that
are incident to exactly 2 edges of T ,

– Y := {v ∈ V | dG(v) = dT (v) ≥ 2} is the set of vertices of degree at least 2
that are incident to only edges of T ,

– W := {v ∈ V \ (X ∪ Y ) | dG(v) ≥ 2, ∃u ∈ N(v) st. dG(u) = dF (u) = 1} is
the set of vertices of degree at least 2 that have an incident pt-edge, and

– Z := {v ∈ V \W | dG(v) = 2, N [v] ∩ (X ∪ Y ) = ∅} is the set of degree 2
vertices that do not have a vertex of X ∪ Y in their closed neighborhood,
and are not incident to a pt-edge.

We immediately set ω1 := 0.5485, ω2 := 0.4189 and ω3 := 0.7712. Let U :=
V \ (X ∪ Y ∪ Z ∪W ). We first have to show that the algorithm can be stopped
whenever the measure drops to 0 or less.

Lemma 8. Let G = (V, E) be a connected graph, k be an integer and F ⊆ E be
a set of edges that can be partitioned into a tree T and a set of pending edges P .
If none of the reduction rules applies to this instance and κ(G, F, k) ≤ 0, then
G has a spanning tree T ∗ ⊇ F with at least k internal nodes.

We also show that reducing an instance does not increase its measure.

Lemma 9. Let (G′, F ′, k′) be an instance resulting from the application of a
reduction rule to an instance (G, F, k). Then, κ(G′, F ′, k′) ≤ κ(G, F, k).

Proof. (of Theorem 3) Table 1 outlines how vertices a, b, and their neighbors
move between U , X , Y , Z, and W in the branches where an edge is added to
F or deleted from G in the different cases of the algorithm. For each case, the
worst branching tuple is given.

The tight branching numbers are found for cases 4.(b) with dT (a) = 2, 4.(c),
4.(d), and 5. with all of b’s neighbors having degree 3. The respective branching
numbers are (2 − ω1 − ω2, 1 − ω1 − ω2 + ω3), (2ω1 − ω3, 2), (ω1, 1 + ω2), and
(1− ω1 + ω2, 2− ω1 + ω2, 2− ω1 + ω2). They all equal 2.1364. ��

3 Conclusion and Future Research

We have shown that Max Internal Spanning Tree can be solved in time
O∗(3n). In a preliminary version of this paper we asked if MIST can be solved
in time O∗(2n) and also expressed our interest in polynomial space algorithms
for MIST. These questions have been settled very recently by Nederlof [10] by
providing a O∗(2n) polynomial-space algorithm for MIST which is based on the
principle of Inclusion-Exclusion and on a new concept called “branching walks”.

This paper focuses on algorithms for MIST that work for the degree-bounded
case, in particular, for subcubic graphs. The main novelty is a Measure & Con-
quer approach to analyze our algorithm from a parameterized perspective (pa-
rameterizing by the solution size). We are not aware of many examples where
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this was successfully done without cashing the obtained gain at an early stage,
see [15]. More examples in this direction would be interesting to see.

A related problem is the generalization to directed graphs: Find a directed
tree, which consist of directed paths form the root to the leaves with as few
leaves as possible. Which results can be carried over to the directed case?

Acknowledgment. We would like to thank Alexey A. Stepanov for useful dis-
cussions in the initial phase of this paper.
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Abstract. Let G be an unweighted graph on n vertices. We show that an embed-
ding of the shortest path metric of G into the line with minimum distortion can
be found in time 5n+o(n). This is the first algorithm breaking the trivial n!-barrier.

1 Introduction

Given an undirected graph G with the vertex set V(G) and the edge set E(G), the graph
metric of G is M(G) = (V(G),DG), where the distance function DG is the shortest path
distance between u and v for every pair of vertices u, v ∈ V(G). Given a graph metric M
and another metric space M′ with distance functions D and D′, a mapping f : M → M′
is called an embedding of M into M′. The mapping f has contraction c f and expansion
e f if for every pair of points p, q in M,

D(p, q) ≤ D′( f (p), f (q)) · c f ,

and
D(p, q) · e f ≥ D′( f (p), f (q))

respectively. We say that f is non-contracting if c f is at most 1. A non-contracting
mapping f has distortion d if e f is at most d.

In this paper we provide an exact algorithm for the following fundamental problem:
For a given graph G, find a minimum distortion embedding of the graph metric of G
into the line. In this case the metric space M′ is R1 and D′ is the Euclidean distance. A
simple algorithm is to try all possible permutations of the vertex set. Each permutation
corresponds to an embedding where the distance between two consecutive vertices on
the line is equal to the shortest path distance between them. The running time this
algorithm is O(n!n) and to the best of our knowledge, no faster exact algorithm for any
kind of embedding problem was known prior to our work.

The problem of finding an embedding with low distortion between metric spaces is a
fundamental mathematical problem [8,10] that has been studied intensively. Embedding
a graph metric into a simple low-dimensional metric space like the real line has proved
to be a useful algorithmic tool in various fields. A long list of applications given in [7]
includes approximation algorithms for graph and network problems, such as sparsest
cut, minimum bandwidth, low-diameter decomposition and optimal group Steiner trees,
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and on-line algorithms for metrical task systems and file migration problems. The al-
gorithmic issues of metric embeddings has recently begun to develop [1,2,3,9]. For
example, Bădoiu et al. [1] describe approximation algorithms and hardness results for
embedding general metrics into the line. In particular they show that the minimum dis-
tortion for a line embedding is hard to approximate up to a factor polynomial in n,
even for weighted trees where the ratio of maximum/minimum weights is bounded by
a polynomial in n. For the case of unweighted graphs, it was shown by Bădoiu et al. [2]
that there is a constant a > 1, such that it is NP-hard to compute an a-approximation
of the minimum distortion of an embedding into the line. Bădoiu et al. also provided
an exact algorithm for computing an embedding with distortion at most d in time nO(d).
For d = Ω(n) the running time of such an algorithm is nO(n). Fellows et al. [6] studied
the parameterized complexity of metric embeddings and proved that embedding into
the line and more generally, into trees with bounded vertex degrees, is fixed parameter
tractable when parameterized by the distortion. For embedding a graph metric into the
line the running time of the algorithm described in [6] is O(nd4(2d + 1)2d), which also
does not break the barrier of n! when d = Θ(n).

It is worth to mention the resemblance between the problem of embedding into the
line and the BandwidthMinimization problem. In the BandwidthMinimization problem
the objective is for a given graph G to find a bijective mapping f : V(G) → {1, . . . , n},
for which the bandwidth, that is b = max(u,v)∈E(G) | f (u) − f (v)|, is minimized. Observe
that the only difference between the two problems is that in the BandwidthMinimization
problem we demand 1 ≤ | f (p)− f (q)| for every pair of vertices while the non-contraction
constraint in our embedding problem is D(p, q) ≤ | f (p) − f (q)|.

The Bandwidth Minimization problem is one of the test-bed problems in the area
of moderately exponential time algorithms and has been studied intensively. Trying all
possible permutations of the vertex set yields a simple O(n!n) time algorithm while the
known algorithms for the problem with running time O(cn) are far from straightforward.
The O(n!)-barrier was broken by Feige and Kilian [5] who gave an algorithm with run-
ning time O(10nnO(1)). This result was subsequently improved by Cygan and Pilipczuk
[4] down to O(5nnO(1)).

Despite the similarities between low distortion embedding into the line and band-
width, the non-contraction constraint makes the algorithmic complexity of the two
problems significantly different. A striking example is that the parameterized version
of the Bandwidth Minimization problem is one of the hardest problems in Parame-
terized Complexity, while low distortion embedding into the line is fixed parameter
tractable [6]. Thus, it is not surprising that a direct transmission of the ideas for the
Bandwidth Minimization problem to low distortion embeddings does not work. Never-
theless, our approach is still based on the approaches from [4,5], especially the initial
and final parts of our algorithm. However, to handle non-contraction need a non-trivial
additional link connecting these parts.

2 Preliminaries

Let G be an undirected graph with vertex set V(G) and edge set E(G). We denote the
number of vertices by n. For u and v ∈ V(G), DG(u, v) is the shortest path distance
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between u and v in G. For a subset V ′ ⊆ V(G), by G[V ′] we mean the subgraph of G
induced by V ′. An integer interval is a set {x, x + 1, . . . , y − 1, y} of integers appearing
consecutively. An embedding of a graph G into the line is a function f : V(G) →
R. The distortion of an embedding f is maxu,v∈V(G)

| f (u)− f (v)|
DG (u,v) . An embedding is called

non-contracting if | f (u) − f (v)| ≥ DG(u, v) for every pair u, v of vertices. If f is non-
contracting we say that a vertex u pushes vertex v if DG(u, v) = | f (u) − f (v)|. For an
embedding f , let v1, v2, . . . , vn be an ordering of the vertices such that f (v1) < f (v2) <
· · · < f (vn). We say that f is pushing if vi pushes vi+1, for each 1 ≤ i ≤ n − 1.

A partial embedding of G into the line is a function f ′ : V ′ → R for some subset
V ′ of V . For a partial embedding f ′ with domain V ′, let v′1, v′2, . . . , v

′
n′ be an ordering

of V ′ such that f ′(v′1) < f ′(v′2) < · · · < f (v′n′ ). We say that f ′ is pushing if v′i pushes
v′i+1, for each 1 ≤ i ≤ n′ − 1. The distortion of a pushing partial embedding f ′ is
maxuv∈E(G[V ′ ]) | f ′(u) − f ′(v)|.

3 Exact Algorithm for Distortion

In this section we give an exact algorithm for the following problem.

Given an input graph G with the vertex set V(G) and the edge set E(G), find a
mapping f : V(G)→ R+ such that for all u, v ∈ V(G), | f (u) − f (v)| ≥ DG(u, v)
and the function

dist(G) = max
u,v∈V(G)

| f (u) − f (v)|
DG(u, v)

is minimized.

In order to reduce the search space we apply a simple lemma proved in [6] on minimum
distortion embedding of graphs into the line.

Lemma 1 ([6])

– If G can be embedded into the line with distortion d, then there is a pushing embed-
ding of G into the line with distortion d. Furthermore, every pushing embedding of
G into the line is non-contracting.

– Let f be a pushing embedding of a connected graph G into the line with distortion
at most d. Then D(vi−1, vi) ≤ d for every 1 ≤ i ≤ n.

Lemma 1 implies that it is sufficient to look for an optimal pushing embedding. Notice
that a pushing embedding with f (v1) = 0 maps every vertex to an integer coordinate.
Therefore we can without loss of generality restrict ourselves to functions f : V(G) →
{0, . . . , dn}. We also assume that our input graph G is connected, because otherwise
some pair of vertices have infinite distance between them and hence there is no non-
contracting embedding of G into the line.

We now present an algorithm that decides whether there is an embedding of distor-
tion at most d for the input graph G. It is well known that any graph G with n vertices
can be embedded into the line with distortion at most 2n−1 [2]. Thus, if we want to find
the minimum d such that there is an embedding of G into the line with distortion at most
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d it is sufficient to try all values between 1 and 2n − 1 for d. Next we describe the three
main components of our algorithm and show how to combine them in order to obtain
an algorithm running in time 5n+o(n) and using 2n+o(n) space. The first and third part of
our algorithm go along the lines of the known algorithms for Bandwidth [5,4]. While
these two parts are sufficient to compute bandwidth, in order to solve our problem we
need an intermediate divide and conquer step to bridge the first and last part.

3.1 Fixing an Assignment into Buckets

The algorithm loops over all possible distributions of the vertices into “buckets” on
the integer line. The remaining two steps of the algorithm deal with finding an optimal
embedding that agrees with the distribution made in the first step. Formally, we are
looking for a pushing embedding f : V(G) → {0, . . . , dn}. A bucket assignment is a
function h : V(G) → {0, . . . , n} and an embedding f : V(G) → {0, . . . , dn} of G agrees
with h if for every vertex v of G we have h(v) = 	 f (v)

d+1 
. For i ≥ 0, the i-th bucket of h (or
the i-th bucket for short) is Bi = {(d + 1)i, . . . , (d + 1)(i + 1) − 1} and the content of the
i-th bucket is Vi = {v : h(v) = i}.

The outer loop of the algorithm goes over a set of bucket assignments such that if
there is a pushing embedding f : V(G) → {0, . . . , dn} with distortion at most d then
some h we have looped over agrees with f . We guess a vertex v such that h(v) = 0
and fix a spanning tree T of G with rT as root. Once h(p) has been determined for the
parent p of a node u in T , we loop over all possible values of h(u). If h is to agree with
some pushing embedding f : V(G) → {0, . . . , dn} with distortion at most d we have
that h(u) = h(p) − 1, h(u) = h(p) or h(u) = h(p) + 1 and that h(u) ≥ 0. Since we have
at most 3 possibilities for the placement of each vertex the outer loop needs only to go
over at most n · 3n different bucket assignments h.

3.2 Dealing with Many Buckets

In this section and Section 3.3, we provide an algorithm which given an initial bucket
assignment h, decides whether there is a pushing embedding f of the input graph into
the line with distortion at most d that agrees with h.

Our algorithm Exact-Dist solves a slight modification of the problem. Input to this
problem is a graph G, an integer d, a bucket assignment h, an interval J = {x, x +
1, . . . , y} of integers and a function g : V ′ → {0, . . . , dn} for some subset V ′ of V(G).
Let BJ =

⋃
j∈J B j and VJ =

⋃
j∈J V j. The algorithm determines whether there is a

partial pushing embedding f : VJ → BJ with distortion at most d such that f agrees
with h and f (v) = g(v) for all vertices in V ′ ∩VJ . To solve the original problem we make
a call to Exact-Dist(G, d, h, J, g) where J = {0, . . . , n} and the domain V ′ of g is empty.
Before commencing with the algorithm, we perform a “sanity check”. That is, given h
check whether it is even remotely feasible that f can exist. We verify that h satisfies the
following properties.

– For every i, |Vi| ≤ d + 1.
– Similarly, for every edge uv, |h(u) − h(v)| ≤ 1.
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Exact-Dist(G, d, h, J, g)
(Here d is the distortion, h is the fixed bucket assignment, J = {x, . . . , y} is the set of
indices of buckets and g is a partial embedding of some of the vertices in the graph.)

1. If the size of |J| > n
log2 n

then find a bucket Vj of the kind described in Lemma 2
else go to Step 3.

2. Enumerate all possible pushing partial embeddings gj : Vj → B j of distortion at
most d. For every such gj:

– Assign g′(v) = gj(v) if v ∈ Vj and g′(v) = g(v) if v is in the domain of
g. Let J1 = {x, . . . , j − 1, j} and J2 = { j, j + 1, . . . y}. Recursively solve the
subproblems Exact-Dist(G, d, h, J1, g′) and Exact-Dist(G, d, h, J2, g′). Return
“YES” if both recursive calls return “YES”.

3. In this case solve the problem using Lemma 5 of Section 3.3.

Fig. 1. Description of the Algorithm

Indeed, if some of these cases do not hold, there is no embedding f with distortion d that
agrees with h and we can immediately answer “NO”. At all later stages of the algorithm
we assume that h satisfies these properties. An outline of the algorithm without these
preliminary steps is given in Figure 1. In Section 3.3 we will give an algorithm which
implements Step 3 in time 2n · nO(b) time, where b = |J| is the number of buckets
considered.

The idea behind the algorithm is as follows. When the number of buckets |J| is large,
our algorithm follows a divide-and-conquer approach and if the number of buckets is
“small”, that is roughly n/ log2 n, we do dynamic programming. To deal with the large
number of buckets we look for a “small balanced separator” to branch on. The first step
of algorithm Exact-Dist is based on the following lemma.

Lemma 2. Let h be a bucket assignment and let J = x, x + 1, . . . , y be an integer in-
terval such that n

log2 n
< |J|. Then there exists j ∈ I = { 3x+y

4 + 1, . . . , x+3y
4 } such that

|V j| ≤ 2 log2 n.

Proof. The proof follows from an averaging principle. For the sake of contradiction, let
us assume that for every j ∈ I, |V j| > 2 log2 n. Then the total number of elements in the
buckets V j with j ∈ I is at least

∑

j∈I
|V j| > 2 log2 n · |J|

2
> 2 log2 n · n

2 log2 n
= n.

But the sets V j are disjoint, and thus the sum does not exceed |V(G)| = n, which is a
contradiction. �
If |J| is at least n/ log2 n, the algorithm picks a bucket B j and branches on all possi-
ble ways to lay out V j in B j. After this the problem breaks up into two independent
subproblems (G, d, h, J1, g′) and (G, d, h, J2, g′), see Figure 1. We argue that the two
subproblems are indeed independent. Let f be a pushing partial embedding of VJ into
BJ with distortion at most d such that f agrees with h and coincides with g. This means
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that f restricted to V j is a pushing partial embedding of V j into B j. We choose g j to
coincide with f on V j and define g′(v) = g j(v) if v ∈ V j and g′(v) = g(v) if v is in the do-
main of g, just as in step 2 of algorithm Exact-Dist. If J = {x, . . . , y} then J1 = {x, . . . , j}
and J2 = { j, . . . , y}. Now f restricted to J1 is a pushing partial embedding from VJ1 to
BJ1 while f restricted to J2 is a pushing partial embedding from VJ2 to BJ2 .

In the other direction, let f1 and f2 be pushing partial embeddings from VJ1 toBJ1 and
from VJ2 to BJ2 respectively, agreeing with h and coinciding with g′. Since J = J1 ∪ J2

and J1 ∩ J2 = { j} we can choose f to be the partial embedding from VJ to BJ that
coincides with both f1 and f2. Since both f1 and f2 are pushing partial embeddings, so
is f . Since every edge with both endpoints in VJ has both endpoints either in VJ1 or in
VJ2 and both f1 and f2 have distortion at most d, so does f .

Let T (n, b) be the time required by algorithm Exact-Dist on a n-vertex graph G with
|J| = b. Let T ∗(n) be the time required by algorithm Exact-Dist on a n-vertex graph G
and with |J| < n/ log2 n. An analysis of step 1 and 2 of algorithm Exact-Dist yields the
following recurrence.

T (n, b) =

⎧
⎪⎪⎨
⎪⎪⎩

(
d+1

2 log2 n

)
(2 log2 n)! · 2T

(
n, 3b

4

)
if b > n′

log2 n

T ∗(n) otherwise.

Thus, since b ≤ n we have T (n, b) ≤ 2
O(log n

n/ log2 n
) · T ∗(n) = 2o(n) · T ∗(n). In Section 3.3

we show how to implement the last step of algorithm Exact-Dist to run in time 2nnO(b)

which is at most 2n · 2o(n) since b ≤ n/ log2 n. This yields a 2n+o(n) runtime bound for
algorithm Exact-Dist and a 6n+o(n) bound for deciding whether G can be embedded into
the line with distortion at most d. In Section 3.4 we will show that the running time of
our algorithm in fact is bounded by 5n+o(n).

3.3 Dealing with Few Buckets

In this section we give an algorithm which given an initial bucket assignment h, a partial
assignment g, and an integer interval J = {x, . . . , y} with |J| = b < n/ log2 n decides
whether there is a pushing partial embedding f : VJ → BJ with distortion at most d,
agreeing with h and coinciding with partial assignment g. Our algorithm runs in time
and space 2nnO(b).

The number of slots in J, that is positions in the line to where vertices can be mapped,
is at most b · (d + 1). Thus there could be many slots with no vertex mapped to them.
We start our algorithm by guessing for every j ∈ J the leftmost non-empty slot in each
bucket B j and a vertex from V j to be placed there. Naturally, if the layout of a bucket
B j with j ∈ J has already been determined by g our guesses must be consistent with
this. For every j ∈ J, let t j denote the vertex guessed to be placed leftmost in bucket j.
Also let l j denote the position guessed for t j. After having made the guess we modify
the problem at hand—we now look for a pushing partial embedding f : VJ → BJ with
distortion at most d, agreeing with h, coinciding with g such that for every bucket B j

with j ∈ J, the leftmost vertex mapped to B j is t j, which is mapped to l j. The number
of possible guesses is bounded by (d + 1)bnb.
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We choose the ordering π1, π2, . . . , π|BJ | of the entries of BJ such that for every i < j
we have that πi mod (d + 1) ≤ π j mod (d + 1) and such that if πi mod (d + 1) =
π j mod (d + 1) then πi

d+1 ≤ π j

d+1 . For example, if J = 3, 4, 5 and d = 4, then

π1, . . . , π15 = 15, 20, 25, 16, 21, 26, 17, 22, 27, 18, 23, 28, 19, 24, 29.

We call the ordering π1, . . . , π|BJ | the bucket order of B j. Next we define the notion of a
state.

Definition 1 A state ζ is a quadruple (P,Q,R, p), where P ⊆ VJ, Q ⊆ P is a set of
vertices containing at most one vertex from each V j such that if V j∩P � ∅ then V j∩Q �
∅ and t j ∈ P, R ⊆ BJ, is a set of integers containing at most one integer from each bucket
B j and p ≤ |J| is a non-negative integer.

Let us observe that the number of states is at most 2n×n|J|×(d+1)|J|×|B j|. If Q∩V j � ∅,
then define q j to be the vertex in Q ∩ V j. If R ∩ B j � ∅ let r j be the integer in R ∩ B j.
Next we define what it means for a state to be feasible:

Definition 2 A state is called feasible if there exists a partial embedding f assigning
the vertices of P to the first p positions in the bucket order such that the following
condition hold:

1. For any edge uv with u ∈ P and v ∈ P, | f (u) − f (v)| ≤ d, f agrees with h and
coincides with g.

2. If V j ∩ P � ∅, then f (t j) = l j and f (q j) = r j. There is no vertex v ∈ V j ∩ P such that
f (v) < l j or f (v) > r j.

3. For any bucket V j with j ∈ J, if x, y ∈ V j, f (x) < f (y) and no vertex is mapped by
f to the interval { f (x) + 1, f (y) − 1}, then f (y) − f (x) = DG(x, y);

4. If j ∈ J and j is not the largest element of J, V j ⊆ P and V j+1 ∩ P � ∅, then
f (l j+1) − f (r j) = DG(l j+1, r j).

The idea is to go through the slots in J one by one in the bucket order and for each
of them determine which vertex (if any) gets mapped by f to this slot. The number p
denotes the position in the bucket order that we have reached. The set P corresponds
to the set of vertices that have already been placed. For every j ∈ J, t j and q j denote
the vertices placed leftmost and rightmost in B j respectively. Also l j and r j denotes the
position of t j and q j in B j. Now we define the notion of a state succeeding another state.

Definition 3 Let ζ1 = (P1,Q1,R1, p) and ζ2 = (P2,Q2,R2, p + 1) be two states. We say
that ζ2 succeeds ζ1 if the following holds.

– Either P2 = P1, or P2 = P1 ∪ {v}.
– If P1 = P2, then Q1 = Q2 and R1 = R2.
– If P2 = P1 ∪ {v} and v ∈ V j, then j = 	 πp+1

d+1 
 and
1. If v ∈ t j, then l j = πp+1. If g(v) is defined then g(v) = πp+1.
2. Q2 = (Q1 \ {q j}) ∪ {v} and R2 = (R1 \ {r j}) ∪ {πp+1}.
3. If V j ∩ P1 � ∅ then πp+1 − r j = DG(v, q j).
4. If j is not the largest element of J then l j+1 − πp+1 ≥ D(v, t j+1).
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5. If j ∈ J and j is not the largest element of J, V j ⊆ P2 and V j+1 ∩ P2 � ∅ then
f (l j+1) − f (v) = DG(l j+1, v).

6. If j is not the smallest element of J then N(v) ∩ V j−1 ∩ P2 = ∅.
We now proceed to prove an observation that will be helpful for the correctness proof.

Lemma 3. Let ζ1 = (P1,Q1,R1, p) be a feasible state and ζ2 = (P2,Q2,R2, p + 1) be a
state that succeeds ζ1. Then ζ2 is feasible.

Proof. Since ζ1 = (P1,Q1,R1, p) is feasible there is a partial embedding f satisfying
points 1 − 4 in Definition 2. If P1 = P2 then f satisfies the points 1 − 4 for ζ2 as well. If
P2 � P1 then P2 \P1 contains a single vertex v. Let f ′ be a partial embedding assigning
the vertices of P2 to the first p + 1 positions in the bucket order such that f ′ and f
coincide and f ′(v) = πp+1. By point 1 of the definition of succession f ′ agrees with h
and coincides with g. Since v has no neighbour in P1 ∩V j−1 it follows that for any edge
uw with u ∈ P2 and w ∈ P2, | f (u) − f (w)| ≤ d. Also, f ′ satisfies point 2 of definition
2 because πp+1 is the rightmost position in P2 ∩ B j. Furthermore f ′ satisfies point 3 of
Definition 2 by point 3 of Definition 3. Finally f ′ satisfies point 4 of Definition 2 by
point 5 of Definition 3. �
Now we are ready to prove the main lemma of the section which allows us to obtain the
desired result.

Lemma 4. There is a pushing partial embedding f : VJ → BJ with distortion at
most d such that f agrees with h, coincides with g and such that for every j ∈ J,
f (t j) = l j and no other vertex in V j is mapped before t j by f if and only if there exists
sequence of states ζ1, ζ1, . . . , ζ|BJ | such that (a) ζ1 = (∅, ∅, ∅, 0); (b) ζi+1 succeeds ζi for
all i ∈ {1, . . . , |BJ | − 1}; and (c) ζ|BJ | = (VJ, X, Y, |BJ|).
Proof. Let f : VJ → BJ be a pushing partial embedding with distortion at most d such
that f agrees with h, coincides with g and such that for every j ∈ J, f (t j) = l j and no
other vertex in V j is mapped before t j by f . With the help of f we define the sequence
of feasible states as follows. For every p ≤ |BJ |, P is the set of vertices f maps to
π0, . . . , πp, Q is the set of vertices in P such that for every j such that P ∩ V j � ∅, Q
contains exactly one vertex q j, f maps all vertices in P ∩ V j to the left of q j. Finally R
is the set of positions that f maps the vertices of Q. The construction of the sequence of
states implies that ζ1 = (∅, ∅, ∅, 0), ζi+1 succeeds ζi for all i ∈ {1, . . . , |BJ | − 1} and that
ζ|BJ | = (VJ, X, Y, |BJ |).

For the reverse direction suppose that we have sequence of feasible states ζ1, ζ1, . . . ,
ζ|BJ | such that ζ1 = (∅, ∅, ∅, 0); (b) ζi+1 succeeds ζi for all i ∈ {1, . . . , |BJ | − 1}; and (c)
ζ|BJ | = (VJ, X, Y, |BJ|). Since ζ1 = (∅, ∅, ∅, 0) is feasible Lemma 3 implies that ζ|BJ | =
(VJ, X, Y, |BJ|) is feasible as well. The definition of feasibility guarantees the existence
of the desired f , concluding the proof. �
Finally, we ready to proceed with the lemma used for the analysis of Step 3.

Lemma 5. There is an algorithm that for given G, d, h, J, g and T decides whether
there is a pushing partial embedding f : VJ → BJ with distortion at most d such that
f agrees with h, coincides with g and such that for every j ∈ J, f (t j) = l j and no other
vertex in V j is mapped before t j by f in time and space 2n · nO(|J|).
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Proof. As we observed already, the number of states is at most 2n×n|J|×(d+1)|J|×|B j| ≤
2n·nO(|J|). The algorithm decides the existence of f by applying Lemma 4. The algorithm
starts in the state (∅, ∅, ∅, 0) and does breadth first search on the graph where vertices are
the states and there is a directed edge from a state ζi to a state ζ j if ζ j succeeds ζi. We do
not keep this graph explicitly and rather generate the vertices of this graph as and when
required in our breadth first search. Whenever we are at state ζ we can find all possible
successor states in polynomial time. By Lemma 4 there is a required embedding f if and
only if there is a path from (∅, ∅, ∅, 0) to (VJ, X, Y, |BJ|). Our algorithm needs 2n · nO(|J|)
space to keep track of the set of states visited by the breadth first search algorithm. Since
the number of states is bounded by 2n · nO(|J|) and the number of successors of a state is
at most d + 2 the number of vertices and edges in the state graph is upper bounded by
2n · nO(|J|). Hence the algorithm takes 2n · nO(|J|) time and space. �
Observe that applying Lemma 5 together with the analysis presented for Algorithm
Exact-Dist over the previous section yields a running time bound of 6n+o(n). In fact, our
algorithm runs in time 5n+o(n). The next section is devoted to proving this.

3.4 A Refined Analysis

In this section we prove that the total number of states ever produced by our algorithm
is 5n+o(n). Since the running time of the algorithm is proportional to the number of states
we generate up to a subexponential factor, this implies that algorithm Exact-Dist runs
in time 5n+o(n). The proof of the following lemma is essentially an adaptation of the
running time analysis given in [4] and will appear in the full version of the paper.

Lemma 6. The algorithm described in the previous sections runs in time 5n+o(n).

We conclude with the following theorem.

Theorem 1. There is an algorithm that given a graph G on n vertices constructs a
non-contracting embedding of the shortest path metric generated by G into the line
with minimum distortion in time 5n+o(n) and space 2n+o(n).

4 Concluding Remarks and Open Problems

In this paper we have provided the first single vertex exponential time algorithm for
computing a minimum distortion embedding of a graph metric into the line. This result
gives rise to many challenging questions.

How fast is it possible to compute a minimum distortion embedding of a graph G
into the metric of another graph H? Is there a 2O(|V(G)|) time algorithm for this problem,
or can one show that this is impossible up to some complexity theoretic assumption?
How does the problem behave if the host graph H is a tree? Even when H is a binary
tree, this does not seem to be an easy problem. At a first glance it would seem that our
algorithm should be directly extendable to find a minimum distortion embedding of a
graph G into a given cycle C. However this does not look to be easy and we leave it as
an open problem whether finding a minimum distortion embedding of a graph G into a
given cycle C can be done in 2O(|V(G)|) time.
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We believe that the world of embeddings provides a lot of challenges to the area
of moderately exponential time algorithms and is worth to be explored. We hope that
our result will lead to further investigation of the combinatorially challenging field of
embeddings within the framework of moderately exponential time algorithms.
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Abstract. In this paper, we study the sub-coloring and hypo-coloring
problems on interval graphs. These problems have applications in job
scheduling and distributed computing and can be used as “subroutines”
for other combinatorial optimization problems. In the sub-coloring prob-
lem, given a graph G, we want to partition the vertices of G into minimum
number of sub-color classes, where each sub-color class induces a union
of disjoint cliques in G. In the hypo-coloring problem, given a graph G,
and integral weights on vertices, we want to find a partition of the ver-
tices of G into sub-color classes such that the sum of the weights of the
heaviest cliques in each sub-color class is minimized. We present a “for-
bidden subgraph” characterization of graphs with sub-chromatic number
k and use this to derive a 3-approximation algorithm for sub-coloring in-
terval graphs. For the hypo-coloring problem on interval graphs, we first
show that it is NP-complete, and then via reduction to the max-coloring
problem, show how to obtain an O(log n)-approximation algorithm for it.

1 Introduction

Given a graph G = (V, E), a k-sub-coloring of G is a partition of V into sub-
color classes V1, V2, . . . , Vk; a subset Vi ⊆ V is called a sub-color class if it
induces a union of disjoint cliques in G. Figure 1(a) shows a 2-sub-coloring of a
graph, with the black vertices forming one sub-color class and the white vertices
the other. The smallest k for which a graph has a k-sub-coloring is called the
sub-chromatic number of G, and is denoted χs(G). The sub-coloring problem
[1,4,5,8,22] seeks to find a partition of vertices of G into the smallest number of
sub-color classes. Clearly, any proper coloring of G is also a sub-coloring, since
any proper color class can be viewed as the disjoint union of size-1 cliques; hence,
χs(G)≤ χ(G). Of course, the sub-chromatic number can be much smaller than
the chromatic number (e.g., consider a large clique). Figure 1(b) shows a graph
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Fig. 1. (a) shows a 2-sub-coloring of a graph whose chromatic number is 3. If the num-
bers next to the vertices are taken to be vertex-weights then the white-black coloring
is a hypo-coloring of cost 17 + 11 = 28. (b) shows a graph whose chromatic number
and sub-chromatic number are both 3. This is an example of BC(3), a binary clique
of order 3. The binary string vertex-labels are useful in defining the family of binary
cliques (see Section 2).

G with χ(G) = χs(G) = 3. To see that χs(G) ≥ 3, observe that each of the 2-
paths induced by {b, d, e} and {c, f, g} require 2 sub-color classes. Furthermore,
if the subgraph induced by {b, c, d, e, f, g} is colored using 2 sub-colors, then
vertex a cannot be added to either of the sub-color classes because each of the
sub-color classes will contain at least one vertex from {b, d, e} and at least one
vertex from {c, f, g}. We call the graph shown in Figure 1(b) a binary clique
of order 3, denoted BC(3). Later (in Section 2) we define the family, BC(k),
k ≥ 1, of order k binary cliques and show that the presence of an induced binary
clique is an obstacle to having a small sub-chromatic number, in the sense that
χs(BC(k)) ≥ k.

Given a graph G = (V, E), and a vertex weight function w : V → N, the hypo-
coloring problem [6] seeks to find a partition of the vertices of G into sub-color
classes such that the sum of the weights of the heaviest cliques in each sub-color
class is minimized. In other words, if V1, V2, . . . , Vk are the sub-color classes of
a hypo-coloring solution, then the cost of the solution is

∑k
i=1 maxK⊆Vi w(K),

where each K is a clique in the sub-color class Vi and w(K) is the sum of the
weights of vertices in K. Figure 1(a) shows a hypo-coloring of a vertex-weighted
graph with cost 17 + 11 = 28.

Our Contribution. This paper studies the approximability of sub-coloring and
hypo-coloring on interval graphs. On the positive side, we present (in Section 2)
a 3-approximation algorithm for sub-coloring interval graphs. This is the first
constant-factor approximation algorithm for the problem. We also present an
O(log n)-approximation algorithm for the hypo-coloring problem, via reduction
to the max-coloring problem [20]. In fact, we get an O(log n)-approximation for
hypo-coloring on a variety of graph classes including perfect graphs, unit disk
graphs, circle graphs, etc., all of which admit constant-factor approximation
algorithms for the max-coloring problem [19]. On the negative side, we show (in
Section 3) that hypo-coloring on interval graphs is NP-complete.

It is worth noting here that the complexity status of sub-coloring on inter-
val graphs is unknown. Results due to Broersma et al. [5] imply that there is an
nO(log n)-time algorithm for the sub-coloring problem on interval graphs. The ex-
istence of a subexponential time algorithm for the problem makes it unlikely that
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sub-coloring on interval graphs is NP-complete. Given this, it is worth further
exploring the possibility that the problem has a polynomial-time algorithm.

1.1 Applications

The sub-coloring and hypo-coloring problems have a variety of applications to job
scheduling, distributed computing, and combinatorial optimization. We sketch
some of these applications next.

Combinatorial Optimization: The sub-coloring problem can be used as a sub-
routine in solving some combinatorial optimization problems on graphs, where
solving the problem on a clique is easier than solving the problem on general
graphs. This approach has been used for example in approximation algorithms
for the maximum feasible subsystem problem(MFS)1. In [7], Elbassioni et al.
study the MFS problem where the marix A is a consecutive-ones matrix, and x
is restricted to be non-negative. They give an algorithm for solving the problem
on a clique, and then use this result in conjunction with a sub-coloring to obtain
approximation algorithms for this problem.

Job Scheduling: The hypo-coloring problem arises in the problem of batch
scheduling jobs in conflict. In a batch scheduling environment with conflicts,
we are given jobs J = {J1, · · · , Jn} with processing times pj , and a conflict
graph with vertices as the jobs, and an edge representing conflict, where jobs
that are in conflict can not be scheduled simultaneously. A schedule that min-
imizes the makespan of the schedule (with an arbitrarily large number of ma-
chines) has been studied as the max-coloring problem [20]. When the conflict
graph is an interval graph, the problem reduces to the max-coloring problem
on interval graphs. Now suppose that in a batch we have one job with a large
processing time, and other jobs with very small processing times, then all the
machines except for the machine processing this large job are idle until the batch
completes. We can get an improved schedule if in each batch the jobs form a
union of disjoint cliques. Thus, each clique can be run on the same machine
sequentially, while the next set of jobs is scheduled once this batch of jobs com-
pletes. Such schedules can be seen as batch schedules with a kind of backfilling
[21,15].

Distributed Computing: The sub-coloring problem on general graphs is also mo-
tivated by the network decomposition problem in distributed computing [3,17].
A vertex partition V1, V2, . . . , Vk of a graph G = (V, E) induces a cluster graph
with vertex set {1, 2, . . . , k} and edges {i, j} iff there is an edge in G between
some u ∈ Vi and v ∈ Vj . The network decomposition problem seeks to find a ver-
tex partition V1, V2, . . . , Vk of G such that each cluster G[Vi] has small diameter
and the cluster graph has small chromatic number. For example, Awerbuch et
al. [3] present a deterministic, distributed algorithm running in O(nε(n)) time for

1 The maximum feasible subsytem problem is the following. Given a system l ≤ Ax ≤
b, which is infeasible, the goal is to find a solution vector x that satisfies the maximum
number of inequalites.
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computing a (nε(n), nε(n))-network decomposition2 where ε(n) =√
log log n/

√
log n. Using this they obtain the first, deterministic, sublinear

distributed algorithms for several classical problems in distributed computing.
If we restrict the diameter of each Vi to 1, i.e., a clique, then the network
decomposition problem is equivalent to the sub-coloring problem since each
proper color class of the cluster graph is a disjoint union of cliques from the
input graph. Lately, this approach to designing fast distributed algorithms has
become very popular in wireless networks [12]. This motivates the study of
sub-coloring on geometric intersection graphs such as unit disk graphs (UDGs)
or disk graphs. used to model wireless networks.

1.2 Related Work

The sub-chromatic number of a graph was introduced by Mynhardt and Broere
[4,16], and studied as spot-coloring by Hartman [11]. Achlioptas [1] proved that
F -free coloring3 is NP-hard even when F is any graph with at least 3 vertices. By
setting F = P3 we get that the sub-coloring problem on general graphs is NP-
hard. Fiala et al. [8] showed that F -free coloring is NP-hard even for triangle-free
planar graphs with maximum degree 4, while giving polynomial time algorithms
for sub-coloring on cographs and graphs of bounded tree-width. Stacho [22] has
shown that sub-coloring on chordal graphs is NP-complete. Broersma et al. [5]
study algorithmic and combinatorial aspects of sub-coloring on various classes
of graphs. Specifically, they show that when G is chordal χs(G) is Θ(log n).
They also show that for any constant r, there is a polynomial time algorithm to
compute a sub-coloring of interval graphs that have sub-coloring ≤ r. However,
they do not consider the problem of obtaining an approximation algorithm for
sub-coloring on general interval graphs.

Motivated by the problem of batch scheduling conflicting jobs, de Werra et al.
[6] introduced the hypo-coloring problem. The authors give a polynomial time
algorithm for graphs with maximum degree 2, and for forests with bounded
maximum degree. They also show that the problem is NP-hard on bipartite
graphs and triangle-free planar graphs.

A problem that seems related to hypo-coloring is the max-coloring problem.
Given a graph G = (V, E) and a weight function w : V → N the problem is to find
a proper vertex coloring C1, C2, . . . , Ck of G that minimizes

∑k
i=1 maxv∈Ci w(v).

Note that the special case of this problem in which w(v) = 1 for all v ∈ V is
simply the problem of coloring graphs using fewest colors. Pemmaraju et al. [20]
show that the max-coloring problem on interval graphs is NP-complete and give
a 2-approximation algorithm. In Section 3 we study the relation between the
optimal solutions for max-coloring and hypo-coloring and provide a reduction

2 A (c(n), d(n))-network decomposition is one in which the cluster graph chromatic
number is bounded above by c(n) and the diameter of each cluster is bounded about
by d(n).

3 For a graph G = (V, E), an F -free coloring is a partition of the vertex set of G such
that in each color class, the vertices do not have F as an induced subgraph.
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from hypo-coloring to max-coloring that leads to an O(log n)-approximation to
hypo-coloring.

2 A 3-Approximation for Sub-coloring Interval Graphs

This section presents an algorithm that takes as input an interval graph G =
(V, E) and returns a partition into sub-color classes S1, S2, . . . , Sk, such that
k ≤ 3 · χs(G). We start by first establishing a lower bound on χs(G), for any
graph G. A complete binary tree of order k, k ≥ 1, denoted CBT (k), is a rooted
tree with vertex set {0, 1}k−1 and edge set {{α, α0}, {α, α1} | α ∈ {0, 1}k−2}.
The root of the tree is the vertex labeled ε, the empty string. A binary clique of
order k, denoted BC(k), is obtained from CBT (k) by adding edges {α, β} where
β is a strict prefix of α. Figure 1(b) shows BC(3) along with the binary string
labels for the vertices. The edges {a, d}, {a, e}, {a, f}, and {a, g} were added in
going from CBT (3) to BC(3).

Lemma 1. If a graph G (not necessarily an interval graph) contains BC(k) as
an induced subgraph, then χs(G) ≥ k.

Proof. (Sketch) The proof follows by induction on k. The base case can be easily
seen to hold. Assuming the inductive hypothesis for k′ ≤ k− 1, if BC(k) can be
sub-colored with k − 1 or fewer colors, this leads to a contradiction.

The 3-approximation algorithm that we will present next has two main phases.
Suppose that G is the input interval graph and A is the set of intervals corre-
sponding to this graph. In the first phase (partitioning phase), we partition the
intervals in A into subsets S1, S2, . . . , Sk and show that G contains an induced
binary clique of order k, implying via Lemma 1 that χs(G) is lower bounded by
the size of the partition. In the second phase (coloring phase) of the algorithm
we sub-color each Si using at most 3 colors, and using a different set of colors
for each subclass. This yields a sub-coloring with 3k ≤ 3χs(G) colors.

2.1 Partitioning Phase

Our partitioning procedure takes as input a collection A of intervals. An interval
I in A is said to be internal if it completely contains (in the geometric sense) two
disjoint intervals I1 and I2. Any interval that is not internal is called external.
The partitioning algorithm (shown in Figure 2) simply peels of “layers” of exter-
nal intervals. Note that every non-empty collection of intervals has a non-empty
subset of external intervals.

Lemma 2. If Partition(A) returns S1, S2, . . . , Sk, then G, the interval graph
corresponding to A, contains an induced BC(k).

Proof. We will prove by induction that for any j, 1 ≤ j ≤ k, and any interval
I ∈ Sj , I is the root of a binary clique H of order j contained entirely within the
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Partition(A)

1 A0 ← A; k ← 0
2 while (Ak �= ∅) do
3 k ← k + 1
4 Sk ← intervals that are external in Ak−1

5 Ak ← Ak−1 \ Sk

6 return S1, S2, . . . , Sk

Fig. 2. Partitioning algorithm that takes a set A of intervals as input and returns a
partition S1, S2, . . . , Sk

intervals in Bj = S1∪S2∪· · ·∪Sj and furthermore all intervals in H are entirely
contained (in the geometric sense) in I. The base case (j = 1) is trivially true.
Consider any interval I ∈ Sj . There are two disjoint intervals I1 and I2 in Sj−1
that are completely contained in I. Otherwise, I would have been a member of
Sj−1. By the inductive hypothesis, I1 is the root of H1, a binary clique of order
j − 1 and I2 is the root of H2, a binary clique of order j − 1. Furthermore, all
intervals in Hi, i = 1, 2 are contained in Ii. This implies that H1 and H2 are
disjoint and also that interval I has edges to all the intervals in H1 and in H2.
The graph induced by I and the intervals in H1 and H2 is a binary clique of
order j, with root I, and with all intervals contained within I.

After partitioning A into subsets S1, S2, . . . , Sk, we “color” the intervals in each
subset Si as follows. For the rest of this subsection let S denote an arbitrary
Si. We start by choosing the left-most maximal clique in S; call this M1. Let
I1 ∈M1 be the interval with the right-most right endpoint, and let N1 be the set
of intervals not in M1 that are completely contained within I1. We then remove
intervals in M1 ∪ N1 from S and if S �= ∅, we repeat the process and compute
M2 and N2 and so on. Once this process terminates, for some k ≥ 1, we have
partitioned S into subsets M1, M2, . . . , Mk and N1, N2, . . . , Nk. We then “color”
all intervals in N1 ∪ N2 ∪ · · · ∪ Nk using color C2 and alternately “color” the
intervals in M1, M2, . . . , Mk, using color C1 and C0. The pseudocode for this
algorithm is given in Figure 3.

2.2 Analysis

Observe that after the 3Color algorithm finishes processing a subset S, each
interval in S is assigned to exactly one of 3 subsets, C0, C1, or C2. We now show
that each Cj , j = 0, 1, 2, is a union of disjoint cliques. This suffices to prove that
C0, C1, C2 is a valid 3-sub-coloring of S.

Lemma 3. C2 is a union of disjoint cliques.

Proof. Let Nx and Ny be any two particular but arbitrary cliques in C2. Without
loss of generality, let x < y. Note that Nx is the set of intervals in C2 which are
completely contained in interval Ix and Ny is the set of intervals in C2 which are
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3Color(S)

1 k ← 0
2 C0 ← C1 ← C2 ← ∅
3 while (S �= ∅) do
4 k ← k + 1
5 Mk ← leftmost maximal clique
6 Ik ← interval in Mk with the rightmost right endpoint
7 Nk ← intervals not in Mk that are completely contained in Ik

8 S ← S \ (Mk ∪ Nk)
9 if k is even then
10 C0 ← C0 ∪ Mk

11 else
12 C1 ← C1 ∪ Mk

13 C2 ← C2 ∪ Nk

14 return C0, C1, C2

Fig. 3. Sub-Coloring algorithm that takes a subset S of intervals produced by the
partition algorithm and computes a 3-sub-coloring of S

completely contained in interval Iy . If Ix and Iy do not overlap, then clearly there
are no overlaps between intervals in Nx and intervals in Ny. However, if Ix and
Iy do overlap, then it must be that y = x+1. Now assume for contradiction that
interval J ∈ Nx overlaps with interval K ∈ Ny. Since J is completely contained
in Ix, and K overlaps J , clearly K also overlaps Ix. This means that K belongs
to My (the leftmost maximal clique after all intervals in Mx are removed), and
hence cannot belong to Ny, a contradiction. ��

Lemma 4. C1 (C0, respectively) is a union of disjoint cliques.

Proof. Let Mx and My be any two particular but arbitrary cliques in C1 (C0,
respectively) and assume for contradiction that there are intervals in Mx which
overlap intervals in My. Without loss of generality assume that x < y. Let
J ∈ Mx be an interval which overlaps with an interval K ∈ My. Recall that
Ix ∈Mx is the interval having rightmost right endpoint in Mx, therefore Ix also
overlaps K. This implies that Mx and My are consecutive maximal cliques, that
is, My = Mx+1 and thus the algorithm would not have assigned both Mx and
My to C1, (C0, respectively) a contradiction. ��

Lemmas 3 and 4 lead to the following corollary.

Corollary 1. The algorithm 3Color(S) computes a 3-sub-coloring of S.

This corollary, along with Lemmas 1 and 2 leads to the following result.

Theorem 1. There is a 3-approximation algorithm for the sub-coloring problem
on interval graphs.

We note that the sub-coloring obtained also yields a 6-approximation algorithm
for partitioning an interval graph into the fewest number of proper interval
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graphs4 Gardi [9] posed this as an open problem. The proof follows by noting
that the sub-chromatic number of proper interval graphs is 2.

Theorem 2. There is a 6-approximation algorithm for partitioning an interval
graph into fewest number of proper interval graphs.

3 Hypo-coloring of Interval Graphs

In this section, we show that the hypo-coloring problem is NP-complete, and
give an O(log n)-approximation algorithm via a reduction to the max-coloring
problem.

3.1 NP-Completeness

The NP-completeness of hypo-coloring on interval graphs is shown by using a
reduction from Coloring Circular-Arc Graphs [10]. Our proof is heavily
influenced by the NP-completeness proof of minimum sum coloring on interval
graphs by D. Marx [13] and the proof of NP-completeness of max-coloring on
interval graphs by Pemmaraju et al. [20].
Coloring Circular-Arc Graphs

INPUT: A circular-arc graph G = (V, E), and a number k ∈ N.
QUESTION: Does G have a coloring of cost at most k?

We may assume that a circular arc representation of G is given to us since
recognition and construction of a circular arc representation can be done in
polynomial time [14]. Also as done in [13,20], we can assume that there exists a
point on the circle contained in exactly k arcs. In the following proof, we view the
hypo-coloring problem as a decision problem in which we are given an additional
input, a positive integer W , and asked if the given instance has a hypo-coloring
of cost at most W .

Theorem 3. Hypo-coloring interval graphs is NP-Complete.

Proof. Given a circular-arc graph G and parameter k, let r be a ray from the cen-
ter of the circle that passes through k arcs of G. We construct an interval graph
H from G by splitting the arcs intersecting r. More formally, let I = {I1, · · · , Ik}
be the arcs intersecting r. We replace each arc Ii ∈ I by two arcs I ′i and I ′′i ,
that start and end respectively at r. This gives us an interval graph and we can
assume that the intervals I ′ = {I ′i | i = 1, 2, . . . , k} form the leftmost intervals,
and the intervals I ′′ = {I ′′i | i = 1, 2, . . . , k} form the rightmost intervals. We
set the left end-points of the intervals I ′i such that l(I ′i) < l(I ′j) whenever i < j
and we set r(I ′′i ) < r(I ′′j ) whenever i < j. Here l(I) and r(I) respectively de-
note the left and right end-points of an interval I. Further, we add two sets of
intervals L = {L1, · · · , Lk} and R = {R1, · · · , Rk}, such that r(Li) = l(I ′i) and
4 An interval graph is proper if there is an interval representation of G such that no

interval properly contains another.



130 R. Gandhi et al.

l(Ri) = r(I ′′i ) for all i = 1, · · · , k. The weights of the intervals are defined as
follows. We let w(Li) = w(Ri) = 1 + i · ε, for ε = 1

k+1 ), w(I) = 1, ∀I �∈ L ∪ R.
This gives us the interval graph H . Note that scaling the weights by a factor of
k + 1 will guarantee that all vertex-weights in H are integral.

If to each interval in H , we assign a color c if it’s corresponding inteval in
G is assigned a color c, then I ′i and I ′′i are assigned the same color for each
i = 1, · · · , k, allowing us to assign the same colors to Li and Ri as I ′i and I ′′i , we
obtain a hypo-coloring of cost C = k + k(k + 1)ε/2.

On the other hand, suppose there is a hypo-coloring of cost C or less. We
first show that such a coloring must in fact be a proper coloring of H . To see
this, consider just the subgraph of H induced by the intervals in L∪ I ′. A hypo-
coloring of this subgraph with cost at most C must itself be proper because any
hypo-color class in this hypocoloring with a clique of size larger than 1 will force
us to place one of the intervals in L ∪ I ′ in a new color class, incurring a cost
of at least C + 1. Further, in such a proper coloring, if Li is not placed in the
same color class as Ri for each i = 1, · · · , k, the coloring has cost at least C + ε.
Hence, a hypo-coloring of cost C or less must be proper, and place Li and Ri in
the same color class, for each i, which is only possible if I ′i and I ′′i are placed in
the same color class for each i = 1, · · · , k, and this yields a proper coloring of
the circular-arc graph G. ��

3.2 An O(log n)-approximation for Hypo-coloring

In this section we show that an optimal solution to the max-coloring problem
on any graph G is an O(log n)-approximation to the hypo-coloring problem with
input G. Since there is a 2-approximation algorithm for max-coloring on interval
graphs [20] this implies that there is an O(log n)-approximate solution for hypo-
coloring interval graphs.

Theorem 4. Given any graph G, an optimal max-coloring of G is an O(log n)-
approximation for hypo-coloring of G.

Proof. Let OPTH be an optimal hypo-coloring solution. We will prove the
claim by showing that there is a feasible maxcoloring solution whose cost is
O(log n)OPTH . Let S1, S2, . . . , Sk be the k color classes in OPTH and let the
cliques in Si be given by S1

i , S2
i , . . . , Spi

i . Let mi be the maximum number of
vertices in any clique in Si. In other words, mi = max1≤j≤pi |S

j
i |. Consider the

max-coloring solution in which there are color classes C1
i , C2

i , . . . , Cmi

i for each
Si in OPTH . For 1 ≤ x ≤ mi, the color class Cx

i is formed by including the xth

heaviest vertices from each of the cliques in Si. Since the cliques are disjoint,
so are the xth heaviest vertices from each of the cliques. Consider the heaviest
vertex v ∈ Cx

i and let v belong to clique Sy
i . Since v is the xth heaviest ver-

tex in Sy
i there must be x − 1 vertices in Sy

i of weight at least w(v) that are
placed in C1

i , C2
i , . . . , Cx−1

i . Hence, w(Cx
i ) ≤ Wi

x , where Wi is the weight of the
heaviest clique in Si. Thus C1

i , C2
i , . . . , Cmi

i is a feasible maxcoloring solution for
input Si with cost ≤ Wi + Wi

2 + . . . + Wi

mi
= WiHmi ≤ Wi(ln mi + 1). Thus the
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total cost of our maxcoloring solution for G becomes ≤
∑k

i=1 Wi(ln mi + 1) ≤∑k
i=1 Wi(ln m+1) = O(log m)

∑k
i=1 Wi = O(log m)OPTH where m is the num-

ber of vertices in the largest clique among all batches S1, S2, . . . , Sk. Since m ≤ n,
we have obtained a solution to maxcoloring of cost O(log n)OPTH . ��

The above analysis can be shown to be tight. Owing to lack of space, the details
are in the full version.
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Abstract. Given two sets σ, ρ of nonnegative integers, a set S of vertices
of a graph G is (σ, ρ)-dominating if |S∩N(v)| ∈ σ for every vertex v ∈ S,
and |S ∩ N(v)| ∈ ρ for every v /∈ S. This concept, introduced by Telle
in 1990’s, generalizes and unifies several variants of graph domination
studied separately before. We study the parameterized complexity of
(σ, ρ)-domination in this general setting. Among other results we show
that existence of a (σ, ρ)-dominating set of size k (and at most k) are
W[1]-complete problems (when parameterized by k) for any pair of finite
sets σ and ρ. We further present results on dual parametrization by n−k,
and results on certain infinite sets (in particular for σ, ρ being the sets
of even and odd integers).

1 Introduction

1.1 (σ, ρ)-Domination

Let σ, ρ be a pair of nonempty sets of nonnegative integers. A set S of vertices
of a graph G is called (σ, ρ)-dominating if for every vertex v ∈ S, |S∩N(v)| ∈ σ,
and for every v /∈ S, |S ∩N(v)| ∈ ρ. The concept of (σ, ρ)-domination was intro-
duced by J.A. Telle [18,19] (and further elaborated on in [13,20]) as a unifying
generalization of many previously studied variants of the notion of dominating
sets. See Table 1 for some examples.

It is well known that the optimization problems such as Maximum Inde-

pendent Set, Minimum Dominating Set, etc. are NP-hard. In many cases
of the generalized domination already the existence of a (σ, ρ)-dominating set
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Table 1. Overview of the special cases of (σ, ρ)-domination and their parameterized
complexity (when parameterized by the size of the set). (Here N and N0 denote the
sets of positive and nonnegative integers, respectively.)

σ ρ Problem name Parameterized Complexity
N0 N Dominating Set W[2]-complete
N N Total Dominating Set W[2]-hard
N0 {1} Efficient Dominating Set W[1]-hard
{0} N Indepependent Dominating Set W[2]-complete
{0} N0 Independent set W[1]-complete
{0} {1} (1-)Perfect Code(Indep. Eff. Dom. Set) W[1]-complete
{r} N0 Induced r-Regular subgraph W[1]-hard
{0} {0, 1} Strong Stable Set Unknown
{1} {1} Total Perfect Dominating Set Unknown

becomes NP-hard (e.g., when both σ and ρ are finite and nonempty, and 0 �∈ ρ
[18]). Hence attention was paid to special graph classes, e.g. interval graphs ([15]
shows polynomial-time solvability for any pair of finite σ, ρ), chordal graphs ([11]
shows a P/NP-c dichotomy classification) or degenerate graphs [12].

Since the establishment of the Parameterized Complexity Theory by Downey
and Fellows [7], domination-type problems have been among the first ones inten-
sively studied in the framework of this theory. (We assume the reader is familiar
with the concept of FPT and W[t] classes, otherwise we refer to [7,10] and [17] as
excellent textbooks.) It is well known that Independent Set is W[1]-complete
[6] and Dominating Set is W[2]-complete [5,7] (when parameterized by the size
of the set). A number of domination-type problems are considered in [2], where it
is shown (among other results) that Total Dominating Set is W[2]-hard and
that Efficient Dominating Set is W[1]-hard. Independent Dominating

Set is W[2]-complete [5], while Efficient Independent Dominating Set

(also called Perfect Code) is W[1]-complete ([6] shows W[1]-hardness and [3]
shows W[1]-membership). More results on parameterized complexity of problems
from coding theory can be found in [9]. The complexity of finding an r-regular
induced subgraph in a graph is studied in [16].

Parity constraints have been considered in [9]. A subset of a color class of
a bipartite graph is called odd (even) if every vertex from the other class has
an odd (even, respectively) number of neighbors in the set. Downey et al. show
that deciding the existence of an odd set of size k, an odd set of size at most
k, and an even set of size k are W[1]-hard problems; somewhat surprisingly, the
complexity of Even Set of Size at Most k remains open.

All these individual results concern special (σ, ρ)-dominating sets, and thus
call for a unifying approach. Our paper attempts to be a starting one by giving
general results for large classes of pairs σ, ρ. The second goal of our paper is
to study (many of) the above problems from the dual parametrization point of
view (looking for a set of size at least n− k, where k is the parameter), both for
the domination-type and parity-type problems.
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1.2 Notation and Overview of Our Results

We consider the following (σ, ρ)-domination problem

(σ, ρ)-Dominating Set of Size at most k
Input: A graph G.
Parameter: k.
Question: Is there a (σ, ρ)-dominating set in G of size at most k?

and its variants (σ, ρ)-Dominating Set of Size k, (σ, ρ)-Dominating Set

of Size at least n − k, and (σ, ρ)-Dominating Set of Size n − k, whose
meaning should be clear. All these problems ar parameterized by k, and in the
latter two, n denotes the number of vertices of the input graph. The first of our
main results determines the parameterized complexity for finite sets σ and ρ.

Theorem 1. Let σ and ρ be nonempty finite sets of nonnegative integers, 0 /∈ ρ.
Then both (σ, ρ)-Dominating Set of Size k and (σ, ρ)-Dominating Set of

Size at most k are W[1]-complete problems.

The hardness part is proved in Subsection 2.1, and the W[1]-membership is
proved in Subsection 2.2 in a stronger form when σ is only required to be recur-
sive but not necessarily finite.

We further study the dually parameterized problems and show in an even
more general way that these problems become tractable. In Section 3 we prove
the following theorem (here and throughout the paper, X = N0 \X for a set X
of integers).

Theorem 2. Let σ and ρ be sets of nonnegative integers such that either σ or σ
is finite, and similarly either ρ or ρ is finite. Then the (σ, ρ)-Dominating Set

of Size at least n− k problem is in FPT.

We show that a similar result cannot be expected for arbitrary recursive sets σ
and ρ. Even for the parity case (when we denote EVEN = {0, 2, 4, 6, . . .} and
ODD = {1, 3, 5, . . .}) we can prove W[1]-hardness.

Theorem 3. Let σ, ρ ∈ {EVEN,ODD}. Then both (σ, ρ)-Dominating Set

of Size n− k and (σ, ρ)-Dominating Set of Size at least n− k are W[1]-
hard problems.

As a tool for the previous result we consider the following parity problems on
bipartite graphs. Suppose that G is a bipartite graph and R, B is a bipartition
of its set of vertices (vertices of R are called red and vertices of B are blue). A
nonempty set S ⊆ R is called even if for every vertex v ∈ B, |N(v)∩S| ∈ EVEN,
and it is called odd if for every vertex v ∈ B, |N(v) ∩ S| ∈ ODD. The following
problem

Even Set of Size at least r − k
Input: A bipartite graph G = (R, B, E) and r = |R|.
Parameter: k.
Question: Is there an even set in R of size at least r − k?
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and its variants Even Set of Size r − k, Odd Set of Size at least r − k,
and Odd Set of Size r − k are the dually parameterized versions of bipartite
parity problems studied in [9]. We prove in Section 4 that all four of them are
W[1]-hard.

In the last section we present observations on FPT results for sparse graphs.

2 Complexity of the (σ, ρ)-Dominating Set of Size at

most k Problems - Proof of Theorem 1

2.1 W[1]-Hardness

We are going to reduce a special variant of the Satisfiability problem (the
proof of W[1]-hardness of this problem is omitted here).

At most α-Satisfiability

Instance: A Boolean formula φ in conjunctive normal form, without negated
variables.
Parameter: k.
Question: Does φ allow a satisfying truth assignment of weight at most k (i.e.,
at most k variables have value true) such that each clause of φ contains at most
α variables which evaluate to true?

Suppose that σ and ρ are nonempty finite sets of nonnegative integers, 0 /∈ ρ. Let
us denote pmin = min σ, pmax = maxσ, qmin = min ρ and qmax = max ρ. Further
we set t = max{i ∈ N0 : i /∈ ρ, i + 1 ∈ ρ} (since 0 /∈ ρ, t is correctly defined),
and α = qmax − t ≥ 1. We are going to reduce At most α-Satisfiability.
Due the space restrictions we give here only a sketch of the reduction. Complete
description will appear in the journal version of the paper.

We first construct several auxiliary gadgets. These gadgets “enforce” on a
given vertex the property of “not belonging to any (σ, ρ)-dominating set”, and
at the same time guarantee that this vertex has a given number of neighbors in
any (σ, ρ)-dominating set in the gadget. To describe the properties formally, we
will consider rooted graphs and introduce the following notion. Let G be a rooted
graph with a set of root vertices X . We call a set S ⊆ V (G) a (σ, ρ)-dominating
set for G if |N(v) ∩ S| ∈ σ for every v ∈ S \ X , and |N(v) ∩ S| ∈ ρ for every
v /∈ S, v /∈ X (i.e., the conditions from the definition of (σ, ρ)-domination are
required for all vertices except the roots).

The first gadget is a graph F (s) (s is a positive integer) with s independent
roots x1, . . . , xs of degree one, all adjacent to the same vertex, say a1, which
has the following property: Every (σ, ρ)-dominating set S for F (s) contains a1,
contains none of the roots, and all such sets have the same size f = f(σ, ρ).

The second gadget is a graph F ′(s) (s is a positive integer) with s independent
roots y1, . . . , ys of degree one, all adjacent to the same vertex, say x. It has the
following property: Every (σ, ρ)-dominating set S for F ′(s) contains none of
the roots, neither it contains their common neighbor x, and all such sets have
the same size f ′ = f ′(σ, ρ).
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A selection gadget R(l) (l is a positive integer) is a graph rooted in a clique
X containing l vertices, and it satisfies the following property: Every (σ, ρ)-
dominating set S for R(l) contains exactly one root vertex, and all such sets
have the same size r = r(σ, ρ). Moreover, for every root vertex x ∈ X , there
exists a (σ, ρ)-dominating set S in R(l) which contains x (note that here we
require that even the root vertices are dominated in a proper way).

Now we describe the reduction. Let φ be a formula as an input of the At most

α-Satisfiability problem. Let x1, . . . , xn be its variables, and let C1, . . . , Cm

be the clauses.
We take k copies of the graph R(n+1) denoted by R1, . . . , Rk, with the roots

of Ri being denoted by xi,j . For each clause Cs, a vertex Cs is added and joined
by edges to all vertices xi,j , i = 1, . . . , k such that the variable xj occurs in the
clause Gs. Now we distinguish two cases:

t = 0. In this case a copy of F ′(m) is introduced, and the m roots of this
gadget are identified with vertices C1, . . . , Cm. In this case we set k′ = kr + f ′.

t > 0. We construct t copies of F (m), and the roots of each copy are identified
with C1, . . . , Cm. In this case we set k′ = kr + tf .

The resulting graph is called G. The proof of W[1]-hardness is then concluded
by the following lemma (whose proof is omitted).

Lemma 1. The formula φ allows a satisfying truth assignment of weight at
most k such that each clause of φ contains at most α variables with value true if
and only if G has a (σ, ρ)-dominating set of size at most k′. Moreover, in such
a case the size of any (σ, ρ)-dominating set is exactly k′.

2.2 W[1]-Membership

Here we prove a slightly stronger claim.

Theorem 4. Let σ be recursive, and suppose that ρ is finite. Then the (σ, ρ)-
Dominating Set of Size at most k and (σ, ρ)-Dominating Set of Size k
problems are in W[1].

To show the membership of the problems in W[1], we use the characterization
of W[1] by Nondeterministic Random Access Machines as proposed in [10].

A nondeterministic random access machine (NRAM) model is based on the
standard deterministic random access machine (RAM) model. A single nonde-
terministic instruction ”GUESS” is added, whose semantics is: Guess a natural
number less than or equal to the number stored in the accumulator and store it in
the accumulator. Acceptance of an input by an NRAM is defined as usually for
nondeterministic machines. The steps of computation of an NRAM that execute
a GUESS instruction are called nondeterministic steps.

Definition 1. An NRAM program P is tail-nondeterministic k-restricted if
there are computable functions f and g and a polynomial p such that on ev-
ery run with input (x, k) ∈ Σ∗ × N the program P
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– performs at most f(k) · p(n) steps;
– uses at most the first f(k) · p(n) registers;
– contains numbers ≤ f(k) · p(n) in any register at any time;

and all nondeterministic steps are among the last g(k) steps of the computation.
Here n = |x|.

The following characterization is crucial for our proof:

Theorem 5 ([10]). A parameterized problem P is in W[1] if and only if there
is a tail-nondeterministic k-restricted NRAM program deciding P .

Now we introduce our program SigmaRho that takes a graph G and a positive
integer k as an input and there is an accepting computation of SigmaRho on
G and k if and only if there is a (σ, ρ)-dominating set of size exactly k in G.
We present it in a higher level language that can be easily translated to the
NRAM instructions. It is straightforward to show that this program is tail-
nondeterministic k-restricted, the formal proof will appear in journal version of
the paper and we omit it here. Recall that qmax = max ρ. Here

(
V
r

)
denotes the

set {R ⊆ V | |R| = r}.

Program SigmaRho(G = (V, E), k)
for r := 1 to qmax + 1 do forall R ∈

(
V
r

)
do1

B(R) := |
⋂

u∈R

NG(u)| = |{v | v ∈ V,∀u ∈ R : uv ∈ E}|;

Guess k distinct vertices v1, . . . , vk, denote S = {v1, . . . , vk};2

for i := 1 to k do if |{vj | vivj ∈ E}| /∈ σ then REJECT;3

for r := qmax + 1 downto 1 do4

D(r) :=
∑

R∈(S
r)

(B(R) − |
⋂

u∈R

NG(u) ∩ S|) =

=
∑

R∈(S
r)

|{v | v ∈ V \ S,∀u ∈ R : uv ∈ E}|;

C(r) := D(r) −
qmax∑
t=r+1

((
t

r

)
· C(t)

)
;

if r /∈ ρ and C(r) �= 0 then REJECT;

if 0 /∈ ρ and
∑

r∈ρ C(r) �= n − k then REJECT; else ACCEPT;5

Lemma 2. Let G be a graph and k ∈ N. There is an accepting computation
of SigmaRho on G and k if and only if there is a (σ, ρ)-dominating set of size
(exactly) k in G.
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Proof. We will show that the program SigmaRho accepts the input if and only if
the set S guessed in step 2 is a (σ, ρ)-dominating set of size k for the input graph
G. It is easy to see that the members of the set S must satisfy the σ-condition
due to step 3. Now observe that the number D(r) computed in step 4 denotes
the number of pairs (R, v) such that R is a subset of S of size r and v is a vertex
not in S that has all vertices from R as neighbors (the first term counts all such
vertices v in V and the second term subtracts such vertices v that are in S).
Hence this D(r) represents the number of vertices outside S which have at least
r neighbors in S with multiplicities, in particular a vertex with t neighbors in
S is counted

(
t
r

)
times. Since in the first run of the cycle 4 with r = qmax + 1

we check that there is no vertex outside S with more than qmax neighbors in S,
C(r) represents the number of vertices outside S which have exactly r neighbors
in S. It is now clear that if r /∈ ρ and there is a vertex outside S with r neighbors
in S (i.e., C(r) > 0), then S cannot form a (σ, ρ)-dominating set. In the last
step 5 we sum up the number of vertices outside S that satisfy the ρ-condition
and thus S (which satisfies all the conditions checked by the previous steps) is
(σ, ρ)-dominating if and only if this sum is equal to the total number of vertices
outside S, i.e., n− k, or 0 ∈ ρ.

Proof (Proof of Theorem 4). First observe that (σ, ρ)-Dominating Set of Size

at most k can be easily reduced to (k calls of) (σ, ρ)-Dominating Set of Size

k. Hence it is enough to prove the membership for the second problem. But that
is a direct consequence of Theorem 5 together with Lemma 2 and Program
SigmaRho being tail-nondeterministic k-restricted.

3 Complexity of the (σ, ρ)-Dominating Set of Size at

least n − k Problems

Theorem 2. Let σ and ρ be sets of nonnegative integers such that either σ or σ
is finite, and similarly either ρ or ρ is finite. Then the (σ, ρ)-Dominating Set

of Size at least n− k problem is in FPT.

Proof. We present an algorithm that is based on the bounded search tree tech-
nique. At the beginning the algorithm includes all vertices into the set S and
then tries recursively excluding some of the vertices to make S (σ, ρ)-dominating.
Once a vertex is excluded, it is never included in the set again (in the same branch
of the algorithm). Obviously at most k vertices can be excluded from S to fulfill
the size constraint.

We call a vertex v satisfied (with respect to the current set S) if it has the
right number of neighbors in S (i.e., v ∈ S and |N(v) ∩ S| ∈ σ or v /∈ S and
|N(v) ∩ S| ∈ ρ), otherwise we call it unsatisfied. Let p̃max denote maxσ if σ is
finite and max σ if σ is finite. Similarly let q̃max denote max ρ or max ρ. (It is
assumed here that max ∅ = 0.) Finally let b denote max{p̃max, q̃max}. We call a
vertex v big if deg(v) > b + k and small otherwise.

The main idea of the algorithm is that there is at most one way to make an
unsatisfied big vertex satisfied (to exclude it from S) and if this does not work,
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there is no (σ, ρ)-dominating set at all. On the other hand to satisfy a small
vertex, we must either exclude it or one of its first b neighbors that were in S.

Procedure Exclude(S)
if there is no unsatisfied vertex then Return(S);Exit;
if |S| = n − k then Halt;
let v be an unsatisfied vertex;
if v is big then

if v ∈ S and ρ is infinite then Exclude(S \ v);
else Halt;

else
if v ∈ S then Exclude(S \ v);
let {u1, . . . , ur} = S ∩ N(v) be the set of included neighbors of v;
if r = 0 then Halt;
for i := 1 to min{b + 1, r} do Exclude(S \ {ui}).

The algorithm consists of a single call Exclude(V ) and returns the set S
returned by the procedure or NO if no set was returned.

4 Complexity for the Case σ, ρ ∈ {EVEN, ODD}
As a counterpart to the results of [9] we first show that all four parity problems
for Red/Blue bipartite graphs are hard under the dual parametrization.

Theorem 6. The Even Set of Size r − k, Even Set of Size at least

r−k, Odd Set of Size r−k, and Odd Set of Size at least r−k problems
are all W[1]-hard.

Proof. It was proved in [9] that
Odd Set of Size at most k
Input: A bipartite graph G = (R, B, E).
Parameter: k.
Question: Is there an odd set in R of size at most k?
is W[1]-hard. It should be noted that W[1]-hardness was stated for the exact
variant of the problem (i.e. for the question: Is there an odd set in R of size k?),
but for our variant of the question, the proof of [9] works the same. We show
that the problem remains W[1]-hard if all blue vertices have odd degrees (and
also if all of them have even degrees). Then we deduce the claims by considering
the set R \ S for a would-be odd set S ⊂ R.

The main result of this section is the hardness of the (EVEN—ODD)-
domination problems under the dual parametrization.

Theorem 3. Let σ, ρ ∈ {EVEN,ODD}. Then the (σ, ρ)-Dominating Set of

Size n− k and (σ, ρ)-Dominating Set of Size at least n− k problems are
W[1]-hard.
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Proof. We prove this theorem for the (σ, ρ)-Dominating Set of Size at least

n−k problem. The proof for the (σ, ρ)-Dominating Set of Size n−k is done by
similar arguments. Also we give here only the proof for the case σ = ρ = EVEN.
The proofs for the other three cases use the similar ideas and are omitted here.
We use the following lemma:

Lemma 3. The Even Set of Size at least r−k problem remains W[1]-hard
if all red vertices have even degrees.

Proof. We reduce the Even Set of Size at least r− k problem by replacing
each blue vertex by two vertices with the same neighborhoods. Trivially S ⊆ R
is an even set in the obtained graph if and only if it is an even set in the original
graph.

If all red vertices have even degrees then S ⊆ R is an even set if and only if
S∪B is an (EVEN,EVEN)-dominating set. It follows immediately that G has
an even set of size at least r − k if and only if G has a (σ, ρ)-dominating set of
size at least n− k for σ = ρ = EVEN.

5 Complexity of the (σ, ρ)-Dominating Set of Size (at

most) k Problem for Sparse Graphs

It is well known that many problems which are difficult for general graphs can
be solved efficiently for sparse graphs. Very general results of such kind were
established in [4]. Let v be a vertex of a graph G. For a positive integer r, denote
by Nr[v] the closed r-neighborhood of v i.e. the set of vertices of G at distance
at most r from v. Let G be a class of graphs. Suppose that there is a family of
graphs {Hr} such that for each graph G ∈ G and for any v ∈ V (G),

G[Nr(v)] excludes Hr as a minor for r ≥ 1. It is said that the graph class
G is locally minor excluding. It can be noted that e.g. planar graphs, graphs of
bounded genus, H-minor-free graphs are locally minor excluding graph classes.
It was proved in [4] that if G is a locally minor excluding class of graphs, then
deciding first-order properties (i.e. properties which can be expressed in the
first-order logic) is FPT on G. The next claim follows immediately from this
result.

Theorem 7. Let σ and ρ be sets of nonnegative integers such that either σ or σ
is finite, and similarly either ρ or ρ is finite. Then the (σ, ρ)-Dominating Set

of Size (at most) k problem is FPT on locally minor excluding graph classes.

It is known that some domination problems are FPT for a more general class
of degenerate graphs (see e.g. [1,14]). These results can be easily generalized for
(σ, ρ)-domination problems for some special sets σ and ρ. It is an interesting
open problem whether the results of Theorem 7 can be extended to degenerate
graphs.
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Abstract. We study the problem of finding a minimum tree spanning
the faces of a given planar graph. We show that a constant factor ap-
proximation follows from the unconnected version if the minimum degree
is 3. Moreover, we present a polynomial time approximation scheme for
both the connected and unconnected version.

1 Introduction

Given a planar graph, what is the smallest subgraph connecting all the faces?
The simplicity and naturalness of this question is the main motivation for the
study in this paper. Bodlaender et al. [5] call this the face cover tree problem and
to the best of our knowledge they were the first to study it. They show that the
problem can be solved efficiently for edge-weighted graphs of bounded treewidth.
In this paper we consider unweighted planar graphs with the minimum degree
at least three. This is a natural restriction since allowing vertices of degree two
makes its complexity polynomially equivalent to the problem with polynomially
bounded edge weights.

Interestingly, the problem does not depend on the embedding since any tree
hitting all faces will, in fact, hit all cycles of the graph.

Lemma 1. Let G be a connected planar graph and T ⊆ G be a tree such that,
for a given embedding of G, every face has at least one vertex in T . Then, every
cycle of G has a vertex in T .

Proof. Every cycle separates the embedded graph in an inner and outer part.
Each of the two parts contains at least one face. Therefore, the cycle and the
tree must have at least one vertex in common. ��

The problem of finding the smallest set of vertices hitting all cycles is well-
studied and known as the feedback vertex set problem. A natural variant for
planar graphs is the problem of hitting all faces with a minimum number of ver-
tices. By Lemma 1, the connected versions of these two problems are equivalent
and independent of the embedding. This is the problem we study here and call
it the connected feedback vertex set problem.
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Planar Feedback Vertex Set (Planar FVS): Given an unweighted planar
graph, find the smallest set S of vertices such that every cycle of the graph has
at least one vertex in S.
Face Hitting Set (FHS): Given an unweighted planar graph with an embed-
ding, find the smallest set S of vertices such that every face of the graph has at
least one vertex in S.
Connected Planar Feedback Vertex Set (Connected Planar FVS): Given
an unweighted planar graph, find the smallest tree T such that every cycle (or
equivalently, every face in an embedding) of the graph has a vertex in T .

1.1 Related Results

The feedback vertex set problem is extensively studied. It is APX-hard in general
graphs and can be approximated efficiently within a factor 2; see Becker and
Geiger [4] and Bafna et al [1]. For planar graphs the problem is NP-hard [12]
and a PTAS was given by Demaine and Hajiaghayi [8]. Goemans and Williamson
apply the primal-dual method to obtain a (9/4)-approximation [13], which was
later reduced to 2 by Chudak et al [7].

Regarding the connectivity constraint, two obvious related problems, are the
problem of spanning all vertices and the problem of spanning all the edges of the
graph. The latter is known as connected vertex cover and was introduced in 1977
by Garey and Johnson [11], who showed it to be NP-hard even when restricted
to planar graphs with maximum degree 4. The 2-approximation algorithm for
vertex cover in general graphs by Savage [14] transfers directly to the connected
problem. Recently, Escoffier et al. [10] have shown that connected vertex cover
admits a PTAS for planar graphs. A PTAS for connected dominating set in
planar graphs was given in [8] as well.

1.2 Our Results

We give an overview on structural properties, complexity and approximabil-
ity results for the connected feedback vertex set problem in planar graphs. We
show that if the minimum vertex degree is three, then the ratio between the
connected and unconnected problem is bounded by a constant. This provides a
polynomial time constant approximation algorithm for connected planar FVS.
Another interesting consequence of this structural result is that the diameter
of a 3-polytope is in the order of the smallest set of vertices hitting all facets.
Further, we show that FHS and connected planar FVS are strongly NP-hard
and give polynomial time approximation schemes for both problems. Along the
text we pose several interesting open questions.

2 Structural Results

2.1 Insightful Observations

We start with some simple lemmas to get an insight in the relation between
FVS and FHS and the dependence on the embedding. Then we give the main
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result of this section on the relation between connected and unconnected FVS

in planar graphs. We end with a small discussion on the application to diameters
of polytopes.

Lemma 2. For any planar graph G and embedding ΓG with at least two faces
we have FHS(ΓG) ≤ FVS(G). Otherwise, FHS(ΓG) = 1 and FVS(G) = 0.

Lemma 3. For any planar graph G with faces F we have FVS(G) ≤ |F | − 1
and this bound is tight.

The proofs of Lemmas 2 and 3 are not complicated and we leave those for a
reader.

Lemma 4. For any planar graph G and embedding ΓG we have FVS(G) ≤
2FHS(ΓG) − 1 and this bound is tight for 0, 1 or 2-connected graphs. If G is
3-connected then FVS(G) ≤ 2FHS(ΓG)− 2.

Proof. Let S1 be a minimum FHS in ΓG. Now consider the graph H containing
all uncovered cycles and let FH be its faces. Each face f in H must contain a
point from S1 in its interior. Hence, |S1| ≥ |FH |. Let S2 be a minimum FVS in
H . Then by Lemma 3 |S2| ≤ |FH | − 1 ≤ |S1| − 1. Note that S1 ∪ S2 is a FVS in
G. Hence, FVS(G) ≤ |S1|+ |S2| ≤ 2|S1| − 1 = 2FHS(ΓG)− 1. ��

For 3-connected graphs the embedding is unique and so is the minimum value
of FHS. In general the optimal value differs by at most a factor two for different
embeddings and this bound is tight; see Figure 1(A).

Lemma 5. Let Γ1, Γ2 be two embeddings of planar graph G. Then FHS(Γ1) ≤
2FHS(Γ2)− 1.

Proof. If G contains only one face (i.e., it is a forest), then FHS(Γ1)=FHS(Γ2)=
1. In the other case Lemma 2 says FHS(Γ1) ≤ FVS(G). By Lemma 4 we have
FVS(G) ≤ 2FHS(Γ2)− 1. Combining these inequalities the lemma follows. ��

(A) (B)

Fig. 1. (A) Tight example for the dependence on the embedding. If all k triangles
are directed inwards, the optimal FHS has size k + 1. If all are directed outwards the
optimal value is 2k + 1. (B) In an infinite honeycomb graph the ratio between FHS

and the connected FVS is 3.
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2.2 FVS and FHS in Planar Graphs with Minimum Degree 3

The minimum FHS may be arbitrarily much smaller than the connected FVS

if we allow vertices of degree 2. However, restricting to a minimum degree of
3 ensures a constantly bounded ratio between the connected and unconnected
problem.

Theorem 1. Let G be a connected planar graph with minimum degree 3 and
let Opt

C be the optimal value for connected planar FVS. Further, let Opt be
the optimal value for FHS, for some given embedding of G. Then, Opt

C = 0 if
Opt = 1 and Opt

C ≤ 11Opt− 14 otherwise.

Proof. The case Opt = 1 is trivial. Now assume Opt ≥ 2. The outline of the
proof is as follows. Given a planar graph G = (V, E) plus embedding, let S be
a face hitting set and T be a minimum Steiner tree on S. We will construct
curves in the embedding that go from edges in T to vertices in S such that no
two curves intersect. On one hand, the number of curves will be Ω(|T |). On the
other hand, we will see that non-intersection of curves implies that their number
is O(|S|). Combined we get |T | = O(|S|).

To simplify the construction of curves we define a graph G′ that follows from
G after contractions of edges. We can partition T in a collection P of at most
2|S| − 2 paths such that any two paths may only have an endpoint in common.
By minimality of T , any path is a shortest path between its endpoints. We leave
any path Pi ∈ P of length 1, 2 or 3 unchanged, where the length is the number
of edges. If the length Pi is two, we denote its inner vertex by qi. If the length is
three we denote one of its inner vertices by qi. Any path Pi of length at least four
is reduced to length exactly four by contracting all points that are at distance
at least two from the two endpoints of Pi in a single point qi. Let the resulting
(multi) graph be G′ = (V ′, E′). The following properties are easy to verify. A
short justification is given below.

(i) All points q1, q2, . . . , are different.
(ii) If length(Pi) ≤ 3 then degree(qi) ≥ length(Pi).
(iii) If length(Pi) ≥ 4 then degree(qi) ≥ length(Pi)− 1.
(iv) Solution S is a FVS for G′ as well.
(v) For any v ∈ V ′, degree(v) ≥ 3.

Explanation: (i) Paths only share endpoints and these are not contracted, i.e.,
no edge was contracted to any of those points. (ii) Obvious. (iii) Every point
on Pi has at least one edge not in Pi. (iv) A contraction creates no extra faces.
Vertices in S are not contracted. (v) The contraction of two adjacent points with
degrees d1, d2 ≥ 3 results in a point with degree d1 + d2 − 2 ≥ 4.

Claim. There are no multiple edges in G′.

Proof. Since G is a simple graph, a multiple edge can only appear if at least
one of the two endpoints is a contracted point. More precisely, either (i) there
are edges (u1, v) and (u2, v) in E such that u1 and u2 are contracted in a single
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points qi, or (ii) there are edges (u1, v1) and (u2, v2) in E such that u1 and u2
are contracted in qi and v1 and v2 are contracted in qj .

In case (i), the point v cannot be on the part of Pi between u1 and u2 since
then all three points would be contracted in qi. Therefore, the edges (u1, v) and
(u2, v) plus the part of Pi between u1 and u2 form a simple cycle C in G. By
Lemma 1, C must have a vertex from T and this can only be v. But then, we
can strictly reduce the length of the T as follows. Remove from T the path from
u1 to u2. Assume, w.l.o.g., that u1 and v are in the same component. Now add
edge (u2, v) and remove the remaining redundant path to u1. The argument for
(ii) is similar. The edges edges (u1, v1), (u2, v2) plus the part of Pi between u1
and u2 and the part of Pj between v1 and v2 form a simple cycle in G and must
therefore contain a point from T . But there is no such point on these parts by
definition. ��

Note that a face in G′ may have more than one vertex from S. For each face
f we fix one vertex s(f) ∈ S. Now, consider a point qi and let Ni be the set
of neighboring edges whose endpoints are not in S. For each i with |Ni| ≥ 2
we do the following. Consider two edges from Ni that are consecutive in the
embedding, i.e., they appear consecutively among edges from Ni when we walk
around qi. Let f be a face that touches qi between these edges. We draw a curve
inside f from qi to s(f). Call this a face-curve. We do this for all |Ni| pairs of
consecutive edges of qi. If, on the other hand, |Ni| = 0 or |Ni| = 1 we add a
curve from qi to each neighbor that is an element from S. Call these edge curves.
Finally, for each path Pi of length one in G we define the point in the plane on
the middle of edge Pi as ri and draw one curve from ri to s(f), where f is a
face adjacent to ri. These curves are also called face-curves. Note that for each
path Pi ∈ P , we either defined a vertex qi in G′ or defined a point ri in the
embedding of G′.

We define the bipartite (multi-)graph H = (Π ∪ Σ,A) as follows. Let Π =
{π1, . . . , π|P|} and Σ = {σ1, . . . , σ|S|}. For each curve defined in the process
above there is an edge in H , i.e., for each curve from qi or ri to sj there is an
edge (πi, σj).

Claim. The graph H is planar and degree(πi) ≥ length(Pi)− 1 for each Pi ∈ P .

Proof. The first follows directly from the following observations. All points qi

and ri are different and none coincides with points from S. Each curve either
lies inside a single face or corresponds to a single edge. All curves inside a face
have a common endpoint.

If length(Pi) = 1 then degree(πi) = 1. If length(Pi) ∈ {2, 3} then degree(qi) ≥
3. Now, either |Ni| ≥ 2 in which case we added |Ni| face-curves, or |Ni| ≤ 1 in
which case we added degree(qi) − |Ni| ≥ 3 − 1 = 2 edge-curves. Now assume
length(Pi) ≥ 4. Note that in that case no neighbor of qi can be a vertex s ∈ S,
since in that case we can reduce the length of T ⊆ G by adding edge (qi, s)
and removing the path in T from qi to one of the two endpoints of Pi. Hence,
|Ni| ≥ degree(qi) ≥ length(Pi)− 1. ��
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We will show that H has few edges. Consider the embedding of H defined nat-
urally by the curves in the embedding of G′. In general, H may have faces of
length two and may be disconnected. To facilitate the analysis we add edges to
H until it is connected. Note that we can always do this without creating new
faces of length two. Denote the new graph by H ′. We prove through Claim 2.2
that H ′ does not have many edges by showing that it has no faces of length two.
In the proof we use the next general statement on planar graphs.

Claim. Let G = (V, E) be a simple planar graph with |V | ≥ 3 and s, w ∈ V such
that degree(v) ≥ 3 for all v ∈ V \ {s, w} and degree(w) ≥ 1. Then, there is at
least one face that does not contain s on its boundary.

Proof. Remove s from G and consider a component C containing some v ∈
V \ {s, w}. Since |V | ≥ 3 this component exists. If w ∈ C then its degree is at
least one. Any other vertex has degree at least two. The sum of the degrees in
C is then at least 2n′ − 1, with n′ the number of vertices in C. But then C is
not a forest and must therefore have a cycle. Since s is not on the cycle there is
a face not connected to s. ��

Claim. There are no faces of length two in H ′.

Proof. Suppose there is a face f of length two in H ′. Since H ′ is connected, there
cannot be a point σj ∈ Σ inside f since it has to be connected to at least one
of the two points of f , in which case f has length larger than two. Given that
f has no points from Σ in its interior, the two curves in G′ that correspond to
the two edges of f do not enclose a point from S. We will show that this leads
to a contradiction.

For each ri we defined exactly one curve. So the two curves do not start
from a point ri. For each qi we either defined edge-curves (at most one to each
neighbor) or defined face-curves. Therefore the two curves must both be face-
curves. Assume they go from qi to sj . Let J ⊆ G′ be the graph induced by all
vertices enclosed by the two curves and including qi and sj . We know that sj

is the only vertex from S in J and, by construction, there is at least one edge
(qi, w) ∈ Ni in J . Since w /∈ S we have w �= sj and J has at least three vertices:
qi, w and sj . Further, any vertex v /∈ {qi, sj} in J has degree at least 3 in J . By
Claim 2.2, graph J ⊆ G′ has no multiple edges. Now, it follows from Claim 2.2
that there must be a face of J that is not connected to sj. A contradiction. ��

The proof of Theorem 1 now easily follows from an upper and lower bound on
the number of edges |A| in H . By Claim 2.2 we have

|A| =
∑

πi∈Π

degree(πi) ≥
∑

Pi∈P
(length(Pi)− 1) = |T | − |P|. (1)

Since we assumed |S| ≥ 2, the number of vertices in H is |Π |+ |Σ| ≥ 1 + 2 = 3.
Let n, m, f be, respectively, the number of vertices, the number of edges, and
the number of faces in H ′. Each face in H ′ is bounded by at least three edges so
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2m ≥ 3f . Since H ′ is connected we know from Euler’s formula that n+f = m+2.
Hence, 2m ≥ 3f = 3m + 6− 3n implying m ≤ 3n− 6. We obtain,

|A| ≤ m ≤ 3n− 6 = 3(|Π |+ |Σ|)− 6.

Combined with (1) we get that

|T | − |P| ≤ |A| ≤ 3(|Π |+ |Σ|)− 6 = 3(|P|+ |S|)− 6. (2)

In the definition of P we remarked that |P| ≤ 2|S| − 2. This combined with (2)
gives

|T | ≤ 4|P|+ 3|S| − 6 ≤ 4(2|S| − 2) + 3|S| − 6 = 11|S| − 14.

If S is an optimal solution for the unconnected problem, then

Opt
C ≤ |T | ≤ 11|S| − 14 = 11Opt− 14. ��

Question 1. What is the right ratio for Theorem 1? We conjecture it is 3. See
Figure 1(B).

2.3 Diameter of Polytopes

The 1-skeleton of a 3d-polytope is a 3-connected planar graph and vice versa. We
proved that the smallest tree spanning all facets is in the order of the number
of points hitting all facets. An easy corollary is that the diameter is not much
larger. The famous Hirsch conjecture states that the diameter of any d-polytope
is at most n− d, with n the number of facets. It is known to be true for d = 3.
Note that the face hitting set may be much smaller than the number of faces.
We believe the next easy corollary is of its own interest.

Corollary 1. The diameter of a 3-dimensional polytope P is O(FHS(P)).

Proof. Let s1, s2 be vertices of the polytope P and S a smallest set covering all
the facets. If si /∈ S we add a hyperplane that just cuts off si. The new polytope
P ′ has at most two extra facets and we can cover all facets by at most |S| + 2
vertices. These vertices are spanned by tree of size at most 11(|S| + 2) − 14 =
11|S| + 4. Clearly, the tree in P ′ induces a tree in P of at most the same size
and which connects s1 and s2. ��

A similar statement for higher dimensions should depend on the dimension d. For
example, the facets of a d-dimensional cube are covered by two opposite vertices
while the diameter is d. Hence, the diameter of a d-cube P is d/2·FHS(P), where
FHS is the minimum facet hitting set. Barnette [3] proved that the diameter of
a d-polytope is O(2d(n− d)). Can we replace the n by the minimum FHS?

Question 2. Is there a function f(d) such that for any d-dimensional polytope
P , the diameter is bounded by f(d)FHS(P)?
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3 Complexity and Approximation

3.1 NP-Hardness of FHS and Connected FVS

Bodlaender et al. [5] show that connected FVS with maximum degree 4 is NP-
hard even if every edge has either unit length or an input dependent length K.
They reduce from the connected vertex cover problem in planar graphs. Garey
and Johnson[11] show that the latter problem is already NP-hard if the maximum
degree is 4. To prove NP-hardness for unit lengths we modify the original proof
from [11]. NP-hardness of FHS follows easily from the reduction we use for the
connected version.

Theorem 2. FHS is NP-hard in planar graphs with maximum degree 6 and
connected FVS is NP-hard in planar graphs with maximum degree 9.

Proof. We concentrate on the proof for the connected FVS problem and we leave
the proof for FHS to the extended journal version of this paper. We reduce from
the vertex cover problem in planar graphs with maximum degree 3, which is
known to be NP-hard [11]. Given a planar graph G = (V, E) with maximum
degree 3, we fix some embedding. Let F be the set of faces. We replace each
edge by a graph on 10 vertices as in Figure 2. Call this a bridge. Let the size of a
face be the length of a closed walk along the edges of the face. In each face f of
size k we add two rings: an outside ring on 5k vertices and an inside ring on 15k
vertices. Connections between the rings and bridges are illustrated in Figure 2.
To enhance the counting we do this for the outer face as well. (Not shown in the
figure.) The newly constructed graph G′ has maximum vertex degree 9. We claim
that G has a vertex cover of size s if and only if G′ has a connected feedback
vertex set of size s + 12|E|+ |F |. We omit this technical proof and present it in
the full length journal version of this paper. ��

G’ G

Fig. 2. The reduction. Construction for the outer face is not shown. The encircled
vertices indicate a vertex cover in G and a connected feedback vertex set in G′.

3.2 Approximation Schemes for FHS and Connected FVS

First, we consider the connected FVS. We assume that the minimum vertex
degree in the graph is at least 3. The polynomial time approximation scheme
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is a Baker’s type algorithm; see Baker [2]. First, we define levels of the planar
embedding following the recursive procedure: define level 1 of the embedding
as the set of vertices incident to the exterior face of the embedding; assume we
constructed level j, then level j + 1 is defined as the set of vertices incident to
the exterior face of the embedding after removal of the first j levels.

Given a desired approximation precision ε > 0, let k = 2�(log n)/ε�. Let T
be a minimum tree hitting all faces in G and let OPT = |V (T )| − 1. For any
0 ≤ j ≤ k− 1 define set Vj as the union of levels i such that i ≡ j mod k. Since
sets Vj , 0 ≤ j ≤ k−1, define a partition of V (G) into k subsets, there is a subset
V� containing at most OPT/k vertices from T . Denote q = |V� ∩ V (T )|. Notice
that we do not know in advance values � and q. So, the algorithm enumerates
all possibilities for those values and chooses the values providing the shortest
tree hitting all faces. As 1 ≤ � ≤ k and 1 ≤ q ≤ OPT/k, this enumeration adds
a factor O(n) in the running time. From now, we assume that the algorithm
picked correct values � and q.

Consider k + 1 consecutive levels with the first and the last levels from V�.
We call a subgraph induced by such set of levels a slice. Clearly, any slice is
a (k + 1)-outerplanar graph. By Bodlaender et al [5], the minimum FHS in k-
outerplanar graphs can be found in time O(n3 + 29.5539k). Thus, by definition
of k, we can solve the problem on any slice in polynomial time. Using the same
algorithm as in [5], we can solve in polynomial time even more general problem:
given a slice and an arbitrary number 1 ≤ r ≤ n, we have to find a minimum
forest of at most r components that hits all faces of the slice. We omit the proof
of this simple adjustment.

Notice that T can be seen as a collection of at most q +1 trees such that each
of these trees is located in exactly one slice. Given the minimum forests for each
slice and each number of components, by straightforward dynamic program we
find the minimum forest hitting all faces of G with at most q + 1 components,
each located in exactly one slice. Let T ′ be such forest. Notice, E(T ′) ≤ OPT .

Now, we have a forest T ′ of at most q +1 components that hits all faces in G.
Moreover, this forest is shorter than tree T . The only question remains: how to
connect the components of T ′ at small cost? For any two components S and S′ of
T ′, let distance d(S, S′) be defined as the length of the shortest path connecting
S and S′. On this metric, take a minimum spanning tree M . If (S, S′) ∈ E(M),
we connect S and S′ with the corresponding shortest path. In this way we obtain
a connected graph that hits all faces. Hence, we can find a tree of length at most
OPT +

∑
(S,S′)∈E(M) d(S, S′).

Lemma 6.
∑

(S,S′)∈E(M) d(S, S′) ≤ εOPT .

Proof. As T ′ has at most q+1 components, M contains at most q edges. Assume
there is an edge (S, S′) in M of length greater than εOPT/q. Since OPT ≥ qk ≥
2 logn/ε, we have that d(S, S′) > 2 logn. Consider the corresponding shortest
path between S and S′. Take a vertex v in the middle of this path. Let the set
of faces of G which are not incident to v be referred as F . Consider the distance
from v to f ∈ F by mean the length of the shortest path from v to the furthest
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vertex incident to f . By choice of v and the assumption that d(S, S′) > 2 log n,
the distance from v to any face from F is greater than log n. Therefore, the
subgraph of G induced by all vertices on distance at most 1 + log n from v is
a tree. Since minimum degree in G is at least 3, the number of vertices in such
tree is more than n. A contradiction.

Now, we summarize the main results of this section in the following theorem and
corollary.

Theorem 3. Given a planar graph G of minimum degree 3 and ε > 0, the
algorithm above constructs in polynomial time a tree hitting all faces of G with
length at most (1 + ε)OPT .

Applying literally the same modifications to the Baker’s algorithm as in Epp-
stein [9] and Bodlaender and Grigoriev [6] we derive the following corollary.

Corollary 2. The connected feedback vertex set face hitting set problem on
graphs embeddable on a surface of bounded genus and having minimum vertex
degree 3 admits a polynomial time approximation scheme.

Without the connectivity constraint the problem becomes much easier. A PTAS
for FHS follows directly from the discussion above and we leave the proof to the
reader.

Theorem 4. The face hitting set problem on graphs embeddable on a surface of
bounded genus admits a polynomial time approximation scheme.
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Abstract. First-order logic is known to have limited expressive power
over finite structures. It enjoys in particular the locality property, which
states that first-order formulae cannot have a global view of a structure.
This limitation ensures their low sequential computational complexity.
We show that the locality impacts as well on their distributed computa-
tional complexity. We use first-order formulae to describe the properties
of finite connected graphs, which are the topology of communication net-
works, on which the first-order formulae are also evaluated. We show that
over bounded degree networks and planar networks, first-order proper-
ties can be frugally evaluated, that is, with only a bounded number of
messages, of size logarithmic in the number of nodes, sent over each
link. Moreover, we show that the result carries over for the extension of
first-order logic with unary counting.

1 Introduction

Logical formalisms have been widely used in many areas of computer science to
provide high levels of abstraction, thus offering user-friendliness while increas-
ing the ability to verify properties. In the field of databases, first-order logic
constitutes the basis of relational query languages, which allow to write queries
in a declarative manner, independently of the physical implementation. In this
paper, we propose to use logical formalisms to express properties of the topology
of communication networks, that can be verified in a distributed fashion over
the networks themselves.

We focus on first-order logic over graphs. First-order logic has been shown to
have limited expressive power over finite structures. In particular, it enjoys the
locality property, which states that first-order formulae are local [Gai82], in the
sense that local areas of the graphs are sufficient to evaluate them.

First-order properties have been shown to be computable with very low com-
plexity in both sequential and parallel models of computation. It was shown that
first-order properties can be evaluated in linear time over classes of bounded de-
gree graphs [See95] and over classes of locally tree-decomposable graphs1 [FG01].
1 Locally tree-decomposable graphs generalize bounded degree graphs, planar graphs,

and graphs of bounded genus.
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These results follow from the locality of the logic. It was also shown that they
can be evaluated in constant time over Boolean circuits with unbounded fan-in
(AC0) [Imm89]. These bounds lead us to be optimistic on the complexity of the
distributed evaluation of first-order properties.

We consider communication networks based on the message passing model
[AW04], where nodes exchange messages with their neighbors. The properties to
be evaluated concern the graph which forms the topology of the network, and
whose knowledge is distributed over the nodes, which are only aware of their
1-hop neighbors. We thus focus on connected graphs.

In distributed computing, the ability to solve problems locally has attracted
a strong interest since the seminal paper of Linial [Lin92]. The ability to solve
global problems in distributed systems, while performing as much as possible
local computations, is of great interest to ensure scalability. Moreover relying as
much as possible on local information improves fault-tolerance. Finally, restrict-
ing the computation to local areas allows to optimize time and communication
complexity.

Naor and Stockmeyer [NS95] showed that there were non-trivial locally check-
able labelings that are locally computable, while on the other hand some lower-
bounds have been exhibited, thus resulting in non-local computability results
[KMW04, KMW06].

Different notions of local computation have been considered. The most widely
accepted restricts the time of the computation to be constant, that is indepen-
dent of the size of the network [NS95], while allowing messages of size O(log n),
where n is the size of the network. This condition is rather stringent. Naor and
Stockmeyer [NS95] show their result for a restricted class of graphs (eg bounded
odd degree). Godard et al. used graph relabeling systems as the distributed com-
putational model, defined local computations as graph relabeling systems with
locally-generated local relabeling rules, and characterized the classes of graphs
that are locally computable [GMM04].

Our initial motivation is to understand the impact of the logical locality on
the distributed computation, and its relationship with local distributed compu-
tation. It is easy to verify though that there are simple properties (expressible
in first-order logic) that cannot be computed locally. Consider for instance the
property “There exist at least two distinct triangles”, which requires non-local
communication to check the distinctness of the two triangles which may be far
away from each other. Nevertheless, first-order properties do admit simple dis-
tributed computations.

We thus introduce frugal distributed computations. A distributed algorithm
is frugal if during its computation only a bounded number of messages of size
O(log n) are sent over each link. If we restrict our attention to bounded degree
networks, this implies that each node is only receiving a bounded number of
messages. Frugal computations resemble local computations over bounded degree
networks, since the nodes are receiving only a bounded number of messages,
although these messages can come from remote nodes through multi-hop paths.
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We prove that first-order properties can be frugally evaluated over bounded
degree networks and planar networks (Theorem 2 and Theorem 4). The proofs
are obtained by transforming the centralized linear time evaluation algorithms
[See95, FG01] into distributed ones satisfying the restriction that only a bounded
number of messages are sent over each link. Moreover, we show that the results
carry over to the extension of first-order logic with unary counting. While the
transformation of the centralized linear time algorithm is simple for first-order
properties over bounded degree networks, it is quite intricate for first-order prop-
erties over planar networks. The most intricate part is the distributed construc-
tion of an ordered tree decomposition for some subgraphs of the planar network,
inspired by the distributed algorithm to construct an ordered tree decomposition
for planar networks with bounded diameter in [GW09].

Intuitively, since in the centralized linear time computation each object is
involved only a bounded number of times, in the distributed computation, a
bounded number of messages sent over each link could be sufficient to evalu-
ate first-order properties. So it might seem trivial to design frugal distributed
algorithms for first-order properties over bounded degree networks and planar
networks. Nevertheless, this is not the case, because in the centralized com-
putation, after visiting one object, any other object can be visited, but in
the distributed computation, only the adjacent objects (nodes, links) can be
visited.

The paper is organized as follows. In the next section, we recall classical graph
theory concepts, as well as Gaifman’s locality theorem. In Section 3, we consider
the distributed evaluation of first-order properties over respectively bounded
degree and planar networks. Finally, in Section 4, we consider the distributed
evaluation of first-order logic with unary counting.

2 Graphs, First-Order Logic and Locality

In this paper, our interest is focused to a restricted class of structures, namely
finite graphs. Let G = (V, E), be a finite graph. We use the following notations.
If v ∈ V , then deg(v) denotes the degree of v. For two nodes u, v ∈ V , the
distance between u and v, denoted distG(u, v), is the length of the shortest path
between u and v. For k ∈ �, the k-neighborhood of a node v, denoted Nk(v), is
defined as {w ∈ V |distG(v, w) ≤ k}. If v̄ = v1...vp is a collection of nodes in V ,
then the k-neighborhood of v̄, denoted Nk(v̄), is defined by

⋃
1≤i≤p Nk(vi). For

X ⊆ V , let 〈X〉G denote the subgraph induced by X .
Let G = (V, E) be a connected graph, a tree decomposition of G is a rooted

labeled tree T = (T, F, r, B), where T is the set of vertices of the tree, F ⊆ T ×T
is the child-parent relation of the tree, r ∈ T is the root of the tree, and B is a
labeling function from T to 2V , mapping vertices t of T to sets B(t) ⊆ V , called
bags, such that

1. For each edge (v, w) ∈ E, there is a t ∈ T , such that {v, w} ⊆ B(t).
2. For each v ∈ V , B−1(v) = {t ∈ T |v ∈ B(t)} is connected in T .
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The width of T , width(T ), is defined as max{|B(t)| − 1|t ∈ T }. The tree-width
of G, denoted tw(G), is the minimum width over all tree decompositions of G.
An ordered tree decomposition of width k of a graph G is a rooted labeled tree
T = (T, F, r, L) such that:

– (T, F, r) is defined as above,
– L assigns each vertex t ∈ T to a (k + 1)-tuple bt = (bt

1, · · · , bt
k+1) of vertices

of G (note that in the tuple bt, vertices of G may occur repeatedly),
– If L′(t) := {bt

j|L(t) = (bt
1, · · · , bt

k+1), 1 ≤ j ≤ k + 1}, then (T, F, r, L′) is a
tree decomposition.

The rank of an (ordered) tree decomposition is the rank of the rooted tree, i.e.
the maximal number of children of its vertices.

We consider first-order logic (FO) over the signature E, where E is a binary
relation symbol. The syntax and semantics of first-order formulae are defined
as usual [EF99]. The quantifier rank of a formula ϕ is the maximal number of
nestings of existential and universal quantifiers in ϕ.

A graph property is a class of graphs closed under isomorphisms. Let ϕ be a
first-order sentence, the graph property defined by ϕ, denoted Pϕ, is the class
of graphs satisfying ϕ.

The distance between nodes can be defined by first-order formulae dist(x, y) ≤
k stating that the distance between x and y is no larger than k, and dist(x, y) > k
is an abbreviation of ¬dist(x, y) ≤ k. In addition, let x̄ = x1...xp be a list of
variables, then dist(x̄, y) ≤ k is used to denote ∨

1≤i≤p
dist(xi, y) ≤ k.

Let ϕ(ȳ) be a first-order formula with free variables ȳ, k ∈ �, and x̄ be a list of
variables not occurring in ϕ(ȳ), then the formula bounding the quantifiers of ϕ(ȳ)
to the k-neighborhood of x̄, denoted (ϕ(ȳ))(k) (x̄), can be defined easily in first-
order logic by using formulae dist(x̄, y) ≤ k. For instance, if ϕ(ȳ) := ∃zψ(ȳ, z),
then

(ϕ(ȳ))(k) (x̄) := ∃z
(
dist(x̄, z) ≤ k ∧ (ψ(ȳ, z))(k) (x̄)

)
.

We can now recall the notion of logical locality introduced by Gaifman
[Gai82, EF99].

Theorem 1. [Gai82] Let ϕ be a first-order formula with free variables u1, ..., up,
then ϕ can be written in Gaifman Normal Form, that is into a Boolean combi-
nation of (i) sentences of the form:

∃x1...∃xs

⎛⎝ ∧
1≤i<j≤s

d(xi, xj) > 2r ∧
∧
i

ψ(r)(xi)

⎞⎠ (1)

and (ii) formulae of the form ψ(t)(y), where y = y1...yq such that yi ∈ {u1, ..., up}
for all 1 ≤ i ≤ q, r ≤ 7k−1, s ≤ p + k, t ≤

(
7k − 1

)
/2 (k is the quantifier rank

of ϕ)2.

2 The bound on r has been improved to 4k − 1 in [KL04].
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Moreover, if ϕ is a sentence, then the Boolean combination contains only sen-
tences of the form (1).

The locality of first-order logic is a powerful tool to demonstrate non-definability
results [Lib97]. It can be used in particular to prove that counting properties,
such as the parity of the number of vertices, or recursive properties, such as the
connectivity of a graph, are not first-order.

3 Distributed Evaluation of FO

We consider a message passing model of distributed computation [AW04], based
on a communication network whose topology is given by a graph G = (V, E)
of diameter Δ, where E denotes the set of bidirectional communication links
between nodes. From now on, we restrict our attention to finite connected graphs.

We assume that the distributed system is asynchronous and has no failure.
The nodes have a unique identifier taken from 1, 2, · · · , n, where n is the number
of nodes. Each node has distinct local ports for distinct links incident to it. The
nodes have states, including final accepting or rejecting states.

For simplicity, we assume that there is only one query fired in the network by
a requesting node. We also assume that a breadth-first-search (BFS) tree rooted
on the requesting node has been pre-computed in the network3, such that each
node stores locally the identifier of its parent in the BFS-tree, and the states
of the ports with respect to the BFS-tree, which are either “parent” or “child”,
denoting the ports corresponding to the tree edges, or “horizon”, “upward”,
“downward”, denoting the ports corresponding to the non-tree edges to some
node with the same, smaller, or larger depth in the BFS-tree. The computation
terminates, when the requesting node reaches a final state.

Let C be a class of graphs. A distributed algorithm is said to be frugal over C if
there is a k ∈ � such that for any network G ∈ C of n nodes and any requesting
node in G, the distributed computation terminates, with only at most k messages
of size O(log n) sent over each link. If we restrict our attention to bounded degree
networks, frugal distributed algorithms imply that each node only receives a
bounded number of messages. Frugal computations resemble local computations
over bounded degree networks, since the nodes receive only a bounded number of
messages, although these messages can come from remote nodes through multi-
hop paths.

Let C be a class of graphs, and ϕ an FO sentence, we say that ϕ can be
distributively evaluated over C if there exists a distributed algorithm such that
for any network G ∈ C and any requesting node in G, the computation of the
distributed algorithm on G terminates, with the requesting node in the accepting
state if and only if G |= ϕ. Moreover, if there is a frugal distributed algorithm
to do this, then we say that ϕ can be frugally evaluated over C.
3 The pre-computation of the BFS tree can be done in O(Δ) distributed time and

with O(Δ) messages sent over each link [BDLP08].
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For centralized computations, it has been shown that Gaifman’s locality of
FO entails linear time evaluation of FO properties over classes of bounded de-
gree graphs and classes of locally tree-decomposable graphs [See95, FG01]. In
the following, we show that it is possible to design frugal distributed evalua-
tion algorithms for FO properties over bounded degree and planar networks,
by carefully transforming the centralized linear time evaluation algorithms into
distributed ones with computations on each node well balanced.

3.1 Bounded Degree Networks

We first consider the evaluation of FO properties over bounded degree networks.
We assume that each node stores the degree bound k locally.

Theorem 2. FO properties can be frugally evaluated over bounded degree net-
works.

Theorem 2 can be shown by using Hanf’s technique [FSV95], in a way similar
to the proof of Seese’s seminal result [See95].

Let r ∈ �, G = (V, E), and v ∈ V , then the r-type of v in G is the isomorphism
type of

(
〈Nr(v)〉G, v

)
. Let r, m ∈ �, G1 and G2 be two graphs, then G1 and

G2 are said to be (r, m)-equivalent if and only if for every r-type τ , either G1
and G2 have the same number of vertices with r-type τ or else both have at
least m vertices with r-type τ . G1 and G2 are said to be k-equivalent, denoted
G1 ≡k G2, if G1 and G2 satisfy the same FO sentences of quantifier rank at
most k. It has been shown that:

Theorem 3. [FSV95] Let k, d ∈ �. There exist r, m ∈ � such that r depends
only on k, m depends on both k and d, and for any graphs G1 and G2 with
maximal degree no more than d, if G1 and G2 are (r, m)-equivalent, then G1 ≡k

G2.

Let us now sketch the proof of Theorem 2, which relies on a distributed algorithm
consisting of three phases. Suppose the requesting node requests the evaluation
of some FO sentence with quantifier rank k. Let r, m be the natural numbers
depending on k, d specified in Theorem 3.

Phase I. The requesting node broadcasts messages along the BFS-tree to ask
each node to collect the topology information in its r-neighborhood;

Phase II. Each node collects the topology information in its r-neighborhood;
Phase III. The r-types of the nodes in the network are aggregated through

the BFS-tree to the requesting node up to the threshold m for each r-type.
Finally the requesting node decides whether the network satisfies the FO
sentence or not by using the information about the r-types.

It is easy to see that only a bounded number of messages are sent over each link
in Phase I and II. Since the total number of distinct r-types with degree bound
d depends only upon r and d and each r-type is only counted up to a threshold
m, it turns out that over each link, only a bounded number of messages are sent
in Phase III as well. So the above distributed evaluation algorithm is frugal over
bounded degree networks.



160 S. Grumbach and Z. Wu

3.2 Planar Networks

We now consider the distributed evaluation of FO properties over planar net-
works.

A combinatorial embedding of a planar graph G = (V, E) is an assignment
of a cyclic ordering of the set of incident edges to each vertex v such that two
edges (u, v) and (v, w) are in the same face iff (v, w) is immediately before
(v, u) in the cyclic ordering of v. Combinatorial embeddings, which encode the
information about boundaries of the faces in usual embeddings of planar graphs
into the planes, are useful for computing on planar graphs. Given a combinatorial
embedding, the boundaries of all the faces can be discovered by traversing the
edges according to the above condition.

We assume in this subsection that a combinatorial embedding of the planar
network is distributively stored in the network, i.e. a cyclic ordering of the set
of the incident links is stored in each node of the network.

Theorem 4. FO properties can be frugally evaluated over planar networks.

For the proof of Theorem 4, we first recall the centralized linear time algorithm
to evaluate FO properties over planar graphs in [FG01]4.

Let G = (V, E) be a planar graph and ϕ be an FO sentence. From Theorem 1,
we know that ϕ can be written into Boolean combinations of sentences of the
form (1),

∃x1...∃xs

⎛⎝ ∧
1≤i<j≤s

d(xi, xj) > 2r ∧
∧
i

ψ(r)(xi)

⎞⎠ .

It is sufficient to show that sentences of the form (1) are linear-time computable
over G. The centralized algorithm to evaluate FO sentences of the form (1) over
planar graphs consists of the following four phases:

1. Select some v0 ∈ V , let H = {G[i, i + 2r]|i ≥ 0}, where G[i, j] = {v ∈ V |i ≤
distG(v0, v) ≤ j};

2. For each H ∈ H, compute Kr(H), where Kr(H) := {v ∈ H |Nr(v) ⊆ H};
3. For each H ∈ H, compute PH := {v ∈ Kr(H)|〈H〉G |= ψ(r)(v)};
4. Let P := ∪HPH , determine whether there are s distinct nodes in P such

that their pairwise distance is greater than 2r.

In the computation of the 3rd and 4th phase above, an automata-theoretical
technique to evaluate Monadic-Second-Order (MSO) formulae in linear time over
classes of graphs with bounded tree-width [Cou90, FG06, FFG02] is used. In the
following, we recall this centralized evaluation algorithm.

MSO is obtained by adding set variables and set quantifiers into FO, such
as ∃Xϕ(X) (where X is a set variable). MSO has been widely studied in the

4 In fact, in [FG01], it was shown that FO is linear-time computable over classes of
locally tree-decomposable graphs.
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context of graphs for its expressive power. For instance, 3-colorability, transitive
closure or connectivity can be defined in MSO [Cou08].

The centralized linear time evaluation of MSO formulae over classes of bounded
tree-width graphs goes as follows. First an ordered tree decomposition T of the
given graph is constructed. Then from the given MSO formula, a tree automaton
A is obtained. Afterwards, T is transformed into a labeled tree T ′, finally A is
run over T ′ (maybe several times for formulae containing free variables) to get the
evaluation result.

In the rest of this section, we design a frugal distributed algorithm to evaluate
FO sentences over planar networks by adapting the above centralized algorithm.
The main difficulty is to distribute the computation among the nodes such that
only a bounded number of messages are sent over each link during the compu-
tation.

Phase I. The requesting node broadcasts the FO sentence of the form (1) to
all the nodes in the network through the BFS tree;

Phase II. For each v ∈ V , compute C(v) := {i ≥ 0|v ∈ G[i, i + 2r]};
Phase III. For each v ∈ V , compute D(v) := {i ≥ 0|Nr(v) ⊆ G[i, i + 2r]};
Phase IV. For each i ≥ 0, compute Pi := {v ∈ V |i ∈ D(v), 〈G[i, i + 2r]〉G |=

ψ(r)(v)};
Phase V. Let P :=

⋃
i Pi, determine whether there are s distinct nodes labeled

by P such that their pairwise distance is greater than 2r.

Phase I is trivial. Phase II is easy. In the following, we illustrate the computation
of Phase III, IV, and V one by one.

We first introduce a lemma for the computation of Phase III.
For W ⊆ V , let Ki(W ) := {v ∈ W |Ni(v) ⊆ W}. Let Di(v) := {j ≥ 0|v ∈

Ki(G[j, j + 2r])}.

Lemma 1. For each v ∈ V and i > 0, Di(v) = C(v) ∩
⋂

w:(v,w)∈E

Di−1(w).

With Lemma 1, D(v) = Dr(v) can be computed in an inductive way to finish
Phase III: Each node v obtains the information Di−1(w) from all its neighbors
w, and performs the in-node computation to compute Di(v).

Now we consider Phase IV.
Because ψ(r)(x) is a local formula, ψ(r)(x) can be evaluated separately over

each connected component of G[i, i+2r] and the results are stored distributively.
Let Ci be a connected component of G[i, i + 2r], and wi

1, · · · , wi
l be all the

nodes contained in Ci with distance i from the requesting node. Now we consider
the evaluation of ψ(r)(x) over Ci.

Let C′
i be the graph obtained from Ci by including all ancestors of wi

1, · · · , wi
l

in the BFS-tree, and C∗
i be the graph obtained from C′

i by contracting all the
ancestors of wi

1, · · · , wi
l into one vertex, i.e. C∗

i has one more vertex, called the
virtual vertex, than Ci, and this vertex is connected to wi

1, · · · , wi
l . It is easy to

see that C∗
i is a planar graph with a BFS-tree rooted on v∗ and of depth at most

2r + 1. So C∗
i is a planar graph with bounded diameter.
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An ordered tree decomposition for planar networks with bounded diameter
can be distributively constructed with only a bounded number of messages sent
over each link as follows [GW09]:

– Do a depth-first-search to decompose the network into blocks, i.e. bicon-
nected components;

– Construct an ordered tree decomposition for each nontrivial block: Traverse
every face of the block according to the cyclic ordering at each node, trian-
gulate all those faces, and connect the triangles into a tree decomposition
by utilizing the pre-computed BFS tree;

– Finally the tree decompositions for the blocks are connected together into a
complete tree decomposition for the whole network.

By using the distributed algorithm for the tree decomposition of planar networks
with bounded diameter, we can construct distributively an ordered tree decom-
position for C∗

i , while having the virtual vertex in our mind, and get an ordered
tree decomposition for Ci.

With the ordered tree decomposition for Ci, we can evaluate ψ(r)(x) over Ci

by using the automata-theoretical technique, and store the result distributively
in the network (each node stores a Boolean value indicating whether it belongs
to the result or not).

A distributed post-order traversal over the BFS tree can be done to find out
the connected components of all G[i, i + 2r]’s and construct the tree decomposi-
tions for these connected components one by one.

Finally we consider Phase V.
Label nodes in

⋃
i Pi with P .

Then consider the evaluation of FO sentence ϕ′ over the vocabulary {E, P},

∃x1...∃xs

⎛⎝ ∧
1≤i<j≤s

d(xi, xj) > 2r ∧
∧
i

P (xi)

⎞⎠ .

Starting from some node w1 with label P , mark the vertices in N2r(w1) as Q,
then select some node w2 outside Q, and mark those nodes in N2r(w2) by Q
again, continue like this, until wl such that either l = s or all the nodes with
label P have already been labeled by Q.

If l < s, then label the nodes in
⋃

1≤i≤l

N4r(vi) as I. Each connected component

of 〈I〉G has diameter no more than 4lr < 4sr. We can construct distributively
a tree decomposition for each connected component of 〈I〉G, and connect these
tree decompositions together to get a complete tree-decomposition of 〈I〉G, then
evaluate the sentence ϕ′ by using this complete tree decomposition.

4 Beyond FO Properties

We have shown that FO properties can be frugally evaluated over respectively
bounded degree and planar networks. In this section, we extend these results to
FO unary queries and some counting extension of FO.
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From Theorem 1, an FO formula ϕ(x) containing exactly one free variable
x can be written into a Boolean combinations of sentences of the form (1) and
local formulae ψ(t)(x). Then it is not hard to prove the following result.

Theorem 5. FO formulae ϕ(x) with exactly one free variable x can be frugally
evaluated over respectively bounded degree and planar networks, with the results
distributively stored on the nodes of the network.

Counting is one of the ability that is lacking to first-order logic, and has been
added in commercial relational query languages (e.g. SQL). Its expressive power
has been widely studied [GO92, GT95, Ott96] in the literature. Libkin [Lib97]
proved that first-order logic with counting still enjoys Gaifman locality property.
We prove that Theorem 2 and Theorem 4 carry over as well for first-order logic
with unary counting.

Let FO(#) be the extension of first-order logic with unary counting. FO(#)
is a two-sorted logic, the first sort ranges over the set of nodes V , while the
second sort ranges over the natural numbers �. The terms of the second sort
are defined by: t := #x.ϕ(x) | t1 + t2 | t1× t2, where ϕ is a formula over the first
sort with one free variable x. Second sort terms of the form #x.ϕ(x) are called
basic second sort terms.

The atoms of FO(#) extend standard FO atoms with the following two unary
counting atoms: t1 = t2 | t1 < t2, where t1, t2 are second sort terms. Let t be a
second sort term of FO(#), G = (V, E) be a graph, then the interpretation of t
in G, denoted tG, is defined as follows:

– (#x.ϕ(x))G is the cardinality of {v ∈ V |G |= ϕ(v)};
– (t1 + t2)

G is the sum of tG1 and tG2 ;
– (t1 × t2)

G is the product of tG1 and tG2 .

The interpretation of FO(#) formulae is defined in a standard way.

Theorem 6. FO(#) properties can be frugally evaluated over respectively
bounded degree and planar networks.

The proof of the theorem relies on a normal form of FO(#) formulae.

5 Conclusion

We have shown that logical formulae used to express properties of graphs, which
constitute the topology of communication networks, can be evaluated very effi-
ciently over these networks. Their distributed computation, although not local,
can be done frugally, that is with a bounded number of messages of logarith-
mic size exchanged over each link, over respectively bounded degree and planar
networks. The frugal computation, introduced in this paper, generalizes local
computation and offers a large spectrum of applications. Moreover the results
carry over to the extension of first-order logic with unary counting. The dis-
tributed time used in the frugal evaluation of FO properties over bounded degree
networks is O(Δ), while that over planar networks is O(n).
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We assumed that a BFS tree is pre-computed and stored distributively in
the network. Evidently the BFS-tree varies when the requesting node is chosen
differently. Since a BFS-tree is a tree 2-spanner [CC95] of the network, we can
actually assume that a tree 2-spanner, independent of the choice of the requesting
node, is distributively pre-computed and stored in the network, and we still
guarantee the frugality of the computation by adapting slightly the distributed
evaluation algorithms in Section 3.

Beyond its interest for logical properties, the frugality of distributed algo-
rithms, which ensures an extremely good scalability of their computation, raises
fundamental questions, such as deciding what can be frugally computed. We
leave as an open problem the question of deciding whether for instance a Hamil-
tonian path can be computed frugally.
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Abstract. In this paper we introduce module-composed graphs, i.e.
graphs which can be defined by a sequence of one-vertex insertions
v1, . . . , vn, such that the neighbourhood of vertex vi, 2 ≤ i ≤ n, forms a
module of the graph defined by vertices v1, . . . , vi−1.

We show that module-composed graphs are HHDS-free and thus ho-
mogeneously orderable, weakly chordal, and perfect. Every bipartite
distance hereditary graph and every trivially perfect graph is module-
composed. We give an O(|V | · (|V | + |E|)) time algorithm to decide
whether a given graph G = (V, E) is module-composed and construct
a corresponding module-sequence.

For the case of bipartite graphs, we show that the set of module-
composed graphs is equivalent to the well known class of distance
hereditary graphs, which implies linear time algorithms for their recog-
nition and construction of a corresponding module-sequence using BFS
and Lex-BFS.

Keywords: special graph classes, homogeneous sets, HHDS-free graphs,
distance hereditary graphs, bipartite graphs.

1 Introduction

In this paper we analyze special graphs G = (V, E) which are defined by a bijective
mapping ϕ : V → {1, . . . , |V |}, such that the neighbourhood of vertex ϕ−1(i) is
characterizedby special operations on the previously defined graph G[{ϕ−1(1), . . .,
ϕ−1(i − 1)}]. For example a chordal graph is a graph, such that the neighbour-
hood of vertex ϕ−1(i) is a clique in graph G[{ϕ−1(1), . . . , ϕ−1(i − 1)}]. Further
well known examples of such defined graph classes are trees, co-graphs, distance
hereditary graphs, and k-trees, see [19] for a survey. The existence of such vertex
orderings ϕ often has algorithmic applications, see [1,11].

We introduce the closely related new concept of module-composed graphs. We
allow to insert vertex ϕ−1(i) into some defined graph G[{ϕ−1(1), . . . , ϕ−1(i −
1)}] if the neighbourhood of vertex ϕ−1(i) is a module in graph G[{ϕ−1(1), . . . ,
ϕ−1(i− 1)}].
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Our results are as follows. We classify module-composed graphs in general and
for the case of bipartite graphs within the hierarchy of well known graph classes.
We show that bipartite module-composed graphs are exactly bipartite distance
hereditary graphs which implies a new characterization for bipartite distance
hereditary graphs and linear time algorithms for the recognition and construction
of a corresponding module-sequence using fundamental search strategies such as
Lexicographic Breadth First Search (Lex-BFS) and Breadth First Search (BFS).
For general module-composed graphs G = (V, E) we give an O(|V | · (|V |+ |E|))
time recognition algorithm based on a modular decomposition of the given graph.

2 Preliminaries

For some positive integer k, let [k] = {1, . . . , k} be the set of all positive integers
between 1 and k.

Let G = (V, E) be a graph. For U ⊆ V we define by G[U ] the subgraph of G
induced by the vertices of U . By G− v we denote the subgraph G[V − {v}] of G.
The edge complement graph of G is denoted by co-G. Further by 2G, we denote
the disjoint union of two copies of graph G. For a set of graphs F , we denote by
F-free graphs the set of all graphs that do not contain a graph of F as an induced
subgraph. In Table 1 we show some special graphs to which we refer during the
paper. A hole is a chordless cycle with at least five vertices. A k-sun is a chordal
graphG = (V, E) on 2k vertices for some k ≥ 3 whose vertex set can be partitioned
into V = U ∪W such that U = {u0, . . . , uk−1} and W = {w0, . . . , wk−1} is an
independent set. Additionally vertex ui is adjacent to vertex wj if and only if i = j
or i = j +1 mod k. G is called a sun if it is a k-sun for some k ≥ 3. If graph G[U ]
is a clique, then G is called a complete k-sun.

For some vertex v ∈ V we denote the neighbourhood of v by N(v) = {w ∈
V | {v, w} ∈ E}. Vertex set M ⊆ V is called a module (homogeneous set) of G,
if for all (v1, v2) ∈ M2: N(v1) −M = N(v2) −M , i.e. v1 and v2 have identical

Table 1. Special graphs

C5 hole house gem

domino co-(K3,3 − e) 3-sun co-2C4
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neighbourhoods outside M . Module M ⊆ V is called a trivial module, if |M | = 0,
|M | = 1, or M = V .

3 Module-Composed Graphs

Definition 1. A graph G = (V, E) is module-composed, if there exists a linear
ordering ϕ : V → [|V |], such that for every 2 ≤ i ≤ |V | the neighbourhood of
vertex ϕ−1(i) in graph G[{ϕ−1(1), . . . , ϕ−1(i − 1)}] forms a module. For some
module-composed graph G ordering ϕ is called a module-sequence for G.

In order to classify module-composed graphs within the hierarchy of well known
graph classes and to prove the correctness of our recognition algorithm for
module-composed graphs we start with some basic but important properties.

Lemma 1. 1. Given a module-composed graph G, every induced subgraph of
G is module-composed.

2. Given two module-composed graphs G1, G2, the disjoint union G1 ∪ G2 is
module-composed.

3. Given a module-composed graph G, the addition of a dominating vertex (ver-
tex of maximum degree) leads a module-composed graph.

4. Given a module-composed graph G, the addition of a pendant vertex (vertex
of degree one) leads a module-composed graph.

5. Graph G = (V, E) is a module-composed graph, if and only if there exists at
least one v ∈ V such that N(v) is a module in graph G − v and for every
such vertex v graph G− v is a module-composed graph.

6. Every module-composed graph does not contain one of the following graphs
as an induced subgraph (see Table 1): Cn, n ≥ 5 (i.e. holes), co-Cn, n ≥ 5
(i.e. anti-holes), house, domino, co-(K3,3 − e), 3-sun, co-2C4.

Proof. 1. Let G = (V, E) be a module-composed graph. If M ⊆ V is a module
of graph G then for every u ∈M , M −{u} is a module of graph G−u. Thus
we can remove an arbitrary subset V ′ ⊆ V and obtain a module-composed
graph G[V − V ′].

2. Given two module-composed graphs G1 = (V1, E1), G2 = (V2, E2) and two
module-sequences ϕ1, ϕ2 for G1 and G2, respectively. It is easy to verify that
sequence

ϕ(v) =
{

ϕ1(v) if v ∈ V1
ϕ2(v) + |V1| if v ∈ V2

is a module-sequence for the disjoint union of these two graphs.
3. Given a module-composed graph G = (V, E), a module-sequence ϕ for G

and some vertex v �∈ V , we can extend ϕ by ϕ(v) = |V | + 1 and obtain a
module-sequence for G with dominating vertex v.

4. Similar to (3.)
5. Let v be the last vertex in a module-sequence for G, then by definition N(v)

is a module in graph G− v. By (1.) for every v ∈ V induced subgraph G− v
is a module-composed graph.



On Module-Composed Graphs 169

Since G− v is a module-composed graph there is some module-sequence for
graph G− v and since N(v) is a module in graph G− v, we can extend this
sequence by v for a module-sequence for G.

6. It is easy to verify that none of the given graphs G contains a vertex v such
that N(v) is a module in graph G − v. Thus by part (5.) the given graphs
are not module-composed. ��

The example of graph co-2C4 shows that not every co-graph is module-compo-
sed. But the subclass of trivially perfect graphs is module-composed.

Lemma 2. Trivially perfect graphs are module-composed.

Proof. Every trivially perfect graph can be defined by an expression X using the
disjoint union of two trivially perfect graphs and the addition of a dominating
vertex. This implies by Lemma 1 (2.) and (3.) that we can construct a module-
sequence for graph defined by X . ��

Next we conclude results on super classes of module-composed graphs.

Lemma 3. Module-composed graphs are {house,hole,domino,sun}-free (HHDS-
free).

Proof. By Lemma 1 (6.) the house, every hole, the domino, and the complete
3-sun are not module-composed. By a result shown in [10] each sun contains a
complete sun as induced subgraph, which is obviously not module-composed. By
Lemma 1 (1.) the result follows. ��

Thus we conclude that module-composed graphs are perfect, homogeneously
orderable, and weakly chordal. The example C4 shows that module-composed
graphs are not chordal in general.

4 Algorithms for Module-Composed Graphs

4.1 How to Find Module-Sequences

Next we give a polynomial time algorithm to recognize module-composed graphs.
Within our algorithm we will use a modular decomposition of the input graph.

A graph G = (V, E) is called prime if every module M of G is trivial, i.e. if
|M | = 0, |M | = 1, or M = V . The smallest non-trivial prime graph is the P4. A
module M is maximal if there is no non-trivial module N such that M ⊆ N . A
module is called strong if it does not overlap with any other module.

While the set of all modules of a graph G can be exponentially large, the set
of strong modules is linear in the number of vertices. The inclusion order of the
set of all strong modules defines a tree-structure which is denoted as modular
decomposition TG, see [17]. The root of TG represents the graph G and the leaves
of TG correspond to the vertices of G. Every inner node, i.e. non-leaf node, w of
TG corresponds to an induced subgraph of G consisting of the leaves of TG in
subtree with root w, which is called the representative graph of w and is denoted
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by G(w) = (VG(w), EG(w)). Vertex set VG(w) is a strong module of G. For some
inner node v of TG, the quotient graph G[v] is obtained by substituting in G(v)
every strong module, represented by some child of v in TG, by a single vertex.
For some inner node v of TG, quotient graph G[v] is either a complete graph (v
is denoted as join node), the edge complement of a complete graph (v is denoted
as co-join node), or a prime graph (v is denoted as prime node).

Theorem 1. Given a graph G = (V, E), one can decide in time O(|V | · (|V |+
|E|)) whether G is module-composed and in the case of a positive answer con-
struct a module-sequence for G.

Proof. We show that graph G = (V, E) is module-composed, if and only if the
algorithm of Table 2 returns a module-sequence for G.

Table 2. Recognition algorithm for module-composed graphs

Input: Graph G = (V, E)
Output: Module-sequence ϕ : V → [|V |] or the answer NO

(1) mod-com(G)
(2) i = |V |;
(3) if (G disconnected){
(4) for every connected component H of G: mod-com(H);
(5) combine the obtained sequences to one sequence (see Lemma 1 (2.)) }
(6) else {
(7) construct modular decomposition TG with root r;
(8) if (r is join node) {
(9) if (∃ child vl of r which is a leaf in TG) {
(10) for every such child vl of r {ϕ(vl) = i −−; G = G − vl; }
(11) mod-com(G);}
(12) else if (∃ child r1 of r labeled by co-join and a child vl of r1 which
(13) is a leaf in TG) {
(14) for every such vertex vl {ϕ(vl) = i −−; G = G − vl; }
(15) mod-com(G); }
(16) }
(17) else if (r is prime node) {
(18) if (∃ child vl of r which is a leaf in TG and corresponds to a vertex
(19) of degree 1 in quotient graph G[r]) {
(20) for every such child vl of r {ϕ(vl) = i −−; G = G − vl; }
(21) mod-com(G);}
(22) else if (∃ child r1 of r labeled by co-join and corresponds to a vertex
(23) of degree 1 in quotient graph G[r] and a child vl of r1 which is a
(24) leaf in TG) {
(25) for every such vertex vl {ϕ(vl) = i −−; G = G − vl; }
(26) mod-com(G); }
(27) }
(28) else
(29) return NO;
(30) }
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Let G = (V, E) be some module-composed graph and TG be a modular de-
composition for G. We can assume that G is connected, otherwise we consider
every connected component of G, which is module-composed by Lemma 1 (1.).
By Lemma 1 (5.) graph G contains at least one vertex v such that N(v) is a
module in G − v. It remains to show that our algorithm finds such a vertex
within the set of leaves of tree TG. Since G is connected the root r of TG is a
join node or a prime node.

If r is a join node then every son of r which is a leaf of TG is a possible vertex
v since its neighbourhood is G− v and thus a (trivial) module in G− v. Further
if there is a child r1 of r labeled by co-join, then every child vl of r1 which is a
leaf of TG is a possible vertex v since its neighbourhood in G− v is a module.

If r is a prime node then every son of r which is a leaf of TG and corresponds
to a vertex of degree 1 in quotient graph G[r] is a possible vertex v since its
neighbourhood in G− v is a single vertex and thus a (trivial) module in G− v.
Further if there is a child r1 of r labeled by co-join and corresponds to a vertex
of degree 1 in quotient graph G[r], then every child vl of r1 which is a leaf of
TG is a possible vertex v since its neighbourhood in G− v is a single vertex and
thus a (trivial) module in G− v.

A case distinction shows that no further situations for vertex v are possible
which guarantees that our algorithm finds some vertex v such that N(v) is a
module in G− v. Since by Lemma 1 (5.) graph G− v remains module-composed
the same argumentation holds in every iteration until our algorithm returns a
vertex ordering ϕ for the input graph. Ordering ϕ is a module-sequence for G,
since we either remove vertices v whose neighbourhood is a module in G− v or
combine module-sequences by Lemma 1 (2.) for connected components within
our algorithm.

The reverse direction holds by definition.

The construction of the modular decomposition TG in Line (7) of our algo-
rithm in Table 2 can be realized in time O(|V | + |E|) by [8,16] which implies
that the total running time of the given algorithm is O(|V | · (|V |+ |E|)). ��

It remains open whether there exists a linear time algorithm to recognize module-
composed graphs. Within our given algorithm we compute in every iteration
a new modular decomposition. Thus if we could find for some given modular
decomposition for some graph G, a modular decomposition for graph G − v in
time less time than O(|V |+|E|), e.g. in time O(|V |), we could reduce the running
time of our algorithm.

4.2 Easy Problems on Module-Composed Graphs

Since module-composed graphs are HHD-free, we conclude by the results shown
in [14] the following theorem.

Theorem 2. For every module-composed graph which is given together with a
module-sequence the size of a largest independent set, the size of a largest clique,
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the chromatic number, and the minimum number of cliques covering the graph
can be computed in linear time.

A very usual approach when looking for solvable problems on special graph
classes is to consider their tree-width [3] or clique-width [7]. In the case of module-
composed graphs both parameters are unbounded which is easy to show.

Remark 1. First, since every complete graph is module-composed, the set of
all module-composed graphs can not have bounded tree-width. Further, every
graph which can be constructed from a single vertex by a sequence of one vertex
extentions by a dominating vertex or a pendant vertex is module-composed by
Lemma 1 (3.) and (4.). But the set of all such defined graphs has unbounded
clique-width [19] and thus the set of all module-composed graphs can not have
bounded clique-width.

5 Independent Module-Composed Graphs

Next we want to analyze module-composed graphs for a restricted case.

Definition 2. A graph G = (V, E) is independent module-composed, if there
exists a linear ordering ϕ : V → [|V |], such that for every 2 ≤ i ≤ |V | the
neighbourhood of vertex ϕ−1(i) in graph G[{ϕ−1(1), . . . , ϕ−1(i − 1)}] forms a
module which is an independent set. For some independent module-composed
graph G ordering ϕ is called an independent module-sequence for G.

5.1 Characterizations for Independent Module-Composed Graphs

It is easy to see that independent module-composed graphs do not contain any
of the graphs of Table 1 as induced subgraph.

Lemma 4. Independent module-composed graphs are {house,hole,domino,gem}-
free (HHDG-free).

HHDG-free are also known as distance hereditary graphs [13,2], which can be
defined by a so-called pruning sequence. A pruning sequence for a graph G =
(V, E) with n vertices is a sequence of pairs (v1, l1), . . . , (vn, ln) where li is either
a single vertex graph, denoted by •, or from {v1, . . . , vi−1} × {leaf, true-twin,
false-twin}. A graph is defined by a pruning sequence as follows. Let Gi, 1 ≤ i ≤
n, be the graph defined by pruning sequence (v1, l1), . . . , (vi, li). Then graph Gi

is obtained from Gi−1 by inserting vertex vi and some edges defined as follows. If
li = • then no edges are inserted. If li = (vj , leaf) then vertex vi will be connected
with vertex vj . If li = (vj , false-twin) then vertex vi will be connected with all
neighbors of vertex vj . If li = (vj , true-twin) then vertex vi will be connected
with vertex vj and all neighbors of vertex vj .

Theorem 3 ([13,2]). Let G be some graph. The following conditions are equiv-
alent.
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1. G is distance hereditary.
2. G is HHDG-free.
3. G can be generated by a pruning sequence.

Our next theorem shows that for the case of bipartite graphs, i.e. odd-cycle-free
graphs, the notion module-composed even is equivalent to the notion of distance
hereditary.

Theorem 4. Let G be some graph. The following conditions are equivalent.

1. G is bipartite module-composed.
2. G is independent module-composed.
3. G is bipartite distance hereditary.
4. G is domino, hole, and odd-cycle-free.
5. G can be generated by a pruning sequence without true twins.

Proof. (3.) ⇔ (4.) ⇔ (5.) Well known results from [2].
(1.) ⇒ (2.) In the case of bipartite graphs any neighbourhood is an independent

set and thus every module-sequence even is an independent module-sequence.
(2.) ⇒ (4.) By Lemma 4 we know that independent module-composed are do-

mino and hole-free, and since C3 is not independent module-composed these
graphs are even odd-cycle-free.

(5.) ⇒ (1.) By our first equivalence we know that G is bipartite. So we have to
show that G is module-composed. Let G be a graph defined by a pruning
sequence (v1, l1), . . . , (vn, ln) without true twins. We now define a module-
sequence ϕ : V → [|V |] for G. We start with ϕ(v1) = 1. Assume we have
defined a module-sequence ϕ : {v1, . . . , vi} → [i] for the first i vertices.
A module-sequence for the first i + 1 vertices is obtained as follows. We
distinguish the following three cases.
– If li+1 = •, then ϕ is extended by ϕ(vi+1) = i + 1.
– If li+1 = (vj , leaf), then ϕ is extended by ϕ(vi+1) = i + 1.
– If li+1 = (vj , false-twin), then let x = ϕ−1(vj). For every vertex v ∈
{v1, . . . , vi} with ϕ(v) > x we increase ϕ(v) by one and define ϕ(vi+1) =
x + 1. That is vertex vi+1 ins inserted in our module-sequence immedi-
ately after its false twin vj .

Notice that because of the movement of the false twins it may happen that
some leaf vertices of Gi are no longer of degree one in graph Gi+1. But since
in Gi+1 the neighbourhood of such leaf vertices of Gi is a set of twin vertices
of Gi+1, our transformation leads a feasible module-sequence. ��

In general, the class of module-composed graphs is incomparable with the class
of distance hereditary graphs, since there are module-composed graphs which are
not distance hereditary, e.g. the gem, and there are distance hereditary graph
which are not module-composed, e.g. the co-(K3,3 − e).

By Theorem 4 module-composed graphs can be regarded as a generalization
of bipartite distance hereditary graphs. For a generalization of arbitrary distance
hereditary graphs by homogeneously orderable graphs we refer to the paper [4].
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5.2 How to Find Independent Module-Sequences

The problem to decide whether a given graph is bipartite distance hereditary
and to construct a corresponding pruning sequence can be done in linear time by
the well known characterization for bipartite graphs as 2-colorable graphs and
existing linear time recognition algorithms for distance hereditary graphs shown
in [13,2,15]. By Theorem 4, this immediately implies a linear time algorithm for
recognizing independent module-composed graphs. A corresponding independent
module-sequence can be constructed in linear time from a pruning sequence as
shown in the proof of Theorem 4.

Next we discuss how to use well known fundamental search strategies Lex-
icographic Breadth First Search (Lex-BFS) and Breadth First Search (BFS)
for recognizing independent module-composed graphs, see [5] for a survey on
Lex-BFS.

First we show how to produce an independent module-sequence for some given
independent module-composed graph.

Theorem 5. Given an independent module-composed graph G = (V, E), every
reverse Lex-BFS ordering constructs in time O(|V |+|E|) an independent module-
sequence for G.

Proof. By Lemma 3 we know that independent module-composed graphs are
HHDS-free, which allows us to apply the results on Lex-BFS orderings shown for
HHD-free graphs shown in [14]. If ({v1, v2, v3, v4}, {{v1, v2}, {v2, v3}, {v3, v4}})
induces a P4 in some graph G = (V, E) we denote v2 and v3 as midpoints of
the P4. A vertex v in graph G is semi-simplicial, if v is no midpoint of any
induced P4 in G. A vertex ordering ϕ : V → [|V |] is denoted as semi perfect
elimination ordering if for every 1 ≤ i ≤ |V | vertex ϕ−1(i) is semi-simplicial
in graph G[{ϕ−1(i), . . . , ϕ−1(n)}]. That is, for every semi perfect elimination
ordering ϕ of some graph G, we know that every independent set N(ϕ−1(i)) in
G[{ϕ−1(i + 1), . . . , ϕ−1(n)}] is even a module in G[{ϕ−1(i + 1), . . . , ϕ−1(n)}].

In [14] it is shown that for every HHD-free graph G = (V, E) every Lex-BFS
ordering ϕ : V → [|V |] is a semi perfect elimination ordering. Since for the case
of bipartite graphs every neigbourhood of some vertex is an independent set, ϕ
obviously is even a reverse independent module-sequence. Thus for every indepen-
dent module-composed graph G every reverseLex-BFS ordering is an independent
module-sequence for G, which can be found in time O(|V |+ |E|) [14]. ��

Next we show how to decide whether a given graph is independent module-
composed and if so, how to produce an independent module-sequence.

Theorem 6. Given a graph G = (V, E), one can decide using BFS in time
O(|V | + |E|) whether G is independent module-composed and in the case of a
positive answer construct an independent module-sequence.

Proof. To decide whether a given graph G = (V, E) is bipartite distance here-
ditary can be done by Corollary 5 shown in [2] using the fundamental search
strategy of BFS which produces a classification of the vertices into levels, with
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respect to a start vertex u. Level i is the set of vertices with distance i to vertex
u and is denoted by Ni(u).

Theorem 7 (Corollary 5 of [2]). Let G be a connected graph and let u be a
vertex of G. Then G is bipartite distance hereditary if and only if all levels Nk(u)
are edgeless, and for every vertices v,w in Nk(u) and neighbours x and y of v in
Nk−1(u), we have N(x)∩Nk−2(u) = N(y)∩Nk−2(u), and further N(v)∩Nk−1(u)
and N(w) ∩Nk−1(u) are either disjoint or one is contained in the other.

A BFS starting at a vertex u can compute the level sets Nk(u) in time O(|V |+
|E|) and using these levels, the conditions of Corollary 5 of [2] can be verified in
the same time.

A BFS numbering ϕ : V → [|V |] of the vertices with respect to some vertex u
can be used to obtain an independent module-sequence ϕ1 as follows. We start
with ϕ1(v) = ϕ(v), ∀v ∈ V . For the first |N0(u)|+ |N1(u)| vertices we obviously
can choose ϕ1(v) = ϕ(v). For the vertices of w ∈ Nk(u), k ≥ 2, we know that
their neighbours in set Nk−1(u) are modules which can be ordered by a series of
inclusions N1 ⊆ N2 ⊆ . . . ⊆ N j . We rearrange the order of the vertices in Nk(u)
with respect to ϕ1 such that for every such series of inclusions ϕ1(w1) < ϕ1(w2)
if and only if Nk−1(u) ∩N(w1) ⊇ Nk−1(u) ∩N(w2). This leads an independent
module-sequence for graph G if G is bipartite distance hereditary. ��

5.3 Easy Problems on Independent Module-Composed Graphs

In contrast to general module-composed graphs, independent module-composed
graphs have bounded clique-width, since distance hereditary graphs have

Table 3. Inclusions of special graph classes

HHDS−free

perfect

weakly chordal

HHD−free

HHDG−free=distance hereditary

trivially perfect

tree−width 1

interval 

chordal

k tree−

difference

homogeneously orderable

homogeneous

module−composed

independent module−composed=bipartite distance hereditary

co−graphs
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clique-width at most 3 [12]. This implies that a lot of hard problems can be
solved in polynomial time on independent module-composed graphs [6,9]. Fur-
ther algorithms for hard problems on bipartite distance hereditary graphs can
be found in [20,18].

6 Graph class Inclusions

In Table 3 we summarize the relation of module-composed graphs and related
graph classes.

7 Conclusions

In this paper we introduced the new concept of module-composed graphs. We
have classified module-composed graphs in general and for the case of bipartite
graphs within the hierarchy of well known graph classes. Independent module-
composed graphs turn out to be a well known graph class and can be recognized
in linear time. For general module-composed graphs G = (V, E) we showed an
O(|V | · (|V |+ |E|)) time recognition algorithm.

It remains open whether there are equivalent characterizations of module-
composed graphs and a linear time recognition algorithm. In any case BFS and
Lex-BFS approaches failed to improve our given algorithm.
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Abstract. A new linear-time algorithm is presented for the tree-path-
maxima problem of, given a tree T with real edge weights and a list of
pairs of distinct nodes in T , computing for each pair (u, v) on the list a
maximum-weight edge on the path in T between u and v. Linear-time al-
gorithms for the tree-path-maxima problem were known previously, but
the new algorithm may be considered significantly simpler than the ear-
lier solutions. A linear-time algorithm for the tree-path-maxima problem
implies a linear-time algorithm for the MST-verification problem of de-
termining whether a given spanning tree of a given undirected graph G
with real edge weights is a minimum-weight spanning tree of G.

1 Introduction

A spanning tree of an undirected graph G with real edge weights is a minimum
spanning tree (MST ) if its weight, i.e., the total weight of its edges, is minimal
among all weights of spanning trees of G. The MST-construction problem of
computing an MST of a given connected undirected graph with real edge weights
is a fundamental problem with numerous applications [1,10].

In a comparison-based model that allows constant-time binary comparisons of
edge weights but no other operations on weights, the best currently known upper
bound on the complexity of the MST-construction problem was established by
Chazelle [5], who gave an algorithm that runs in O(mα(m, n)) time on input
graphs with n vertices and m edges, where α is an inverse of the Ackermann
function. Pettie and Ramachandran [17] described a provably optimal determin-
istic algorithm based on table-lookup for small subproblems, but nothing better
than O(mα(m, n)) is known about its running time. A randomized algorithm
that runs in O(n + m) time with high probability was found by Karger, Klein
and Tarjan [11]; another such algorithm was subsequently indicated by Pettie
and Ramachandran [18]. Fredman and Willard [9] devised a deterministic algo-
rithm with a running time of O(n+m) for the word-RAM model, which assumes
the weights to be integers on which a range of operations can be executed in
constant time. Extensive surveys of material related to the MST problem were
compiled by Graham and Hell [10] and by Mareš [15].

A number of researchers have considered the following problem related to
MST construction.
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MST-verification problem: Given an undirected graph G with real edge weights
and a spanning tree T of G, decide whether T is an MST of G.

The MST-verification problem for a graph with n vertices and m edges ob-
viously reduces in O(n + m) time to the MST-construction problem for the
same graph, but it might be easier (except, of course, in models of computa-
tion for which even the MST-construction problem is known to be solvable in
linear time). Komlós [14] described how to solve the MST-verification problem
for a graph with n vertices and m edges with O(n + m) binary comparisons of
edge weights, but did not indicate an algorithm with an overall running time
of O(n + m). Dixon, Rauch and Tarjan [8] gave the first linear-time algorithm
for MST verification. It is based on decomposing an input tree into small mi-
crotrees, many of which share the same tree shape, computing for each possible
microtree shape the decision tree implied by Komlós’ result, using the decision
trees to process the actual microtrees, and solving the remaining slightly smaller
overall problem using an efficient but not linear-time algorithm of Tarjan [19].
Subsequently King [13] proposed an implementation of Komlós’ algorithm that
reduces the overhead spent outside of weight comparisons to O(n + m). Ab-
stractly speaking, a linear time bound is achieved by packing several elements of
a set into a single computer word and operating on all of them simultaneously
at unit cost. Edge weights are only subjected to binary comparisons, however,
as required by the comparison-based model. A linear-time algorithm that works
on a pointer machine was proposed by Buchsbaum et al. [3].

Most of the algorithms for MST verification discussed above actually solve
the following problem.

Tree-path-maxima problem: Given a tree T with real edge weights and a list of
pairs of distinct nodes in T , determine for each pair (u, v) on the list a heaviest
edge on the path in T between u and v.

A spanning tree T of an undirected graph G with real edge weights is an
MST of G if and only if the weight of every nontree edge {u, v} in G is at
least as large as the maximum weight of an edge on the path in T between u
and v. (To see this, observe that T can be constructed by Kruskal’s algorithm
if the condition is satisfied and that a cheaper spanning tree can be obtained
via an edge swap if not.) Therefore the MST-verification problem for a graph
with n vertices and m edges reduces, within O(n + m) time, to the tree-path-
maxima problem for an n-node tree and a list of at most m node pairs. The
tree-path-maxima problem has additional applications, however, notably to the
randomized construction of minimum spanning trees [7,11,12]. It can be viewed
in a more abstract setting, where the computation of the maximum is replaced
by a general semigroup operation. In this setting, the complexity of the problem
is known to be Θ(mα(m, n)) [4,6,20]. In an online setting in which the query
corresponding to each pair (u, v) must be answered before the next pair be-
comes known, the same bound applies even to the original tree-path-maxima
problem [16].

King [13] demonstrated that the tree-path-maxima problem reduces, again
within linear time, to the special case of itself characterizedbelow. A full branching
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tree is a rooted tree in which all leaves are on the same level and all inner nodes
have at least 2 children.

Special tree-path-maxima problem: Given a full branching tree T with real edge
weights and a list of pairs (u, v) of nodes in T such that u is a proper ancestor
of v, determine for each pair (u, v) on the list a heaviest edge on the path in T
between u and v.

King’s reduction replaces the original input tree T by a tree with at most
twice as many nodes that reflects the structure of an execution of Bor̊uvka’s
MST-construction algorithm [2], applied to T , and it uses a data structure for
determining the lowest common ancestor (LCA) of two nodes to replace each
original node pair (u, v) by the two pairs (z, u) and (z, v), where z is the LCA
of u and v (if z coincides with u or v, the corresponding pair is omitted).

This paper describes a new linear-time algorithm in the comparison-based
model for the special tree-path-maxima problem. Used with King’s reduction, it
yields linear-time algorithms for the general tree-path-maxima problem and the
MST-verification problem. Similarly as King’s algorithm, the new algorithm is
an implementation of Komlós’ algorithm for full branching trees, and its running-
time analysis depends crucially on a lemma provided by Komlós.

The algorithm of Dixon, Rauch and Tarjan [8] appears moderately compli-
cated and not very suited for practical use. King’s algorithm [13] probably fares
better on both accounts. However, it employs a nontrivial scheme for encod-
ing edges, represents objects of several logically distinct types in single com-
puter words, and distinguishes between big and small nodes, which causes the
processing at a node to take one of at least four different forms. In contrast,
the new algorithm uses no encoding of edges, represents only one very simple
type of object with a richer logical structure than an integer in single com-
puter words, and processes all nodes in exactly the same uniform manner. As
an additional demonstration of the simplicity of the new algorithm, Section 5
offers a complete working implementation of it in the programming language D
(http://www.digitalmars.com/d). The code fits on three pages. It seems un-
likely that any of the earlier algorithms has a comparably succinct description.

2 The ↓ Operation on Sets

The new algorithm is most conveniently formulated and proved correct with the
aid of a set operation ↓, written infix and defined as follows: For all sets A and
B of integers,

A ↓ B = {b ∈ B | ∃a ∈ A : a < b and there is no b′ ∈ B with a < b′ < b}.

Informally, A ↓ B can be described as follows: Each a ∈ A picks the next larger
b ∈ B, if any; A ↓ B is the set of bs picked. Several as may pick the same b,
which is nonetheless included only once. Some as may pick no b at all. A number
of elementary properties of ↓ follow more or less directly from the definition. Let
us agree to take inf ∅ = ∞ and sup ∅ = −∞ and employ the natural ordering
conventions for the set of integers extended by ∞ and −∞.
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Lemma 1. For all finite sets A, B and C of integers, the following relations
hold:

(a) A ↓ B ⊆ B.
(b) |A ↓ B| ≤ |A|.
(c) (A ∪B) ↓ C = (A ↓ C) ∪ (B ↓ C).
(d) A ↓ (B ∪ C) ⊆ (A ↓ B) ∪ (A ↓ C).
(e) If A ↓ B = ∅, then A ↓ C = A ↓ (C \B).
(f) If A ↓ B ⊆ C ⊆ B, then A ↓ B = A ↓ C.
(g) If sup(B ∩ C) < inf(B \ C), then A ↓ (B ∩ C) = (A ↓ B) ∩ C.
(h) If A ⊆ B, then A ↓ C = A ↓ (B ↓ C).

Proof. Given sets A and B of integers and a b ∈ B, let us call an a ∈ A an
(A, B)-witness of b if a < b and there is no b′ ∈ B with a < b′ < b. Thus A ↓ B
is the set of those elements of B that have an (A, B)-witness.

(a) Trivial.
(b) No two distinct elements of B can have the same (A, B)-witness.
(c) An (A ∪B, C)-witness of some c ∈ C is clearly an (A, C)-witness of c if it

belongs to A and a (B, C)-witness of c if it belongs to B. Thus (A ∪ B) ↓ C ⊆
(A ↓ C)∪ (B ↓ C). On the other hand, every (A, C)- or (B, C)-witness of c is an
(A ∪B, C)-witness of c, so (A ↓ C) ∪ (B ↓ C) ⊆ (A ∪B) ↓ C.

(d) An (A, B ∪ C)-witness of some x ∈ B ∪ C is an (A, B)-witness of x if
x ∈ B and an (A, C)-witness of x if x ∈ C.

(e) Assume that A ↓ B = ∅. Then A ↓ (B ∩ C) = ∅ and, by part (d),
A ↓ C ⊆ A ↓ (C \B). Conversely, let c ∈ A ↓ (C \B) and let a be an (A, C \B)-
witness of c. By definition, there is no c′ ∈ C \B with a < c′ < c. If there were
a c′ ∈ C ∩ B with a < c′ < c, the smallest element of {b ∈ B | a < b} would
belong to A ↓ B, a contradiction. Therefore c ∈ A ↓ C.

(f) Assume that A ↓ B ⊆ C ⊆ B. Let b ∈ A ↓ B and let a be an (A, B)-witness
of b. Then the relation a < b′ < b does not hold for any b′ ∈ B. In particular, it
does not hold for any b′ ∈ C. Since b ∈ C, it follows that b ∈ A ↓ C.

Conversely, let c ∈ A ↓ C and let a be an (A, C)-witness of c. Assume that c �∈
A ↓ B. Then, since c ∈ C and hence c ∈ B, there is a b ∈ B with a < b < c. If b
is chosen smallest with this property, then b ∈ A ↓ B and b �∈ C, a contradiction.

(g) Assume that sup(B ∩ C) < inf(B \ C). Let x ∈ A ↓ (B ∩ C) and let a be
an (A, B ∩ C)-witness of x. Then there is no x′ ∈ B ∩ C with a < x′ < x. Since
x ∈ B ∩ C, there is no x′ ∈ B \ C with x′ < x either. Thus x ∈ (A ↓ B) ∩C.

Conversely, let x ∈ (A ↓ B) ∩ C and let a be an (A, B)-witness of x. Then
a < x′ < x holds for no x′ ∈ B and, in particular, for no x′ ∈ B ∩ C. Since
x ∈ B ∩ C, x ∈ A ↓ (B ∩ C).

(h) Assume that A ⊆ B. Let c ∈ A ↓ C and let a be an (A, C)-witness of c.
Since a ∈ B, c ∈ B ↓ C. Moreover, since B ↓ C ⊆ C, there is no c′ ∈ B ↓ C with
a < c′ < c, so c ∈ A ↓ (B ↓ C).

Conversely, let c ∈ A ↓ (B ↓ C) and let a be an (A, B ↓ C)-witness of c, so
that a < c′ < c holds for no c′ ∈ B ↓ C. Assume that a < c′ < c holds for some
c′ ∈ C and choose c′ smallest with this property. Then, since a ∈ B, c′ ∈ B ↓ C,
a contradiction. Thus c ∈ A ↓ C.
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3 The High-Level Algorithm

Consider an input instance of the special tree-path-maxima problem consisting
of an n-node tree T = (V, E) and a list (u1, v1), . . . , (um, vm) of m pairs of nodes
in T such that for i = 1, . . . , m, ui is a proper ancestor of vi. Let r and h be the
root of T and its height, respectively. For all u ∈ V , let d(u) be the depth of u
in T and, if u �= r, let w(u) be the weight of the edge between u and its parent
in T .

Stepping through the list (u1, v1), . . . , (um, vm) once, the algorithm begins by
storing the set Lv = {i | 1 ≤ i ≤ m and vi = v} with each node v ∈ V . In
traversals of T , it subsequently computes h and, for each node u ∈ V , its depth
d(u) and the set

Du = {d(ui) | ui is a proper ancestor of u and vi is a descendant of u},

which may be thought of, informally, as the set of depths of endpoints above u
of query paths that contain u. According to the recursive formula

Du = {d(ui) | vi = u} ∪
⋃

v is a child of u

(Dv \ {d(u)}),

the computation of Du for all u ∈ V can easily be carried out in a bottom-up
fashion, as indicated by King [13] (who writes LCA(u) for what we call Du).

For each v ∈ V , denote by Pv(j), for j = 0, . . . , d(v), the ancestor of v in T
of depth j. Moreover, let

Mv = {j | 1 ≤ j ≤ d(v) and w(Pv(j)) > w(Pv(k)) for k = j + 1, . . . , d(v)}.

Informally, Mv is the set of depths of suffix maxima on the path in T from r to
v, where a suffix maximum is a nonroot node u such that w(u) is strictly larger
than every weight of an edge that follows u on the path. Obviously, Mv is strictly
decreasing in the sense that if i, j ∈Mv and i < j, then w(Pv(i)) > w(Pv(j)).

It is easy to see that the correct answer to the query represented by a node pair
(u, v) is Pv(j), where j is the single element of the set {d(u)} ↓ Mv. Therefore
the problem at hand essentially reduces to computing Mv for all v ∈ V . Since
it is not known how to do this in linear time, instead we find Sv = Dv ↓Mv for
all v ∈ V . By part (h) of Lemma 1 and the fact that d(u) ∈ Dv, {d(u)} ↓ Sv =
{d(u)} ↓ (Dv ↓ Mv) = {d(u)} ↓ Mv, so that Sv serves just as well as Mv. The
remainder of the section explains how to determine Sv for all v ∈ V .

Let v be a nonroot node in T and let u be its parent. Then Mv can be obtained
from Mu by removing zero or more largest elements of Mu and adding the single
element d(v). As a consequence, sup(Mu ∩Mv) < inf(Mu \Mv). Moreover, by
part (c) of Lemma 1, (Dv \Du) ↓Mu ⊆ {d(u)} ↓Mu = ∅. Using these relations
as well as parts of Lemma 1 (indicated above the relevant relation symbols), we
find
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Sv = Dv ↓Mv

(c)
= ((Dv ∩Du) ↓Mv) ∪ ((Dv \Du) ↓Mv)

(c),(e)
⊆ (Du ↓Mv) ∪ ((Dv \Du) ↓ (Mv \Mu))
(d)
⊆ (Du ↓ (Mu ∩Mv)) ∪ (Du ↓ (Mv \Mu)) ∪ ((Dv \Du) ↓ (Mv \Mu))

(g),(a)
⊆ ((Du ↓Mu) ∩Mv) ∪ (Mv \Mu)

= (Su ∩Mv) ∪ {d(v)}
(a)
= {j ∈ Su | w(Pv(j)) > w(v)} ∪ {d(v)}

= {j ∈ Su | j ≤ sup{j′ ∈ Su | w(Pv(j′)) > w(v)}} ∪ {d(v)}.

Let

R = {j ∈ Su | j ≤ sup{j′ ∈ Su | w(Pv(j′)) > w(v)}} and

R′ = {j ∈ Su | j ≤ sup{j′ ∈ Dv ↓ Su | w(Pv(j′)) > w(v)}}.

By what we proved above, Dv ↓Mv ⊆ R ∪ {d(v)} ⊆Mv. Therefore, by part (f)
of Lemma 1, Dv ↓ Mv = Dv ↓ (R ∪ {d(v)}). Moreover, we have sup(Su ∩ R) =
sup R < inf(Su \ R), so, by parts (g) and (a) of Lemma 1, Dv ↓ R ⊆ Dv ↓ Su

and R′ ⊆ R. Let j ∈ Dv ↓ R. By part (a) of Lemma 1, if j �∈ R′, we have
j > sup{j′ ∈ Dv ↓ Su | w(Pv(j′)) > w(v)} ≥ sup{j′ ∈ Dv ↓ R | w(Pv(j′)) >
w(v)} = sup(Dv ↓ R), a contradiction. We may conclude that Dv ↓ R ⊆ R′ and,
by another application of part (f) of Lemma 1, that Dv ↓ R = Dv ↓ R′. Since
d(v) > sup(Dv ↓ R), this is easily seen to imply that Sv = Dv ↓ (R ∪ {d(v)}) =
Dv ↓ (R′∪{d(v)}). The algorithm therefore proceeds to compute Sv for all v ∈ V
in a top-down traversal of T according to the recursive formula

Sv =

⎧⎨⎩
∅ if v = r;
Dv ↓ ({j ∈ Su | j ≤ sup{j′ ∈ Dv ↓ Su | w(Pv(j′)) > w(v)}} ∪ {d(v)}),

if v has parent u.

During the traversal, the ancestors of the node currently visited are kept in
an array sorted by depth, so that it is easy to access Pv(j) for arbitrary j ∈
{0, . . . , d(v)} during the visit of v.

The value sup{j′ ∈ Dv ↓ Su | w(Pv(j′)) > w(v)} is found with binary search
by initializing a set S to Dv ↓ Su and proceeding as follows: If S = ∅, return −∞
(or 0, which has the same effect). Otherwise, as long as |S| > 1, compute the
median k of S, defined here to be the element in S of rank �|S|/2 + 1� (i.e., ties
are broken in favor of the larger element), and replace S by {j ∈ S | j ≥ k} if
w(Pv(k)) > w(v) and by {j ∈ S | j < k} otherwise. Finally, if the single element
k of S satisfies w(Pv(k)) > w(v), return k—it is the largest element with that
property; otherwise return −∞.
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During the visit of a node v in the traversal, the algorithm also answers the
queries whose indices are stored in Lv: As discussed above, for each i ∈ Lv, it
computes {d(ui)} ↓ Sv and outputs Pv(j), where j is the single element of the
resulting set.

Outside of the binary searches, the algorithm carries out O(1) operations per
node and per query. Some of the operations manipulate entire sets. However, as
will be shown in the next section, each set operation required by the algorithm,
including the evaluation of A ↓ B, can be executed in constant time. Since
|Sv| ≤ |Dv| for all v ∈ V according to part (b) of Lemma 1, this yields a running
time of O(n + m +

∑
v∈V log(|Dv|+ 1)). Komlós [14] has shown that when T is

a full branching tree, as assumed here, then
∑

v∈V log(|Dv| + 1) = O(n + m).
Therefore the running time of the algorithm is O(n + m).

4 Realizing the Set Operations

The sets Lv, with v ∈ V , must support only the operations of initialization to
the empty set, insertion of an element and iteration over the entire set. Therefore
they can obviously be realized via, e.g., linked lists. Every other set manipulated
by the algorithm is a set of depths in T , i.e., it is a subset of {0, . . . , h}. Let
us call such a set an h-set. Since T is a full branching tree, h ≤ log2n. It is
therefore reasonable to assume that integers in the range 0, . . . , 2h+1 − 1 can be
stored in single computer words in the usual 2’s-complement representation and
operated on in constant time by standard computer instructions, and we will
make this assumption. This allows us to represent an h-set A via the integer∑

i∈A 2i, which makes the implementation of most of the relevant set operations
a routine matter, as indicated in the table below. Let us number the bit positions
of nonnegative integers 0, 1, . . . , starting at the least significant bit position.

Set expression C equivalent Comment
∅ 0 all bits cleared

A ∪B A|B bitwise or

A \B A&~B bitwise and and complement
{j} 1<<j 2j , obtained by left shift of 1

{i ∈ A | i < j} A&(1<<j)-1 mask with bits 0, . . . , j − 1 set
{i ∈ A | i ≥ j} A&~((1<<j)-1) mask with bits 0, . . . , j − 1 cleared

A ↓ B B&(~(A|B)^(A+(A|~B))) see below

To understand the last line of the table, let A and B be h-sets, consider the
(arithmetic) addition of the integers representing the sets A and A∪B, where B
is the complement of B with respect to the universe {0, . . . , h}, and assume that
the addition is carried out with the usual school method, i.e., from bit position
0 to bit position h and with the use of carries. Let i ∈ {0, . . . , h}. If i ∈ A, then
both operands of the addition have a 1 in bit position i, which turns position i
into a carry-generate position that sends a carry into position i+1 (if such a bit
position exists), independently of all other bits of the operands. Similarly, if i



An Even Simpler Linear-Time Algorithm for Verifying MST 185

belongs to neither A nor B, position i is a carry-propagate position that passes a
carry on to position i+1 (if it exists) if and only if it receives a carry from position
i− 1. The final case, i belongs to B but not to A, yields a carry-absorb position
that never sends a carry to position i + 1. In summary, each element i of A
“throws” a carry that runs through positions i + 1, i + 2, . . . until it is “caught”
(if ever) by an element j > i of B (if j ∈ A, a new carry is simultaneously
thrown). It is now easy to see that A ↓ B is the set of those elements of B whose
corresponding bit positions receive a carry. It is possible to test whether this is
the case for position i by forming the exclusive or (C representation: ^) of the
three bits in position i of the two operands of the addition and of their sum. In
the light of the simplifying relation A⊕ (A ∪B) = A ∪B, where ⊕ denotes the
symmetric set difference, this leads to the C expression given in the last line of
the table.

The necessary C operations can be reduced to a core set consisting of bitwise
complement, bitwise and or or and left shift of 1 by j ∈ {0, . . . , h} bit positions,
since the remaining operations reduce to these with a constant-factor overhead
via de Morgan’s laws, etc. If even the core operations are not available at unit
cost, they can be replaced by lookup in tables that can be precomputed in O(n)
time.

The only operation that still needs to be explained is the computation of the
median of an h-set, for which we have to resort to the table-lookup method.

For all nonnegative integers n and k, denote by
{

n
k

}
the set of all subsets

of size k of {0, . . . , n − 1}. Moreover, for arbitrary sets of sets A and B, let
A×∪B = {a ∪ b | a ∈ A and b ∈ B}. In complete analogy with a well-known
recursive formula for binomial coefficients, the formula

{n

k

}
=

⎧⎪⎨⎪⎩
∅, if n < k;
{∅}, if n ≥ k = 0;(
{{n− 1}}×∪

{
n−1
k−1

})
∪
{

n−1
k

}
, if n ≥ k ≥ 1

holds for all nonnegative integers n and k. It is easily translated into a recursive
function subsets that, for n, k ∈ {0, . . . , h}, can compute

{
n
k

}
(as a sequence of

integers, each of which represents an h-set) in O(
∣∣{n

k

}∣∣) time.
Given a set A of sets of integers and an integer k, let A + k denote the set

of those sets obtained from the sets in A by adding k to each of their elements.
Then, for s ∈ {0, . . . , h}, the set median−1(s) of those h-sets whose median is s
is

s⋃
k=0

[({
h− s

k

}
+ s + 1

)
×∪ {{s}}×∪

({ s

k

}
∪
{

s

k + 1

})]
,

since an h-set belongs to median−1(s) if and only if it consists of s and, for some
k ∈ {0, . . . , s}, k elements larger than s and either k or k + 1 elements smaller
than s. With the aid of the function subsets discussed above, this formula is easily
translated to a function that, for each s ∈ {0, . . . , h}, can compute median−1(s) in
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O(|median−1(s)|) time. And with this function, finally, it is a trivial matter to fill
in a table of size 2h+1 that maps each h-set to its median in O(2h) = O(n) time.

5 An Implementation in D

int[] tree_path_maxima(int root,int[] child,int[] sibling,
double[] weight,int[] upper,int[] lower) {

// Returns an array of answers to the queries of an instance
// (T,((u_1,v_1),...,(u_m,v_m))) of the special tree-path-maxima
// problem. For some natural number n, T is a weighted full
// branching tree on the node set {0,...,n-1}, represented
// via the variables root, which indicates the root of T,
// child[n], which maps each node u of T to its leftmost child
// (in some arbitrary left-to-right order of T), or to -1 if u is
// a leaf, sibling[n], which maps each node v of T to its right
// sibling, or to -1 if v has no right sibling, and weight[n],
// which maps each node v of T, except for the root of T, to the
// weight of the edge between v and its parent. For i=1,...,m,
// u_i and v_i are the i’th element of upper[m] and lower[m],
// respectively, and the i’th element of the array returned is
// a vertex v of T such that the edge between v and its parent
// in T is a heaviest edge on the path in T between u_i and v_i.
// The running time is O(n+m).

int height=0,n=child.length,m=upper.length;
int[] depth=new int[n],D=new int[n],L=new int[n],

Lnext=new int[m],answer=new int[m],median,P;

void init(int u,int d) { // d = depth of u
depth[u]=d;
if (d>height) height=d; // height of T = maximum depth
for (int i=L[u];i>=0;i=Lnext[i]) D[u]|=1<<depth[upper[i]];
for (int v=child[u];v>=0;v=sibling[v]) {
init(v,d+1);
D[u]|=D[v]&~(1<<d);

}
}

int[] median_table(int h) {
// Returns a table of size 2^(h+1) whose entry in position i, for
// i=0,...,2^(h-1)-1, is the median of the set represented by i.
int[] T=new int[(1<<h)+1],median=new int[1<<h+1];
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int subsets(int n,int k,int p) {
// Stores the subsets of size k of {0,...,n-1} in T,
// starting in position p, and returns p plus their number.
if (n<k) return p;
if (k==0) { T[p]=0; return p+1; }
int q=subsets(n-1,k-1,p);
for (int i=p;i<q;i++) T[i]|=1<<(n-1);
return subsets(n-1,k,q);

}

for (int s=0;s<=h;s++)
for (int k=0;k<=s;k++) {
int p=subsets(h-s,k,0);
int q=subsets(s,k,p);
q=subsets(s,k+1,q);
for (int i=0;i<p;i++) {
int b=(1<<s+1)*T[i]+(1<<s); // fixed high bits
for (int j=p;j<q;j++) median[b+T[j]]=s; // variable low bits

}
}

return median;
} // end median_table

int down(int A,int B) {
// Returns A "downarrow" B
return B&(~(A|B)^(A+(A|~B)));

}

void visit(int v,int S) { // S = S of parent

int binary_search(double w,int S) {
// Returns max({j in S | weight[P[j]]>w} union {0})
if (S==0) return 0;
int j=median[S];
while (S!=1<<j) { // while |S|>1
S&=(weight[P[j]]>w)?~((1<<j)-1):(1<<j)-1;
j=median[S];
}
return (weight[P[j]]>w)?j:0;

}

P[depth[v]]=v; // push current node on stack
int k=binary_search(weight[v],down(D[v],S));
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S=down(D[v],S&(1<<(k+1)-1)|(1<<depth[v]));
for (int i=L[v];i>=0;i=Lnext[i])
answer[i]=P[median[down(1<<depth[upper[i]],S)]];

for (int z=child[v];z>=0;z=sibling[z]) visit(z,S);
} // end visit

L[]=-1; Lnext[]=-1; // initialize all array elements to -1
for (int i=0;i<m;i++) { // distribute queries to lower nodes
Lnext[i]=L[lower[i]];
L[lower[i]]=i;

}
D[]=0; // initialize all array elements to 0
init(root,0);
P=new int[height+1];
median=median_table(height);
visit(root,0);
return answer;
} // end tree_path_maxima
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Abstract. Algorithms based on a bottom-up traversal of a tree decom-
position are used in literature to develop very efficient algorithms for
graphs of bounded treewidth. However, such algorithms can also be used
to efficiently solve problems on chordal graphs, which in general do not
have a bounded treewidth. By combining this approach with a sparsi-
fication technique we obtain the first linear-time algorithm for chordal
graphs that solves the k-disjoint paths problem. In this problem k pairs
of vertices are to be connected by pairwise vertex-disjoint paths. We also
present the first polynomial-time algorithm for chordal graphs capable
of finding disjoint paths solving the k-disjoint paths problem with mini-
mal total length. Finally, we prove that the version of the disjoint paths
problem, where k is part of the input, is NP-hard on chordal graphs.

1 Introduction

In the k-disjoint paths problem (k-DPP), k pairs of vertices are to be connected
by pairwise vertex-disjoint paths. This appears to be a hard problem since, for
many classes of graphs, efficient algorithms are unknown or do not exist. Indeed,
Fortune, Hopcroft, and Wyllie [3] have shown that the problem is NP-hard on
directed graphs, even if k is restricted to 2. As shown by Lynch [9] and by Knuth
(see the paper of Karp [7]) the same is true on undirected graphs for the disjoint
paths problem (DPP), where k, in contrary to the k-DPP, is part of the input. It
is a common approach in combinatorial optimization to construct for NP-hard
problems so-called fixed parameter algorithms that solve the original problem in
polynomial time if one or more of the input parameters are fixed. We present
a linear time algorithm for the k-DPP, which then can be considered also as a
fixed parameter algorithm for the DPP.

As usual in graph theory, we let n and m denote the number of vertices and
edges, respectively, of the graph under consideration. For every fixed k, Robert-
son and Seymour, in their series of papers, developed a polynomial algorithm for
the k-DPP on undirected graphs. Perković and Reed [13] presented an algorithm
with an improved running time. Unfortunately, the constants hidden in the O-
notation of the running time of the algorithms above are extremely large and
make these algorithms unfeasible in practice. Algorithms with better practical
running times are known for several classes of graphs such as undirected graphs
of bounded treewidth [16] and directed acyclic graphs [3]. However, for many
classes of graphs, e.g., for general, for planar, or for chordal undirected graphs,
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algorithms more efficient than the algorithm of Perković and Reed are known
only for the special case k = 2. The first polynomial-time algorithms for the
case k = 2 on general undirected graphs are given, e.g., in [11,17,18,19]. Perl
and Shiloach [14] presented the first polynomial-time algorithm for the 2-DPP
on undirected chordal graphs and on undirected planar graphs, namely with a
linear running time. A simpler algorithm for chordal graphs can be found in [8].

The importance of chordal graphs is due to several facts. On the one hand,
chordal graphs have nice properties that can be used to design efficient algo-
rithms for many problems. For example, as shown by Fulkerson and Gross [4],
chordal graphs are exactly the set of graphs with a perfect elimination order,
and this order can be used to compute a maximal independent set, a maximum
clique or an optimal coloring on chordal graphs in linear time [5]. On the other
hand, concerning the practical relevance of chordal graphs, Gavril [6] has shown
that the set of chordal graphs is equal to the set of subtree graphs, where a sub-
tree graph is the intersection graph of a family of subtrees of a tree. Let us call a
tuple (G1, . . . , Gk, G) of graphs to be an intersection model for the intersection
graph of G1, . . . , Gk if the latter are subgraphs of G. Many practical problems in
different areas such as computer science and genetics can be modeled by an inter-
section model and solved by a transformation to problems on the corresponding
intersection graph; e.g., see [15]. In general, it seems that translating a prob-
lem on an intersection model into a problem on the corresponding intersection
graph makes the problem easier to solve. However, in this paper we study the
reverse direction. We translate the k-DPP on a chordal graph into a problem on
the corresponding intersection model (T1, . . . , Tk, T ) or, more precisely, on a tree
decomposition defined by this model, and we derive a simple approach to solve
the k-DPP on chordal graphs. From another point of view our paper shows that
algorithms based on a bottom-up traversal of a tree decomposition are useful not
only for graphs of bounded treewidth, but can also be used for efficiently solving
different problems on chordal graphs, even on those of unbounded treewidth. We
only use the fact that we can choose the so-called bags of a tree decomposition
as cliques. Following a similar approach, Okamato, Uno, and Uehara [12] have
recently shown that the number of independent sets in a chordal graph can be
counted in linear time.

In Section 2 we present an algorithm for solving the k-DPP on a chordal graph
with a running time of O(n2k+2 +m). As shown in Section 3, this algorithm can
be modified to connect given pairs of vertices by pairwise disjoint paths such that
the number of edges used by the paths is minimized among all such solutions.
Note that so far no polynomial-time algorithm was known for solving this latter
problem for every fixed k on chordal graphs.

In Section 4, as the main result of our paper, we show that the tree decomposi-
tion based algorithm of Section 2 can be combined with a sparsification technique
in order to reduce the running time for solving the k-DPP on chordal graphs to
O(m+(2k)4k+2n). This means that we obtain a linear fixed parameter algorithm
for the DPP. Moreover, the additional constants hidden in the O-notation are of
moderate size. For every fixed k, we obtain a running time which improves the
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running time of the previous best known algorithm for solving the k-DPP on
chordal graphs, namely the algorithm of Perković and Reed mentioned earlier
in this introduction for solving the problem on general graphs. Moreover, our
algorithm is easy to implement and—for small values of k—it is practical. It
is not surprising that the running time increases exponentially in k since—as
a further new result—we can proof that the DPP (with k being non-fixed) is
NP-hard even for chordal graphs. Details can be found in Section 5.

2 The k-Disjoint-Paths Problem

Many graph problems can be solved in polynomial time by traversing a so-called
tree decomposition bottom-up if the so-called treewidth is taken to be a constant.

Definition 1. A tree decomposition for a graph G = (V, E) is a pair (T, B),
where T = (VT , ET ) is a tree and B is a mapping that maps each node w of VT

to a subset B(w) of V —called the bag of w—such that (1) ∪w∈VT B(w) = V ,
(2) for each edge e ∈ E, there exists a node w ∈ VT with e ⊆ B(w), (3)
B(x) ∩ B(y) ⊆ B(w) for all w, x, y ∈ VT with w being a node on the path from
x to y in T . The treewidth of T is the maximal cardinality of a bag minus one
and the size of a tree decomposition is the sum of the cardinalities of its bags.

The treewidth of a graph G, denoted by tw(G), is the smallest width of a tree
decomposition for G. One of the problems that can be solved efficiently on graphs
with constant treewidth is the k-disjoint paths problem [16]. Unfortunately, the
treewidth of chordal graphs is not bounded by a constant but we can find a very
special tree decomposition that helps us to solve the k-DPP even on chordal
graphs. For a set U ⊆ V of a graph G = (V, E), we define G[U ] to be the
subgraph of G induced by the vertices in U .

Definition 2. A clique tree for a graph G = (V, E) is a tree decomposition
(T, B) with the additional property that (4) B is a bijection between the nodes
of T and {U ⊆ V | G[U ] is a maximal clique in G}.

It is well known that chordal graphs are exactly the graphs that have a clique
tree [2,6,20] and that a clique tree of linear size can be constructed in linear time
[1]. As one can show by using property (4) a clique tree has O(|V |) nodes. As
input of our algorithm we will take a weak clique tree that is defined as a clique
tree if we replace (4) by the following property: (4’) the vertices of each bag
induce a clique in G. More precisely, our algorithm starts with constructing, for
the graph G = (V, E) on which we search for k disjoint paths, in O(|V | + |E|)
time a weak clique tree (T, B) of size O(|V |+ |E|) for G with T being a rooted
tree having O(|V |) nodes. For example we can take a standard clique tree. We
call the vertices to be connected by disjoint paths the terminals of G. For a node
w of T , we let G(w) be the subgraph of G induced by all vertices contained in at
least one set B(w′) for a descendant w′ of w in T , where w is also a descendant
of itself. In order to obtain a simpler description of our algorithm, we describe
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our problem as a coloring problem. A coloring of a graph G′ or a vertex set
U is a mapping that assigns a color to some of the vertices in G′ and in U ,
respectively. For an instance of the k-DPP, we always define an initial coloring
that, for each pair of terminals to be connected, colors both terminals with the
same color different from the colors of the other terminals. In general, we call
a coloring C2 of a vertex set V2 an extension of a coloring C1 of a vertex set
V1 ⊆ V2 if all colored vertices of V1 are also colored by C2 with the same color.
Let us call a coloring of a graph G legal if it is an extension of the initial coloring
of the terminals and if, for each pair t1 and t2 of terminals sharing a color c,
there is a path from t1 to t2 in the subgraph of G induced by the vertices of color
c. Moreover, we call a legal coloring good with respect to a (weak) clique tree
(T, B) for G if each bag of a node in T contains at most two vertices of color c.

For a node w with a father p(w), let us call the set of vertices in B(w)∩B(p(w))
the transition set of w denoted by A(w). On the one hand, our algorithm will
need to know the colors of all vertices in a bag for finally obtaining a complete
coloring of G. On the other hand, our algorithm will extend stepwise colorings
of G(w) for a node w to colorings of G(p(w)) and for determining the colors for
the new vertices of this extension (namely the vertices in G(p(w)) − G(w)) it
only needs to know the colors of the vertices in A(w). Thus, we define a full and
a reduced characteristic for a node w of T as a coloring of the nodes in B(w) and
A(w), respectively, such that for each color c at most two vertices are colored
with c. Let Z be a full or a reduced characteristic of a node w. Then Z is valid
if and only if

1. there exists a good coloring C of G(w) extending Z and the initial coloring
of the terminals in G(w).

2. for each color c the following is true: if there is exactly one terminal in G(w)
of color c, a vertex in A(w) is colored with c by Z.

A coloring C with properties 1 and 2 is then called conform to Z. We also call
two characteristics compatible if one characteristic is an extension of the other.

There is a connection between the k-DPP and good colorings: If the k-DPP
has a solution, take a solution with minimal total length. Then a coloring that
colors the vertices of each path of the solution with the color of its endpoints is
a good coloring because the following is true: if one of the disjoint paths visits
three vertices v1, v2, and v3 of one bag in this order, we obtain a shorter path
by replacing the subpath from v1 to v3 by edge {v1, v3}. In the reverse direction
assume that we are given a good coloring conform to a valid full characteristic of
the root of T . Then disjoint paths connecting the terminals of the same color can
be obtained by a depth-first search on each subgraph induced by the vertices of
one color. Hence, we can solve the k-DPP by computing a good coloring conform
to a valid full characteristic of the root of T .

For all nodes of T , we want to determine bottom-up all valid full and all
valid reduced characteristics. If we restrict a coloring of G(w) conform to a valid
full characteristic of a node w to the graph G(w′) for a descendant w′ of w,
this restricted coloring is conform to a valid full as well as to a valid reduced



194 F. Kammer and T. Tholey

characteristic of w′. In the reverse direction, a full characteristic Z of a node w
is valid if and only if

– the terminals in B(w) are colored by Z with their original color,
– for each child w′ of w, the reduced characteristic of w′ compatible to Z is

valid,
– each color is used by Z to color at most two vertices, and
– for each color c, the following is true: if there is exactly one terminal in G(w)

of color c, a vertex in A(w) is colored with c by Z.

Because of the above conditions there exists a good coloring of G(w) extending
Z; in particular, using the last condition we can conclude by induction that, for
each pair of terminals t1 and t2 sharing a color c, there is a path from t1 to t2
in the subgraph of G induced by the vertices of color c. By iterating over all
valid full characteristics of a node w in T we can easily compute a lookup-table
storing 1 for each valid reduced characteristic of w and 0 for each non-valid
reduced characteristic of w. The time for updating the whole table for w is of
size O(� · tw(G)deg(w)), where � is the number of full characteristics of w.

Hence, by a bottom-up traversal of T we can find a good coloring for G
if such a coloring exists. We next analyze the running time of our algorithm.
For each node, we can test whether a certain full characteristic is valid in at
most O((tw(G) + k)deg(w)) time by testing the four properties listed above.
For testing the last condition, note the following: in O(k deg(w)) time, we can
update the set of colors c for which there is exactly one terminal of color c in
G(w) if we are given the corresponding sets for the children of w. There are at
most (tw(G) + 1)2k full characteristics for a node w since for each color we can
choose twice either no vertex or one of the ≤ tw(G) + 1 vertices in B(w). Since
the time needed to initialize the lookup-table for the reduced characteristics of a
node w is bounded linear in O(|A(w)|) times the number of full characteristics,
we obtain the next lemma.

Lemma 3. The k-DPP can be solved in O((tw(G)+1)2k(tw(G)+k)|V |+ |E|) =
O(|V |2k+2 + |E|) time on a chordal graph G = (V, E).

3 Shortest k-Disjoint Paths

Define the weight of a coloring as the number of edges whose endpoints are both
colored and have the same color. The cost of a characteristic Z of a node w is the
minimal possible weight of a coloring of G(w) conform to Z. In order to output
disjoint paths using a minimal number of edges, we also have to compute the
costs of the characteristics. Given, for a full characteristic Z of a node w, the
costs W (Z1), . . . , W (Z�) of the reduced characteristics Z1, . . . , Z� of the children
of w compatible to Z, one can compute the cost W (Z) of Z as follows: Initialize
W (Z) with W (Z1)+W (Z2)+ . . .+W (Z�). Subsequently, for each color c used by
Z to color two vertices v1, v2 ∈ B(w), add one minus the number of children of w
with their bags containing both, v1 and v2. This update takes O(min{k, |B(w)|}·
deg(w)) time and does not increase the asymptotic running time.
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Theorem 4. On a chordal graph G = (V, E) one can find in O(|V |2k+2 + |E|)
time paths solving an instance of the k-DPP using a minimal number of edges
among all sets of paths solving the instance.

4 A Speedup

In this section we present a speed-up of the algorithm in Section 2. Once again,
we first construct in O(|V |+|E|) time a weak clique tree (T, B) of size O(|V |+|E|)
for our input graph G = (V, E) with T having O(|V |) nodes. We assume that
there is no edge {t1, t2} in G for a pair {t1, t2} of terminals that are to be
connected in G. Otherwise, our problem would be reduced to the (k − 1)-DPP
on G[V − {t1, t2}]. For each pair (t1, t2) of terminals t1 and t2 that should be
connected by a path, let us choose Γ (t1) and Γ (t2) as the unique pair of nodes
in T with their bags containing t1 and t2, respectively, such that the distance
between the nodes is minimal. We choose for an arbitrary terminal t the node
Γ (t) as the root of T . Let f be a fixed bijection from V to {1, . . . , |V |} assigning
the highest numbers to the terminals of G. For nodes w1 and w2 of T and for
a vertex v of G, we define the (w1, w2)B-count of v as a tuple (a, f(v)), where
a is the number of nodes w′ on the path from w1 to w2 in T whose bags B(w′)
contain v. We say that a vertex v1 with (w1, w2)B-count (a1, b1) has a larger
(w1, w2)B-count than a vertex v2 with (w1, w2)B-count (a2, b2) if and only if
either a1 = a2 and b1 > b2 or a1 > a2 holds. For a node w ∈ T , we let
I(w) = {t | t is terminal with Γ (t) contained in the subtree of T rooted in w}.

In order to improve the efficiency of the algorithm presented in Section 2,
we replace (T, B) by a new tuple (T ∗, B∗), where T ∗ will be a subtree of T
and where B∗ will be a function that maps each node w of T ∗ to a subset of
B(w) of size ≤ 4k2. In order to describe (T ∗, B∗) more precisely, we need some
further definitions. A bag B(w) of a node w is called small if |B(w)| ≤ 2k and big
otherwise. For each node w of T and for each terminal t, we define D(w, t) as the
set of the min{2k, |B(w)|} vertices of B(w) with the largest (w, Γ (t))B-count.
We also let D(w) be the union of D(w, t) over all t ∈ I(w) and of the set of all
terminals in B(w) \ I(w).

We now obtain T ∗ from T by deleting all nodes w with I(w) = ∅. We choose
the same root for T ∗ as for T and, for each node w, we insert the vertices of
D(w) into B∗(w). Moreover, for each child w′ of w, we insert an arbitrary subset
of D(w) ∩ B(w′) of size min{2k, |D(w) ∩ B(w′)|} into B∗(w′). Let t ∈ I(w′).
Keep in mind that, if |B(w) ∩ B(w′)| ≥ 2k, then D(w, t)—and consequently
also B∗(w)—contains 2k vertices of B(w′) since these vertices have the largest
(w, Γ (t))B-count. Thus, if |B(w) ∩ B(w′)| ≥ 2k, the rules for node w add 2k
vertices of B∗(w) to B∗(w′), i.e., |B∗(w) ∩ B∗(w′)| ≥ 2k. Note that by our
definition B(w) = B∗(w) holds for each small bag B(w). We also can conclude:

Lemma 5. Let v be a vertex of G, w′ be a node of T ∗ with v ∈ B∗(w′), and
w′′ be the node of lowest depth with v ∈ B(w′′). Then v ∈ B∗(w) holds for each
node w on the path from w′ to w′′ in T ∗.
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Proof. Since B(w) and B∗(w) share the same terminals, Lemma 5 holds if v is a
terminal. If it is not, we merely need to show that, for each node w on the path
from w′ to w′′ in T with v ∈ B(w), the following holds: if w has a father x with
v ∈ B(x), we also have v ∈ B∗(x). Since B∗(x) = B(x) if B(x) is small, we only
need to consider the case, where B(x) is big. Let us consider the case, where
B(w) is small. Because of v ∈ B∗(w) there is a t ∈ I(w) for which v ∈ D(w, t) or
v ∈ D(x, t) holds. Since |B(w)| ≤ 2k, v ∈ D(w, t)∩B(x) also implies v ∈ D(x, t).
Consequently, v ∈ B∗(x). Let us finally consider the case where both, B(w) and
B(x), are big. If the insertion rule for x inserts v into B∗(w), we have v ∈ B∗(x).
Otherwise, the only reason for v being contained in B∗(w) is that v ∈ D(w, t)
for a terminal t ∈ I(w). Then v must also be one of the vertices with the 2k
largest (x, Γ (t))B-counts and therefore is also contained in B∗(x). �

Corollary 6. For each vertex v of G, the subtree of T ∗ induced by the nodes w
with v ∈ B∗(w) is connected.

Let G∗ be the graph obtained from G by removing all vertices v and all edges
{v1, v2} from G for which there is no longer any node w with v ∈ B∗(w) and
{v1, v2} ⊆ B∗(w), respectively.

Lemma 7. (T ∗, B∗) is a weak clique tree for G∗ of width 4k2 − 1.

Proof. By our construction and Corollary 6 all properties of a weak clique
tree hold for (T ∗, B∗). Concerning the treewidth, for the root r of T , we have
|B∗(r)| ≤ |D(r)| ≤ 4k2 since |I(r)| = 2k. By our choice of r there is a ter-
minal t1 with Γ (t1) = r. We have |D(w)| ≤ 4k2 − 2k for all nodes w �= r in
T since the subtree of T rooted in w does not contain Γ (t1). Consequently,
|B∗(w)| ≤ 4k2. �

Lemma 8. The k-DPP has a solution on G if and only if this is true for G∗.

Proof. Clearly, an instance of the k-DPP is solvable on G if this true for G∗. For
the reverse direction we merely need to show that a solution of the k-DPP on G
allows us to construct a good coloring of G∗ with respect to (T ∗, B∗). Moreover,
for a legal coloring C and a pair of terminals t1 and t2 colored with c by C, let
us call a pair of incident nodes w1 and w2 on the unique path from Γ (t1) to
Γ (t2) a color break with respect to c (and C) if no vertex in B∗(w1) ∩ B∗(w2)
is colored with c. Let C be the set of all legal colorings of G that color at most
two vertices of each bag in (T ∗, B∗) with the same color. The solvability of the
k-DPP implies C �= ∅ since there exists—as shown in Section 2—at least one
good coloring with respect to (T, B) and since each good coloring is contained
in C. In the reverse direction, our Lemma holds if there is a C ∈ C without any
color break since C then is a good coloring of G∗ with respect to (T ∗, B∗).

Assume now that we can find no coloring in C without color breaks. Let us
choose a fixed numbering with 1, . . . , k for the colors assigned to the terminals
and a coloring C ∈ C such that the lowest number among the colors with a color
break is as large as possible. Moreover, if c is the color with the lowest number
for which there is a color break and if t1 and t2 are the terminals of color c, we
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choose the coloring C ∈ C with the above properties such that there is a maximal
distance between Γ (t1) and the node wσ0 of the first color break (wσ0 , wσ0+1)
on the path p = (w1, w2, w3, . . .) from Γ (t1) to Γ (t2) in T . Let v be a vertex of
color c with v ∈ B(wσ0 ) ∩B(wσ0+1) and v �∈ B∗(wσ0 ) ∩B∗(wσ0+1).

Assume |B∗(wσ0) ∩ B∗(wσ0+1)| < 2k. Then |B(wσ0 ) ∩ B(wσ0+1)| < 2k. Let
w ∈ {wσ0 , wσ0+1} be the father of the other node w′ ∈ {wσ0 , wσ0+1} and t ∈
{t1, t2}∩I(w′). We can conclude v ∈ D(w, t) and consequently v ∈ B∗(w). Since
|B(wσ0 ) ∩ B(wσ0+1)| < 2k, the rule for w adds all vertices of D(w, t) ∩ B(w′)
including v into B∗(w′), a contradiction to v �∈ B∗(wσ0 ) ∩B∗(wσ0+1).

Hence |B∗(wσ0 ) ∩B∗(wσ0+1)| ≥ 2k. Since no vertex in B∗(wσ0 ) ∩B∗(wσ0+1)
is colored with c and since C is a coloring which uses each color at most twice in
a bag of (T ∗, B∗) and thus in B∗(wσ0)∩B∗(wσ0+1), it follows that there must be
an uncolored vertex in B∗(wσ0)∩B∗(wσ0+1). Let us define u to be the uncolored
vertex in B∗(wσ0 )∩B∗(wσ0+1) that among all uncolored vertices has the largest
(wσ0+1, Γ (t2))B-count. We next show that we can construct a coloring C∗ ∈ C
without any new color breaks for the colors different from c for which—if it has
a color break with respect to c—the first such color break occurs after the pair
{wσ0 , wσ0+1} on p. This leads to a contradiction to our choice of C and proofs
our lemma.

After having initially set C∗ = C we modify C∗ as follows. First of all, we
color u with c. We then define wσ−1 and wσ1 as the first and the last node on p,
respectively, such that u ∈ B∗(wσ−1)∩B∗(wσ1). Let S be the set consisting of u
and all vertices colored with c by C contained in a bag of {B(wσ−1), . . . , B(wσ1 )}.

Second, modify C∗ as follows: For the set X of all nodes reachable from
one of the nodes in {wσ−1 , . . . , wσ1} without visiting wσ−1−1 or wσ1+1, uncolor
all c-colored vertices in B∗(X) apart from u, the vertex v′ ∈ S ∩ B∗(wσ−1)
with the largest (wσ−1 , Γ (t1))B∗ -count, and the vertex v′′ ∈ S with the largest
(wσ1 , Γ (t2))B-count. Note that v′′ ∈ B(wσ1+1) or wσ1 = Γ (t2).

Third, if v′′ ∈ B(wσ0+1) \ D(wσ0+1, t2), no vertex is colored with c by C
in D(wσ0+1, t2). Then, let ũ be the vertex of highest (wσ0+1, Γ (t2))B-count in
D(wσ0+1, t2) not colored by C, let wσ2 be the last node on p with ũ ∈ B(wσ2),
and let v′′′ be the vertex in B(wσ2) with C(v′′′) = c that among all such vertices
has the largest (wσ2 , Γ (t2))B-count. In particular, v′′′ ∈ B(wσ2+1) or we have
wσ2 = Γ (t2) and v′′′ = t2. If v′′ ∈ B(wσ0+1) \D(wσ0+1, t2) and v′′ �= u �= ũ, so-
called extra modifications of C∗ are required: For the set Y of all nodes reachable
from one of the nodes in {wσ1 , . . . , wσ2} without visiting wσ1−1 or wσ2+1, change
C∗ by uncoloring v′′ and all c-colored vertices in B∗(Y ). See Fig. 1. (Some ranges
are explained later in more detail.) Coloring v′ with c guarantees that there is
no new color break between Γ (t1) and wσ0 on p.

Let us first consider the case, where no extra modifications are applied. By
coloring v′′ with c we can guarantee that C∗ is a legal coloring. Hence, if C∗ does
not belong to C, there is a bag B∗(w) containing u, v′, v′′ and |{u, v′, v′′}| = 3.
By Corollary 6 we can choose w w.l.o.g. as a node on p. Due to our choice of
v′ we know that v′ ∈ B∗(wσ−1 ). There is no node w′ on the subpath of p from
wσ0+1 to Γ (t2) with v′ ∈ B∗(w′) since otherwise v′ ∈ B∗(wσ0 ) ∩ B∗(wσ0+1)
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by Corollary 6. Thus, w is on the subpath of p from Γ (t1) to wσ0 . Note that
v′′ ∈ B∗(w) implies v′′ ∈ B(w). We consider two subcases:

– wσ0+1 is the father of wσ0 . Since v′′ ∈ B(wσ1 ), we also have v′′ ∈ B(wσ0 ) ∩
B(wσ0+1). Therefore, v′′ ∈ B∗(wσ0)∩B∗(wσ0+1) according to Lemma 5 and
we obtain a contradiction since (wσ0 , wσ0+1) is a color break.

– wσ0 is the father of wσ0+1. Since no extra modifications are applied and since
u �= v′′, we have v′′ /∈ B(wσ0+1) or v′′ ∈ D(wσ0+1, t2) ⊆ B∗(wσ0+1) or u = ũ.
In the first case, v′′ has a smaller (wσ1 , Γ (t2))B-count than u. In the second
case, we have v′′ ∈ B∗(wσ0 ) ∩ B∗(wσ0+1) by Corollary 6. If only the third
case holds, because of u ∈ D(wσ0+1, t2) and v′′ /∈ D(wσ0+1, t2), vertex u has
a larger (wσ1 , Γ (t2))B-count than v′′. Consequently, a contradiction occurs
in each case.

Let us finally assume that the extra modifications are being applied. Then u �= ũ
and hence ũ /∈ B∗(wσ0 ). Like in the previous case without extra modifications,
v′ can not be contained in one of the bags B∗(wσ0+1), . . . , B∗(Γ (t2)). Thus,
no bag of (T ∗, B∗) contains v′ and ũ. Since D(wσ0+1, t2) ∩ {v′′, ũ} = {ũ}, the
(wσ0+1, Γ (t2))B-count of v′′ is smaller than that of ũ. Therefore and because of
v′′ ∈ B(wσ0+1), the (wσ1 , Γ (t2))B-count of v′′ is smaller than that of ũ. Note
that v′′′ /∈ B(wσ1 ) since otherwise v′′′ ∈ S and the fact that v′′′ ∈ B(wσ2+1)
or v′′′ = t2 would imply that v′′′ has a larger (wσ1 , Γ (t2))B-count than that of
ũ and that of v′′. Thus, no bag of (T, B) contains u and v′′′. Consequently, C∗

colors at most two vertices in each bag of (T ∗, B∗). Our choice of v′′′ guarantees
that C∗ is a legal coloring.

We have shown that C∗ ∈ C and that the distance between Γ (t1) and the first
node of a color break on p with respect to c and C∗—if indeed there is a color
break—is larger than the corresponding distance for C. This is a contradiction
to our choice of C. �

We can therefore solve the k-DPP on a chordal graph G as follows: we first
determine for each node w of T the set I(w) and subsequently all sets D(w, s)
and D(w) (s ∈ I(w)). This can easily be done in a bottom-up traversal of T in at

v′

u

v′′

ũ

v′′′

Γ (t2)wσ1 wσ1+1 wσ2 wσ2+1wσ−1Γ (t1) wσ0 wσ0+1

∈ B∗ ∈ B, possibly ∈ B∗ possibly ∈ B, B∗ /∈ B∗, possibly ∈ B

Fig. 1. The ranges of the variables in the case where the extra modifications are applied.
Black lines represent vertices uncolored by C.
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most O(m+ k3n) time. Hence, we can replace G and (T, B) by G∗ and (T ∗, B∗)
in the same running time. We then apply the algorithm of the Section 2 on G∗.

Theorem 9. The k-DPP on chordal graphs with n vertices and m edges can be
solved in O(m + (4k2)2k+1n) = O(m + (2k)4k+2n) time.

5 Hardness of the Disjoint-Paths Problem

Theorem 10. The disjoint-paths problem on chordal graphs is NP-hard.

Proof. We can prove the theorem by a reduction from a restricted case of 1-
in-3 SAT. In 1-in-3 SAT we are given a formula in conjunctive normal form
with 3 variables per clause and we have to find an assignment of the variables
such that exactly one of the three literals is true in every clause. A formula in
conjunctive normal form is monotone if every literal is positive and it is cubic if
every variable occurs exactly three times. In [10] it is shown that 1-in-3 SAT is
NP-complete even on monotone and cubic formulas. We now reduce an instance
of 1-in-3 SAT consisting of a monotone and cubic formula F to an instance of
the DPP on a chordal graph G. Fig. 2 should represent a clique tree of G. Each
subgraph induced by the vertices of a bag should be a clique whose edges are
colored gray in Fig. 2—however, not all existing edges are shown in the figure.
Black lines represent paths of length 0. Therefore, the endpoints of black lines
represent the same vertex even if they appear in different shapes.

In detail, we construct G as follows: For each variable x and each clause C in
F , we introduce a variable and a clause gadget, respectively, as shown in Fig. 2.
A variable gadget has six terminals a1, a2, a3, b1, b2, b3 and a clause gadget six
terminals y1, y2, y3, z1, z2, z3. Each gadget is connected to one big clique Γ—see
the rightmost bag Fig. 2. Γ contains 6� vertices where � is the number of clauses.
We next divide the terminals into pairs such that the resulting instance of the
DPP has a solution if and only if F has a satisfying assignment. If a clause
C contains a variable x as the i-th variable and if it is the j-th occurrence of
variable x in F that is part of C, the pairs (aj , yi) and (bj , zi) are added to
our instance of the DPP, where the four terminals aj , bj, yi, and zi belong to
the gadgets for x and C. Moreover, we identify one triangular and one square
vertex in the gadget of x with one triangular and one square vertex, respectively,
in the gadget of C different from the triangular and square vertices chosen for
other variables or clauses. For a simpler notation, the terminals a1, a2 and a3
shown in Fig. 2 are called A-terminals and the remaining terminals B-, Y - and
Z-terminals, respectively.

Let us consider a satisfying assignment of F . For a variable x, we construct
in the gadget of x six paths from terminals to the triangular and square vertices
such that, if x is set to true, the paths starting in the A-terminals are routed
exclusively to the triangular vertices; otherwise, they are routed exclusively to
the square vertices. Since each clause C has exactly one true variable, for each
clause gadget, exactly one path from an A-terminal to the gadget of C arrives
at a triangular vertex, whereas the other two paths from an A-terminal to the
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Fig. 2. Reduction from (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)∧ (x1 ∨ x3 ∨ x4)

gadget of C arrive at a square vertex. Thus, we can forward the three paths to
the Y -terminals of C. Similarly, we can forward the paths from the B-terminals
to the Z-terminals. Hence, we have found a solution to our instance of the DPP.

Let us now consider a solution of our DPP. It remains to show that F can be
satisfied. In our construction, the number of vertices in the big clique Γ is equal
to the number of pairs that have to be connected in our instance. Moreover, each
path has to use at least one and therefore exactly one vertex of Γ . Note that for
each clause C and each variable x of C, Γ contains exactly two vertices common
with the gadgets of C and x, respectively: one triangular and one square vertex.
Thus, these two vertices must be the two vertices visited by the two paths con-
necting two pairs of terminals in the gadgets of C and x. As a consequence, for
any fixed variable gadget the paths starting from the A-terminals must pass ei-
ther exclusively through the triangular vertices or exclusively through the square
vertices of this gadget—see the variable gadget in Fig. 2. We define a variable x
of F to be true if the paths of the A-terminals from the gadget of x pass through
the triangular vertices. Since the A-terminals are connected to the Y -terminals,
exactly one path from an A-terminal uses a triangular vertex of each clause
gadget, i.e., exactly one variable of each clause is set to true. �
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Abstract. In this paper we consider two problems: the edge coloring

and the strong edge coloring problems on unit disk graphs (UDGs).
Both problems have important applications in wireless sensor networks
as they can be used to model link scheduling problems in such networks.
It is well known that both problems are NP-complete, and approximation
algorithms for them have been extensively studied under the centralized
model of computation. Centralized algorithms, however, are not suitable
for ad-hoc wireless sensor networks whose devices typically have limited
resources, and lack the centralized coordination.

We develop local distributed approximation algorithms for the edge

coloring and the strong edge coloring problems on unit disk graphs.
For the edge coloring problem, our local distributed algorithm has ap-
proximation ratio 2 and locality 50. We show that the locality upper bound
can be improved to 28 while keeping the same approximation ratio, at the
expense of increasing the computation time at each node. For the strong

edge coloring problem on UDGs, we present two local distributed al-
gorithms with different tradeoffs between their approximation ratio and
locality. The first algorithm has ratio 128 and locality 22, whereas the sec-
ond algorithm has ratio 10 and locality 180.

1 Introduction

The edge coloring problem is to color the edges of a given graph G using the
minimum number of colors so that no two edges of the same color are adjacent.
The strong edge coloring problem is to color the edges of a given graph G
with the minimum number of colors so that no two edges with the same color are
of distance less than 2. The edge coloring and the strong edge coloring

problems are known to be NP-complete even on restricted classes of graphs [4,9].
Since both problems have numerous applications in networks where they model
channel assignments/scheduling problems (see [1,2,3,7,11,12], among others), it
is natural to seek approximation algorithms for them.

For the edge coloring problem, Vizing’s theorem [13] showed that any graph
with maximum degree Δ has an edge coloring that uses at most Δ + 1 colors;
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however, his result was nonconstructive. Misra and Gries [10] gave a polynomial-
time constructive proof of Vizing’s theorem, thus showing that the problem can
be approximated to within an additive constant of 1. Ramanathan [11] gave a very
simple centralized greedy algorithm for the problem of ratio 2. Under the distribu-
tive model of computation, Gandam et al. [3] gave a distributed approximation
algorithm based on Misra and Gries’ [10] constructive proof of Vizing’s theorem
that approximates the problem to within an additive constant of 1. Kodialam and
Nandagopal [7] gave a simple distributive algorithm of ratio 2, which was based
on the centralized greedy algorithm of Ramanathan [11].

For the strong edge coloring problem on planar graphs, Barrett el al. [1]
gave a centralized algorithm that approximates the strong edge coloring

problem to ratio 17. This ratio has recently been improved to 2 by Ito et al. [5].
The assumed underlying graph model and the assumed computational model

in the above results, however, do not seem appropriate for ad-hoc wireless sensor
networks. In wireless sensor networks, devices can in principal communicate if
they are in each other’s transmission range. Therefore, a general graph model,
or even a plane (embedded planar) graph model, is too flexible in the sense that
it does not reflect the restrictions on the connectivity of such networks. More-
over, the topology of such networks undergoes constant change, and the devices
in those ad-hoc networks have limited energy/power. Therefore, any assumed
computational model should take into account the decentralized nature of such
networks, and should be sensitive to issues such as scalability, robustness, and
fault tolerance. In terms of the underlying graph model, when studying wire-
less sensor networks, it is natural to embed them in a Euclidean metric space.
A common simple embedding assumes that the space is two dimensional, and
that the transmission range of all devices is the same. In that case, the net-
work is modeled as a Unit Disk Graph, abbreviated UDG henceforth, in the
Euclidean plane: the nodes of the UDG correspond to the mobile wireless de-
vices, and its edges connect pairs of nodes whose corresponding devices are in
each other’s transmission range equal to one unit. While this model is ideal-
ized, it has the advantage of being easier to work with. Meaningful theoreti-
cal and practical results can be derived under this model that, hopefully, will
carry (at least partially) to more general models. Moreover, there are real ex-
amples where such models make sense: boats on water surfaces, vehicles in a
relatively flat desert, etc.... In terms of the computational model, most of the
above issues (scalability, robustness, fault tolerance) can be dealt with under the
local distributed computational model, as defined by Linial [8]. A distributed
algorithm is said to be k-local (where k ≥ 0 is an integer) if the computa-
tion at each node of the graph depends solely on the initial state (in our case
the ID and coordinates) of the nodes at distance (number of edges) at most
k from the node (i.e., within k hops from the node). An algorithm is called
local if it is k-local for some integer constant k. Efficient local distributed algo-
rithms are naturally fault-tolerant and robust because faults and changes can be
handled locally by such algorithms. These algorithms are also scalable because
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the computation performed by a device is not affected by the total size of the
network.

Local distributed algorithms for the edge coloring problems on UDGs have
been considered in [2]. However, the results in [2] only deal with a restricted
subclass of UDGs called the “Yao-Like” subgraphs, and give an approximation
algorithm for the edge coloring problem within an additive constant of 1 from
the optimal solution. For the strong edge coloring problem on UDGs, we
are only aware of the distributed approximation algorithm given by Barrett [1]
which achieves an O(1) ratio; however, this algorithm is distributed but not local.

In this paper we develop local distributed approximation algorithms for the
the edge coloring and the strong edge coloring problems on UDGs.
For the edge coloring problem, we present a local distributed algorithm of
approximation ratio 2 and locality 50; this algorithm works for a generalization
of UDGs, called quasi-UDGs. We show that the locality upper bound can be
improved to 28, while keeping the same approximation ratio, at the expense of
increasing the computation time at each node. For the strong edge coloring

problem on UDGs, we present two local distributed algorithms with different
tradeoffs between their approximation ratio and locality. The first algorithm has
approximation ratio 128 and locality 22, whereas the second algorithm has ratio
10 and locality 180.

2 Definitions and Notations

We assume familiarity with the basic graph-theoretic notations and terminologies.
Given a set of nodes S in the Euclidean plane, the Euclidean graph E on S is

the complete graph whose node-set is S. The unit disk graph, shortly UDG, G
on S is the subgraph of E with the same node-set as E , and such that (u, v) is
an edge of G if and only if |(u, v)| ≤ 1, where |(u, v)| is the Euclidean length of
edge (u, v).

Let 0 < r ≤ 1 be a constant. The quasi-UDG on S with parameter r, is the
subgraph G of E with the same node-set as E , and such that for any two nodes
u and v in G: if |(u, v)| ≤ r then |(u, v)| is an edge of G, if r < |(u, v)| ≤ 1 then
(u, v) may or may not be an edge of G, and if |(u, v)| > 1 then (u, v) is not an
edge of G. Clearly, a UDG is a quasi-UDG with r = 1.

Let H be a graph. We denote by V (H) and E(H) the set of nodes and the
set of edges of H , respectively. The length of a path P in H , denoted |P |, is the
number of edges in P . A shortest path between two nodes u and v in H is a
path between u and v with the minimum length. A node v is said to be an i-hop
neighbor of u in H , if the length of a shortest path between u and v in H is at
most i. If u is an i-hop neighbor of v in H , we will say that the hop distance
between u and v in H is at most i. For a node u ∈ H , and a natural number i,
define Ni[u] to be the set of i-hop neighbors of u in H .

For two edges e and e′ in H , the distance between e and e′ is the minimum
length of a path, among all paths in H connecting an endpoint of e to an endpoint
of e′. Two distinct edges are adjacent if their distance is 0, or equivalently, if they
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share an endpoint. An edge coloring of H is an assignment of colors1 to the edges
in E(H) such that no two adjacent edges in H are assigned the same color. A
strong edge coloring of a graph H is an assignment of colors to the edges in
E(H) such that no two edges of distance at most 1 are assigned the same color.
A minimum edge coloring of H is an edge coloring of H that uses the minimum
number of colors. Similarly, a minimum strong edge coloring of H is a strong
edge coloring of H that uses the minimum number of colors.

An approximation algorithm for a minimization problem Q is an algorithm
that for each instance of Q computes a solution to the instance. The ratio of an
approximation algorithm for a minimization problem is the maximum value, over
all instances of the problem, of the size of the solution to the instance returned
by the algorithm over the minimum-size solution to the instance.

The algorithms designed in this paper are k-local distributed algorithms. Each
node in these algorithms starts by computing its k-hop neighbors, and performs
only local computations afterwards. For a fixed k, it was shown in [6] that the
k-hop neighborhoods of the nodes in a UDG (or a quasi-UDG) can be computed
by a local distributed algorithm in which the total number of messages sent by
all the nodes in the UDG is O(n), where n is the number of nodes in the UDG.
Therefore, the message complexity of each of the presented local distributed
algorithms is O(n).

3 Preliminaries

Let α > 2 be a constant. Fix an infinite square tiling (i.e., a grid) T of the plane
of tile dimensions α× α.

Let T1 be the translation with vector (0, 0) (the identity translation), T2 the
translation of vector (α/2, 0) (horizontal translation), T3 the translation of vec-
tor (0, α/2) (vertical translation), and T4 the translation of vector (α/2, α/2)
(diagonal translation). We have the following simple lemma whose proof can be
easily verified by the reader (note that α > 2).

Fact 3.1. Let G be a quasi-UDG, and let (u, v) be any edge in G. There exists
a translation T in {T1, T2, T3, T4} such that the translations of the nodes u and
v under T , i.e., T (u) and T (v), reside in the interior of the same tile of T .

The following lemma uses a folklore packing argument to bound the length of a
path between two nodes in a UDG that reside within a region of bounded area
of the plane (see for example [14]).

Lemma 3.1. Let G be a quasi-UDG of parameter 0 < r ≤ 1. Let H be a
connected induced subgraph of G residing in a region R of the plane. Let R′ be a
region of area a′ that contains R such that for any node p in R the disk centered
at p and of radius r/2 is contained in R′. Then for any two nodes u and v of
H, there exists a path in H between u and v of length at most �8a′/(πr2)�.
1 Without loss of generality, we shall assume that the colors are natural numbers.
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4 Edge Coloring

In this section we present a local distributed algorithm that approximates the
edge coloring problem on quasi-UDGs which are a super class of UDGs. The
idea behind the algorithm is to tile the plane as discussed in Section 3, and
then to have the nodes residing in the same tile color the edges interior to their
tile using the greedy algorithm given in [7,11]. This is a proper coloring since
two edges contained in two distinct tiles are not adjacent. However, not every
edge in the graph is interior to a tile because an edge may cross the horizontal
or vertical (or both) boundary of a tile. To deal with this issue, we affect an
appropriate set of translations to the nodes so that, for any edge in the graph,
its translation under at least one of the translations is contained in some tile.
This ensures that every edge of the graph will eventually be colored appropri-
ately. Implementing this algorithm under a centralized model of computation
is straightforward. However, implementing this algorithm under a localized dis-
tributed model poses some potential issues since the effect of the color of an edge
over other edges needs to be limited, and some consensus problems need to be
resolved.

We use the tiling T described in Section 3. Let G be a quasi-UDG with
parameter r, where 0 < r ≤ 1. Each node p ∈ G executes the algorithm
EdgeColoring-APX given in Figure 1.

Lemma 4.1. The algorithm EdgeColoring-APX is a k-local distributed algo-
rithm, where k = �(22α2 + 8r2 + 32αr)/(πr2)�.

1: p collects the coordinates of the nodes in Nk[p] in G, where k = �(22α2 + 8r2 +
32αr)/(πr2)�

2: for round i = 1, 2, 3, 4 do
3: let Gi(p) be a copy of the subgraph of G consisting of the set Ei(p) of uncolored

edges whose endpoints are in Nk[p], and such that, for any edge (u, v) ∈ Ei(p),
Ti(u) and Ti(v) are in the same tile of T

4: let C1
i (p), . . . , C�

i (p), where 	 ≥ 1, be the connected components of Gi(p)
5: for j = 1, . . . , 	 do
6: p orders all the edges in Cj

i (p) using the lexicographic order into the sequence
of edges Ej

i (p)
7: for each edge e in Ej

i (p) do
8: color e in Gi(p) with the smallest available color, i.e., the smallest color

that has not been used in the previous rounds to color any of the edges
adjacent to e

9: end for
10: end for
11: for each edge e ∈ Gi(p) incident on p do
12: p colors e in G with the same color in Gi(p)
13: end for
14: end for

Fig. 1. The algorithm EdgeColoring-APX
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Proof. It is clear that the computation at each node depends solely on the co-
ordinates of its k-hop neighbors, where k = �(22α2 + 8r2 + 32αr)/(πr2)�. ��

For each i ∈ {1, 2, 3, 4}, let Gi be the subgraph of G consisting of the edges
(u, v) ∈ G such that Ti(u) and Ti(v) are in the same tile of T ; we call each
connected component C in Gi an i-cluster, and we say that i is the label of C.
Note that, by definition, any two distinct i-clusters are disjoint. A cluster is an
i-cluster for some i ∈ {1, 2, 3, 4}. A sequence of clusters is said to be a poten-
tial affecting sequence, if the labels of the clusters on this sequence are strictly
increasing, and each two consecutive clusters in the sequence are adjacent, i.e.,
share at least one node in G. Note that a potential affecting sequence of clusters
has length at most 4. The notion of a potential affecting sequence will be used
to confine the “effect” of the color of an edge on the color of another edge, as
shown by the following lemma whose proof is omitted for lack of space:

Lemma 4.2. Let S = (C1, C2, C3, C4) be a potential affecting sequence of clus-
ters (we allow Ci, i ∈ {1, 2, 3, 4}, to be empty). Then for any two nodes u and v
in S, u is a k-hop neighbor of v in G, where k = �(22α2 + 8r2 + 32αr)/(πr2)�
and r is the parameter of the quasi-UDG G.

Lemma 4.3. The algorithm EdgeColoring-APX is an approximation algo-
rithm of ratio 2 for the edge coloring problem on quasi-UDGs.

Proof. We first show that the algorithm computes an edge coloring of a given
quasi-UDG G.

Let u be a node in G. By Fact 3.1, every edge incident on u belongs to one
of the subgraphs Gi(u), i ∈ {1, 2, 3, 4}, defined in line 3 of algorithm. Since u
applies the greedy algorithm to the edges of Gi(u) coloring an edge in Gi(u)
with a color that has not been used so far by an edge incident on it, node u will
color its incident edges properly. Therefore, it suffices to show that for any edge
(u, v), both u and v assign the same color to edge (u, v) to conclude that the
coloring of G by the algorithm is consistent, and hence is an edge coloring of G.

For an edge e ∈ G, define label(e) to be the minimum i ∈ {1, 2, 3, 4} such that
e is contained in an i-cluster. We say that an edge e directly affects another edge
e′ if e and e′ are adjacent and either label(e) < label(e′) or label(e) = label(e′)
and e comes before e′ in the lexicographic order. We say that an edge e affects
an edge e′ if there exists an affecting sequence of edges (e = e0, e1, . . . , ej = e′)
such that for � = 0, . . . , j − 1, e� directly affects e�+1. Observe that the labels of
the edges in any affecting sequence must be non-decreasing. Therefore, all the
edges with the same label i in an affecting sequence form a connected subgraph
of G, and hence are contained within a single i-cluster. It follows that, for any
edge e ∈ G, any affecting sequence of edges containing e must be contained in
some potential affecting sequence of clusters that contains e.

By looking at how the algorithm works, if the color of an edge e “influences”
the color of an edge e′, then edge e affects e′. For a potential affecting sequence S
and an edge (u, v) in some cluster in S, both u and v in the algorithm collect the
coordinates of all their k-hop neighbors, where k = �(22α2 +8r2 +32αr)/(πr2)�.
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Therefore, by Lemma 4.2, both u and v have collected the coordinates of every
node in S. It follows that both u and v must assign edge (u, v) the same color
because both u and v have the coordinates of the endpoints of all edges affecting
(u, v) and will color these edges in the same order using the same algorithm.

This shows that the algorithm computes a proper edge coloring of G.
To prove that the algorithm has approximation ratio 2, let apxG be the number

of colors used by the algorithm to color the edges of G, and let optG be the
number of colors in a minimum edge coloring of G. Note that optG ≥ Δ, where
Δ is the maximum degree of G. Let e = (u, v) be the edge with the highest color
number, i.e., color(e) = maxe′∈E(G) color(e′). Let Δu and Δv be the degrees of
nodes u and v. Since color(e) is the smallest color number that is not used by
any edge incident on u or v, it follows that color(e) ≤ (Δu − 1) + (Δv − 1) + 1.
Since e has the highest color number among all edges in G, we have apxG ≤
(Δu − 1) + (Δv − 1) + 1 ≤ 2 ·Δ− 1 ≤ 2 · optG − 1. ��

Theorem 4.1. The algorithm EdgeColoring-APX is a k-local distributed ap-
proximation algorithm for the edge coloring problem on quasi-UDGs, where
k = �(22α2 + 8r2 + 32αr)/(πr2)�, 0 < r ≤ 1 is the quasi-UDG parameter, and
α > 2 is a constant. For a UDG (r = 1), and by choosing α to be slightly larger
than 2, the algorithm EdgeColoring-APX is a 50-local distributed approxima-
tion algorithm for edge coloring of ratio 2.

The above upper bound on the locality of the algorithm (i.e., k) can be improved
by using smaller dimensions for the tiles; this will reduce the size of the region
containing any affecting sequence, and hence decrease the upper bound on k.
However, if we decrease the dimensions of the tiles, the above set of translations
will no longer be sufficient to color all the edges in G (some edges may no longer
reside in the interior of a tile under any of the above translations). To overcome
this problem, we will need to use a family of translations, rather than a single
translation, along each of the horizontal, vertical, and diagonal, directions. By
fixing the dimensions of the tiles to be (1 + ε) × (1 + ε), where ε > 0 is a
constant, and picking an appropriate family of translations, we can prove that,
in the worst case, any affecting sequence will be contained in a region whose
area is at most r2 + (3ε + 5)r + ε2 + 5ε + 5. This will give an upper bound of
8(r2 + (3ε + 5)r + ε2 + 5ε + 5)/(πr2) on k. In Table 1 we show the values of k
corresponding to the values ε = 0.1, . . . , 0.9, and the asymptotic value of k when
ε→ 0. We note that, as ε decreases, the number of translations needed increases,
and hence, the local computation time at the nodes increases.

Theorem 4.2. For any constant ε > 0, there exists a k-local distributed approx-
imation algorithm of ratio 2 for the edge coloring problem on quasi-UDGs,

Table 1. Locality for different tile sizes

ε 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 → 0
k 48 45 43 41 38 36 34 32 30 28
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where k = �8(r2+(3ε+5)r+ε2+5ε+5)/(πr2)�, and 0 < r ≤ 1 is the quasi-UDG
parameter.

5 Strong Edge Coloring

In this section we present local distributed algorithms that approximate the
strong edge coloring problem on UDGs. Although the same approach used
for the edge coloring problem—in the previous section—works for the strong

edge coloring problem, this approach does not lead to good bounds on the lo-
cality of the algorithm. Therefore, we will adopt a different approach here. We note
that the techniques in this section can be extended to quasi-UDGs; however, for
simplicity, we restrict our attention to UDGs.

The local distributed algorithms we present use a centralized algorithm as a
building block. We start by presenting this centralized algorithms.

5.1 The Centralized Algorithm

Barrett et al. [1] proposed a centralized greedy algorithm for approximating the
strong edge coloring problem on UDGs that works as follows. The nodes
are first ordered using a lexicographic order. This lexicographic order on the
nodes is used to induce a certain order on the edges (a bottom-up order). The
edges are then considered with respect to this order, and an edge e is colored
with the smallest color that has not been used to color any edge of distance at
most 1 from e. If optG is the number of colors in a minimum strong edge coloring
of G, then it was proved in [1] that the greedy algorithm computes a strong edge
coloring of G that uses at most 8optG + 1 colors. We will refer to the algorithm
in [1] as the Centralized-StrongEdgeColoring algorithm.

We can show that, irrespective of the ordering in which the edges in G are con-
sidered, the algorithm Centralized-StrongEdgeColoring produces a strong
edge coloring of G that uses at most 10optG colors. This property will be essen-
tial to bounding the approximation ratio of the algorithm we present in Subsec-
tion 5.3. The proof of this upper bound on the ratio is very similar to the proof
given in [1] that the algorithm Centralized-StrongEdgeColoring has ratio
8optG + 1 when the specific bottom-up ordering is used.

Theorem 5.1. For any orderingO of the edges in G, the algorithm Centralized-
StrongEdgeColoring, when it considers the edges in G with respect to the order-
ing O, has approximation ratio 10.

5.2 The Local Distributed Algorithm

In this subsection we present a local distributed algorithm that approximates the
strong edge coloring problem on UDGs. The approach is similar in flavor
to the one used in Section 4. Using a different approach, we shall improve on
the approximation ratio significantly at the expense of worsening the locality in
Subsection 5.3.
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Consider the same rectilinear tiling T of the plane discussed in Section 4
whose tiles are α×α squares, where α > 2. We can label the tiles in T with the
labels 1, 2, 3, 4, so that any two tiles with the same label are separated by at
least one tile. We denote by label(t) the label of a tile t ∈ T .

Fact 5.1. Let G be a UDG, and let e and e′ be two edges in G such that the
endpoints of e reside in the interior of a tile t, and the endpoints of e′ reside in
the interior of a tile t′, where t �= t′, and such that label(t) = label(t′). Then the
distance between e and e′ is at least 2.

Proof. (Sketch) The statement follows from the facts that: (1) any two different
tiles with the same label are separated by at least one tile, and (2) the dimension
of a tile is greater than 1. ��

Let T1, T2, T3, and T4, be the translations described in Section 4, and note that
since α > 2, Lemma 3.1 still holds true. Let C1

i , C2
i , C3

i , and C4
i , for i = 1, 2, 3, 4,

be 16 mutually disjoint color classes. We assume that each of the color classes
contains enough colors to color the edges of G, and that the colors in each class
are ordered from smallest to largest.

Suppose that A is a centralized approximation algorithm of ratio ρA for the
strong edge coloring problem on UDGs. Intuitively, the algorithm can be
summarized as follows. The algorithm runs in 4 rounds, each round corresponds
to one of the above translations. Different color classes are used in different
rounds to ensure that edges that are colored in different rounds do not conflict.
In a given round i, translation Ti is applied to all the edges, and only the edges
whose translations are interior to the tiles in T are colored as follows: the edges
whose translations are in the same connected component of a tile of label j
are colored with colors from class Cj

i , using the centralized algorithm A. This
ensures that edges whose translations end up in tiles of different labels are colored
differently. Since different tiles of the same label are far enough from each other,
and the centralized algorithm A is used to color the edges within the same tile,
edges that are colored in the same round are colored properly.

More formally, eachnodep inGapplies the algorithmStrong-Edge-Coloring-
APX given in Figure 2.

Lemma 5.1. The algorithm Strong-Edge-Coloring-APX is a k-local dis-
tributed algorithm, where k = �8(α + 1)2/π�.

Lemma 5.2. The algorithm Strong-Edge-Coloring-APX computes a valid
strong edge coloring of G.

Lemma 5.3. The algorithm Strong-Edge-Coloring-APX approximates the
strong edge coloring problem on UDGs to a ratio 16 · ρA, where ρA is the
approximation ratio of A.

Proof. Let j be the round among the 4 rounds of the algorithm in which the
maximum number of colors, apxj , is used. It follows from the choice of j that
the total number of colors used by the algorithm, call it apxG, is at most 4 ·apxj .
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1: p collects the coordinates of the nodes in Nk[p] in G, where k = �8(α + 1)2/π�
2: for round i = 1, 2, 3, 4 do
3: p applies translation Ti and computes its virtual coordinates under Ti

4: if Ti(p) is interior to some tile t0 with label 	0 ∈ T , where 	0 ∈ {1, 2, 3, 4}, p
determines the set Si(p) of all the nodes in Nk[p] whose translations under Ti

reside in the same connected component as Ti(p) in the interior of tile t0; Let
Hi(p) be the subgraph of G induced by Si(p)

5: p applies the algorithm A to the subgraph Hj(p) to compute a strong edge
coloring of Hj(p), using only colors from the color class Cj

�0
, and starting with

the smallest color in Cj
�0

; if an edge e ∈ Hj(p) has already been colored in a
previous round, p overwrites the previous color of e

6: end for

Fig. 2. The algorithm Strong-Edge-Coloring-APX

Let �j be the label of the color class from which the maximum number of colors,
apxj

�j
is used in round j. Since there are 4 labels, it follows that apxj

�j
≤ 4 ·apxj,

and hence, apxG ≤ 16 · apxj
�j

. Let optG be the number of colors in a minimum
strong edge coloring of G.

From the way the algorithm works, in round j, every set of nodes S in G
whose translations are in the same connected component in the interior of some
tile with label �j, apply the algorithm A to compute a strong edge coloring of the
edges of the subgraph of G induced by S, using the same set of colors Cj

�j
, and

in the same order (all starting with the smallest color in Cj
�j

). Therefore, there
exists a set of nodes Sj in G, whose translations reside in the same connected
component in the interior of some tile, such that algorithm A uses apxj

�j
colors

to properly color the edges of the subgraph Hj induced by Sj . Since A has
approximation ratio ρA, a minimum strong edge coloring of Hj requires at least
apxj

�j
/ρA colors. Since Hj is an induced subgraph of G, a minimum strong edge

coloring of G requires at least apxj
�j

/ρA colors. It follows that optG ≥ apxj
�j

/ρA,
and 16 · apxj ≤ 16 · ρA · optG. This shows that the algorithm properly colors
the edges of G using no more than 16 · ρA · optG colors, and hence has ratio
16 · ρA. ��

Theorem 5.2. There exists a 22-local distributed algorithm that, given a UDG
G, computes a strong edge coloring of G using at most 128 · optG + 16 colors,
where optG is the number of colors in a minimum strong edge coloring of G.

Proof. Since a node p in the algorithm Strong-Edge-Coloring-APX can con-
sider the edges in Hp in any order, p can order these edges according to the
bottom-up ordering used in [1]. Under this specific ordering, as was mentioned
before, the algorithm Centralized-StrongEdgeColoring computes a strong
edge coloring of Hp using at most 8 · optHp + 1 colors, where optHp is the
number of colors in a minimum strong edge coloring of Hp. Using the algo-
rithm Centralized-StrongEdgeColoring as the subroutineA in the algorithm
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Strong-Edge-Coloring-APX, and setting α to a value slightly larger than 2,
the statement follows from Lemma 5.1, Lemma 5.2, and Lemma 5.3. ��

5.3 The Improved Algorithm

In this subsection we present a local distributed algorithm for the strong edge

coloring problem on UDGs with a smaller approximation ratio, but larger
locality, than the algorithm presented in Subsection 5.2. The algorithm uses the
same tiling T , but we require that α > 3. The tiles are labeled with the labels
1, 2, 3, 4 as in Subsection 5.2.

Each node is assigned to the tile which contains it. Ambiguities caused by
nodes on the boundaries of tiles are resolved by assigning them to the tile with the
smallest label which contains them (any other resolving method works as well).
We observe that two tiles of the same label have a Euclidean distance more than
3. Therefore, if we place a bounding square box of dimensions (α + 1)× (α + 1)
centered at each tile, two bounding boxes of two tiles with the same label have a
Euclidean distance larger than 1. Consequently, two edges contained in different
bounding boxes of two tiles with the same label have distance at least 2, and
can be colored in the same round. The improved algorithm is given in Figure 3.

1: p collects the coordinates of the nodes in Nk[p] in G, where k = �(32α2 + 80α +
40)/π�

2: for round i = 1, 2, 3, 4 do
3: let Gi(p) be a copy of the subgraph of G consisting of the set Ei(p) of uncolored

edges whose endpoints are in Nk[p], and such that, for any edge (u, v) ∈ Ei(p),
u and v are in the bounding box of some tile of label i

4: p colors all the uncolored edges in Gi(p) using the algorithm Centralized-
StrongEdgeColoring

5: for each edge e ∈ Gi(p) incident on p do
6: p colors e in G with the same color in Gi(p)
7: end for
8: end for

Fig. 3. The algorithm Improved-StrongEdgeColoring-APX

Lemma 5.4. The algorithm is a k-local distributed algorithm, where k=�(32α2

+ 80α + 40)/π�, that computes a strong edge coloring of a given UDG.

Lemma 5.5. The algorithm is an approximation algorithm of ratio 10 for the
strong edge coloring problem on UDGs.

Proof. By Lemma 5.4, the algorithm Improved-StrongEdgeColoring-APX
is an approximation algorithm for the strong edge coloring problem on
UDGs. To prove that the algorithm has ratio 10, note that the algorithm
Improved-StrongEdgeColoring-APX is equivalent to the algorithm
Centralized-StrongEdgeColoring applied to the edges of G in the order they
were colored by the algorithm Improved-StrongEdgeColoring-APX. It fol-
lows from Theorem 5.1 that the algorithm has ratio 10. ��
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Theorem 5.3. Given a UDG G and a constant α > 3, the algorithm Improved-
StrongEdgeColoring-APX is a a k-local distributed algorithm, where k =
�(32α2 + 80α + 40)/π�, that computes a strong edge coloring of G using at most
10optG colors, where optG is the number of colors in a minimum strong edge col-
oring of G. By choosing α to be slightly larger than 3, the algorithm Improved-
StrongEdgeColoring-APX is a 180-local distributed algorithm of ratio 10.
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Abstract. Rank-width is a graph complexity measure that has many
structural properties. It is known that the rank-width of an undirected
graph is the maximum over all induced prime graphs with respect to split
decomposition and an undirected graph has rank-width at most 1 if and
only if it is a distance-hereditary graph. We are interested in an extension
of these results to directed graphs. We give several characterizations of
directed graphs of rank-width 1 and we prove that the rank-width of
a directed graph is the maximum over all induced prime graphs with
respect to displit decomposition, a new decomposition on directed graphs.

1 Introduction

Rank-width [18,19] is a graph complexity measure introduced by Oum and Sey-
mour in their investigations on recognition algorithms for undirected graphs of
clique-width [4] at most k, for fixed k. It is known that a class of graphs has
bounded rank-width if and only if it has bounded clique-width [19]. However,
rank-width has better algorithmic properties: undirected graphs of rank-width
at most k can be recognized by a cubic-time algorithm [13] and are characterized
by a finite list of undirected graphs to exclude as vertex-minors [18].

Another interesting fact is that rank-width is related to split decomposition.
The split decomposition, introduced by Cunningham [5], is a generalisation of
the well known modular decomposition [10,16]. It was defined on graphs (directed
or not), but only the undirected case has been widely studied in literature. Split
decomposition of undirected graphs can be computed in linear time [7], and can
be used in several problems such as: circle graph recognition [9,21], parity graph
recognition [3,7], and solving some optimization problems [5,3,11,20]. The rank-
width of an undirected graph is the maximum over the rank-width of its induced
prime graphs with respect to split decomposition. Moreover, undirected graphs
of rank-width at most 1 are exactly distance hereditary graphs [18], which are
graphs that are completely decomposable by the split decomposition.

Despite all these positive results of rank-width on clique-width, clique-width
has an undeniable advantage on rank-width: it is defined for undirected as well
as directed graphs and its definition can be extended to relational structures. In
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his investigations for an extension of rank-width to relational structures, Kanté
defined in [15] a notion of rank-width for directed graphs, called GF(4)-rank-
width, and that generalized the rank-width of undirected graphs. He, moreover,
generalized two results on undirected graphs: directed graphs of GF(4)-rank-
width k can be recognized by a cubic-time algorithm and are also characterized
by a finite list of directed graphs to exclude as vertex-minors. It is thus natural to
ask whether we can generalize all the results known for rank-width of undirected
graphs.

In this paper, we are interested in a characterization of directed graphs of
GF(4)-rank-width 1, similar to the one for undirected graphs. In the literature,
there exist several characterizations of undirected graphs of rank-width 1 that
we recall in the following.

Theorem 1 ([1,12,18]). Let G be a connected undirected graph. Then the fol-
lowing conditions are equivalent:

1. G is completely decomposable by the split decomposition ( i.e., every node in
the split decomposition tree is degenerated).

2. G can be obtained from a single vertex by creating twins or adding pendant
vertices.

3. G has rank-width 1.
4. For every W ⊆ VG with |W | ≥ 4, G[W ] has a non trivial split.
5. G is (house, hole, domino, gem)-free.
6. G is distance hereditary ( i.e., for every x, y ∈ VG, every chordless path

between x and y has the same length).

The main result of this paper is the extension of Theorem 1 to directed graphs
(Theorem 6). We will show in particular that directed graphs of GF(4)-rank-
width 1 are obtained by orienting in a certain way distance hereditary graphs
and are exactly directed graphs completely decomposable by the displit decom-
position, a new decomposition that generalizes split decomposition. As a conse-
quence we get that the GF(4)-rank-width of a directed graph is the maximum
over the GF(4)-rank-width of its induced prime graphs with respect to displit
decomposition.

The paper is organized as follows. We give some notations in Section 2 and
recall the notion of GF(4)-rank-width in Section 3. In Section 4 we define the
notion of displit decomposition and derive some basic properties. In Section
5 we prove our main result. We conclude by a comparison between the split
decomposition of directed graphs introduced by Cunningham [5] and the displit
decomposition.

2 Preliminaries

When the context is clear we will write u to denote the set {u}. We denote by 2V

the power-set of a set V and we let � be the set of natural integers. A function
f : 2V → � is said symmetric if for any X ⊆ V, f(X) = f(V \X); it is said
sub-modular if for any X, Y ⊆ V, f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ).
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For sets R and C, an (R, C)-matrix is a matrix where the rows are indexed by
elements in R and columns indexed by elements in C. For an (R, C)-matrix M ,
if X ⊆ R and Y ⊆ C, we let M [X, Y ] be the sub-matrix of M where the rows
and the columns are indexed by X and Y respectively. If M is an (X, Y )-matrix,
M t denotes the transposed (Y, X)-matrix. A Y -vector is an (X, Y )-matrix where
|X | = 1. The matrix rank function is denoted by rk.

A directed graph (or digraph) G is a couple (VG, EG) where VG is the set of ver-
tices and EG, the set of edges, is a set of ordered pairs (x, y) with x, y ∈ VG and
x �= y. We consider undirected graphs as special cases of directed graphs where
(x, y) ∈ EG ⇔ (y, x) ∈ EG (edges are denoted xy in this case). Unless otherwise
specified, a graph is considered as directed. If G is a digraph and x a vertex of G,
we denote by N+

G (x) the set {y | (x, y) ∈ EG}, by N−
G (x) the set {y | (y, x) ∈ EG}

and by NG(x) the set N+
G (x) ∪N−

G (x). The degree of x is |NG(x)|.
For a graph G, we denote by G[X ] the sub-graph of G induced by X ⊆ VG and

we let G−X be the sub-graph G[VG\X ]. If G is a digraph, let u(G) be the undi-
rected graph obtained from G by forgetting the directions of edges, i.e., u(G) =
(VG, EG∪{(y, x) | (x, y) ∈ EG}). A digraphG is said strongly connected if for every
pair x, y ∈ VG, there is a sequence x0 = x, x1, . . . xk = y such that (xi, xi+1) ∈ EG

for every i ∈ {0, . . .k − 1}, and it is said connected if u(G) is connected.
An undirected graph is acyclic if it does not contain simple cycles of length

at least 3. A tree is an acyclic connected undirected graph. In order to avoid
confusions, the vertices of trees will be called nodes. The nodes of degree at
most 1 in trees are called leaves and denoted by LT . A sub-cubic tree is a tree
such that the degree of each node is at most 3.

A layout of a set V is a pair (T,L) of an undirected tree T and a bijective
function L : V → LT . For each edge (u, v) of T , we let Xuv be the set of leaves
reachable from u by a path going through v. Each edge (u, v) of T induces
a bipartition {Xuv, LT \Xuv} of LT , and thus a bipartition {Xuv, V \Xuv} =
{L−1(Xuv),L−1(LT \Xuv)} of V .

3 Rank-Width of Digraphs

In [15] Kanté defined a notion of rank-width for digraphs named GF(4)-rank-
width. This notion is based on a function, called cut-rank function, that measures
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how some bipartitions of sets of vertices are connected. The cut-rank function is
based on a representation of digraphs by matrices over the field GF(4). We recall
that GF(4) has four elements {0, 1, �, �2} with the property that 1 + �+ �

2 = 0
and �

3 = 1 and is of characteristic 2.
For a digraph G, we denote by MG the (VG, VG)-matrix over GF(4) where:

MG[x, y] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if (x, y) /∈ EG and (y, x) /∈ EG

� if (x, y) ∈ EG and (y, x) /∈ EG

�
2 if (y, x) ∈ EG and (x, y) /∈ EG

1 if (x, y) ∈ EG and (y, x) ∈ EG.

For every subset X of VG, we let cutrk(4)
G (X), called cut-rank function, be

rk
(
MG[X, VG\X]

)
.

Lemma 1 ([15]). For every digraph G, the function cutrk(4)
G is symmetric and

sub-modular.

Definition 1 (GF(4)-Rank-Width). A sub-cubic layout of a digraph G is a
layout (T,L) of VG where T is sub-cubic. Let (T,L) be a sub-cubic layout of a
digraph G. The GF(4)-rank-width of an edge (u, v) of T is cutrk(4)

G (Xuv). The
GF(4)-rank-width of a sub-cubic layout (T,L) is the maximum GF(4)-rank-width
over all edges of T . The GF(4)-rank-width of G, denoted by rwd(4)(G), is the
minimum GF(4)-rank-width over all sub-cubic layouts of G.

Observation 1. Since GF(4) is an extension of GF(2), for every undirected
graph G, we have rwd(4)(G) = rwd(G), where rwd(G) denotes the rank-width of
G.

4 Displit Decomposition

4.1 Bi-Partitive Families

Two bipartitions {X1, X2} and {Y1, Y2} of a set V overlap if Xi ∩ Yj �= ∅ for
every i, j ∈ {1, 2}.

Definition 2 (Bi-Partitive Family). Let V be a finite set and let F be a
family of bipartitions of V . Then F is bi-partitive if:

– {∅, V } �∈ F ,
– for all v ∈ V , {{v}, V \{v}} ∈ F and
– for all {X1, X2} ∈ F and {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2}

overlap, then {Xi ∩ Yj , V \(Xi ∩ Yj)} ∈ F , for every i, j ∈ {1, 2}.

A member {X1, X2} of a bi-partitive family F is trivial if |X1| ≤ 1 or |X2| ≤ 1,
and is strong if there is no {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2} overlap.
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Bi-partitive families have been studied in [6]. They are very close to partitive
families [2,16] introduced in order to generalize properties of modular decompo-
sition. An example of a bi-partitive family is the family of splits1 in a strongly
connected digraph [5]. The following proposition gives another example of a
bi-partitive family.

Proposition 1 (Folklore). Let f : 2V → � be a symmetric and sub-modular
function and let m = min

∅�X�V
f(X). Then the family F = {{X, V \X} | f(X) =

m} is bi-partitive.

Proof. Let {X, V \X} and {Y, V \Y } be in F such that {X, V \X} and {Y, V \Y }
overlap. Thus f(X ∩ Y ) + f(X ∪ Y ) ≤ 2m. Since X ∩ Y and X ∪ Y are non-
empty, f(X ∩Y ) ≥ m and f(X ∪Y ) ≥ m. Thus f(X ∩Y ) = f(X ∪Y ) = m and
{X ∩ Y, V \(X ∩ Y )} and {X ∪ Y, V \(X ∪ Y )} are in F . ��

A major result on bi-partitive families, that we recall in the following theorem,
is that every bi-partitive family can be represented by a unique labeled tree.

Theorem 2. Let F be a bi-partitive family on a finite set V . Then there is
a unique layout (T,L) of V , called the representative layout, such that each
internal node of T has at least 3 neighbors, is marked degenerate, linear or
prime and:

– For every (u, v) ∈ ET , the bipartition {Xuv, V \Xuv} is a strong bipartition
in F and there is no other strong bipartition in F .

– For every internal node u of T :
• If u is degenerated, then for every ∅ � W � NT (u), the bipartition
{∪v∈W Xuv, V \ ∪v∈W Xuv} is in F .
• If u is linear, there is an ordering v1, . . . , vk of NT (u) such that for

every 1 ≤ i ≤ j < k, the bipartition {∪�∈{i,...,j}Xuv� , V \∪�∈{i,...,j}Xuv�}
is in F .

– There is no other bipartition in F .

(By convention, an internal node of degree 3 is always degenerated.)

Remark 1. Theorem 2 is proved in [6] using a different formalism. It follows
also directly from results on partitive families [2,16] using the simple bijection
f(F) = {X ⊆ V \{v} | {X, V \X} ∈ F} between bi-partitive families on V and
partitive families on V \{v}, where v ∈ V is fixed.

Remark 2. If F is a bi-partitive family with the additional property:

– for all {X1, X2} ∈ F and {Y1, Y2} ∈ F such that {X1, X2} and {Y1, Y2}
overlap, {X1ΔY1, X1ΔY2} ∈ F 2,

1 A split in a digraph G is a bipartition {X, VG\X} of VG, where ∅ � X � VG, such
that for every u, v ∈ X, (N+

G (u) \ X �= ∅) ∧ (N+
G (v) \ X �= ∅) ⇒ (N+

G (u) \ X =
N+

G (v) \X), and (N−
G (u) \X �= ∅)∧ (N−

G (v) \X �= ∅) ⇒ (N−
G (u) \X = N−

G (v) \X).
2 For two sets X and Y , we let XΔY be the set X\Y ∪ Y \X.
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Fig. 1. Schematic view of a displit (left) and a Cunningham’s split (right)

then F is said to be strongly bi-partitive. The representative layout of a strongly
bi-partitive family has no linear node. Cunningham showed that the family
of splits in a connected undirected graph is strongly bi-partitive [5]. Another
example is the family of bi-joins in an undirected graph [17].

4.2 Displits

Definition 3 (Displit). Let G be a digraph. A bipartition {X1, X2} of VG is a
displit if X1 �= ∅, X2 �= ∅ and cutrk(4)

G (X1) ≤ 1.

Figure 1 shows a comparison between displits and splits on digraphs. A digraph
G is degenerated (for the displit decomposition) if every bipartition of VG is a
displit, and G is prime if every displit in G is trivial. Finally G is linear if there
is an ordering x1, . . . , xn of its vertices such that the family of displits in G is
{{{xi, . . . , xj}, VG\ {xi, . . . , xj}} | 1 ≤ i ≤ j < n}. By convention, a graph with
at most 3 vertices is only degenerated.

By Proposition 1, the family of displits in a connected digraph is bi-partitive.
By Theorem 2, this family can be represented by a unique labeled layout, that
we call displit decomposition.

Observation 2. If {X1, X2} is a displit in G, then {X1, X2} is a split in u(G).
The converse is not necessarily true.

4.3 Quotient Graphs

Let (T,L) be a displit decomposition of a connected digraph G and let u be an
internal node of T . We recall that for every node v in NT (u), Xuv is the set of
leaves reachable from u by a path going through v. The set {Xuv = L−1(Xuv) |
v ∈ NT (u)} is a proper partition of VG, and for every v ∈ NT (u), {Xuv, VG\Xuv}
is a displit.

For every v ∈ NT (u), we choose a vertex xv in Xuv such that xv is adjacent
to a vertex in VG\Xuv. Such a xv always exists since G is connected. Let C(u)
be the graph of vertex set NT (u) and of edge set {(v, w) | (xv, xw) ∈ EG}. It is
worth noticing that C(u) is isomorphic to G[{xv | v ∈ NT (u)}], and that C(u)
is not unique for a node u. Then we will consider C(u) as an induced sub-graph
of G. We now prove or state some technical lemmas.
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Lemma 2. Let {X, Y } be a displit in G, and let x ∈ X and y ∈ Y such that
x is adjacent to y. Let {X ′, Y ′} be a bipartition of VG with Y ′ ⊆ Y . Then
cutrk(4)

G (Y ′) = cutrk(4)
G′ (Y ′), where G′ = G[Y ∪ {x}].

Proof. Obviously cutrk(4)
G′ (Y ′) ≤ cutrk(4)

G (Y ′). By definition of displits, there is
an X-vector A and a Y -vector B such that MG[X, Y ] = At ·B. Since x is adjacent
to a vertex in Y , A[x] �= 0. Thus MG[X, Y ′] = A[x]−1 ·At ·MG[{x}, Y ′]. There-
fore, rk(MG[X ′\(X\{x}), Y ′]) = rk(MG[X ′, Y ′]) since all rows in MG[X, Y ′] are
generated by the row MG[{x}, Y ′]. ��

Lemma 3. Let (T,L) be a displit decomposition of a digraph G and let u be a
node of T . If u is prime (resp. degenerated, linear), then C(u) is prime (resp.
degenerated, linear).

Proof. Let {X, Y } be a bi-partition of VC(u), let X ′ = ∪v∈XXuv and let Y ′ =
VG\X ′. We show that {X, Y } is a displit in C(u) if and only if {X ′, Y ′} is a
displit in G. Trivially, if {X ′, Y ′} is a displit in G, then {X, Y } is a displit in
C(u).

Now suppose that {X, Y } is a displit in C(u). {X ′, Y ′} does not overlap
{Xuv, VG\Xuv} for every v ∈ NT (u). We apply |NT (u)| times Lemma 2, for all
{Xuv, VG\Xuv}. Thus {X ′, Y ′} is a displit if and only if {X, Y } is a displit. ��

The following lemmas give characterization of degenerated and linear digraphs.
(Proofs are omitted.)

Lemma 4. If G is degenerated with at least 4 vertices, then either u(G) is a
star, or G is C′

3 where each of the 3 vertices is substituted by a complete graph
(maybe with 0 vertex).

Lemma 5. If G is linear and has at least 4 vertices, then there is an ordering
(x1, . . . , xn) of vertices of VG, and a function f : VG → {0, 1, 2} such that for all
j > i:

– (xi, xj) ∈ EG if f(xi) ≡ f(xj) (mod 3) or f(xi) ≡ f(xj) + 1 (mod 3),
– (xj , xi) ∈ EG if f(xi) ≡ f(xj)− 1 (mod 3) or f(xi) ≡ f(xj) + 1 (mod 3),
– there are no other edges in the graph.

Theorem 3. Let G be a connected digraph with at least 3 vertices, and let (T,L)
be its displit decomposition. Then rwd(4)(G) = max{rwd(4)(C(u)) | u ∈ VT \LT }.

Proof. Let m = max{rwd(4)(C(u)) | u ∈ VT \LT}. Obviously m ≤ rwd(4)(G)
(since C(u) is an induced sub-graph of G). For every u ∈ VT \LT , let (Tu,Lu) be
a sub-cubic layout of C(u) of GF(4)-rank-width at most m. We suppose w.l.o.g.
that the Tu are pairwise disjoint. We construct a sub-cubic layout (T ′,L′) of G of
GF(4)-rank-width at most m. Let T ′ be the union of all Tu (for u ∈ VT \LT ), after
the identification of the vertices u in Tv and v in Tu for every (u, v) ∈ ET−LT , and
after contraction of every vertex of degree 2. For all x ∈ VG, let L′(x) = Lu(L(x))
where {u} = NT (L(x)).

It is not hard to see that (T ′,L′) is a sub-cubic layout of G. Moreover, by
Lemma 2, in T ′ every edge has GF(4)-rank-width at most m. ��
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4.4 Decomposition Algorithm

It is known that the split decomposition of an undirected graph can be computed
in linear time [7], and the split decomposition of a digraph in time O(m log(n))
[14]. We present here a simple O(nm) algorithm to compute the displit decom-
position of a digraph. This algorithm is a simple adaptation of [9]. Due to space
limitation, we present only the main lines, stated in the following two lemmas
without proofs.

Lemma 6. Let x and y be two vertices of a connected digraph G. We can com-
pute in time O(n + m) a non trivial displit {X, Y } such that x ∈ X and y ∈ Y
(if it exists).

Lemma 7. Given a digraph G, we can compute in time O(nm) a family F of
non overlapping displits such that for every displit {X, Y } in G, either {X, Y } ∈
F , or there is a bipartition {X ′, Y ′} ∈ F such that {X, Y } and {X ′, Y ′} overlap.

The family constructed in the previous lemma contains obviously all strong
displits in G. A final O(nm) procedure finds every non-strong displits in F . This
leads to the following theorem.

Theorem 4. The displit decomposition of every digraph can be computed in
time O(nm).

5 Digraphs of GF(4)-Rank-Width 1

In [15] Kanté defined a notion of vertex-minor for digraphs that extended the
one for undirected graphs. He also characterized the class of digraphs of GF(4)-
rank-width at most k in the following.

Theorem 5 ([15]). For each k, there is a finite list Ck of digraphs having at
most (6k+1 − 1)/5 vertices such that a digraph G has GF(4)-rank-width at most
k if and only if no digraph in Ck is isomorphic to a vertex-minor of G.

When k = 1, the digraphs to exclude as vertex-minors have at most 7 vertices.
However, we do not know any polynomial-time algorithm that checks whether
a given graph is a vertex-minor of another. We will give in this section several
characterizations of digraphs of GF(4)-rank-width 1. As a consequence we get
an algorithm for recognizing digraphs of GF(4)-rank-width 1.

A vertex x of a digraph G is a pendant vertex of another vertex y if y is the only
neighbor of x in G. Two vertices x and y of a digraph G are called dtwins if x and
y verify one of the following exclusive conditions (A = N+

G−y(x), B = N−
G−y(x)):

1. N+
G−x(y) = A, N−

G−x(y) = B or,
2. N+

G−x(y) = B, N−
G−x(y) = (B\A) ∪ (A\B) or,

3. N+
G−x(y) = (A\B) ∪ (B\A), N−

G−x(y) = A.
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We say that a digraph is completely decomposable by the displit decomposition if
every node in the displit decomposition is degenerated or linear. The main result
of this paper is the following theorem, analogous to Theorem 1.

Theorem 6. Let G be a connected digraph with at least 2 vertices. Then the
following conditions are equivalent:

1. G is completely decomposable by the displit decomposition.
2. G can be obtained from a single vertex by creating dtwins or adding pendant

vertices.
3. G has GF(4)-rank-width 1.
4. For every W ⊆ V with |W | ≥ 4, G[W ] has a non-trivial displit.
5. u(G) is distance-hereditary and for every W ⊆ V with |W | ≤ 5, we have

rwd(4)(G[W ]) ≤ 1.

Condition 5 gives a characterization of digraphs of GF(4)-rank-width 1 by for-
bidden induced sub-graphs: a digraph has GF(4)-rank-width 1 if and only if it is
(H, C)-free, where H is the set of digraphs G such that u(G) is a house, a gem,
a domino or a hole (Ck, k ≥ 5), and C is the set of connected digraphs G with at
most 5 vertices such that rwd(4)(G) > 1 and for every x ∈ VG, rwd(4)(G−x) ≤ 1.

Before proving Theorem 6, let us state and prove two technical propositions.
The following is immediate from the definitions.

Proposition 2. Let x and y be two vertices of a digraph G. Then {x, y} is a
displit if and only if x and y are dtwins or x is a pendant vertex of y or y is a
pendant vertex of x.

The following proposition is a straightforward adaptation of [18, Proposition
7.1].

Proposition 3. Let x and y be dtwins of a digraph G such that G − x has at
least one edge. Then rwd(4)(G− x) = rwd(4)(G).

Proof. By definition of GF(4)-rank-width we have rwd(4)(G − x) ≤ rwd(4)(G).
We will prove that rwd(4)(G−x) ≥ rwd(4)(G). Let (T,L) be a sub-cubic layout of
GF(4)-rank-width k = rwd(4)(G−x) of G−x. By definition, there is a bijection
L between VG−x and LT . Let v = L(y) and let u ∈ VT such that uv ∈ ET . Let T ′

be obtained from T as follows: VT ′ is the set VT ∪{u′, w} (where u′ and w are two
new nodes) and ET ′ the set (ET \{uv}) ∪ {uu′, u′v, u′w}. We let L′ : VG → LT ′

be such that L′(x) = w and for every z ∈ VG\x, L′(z) = L(z).
It is clear that (T ′,L′) is a sub-cubic layout of G. We claim that the GF(4)-

rank-width of (T ′,L′) is equal to the GF(4)-rank-width of (T,L).
It is clear that the GF(4)-rank-width of the edges u′v and u′w are at most

1. Since x and y are dtwins, the GF(4)-rank-width of the edge uu′ is at most 1
(Proposition 2). Moreover, the other edges of T ′ are in T , then their GF(4)-rank-
width in (T ′,L′) is equal to their GF(4)-rank-width in (T,L) (Lemma 2). Since
G−x has at least one edge we have rwd(4)(G−x) ≥ 1. Therefore rwd(4)(G−x) ≥
rwd(4)(G). ��
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We can now begin the proof of Theorem 6.

Proof (Proof of Theorem 6). 1→ 2). By induction on |VG|. It is trivial if |VG| ≤ 2.
Otherwise, let (T,L) be the displit decomposition of G, and let u be a leaf in T −
LT . If u is degenerated, let {v, w} ⊆ NT (u)∩LT . Otherwise, u is linear and has at
least 4 neighbors. Let v1, . . . vk be its ordering. If NT (u)\LT ⊆ {v2, . . . , vk−1},
take v = v1 and w = vk. Otherwise, take v = v2 and w = v3. In all cases,
{L−1({v, w}), VG\L−1({v, w})} is a displit. By Proposition 2, either x = L−1(v)
and y = L−1(w) are dtwins, or one is a pendant vertex of the other. If x and y
are dtwins or x is a pendant vertex of y, we let G′ = G−x, otherwise G′ = G−y.
By induction G′ is obtained from a single vertex by creating dtwins or adding
pendant vertices.

2 → 3). By induction on |VG|. It is trivial if |VG| ≤ 2. Otherwise, let x ∈ VG

be the last added vertex. If x is a pendant vertex, let {y} = NG(x), otherwise
let y be the dtwin of x. By induction, rwd(4)(G − x) = 1. Using Proposition 3,
rwd(4)(G) = 1.

3 → 4). If rwd(4)(G) ≤ 1, then for every W ⊆ VG, rwd(4)(G[W ]) ≤ 1. When
|W | ≥ 4, a sub-cubic layout of G[W ] has an edge (u, v) such that {Xuv, V \Xuv}
is non-trivial, and thus G[W ] has a non-trivial displit.

4 → 1). Suppose that G is not completely decomposable. Then the displit
decomposition of G has a prime node u. By definition of a representative layout,
the degree of u is at least 4. By Lemma 3, the quotient graph C(u) is prime and
is an induced sub-graph of G with at least 4 vertices.

3 → 5). By Observation 2, rwd(u(G)) = 1 since the layout of GF(4)-rank-
width 1 for G is a layout of rank-width 1 for u(G). Thus by Theorem 1, u(G) is
distance hereditary. Moreover, for every W ⊆ V , we have rwd(4)(G[W ]) ≤ 1.

5→ 3). Due to space limitation we will give only a sketch of the proof. Suppose
that G is a digraph such that rwd(4)(G) > 1 and such that u(G) is distance
hereditary. Let W be a minimal subset of VG such that rwd(4)(G[W ]) > 1.
Working on the split decomposition of u(G[W ]), one can show successively that:

– u(G[W ]) has no pendant vertex,
– if u(G[W ]) has a false twin, then G[W ] has at most 4 vertices,
– if u(G[W ]) has no false twin and no pendant vertex, then u(G) is complete,
– and if u(G[W ]) is complete, then G[W ] has at most 5 vertices.

Thus there is a W ⊆ VG of size at most 5 such that rwd(4)(G[W ]) > 1. ��

As a corollary of Theorems 4 and 6, we get an algorithm for recognizing digraphs
of GF(4)-rank-width 1.

Corollary 1. Digraphs of GF(4)-rank-width 1 can be recognized in time O(nm).

6 Concluding Remarks

Differences with Cunningham’s split decomposition of digraphs. Cunningham
showed that the family of splits in a strongly connected digraph is bi-partitive.
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He also gave a characterization of degenerated and linear digraphs for the split
decomposition: a digraph is degenerated for the split decomposition if and only
if it is complete or is a star, and is linear if and only if it is a circle of transitive
tournaments (CTT) [5].

The displit decomposition and the split decomposition of digraphs are both
generalization of the split decomposition of undirected graphs. A first difference
is that for the displit decomposition the graph has only to be connected.

The quotient graphs of the displit decomposition are induced sub-graphs of
the original graph; this is not necessarily true for the split decomposition of
digraphs.

Finally, the split decomposition and the displit decomposition are mutually
exclusive. For all k ≥ 3, the graph C′

k is linear for the split decomposition
(and thus completely decomposable) since it is a CTT, but it is prime for the
displit decomposition since u(C′

k) is prime for the split decomposition. In the
other hand, we can construct an infinite family of graphs linear for the displit
decomposition and prime for the split decomposition.

Links between bi-rank-width and Cunningham’s split decomposition. Kanté de-
fined another digraph parameter called bi-rank-with, and showed relations be-
tween GF(4)-rank-width and bi-rank-width [15]. A strongly connected digraph
is completely decomposable by Cunningham’s split decomposition if and only if
it has bi-rank-width 2. It is open to find another characterization for digraphs
of bi-rank-width 2.

Generalization to 2-structures. A 2-structure is a complete digraph with labels
on edges. We mention that GF(4)-rank-width and displit decomposition can be
generalized to 2-structures over finite fields. For a field �, we obtain a decompo-
sition for 2-structures over � with a characterization theorem similar to Theorem
6. An interesting case is GF(3), which gives a decomposition theory for oriented
graphs (i.e., directed anti-symmetric graph).
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Abstract. We derive a variety of results on the algorithmics of switch
graphs. On the negative side we prove hardness of the following problems:
Given a switch graph, does it possess a bipartite / planar / triangle-free
/ Eulerian configuration? On the positive side we design fast algorithms
for several connectivity problems in undirected switch graphs, and for
recognizing acyclic configurations in directed switch graphs.

1 Introduction

What is a switch graph? A switch s on an underlying vertex set V is a pair
(ps, Ts) where ps ∈ V is the pivot vertex and where Ts ⊆ V is a non-empty set
of target vertices. The vertex set V and some set S of switches on V together
form a switch graph G = (V, S). A configuration of a switch graph is a mapping
c : S → V such that c(s) ∈ Ts for all s ∈ S. The configuration selects exactly one
edge ec(s) := {ps, c(s)} for every switch s ∈ S, and thus yields a corresponding
multi-set Ec = {ec(s) : s ∈ S} of edges. The corresponding multi-graph is
denoted Gc = (V, Ec); see Fig. 1 for an illustration. Biologically speaking, a
switch graph represents the genotype of an entire population of graphs, and every
configuration specifies the phenotype of one concrete member in this population.

A brief history of switch graphs. Over the last 30 years a huge number of fairly
unrelated combinatorial structures has been introduced under the name switch
graph or switching graph; see the introduction of [5] for some pointers to the lit-
erature. The switching graph model of Meinel [6] comes very close to the model
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s3

s4

s5

s6

s1

s2

s3

s4

s5

s6

Fig. 1. To the left: A switch graph G with six switches, where s5 has only a single
target. To the right: A configuration yielding a multigraph Gc.
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that is investigated in this paper. Another somewhat restricted type of switch
graph has been introduced by Cook [1] who studied cyclic configurations as an
abstraction of certain features in Conway’s game of life. In Cook’s model the
vertices are not allowed to have degrees higher than three, and every switch has
an obligatory incident edge that must show up in every configuration. Reinhardt
[8] essentially studies Cook’s model, but drops the constant degree constraint.
Reinhardt constructs a polynomial-time O(|V |4) algorithm that decides whether
there exists a configuration that contains a simple path between two prespecified
vertices. He also links switch graphs to certain matching problems in computa-
tional biology [9]. We note that Cook’s and Reinhardt’s switch graph models
can both easily be emulated by our switch graph model.

Groote and Ploeger [5] concentrate on switch graphs with binary switches
(where every target set contains two elements). Their work is motivated by cer-
tain questions around the modal μ-calculus, and among other results they study
the complexity of certain graph properties on switch graphs. For instance they
show that in directed binary switch graphs, one can decide in polynomial time
whether there is a configuration that connects (respectively disconnects) two
prespecified vertices. Our current paper was heavily inspired by the conclusions
section of [5]; our results in Theorems 3, 5, and 7 answer open questions that
have been posed in [5].

Results of this paper. Every graph property P naturally leads to a corresponding
algorithmic problem on switch graphs: Given a switch graph, does there exist
a configuration with property P? We will derive a collection of positive and
negative results for various graph properties.
– It is NP-hard to decide whether a given switch graph has a configuration that

is (a) bipartite, (b) planar, or (c) triangle-free. The three hardness proofs
are presented in Section 3.

– We establish a number of matroid properties for switch graphs that possess
a connected configuration. This yields a simple O(|S| + |V |2) time greedy
algorithm for finding a configuration that minimizes the number of con-
nected components (and of course also settles the question whether there is
a connected configuration); see Section 4.

– We provide a fast algorithm to detect a configuration that connects two given
vertices in an undirected switch graph. This substantially improves the time
complexity of Reinhardt’s result [8]; see Section 5.

– Finding a configuration in which all vertex degrees are even is easy, but
finding a configuration with an Eulerian cycle is NP-hard for forward directed
switch graphs as well as for undirected switch graphs. Moreover, it is NP-hard
to find a configuration that is biconnected (for undirected switch graphs) or
strongly connected (for forward directed switch graphs); see Section 6.

– Deciding whether a forward directed switch graph allows an acyclic configu-
ration can be done in linear time. In contrast to this, finding a configuration
that minimizes the number of directed cycles is NP-hard; see Section 7.

We stress that our negative results hold in the most restricted binary switch
model, whereas our positive results apply to the general model.
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2 Basic Definitions

Let G = (V, S) be a switch graph. For a subset S′ ⊆ S of switches and a
configuration c, we denote Ec(S′) = {ec(s) : s ∈ S′} and Gc(S′) = (V, Ec(S′)).
We denote V (s) := Ts ∪{ps} and V (S′) :=

⋃
s∈S′ V (s). For S′ ⊆ S and V ′ ⊆ V ,

we denote by S′(V ′) := {s ∈ S′ | V (s) ⊆ V ′} the set of inner switches of V ′.
Observe that V (S′(V ′)) ⊆ V ′. A switch graph has fan-out k if |Ts| ≤ k for all
s ∈ S. It is called binary if |Ts| ≤ 2 holds for all s ∈ S. Throughout we will use
n := |V | and m := |S|.

Although the paper mainly deals with undirected graphs, all definitions easily
carry over to directed switches and directed multi-graphs. In a forward switch
s = (ps, Ts), arcs must be directed from pivot to target. In a reverse switch
s = (Ts, ps), arcs must be directed from target to pivot. A directed switch graph
may contain both, forward and reverse switches. A forward directed switch graph
contains only forward switches.

Note that all problems we consider in this paper ask for configurations of a
given switch graph with properties that can be tested in polynomial time. Since
there are at most nm configurations, all NP-hard problems presented in this
paper are also NP-complete.

3 Bipartite, Planar, Triangle-Free Graphs

In this section, we show hardness of finding configurations that are bipartite,
triangle-free or planar.

Theorem 1. For binary undirected switch graphs, it is NP-hard to decide if
there is a bipartite configuration (SwitchBipartite).

Proof. We sketch a reduction from SetSplitting: Given a ground set X =
{x1, . . . , xn} and a set T of 3-element subsets of X , it is NP-hard to decide
whether there is a partition of X into two sets X1, X2, such that every t ∈
T has non-empty intersection with both, X1 and X2. For a given instance of
SetSplitting, we construct a switch graph G = (V, S), containing vertices
x1, . . . , xn for the elements of X . For each triplet ti ∈ T we introduce a switch
si = (xj , ti − {xj}) for an arbitrary xj ∈ ti.

Every solution X1, X2 to SetSplitting yields a bipartite configuration: Color
the vertices xi according to X1, X2. Then every triplet t contains both colors,
which allows to set the corresponding switch to connect two vertices of distinct
colors. Conversely, every bipartition of some configuration Gc induces a biparti-
tion of the xi. For any triplet in T , the switches prevent the corresponding three
vertices from receiving all the same color, and thus the induced partition yields
a solution to SetSplitting.

Theorem 2. For binary undirected switch graphs, it is NP-hard to decide if
there is a triangle-free configuration (SwitchTriangleFree).
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Fig. 2. Reduction of 3Sat to SwitchTriangleFree

Proof. The proof is by reduction from 3Sat. Let φ be an instance of 3Sat.
Without loss of generality we assume that each clause contains three different
variables. For each variable xi we create three vertices x�

i , xi and xi, and a
variable switch si = (x�

i , {xi, xi}). For every clause Cj , we add three new vertices
vj
1, v

j
2, v

j
3. If the kth literal in clause Cj corresponds to variable xi, we introduce

an edge (vj
k, {x�

i }). If it is xi, we introduce a switch (vj
k, {vj

k+1, xi}). If it is xi, we
introduce a switch (vj

k, {vj
k+1, xi}), defining vj

4 := vj
1. See Fig. 2 for an example.

The variable switch intuitively picks the true literal. A clause switch can only
connect outside the clause, if its corresponding literal is satisfied. Consequently,
in a satisfying truth assignment we can connect at least one switch of every clause
to the outside, thus avoiding all triangle. Conversely a triangle-free configuration
specifies a truth assignment for the variables such that every clause contains
at least one satisfied literal. Otherwise, the corresponding clause switch would
induce a triangle.

Theorem 3. For binary undirected switch graphs, it is NP-hard to decide if
there is a planar configuration (SwitchPlanar).

Proof. The proof is by reduction from monotone planar 3Sat. Planar 3Sat is a
well-known NP-hard restriction of 3Sat where additionally the variable-clause
graph is assumed to be planar. Monotone planar 3Sat is even more restricted:
the literals of each clause must be either all positive or all negative. Moreover
the variable clause graph can be drawn in the plane without crossings such that
all the variables are on the x-axis, the clauses with positive literals are above
the x-axis and the clauses with negative literals are below the x-axis. Monotone
planar 3Sat is NP-hard [3].

Let φ be an instance of planar monotone 3Sat. For every variable x, we
introduce a variable gadget as depicted in Fig. 3 (a) with one variable switch
sx and switches with pivots �i

x and �i
x for every occurrence of a literal x or

x in a clause. For every clause C, we introduce a clause gadget as depicted in
Fig. 3 (b) which basically is a K5 of which three edges can be disabled by setting
a switch appropriately. We identify the pivots of these switches (and the pivots
themselves) with the vertices �i

x or �i
x for the respective literal x or x and an i

induced by the drawing of φ. An example is given in Fig. 3 (c).
A solution to φ induces a planar drawing by switching sx for a true x to x

and the switches with pivots �i
x to the inner of the variable gadget, the switches

with pivots �i
x to the inner of the clause gadget. For a false x, we set switches
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Fig. 3. Reduction of monotone planar 3Sat to SwitchPlanar

accordingly. Conversely, in a planar drawing at most two switches of a clause
gadget may be switched to the inner of the clause, which otherwise would be
a K5. If, in turn, some switch with pivot �i

x is switched to the inner of the
variable gadget, the switch sx must be switched to x, since otherwise contraction
of the path tx�1

x . . . �i
x would make the upper half of the variable gadget a K5.

Analogously, any switch with pivot �i
x being switched to the inner of the variable

clause forces sx to be switched to x. ��

4 Global Connectivity

In this section we discuss the question whether a given switch graph G = (V, S)
has a connected configuration. It turns out that this question has many ties
to matroid theory, which allows us to invoke some powerful machinery from
mathematical programming.

First, we consider two matroids (E, I1) and (E, I2) that both have the same
ground set E, which is the set of all the multi-edges over V that can possibly
result from some switch in S. The set system I1 consists of all cycle-free subsets of
E. The set system I2 consists of all subsets of E that contain at most one multi-
edge from each switch. Then (E, I1) forms a graphic matroid and (E, I2) forms
a partition matroid. Obviously, the switch graph G = (V, S) has a connected
configuration, if and only if there exists a set E′ ⊆ E of cardinality n − 1 that
belongs to both I1 and I2. This is a standard matroid intersection problem,
which can be solved in polynomial time [4].

It is not hard to see that the intersection (E, I1 ∩ I2) itself does not form a
matroid. In the following, we will model the problem in terms of a single ma-
troid, which yields simpler and faster algorithms. Our approach is based on a
third structure (S, I3) that is defined over the ground set S of switches. A sub-
set S′ ⊆ S lies in I3, if there exists a configuration c such that Ec(S′) is cycle-free



An Algorithmic Study of Switch Graphs 231

(or in other words, such that Ec(S′) belongs to I1). The sets in I3 are called
independent sets.

Theorem 4. The structure (S, I3) forms a matroid.

Proof. Clearly the set system I3 contains the empty set and is closed under
taking subsets. It remains to show that for two independent sets A, B ⊆ S with
|A| < |B|, there is an s ∈ B −A such that also A ∪ {s} is independent.

Since A and B are independent, there exist configurations a and b for which
the corresponding edge sets Ea(A) and Eb(B) are cycle-free. Among all such
configurations a and b, we consider a pair that maximizes the number of switches
that are in A ∩ B and that configure into the same edge both in configuration
Ea(A) and in configuration Eb(B); such switches are called good switches. Since
Ea(A) and Eb(B) are cycle-free, they belong to I1 in the underlying graphic
matroid. Since |Ea(A)| = |A| < |B| = |Eb(B)|, there exists an edge e ∈ Eb(B)−
Ea(A) such that Ea(A) ∪ {e} is cycle-free.

Let se ∈ B denote the switch that in configuration b generates edge e. We
claim that this switch se cannot be in A: Otherwise configuration a would con-
figure this switch se into an edge f . Then we can modify configuration a into
a new configuration c by switching se into e instead of f . The resulting edge
set Ec(A) is still cycle-free, whereas the number of good switches has increased.
That is a contradiction. Hence se /∈ A, and A ∪ {se} is an independent set of
switches. ��

Our next goal is to get a better understanding of independence in (S, I3).

Lemma 1. A set S′ ⊆ S is independent if and only if |T | < |V (T )| holds for
all T ⊆ S′.

Proof. One direction of the proof is easy: If there is a T ⊆ S′ with |T | ≥ |V (T )|,
then every configuration c induces a cycle on T since |Ec(T )| = |T | ≥ |V (T )|
holds.

s3

s1

s2

s5

0

3

1
2

5

4

s4

Fig. 4. A proper switch sequence s1, . . . , s5 that eventually breaks the cycle. Switches
are reinserted changing s5, s4, s1.
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For the other direction of the proof, we consider a set S′ ⊆ S that contains
some switch s ∈ S′ for which S′′ = S′ − {s} is independent. We will show that
then either S′ itself is independent, or that it contains an appropriate subset T
with |T | ≥ |V (T )|. Indeed, since S′′ is independent there exists a configuration
c for which Ec(S′′) is cycle-free. Adding an arbitrary edge e from switch s to
Ec(S′′) produces a configuration c for S′ whose edge set E := Ec(S′′) ∪ {e}
contains a single cycle. Let C0 denote the connected component that contains
the cycle, and let V0 denote the set of all vertices in V (S′) that are not in C0.

We work through a number of removal phases. In the ith phase (i ≥ 1) we
select a switch si = (pi, Ti) that contributes an edge ei to component Ci−1, and
whose target set Ti contains a target t∗i in some set Vj(i) with 0 ≤ j(i) ≤ i−1. We
remove the edge ei from the edge set, and thus split component Ci−1 into two
connected parts. The part containing the cycle becomes the new component Ci,
and the vertices in the other (cycle-free) part form the set Vi. Then the (i+1)th
removal phase starts.

There are two possibilities how this process can terminate: Either (i) there is
no appropriate switch with a target in V0, . . . , Vi−1, or (ii) removing the edge
destroys the cycle in component Ci−1. In case (i), we choose T as the set of
switches in component Ci−1; then |T | ≥ |V (T )|, and we are done. In case (ii)
we will show how to reinsert and how to reconfigure the removed edges and
switches step by step in reverse order sk, sk−1, . . . , s1 so that the resulting edge
set is cycle-free (here k denotes the number of the last phase).

Throughout we will maintain the following invariant: Just after the reconfigu-
ration of switch si (1 ≤ i ≤ k), there exists an index �(i) with 0 ≤ �(i) < i, such
that the vertex set V�(i) ∪

⋃
h≥i Vh forms a cycle-free connected component with

respect to the current edge set. This component is called the crucial component;
intuitively speaking we will make it grow until it covers all of V (S′). We start
the growing process with switch sk, which by definition has a target t∗k in the
set Vj(k) with j(k) < k. By reinserting the edge {pk, t∗k} for switch sk and by
setting �(k) := j(k), we satisfy the invariant. In handling a switch si with i < k
we distinguish two cases: First, if i �= �(i + 1) then we simply reinsert its old
edge ei and keep �(i) := �(i + 1). This merges the vertices in Vi into the crucial
component while maintaining the invariant. In the second case i = �(i + 1). We
insert the new edge {pi, t

∗
i }, and set �(i) := j(i). This merges the vertices in

Vj(i) into the crucial component, and again maintains the invariant. This recon-
figuration process eventually produces a cycle-free configuration for S′, and thus
completes the proof. ��

The statement of Lemma 1 is combinatorial, but its proof is algorithmical and
yields as a by-product a fast independence test for the matroid (S, I3): Given
an acyclic configuration of an independent set S′′ we can check in O(kn) time
whether a given switch s can be added to S′′ without destroying independence:
The independence of S′′ implies that |S′′+s| ≤ n, which also bounds the number
of removal phases. To achieve selection of removable switches within a total of
O(kn) time, we direct all edges in Ec(S′) which are not part of the cycle to point
away from it. Whenever a switch si is removed, we use this information to mark
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all vertices in Vi. Obviously, this only adds O(n) time. A switch s is a candidate
if it has a marked target and both ps and c(s) are unmarked. A set of candidates
can be maintained in O(kn) total time.

If the test is positive, we obtain a corresponding cycle-free configuration for
S′′ ∪ {s}. If the test is negative, we get the final component Ck−1 that contains
the cycle. Let U denote the set of all switches in S′′ that contribute an edge to
Ck−1. Then |U | = |V (Ck−1)| − 1, and none of the switches in U has a target
outside of V (Ck−1). Hence in any cycle-free configuration of S′′ the switches in
U induce a connected graph on V (Ck−1); such a set U of switches is called a
tight set. These ideas lead to the following theorem, which is the main result of
this section. Note that it as a special case yields a polynomial-time algorithm
for recognizing switch graphs with connected configurations.

Theorem 5. For a given switch-graph with fan-out k, we can determine in
O(km+ kn2) time a configuration that minimizes the number of connected com-
ponents.

Proof. Any basis B of the matroid (S, I3) yields a cycle-free configuration with
the maximum number of edges, and hence a configuration with the minimum
number of connected components; the switches not in B then can be set arbi-
trarily. Hence it is enough to determine a basis, and this is done by the standard
greedy algorithm.

We start with the empty set, and test the switches one by one. If the test is
positive, we add the switch and update the cycle-free configuration. If the test
is negative, we forget the switch and contract all switches in the corresponding
tight set U . These contractions can be done in overall O(nα(n)) time by using
a union-find data structure. Every test on a non-trivial graph costs O(kn) time.
Every positive test adds an edge to a cycle-free edge set; hence there are at most
n − 1 of these tests. Every negative test on a non-trivial graph contracts some
vertices; hence there are at most n − 1 of these tests. Every negative test on a
trivial graph (that has been contracted to a single vertex) costs O(k) time. All
in all, this yields the claimed time complexity. ��

5 Local Connectivity

In this section, we investigate configurations that connect two given vertices a
and b by a path. In the following, we call a sequence of switches a forward path if
every switch’s pivot is a target of its predecessor. A contraction of a switch s in
a switch graph is defined as the switch graph identifying all vertices in Ts∪{ps}.

Lemma 2. Let G = (V, S) be a switch graph and s be any switch such that in
(V, S − s), there is a (possibly trivial) forward path from ps to b. Let G′ be the
result from contracting s. Then G can be switched to connect a and b if and only
if this is possible for G′.

Proof. First, by contracting a switch, it is not possible to lose connectivity. We
will thus assume that it is possible to find a configuration c′ that connects a and
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Fig. 5. A path in G′
c′ witnesses a path in Gc for some configuration c

b in G′ and show that this witnesses such a configuration c for G. We denote
the path in G′

c′ as sequence of switches P . If P forms a single path in Gc′ , or
if P connects either a or b to ps, finding a connecting configuration is trivial.
Otherwise, P forms two paths, connecting a to some ta ∈ Ts and b to some
tb ∈ Ts. In this situation, depicted in Fig. 5, we can make use of the fact that
in S − s, there is a forward path from ps to b. Its first switch is not part of P ,
and we simply follow the forward path until we hit some vertex x on P . Now,
switching the forward path from ps to x gives us a bypass on either ps − ta or
ps − tb and switching s accordingly connects a and b. ��

This lemma provides a simple test for a-b-connectivity: If there is a configuration
c that connects a and b in Gc, there either is a forward path from b to a or there
is a contractable switch, since there must be a first switch that is used “forward”
on the path from a to b in Gc. The proof of Lemma 2 is constructive, naively
implemented, it yields an O(n2 + knm) time algorithm to test the existence
of and compute a connecting configuration by storing a forward path for each
contraction. The time complexity can be further improved to almost linear (for
the proof, we refer the reader to the full paper):

Theorem 6. For a given switch-graph G = (V, S) with fan-out k and two ver-
tices a, b ∈ V , we can determine in O(km + nα(n)) time, where α denotes the
inverse Ackermann function, a configuration that connects a and b, if such a
configuration exists.

6 Even Degrees and Eulerian Graphs

Lemma 3. For an undirected switch graph G = (V, S), a configuration in which
all vertex degrees are even can be detected in polynomial time.

Proof. We use the results of Cornuéjols [2] on the general factor problem: Let
(W, E) be an undirected graph, and for every v ∈ W let D(v) be a subset of
{1, . . . , |W |}. Does there exist a subset F ⊆ E, such that in the graph (W, F )
every vertex has its degree in D(v)? Cornuéjols [2] shows that this problem can
be decided in polynomial time, as long as the sets D(v) do not contain any gap
of length 2. (A set D of integers contains a gap of length 2, if it contains two
elements d1 and d2, such that d2 ≥ d1 + 3 and such that none of the numbers
d1 + 1, . . . , d2 − 1 is in D.)
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For the proof of the lemma, construct a bipartite auxiliary graph between the
set of switches and the set of vertices in the switch graph. Put an edge between
any switch s and all targets in Ts. A vertex v ∈ V is called odd (even), if it is the
pivot of an odd (even) number of switches. For any switch s ∈ S set D(s) = {1}.
For any even vertex v ∈ V set D(v) = {0, 2, 4, . . .}, and for any odd vertex
v ∈ V set D(v) = {1, 3, 5, . . .}. Note that none of these sets contains a gap of
length 2. It can be seen that the auxiliary graph has a factor obeying the degree
constraints if and only if the graph G has a configuration in which all vertex
degrees are even. ��

Theorem 7. For binary undirected switch graphs it is NP-hard to decide if there
is an Eulerian or a biconnected configuration. For forward directed switch graphs
it is NP-hard to decide if there is an Eulerian or a strongly connected configu-
ration.

Proof. We reduce from DirectedHamiltonianCycle which is known to be
NP-hard for directed graphs with out-degree bounded by two [7].

Let G = (V, E) be a directed graph with out-degrees 1, 2. We define a switch
graph H = (V, S) as follows. For each vertex v ∈ V we add a switch sv =
(v, N(v)) where N(v) = {u ∈ V | (v, u) ∈ E}. Now since for every configuration
c, Hc has n vertices and n edges, the following properties are equivalent:

(i) G has a directed Hamiltonian cycle
(ii) H has a directed Eulerian configuration as a directed switch graph
(iii) H has a strongly connected configuration as a directed switch graph
(iv) H has a biconnected configuration as an undirected switch graph
(v) H has a Eulerian cycle as an undirected switch graph

7 Acyclic and Almost Acyclic Graphs

This section mainly deals with forward directed switch graphs (as defined in
Section 2): We check in polynomial time whether such a graph has a DAG con-
figuration, and we show that finding a configuration with the minimum number
of directed cycles is NP-hard.

Hence, let G = (V, S) be a forward directed switch graph, and observe the
following. First: The out-degree of every vertex in Gc is independent of the chosen
configuration. Second: If all vertices in a digraph have out-degree at least 1, then
the graph contains a directed cycle. Third: If G contains a sink v (that is, a vertex
v with out-degree 0), then it is safe to configure all switches s with v ∈ Ts towards
this sink. These three observations suggest a simple procedure: As long as the
graph contains a sink v, we first set c(s) := v for all switches s with v ∈ Ts, and
then remove v together with all these switches. The procedure either stops with
an empty graph (and an acyclic configuration), or with a non-empty subgraph of
G in which all vertices have out-degree at least 1 (in which case there is no acyclic
configuration). The algorithm can easily be implemented to run in linear time.
In contrast, finding an acyclic configuration in general directed switch graphs
and minimizing the number of cycles in forward directed switch graphs is hard.
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Theorem 8. For a forward directed switch graph, it can be decided in O(n+m)
time if it has an acyclic configuration. If an acyclic configuration exists, it can
be found within the same time complexity.

Theorem 9. For a directed switch graph, it is NP-hard to decide if it has an
acyclic configuration (SwitchDirectedAcyclic).

Proof. The proof is by reduction from 3Sat. Let φ be an instance of 3Sat with
variables x1, . . . , xn and clauses C1, . . . , Cm. We construct a switch graph Gφ as
follows: We start with two vertices z and w and the arc (w, z). For each variable xi

we create two corresponding vertices xi, xi and a reverse switch si = ({xi, xi}, w).
For each clause Ci we add a vertex vi and the arc (z, vi). Let xu, xv, xw be the
variables occurring in clause Ci. We set �u = xu if xu occurs negated in Ci and
�u = xu otherwise. We define �v, �w analogously. We then add a clause switch
sC

i = (vi, {�u, �v, �w}). See Fig. 6 for an example.
A satisfying truth assignment for φ yields an acyclic configuration c of Gφ: For

each variable xi we set c(si) = xi if xi is assigned the value true and c(si) = xi

otherwise. Since each clause of φ is satisfied in this configuration at least one
target of every clause switch has out-degree 0. Hence every clause switch can
easily be configured to avoid all cycles.

Furthermore, an acyclic configuration c of Gφ yields a satisfying truth assign-
ment for φ: We set variable xi to true if c(si) = xi and to false otherwise. As
the configuration is acyclic every clause switch must have a sink as target, and
this sink represents a satisfied literal in the corresponding clause.

Note that although the clause switches have fan-out 3, the result also holds for
binary switch graphs, as we can replace each switch with fan-out 3 by two binary
switches without affecting the number of cycles with respect to any configuration.

Theorem 10. For a forward directed switch graph G and an integer k > 0, it
is NP-hard to decide if there is a configuration with at most k cycles (Switch-

MinimumDirectedCycles).

Proof. We show how to simulate binary reverse switches with usual binary for-
ward switches at the cost of one cycle per reverse switch. Let G′ be an instance

x1 x1 x2 x2 x3 x3 x4

v1 v2

(x1 ∨ x2 ∨ x3)∧
(x2 ∨ x3 ∨ x4)

x4

w

z

x x

w

xin xin

xoutxout

sx sx

Fig. 6. Reduction of 3Sat to SwitchDirectedAcyclic with reverse switches (left).
Replacement of reverse switches for reduction of 3Sat to SwitchMinimumDirected-

Cycles (right).
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of SwitchDirectedAcyclic with k binary reverse switches. We construct a
directed switch graph G by replacing each reverse switch s = ({x, x}, w) by the
construction depicted in Fig. 6. As each replacement creates at least one cycle
every configuration of G has at least k cycles. Each replacement has four distinct
configurations. Two of them directly correspond to a configuration of the origi-
nal reverse switch, namely the ones where one of the vertices x, x is connected
to its in- and the other one to its out-vertex. We say that a configuration of G
is good for the replacement in this case. There is a bijection between the acyclic
configurations of G′ and the configurations of G with k cycles that are good for
each replacement.

Let c be a configuration of G with k cycles. We can modify c such that it
is good for each replacement without increasing the number of cycles: The case
c(sx) = xout, c(sx) = xout can be excluded, as it would induce two cycles. In
case c(sx) = xin, c(sx) = xin we can change c(sx) := xout without increasing the
number of cycles thus making c good for the replacement.

Acknowledgments. We thank Alexander Wolff for pointing us to switch graph
problems. We thank the anonymous referees for helpful comments.
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2. Cornuéjols, G.: General factors of graphs. Journal of Combinatorial Theory, Series
B 45, 185–198 (1988)

3. de Berg, M., Khosravi, A.: Optimal binary space partitions (Manuscript) (2008)
4. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Proceed-

ings of the Calgary International Conference on Combinatorial Structures and Their
Applications, Calgary, pp. 69–87 (1969)

5. Groote, J.F., Ploeger, B.: Switching graphs. In: Proceedings of the 2nd Workshop
on Reachability Problems (RP 2008). ENTCS, pp. 119–135 (2008)

6. Meinel, C.: Switching graphs and their complexity. In: Kreczmar, A., Mirkowska,
G. (eds.) MFCS 1989. LNCS, vol. 379, pp. 350–359. Springer, Heidelberg (1989)
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Abstract. The k-th power Hk of a graph H is obtained from H by
adding new edges between every two distinct vertices having distance
at most k in H . Lau [Bipartite roots of graphs, ACM Transactions on
Algorithms 2 (2006) 178–208] conjectured that recognizing k-th powers
of some graph is NP-complete for all fixed k ≥ 2 and recognizing k-th
powers of a bipartite graph is NP-complete for all fixed k ≥ 3. We prove
that these conjectures are true. Lau and Corneil [Recognizing powers of
proper interval, split and chordal graphs, SIAM J. Discrete Math. 18
(2004) 83–102] proved that recognizing squares of chordal graphs and
squares of split graphs are NP-complete. We extend these results by
showing that recognizing k-th powers of chordal graphs is NP-complete
for all fixed k ≥ 2 and providing a quadratic-time recognition algorithm
for squares of strongly chordal split graphs. Finally, we give a polynomial-
time recognition algorithm for cubes of graphs with girth at least ten.
This result is related to a recent conjecture posed by Farzad et al. [Com-
puting graph roots without short cycles, Proceedings of STACS 2009,
pp. 397–408] saying that k-th powers of graphs with girth at least 3k−1
is polynomially recognizable.

1 Introduction and Results

In a graph H = (VH , EH), the distance dH(x, y) between two vertices x and y
in H is the number of edges of a shortest path in G connecting x and y. Given
a positive integer k, the k-th power of H , written Hk, is the graph obtained
from H by adding new edges between any pair of vertices at distance at most
k in H ; formally, Hk = (VH , {xy | 1 ≤ dH(x, y) ≤ k}). A graph G is the k-th
power of a graph H if G = Hk, and in this case, H is a k-th root of G. For the
cases of k = 2 and k = 3, we say that H2 and H3 is the square, respectively,
is the cube of H and H is a square root of G = H2, respectively, a cube root of
G = H3. Graph powers and roots are fundamental graph-theoretic concepts and
have been extensively studied in the literature, both in theoretic and algorithmic
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senses; see, e.g., [1,4,8,9,10,11] for recent results and the numerous references
listed there.

Let k ≥ 2 be a given integer and let C be a given graph class. We consider the
following problems:

k-th power of graph

Instance: A graph G.
Question: Does there exist a graph H such that G = Hk?

k-th power of C graph

Instance: A graph G.
Question: Does there exist a graph H in C such that G = Hk?

In general, it is very unlikely that good characterizations of powers can exist
as Motwani and Sudan [14] proved that square of graph is NP-complete. In
[9], Lau proved that square of bipartite graph is polynomially solvable but
cube of bipartite graph and cube of graph are NP-complete. He then
strongly believes that the following conjectures should be true:

Conjecture 1 ([9]). k-th power of graph is NP-complete for all fixed k ≥ 2.

Conjecture 2 ([9]). k-th power of bipartite graph is NP-complete for
all fixed k ≥ 3.

Our first set of results (Theorems 4 and 5) consists of the proofs showing that
both Conjectures 1 and 2 are indeed true. Moreover, our results in Section 5
will imply, on the positive side, that cubes of bipartite graphs without cycles of
length at most eight can be recognized efficiently.

square of C graph remains NP-complete for various classes C, such as
chordal graphs and split graphs [10]. Our next set of results (Theorems 6, 7,
and 8) consists of the proof that k-th power of chordal graph is NP-
complete for all fixed k ≥ 2 and, on the positive side, a good characterization
of squares of strongly chordal split graphs that leads to a quadratic-time algo-
rithm for solving square of strongly chordal split graph. Notice that the
computational complexity of k-th power of chordal graph was unknown
before and k-th power of split graph is trivial for k ≥ 3; k-th powers of
split graphs, k ≥ 3, are exactly the complete graphs.

Very recently, square roots with girth conditions have been considered in [4];
the girth of a graph is the smallest length of a cycle in the graph. It is shown in
[4] that square of graph with girth ≤ 4 is NP-complete, while square of

graph with girth ≥ 6 is polynomially solvable; the case of square roots with
girth 5 still remains open. In [4], the following conjecture is proposed:

Conjecture 3 ([4]). k-power of graph with girth ≥ 3k−1 is polynomially
solvable.

Our last set of results (Theorems 11 and 12) is related to Conjecture 3 and
consists of a good characterization of cubes of graphs with girth at least ten and
a polynomial-time algorithm for solving cube of graph with girth ≥ 10.
Moreover, our Theorem 11 will imply a good characterization of cubes of trees
as well as of bipartite graphs without ‘short’ cycles.
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In the last section we give our conclusion as well as discuss some open problems.

2 Preliminaries

All graphs considered are finite, undirected and simple. Since the power of a
graph is the union of the powers of the connected components of that graph, we
may assume that all graphs considered are connected. The diameter of a graph
is the maximum distance in the graph.

Let G = (VG, EG) be a graph. We often write xy ∈ EG for {x, y} ∈ EG.
Following [14,10], we sometimes also write x ↔ y for the adjacency of x and y in
the graph in question; this is particularly the case when we describe reductions in
NP-completeness proofs. For disjoint sets of vertices X and Y , we write X ↔ Y ,
meaning each vertex in X is adjacent to each vertex in Y ; if X = {x}, we simply
write x ↔ Y .

The neighborhood NG(v) in G of a vertex v is the set all vertices in G adjacent
to v and the closed neighborhood of v in G is NG[v] = NG(v)∪ {v}. For U ⊆ VG

we write NG(U) =
⋃

u∈U NG(u) and NG[U ] = NG(U)∪U . The k-th neighborhood
Nk

G(v) of v is the set of vertices at distance k from v. Set degG(v) = |NG(v)|, the
degree of v in G. We call vertices of degree one end-vertices. A universal vertex
is one that is adjacent to all other vertices.

A u, v-path is a path P connecting two vertices u, v; u and v are the end-
vertices of P . For k ≥ 1, let Pk denote a chordless path with k vertices and
k − 1 edges, and for k ≥ 3, let Ck denote a chordless cycle with k vertices and k
edges. A complete graph is one in which every two distinct vertices are adjacent.
A graph is chordal if it does not contain any induced C�, � ≥ 4.

A set of vertices Q ⊆ VG is called a clique in G if every two distinct vertices
in Q are adjacent; a maximal clique is a clique that is not properly contained in
another clique. A vertex is simplicial if its neighborhood is a clique. C(G) denotes
the set of all maximal cliques of G. A stable set is a set of pairwise non-adjacent
vertices. A graph is bipartite if its vertex set can be partitioned into two stable
sets. A split graph is one whose vertex set can be partitioned into a clique and a
stable set. Clearly, split graphs are chordal. Given a set of vertices X ⊆ VG, the
subgraph induced by X is written G[X ] and G − X stands for G[V \ X ].

Due to space limitations, most of the proofs are omitted.

3 Hardness Results

In proving NP-completeness results we will consider the well-known NP-complete
problem set splitting ([5, Problem SP4]), also known as hypergraph 2-

colorability.
set splitting

Instance: Collection D of subsets of a finite set S.
Question: Is there a partition of S into two disjoint subsets S1 and S2 such

that each subset in D intersects both S1 and S2?
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Throughout this section, we will consider the following small instance of set

splitting to illustrate our reductions:
Example. S = {u1, u2, u3, u4, u5, u6, u7} and D = {d1, d2, d3} with d1 = {u2, u3,
u4}, d2 = {u1, u5} and d3 = {u3, u4, u6, u7}. In this example, S1 = {u1, u2, u3}
and S2 = {u4, u5, u6, u7} is a possible solution.

We will also make use of the tail structure, described first in [14] and generalized
later in [9]. The tail structure of a vertex v enables us to pin down exactly the
neighborhood of v in any k-th root H of G.

Lemma 1 ([9]). Let G = (VG, EG) be a connected graph with {v1, . . . , vk+1} ⊂
VG where NG(v1) = {v2, . . . , vk+1} and NG(vi) ⊂ NG[vi+1] for all 1 ≤ i ≤ k.
Then in any k-th root H of G, (1) NH(v1) = {v2}, (2) NH(vi) = {vi−1, vi+1}
for all 2 ≤ i ≤ k, and (3) NH(vk+1) − vk = NG(v2) − {v1, . . . , vk+1}.

The vertices v1, . . . , vk are ‘tail vertices’ of vk+1; see Figure 1 for an illustration.

Clique

v1 v2 vi vk

vk+1

vk+1

G = Hk

H

v1 v2 vi vk

Fig. 1. Tail in G and in k-th root H of G

We remark that k-th power of C graph is obvious in NP whenever recog-
nizing C is polynomially because guessing a k-th root H , verifying if H is in C
and if G = Hk can be done in polynomial time. This is the case for all graph
classes considered in this paper.

We first prove that, for fixed k ≥ 3, k-th power of bipartite graph is
NP-complete by reducing set splitting to it. Our reduction generalizes those
in [9] for cube of bipartite graph. Let S = {u1, . . . , un}, D = {d1, . . . , dm}
where dj ⊆ S, 1 ≤ j ≤ m, be an instance of set splitting, and let k ≥ 3
be a fixed integer. We construct an instance G = G(D, S) for k-th power of

bipartite graph as follows.
The vertex set of G consists of:

– Ui, for all 1 ≤ i ≤ n. Each ‘element vertex’ Ui corresponds to the element
ui in S.

– Dj , for all 1 ≤ j ≤ m. Each ‘subset vertex’ Dj corresponds to the subset dj

in D.
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– D1
j , . . . , D

k
j , for all 1 ≤ j ≤ m. k ‘tail vertices’ D1

j , . . . , Dk
j of the subset

vertex Dj.
– P 1

1 , . . . , P k−2
1 and P 1

2 , . . . , P k−2
2 are k − 2 pairs of ‘partition vertices’.

– Connection vertex: X .

The edge set of G consists of:

– Edges of tail vertices:
(E1) Dj , D

1
j , . . . , D

k
j form a clique;

(E2) For all 1 ≤ t ≤ k − 1: Dt
j ↔ {Ui | ui ∈ dj , 1 ≤ i ≤ n};

(E3) For all 1 ≤ t ≤ k − 2: Dt
j ↔ X , Dt

j ↔ {Dj′ | dj ∩ dj′ �= ∅},
Dt

j ↔ {P h
1 | 1 ≤ h ≤ k − t − 1} and Dt

j ↔ {P h
2 | 1 ≤ h ≤ k − t − 1};

(E4) For all 1 ≤ t ≤ k − 3: Dt
j ↔ {Ui | 1 ≤ i ≤ n},

Dt
j ↔ {Dh

j′ | 1 ≤ h ≤ k − t − 2, dj ∩ dj′ �= ∅};
(E5) For all 1 ≤ t ≤ k − 4: Dt

j ↔ {Dj′ | 1 ≤ j′ ≤ m};
(E6) For all 1 ≤ t ≤ k − 5: Dt

j ↔ {Dh
j′ | 1 ≤ h ≤ k − t − 4, 1 ≤ j′ ≤ m}.

– Edges of subset vertices:
(E7) Dj ↔ {X, P 1

1 , . . . , P k−2
1 , P 1

2 , . . . , P k−2
2 },

Dj ↔ {Ui | 1 ≤ i ≤ n}, Dj ↔ {Dj′ | dj ∩ dj′ �= ∅}.
(E8) If k ≥ 4: Dj ↔ {Dj′ | 1 ≤ j′ ≤ m}.
– Edges of element vertices:
(E9) U1, . . . , Un form a clique, and Ui ↔ {X, P 1

1 , . . . , P k−2
1 , P 1

2 , . . . , P k−2
2 }.

– Edges of partition vertices:
(E10) P 1

1 , . . . , P k−2
1 , X, U1, . . . , Un form a clique, P 1

2 , . . . , P k−2
2 , X, U1, . . . , Un

form a clique.
(E11) For all 1 ≤ t ≤ k − 3, P t

1 ↔ {P h
2 | 1 ≤ h ≤ k − t − 2}, P t

2 ↔ {P h
1 | 1 ≤

h ≤ k − t − 2}.

Clearly, G can be constructed from D, S in polynomial time. For an illustration,
in case k = 4, the example instance yields the graph G is depicted in Figure 2.

In this and other figures, each ellipse corresponds to a clique and we omit the
clique edges to keep the figures simpler. The two dotted lines from a vertex to
the cliques mean that the vertex is adjacent to all vertices in those cliques.

Lemma 2. If there exists a partition of S into two disjoint subsets S1 and S2
such that each subset in D intersects both S1 and S2, then there exists a bipartite
graph H such that G = Hk.

Proof. Let H have the same vertex set as G. The edges of H are as follows; see
also Figure 3.

– Edges of subset vertices and its tail vertices: For all 2 ≤ t ≤ k, Dt
j ↔ Dt−1

j

and D1
j ↔ Dj , and Dj ↔ {Ui | ui ∈ dj , 1 ≤ i ≤ n}.

– Edges of partition vertices:
P 1

1 ↔ {Ui | ui ∈ S1, 1 ≤ i ≤ n} and P 1
2 ↔ {Ui | ui ∈ S2, 1 ≤ i ≤ n}, and

for all 2 ≤ t ≤ k − 2, P t
1 ↔ P t−1

1 and P t
2 ↔ P t−1

2 .
– Edges of connection vertex: X ↔ {U1, . . . , Un}.



Hardness Results and Efficient Algorithms for Graph Powers 243

D3
2D4

2 D2
2 D1

2 D2

Clique Clique

Clique

P2
2

X

D4
3 D3

3 D2
3 D1

3 D3D4
1 D3

1 D2
1 D1

1 D1

U1 U2 U3 U6

Clique

P1
1

P2
1

P1
2

U7U4
U5

Fig. 2. The graph G for the example instance of set splitting and k = 4

For the example instance, the k-th root graph H corresponds to the solution
S1, S2 is shown in Figure 3. �

Lemma 3. If H is a k-th root of G, then there exists a partition of S into two
disjoint subsets S1 and S2 such that each subset in D intersects both S1 and S2.

Notice that in the Lemma 3, we did not use the property that H is a bipartite
graph. In fact, any k-th root of G would tell us how to do set splitting. In
particular, any bipartite k-th root H of G will do. Hence, by Lemmas 2 and 3,
we conclude

Theorem 4. k-th power of bipartite graph is NP-complete for all fixed
k ≥ 3.

By the same reason, k-th power of C graph is NP-complete for all fixed
k ≥ 3 whenever C contains all bipartite graphs (such as triangle-free graphs,
parity graphs, perfect graphs, etc.). In particular, applied for the class of all
graphs, this observation and the NP-completeness of square of graph [14]
together give

Theorem 5. k-th power of graph is NP-complete for all fixed k ≥ 2.

Lau and Corneil [10] shown that square of chordal graph is NP-complete.
We are able to extend this result by showing that k-th power of chordal
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1
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k−1
1

D1
1

Dk
2
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k−1
2

D1
2
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D1
3

U4 U5 U6
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1 P1

2

P2
2

P3
2

P
k−2
2P

k−2
1

P
k−3
2

D1 D2 D3

U1 U3

X

U2 U7

P2
1

P3
1

P
k−3
1

Fig. 3. A bipartite k-th root H in Lemma 2 to the example solution S1, S2

graph is NP-complete for all fixed k ≥ 2. The reduction is almost the same as
the previous one and generalizes those in [10] for square of chordal graph.

Theorem 6. k-th power of chordal graph is NP-complete for all fixed
k ≥ 2.

4 Squares of Strongly Chordal Split Graphs

Lau and Corneil [10] shown that square of split graph is NP-complete. In
contrast, we will show in this section that there exists a good characterization
of squares of strongly chordal split graphs that gives a recognition algorithm in
time O(min{n2, m log n}) for such squares.

A chordal graph is strongly chordal if it does not contain any �-sun as an
induced subgraph; here a �-sun, � ≥ 3, consits of a stable set {u1, u2, . . . , u�}
and a clique {v1, v2, . . . , v�} such that for i ∈ {1, . . . , �}, ui is adjacent to exactly
vi and vi+1 (index arithmetic modulo �). We will make use of the following
well-known fact:

Lemma 4 ([2,12,16]). Powers of strongly chordal graphs are strongly chordal.

In a graph, a vertex is maximal if its closed neighborhood is maximal with respect
to set-inclusion. For split graphs H = (VH , EH) we write H = (C ∪ S, EH),
meaning VH = C ∪ S is a partition of the vertex set of H into a clique C and a
stable set S.
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Lemma 5. Let H = (C∪S, EH) be a connected split graph without 3-sun. Then
Q is a maximal clique in H2 if and only if Q = NH [v] for some maximal vertex
v ∈ C of H.

Theorem 7. G is square of a strongly chordal split graph if and only if G is
strongly chordal and

∣∣⋂
Q∈C(G) Q

∣∣ ≥ |C(G)|.

Theorem 8. Given an n-vertex and m-edge graph G, recognizing if G is the
square of some strongly chordal split graph H can be done in time O(min{n2,
m log n}), and if so, such a square root H for G can be constructed in the same
time.

Proof. By the constructive proof of Theorem 7, the following Algorithm 1 cor-
rectly computes a strongly chordal split graph H that is a square root for G, if
any.

Algorithm 1

Input: Connected graph G = (VG, EG) with n = |VG| and m = |EG|.
Output: A strongly chordal split graph H with G = H2 if such H exists

or ‘NO’ otherwise.

1. if G is strongly chordal then
2. compute all maximal cliques Q1, . . . , Qq of G
3. compute C =

⋂
1≤i≤q Qi

4. if |C| ≥ q then
5. VH := VG; EH := {xy | x, y ∈ C}
6. for i := 1 to q do
7. choose a vertex vi ∈ C with vi �= vj for i �= j
8. for i := 1 to q do
9. EH := EH ∪ {vvi | v ∈ Qi \ C}
10. return H
11. else return ‘NO’
12. else return ‘NO’

The time complexity of Algorithm 1 is dominated by the time consumed at
lines 1 and 2. Testing if G is strongly chordal can be done in time O(min{n2,
m log n}) ([3,13,15,17]). Assuming G is strongly chordal, all maximal cliques
Q1, . . .Qq of G can be listed in linear time (cf. [6,17]); note that q ≤ n. So, the
total time of the algorithm is bounded by O(min{n2, m log n}). �

5 Powers versus Girth

The girth of a graph is the smallest length of a cycle in the graph. In other
words, G has girth k if and only if G contains a cycle of length k but does not
contain any (induced) cycle of length � = 3, . . . , k − 1. Note that the girth of an
n-vertex and m-edge graph can be computed in O(nm) [7].
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In [4] square roots with girth conditions have been considered. It is shown
there that square of graph with girth ≤ 4 is NP-complete, while square

of graph with girth ≥ 6 is polynomially solvable, and it has been conjec-
tured that k-power of graph with girth ≥ 3k − 1 is polynomially solvable.
In this section, we give a good characterization of graphs that are cubes of a
graph having girth at least 10. Our characterization leads to an O(nm2)-time
recognition for such graphs.

The following fact is the key observation for further discussions.

Lemma 6. Let G = (V, EG) be a connected, non-complete graph such that G =
H3 for some graph H = (V, EH) with girth at least 10. Then Q ⊆ V is a maximal
clique in G if and only if Q = NH [u, v] for some edge uv ∈ EH with degH(u) ≥ 2
and degH(v) ≥ 2.

Corollary 1. If G = (VG, EG) is the cube of some graph with girth at least 10,
then G has at most |EG| maximal cliques.

Definition 1. Let G be an arbitrary graph. An edge e of G is called forced if e
is the intersection of two distinct maximal cliques in G.

The meaning of forced edges is that if the graph considered is the cube of some
graph with girth at least 10, then its forced edges must belong to the edge set
of any cube root with such girth condition.

Observation 9 Let G = H3 for some graph H with girth at least 10. Then, an
edge of G is forced if and only if it is the mid-edge of an P6 in H.

Definition 2. A connected graph G is said to be trivial if it contains a non-
empty clique C such that G \ C is the disjoint union of at most |C| − 1 cliques
and every vertex in C is adjacent to every vertex in G \ C.

Observation 10 (i) A graph is trivial if and only if it is the cube of some tree
of diameter at most 4;

(ii) Trivial graphs can be recognized in linear time.

By Observation 10, we need consider non-trivial graphs only. A star is a tree
with at least two vertices and diameter at most two. For an edge e, let Ce denote
the set of all maximal cliques containing e.

Proposition 1. Let G be a connected, non-trivial graph such that G = H3 for
some graph H with girth at least 10, and let F be the subgraph of G consisting
of all forced edges of G. Then

(i) F is a connected induced subgraph of H;
(ii) For each e ∈ F , there exists a unique maximal clique Qe ∈ Ce such that

(a) for every two disctint non-disjoint forced edges e and e′, e∪e′ ⊆ Qe∩Qe′ ,
(b) for every Q ∈ C(G) \ {Qe | e ∈ F}, and for all forced edges e1, e2 in Q,

Qe1 ∩ Q = Qe2 ∩ Q;
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(iii) For each e ∈ F , Ce \ {Qe} can be partitioned into non-empty disjoint sets
Ae and Be with

(a) Q ∩ Q′ = e if and only if Q ∈ Ae and Q′ ∈ Be or vice versa,
(b) setting Ae =

⋂
Q∈Ae

Q, Be =
⋂

Q∈Be
Q, all pairs of maximal cliques in

Ae have the same intersection Ae, all pairs of maximal cliques in Be

have the same intersection Be,
(c) Qe = Ae ∪ Be, and |Ae| ≥ |Ae| + 2, |Be| ≥ |Be| + 2,
(d) F [Ae ∩ VF ] and F [Be ∩ VF ] are stars with distinct universal vertices in

e;
(iv) C(G) =

⋃
e∈F Ce;

(v) VG \
⋃

e∈F Qe consists of exactly the simplicial vertices of G.

Theorem 11. Let G be a connected, non-trivial graph. Let F be the subgraph of
G consisting of all forced edges in G. Then, G is the cube of a graph with girth
at least 10 if and only if F is connected and has girth at least 10 and G satisfies
the conditions (ii) – (v) listed in Proposition 1.

Theorem 12. Given an n-vertex m-edge graph G, recognizing if G is the cube
of some graph H with girth at least 10 can be done in time O(nm2), and if so,
such a cube root H for G can be constructed in the same time.

Proof. Note that by Corollary 1, any cube of an m-edge graph with girth at
least ten has at most m maximal cliques. Then, use the algorithm in [18] to list
the maximal cliques of G in time O(nm2). If there are more than m maximal
cliques, G is not the cube of any graph with girth at least ten. Otherwise, the (at
most m) maximal cliques of G are available. Then computing the forced edges
of G to form the subgraph F of G, as well as the lists Ce for each e ∈ F can be
done in time O(m2) in an obvious way.

Moreover, the partitions Ce = Ae ∪ {Qe} ∪ Be satisfying (iii) (if any) for all
forced edges e can be found in time O(nm2). Given these partitions, conditions
(ii) – (v) in Proposition 1 then can be tested within the same time bound, as
well as the square root H , in case all conditions are satisfied, can be constructed
by Algorithm 2 below; K := {Qe | e ∈ F}. �

Remark. In the proof of Theorem 11, if F is a tree or a (C4, C6, C8)-free bipartite
graph, then the root H for G is also a tree, respectively, a (C4, C6, C8)-free
bipartite graph. Thus, if we replace the condition on F in Theorem 11 by ‘F
is a (C4, C6, C8)-free bipartite graph’, we obtain a good characterization and an
O(nm2)-time recognition for cubes of bipartite roots of this kind, while cube

of bipartite graph is NP-complete in general [9].

6 Conclusion and Open Problems

Although it has been gererally expected that k-th power of graph and k-

th power of bipartite graph are NP-complete for all fixed k ≥ 2, respec-
tively, k ≥ 3, this paper contains the first proofs that these problems are indeed
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Algorithm 2

1. H := F
2. for each Qe ∈ K do
3. let e = xy where x is universal in F [Ae ∩ VF ] and
4. y is universal in F [Be ∩ VF ] // cf. (iii)(d)
5. put all edges ux, vy into H , u ∈ Ae \ VF , v ∈ Be \ VF

6. // H [Qe] = NH [x, y] for all e = xy ∈ F
7. for each Q �∈ K do
8. let Q ∈ Ce for some forced edge e
9. choose a vertex cQ ∈ (Q ∩ Qe) \ VF ; cQ �= cQ′ for Q �= Q′ �∈ K
10. // Note that Q ∩ Qe = Ae or Q ∩ Qe = Be, hence the choices
11. // of cQ’s are possible by (iii)(c); cQ is independent of e by (ii)(b)
13. put all edges vcQ, v ∈ Q \ VH , into H
14. return H

NP-complete. We also have proved that k-th power of chordal graph is
NP-complete for all fixed k ≥ 2. On the positive side, we have found efficient
algorithms for recognizing squares of strongly chordal split graphs and of cubes
of graph with girth at least ten.

Some interesting open questions are: What is the computational complexity
of recognizing powers of strongly chordal graphs? of chordal bipartite graphs
(bipartite graphs without cycles of length at least six)? and of graphs with
‘large’ girth (cf. Conjecture 3)? We note that strongly chordal split graphs and
chordal bipartite graphs are closely related: a bipartite graph is chordal bipartite
iff completing one of its bipartition part yielding a strongly chordal split graph.
Hence, given our result on squares of strongly chordal split graphs, cube of

chordal bipartite graph could be polynomially solvable. Note also that the
open questions we posed here are of particular interest as they generalize tree
powers, which have been widely investigated in the literature.
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Abstract. We study a graph partitioning problem which arises from
traffic grooming in optical networks. We wish to minimize the equip-
ment cost in a SONET WDM ring network by minimizing the number
of Add-Drop Multiplexers (ADMs) used. We consider the version intro-
duced by Muñoz and Sau [12] where the ring is unidirectional with a
grooming factor C, and we must design the network (namely, place the
ADMs at the nodes) so that it can support any request graph with max-
imum degree at most Δ. This problem is essentially equivalent to finding
the least integer M(C, Δ) such that the edges of any graph with maxi-
mum degree at most Δ can be partitioned into subgraphs with at most
C edges and each vertex appears in at most M(C, Δ) subgraphs [12].
The cases where Δ = 2 and Δ = 3, C �= 4 were solved by Muñoz and
Sau [12]. In this article we establish the value of M(C, Δ) for many more
cases, leaving open only the case where Δ ≥ 5 is odd, Δ (mod 2C) is
between 3 and C − 1, C ≥ 4, and the request graph does not contain a
perfect matching. In particular, we answer a conjecture of [12].

Keywords: optical networks, traffic grooming, ADM, graph decompo-
sition, cubic graph.

1 Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed
streams in optical networks [4, 7, 11, 15]. By using traffic grooming, it is possi-
ble to bypass the electronics at the nodes which are not sources or destinations
of traffic, and therefore reduce the cost of the network. Typically, in a Wave-
length Division Multiplexing (WDM) network, instead of having one SONET
Add Drop Multiplexer (ADM) on every wavelength at every node, it is possible
to have ADMs only for the wavelengths used at that node; the other wavelengths
being optically routed without electronic switching. The so called traffic groom-
ing problem consists of minimizing the total number of ADMs to be used, in
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order to reduce the overall cost of the network. The problem is easily seen to be
NP-hard for an arbitrary set of requests in very simple topologies. In fact, hard-
ness and approximation results exist for traffic grooming in ring, star, and tree
networks [9,8,2]. Here we consider unidirectional SONET/WDM ring networks
with symmetric requests. In this case, the routing is unique and to each request
between two nodes, we assign a wavelength and some bandwidth on this wave-
length. If the traffic is uniform and any given wavelength can carry at most C
requests, we can assign at most 1

C of the bandwidth to each request. C is known
as the grooming factor. Furthermore, if the traffic requirement is symmetric, we
may assume that symmetric requests are assigned the same wavelength, as it is
easy to show (by exchanging wavelengths) that there exists an optimal solution
where all symmetric requests are given the same wavelength. Then each pair
of symmetric requests uses 1

C of the bandwidth in the whole ring. If the two
end-nodes are u and v, we need one ADM at node u and one at node v. The
main point is that if two requests have a common end-node, they can share an
ADM if they are assigned the same wavelength.

The traffic grooming problem for a unidirectional SONET ring with n nodes,
grooming ratio C, and a symmetric request graph R has been modeled as a
graph partition problem as follows (see [3,10]). Each edge of R corresponds to a
pair of symmetric requests, and edges are colored by their assigned wavelength
λ. All edges of color λ induce a connected subgraph Bλ of R, where each node
corresponds to an ADM. The grooming constraint, i.e. the fact that a wavelength
can carry at most C requests, translates to an upper bound C on the number
of edges in each Bλ. The cost corresponds to the total number of vertices used
in the subgraphs, and the objective is therefore to minimize

∑
λ |V (Bλ)|. While

most of previous work has focused on the case where the requests are given as
input [2,4,7,8,9,11,3,10], we consider the case where only the network topology is
given, together with a bound Δ on the request graph. We would like to place, for
each value of the grooming factor C, a minimum number of ADMs at each node
in such a way that they could support any traffic pattern where each node is
the end-node of at most Δ requests. This model was recently introduced in [12],
and it is interesting because the network can support dynamic traffic without
replacement of the ADMs. The problem can be formulated as a graph partition
problem as follows.

Δ-Degree-Bounded Traffic Grooming in Unidirectional Rings

Input: Three integers n (size of the ring), C (grooming factor), and Δ (max-
imum degree).
Output: An assignment of A(v) ADMs to each vertex v of the ring, in such
a way that for any request graph G with maximum degree at most Δ, there
exists a partition of E(G) into subgraphs {Bλ}1≤λ≤Λ = B, such that:
(i) |E(Bλ)| ≤ C for all λ; and

(ii) each vertex v ∈ V (G) appears in at most A(v) subgraphs.
Objective: Minimize

∑
v A(v).
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The optimum to the above problem for each n, C, Δ is denoted by A(n, C, Δ).
Given a graph with maximum degree at most Δ, a partition of G into subgraphs
with at most C edges is called a C-edge-partition of G.

Previous work and our contribution. The cases where Δ = 2 and the cases Δ = 3,
C �= 4 were solved in [12]. In this article we establish the value of M(C, Δ) for
the following cases: when Δ = 3 and C = 4 (answering a conjecture of [12],
c.f. Section 3), when Δ ≥ 4 is even for any C (c.f. Section 4), and when Δ ≥ 5 is
odd (c.f. Section 5) and either C ∈ {2, 3}, Δ (mod 2C) = 1, Δ (mod 2C) ≥ C,
or the request graph contains a perfect matching. We first fix the notation below
and give some preliminaries in Section 2.

Notation. The (multi)graphs considered in this paper are finite and without
self-loops. Edges are denoted {u, v}. The degree of a vertex v is the number
of edges containing v as an end-point. The maximum degree of a (multi)graph
is the maximum degree over all its vertices. A Δ-graph is a (multi)graph with
maximum degree at most Δ. GΔ denotes the class of all Δ-graphs. A Δ-regular
(multi)graph is a graph in which all vertices have degree Δ. An almost Δ-regular
(multi)graph is a (multi)graph in which all vertices have degree Δ except possibly
one which has degree Δ − 1. A bridge in a (multi)graph G is an edge whose
removal disconnects G. A matching in a (multi)graph G = (V, E) is a subset M ⊆
E which contains each vertex at most once. A perfect matching is a matching
containing all vertices. A digon is a cycle of length 2. A trail in a (multi)graph
is a sequence {{x1, x2}, {x2, x3}, . . . , {xk−1, xk}} of distinct edges in which the
second end of an edge is the first end of the next edge (the same pair of vertices
may appear more than once if there is more than one edge between them).
Vertices x2, x3, . . . , xk−1 of a trail are called midpoints. The length of a trail is
the number of edges in it. Given a (multi)graph G = (V, E) and a subset of
vertices V ′ ⊆ V , we denote by G − V ′ the (multi)graph obtained from G by
removing the vertices in V ′, the edges incident with vertices in V ′, and isolated
vertices (if any). Similarly, given a subset of edges E′ ⊆ E, we denote by G−E′

the (multi)graph obtained from G by removing the edges in E′ and isolated
vertices (if any).

2 Reducing the Problem

We begin by applying some easy reductions to the problem and recalling some
results from [12] that will be used throughout. Let M(C, Δ) be the smallest
number M such that A(n, C, Δ) ≤ Mn for all n. It is known that M(C, Δ) is
an integer for all values of C, Δ [12]. If the request graph is further restricted to
belong to a subclass of graphs C ⊆ GΔ, then the corresponding positive integer
is denoted by M(C, Δ, C).

By the discussion above, A(n, C, Δ) is of the form A(n, C, Δ) = M(C, Δ)n −
α(C, Δ), where M(C, Δ) and α(C, Δ) are integers depending only on C and Δ.
Suppose that a Δ-graph H requires at least M(C, Δ)+1 ADMs at some vertex.
Since any Δ-graph must be supported with the same ADMs, by relabeling the
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vertices of H we could force at least M(C, Δ) + 1 ADMs in Ω(n) nodes of the
network. This would contradict the definition of M(C, Δ). Therefore, each vertex
can appear in at most M(C, Δ) subgraphs. So we may conclude the following.

Remark 1. For each value of C and Δ, Δ-Degree-Bounded Traffic

Grooming in Unidirectional Rings reduces to finding the least integer
M(C, Δ) such that the edges of any Δ-graph can be partitioned into subgraphs
with at most C edges and each vertex appears in at most M(C, Δ) subgraphs.

This allows us to give an equivalent definition of M(C, Δ). Let G ∈ GΔ and let
PC(G) be the set of C-edge-partitions of G. For P ∈ PC(G), let occ(P ) be the
maximum number of occurrences of a vertex in the partition, that is,

occ(P ) = max
v∈V (G)

|{Bλ ∈ P : v ∈ Bλ}|,

and then M(C, Δ) = max
G∈GΔ

(
min

P∈PC(G)
occ(P )

)
.

In the remainder of this paper, we use Remark 1 and focus on determining
M(C, Δ) for each value of C and Δ. Observe also that any Δ-graph H is a
subgraph of some Δ-regular graph G (with possibly more vertices). Note also
that if we restrict a partition of G to the vertices of H , the number of occurrences
of the vertices cannot increase. Therefore,

Remark 2. M(C, Δ) = M(C, Δ, C), where C is the class of Δ-regular graphs.

The following two results will be used throughout the article.

Lemma 1 (Muñoz and Sau [12]). The following statements hold trivially:

(i) M(C, 1) = 1 for all C ≥ 1.
(ii) M(1, Δ) = Δ for all Δ ≥ 1.
(iii) If C′ ≥ C, then M(C′, Δ) ≤ M(C, Δ).
(iv) If Δ′ ≥ Δ, then M(C, Δ′) ≥ M(C, Δ).
(v) M(C, Δ) ≤ Δ for all C, Δ ≥ 1.

Proposition 1 (Muñoz and Sau [12]). M(C, Δ) ≥
⌈

C+1
C

Δ
2

⌉
for all C, Δ ≥ 1.

In [12] it is proved that M(C, 2) = 2 for any C ≥ 1, that M(C, 3) = 3 for
C ≤ 3, and that M(C, 3) = 2 for C ≥ 5. The latter result was proved using
a result of Thomassen [14], settling a conjecture of Bermond et al. [5], stating
that the edges of a cubic graph can be 2-colored such that each monochromatic
component is a path of length at most 5.

Let us now discuss how these ideas can be extended to other values of C, Δ.
A linear C-forest in a graph is a forest consisting of paths of length at most
C. The linear C-arboricity of a graph G is the minimum number of linear C-
forests required to partition E(G), and is denoted by laC(G) [5]. Let laC(Δ) =
maxG∈GΔ laC(G). Clearly M(C, Δ) ≤ laC(Δ) for all C, Δ, since the paths in a
linear C-forest are graphs with at most C edges. Therefore, the following upper
bound given by Alon et al. [1] also applies to M(C, Δ).
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Theorem 3 (Alon et al. [1]). There is an absolute constant β > 0 such that
for

√
Δ > C ≥ 2,

laC(Δ) ≤ C + 1
C

Δ

2
+ β

√
CΔ log Δ. (1)

The first term of the right-hand side of Equation (1) is equal to the lower bound of
Proposition 1, so Theorem 3 provides an additive O(

√
CΔ log Δ)-approximation

of M(C, Δ) for
√

Δ > C ≥ 2. We improve this bound for M(C, Δ) in Sec-
tions 4 and 5 (without using the linear C-arboricity), providing an additive
1-approximation of M(C, Δ) for any value of C and Δ, which is optimal for any
even Δ, and in many cases for odd Δ.

3 Case Δ = 3, C = 4

Muñoz and Sau conjectured that M(4, 3) = 2 [12], which we now prove. We first
need the following classical result and an easy generalization (although it is well
known, we provide a short proof here for the sake of completeness).

Theorem 4 (Petersen [13]). Any cubic bridgeless graph has a perfect match-
ing.

Corollary 1. Any cubic bridgeless multigraph without self-loops has a perfect
matching.

Proof: Let G be a cubic multigraph without self-loops. We can assume that G
has no triple edges, otherwise G has only 2 vertices and any of the 3 edges is
a perfect matching. Consider the simple graph G′ built from G as follows: for
each digon {{u, v}, {u, v}}, add 2 new vertices suv and tuv, and replace the digon
with the edges {u, suv}, {u, tuv}, {v, suv}, {v, tuv}, and {suv, tuv}. By Theorem
4, G′ has a perfect matching M ′. We now construct a perfect matching M of
G from M ′. For each edge e ∈ M ′ such that e was also an edge of G, put e in
M ′. For each digon {{u, v}, {u, v}} of G, if any of the pairs {{u, suv}, {v, tuv}}
or {{u, tuv}, {v, suv}} is in M ′, put one of the copies of {u, v} in M . Otherwise,
{suv, tuv} belongs to M ′ and we do nothing. It is easy to check that M is a
perfect matching of G. �
viam
We are ready to prove the main result of this section.

Theorem 5. The edges of every almost 3-regular multigraph G without self-
loops can be partitioned into a set W = {W1, W2, . . . , Wk} of trails of length at
most 4 such that each vertex appears as the midpoint of a trail.

Proof: Suppose the theorem is false and let G be a counterexample with the
minimum number of vertices. G is connected as otherwise, we can take the union
of the partitions of its connected components, which exist by minimality of G.

Case 1: G contains a bridge e = {u, v}. Then G − {e} has exactly two
components: U containing u and V containing v. Without loss of generality, we
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Fig. 1. (a) A bridge e = {u, v} in an almost 3-regular graph G with components U
and V of G − {e}. (b) Graphs smaller than G from which we obtain a partition into
trails W u and W v.

may choose U to be the component with no degree 2 vertex in G and e is chosen
so that U is maximal with this property. Thus this component U of G − {e} is
almost 3-regular (only u has degree 2). By minimality of G, U can be partitioned
into a set Wu of trails as in the statement of the theorem.

If v has degree 2 in G then V − {v} is almost 3-regular. By minimality of G,
V − {v} can be partitioned into a set Wv of trails as in the theorem. Now the
only edges of G not in any trail in Wu ∪Wv are those incident to v. Thus taking
Wu ∪Wv together with a trail consisting of the 2 edges incident to v (which has
v as a midpoint) yields the required partition of the edges of G into trails. This
contradicts the fact that G is a counterexample.

If v has degree 3 in G, let x, y be the neighbors of v in V (see Fig. 1(a)). We
can assume x �= y (i.e., {v, x} and {v, y} are not parallel edges) since otherwise,
the third edge incident to x = y is a cut edge whose choice (instead of e) would
increase the size of U . Let H be the graph obtained from V −{v} by adding an
edge f = {x, y} (see Fig. 1(b)). By minimality of G, H can be partitioned into
a set Wv of trails. We now attempt to transform Wu ∪ Wv into a partition of
G into trails.

The edge f appears in some trail {W1, {x, y}, W2} of Wv, where W1 is a
(possibly empty) trail ending at x and W2 is a (possibly empty) trail starting
at y. At least one of the subtrails {W1, {x, y}} or {{x, y}, W2} has fewer than
3 edges. Without loss of generality, it is {W1, {x, y}}. Replace this trail with
{W1, {x, v}, {v, u}} which has length at most 4, and {{v, y}, W2} which has
length less than or equal to {W1, {x, y}, W2}. Note that x and v are midpoints
of the first trail and y is the midpoint of the second trail. Furthermore, any
other vertex which was a midpoint in {W1, {x, y}, W2} is still a midpoint (since
W1 and W2 appear as subtrails). Thus the union of Wu and Wv with the above
replacement yields a partition of G into trails of length at most 4 with the desired
property, which is a contradiction.

Case 2: G does not contains a bridge. If G is 3-regular, let G′ = G.
Otherwise, let G′ be the graph obtained from G by replacing the vertex of degree
2 with an edge between its endpoints. Note that G′ is 3-regular and contains no
bridges. Therefore, by Corollary 1, G′ contains a perfect matching M ⊆ E(G′).

Since G′ is 3-regular, G′−M is 2-regular. Thus, G′ −M is a union of disjoint
cycles. We can orient the cycles of G′ −M so that each vertex v has exactly one
edge ev pointing towards v. For each edge {u, v} ∈ M , Wuv = {eu, {u, v}, ev}
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(a) (b) (c)

Fig. 2. (a) A 3-regular graph G′ with no bridges. (b) A matching M of G′ (shown in
dashed lines) and an orientation of the cycles of G′ − M . (c) A partition of the edges
of G′ into trails of length 3 using M and the orientation of the cycle of G′ −M in (b).

is a trail of length 3 (see Fig. 2). Note that W = {Wuv | {u, v} ∈ M} is a
partition of the edges of G′ into trails of length 3. Furthermore, every vertex
u in the matching appears as the midpoint of the trail corresponding to the
edge of the matching in which u appears. Since M is a perfect matching, every
vertex appears as the midpoint of some trail in W . Thus G′ �= G as otherwise,
we have constructed a partition as required by the theorem. So G has a ver-
tex v of degree 2 which we replaced with an edge e = {x, y} to obtain G′. Let
W = {W1, {x, y}, W2} be the trail in W containing e, and recall that W has
length 3. Replacing W with {W1, {x, v}, {v, y}, W2} in W yields a partition of
E(G) into trails of length at most 4, which is a contradiction. �

Note that the simple trees with some vertex of degree 3 and the digon with a
pendant edge at each side are not allowed in the partition stated in Theorem 5,
since these graphs cannot be thought of as trails. The following corollary answers
the conjecture of [12].

Corollary 2. M(4, 3) = 2.

Proof: By Remark 2, we may restrict ourselves to 3-regular graphs. Thus, a
3-regular graph G is almost 3-regular and we may apply Theorem 5 to obtain a
partition W . Let B = {E(W )}W∈W . Each vertex of G appears in at most two
elements of B, as G is 3-regular and each vertex appears as the midpoint of some
trail in W . �

4 Case Δ ≥ 4 Even

In this section we establish the value of M(C, Δ) for Δ ≥ 4 even and any value
of C.

Theorem 6. Let Δ ≥ 4 be even. Then for any C ≥ 1, M(C, Δ) =
⌈

C+1
C

Δ
2

⌉
.

Proof: The lower bound follows from Proposition 1. Let us give an explicit
construction for any Δ-regular graph G = (V, E). Orient the edges of G in
an Eulerian tour, and assign to each vertex v ∈ V its Δ/2 out-edges, namely
E+

v . For each v ∈ V , partition E+
v into

⌈
Δ
2C

⌉
stars with C edges centered at v
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(except, possibly, one star with fewer edges). Each vertex v appears as a leaf in
stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times. Therefore, the
number of occurrences of each vertex in this partition is⌈

Δ

2C

⌉
+

Δ

2
=
⌈

Δ

2

(
1 +

1
C

)⌉
=
⌈

C + 1
C

Δ

2

⌉
.

�

5 Case Δ ≥ 5 Odd

The cases where Δ is odd turn out to be inherently much more complicated
than the cases where Δ is even. In Section 5.1, we present a general construc-
tion which differs from the lower bound of Proposition 1 by at most 1, and we
determine when this construction is optimal. In Section 5.2, we present an op-
timal construction for graphs with a perfect matching. Finally, in Section 5.3,
we provide an improved lower bound when Δ ≡ C (mod 2C), which meets our
upper bound.

5.1 General Upper Bound

The following proposition provides a general upper bound, which differs from
the lower bound of Proposition 1 by at most 1.

Proposition 2. Let Δ≥5 be odd. Then for any C≥1, M(C, Δ)≤
⌈

C+1
C

Δ
2 + C−1

2C

⌉
.

Proof: Let G be a Δ-regular graph. Since Δ is odd, |V (G)| is even. Add a perfect
matching M to G to obtain a (Δ + 1)-regular multigraph G′. Orient the edges
of G′ in an Eulerian tour, and assign to each vertex v ∈ V (G′) its (Δ + 1)/2
out-edges E+

v . Remove the edges of M and, as in the case Δ even, partition E+
v

into stars with at most C edges. To count the number of occurrences of each
vertex, we distinguish two cases. If an edge of M is in E+

v , then v appears as
center in

⌈
Δ−1
2C

⌉
stars and as a leaf in Δ− Δ−1

2 stars. Summing both terms yields⌈
Δ − 1
2C

⌉
+ Δ − Δ − 1

2
=
⌈

C + 1
C

Δ

2
+

C − 1
2C

⌉
.

Otherwise, if no edge of M is in E+
v , the number of occurrences of v is⌈

Δ + 1
2C

⌉
+ Δ − Δ + 1

2
=
⌈

C + 1
C

Δ

2
+

1 − C

2C

⌉
≤
⌈

C + 1
C

Δ

2
+

C − 1
2C

⌉
.

�

The upper bound of Proposition 2 and the lower bound of Proposition 1 are
equal for, roughly speaking, half of the pairs C, Δ, as shown in the following
corollary.

Corollary 3. Let Δ ≥ 5 be odd. If Δ (mod 2C) = 1 or Δ (mod 2C) ≥ C + 1,
then M(C, Δ) =

⌈
C+1

C
Δ
2

⌉
.
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Proof: Let Δ = λ · 2C + h, with h odd, 1 ≤ h ≤ 2C − 1. Writing k :=
λ(C + 1) + h−1

2 , the lower bound of Proposition 1 equals k +
⌈1

2 + h
2C

⌉
, and

the upper bound of Proposition 2 equals k +
⌈
1 + h−1

2C

⌉
. If h = 1 both bounds

equal k + 1, and if h ≥ C + 1 both bounds equal k + 2. �

In particular, when C = 2 and Δ is odd, Δ (mod 2C) is either 1 or 3, and then
by Corollary 3 the lower bound is attained.

Corollary 4. For any Δ ≥ 5 odd, M(2, Δ) =
⌈3Δ

4

⌉
.

We shall see in Theorem 7 that if Δ≡C (mod 2C), then M(C, Δ)=
⌈

C+1
C

Δ
2

⌉
+1.

5.2 Optimal Construction for Graphs with a Perfect Matching

If the input graph has a perfect matching, we can prove that the lower bound is
attained for all values of C.

Proposition 3. Let Δ ≥ 5 be odd and let C be the class of Δ-regular graphs
than contain a perfect matching. Then M(C, Δ, C) =

⌈
C+1

C
Δ
2

⌉
.

Proof: First, it is easy to check that the proof of the lower bound of Proposition 1
in [12] still carries over when restricted to the class of graphs with a perfect
matching. To prove the upper bound, if G is Δ-regular with a perfect matching
M , we orient the edges of G−M in an Eulerian tour, and assign to each vertex
v ∈ V (G) its Δ−1

2 out-edges E+
v . We distinguish three cases.

(1) Δ < C. For each edge {u, v} ∈ M , build the tree with Δ edges consisting
of {u, v}, Δ−1

2 edges from E+
u , and Δ−1

2 edges from E+
v . The number of

occurrences of each vertex is 1 + Δ − Δ+1
2 = Δ+1

2 . The lower bound equals⌈
C+1

C
Δ
2

⌉
= Δ−1

2 +
⌈1

2 + Δ
2C

⌉
, which equals Δ+1

2 as Δ < C.

(2) Δ ≥ C and C ≥ 3 is odd (the case C = 1 is trivial by Lemma 1). For each
edge {u, v} ∈ M , build the tree with C edges consisting of {u, v}, C−1

2 edges
from E+

u , and C−1
2 edges from E+

v . Partition the remaining Δ−1
2 − C−1

2 =
Δ−C

2 edges assigned to each vertex into
⌈

Δ−C
2C

⌉
stars with at most C edges.

The number of occurrences of each vertex is

1 +
⌈

Δ − C

2C

⌉
+ Δ − Δ + 1

2
=
⌈

C + 1
C

Δ

2

⌉
.

(3) Δ ≥ C and C ≥ 4 is even (the case C = 2 is solved by Corollary 4). Build
the tree with C − 1 edges consisting of {u, v}, C−2

2 edges from E+
u , and C−2

2
edges from E+

v . Partition the remaining Δ−1
2 − C−2

2 = Δ−C+1
2 edges assigned

to each vertex into stars with at most C edges. The number of occurrences
of each vertex is

1 +
⌈

Δ − C + 1
2C

⌉
+

Δ − 1
2

=
⌈

Δ(C + 1) + 1
2C

⌉
=
⌈

C + 1
C

Δ

2

⌉
,

where the last equality holds because both Δ and (C + 1) are odd. �
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5.3 Improved Lower Bounds

In this section we prove a new lower bound which strictly improves on Propo-
sition 1 when Δ ≡ C (mod 2C). The idea is to generalize the counterexample
given in [12, Proposition 4] to prove that M(3, 3) = 3.

Theorem 7. Let Δ ≥ 5 be odd and let LB(C, Δ) =
⌈

C+1
C

Δ
2

⌉
, the lower bound

of Proposition 1. If Δ ≡ C (mod 2C), then M(C, Δ) = LB(C, Δ) + 1.

Proof: We prove that if Δ = kC with k odd, then M(C, Δ) ≥ LB(C, Δ)+1 and
thus, by Proposition 2, M(C, Δ) is equal to LB(C, Δ) + 1. Since both Δ and k
are odd, so is C, and therefore LB(C, Δ) = k · C+1

2 .
We proceed to build a Δ-regular graph G with no C-edge-partition where each

vertex is incident to at most LB(C, Δ) subgraphs, hence implying that M(C, Δ) >
LB(C, Δ). First, we construct a graph H where all vertices have degree Δ except
one which has degree Δ− 1. Furthermore, we build H so that it has girth strictly
greater than C. H exists by [6]. Make Δ copies of H and add a cut-vertex v joined
to all vertices of degree Δ − 1 to make our Δ-regular graph G.

Now suppose for the sake of contradiction that there is a C-edge-partition B of
G where each vertex is incident to at most LB(C, Δ) subgraphs. Since the girth
of G is greater than C, all the subgraphs in B are trees. Since LB(C, Δ) < Δ,
v must have degree at least 2 in some subgraph T ′ ∈ B. Since |E(T ′)| ≤ C, the
tree T ′ contains at most

⌊
C−2

2

⌋
= C−3

2 edges of a copy H ′ of H intersecting T ′.
Now we only work in H ′. Let α = |E(T ′ ∩ H ′)| ≤ C−3

2 .
Let B′ = {B ∩ H ′}B∈(B−{T ′}), with the empty subgraphs removed. That is,

B′ contains the subgraphs in B that partition the edges in H ′ that are not in T ′.
Let n = |V (H ′)|, which is odd as in H ′ there is one vertex of degree Δ − 1 and
all the others have degree Δ. Therefore, the total number of edges of the trees
in B′ is ∑

T∈B′
|E(T )| = |E(H ′)| − α =

nΔ − 1
2

− α =
nkC − 1

2
− α. (2)

As α ≤ C−3
2 , from Equation (2) we get

∑
T∈B′

|E(T )| ≥ nkC − 1
2

− C − 3
2

=
(

nk − 1
2

)
· C + 1. (3)

As each tree in B′ has at most C edges, from Equation (3) we get that |B′|, the
number of trees in B′, satisfies

|B′| ≥
⌈

nk − 1
2

+
1
C

⌉
=

nk − 1
2

+
⌈

1
C

⌉
=

nk − 1
2

+ 1. (4)

Clearly, the total number of vertices in the trees in B′ is exactly the total
number of edges in the trees in B′ plus the number of trees in B′, that is,∑

T∈B′ |V (T )| =
∑

T∈B′ |E(T )| + |B′|. On the other hand, the tree T ′ contains
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α+1 vertices of H ′, that is, |V (T ′ ∩H ′| = α+1. Therefore, using Equations (2)
and (4), we get that the total number of occurrences of the vertices in H ′ in
some tree of B is∑
v∈V (H′)

|{T ∈ B : v ∈ T }| =
∑

T∈B′
|V (T )|+|V (T ′ ∩ H ′)|=

∑
T∈B′

|E(T )|+|B′|+α+1

=
nkC − 1

2
−α+|B′|+α+1 ≥ nkC − 1

2
+

nk − 1
2

+1+1

= nk · C + 1
2

+ 1 = n · LB(C, Δ) + 1 ,

which implies that at least one vertex of H ′ appears in at least LB(C, Δ) + 1
subgraphs, which is a contradiction to B being a C-edge-partition of G in which
each vertex appears in at most LB(C, Δ) subgraphs. The theorem follows. �

It turns out that Theorem 7 allows us to find the value of M(3, Δ) for any Δ ≥ 5
odd.

Corollary 5. For any Δ ≥ 5 odd, M(3, Δ) =
⌈2Δ+1

3

⌉
.

Proof: If Δ ≡ 1 (mod 6) or Δ ≡ 5 (mod 6), then by Corollary 3, M(3, Δ) =⌈2Δ
3

⌉
=
⌈2Δ+1

3

⌉
. Otherwise, if Δ ≡ 3 (mod 6), then by Theorem 7, M(3, Δ) =⌈2Δ

3

⌉
+ 1 =

⌈ 2Δ+1
3

⌉
. �

6 Conclusions

We considered the traffic grooming problem in unidirectional WDM rings when
the request graph belongs to the class of graphs with maximum degree Δ. This
problem is essentially equivalent to finding the least integer M(C, Δ) such that

Table 1. Known values of M(C, Δ). The bold cases remain open. The cases in brackets
only hold if the graph has a perfect matching. The symbol “(=)” means that the
corresponding lower bound is attained.

C|Δ 1 2 3 4 5 6 7 8 9 . . . Δ even Δ odd

1 1 2 3 4 5 6 7 8 9 . . . Δ Δ

2 1 2 3 3 4 5 6 6 7 . . .
⌈

3Δ
4

⌉ ⌈
3Δ
4

⌉
3 1 2 3 (2) 3 4 5 (4) 5 6 7 (6) . . .

⌈
2Δ
3

⌉ ⌈
2Δ+1

3

⌉ (⌈
2Δ
3

⌉)
4 1 2 2 3 4 4 5 5 6 . . .

⌈
5Δ
8

⌉
≥
⌈
5Δ
8

⌉
(=)

5 1 2 2 3 4 (3) 4 5 5 6 . . .
⌈

3Δ
5

⌉
≥
⌈
3Δ
5

⌉
(=)

6 1 2 2 3 ≥ 3 (=) 4 5 5 6 . . .
⌈

7Δ
12

⌉
≥
⌈
7Δ
12

⌉
(=)

7 1 2 2 3 ≥ 3 (=) 4 5 (4) 5 6 . . .
⌈

4Δ
7

⌉
≥
⌈
4Δ
7

⌉
(=)

8 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 6 . . .
⌈

9Δ
16

⌉
≥
⌈
9Δ
16

⌉
(=)

9 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 6 (5) . . .
⌈

5Δ
9

⌉
≥
⌈
5Δ
9

⌉
(=)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 ≥ 5 (=) . . .
⌈

C+1
C

Δ
2

⌉
≥
⌈
C+1
C

Δ
2

⌉
(=)
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the edges of any graph with maximum degree at most Δ can be partitioned into
subgraphs with at most C edges and each vertex appears in at most M(C, Δ)
subgraphs. We established the value of M(C, Δ) for many cases, leaving open
only the case where Δ ≥ 5 is odd, Δ (mod 2C) is between 3 and C − 1, C ≥ 4,
and the graph does not contain a perfect matching. Table 1 summarizes what
is known about M(C, Δ), including the case where the graph has a perfect
matching. For the remaining cases, we hope to either extend the counterexample
given in Section 5.3 or strengthen Proposition 3 in order to meet the lower bound.
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Abstract. We develop the theory of oriented colourings which are injec-
tive on in-neighbourhoods. The complexity of deciding if the minimum
number of colours is at most the fixed integer k is determined, as is
Brooks-Theorem type bound. The latter relies, in part, on a character-
ization of the oriented graphs in which each vertex must be assigned a
different colour. A better, tight bound is determined for oriented trees,
and a linear algorithm that decides if a given tree can be coloured with
at most k colours, where k is fixed, is described.

Keywords: oriented colouring, injective colouring, digraph. homomor-
phisms.

1 Introduction

We study oriented colourings which are injective on in-neighbourhoods. These
first arose in work of Courcelle [2] under the name “good” and “semi-strong”.
Raspaud and Sopena [14] improved a result of Courcelle’s by showing that every
planar graph can be oriented to have such a colouring with at most 320 colours.
Related topics that are studied in the literature include injective homomorphisms
[12,16] injective colourings and homomorphisms of undirected graphs (e.g. see
[5,6,7,8]), and oriented colourings (e.g. see [3,15,17]).

The parameter in which we are interested is the injective oriented chromatic
number of an oriented graph D. Informally, it is the minimum number of colours
needed in an oriented colouring of D having the additional property that no two
in-neighbours of any vertex are assigned the same colour. Our goal is to develop
a comprehensive theory of injective oriented colourings of digraphs.

When considering a colouring parameter, the following questions naturally
arise:

– Is there a homomorphism model?
– What is the complexity of deciding if it is no more than a fixed integer k?
– Can obstructions and critical digraphs be identified in the polynomial cases?
– What bounds are available?
– Is there anything that can be said for special classes of digraphs?
– How many such colourings exist?

� Research supported by NSERC.
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A homomorphism model for injective oriented colourings is described in Section
Two. It leads to the complexity results presented in the following section. The
obstructions and critical digraphs can be identified, and algorithms that either
return an injective oriented colouring, or an obstruction that certifies that there
is no such colouring exist. These are described elsewhere [11]. Before giving
bounds for the injective oriented chromatic number in terms of vertex degrees
in Section Five, in Section Four we give a structural characterization of the
oriented graphs whose injective oriented chromatic number equals the number
of vertices. The results imply a polynomial time recognition algorithm. Finally,
Section Six presents a polynomial time algorithm that tests whether a given
oriented tree has an injective homomorphism to a fixed directed graph H . A
consequence is that it is possible to decide in polynomial time if an oriented tree
has an injective oriented colouring with k colours, and find a colouring when
one exists. We have obtained similar results to those presented in this paper in
the case where the colourings need not be proper [11]. Finding results on the
enumeration of injective oriented colourings remains an open problem.

2 Preliminaries

For basic results and notation concerning graphs and digraphs we follow the text
of Bondy and Murty [1]. We consider oriented graphs: directed graphs such that,
for every pair of distinct vertices x and y, at most one of the arcs xy and yx
exists. A vertex x of digraph D is a dominating vertex for a X ⊆ V (respectively,
subgraph H) if it is adjacent to every vertex of X (respectively, H). Similarly,
a vertex x is dominated by X ⊆ V (respectively, subgraph H) if it is adjacent
from every vertex of X (respectively, H).

Let G and H be directed graphs. A homomorphism of G to H is a function
f : V (G) → V (H) such that f(x)f(y) is an arc of H whenever xy is an arc of
D. A homomorphism of G to H is injective if, for each vertex x of D, no two in-
neighbours of x have the same image. Because homomorphisms generalize colour-
ings, the problem of deciding if a given digraph has a homomorphism to a fixed
digraph H has been called H-colouring. If the mapping is required to be injective,
it is called injective H-colouring. The book by Hell and Nešetřil [9] is an excellent
introduction to the theory of homomorphisms of graphs and digraphs.

Let D be an oriented graph and k be a positive integer. An oriented k-
colouring of D is an assignment of the colours 1, 2, . . . , k to the vertices of D so
that adjacent vertices get different colours and if some arc of D joins a vertex
of colour i to a vertex of colour j, then no arc of D joins a vertex of colour j to
a vertex of colour i. The oriented chromatic number of D is the smallest k for
which there is an oriented k-colouring of D. Equivalently, an oriented k-colouring
of D is a homomorphism to an oriented graph T on k vertices, and the oriented
chromatic number of D is the least k for which such a homomorphism exists.
Since arcs can be added joining non-adjacent vertices of T without destroying
the existence of a homomorphism of D to T , the oriented graph T can be taken
to be a tournament.
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An injective oriented k-colouring of an oriented graph D is an oriented colour-
ing of D such that, for each vertex x of D, no two in-neighbours of x are assigned
the same colour. The injective oriented chromatic number of an oriented graph
D, denoted χi(D), is the smallest k for which there is an injective oriented
k-colouring of D. It is clear from comparing the definitions that an injective
oriented k-colouring of an oriented graph D is an injective homomorphism of D
to a digraph T on k vertices, and χi(D) is the least k for which such a homo-
morphism exists. As for oriented colourings, the digraph T can be assumed to
be a tournament.

The directed graph that consists of two arcs meeting at a vertex plays an
important role in our work. We define the hat H3(v0, s, v1) with point s and
ends v0 and v1 to be the digraph with vertices v0, s, v1 and arcs v0s, v1s. It will
be denoted by H3 when it is not necessary to emphasize the vertices. All three
vertices belonging to a hat must be assigned different colours in an injective
oriented colouring.

3 Complexity

In this section we determine, for each fixed positive integer k, the complexity of
deciding whether a given oriented graph D has an injective oriented k-colouring.
The dividing line is the same as for oriented colouring (see [10]).

Theorem 1. [12,16] Let T be a tournament. Then the injective T -colouring
problem is NP-complete, except when T has at most three vertices or consists of
3-cycle dominated by a single vertex. If T has at most three vertices or consists
of 3-cycle dominated by a single vertex, then the injective T -colouring problem
is polynomial.

The polynomial algorithms are via reduction to 2-SAT.
The proof of the following theorem can be greatly simplified if the restriction

to connected inputs is dropped. On the one hand, the restriction seems unnec-
essary because connected components can always be considered separately. Our
motivation for doing some extra work in the proof is a subtlety that arises in
oriented colourings of disconnected digraphs: one has to take care that all of
the components of the given digraph are mapping to the same tournament on
k vertices. The proof shows how to handle that small concern when the target
tournament is strongly connected.

Theorem 2. Let k be a fixed positive integer. If k ≤ 3 then oriented k-colouring
is polynomial. If k ≥ 4 then oriented k-colouring is NP-complete when restricted
to inputs whose underlying graph is connected.

Proof. When k ≤ 3 the result follows from Theorem 1.
Let T4 denote the unique strong tournament on four vertices. Let z be a vertex

with in-degree two, and let x and y be its two in-neighbours. Every vertex of T4
is joined to y by a directed walk of length nine.
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Let P be the oriented path p0, p1, . . . , p12, where p0p1 ∈ E(P ) and pi+1pi ∈
E(P ) for i = 1, 2, . . . , 11. For any vertex v of T4 there is an injective homomor-
phism of P to T4 that maps p0 to x and p12 to v.

We first show that injective oriented 4-colouring is NP-complete for connected
inputs. The transformation is from injective T4-colouring. Given an oriented
graph D, construct D′ from the disjoint union of D and T4 by, for each component
C of the underlying graph of D, adding a new copy of P and identifying p0
with x and p12 with some vertex c of C. We claim that there is an injective
homomorphism of D to T4 if and only if D′ has an injective oriented 4-colouring.

Suppose first that there is an injective homomorphism of D to T4. It can be
extended to D′ by mapping the copy of T4 identically to itself and extend the
mapping to each of the oriented paths.

Suppose D′ has an injective 4-colouring. Then there is an injective homomor-
phism of D′ to a tournament T on four vertices. Since T4 is a subdigraph of
D′, it follows that T = T4. The result follows on restricting the mapping to the
vertices of D.

This argument generalizes to larger values of k. For a fixed integer k > 4, let
Tk be any tournament obtained from T4 by adding k − 4 dominating vertices
and arbitrarily orienting the arcs among them. Then injective Tk-colouring is
NP-complete. The argument is identical to that for T4 except that T4 is replaced
by Tk. �

4 Cliques

An io-clique is a oriented graph G such that χi(G) = |V (G)|. For a given oriented
graph D, if ωi(D) denotes the maximum number of vertices in a subgraph of D
which is an io-clique, then χi(D) ≥ ωi(D). In this section we give a structural
characterization of io-cliques. It is similar to the characterization of ocliques:
oriented graphs for which the oriented chromatic number equals the number of
vertices [10].

Theorem 3. An oriented graph G is an io-clique if and only if every two vertices
x and y either have a common out-neighbour or are joined by a directed path of
length at most two.

Proof. Suppose first that the condition holds. Let x, y ∈ V (G). Since adja-
cent vertices must be assigned different colours, suppose that x and y are non-
adjacent. If x and y have a common out-neighbour, then they must be assigned
different colours because of injectivity, and if they are joined by a directed path
of length two then they must be assigned different colours in order to have an
oriented colouring.

We prove the contrapositive of the converse implication. Suppose that the
condition does not hold. Then there are non-adjacent vertices x and y which
have no common out-neighbour and are not joined by a directed path of length
two. Consider the colouring in which x and y are assigned the same colour and
every other vertex is assigned its own unique colour. Since x and y are not joined
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by a directed path of length two, this is an oriented colouring, and since they
have no common out-neighbour, it is an injective colouring. Hence G is not an
io-clique. �

Theorem 3 implies that io-cliques can be recognized in polynomial time. It also
implies that a tournament is an io-clique, as is any o-clique (because any two
non-adjacent vertices are joined by a directed path of length two). More examples
of io-cliques can be obtained from the following corollary.

Informally, the wreath product, D[H ], of two digraphs D and H is obtained by
replacing each vertex of D by a copy of H and, if uv is an arc of D, putting all
possible arcs from the vertices of the copy of H that replaced u to the vertices
of the copy of H that replaced v. Formally, D[H ] is the digraph with vertex set
V (D) × V (H) and (d1, h1) adjacent to (d2, h2) if and only if d1d2 ∈ E(D) or
d1 = d2 and h1h2 ∈ E(H).

Corollary 4. If G and H are both io-cliques, so is the wreath product G[H ].

Proof. Let x and y be two vertices of G[H ]. If they belong to the same copy
of H then, since H is an io-clique, they are either joined by a directed path of
length at most two, or they have a common out-neighbour. Otherwise, these two
vertices belong to different copies of H corresponding to to different vertices of
G. Since G is an io-clique, these vertices are joined by a directed path of length
at most two, or they have a common out-neighbour. By the definition of wreath
product, the same is true of x and y. Therefore, by Theorem 3, the digraph G[H ]
is an io-clique. �

By the corollary, the wreath products T [H3], where T is a transitive tournament
and H3 denotes the hat, are acyclic io-cliques (which are not o-cliques).

5 Bounds on the Oriented Injective Chromatic Number

The quantity Δ− + 1 is a lower bound for χi. It is natural to wonder whether
there is a theorem giving upper bounds on χi in terms of Δ−. To see that there
is no such bound, let k ≥ Δ− be a fixed positive integer. Start with a set L of
k vertices, and for each Δ−-subset X ⊆ L add a new vertex adjacent from all
vertices in X . The maximum in-degree of the resulting graph is Δ−, but since
no two vertices in L can be assigned the same colour, χi ≥ k.

It is possible to bound the injective oriented chromatic number if one takes
into account the maximum in-degree, maximum out-degree and the maximum
degree of the underlying undirected graph. To see that such a bound is necessar-
ily exponential, let D = T1∪T2∪· · ·∪Tm be the disjoint union of all tournaments
on k+1 vertices. Then the maximum in-degree of D is k. Any tournament T for
which there is an injective homomorphism of D to T has to contain each tourna-
ment on k + 1 vertices as a subgraph. Therefore T is a k-universal tournament,
and must have at least 2k/2 vertices [13].
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Next, we present an upper bound on χi(D). It is derived by constructing
and colouring a suitable undirected graph, and then refining the (undirected)
colouring into an injective oriented colouring.

We define the undirected io-square of an oriented graph D to be the undirected
graph D• with vertex V (D) and x adjacent to y whenever they have a common
out-neighbour in D, or are joined by a directed path of length at most two in D.
Any two vertices which are adjacent in D• must be assigned different colours in
an injective oriented colouring of D.

Theorem 5. Let D be an oriented graph. If D• is k-colourable, then χi(D) ≤
2k − 1.

Proof. Consider a colouring of D• with colours 1, 2, . . . , k. By definition of D•,
no two vertices with a common out-neighbour in D are assigned the same colour.
We will obtain an injective oriented colouring of D by refining this partition of
V (D) into independent sets.

Let the colour of v be j. For any colour i �= j, the vertex v has at most
one in-neighbour of colour i because the in-neighbours of v are adjacent in D•.
Furthermore, v does not have both an in-neighbour and an out-neighbour of
colour i because vertices joined by a directed path of length two in D are adjacent
in D•. Therefore, v either has exactly one in-neighbour in colour class i or only
out-neighbours in colour class i.

Define the signature of a vertex v to be a k-tuple where the jth entry is “·” and
the ith entry is either “+” or “−” depending on whether v has out-neighbours
or in-neighbours respectively in colour class i, 1 ≤ i ≤ k, i �= j.

We now use the information encoded in the signatures of each vertex to decide
how to recolour it so that we have an oriented colouring. Since the collection of
vertices of colour 1 is an independent set, we assign them all the same colour. Next,
consider the possible arcs between vertices of colour 1 and vertices of colour 2:
every vertex of colour 2 either has an out-neighbour of colour 1 (so its signature
starts with (+ · . . .)) or an in-neighbour of colour 1 (so its signature starts with
(− · . . .)). These vertices must receive different colours in an oriented colouring.
If we now consider the arcs between the vertices of colour 3 and those of colour i,
i = 1, 2, we see that the signatures start in one of four ways: (−− · . . .), (−+ · . . .),
(+ − · . . .) or (+ + · . . .). The vertices of colour 3 with different signatures on the
first two coordinates must be assigned different colours in an oriented colouring.
In general, the vertices in colour class j can be partitioned into 2j−1 independent
sets depending on their signatures on the first j−1 coordinates. As before, vertices
of colour j in different blocks of the partition need different colours in an oriented
colouring. In total we therefore need 1 + 2 + 22 + · · · + 2k−1 = 2k − 1 colours
in an injective oriented colouring of D. Colouring according to the partition just
described yields an injective oriented colouring of D. �
Corollary 6. Let D be an oriented graph. Then χi(D) ≤ 2χ(D•) − 1.

Lemma 7. Let D be an oriented graph. The graph D• is complete if and only
if D is an io-clique. The graph D• can not be an undirected odd cycle of length
greater than three.
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Proof. It is clear that D• is complete if and only if D is an io-clique.
In order for D• to be an undirected odd cycle, the underlying undirected

graph of D must be connected and have maximum degree two. Thus it is either
a path or a cycle. If D• contains no 3-cycles, then D can have no vertices of
in-degree two and no directed path of length two. But any orientation of a path
or cycle with more than three vertices contains either a vertex of in-degree two
or a directed path of length two. This completes the proof. �

Corollary 8. Let D be an oriented graph which is not an io-clique Then

χi(D) ≤ 2(Δ+(Δ−−1)Δ++(Δ+)2) − 1.

Proof. Each vertex in D• has at most Δ neighbours from the underlying graph
of D, at most (Δ− − 1)Δ+ neighbours that are derived from joining common in-
neighbours by an edge and at most (Δ+)2 vertices that are at a distance two from
it. Therefore the maximum degree of D• is at most k=Δ+(Δ−−1)Δ++(Δ+)2. By
Brooks’ Theorem, D• has a k-colouring, so the result follows from Corollary 6. �

A tight bound which is linear in Δ−, and depends only on Δ−, is available for
oriented trees.

Proposition 9. Let T be an oriented tree. Then the injective chromatic number
of T satisfies χi ≤ 2Δ− + 1, and the bound is best possible.

Proof. Let k = Δ−(T ), and let H be a k-regular tournament. It is easy to prove
by induction on |V (T )| that there is an injective homomorphism of any tree T
with maximum in-degree to H . This is clear if T has only one vertex. Suppose
any tree with n − 1 vertices and maximum in-degree at most k has an injective
homomorphism to H . Let x be a leaf of (the underlying graph of ) T . By the
induction hypothesis, there is an injective homomorphism of T − x to H . Since
H is k-regular, and the vertex of T adjacent to x has in-degree at most k − 1 in
T − x, it is possible to extend this mapping to T .

Suppose that the injective oriented chromatic number of every complete k-
ary tree (a tree in which every internal vertex has in-degree k and out-degree 1
except the root, which as out-degree 0) is at most b ≤ 2k. Let T be such a tree
that requires b colours. We claim that T can be chosen so that every colour is
used on an internal vertex of T . Suppose not. Then some colour appears only on
a leaf of T . Let T ′ be obtained from T by adding k = Δ− in-neighbours to every
leaf. If T ′ does not have the desired property then some colour is only used on a
leaf. Restricting this colouring of T ′ to T gives a colouring of T with fewer than
b = χi(T ) colours, a contradiction.

By the claim, an optimal colouring of T is a homomorphism to a tournament
H on b ≤ 2k vertices such that every vertex of H has in-degree at least k, and
therefore out-degree at most k− 1. Therefore, the sum of the in-degrees can not
equal the sum of the out-degrees, a contradiction.

It follows that there exist k-ary trees with injective chromatic number 2k+1. �
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6 Oriented Injective Colourings of Trees

Let T be an oriented tree. In this section we give an algorithm that tests whether
there is an injective homomorphism of T to a fixed digraph H , and finds one if
it exists. In turn, this implies a polynomial time algorithm to find an injective
oriented k-colouring of T (for fixed k), if one exists. Our algorithm is straight-
forward and involves a small amount of local graph information and consistency
checking. A different algorithm follows from the results of Courcelle [2].

If T is an oriented tree rooted at a vertex x, we may arrange the vertices of
T into its level sets based on the distance from x (in the underlying undirected
tree T ′): Vi = {v | dT ′(v, x) = i}, 0 ≤ i ≤ �, where � is the eccentricity of x. V�

is considered to be the bottom of the tree and V0 the top of the tree.
The algorithm first assigns lists, L(v) ⊆ V (H), v ∈ V (T ), to the vertices of T .

These lists are to be thought of as possible images (or colours) for the vertices of
T . The assignment is based on the fact that if f is an injective homomorphism
of T to H , then d−H(f(v)) ≥ d−T (v) since the image of v has to accommodate the
in-neighbours of v in H . The lists are then processed from the bottom-up and
the eventual colouring is from the top-down.

Since the colouring will be from the top-down, the processing of the lists
has to ensure that once a possible image for a vertex has been decided upon
(i.e. we’ve made a choice from L(v)), this choice can be extended downwards.
“Extending downwards” means that we can make choices for vertices lower down
in the tree (from their lists) that will preserve arcs as well as respect injectivity
on in-neighbours.

To preserve arcs we essentially do a one-sided consistency check. That is if
u ∈ Vi and v ∈ Vi+1 such that uv (vu) is an arc of T , we remove a ∈ L(u) if
there does not exist a b ∈ L(v) such that ab (ba) is an arc of H . This is done for
all u ∈ Vi, for i from �−1 to 0. In this way if we reach the root, x, and L(x) �= ∅,
we can make a choice for the image of x and extend all the way down preserving
arcs in the process.

Let A = {v ∈ V (T ) | |N−(v)| ≥ 2}. If u ∈ A, with N−(u) = {u1, u2, . . . , uk}
and y ∈ L(u), then there exists an injective mapping of N−(u) with u �→ y, if
and only if there exists a system of distinct representatives (SDR) for the sets

L(u1) ∩ N−(y), L(u2) ∩ N−(y), . . . , L(uk) ∩ N−(y).

Therefore to process L(u) we remove y from L(u) if there does not exist an SDR
as shown above. Note that the lists have to be intersected with N−(y) in order
to “localize” them around y in H .

If u ∈ A ∩ Vi, for some 0 ≤ i ≤ � − 1, is such that N−(u) ⊆ Vi+1, then
the processing above is sufficient since a top-down colouring will colour u first
(make a choice from L(u)) and if the SDR checks succeeded we will then be
able to extend downwards (injectively). On the other hand it could happen that
N−(v)∩ Vi−1 �= ∅ for some v ∈ A∩ Vi. In this case |N−(v)∩ Vi−1| = 1. Let u be
the vertex in |N−(v) ∩ Vi−1|. Here u will be coloured (in a top down colouring)
before any of {v} ∪ (N−(v) − {u}) have been coloured. For such a vertex u we
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have to ensure that a choice a ∈ L(u) can be extended downwards. Of course, u
may be an in-neighbour of more than one vertex in Vi. Let A∗ = {v ∈ V (T ) | v ∈
Vi and N+(v) ∩ Vi+1 �= ∅, 0 ≤ i ≤ � − 1}. Suppose that u ∈ A∗ ∩ Vi. That is, u
is an in-neighbour of some vertices v1, v2, . . . , vk ∈ Vi+1. We remove a ∈ L(u) if
there exists vj ∈ {v1, v2, . . . , vk} ∩ A, such that for every z ∈ L(vj) there does
not exist an SDR for the sets

{a} ∩ N−(z), L(uj1) ∩ N−(z), L(uj2) ∩ N−(z), . . . , L(ujk
) ∩ N−(z),

where (N−(vj) − {u}) = {uj1 , uj2 , . . . , ujk
}. In essence, we are checking here

whether u �→ a can be extended to an injective mapping on all the in-neighbour-
hoods of vertices in {v1, v2, . . . , vk}∩A — we only need to consider vertices with
more than one in-neighbour, hence the intersection with A.

The algorithm is shown below (Algorithm 10).

Algorithm 10. Injective homomorhism of an oriented tree T to H.
Input: An oriented tree T rooted at a vertex x.

Level sets V0 = {x}, V1, . . . , V�.
The sets A and A∗ as defined as above.
A target digraph H.

Task: Find an injective homomorphism of T to H if one exists.
Assign lists to V (T ) as follows:

L(v) = {y ∈ V (H) | d−H(y) ≥ d−T (v)}.
For i = � − 1 to 0 perform the following for all u ∈ Vi.

For each arc uv (vu) with v ∈ Vi+1, remove a ∈ L(u) if
there does not exist a b ∈ L(v) with ab (ba) an arc
of H.

If u ∈ A, remove y ∈ L(u) if there does not exist an
SDR for the sets:

L(u1) ∩ N−(y), L(u2) ∩ N−(y), ..., L(uk) ∩ N−(y),
where N−(u) = {u1, u2, . . . , uk}.

If u ∈ A∗ and N+(u) ∩ Vi+1 = {v1, v2, . . . , vk}, remove
a ∈ L(u) if there exists a vj ∈ {v1, v2, . . . , vk} ∩ A, such
that for every z ∈ L(vj) there does not exist an SDR
for the sets:
{a} ∩ N−(z), L(uj1) ∩ N−(z), L(uj2) ∩ N−(z), ...,
L(ujk

)∩N−(z), where (N−(vj) − {u})={uj1, uj2 , . . . , ujk
}.

Let T be an oriented tree rooted at a vertex x together with the correspond-
ing level sets V0 = {x}, V1, . . . , V�. For v ∈ Vi, consider the forest induced by
V (T )− (V0 ∪ V1 ∪ · · · ∪ Vi−1). Let Tv be the sub-tree of T that contains v in the
aforementioned forest. This is the sub-tree of T rooted at v, relative to x. The
height of Tv is at most � − i.

Theorem 11. Let H be a digraph and T an oriented tree rooted at a vertex x. If
Algorithm 10 terminates with L(x) �= ∅, then for every v ∈ V (T ) and for every
a ∈ L(v), there exists an injective homomorphism f of Tv to H such that f(v) = a.
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Proof. If L(x) �= ∅, then L(v) �= ∅ for every v ∈ V (T ) (an empty list in Vi would
lead to empty lists in Vj , j ≤ i, in particular V0 = {x} would have an empty
list).

Let v ∈ Vi. The proof is by induction on the height of Tv: h = �− i, 0 ≤ i ≤ �.
When h = 0, i = �, v is a leaf and Tv = {v}. Therefore any element in L(v)

defines an injective homomorphism f of Tv to H .
Assume that the statement is true for all 0 ≤ h < k ≤ �. That is, the

statement is true for all v ∈ Vj with � − k + 1 ≤ j ≤ �. Let v ∈ V�−k so that
Tv has height h = k. Since L(v) �= ∅, there exists an a ∈ L(v) such that we
can define an injective homomorphism f of T [(N(v)∩ V�−k+1)∪ {v}] to H with
f(v) = a (we might have to re-compute some of the SDRs to do this). Let
u ∈ N(v) ∩ V�−k+1, with f(u) = b ∈ L(u). The height of (Tv)u is k − 1 and by
the induction hypothesis there exists an injective homomorphism fu of :(Tv)u to
H such that fu(u) = f(u) = b. Since this applies to every u ∈ N(v) ∩ Vk−1 we
can extend f to all of Tv. �

Corollary 12. Let H be a digraph and T an oriented tree rooted at a vertex x.
Then there exists an injective homomorphism of T to H if and only if Algorithm
10 terminates with L(x) �= ∅.

Proof. If there is an injective homomorphism f of T to H , then d−H(f(v)) ≥
d−T (v) and so f(v) ∈ L(v). Furthermore, f(v) is never removed from L(v) during
the execution of the algorithm. In particular f(x) ∈ L(x), and so L(x) �= ∅.

The converse follows from Theorem 11. �

The algorithm has a running time that is proportional to the number of vertices
in T . This follows from the fact that each vertex of T is processed only once
and the processing (one-sided consistency check and SDR computation) at each
vertex is a function of |V (H)|, which is fixed.

Corollary 13. For each fixed positive integer k there exists a linear time al-
gorithm that determines if a given oriented tree has an injective oriented k-
colouring, and finds one if it exists.

Proof. The oriented tree T has an injective oriented k-colouring if and only if it
has an injective homomorphism to a tournament on k vertices. The number of
such tournaments is a function of k alone (i.e. it does not depend on the number
of vertices of T ). The existence of an injective homomorphism to each candidate
tournament can be tested in linear time by Algorithm 10. �
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Abstract. Chordal graphs, also called triangulated graphs, are impor-
tant in algorithmic graph theory. In this paper we generalise the defini-
tion of chordal graphs to the class of directed graphs. Several structural
properties of chordal graphs that are crucial for algorithmic applications
carry over to the directed setting, including notions like simplicial ver-
tices, perfect elimination orderings, and characterisation by forbidden
subgraphs resembling chordless cycles. Moreover, just as chordal graphs
are related to treewidth, the chordal digraphs will be related to Kelly-
width. Chordal digraphs coincide with the perfect elimination digraphs
arising in the study of Gaussian elimination on sparse linear systems
[Haskins and Rose, 1973].

1 Introduction

Chordal graphs have many applications in algorithmic graph theory. In some
cases the input graph itself is chordal, in other cases we work on a (minimal)
triangulation of the input graph, with edges added so that we have a chordal
graph. The algorithmic interest in triangulations and chordality is based on
the many structural properties associated with chordal graphs. Since graphs
can be regarded as a subclass of directed graphs (digraphs) a basic question
is which algorithmic properties of graphs extend to digraphs. In this paper we
generalise the definition of chordal graphs to digraphs and show that many of
the properties that hold for chordal graphs carry over to the directed setting.
Such properties are essential for algorithmic applications of chordal digraphs.
Many problems that are NP-hard on general graphs become polynomial-time
solvable on chordal graphs of bounded clique-size, and also on their subgraphs.
The corresponding graph parameter, called treewidth, is in this way related
to chordal graphs. The chordal digraphs will in an analogous way be related
to the digraph parameter called Kelly-width, recently introduced by Hunter
and Kreutzer [7]. The amount of research devoted to algorithms for digraphs
is steadily increasing, see e.g. the monograph of Bang-Jensen and Gutin [1]. The
structural properties we would like the chordal digraphs to capture include the
following equivalent characterisations of chordal graphs:

(a) iteratively constructed by adding a new vertex adjacent to a clique
(b) have a perfect elimination ordering [10]
� This work is supported by the Research Council of Norway.
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(a) (b) (c) (d)

Fig. 1. The forbidden induced subgraphs of uni(G) for G a chordal digraph

(c) have vertex layout such that if u ≺ v ≺ w, and {v, u}, {u, w} edges then
{v, w} also an edge [10]

(d) contain no chordless (or induced) cycle of length at least 4
(e) every minimal separator is a clique [3]
(f) are the intersection graphs of families of subtrees of trees [2,4,13].

Our definition of chordal digraphs in Section 3 is based on a generalisation of the
iterative construction (a), which also serves to define Kelly-width [7,9]. We then
show that chordal digraphs allow equivalent characterisations in terms of natural
generalisations of perfect elimination orderings (b) and also vertex layouts (c). In
fact, chordal digraphs coincide with the perfect elimination digraphs introduced
by Haskins and Rose [6], see also [8]. Their interest stemmed from the study
of Gaussian elimination of (unsymmetric) sparse matrices. Chordal digraphs
also satisfy nice properties like closure under taking induced subgraphs and
closure under reversal of all arcs. To generalise the characterisation by forbidden
subgraphs (d) to chordal digraphs requires more work. Let us describe our results
informally.

Partition the arcs of digraph G to define two digraphs uni(G) and bi(G),
with uni(G) containing the arcs (u, v) for which (v, u) is not an arc, and bi(G)
containing the arcs (u, v) for which (v, u) is also an arc. Our first result states
that if bi(G) is empty (equivalently, if G is an orientation) then G is a chordal
digraph if and only if G is acyclic (equivalently, contains no chordless directed
cycle of length at least 3). On the other hand, if uni(G) is empty then G is
chordal if and only if G contains no chordless directed cycle of length at least
4. Note that G could be viewed as an undirected graph precisely when uni(G)
is empty, and hence the latter result shows that indeed the chordal digraphs
are a generalisation of chordal (undirected) graphs. We also show that if G is
a chordal digraph then bi(G) contains no chordless directed cycle of length at
least 4. An important and large class of digraphs are the semi-complete digraphs
where every pair of vertices have at least one arc. We show that a semi-complete
digraph G is chordal if and only if bi(G) is chordal and uni(G) does not contain
an induced subgraph isomorphic to a digraph in Figure 1.

Regarding the characterisation of chordal graphs by minimal separators (e)
and by intersections of subtrees of a tree (f) it is an interesting open problem to
provide a nice generalisation that will work for chordal digraphs. We discuss these
and other open problems in the Conclusion section. For example, perfect elimi-
nation digraphs and thus chordal digraphs can be recognised in time O(nm) [11].
Rose and Tarjan showed that recognising perfect elimination digraphs is closely
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related to transitivity check [11]. Thus, perfect elimination digraph recognition
falls into a well-studied class of problems.

2 Preliminaries

We consider directed and undirected graphs. Directed graphs are called digraphs.
All graphs are simple and finite. In particular, digraphs contain no loops. By
“graph”, we may refer to a directed or undirected graphs. Let G be a digraph.
The vertex and arc set of G are denoted as respectively V (G) and A(G). To
vertices u, v of G can be connected by one or two arcs, namely (u, v) or (v, u).
If u and v are not connected by any of these arcs, we call u and v non-adjacent;
otherwise, u and v are adjacent. If (u, v) ∈ A(G) then u is in-neighbour of v
and v is out-neighbour of u. By N in(u) and Nout(u), we denote the respectively
in-neighbourhood and out-neighbourhood of u. For a set X ⊆ V (G), G[X ] denotes
the subgraph of G induced by X , i.e., the digraph on vertex set X and (u, v) ∈
A(G[X ]) if and only if u, v ∈ X and (u, v) ∈ A(G) for all u, v ∈ V (G). For x a
vertex of G, we denote G[V (G)\{x}] as G−x. A directed path in G is a sequence
(x1, . . . , xk) of pairwise different vertices of G where (xi, xi+1) ∈ A(G) for all
1 ≤ i < k. A directed cycle in G is a sequence (x1, . . . , xk) of pairwise different
vertices of G that is a directed path and (xk, x1) ∈ A(G). Note that k ≥ 2, since
G contains no loops.

Let H be an undirected graph. The vertex and edge set of H are denoted as
V (H) and E(H). Edges of H are denoted as {u, v}. For undirected graphs, we use
definitions analogous to the definitions for digraphs. For a set E′ ⊆ E(H), the
undirected graph H \E′ has vertex set V (H) and edge set E(H)\E′. A cycle C
in H is a sequence (x1, . . . , xk) of pairwise different vertices of H with k ≥ 3
where {xi, xi+1} ∈ E(H) for all 1 ≤ i < k and {x1, xk} ∈ E(H); k denotes the
length of C. If {xi, xj} ∈ E(H) for some i, j ∈ {1, . . . , k} and 1 < |j − i| < k − 1
then {xi, xj} is a chord in C. A cycle without chord is called chordless. A vertex
layout for a graph F is a linear order of its vertices, denoted as β = 〈x1, . . . , xn〉.
For a pair u, v of vertices of F , we write u ≺β v if u = xi and v = xj and i < j.

An undirected graph without chordless cycles of length at least 4 is called
chordal. Chordal graphs have a large number of different characterisations, such
as by properties of minimal separators [3] or as intersection graphs [2,4,13].
Another characterisation is by vertex layouts.

Theorem 1 ([10]). An undirected graph H is chordal if and only if there is a
vertex layout β for H such that for all vertex triples u, v, w of H with u ≺β v ≺β

w, {v, u}, {u, w} ∈ E(H) implies {v, w} ∈ E(H).

A digraph is called acyclic if it contains no directed cycle. Acyclic digraphs have
at most one arc between every pair of vertices. The following characterisation
is folklore: a digraph G is acyclic if and only if there is a vertex layout β for G
such that for all arcs (u, v) of G, u ≺β v.

The structure of digraphs is often studied by looking only at the adjacency
relation. For a digraph G, the underlying graph is the undirected graph H on
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vertex set V (G), and for every pair u, v of vertices of G, {u, v} ∈ E(H) if and
only if (u, v) ∈ A(G) or (v, u) ∈ A(G).

3 Definition of Chordal Digraphs and First Results

We define a new class of digraphs. This class is defined inductively, in a manner
similar to k-trees. We call our digraphs chordal and show by several characteri-
sation results that the chordal digraphs and the chordal undirected graphs have
analogous properties.

Definition 1
1. A d-clique of a digraph G is a pair (A, B) with A, B ⊆ V (G) where for all

a ∈ A and b ∈ B with a �= b, (a, b) ∈ A(G).
2. The class of chordal digraphs is inductively defined as follows:

– a graph on a single vertex is a chordal digraph
– let G be a chordal digraph and let u be a vertex that does not appear in

G. Let (A, B) be a d-clique of G. The graph is also a chordal digraph
that is obtained from G by adding u and the set of arcs {(a, u) : a ∈
A} ∪ {(u, b) : b ∈ B}.

In other words, a chordal digraph is extended by a new vertex u by chosing a
d-clique and making the one set the in-neighbours of u and the other set the
out-neighbours of u. In case of k-trees or general chordal undirected graphs,
the chosen d-clique corresponds to the chosen clique and there is no distinction
between in- and out-neighbours. For a digraph G that is constructed according
to Definition 1, the vertex layout that lists the vertices in order they are added to
build G where the leftmost vertex is the last added vertex is called construction
sequence. Note that a chordal digraph can have different construction sequences,
since the construction of a chordal digraph is no unique process.

The class of chordal digraphs is closely related to the notion of Kelly-width [7].
We can introduce a parameter k that bounds the size of the second component
in a d-clique. A chordal digraph has width k if it can be constructed according
to Definition 1 by only choosing d-cliques with size of the second component at
most k. With the results in [7] and [9], it is easy to verify that a digraph has
Kelly-width at most k + 1 if and only if it is subgraph of a chordal digraph of
width at most k.

Chordal digraphs can be understood as a generalisation of chordal undirected
graphs, since every chordal undirected graph can be seen as a chordal digraph in
a natural sense: from an undirected graph H , obtain a digraph H by replacing
every edge by the two arcs between the connected vertices. If we only use the
adjacency matrix as graph representation, we can call H and G equivalent. We
will see in the next section that G is chordal if and only if H is chordal. For
chordal digraphs with all pairs of adjacent vertices connected by two arcs, we
can make the following observation about the construction process: for every
added vertex x, the in-neighbourhood and out-neighbourhood have to be the
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same, which means that the chosen d-clique is of the form (A, A). Such d-cliques
induce complete subgraphs.

Chordal undirected graphs have many equivalent characterisations. We show
that some of these characterisations have analogues for chordal digraphs. We
begin with a vertex layout characterisation for chordal digraphs, that is an ana-
logue of Theorem 1.

Definition 2. Let G be a digraph with vertex layout β. We say that β is directed
transitive if for every triple u, v, w of pairwise different vertices of G with u ≺β v,
u ≺β w, (v, u) ∈ A and (u, w) ∈ A, it holds (v, w) ∈ A.

Theorem 2. Let G be a digraph with vertex layout β. G is a chordal digraph
with construction sequence β if and only if the reverse of β is directed transitive.

Proof. We show the theorem by induction over the number of vertices in a
digraph. The statement is obviously true for digraphs on a single vertex. Now,
let G be a digraph on at least two vertices, and let β = 〈x1, . . . , xn〉 be a vertex
layout for G. Let G′ =def G[{x1, . . . , xn−1}] and β′ =def 〈x1, . . . , xn−1〉. Let G be
a chordal digraph with construction sequence β. Then, G′ is a chordal digraph
with construction sequence β′ according to Definition 1. Applying the induction
hypothesis, β′ is directed transitive for G′. It remains to prove that (a, b) ∈ A for
every pair a, b of vertices where a ∈ N in

G (xn) and b ∈ Nout
G (xn). Let xn be added

to G′ by chosing d-clique (A, B). By definition, every vertex in A is in-neighbour
of every vertex in B. Let a ∈ N in

G (xn) and b ∈ Nout
G (xn) with a �= b, i.e., a ∈ A

and b ∈ B. Then, (a, b) ∈ A(G). For the converse, let β be directed transitive
for G. Then, β′ is directed transitive for G′, and by induction hypothesis, G′

is a chordal digraph with construction sequence β′. Let A =def N in
G (xn) and

B =def Nout
G (xn). By definition of directed transitive, (a, b) ∈ A(G) for every

a ∈ A and b ∈ B and a �= b. Hence, (A, B) is a d-clique in G′, and G can be
obtained from G′ by adding xn in the sense of Definition 1. Hence, G is a chordal
digraph with construction sequence β. �

Since “directed transitive” generalises “topological ordering”, it directly follows
from Theorem 2 that acyclic digraphs are chordal. We will see later that acyclic
digraphs are the only chordal digraphs that have at most one arc between every
pair of vertices.

Lemma 1. Every induced subgraph of a chordal digraph is chordal.

For a digraph G, denote by rev(G) the digraph on vertex set V (G) and with
arc set A(rev(G)) where for all u, v ∈ V (G), (u, v) ∈ A(rev(G)) if and only if
(v, u) ∈ A(G). We call rev(G) the reverse graph of G.

Lemma 2. A digraph G is chordal if and only if rev(G) is chordal.

It is a natural question to ask whether chordality of a digraph can be determined
by looking at the connected components separately. With the characterisation of
Theorem 2, it is an easy observation that a digraph is chordal if and only if all its
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Fig. 2. The depicted digraph is chordal and has exactly one di-simplicial vertex

weakly connected components are chordal. A directed transitive vertex layout for
the whole digraph can be constructed by concatenating directed transitive vertex
layouts for the weakly connected components. However, the same is generally not
true for strongly connected components. In fact, there is a non-chordal digraph
on four vertices with only chordal strongly connected components.

Our first type of characterisations of chordal digraphs was by vertex layouts.
The second type of characterisations involves vertices of special properties. In
fact, we define and consider analogues of simplicial vertices for undirected chordal
graphs.

Definition 3. A vertex u of a digraph G is di-simplicial if (N in
G (u), Nout

G (u)) is
a d-clique of G.

A vertex of an undirected graph is simplicial if its neighbourhood is a clique. It
is an easy result that a vertex u of an undirected graph G is simplicial if and only
if for every path P of G of length at least 1, P−u is a path in G. An analogue
characterisation holds for digraphs and di-simplicial vertices where paths are
directed paths. In this sense, di-simplicial vertices are the directed analogue of
simplicial vertices.

Lemma 3. The first vertex of a directed transitive vertex layout is di-simplicial.
In particular, every chordal digraph has a di-simplicial vertex.

Non-complete chordal undirected graph have two non-adjacent simplicial vertices
[3]. The same is not generally true for chordal digraphs. The digraph in Figure 2
has exactly one di-simplicial vertex.

Theorem 3. A digraph G is chordal if and only if G can be reduced to a digraph
on a single vertex by repeatedly deleting an arbitrary di-simplicial vertex.

Theorem 3 also shows that chordal digraphs are exactly the perfect elimination
digraphs, introduced by Haskins and Rose [6], see also [8]. Rose and Tarjan gave
an O(nm)-time algorithm for recognising perfect elimination digraphs [11], and
therefore for chordal digraphs.

It is not difficult to see that there is a 1-to-1 correspondence between the di-
rected transitive vertex layouts of a chordal digraph and the orderings defined by
the elimination process in Theorem 3. Note that a result analogous to Theorem 3
exists for chordal undirected graphs [10].
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4 Two Classes of Chordal Digraphs

We consider two classes of digraphs and characterise their chordal digraphs.
First, we consider digraphs that have at most one arc between every pair of
vertices, and second, we consider digraphs that have two arcs between every
pair of adjacent vertices. For a digraph G, we denote by uni(G) the digraph
on vertex set V (G), and for all u, v ∈ V (G), (u, v) ∈ A(uni(G)) if and only
if (u, v) ∈ A(G) and (v, u) �∈ A(G). In other words, uni(G) is the restriction
of G to the arcs that uniquely connected two vertices. We call uni(G) the uni-
restriction of G. As examples, if G is a tournament graph or an acyclic digraph
then uni(G) = G.

Theorem 4. A digraph G with uni(G) = G is chordal if and only if G contains
no chordless directed cycle of length at least 3.

Proof. If G contains no chordless directed cycle of length at least 3 then G is
acyclic. Any topological ordering for G is directed transitive for G. Let G be
chordal with directed transitive vertex layout β. Suppose that (x1, . . . , xk) is a
shortest chordless directed cycle in G. We can assume x1 ≺β x2 and x1 ≺β xk.
Then, (xk, x1), (x1, x2) ∈ A(G) implies (xk, x2) ∈ A(G), which contradicts the
choice of the cycle. �

Corollary 1. A digraph G with uni(G) = G is chordal if and only if G is acyclic.

Every undirected graph is underlying graph of an acyclic digraph. So, every
undirected graph is underlying graph of a chordal digraph. This also means that
looking at underlying graphs of chordal digraphs cannot provide any insight into
the structure of chordal digraphs.

The second class of digraphs in this section consists of the digraphs with
always two arcs between every pair of adjacent vertices. For a digraph G, we
denote by bi(G) the digraph on vertex set V (G), and for all u, v ∈ V (G), (u, v) ∈
A(bi(G)) if and only if (u, v) ∈ A(G) and (v, u) ∈ A(G). We call bi(G) the bi-
restriction of G. Clearly, uni(G) and bi(G) are complementary to each other. The
digraphs G with bi(G) are the ones that are obtained from undirected graphs
by replacing every edge {u, v} by the two arcs (u, v) and (v, u). Note that for
digraphs G with bi(G) = G, the adjacency matrices of G and the underlying
graph of G are equal.

Lemma 4. If a digraph G is chordal then bi(G) contains no chordless directed
cycle of length at least 4.

Proof. Let G be chordal with β directed transitive vertex layout for G. Suppose
that bi(G) contains a chordless directed cycle (x1, . . . , xk) where k ≥ 4. We can
assume that x1 ≺β x2, . . . , xk. Then, (xk, x1), (x1, x2) ∈ A(G) implies (xk, x2) ∈
A(G), and (x2, x1), (x1, xk) ∈ A(G) implies (x2, xk) ∈ A(G). Thus, x2 and xk

are adjacent in bi(G), contradicting k ≥ 4. �

In other words, Lemma 4 shows that for every chordal digraph G, the underlying
graph of bi(G) is chordal.
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Theorem 5. A digraph G with bi(G) = G is chordal if and only if G contains
no chordless directed cycle of length at least 4.

For every chordal undirected graph H , there is a digraph G with bi(G) = G such
that H is the underlying graph of G. Since H is chordal, G contains no chordless
directed cycle of length at least 4, and thus G is chordal due to Theorem 5.
Hence, the chordal undirected graphs are exactly the underlying graphs of the
bi-restriction of chordal digraphs.

5 Chordal Semi-complete Digraphs

A digraph is called semi-complete if every pair of vertices is adjacent. Pairs of
vertices can be connected by one or two arcs. We give a complete characteri-
sation of chordal semi-complete digraphs by forbidden induced subgraphs. We
will obtain this result by mainly studying simplicial vertices in the underlying
undirected graph of bi(G). Our approach to the forbidden induced subgraphs
characterisation is to give a characterisation of semi-complete digraphs without
di-simplicial vertices. Remember from Lemma 3 that every chordal digraph has
a di-simplicial vertex.

We use the notion of uni- and bi-restriction defined in the previous section.
The uni-restrictions will be our main study objects. Let F be a semi-complete
digraph and let G =def uni(F ). Let u, v, w be a vertex triple of F . We call
(u, v, w) a witness triple for u in G if one of the following three conditions is
satisfied:

– (u, v), (v, u), (u, w), (w, u) �∈ A(G) and (v, w) ∈ A(G)
– (u, v), (v, w) ∈ A(G) and (u, w), (w, u) �∈ A(G), or

(w, v), (v, u) ∈ A(G) and (u, w), (w, u) �∈ A(G)
– (v, u), (u, w), (w, v) ∈ A(G) .

We refer to the different schemes as “witness triple of the first, second or third
type”.

Lemma 5. 1) A vertex u of a semi-complete digraph F is di-simplicial if and
only if there is no witness triple for u in uni(F ).

2) If a vertex u of a digraph F is di-simplicial in F then u is simplicial in the
underlying graph of bi(F ).

For the proof of our main result, we need two properties of chordal undirected
graphs. Let x and y be adjacent simplicial vertices of an undirected graph H .
Then, NH [x] = NH [y]. Equivalently, x and y have the same non-neighbours.
The second tool property is the following: for H a chordal undirected graph u
a vertex of H that is not universal, every connected component of H \ NH [u]
contains a vertex that is simplicial in H . We are ready for the main result of
this section.

Lemma 6. Let F be a semi-complete digraph with the underlying graph of bi(F )
being chordal. If F is not chordal then uni(F ) contains one of the digraphs of
Figure 1 as induced subgraph.
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Proof. Let F not be chordal. We first consider the case that F contains no
di-simplicial vertex; the other case is discussed at the end of the proof. Let
G =def uni(F ) and let H be the underlying graph of bi(F ). By assumption,
H is chordal. Due to Lemma 5, a vertex that is not simplicial in H is not di-
simplicial in F . If a simplicial vertex of H is not di-simplicial in F then it is
not di-simplicial because of orientations of arcs in G. Applying Lemma 5, the
assumption that F contains no di-simplicial vertex means that every vertex of
G has a witness triple in G. In particular, every simplicial vertex of H has a
witness triple in G. If there is a vertex with a witness triple of the third type
then G contains a copy of digraph (a) of Figure 1 as induced subgraph. Now,
assume that all witness triples in G are of the first or second type. Let u be a
simplicial vertex of H . Then, u cannot have a witness triple of the first type.
Hence, all simplicial vertices of H have only witness triples of the second type in
G. We construct an auxiliary digraph based on these witness triples and show
the existence of a digraph of Figure 1 as induced subgraph.

Let S be the set of vertices of F that are simplicial in H . We construct a
digraph D that has vertex set S, and there is an arc (u, v) if and only if there
is a vertex w of G such that (u, v, w) is a witness triple for u in G. We show
that every vertex of D has an out-neighbour. Let u be a vertex of S. By the
above considerations, there is a witness triple (u, y, z) for u in G. Since u and
z are adjacent to y in G, u and z are non-adjacent to y in H . Furthermore, u
and z are non-adjacent in G, thus adjacent in H . So, y is vertex in a connected
component K of H \ (NH(u)∪NH(z)). Since u is simplicial and z is a neighbour
of u in H , NH(u) ⊆ NH [z]. There exists a vertex v from S in K. We want to
show that (u, v, z) is a witness triple for u in G or G contains a copy of a digraph
of Figure 1 as induced subgraph. Since K is connected, there is a spanning tree T
for K. Let all vertices of T be unmarked. We show by induction that (u, x, z) is a
witness triple for u in G for all vertices x of T . Mark y in T . By assumption, the
claim is true for every marked vertex of T . Let x′ be an unmarked vertex of T
that has a marked neighbour x′′ in T . Mark x′. We consider the triple (u, x′, z).
Remember that u and z are non-adjacent in G and x′ is adjacent to both u
and z in G. Assume that (u, x′, z) is not a witness triple for u in G. Then,
(u, x′), (z, x′) ∈ A(G) or (x′, u), (x′, z) ∈ A(G). This implies that {u, z, x′, x′′}
induces a copy of digraph (d) of Figure 1 in G. If no copy of digraph (d) has been
detected, (u, v, z) is a witness triple for u in G, since all vertices of T have been
marked, and thus D contains arc (u, v). We conclude that every vertex of D has
an out-neighbour or G contains a copy of digraph (d) as induced subgraph. This
completes the construction of D.

Assume that every vertex of D has an out-neighbour in D, i.e., D is not
acyclic and contains a directed cycle. Let C = (u1, . . . , uk) be a directed cycle in
D of shortest length. It can be shown that in case k = 2, G contains a copy of
digraph (b), (c) or (d) of Figure 1 as induced subgraph. Henceforth, let k ≥ 3.
If (u1, u2), . . . , (uk−1, uk), (uk, u1) ∈ A(G) or (u1, uk), (uk, uk−1), . . . , (u2, u1) ∈
A(G) then G contains a directed cycle as subgraph, and therefore, G contains
digraph (a) or (c) of Figure 1 as induced subgraph. Now, assume that (u1, . . . , uk)
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does not define a directed cycle in G. We can assume that (u1, u2), (u1, uk) ∈
A(G). It can be shown that no witness triple has all its vertices on C.

Suppose that k ≥ 4. We consider the vertices u1, u2, uk. Let a, b be vertices
such that (u1, u2, b) is a witness triple for u1 and (uk, u1, a) is a witness triple for
uk in G. Remember that (u1, u2), (u1, uk) ∈ A(G). Thus, (u1, u2), (u2, b) ∈ A(G)
and (a, u1), (u1, uk) ∈ A(G). By the considerations above, a and b are not vertices
on C. Furthermore, a �= b. If a and u2 are non-adjacent in G then (u2, u1, a) is
a witness triple for u2 in G, which means (u2, u1) ∈ A(D), and D has a cycle of
length 2. This contradicts our assumption k ≥ 4. Thus, a and u2 are adjacent in
G. If (u2, a) ∈ A(G) then {u1, u2, a} induces a copy of digraph (a) of Figure 1
in G, and we are done. Otherwise, let (a, u2) ∈ A(G). Since u2 and uk are
simplicial in H and have different neighbourhoods, they are adjacent in G. If
(u2, uk) ∈ A(G) then (uk, u2, a) is a witness triple for uk in G, which means
(uk, u2) ∈ A(D), and C has a chord. This contradicts the above results. Hence,
(uk, u2) ∈ A(G). If uk and b are non-adjacent in G then (uk, u2, b) is a witness
triple for uk in G, and (uk, u2) ∈ A(G). Since this yields a contradiction, uk

and b must be adjacent. If (b, uk) ∈ A(G) then {uk, u2, b} induces a copy of
digraph (a) of Figure 1 in G. Otherwise, if (uk, b) ∈ A(G) then (u1, uk, b) is a
witness triple for u1 in G, which means (u1, uk) ∈ A(D), thus a contradiction.
We conclude that k �≥ 4, i.e., k = 3.

We distinguish between two cases: (u2, u3) ∈ A(G) and (u3, u2) ∈ A(G).
Let a, b, c be vertices such that (u1, u2, b), (u2, u3, c) and (u3, u1, a) are witness
triples for respectively u1, u2, u3 in G. Note that a, b, c are pairwise different.
And since u1, u2, u3 are pairwise adjacent in G, {a, b, c}∩{u1, u2, u3} = ∅. Hence,
u1, u2, u3, a, b, c are pairwise different. For the first case, let (u2, u3) ∈ A(G). This
means that (u3, c) ∈ A(G). We consider a and u2. If a and u2 are non-adjacent
in G then {a, u1, u2, b} induces a copy of digraph (b) or (c) or (d) of Figure 1 in
G. If (u2, a) ∈ A(G) then {a, u1, u2} induces a copy of digraph (a) of Figure 1
in G. And if (a, u2) ∈ A(G) then {a, u2, u3, c} induces a copy of digraph (b) or
(c) or (d) of Figure 1 in G. For the second case, let (u3, u2) ∈ A(G). This means
that (c, u3) ∈ A(G). We consider b and u3 and conclude in the above manner
that {c, u3, u2, b} or {u3, u2, b} or {a, u1, u3, b} induces a copy of a digraph of
Figure 1 in G. Hence, we have found a copy of a digraph of Figure 1 as induced
subgraph in G in every case, so that we can conclude the case when G has no
di-simplicial vertex.

Now, we consider the case that F contains di-simplicial vertices. We apply
Theorem 3 and conclude that F contains an induced subgraph F ′ on at least
two vertices without di-simplicial vertex. Then, F ′ is not chordal and satisfies
the conditions of the above case. Note that the underlying graph of bi(F ′) is
chordal, since it is an induced subgraph of a chordal undirected graph. We apply
the above case and conclude that uni(F ′) contains a copy of a digraph of Figure 1
as induced subgraph. This completes the proof. �

Theorem 6. A semi-complete digraph F is chordal if and only if the underlying
graph of bi(F ) is chordal and uni(F ) does not contain a copy of any of the
digraphs of Figure 1 as induced subgraph.
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Proof. Let H be the underlying graph of bi(F ). If H is not chordal then bi(F )
contains a chordless directed cycle of length at least 4. With Lemma 4, F is not
chordal. Now, let uni(F ) contain a copy C of a digraph of Figure 1 as induced
subgraph. Then, F contains a non-chordal induced subgraph, thus is not chordal
due to Lemma 1. For the converse, let F not be chordal and let H be chordal.
Then, uni(F ) contains a copy of one of the digraphs of Figure 1 as induced
subgraph due to Lemma 6. �

The actual set of minimal forbidden induced subgraphs for chordal semi-complete
digraphs is the following: all semi-complete digraphs F with the underlying graph
of bi(F ) a chordless cycle of length at least 4 and the four digraphs that are
obtained from the digraphs of Figure 1 by adding the two arcs between every
pair of non-adjacent vertices (of each digraph). We want to conclude with two
remarks. Firstly, note that even though the actual set of minimal forbidden
induced subgraphs for chordal semi-complete digraphs is much bigger than the
set of minimal forbidden induced subgraphs for chordal undirected graphs (due to
the many different orientations), the structure of chordal semi-complete digraph
is already much richer than the structure of the whole class of chordal undirected
graphs. This can give a first impression of the significant difference between
directed and undirected graphs. Secondly, it is an interesting observation that
each digraph of Figure 1 is isomorphic to its own reverse graph.

6 Conclusion

In Section 3, we have given two characterisations of chordal digraphs (Theorem 2
and Theorem 3), which are analogues of characterisations of chordal undirected
graphs. We have also introduced the notion of d-clique as a directed analogue or
even generalisation of the undirected notion of clique. A famous characterisation
of chordal undirected graphs gives a connection between cliques and minimal
separators [3]. Is there a directed notion of minimal separator that is connected
to d-cliques in a similar way for chordal digraphs?

Another famous characterisation of chordal undirected graphs is as intersec-
tion graphs of subtrees of a tree. Can this be generalised to chordal digraphs?
Let us remark that there is a generalisation of intersection graphs to ’intersec-
tion digraphs’ that results in an interesting directed analogue of interval graphs
[12,14]. However, if using this definition of ’intersection digraphs’ then all di-
graphs become representable by ’intersection subtrees’ [5], see also Bang-Jensen
and Gutin [1] [Proposition 4.13.2]. Thus, a different approach is needed to define
the proper directed analogue of ’intersection graph of subtrees of a tree’.

On the structural side, the main open problem for chordal digraphs is a charac-
terisation by forbidden induced subgraphs. We have given such characterisations
for large subclasses of digraphs, such as digraphs G with bi(G) empty and semi-
complete digraphs. The case of semi-complete digraphs shows that a forbidden
induced subgraphs characterisation for the whole class of chordal digraphs is
challenging.
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On the algorithmic side, there are many interesting problems. A di-simplicial
vertex can trivially be found in O(nm) time. Can this be reduced to O(n2)
or even linear time? There is an O(nm)-time algorithm for recognising chordal
digraphs [6,8,11]. Rose and Tarjan showed that this problem is closely related
to other well-studied problems like transitivity test [11]. Improvements on the
chordal digraph recognition directly carry over to other problems, and thus are
of great interest. The study of chordal digraph recognition for digraph classes
may be a way of implicitly attacking also other problems. Finally, we want to
ask whether there exists an O(n2)-time algorithm for verifying whether a given
vertex ordering is directed transitive.

One motivation for the study of chordal digraphs is their connection to Kelly-
width. Can the structural properties exhibited by chordal digraphs be exploited
algorithmically for graphs of bounded Kelly-width?
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Abstract. Tolerance graphs model interval relations in such a way
that intervals can tolerate a certain degree of overlap without being
in conflict. This class of graphs, which generalizes in a natural way
both interval and permutation graphs, has attracted many research
efforts since their introduction in [9], as it finds many important
applications in constraint-based temporal reasoning, resource allocation,
and scheduling problems, among others. In this article we propose the
first non-trivial intersection model for general tolerance graphs, given
by three-dimensional parallelepipeds, which extends the widely known
intersection model of parallelograms in the plane that characterizes
the class of bounded tolerance graphs. Apart from being important on
its own, this new representation also enables us to improve the time
complexity of three problems on tolerance graphs. Namely, we present
optimal O(n log n) algorithms for computing a minimum coloring and a
maximum clique, and an O(n2) algorithm for computing a maximum
weight independent set in a tolerance graph with n vertices, thus
improving the best known running times O(n2) and O(n3) for these
problems, respectively.

Keywords: Tolerance graphs, parallelogram graphs, intersection
model, minimum coloring, maximum clique, maximum weight indepen-
dent set.

1 Introduction

A graph G = (V, E) on n vertices is a tolerance graph if there is a set I = {Ii | i =
1, . . . , n} of closed intervals on the real line and a set T = {ti | i = 1, . . . , n} of
positive real numbers, called tolerances, such that for any two vertices vi, vj ∈ V ,
vivj ∈ E if and only if |Ii ∩ Ij | ≥ min{ti, tj}, where |I| denotes the length of the
interval I. These sets of intervals and tolerances form a tolerance representation
of G. If G has a tolerance representation such that ti ≤ |Ii| for i = 1, . . . , n,
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then G is called a bounded tolerance graph and its representation is a bounded
tolerance representation.

Tolerance graphs were introduced in [9], mainly motivated by the need to solve
scheduling problems in which resources that would be normally used exclusively,
like rooms or vehicles, can tolerate some sharing among users. Since then, tole-
rance graphs have been widely studied in the literature [1,2, 5, 10, 11, 14, 16,20],
as they naturally generalize both interval graphs (when all tolerances are equal)
and permutation graphs (when |Ii| = ti for i = 1, . . . , n) [9]. For more details,
see [12].

Notation. All the graphs considered in this paper are finite, simple, and undi-
rected. Given a graph G = (V, E), we denote by n the cardinality of V . An edge
between vertices u and v is denoted by uv, and in this case vertices u and v
are said to be adjacent. G denotes the complement of G, i.e. G = (V, E), where
uv ∈ E if and only if uv /∈ E. Given a subset of vertices S ⊆ V , the graph G[S]
denotes the graph induced by the vertices in S, i.e. G[S] = (S, F ), where for
any two vertices u, v ∈ S, uv ∈ F if and only if uv ∈ E. A subset S ⊆ V is
an independent set in G if the graph G[S] has no edges. For a subset K ⊆ V ,
the induced subgraph G[K] is a complete subgraph of G, or a clique, if each two
of its vertices are adjacent (equivalently, K is an independent set in G). The
maximum cardinality of a clique in G is denoted by ω(G) and is termed the
clique number of G. A proper coloring of G is an assignment of different colors
to adjacent vertices, which results in a partition of V into independent sets. The
minimum number of colors for which there exists a proper coloring is denoted
by χ(G) and is termed the chromatic number of G. A partition of V into χ(G)
independent sets is a minimum coloring of G.

Motivation and previous work. Besides generalizing interval and permutation
graphs in a natural way, the class of tolerance graphs has other important sub-
classes and superclasses. Let us briefly survey some of them.

A graph is perfect if the chromatic number of every induced subgraph equals
the clique number of that subgraph. Perfect graphs include many important
families of graphs, and serve to unify results relating colorings and cliques in
those families. For instance, in all perfect graphs, the graph coloring problem,
maximum clique problem, and maximum independent set problem can all be
solved in polynomial time using the Ellipsoid method [13]. Since tolerance graphs
were shown to be perfect [10], there exist polynomial time algorithms for these
problems. However, these algorithms are not very efficient and therefore, as it
happens for most known subclasses of perfect graphs, it makes sense to devise
specific fast algorithms for these problems on tolerance graphs.

A comparability graph is a graph which can be transitively oriented. A co-
comparability graph is a graph whose complement is a comparability graph.
Bounded tolerance graphs are co-comparability graphs [9], and therefore all
known polynomial time algorithms for co-comparability graphs apply to boun-
ded tolerance graphs. This is one of the main reasons why for many problems
the existing algorithms have better running time in bounded tolerance graphs
than in general tolerance graphs.
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A graph G = (V, E) is the intersection graph of a family F = {S1, . . . , Sn} of
distinct nonempty subsets of a set S if there exists a bijection μ : V → F such
that for any two distinct vertices u, v ∈ V , uv ∈ E if and only if μ(u)∩μ(v) �= ∅.
In that case, we say that F is an intersection model of G. It is easy to see that
each graph has a trivial intersection model based on adjacency relations [18].
Some intersection models provide a natural and intuitive understanding of the
structure of a class of graphs, and turn out to be very helpful to find efficient
algorithms to solve optimization problems [18]. Therefore, it is of great import-
ance to establish non-trivial intersection models for families of graphs. A graph
G on n vertices is a parallelogram graph if we can fix two parallel lines L1 and
L2, and for each vertex vi ∈ V (G) we can assign a parallelogram P i with parallel
sides along L1 and L2 so that G is the intersection graph of {P i | i = 1, . . . , n}.
It was proved in [1, 17] that a graph is a bounded tolerance graph if and only
if it is a parallelogram graph. This characterization provides a useful way to
think about bounded tolerance graphs. However, this intersection model cannot
cope with general tolerance graphs, in which the tolerance of an interval can be
greater than its length.

Our contribution. In this article we present the first non-trivial intersection mo-
del for general tolerance graphs, which generalizes the widely known parallelogram
representation of bounded tolerance graphs. The main idea is to exploit the third
dimension to capture the information given by unbounded tolerances, and as a re-
sult parallelograms are replaced with parallelepipeds. The proposed intersection
model is very intuitive and can be efficiently constructed from a tolerance repre-
sentation (actually, we show that it can be constructed in linear time).

Apart from being important on its own, this new representation proves to be
a powerful tool for designing efficient algorithms for general tolerance graphs.
Indeed, using our intersection model we improve the best existing running times
of three problems on tolerance graphs. We present algorithms to find a minimum
coloring and a maximum clique in O(n log n) time, which turns out to be optimal.
The best existing algorithm was O(n2) [11,12]. We also present an algorithm to
find a maximum weight independent set in O(n2) time, whereas the best known
algorithm was O(n3) [12]. We note that [20] proposes an O(n2 log n) algorithm
to find a maximum cardinality independent set on a general tolerance graph,
and that [12] refers to an algorithm transmitted by personal communication
with running time O(n2 log n) to find a maximum weight independent set on a
general tolerance graph; to the best of our knowledge, this algorithm has not
been published.

It is important to note that the complexity of recognizing bounded and general
tolerance graphs is a challenging open problem [3, 12,20], and this is the reason
why we assume throughout this paper that along with the input tolerance graph
we are also given a tolerance representation of it. The only “positive” result in the
literature concerning recognition of tolerance graphs is a linear time algorithm
for the recognition of bipartite tolerance graphs [3].

Organization of the paper. We provide the new intersection model of general
tolerance graphs in Section 2. In Section 3 we present a canonical representation
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of tolerance graphs, and then show how it can be used in order to obtain optimal
O(n log n) algorithms for finding a minimum coloring and a maximum clique in
a tolerance graph. In Section 4 we present an O(n2) algorithm for finding a
maximum weight independent set. Finally, Section 5 is devoted to conclusions
and open problems. Some proofs have been omitted due to space limitations; a
full version can be found in [19].

2 A New Intersection Model for Tolerance Graphs

One of the most natural representations of bounded tolerance graphs is given
by parallelograms between two parallel lines in the Euclidean plane [1,12,17]. In
this section we extend this representation to a three-dimensional representation
of general tolerance graphs.

Given a tolerance graph G = (V, E) along with a tolerance representation of
it, recall that vertex vi ∈ V corresponds to an interval Ii = [ai, bi] on the real
line with a tolerance ti ≥ 0. W.l.o.g. we may assume that ti > 0 for every vertex
vi [12].

Definition 1. Given a tolerance representation of a tolerance graph G = (V, E),
vertex vi is bounded if ti ≤ |Ii|. Otherwise, vi is unbounded. VB and VU are the
sets of bounded and unbounded vertices in V , respectively. Clearly V = VB ∪VU .

We can also assume w.l.o.g. that ti = ∞ for any unbounded vertex vi, since if
vi is unbounded, then the intersection of any other interval with Ii is strictly
smaller than ti. Let L1 and L2 be two parallel lines at distance 1 in the Euclidean
plane.

Definition 2. Given an interval Ii = [ai, bi] with tolerance ti, P i is the par-
allelogram defined by the points ci, bi in L1 and ai, di in L2, where ci =
min {bi, ai + ti} and di = max {ai, bi − ti}. The slope φi of P i is φi =
arctan

(
1

ci−ai

)
.

An example is depicted in Figure 1, where P i and P j correspond to bounded
vertices vi and vj , and P k corresponds to an unbounded vertex vk. Observe
that when vertex vi is bounded, the values ci and di coincide with the tolerance
points defined in [7, 12, 15], and φi = arctan

(
1
ti

)
. On the other hand, when

vertex vi is unbounded, the values ci and di coincide with the endpoints bi and
ai of Ii, respectively, and φi = arctan

(
1

|Ii|
)
. Observe also that in both cases

ti = bi − ai and ti = ∞, parallelogram P i is reduced to a line segment (c.f. P j

and P k in Figure 1). Since ti > 0 for every vertex vi, it follows that 0 < φi < π
2 .

Furthermore, we can assume w.l.o.g. that all points ai, bi, ci, di and all slopes φi

are distinct [7, 12, 15].

Observation 1. Let vi ∈ VU , vj ∈ VB . Then |Ii| < tj if and only if φi > φj.

We are ready to give the main definition of this article.
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φk

Fig. 1. Parallelograms P i and P j correspond to bounded vertices vi and vj , respec-
tively, whereas P k corresponds to an unbounded vertex vk

Definition 3. Let G = (V, E) be a tolerance graph with a tolerance representati-
on {Ii = [ai, bi], ti | i = 1, . . . , n}. For every i = 1 . . . , n, Pi is the parallelepiped
in �3 defined as follows:

(a) If ti ≤ bi − ai (that is, vi is bounded), then Pi = {(x, y, z) ∈ �3 | (x, y) ∈
P i, 0 ≤ z ≤ φi}.

(b) If ti > bi − ai (vi is unbounded), then Pi = {(x, y, z) ∈ �3 | (x, y) ∈ P i, z =
φi}.

The set of parallelepipeds {Pi | i = 1, . . . , n} is a parallelepiped representation
of G.

Observe that for each interval Ii, the parallelogram P i of Definition 2 (see al-
so Figure 1) coincides with the projection of the parallelepiped Pi on the plane
z = 0. An example of the construction of these parallelepipeds is given in Fi-
gure 2, where a set of eight intervals with their associated tolerances is given
in Figure 2(a). The corresponding tolerance graph G is depicted in Figure 2(b),
while the parallelepiped representation is illustrated in Figure 2(c). In the case
ti < bi − ai, the parallelepiped Pi is three-dimensional, c.f. P1, P3, and P5, while
in the border case ti = bi − ai it degenerates to a two-dimensional rectangle,
c.f. P7. In these two cases, each Pi corresponds to a bounded vertex vi. In the
remaining case ti = ∞ (that is, vi is unbounded), the parallelepiped Pi degene-
rates to a one-dimensional line segment above plane z = 0, c.f. P2, P4, P6, and
P8.

We prove now that these parallelepipeds form a three-dimensional intersection
model for the class of tolerance graphs (namely, that every tolerance graph G
can be viewed as the intersection graph of the corresponding parallelepipeds Pi).

Theorem 1. Let G = (V, E) be a tolerance graph with a tolerance representation
{Ii = [ai, bi], ti | i = 1, . . . , n}. Then for every i �= j, vivj ∈ E if and only if
Pi ∩ Pj �= ∅.

Proof. We distinguish three cases according to whether vertices vi and vj are
bounded or unbounded:

(a) Both vertices are bounded, that is ti ≤ bi−ai and tj ≤ bj−aj . It follows that
vivj ∈ E(G) if and only if P i ∩ P j �= ∅ [12]. However, due to the definition
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Fig. 2. The intersection model for tolerance graphs: (a) a set of intervals Ii = [ai, bi]
and tolerances ti, i = 1, . . . , 8, (b) the corresponding tolerance graph G and (c) a
parallelepiped representation of G

of the parallelepipeds Pi and Pj , in this case Pi ∩ Pj �= ∅ if and only if
P i ∩ P j �= ∅ (c.f. P1 and P3, or P5 and P7, in Figure 2).

(b) Both vertices are unbounded, that is ti = tj = ∞. Since no two unbounded
vertices are adjacent, vivj /∈ E(G). On the other hand, the line segments Pi

and Pj lie on the disjoint planes z = φi and z = φj of �3, respectively, since
we assumed that the slopes φi and φj are distinct. Thus, Pi ∩Pj = ∅ (c.f. P2
and P4).

(c) One vertex is unbounded (that is, ti = ∞) and the other is bounded (that
is, tj ≤ bj − aj). If P i ∩ P j = ∅, then vivj /∈ E and Pi ∩ Pj = ∅ (c.f. P1 and
P6). Suppose that P i ∩ P j �= ∅. We distinguish two cases:

(i) φi < φj . It is easy to check that |Ii ∩ Ij | ≥ tj and thus vivj ∈ E. Since
P i ∩P j �= ∅ and φi < φj , then necessarily the line segment Pi intersects
with the parallelepiped Pj on the plane z = φi, and thus Pi ∩ Pj �= ∅
(c.f. P1 and P2).

(ii) φi > φj . Clearly |Ii ∩ Ij | < ti = ∞. Furthermore, since φi > φj , Ob-
servation 1 implies that |Ii ∩ Ij | ≤ |Ii| < tj . It follows that |Ii ∩ Ij | <
min{ti, tj}, and thus vivj /∈ E. On the other hand, z = φi for all points
(x, y, z) ∈ Pi, while z ≤ φj < φi for all points (x, y, z) ∈ Pj , and therefore
Pi ∩ Pj = ∅ (c.f. P3 and P4). aa
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Clearly, for each vi ∈ V the parallelepiped Pi can be constructed in constant
time. Therefore, given a tolerance representation of a tolerance graph G with n
vertices, a parallelepiped representation of G can be constructed in O(n) time.

3 Coloring and Clique Algorithms in O(n log n)

In this section we present optimal O(n log n) algorithms for constructing a mini-
mum coloring and a maximum clique in a tolerance graph G = (V, E) with n ver-
tices, given a parallelepiped representation of G. These algorithms improve the
best known running time O(n2) of these problems on tolerance graphs [11, 12].
First, we introduce a canonical representation of tolerance graphs in Section 3.1,
and then we use it to obtain the algorithms for the minimum coloring and the
maximum clique problems in Section 3.2.

3.1 A Canonical Representation of Tolerance Graphs

We associate with every vertex vi of G the point pi = (xi, yi) in the Euclidean
plane, where xi = bi and yi = π

2 − φi. Since all endpoints of the parallelograms
P i and all slopes φi are distinct, all coordinates of the points pi are distinct as
well. Similarly to [11, 12], we state the following two definitions.

Definition 4. An unbounded vertex vi ∈ VU of a tolerance graph G is cal-
led inevitable (for a certain parallelepiped representation), if replacing Pi with
{(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} creates a new edge in G. Otherwise, vi is
called evitable.

Definition 5. Let vi ∈ VU be an inevitable unbounded vertex of a tolerance
graph G (for a certain parallelepiped representation). A vertex vj is called a
hovering vertex of vi if aj < ai, bi < bj, and φi > φj.

It is now easy to see that, by Definition 5, if vj is a hovering vertex of vi, then
vivj /∈ E. Note that, in contrast to [11], in Definition 4, an isolated vertex vi

might be also inevitable unbounded, while in Definition 5, a hovering vertex
might be also unbounded. Definitions 4 and 5 imply the following lemma:

Lemma 1. Let vi ∈ VU be an inevitable unbounded vertex of the tolerance graph
G (for a certain parallelepiped representation). Then, there exists a hovering
vertex vj of vi.

Definition 6. A parallelepiped representation of a tolerance graph G is called
canonical if every unbounded vertex is inevitable.

For example, in the tolerance graph depicted in Figure 2, v4 and v8 are ine-
vitable unbounded vertices, v3 and v6 are hovering vertices of v4 and v8, re-
spectively, while v2 and v6 are evitable unbounded vertices. Therefore, this
representation is not canonical for the graph G. However, if we replace Pi with
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{(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} for i = 2, 6, we get a canonical representation
for G.

In the following, we present an algorithm that constructs a canonical repre-
sentation of a given tolerance graph G.

Definition 7. Let α = (xα, yα) and β = (xβ , yβ) be two points in the plane.
Then α dominates β if xα > xβ and yα > yβ. Given a set A of points, the point
γ ∈ A is called an extreme point of A if there is no point δ ∈ A that dominates
γ. Ex(A) is the set of the extreme points of A.

Algorithm 1. Construction of a canonical representation of a tolerance graph G

Input: A parallelepiped representation R of a given tolerance graph G with n vertices
Output: A canonical representation R′ of G

Sort the vertices of G, such that ai < aj whenever i < j
	0 ← min{xi : 1 ≤ i ≤ n}; r0 ← max{xi : 1 ≤ i ≤ n}
ps ← (	0 − 1, π

2
); pt ← (r0 + 1, 0)

P ← (ps, pt); R′ ← R
for i = 1 to n do

Find the point pj having the smallest xj with xj > xi

if yj < yi then {no point of P dominates pi}
Find the point pk having the greatest xk with xk < xi

Find the point p� having the greatest y� with y� < yi

if xk ≥ x� then
Replace points p�, p�+1 . . . , pk with point pi in the list P

else
Insert point pi between points pk and p� in the list P

if vi ∈ VU then {vi is an evitable unbounded vertex}
Replace Pi with {(x, y, z) | (x, y) ∈ Pi, 0 ≤ z ≤ φi} in R′

else {yj > yi; pj dominates pi}
if vi ∈ VU then {vi is an inevitable unbounded vertex}

vj is a hovering vertex of vi

return R′

Given a tolerance graph G = (V, E) with the set V = {v1, v2, . . . , vn} of vertices
(and its parallelepiped representation), we can assume w.l.o.g. that ai < aj

whenever i < j. Recall that with every vertex vi we associated the point pi =
(xi, yi), where xi = bi and yi = π

2 − φi, respectively. The following theorem
shows that, given a parallelepiped representation of a tolerance graph G, we can
construct in O(n log n) a canonical representation of G. This result is crucial for
the time complexity analysis of the algorithms of Section 3.2.

Theorem 2. Every parallelepiped representation of a tolerance graph G with n
vertices can be transformed by Algorithm 1 to a canonical representation of G in
O(n log n) time.
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3.2 Minimum Coloring and Maximum Clique

In the next theorem we present an optimal O(n log n) algorithm for computing a
minimum coloring of a tolerance graph G with n vertices, given a parallelepiped
representation of G. The informal description of the algorithm is identical to the
one in [11], which has running time O(n2); the difference is in the fact that we
use our new representation, in order to improve the time complexity.

Theorem 3. A minimum coloring of a tolerance graph G with n vertices can
be computed in O(n log n) time.

In the next theorem we prove that a maximum clique of a tolerance graph G with
n vertices can be computed in optimal O(n log n) time, given a parallelepiped
representation of G. This theorem follows from Theorem 2 and from the clique
algorithm presented in [6], and it improves the best known O(n2) running time
mentioned in [11].

Theorem 4. A maximum clique of a tolerance graph G with n vertices can be
computed in O(n log n) time.

Based on a lower time bound of Ω(n log n) for computing the length of a longest
increasing subsequence in a permutation [6,8], it turns out that the time com-
plexity O(n log n) of the presented algorithms for the minimum coloring and the
maximum clique problems presented in Theorems 3 and 4 are oprimal.

4 Weighted Independent Set Algorithm in O(n2)

In this section we present an algorithm for computing a maximum weight in-
dependent set in a tolerance graph G = (V, E) with n vertices in O(n2) time,
given a parallelepiped representation of G, and a weight w(vi) > 0 for every
vertex vi of G. The proposed algorithm improves the running time O(n3) of the
one presented in [12]. In the following, consider as above the partition of the
vertex set V into the sets VB and VU of bounded and unbounded vertices of G,
respectively.

Similarly to [12], we add two isolated bounded vertices vs and vt to G with
weights w(vs) = w(vt) = 0, such that the corresponding parallelepipeds Ps

and Pt lie completely to the left and to the right of all other parallelepipeds
of G, respectively. Since both vs and vt are bounded vertices, we augment the
set VB by the vertices vs and vt. In particular, we define the set of vertices
V ′

B = VB ∪ {vs, vt} and the tolerance graph G′ = (V ′, E), where V ′ = V ′
B ∪ VU .

Since G′[V ′
B] is a bounded tolerance graph, it is a co-comparability graph as

well [10, 12]. A transitive orientation of the comparability graph G′[V ′
B] can be

obtained by directing each edge according to the upper left endpoints of the
parallelograms P i. Formally, let (V ′

B ,≺) be the partial order defined on the
bounded vertices V ′

B , such that vi ≺ vj if and only if vivj /∈ E and ci < cj .
Recall that a chain of elements in a partial order is a set of mutually comparable
elements in this order [4].
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Observation 2 ([12]). The independent sets of G[VB ] are in one-to-one cor-
respondence with the chains in the partial order (V ′

B,≺) from vs to vt.

Using a dynamic programming algorithm that exploits the properties of the new
parallelepiped representation of tolerance graphs, we derive the next theorem.
The details can be found in [19].

Theorem 5. A maximum weight independent set of a tolerance graph G with n
vertices can be computed in O(n2) time.

5 Conclusions and Further Research

In this article we proposed the first non-trivial intersection model for general
tolerance graphs, given by parallelepipeds in the three-dimensional space. This
representation generalizes the parallelogram representation of bounded tolerance
graphs. Using this representation, we presented improved algorithms for compu-
ting a minimum coloring, a maximum clique, and a maximum weight indepen-
dent set on a tolerance graph. The complexity of the recognition problem for
tolerance and bounded tolerance graphs is the main open problem in this class
of graphs. Even when the input graph is known to be a tolerance graph, it is not
known how to obtain a tolerance representation for it [20].
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Abstract. We provide polynomial-time algorithms for counting the
number of perfect matchings in chain graphs, cochain graphs, and thresh-
old graphs. These algorithms are based on newly developed subdivision
schemes that we call a recursive decomposition. On the other hand, we
show the #P-completeness for counting the number of perfect match-
ings in chordal graphs, split graphs and chordal bipartite graphs. This
is in an interesting contrast with the fact that counting the number of
independent sets in chordal graphs can be done in linear time.

1 Introduction

The study of graph classes has been motivated by the fact that a lot of NP-hard
problems can be solved in polynomial time when the input is restricted. While
this research direction leads to many polynomial-time algorithms for decision
problems and optimization problems, such results for counting problems seem
rare. With this motivation, the authors studied problems to count the indepen-
dent sets in chordal graphs [16], and refinement for interval graphs has been
proposed by Lin [14] and Lin and Chen [15]. However, the current understand-
ing for counting problems in graph classes is still poor. Counting algorithms
may require properties of graphs that are not needed for solving decision and
optimization problems.

This paper is concerned with perfect matchings. A perfect matching of a
graph is one of the fundamental objects when we study counting problems.
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When Valiant [21] introduced the complexity class #P, he already proved that
counting the perfect matchings in a bipartite graph is #P-complete. In another
paper [22], he also proved that counting all matchings in a bipartite graph is
#P-complete. His results were refined by Dagum and Luby [4] showing that
counting the perfect matchings in a 3-regular bipartite graph is #P-complete,
and by Vadhan [19] showing that counting all matchings in a bipartite graph
of maximum degree 4 and in a planar bipartite graph of maximum degree 6
is #P-complete. There are also some results on the positive side, namely for
polynomial-time algorithms. The perfect matchings in a planar graph can be
counted in polynomial time [6,11,17] via the so-called Pfaffian orientations. A
generalization of this approach yields a polynomial-time algorithm for graphs
of bounded genus [8,18]. Furthermore, we can count the perfect matchings in
a graph of bounded treewidth in polynomial time [1]. Basically, these positive
results are concerned with sparse graphs.

This paper concentrates on classes of chordal graphs and chordal bipartite
graphs. An interesting phenomenon to be proven here is the #P-completeness
for the counting problem of perfect matchings in chordal graphs, while we can
count the number of independent sets in chordal graphs in linear time [16]. We
also prove that the matching counting is #P-complete even for chordal bipar-
tite graphs. Therefore, we seek for subclasses of these graph classes for which
the perfect matchings can be counted in polynomial time. We give O(n2 log n)-
time algorithms for the following classes of graphs on n vertices: Chain graphs,
cochain graphs, and threshold graphs. The definitions will be given later, but
there is a relation among these classes as depicted in Fig. 1. In the figure, we also
have the classes of bipartite permutation graphs, proper interval graphs, interval
graphs and interval bigraphs. For these four classes, complexity of counting the
matchings is unsettled. This is a main open problem this paper leaves for us.

We should note here that there exists an O(n2k+1)-time algorithm to count
the perfect matchings in a graph of cliquewidth k [13]. Since a threshold graph is
a cograph and the cliquewidth of a cograph is at most 2, this immediately yields
an O(n5)-time algorithm for threshold graphs. Similarly, since a chain graph
is distance-hereditary and the cliquewidth of a distance-hereditary graph is at
most 3 [9], we obtain an O(n7)-time algorithm for chain graphs. Furthermore,
the complement of a graph of cliquewidth k has cliquewidth at most 2k [3] and
a cochain graph is the complement of some chain graph. Therefore, we obtain
an O(n13)-time algorithm for cochain graphs. However, these algorithms are less
efficient than ours.

Due to the page limitation, some proofs are omitted. They can be found in
the journal version.

2 Preliminaries

We assume the reader is familiar with basic terminology on graphs. A graph is
denoted by G = (V, E) when V is the vertex set and E is the edge set of G.
The neighborhood of a vertex v ∈ V is the set NG(v) = {u ∈ V | {u, v} ∈ E}.
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chordal

interval

proper interval

chainthresholdcochain

bipartite permutation
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chordal bipartite

split

#P-complete

unknown

polynomial

Fig. 1. Inclusion relationship among the graph classes in this paper and the summary
of our results

For a subset U ⊆ V , the subgraph of G induced by U is the graph (U, F ), where
F = {{u, v} ∈ E | u, v ∈ U}, and denoted by G[U ]. For given two graphs
G = (V, E) and G′ = (V ′, E′), we denote the graph (V ∪ V ′, E ∪ E′) by G ∪G′.
A vertex set C is a clique if all pairs of vertices in C are joined by an edge. A
vertex set I is independent if no pair of vertices in I is joined by an edge. An
edge set M is a matching if no pair of edges in M shares an endpoint. Note that
the empty set is a matching of size zero in any graph. An endpoint v of an edge e
in a matching M is said to be matched by M . A matching is perfect if all vertices
are matched by the matching.

A graph G = (V, E) is bipartite if V can be partitioned into two sets X and Y
such that every edge joins a vertex in X and the other vertex in Y . We denote a
bipartite graph by G = (X, Y, E) when the partition is given. A bipartite graph
G is complete if every vertex in X is adjacent to all vertices in Y .

For a graph G, the number of matchings in G is denoted by μ(G), the number
of matchings of size i in G is denoted by μi(G), and the number of perfect
matchings in G is denoted by π(G).

3 Polynomial-Time Algorithm for Chain Graphs

In this section, we study chain graphs. A chain graph is also called a difference
graph [10], a bisplit graph [7], and nonseparable bipartite graph [5].

To define a chain graph, we need to define monotonicity on vertex sets. Let
G = (X, Y, E) be a bipartite graph. An order < on X in G is increasing if
x < x′ implies N(x) ⊆ N(x′). Similarly, < on X is decreasing if x < x′ implies
N(x) ⊇ N(x′). An order is monotone if it is increasing or decreasing. A bipartite
graph G = (X, Y, E) is a chain graph if there exist monotone orders <X , <Y on
X, Y respectively [12,23]. We assume that <X is decreasing and <Y is increasing.
It is not hard to observe the following.

Proposition 1. Let G = (X, Y, E) be a connected chain graph with |X | = nx

and |Y | = ny. Then there exist a decreasing order <X and an increasing order
<Y such that yny ∈ N(xi) for every i ∈ {1, . . . , nx} and x1 ∈ N(yj) for every
j ∈ {1, . . . , ny}, where x1 <X x2 <X · · · <X xnx and y1 <Y y2 <Y · · · <Y yny .

For a given chain graph, monotone orders on X and Y can be found in linear
time (e.g., using a PQ-tree), and from them, the orderings as in Proposition 1 can
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Fig. 2. The intersection model of a chain graph (left), a derived decomposition (middle)
and its schematic representation (right)

be computed in linear time (e.g., [20]). Hence, hereafter, we assume that a chain
graph is given with two ordered vertex sets stated as in Proposition 1. Without
loss of generality, we assume that a chain graph G = (X, Y, E) is connected,
and the vertex sets X and Y are ordered as stated in Proposition 1. That is,
we have N(xi) = {yji , . . . , yny} with 1 ≤ i ≤ nx and j1 ≤ j2 ≤ · · · ≤ jnx , and
N(yj) = {x1, . . . , xij} with 1 ≤ j ≤ ny and i1 ≥ i2 ≥ · · · ≥ iny , where |X | = nx

and |Y | = ny. The main theorem in this section is as follows.

Theorem 1. Given a connected chain graph G = (X, Y, E), the number of per-
fect matchings in G can be computed in O(n2 log n) time, where n = |X ∪ Y |.
We prove Theorem 1 by providing an algorithm. This is based on the following
recursive subdivision structure T (G). The structure T (G) is a rooted tree, where
each node possesses an induced subgraph of G and a node G′ is a descendant of
a node G′′ only if G′ is a subgraph of G′′.

The structure T (G) is inspired by an intersection model of a chain graph
(Fig. 2 (left)): The vertices xi in X correspond to vertical line segments Ixi

which are located from left to right according to the ordering, and the bottom
of the segments are on a horizontal line. The vertices yj in Y correspond to
horizontal line segments Jyj from top to bottom and the left endpoints of the
segments are on a vertical line. From Proposition 1, it is easy to see that G is
a chain graph if and only if G can be represented by the intersection model of
those horizontal line segments and vertical line segments such that Ixi is longer
than or equal to Ixi+1 with 1 ≤ i < nx and Jyj+1 is longer than or equal to Jyj

with 1 ≤ j < ny.
Let G = (X, Y, E) be a chain graph with two ordered vertex sets X, Y as

in Proposition 1. An edge e = {xi, yj} ∈ E, xi ∈ X, yj ∈ Y , is extremal if
{xi′ , yj} �∈ E for any i′ > i or {xi, yj′} �∈ E for any j′ < j. Fix an extremal
edge e = {xi, yj} ∈ E. Then we partition X and Y into Xu, Xr, Yu, and Yr

as follows; Xu := {xi′ | i′ ≤ i}, Xr := {xi′ | i′ > i}, Yu := {yj′ | j′ ≤ j}, and
Yr := {yj′ | j′ > j}. Using these vertex sets, we define three graphs Gc, Gu, and
Gr as follows; Gc = G[Xu ∪ Yr], Gr = G[Xr ∪ Yr], and Gu = G[Xu ∪ Yu]. Note
that the edge sets of these three graphs form a partition of E, and furthermore,
Gu and Gr are connected chain graphs (unless empty), and Gc is a complete
bipartite graph. See Fig. 2 (middle, right).
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Algorithm 1. RD(G, d)
Input : A connected chain graph G = (X, Y, E) and a non-negative integer d,

where nx = |X|, ny = |Y |;
Output: A recursive decomposition T (G) of G;
add G as the root;1

if G is complete bipartite then return;2

if d is even then set kx := nx/2 and ky := min{j | {xkx , yj} ∈ E};3

if d is odd then set ky := ny/2 and kx := max{i | {xi, yky} ∈ E};4

find Gu, Gr, Gc from kx and ky ;5

add RD(Gu, d+1) as the left subtree rooted at G;6

add RD(Gr, d+1) as the right subtree rooted at G;7

return;8

We are now ready for defining T (G) for a connected chain graph G. The root
of T (G) is G. Let G′ be a node of T (G). If G′ is complete bipartite, then G′

has no child and hence it is a leaf of T (G). Otherwise, G′ has two children G′
u

and G′
r constructed by an appropriate choice of an extremal edge of G′. We call

T (G) a recursive decomposition of G.
Let us describe how to choose an appropriate extremal edge when we construct

a recursive decomposition. To do this, we look at the depth of each node in T (G).
Namely, the depth of a root node is zero, and if a node has depth d, then its
children have depth d+1. According to the parity of the depth, we make the
choice. If d is even, then we let kx = nx/2 and ky = min{j′ | {xi, yj′} ∈ E}.
If d is odd, then we let ky = ny/2 and kx = max{i′ | {xi′ , yj} ∈ E}. In both
cases, we see that {xkx , yky} is an extremal edge of G. Algorithm 1 computes a
recursive decomposition T (G) of G according to this choice of an extremal edge
when RD(G, 0) is called. We omit the proof of the following lemma.

Lemma 1. Let G = (X, Y, E) be a connected chain graph. Then, Algorithm 1
finds a recursive decomposition T (G) with at most O(n) nodes and height at
most 1

2 log2 n in O(n) time, where n = |X |+|Y |. �

To describe the number of matchings, we denote by π(G; a, b) the number of
perfect matchings in a chain graph G = (X, Y, E) with a vertices from X and b
vertices from Y deleted. Namely, π(G; a, b) = |{M ⊆ E | M is a perfect matching
of G−(A∪B), where A ⊆ X, |A| = a, B ⊆ Y, |B| = b}|. Intuitively, we will count
the number of perfect matchings in G such that a vertices in X and b vertices
in Y have been matched in the previous level. Since π(G; 0, 0) is the number of
perfect matchings of G, it suffices to compute π(G; a, b) for all possible a and b.

Let us look at how we can decompose π(G; a, b) into several independent parts.
This gives a fundamental idea for our algorithm.

Lemma 2. Let G = (X, Y, E) be a connected chain graph. For 0 ≤ a < |X | and
0 ≤ b < |Y |, it holds that π(G; a, b) =

∑
au,br

π(Gu; au+ic, bu) · π(Gr; ar, br+ic) ·
π(Gc; kx−ic, ny−ky−ic), where the sum is taken over the ranges 0 ≤ au ≤
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min{a, kx} and 0 ≤ br ≤ min{b, ny−ky}, and other symbols are defined as
bu = b−br, ar = a−au, and ic = kx−ky−au+b−br.

Proof. We first show the inequality “the left-hand side ≤ the right-hand side.”
Every matching M counted in the left-hand side can be partitioned into three
parts M = Mu ∪ Mr ∪ Mc, where Mu, Mr, Mc is a matching of Gu, Gr, Gc,
respectively. Since M is a perfect matching of G−(A∪B) for some A ⊆ X, B ⊆ Y
with |A| = a, |B| = b, it holds that |M | = nx−a = ny−b. Let |Mu| = iu, |Mr| =
ir, |Mc| = ic. Let Ac ⊆ Xu and Bc ⊆ Yr be the set of vertices matched by Mc.
Note that |Ac| = ic = |Bc|. Then, Mu is a perfect matching of Gu−(Au∪Ac∪Bu)
for some Au ⊆ Xu \ Ac and Bu ⊆ Yu, and Mr is a perfect matching of Gr −
(Ar ∪ Br ∪ Bc) for some Ar ⊆ Xr and Br ⊆ Yr \ Bc. It is important to observe
that such Au, Bu, Ar, Br are unique. For example, Au is determined as the set of
vertices in Xu \ Ac that are not matched by Mu. Therefore, if we let |Au| = au

and |Br| = br, then Mu is counted exactly once in π(Gu; au + ic, b−br) and
similarly Mr is counted exactly once in π(Gr ; a−au, bu+ic). Then, we see that
kx−(au+ic) = iu = ky−(b−br) and nx−kx−(a−au) = ir = ny−ky−(bu+ic), and
therefore, ic = kx−ky−au+b−br. Then, it suffices to note that Mc is counted
exactly once in π(Gc; kx−ic, ny−ky−ic).

Conversely, we show the inequality “the left-hand side ≥ the right-hand
side.” Let Mu and Mr be perfect matchings counted in π(Gu; au+ic, bu) and
π(Gr; ar, br+ic) respectively, for some au, br in the appropriate ranges and
ar, bu, ic as defined in the statement of the lemma. Specifically, let Mu be a
perfect matching of Gu−(Au ∪ Ac ∪ Bu) for some Au ∪ Ac ⊆ Xu and Bu ⊆ Yu,
and Mr is a perfect matching of Gr−(Ar ∪ Br ∪ Bc) for some Ar ⊆ Xr and
Br ∪ Bc ⊆ Yr, where |Au| = au, |Ar| = ar, |Bu| = bu, |Br| = br, |Ac| = |Bc| = ic.
Consider constructing a perfect matching M of G−(A ∪ B) for some A, B with
|A| = a, |B| = b as M = Mu∪Mr∪Mc with some matching Mc of Gc. Then, such
Mc should be a perfect matching of Gc−((Xu−Ac) ∪ (Yr−Br)). This completes
the proof. �

Since Gc is a complete bipartite graph, it is not difficult to see that
π(Gc; kx−ic, ny−ky−ic) = ic!

(
kx

ic

)(
ny−ky

ic

)
. Hence Lemma 2 readily gives Algo-

rithm 2. To compute the number of perfect matchings in a given chain graph G,
we first call #M(G, 0, 0).

Proof (of Theorem 1). Algorithm 2 can be implemented by dynamic program-
ming on T (G). For each node G′ of T (G), we store the values returned by calls
#M(G′, a, b) for all possible a and b. If the depth of G′ is d, then the num-
ber of such possibilities is at most nx/2�d/2� · ny/2�d/2� ≤ nxny/2d. Therefore,
the number of values stored for each node of T (G) is O(n2/2d). At the call to
#M(G′, a, b) we need to look up at most nxny/2d values. Note that the values of
factorials and binomial coefficients can be computed beforehand and stored as
well in O(n2) time and space. Since the number of nodes at depth d is at most

2d, the overall running time is at most
∑ 1

2 log2 n

d=0 2dO(n2/2d) = O(n2 log n). The
space requirement is also O(n2 log n). �
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Algorithm 2. #M(G, a, b)
Input : A connected chain graph G = (X, Y, E) and two integers a, b together

with a recursive decomposition T (G);
Output: π(G; a, b);
if nx−a �= ny−b then return 0;1

else if G is complete bipartite then return (nx−a)!;2

else3

sum := 0; ar := a−au; bu = b−br; ic = kx−ky−au+b−br;4

foreach au = 0, 1, . . . , min{a, kx} and br = 0, 1, . . . , min{b, ny−ky} do5

sum := sum+ ic! ·
(

kx
ic

)
·
(

ny−ky
ic

)
·#M(Gu, au+ic, bu) ·#M(Gr, ar, br+ic);6

end7

return sum.8

end9

Note that if nx−a = ny−b, then π(G; a, b) is the number of matchings of size
nx−a. Hence, Algorithm 2 computes the number of matchings of each possible
size. This implies the following corollary.

Corollary 1. Given a chain graph G = (X, Y, E), the number of matchings and
the number of matchings of fixed size in G can be computed in O(n2 log n) time,
where n = |X ∪ Y |. �

4 Polynomial-Time Algorithm for Cochain Graphs and
Threshold Graphs

Similarity among chain graphs, cochain graphs and threshold graphs allows us
to provide polynomial-time algorithms to count the number of perfect matchings
in cochain graphs and threshold graphs.

A cochain graph is simply defined as the complement of a chain graph.
From Proposition 1, we can immediately see a cochain graph has the following
property.

Proposition 2. Let G = (V, E) be a cochain graph and G = (X, Y, E) be a
chain graph that is the complement of G with |X | = nx and |Y | = ny. Then X
and Y are cliques of G, and there exist a decreasing order <X and an increasing
order <Y such that yny ∈ N(xi)\X for every i ∈ {1, . . . , nx} and x1 ∈ N(yj)\Y
for every j ∈ {1, . . . , ny}, where x1 <X x2 <X · · · <X xnx and y1 <Y y2 <Y

· · · <Y yny . �
Namely, a cochain graph can be constructed from a chain graph by filling up
both of the color classes to cliques. See Fig. 3.

A graph G = (V, E) is a threshold graph if there exist a weight assignment
w : V → R such that {u, v} ∈ E if and only if w(u) + w(v) > 0. The following is
a well-known property (or actually a characterization) of threshold graphs.

Proposition 3 (Chvátal and Hammer [2]). For a threshold graph G =
(V, E), a partition {X, Y } of V with the following properties can be found in
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O(|V |+|E|) time. First, X = {x1, . . . , xnx} is a clique of G, Y = {y1, . . . , yny}
is an independent set of G, and there exist a decreasing order <X and an in-
creasing order <Y such that yny ∈ N(xi) \ X for every i ∈ {1, . . . , nx} and
x1 ∈ N(yj) for every j ∈ {1, . . . , ny}, where x1 <X x2 <X · · · <X xnx and
y1 <Y y2 <Y · · · <Y yny .

Fig. 3. Comparison of three classes.
(Left) A chain graph. (Middle) A
cochain graph. (Right) A threshold
graph.

Namely, a threshold graph can be con-
structed from a chain graph by filling up one
of the color classes to a clique. See Fig. 3.

Since a cochain graph and a threshold
graph possess a structure similar to a chain
graph, we may define a recursive decomposi-
tion for them analogously. An important dif-
ference is that Gc is not an induced subgraph
of G, but Gc will be a subgraph of G with
vertex set Xu ∪ Yr and edge set consisting
of those edges between Xu and Yr. Namely,
Gc is complete bipartite. Then, the equation
similar to one in Lemma 2 holds. The whole arguments are verbatim. Hence we
obtain the following theorem.

Theorem 2. The number of perfect matchings in a cochain graph and a thresh-
old graph with n vertices can be computed in O(n2 log n) time. �

5 Hardness Results

In this section, we prove the #P-completeness of counting the perfect match-
ings in split graphs and chordal bipartite graphs. The #P-completeness for split
graphs immediately implies that for chordal graphs.

A graph is a split graph if the vertex set can be partitioned into two parts such
that one part is a clique and the other is an independent set. In other words, a
split graph is constructed from a bipartite graph by filling up one color class to
a clique. A graph is chordal if every induced cycle has length three. It is easy to
see that every split graph is chordal.

We omit the proof of the following theorem.

Theorem 3. Counting the number of perfect matchings in a split graph is #P-
complete. �

By utilizing an interpolation technique, we are able to show the following.

Theorem 4. Counting the number of matchings in a split graph is #P-complete.

Proof. For our reduction, we use the problem to count the number of perfect
matchings in a bipartite graph, which is known to be #P-complete [21].
Let G = (U, V, E) be a bipartite graph with |U | = |V | = n. We construct a
graph Gi = (Vi, Ei) for every i ∈ {1, . . . , n+1} out of G as follows. Let V :=
{v1, . . . , vn}. For each vertex v� ∈ V , we use a set V

(�)
i of i vertices for Gi
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U V

G G1 G2 G3

Fig. 4. Construction in the proof of Theorem 4

where V
(1)
i , . . . , V

(n)
i are all disjoint. We set Vi := U ∪ V ∪

⋃n
�=1 V

(�)
i , and Ei :=

E ∪
(
V
2

)
∪
⋃n

�=1 F
(�)
i , where F �

i := {{v�, v} | v ∈ V
(�)
i } for every � ∈ {1, . . . , n}.

Fig. 4 illustrates the construction.
For a graph H with n vertices, remember that we denote by μj(H) the number

of matchings in H of size j, by μ(H) the number of matchings in H . Furthermore,
let Fi :=

⋃n
�=1 F

(�)
i .

Let us consider μ(Gi). Each matching M of Gi potentially uses some edges
from E and some edges from Fi. Let M use j edges from E and k edges from Fi.
Consider constructing M by first choosing j edges from E, then k edges from
Fi, and finally the rest of edges from

(
V
2

)
. Since M is a matching, we have μj(G)

ways to choose j edges from E for M . Then j vertices in V are already matched,
so there are n−j vertices left unmatched in V . Therefore, the number of ways
to choose k edges from Fi for M is

(
n−j

k

)
ik. Then there are n−j−k vertices

left unmatched in V . Among them we choose some edges for M . Therefore, the
number of choices is μ(Kn−j−k), where Kn−j−k is a complete graph with n−j−k
vertices. This way, we obtain the following formula: for every i ∈ {1, . . . , n+1}
it holds that μ(Gi) =

∑n
j=0 μj(G)

(∑n−j
k=0

((
n−j

k

)
ik
)
μ(Kn−j−k)

)
. In a matrix

form, this can be written as⎡⎢⎢⎢⎣
μ(G1)
μ(G2)

...
μ(Gn+1)

⎤⎥⎥⎥⎦ = A

⎡⎢⎢⎢⎣
μ0(G)
μ1(G)

...
μn(G)

⎤⎥⎥⎥⎦ ,

where A is a matrix with row index set {1, . . . , n+1} and column index
set {0, . . . , n} defined as Ai,j :=

∑n−j
k=0

((
n−j

k

)
ik
)
μ(Kn−j−k) for each i ∈

{1, . . . , n+1} and j ∈ {0, . . . , n}.
Now we claim that A defined above is non-singular. We would like to notice

that the claim finishes the proof of the theorem. If we are able to know μ(Gi)
for every i ∈ {1, . . . , n+1}, then by computing the inverse of A, we are also
able to know μj(G) for all j ∈ {0, . . . , n}. (Note that each entry of A can be
computed efficiently since μ(Km) =

∑�m/2�
j=0 μj(Km) =

∑�m/2�
j=0

(
m
2j

) (2j)!
j!2j holds.)

In particular we obtain μn(G), the number of perfect matchings in G. This
completes the reduction.
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Therefore, it suffices to prove the claim. To do that, first observe that for
each row index i ∈ {1, . . . , n+1} and each column index j ∈ {0, . . . , n} the
i, j-entry Ai,j can be written as Ai,j =

∑n−j
k=0 ik

((
n−j

k

)
μ(Kn−j−k)

)
. Let B be a

matrix with row index set {1, . . . , n+1} and column index set {0, . . . , n} defined
as Bi,k := ik for each i ∈ {1, . . . , n+1} and k ∈ {0, . . . , n}, and C be a matrix
with row index set {0, . . . , n} and column index set {0, . . . , n} defined as

Ck,j :=

⎧⎨⎩
(

n−j

k

)
μ(Kn−j−k) if 0 ≤ k ≤ n−j,

0 otherwise,

for each k ∈ {0, . . . , n} and j ∈ {0, . . . , n}. Then, we can see that for every
i ∈ {1, . . . , n+1} and j ∈ {0, . . . , n} it holds that Ai,j =

∑n
k=0 Bi,kCk,j . In other

words, A = BC as a matrix. The matrix B is a famous Vandermonde matrix,
which is known to be non-singular. How about the non-singularity of C? Since(
n−j

k

)
μ(Kn−j−k) �= 0 when 0 ≤ k ≤ n−j, the upper-left half of C is occupied

with non-zero entries, and the lower-right half of C is occupied with zero entries.
So, the matrix C is also non-singular. Thus, A is non-singular. �

A modification of this proof shows the following. We omit the proof.

Theorem 5. Counting the number of maximal matchings in a split graph is
#P-complete. �
Next, we switch to chordal bipartite graphs. A bipartite graph is chordal bipartite
if every induced cycle is of length four. The #P-completeness for chordal bipartite
graphs will be proven via the interpolation technique.

Theorem 6. The problem to count the number of perfect matchings in a chordal
bipartite graph is #P-complete.

Proof. We again use a reduction from the problem to count the number of perfect
matchings in a bipartite graph.

Given a bipartite graph G = (X, Y, E) with |X | = |Y | = n, we construct the
following chordal bipartite graph cbi(G) for each i ∈ {1, . . . , n+1}. The vertex
set of cbi(G) is defined as V (G) = X ∪ Y ∪ {pj,v,e | 1 ≤ j ≤ i, v ∈ X, e ∈
E} ∪ {qj,v,e | 1 ≤ j ≤ i, v ∈ Y, e ∈ E}. The edge set of cbi(G) is defined as
E(G) = {{x, y} | x ∈ X, y ∈ Y } ∪ {{x, pj,x,e} | x ∈ X, e ∈ E, x ∈ e, 1 ≤ j ≤
i} ∪ {{y, qj,y,e} | y ∈ Y, e ∈ E, y ∈ e, 1 ≤ j ≤ i} ∪ {{pj,x,e, qj,y,e} | x ∈ X, y ∈
Y, e = {x, y} ∈ E}. Namely, to construct cbi(G) from G, we replace each edge of
G by i paths of length three, and join the vertices of X and Y by edges to make
them complete bipartite. It is not difficult to see that cbi(G) is chordal bipartite.
Fig. 5 shows an example.

Consider a perfect matching M of cbi(G). We map M to a matching M ′ of G
if and only if the following conditions are satisfied.

– When e = {x, y} �∈ M ′, it holds that {pj,x,e, qj,y,e} ∈ M for all j ∈ {1, . . . , i}.
– When e = {x, y} ∈ M ′, it holds that {x, pj,x,e}, {y, qj,y,e} ∈ M for exactly

one j ∈ {1, . . . , i}. (Then, it must hold that {pj,x,e, qj,y,e} ∈ M for all other
j ∈ {1, . . . , i}.)
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cb2(G)cb1(G)G

x y

p1,x,e q1,y,e

Fig. 5. Hardness for chordal bipartite graphs

There are several perfect matchings M that corresponds to M ′. We can count
the number of such matchings M from M ′. In the second condition, we have i
choices for each edge of M ′. Let |M ′| = k. Then, this gives rise to ik choices.
Moreover, there are n−k vertices in both X and Y that do not appear in these
conditions, and they are supposed to be matched. Since these vertices induce a
complete bipartite subgraph of G, the number of ways to match them is exactly
(n−k)!.

In this way, we obtain π(cbi(G)) =
∑n

k=0 μk(G)ik(n−k)! for each i ∈
{1, . . . , n+1}, where π(cbi(G)) means the number of perfect matchings in cbi(G).
When we write it down in the matrix form as we did before, the coefficient ma-
trix A can be defined as Ai,k := ik(n−k)! for every row index i ∈ {1, . . . , n+1}
and every column index k ∈ {0, . . . , n}. We can see that the determinant of A is
the determinant of a non-singular Vandermonde matrix times

∏n
k=0(n−k)!, thus

non-zero. Therefore, from the equality above, we can recover μn(G), the number
of perfect matchings of the given bipartite graph G, in polynomial time. �

Similar arguments show the following theorem. We omit the proofs.

Theorem 7. Counting the number of matchings in chordal bipartite graphs is
#P-complete. Similarly, counting the number of maximal matchings in chordal
bipartite graphs is #P-complete. �

Acknowledgment. We thank anonymous referees for their valuable comments.
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Abstract. We study graph searching games where a number of cops try to cap-
ture a robber that is hiding in a system of tunnels modelled as a graph. While the
current position of the robber is unknown to the cops, each cop can see a certain
radius d around his position. For the case d = 1 these games have been studied
by Fomin, Kratsch and Müller [7] under the name domination games.

We are primarily interested in questions concerning the complexity and
monotonicity of these games. We show that dominating games are computation-
ally much harder than standard graph searching games where the cops only see
their own vertex and establish strong non-monotonicity results for various notions
of monotonicity which arise naturally in the context of domination games. An-
swering a question of [7], we show that there exists graphs for which the shortest
winning strategy for a minimal number of cops must necessarily be of exponen-
tial length. On the positive side, we establish tractability results for graph classes
of bounded degree.

1 Introduction

Graph searching games are a form of two-player games played on graphs. A wide range
of such games have been studied in the literature but they all share the common scheme
that a number of cops tries to catch a robber who is hiding in the graph. The problem
is to guide a party of as few cops as possible so that the robber is guaranteed to be
captured regardless of his moves. In the model of graph searching games known as
node searching, the cops and the robber occupy vertices of the graph. At each step of
the play, the player controlling the cops can lift some of the cops from the graph and
place them somewhere else. While they are in transit, the robber can move in the graph
following any path from his current to his new position as long as this path does not go
through a vertex occupied or “blocked” by a remaining cop (in which case the robber
would be have been captured).

Variants of this game are obtained by varying the abilities of the cops, for instance,
whether or not they know the current position of the robber, and by the precise definition
of “blocking”. The minimal number of cops needed to catch a robber on a graph yields
an interesting graph invariant related to the global connectivity of the graph. See [6] for
a recent survey on the subject.

Graph searching games have found a wide range of applications in Computer Science
in seemingly unrelated areas: there is a strong resemblance of graph searching games
to pebble games modelling sequential computation as described in [10]. In [8], graph
searching games have been employed as a model for privacy in distributed systems,
where the cops model eavesdroppers or intruders in networks. Furthermore, applica-
tions of graph searching games can be found in VLSI design as the game theoretical

C. Paul and M. Habib (Eds.): WG 2009, LNCS 5911, pp. 308–319, 2010.
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approach to important graph layout parameters providing valuable tools for the de-
sign of efficient algorithms. Of particular importance is the connection between graph
searching games and well-known graph parameters such as tree-width and path-width
(see e.g. [5,3,4]). For instance, Seymour and Thomas [12] characterised the tree-width
of a graph in terms of a variant of graph searching games where the robber is visible
and hides on vertices of the graph.

An important concept in the theory of graph searching games is monotonicity. Intu-
itively, a strategy for the cops is monotone if they can catch the robber without allow-
ing him to revisit vertices from which he has previously been exspelled. Monotonicity
has featured highly in research on graph searching games for a number of reasons. For
instance, monotone strategies correspond directly to graph decompositions such as tree-
or path-decompositions. Also, for many game variants, winning strategies for the rob-
ber can often be characterised by simple combinatorial structures, such as brambles for
the case of games corresponding to tree-width, and hence provide natural and intuitive
obstructions for tree-width and similar measures. However, these structures usually pro-
vide a winning strategy even against cops following a non-monotone strategy. Hence,
showing for a game variant that the number of cops needed to win against a robber
is always the same as the number of cops needed for a monotone strategy brings all
these concepts together and establishes a smooth theory of decompositions and games
in terms of min-max or duality theorems.

From an algorithmic perspective, an important property of monotone strategies is
that their length is usually linearly bounded in the order of the graph, whereas non-
monotone strategies can have up to exponential length, although almost no game variant
actually requires such long strategies. Hence, monotone strategies often provide poly-
nomial certificates and thereby yield NP-algorithms for deciding the number of cops
needed to catch a robber.

Originally, graph searching games were introduced to model the chivvy for a robber
that is hiding in a system of tunnels. While the cops do not know the current position of
the robber they do have knowledge of the graph modelling the system of tunnels. In this
paper we follow this idea of catching an invisible robber but consider games, which we
call d-domination games, where the cops do not only see their current vertex but have a
radius d of visibility. That is, a cop placed on a vertex v can see any other vertex within
distance d of v and if this vertex is occupied by the robber then the cop can see the
robber and capture him. We are primarily interested in complexity and monotonicity
questions related to these games.

For the case d = 1 these games correspond to domination games as introduced
by Fomin, Kratsch and Müller [7]. This variant is related to the notion of “see-catch”
games studied in Computational Geometry and Robotics, for instance motivated by ap-
plications in robotics such as surveillance with a mobile robot equipped with a camera.
In their paper, the authors develop the fundamental theory of domination games and
establish a relationship between domination games and the size of a minimum domi-
nating set of a graph and an interesting connection between these games and a graph
parameter called domination target number introduced in [11]. The focus of [7] is on
establishing bounds on the domination search number – the minimal number of cops
that are required to guarantee capture of the robber – for various classes of graphs such
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as k-dimensional cubes, asteroidal-triple free graphs, claw-free graphs, and graphs with
certain types of spanning trees and caterpillars. They also exhibit an example showing
that domination games are non-monotone.

In this paper we study d-domination games with a focus on complexity and monotonic-
ity. Following the initial results on monotonicity of graph searching games mentioned
above, monotonicity proofs for a large number of graph searching games and also non-
monotonicity proofs for some games have been obtained (see e.g. [6]). Most variants of
graph searching games are either monotone or, if not, at least a bound on the difference
between the number of cops needed for arbitrary or monotone strategies can be estab-
lished. As it turns out, d-domination games exhibit a completely different behaviour in
this respect.

Organisation and results. In Section 4, we establish very strong non-monotonicity
results by exhibiting classes of graphs on which two cops can win on any graph in this
class but the number of cops required for monotone winning strategies is unbounded.
Hence, domination games are one of only very few types of games for which such a
difference has been proved.

In [7, Problem 7], Fomin et al. raise the question whether any polynomial bound
could be proved for the length of winning strategies in domination games. We give a
negative answer to this question by exhibiting a class of graphs where two cops have
a winning strategy but only with an exponential number of steps. To the best of our
knowledge, this is the first type of graph search games for which such a lower bound
has been proved.

In terms of complexity, domination games are also much harder than standard cops
and robber games. In particular, we show that deciding if two cops have a (non-
monotone) winning strategy is PSPACE-complete. Again, to the best of our knowledge,
this is the first type of graph searching games exhibiting this worst-case complexity.
This result is in sharp contrast to other variants of graph searching games on undirected
graphs, which often are in polynomial time for a fixed number of cops and often even
fixed-parameter tractable with the numbers of cops being the parameter. For mono-
tone strategies we also prove that it is NP-hard to decide whether two cops have a
monotone winning strategy in domination games. The complexity results are the focus
of Section 5.

Finally, we establish a relation between domination games and Robber and Marshal
games played on hypergraphs. Robber and Marshal games were introduced in [9] to
provide a game theoretical characterisation of hypertree-width. In particular, we show
that every Robber and Marshal game on a hypergraph can be translated into a domina-
tion game on an undirected graph and derive interesting consequences from this fact.

2 Preliminaries

We use standard notation from graph theory as can be found in, e.g., [5]. In particular,
we write V (G) for the vertex set of a graph G and E(G) for its edge set. All graphs
in this paper are simple and undirected and all graphs and hypergraphs are finite. Let
G be a graph and d ≥ 1. The (open) d-neighbourhood of a vertex v in G is NG

d (v) :=
{u : 0 < distG(u, v) ≤ d}, where distG(u, v) is the distance between u and v in G.
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The closed d-neighbourhood of v is NG
d [v] := NG

d (v) ∪ {v}. If X is a set, we define
NG

d [X ] :=
⋃

v∈X NG
d [v]. For the case d = 1, we omit the index d and e.g. write NG(v)

for NG
1 (v). Also, we omit the index G whenever G is clear from the context.

The notions of tree-width and path-width were introduced by Robertson and Sey-
mour as part of their work on graph minors. We refer to [3,5] for definitions and further
information. We write pw(G) for the path-width of a graph G and tw(G) for its tree-
width.

3 d-Domination Games

In this section we introduce d-domination games and present basic results.
A d-domination game on a graph G is played between two players, the cop and the

robber, where the goal of the cops is to capture the robber. At each step of the play,
the robber occupies a vertex of the graph and the cop player controls a finite number of
cops each occupying vertices. A play starts by the robber choosing an initial position. In
each step of the game, the cop either places a new cop on a vertex or removes an already
placed cop from the graph. Suppose X is the set of vertices currently occupied by the
cops and they want to place a new cop on vertex v. They first have to announce this to
the robber. The robber can then run away, but is not allowed to run through a vertex that
is in the d-neighbourhood of a vertex occupied by a cop, i.e. he can pick a new position
u anywhere on the graph as long as there is a path from his current position to u that
contains no vertex in Nd[X ].

After the robber has chosen his new position, the new cop is placed on v and the play
continues. The cops win a play if they can capture the robber, i.e. if they can place a
cop occupying or dominating the vertex occupied by the robber so that the robber is not
able to escape. If the robber can escape forever, he wins.

d-domination games are a variant of the well-known cops and robber games used
to characterise graph parameters such as tree-width or path-width (see e.g. [12]). The
difference is that in a cops and robber game, a cop only occupies his current position
but does not block the d-neighbourhood of this position.

We will distinguish between two variants of d-domination games, i.e. the visible
and invisible variant. In the visible case, the cops can see the robber and can adapt their
strategy accordingly. In the invisible case, the cops do not see the robber and hence have
to search the graph independently of the robbers current position. In this case, we are
essentially dealing with a one player game and in describing the game, we can discard
the robber positions. In both cases, the aim of the cop player is to capture the robber
using as few cops as possible. In this paper we primarily consider the invisible case
and will therefore present the relevant notation and definitions in terms of the invisible
domination game. We briefly comment on the visible case in Section 6.

In the invisible domination game, the cops have to capture the robber without be-
ing able to see him – and hence without being able to react to his actions. We can
therefore represent any cop strategy on a graph G in the invisible d-domination game
by a sequence S := (S1, . . . , Sn), where, for 1 ≤ i ≤ n, Si ⊆ V (G) is the cop
position after step i. With any strategy S := (S1, . . . , Sn) we associate the corre-
sponding sequence R0, . . . , Rn of robber spaces as follows: R0 := V (G) and for all
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i > 0, Ri := {v ∈ V (G) \ Nd[Si] : there is u ∈ Ri−1 and a path from u to v in
G \ Nd[Si−1 ∩ Si]}, where we take S0 := ∅. Hence, Ri is the set of vertices available
to the robber after i steps of the play. Vertices in V (G) \ Ri are called clear at stage i.

Definition 3.1. Let S := (S1, . . . , Sn) be a strategy and (R0, . . . , Rn) be the corre-
sponding robber spaces.
1. S is a winning strategy if it is finite and Rn = ∅.
2. The width w(S) of S is defined as w(S) := max{|Si| : 1 ≤ i ≤ n}.
3. The d-domination search number dsd(G) := min{w(S) : S is a winning strat-

egy on G} of G is the minimal number of cops required to win the invisible d-
domination game on G.

Clearly, every graph of order n can be searched by n cops. Hence dsd(G) is well-
defined. We next introduce a general construction that will be used frequently through-
out the paper. As a first application of this we show that questions about complexity and
monotonicity of d-domination games for d > 1 can be reduced to the corresponding
questions for the case of d = 1.

For k > 0, let Kk be the k-clique, i.e. the complete graph on k vertices. Further, if X
is a set, we write K[X ] for the complete graph with vertex set X . For each k > 0 and
d > 0, we define Sd

k as the graph (up to isomorphism) obtained from Kk by subdividing
each edge 2d times, i.e. replacing each edge by a path of length 2d + 1. We call Sd

k a
d-subdivided k-clique. Note that Sd

k contains more than k vertices but in the rest of the
paper the vertices in the paths replacing edges will usually not play a role. We say that
S is the d-subdivided clique over a set X if S is obtained from K[X ] by subdividing
each edge 2d times. We write Sd[X ] for this graph and call X the original vertices of
Sd[X ]. As before, we omit the indices in case d = 1. The following lemma, whose
proof is straightforward, will be used frequently in the sequel.

Lemma 3.2. For all k > 0 and d > 0, dsd(Sd
k) = k.

For a graph G, k > 0 and a function f : V (G) → 2V (G) we define the subdivided
k-clique graph of G, denoted by SC(G, k, f), to be the graph obtained from G by
1) replacing each vertex v ∈ V (G) by a disjoint copy of S1

k , denoted SC(v), and 2)
replacing each edge {u, v} ∈ E(G) by a perfect matching between the original vertices
in SC(u) and the original vertices in SC(v) and 3) for each v ∈ V (G) we add a new
vertex denoted c(v) so that {c(v) : v ∈ V (G)} induces a clique in SC(G, k, f) and
for each v ∈ V (G), SC(G, k, f) contains edges between c(v) and all vertices in every
SC(u) for u ∈ f(v).

Now it is easily seen that k cops have a winning strategy in the d-domination game
on G if, and only if, k cops have a winning strategy in the 1-domination game on
SC(G, k, NG

d []), where in addition they only play on the new extra vertices c(v), for
v ∈ V (G). The same holds for monotone winning strategies as defined in Section 4
below. Here, NG

d [] denotes the function f(v) := NG
d [v]. By setting k := |V (G)| we

obtain the following corollary.

Corollary 3.3. Fix d > 0. There is a polynomial time algorithm which constructs for
each graph G a graph G′ such that for all k > 0, k cops win the d-domination game
on G if, and only if, k cops win the 1-domination game on G′. The analogous statement
holds for monotone winning strategies.
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The converse direction is also true. By subdividing each edge 2d-times, we can con-
struct for each graph G a graph G′ so that k cops win the 1-domination game on G if,
and only if, k cops win the d-domination game on G′. This construction follows essen-
tially from [7] and also shows that the cops and robber game underlying tree-width can
be reduced to the 1-domination game. It follows that all questions concerning mono-
tonicity and complexity about d-domination games can be reduced to the case of d = 1.
We will therefore only consider this case in the sequel. As described in the introduc-
tion, this case was already studied under the name of domination games by Fomin et
al. [7]. We will therefore follow their terminology and refer to these games as dom-
ination games and write ds(G) for the minimal number of cops required to win the
domination game on a graph G.

4 Monotonicity of Domination Games

In this section we study monotone strategies of invisible domination games. In particu-
lar, we establish strong non-monotonicity results for common notions of monotonicity
– cop- and robber-monotonicity – in showing that in general more cops are needed to
catch a robber with a monotone strategy than with an unrestricted strategy and that the
ratio between the monotone and the non-monotone case is unbounded. We then con-
sider a third type of monotonicity specific to domination games.

Definition 4.1. Let S := (S1, . . . , Sn) be a strategy and (R0, . . . , Rn) be the corre-
sponding robber spaces (see Section 3).

1. S is robber-monotone, if Ri ⊇ Rj for all i < j.
2. S is cop-monotone if for all i < j < l and all v ∈ V (G), if v ∈ Si\Sj then v �∈ Sl.
3. The cop-monotonedomination search number is defined as c-ds(G) := min{w(S) :

S is a cop-monotone winning strategy on G}. The robber-monotone domination
search number r-ds(G) is defined analogously.

In a non-monotone strategy, a vertex v ∈ Rj \ Ri, for j > i, is called recontaminated.

Note that, unlike cops and robber games, in domination games cop-monotone strategies
might not be robber-monotone and vice versa. In [7], Stefan Dobrev exhibited an exam-
ple where three cops can win the domination game but four cops are needed to search
the graph using a monotone strategy. We now strengthen this result considerably by
showing that the ratio between the (robber- or cop-) monotone and the non-monotone
search numbers is unbounded.

Lemma 4.2. For every k > 2, there is a graph Gk such that ds(Gk)=2 but r-ds(Gk)=
c-ds(Gk) = k.

Proof. For k ∈ N we define Gk as follows. Let U := {u1, . . . , uk} be a set of size k.
For all permutations ρ of (1, . . . , k) and all 1 ≤ i ≤ k, let P ρ

i be a subdivided clique
on k vertices and let Hρ be the graph obtained from the disjoint union

⋃̇
iP

ρ
i of these

subdivided cliques by adding edges forming a perfect matching of the original vertices in
P ρ

i and P ρ
i+1, for 1 ≤ i < k. Then Gk is defined as K

[
X
]
∪̇
⋃̇

ρHρ augmented by edges
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a) Graph Gk from Lemma 4.2. b) Graph Gk from Lemma 4.3.

Fig. 1. Examples for non-monotonicity in domination games

{{vi, v} : v ∈ P ρ
ρ(i), 1 ≤ i ≤ k and ρ is a permutation of (1, . . . , k)}. The construction

is illustrated in Figure 1 a). Here, dashed lines represent edges from a vertex ui to all
vertices in a subdivided clique whereas solid lines represent actual edges.

It is easily seen that two cops can search Gk as follows: for each permutation ρ
of (1, . . . , k) they play Sρ := ({uρ(1), uρ(2)}, {uρ(2), uρ(3)}, . . . , {uρ(k−1), uρ(k)}),
i.e. they search the “path” Pρ by going through u1, . . . , uk using the ordering given by
ρ. As the only connection between Hρ and Hρ′ is through the vertices in U and these
form a clique, they can search the Hρ independently.

It remains to show that k− 1 cops do not have a cop-monotone or a robber-monotone
strategy on Gk. We can assume that the cops are only playing on the vertices inu1, · · · , uk

as otherwise they need at least k cops to clear a subdivided k-clique.
Suppose the cops start by occupying all but one vertex ui in U . Then in each Hρ,

the clique P ρ
ρ(i) is still contaminated. Furthermore, in the next step the cops have to

remove a cop from a vertex uj . But then, there is a permutation ρ such that ρ(i) and
ρ(j) are consecutive numbers and thus in Hρ the subdivided clique P ρ

ρ(j) becomes

recontaminated. This shows that the strategy is not robber-monotone. As P ρ
ρ(j) can only

be cleared again by playing on vj the strategy for the cops can not be cop-monotone.
This concludes the proof.

Considering again the example above exhibiting non-monotone strategies for the cops,
the main source for non-monotonicity appears to be that while clearing some parts of
the graph, the cops accidentally and unintentionally clear other parts of the graph also
– which later on they have to allow to be recontaminated. For instance, in the exam-
ple above, while clearing a sub-graph Hρ they also clear parts of other sub-graphs Hρ′

but in the wrong order. If we gave the cops the power to choose which vertices in the
neighbourhood of a cop they really want to dominate, then they could easily search
the graphs Gk with a robber- and cop-monotone strategy. We call this selective mono-
tonicity. It seems conceivable, thus, that such selective strategies are always sufficient,
i.e. whenever k cops can win in any form, they can do so with a selective monotone
strategy. Such a result would be extremely interesting as it would imply a linear up-
per bound for the length of minimal winning strategies for the cop player. This hope is
dashed, though, by the following theorem.
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Theorem 4.3. There exists a graph G with ds(G) = 2 but 3 cops are needed for any
selective monotone winning strategy.

Proof. The graph G is shown in Figure 1 b). Here, solid lines represent actual edges
whereas a dashed line such as between 3 and S3 indicates that there is an edge between
3 and every vertex in S3.

Now, ds(G) = 2 as witnessed by the following two strategies: S1 :=
(
{3, 2}, {2, 1},

{1, 0}, {0, 1′}, {1′, 2′}, {2′, 3′}
)

and S2 :=
(
{3′, 2′}, {2′, 1′}, {1′, 0}, {0, 1}, {1, 2},

{2, 3}
)
. Note that both strategies are not robber monotone. For instance, in S1 the ver-

tices in S1 are recontaminated in the step from {2, 1} to {1, 0} and similarly in the sym-
metric strategy S2. Further, observe that in order for these strategies to work, at each
step all neighbours of every vertex occupied by a cop need to be dominated. Hence,
none of the two strategies can be turned into a selective monotone strategy.

We claim that there is no selective monotone strategy with only two cops. For the
sake of contradiction let S be a selective monotone winning strategy with two cops
using a minimal number of steps. We first show that S cannot use any vertex other than
those in X := {3, 2, 1, 0, 1′, 2′, 3′}. For, if v ∈ Si or v ∈ Pi is occupied by a cop then
at the first step where this cop is lifted from v, v will be recontaminated unless it is
dominated by the other cop. Hence, placing a cop on v either can be avoided, as v is
dominated anyway, or it leads to non-monotonicity.

Thus, a selective monotone strategy with two cops essentially searches the path
3, 2, 1, 0, 1′, 2′, 3′. However, it is easily seen that a path of length 7 can be searched
in only two ways by two cops using a monotone strategy: left to right or right to left. If
follows that the only possible strategies are S1 or S2 and neither is selective monotone.
This yields the contradiction.

As argued above, an important aspect of monotonicity for a variant of graph search-
ing games is that in this way a bound on the maximal number of steps in a strategy
is obtained. As domination games are strongly non-monotone, no such bound can be
achieved using this approach. In Corollary 5.3 below we show that there exist graphs
such that the number of steps needed by a strategy in the domination game is exponen-
tial in the size of the graph and thus cannot be bounded bounded by a polynomial.

5 Complexity of Domination Games

In this section we study the complexity of deciding whether k cops have a (monotone)
winning strategy in the domination game on a graph G. We measure the complexity of
this problem in different ways – classically and in the context of parametrised complex-
ity. Let DOMINATION SEARCH be the problem of deciding for a given graph G and
k ∈ N whether k cops have a winning strategy on G. In [7], Fomin et al. study this
problem and show that it is NP-hard.

Theorem 5.1 ( [7]). DOMINATION SEARCH is NP-hard.

No upper bound for the complexity of the problem was given. We settle this problem
by giving precise complexity bounds for DOMINATION SEARCH.
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Theorem 5.2. DOMINATION SEARCH is PSPACE-complete. More precisely, we show
that even deciding whether two cops have a winning strategy on a graph is PSPACE-
complete.

In [7, Problem 7], Fomin et al. raise the question whether for every graph G there is a
winning strategy of length O(n) using ds(G) cops in the invisible domination search
game. As a consequence of the proof of the previous theorem we answer this question
negatively by showing that there exist graphs on which the number of steps needed by a
strategy in the domination game is at least exponential in the size of the graph and thus
can not be bounded bounded by a polynomial. Clearly, exponential length of strategies
is also the worst possible.

Corollary 5.3. There exists a family C of graphs such that two cops have a winning
strategy in the invisible domination game on each G ∈ C but any such strategy is at
least of exponential length, i.e. there is no polynomial p(n) so that the length of these
strategies is bounded by p(|G|).
We now consider the problem to decide for a given graph G whether k cops have a
monotone winning strategy in the invisible domination game, where we consider cop-
and selective-monotonicity. Clearly, as the length of monotone strategies is polynomi-
ally bounded in the size of the graph, these problems are necessarily in NP. We again
give tight complexity bounds by showing that even deciding whether two (or three,
respectively) cops have monotone winning strategies is NP-hard.

Theorem 5.4. Let G be a graph. Deciding whether two cops have a cop-monotone
winning strategy in the domination search game on G is NP-complete.

Theorem 5.5. Let G be a graph. Deciding whether three cops have a selective monotone
winning strategy in the domination game on G is NP-complete.

We do not know corresponding results for robber-monotone strategies and leave this as
an open problem.

The previous results settle the classical complexity of the domination game problem.
We now study the parametrised complexity of this problem. The parametrised domina-
tion search problem p-DOMINATION SEARCH is defined as the problem, given a graph
G and k ∈ N as input, to decide if k cops have a winning strategy in the invisible
domination game on G. We take k as the parameter. The problem is in the parametrised
complexity class XPif it can be solved in time |G|f(k) for some computable function
f : N → N. It is fixed-parameter tractable, or in FPT, if it can be solved in time
f(k) · |G|c, for some c ∈ N and computable f : N → N. The following is an immediate
consequence of Theorem 5.2, 5.4 and 5.5.

Corollary 5.6. p-DOMINATION SEARCH is not in XP. This holds true even for the cop-
or selective monotone version of the problem.

The previous results establish fixed-parameter intractability for domination games.
Hence, domination games are considerably more complex than standard cops and rob-
ber games, which are NP-complete and fixed-parameter tractable. The latter follows
from the parametrised tractability of tree-width and path-width and the monotonicity of
the games.
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We now turn to special cases where tractability can be obtained. A natural choice of
graph classes where the problem might be easier are classes of bounded tree- or path-
width. One is tempted to think that fixed-parameter tractability of domination search
on classes C of graphs of tree-width at most d could be established along the following
lines: given G ∈ C and k ∈ N, we first compute a tree-decomposition of G of width
d and then use dynamic programming to decide whether there is a winning strategy of
width k. This is the approach taken to show that the analogous questions for cops and
robber games (visible and invisible) can be solved by linear time parametrised algo-
rithms. Typically, one proceeds bottom-up along the tree-decomposition and for each
node in the decomposition tree one computes a constant size data structure containing
information about the sub-graph induced by the vertices in the sub-tree rooted at this
node. For domination games, however, this approach fails as a vertex in a bag can be
dominated by vertices not contained in this bag. The ways in which this happens can
be rather complex and hence a constant size data structure seems difficult to obtain. It
is still possible, though, that domination search is fpt on classes of bounded tree-width
and we leave this for future work.

We are, however, able to obtain parametrised algorithms for classes of graphs of
bounded degree (recall that the problem is already NP-hard on the class of graphs of
degree at most 3).

Lemma 5.7. For d > 0 let Cd be the class of graphs of maximum degree at most d. Then
the problem, given G ∈ Cd and k ∈ N, to decide whether k cops have a cop-monotone
winning strategy on G is fixed-parameter tractable with parameter d + k.

Furthermore, if k cops have a winning strategy on any G ∈ Cd, then at most dk + 1
cops have a cop- and a selective-monotone winning strategy.

6 Games on Hypergraphs and Visible Robbers

In this section we briefly explore the relation between domination games and Robber
and Marshal games on hypergraphs and comment on domination games with a visible
robber.

Robber and Marshal games, with a visible robber, have been introduced in [9] as
a game-theoretical approach to hypertree-width and have, since then, been studied in-
tensively. Essentially, a Robber and Marshal game is a Cops and Robber game on a
hypergraph where the robber occupies a vertex whereas each marshal (= cop) occupies
a hyperedge and blocks all vertices contained in it.

We will show next that every hypergraph game can be translated into a domination
game – in the visible and the invisible case. There is a small difference between the
Robber and Marshal game we use here and the original robber and marshal game in [9].
In the original game the marshals slide along edges in the sense that if a marshal moves
from hyperedge e to e′ then the vertices in e ∩ e′ remain blocked (an equivalent notion
for domination games could easily be defined). Here, we consider the variant of Robber
and Marshal games where only the vertices in edges on which a marshal remains are
blocked. It is easy to see that both variants are within a constant factor of each other.

Lemma 6.1. Let H be a hypergraph and k ≥ 1 be an integer. Then there exists a graph
Hdom

k+1 , such that k marshalls have a (marshal-/robber-monotone) winning strategy in
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the (visible) robber and marshals game on H , if and only if, k cops have a (cop-/robber-
monotone) winning strategy in the (visible) domination game on Hdom

k+1 and Hdom
k+1 can

be constructed from H in polynomial time.

The lemma allows us to translate Robber and Marshal games to domination games. It
follows immediately from Lemma 6.2 below that there is no translation in the converse
direction.

So far, we have primarily considered domination games with an invisible robber.
Here, we briefly summarise our knowledge of the visible case. Clearly, notions such as
monotonicity and the domination search number translate easily.

In [1], Adler showed that the visible robber and marshall game mentioned above
is not robber-monotone. Together with Lemma 6.1, this implies that the visible dom-
ination game is also not robber-monotone. However, the robber-monotone and non-
monotone variant of the visible robber and marshall Game are within a constant factor
of each other (see [2]). We show next that no such bound can be obtained for domination
games.

Lemma 6.2. For every k > 2, there is a graph Gk such that 2 cops have a non-
monotone but k cops are needed for a robber-monotone winning strategy in the visible
domination game on Gk.

Finally, we consider the complexity of visible domination games. In terms of classical
complexity, we can show the following.

Theorem 6.3. Let G be a graph. Deciding whether three cops have a selective monotone
winning strategy in the visible domination game on G is NP-complete.

It is easily seen that all visible game variants except for the selective monotone variant
are in XP, as the current cop and robber position completely determine the current state
of the play and there are only nO(k) such positions. We show next that the problem is
not in FPTunless FPT=W[2].

As observed in [7], domination search is closely related to dominating sets in graphs.
A dominating set of a graph G is a set X such that for all v ∈ V (G) either v ∈ X or
there is a u ∈ X such that {u, v} ∈ E(G). The domination number of G, denoted by
γ(G), is the minimal size of a dominating set of G.

Lemma 6.4 ( [7]). Let G be a graph and H be the graph obtained from G by connect-
ing every pair of non-adjacent vertices in G by a path of length three. Then γ(G) ≤
ds(H) ≤ γ(G) + 1.

We establish a similar but exact correspondence using a slightly different construction.

Theorem 6.5. For all graphs G, there exists a graph G′ such that γ(G) + 1 = ds(G′)
and G′ is constructable in polynomial time.

The theorem immediately gives a parametrised reduction from the dominating set prob-
lem, parametrised by the size of the solution, to the domination search problem,
parametrised by the number k of cops. The following result follows from the W[2]-
hardness of the dominating set problem, where W[2]is a parametrised complexity class
strongly believed to be different from FPT.
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Theorem 6.6. The problem p-DOMINATION SEARCH: “given a graph G and k ∈ N,
with parameter k, decide whether k cops have a winning strategy in the (in-)visible
domination game on G” is W[2]-hard.

However, Lemma 5.7 also applies to the visible case and thus calculating the visible
domination search number for graphs of bounded degree is fixed-parameter tractable.
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Abstract. For n ∈ N and D ⊆ N, the distance graph P D
n has vertex set

{0, 1, . . . , n−1} and edge set {ij | 0 ≤ i, j ≤ n−1, |j− i| ∈ D}. The class
of distance graphs generalizes the important and very well-studied class
of circulant graphs which have been proposed for numerous applications
concerning networks, distributed systems and chip design.

We prove that the class of circulant graphs coincides with the class
of regular distance graphs. Extending some of the fundamental results
concerning circulant graphs, we study the existence of long cycles and
paths in distance graphs and analyse the computational complexity of
problems related to their connectivity and diameter.

Keywords: Circulant graph; distance graph; multiple loop networks;
connectivity; diameter; Hamiltonian cycle; Hamiltonian path.

1 Introduction

Circulant graphs form an important and very well-studied class of graph [1, 12,
13, 16, 18]. They are Cayley graphs of cyclic groups and have been proposed for
numerous applications such as local area computer networks, large area com-
munication networks, parallel processing architectures, distributed computing,
and VLSI design. Their connectivity and diameter [2, 1, 12, 13], cycle and path
structure, and further graph-theoretical properties [3, 11,22] have been studied
in great detail. Polynomial time algorithms for isomorphism testing and recog-
nition of circulant graphs have been long-standing open problems which were
completely solved only recently [5,8, 17].

For n ∈ N and D ⊆ N, the circulant graph CD
n has vertex set [0, n − 1] =

{0, 1, . . . , n− 1} and the neighbourhood NCD
n

(i) of a vertex i ∈ [0, n− 1] in CD
n

is given by

NCD
n

(i) = {(i + d) mod n | d ∈ D} ∪ {(i − d) mod n | d ∈ D}.

C. Paul and M. Habib (Eds.): WG 2009, LNCS 5911, pp. 320–328, 2010.
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Clearly, we may assume max(D) ≤ n
2 for every circulant graph CD

n .
Our goal here is to extend some of the fundamental results concerning circu-

lant graphs to the similarly defined yet more general class of distance graphs:
For n ∈ N and D ⊆ N, the distance graph PD

n has vertex set [0, n − 1] and

NP D
n

(i) = {i + d | d ∈ D and (i + d) ∈ [0, n − 1]}
∪{i − d | d ∈ D and (i − d) ∈ [0, n − 1]}

for all i ∈ [0, n− 1]. Clearly, we may assume max(D) ≤ n− 1 for every distance
graph PD

n .
Every distance graph PD

n is an induced subgraph of the circulant graph
CD

n+max(D). More specifically, distance graphs are the subgraphs of sufficiently
large circulant graphs induced by sets of consecutive vertices. Conversely, the fol-
lowing simple observation shows that every circulant graph is in fact a distance
graph.

Proposition 1. A graph is a circulant graph if and only if it is a regular distance
graph.

Proof: Clearly, every circulant graph CD
n is regular and isomorphic to the distance

graph PD′
n for D′ = D ∪ {n − d | d ∈ D}.

Now let PD
n be a regular distance graph. Let D = {d1, d2, . . . , dk} with d1 <

d2 < . . . < dk ≤ n − 1. Since the vertex 0 has exactly k neighbours D, PD
n is

k-regular.
Let i ∈ [1, k]. The vertex di −1 has exactly i−1 neighbours j with j < di −1.

Hence di − 1 has exactly k + 1 − i neighbours j with j > di − 1 which implies
(di − 1) + dk+1−i ≤ n− 1. The vertex di has exactly i neighbours j with j < di.
Hence di has exactly k− i neighbours j with j > di which implies di + dk+1−i >
n − 1.

We obtain di + dk+1−i = n for every i ∈ [1, k] which immediately implies that
PD

n is isomorphic to the circulant graph CD′
n for D′ = {d ∈ D | d ≤ n

2 }. �

Distance graphs lack the symmetry and algebraic interpretation of circulant
graphs and the algebraic methods used in [8,17] will not apply to them. In view
of Proposition 1, the recognition of distance graphs will be at least as difficult as
the recognition of circulant graphs. Originally motivated by coloring problems
for infinite distance graphs studied by Eggleton, Erdős, and Skilton [7], most
research on distance graphs focused on colorings (cf. eg. [6, 14,21]).

One of the most fundamental results for circulant graphs is the following
beautiful equivalence.

Theorem 1 (Boesch and Tindell [2], Burkard and Sandholzer [4],
Garfinkel [9]). For n ∈ N and a finite set D ⊆ N, the following statements
are equivalent.

(i) CD
n is connected.

(ii) The greatest common divisor gcd({n}∪D) of the integers in {n}∪D equals 1.
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(iii) CD
n has a Hamiltonian cycle.

Our contributions split into two parts. In the first part, we establish an analogue
of the above equivalence for distance graphs. While connectivity and hamiltonic-
ity of circulants are equivalent to a simple necessary gcd-condition, we prove
that a similar condition for distance graphs only ensures the existence of a large
component and a long cycle. We also discuss consequences and variants of our
result. In the second part, we study the complexity of various connectivity and
distance problems for distance graphs. Whereas deciding the connectivity of cir-
culants only requires a simple gcd-computation, several related problems become
hard for distance graphs.

2 Cycles and Paths in Distance Graphs

We immediately proceed to our main result in this section. The residue of an
integer n ∈ Z modulo d ∈ N will be denoted by n mod d.

Theorem 2. For a finite set D ⊆ N, the following statements are equivalent.

(i) There is a constant c1(D) such that for every n ∈ N, the distance graph
PD

n has a component of order at least n − c1(D).
(ii) gcd(D) = 1.
(iii) There is a constant c2(D) such that for every n ∈ N, the distance graph

PD
n has a cycle of order at least n − c2(D).

Proof (i) ⇒ (ii): Let n be such that n is even and n > 2c1(D). By (i), more than
half the vertices are in the same component of PD

n . By the pigeonhole principle,
there is some i ∈ [0, n − 2] such that the two vertices i and i + 1 are in the
same component of PD

n . This implies that there is a path in PD
n from i to i + 1.

Hence 1 is an integral linear combination of the elements in D. It is a well-known
consequence of the Euclidean algorithm that this is equivalent to (ii).

(ii) ⇒ (iii): The essential idea in order to obtain a cycle which contains almost all
vertices of PD

n is to use increasing and decreasing paths which only use edges uv
such that v−u is one fixed element d∗ of D. Because the vertices on these paths
always remain in the same residue class modulo d∗, such paths can be overlayed
without intersecting. In order to connect these paths to a cycle, we use short
paths which are close to 0 or n−1 and whose end vertices are in different residue
classes modulo d∗. In this way the cycle can collect all vertices of PD

n in some
middle section and only misses vertices close to 0 or n − 1 in terms of D (cf.
Figure 1).

Due to space limitations, we will only discuss the case that max(D) is even
in detail.

In view of the constant c2(D) in (iii), we may tacitly assume in the following
that n is sufficiently large in terms of D.

Let dmax = max(D) and D− = D \ {dmax}. Since gcd(D) = 1, 1 is an
integral linear combination of the elements of D. Hence there are integers nd
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for d ∈ D− such that 1 =

( ∑
d∈D−

ndd

)
mod dmax. This implies the existence

of a path P : v0v1 . . . vk in PD
n such that vi − vi−1 ∈ D− for all i ∈ [1, k] and

{vi mod dmax | i ∈ [0, k]} = [0, dmax − 1], i.e. P is a monotonously increasing
path which only uses edges uv with v−u ∈ D− and contains a vertex from every
residue class modulo dmax.

We assume that P is chosen so as to be shortest possible. This implies that
the residues modulo dmax of the vertices v0 and vk appear exactly once on
P . Let r1, r2, . . . , rdmax denote the residues modulo dmax in the order in which
they appear for the first time when traversing P from v0 to vl. Clearly, r1 =
v0 mod dmax, r2 = v1 mod dmax, and rdmax = vk mod dmax. Furthermore, P
is the concatenation of (dmax − 1) edge-disjoint paths P = P1P2 . . . Pdmax−1
such that for i ∈ [1, dmax − 1], the path Pi begins at the smallest vertex vj

on P with ri = vj mod dmax and ends at the smallest vertex vj′ on P with
ri+1 = vj′ mod dmax; let li = vj′ − vj for these indices. By the choice of P ,
for i ∈ [1, dmax − 1], all internal vertices of Pi have residues modulo dmax in
{rj | 2 ≤ j ≤ i − 1}. Let l = l1 + l2 + . . . + ldmax−1. Note that l = vk − v0.

We now describe a long cycle C in PD
n . The general structure of C is illustrated

in Figure 1. For simplicity we will first assume that dmax is even.
Let i0 be the smallest integer at least (dmax + l2)+ (dmax + l4)+ . . .+(dmax +

ldmax−2)+(dmax+l) of residue r1 modulo dmax. Furthermore, let i′1 be the largest
integer at most (n− 1)− l1 − (dmax + l3)− (dmax + l5)− . . .− (dmax + ldmax−1) of
residue r1 modulo dmax. (Note that i0 has to be chosen large enough in order to
fit the paths P2, P4, . . . , Pdmax−2 and a path P ′ of length at most l - all starting
at vertices with a specified residue - within [0, i0] as illustrated in Figure 1. A
similar reasoning motivates the choice of i′1.)

We start C with an increasing path Q1 only using edges uv with v−u = dmax
which begins at i0 and ends at i′1. We continue C with P1 shifted by a multiple
of dmax such that it begins at i′1 and ends at a vertex i1.
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For j from 1 up to dmax
2 − 1, we proceed as follows: We assume that we have

already constructed C until the end of a shifted path P2j−1 which ends at a
vertex i2j−1. We continue C with a decreasing path Q2j which only uses edges
uv with v−u = dmax and ends at the largest integer i2j at most i2j−2 − l2j with
residue r2j modulo dmax. We continue C with P2j shifted by a multiple of dmax
such that it begins at i2j . We continue C with an increasing path Q2j+1 which
only uses edges uv with v − u = dmax and ends at the smallest integer i′2j+1 at
least i2j−1 with residue r2j+1 modulo dmax. We continue C with P2j+1 shifted
by a multiple of dmax such that it begins at i′2j+1 and ends at a vertex i2j+1. At
this point, we increase j until it reaches dmax

2 − 1.
To complete C, we may assume now that we have already constructed C until

the end of the shifted path Pdmax−1 which ends at a vertex idmax−1. We continue
C with a decreasing path Qdmax which only uses edges uv with v−u = dmax and
ends at the largest integer idmax at most idmax−2 − l with residue rdmax modulo
dmax.

Let P ′ : u0u1 . . . uk′ be a path in PD
n such that u0 = idmax , ui − ui−1 ∈ D−

for all i ∈ [1, k′], r1 = uk′ mod dmax, and l′ = uk′ − u0 is minimum possible.
Clearly, l′ ≤ l. Furthermore, no internal vertex of P ′ has residue rmax modulo
dmax. We continue C with P ′. Finally, we complete C with an increasing path
which only uses edges uv with v − u = dmax, begins at uk′ and ends at i0.

At this point we have completely described C as the concatenation of paths.
Clearly, the choices of i0 and i′1 imply that C never leaves [0, n− 1], i.e. C is in
fact a closed walk within PD

n . In order to show that C is a cycle, it remains to
prove that it visits no vertex twice. This follows easily from the facts that

– the vertices on Qi all have residue ri modulo dmax for all i ∈ [1, dmax],
– the end vertices of the shifted paths Pi are the first vertices on C - traversed

as constructed above - which have residue ri+1 modulo dmax for all i ∈
[1, dmax − 1],

– all internal vertices of Pi have residues modulo dmax in {rj | 2 ≤ j ≤ i − 1}
for all i ∈ [1, dmax − 1], and

– no internal vertex of P ′ has residue rmax modulo dmax.

Since C contains all vertices between i0 and i′1, it misses at most 2dmax + l1 +
(dmax + l2) + . . . + (dmax + ldmax−1) + (dmax + l) = dmax(dmax + 1) + 2l many
vertices of PD

n . Since this expression is bounded in terms of D, the proof of (iii)
in the case that dmax is even is complete.

In the case that dmax is odd a very similar construction with a small modifi-
cation yields a long cycle.

(iii) ⇒ (i): Since this implication is trivial, the proof is complete. �

We add some comments concerning Theorem 2.
It is easy to see that a distance graph PD

n with gcd(D) = 1 and n ≥
2 max(D)+ 1 is actually connected. Therefore, the constant c1(D) in (i) of The-
orem 2 can be eliminated for sufficiently large n. For (iii) in Theorem 2, a similar
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change is not possible, i.e. no lower bound on the order n would imply that PD
n

has a Hamiltonian cycle. If n as well as all elements of D are odd for instance,
then PD

n is bipartite and every cycle misses at least one vertex. In this sense,
Theorem 2 is best-possible.

As observed in the proof of Theorem 2, there are integers nd for d ∈ D− with 1 =( ∑
d∈D−

(nd mod dmax) d

)
mod dmax.Repeating the path corresponding to the last

sum dmax − 1 times yields a monotonously increasing path which contains ver-
tices of all residues modulo dmax. This implies l ≤ (dmax − 1)

∑
d∈D−

(nd mod dmax)

d ≤ O
(
d3
max|D|

)
for the value l considered in the proof of Theorem 2 and yields

the estimate c2(D) = O
(
max(D)2 + l

)
= O

(
max(D)3|D|

)
.

Theorem 2 (iii) trivially implies the existence of a path of order at least
n − c2(D) which traverses [0, n − 1] several times back and forth just like the
cycle does. We believe that there is also always a path containing almost all
vertices of PD

n which is essentially monotonic, i.e. it traverses [0, n − 1] once.
The following conjecture makes this precise.

Conjecture 1. For a finite set D ⊆ N, the following statements are equivalent.

(i) gcd(D) = 1.
(ii) There are two constants c3(D) and c4(D) such that for every n ∈ N, the

distance graph PD
n has a path u0u1 . . . ul of order at least n − c3(D) such

that uj > ui for all 0 ≤ i, j ≤ l with j − i ≥ c4(D).

A simple modification of the construction used in the proof of Theorem 2 implies
the following weak version of Conjecture 1.

Theorem 3. If D ⊆ N is a finite set with gcd(D) = 1 and ε > 0, then there
are constants c5(D, ε) and c6(D, ε) such that for every n ∈ N, the distance graph
PD

n has a path u0u1 . . . ul of order at least (1 − ε)n − c5(D, ε) such that uj > ui

for all 0 ≤ i, j ≤ l with j − i ≥ c6(D, ε).

Note that Conjecture 1 is trivial, if D contains only one element. If D contains
exactly two elements, then Conjecture 1 easily follows from the following result.

Proposition 2. If d1, d2 ∈ N are such that d1 > d2 and gcd({d1, d2}) = 1, then
P

{d1,d2}
d1+d2+1 has a Hamiltonian path which begins at 0 and ends at d1 + d2.

3 Connectivity and Diameter in Distance Graphs

The most fundamental connectivity problem for distance graphs is the following.

Connectivity of PD
n

Instance: n ∈ N and D ⊆ N.
Question: Is PD

n connected?

We have not been able to determine the complexity of Connectivity of PD
n

and pose the following conjecture.
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Conjecture 2. Connectivity of PD
n is NP-hard.

Clearly, PD
n is connected if and only if for every i ∈ [0, n − 2], there is a path

in PD
n from i to i + 1. Equivalently, for every i ∈ [0, n − 2], there are integers

x1, x2, . . . , xl such that

|xi| ∈ D for all i ∈ [1, l], (1)

1 =
l∑

j=1

xj , and (2)

i +
k∑

j=1

xj ∈ [0, n − 1] for all k ∈ [0, l]. (3)

It is a well-known consequence of the Euclidean Algorithm that 1 is an integral
linear combination of the elements of D if and only if gcd(D) = 1. Hence the
existence of integers xi which satisfy (1) and (2) can be decided in polynomial
time. Unfortunately, these integers are by far not unique. Furthermore, given
integers xi which satisfy (1) and (2), deciding the existence of an ordering of
them which satisfies (3) is in general a hard problem as we show next.

Bounded Partial Sums

Instance: x0, x1, x2, . . . , xl ∈ Z and n ∈ N.
Question: Is there a permutation π ∈ Sl such that

x0 +
k∑

j=1
xπ(j) ∈ [0, n − 1] for all k ∈ [0, l]?

Proposition 3. Bounded Partial Sums is NP-complete.

Proof: Clearly, Bounded Partial Sums is in NP. We will reduce the classical
NP-complete problem Partition to Bounded Partial Sums. In order to re-
late to the preceding discussion we will reduce to instances of Bounded Partial

Sums which satisfy (2). Let x1, x2, . . . , xl−2 ∈ N be an instance of Partition.

Let X =
l−2∑
i=1

xi.

Let x0 = 0, xl−1 = −X , xl = −X + 1, and n = X + 1. It is easy to see that
the instance x1, x2, . . . , xl−2 of Partition is “yes”-instance if and only if the
instance of Bounded Partial Sums defined by x0, 2x1, 2x2, . . . , 2xl−2, xl−1, xl

and n is a “yes”-instance. This completes the proof. �

Clearly, if |D| = 1, then PD
n is connected if and only if D = {1}. Already

for |D| = 2, the following characterization of the pairs (n, D) for which PD
n is

connected is not simple.

Theorem 4. Let n, d1, d2 ∈ N be such that d1 < d2. For i ∈ [0, d1 − 1], let
ri = (id2) mod d1 and si = (n−1−ri) mod d1. Furthermore, for i∗ ∈ [1, d1−1],
let

d+
i∗ = max {ri | i ∈ [0, i∗ − 1]} and

d−i∗ = max
{
s−i mod d1

| i ∈ [0, d1 − i∗ − 1]
}

.
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Finally, let d∗ = max
i∗∈[1,d1−1]

min{d+
i∗ , d

−
i∗}.

P
{d1,d2}
n is connected if and only if gcd({d1, d2}) = 1 and d∗ + d2 ≤ n − 1.

While deciding connectivity is easy for circulant graphs, the exact calculation
and minimization of the diameter of CD

n are difficult and well-studied problems
even for the case |D| = 2 [1,12,13]. Many of the general upper and lower bounds
on the diameter of circulant graphs easily generalize to distance graphs. The
arguments used by Wong and Coppersmith [23] to obtain their classical estimates
(cf. Theorems 4.6 and 4.7 in [12]) imply

diam
(
PD

n

)
≥ 1

2
(|D|!n)

1
|D| − |D| and

diam
(
P

{1,d,...,dk−1}
dk

)
≤ k(d − 1).

For our final hardness result, we consider the following decision problem which
closely relates to the diameter of distance graphs.

Short Path in PD
n

Instance: n ∈ N, D ⊆ N and l ∈ N.
Question: Is there some u ∈ [0, n− 2] such that PD

n contains a path of
length at most l between u and u + 1?

The hardness of Bounded Partial Sums implies that an encoding of a cer-
tificate for a “yes”-instance of Short Path in PD

n which can be checked in
polynomial time would most likely have to use at least Ω (l) bits which would
not be polynomially bounded in the encoding length of the triple (n, D, l).

The construction used in the proof of the following result is inspired by van
Emde Boas’s proof [20] that Weak Partition is NP-complete.

Theorem 5. Short Path in PD
n is NP-hard.

As a final remark, we note that the existence of a monotonic path between two
vertices of PD

n is equivalent to the feasibility of an integer linear program in |D|
dimensions which can be decided in polynomial time for bounded |D| [15].
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vol. 2573, pp. 413–420. Springer, Heidelberg (2002)

23. Wong, C.K., Coppersmith, D.: A combinatorial problem related to multimode
memory organizations. J. ACM 21, 392–402 (1974)



Smallest Odd Holes in Claw-Free Graphs
(Extended Abstract)
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Abstract. In this paper, we give general structure properties of a small-
est odd hole in a claw-free graph that lead to a polynomial time algo-
rithm. The algorithm is based on a modified BFS we call Γ -BFS. For a
graph G with n vertices and m edges, the time complexity of the algo-
rithm is O(nm2). The algorithm is very easy to implement. We conclude
the paper with a suggestion for an extension of our approach in order to
detect an odd hole in a general graph.

Keywords: claw-free graphs, triangle-free graphs, odd holes, holes, poly-
nomial time algorithms.

1 Introduction

Throughout this paper we consider simple finite undirected graphs with n ver-
tices and m edges, no loops and no multiple edges.

Let G be a graph and let v0, v1, . . . , vk−1 be a sequence of k distinct vertices
such that there is an edge from vi to v(i+1) mod k (for all i = 0, . . . , k−1), and no
other edge between any two of these vertices; we say that this is a chordless cycle
on k vertices. A hole is a chordless cycle on five or more vertices; an antihole is
the complement of a hole. The chordless cycle of length k is denoted by Ck; in
particular, C5 is the chordless cycle on 5 vertices. A graph G is Ck-free, for any
k, when it does not contain Ck as an induced subgraph.

The chromatic number of a graph G, denoted by χ(G), is the minimum num-
ber of colors needed to color the vertices of G in such a way that no two adjacent
vertices receive the same color. Clearly, χ(G) is bounded from below by the size
of a largest clique in G, denoted by ω(G). In 1960, Berge introduced the notion
of a perfect graph. A graph G is perfect if for every induced subgraph H of G,
χ(H) = ω(H).

It is easy to see that odd holes and odd antiholes are not perfect. Berge
[1] conjectured that these are the only minimal imperfect graphs, i.e., a graph
is perfect if and only if it does not contain an odd hole nor an odd antihole.
When we say that a graph G contains a graph H , we mean as an induced
subgraph. Berge’s conjecture was known as the Strong Perfect Graph Conjecture
(SPGC), which was proved by Chudnovsky et al.[3]. Thus, efficient algorithms for
detecting induced holes or antiholes on an odd number of vertices will imply fast
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recognition of perfect graphs; the currently fastest algorithms for these problems
run in O(n9) time [4,7].

Chvátal and Sbihi [6] showed a polynomial-time algorithm to recognize claw-
free perfect graphs. The algorithm is based on a decomposition theorem of the
structure of these graphs.

Nikolopoulos and Palios [13] presented two algorithms, one for the detection
of holes and another for the detection of antiholes in arbitrary graphs. Both
algorithms run in O(n+m2) time and require O(nm) space. Thus, they provide
a solution to the open problem posed by Hayward, Spinrad and Sritharan in [12].
They generalized their approach so that, for a fixed constant k ≥ 5, they obtain
an O(nk−1)-time algorithm for the detection of a hole (antihole, respectively)
on at least k vertices. Additionally, they describe a different approach to detect
antiholes on graphs that do not contain chordless cycles on 5 vertices in O(n+m2)
time requiring O(n + m) space. Again, for a fixed constant k ≥ 6, the approach
can be extended to yield O(nk−2)-time and O(n2)-space algorithms for detecting
holes (antiholes, respectively) on at least k vertices in graphs which do not
contain holes (antiholes, respectively) on k − 1 vertices.

The problem of determining whether a given graph on n vertices and m edges
contains a chordless cycle of k or more vertices, for some fixed value of k ≥ 4, was
originally solved in O(nk) time (Hayward [11]). Spinrad [16] reduced the time
complexity of the problem to O(nk−3M), where M � n2.376 is the time required
to multiply two n × n matrices. Note that the problem of determining whether
a graph contains a chordless cycle of four or more vertices, i.e., the well-known
chordal graph recognition problem, can be solved in O(n + m) time [9,14,18].

Holes and antiholes have been extensively studied in many different contexts
in algorithmic graph theory. A typical example is that of the weakly chordal
graphs (also known as weakly triangulated graphs) [9,10], which contain neither
holes nor antiholes.

The algorithms of Hayward [11] and Spinrad [16] can be used for the recogni-
tion of weakly chordal graphs in O(n5) and O(n4.376) time, respectively. Further
progress on the weakly chordal graph recognition problem includes the O(n4) time
and O(nm) space algorithm ofSpinrad and Sritharan [17], and the O(m2) time and
O(n + m) space algorithms of Hayward, Spinrad and Sritharan [12] and of Berry,
Bordat and Heggernes [2]. It is interesting to note that the algorithm of Hayward
et al. [12] produces a hole or an antihole certificate whenever the given graph is
not weakly chordal. In the same paper, the authors posed as an open problem the
designing of an O(n4) algorithm to find a hole in an arbitrary graph.

The detection of odd length holes and antiholes appears to be a much more dif-
ficult problem, see also [15]. It is this area which we address in this paper. In this
paper, we present an algorithm to detect a smallest odd hole in claw-free graphs.

2 Preliminaries

Let G = (V, E) be a simple finite undirected graph with no loops and no multiple
edges. The length of a path is the number of its edges. We denote a subpath
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pipi+1 . . . pj of a path P by Pi,j . The chordless cycle of length k is denoted by
Ck. A hole is a chordless cycle of five or more vertices. The hole of length k is
also denoted by Hk.

From now on, when we use the phrase hole, we will assume that its vertices are
ordered clockwise. Let H = u0u1 . . . uk−1u0 be a hole in a graph G with vertices
ordered clockwise. The arc Ai,j is the path going around clockwise from ui to
uj, i.e., Ai,j is the path uiui+1ui+2 . . . uj and Aj,i is the path ujuj+1uj+2 . . . ui.
Let H be an odd hole, then with respect to ui and uj, the path with the shorter
length among Ai,j and Aj,i is called the short arc and the path with the longer
length is called the long arc. An arc Ai,i of length 0 is called a trivial arc. Let
(ui, ui+1), (uj , uj+1) ∈ E(H) we define the arcs between (ui, ui+1) and (uj , uj+1)
to be Ai+1,j and Aj+1,i. Furthermore, if H is an odd hole then, with respect to
(i, i + 1) and (j, j + 1), H contains one arc with shorter length, called the short
arc and the path with the longer length is called the long arc. An arc Ai,i of
length 0 is called a trivial arc.

A claw is the graph consisting of vertices w, x, y, z and only the edges (w, x),
(w, y), (w, z). Seymour and Chudnovsky [5] have found a complete description of
claw-free graphs. They prove that all claw-free graphs are constructed starting
from line graphs, circular interval graphs, subgraphs of the Schläfli graph, and
a few other basic graphs, by piecing them together in prescribed ways.

3 Tents

Definition 1. Let H be a hole in a graph G. A vertex v is called a tent of H if
v has four consecutive neighbors on H. Two tents v and w are called isomorphic
tents if they share the same neighbors on H.

Property 2. Let H be a hole in a (claw,H5)-free graph G, let v /∈ V (H) and
let n be the number of neighbors of v on H. Then:

1. Either n = 0 or 2 ≤ n ≤ 4.
2. If n = 2 (n = 3) then the neighbors of v on H lie consecutively on a P2 (P3).
3. If n = 4 and H is a smallest odd hole in G, then the neighbors of v on H lie

consecutively on a P4.

Corollary 3. Let H be a smallest odd hole in a (claw,H5)-free graph G, let
v /∈ V (H), v has neighbors on H and let n be the number of neighbors of v on
H. Then the neighbors of v on H lie consecutively on a Pn, 2 ≤ n ≤ 4.

Lemma 4. Let H be a smallest odd hole in a (claw,H5)-free graph G, and let t1
and t2 be tents of H. Then all the neighbors of t1 and t2 on H lie consecutively
on at most a P6.

Corollary 5. Let H be a smallest odd hole in a (claw,H5)-free graph G. Then
all the tents of H have at least two common neighbors on H, and H has at most
three tents that are pairwise non-isomorphic.
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4 Edge-Path with Respect to a Hole

In this section we lay the foundations of the paper. First we define and charac-
terize an edge-path with respect to a hole (edge-path in short) and the corre-
sponding arc of an edge-path. Then we conclude that there are only two types
of edge-paths.

Definition 6. Let H = H2r+1 = u0u1 . . . u2ru0 be an odd hole in a graph G
and let α = (ui, ui+1), β = (uj , uj+1). W.l.o.g., from now on we may assume
that Ai+1,j is the short arc between α and β on H and Aj+1,i is the long arc
between α and β on H. We say that a path P = p0p1 . . . pl−1pl is an edge-path
with respect to H of length l from a source α to a target β if all the following
conditions are satisfied:

1. P is a simple chordless path.
2. |P | ≤ |Ai+1,j | < |Aj+1,i|.
3. p0 is one of ui, ui+1 and pl is one of uj , uj+1, such that:

If p0 = ui+1 then (ui, px) /∈ E(G) for every 1 ≤ x ≤ l.
If p0 = ui then (ui+1, px) /∈ E(G) for every 1 ≤ x ≤ l.
If pl = uj then (uj+1, py) /∈ E(G) for every 0 ≤ y ≤ l − 1.
If pl = uj+1 then (uj , py) /∈ E(G) for every 0 ≤ y ≤ l − 1.

4. Let P ′ ⊆ P be the set of the inner vertices of P that have neighbors on
H, then P ′ has neighbors only on the long arc between α and β or P ′ has
neighbors only on the short arc between α and β, but not on both.

5. From all the paths that satisfy 1-4, we choose P to be with minimal length.

Definition 7. Let H be a hole in a graph G. Let P = p0p1 . . . pl be an edge-path
with respect to H from a source α = (ui, ui+1) to a target β = (uj , uj+1). We
say that an arc A between α and β is the corresponding arc of P on H, denoted
by AP , if the neighbors of P1,l−1 on H lie on A. The other arc between α and β
on H is denoted by AP .

Property 8. Let H = H2r+1 = u0u1 . . . u2ru0 be a smallest odd hole in a graph
G. Let P = p0p1 . . . pl be an edge-path with respect to H from a source α =
(ui, ui+1) to a target β = (uj , uj+1). Then:

1. P does not start at p0 = ui and end at pl = uj.
2. P does not start at p0 = ui+1 and end at pl = uj+1.
3. There can be only the following two types of edge-paths with respect to H

between α and β:
Type 1 The edge-path starts at p0 = ui+1 and ends at pl = uj. The neigh-

bors of P1,l−1 on H lie on the short arc between α and β.
Type 2 The edge-path starts at p0 = ui and ends at pl = uj+1. The neigh-

bors of P1,l−1 on H lie on the long arc between α and β.
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Fig. 1. Two types of edge-paths

In Figure 1 there are examples of edge paths. In Type 1 there are two edge-paths with
the same length. One of them is the short arc between α and β. The length of the
edge-path of Type 2 is smaller than the length of the long arc. In order to detect an
odd hole, we need to avoid ”walking” on edge paths shorter than the arcs.

5 Shortcuts of a Hole

This is the main theoretical section of the paper. Here we define a shortcut and
a minimal shortcut of a hole. It can be prove that the length of a shortcut is
smaller by 1 than its corresponding arc and we present important properties of
the structure of a minimal shortcut. We conclude with Theorem 20, which is the
main theorem of the paper. Furthermore, the theorem is the main foundation of
the algorithm for detecting a smallest odd hole in a claw-free graph in following
sections.

Throughout this section we consider H = H2r+1 = u0u1 . . . u2ru0 to be a
smallest odd hole in a (claw,H5)-free graph G.

Definition 9. Let S be an edge-path with respect to H from a source α = (ui, ui+1)
to a target β = (uj, uj+1). We say that S is a shortcut of H if |S| < |AS |. From
now on we consider S to be a shortcut of H from a α to β.

Note that, by Definition 6.2 |S| ≤ |Ai+1,j | < |Aj+1,i|.

Definition 10. Consider the set of all shortcuts of H. We say that α ∈ E(G)
has no shortcut if there is no shortcut of H such that α is the source. We say
that α has no shortcut of Type i, i = 1, 2, if there is no shortcut of Type i of H
such that α is the source.

Definition 11. Let S be a shortcut of H from a source α = (ui, ui+1) to a
target β = (uj , uj+1). We say that S′ is a minimal shortcut obtained from S if
the following conditions hold:
1. S′ is a shortcut of H (not necessarily from α to β). 2. S′ contains a minimum
number of vertices from S. 3. Only the two end points of S′ are in V(H).

Note that, in the trivial case S′ = S. In Figure 2 on page 334 the minimal
shortcuts are in bold and with the following details. (1) |S| = 5, |AS | = 6,
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Fig. 2. Minimal Shortcuts

S′ = ui−1s2s3uj+2 is a minimal shortcut of H from (uj+1, uj+2) to (ui−1, ui) of
length 3 and |Aj+2,i−1| = 4. (2) |S| = 4, |AS | = 5, S′ = s0s1uj−2 is a minimal
shortcut of H from (ui, ui+1) to (uj−2, uj−1) of length 2 and |Ai+1,j−2| = 3.

Property 12. For any shortcut S = s0s1s2 of H, i.e., |S| = 2, S is a minimal
shortcut of H, |AS | = 3, i.e., s1 is a tent of H.

Theorem 13. 1. For any shortcut S = s0s1s2 of H, |S| = |AS | − 1 and |S| ≤
r − 1.

2. If S is of Type 2, then |S| = |AS | = r − 1.

It is clear that if a hole does not have a minimal shortcut, it does not have a
shortcut. Recall that we denote by S a shortcut of H from a source α = (ui, ui+1)
to a target β = (uj, uj+1). From now on, we consider S′ = s′0 . . . s′l to be a
minimal shortcut of H obtained from S.

Theorem 14. If |S′| ≥ 3, then:

1. Each one of s′1 and s′l−1 has exactly three neighbors on H.
2. s′l−2 and s′l−1 have only one common neighbor on H.
3. s′1 and s′2 have only one common neighbor on H.

Theorem 15. If |S′| ≥ 4, then every s′k ∈ S′, 2 ≤ k ≤ l − 2, has exactly two
neighbors on H.

Now we introduce the definition of a shortcut substitution. A shortcut substitu-
tion defines a hole with a tent. In particular, by substituting the corresponding
arc of a shortcut with a shortcut substitution we get a hole with a tent.

Definition 16. Let S′ = s′0 . . . s′l be a minimal shortcut of a hole H from a
source α = (ui, ui+1) to a target β = (uj , uj+1) such that |S′| ≥ 3. Let H1 be the
hole induced as follows:

1. If S′ is of Type 1 then H1 = (V (H)\{ui+4 . . . uj−1})
⋃
{s′2 . . . s′l−1}.

2. If S′ is of Type 2 then H1 = (V (H)\{uj+2 . . . ui−3})
⋃
{s′2 . . . s′l−1}.

We say that H1 is obtained from H through a shortcut substitution.
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Fig. 3. Shortcut substitutions
The length of the new short arc between α and β (in bold) equals to the length of

AS′ . Note that s′1 is a tent of H1.

Note that, s′1 is a tent of H1 since by Theorem 14, s′1 has exactly three neighbors
on H and these three together with s′2 are the neighbors of s′1 on H1. Moreover,
|H | = |H1| and α, β ⊂ H, H1 (See Figure 3 on page 335).

Lemma 17. Let t1 and t2 be tents of H, such that the neighbors of t1 and t2 on
H lie on a P6. Let α = (ui, ui+1) ∈ E(H), such that ui and ui+1 are common
neighbors of t1 and t2. Then α has no shortcut of H.

Lemma 18. Let t1 and t2 be tents of H, such that the neighbors of t1 and t2
lie on a P5. Then there is a smallest odd hole H∗ and an edge γ ∈ E(H∗), such
that γ has no shortcut of H∗.

Lemma 19. Let t be a tent of H, then there is a smallest odd hole H∗ and an
edge γ ∈ E(H∗), such that γ has no shortcut of H∗.

Theorem 20. Let H = H2r+1 = u0u1 . . . u2ru0 be a smallest odd hole in a
(claw,H5)-free graph G. Then there is a smallest odd hole H∗ and an edge γ ∈
E(H∗), such that γ has no shortcut of H∗.

6 Γ -BFS

The general idea of the detection algorithm of an odd hole is to start a traversal
of the graph from an edge and ”walk” only on edge-paths.

The Gallai forcing graph Γ G of a graph G = (V, E), denoted by Γ G, is
the graph with vertex set V (Γ G) = E(G) and two vertices α = (v1, v2), β =
(v3, v4) ∈ V (Γ G) are connected in E(Γ G) iff either v1 = v4 and (v2, v3) /∈ E(G)
or v2 = v3 and (v1, v4) /∈ E(G), see [8,9].

Definition 21. Let α = (v1, v2) ∈ V (Γ ). We define the elements of the vertex
α to be v1 and v2.

Property 22. Γ G preserves the holes of G, that is, if G contains a hole H of
length k then Γ G contains a hole HΓ of length k such that the vertices of HΓ

are the edges of H.

However, the opposite does not hold. There can be a hole in Γ G whose corre-
sponding edges of G do not form a hole. In [8], Gallai describes the list of induced
subgraphs that create a hole in Γ G.
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6.1 The Algorithm

A Γ -BFS is a partial BFS on Γ G, which uses the structure of Γ G to discover
and explore only some of the vertices of Γ G (the edges of G). We keep track
of the discovery time of the vertices of G and the vertices of Γ G. This helps us
to discover paths in G with special properties. The Γ -BFS starts from a source
α = (v1, v2) ∈ V (Γ G). The definition of Γ -BFS is given in Algorithm 1 on page
336.

Given a graph Γ G and a distinguished source vertex α, Γ -BFS systematically
explores Γ G to “reveal” some of the vertices of Γ G and ignores other vertices
of Γ G. In Γ -BFS of Γ G, a newly discovered vertex ϕ is first tested for certain
criteria to hold, and only if it passes the criteria it is marked “revealed” and
added to the queue. Otherwise, ϕ is “ignored” and never explored.

Algorithm 1. Γ -BFS
Input: A graph G, α = (v1, v2) ∈ E(G)

procedure Γ -BFS(G, α)1

compute Γ G = (V, E)2

forall v ∈ V (G) do3

d[v] ← ∞4

forall γ ∈ V (Γ G) do5

d[γ] ← ∞ ; p[γ] ← NIL6

d[α] ← 0 ; d[v1] ← 0 ; d[v2] ← 07

enqueue (α, Q)8

while Q is not empty do9

ψ ← dequeue(Q)10

forall Neighbors ϕ = (v4, v5) of ψ = (v3, v4) do11

if d[ϕ] = ∞ then12

d[ϕ] ← d[ψ] + 113

p[ϕ] ← ψ14

if d[v5] ≥ d[ϕ] then15

d[v5] ← d[ϕ]16

if d[v4] = d[ψ] then17

enqueue(ϕ, Q)18

end procedure19

Definition 23. Let ψ = (v3, v4) ∈ V (Γ G) be the vertex that is now dequeued in
the main loop of Γ -BFS. Let ϕ = (v4, v5) ∈ V (Γ G) be a neighbor of ψ on Γ ,
such that d[ϕ] = ∞.

1. We say that ϕ is discovered by ψ.
2. We say that v5 ∈ V (G) is discovered by ϕ if d[v5] = ∞. We call ϕ the

discoverer of v5.
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3. We say that ϕ is revealed by ψ if ϕ is added to the queue, i.e., ϕ is discovered
by ψ, d[v5] ≥ d[ϕ] and d[v4] = d[ψ].

4. We say that ϕ is ignored by ψ if ϕ is not added to the queue, i.e., ϕ is
discovered by ψ and d[v5] < d[ϕ] or d[v4] < d[ψ].

5. The discovered time of the source α = (v1, v2) is 0 and the discovered time
of v1, v2 is 0, i.e., d[α] = d[v1] = d[v2] = 0.

6. The discovered time of ϕ, is the discovered time of ψ plus one, i.e., d[ϕ]=
d[ψ] + 1. The discovered time of v5 is the discovered time of ϕ, where ϕ is
the discoverer of v5, i.e., d[v5] = d[ϕ] = d[ψ] + 1.

The Γ -BFS procedure introduced above maintains several data structures. The
parent of ϕ ∈ V (Γ G) is stored in the variable p[ϕ]. The discovered time, i.e., the
distance from the source α ∈ V (Γ G) to a vertex ϕ ∈ V (Γ G) computed by
the algorithm, is stored in d[ϕ]. The discovered time in G, i.e., the distance from
the source α ∈ V (Γ G) to a vertex v ∈ V (G) computed by the algorithm, is stored
in d[v]. The algorithm also uses a first-in-first-out queue Q to manage the vertices.

6.2 Complexity

Let G be a graph with n vertices and m edges and let ψ = (v3, v4) ∈ E(G).
There are at most n vertices which are either neighbors of v3 and not neighbors
of v4 or neighbors of v4 and not neighbors of v3. Therefore, ψ = (v3, v4) has at
most n neighbors on Γ G. Thus Γ G has m vertices and at most nm edges.

The loop at lines 3–4 is performed for every vertex v ∈ V (G), therefore, runs
in O(n). The computation of Γ G runs in O(|V (Γ G)|+ |E(Γ G)|) = O(m+nm) =
O(nm). The loop at lines 5–7 is performed for every vertex γ ∈ V (Γ G), thus
runs in O(m). The main loop of the algorithm is at lines 10–19. The outer loop
goes as long as Q is not empty, hence, runs in O(m). The inner loop is performed
for every neighbor ϕ of ψ, thus runs in O(n). Therefore, the main loop runs in
O(nm). Thus, Algorithm 1 runs in O(nm) time.

7 Γ -Path

In order to detect an odd hole in a claw-free graph G, first we define and charac-
terize the paths that are detected by the Γ -BFS of Γ G, and their interpretation
on the edges of G.

Definition 24. Let G be a graph, let α = (u, p0), β = (pl, v) ∈ E(G) and let
P = p0p1 . . . pl be a path in G, such that α, β, (pi, pi+1) ∈ V (Γ G), for every
0 ≤ i ≤ l − 1. We say that P is a Γ -path of G from a source α to a target β if
there is a Γ -BFS on Γ G that reveals P , i.e., all the following hold:

1. starts from a source α.
2. α = (u, p0) discovers and reveals (p0, p1).
3. (pi, pi+1) discovers and reveals (pi+1, pi+2) for every 0 ≤ i ≤ l − 2.
4. (pl−1, pl) discovers and reveals (pl, v) = β.
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We say that P starts at p0 and ends at pl. The length of P is l, the number of
edges of P .

Theorem 25. Let H = H2r+1 = u0u1 . . . u2ru0 be a smallest odd hole in a
(claw,H5)-free graph G. Let P = p0p1 . . . pl be a Γ -path from a source α =
(ui, ui+1) to a target β = (uj, uj+1). Then, P is an edge-path with respect to H.

8 Detection of an Odd Hole

8.1 The Algorithm

Our approach for detecting a smallest odd hole in a claw-free graph G, is to
start a Γ -BFS from all α ∈ V (Γ G). If G contains an odd hole then the output
of Algorithm 2 is the length of the smallest odd hole; if G is odd hole-free then
the output is “infinity”.

Algorithm 2. Smallest Odd Hole Detection in a Claw-Free Graph
Input: A claw-free graph G.
Output: The size of the smallest odd hole in G, if one exists.

procedure OddHoleDetection(G)1

minSizeOddHole ← ∞2

forall α ∈ V (Γ G) do3

localMin ← ∞4

Start a Γ -BFS from α5

if after ψ is removed from the queue, ψ has neighbor ϕ such that6

d[ψ] = d[ϕ] then
localMin ← 2d[ψ] + 17

stop Γ -BFS from α8

if localMin < minSizeOddHole then9

minSizeOddHole ← localMin10

return minSizeOddHole.11

end procedure12

Theorem 26. Let G be a claw-free graph. G contains an odd hole H = H2r+1
iff Algorithm 2 yields 2r + 1.

Algorithm 2 can be easily augmented so that it provides a certificate whenever
it decides the input graph G contains an odd hole.

8.2 Complexity

Let G be a graph with n vertices and m edges. Note that, there is an obvious
recognition algorithm for a claw-free graph, with running time O(n4). The com-
plexity of Γ -BFS is O(nm). The main loop at lines 3–10 is performed for every
vertex α ∈ V (Γ G), thus runs in O(m). Thus, Algorithm 2 runs in O(nm2) time.
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9 Further Research

The problems we solve in this paper together with the work that has been done
before, raise more questions on the subject introduced here. We summarize some
of the questions below.
(1) An interesting problem is to give a better recognition algorithm for claw-free
perfect graphs.
(2) Can we use Γ -BFS to detect holes and antiholes with better complexity?
(3) Define Γ G

2 and characterize the odd holes in Γ G
2 ? Furthermore, generalize

Γ G and Γ G
2 to get a definition for Γ G

n , and characterize the odd holes in Γ G
n .

(4) In general graphs, can we find a smallest odd hole without a shortcut?
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Abstract. The Parity Path problem is to decide if a given graph G
contains both an odd length and an even length induced path between
two specified vertices s and t. In the related problems Odd Induced

Path and Even Induced Path, the goal is to determine whether an
induced path of odd, respectively even, length between two specified
vertices exists. Although all three problems are NP-complete in general,
we show that they can be solved in O(n5) time for the class of claw-free
graphs. Two vertices s and t form an even pair in G if every induced path
from s to t in G has even length. Our results imply that the problem of
deciding if two specified vertices of a claw-free graph form an even pair,
as well as the problem of deciding if a given claw-free graph has an even
pair, can be solved in O(n5) time and O(n7) time, respectively. We also
show that we can decide in O(n7) time whether a claw-free graph has an
induced cycle of given parity through a specified vertex.

1 Introduction

Finding a shortest path, a maximum stable set or a hamiltonian cycle in a graph
are just a few examples from the wide spectrum of problems dealing with finding
a subgraph (or induced subgraph) with some particular property. In this con-
text, simplest subgraphs, such as paths, trees and cycles, with some prescribed
property are often studied. The following problem has been extensively studied
in the context of perfect graphs. Here, the length of a path refers to its number
of edges, and a path is said to be odd (respectively even) it has odd (respectively
even) length.

Parity Path

Instance: A graph G and two vertices s, t of G.
Question: Does there exist both an odd and even induced path from s to t in G?
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We focus on the closely related problem of deciding whether there exists an
induced path of given parity between a pair of vertices. In particular, we study
the following two problems.

Odd Induced Path

Instance: A graph G and two vertices s, t of G.
Question: Does there exist an odd induced path from s to t in G?

Even Induced Path

Instance: A graph G and two vertices s, t of G.
Question: Does there exist an even induced path from s to t in G?

The Odd Induced Path problem was shown to be NP-complete by Bienstock
[6]. Consequently, the Even Induced Path problem and the Parity Path

problem are NP-complete as well. Several authors however have identified a
number of graph classes that admit polynomial-time algorithms for these prob-
lems. Below we survey those results, as well as results on related problems, before
stating our contribution. Throughout the paper, we use n and m to denote the
number of vertices and the number of edges of the input graph, respectively.

ODD PATH and EVEN PATH. In the Odd Path and Even Path problems
the task is to find a (not necessarily induced) path of given parity between
a specified pair of vertices. These problems were considered by LaPaugh and
Papadimitriou [20]. They mention an O(n3) algorithm for solving both problems
due to Edmonds, using a reduction to matching, and propose a faster one of
O(m) time complexity. Their algorithm also finds a shortest (not necessarily
induced) path of given parity between two vertices in O(m) time, even in a
weighted graph. Interestingly, as they also show in their paper, the problem of
finding a directed path of given parity is NP-complete for directed graphs. Arkin,
Papadimitriou and Yannakakis [1] generalized the result of [20] and designed a
linear-time algorithm deciding if all (not necessarily induced) paths between two
specified vertices are of length p mod q, for fixed integers p and q.

EVEN PAIR. First interest in induced paths of given parity comes from the
theory of perfect graphs. Two non-adjacent vertices are called an even pair if
every induced path between them is even. The Even Pair problem is to de-
cide if a given pair of vertices forms an even pair. The Even Pair problem is
co-NP-complete due to Bienstock [6], as is the problem of deciding if a graph
contains an even pair. The interest in even pairs was sparked by an observation
of Fonlupt and Uhry [17]: if a graph is perfect and contains an even pair, then
the graph obtained by identifying the vertices that form the even pair is also
perfect. Later Meyniel showed that minimal non-perfect graphs contain no even
pair [23]. Those two facts triggered a series of theoretical and algorithmic results
which are surveyed in [14] and its updated version [15].

There is some evidence that perfect graphs without an even pair can be gen-
erated by performing a small number of composition operations on some basic
graphs. Using such a structural result could then lead to a combinatorial algo-
rithm for coloring perfect graphs. Indeed, for coloring perfect graphs using at
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most three colors this approach turned out to be successful, as was shown by
Chudnovsky and Seymour in [10]. Linhares Sales and Maffray [22] study even
pairs in order to give characterizations of claw-free graphs that are strict quasi-
parity and perfectly contractile, respectively.

PARITY PATH and GROUP PATH. Arikati, in a series of papers with
different coauthors, developed polynomial-time algorithms for the Parity Path

problem in different classes of graphs. Chordal graphs are considered in [2], where
the authors present a linear-time algorithm for the Group Path problem, a
generalization of the Odd Induced Path problem. In the Group Path problem
the edges of the input graph are weighted with elements of some group G. The
problem is to find an induced path of given weight between two specified vertices,
where the weight of a path is defined as the product of the weights of the edges of
the path. They present an O(|G|m+n) algorithm for the Group Path problem
on chordal graphs using a perfect elimination ordering.

The topic of [4] is Parity Path on circular-arc graphs. The authors show how
to reduce the problem to interval graphs by recursively applying a set of reduc-
tions. Since interval graphs are chordal, the algorithm of [2] can be used to obtain
the solution. This way they obtain a polynomial-time algorithm for circular-arc
graphs. In [26] polynomial-time algorithms for the Parity Path problem on
comparability and cocomparability graphs, and a linear-time algorithm for per-
mutation graphs are given. A polynomial-time algorithm for Parity Path on
perfectly orientable graphs is presented in [3]. Sampaio and Sales [25] obtain a
polynomial-time algorithm for planar perfect graphs. The authors of [16] char-
acterize even and odd pairs in comparability and P4-comparability graphs and
give polynomial-time algorithms for the Parity Path problem in those classes.
Hoàng and Le [18] show that Parity Path can be solved in polynomial time
for the class of 2-split graphs.

Note that a set F of vertices of a line graph G = L(H) form an odd (re-
spectively even) induced path in G if and only if the set of edges corresponding
to F form an even (respectively odd) path in the preimage graph H of G. It
is well-known that the preimage graph of a line graph can be found in polyno-
mial time [24]. Combining these two facts with the polynomial-time algorithm for
finding (not necessarily induced) paths of given parity in [20] yields a polynomial-
time algorithm for solving the Parity Path problem for the class of line graphs
(cf. [28]).

Our Results. Our interest in the Odd Induced Path problem was in part
stirred by studying Bienstock’s NP-completeness reduction in [6]. He builds a
graph out of a 3-Sat formula and shows that the formula is satisfiable if and
only if there exists an odd induced path between a certain pair of vertices.
This is also shown to be equivalent to the existence of two disjoint induced
paths (with no edges between the two paths) between certain pairs of vertices
in the construction. Finding such two paths is then NP-hard in general but has
been proved solvable in polynomial time for claw-free graphs [21]. A natural
question to ask is whether the Odd Induced Path problem can also be solved



344 P. van ’t Hof, M. Kamiński, and D. Paulusma

in polynomial time for this class of graphs. In this paper, we answer this question
in the affirmative by presenting an algorithm that solves both the Odd Induced

Path problem and the Even Induced Path problem in O(n5) time for the class
of claw-free graphs. This implies that the Even Pair problem can be solved in
O(n5) time for claw-free graphs.

As we saw earlier in this section, the Parity Path problem has been exten-
sively studied in different graph classes. However, a polynomial-time algorithm
for claw-free graphs has never been proposed; somewhat surprising, since claw-
free graphs form a large and important class containing, e.g., the class of line
graphs and the class of complements of triangle-free graphs. Our O(n5) algo-
rithm for solving the Odd Induced Path and Even Induced Path problems
for claw-free graphs immediately implies that we can solve the Parity Path

problem for claw-free graphs in O(n5) time, thus generalizing the aforementioned
polynomial-time result on line graphs.

Apart from the Odd Induced Path problem, Bienstock [6] mentioned two
more NP-complete problems in the abstract of his paper. The first one is to decide
whether a graph has an odd hole passing through a given vertex. The second
one is to decide whether a graph has an odd induced path between every pair
of vertices. We show that our polynomial-time algorithm for the Odd Induced

Path problem implies that both these problems are solvable in O(n7) time when
restricted to the class of claw-free graphs. As a result the problem of deciding
whether or not a claw-free graph contains an even pair can be solved in O(n7)
time.

Our paper is organized as follows. In Section 2 we state our terminology
and discuss some results on claw-free perfect graphs. In Section 3 we show how
to solve the Odd Induced Path and Even Induced Path problem in O(n5)
time for claw-free graphs. There, we also show the other results mentioned above.
Section 4 contains the conclusions and mentions some open problems.

2 Preliminaries

All graphs in this paper are undirected, finite, and have no loops or multiple
edges. Let G be a graph. We refer to the vertex set and edge set of G by V (G) and
E(G), respectively. The neighborhood of a vertex v in G is denoted by NG(v) =
{y ∈ V (G) | xy ∈ E(G)}. A claw is the graph ({x, a, b, c}, {xa, xb, xc}), where
vertex x is called the center of the claw. For any set S ⊆ V (G), we write G[S]
to denote the subgraph of G induced by S. A hole is an induced cycle of length
at least 4, and an antihole is the complement of a hole. We say that a hole is
odd (respectively even) if it has an odd (respectively even) number of edges. An
antihole is called odd (respectively even) if its complement is an odd (respectively
even) hole. The chromatic number of a graph is the smallest number of colors
needed to color its vertices in such a way that no two adjacent vertices receive the
same color. A graph G is perfect if for every induced subgraph H the chromatic
number of H equals the size of a largest clique in H . A graph is called Berge
if it does not contain an odd hole or an odd antihole. A little over 40 years
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after Berge [5] conjectured that a graph is perfect if and only if it is Berge,
Chudnovsky et al. [8] confirmed his intuition by proving the following theorem.

Theorem 1 (Strong Perfect Graph Theorem, [8]). A graph is perfect if
and only if it contains no odd hole and no odd antihole.

Shortly afterwards, Chudnovsky et al. [7] presented an O(n9) algorithm for rec-
ognizing perfect graphs. We need such an algorithm as a subroutine in the al-
gorithm presented in Section 3. We will not use their algorithm, because for
claw-free perfect graphs a faster recognition algorithm exists, namely the algo-
rithm of Chvátal and Sbihi [11]. Chvátal and Sbihi did not explicitly state the
time complexity of their recognition algorithm. Theorem 2 shows it is O(n4). We
postpone the required running time analysis to the journal version of our paper.

Theorem 2 ([11]). It is possible to decide in O(n4) time whether or not a
claw-free graph is perfect.

The proof of the following corollary is also postponed to the journal version.

Corollary 1. Let G be a claw-free graph. It is possible to find an odd hole or an
odd antihole of G, or conclude that such a graph does not exist, in O(n5) time.

3 Finding Induced Paths of Given Parity

We start by giving an outline of our algorithm that solves the Odd Induced

Path problem in O(n5) time for claw-free graphs.

Algorithm solving Odd Induced Path for claw-free graphs

Input : claw-free graph G, vertices s and t of G
Output : YES if G contains an odd induced path from s to t

NO otherwise

Preprocess G to obtain graph G′′

Step 1: add edges to make s and t simplicial
Step 2: delete irrelevant vertices

Test whether or not G′′ is perfect

If G′′ is not perfect, output YES
If G′′ is perfect, find a shortest path P from s to t

If P is odd, output YES
If P is even, define graph G∗ := (V (G′′) ∪ {x}, E(G′′) ∪ {sx, tx})
Test whether or not G∗ is perfect

If G∗ is not perfect, output YES
If G∗ is perfect, output NO
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As shown in the outline, we first preprocess the input graph G in order to
obtain a new graph G′′ with certain desirable properties. This preprocessing
procedure is described in Section 3.1. We then distinguish two cases, depending
on whether or not G′′ is perfect. The case that G′′ is not perfect is discussed in
Section 3.2, while Section 3.3 deals with the case that G′′ is perfect. In Section 3.4
we prove correctness of our algorithm and show that its time complexity is O(n5).
We also explain in Section 3.4 how our algorithm can be slightly modified in such
a way that it also solves the Even Induced Path problem for claw-free graphs
in O(n5) time.

3.1 Preprocessing the Input Graph G

Let G be a claw-free graph and let s and t be two vertices of G. Note that we
may without loss of generality assume that G is connected and that s and t are
not adjacent. We make these assumptions throughout the paper.

Step 1. We add an edge between each pair of non-adjacent neighbors of s, and
we do the same for each pair of non-adjacent neighbors of t. Then in the resulting
graph G′, both s and t are simplicial vertices, i.e., vertices whose neighborhood
form a clique in G′. In general, adding edges is not a claw-freeness preserving
operation. However, the following lemma states that we do not create claws in
Step 1. We postpone the straightforward proof to the journal version of this
paper.

Lemma 1. The graph G′ is claw-free.

Step 2. We “clean” G′ by repeatedly deleting irrelevant vertices. A vertex v ∈
V (G′) is called irrelevant (for vertices s and t) if v does not lie on any induced
path from s to t, and we say that G′ is clean if none of its vertices is irrelevant.
Let G′′ denote the graph obtained from G′ by repeatedly deleting vertices that
are irrelevant. Note that G′′ is claw-free, as G′′ is an induced subgraph of G′.

We now show that we can perform Step 2 in polynomial time by showing that
we can identify irrelevant vertices in polynomial time. In general, the problem
of deciding whether a vertex is irrelevant is NP-complete. This follows from a
result by Derhy and Picouleau [13], who prove that the following problem is
NP-complete for the class of graphs of maximum degree at most 3.

Three-in-a-Path

Instance: A graph G and three vertices v1, v2, v3 of G.
Question: Does there exist an induced path of G containing v1, v2 and v3?

Chudnovsky and Seymour [9] study the following closely related problem.

Three-in-a-Tree

Instance: A graph G and three vertices v1, v2, v3 of G.
Question: Does there exist an induced tree of G containing v1, v2 and v3?

Theorem 3 ([9]). The Three-in-a-Tree problem can be solved in O(n4) time,
and a desired tree can be found in O(n4) time in case one exists.
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Observe that the Three-in-a-Path problem is equivalent to the Three-in-a-

Tree problem for the class of claw-free graphs, since every induced tree in a
claw-free graph is an induced path. This, together with Theorem 3, implies the
following result.

Lemma 2. The problem of deciding whether a vertex v of a claw-free graph G
is irrelevant for two simplicial vertices s and t of G can be solved in O(n4) time.

After preprocessing the input graph G we have obtained a graph G′′ that satisfies
the following three conditions: (1) G′′ is claw-free; (2) both s and t are simplicial
vertices of G′′; and (3) G′′ is clean for s and t. The following lemma implies
that solving the Odd Induced Path problem for G is equivalent to solving the
problem for G′′. The lemma also shows that the entire preprocessing procedure
can be performed in O(n5) time. The proof of the lemma is postponed to the
journal version of this paper.

Lemma 3. Every induced path from s to t in G′′ is also an induced path from
s to t in G, and vice versa. Moreover, G′′ can be obtained from G in O(n5)
time. �

We now distinguish two cases, depending on whether or not G′′ is perfect.

3.2 G′′ Is Not Perfect

Suppose G′′ is not perfect. Then G′′ contains an odd hole or an odd antihole
by virtue of the Strong Perfect Graph Theorem. We consider odd antiholes and
odd holes in Lemma 4 and Lemma 5, respectively. The length of an antihole is
the number of edges in its complement.

Lemma 4. Let H be a connected claw-free graph. If H contains a simplicial
vertex, then H does not contain an odd antihole of length more than 5.

Proof. Let s be a simplicial vertex of a connected claw-free graph H . For contra-
diction, suppose H contains an odd antihole X such that X = x1x2 . . . x2k+1x1
is an odd induced cycle with k ≥ 3. Vertex s does not belong to X , since s is
simplicial. Let P be an induced path from s to a vertex of X such that |V (P )|
is minimum. Note that such a path P exists since H is connected. Without loss
of generality assume that V (P ) ∩ V (X) = {x1}.

Let s′ be the neighbor of x1 on P . We claim that s′ is adjacent to at most
one vertex of {xi, xi+1} for 1 ≤ i ≤ 2k. If s′ = s, this claim immediately follows
from the assumption that s is simplicial and the fact that xi and xi+1 are not
adjacent. Suppose s′ �= s, and let s′′ be the neighbor of s′ on P not equal to
x1. Note that s′′ is not adjacent to any vertex of X due to the minimality of
|V (P )|. Vertex s′ cannot be adjacent to both xi and xi+1, since then the set
{s′, s′′, xi, xi+1} induces a claw in H with center s′. Hence s′ is adjacent to at
most one vertex of {xi, xi+1} for 1 ≤ i ≤ 2k.

Note that vertex s′ is adjacent to at least one vertex of {xi, xi+1} for 3 ≤ i ≤
2k − 1, as otherwise {x1, s

′, xi, xi+1} induces a claw in H with center x1. This,
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together with the fact that s′ is adjacent to at most one vertex of {xi, xi+1}
for 1 ≤ i ≤ 2k, implies that s′ is adjacent to exactly one vertex of {x3, x2k}.
Without loss of generality, assume that s′ is adjacent to x2k and not to x3. Since
s′ is adjacent to x1 and s′ is adjacent to at most one vertex of {xi, xi+1} for
1 ≤ i ≤ 2k, s′ is not adjacent to x2. Note that x3 is adjacent to x2k, since k ≥ 3.
But then {x2k, s′, x2, x3} induces a claw in H with center x2k. This contradiction
finishes the proof of Lemma 4. �

We point out that the arguments in the proof of Lemma 4 can also be used to
prove that every odd antihole X of a connected claw-free graph H is dominating,
i.e., every vertex of H either belongs to X or has a neighbor in X .

Lemma 5. Let H be a connected claw-free graph that is clean for two simplicial
vertices s and t. If H contains an odd hole, then there exists both an odd and an
even induced path from s to t.

Proof. Let C be an odd hole of H . Let P be an induced path from s to a vertex
p of C and let Q be an induced path from t to a vertex q of C, such that there is
no edge in H connecting a vertex in P [V (P ) \ {p}] to a vertex in Q[V (Q) \ {q}]
and such that |V (P )|+ |V (Q)| is minimum. Note that such paths P and Q exist
since H is clean and connected. Let s′ be the neighbor of p on P , and let t′ be
the neighbor of q on Q; we note that possibly s′ = s and t′ = t.

Claim 1. Both s′ and t′ are adjacent to exactly two adjacent vertices of C.

Suppose p is the only vertex of C that is adjacent to s′. Let p− (respectively
p+) denote the neighbor of p on C when we traverse C in counter-clockwise
(respectively clockwise) order. The set {p, p−, p+, s′} induces a claw in H with
center p, contradicting the claw-freeness of H . Hence s′ must be adjacent to at
least one vertex of {p−, p+}. Suppose there exists a set D ⊆ V (C) such that
|D| ≥ 3 and s′ is adjacent to every vertex in D. Since C is an induced cycle,
we know that D contains two vertices d1 and d2 that are not adjacent. Since s
is simplicial and therefore does not have two non-adjacent neighbors, we must
have s′ �= s. Let s′′ �= p be a neighbor of s′ on P ; possibly s′′ = s. Vertex s′′

is not adjacent to any vertex of C due to the minimality of |V (P )| + |V (Q)|,
which means the set {s′, d1, d2, s

′′} induces a claw in H with center s′. This
contradiction finishes the proof of Claim 1 for vertex s′. By symmetry the claim
also holds for vertex t′.

We assume, without loss of generality, that NH(s′) ∩ V (C) = {p, p+} and
NH(t′) ∩ V (C) = {q, q+}. We distinguish three cases.

Suppose |{p, p+} ∩ {q, q+}| = 0. Since C is an odd hole, the induced path
s′p+−→C qt′ and the induced path s′p

←−
C q+t′ have different parity. Hence there

exists both an odd and an even induced path from s to t in H .
Suppose |{p, p+} ∩ {q, q+}| = 1. Without loss of generality, suppose p+ = q.

Then the path s′qt′ is an even induced path from s′ to t′, and the path s′p
←−
C q+t′ is

an odd induced path from s′ to t′. Since by definition there is no edge connecting
a vertex in P [V (P ) \ {p}] to a vertex in Q[V (Q) \ {q}], this means there exists
both an odd and an even induced path from s to t in H .
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Suppose |{p, p+}∩{q, q+}| = 2. By Claim 1, neither s′ nor t′ is adjacent to p−.
Since s′ and t′ are not adjacent by the choice of P and Q, the set {p, p−, s′, t′}
induces a claw in H with center p. This contradiction finishes the proof of
Lemma 5. �

Recall that G′′ is not perfect and has two simplicial vertices s and t. This,
together with Lemma 4 and Lemma 5, implies that G′′ contains both an odd
and an even induced path from s to t. We now show that we can also find such
paths in O(n5) time.

Lemma 6. If G′′ is not perfect, then it is possible to find both an odd and an
even induced path from s to t in G′′ in O(n5) time.

Proof. Since G′′ has two simplicial vertices s and t, G′′ does not contain an odd
antihole of length more than 5 by Lemma 4. Since an odd antihole of length
5 is also an odd hole of length 5, G′′ contains an odd hole by virtue of the
Strong Perfect Graph Theorem. We can find such a hole C in O(n5) time by
Corollary 1. Let c be any vertex of C, and let P be an induced path in G′′ from
s to t containing c. Note that such a path P exists since G′′ is clean for s and t.
We can find P in O(n4) time as a result Theorem 3. It is clear from the proof
of Lemma 5 that we can use P to find both an odd and an even induced path
from s to t in G′′. �

3.3 G′′ Is Perfect

Suppose G′′ is perfect. In the concluding remarks of their paper, Corneil and
Fonlupt [12] pointed out that a polynomial-time recognition algorithm for per-
fect graphs implies a polynomial-time algorithm for the Parity Path problem
for the class of perfect graphs. Interestingly, the arguments they used to prove
this implication were already mentioned by Hsu [19] in the paper in which he
introduced the Parity Path problem. Using their arguments, we can prove the
following lemma.

Lemma 7. If G′′ is perfect, then it is possible to find an odd induced path from
s to t in G′′, or conclude that such a path does not exist, in O(n5) time.

Proof. Let P be a shortest path from s to t in G′′. If P has odd length, then
we are done. Suppose P has even length. Let G∗ be the graph obtained from G
by adding a vertex x and edges sx and tx. Note that the graph G∗ is claw-free,
since s and t are simplicial vertices of G′′. We determine whether or not G∗ is
perfect, which we can do in O(n4) time by Theorem 2. If G∗ is perfect, then
G∗ does not contain an odd hole or an odd antihole by virtue of the Strong
Perfect Graph Theorem. This means that all induced paths from s to t must
be even, so we conclude that there does not exist an odd induced path from s
to t. Suppose G∗ is not perfect. Then G∗ must contain an odd hole or an odd
antihole, and vertex x must be in this odd hole or odd antihole since G is perfect.
Since x has degree two, G∗ cannot contain an odd antihole. Hence G∗ contains
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an odd hole. We can find an odd hole C of G∗ in O(n5) time by Corollary 1. The
graph obtained from C by removing vertex x is an odd induced path from s to t
in G′′. �

3.4 Finding Induced Paths of Given Parity from s to t in G

We are now ready to prove the main result of this section.

Theorem 4. Both the Odd Induced Path problem and the Even Induced

Path problem can be solved in O(n5) time for the class of claw-free graphs.
Moreover, an induced path from s to t of given parity can be found in O(n5), if
one exists.

Proof. Let G be a claw-free graph, and let s and t be two vertices of G. Recall
that we may without loss of generality assume that G is connected and that s and
t are not adjacent. We preprocess G in O(n5) time as described in Section 3.1,
thus obtaining a graph G′′. Recall that G′′ is claw-free, that s and t are simplicial
vertices in G′′, and that G′′ is clean for s and t. We test whether or not G′′ is
perfect, which we can do in O(n4) time by Theorem 2. Below we show that we
can find an induced path of given parity from s to t in G′′, or conclude that such
a path does not exist, in O(n5) time. Lemma 3 implies that this suffices to prove
Theorem 4.

If G′′ is not perfect, then we can find both an odd and an even induced path
from s to t in G′′ in O(n5) time by Lemma 6. If G′′ is perfect, then we can find
an odd induced path from s to t in G′′, or conclude that such a path does not
exist, in O(n5) time by Lemma 7. In order to find an even induced path from s
to t, we define the graph G∗ as the graph obtained from G′′ by adding the edge
st. It is easy to verify that adding the edge st creates neither a claw nor an odd
antihole. Hence the arguments used in the proof of Lemma 7 can also be used to
find an even induced path from s to t in G′′, or conclude that such a path does
not exist, in O(n5) time. �
Theorem 4 immediately implies the following.

Corollary 2. Both the Parity Path problem and the Even Pair problem can
be solved in O(n5) time for the class of claw-free graphs.

Bienstock [6] proved that the problem of deciding if a graph contains an odd
induced path between every pair of vertices, as well as the problem of deciding if
a graph has an odd hole through a given vertex, is NP-complete. The following
two corollaries of Theorem 4, the proofs of which are postponed to the journal
version of this paper, imply that both problems can be solved in O(n7) time
when restricted to the class of claw-free graphs.

Corollary 3. Deciding whether or not a claw-free graph has an even pair can
be done in O(n7) time.

Corollary 4. It is possible to find an odd hole passing through a prescribed
vertex of a claw-free graph, or conclude that such a hole does not exist, in O(n7)
time.
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4 Conclusions and Open Problems

We have proved that both the Odd Induced Path problem and the Even

Induced Path problem, and consequently the Parity Path problem, can be
solved in O(n5) time for the class of claw-free graphs. This implies that we can
decide in O(n7) time whether a claw-free graphs contains a hole of given parity
passing through a given vertex. In the Shortest Odd Induced Path and the
Shortest Even Induced Path problem, the goal is to find a shortest induced
path between two given vertices of odd and even length, respectively. Using the
structure of claw-free perfect graphs, we can show that these problems can be
solved in O(n7) time for this class; the details are postponed to the journal
version of this paper. We conclude by mentioning some open problems. Does
there exist a polynomial-time algorithm for the Shortest Odd Induced Path

and Shortest Even Induced Path problems for general claw-free graphs?
And does there exist a polynomial-time algorithm for the Odd Induced Path

and Even Induced Path problems for the class of planar graphs?
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