
A Dynamic Pricing and Bidding Strategy for

Autonomous Agents in Grids

Behnaz Pourebrahimi1, Koen Bertels1, Stamatis Vassiliadis1,
and Luc Onana Alima2

1 Computer Engineering Laboratory, EEMCS, Delft University of Technology,
The Netherlands

{b.pourebrahimi,k.l.m.bertels,s.vassiliadis}@tudelft.nl
2 Service des Systémes Distribués, Institut d′Informatique,

Université de Mons-Hainaut, Belgium
luc.onana@umh.ac.be

Abstract. In this paper, we propose a dynamic pricing strategy which
is used for a market-based resource allocation mechanism in a local Grid.
We implement an agent based Grid economy in which the decision-
making process regarding task and resource allocation is distributed
across all users and resource owners. A Continuous Double Auction is
used as the platform for matchmaking where consumers and producers
meet. In this paper, we analyze the parameter regime of this pricing
mechanism considering different network conditions. Our experiments
described in the paper show that using the pricing parameters, the con-
sumers and producers agents can decide the price to influence the way
they contribute resources to the Grid or complete the jobs for which
they need resources. These agents are individually capable of changing
the degree of their task usage and resource contribution to the Grid.

1 Introduction

In recent years, intensive computational applications are becoming more and
more popular. In case of a lack of computational resources in such applications,
instead of consuming an extra budget to buy centralized resources, one solution
is to use existing computing resources over the network that otherwise lie idle.
These networks of distributed and shared resources are known as Grids.

The problem we are looking at is resource allocation and task distribution in a
Grid-based environments, where the resources are heterogeneous in nature, they
are owned by various individuals or organizations with different objectives and
they have dynamically varying loads and availability. Such a system could be
deployed to any organization having a LAN with any number of computers, in
which the tasks can be processed on any node that has idle resources. Managing
resources and allocating them to requested tasks in such dynamic and hetero-
geneous environment is a challenging task and needs to be smart, adaptable to
changes in the environment and user requirements.

Conventional resource allocation schemes are based on relatively static models
where a centralized controller manages jobs and resources. In fact, they focus on

Samuel R.H. Joseph et al. (Eds.): AP2PC 2007, LNAI 5319, pp. 55–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

56 B. Pourebrahimi et al.

efficient allocation schedules which can optimize given performance metrics such
as allocation time, resource utilization or system throughput. These resource
allocation mechanisms may work well where resources are known in advance.
However, they may fail to work in dynamic networks where jobs need to be exe-
cuted by computing resources whose availability is difficult to predict. Due to the
dynamic nature of such networks, mechanisms that are based on a system-wide
performance metric to allocate resources, are not suitable. Therefore, resource
allocation mechanisms are required that take into account both system and user
performances and can adapt to variations in supply and demand of resources.
Market-based mechanisms provide promising directions for building such a re-
source allocation mechanism. One of the promises, taken from economic theory,
is that the fulfillment of individual self-interest automatically or through an un-
specified mechanism called the Invisible Hand (proposed by Adam Smith [1]),
leads to maximal generation of utility for the entire community. When trans-
posed to the Grid environment, this implies that as long as individual nodes
look after themselves, by buying or selling resources, the overall goal, namely to
execute tasks, is also satisfied. Moreover, market-based mechanisms can provide
adaptability in such dynamic networks by distributing decision making among
the individual self-interested nodes. The self-interested nodes in a network can
be presented by autonomous agents. The autonomous agents make their own de-
cisions according to their capabilities, goals, and local knowledge without consid-
ering the global good of the entire Grid. Individual decision making is achieved
through a large amount of decentralized information which is condensed into a
single, simple entity, namely the price.

In this paper, we look at a particular pricing strategy and study its parame-
ter’s regime given different Grid conditions. We consider a Continuous Double
Auction (CDA) mechanism for matchmaking between consumers and produc-
ers of resources. In this model, the consumers and producers of resources put
their requests or offers attached with a price into the market as bids/asks. Buy
orders (requests) and sell orders (offers) may be submitted at anytime during
the trading period. No global and single equilibrium price is computed in this
strategy; rather at any time when there are open requests and offers that match
or are compatible in terms of price and requirements (e.g. quantity of resources),
a trade is executed immediately.

The main contribution of this paper is to identify how an individual agent can
take into account its own task loads and available resources as well as the Grid’s
overall condition. Using our pricing strategy, we show how the agents can adapt
to a dynamic network condition where the distribution of tasks and availability
of resources may change at any time. In addition, based on this strategy each
agent can decide on the contribution of its resources or demanding for its tasks
at any time as its available resources or its workload changes. In our pricing
strategy, the price proposed by consumer and producer agents changes based on
the perceived supply and demand in the network. Consumers generate aggressive
bids by raising the price when supply is low and conservative bids by lowering
the price when supply is high. On the other hand, producers with a conservative

A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids 57

or aggressive strategy respectively raise the price when demand is high and lower
the price when demand is low.

The paper is structured as follows: In Section 2, we discuss market-based
resources allocation based on peer-to-peer architectures. We give an overview
of related works on market-based resource allocation in Section 3. Section 4
discusses the system architecture. Pricing model is presented in Section 5. The
experiments are discussed in Section 6 considering different network and node
conditions. Finally, conclusion and future work are discussed in Section 7.

2 Market-Based Resource Allocation and Peer-to-Peer
Architectures

The limitations of client/server mechanisms for resource allocation have become
evident in large scale distributed environments. In such systems, individual re-
sources are concentrated on one or a small number of nodes. In order to provide
access to resources with an acceptable response time, sophisticated load bal-
ancing and fault-tolerant algorithms have to be applied. These limitations have
motivated researchers to suggest approaches to distribute processing loads and
network bandwidth among all nodes participating in a distributed system. Peer-
to-peer systems offer an alternative to traditional client/server systems that solve
bottleneck problems and improve the Grid scalability. Different resource alloca-
tion mechanisms can be employed based on peer-to-peer architectures ranging
from fully centralized (centralized indexing) to fully decentralized (blind flood-
ing) [2]. Fully centralized mechanisms can be efficient for small scale systems and
may take less time in finding a required resource. However, these mechanisms
are not scalable and the centralized resource broker becomes a performance bot-
tleneck. In contrast, fully decentralized mechanisms do not have a single point of
failure and may have better scalability. The drawback is that fully decentralized
mechanisms are computationally expensive and may take more time to find a re-
source. Fully decentralized mechanisms do not also guarantee finding a resource.
Fully centralized and fully decentralized mechanisms can be considered to be
part of a continuum where the system should be capable of restructuring itself
in either of these states or any intermediate state between the two extremes.

To understand appropriate mechanisms for self-organization in the range from
fully decentralized to fully centralized, system wide information on the basis
of the individual states of the participating nodes, is needed. Economics may
provide one way of doing so. It is an accepted axiom in economic markets that
all the available information which may reside at the level of the individual nodes
and which is not necessarily shared among them, is consolidated into a simple
global metric, named the price. In this paper, we do not address such a self-
organizing system but rather the results of this paper can be used for building
such a system. This work is part of the research that will address such scalable
system that can organize itself according the system status [3]. For instance, a
mechanism can be designed to organize the system structure in the continuum
between fully centralized to fully decentralized by introducing more/less central

58 B. Pourebrahimi et al.

servers whenever it is required. This can be done based on the global state of
the network which is presented by the price of resources. This paper studies the
price in a market-based resource allocation mechanism which is built based on
a centralized peer-to-peer architecture.

3 Related Work

Economic models have been used widely in resource allocation algorithms [4]
[5]. Price-based economic models are classified into two main categories: auc-
tions and Commodity Markets. In Commodity Markets, allocations are done
based on reaching an equilibrium price where demand equals the supply. For in-
stance, Wolski et al [6] have used the commodity market mechanism to allocate
two types of resources (CPU and disk storage) in Grid. The auction protocols
are either one-to-many or many-to-many. The strategy in auctions is to grant
the resources to the buyers that bid the highest prices. In one-to-many auctions
one agent initiates an auction and a number of other agents can make a bid.
The English auction, Dutch auction, First-price auction, Second-price (Vickrey
auction) belong to this category. Popcorn [7] and Spawn [8] are examples that
use these types of auctions. In many-to-many auctions, several agents initiate
an auction and several other agents can bid in the auction. The double auction
is the most widely used auction protocol for many-to-many auctions. In these
auctions, buyers and sellers are treated symmetrically with buyers submitting
requests and sellers submitting offers. In the literature, we find several studies
on double auction based resource allocation. The works presented in [9], [10],
and [11] are examples which use the double auction model. There are two types
of double auctions: Continuous Double Auction (CDA) and periodic double auc-
tion. CDA matches buyers and sellers immediately on detection of compatible
bids. In this type of auction, the transaction prices are set individually for each
matched buyer-seller as a function of corresponding seller and buyer prices. Go-
moluch et al [12] investigate a market-based resource allocation using CDA and
compare it with Proportional Share Protocol and Round-robin mechanism. A
periodic version of the double auction instead collects bids over a specified inter-
val of time, then clears the market at the expiration of the bidding interval [13].
Weng et al. [14] present a periodic double auction mechanism with a uniform
price for resource allocation in Grids. In this work, auction takes place in rounds
and all exchanges are performed with the same price. The Proportional Share
Protocol (PSP) is a similar protocol to CDA, as both use a centralized schedul-
ing algorithm. In this mechanism, the amount of resources allocated to a task
depends on its price bid in relation to the sum of price bids of all tasks execut-
ing on that server. Proportional Share Protocol is proposed for the scheduling
of tasks in computational clusters [15].

What distinguishes our work from the others is using a dynamic pricing strat-
egy in which consumer and producer agents are able to use aggressive or con-
servative bids and adapt to the current condition of the network. The economic
mechanism used in this work is not novel but the main novelty is applying

A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids 59

the dynamic pricing algorithm to the Grid environment. Our experiments are
performed in a local Grid (a LAN) with different network conditions regard-
ing distribution of tasks and resources. We investigate the pricing behavior of
the consumer and producer agents and study the influence of this behavior on
the system efficiency in terms of task/resource utilization and average matching
time. Eagerness of the agents for contribution to the Grid has been also applied
in this strategy by adopting different levels of agent’s activity.

4 System Architecture

The system is composed of three entities: Consumer (buyer), Producer (seller)
and Auctioneer. The system is modeled as a market and works in the following
simple manner: the buyers and sellers announce their desire to buy or sell pro-
cessing power to the market. The auctioneer finds the matches between buyers
and sellers by matching offers (starting with the lowest price and moving up)
with requests (starting with the highest price and moving down). When a task
query arrives at the market place, the protocol searches all available resource
offers and returns the best match which satisfies the task’s constraints (such as
resource quantity, time frame and price). If no match is found, the task query
object is stored in a queue. The queries are kept in the queue until their Time To
Live (TTL) expire or matching resources are found. When a resource becomes
available and several tasks are waiting, the one with the highest bid price is
processed first.

Matchmaking
Unit

Producer
Depository
Manager

Communication
Unit

Resource
Manager

Job
Control

Communication
Unit

Resource
Manager

Job
Control

Job
Trader

Communication
Unit

Resource
Trader

Consumer
Depository
Manager

Auctioneer Agent

Producer Agent Consumer Agent

Fig. 1. System components

60 B. Pourebrahimi et al.

The system components can be summarized as follows (see Figure 1):

– Consumer(Buyer)/Producer(Seller) Agent: Every node in the network
can play two different roles either as a consumer or as a producer of resources.
A node is a consumer whenever it requests some resources from the Grid, and
it is a producer whenever it offers some resources to the Grid. There is one
consumer/ producer agent per node. A consumer/producer agent controls
the process of buying/selling resources by estimating the execution time of
tasks or availability of resources (Resource Manager), calculating the price
(Job/Resource Trader) and generating and submitting a request/offer for the
corresponding task/resource (Communication Unit). Transferring tasks and
results between matched consumer and producer agents (Job Controller) is
also performed by these agents.

– Matchmaker(Auctioneer) Agent: The matchmaker agent is a middle
agent between consumer and producer agents. It controls assigning resources
to tasks in the network using a matchmaking mechanism. In our model, the
matchmaker agent controls the market as an auctioneer using a continuous
double auction protocol. Based on this protocol, every consumer and pro-
ducer sends its request and offer to the auctioneer. Auctioneer inserts each
received request or offer in its depositories (Consumer/Producer Depository
Manager). The requests are sorted from high price to low price and the offers
are sorted from low price to high price. A request is matched with an offer
if the resource offered by the producer meets the consumer requirements
regarding the quantity, time and price (Matchmaking unit).

5 Pricing Algorithm

In a price based system, the resources are priced based on the demand, supply,
and the wealth in the economic system. In each market, the objective of a seller
is to maximize its earning as much as possible and the objective of a buyer is
to spend as little money as possible. Based on these objectives, the strategy of
resource producers is to raise the price when the demand for associated resource
is high and lower the price when the demand is low. On the other hand, the
strategy of resource consumers is to lower the price when supply is high and raise
the price when the supply is low. Based on these strategies, we define consumer
and producer pricing functions through which the consumers and producers
perceive the supply and demand in the system and act accordingly. Consumer
and producer prices are called respectively bid and asks prices. Consumers and
producers start in the market with an initial bid/ask price and update it over
the time based on their local knowledge. Each consumer or producer agent keeps
a history of its previous experiences in buying or selling resources and defines a
bid/ask price as follows:

p(t) = p(t − 1) + Δp (1)

Where p(t) is the new price and p(t− 1) is the previous bid/ask price offered by
the consumer/producer agent. The value of Δp determines whether the price is

A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids 61

increasing or decreasing. To change the price according to the supply or demand
in the system, Δp is defined based on the past resource or task utilization for
this particular producer/consumer agent. Δp is calculated for a producer and a
consumer respectively in Equations 2 and 3 as below:

Δp = α(u(t) − uthR)p(t − 1) (2)

Δp = β(uthT − u(t))p(t − 1) (3)

where α and β are the coefficients that control the rate of changing the price.
u(t) is resource or task utilization, respectively, at the corresponding producer
or consumer agent. u(t) is defined as:

u(t) =
t∑

i=t0

x(i)/
t∑

i=t0

N(i) (4)

Where
∑t

i=t0
x(i) is the total numbers of sold/purchased resources in the time

period [t0, t] and
∑t

i=t0
N(t) is the total numbers of offered/requested resources

in the time period [t0, t] where t is the current time. Based on these definitions,
u(t) has always a value between 0 and 1. uthT /uthR are the threshold values
below which, the task/resource utilization (u(t)) should not go. These values are
constant and set by the consumer and producer agents. uthT and uthR could be
interpreted as the degree of agent activity. If activity is low, it implies that the
agent is satisfied with a low usage of its resources or a low completion rate of
its tasks. If it is high, the agent is being more demanding of itself by imposing
higher satisfaction thresholds.

Consumers and producers submit their bid/ask prices along with the quantity
of requested or offered resources to the auctioneer. The auctioneer finds matched
pairs and the trade between each pair is made at the average of the corresponding
consumer and producer prices. This price is called transaction price.

6 Experiments in a Local Grid

We evaluate the pricing mechanism by simulation. In compared to real-world
experiments, simulation models provide control over different system settings,
and they can compress time and allow faster execution of experiments. However,
they can not resemble the real-world completely and some assumptions have to
be made. We constructed a simulation platform in which a Grid like environment
is set up based on a local LAN. Our application test-bed is developed using J2EE
and Enterprise Java Beans. A JBOSS application server is used to implement the
auctioneer. We consider Java Message Service (JMS) for communication between
clients and auctioneer. MySQL server is used as a database server to store the
results.

Each request or offer submitted by consumers or producers has the following
specifications:

62 B. Pourebrahimi et al.

– Request={ resource type, resource quantity, TTL (time to live for request
validity), bid price}

– Offer={ resource type, resource quantity, TTL (time to live for offer validity),
ask price }

CPU time is considered as the resource in our experiments. For simplicity, we
consider a reference 1.4GHz CPU based on that consumer agents indicate the
quantity of their required resources. For a request, resource quantity is indicated
in terms of CPU time required to execute a task on the reference CPU. TTL in
a request is the time by which the task has to be executed after submitting a
request. For an offer, resource quantity and TTL are the same and they represent
the time during which the CPU is available. Resource type determines the type of
requested/offered resource. In our case that CPU time is the resource, resource
type determines the CPU speed since experiments are performed in an environ-
ment with nodes having various CPU speeds. Bid/ask prices are defined using
the presented pricing mechanism in Section 5. Consumer and producer agents
start in the market with a random bid/ask price between 10 and 30 Grid$ and
update their price using the pricing mechanism. The values of resource quan-
tity, speed, and TTL are generated by a uniform random distribution function
between a maximum value and a minimum value. We have considered the CPU
speed in the range [700MHz, 4GHz], resource quantity for a request in the range
[5000, 20000], and TTL for requests or offers in the range [50000, 100000].

The simulation is performed in an environment with 50 nodes each having
one consumer agent and one producer agent. Therefore, there exist 50 consumer
and 50 producer agents in the network. Some of these agents, called consumers,
have tasks to perform for which they are looking for additional resources while
others called producers have resources to sell. During a simulation time, every
node creates a number of requests and offers in a random order in different time
intervals. A node either creates a task request and activates a consumer agent or
creates a resource offer and activates a producer agent depending on its workload
or its idle resources. An imbalance between number of tasks and resources in the
network leads to a task or a resource intensive condition. The experiments are
performed under three different network conditions. These network conditions
are namely the balanced network which is a type of network where there are
more or less an equal number of tasks and resources, the task intensive net-
work where there are more tasks than resources and the resource intensive
network where there are more resources than tasks. The tasks and resources
are generated with the probability 50%-50% in a balanced condition, 80%-20%
in a task intensive condition, and 20%-80% in a resource intensive condition. For
instance, a node may creates 20 requests and 80 offers in a random order during
the simulation time in a resource intensive condition.

6.1 Adapting to Different Network Conditions

In this section, we want to show how the agents decide on price changes when
updating their prices in each network condition. The behavior of the price is

A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids 63

1

10

100

1000

10000

100000

1000000

10000000

0.01, 0.01 0.01, 0.80 0.80, 0.01 0.80, 0.80
,

Av
er

ag
e

Tr
an

sa
ct

io
n

Pr
ic

e
Balanced Resource Intensive Task Intensive

Fig. 2. Average transaction price with various values for α and β in different network
conditions (Logarithmic Y-scale)

discussed in these networks and the efficiency of the system is measured in the
terms of task and resource utilization and the average time of finding matches.
In this set of experiments, we study the impact of α and β parameters in dif-
ferent network conditions. These parameters, as already discussed in Section
5, determine the rate at which the price is changing. We consider the value of
uthT = uthR = 0.9 for all consumers and producer agents, which means the
agents who have tasks or resources are contributing with the same degree of
activity in the grid(these parameters are studied in Section 6.2).

Transaction Price. The average transaction price is studied in three network
conditions with various values of α and β. The producers increase or decrease
the price with the rate of α and consumers increase or decrease the price with
the rate of β. As seen from figure 2, the lowest prices are observed in a resource
intensive network. This type of network is similar to what is called a buyer
market. In a buyer market, there are more sellers than buyers and low prices
result from the exceedance of supply over demand. The average transaction
price has the highest values in a task intensive network comparing to the other
networks. In the task intensive network which has more buyers than sellers (a
seller market), high prices are the result of exceedance of demand over supply. In
such networks, buyers enter into competition with each other in order to obtain
scarce resources. In a balanced network as the supply equals the demand, no
very high or low prices are expected.

As seen from figure 2, the average transaction price in a task intensive network
increases to very high values when the value of β is high. This is expected, as in
task intensive networks, resources are scarce and consumers increase their prices
in a competitive way with the rate of β. Therefore, high values of β speeds up
the rate of increasing bid prices and leads to the high transaction prices. The
high prices can be prevented by applying a budget constraint.

64 B. Pourebrahimi et al.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 45 89 133 177 221 265 309 353 397 441 485 529

Time

T
ra

n
s

a
c

ti
o

n
 P

ri
c

e
TIN

BN

RIN

Fig. 3. Transaction price evolution in a Task Intensive Network (TIN), a Resource
Intensive Network (RIN), and a Balanced Network (BN) with the values of α = 0.8
and β = 0.8 (Logarithmic Y-scale)

To see how the prices evolve over time under each network condition, trans-
action price evolution is shown in figure 3 in the three networks with the values
of α = 0.8 and β = 0.8. The upward, downward and stable trends of trans-
action price curve in task intensive, resource intensive and balanced networks
respectively is a consequence of what we have already discussed about these
markets.

System Efficiency. In this set of experiments, system efficiency is measured
in three network conditions with varying the values of α and β.

– Task/Resource Utilization. Task/resource utilization is defined as the
ratio of allocated tasks/resources to all sent resource requests/offers. As fig-
ures 4 and 5 show, task and resource utilization in a balanced network for
all values of α and β is around 90%, except when α and β are very low.
In case of α = 0.01 and β = 0.01, task and resource utilization are around
75% (in the balanced condition). As with low values of α and β, producer
and consumer update their prices in a slower rate that leads to a lower
utilization of tasks and resources. In a resource intensive network, a global
observation is apparent from the figures as the task completion is close to
100% in most of the cases and only around 25% of the available resources
are used. This is expected as we are now looking at a Grid condition where
there are abundant resources. In such a network, as figures 4 and 5 show,
the highest task/resource utilization is obtained when α = 0.8 (β = 0.01
or β = 0.8). As in case of high competition between producers, if producers
update their prices at a higher rate, they will be more successful in selling
their resources. A global view on the task/resource utilization in a task in-

A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids 65

0%

25%

50%

75%

100%

0.01, 0.01 0.01, 0.80 0.80, 0.01 0.80, 0.80

,

Ta
sk

 U
tili

za
tio

n
Balanced Resource Intensive Task Intensive

Fig. 4. Task utilization with various values for α and β in different network conditions

0%

25%

50%

75%

100%

0.01, 0.01 0.01, 0.80 0.80, 0.01 0.80, 0.80

,

Re
so

ur
ce

 U
tili

za
tio

n

Balanced Resource Intensive Task Intensive

Fig. 5. Resource utilization with various values for α and β in different network con-
ditions

tensive network determines a usage of almost 100% for resources and 25% for
allocated tasks. These results are a consequence of higher number of tasks
than resources. The highest task/resource utilization in this type of network
is obtained when β = 0.8 (α = 0.01 or α = 0.8). A higher rate in updating
the consumer price helps competitive consumers to find more matches which
leads to more task/resource utilization.

– Average Time of Finding Matches. Figures 6 and 7 show the average
time that it takes for consumers and producers to find their required matches.
In a resource intensive network, a global observation is that the average time

66 B. Pourebrahimi et al.

10

100

1000

10000

100000

0.01, 0.01 0.01, 0.80 0.80, 0.01 0.80, 0.80

,

Av
er

ag
e C

on
su

me
r T

im
e o

f M
atc

h
Balanced Resource Intensive Task Intensive

Fig. 6. Average time of finding matches for consumers with various values of α and β
in different network conditions (Logarithmic Y-scale)

for producers to find a task for their available resources is at least 4 times
higher than for consumers. This is a consequence of the fact that there are
more resources available than tasks to perform. In a task intensive network,
the average time of finding a match for consumers is at least 6 times higher
than for producers. As in this kind of network there are more tasks than re-
sources. However, the lowest consumer matching time in a resource intensive
network is obtained when α = 0.8 and the lowest producer matching time in
a task intensive network is obtained when β = 0.8, which are corresponding
to the highest task/resource utilization in the respective networks.

In a balanced network, we do not see much difference in the average
matching time of consumers and producers. However the matching time is
higher for both consumers and producers when α = 0.01 and β = 0.01. This
is because of a slower rate of updating producer and consumer price that
concludes with a longer time for finding proper matches.

An overall study of system efficiency shows that the highest task/resource uti-
lization and lowest matching time in different network conditions is provided
when α and β have bigger values. The question is how can agents recognize the
current network condition? The answer is that agents can sense the condition
through the way their price is evolving. For instance, when the price is increas-
ing, a consumer agent knows that resources become scarce. Therefore it has to
adapt its bidding strategy to become more aggressive by increasing the value of
β. On the other hand when the price is decreasing, it shows the demand for the
resources is low then a producer agent bidding strategy should be converted to a
aggressive strategy by increasing the value of α. Lower values of α and β implies
a conservative bidding strategy for consumers and producers respectively where
they decrease or increase the price in a low rate.

A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids 67

100

1000

10000

100000

0.01, 0.01 0.01, 0.80 0.80, 0.01 0.80, 0.80

,

Av
er

ag
e P

ro
du

ce
r T

im
e o

f M
atc

h
Balanced Resource Intensive Task Intensive

Fig. 7. Average time of finding matches for producers with various values of α and β
in different network conditions (Logarithmic Y-scale)

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

Uth

Task Utilization Resource Utillization

Fig. 8. Task/resource utilization (with different values of uth in a balanced network
(uth=uthT =uthR)

6.2 Adaptation at the Node Level

In the experiments presented in Section 6.1, we studied the behavior of the price
and efficiency of the system in different network conditions. We showed how the
agents adapt to the current condition of the network. In the current experiments,
we want to show how the agents can adapt based on the current condition of
their own tasks and resources. For instance, if a node has more resources than
tasks, it should generate an active producer agent and a lazy consumer agent. We
need a way to represent this information and to incorporate it into the agent’s

68 B. Pourebrahimi et al.

0

4000

8000

12000

16000

0.25 0.5 0.9

Uth

A
ve

ra
g

e
T

im
e

o
f

F
in

d
in

g

M
at

ch

Consumers Producers

Fig. 9. Average time of finding matches with different values of uth in a balanced
network (uth=uthT =uthR)

behavior. As already discussed (Section 5), uthT /uthR could be interpreted as
the degree of agent activity in the Grid. If it is low, it implies that the agent is
contributing with a low usage of its resources or is demanding a low completion
rate of its tasks. If it is high, the agent is contributing to the Grid by offering
more resources or is demanding more resources from the Grid. To study the
impact of uthT and uthR, we consider the fixed value of 0.8 for both α and β.

Impact of uthT /uthR on system efficiency. In the first set of experiments,
we study the impact of varying uthT and uthR on system efficiency. We consider
the same value of utilization threshold for the consumers and producers (uthT =
uthR = uth) and perform the experiment in a balanced network.

– Task/Resource Utilization: We measure the task and resource utilization in
the network considering different values for uth. The result of these experi-
ments shows that task and resource utilization is linearly proportional to this
threshold value (see figure 8). Agents with low value of uth represent lazy
agents and agent with high value of uth show the agents which are active in
Grid. Seen from the figure 8, as uth increases, the Grid utilizes more from
the agent’s tasks or agent’s resources.

– Average Time of Finding Matches: In the same experiment, the average time
that it takes to find a match is measured for both producers and consumers.
With increasing degree of the activeness (uth), the agents become more active
in the Grid, so the time to find a match for them is decreasing. As Figure 9
shows, with increasing the value of uth, producers and consumers spend less
time to find their required matches.

Lazy/active agents. To show in a Grid how consumer and producer agents can
become lazy or active by modifying uthT and uthR parameters, we undertake one
other experiment. Assume that in a Grid some nodes have heavy workloads and

A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids 69

0%

20%

40%

60%

80%

100%

Node A Node B

Task utilization Resource Utilization

Fig. 10. Task/resources utilization for lazy/active agents. Node type A: uthR = 0.9
and uthT = 0.25; Node type B: uthR = 0.25 and uthT = 0.9.

need extra resources. These kinds of nodes prefer to complete their tasks rather
than offering their resources, so these nodes can be regarded as lazy producers
but active consumers. Other nodes are more willing to contribute their resources
as they have idle resources or low workloads. That means that these nodes are
active producers but lazy consumers. In this experiment, we consider 40 nodes
in the network. The values of uthR = 0.9 and uthT = 0.25 are set for 20 nodes
which are assumed to be active producers and lazy consumers. Other half of
the nodes have values that are set to uthR = 0.25 and uthT = 0.9 to create
active consumers and lazy producers. We consider a balanced condition where
each node generates more or less the same number of tasks and resources during
the experiment. We study the task and resource utilizations of the individual
nodes from these two categories. Figure 10 shows the average of resource and
task utilizations of two typical nodes from each category. Node A is an instance
of the first category with low workloads which has more idle resources, and Node
B is an instance of the nodes with high workloads. As seen in Figure 10, nodes
of type A contribute more as producers than as consumers and Grid utilizes
more resources (93%) from this group compared to the tasks (56%). On the
other hand, more tasks are utilized from the nodes of type B compared to the
resources, which is 96% for the tasks and 59% for the resources. These nodes
contribute to Grid more as consumers than as producers. Therefore, consumer
and producer agents can decide on their task usage and resource contribution to
Grid individually by setting the parameters uthT and uthR.

7 Conclusion and Future Work

In this paper, a dynamic pricing and bidding strategy is introduced where the
consumer and producer agents determine the price of the tasks/resources that
they contribute to the Grid. In this strategy, the pricing function is adaptive to

70 B. Pourebrahimi et al.

changing supply and demand of resources. Adaptation is achieved by increasing
or decreasing the price when the supply or demand is low. For instance, if the
demand for resources are high, prices start to increase so as to discourage users
from demanding resources thus maintaining equilibrium of supply and demand
of resources. We study the parameter regime of the pricing equations in three
network conditions. There are four parameters that can be manipulated by the
consumer and producer agents: α, β, uthT and uthR. The parameters α and β
are used to define the rate of changing ask and bid prices. The parameters uthT

and uthR determine the degree of activity of agents in the Grid.
Our experiments show that a resource intensive network is more influenced

by α while a task intensive network is more influenced by β. In a resource
intensive network, agents can decrease their asking prices using a aggressive
bidding strategy by increasing the α-value. In a task intensive network, agents
can speed up their bidding prices by increasing the β-value using an aggressive
bidding strategy to make more use of the Grid. In a balanced network both α
and β parameters have the same affect. Furthermore, producers and consumers
can change their degree of activity in the Grid using uthR and uthT parameters.
The producers and consumers can decide how much they are contributing to the
Grid considering their capabilities and their workloads. They become less/more
active in the Grid by decreasing/increasing these values.

As the results show, in all conditions higher values of α or β provide higher
resource/task utilization and lower matching time. On the other hand, high val-
ues of β causes transaction prices to grow infinitely in a task intensive condition.
Infinite prices do not exist in real markets since buyers can not bid beyond their
limited budget. To avoid unlimited prices and to be consistent with real mar-
kets, in future work we aim to implement our model considering a given budget
for each node which provides an upper boundary for prices. Different auction
models with different pricing strategies are to be studied in the future work.

References

1. Minowitz, P.: Adam smith’s invisible hands. Econ. Journal Watch 1, 381–412 (2004)
2. Pourebrahimi, B., Bertels, K., Vassiliadis, S.: A survey of peer-to-peer networks.

In: Proceedings of the 16th Annual Workshop on Circuits, Systems and Signal
Processing, ProRisc 2005 (2005)

3. Abdullah, T., Sokolov, V., Pourebrahimi, B., Bertels, K.: Self-organizing dynamic
ad hoc grids. In: 2nd IEEE International Conference on Self-Adaptive and Self-
Organizing Systems Workshops, SASOW 2008 (2008)

4. Wolski, R., Brevik, J., Plank, J.S., Bryan, T.: Grid resource allocation and control
using computational economies. In: Grid Computing: Making The Global Infras-
tructure a Reality. John Wiley & Sons, Chichester (2003)

5. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. Concurrency and Computation:
Practice and Experience 14, 1507–1542 (2002)

6. Wolski, R., Plank, J., Brevik, J., Bryan, T.: G-commerce: Market formulations
controlling resource allocation on the computational grid. In: Proceedings of Inter-
national Parallel and Distributed Processing Symposium (IPDPS) (2001)

A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids 71

7. Nisan, N., London, S., Regev, O., Camiel, N.: Globally distributed computation
over the internet - the popcorn project. In: Proceedings of the 18th International
Conference on Distributed Computing Systems (ICDCS 1998), p. 592. IEEE Com-
puter Society, Los Alamitos (1998)

8. Waldspurger, C.A., Hogg, T., Huberman, B.A., Kephart, J.O., Stornetta, W.S.:
Spawn: A distributed computational economy. Software Engineering 18, 103–117
(1992)

9. Lalis, S., Karipidis, A.: Jaws: An open market-based framework for distributed
computing over the internet. In: Buyya, R., Baker, M. (eds.) GRID 2000. LNCS,
vol. 1971, pp. 36–46. Springer, Heidelberg (2000)

10. Preist, C., Van Tol, M.: Adaptive agents in a persistent shout double auction.
In: Proceedings of 1st International Conference on the Internet Computing and
Economics, 1998, pp. 11–17 (1998)

11. Ogston, E., Vassiliadis, S.: A peer-to-peer agent auction. In: Proceedings of the
first international joint conference on Autonomous agents and multiagent systems
Part I, pp. 151–159 (2002)

12. Gomoluch, J., Schroeder, M.: Market-based resource allocation for grid computing:
A model and simulation. In: Proceedings of the First International Workshop on
Middleware for Grid Computing, Rio de, pp. 211–218 (2003)

13. Wurman, P., Walsh, W., Wellman, M.: Flexible double auctions for electronic com-
merce: Theory and implementation. Decision Support Systems, 17–27 (1998)

14. Weng, C., Lu, X., Xue, G., Deng, Q., Li, M.: A double auction mechanism for
resource allocation on grid computing systems. In: Jin, H., Pan, Y., Xiao, N., Sun,
J. (eds.) GCC 2004. LNCS, vol. 3251, pp. 269–276. Springer, Heidelberg (2004)

15. Waldspurger, C.A., Weihl, W.E.: Lottery scheduling: Flexible proportional-share
resource management. In: Operating Systems Design and Implementation, pp. 1–11
(1994)

	A Dynamic Pricing and Bidding Strategy for Autonomous Agents in Grids
	Introduction
	Market-Based Resource Allocation and Peer-to-Peer Architectures
	Related Work
	System Architecture
	Pricing Algorithm
	Experiments in a Local Grid
	Adapting to Different Network Conditions
	Adaptation at the Node Level

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

