
Information Sharing among Autonomous Agents

in Referral Networks�

Yathiraj B. Udupi and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA
{ybudupi,singh}@ncsu.edu

Abstract. Referral networks are a kind of P2P system consisting of
autonomous agents who seek and provide services, or refer other ser-
vice providers. Key applications include service discovery and selection,
and knowledge sharing. An agent seeking a service contacts other agents
to discover suitable service providers. An agent who is contacted may
autonomously ignore the request or respond by providing the desired
service or giving a referral. This use of referrals is inspired by human in-
teractions, where referrals are a key basis for judging the trustworthiness
of a given service. The use of referrals differentiates such networks from
traditional P2P information sharing systems, which are based on request
flooding. Not only does the use of referrals enable an agent to control
how its request is processed, it also provides an architectural basis for
four kinds of interaction policies. InterPol is a language and framework
supporting such policies.

InterPol provides an ability to specify requests with hard and soft con-
straints as well as a vocabulary of application-independent terms based
on interaction concepts. Using these, InterPol enables agents to reveal
private information and accept others’ information based on subtle rela-
tionships. In this manner, InterPol goes beyond traditional referral and
other P2P systems in supporting practical applications. InterPol has been
implemented using a Datalog-based policy engine for each agent. It has
been applied on scenarios from a (multinational) health care project. The
contribution of this paper is in a general referrals-based architecture for
information sharing among autonomous agents, which is shown to effec-
tively capture a variety of privacy and trust requirements of autonomous
users.

1 Introduction

In an open distributed system, (discovering and) selecting among service
providers is a key challenge. Traditional peer-to-peer systems such as Gnutella
and Kazaa focus on file sharing among peers. In traditional P2P systems, a peer

� We thank National Science Foundation (grant ITR-0081742) for their partial
support.

Samuel R.H. Joseph et al. (Eds.): AP2PC 2007, LNAI 5319, pp. 13–26, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

14 Y.B. Udupi and M.P. Singh

begins a search by sending a request for a file to some of its peers, who either pro-
vide the requested file or, if a count is not exceeded, forward the request to other
peers. When a peer provides the requested file, the file is propagated back to the
request initiator. Traditional P2P systems have certain drawbacks. First, their
free flooding mechanism can cause a large number of message transmissions and
be inefficient in their use of bandwidth. Second, and more importantly, from the
perspective of this paper, traditional approaches complicate trust and privacy
management. A request that is forwarded by a peer Y on behalf of a peer X has
the effect of being executed by the receiving peer Z as if the request originated
with Y. In other words, Z may respond or not because the request came from
Y, whereas any information Z provides would be viewed by X.

Referral systems are a less well-known but powerful kind of P2P system [1,2].
Briefly, referral systems are multiagent systems whose member agents follow
a (generally, but not necessarily) cooperative protocol by issuing referrals to
one another, thus sharing their knowledge about service providers and enabling
improved service selection. An agent seeking a service requests a set of neighbors
(who can be thought as its favorite peers) for services. The requested agents
autonomously decide on providing the service, a referral, or neither. The request
initiator can autonomously decide whether to follow any of the referrals received.
Traditional referral networks are difficult to engineer since they lack a declarative
characterization of how the agents interact.

This paper describes InterPol, an implemented framework and a specifica-
tion language for interaction policies in multiagent service networks. Policies
capture requirements perspicuously and are used in many practical settings,
such as for business or security. InterPol enables each agent to set its policies
unilaterally. InterPol supports easy administration based on a flexible and yet
practical approach for agents to decide with whom to interact and how. It pro-
vides an application-independent vocabulary geared toward interaction policies
in service networks. InterPol’s novel features include capturing social primitives
to capture relationships among agents; an ability to model trust among agents;
an ability to specify requests via hard and soft constraints; and, support for
privacy-preserving information sharing among agents.

Our work is motivated by the needs of emerging P2P information systems.
An important and natural class of such systems arise in health care information
management. Our examples are inspired by those studied in the EU project
Artemis [3], which is developing an approach to enable the sharing of health
care information across organizational and sometimes national boundaries.

Health care is a natural fit for P2P service networks, especially one support-
ing rich interaction policies. For example, a patient may have as neighbors his
primary care physician and his close friends, and would contact them to request
services or referrals. A physician would have knowledge of the credentials of sev-
eral specialists and would refer his patients to them. Social relationships apply
naturally here. A patient would stop seeing a physician with whom his interac-
tions were not effective. And he would form additional relationships based on

Information Sharing among Autonomous Agents in Referral Networks 15

his evolving needs. For example, someone who ends up with clogged arteries is
likely to begin seeing a cardiologist on a regular basis.

Privacy is an important concern in health care and policies are natural for
privacy management. For example, a specialist’s policy might reveal the spe-
cialist’s observations only to the patient’s primary care physician or to another
specialist.

Consider a scenario when a person from North Carolina falls sick on her
visit to California. To find a good physician, she contacts her primary care
physician back home, who returns a referral to a friend in California. As the
patient is not aware of the quality of this newly referred physician, she would
apply her requesting policies and verify that this physician has board certification
from the ABMS, e.g., by checking on a suitable web-site. The selected physician
now requires the patient’s medical records, for which the patient’s primary care
physician’s answering policies kick in. InterPol was evaluated on the above kinds
of scenarios. Agents request each other for names of physicians meeting various
criteria. Here, an answer typically involves names of physicians, sometimes with
additional information about them. And, a referral typically is to an agent who
might be able to provide the names of some physicians meeting the specified
criteria.

Contributions. Todevelop a policy-based approach for interactions requires that
we construct a suitable conceptual model in which we can express the desired inter-
actions. In essence, the conceptual model should support social knowledge cleanly
separated from domain knowledge. This paper addresses this challenge, develop-
ing a conceptual model and vocabulary geared toward policy-driven multiagent
systems, and implementing it using a logic programming engine.

Organization. Section 2 introduces the basic functioning of InterPol: its policies
and representations of messages. Section 3 shows the application of policies and
tacks and illustrates important scenarios considering trust, privacy, utility of
interactions, and social relationships among agents. Section 4 offers a study of
related work with a comparative evaluation of the present approach. Section 5
concludes with a discussion of contributions and future work.

2 InterPol Framework

The InterPol architecture consists of agents, representing principals who remain
behind the scenes. The agents are heterogeneous and differ in their policies and
needs. For simplicity, we assume they share a communication language.

2.1 Agent Interactions

As explained above, traditional P2P systems employ a request flooding mecha-
nism where a request initiated from a peer is forwarded until the requested file
is found. In practical settings of such networks, flooding is limited by specify-
ing either a maximum depth of request path or a time-to-live (TTL) for each

16 Y.B. Udupi and M.P. Singh

request. Consequently, not every request may result in a hit, either because of
the non-availability of the requested resource, or because of the early death of
the request. The originator must decide these limits ahead of time, which is non-
trivial. If it decides to search a little deeper, it would have to repeat the search
already completed by the network.

InterPol employs a multiagent referral architecture wherein agent interac-
tions are based on the following mechanism. An agent seeking a service requests
some agents from among its neighbors. A requested agent may ignore a request,
perform the specified service, or give referrals to other agents. An answer is a
response based on performing the requested service; a referral is a response con-
sisting of names of other agents (or referands) who might provide the requested
service.

Alice Bob Charlie Gabriel

Answering
policy

Request
Formulation

policy

Referring
policy

Answering
policy

Response
Incorporation

policy

Request

Answer

Referral to Gabriel

Request

Request

Fig. 1. Example referrals scenario

Figure 1 shows a simple scenario (ignore policies for now), where Alice queries
Bob and Charlie for a service. Bob returns an answer, while Charlie refers
Gabriel. Alice then queries Gabriel. This contrasts with request flooding in
Gnutella, by making the querying agent directly responsible for how the compu-
tation proceeds.

InterPol goes beyond traditional referral approaches by providing a sophisti-
cated means for specifying interaction policies among the participants. The fol-
lowing examples give a flavor of the kinds of policies that might be constructed.
A user may specify that his personal information can be shared only with a
physician P who has credentials from a local hospital to which the user has
revealed personal information and if P is given a referral by the user’s current
primary care physician. A user may select a surgeon for an outpatient procedure
based on referrals from friends as well as board certification in the specialty of
interest. A user may not want to reveal any private information to any one but
his friend. InterPol supports the following kinds of policies. It is important how

Information Sharing among Autonomous Agents in Referral Networks 17

inserting these policies leads to a much richer treatment of interactions than in
traditional P2P systems.

InterPol supports four kinds of policies namely request formulation (RF), re-
sponse incorporation (RI), answering and referring policies. An agent applies its
request formulation policies to decide on what to request and whom to ask. An
agent applies its response incorporation policies to evaluate the responses and
decide on further action. An agent, when requested, applies its answering and
referring policies to decide whether and how to provide an answer or a referral.

Figure 1 illustrates these policies. Alice applies its request formulation pol-
icy to decide on requesting Bob and Charlie. Bob checks with its answering
policy before returning an answer. Charlie, not being able to answer, applies
its referring policy and returns a referral to Gabriel. Alice now applies its re-
sponse incorporation policy and accepts Bob’s answer and Charlie’s referral and
forwards the request to Gabriel.

2.2 Enactment

We have implemented InterPol to demonstrate the effect that the above approach
has on modeling and reasoning about the interactions among agents in a service
network. Each agent is implemented around a reasoner (built using the tuProlog
interpreter [4]) that handles policies and tacks. Each agent has a knowledge base
(KB): storing domain knowledge related to the agent’s domains of interest and ex-
pertise, social knowledge about neighbors, agent models, and social relationships,
and privacy related knowledge. There is a policy base for the policies introduced
earlier. Our agents follow the architecture typical in referral systems, e.g., [2]. The
algorithms for requesting and responding are described below.

Requests. Algorithm 1 implements the Ask-Request() method. An agent who
is looking for a service finds the neighbors selected based on the RF policies.
For each such neighbor selected according to the RF policy, a request for the
service is created and it may include any constraints (hard or soft “tacks”).
This request is sent to all the matching neighbors in step 2 and an answer
is awaited. The response received can be a referral or an answer. RI policies
evaluate the response received. If the received response is a referral and if the
RI policies are satisfied, the query is forwarded to the referred agents, again
using Ask-Request(); otherwise, answers are evaluated and incorporated in step
8. Finally, in step 9, the agent models of the responding agents are updated with
an improved rating in the case of a good answer or a good referral, and with a
decreased rating for a bad answer or a bad referral. This step is the essence of
how referral systems evolve.

Responses. Algorithm 2 implements the method Respond-Request(), which is
invoked when an agent receives a request. If the requested agent is willing to
answer, the InterPol reasoner solves for the request predicates with its argu-
ments in step 2. Valid answers generated by the reasoner are returned after
marking up if they satisfy the requested tacks (if any) in step 3. In step 5 if the

18 Y.B. Udupi and M.P. Singh

Algorithm 1. Ask-Request

1: for Each neighbor to ask based on RF policies do
2: Send request including a predicate and any constraints
3: if (response.type == referral) then
4: Send request to referred agents based on RI policies
5: end if
6: end for
7: for Each response that is an answer do
8: Evaluate and incorporate the answer based on RI policies
9: Update models of responding agents

10: end for

Algorithm 2. Respond-Request

1: if Answering policies allow then
2: Solve for the request predicate with its arguments
3: return answers after marking up the requested tacks
4: end if
5: if Neighbors match and referring policies allow then
6: return referrals
7: end if

referring policies of the agent allow, it responds with referrals having its matching
neighbors as referands in step 6.

2.3 Conceptual Model and Representation

InterPol incorporates a conceptual model for specifying the facts and policies of
agents. Figure 2 illustrates a part of this conceptual model. The key concepts
are explained below.

Facts and Policies. In InterPol an agent’s knowledge base comprises sets of facts
and rules. The knowledge base (KB) is dynamic: facts and rules may be continually
added or retracted. InterPol uses Constraint Datalog [5] to express policies and
facts. Policies are logic rules. Facts are special cases of rules whose right-hand sides
are empty. A fact forms the head of a rule, and a set of facts appear in the body of
a rule. Facts include domain facts, social facts, and privacy facts. Variable names
begin with an uppercase letter and constant names with a lowercase letter. A fact
comprises a predicate and a set of arguments. Predicates include domain, social,
privacy, and action predicates. Figure 2 shows example predicates in bold. The
arguments of the facts may be constants or simple variables. A nested domain
fact can appear as an argument in the case of the visibility predicate (illustrated
in Listing 1). For example, Listing 1 shows facts and policies in Alice’s KB. These
indicate that: Dave is a physician specializing in cardiology, Alice likes Charlie for
the findPhysician service, and a fact (illustrating the use of a nested predicate)
that the first fact is public. Alice’s referring policy allows her to refer any agent Y
for a service P if she likes that agent.

Information Sharing among Autonomous Agents in Referral Networks 19

Fact

ArgumentPredicate

Rule

Action

body
head

ask

answ
er

refer

instance of

is ais a

Social
Predicate

Privacy
Predicate

is a

neighbor

likes

instance of

visibility

agentPrivacy
Trust
servicePrivacy
N
eed

instance of

Social Fact

is a

Privacy Fact

is a

Domain Fact

is a

Agent Service

values

for

provides

likes

who whom
for

about

about

values
values [0,1]

Domain
Predicate

is a

about

{public,privileged}

Fig. 2. Part of the conceptual model of the vocabulary

Listing 1. Facts and policies in Alice’s KB (part 1)

� �

/∗ f a c t s ∗/
phys i c i an (dave , c a rd i o) .
l i k e s (a l i c e , c h a r l i e , f i ndPhys i c i an) .
v i s i b i l i t y (a l i c e , phy s i c i an (dave , c a rd i o) , pub l i c) .
/∗ po l i c i e s ∗/
r e f e r (a l i c e , Y, P) :− l i k e s (a l i c e , Y, P) .

� �

Requests: Queries and Tacks. Let’s first consider a simple form of a request,
which consists of a query rule whose head is the predicate ask applied to some
variables. The variables free in the head are used along with other variables in the
body of the rule. ask(Xi, . . .) : −P1(Xj , . . . , li, . . .), . . . is a generic query, where
the Pk are predicates, the Xi are variables, and the li are constants. Listing 2
shows a simple request consisting of a query.

Listing 2. Alice’s simple request

� �

[ask (X) :− phys i c i an (X, c a rd i o) , med ica lSchool (X, duke) ,
c e r t i f i e dBy (X, abms) , e xpe r i en c e (X, Y) , Y > 10]

� �

To improve the effectiveness and efficiency of interactions, InterPol supports
requests that consist of a query rule and a list of tacks. Each tack is a conjunction
of one or more clauses. A tack having a predicate Tk with variables Xi, and so
on is represented as T1(Xl, Xm, . . .). In other words, a tack is syntactically like
the body of a query rule. However, whereas a query body expresses a hard
constraint, a tack expresses a preference of the requester. In simple terms, a

20 Y.B. Udupi and M.P. Singh

request containing a tack can be interpreted as two requests: one consisting of
the query rule alone, and another consisting of the query rule augmented with
the tack “tacked on” to the body of the rule. When an agent responding to
a request is able to accommodate a specified tack, it facilitates the requester
pruning the search space and reducing the communication overhead.

Listing 3. Alice’s request with tacks

� �

[ask (X) :− phys i c i an (X, c a rd i o) , {medica lSchoo l (X, duke) ,
c e r t i f i e dBy (X, abms) , e xpe r i en c e (X, Y) , Y > 10 }]

� �

Listing 3 shows a request sent out by Alice for a physician specializing in
cardiology. She has preferences expressed in tacks such as about the physician’s
medical school, ABMS certification, and experience.

Responses: Answers and Referrals. A response returned by an agent is
either an answer or a referral. An answer is a set of solutions. For a simple
request, each solution is a vector of bindings of the variables in the ask of the
given query to constants that satisfy the query rule. A referral is a set of facts
describing the agents referred. These facts are generated by the reasoner to find
the matching referrals for the stated request.

Listing 4. Answers and referrals

� �

/∗ Bob ’ s answer (response to Al ice) ∗/
{ [ask (watson)] }
/∗ Charlie ’ s r e f e r r a l (response to Al ice) ∗/
{ r e f e r (c h a r l i e , gab r i e l , phy s i c i an) }

� �

Listing 4 shows Bob’s answer (one cardiologist who matches the body of the
query rule) and Charlie’s referral (a singleton set) in response to Alice’s request
of Listing 2.

For a request with tacks, each solution has two parts: (1) a vector of bindings
of the variables in the ask of the given query to constants that satisfy the query
rule and (2) a list of remarks in the same order as the tacks in the given request.
Each remark on a variable binding merely states whether the corresponding tack
is true (T) or not (F) for that binding.

Listing 5. Answers and referrals

� �

/∗ Bob ’ s answer (response to Al ice) ∗/
{ [ask (watson) , {T, T, T}] ,

[ask (dave) , {F, T, F}] }
� �

Listing 5 shows Bob’s answer to Alice’s request of Listing 3. Bob’s answer lists
two physicians specializing in cardiology. Watson satisfies all the tacks, whereas
Dave satisfies only the tack about certification.

Information Sharing among Autonomous Agents in Referral Networks 21

In general, a request that places some clauses in the tacks instead of the query
would produce more results, but some of them might be superfluous. A request
that placed more clauses in the query rule would produce fewer, but more precise
results. However, in some cases, it might produce no results at all.

3 Applying InterPol

InterPol incorporates a conceptual model and predicates for interactions, so-
cial relationships, trust evaluations, and privacy and utility management. The
following form the major scenarios, which motivate the development of a rich
vocabulary for the policy specification language in InterPol.

3.1 Accommodating Privacy

Policy-based approaches are natural for privacy. Traditionally, privacy is treated
via access control policies, often based on credentials or roles. A multiagent
approach can better model subtle social and organizational relationships among
agents, which govern the agents’ interactions in any practical setting. These mod-
els lead to policies that are more appropriate and acceptable. And, multiagent
approaches provide an architecture where the resolution of the policies is carried
out in a cooperative manner, wherein agents can naturally share information
that might help others whom they trust.

For example, an agent may not want to reveal his medical records to any-
one but his primary care physician. InterPol provides two low-level primitives
for handling privacy. First, it allows a fact or a rule in the KB to be marked
with its visibility (public or privileged). Second, InterPol supports a notion
of privacy measures with respect to services and agents. These concepts en-
able formulating precise answering policies that restrict revealing private in-
formation to certain agents. InterPol models these concepts using the privacy
predicates visibility, servicePrivacyNeed, and agentPrivacyTrust (values in the
range [0, 1]) to specify the visibility and the privacy measures of a service and
an agent, respectively. Here a privacy measure of 0 (1) means highly private
(public).

To demonstrate elementary privacy, consider a scenario described in Listings 6
and 7, which are Alice and Bob’s initial KBs, respectively.

Knowledge. Here, Alice is a neighbor of Bob and Alice has no neighbors. She
has expertise in the domain of medicine, and an answering policy that expects
the privacy trust measure of the requesting agent to be higher than that of
the service privacy need. Alice’s KB has a public fact that Dave is a physician
specializing in cardiology. She has a domain policy that means that physician
names and specialties can be revealed only if they are public. Other facts cap-
ture the agentPrivacyTrust of Bob and the servicePrivacyNeed of the predicate
physician.

22 Y.B. Udupi and M.P. Singh

Listing 6. Initial KB of Alice (part 2)

� �

answer (a l i c e , X, P) :− agentPrivacyTrust (X, V1) ,
se rv i cePr ivacyNeed (P, V2) , V1 > V2 .

v i s i b i l i t y (a l i c e , phy s i c i an (dave , c a rd i o) , pub l i c) .
phy s i c i an (X, F i e l d) :− v i s i b i l i t y (a l i c e , phy s i c i an (X, F i e l d) , pub l i c) .
agentPrivacyTrust (bob , 0 . 7 5) .
se rv i cePr ivacyNeed (phys i c i an , 0 . 5) .

� �

Listing 7. Initial KB of Bob

� �

neighbor (bob , a l i c e) .
query (bob , X, P) :− neighbor (bob , X) .
hasDi rec tExper i ence (bob , X, P) :− l i k e s (bob , X, P) .
r e f e r (bob , X, P) :− hasDi rec tExper i ence (bob , X, P) .

� �

Bob has a request formulation policy under which he can request any neighbor.
Bob’s referring policy requires him to have direct experience with a prospective
referand. Bob’s policy defines hasDirectExperience based on likes.

Interactions. Bob is looking for a physician specializing in cardiology and hence
generates a query with body physician(X, cardio). He applies his request formu-
lation policy by solving for query(bob, Y, physician). Alice qualifies for this
policy, being a neighbor. Thus Bob sends the request to Alice. Now Alice’s an-
swering policy is satisfied and she returns the answer physician(dave, cardio) to
Bob. Upon receiving the answer, Bob asserts the fact likes(bob, alice, physician)
to indicate that Alice gave a good answer.

3.2 Strategies for Requests

InterPol provides tacks as a facility for expressing soft preferences. How tacks
are constructed can have consequences on the efficiency of service selection and
on the privacy of the agents involved.

Privacy preservation. An agent’s requests can potentially reveal too much
information, e.g., about the agent’s true needs. A public request modifies a true,
private request so as to hide some of the private information. To formulate
privacy preserving queries, an agent must infer public requests from its private
needs. There are two main ways of accomplishing this. In generalization, a weaker
request is revealed. In Listing 8, a private request specifies a physician for skin
allergy. However, the agent’s request instead specifies a physician who treats any
allergy.

Listing 8. Using the generalization approach

� �

/∗ pr iva t e need ∗/
phys i c i an (X, sk inA l l e r gy) .
/∗ pub l i c request ∗/
phys i c i an (X, a l l e r g y) .

� �

Information Sharing among Autonomous Agents in Referral Networks 23

In the association approach, a request that is a sibling of the actual (private)
need is used. In Listing 9, the agent requests a dermatologist, based on the
association between skin allergy and dermatology.

Listing 9. Using the association approach

� �

/∗ pr iva t e need ∗/
phys i c i an (X, sk inA l l e r gy) .
/∗ pub l i c request ∗/
phys i c i an (X, dermatology) .

� �

Iterative exploration. For reasons of privacy, an agent may generate not one
but a series of requests. For simplicity, let’s consider that only tacks are varied
across such requests. Successive requests may make the tacks weaker (less con-
straining) or stronger (more constraining). We can think of the tacks as forming
a hierarchy, where lower tacks are stronger than upper tacks.

Listing 10. Example tack hierarchy

� �

expe r i en c e (X, Y) , Y > 10
⇓

c e r t i f i e dBy (X, abms)
⇓

medica lSchoo l (X, duke) .
� �

Listing 10 shows three tacks in order for a query predicate physician(X , cardio).
The top tack allows a physician with at least 10 years of experience and is the
weakest. The middle tack requires a certification by ABMS, whereas the bottom
tack requires the physician to be from Duke. In the bottom up strategy, if a
specified tack yields no valid answers, the agent weakens the tack in a subsequent
request. This increases potential space of answers. In the top down strategy, the
agent begins at the top and refines its tack until an acceptable answer is found.

Conflict management. Tacks can conflict. To accommodate handling conflicts
between tacks, InterPol supports assigning priorities to them. For example, con-
sider a scenario where a request for a physician is composed of two conflicting
tacks, specifying that the physician should be from Harvard and Duke respec-
tively. The tack with the higher priority is preferred.

3.3 Trust and Social Relationships

We model trust in relational terms: a trustor trusts a trustee with respect to a
particular service. For example, we may trust a cardiologist for all heart-related
problems but not for other ailments. Because of different bodies of evidence or
different evaluations of the same evidence, two trustors can have different assess-
ments of trust for a particular trustee. Social trust is based on the relationships
among the agents and is well suited for P2P information systems.

24 Y.B. Udupi and M.P. Singh

InterPol supports social relationships such as neighborhood, competition, col-
laboration, friendship, enmity, and service dependency. These relationships lead
to succinct policies that govern agent interactions well. For reasons of brevity,
they are not presented here. Instead we describe an example of a generic means
to evaluate relationships, which provides the heart of evidence-based reasoning.
Social network analysis models trust in the presence of social relationships based
on evaluating the participants’ experiences [6]. The knowledge of these relation-
ships at various strength levels can feature in an agent’s policies to evaluate trust
among agents. InterPol captures the strength I (values in the interval [0, 1]) of
a relationship R via a measure rStrength(R, I).

4 Related Work

Policies are widely used for access control and trust management in distributed
systems. InterPol differs from traditional policy approaches, because it focuses
on a multiagent service network, and provides a set of primitives that are de-
signed for expressing natural policies in it. These policies can be thought of as
supporting subtle kinds of access control where each agent determines how much
of its domain or social knowledge to share, when, and with whom.

Reputation-based access control. Reputation-based trust mechanisms are
becoming common for the management of decentralized peer-to-peer networks
because of the threat of malicious peers. Xiong and Liu propose an adaptive
trust model using community-based reputations to predict the trustworthiness of
peers in P2P e-commerce communities [7]. Boella et al. discuss authorization and
permission in policies for virtual communities consisting of resource consumers
and providers, and authorities [8]. Each community includes an authority, which
keeps track of membership and fine-grained access control policies.

A common feature of current reputation and access control systems is that they
employcentralizedmechanisms to store reputationvaluesor toprovidefine-grained
access control policies. By contrast, InterPol is decentralized and thus maximizes
the agents’ autonomy.Further, its use of policies simplifies the management of P2P
systems by placing control in the hands of the individual peers.

Policy languages. Of the several policy specification languages, two are partic-
ularly important. Rei is a policy language implemented in Prolog for pervasive
environments [9]. PeerTrust has an expressive policy and trust negotiation lan-
guage based on first order Horn rules which form the basis for logic programs
[10]. PeerTrust establishes trust using a dynamic exchange of certificates. Rei
does not model the privacy preserving policies like in InterPol and PeerTrust.
Like in PeerTrust, trust between entities in InterPol is built over time, but unlike
the dynamic exchange of certificates in PeerTrust, trust in InterPol depends on
the quality of the answers or referrals provided by the entities, and the trust
models generated by the policy framework.

Information Sharing among Autonomous Agents in Referral Networks 25

Role-based trust management. Role-based trust management languages
emphasize the properties of roles such as their hierarchy. They specify role dele-
gation, and support credential chain discovery and trust negotiation. Like Inter-
Pol, RT [11] and Cassandra [12] are based on Datalog with constraints. InterPol
models deeper social relationships and considerations of privacy. Via tacks and
policies, InterPol supports a more flexible kind of trust negotiation.

Privacy preserving systems. Several trust negotiation systems have intro-
duced mechanisms to safeguard the privacy of the entities and their policies
involved in a negotiation by using privacy preserving policies. PeerTrust [10]
uses a protection scheme that uses named policies, so that policies can have their
own policies. InterPol can support named policies, because it can support nested
policies. Also, InterPol supports sophisticated privacy preserving mechanisms by
supporting policies that use agent relationships to evaluate agent privacy levels.

5 Conclusion

Referral systems provide an alternative approach to realizing service networks
than traditional P2P systems. They place control of the computation in the
hands of the requesting agent (even as it relies upon cooperation from others),
because it is involved in all interactions. Thus it can better control the infor-
mation it reveals to other or the information it receives and incorporates from
others.

The referrals approach supports four types of policies to be formulated for
each agent. As a result, a far richer variety of interactions are supported than
in traditional P2P systems. This richer variety of interactions is essential for the
engineering and management of practical P2P information systems.

InterPol shows how its algorithms can be realized over a conventional Prolog
engine. It provides a rich vocabulary to enable to proper expression of policies,
and supports various heuristics by which agents can interact with each other.
Future work will consider enhancing the algorithms for evaluating policies to
support better exchange of information among the agents to perform cooperative
search. A referral system evolves as agents unilaterally can change their neighbor
sets so that their “better” peers become their neighbors. Interesting properties
emerge and are related to how individual agents act [2,13]. It would be interesting
to study such properties in the context of the policies discussed above.

References

1. Bonnell, R., Huhns, M., Stephens, L., Mukhopadhyay, U.: MINDS: Multiple in-
telligent node document servers. In: Proceedings of the 1st IEEE International
Conference on Office Automation, pp. 125–136 (1984)

2. Singh, M.P., Yu, B., Venkatraman, M.: Community-based service location. Com-
munications of the ACM 44, 49–54 (2001)

26 Y.B. Udupi and M.P. Singh

3. Dogac, A., Laleci, G., Kirbas, S., Kabak, Y., Sinir, S., Yildiz, A.: Deploying se-
mantically enriched web services in the healthcare domain. Information Systems
Journal, Elsevier Science (2005)

4. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight Prolog for Internet ap-
plications and infrastructures. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS,
vol. 1990, p. 184. Springer, Heidelberg (2001)

5. Li, N., Mitchell, J.C.: Datalog with constraints: A foundation for trust management
languages. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 58–73.
Springer, Heidelberg (2002)

6. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent sys-
tems. In: Proceedings of 1st International Joint Conference on Autonomous Agents
and Multiagent Systems, pp. 475–482 (2002)

7. Xiong, L., Liu, L.: A reputation-based trust model for peer-to-peer ecommerce
communities. In: Proceedings of IEEE Conference on E-Commerce, CEC (2003)

8. Boella, G., van der Torre, L.: Permission and authorization in policies for vir-
tual communities of agents. In: Moro, G., Bergamaschi, S., Aberer, K. (eds.)
AP2PC 2004. LNCS (LNAI), vol. 3601, pp. 86–97. Springer, Heidelberg (2005)

9. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing en-
vironment. In: Proceedings of 4th International IEEE Workshop on Policies for
Distributed Systems and Networks (POLICY), pp. 63–74 (2003)

10. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: Automated trust negotiation for
peers on the semantic web. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS,
vol. 3178, pp. 118–132. Springer, Heidelberg (2004)

11. Li, N., Mitchell, J.C.: RT: A role-based trust-management framework. In: Pro-
ceedings of 3rd DARPA Information Survivability Conference and Exposition
(DISCEX), Washington (2003)

12. Becker, M.Y., Sewell, P.: Cassandra: Distributed access control policies with tun-
able expressiveness. In: Proceedings of 5th International IEEE Workshop on Poli-
cies for Distributed Systems and Networks, POLICY (2004)

13. Yolum, P., Singh, M.P.: Engineering self-organizing referral networks for trustwor-
thy service selection. IEEE Transactions on System, Man, and Cybernetics, Part
A 35, 396–407 (2005)

	Information Sharing among Autonomous Agents in Referral Networks
	Introduction
	InterPol Framework
	Agent Interactions
	Enactment
	Conceptual Model and Representation

	Applying InterPol
	Accommodating Privacy
	Strategies for Requests
	Trust and Social Relationships

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

