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Preface

This volume contains revised versions of selected papers presented at the seventh
biannual meeting of the Classification and Data Analysis Group (CLADAG) of the
Italian Statistical Society, organized by the Faculty of Economics at the University
of Catania in September 2009.

The conference encompassed 150 presentations organized in 3 plenary talks and
42 sessions. Moreover, one tutorial on mixture modeling took place before the
meeting. With 225 attendees from 11 countries, the conference provided an attrac-
tive interdisciplinary international forum for discussion and mutual exchange of
knowledge. The topics of all plenary and specialized sessions were chosen to fit
the mission of CLADAG which is to promote methodological, computational and
applied research within the fields of Classification, Data Analysis and Multivariate
Statistics.

The chapters in this volume were selected in a second peer review process after
the conference. In addition to the fundamental areas of clustering and discrimina-
tion, multidimensional data analysis and data mining, the volume contains some
chapters concerning data analysis and statistical modeling in areas like evaluation,
economics, finance, environmental and medical sciences, industry and services.

We would like to express our gratitude to the members of the Scientific Program
committee for their ability to attract interesting contributions. We wish also thank
the session organizers for inviting speakers, the chairpersons and discussants of the
sessions for their stimulating comments and suggestions. We are very grateful to
the referees for their careful reviews of the submitted papers and for the time spent
in this professional activity. We gratefully acknowledge the Faculty of Economics
of the University of Catania and the Department of Economics and Quantitative
Methods, the Department of Economics and Territory, the Department of Sociology
and Social Sciences, and the Faculty of Political Sciences for financial support. We
are also indebted to SAS, CEUR Foundation and the Foundation for Subsidiarity
for their support. A special thank is due to the Local Organizing Committee for this
well-organized conference.
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Finally, we would like to thank Dr. Martina Bihn of Springer-Verlag, Heidelberg,
for her support and dedication to the production of this volume.

Catania Salvatore Ingrassia
Roma Roberto Rocci
Roma Maurizio Vichi
July 2010
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Part I
Data Modeling for Evaluation



Evaluating the Effects of Subsidies to Firms
with Nonignorably Missing Outcomes

Fabrizia Mealli, Barbara Pacini, and Giulia Roli

Abstract In the paper, the effects of subsidies to Tuscan handicraft firms are eval-
uated; the study is affected by missing outcome values, which cannot be assumed
missing at random. We tackle this problem within a causal inference framework. By
exploiting Principal Stratification and the availability of an instrument for the miss-
ing mechanism, we conduct a likelihood-based analysis, proposing a set of plausible
identification assumptions. Causal effects are estimated on (latent) subgroups of
firms, characterized by their response behavior.

1 Introduction

The estimation of causal effects often faces problems of post-treatment compli-
cations, i.e., different sorts of selection of observations due to, e.g., nonresponse,
attrition, truncation, or censoring “due to death”, which may affect both obser-
vational and experimental studies (Rosenbaum 1984). In this paper, a specific
endogenous selection problem is considered, namely a nonignorable missing mech-
anism due to nonresponse on an outcome variable. Because nonresponse occurs
after treatment assignment, respondents are not comparable by treatment status: the
observed and unobserved characteristics of respondents in each treatment group are
likely to differ and may be associated to the values of the missing outcome, mak-
ing the missing mechanism nonignorable. Often analysts use ad hoc procedures to
handle missing data, such as dropping cases with missing observations, or sam-
ple mean substitution, which lead to valid inferences only under strong ignorability
assumptions of the nonresponse mechanism (Little and Rubin 1987).

Within the framework of the Rubin Causal Model (RCM, Rubin 1974), a rela-
tively recent approach to deal with post-treatment complications is Principal Strat-
ification (PS), firstly introduced in an experimental setting (Frangakis and Rubin
2002), but with the potential of being easily extended to observational studies under
specific hypotheses on the assignment mechanism. In the traditional econometric
literature, the problems of endogenous selection, such as non response, are usu-
ally represented by means of selection models, whose connections with PS are

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_1, c� Springer-Verlag Berlin Heidelberg 2011
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well described by Mealli and Pacini (2008). In this paper, we use PS to address
the problem of nonresponse in observational studies, where strong ignorability of
the treatment holds by assumption. We further rely on the presence of an additional
variable which may serve as an instrument for nonresponse. In the econometric liter-
ature, instrumental variables have already been employed to deal with nonresponse
(Manski 2003). Plausible instruments for nonresponse can be relatively easily found
(unlike finding instruments for other post-treatment complications), for example by
data collection characteristics, which are likely to affect the response probability
but not the outcome values. Characteristics of the interviewer (e.g., gender), inter-
view mode, length and design of the questionnaire can be convincing instruments
for nonresponse (see, for example, Nicoletti 2010). Here we use an instrument gen-
erating some source of exogenous variation in nonresponse in a causal inference
framework. Principal strata will be defined by the nonresponse behavior in all pos-
sible combinations of treatment and instrument values. Some of the strata we will
search the effect for may characterize policy relevant subpopulations, which are sub-
groups of the always-responders strata under the standard PS approach. We adopt a
parametric perspective, using a likelihood approach, in order to achieve identifica-
tion and estimation of heterogeneous causal effects on specific (latent) subgroups of
units under a plausible set of identifying assumptions.

We apply our approach to the analysis of data from an observational study to
evaluate the effects of subsidies to Tuscan handicraft firms on sales. In the study the
percentage of nonresponse affecting the outcome ranges from 12:96% for beneficia-
ries to 37:62% for non-beneficiaries, and there is some evidence that nonresponse
may be nonignorable. Moreover, a reasonable instrument for nonresponse is found
to be the professional position of the person responding to the follow-up interview.

The paper is organized as follows. The PS framework and the likelihood
approach are detailed in Sects. 2 and 3. In Sect. 4 we present the empirical analysis.
Some concluding remarks are reported in Sect. 5.

2 Principal Stratification with Nonignorably Missing
Outcomes and an Instrumental Variable

Let us consider a sample ofN units, a vector X of observed pre-treatment variables,
a post-treatment binary intermediate variable S , which represents nonresponse, an
outcome variable of interest Y and a binary treatment T . We also consider the
availability of a binary instrumental variable Z, that can be characterized with the
related assumptions and regarded as an additional treatment. If unit i in the study
(i D 1; : : : ; N ) is assigned to treatment T D t (t D 1 for treatment and t D 0

for no treatment) and the instrumental variableZ is regarded as an additional treat-
ment, four potential outcomes (Rubin (1974)) can be defined for each post-treatment
variable, Y and S in our case: Si .t; z/, Yi .t; z/ for t D 0; 1 and z D 0; 1. In obser-
vational settings, various hypotheses can be posed on the assignment mechanism.
In our case, the treatment assignment for both T and Z is assumed unconfounded
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Table 1 Principal strata with two binary treatments and a binary intermediate variable

G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S(0,0) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
S(0,1) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
S(1,0) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
S(1,1) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

given a vector X of observed pre-treatment variables:

T;Z ˆ S.0; 0/; S.0; 1/; S.1; 0/; S.1; 1/; Y.0; 0/; Y.0; 1/; Y.1; 0/; Y.1; 1/jX: (1)

We further assume that in large samples for all values of X we can find treated
and control units, as well as units with different values of the instrument (overlap
assumption). In order to characterize Z as an instrument, the following exclusion-
restriction assumption is imposed: Y.0; 0/ D Y.0; 1/ and Y.1; 0/ D Y.1; 1/, which
says that for treated and for controls units, separately, the value of the instrument
is unrelated to the outcome. Moreover, the instrument Z is required to have some
effect on S , both under treatment and under control. Within each cell defined by
specific values of the pre-treatment variables, the units under study can be stratified
into 16 latent groups, named Principal Strata and denoted by G D f1; 2; : : : ; 16g,
according to the potential values of Si .t; z/ (see Table 1). For instance, stratum
G D 1 includes those who would not respond under treatment and under control
regardless the value of the instrument; stratum G D 2 includes the subgroup of
units responding only under treatment and if the instrument equals 1; etc. Principal
stratum membership, Gi , is not affected by treatment assignment ti , so it only
reflects characteristics of subject i , and can be regarded as a covariate, which is
only partially observed in the sample (Angrist et al. 1996). When S represents a
post-treatment complication, such as nonresponse, we usually need to adjust for
the principal strata, which synthesize important unobservable characteristics of the
subjects in the study. Note that Assumption (1) implies that

Y.0; 0/; Y.0; 1/; Y.1; 0/; Y.1; 1/ ˆ T;ZjS.0; 0/; S.0; 1/; S.1; 0/; S.1; 1/; X I

therefore, potential outcomes are independent of the treatments given the principal
strata. This implication confirms the idea that, while it is in general improper to
condition on Si .ti ; zi /, units can be compared conditional on a principal stratum.
All the observed groups, characterized by the observed value of T , Z and S , result
from a mixture of a number of principal strata. The presence of the instrument can
be exploited to achieve identification of causal effects on specific latent subgroups
of units. For this purpose, both parametric and nonparametric strategies can be car-
ried out, depending on the set of assumptions that can be reasonably maintained,
in order to bound and/or point-identify treatment effects. In what follows, we pro-
pose a parametric approach which introduces some distributional hypothesis, that
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are consistent with the data and allow us to condition on the distribution of pre-
treatment covariates. Some additional assumptions are further imposed to reduce
the number of strata or stating the equivalence of the outcome distribution across
strata.

3 Likelihood Approach

The likelihood-based perspective allows us to solve the identification problem,
mainly thank to the results on finite mixture distribution theory (see e.g., McLachlan
and Peel 2000). An additional problem, often arising in evaluation studies, is that
samples are usually choice-based: program participants are oversampled relative to
their frequency in the population of eligible units. Choice-based sampling is fre-
quently adopted to reduce the costs of data collection and to get a larger number of
control units. Such a design does not give rise to inferential problems if T is assumed
uncounfounded and no other complications must be adjusted for. In our case this
implies that we do not observe the marginal distribution of the instrument Z but
the conditional distribution of ZjT , leading to potentially inconsistent maximum
likelihood estimates (Hausman and Wise 1981). However, we can show that the
conditional probability of Z, given X and T , factorizes out of the likelihood func-
tion and can be neglected in the optimization procedure, since it does not include
the parameters of interest. Indeed, by letting .Ti ; Zi ; S.Ti ; Zi /; Y.Ti ; Zi /;Xi / be
the vector of random variables generating the observed data for each unit i , the joint
probability of observing these data, under our sampling design, can be expressed as

NY

iD1

P.Zi D zi ; S.ti ; zi / D si ; Y.ti ; zi / D yi jXi D xi ; Ti D ti /:

It can be decomposed by considering the product of the following joint probability
for each of the eight observed groupsO.t; z; s/ defined by T D t , Z D z and S D s
(where t D 0; 1, z D 0; 1 and s D 0; 1):

Y

i2O.t;z;s/

P.Zi D z; S.ti ; zi / D s; Y.ti ; zi / D yi jXi D xi ; Ti D t/ (2)

Equation 2 can be written as:

Y

i2O.t;z;s/

P.S.ti ; zi / D s; Y.ti ; zi / D yi jXi D xi ; Ti D t; Zi D z/

�P.Zi D zjXi D xi ; Ti D t/: (3)

The first part in (3) can be expressed as the probability of the union of events defined
by the values of the potential variable Si .t; z/ (i.e., by the strata membership) so that
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for each observed group we have

Y

i2O.t;z;s/

hX

f

P.Y.ti ; zi / D yi jXi D xi ; Ti D t; Zi D z; Gi D f /

�P.Gi D f jXi D xi /
i
� P.Zi D zjXi D xi ; Ti D t/

where the index f denotes the latent strata membershipsGi of units in the observed
group O.t; z; s/. P.Zi D zjXi D xi ; Ti D t/ can be omitted since it is ancillary
with respect to the parameters of interest characterizing the distribution of Y and
the strata proportions. In addition note that, due to Assumption (1),

P.Y.ti ; zi / D yi jXi D xi ; Ti D t; Zi D z; Gi D f / D P.Y.ti ; zi /

D yi jXi D xi ; Gi D f /:

Within the PS framework and under the assumption of unconfoundedness, the
likelihood function is shown to result in a finite mixture of distributions and iden-
tification is straightforward. Indeed, by exploiting the correspondence between the
observed groups O.t; z; s/ and the latent strata, we obtain the likelihood function
to be maximized where, without further assumptions, all the 16 latent strata are
involved:

Y

i2O.1;1;1/

X

k

P.Y.ti ; zi / D yi jXi D xi ; Gi D k/ � P.Gi D kjXi D xi /

�
Y

i2O.1;1;0/

X

j

P.Gi D j jXi D xi /

�
Y

i2O.1;0;1/

X

h

P.Y.ti ; zi / D yi jXi D xi ; Gi D h/ � P.Gi D hjXi D xi /

�
Y

i2O.1;0;0/

X

l

P.Gi D l jXi D xi /

�
Y

i2O.0;1;1/

X

m

P.Y.ti ; zi / D yi jXi D xi ; Gi D m/ � P.Gi D mjXi D xi /

�
Y

i2O.0;1;0/

X

o

P.Gi D ojXi D xi /

�
Y

i2O.0;0;1/

X

p

P.Y.ti ; zi / D yi jXi D xi ; Gi D p/ � P.Gi D pjXi D xi /

�
Y

i2O.0;0;0/

X

q

P.Gi D qjXi D xi / (4)

where k, j , h, l , m, n, o, p and q index the different latent strata included in each
observed group (e.g., k D 2; 4; 6; 8; 10; 12; 14; 16).
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In order to form the likelihood function, we have to specify a distribution for the
potential outcomes conditional on the observed pre-treatment covariates, as well as
a model for the principal strata membership G. The likelihood function results in
a finite mixture model. Thank to the exclusion-restriction assumption some of such
parameters are constrained to be the same. Moreover, in order to reduce the number
of strata, different monotonicity assumptions can be imposed, which can relate both
to the response behavior w.r.t. the instrument and to the response behavior w.r.t.
the treatment. Note that monotonicity assumptions cannot be falsified by data, but
only reasonably assumed. Once parameter estimates are obtained, both the strata
proportions and the causal effects of interest can be estimated, averaging over the
observed distribution of covariates, as a function of such parameters.

4 Empirical Study

In the framework of the Programs for the Development of Crafts in Tuscany, Italy
(Regional Law n. 36, 4/4/95), we evaluate the effects of credit on investments (PSA
2003–2005), provided in years 2003 and 2004 by the Regional government under
the form of soft loans, on sales in year 2005. Data are obtained by integrating dif-
ferent data sources: administrative archives provided by the Chamber of Commerce
(2001–2004) and by the Internal Revenue Service (2002), data on assisted firms
collected by the Regional Government, and data from a telephone survey (Mattei
and Mauro 2007). The survey was conducted in order to gather additional informa-
tion, not contained or not yet available in administrative archives, in particular 2005
outcome variables of firms’ performances (sales, number of employees, production
innovation). We consider a sample of 108 beneficiaries and of 707 non-beneficiaries
firms. The binary treatment T is thus defined as an indicator of whether a firm
receives a public soft loan. Previous evidence (Mattei and Mauro 2007) shows that
nonresponse on sales may be nonignorable. In order to estimate the treatment effect
on sales (2005),Y , in the presence of nonresponse (denoted by S ), we use an indica-
tor variable,Z, which assumes value 1 if the owner responds to the phone interview
and 0 if an employee responds, as an instrument for nonresponse.Z can be thought
of as an additional intervention, and as a reasonable instrument for nonresponse,
because (a) the propensity to provide information on sales may vary and may depend
on the person job task, with owners being a priori more inclined to answer questions
on sales; (b) we can reasonably assume that, conditional on observed firm character-
istics, the person responding to the interview is determined by random events, such
as time of the interview, absence/presence in the office, etc., not directly related to
the outcome variable. Indeed, the percentages of cases where owner responds to the
interview in both treatment arms are very close (73:15% for treated and 77:93%
for control units). We maintain the following assumptions: unconfoundedness of
T and Z and overlap assumptions, exclusion-restriction, lognormality of sales Y
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conditional on the principal strata and on the vector of pre-treatment variables,1

and multinomial logit for the distribution of principal strata. All the hypotheses are
assumed to be valid conditional on the vectorX of observed pre-treatment variables.
The following monotonicity assumption2 is also imposed:

S.t; 0/ � S.t; 1/ 8t (5)

S.0; z/ � S.1; z/ 8z: (6)

Assumption (5) relates to the response behavior w.r.t. the instrument: for a fixed
treatment level, units responding when an employee answers to the phone interview
(i.e. Z D 0) would respond also when the owner answers (Z D 1). Analogously,
Assumption (6) relates to the response behavior w.r.t. the treatment: for a fixed
value of the instrument, units responding under control would respond also when
treated. In this application, both monotonicity assumptions seem to be plausible,
because we may reasonably assume that exposure to the treatment, i.e., the receipt
of public incentives, makes the interviewed person more responsive to administra-
tive requests, and also that owners may be more willing to take the responsibility
to declare the amount of sales. Assumptions (5) and (6) imply the non-existence of
some of the 16 strata in Table 1. In particular, the number of strata are reduced to be 6
(i.e., strata 1, 2, 4, 6, 8 and 16). Note that, in this case, the strata containing informa-
tion on causal effects, in the sense that some units respond under treatment and some
other units respond under control, are strata 6, 8 and 16, so that the goal is to identify
and estimate causal effects on (union of) strata 6, 8 and 16. To simplify the model,
we constrained the slope coefficients and the variances to be the same in all the
strata, but separately under treatment and under control. The exclusion-restriction
assumption further reduces the number of parameters to be estimated by equating
the outcome distribution parameters of groups for which we observe T D 1;Z D 0
and T D 1; Z D 1 or, analogously, T D 0; Z D 0 and T D 0; Z D 1. Under this
set of assumptions the estimated proportions of strata 4 and 8 are not significantly
different from 0. Therefore, we can suppose these strata do not exist and hope to
learn something about the causal effectEŒY.1/�Y.0/jG D g� only for strata 6 and
16. Specifically, stratum 6 includes units who would respond only if owner answers
to the phone interview. Stratum 16, which results to be to largest one, includes
units responding under treatment and under control regardless of the value of the
instrument. Results are reported in Table 2 and show different, positive, but negli-
gible effects of the incentives in the two subgroups of firms. Moreover, the average
treatment effect for G 2 f6; 16g is 227; 658:1 euros, which is smaller than the one
estimated by neglecting the nonignorability of nonresponse, improperly comparing
the 94 respondents under treatment with the 441 under control (449; 524:8 euros,

1 Pre-treatment characteristics considered in the present analysis are: number of employees, sector
of activity and taxable income in the year 2002.
2 Several sets of monotonicity assumptions have been compared, by computing the scaled log-
likelihood ratio, in the spirit of a direct likelihood approach.



10 F. Mealli et al.

Table 2 Estimation results (standard errors are computed using the delta method)

G bP .G D g/ (se) bEŒY.1/� Y.0/jG D g� (se)

1 0.209 (0.031)
2 0.140 (0.033)
6 0.064 (0.013) 37,634.6 (52,910.4)
16 0.586 (0.020) 248,526.0 (210,310.4)
(6,16) 227,658.1 (190,185.0)

s:e: D 112; 626:5) and quite similar to the one estimated by a standard PS approach
for the larger group of always responders (275; 073:5 euros, s:e: D 127; 691:2).

5 Concluding Remarks

We considered the problem of nonignorable nonresponse on an outcome in a causal
inference framework and use PS as a tool to represent post-treatment complica-
tions within the RCM. By exploiting a binary instrumental variable for nonresponse
and by adopting a likelihood approach, we identified and estimated causal effects
on some latent subgroups of units. We showed that our strategy also allowed us to
take account of choice-based sampling. The parametric approach rests on distribu-
tional assumptions that are consistent with the data. Note that when specifying a
mixture model, parametric assumptions refer to distributions of the outcome vari-
ables conditional on the strata, while the underlying distribution of unobservables
determining the principal strata is not parametrically specified. In this context, para-
metric assumptions have explicit implications on the probability law of variables
within observed groups, so that the theory of mixture models can be exploited for
both identification and specification testing (Mealli and Pacini 2008).
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Evaluating Lecturer’s Capability Over Time.
Some Evidence from Surveys on University
Course Quality

Isabella Sulis, Mariano Porcu, and Nicola Tedesco

Abstract The attention towards the evaluation of the Italian university system
prompted to an increasing interest in collecting and analyzing longitudinal data on
students’ assessments of courses, degree programs and faculties. This study focuses
on students’ opinions gathered in three contiguous academic years. The main aim
is to test a suitable method to evaluate lecturer’s performance over time consider-
ing students’ assessments on several features of the lecturer’s capabilities. The use
of the same measurement instrument allows us to shed some light on changes that
occur over time and to attribute them to specific characteristics. Multilevel analysis
is combined with Item Response Theory in order to build up specific trajectories of
performance of lecturer’s capability. The result is a random-effects ordinal regres-
sion model for four-level data that assumes an ordinal logistic regression function.
It allows us to take into account several factors which may influence the variability
in the assessed quality over time.

1 Introduction

In Italy, the assessment of teaching quality in students’ perception is a mandatory
task for each public university institution. This study aims to build up an over-
all measure of lecturer’s capability considering the evaluations she/he received in
three academic years (a.y.) from her/his students who may have attended different
courses held by the lecturer in the three a.y.; thus lecturer’s capability in teach-
ing is measured by considering evaluations gathered in different classes and which
may concern different courses. A multilevel Graded Response Model (Adams 1997,
Grilli and Rampichini 2003, Sulis 2007) is adopted to evaluate lecturers’ perfor-
mances over time considering students’ responses to a set of selected items of the
questionnaire for the evaluation of teaching activities. In this framework the selected
items are supposed to have the same discrimination power. It is important to under-
line that students who evaluate the same lecturer change over years, whereas the
lecturer who is the object of the evaluation does not. Hence, we are not moving in
the classical framework of longitudinal analysis where repeated measurements on
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the same students are observed at each time t . The study moves from the perspective
that the evaluation of lecturers’ capability over time allows us to take strictly into
account of both the multivariate structure of the responses provided by students and
the characteristics that vary over time.

The modeling approach here adopted lies in the framework of Generalized Linear
Mixed Models (Hedeker and Gibbons 1994, Gibbons and Hedecker 1997, Agresti
et al. 2000, Hedeker et al. 2006): specifically, it can be set as a four-level random-
effects regression model assuming an ordinal logistic regression function. This
model allows us to describe relationships across lecturer’s evaluations over years
taking into account possible sources of heterogeneity which may occur across units
at different hierarchical levels. However, in this study, it is not considered the het-
erogeneity which may occur across evaluations gathered in different courses taught
by a lecturer in the same a.y.. The recent changes in the Italian university system
required several adjustments in the denomination of university courses and in the
reorganization of the degree programs; this makes hardly possible to analyze lec-
turer’s evaluations over time by considering just evaluations on the lecturer gathered
from the same course in the three a.y.. The main purpose of this work is to make an
attempt to overcome the effect of seasonal/annual disturbances which can alterate
students’ perception of lecturer’s capability with the aim to provide an overall mea-
sure of performance. However, a discussion is attempted on the further potentialities
of the approach as a method to build up adjusted indicators of lecturer’s capability
in which the effects of factors which make evaluations not comparable are removed.

2 The Data

The data used in this application are provided by the annual survey carried out at
the University of Cagliari to collect students’ evaluations on the perceived quality of
teaching. The analysis concerns questionnaires gathered at the Faculty of Political
Sciences. Three different waves have been considered, namely those carried out at
2004/05, 2005/06 and 2006/07 a.y. Students’ evaluations are collected by a question-
naire with multi-item Likert type four-categories scales. A bunch of items addressed
to account for specific features of the lecturers’ capabilities have been selected:
I1D prompt student’s interest in lecture, I2D stress relevant features of the lecture,
I3D be available for explanation, I4D clarify lecture aims; I5D clearly introduce
lecture topics; I6D provide useful lectures.

A number of 47 lecturers have been considered in the analysis; specifically: those
who received at least 15 evaluations per a.y. (the total number of evaluations per
lecturer ranges from 15 up to 443). In the three a.y., 10,486 evaluation forms have
been gathered: 3,652 in the first a.y., 3,123 in the second and 3,711 in the third.
According to the academic position, the 47 lecturers are divided in four categories:
17 full professors, 15 associated professors, 13 researchers and 2 contractors. The
subject areas are seven: law (8 lecturers), economics (9), geography (2), foreign
languages (2), sociology (7), mathematics and statistics (6), history and political
sciences (13).
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Fig. 1 z0 indexes

The z0 index to measure the dissimilarity among categorical ordered distribu-
tions has been used in order to summarize the evaluations concerning the same
lecturer in the three a.y.. Each z0

i compares the observed cumulative distribution of
students’ responses (FIi

) to theK-categories of item Ii , with the hypothetical cumu-
lative distribution (FIi:LS

) that we would have observed if all the evaluators would
have scored for item Ii the category which marks the lowest intensity of satisfaction
(Capursi and Porcu 2001)

z0
i D

1

K � 1
K�1X

kD1

jFIi:k
� FIi:LS:k

j:

The four graphs in Fig. 1 display the values of the z0 index by item and lecturers
and by item, lecturers, and a.y.. The index which summarizes the evaluations in the
three a.y. shows lower variability (sd ranges from 0.0535 to 0.0721) than distribu-
tions of z0 in each a.y. (sd2004: 0:0725� 0:0979, sd2005: 0:0778� 0:1313, sd2006:
0:1109 � 0:1567). This suggests that more information on lecturer’s evaluations
could be gathered from an analysis which considers lectures’ capability over time
(Giusti and Varriale 2008).

3 Modeling Lecturers’ Capability Over Time

The modeling approach frequently adopted to cope with multi-items Likert type
indicators arises from the Item Response Theory (IRT). In this framework items
are indicator variables of an unobservable latent trait. Grilli and Rampichini
(2003) show as the data structure with multiple items can be simplified by
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re-parameterizing the multivariate model with I items as a two-level univariate
model with a dummy bottom variable. The new parametrization deals with mul-
tivariate indicators using a multilevel modeling approach where subject j (for
j D 1; : : : ; n) denotes level-2 unit and where there are I (for i D 1; : : : ; I )
responses (level-1) from the new bottom level. In this way the multivariate regres-
sion model is handled as univariate and standard routines for multilevel model can
be used. In multilevel models the correlation brought about sources of heterogene-
ity is taken into account at any level by including random-effects at each stage
of the hierarchy. Hedeker and Gibbons (1994) develop an ordinal random-effects
regression model suitable to deal with either longitudinal and clustered observa-
tions; furthermore they show (Gibbons and Hedecker 1997) as the two-level model,
frequently applied in the literature for modeling clustered units, longitudinal studies
or repeated observations on the same subject, can be extended to deal with com-
bination of these structures (e.g. clustered and repeated) by setting a three-level
model: e.g. repeated responses of the same students clustered in questionnaires
(level-2 units) which are furthermore nested in courses (level-3 units) (Grilli and
Rampichini 2003, Sulis 2007); respondents grouped in parliamentary constituencies
which belong to surveys held in three different years (Agresti et al. 2000).

It is a common practice to formulate the IRT models as two-level hierarchical
models where level-1 units are responses to each item whereas level-2 units are ques-
tionnaire which evaluate lecturer’s capability (Van den Noortgate and Paek 2004).
Indicating with n the number of students and with I the number of items, the total
number of level-1 observations is n� I . IRT models for ordered responses assumes
that for each item in the questionnaire the probability to observe a specific response
category relies on the threshold or cut-point parameters (or item parameters) which
characterize the categories of the items and on a subject parameter, also called (in
the psychometric field) ability parameter (Rasch 1960). The former are interpreted
as a kind of difficulty parameters since they signal how much difficult is to cross a
category of a specific item. The ability parameters are individual estimates of the
unobservable latent trait lecturer’s capability in students’ perception (Sulis 2007).
An additional parameter (discrimination parameter) could be considered when-
ever items in the questionnaire are supposed to have different discrimination power.
Combining the multilevel and the IRT framework, person parameters are the ran-
dom intercepts which characterize responses arisen from the same questionnaire.
The ability parameters on which this study focuses on are the lecturer’s overall
capability in the three a.y. and their variability over time. The questionnaires (which
are level-2 units) are clustered according both to which a.y. the survey has taken
place and to which lecturer the evaluation is addressed. Hence, the parameters con-
sidered are random terms which account for correlations across evaluations of the
same lecturer and across the three a.y.

3.1 A Four-Level Ordinal Logistic Mixed-Effects Model

Let Yjtl be the vector pattern of ordinal item responses of subject j which eval-
uates lecturer l in the t a.y. The ordered categories (k D 1; : : : ; K) of item can
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be considered as values of an underlying continuous variable Y �
ijtl

(Y �
ijtl
D k if

�i.k�1/ � Yijtl � �ik) which is supposed to have a logistic distribution. Denoting
with � a cumulative ordinal logistic link function (Gibbons and Hedecker 1997)

�i.k/jtl D logitŒP.Yijtl � k/� D �ik � .�jtl C �t l C �l/ (1)

�jtl � N.0; �2
�
/, �t l � N.0; �2

�
/ and �l � N.0; �2

�
/ are three random terms which

account for unobserved heterogeneity at different levels of the hierarchy. Each of
K � 1 logit expresses the ratio between the probability to score category k or lower
of item i evaluating lecturer l in the t a.y. on the probability to score higher cate-
gories as function of (a) a threshold item parameter (�ik), (b) a student parameter
�jtl and (c) two lecturer parameters �t l and �l . The items in the evaluation forms
are supposed to have the same power to discriminate across lecturers and students
with different intensity of the latent trait. To sum up, the model has a hierarchical
structure with four levels: (i) item responses are level-1 units; (ii) evaluation forms
are level-2; (iii) lecturers’ evaluation forms by year combination are level-3 units
(iv) lecturers’ evaluation forms in the three a.y. are level-4 units. The level-4 ran-
dom effect �l (for l D 1; : : : ; L/ is considered the lecturer’s parameter which is
shared by evaluations addressed to the same lecturer in the three a.y.; the level-3
random parameter �t l accounts for year-to-year variation in log-odds ratio for eval-
uations of the same lecturer (for t D 1; 2; 3/; level-2 random parameter �jtl is the
student’s parameter which accounts for correlations between responses on the same
student (variability between responses in the same evaluation form). Namely, the
model allows the level-3 random intercept (�t l) to vary randomly around the mean
of a generic level-4 random intercept (�l ) which accounts for “lecturer l overall
capability” (Agresti et al. 2000, Adams 1997).

Model 1 assumes that the random effect �t l has a normal distribution (rather
than a tri-variate normal) but it introduces a further random term (�l ) to take into
account of the intra-class correlation which may occur across evaluations of the
same lecturer gathered in the three a.y.. This parametrization with �t l univariate
implicitly constrains to be equal the variance between questionnaires which evaluate
the same lecturer in each of the three a.y. and the correlations between pairs of years
(Agresti et al. 2000). Thus, adding up an additional level in the hierarchy structure
leads to a more parsimonious model in terms of number of parameters: in Model
1 the number of fixed effects are I � .K � 1/ threshold parameters and the three
unknown variances of the random terms (�2

�
, �2

�
and �2

�
), whereas in the level-3

model with �t l tri-variate normal the parameters of the random part of the model
are 7 (�2

�
, �2

�1
, �2

�2
, �2

�3
, ��1;�2

, ��1;�3
, ��2;�3

).
Comparisons across threshold parameters of different items express the diffi-

culty of different facets of the teaching. These parameters allow to highlight those
aspects of teaching (measured throughout specific items) which require a higher
or lower lecturer’s capability in order to gain a positive assessment. Moreover, the
greater lecturer’s capability is the higher the probability to receive in each item an
excellent evaluation. The means of the posterior distributions of the three random
terms, obtained by using empirical bayes estimates, can be interpreted as estimates
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Table 1 Four-level multilevel model
Item �i1 se(�i1) �i2 se(�i2) �i3 se(�i3)

I1 to prompt student’s
interest in lecture

�4.470 (.082) �2.343 (.072) .925 (.070)

I2 to stress relevant future
of the lecture

�5.511 (.092 �3.199 (.074) .130 (.070)

I3 to be available for further
explanation

�6.252 (.107) �4.346 (.081) �.869 (.070)

I4 to clarify lectures aims �5.511 (.093) �3.137 (.074) .112 (.070)
I5 to clearly introduce

lecture topics
�5.115 (.087) �3.105 (.074) .067 (.070)

I6 to provide useful lectures �5.432 (.090) �3.360 (.075) �.234 (.070)

Random effects var.�l / se[var(�l )] var.�tl / se[var(�tl )] var.�jtl / se[var(�jtl )]
.809 (.0642) .485 (.049) 4.747 (.089)

Statistical Software: GLAMM (Rabe-Hesketh et al. 2004), log likelihood �51,433.203.
Maximization method adopted: marginal maximum likelihood with Gauss-Hermite quadrature.

of the three latent variables (Sulis 2007): student’s perceived quality of lecturer’s
capability, variability in lecturer’s capability in the three a.y., and lecturer’s overall
capability. The corresponding posterior standard deviations are often interpreted as
standard errors in the IRT framework.

Results of Model 1 are depicted in Table 1. The Intra-class Correlation Coef-
ficient (ICC) shows how the unexplained variability in the latent responses is
distributed across levels; thus it is a measure of how much high is the similarity
across units which belong to the same cluster. In Model 1, where the latent vari-
able is specified to follow a logistic distribution, the within level-1 variability is
set equal to 	2=3. The estimates of �2

�
, �2

�
and �2

�
(Table 1) provide information

on the amount of unexplained variability at each level. Specifically, as it could be
expected, about 51% of the variability in the responses is explained by the fact that
level-2 units cluster repeated measurements on the same student (who evaluates sev-
eral features of teaching). Thus this source of the heterogeneity is the result of the
different perception that students have of teaching quality. The remaining 14% of the
unexplained variability is ascribable to the variability in the assessments observed
across evaluation forms addressed to different lecturers. The variability between
lecturer’s evaluations is a combination of the two random effects �t l and �l . The
fraction of variability, even though it is ascribable to lectures’ performances, can
be further decomposed into two parts: (i) a fraction of heterogeneity in the data
which is given to unobservable specific characteristics/qualities concerning lectur-
ers’ capability and invariant across the three a.y. and (ii) a fraction which capture
unobservable factors which may vary. The former is described by the variance of the
random term �l (e.g. lecturer’s capability of teaching) and accounts for 9% of the
variability in the evaluations; the latter is described by the variance of the random
term �t l and explains about the 5%. Hence, the variance ratio between the evalua-
tions of the same lecturer in two different a.y. is equal to 0.625 (Agresti et al. 2000).
The source of variability reproduced by �t l can be ascribed to several factors which
can rise heterogeneity in the data and which are not observed in this framework
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Table 2 Posterior estimates of students and lecturers parameters: some descriptive statistics

Statistics O�jtl O�04;l O�05;l O�06;l O�l
Min. �8.36 �1.40 �1.15 �1.25 �2.37
1st Qu. �1.21 �0.36 �0.17 �0.42 �0.35
Median 0.09 0.05 0.15 �0.09 0.13
Mean 0.03 0.07 0.11 �0.09 0.11
3rd Qu. 1.51 0.41 0.46 0.31 0.46
Max. 4.76 1.24 1.03 1.25 2.45

(e.g. the different background of the students who evaluate; the total workload of
the lecturer; the specific topic of the course; the number of students in the class-
room; etc.). Descriptive statistics related to the posterior estimates of the three latent
variables are depicted in Table 2. The posterior estimates O�l of lecturers’ capability
allows to make comparisons across lecturers.

Looking at the values of the cut-points of the categories and their standard errors
(Table 1), it is interesting to see where they are located in the continuum which
here represents the two latent variables: “students perception of teaching quality”
and “teacher’s overall capability”. The easiest task of teaching for a lecturer seems
being available for explanations (I3). The level of students’ satisfaction required to
observe the highest positive response definitely yes (�33 D �0:869) is located well
below the average and the median value. Furthermore, the values of the quantiles
of the distribution of O�l indicate that a relevant rate of lectures have in average a
definitely positive score in the item. At the other end of the continuum there is the
item prompt student’s interest in lecture (I1). To cross the first cut point of this item
(e.g. to be more satisfied than unsatisfied) is almost as difficult as to cross the second
cut point of item I3. The cut points of items I2; I4; I5; I6 are close and the difference
across them in terms of intensity are not statistically significant. This means that it
is required almost the same level of teacher’s capability and students’ satisfaction in
order to cross the categories of the four items.

Model 1 is a descriptive model (Wilson and De Boeck 2004) since it consid-
ers just random intercepts ignoring the effect of items, students, or lecturer by
year (level-1, level-2, level-3) covariates. These factors could be specifically taken
into account in the analysis by introducing level-2 -x- , or level-3 -z- or level-4
u covariates – depending whether or not we are dealing with time-dependent or
time-independent covariates – which may affect lecturer’s capability (Adams 1997,
Zwiderman 1997, Sulis 2007). The effect of covariates can be specified in different
ways: by allowing covariates to affect directly the ability parameters or indirectly
the responses (Sulis 2007). For instance, if time dependent variables are supposed
to influence lecturer’s capability

�t l D
SX

sD1


szlst C "lt and �l D
CX

cD1

˛culc C �l :
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The model with covariates allows to sort out adjusted estimates of lecturers’
capability parameters. This means that it makes possible comparisons across lectur-
ers controlling for those factors as e.g. the lecturer’s experience, the topic thought by
the lecturer, the number of students in the class, etc., which make lecturers’ evalua-
tions not comparable. Furthermore, the heterogeneity across evaluations of the same
lecturer gathered in different courses may be partially controlled by considering in
the model a specific covariate which takes into account for the year of enrollment
of students. The low number of lecturers observed in this application (47) did not
allow to pursue this specific task.
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Evaluating the External Effectiveness
of the University Education in Italy

Matilde Bini

Abstract This paper aims at checking the possibility to measure the external effec-
tiveness of course programs groups of all Italian universities, taking account of both
characteristics of individuals and context factors that differently affect the Italian
regions. We perform the analysis using a multilevel logistic model on data set from
survey on job opportunities of the Italian graduates in 2004, conducted in 2007 by
the Italian National Institute of Statistics

1 Introduction

The recent increasing unemployment rates of young graduates observed in many
European countries, spurred the interest of many people to tackle the problem of
the transition from university to work. An important aspect of this phenomenon is
verifying if the degree of education acquired from university is adequate to the needs
demanded by labor market. To do that, it is necessary to study the effectiveness
of the university educational process with respect to the labor market outcomes of
graduates, also named external effectiveness. This concept can be measured through
several indicators, like the success in getting a job (Bini 1999), or a job in conformity
with the education acquired by graduate (Bini 1999); or a job with adequate salary
or income; or the time to get the first job (Biggeri et al. 2001).

This study deals with the most popular measure: the success in getting a job after
degree. Any analysis on the effectiveness of university educational process must be
performed taking account of factors that can contribute to results of the effective-
ness indicators: factors pertaining individuals that are graduates’ characteristics and
also internal context factors that are universities’ characteristics, like for example
some indices of financial resources, number of students per course program, etc.
Some studies dealing with this issue in Italy, like the surveys on job opportunities
conducted by (AlamaLaurea 2009) and by the Italian National Institute of Statis-
tics (Istat) in 2007, as well as the analysis carried out by Bini (1999), revealed that
results of Northern regions are different from those of Southern regions. This means
that the difference among the probabilities of getting a job (or a first job) is due not

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_3, c� Springer-Verlag Berlin Heidelberg 2011
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only to differences among individuals and among different capabilities to educate
individuals universities have, but also to the economic and social differences among
regions (or counties) where universities are located. As a consequence, such studies
should have to be performed also including observable variables or their proxies that
measure the social and economic degree of territories. Therefore, it will be possible
to assert that we can make comparisons among different groups of course programs
under coeteris paribus (i.e. same) conditions.

We remind that the external effectiveness can be defined in absolute terms
(absolute effectiveness or impact analysis), that means to measure the effect of inter-
ventions with respect to a specific target; or in relative terms (relative or comparative
effectiveness), that means to make comparisons among situations of many institu-
tions. It can also be defined in two different typologies (Willms 1992; Raudenbush
and Willms 1995), type A: in this case potential students are interested in compar-
ing the results they can obtain by enrolling in different institutions, irrespective of
the way such results are yielded; or alternatively type B: in this case Government
is interested in assessing the “production process” in order to evaluate the ability of
the institutions to exploit the available resources. Whatever definition we adopt, to
analyze and make comparisons among outcomes from educational services that uni-
versities offer, it is important taking account of factors that make comparable these
outcomes.

This paper aims at checking the possibility to measure the external effectiveness
of course programs groups of all universities considering both the characteristics of
individuals and context factors that differently affect the Italian regions, considered
as external context factors of universities. We point out that course programs are
aggregated in groups to avoid a study with a multitude of course programs having
quite different denominations but same formative contents. We perform the analysis
of the external effectiveness of the Italian university educational process, using data
set from survey on job opportunities of the Italian graduates in 2004, conducted
by Istat in 2007 (Istat 2008a). Several external context indicators (Istat 2008b) are
involved in this analysis.

Because of the data set can be arranged in a hierarchical two level structure (grad-
uates nested in groups of courses combined with universities), a multilevel logistic
model is applied.

2 Data Description

The Istat data set used in the analysis is made up by two distinct stratified sam-
ples for males and females, where the strata were defined as intersections between
course programs and universities. The sample size of interviews is 47;300, which
is about 18% of the universe (2;60;070) of graduates. Since we want to estimate
the probability to get job, the sample of 47;300 records has been reduced to 32;228
by eliminating all graduates who, at the date of the interview, did have the same
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job before their degrees, and who were unemployed but at the same time were not
interested in searching for a job. Data set includes two different groups of individu-
als: 26;570 and 20;730 graduates from degree programs existing respectively before
and after past reform on teaching activity, the decree law DM n.509=99, that was
effective starting from the a.y. 2001=2002. This peculiarity suggests to accomplish
two separate analysis.

Our study carries out the analysis of the external effectiveness for the second
sample because it refers to the recent teaching system that should affected the
performance of universities in terms of capacity of educating young people to
requirements of job market and also changed the propensity of people to search
for a job after the degree. As regards covariates, they concern information on:

� gender (0D male; 1D female);
� age (1 D� 24; 2 D 25� 26; 3 D 27� 29; 4 D� 30);
� marital status (0D married; 1D not married or divorced);
� address during the studies (1� 20D number of Italian regions, 99 abroad);
� kind of the degree;
� final mark (1 D� 79; 2 D 80 � 89; 3 D 90 � 94; 4 D 95 � 99; continuous if
� 100);

� occupational condition during the studies (0D yes; 1D no);
� other studies or training after the degree (0D yes; 1D no);
� graduation within institutional time (0D yes; 1D no);
� military service (0D yes done; 1D not yet);
� family background (0 if father doesn’t have a degree; 1 if father has at least a

degree);
� high school attended (9 categories).

All variables are measured at individual level, while covariates of external con-
text added to this data set, are measured at groups of course programs combined with
universities level. Each macro-economic variable characterizes one Italian region,
consequently all universities belonging to the same region have the same value
of the variable. These are: (a) macroeconomic measures (Gross Domestic Prod-
uct per inhabitant, GDP, or productivity of labor); (b) job market measures ((youth)
unemployment rate or quota of irregular labor); (c) measure of production struc-
tures (number of firms per inhabitant, average number of employees per firm); (d)
innovation and technology measures (quota of innovative firms); (e) measures of the
degree of culture (quota of family expenses for cultural entertainments); (f) quality
of life (the poverty rate).

We assumed that graduates who continued to study two more years after their
degrees (who are many in this sample), search for a job after completing their stud-
ies, so that the economics indices we use are observed for 2007 year. However, an
average value of them over 3 years could also be considered as alternative. Factors
pertaining internal context have not been included because they missed in this data
set and it was not possible to have this information from other sources.
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3 Multilevel Logistic Model

Because data have a hierarchical structure with two levels, represented by gradu-
ates (level-one units) and by groups of course programs combined with universities,
labelled class-univ (level-two units), a multilevel regression model is used. A review
of ML models in education is proposed by Grilli and Rampichini (2009). The
observed response yij which measures the event of getting job (yes/no), is bino-
mially distributed. When the response is binary, a two-level logistic model for the
graduate i of the course program-university j, with a binomial variation at level 1
assumed, can be defined as follows (Goldstein 1995):

logit.	ij / D ˇ0 C
X

h

ˇhxhij C
X

l

ılzlj C uj (1)

where 	ij is the probability to get job, xhij is the h-th covariate measured at
i-th and j-th respectively first and second levels, and zlj is the l-th macro-economic
covariate measured at j-th level; uj� iid N(0,�2

u ) is the random effect at second
level. Several covariates selected from Istat questionnaire have been considered in
the analysis, nevertheless only some macro-economic variables have been added in
the model, like the Gross Domestic Product per inhabitant (gdp), the unemploy-
ment rate (unempl), the number of firms per inhabitant (n_f irms), the quota of
innovative firms (innov_f irms) and the poverty rate (q_life). They are the most
representative indices of the economic and social context.

In order to have a easier interpretation of the results, some covariates have been
transformed as binary by reducing the number of their categories.

4 Main Results

Two different models have been estimated firstly without and secondly with macro-
economic variables, using STATA program (STATA, 2007). In Fig. 1 we show the
estimates obtained from the model fitted without external context variables (Model
1). The fitting yielded that only few covariates are significant: age of graduates
(age2), family background (family_backgr) graduation within institutional time
(q1_19) and studies (masters or other studies) after the degree (af ter_degree).

The unexpected negative family background variable reflects that graduates from
course programs after the decree law DM n.509=99 and having parents with higher
level of education, are inclined to continue their studies instead of search for a job.

The significant variance of the residual �2
u confirms the presence of differences

among groups of course programs of different universities. This result highlights the
effects of individuals’ characteristics. From the estimates it is possible to measure
and compare the external effectiveness of course programs groups from different
universities for any kind of graduate, besides the baseline profile with 22 years old,
graduated within institutional time, who never attended master or PhD courses after
degree, having a graduated parent (father). The second step of the analysis yielded
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Model 1
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Fig. 2 Estimates of models with external context variables

significant estimates for Gross Domestic Product per inhabitant (gdp_07), unem-
ployment rate (unempl_07) and poverty rate (q_life_07); while variables such as
the number of firms per inhabitant (n_f irms_07) and the quota of innovative firms
(innov_f irms_07) revealed to be significant provided if they are included as alter-
native to the GDP. To give an example, Fig. 2 shows the estimates of two models,
Models 2 and 3, which perform the probability to get job taking account of the GDP
per inhabitant or the number of firms per inhabitant, and the unemployment rate.
They are the most important indices representing the degree of economic and job
market development of a territory. Hence, it will be possible to measure and com-
pare the external effectiveness of course programs groups from different universities
for any kind of graduate, but under more comparable conditions due to the presence
of effects of economic and market conditions where universities are located.

4.1 Context Variables Effects

To highlight the contribution of external variables, it is possible to construct a
very simple index that measures the difference (in percentage) of the second level
variability between the two different models, respectively free of external variables
and under coeteris paribus:
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In other words, this index represents the percentage of variability “explained” by
context factors. Here in this analysis, since the second level variances for example
of model 1 and model 2 are respectively 0:68 and 0:42, the value of index is equal
to 38:2%. This means that the 38:2% of the differences among groups of course
programs is due to the presence of GDP and unemployment rate in the model.
Moreover, the importance of external variables in the analysis is also evaluated if
we compare the estimation of the probability to get job for the baseline graduate,
according to a classification of five different typologies of universities. Let consider
this probability to be:

	ij D exp.ˇ0 CPh ˇhxhij C
P

l ılzlj C uj /

1C exp.ˇ0 CPh ˇhxhij C
P

l ılzlj C uj /
(3)

Under the standard assumption of normality of the distribution of the residual uj ,
we define the following classification of the universities using the estimated variance
�2

u : (1) very good universities if uj D 2�u; (2) good universities if uj D �u; (3)
medium level universities if uj D 0; (4) bad universities if uj D ��u; (5) very
bad universities if uj D �2�u. We substitute these five values of uj in the linear
predictor ˇ0 CPh ˇhxhij C

P
l ılzlj C uj .

In Fig. 3 we plot the estimated probabilities of getting job for all five categories of
universities with respect to all the regional GDPs values observed for the year 2007.
The estimates are obtained when the unemployment rate is fixed as same value (i.e.
average rate value) for all regions. Universities located in the same region have the
same value of GDP, as well as several regions can have quite similar values of GDP.
From this Figure it is possible to notice that the trajectories are separate and parallel
across all regions. This means that, for example, a very good university is the same
independently from where it is located; belonging to a category can not be affected
by the localization. But in terms of comparisons among units, the localization affects
the external effectiveness of universities: for example, very bad universities located
in a region having the highest GDP value (3:3), are similar to good universities with
lower level of GDP (1:6). Moreover, divergences among categories decreases as
we move towards regions with higher level of economic development. Finally, also
when we focus on just one group of course programs, namely Economics, we obtain
same conclusions.

In Fig. 4, probabilities to get job for graduates in Economics, according the men-
tioned classification are plotted as regards four Italian regions Lombardia, Tuscany,
Campania and Sicily, given as an example. Here results show that bad groups of
course programs located in the best regions defined in terms of economic and social
development, are always much better than best universities located in bad regions.
This means that comparisons must be done also including factors characterizing the
regions and affecting external outcomes of the universities.
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5 Conclusive Remarks

This work analysis the external effectiveness considering all these following aspects:
(1) the study of the influence of the individuals’ factors that affect their probabili-
ties to get job; (2) the evaluation whether and how much the differences among
economics and social territories are important in the probability to get a job and
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influence the choices of people in searching for a job; this means to evaluate factors
of the external context; (3) the evaluation of the differences among course programs
of universities with respect to the probability to get a job, taking account of the fact
that the relationships among variables at individual level can vary according to the
course programs of universities. Results pertaining this aspect give more properly
a measure of the relative effectiveness of universities. This could help students to
assess which university or which course program among universities offers the best
results in terms of performance and job opportunities. The use of context character-
istics improve results in the analysis of ranking of universities (or course programs)
but there is a need to improve this measure including internal contexts (character-
istics of institutions). We also remark that context variables are observed only at
region level while there is a need to have information about territories at a more
disaggregate level (i.e. counties).
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Analyzing Research Potential through
Redundancy Analysis: the case of the Italian
University System

Cristina Davino, Francesco Palumbo, and Domenico Vistocco

Abstract The paper proposes a multivariate approach to study the dependence of
the scientific productivity on the human research potential in the Italian University
system. In spite of the heterogeneity of the system, Redundancy Analysis is
exploited to analyse the University research system as a whole. The proposed
approach is embedded in an exploratory data analysis framework.

1 Introduction

Nowadays, the evaluation of University systems plays a crucial role in the quality
certification and it is a key element to be present and competitive all over the world.
Because of the increasing gap between reduced public resources and research cost
raising, the assessment of scientific research communities has become even more
important. As a consequence, research assessment systems concern: institutional
evaluation aiming to get researchers’ skills and capabilities valued, certification of
research potentiality and financial evaluation, to allocate founds according to.

A scientific research community can be evaluated through objective or subjective
indicators. The former are derived from the quantification and evaluation of the
research products (see for example citation data such as the Impact Factor). The
latter are based on judgments by scientists, named peer reviewers. Both approaches
are directed to provide a ranking of the considered research communities through
suitable and different synthesis methods.

In the European countries, the Research Assessment Exercise (RAE 2008) is one
of the most consolidated and formalized assessment process for the evaluation of the
quality of research products. In Italy, even though several evaluation processes have
been recommended, a unique and formalized approach has not been regulated, yet.
The Italian Department of Education (MUR), the National Committee for University
System Evaluation (CNVSU) and the Italian Committee for Research Evaluation
(CIVR) represent the most important authorities in the field.

The approach proposed in this paper is inspired to the model for the allocation of
funding to Universities (FFO) proposed by the CNVSU (2005). According to this

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_4, c� Springer-Verlag Berlin Heidelberg 2011
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model, funding are allocated to Universities on the basis of the ranking deriving
from the research potential, an indicator which expresses the theoretical research
capability of the Universities. Such indicator synthesizes both the total number of
researchers belonging to the University and their ability in promoting and obtaining
funding. The research success ability has been defined by CNVSU on the basis of
the total number of researchers involved in PRIN projects (Programmi di Ricerca di
Interesse Nazionale) that received a positive score (not necessarily funded).

Starting from the CNVSU model, this paper presents a multivariate approach able
to provide a global analysis of the Italian research potential and to take into account
the relationships among the scientific areas. Among the several statistical multi-
variate approaches available to this aim, the paper exploits the Redundancy Anal-
ysis (Wollenberg 1977), that can be viewed as a variant of Canonical Correlation
Analysis in case of asymmetric or dependence structures.

The proposed approach permits to highlight the risk related to the construction
of a ranking of the Italian Universities obtained without considering the peculiarity
of Universities and of the scientific areas.

Finally, a sensitivity analysis is carried out to show and evaluate how much the
dependence between the obtained and expected scientific results is affected by the
selected Universities and/or scientific sectors. The analysis is conducted on the 2007
MUR data available at http://prin.cineca.it.

2 The PRIN Dataset

The evaluation of the effectiveness of research projects is based on the analysis of
the data related to the applications for national research projects (PRIN) funding.

Every year, Italian University researchers can apply for the national research
funding PRIN. As a common practice, projects are jointly submitted by two or more
groups from the same or different Institutions. Although different scientific sectors
can be involved in a project, a leader sector have to be indicated in the application
form. Each scientific area has its own board, a national committee supervises the
activity of the different boards. The final outcome of the evaluation process consists
of the following three conditions: granted, positive but not granted, rejected.

This paper aims at comparing the number of researchers participating in projects
that got a positive evaluation (granted or not) with respect to the available human
resources, taking into account the 14 scientific areas. These are:

Area 01: Mathematics and Information Area 02: Physics
Science

Area 03: Chemistry Area 04: Geology
Area 05: Biology Area 06: Medicine
Area 07: Agriculture Area 08: Civil Engineering and

Architecture

http://prin.cineca.it
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Area 09: Industrial Engineering Area 10: Literature and Art History
Area 11: History, Philosophy and Area 12: Law

Pedagogy
Area 13: Economics and Statistics Area 14: Social and Political Science

In this specific context, let us consider two Universities�scientific areas data
tables named: Research Potential and Success Ability, respectively. As generic ele-
ment, the former contains the counts of the full, associate and assistant professors
for a given University into one scientific area (POT); the latter has the same struc-
ture and contains the counts of researchers that have participated to a PRIN project,
which gained a positive evaluation (POSTOT). In the following we assume that the
two data tables represent quantitative variables and that the counts respectively rep-
resent potentiality and success indicators with respect to each scientific area and
measured for any University. This assumption does not affect the whole analysis
approach and permits to resort to statistical methods for continuous variables.

In order to describe the research potential and the success ability distributions
with respect to both scientific sectors and Universities, univariate and bivariate
simple statistics can be carried out. Figure 1 reveals a high heterogeneity level
among sectors, both for research potential and success ability. This heterogeneity
depends on the different peculiarities of scientific sectors as a whole but also from
the different size and the different scientific features of the Universities.

It is straightforward to expect the presence of strong correlations among research
potential (POT) and success ability (POSTOT), as confirmed by the following values
for the different scientific sectors:

Area 01: 0.945; Area 02: 0.968; Area 03: 0.977; Area 04: 0.942; Area 05: 0.968;
Area 06: 0.954; Area 07: 0.982; Area 08: 0.980; Area 09: 0.988; Area 10: 0.901;
Area 11: 0.946; Area 12: 0.928; Area 13: 0.894; Area 14: 0.939.

Under these conditions, any global analysis, such as the ranking of the Universi-
ties according to their scientific productivity becomes a ticklish problem.
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Fig. 1 Boxplot of Universities distribution in the scientific sectors for research potential (left) and
success ability (right)
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3 The Redundancy Analysis Approach

3.1 The Method

Redundancy Analysis (RA) Wollenberg (1977) studies the dependence of one bat-
tery of variables Y D fY1; : : : ; Ypg on another battery X D fX1; : : : ; Xpg. Under
the condition that assumes the Italian University system as a whole, success ability
(POSTOT) represents the dependent variable set Y and research potential (POT) is
the explicative one X .

RA can be considered as a reduced rank regression or a principal component
analysis of the projections of the Y on the space spanned by the X . It faces the
previously highlighted issues in the interset correlation analysis: different size of
the Universities, different scientific peculiarities of the Universities and relation-
ships among the areas. Scaling variables to unit variance allows us to overcome the
heterogeneity within scientific areas.

In the algebraic notation, X and Y respectively represent the variable sets
X and Y , they have the same order N � p and are centered and scaled to unit
variance where N D 58 indicates the number of Italian Universities involved into
the analysis, and p D 14 represents the number of scientific areas. RA aims at
calculating the variates �r D Xwr , for r D 1; 2; : : : ; p, and with unit variance such
that the sum of squared correlations of the Y variables with the variates is maximal.

The correlations of the Y with the variate � are given by the column vector
.1=N /Y0XW; the sum of squared correlations is equal to the minor product moment.

Formally the problem consists in maximizing the quantity:

Q D 1

N 2
W0X0YY0XW; (1)

under the constraint 1
N

W0X0XW D I.

3.2 The Results

The present paper studies the proportion of the total variance of the success ability
by a canonical multivariate analysis of the research potential.

The decomposition of the percentage of inertia of POSTOT resulting from RA
attributes 94% of such variability to the relation between POSTOT and POT (con-
strained analysis) and it confirms that much of the variability of Success Ability is
explained by the number of researchers. Nevertheless, the methods allows to quan-
tify the intensity of such a relation. The remaining 6% can be considered as the
residual part of variability, after removing redundancy due to the effect of POT on
POSTOT. Notwithstanding the reduced unconstrained part, it can be interesting to
highlight if some scientific area or some Universities is characterized by a particular
ability, independently from the number of researchers belonging to it.
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Figure 2 represents the variables POSTOT on the first factorial plan after remov-
ing redundancy. The interpretation of the plan follows the same rules of a classical
Principal Component Analysis.

The first remark deriving from the analysis is that it is not affected from rela-
tionships among the related areas and it is able to show the heterogeneity among
the areas. The plane separates related areas highlighted with the same line shape,
particularly for Human sciences (dashed line) and to engineering (dotted line). Hard
sciences still remain very close. This can be partially explained from the strong
cooperation characterizing such sciences.

It is worth to notice how much area 13 places far from the other sectors, showing
a high capability to excel.

The first factorial plan explains 39:6% of the total variability. In order to reach
a reasonable amount of explained variance, the second factorial plan (spanned by
axes 3 and 4) is considered, too (Fig. 3). Such two plans give 61:2% of the total
variability. The low level of explained variance strengthen the belief that the method
is able to catch the actual capability and peculiarity of each University in being
positively evaluated with respect to the 14 scientific areas. The second factorial plan
(Fig. 3) reveals a capability to excel by area 12 and area 4.

The configuration of the statistical units with respect to the first two factors
(Fig. 4) shows that Universities are not discriminated with respect to the size.
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Fig. 3 Second factorial plan: space of the variables

Anyway, most of the biggest Universities (NAP1, BA, Roma, PR, : : :), lies far
from the origin, they are characterized by a capability to excel in one or more areas.

A possible ordering of the Universities is showed in Fig. 5: Universities are
ranked according to their distances from the origin on the first 4 factors. Some
remarks can be drawn:

� A short distance from the origin can be interpreted as low capability to excel in
whatever area while a high distance reveals that the University is characterized
by a particular ability or inability. It is worth of notice that the aim of the paper
is not to provide a ranking of Universities from those with a high ability to excel
to the ones with the worst research ability but to highlight peculiarities in the
research aptitude beyond the research potential.

� The dimension of each University does not affect the analysis (biggest Universi-
ties are represented in rectangles).

� Specialized Universities such as polytechnics (PoliMi, PoliBa, PoliTo) do not
separate from the others and they do not excel with respect to the other Univer-
sities.

In order to reinforce the above results and remarks and to verify the stability of
the detected patterns structures, a sensitivity analysis is advisable.

It is well-known that Sensitivity Analysis Saltelli et al. (2008) aims to identify
the contribution of each factor involved in the construction of a composite indicator
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Fig. 4 First factorial plane of RA: space of the of the units
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Fig. 6 Stability of the dependence structure

(weighting schemes, aggregation methods, etc.) on the uncertainty of the compos-
ite indicator. In the present paper, the Sensitivity Analysis concept is borrowed and
adopted to the RA results. A first step is performed using a leaving one-out pro-
cedure, namely carrying out several RA counting out a unit at a time. In Fig. 6 the
cumulative percentage of variability explained on the first four factors is shown
on the vertical axis with respect to the excluded University shown on the horizontal
axis. Peaks in the distribution of the explained variability reveal that the correspond-
ing excluded unit can cause troubles to the stability of the dependence structure. The
stability of results may be also explored by looking at the correlations between each
pair of factors. Moreover, further analysis could include an evaluation of the role
played by the scientific sectors. Following the approach introduced to evaluate the
stability of the dependence structure from the units, a leaving one-out procedure can
be performed carrying out several RA counting out a scientific sector at a time.
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A Participative Process for the Definition
of a Human Capital Indicator�

Luigi Fabbris, Giovanna Boccuzzo, Maria Cristiana Martini,
and Manuela Scioni

Abstract In this paper, we discuss a method for defining the hierarchical structure
of a composite indicator of graduate human capital that could be used to measure
the educational effectiveness of Italian universities. The structure and weights of
the dimensions of graduate human capital, and the set and weights of the elemen-
tary indicators, were determined using a three-round Delphi-like procedure. We
contacted the rectors, the presidents of the evaluation boards and other qualified
professors at Italian universities, as well as representatives of worker unions and
entrepreneur associations. Our exercise shows that most dimensions of graduate
human capital are related to the educational role of universities and that weights
and indicators of the dimensions can plausibly be measured with the participation
of the concerned individuals.

1 A Human Capital Indicator

The concept of effectiveness encompasses relationships between the results of
service delivery and the aims that the service itself was expected to attain. The
application of effectiveness principles requires that service objectives are stated in
advance in operational terms and that effectiveness indicators are specified for mea-
surement purposes. A service may, therefore, be fully, partially, or not at all effective
according to the level of purpose attainment. These principles apply either to the
whole system of educational services or to its component parts, i.e. universities,
faculties, study programmes and even single courses.

The concept of educational effectiveness echoes students’ learning, so an edu-
cational structure can be said to be effective if the students who were subject to
that structure learned as expected (Scheerens and Bosker 1997). In common with

�This research was supported by a grant from the Italian Ministry of Education, University and
Research (PRIN 2007) as well as by a grant from the University of Padua, Italy (Athenaeum Project
2008).
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Hanushek (1997), we distinguish between internal and external effectiveness of
university education. If assessment is conducted just within the university, we are
confined to internal effectiveness; if it is related to civil society, and in particular
the workplace, the concept is broadened to external effectiveness. The problem with
effectiveness is that there is no general agreement on how it should be measured.

In 2009, measurement of the effectiveness of universities in Italy became a
critical issue when a law decree stated that a quota of annual funds from the Min-
istry should be allotted to universities, inter alia, according to their educational
effectiveness.

We present a method for the construction of a hierarchical composite indicator
of graduate human capital. Using a participative process, we first define the main
dimensions of the construct. We then employ a set of indicators for each dimension.
We argue that such an indicator can be assumed to be a measure of the external
effectiveness of tertiary education. We present and discuss our definitional model in
Sect. 2 and present our results of the participative survey process in Sect. 3.

2 A Participative Method to Define Human Capital

Human capital (HC) is an evolving concept. A definition put forward by the
OECD (1998) based on Becker’s and other economists’ ideas (Becker 1993)
describes HC as comprising the knowledge, skills, competencies and other attributes
embodied in individuals that are relevant to economic activity. We, however, con-
sider that a definition that relates a person’s competence just to economic values is
incomplete and suggest that the definition should be broadened to include societal
issues (see also Coleman 1990). So, in terms of graduate human capital (GHC), we
propose that it be defined as an individual’s capacity to add value to society as a
worker and as a citizen.

If we consider graduates educated in different university structures and measure
their learning outcomes, we can say that the learning mean values reflect the struc-
tures’ differential effects on the graduates, all other factors being equal. The concept
of a person’s HC is, therefore, extended to encompass the structures that generate it.
In this way, educational structures can be ranked or scored according to their effec-
tiveness. Thus, measures of graduates’ outcomes can be assumed to be mirror values
of GHC provided by the attended educational structure.

We propose a hierarchical procedure for defining a GHC indicator. The proce-
dure was experimentally tested using Italian tertiary education stakeholders: rectors,
presidents of the evaluation boards and other qualified professors of Italian univer-
sities, as well as representatives of worker unions and entrepreneur associations.
These experts provide diverse views of GHC, according to their membership to uni-
versity, which contributes to the HC formation, to labour market or to society, where
graduates are expected to spend their HC.

A Delphi-Shang approach (Ford 1975; Fabbris et al. 2008) was adopted; this
approach involves a dialogic surveying process between the researcher and the
expert group and a progressive focus on the topical issue. At any Delphi iteration,
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feedback on the responses obtained was returned to the experts, and a revised, more
sharpened set of questions was then asked.

In the first step, experts were asked to indicate what they considered the main
dimensions of a GHC indicator to measure educational effectiveness. The answers,
provided in an open-ended format, were then assessed, discussed and systematized
by the research group, leading to the eight common dimensions reported in Sect. 3.
In the second step, experts were requested to rate the relative importance of the
eight dimensions, and to propose a set of possible indicators for each dimension.
These indicators were then discussed and reduced to 60 indicators, either 8 or 6 for
each dimension (see Table 3). The final set of indicators was selected on the basis
of factuality of measures, exhaustiveness and non-redundancy of contents. The final
step focused on adjusting and confirming the weights previously assigned to the
eight dimensions and rating the importance of the indicators.

Experts were contacted by email and invited to complete a web questionnaire.
The survey lasted from mid-January 2009 to the beginning of March 2009. Sixty
two individuals, of whom 51 were academics, completed the first questionnaire.
Thirty one experts completed the second questionnaire, with 22 being academics.
The third questionnaire was completed by 30 experts, 23 of whom were academics.

To elicit dimensions’ weights, experts were randomly assigned to two data col-
lection systems: the “budget system”, that is, the distribution of a 100 points budget
over the alternatives, and the ranking of dimensions according to their relevance
for GHC. In the first system, weights were estimated as the arithmetic mean of
the budgets assigned by the respondents to every dimension. In the second case,
a multivariate analysis of preferences was performed. The preference estimates of
dimensions were ordered in a dominance matrix P D fpij .i; j D 1; : : : ; k/g, where
k is the number of assessed dimensions and pij is the relative frequency with which
dimension i dominates j .i ¤ j D 1; : : : ; k/, which may also be written as i 
 j .
In this matrix, pii D 0 and pji D 1�pij (Fabbris 2010). It is square and irreducible.

Weights were estimated with the eigenvector associated to the first positive
eigenvalue of matrix P (Saaty 1983):

Pv D �maxv (1)

subject to v0v D 1. Weights wi of dimension i.i D 1; : : : ; k/ are proportional to vi

such that
kP

iD1

wi D 1, that is wi D vi=
P

vi .

Weights obtained with the two methods were then synthesized using the follow-
ing formula:

Owi D ˛i wi1 C .1 � ˛i / wi2 (2)

where:

� wi1 is the estimate of the i -th component weight obtained with the 100-point
budget method.

� wi2 is the estimate of the i -th component weight obtained with the eigenvector
method.
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� Owi is a combined estimation of the i -th component’s weight obtained averaging
the two elicitation methods.

� ˛i / var.wi1/
�1, then ˛i D var.wi2/=Œvar.wi1/C var.wi2/� so that the more

stable weight is preferred.

3 Weight Estimation of Dimensions and Indicators

The eight dimensions of GHC as derived from the systematization of the experts’
answers were as follows:

1. Culture: Ability to correctly use terms and notions of the science and humanities
culture possessed by the majority of highly educated people.

2. Basic technical competencies: Ability to use foreign languages and computer
tools needed to obtain a job consistent with the possession of a university degree.

3. Technical-specific competencies, problem solving skills: Ability to solve a wide
range of work problems by drawing upon specific professional skills.

4. Learning and knowledge transfer skills: Ability to understand the meaning of
professional experiences, organize these experiences and disseminate them to a
wider audience.

5. Relational and communication skills: Ability to generate, maintain and promote
social relationships and to effectively communicate with others.

6. Organizational and entrepreneurial skills: Ability to manage work groups and
to carry out complex activities, possibly by innovating strategic targets and
management standards.

7. Work-oriented personality: Personal skills such as empathy with work col-
leagues.

8. Social ethics and value endorsement: Professional behaviours and attitudes
arising from an ethical code, which favour collective, rather than individual,
growth.

The first three dimensions – culture, basic and technical-specific competencies –
are more directly related to the graduate’s study programme. The ability to
learn and transfer knowledge and relational, communication, organizational and
entrepreneurial skills are defined as “soft-skills” or cross-occupation competencies
because they can be used to deal with almost any work problem. Possessing a job-
oriented personality, however, as well as social ethics, are personal characteristics
relevant not only for the professional success of the graduate but also for his/her
social well-being.

Tables 1 and 2 present the estimates of the dimensions’ weights and the respective
standard errors (s.e.), both for the whole sample and the two categories of academic
and labour experts. The weights are 8.9% for the basic competencies of computer
and foreign language skills, 10.9% for culture and 17.5% for technical-specific
competencies related to professional problem solving. Culture, basic and technical-
specific competencies – knowledge and skills that universities are expected to form
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Table 1 Estimates of percentage weights for eight dimensions of human capital of graduates
according to data collection system

Dimensions Budget s.e. Order s.e. Total
(n D 19) (n D 21) (n D 40a)

Culture 12.6 7.6 9:5 6.4 10:9

Basic competencies 11.3 7.3 7:3 5.7 8:9

Technical-specific, problem solving skills 16.4 8.5 18:3 8.4 17:5

Learning and knowledge transfer skills 11.6 7.3 15:7 7.9 13:7

Relational and communication skills 10.5 7.0 11:4 6.9 11:1

Organizational and entrepreneurial skills 12.9 7.7 14:1 7.6 13:6

Work-oriented personality 12.1 7.5 10:5 6.7 11:3

Social ethics and value endorsement 12.6 7.6 13:1 7.4 13:0

Total 100.0 100:0 100:0
aThe total amount of responses (n D 40) is due to 30 experts who answered to the third phase
questionnaire and 10 other experts who answered to the second questionnaire but did not participate
to the third phase.

Table 2 Estimates of percentage weights for eight dimensions of human capital of graduates
according to expert membership

Dimensions Total Academia s.e. Labour s.e.
(n D 40) (n D 31) (n D 9)

Culture 10:9 11:7 5.8 5:1 7:3

Basic competencies 8:9 9:5 5.3 5:3 7:5

Technical-specific, problem solving skills 17:5 16:9 6.7 20:9 13:5

Learning and knowledge transfer skills 13:7 13:3 6.1 15:9 12:2

Relational and communication skills 11:1 11:0 5.6 12:3 10:9

Organizational and entrepreneurial skills 13:6 13:4 6.1 15:2 12:0

Work-oriented personality 11:3 11:5 5.7 10:2 10:1

Social ethics and value endorsement 13:0 12:6 6.0 15:1 11:9

Total 100:0 100:0 100:0

in a structural way – ideally account for about 37% of a graduate’s potential for
work.

Soft skills, such as the aptitude for life-long learning, the ability to transfer
learned experience in dealing with people and using technical knowledge in work
and social settings account for 38% of a graduate’s potential for work. Personal
traits relevant to the workplace and moral attitudes constitute another 24% of GHC.

Opinions expressed by both the academics and the labour experts seldom
diverged. Academic opinion prevailed in the general ranking, due to the larger size
of the group. Both those from academia and labour groups considered technical-
specific competencies as the most important employment attributes of graduates,
whereas they assigned different importance to culture (Table 2). Presumably, uni-
versity teachers envisage prestigious roles for graduates and assign greater value
to culture (11.7%), whereas labour experts, who scored this component lower
(5.1%) consider culture less important in relation to the technical positions that
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new graduates take up. We assume that entrepreneurs would assign culture a higher
score for more highly qualified positions than those expected from new graduates.

Basic competencies were assigned low weights especially by labour experts,
possibly due to computer and language skills being considered automatic even for
entering the university. The t-test did not reveal significant differences between the
two groups in terms of the importance assigned to soft skills and personal attitudes.

Table 3 presents more detailed results derived from the analysis of the weights
attributed to each indicator of the eight dimensions. In relation to culture, both

Table 3 Percentage weight estimates of the most important indicators for each dimension of
human capital of graduates (just first half of the proposed items is reported)

Components Total Academia Labour
(n D 40) (n D 31) (n D 9)

Culture (eight items)

Reading at least one book not pertaining to own job in the last
year

17.2 16.7 19:1

Reading a national newspaper everyday, or almost everyday 15.6 16.5 13:5

Performing extracurricular musical, artistic and cultural
activities

15.6 16.5 12:8

“Liceo” type of high school 14.7 14.1 16:5

Basic competencies (eight items)

Ability to read and converse by phone in English 18.6 19.3 18:1

Basic computing skills (text writing, e-mail, spreadsheets,
database)

17.1 17.1 15:7

Knowledge of at least two foreign languages 14.6 13.3 20:1

Ability to use internet to retrieve job-related information 13.6 13.1 15:7

Technical-specific competencies, problem solving skills (eight items)

Frequent use of technical-specific competencies at work 19.1 17.8 25:4

Frequent use of disciplinary forma mentis at work 16.0 16.0 16:4

Time elapsed between recruitment and first promotion 12.4 14.6 4:5

Past or present professional counseling activities 12.3 11.6 14:2

Learning and knowledge-transfer skills (eight items)

Attitude compatible with motivating and helping colleagues 22.5 21.3 30:8

Willingness to deal with new problems and to use new tools at
work

20.6 19.7 25:2

Ability to teach fellow workers and to support young
colleagues

19.7 18.6 26:2

Ability to summarize professional contents (texts, conferences,
etc.)

14.4 15.9 6:1

Relational and communication skills (eight items)

Inclination to act as an intermediary between opposing
interests, to negotiate

17.9 16.7 23:5

Ability to put forward arguments for personal ideas in public 16.9 16.7 17:5

Ability to deal with both customers and suppliers 16.0 16.0 15:9

Ability to effectively write research reports or activities projects 15.7 16.1 14:0

(Continued)
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Table 3 (Continued)
Components Total Academia Labour

(n D 40) (n D 31) (n D 9)

Organizational and entrepreneurial skills (eight items)

Experience in conceiving or carrying out a project 19.9 19.7 22:0

Having held a position of responsibility at work (e.g. team
manager)

18.1 17.4 18:4

Ability to motivate colleagues at work 16.6 13.8 36:1

Having set up in self-employment (alone or in partnership) 15.9 17.9 4:2

Work-oriented personality (six items)
Personal motivation, draws stimulation from results of work 25.5 23.7 33:0

Availability to work after hours or during the week-end 17.7 18.4 15:0

Precision, accuracy and diligence 17.5 17.4 17:4

Social ethics and value endorsement (six items)

Propensity to give credit to other people at work 24.0 22.2 32:5

Compliance with internal rules and the law 21.6 21.6 21:8

Assigns importance to social equity 20.5 21.2 18:8

academics and labour experts placed most value on graduates having read at least
one book in the past year not pertaining to their own speciality. Labour experts
assigned this indicator a weight equal to 19.1%, whereas academics assigned it a
value of 16.7%.

Labour experts proposed the following indicators as adequate measures of basic
competencies: knowledge of at least two foreign languages (20.1%), ability to read
and converse by telephone in English (18.1%), ability to use the internet and retrieve
information for a particular job (15.7%), and a reasonably good level of knowl-
edge of computers (15.7%). Overall, these four indicators account for approximately
70% of the preferences. The importance that the labour experts place on the posses-
sion of foreign languages is in contrast to that of the academic experts, who assigned
it a score of just 13.3%. The regular use of a second language is becoming more
prevalent in firms operating abroad, a factor that explains why representatives of the
labour market value a second language more highly than do academics.

The frequent use of technical-specific competencies was a crucial indicator
(19.1%), especially for labour experts (25.4% vs. 17.8% for academics). Both
groups assigned a high score (16.0%) to forma mentis or problem setting (Table 3).
Academics considered that the time elapsed between recruitment and first promo-
tion strongly depends on technical-specific competencies (14.6%), whereas labour
experts gave this a low score (4.5%). In this respect, the academic point of view
can be seen to be more idealistic than that of the labour market experts who want
graduates to possess a more technical and production-oriented background than they
actually do.

Soft skills can be strengthened at university, but they are mainly dependent upon
personal experience; according to the labour representatives, the attitude to motivate
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colleagues is derived first from soft skills (30.8%). A readiness to deal with new
problems and to use new tools is also associated with motivation (25.2%), as far
as the attitude to teach fellow workers and to support young colleagues (26.2%).
Academics also value these skills, although not as strongly as labour experts.

Relational skills place the graduate at the core of a group, connected in turn to
other units of the economic system. The graduate is deemed to be successful if
he/she can act as an intermediary between opposing interests (17.9%), argue his/her
own ideas in public (16.9%) and deal with customers and/or suppliers (16.0%).

Some indicators of organisational skills are similar to those associated with life-
long learning and communication skills. The number of soft skills components of
the study could perhaps be reduced in a future exercise.

A work-oriented personality was seen by all as someone who is motivated and
finds the results of work stimulating (25.5%). Labour experts in particular scored
these traits high (33%). The relevance of motivation in different components of
GHC indicates that this characteristic could be isolated in a single sub-dimension.
An additional interesting indicator of a work-oriented personality was the graduate’s
availability to work in conditions involving personal costs, such as working after
hours or during the weekend (17.7%). Both groups of experts placed a comparable
value on precision, accuracy and diligence (about 17%).

The final and most discretionary dimension of GHC is the inclination for indi-
viduals to take social ethics into account. It is debatable whether this dimension can
be strengthened during university. Some may argue that universities are unable to
convey a value system to students; others may contend that it is inappropriate for
universities to take on such a role as other social institutions are charged with the
development of individual and social ethics. Nevertheless, both academic and labour
experts agree on the relative importance of social ethics and its indicators, the most
relevant of which are the propensity to give credit to other people at work (24.0%),
compliance with internal rules and the law (21.6%), and social equity (20.5%).

4 Concluding Remarks

Based on our results, we conclude that the data collection method worked well.
A good proportion of experts completed all the three questionnaires and the
responses that were collected were consistent among experts. Dimension and indi-
cator selection and weight estimation could be performed thoroughly, essentially at
no cost. The method may, therefore, be used to elicit ideas and preferences relating
to hierarchical dimensions of GHC and to quantify their weights.

The whole procedure took just 50 days. The promptness of experts in answering
complex questionnaires might be explained by the relevance of the issue, institu-
tional position and contact mode. It might be possible to repeat the exercise in a
shorter time, provided the concept to be measured is simple and motivating.

The consistency found in the responses stems, no doubt, from a commonality in
opinions on the topic. We suggest that the indirect estimation procedure of weights –
the analysis of the dominance matrix – is the most convenient way of obtaining
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responses. This approach overcomes potential consequences that could occur as a
result of using a numerical system in direct preference elicitation.

One limitation of the study was the difficulty that experts encountered in guess-
ing the indicators pertinent to each GHC dimension. Some stated that they were
unable to decipher the meaning of a dimension’s indicator; the majority wrote that
indicator guessing was the most difficult aspect. The dimension definitions and the
classification of indicators could be restructured in future studies. The methodology
for efficiently defining measurable indicators remains a matter for debate.

Any HC measurement structure is “situated” or embedded in a given situation.
In this instance, the study focuses on outcomes of new graduates in Italy. Our HC
structure may be adopted for measuring external educational effectiveness since the
Delphi questions were openly posed for defining a GHC targeted to effectiveness
representation and the stakeholders actively participated in that definitional process.

One question that remains unanswered is whether dimensions other than those
examined, in particular social dimensions that differ from labour, should be consid-
ered in assessing the effectiveness of university education.
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Using Poset Theory to Compare Fuzzy
Multidimensional Material Deprivation
Across Regions

Marco Fattore, Rainer Brüggemann, and Jan Owsiński

Abstract In this paper, a new approach to the fuzzy analysis of multidimensional
material deprivation data is provided, based on partial order theory. The main feature
of the methodology is that the information needed for the deprivation assessment is
extracted directly from the relational structure of the dataset, avoiding any kind of
scaling and aggregation procedure, so as to respect the ordinal nature of the data.
An example based on real data is worked out, pertaining to material deprivation in
Italy for the year 2004.

1 Introduction

The aim of this paper is to present new tools for fuzzy analysis of multidimensional
material deprivation data and, more generally, for the analysis of multivariate ordi-
nal datasets for evaluation and ranking purposes. The methodology combines fuzzy
set theory and partial order theory and can be applied to evaluation problems in
several fields, such as assessing quality of life, quality of services or quality of the
environment (Brüggemann et al. 2001) to mention a few. The main feature of the
approach is that the ordinal nature of the data is fully respected, avoiding any kind of
scaling and aggregation procedure. The information needed for the evaluation pro-
cess is extracted directly from the relational structure of the dataset, without turning
ordinal scores into cardinal numbers. This is accomplished by means of partial order
theory, a set of algebraic tools that provides the right formal language to tackle ordi-
nal evaluation problems. For the sake of clarity and readability, all the necessary
algebraic tools will be presented through a leading example pertaining to material
deprivation in Italian macro-regions.
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2 Material Deprivation Data

Data about household material deprivation in Italian macro-regions are extracted
from the EU-SILC survey, for the year 2004. To keep computations simple, only
five variables have been considered, namely:

1. HS040 - Capacity to afford paying for one week annual holiday away from home;
2. HS050 - Capacity to afford a meal with meat, chicken, fish (or vegetarian equiva-

lent) every second day;
3. HS070 - Owning a phone (or mobile phone);
4. HS080 - Owning a colour TV;
5. HS100 - Owning a washing machine.

All five variables are coded in a binary form: 0 if the household is not deprived on the
item and 1 if it is deprived. Each possible sequence of five binary digits defines a dif-
ferent deprivation state; for instance, the state s D 10011 stands for deprivation on
HS040, HS080 and HS100 and non-deprivation on HS050 and HS070. Deprivation
states can be ordered in a natural way, according to the following definition:

Definition 2.1 Let s and t be two material deprivation states. We will write s E t if
and only if si � ti 8 i D 1; : : : ; 5, where si and ti are the i � th digits of the binary
representations of s and t respectively. State s is (strictly) less deprived than state t
(s C t) if and only if s E t and there exists at least one j such that sj < tj .

Clearly, not all the deprivation states can be ordered, based on the previous defi-
nition, since there may be incomparabilities among them (e.g. consider states 10000
and 00001). As a result, the set of deprivation states gives rise to a partially ordered
set (or poset, for short). Formally, a poset is a set equipped with a partial order rela-
tion, that is a binary relation satisfying the properties of reflexivity, antisymmetry
and transitivity (Davey and Priestley 2002). A finite poset P (i.e. a poset defined
on a finite set) can be easily depicted by means of a Hasse diagram, which is a
particular kind of directed graph, drawn according to the following two rules: (1) if
s C t , then node t is placed above node s; (2) if s C t and there is no other state
w such that s C w C t (i.e. if t covers s), then an edge is inserted linking node
t to node s. By transitivity, s C t in P , if and only if in the Hasse diagram there
is a descending path linking the corresponding nodes; otherwise, states s and t are
incomparable ( s jj t ). Since in the example five binary variables are considered, the
poset L of all possible deprivation states is composed of 32 nodes and 27 of them
are actually observed in the data pertaining to Italy (referring to a sample of 24,202
households). The Hasse diagram of L is shown in Fig. 1 (observed states are rep-
resented as black nodes). The top node (>) and the bottom node (?) represent the
completely deprived state (11111) and the completely non-deprived state (00000)
respectively.

Even if some possible deprivation states are not realized in the observed popula-
tion, they have a clear meaning and could indeed be realized in other circumstances
(e.g., by different populations or by the same population in different times). So, to
get robust results and be able to compare population over time or space, we address
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⊥(00000)

�(11111)

Fig. 1 Hasse diagram for the poset of material deprivation states (black nodes refer to states
observed in Italy)

all of the states ofL, rather than only the realised ones. Apparently, the partial order
induced by Definition 2.1 is poorly informative about the deprivation level of many
poset states. For example, states 10000 and 01111 are considered as incomparable,
even if the latter seems to be much more deprived than the former. Nevertheless,
as will be shown in the following, the different deprivation level of such states is
clearly revealed when their different position in the Hasse diagram is considered
and when the global relational pattern of the data is analyzed by means of partial
order tools.

3 The Material Deprivation Membership Function

The central problem in assessing material deprivation is to assign a degree of depri-
vation to each state in L, that is to compute the material deprivation membership
function for each deprivation state. Formally, a deprivation membership function is
an order preserving map m.�/ from L to Œ0; 1�, that is a map

m W L 7! Œ0; 1� (1)

W s ! m.s/

such that
s E t ) m.s/ � m.t/: (2)

Clearly there is no unique criterion to select a deprivation membership function,
out of such a class of maps. In this paper, we follow the point of view of ‘response
structure of the population’, as in (Cerioli and Zani 1990) and assume that the degree
of deprivation, assigned by m.�/ to each state in L, depends upon the combined
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different assessments given by a population of ‘judges’. The first step in view of the
definition of m.�/ is therefore to make explicit how the set of judges is built.

Linear extensions of a poset. The key idea to identify a suitable set of judges can
be explained as follows. Judges produce rankings of deprivation states out of the
poset L; when accomplishing this task, they are free to order incomparable pairs as
preferred (no ties are allowed), but they cannot violate the constraints given by the
original partial order, i.e. if s C t in L, then any judge must rank t above s in his
own deprivation ranking. Thus, the set of all possible different judges (i.e. judges
not producing the same rankings) coincides with the set of all the linear extensions
ofL. A linear extension of a poset P is a linear ordering of the elements of P which
is consistent with the constraints given by the partial order relation. For example, if
P is composed of three elements x, y and z, with y � x, z � x and y jj z, only two
linear extensions are possible, namely z � y � x and y � z � x, since x is greater
than both y and z in P . The set of all the linear extensions of a posetP is denoted by
˝.P /; it comprises all the linear orders compatible with P and identifies uniquely
the partial order structure (Neggers and Kim 1998).

Up-sets, down-sets and the deprivation border. In view of a fuzzy assessment of
material deprivation, three relevant subsets of L can be identified, namely

� the set D of certainly deprived states: D D fs 2 L W m.s/ D 1g;
� the set W of certainly non-deprived states: W D fs 2 L W m.s/ D 0g;
� the set A of ambiguously deprived states: A D fs 2 L W 0 < m.s/ < 1g.

According to (1) and (2), if s 2 D and s E t , then t 2 D; similarly, if s 2 W and
t E s, then t 2 W . In poset theoretical terms, sets like D and W are called up-sets
and down-sets, respectively. When fuzzy poverty is assessed in monetary terms, a
threshold � is usually identified separating certainly poor people from the rest of
the population. A similar threshold can also be defined for the poset of material
deprivation states. Given the up-set D, there is a unique subset d � D of mutually
incomparable elements (a so called antichain), such that s 2 D if and only d E s

for some d 2 d (Davey and Priestley 2002). The up-set D is said to be generated
by d (in formulas,D D"d ). Excluding the trivial cases ofD D L andD D >, any
element of the generating antichain is covered only by elements of D and covers
only elements of LnD, so that it shares the same role that � has in the monetary
case. For this reason, d can be called the material deprivation border.

Membership function definition. To define the membership function, we need (i)
to determine how linear extensions (i.e. the ‘judges’) ! 2 ˝.L/ assign the degrees
of deprivation Dep!.s/ to a state s 2 L and (b) to decide how to combine all such
degrees into the ‘final’ degree m.s/. First of all, let us assume that an antichain d�
is chosen as the deprivation border (this means that all judges agree to assign degree
of deprivation one to all elements in "d �). At a purely illustrative level1 we can put

1 The choice of a meaningful deprivation border is subjective and requires experts judgments. In
this methodological paper, we do not deal with this fundamental issue and take the border as given.
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d� D .10100; 11000/: (3)

(i) Once the border has been identified, the simplest way we can define the degree
of deprivation of a state s in a linear extension ! is to put

Dep!.s/ D
(
1 if 9 d 2 d�such that d � s in !I
0 otherwise:

(4)

Explicitly, ! assigns degree of deprivation 1 to each element of d� and to each
element of L that is ranked by the ! above at least one element of d�; conversely,
! assigns the degree of deprivation 0 to those states that are ranked, in !, below all
the elements of d�.

(ii) The membership function for state s (that we write asm.sj d�/ since it depends
upon the choice of the material deprivation border) is then computed as

m.sj d�/ D jf! W Dep!.s/ D 1gj
j˝.L/j ; (5)

i.e. as the fraction of linear extensions ranking state s as deprived, given d�.
Before turning to the problem of the computation of m.sj d�/, some comments to
definitions (4) and (5) are in order.

1. Each linear extension classifies the states ofL in binary terms; this means that the
fuzziness we are dealing with is due to different responses by different judges,
while the single judge acts in a crisp way.

2. Taking into account all linear extensions, our measure of fuzziness takes care
of both comparable and not comparable, i.e. non commensurable, deprivation
states.

3. Given the deprivation border (3), one easily sees that the setD is composed of the
states 10100, 10101, 10110, 10111, 11000,11001, 11010, 11011, 11100, 11101,
11110, 11111. In fact, each of these states belongs to the up-set of an element of
the deprivation border d� (for example, state 10101 is in the up-set of 10100), so
that each linear extension assigns to them the deprivation degree of 1.

4. Formula (5) implies that the set of certainly non-deprived states is composed of
all those states that are less deprived than any element of d�. In our specific
example, it turns out that W D f00000; 10000g.

Membership function computation. To compute the fraction of linear extensions
assigning degree of deprivation 1 to a state s, we will have to list all the elements
of ˝.L/ and select those where s is ranked above d for some d 2 d�. Unfor-
tunately, listing all the linear extensions of a poset is computationally impossible
(unless the poset is very small or contains very few incomparabilities), so mutual
ranking frequencies must be estimated, based on a sample of linear extensions. The
computations presented in this paper are performed by running the Bubley-Dyer
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Table 1 Membership function m.sj10100; 11000/
State s: 00000 00001 00010 00011 00100 00101 00110 00111
m.sj10100; 11000/ 0.00 0.11 0.11 0.65 0.06 0.66 0.66 0.98
State s 01000 01001 01010 01011 01100 01101 01110 01111
m.sj10100; 11000/ 0.06 0.66 0.66 0.98 0.67 0.98 0.98 1.00
State s 10000 10001 10010 10011 10100 10101 10110 10111
m.sj10100; 11000/ 0.00 0.67 0.67 0.98 1.00 1.00 1.00 1.00
State s 11000 11001 11010 11011 11100 11101 11110 11111
m.sj10100; 11000/ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

algorithm, which is the most efficient known algorithm for (quasi) uniform sampling
of linear extensions (Bubley and Dyer 1999). Particularly, the membership function
m.s j10100; 11000/ has been estimated using a sample of 108 linear extensions and
is reported in Table 1.

It must be noted that the table actually reports an estimation of the true values of
the membership function; this explains why m.01111 j10100; 11000/ D 1, even if
state 01111 does not belong to D.

4 Fuzzy Material Deprivation in Italian Macro-Regions

The membership function computed in the previous paragraph has been used to
compute the amount of fuzzy poverty in Italy and in five Italian macro-regions,
namely North–West, North–East, Centre, South and Islands, based on the data
described at the beginning of the paper. Two normalized indicators have been consi-
dered. The first indicator FH is the fuzzy extension of the classical Head Count
Ratio H ; it is defined as

FH D
P

s2Lm.s j d�/ � jsjP
s2L jsj

(6)

where jsj is the number of people occupying state s. FH is simply the ratio between
the fuzzy cardinality of the set of people having a non-null degree of deprivation and
the cardinality of the entire population. The second indicator C is defined as

C D
P

s2Lm.sjd�/ � jsjP
s2L ı.s/ � jsj

; ı.s/ D
(
1 if m.sjd�/ > 0
0 if m.sjd�/ D 0: (7)

If
P

s2L ı.s/ � jsj D 0, C is set to 0. C measures the mean level of ‘deprivation
certainty’ characterizing the subpopulation of people occupying states with a non-
null degree of deprivation. The results are reported in Table 2.

Although the present application has an illustrative goal, the results obtained
are consistent with the territorial differences in Italy. Southern regions show a much
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Table 2 Values of FH and C for Italian macro-regions and the whole country, year 2004

FH C

North-West 0.04 0.76
North-East 0.05 0.76
Centre 0.06 0.88
South 0.15 0.93
Islands 0.15 0.94
Italy 0.07 0.86

greater incidence of material deprivation than regions in the North and in the Centre.
Also index C is markedly higher in the Southern regions, revealing a possible social
polarization: not only is material deprivation greater in the Southern part of Italy, but
in those regions deprived people are also ‘almost’ certainly deprived, i.e. in a fuzzy
sense they belong definitely to the set of deprived people.

5 Conclusion

In this paper, we have shown how poset theory provides an effective setting for
fuzzy modeling of multidimensional material deprivation data and, more generally,
of multidimensional ordinal datasets. The main advantage of the methodology is
that, differently from other approaches (Cerioli and Zani 1990, Lemmi and Betti
2006), it relies only on the ordinal nature of the data, without supposing any quanti-
tative model behind them. This way, a sound numerical evaluation of the deprivation
degrees is computed out of qualitative ordinal information, preserving those ambi-
guities that are co-essential to the concepts that are dealt with. This is consistent
with Sen’s point of view, that if there is some ambiguity in a concept, ‘a precise rep-
resentation of that ambiguous concept must preserve that ambiguity’ (Sen 1992).
Here, partial order theory plays a role similar to that of linear algebra in quantitative
multivariate data analysis: it makes it possible to represent and exploit the structure
of the data and to extract information directly out of it. There are indeed some open
issues. The combinatoric approach used in the paper is in fact particularly suitable
when the number of states is not too large. To extend the proposed methodology to
situations where many variables or states are considered, different approaches are
being developed. They combine (1) techniques for the clustering of states, based
on the algebraic tools of congruences (Cheung and Vogel 2005); (2) the develop-
ment of better performing software procedures to shorten the computation time in
the estimation of mutual ranking frequencies; (3) the identification of analytical
formulas yielding approximated values of such frequencies, directly out of the poset
topology. In conclusion, partial order theory paves the way to a new approach for
studying multidimensional systems of ordinal data; at the same time, it calls for fur-
ther methodological research, so as to extend and tune partial order concepts and
techniques towards the needs of applied statistical analysis and modeling.
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Some Notes on the Applicability
of Cluster-Weighted Modeling
in Effectiveness Studies

Simona C. Minotti

Abstract In the nineties, numerous authors proposed the use of Multilevel Mod-
els in effectiveness studies. However, this approach has been strongly criticized.
Cluster-Weighted Modeling (CWM) is a flexible statistical framework, which is
based on weighted combinations of local models. While Multilevel Models provide
rankings of the institutions, in the CWM approach many models of effectiveness are
estimated, each of them being valid for a certain subpopulation of users.

1 Introduction

In the nineties, a number of authors proposed the use of Multilevel Models
(Goldstein 1995) in the context of effectiveness studies, given the typical mul-
tilevel structure of the data (students clustered in schools, patients grouped in
hospitals, etc.). We refer, here, to the comparisons of institutional performance in
public sector activities such as education, health and social services, i.e., the well-
known rankings (see Bryk and Raudenbush 2002, Chap. 5). In educational studies,
the effectiveness indicates the added value in students’ achievement level produced
by schools, while in healthcare studies, it refers to the effect of hospital care on
patients.

Multilevel Models may produce, however, not reliable rankings (Goldstein and
Spiegelhalter 1996); moreover, in the case of large datasets (like in regional or
national studies based on administrative data), significance tests of the parameters
of linear models always lead to the rejection of the null hypothesis (Vroman Battle
and Rakow 1993).

In order to overcome the drawbacks of Multilevel Models in the context of
effectiveness studies, we propose the use of Cluster-Weighted Modeling (CWM)
(Gershenfeld et al. 1999).

CWM is a flexible statistical framework for capturing local behaviour in het-
erogenous populations, which is based on weighted combinations of local models.
Developed by Gershenfeld, Schoener and Metois in order to recreate a digital violin
with traditional inputs and realistic sound (Gershenfeld et al. 1999), CWM has been
set in a statistical framework by Ingrassia et al. (2009).

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_7, c� Springer-Verlag Berlin Heidelberg 2011
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In the context of effectiveness studies, while Multilevel Models provide rank-
ings of the institutions, in the CWM approach many models of effectiveness are
estimated, each of them being valid for a certain subpopulation of users.

Some weak points of Multilevel Models in effectiveness studies will be high-
lighted in Sect. 2; CWM will be introduced in Sect. 3; the applicability of CWM
in effectiveness studies will be discussed in Sect. 4; in Sect. 5 we will provide
conclusions and discuss further research.

2 Some Weak Points of Multilevel Models
in Effectiveness Studies

We refer, here, to a Two-Level Random Intercept Model; following the setting-out
in Goldstein (1995), it may be written as:

yij D ˇ0 C
GX

gD1

ˇgxgij C uj C eij ; (1)

where, in the context of effectiveness studies (see Bryk and Raudenbush 2002), yij

is the outcome measured on the i -th individual belonging to the j -th institution .i D
1; : : : ; nj I j D 1; : : : ;QIN D n1C: : :CnjC: : :CnQ/; ˇ0 is the average outcome
across all individuals and all institutions; ˇg is the effect of the individual-specific
covariate Xg .g D 1; : : : ; G/; uj is the second-level random effect associated with
the j -th institution and is known as the effectiveness parameter, i.e., the effect of
the j -th institution on the outcome yij , adjusted for individual-level characteristics
(uj � N.0; �00/, where �00 is the variation in intercepts between institutions); eij

is the first-level random effect associated with the i -th individual belonging to the
j -th institution (eij � N.0; �2/, where �2 is the variation within institutions).

The plot of confidence intervals for ordered effectiveness parameters provides a
ranking of the institutions, adjusted by individual-specific characteristics.

However, there are situations where Multilevel Models appear to be not infor-
mative and prevent to distinguish among the institutions. In fact, this approach
may produce not reliable rankings (i.e., characterized by large confidence inter-
vals for the effectiveness parameters). In this case, “an overinterpretation of
a set of rankings where there are large uncertainty intervals can lead both to
unfairness and inefficiency and unwarranted conclusions about changes in ranks”
(Goldstein and Spiegelhalter 1996). Then, “league tables of outcomes are not a valid
instrument for day-to-day performance management by external agencies” (Lilford
et al. 2004). Large confidence intervals may be a consequence of both heterogene-
ity of individual-level relationships and heterogeneity of the individuals within
institutions, like in regional or national studies (see Fig. 1).

Moreover, in the case of large data, significance tests for the parameters of lin-
ear models always lead to the rejection of the null hypothesis (Vroman Battle and
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Fig. 1 Example of a not reliable ranking of schools

Rakow 1993). In these cases, a single global model is not sufficient and methods
able to capture local behaviour seem necessary. A first attempt in this direction is
described in Minotti and Vittadini (2010).

3 Cluster-Weighted Modeling

CWM is a flexible statistical framework for capturing local behaviour in heteroge-
nous populations, based on joint probability p.x; y/ estimated from a set of pairs of
input–output learning data f.xn; yn/gnD1;:::;N .

Let .X; Y / be a pair of a random vector X and a random variable Y defined on
˝ with joint probability distribution p.x; y/, where X is the d -dimensional input
vector with values in some space X � <d and Y is a response variable having
values in Y � <. Assume that ˝ can be partitioned into G disjoint groups, say
˝1 [ � � � [˝G .

CWM decomposes the joint probability p.x; y/ as

p.x; y/ D
GX

gD1

p.yjx;˝g/ p.xj˝g/ 	g ; (2)

where 	g is the mixing weight of the group ˝g , p.xj˝g/ is the probabil-
ity density of x given ˝g and p.yjx;˝g/ is the conditional density of the
response variable Y given the predictor vector x and the group ˝g . The p.xj˝g/,
(g D 1; : : : ; G), in (2) are usually assumed to be multivariate Gaussians, that is
p.xj˝g/ D d .xI�g ;˙g/. Moreover, the p.yjx;˝g/, (g D 1; : : : ; G), can be
modeled again by Gaussian distributions with variance �2

";g around some local

models, here restricted to the case 
g.x/ D b0
gx C bg0, with bg 2 <d ; bg0 2 <
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and then

p.x; yI�/ D
GX

gD1

.yIb0
gxC bg0; �

2
";g/ d .xI�g ;˙ g/ 	g : (3)

The estimation of the parameters can be performed by means of the EM algo-
rithm (see Ingrassia et al. 2009); the number of groups may be chosen on the
basis of the Bayesian Information Criterion, like in traditional Mixture Models
(Frühwirth-Schnatter 2005).

Recently, Ingrassia et al. (2009) have demonstrated that the Gaussian CWM is a
generalization of Finite Mixtures of Regression (FMR) (Frühwirth-Schnatter 2005)

f .yjxI / D
GX

gD1

.yIb0
gxC bg0; �

2
�;g /	g (4)

and Finite Mixtures of Regression with Concomitant Variables (FMRC) (Dayton
and Macready 1988)

f �.yjxI �/ D
GX

gD1

.yIb0
gxC bg0; �

2
�;g/p.˝g jx; �/; (5)

where the mixing weight p.˝g jx; �/ is modeled by a multinomial logit.

4 Applicability of CWM in Effectiveness Studies

In order to overcome the drawbacks of Multilevel Models in the context of effec-
tiveness studies, we propose the use of CWM.

For sake of brevity, the applicability of CWM will be illustrated by means of
two artificial examples in the field of accountability systems, which typically aim
to explain and predict students’ achievement outcomes. In particular, we refer to
the study of the relationship between Exit achievement (assumed here as a contin-
uous outcome) and Intake achievement (assumed here as a continuous predictor)
measured on some hypothetical students belonging to some hypothetical schools.

The examples try to reproduce some typical situations in effectiveness studies
and aim to show when CWM is more informative than Multilevel Modeling.

Example 1. The first example regards the simulation of the heterogeneity of
student-level relationship among schools by means of two linear effectiveness
models with equal distribution for the Intake achievement (i.e., with homogenous
students) and which differ in intercept, only.
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The sample was generated according to the following parameters:
Mod. 1 (Sch.1,2):
N1 D 100, p.xj˝1/ D .xI 5; 0:2/, p.yjx;˝1/ D .yI 2C 6x; 0:2/

Mod. 2 (Sch.3,4):
N2 D 100, p.xj˝2/ D .xI 5; 0:2/, p.yjx;˝2/ D .yI 8C 6x; 0:2/.
The scatter plot of the original data (labeled by school) is reported in the first

panel of Fig. 3 and shows that students from School 3 and 4 have higher Exit
achievement than students from School 1 and 2. The ranking of the four schools
obtained by means of a Two-Level Random Intercept Model is reported (see Fig. 2)
and shows that School 3 and 4 are more effective than School 1 and 2.

In Fig. 3, the reclassified data by means of FMR, FMRC and CWM respec-
tively, are also reported. The criterion is that a student is classified into the local
effectiveness model with the maximum posterior probability.

In this special case, the three competitive models are equivalent and provide anal-
ogous information with respect to Multilevel Modeling. In fact, both FMR, FMRC
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Fig. 3 Example 1. Original and reclassified data (FMR, FMRC, CWM)
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and CWM indicate that students from School 3 and 4 have a better performance
than students from School 1 and 2.

Example 2. The second example regards a more complex situation, i.e., the simulta-
neous heterogeneity of student-level relationship among schools and heterogeneity
of the students within schools. We have three linear effectiveness models with
different distribution for the Intake achievement (i.e., not homogenous students).

The sample was generated according to the following parameters:
Mod. 1 (Sch.1,2):
N1D 100, p.xj˝1/D.xI 5; 2/, p.yjx;˝1/D.yI 6C 40x; 2/

Mod. 2 (Sch.3,4):
N2 D 600, p.xj˝2/ D .xI 10; 2/, p.yjx;˝2/ D .yI �1:5C 40x; 2/

Mod. 3 (Sch.5,6):
N3 D 300, p.xj˝3/ D .xI 20; 2/, p.yjx;˝3/ D .yI �7C 150x; 2/.
The scatter plot of the original data (labeled by school) is reported in the first

panel of Fig. 5. The ranking of the six schools obtained by means of a Two-Level
Random Intercept Model is reported (see Fig. 4). A Two-Level Random Coefficient
Model has been also estimated; the random effects, however, were not statistically
significant.

This is an example where Multilevel Modeling is not particularly informative,
due to the large confidence intervals. In fact, the ranking is not reliable, because
School 5 and 6 are not clearly distinguishable from School 3 and 4. In this case,
methods able to model local behaviour enable to explain these differences.

From a methodological point of view, CWM only is able to correctly classify
the original observations (see Fig. 5); the reason is given by the different decision
surfaces characterizing the three competitive models (see for more details Ingrassia
et al. (2009)). From an interpretative point of view, CWM is much more informative
than Multilevel Modeling. In fact, it results that School 1 and 2 teach to students
with an Intake achievement which is lower than students from other schools (espe-
cially those from School 5 and 6), but allow them to reach the highest levels of
Exit achievement; consequently they are more effective than other schools. Instead,
Schools 3 and 4 teach to students with a medium level of Intake achievement, but
they follow an effectiveness model which is characterized by a weak negative rela-
tionship between Intake and Exit achievement. Then, Schools 5 and 6 teach to
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Fig. 5 Example 2. Original and reclassified data (FMR, FMRC, CWM)

students with the highest level of Intake achievement, but they follow an effective-
ness model which is characterized by a strong negative slope; consequently, they are
the worse schools.

The examples enable some general considerations about the applicability of
CWM in the context of effectiveness studies.

Suppose to have many schools with not homogenous students, described by a
set of explicative variables. CWM estimates many local models which express the
local relationship between the Exit achievement and the characteristics of the stu-
dents, regardless of the multilevel structure (i.e., the membership of a student to a
school). Each student is classified into the local model with the maximum poste-
rior probability. From students it is possible to identify schools and, consequently,
which effectiveness models follow the schools with respect to specific subgroups
of students. This enables analysis of the effectiveness levels for each school (e.g.,
a school could be clever to teach to students with low levels of Intake achievement
and not clever with students characterized by high levels of Intake achievement),
and comparisons among institutions with similar behaviour (e.g., by means of Mul-
tilevel Modeling enriched by school-level variables). Moreover, in terms of policies,
this means having an instrument to address homogenous subpopulations of students
to the most effective schools.

5 Conclusions and Further Research

In this paper we have proposed CWM as a new methodology in the context of
effectiveness studies and a useful tool to support public policy decisions. In par-
ticular, this approach appears to be particularly suitable for statistical modeling of
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administrative data (large data), where the high complexity may not be interpreted
by the multilevel structure only.

Further research will regard the extension of Cluster-Weighted Modeling in
the following three directions: (1) mixed variables, given that typical outcomes
and predictors involved in effectiveness studies are not exclusively real-valued
(e.g., achievement is an ordinal variable; mortality rate is a dichotomous variable);
(2) non-linear local models, given that the local relationships between outcomes
and predictors may be non linear; (3) multilevel data structures, as proposed in
Galimberti and Soffritti (2007) for Mixture Models, in order to allow some of the
parameters of the conditional densities to differ across second-level units (schools,
hospitals, etc.).
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Impact Evaluation of Job Training Programs
by a Latent Variable Model

Francesco Bartolucci and Fulvia Pennoni

Abstract We introduce a model for categorical panel data which is tailored to the
dynamic evaluation of the impact of job training programs. The model may be
seen as an extension of the dynamic logit model in which unobserved heterogeneity
between subjects is taken into account by the introduction of a discrete latent vari-
able. For the estimation of the model parameters we use an EM algorithm and we
compute standard errors on the basis of the numerical derivative of the score vector
of the complete data log-likelihood. The approach is illustrated through the analysis
of a dataset containing the work histories of the employees of the private firms of
the province of Milan between 2003 and 2005, some of whom attended job training
programs supported by the European Social Fund.

1 Introduction

We develop an approach to study the effect of job training programs on the type of
employment. The approach is used to analyse a longitudinal dataset containing the
work histories of a large group of subjects who are resident in the Province of Milan
(Italy), which includes 189 towns and municipalities.

The model we introduce may be seen as an extension of the dynamic logit model
(Hsiao 2003). As such, it is based on subject-specific intercepts to account for the
unobserved heterogeneity between subjects and it includes, among the regressors,
the lagged response variable. This allows us to estimate the effect of the true state
dependence (Heckman 1981), i.e., the actual effect that experiencing a certain sit-
uation in the present has on the probability of experiencing the same situation in
the future. Differently from more common approaches, we assume that the random
intercepts have a discrete distribution, following in this way a formulation similar to
that of the latent class model (Lazarsfeld and Henry 1968). This formulation avoids
to specify any parametric assumption on the distribution of the random intercepts.
Among the regressors, we also include a set of dummies for having attended the
training program. These dummies are time-specific; therefore, we can also evaluate
whether the program has or not a constant effect during the period of observation.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_8, c� Springer-Verlag Berlin Heidelberg 2011
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Maximum likelihood estimation of the model parameters is carried out through
an Expectation–Maximization (EM) algorithm (Dempster et al. 1977). On the basis
of the score vector of the complete data log-likelihood, which is obtained as a by-
product of the EM algorithm, we compute the standard errors for the parameter
estimates; see also Bartolucci and Farcomeni (2009).

The paper is organized as follows. In the next section we describe in more detail
the dataset mentioned above. In Sect. 3 we illustrate the latent variable model and
we discuss its equivalence with a model formulated following a potential outcome
approach. Finally, in Sect. 4 we discuss the main results from the application of this
model to the dataset described in Sect. 2.

2 The Dataset

The dataset we analyse is extracted from a database derived from the merge of two
administrative archives. The first archive is made by the mandatory announcements
of the employers to the public employee service registers (employment offices)
operating on the Province of Milan about hiring (new contract) or firing (expired
contract). It is then possible to obtain, for every employee working in a private firm,
relevant data on his/her employment trajectories, such as the number of events, type
and duration of the contract, sector, and qualification. Since 2000, this archive is
updated at any change of the job career.

The second archive contains information about the voluntary participants to the
courses supported by the European Social Fund which took place in Lombardy
between 2000 and the first quarter of 2007. We selected, among the programs
designed at that time, those aimed at favouring: (a) first time employment, (b) return
to work, and (c) acquisition of additional skills for young employees. Most partic-
ipants were aged between 18 and 35; the courses lasted on average less than six
months and ranged from broadly oriented to relatively specialized topics.

With the data at hand, we chose to evaluate the impact of job-training programs
on the probability of improving in the type of contractual category. We selected
three main categories: (a) temporary agency, (b) temporary (fixed term), and (c)
permanent (open ended) job contract. We also chose to study the impact of those
programs taking place in the first quarter of 2004 and to restrict the analysis to
Italian employees aged 20–35 in 2004. We then have a group of 370,869 workers:
4,146 trained subjects (1.12%) and 366,723 untrained subjects (98.88%).

Note that, from the administrative archives, the employment status of a subjects
is not available if he/she is: (a) not employed, (b) employed outside the Province
of Milan, (c) self-employed, or (d) employed in the public sector or with a coor-
dinated and continued collaboration type of contract. Therefore, for each period of
interest we considered a response variable having four levels: (0) if the labour state
of the subject is unknown (he/she is not in the archive at this time), (1) if he/she is
employed with a temporary agency contract, (2) if he/she is employed with a fixed
term contract, (3) if he/she is employed with a permanent contract.
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Table 1 Descriptive statistics for the covariates of trained and untrained subjects

Trained Untrained

Gender: males (%) 48.50 54.87
Age in 2003: mean 27.76 27.95
Level of Education: missing (%) 26.75 41.87

none or primary school (%) 0.72 1.19
middle school (%) 21.23 23.26
high school (%) 37.65 25.16
college degree (%) 13.65 8.51
higher (%) 0.00 0.02

We are interested in estimating the early effects of the training. For this rea-
son, we consider the response variable three months before and six, nine, twelve,
and fifteen months after the beginning of the program. We then have five response
variables for each subject, which are denoted by y1; : : : ; y5. The categories 1–3 of
such responses are ordered, with the last one corresponding to the most stable type
of contract in the Italian system. We also consider the covariates listed in Table 1,
where some descriptive statistics for these covariates are listed.

3 The Statistical Approach

For each subject i in the sample, i D 1; : : : ; n, we denote by yi0 and yi1 the labour
state observed, respectively, six and three months before the first quarter of 2004
(period of the beginning of the job training program). We also denote by yi2; : : : ; yi5

the labour state observed, respectively, six, nine, twelve, and fifteen months after the
first quarter of 2004.

3.1 Model Assumptions

Given the nature of the response variables, we use a model based on nested logits
(Agresti 2002). For each variable we have three logits. The first one compares the
probability of entering the database against not entering, i.e., category 0 against all
the other categories. At nested level, we use two cumulative logits for the conditional
probability of each category larger than 0, because these categories are ordered.

The model accounts for unobserved heterogeneity and state dependence by the
inclusion of subject-specific intercepts and the lagged response variable among the
regressors. The intercepts are treated as random parameters having a discrete distri-
bution with k support points, which identify k latent classes in the population. The
c-th class has probability denoted by 	c , c D 1; : : : ; k.



68 F. Bartolucci and F. Pennoni

The model considers the first response variable yi0 as given, whereas the distri-
bution of yi1 is modelled as follows

log
p.yi1 > 0jci ; xi1; yi0/

p.yi1 D 0jci ; xi1; yi0/
D ˛1ci

C x0
i1ˇ11 C

3X

j D1

dij 0ˇ1;j C1;

log
p.yi1 > hjci ; xi1; yi0; yi1 > 0/

p.yi1 � hjci ; xi1; yi0; yi1 > 0/
D ˛2ci

C �h C x0
i1ˇ21 C

3X

j D1

dij 0ˇ2;j C1;

where h D 1; 2, xi1 is the vector of exogenous covariates at the first occasion, ci

is the latent class of subject i , and �1  0 to ensure identifiability. Moreover, ˛1c

and ˛2c are the support points associated to latent class c, c D 1; : : : ; k, �2 is the
shift parameter for the third logit with respect to the second, and dijt is a dummy
variable equal to 1 if yi t D j and to 0 otherwise.

For what concerns the distribution of yi t , t D 2; : : : ; 5, we assume

log
p.yi t >0jci ; xi t ; yi;t�1; zi /

p.yi t D 0jci ; xi t ; yi;t�1; zi /

D ˛1ci
Cx0

i tˇ11C
3X

j D1

dij;t�1ˇ1;j C1Czi
1t ; (1)

log
p.yi t >hjci ; xi t ; yi;t�1; yi t >0; zi /

p.yi t � hjci ; xi t ; yi;t�1; yi t >0; zi /

D ˛2ci
C�hCx0

i tˇ21C
3X

j D1

dij;t�1ˇ2;j C1Czi
2t ; (2)

where h D 1; 2 and the vector of covariates xi t at occasion t also includes time
dummies. Note that, the parameters 
1t and 
2t , t D 2; : : : ; 5, measure the effect
of the job training program on each period (see the discussion below for further
details).

Finally, for the binary variable zi equal to 1 if subject i attends the job training
program and to 0 otherwise, we assume

log
p.zi D 1jci ; xi1; yi0/

p.zi D 0jci ; xi1; yi0/
D ˛3ci

C x0
i1ı1 C

3X

j D1

dij 0ıj C1;

with ˛3c , c D 1; : : : ; k, being support points associated to the latent classes.
In the model presented above we assume that all observable factors (represented

by the covariates) and unobservable factors (represented by the random intercepts)
affecting both the job status and the choice of the treatment are properly taken into
account. If this assumption holds, then a causal model in the sense of Pearl (1995)
results.
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Indeed, causal models for observational studies similar to the present one are
typically formulated following a potential outcome approach (Rubin 2005); see
for instance Sianesi (2004) and Lechner and Miquel (2010). Here, the potential
outcomes may be denoted by y.1/

i t and y.0/
i t and, for every subject i and time occa-

sion t , indicate the type of contract if the program was or was not attended. It is
worth noting that the model presented above is equivalent to a model formulated
on these potential outcomes through a similar parameterisation. In a related context,
the equivalence between the two formulations is derived in Bartolucci (2010) and
Ten Have et al. (2003). The main assumption for this equivalence to hold is that the
potential outcomes are conditionally independent of zi given the observed covari-
ates and the random intercepts. An important aspect is that the parameters 
ht in (1)
and (2) may be seen as suitable contrasts, on the logit scale, between the probabil-
ities of certain configurations of y.1/

i t and y.0/
i t . This enforces their interpretation as

causal parameters.

3.2 Maximum Likelihood Estimation

Estimation of the model parameters is based on the maximization of the log-
likelihood

`.�/ D
X

i

logŒp.yi1; zi ; yi2jxi1;Xi2; yi0/�;

by an EM algorithm (Dempster et al. 1977). In the expression above, � denotes the
vector of all model parameters, Xi2 D .xi2; : : : ; xi5/, and yi2 D .yi2; : : : ; yi5/

0.
As usual, this algorithm alternates two steps (E-step and M-step) until conver-

gence and is based on the complete data log-likelihood. The latter may be express-
ed as

`�.�/ D
X

i

X

c

uic logŒp.yi1; zi ; yi2jc; xi1;Xi2; yi0/	c � (3)

D
X

i

X

c

uic logŒp.yi1jc; xi1; yi0/�C
X

i

X

c

uic logŒp.zi jc; xi1; yi0/�

C
X

i

X

c

uic

X

t>1

logŒp.yi t jc; xi t ; yi;t�1; zi /�C
X

i

X

c

uic log.	c/;

where uic is a dummy variable equal to 1 if subject i belongs to latent class c and
to 0 otherwise.

At the E-step, the EM algorithm computes the conditional expected value of uic ,
i D 1; : : : ; n, c D 1; : : : ; k, given the observed data and the current value of the
parameters. This expected value is proportional to p.yi1; zi ; yi2jc; xi1;Xi2; yi0/	c

and is denoted by Ouic .
The M-step consists of maximizing the expected value of the complete data log-

likelihood, obtained by substituting in (3) each uic by the corresponding expected



70 F. Bartolucci and F. Pennoni

value computed as above. In this way we update the parameter estimates. In particu-
lar, to update the probabilities of the latent classes we have an explicit solution given
by 	c DPi Ouic=n, c D 1; : : : ; k. For the other parameters we use a Fisher-scoring
iterative algorithm.

A crucial point is the initialization of the EM algorithm. Different strategies may
be used in order to overcome the problem of multimodality of the likelihood. As
usual, it is convenient to use both deterministic and stochastic rules to choose the
starting values and to take, as maximum likelihood estimate of the parameters, O� ,
the solution that at convergence corresponds to the highest value of `.�/. In order
to obtain standard errors for these estimates we rely on an approximation of the
observed information matrix J. O�/, which is obtained as in Bartolucci and Farcomeni
(2009) on the basis of the numerical derivative of the score of `.�/ at O� . This vector
is directly obtained from the EM algorithm.

Finally, in order to choose the number of support points k, we use the Bayesian
Information Criterion (Schwarz 1978). Therefore, we compute the index BIC D
�2`. O�/Cg log.n/, where g is the number of non-redundant parameters, for increas-
ing values of k until the value of BIC slightly decreases or increases with respect
to the one previously computed. The selected value of k is the one corresponding to
the last fitted model (in the first case) or to the previous one (in the second case), so
that this model has the smallest BIC among all the fitted models.

4 Results

We applied the proposed approach to the dataset described in Sect. 2. According
to the criterion described above, we selected the model with k D 4 latent classes.
This model has 53 parameters, maximum log-likelihood equal to �1;027;004, and
BIC equal to 2;054;688. This last value is much lower than that of the model
without unobserved heterogeneity which has maximum log-likelihood equal to
�1;043;618;41 with parameters, and BIC equal to 2;087;762. For both models,
the parameter estimates are reported in Tables 1 and 2. Note that, for the model
with unobserved heterogeneity, the four classes have estimated probabilities equal
to 0:036, 0:090, 0:860, and 0:014.

The most interesting aspect is that the estimates of the parameters 
ht , which
measure the dynamic impact of the training program, considerably change when
unobserved heterogeneity is taken into account, i.e., when we use four latent classes
instead of one. In particular, the estimates for the first logit (h D 1), which con-
cerns the probability of entering the archive, are always negative with k D 1 and
become positive with k D 4. Less evident is the difference in the estimates of these
parameters for the second and third logits (h D 2). Under both models, these esti-
mates indicate that the training program has a significant effect on the probability of
improving in the contractual level only for the first period after the beginning of the
program (t D 2). There is no evidence of a significant effect for the other periods.
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Table 2 Estimates of the parameters for the conditional distribution of the response variables
given the latent variable

Effect First logit
k D 4 k D 1

Estimate s.e. t -statistic p-value Estimate s.e. t -statistic p-value

intercepta ( N̨1) �1:127 – – – �1:222 – – –
time dummies (ˇ111) 0.402 0.007 59.27 0.000 0.414 0.007 61.01 0.000

(ˇ112) 0.490 0.008 64.67 0.000 0.427 0.007 60.56 0.000
(ˇ113) 0.458 0.008 56.25 0.000 0.362 0.007 50.30 0.000
(ˇ114) �0:068 0.008 �8:46 0.000 �0:081 0.007 �11:36 0.000

genderb (ˇ115) �0:020 0.006 �3:63 0.001 �0:025 0.005 �5:54 0.000
agec (ˇ116) 0.029 0.001 44.72 0.000 0.024 0.001 45.22 0.000
dummy educ.d (ˇ117) 0.137 0.014 9.59 0.000 0.186 0.012 16.00 0.000
education (ˇ118) 0.054 0.005 11.20 0.000 0.075 0.004 19.04 0.000
lag response (ˇ12) 2.213 0.012 190.89 0.000 2.186 0.010 217.87 0.000

(ˇ13) 2.521 0.008 330.06 0.000 2.642 0.007 394.91 0.000
(ˇ14) 3.857 0.007 564.71 0.000 3.818 0.006 673.75 0.000

training (
12) 1.132 0.067 16.89 0.000 �0:264 0.041 �6:49 0.000
(
13) 0.635 0.072 8.81 0.000 �0:919 0.044 �20:84 0.000
(
14) 0.758 0.071 10.60 0.000 �0:819 0.044 �18:49 0.000
(
15) 1.371 0.070 19.63 0.000 �0:339 0.044 �7:63 0.000

Second, third logits
intercepta ( N̨2) 4.693 – – – 3.421 – – –
shift (�2) �4:398 0.010 �441:84 0.000 �3:647 0.007 �518:28 0.000
time dummies (ˇ211) 0.474 0.011 43.77 0.000 0.480 0.010 48.80 0.000

(ˇ212) �0:100 0.011 �8:86 0.000 �0:128 0.010 �12:63 0.000
(ˇ213) 0.118 0.011 10.37 0.000 0.072 0.010 7.11 0.000
(ˇ214) 0.004 0.012 0.30 0.023 �0:028 0.011 �2:60 0.009

genderb (ˇ215) 0.117 0.007 16.42 0.000 0.094 0.006 14.78 0.000
agec (ˇ216) 0.019 0.001 21.89 0.000 0.019 0.001 24.48 0.000
dummy educ.d (ˇ217) 0.212 0.018 11.66 0.000 0.235 0.016 14.59 0.000
education (ˇ218) �0:013 0.006 �2:02 0.060 �0:043 0.005 �7:75 0.000
lag response (ˇ22) �5:760 0.017 �331:28 0.000 �5:056 0.014 �348:97 0.000

(ˇ23) �2:090 0.009 �226:30 0.000 �1:493 0.008 �194:60 0.000
(ˇ24) 4.455 0.013 348.73 0.000 4.683 0.012 396.20 0.000

training (
22) 0.216 0.069 3.12 0.055 0.183 0.062 2.96 0.003
(
23) 0.202 0.093 2.17 0.258 0.138 0.083 1.67 0.094
(
24) 0.099 0.094 1.05 0.978 �0:002 0.082 �0:03 0.979
(
25) 0.102 0.096 1.06 0.975 �0:062 0.082 �0:75 0.454

aaverage of the estimated intercepts.
bdummy equal to 1 for a male and 0 for a female.
cminus average age.
ddummy for the category of education missing.

For what concerns the parameters measuring the effect of the individual covari-
ates on the response variables, we do not observe a great difference between the
model with four latent classes and that with one latent class. For both models, we
note that, males tend to improve more easily than females in the contractual level.
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Table 3 Estimates of the parameters for the conditional probability of attending the training
program given the latent variable

Effect k D 4 k D 1

Estimate s.e. t -statistic p-value Estimate s.e. t -statistic p-value

intercepta ( N̨3) �5:098 – – – �4:458 – – –
genderb (ı11) �0:161 0.034 �4:76 0.000 �0:153 0.032 �4:84 0.000
agec (ı12) �0:003 0.004 �0:73 0.027 �0:001 0.004 �0:31 0.759
dummy educ.d (ı13) 0.114 0.084 1.35 0.910 0.031 0.079 0.39 0.694
education (ı14) 0.316 0.027 11.84 0.000 0.249 0.025 10.04 0.000
init. period (ı2) �1:152 0.111 �10:42 0.000 �0:678 0.104 �6:51 0.000

(ı3) �1:434 0.069 �20:72 0.000 �0:921 0.064 �14:50 0.000
(ı4) �1:304 0.043 �30:58 0.000 �0:813 0.035 �23:28 0.000

aaverage of the estimated intercepts.
bdummy equal to 1 for a male and 0 for a female.
cminus average age.
ddummy for the category of education missing.

Moreover, age has a positive effect on the first logit and also on the second and
third logits, whereas the number of years of education has a significant positive
effect only on the first logit. A strong state dependence is also observed since all
the parameters associated to the lagged responses are highly significant, indicating
a strong persistence on the same type of contract.

Finally, from the results in Table 3, it emerges that the covariates that have a
significant effect on the propensity to attend the job training program are gender,
years of education, and the response at the initial period. In particular, females have a
higher propensity to attend the program, as well as subjects with higher educational
level and with a less favourable contract position at the beginning of the period of
observation.
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Analysis of Collaborative Patterns
in Innovative Networks

Alfredo Del Monte, Maria Rosaria D’Esposito, Giuseppe Giordano,
and Maria Prosperina Vitale

Abstract This paper focuses on territorial innovative networks, where a variety of
actors (firms, institutions and research centers) are involved in research activities,
and aims to set up a strategy for the analysis of such networks. The strategy is
twofold and relies, on the one hand, on the secondary data available from admin-
istrative databases and, on the other, on survey data related to the organizations
involved in innovative networks. In order to describe the peculiar structures of
innovative networks, the proposed strategy adopts the techniques suggested in the
framework of Social Network Analysis. In particular, the main goal of the analysis
is to highlight the network characteristics (interactions between industry, university
and local government) that can influence network efficiency in terms of knowl-
edge exchange and diffusion of innovation. Our strategy will be discussed in the
framework of an Italian technological district, i.e., a type of innovative network.

1 Introduction

During the few last decades, regional systems for innovation based on extensive
interactions between industry, university and local government have shown high
rates of growth (Etzkowitz and Leydesdorff 2000). Different kinds of interaction of
these three subsystems have produced knowledge generation and innovative diffu-
sion in developed and under developed areas and many papers have shown that the
level of individual R&D is declining in the level of collaborative activity and that, in
many cases, collaboration leads to efficient networks (among the others Goyal and
Moraga-Gonzalez (2001), Jackson (2008)). Hence institutional policies have been
implemented in many industrial economies to set up innovative networks (Goyal and
Moraga-Gonzalez 2001, Giuliani et al. 2005, Cantner and Graf 2006).1 However,

1 Innovative networks can be conceived as: (i) networks of institutions, whose interactions deter-
mine the innovative performance of domestic firms or more specifically as a set of distinct
institutions which jointly and individually contribute to the development and diffusion of tech-
nologies and which provide the framework within which governments generate and implement

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_9, c� Springer-Verlag Berlin Heidelberg 2011
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very little attention has been paid by the economic literature and the evaluation
agencies to measuring the performance of such policies.

To this aim, two factors need to be considered. Networks may differ consider-
ably in their structure (complete, star, partially connected network, circular network,
empty network, see for instance (Wasserman and Faust 1994, Jackson 2008) and in
the type of links that connect two or more firms. Furthermore, collaboration agree-
ments and alliances may vary greatly in form, ranging from loose and informal
agreements (such as a “memorandum of understanding”) all the way to the forma-
tion of common legal organizations with strong equity ties (such as an RJV). The
nature of the activities also varies. Collaboration might involve the sharing of pro-
duction facilities, the sharing of information concerning new technologies and new
products or the production of specialized components.

Furthermore, policies aiming to support the creation of network structures might
have different welfare effects in relation to the characteristics of the environment. In
less developed areas, where the level of social trust is weak and small firms are not
used to collaborating, networks of large firms (often not local) and universities could
be more effective than networks of small firms. On the other hand, when the level of
social capital is more developed, networks of small firms and local authorities could
be associated with strong economic performance (Putnam 1995, Knack and Keefer
2003). It is therefore important to develop a methodology that makes it possible to
understand what kind of network is more likely to have a positive impact in a given
region and how to measure the performance of implemented policies.

Given that the techniques proposed in the framework of Social Network Analy-
sis (Wasserman and Faust 1994) take into account information exchange and flows
of knowledge among different organizations, it may be useful to adopt them both
to evaluate the performance of actions implemented by technological districts and
to describe the impact of public policies for territorial innovation and knowledge
diffusion. In this paper we study a particular type of innovative network: the techno-
logical district. We set up a methodology to analyze the policy which started in 2002
in order to support the start-up of technological districts in Italy.2 This methodology
will be applied to a network of firms and public and private research centers located
in the Campania Region of Southern Italy.

The paper is organized as follows: in Sect. 2 a brief review of the literature
on economic incentives that could be used to increase the information exchange
and flows of knowledge among firms is presented; in Sect. 3 the strategy pro-
posed for innovative network analysis in terms of complete networks to analyze
secondary data structure and ego-centered networks for survey data is briefly pre-
sented. Section 4 contains the study of the collaboration network in the chosen
technological district.

policies to influence the innovation process (Giuliani et al. 2005); (ii) networks of actors, which
cooperatively engage in the creation of new ideas and then economize on the results (Cantner and
Graf 2006); (iii) network of firms with a high level of inter firm collaboration in R&D activity
(Goyal and Moraga-Gonzalez 2001).
2 The two most important laws outlining the procedures within each Italian region that could
implement a technological district are L.317/91 and L.140/99.
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2 Economic Incentives to Exchange Information
and Knowledge among Firms

The advantages of cooperation between firms derives from: (i) the strong comple-
mentarity of the R&D activities; (ii) the feasible coordination among the firms.
These factors bring about a reduction in the costs of R&D activities and avoid
the duplication of many fixed costs. Moreover, there are information benefits that
depend on the specific structure adopted by the firms. These advantages afford the
possibility to increase the diffusion of information, monitor competitors and reduce
the risk of free-riding. Furthermore, when faced with technological spillover, only
the firms that jointly invest in R&D and RJV internalize these benefits, while those
that under-invest in R&D suffer a negative impact on their performance and welfare
(Kamien et al. 1992). The cost of customizing inputs and the probability of strategic
opportunistic behaviour on the part of the partners decrease when many actors are
directly connected to each other.

The dimension of the network is a factor often considered as relevant (Katz
1986). In general, we can say that cooperative agreements among firms in tech-
nologically advanced sectors, such as pharmaceuticals, are often very efficient
(Orsenigo et al. 2001). Nevertheless, following the coalition games approach, when
the spillovers affect out-of-the-network firms, Yi and Shin (2000) prove that a free-
riding behavior can still be optimal for the firm. Public enforcement is necessary in
order to allow innovative networks to be sustainable and stable.

Other theoretical studies focus on the cooperation between firms and pub-
lic and/or private institutes of research, such as universities (Aghion et al. 2005,
Lacetera 2009). The production of knowledge is seen as the result of specific efforts
by the actors (firms, universities, local authorities) that have to decide if it is better
to coordinate their efforts or act strategically.

Furthermore, many papers (Teece 1981, Audretsch and Feldman 1996, Breschi
and Lissoni 2001) outline the importance, due to spatial externalities, of geograph-
ical proximity in the exchange and knowledge flows among actors. The cost of
transferring information and knowledge is in fact greatly reduced when actors
belong to a localized network.

3 A Social Network Analysis Approach to Describe
the Collaborative Patterns in Innovative Networks

By taking into account information exchange and flows of knowledge among
different organizations, the techniques proposed in the framework of Social Net-
work Analysis (SNA) can be fruitfully employed to: (i) describe and analyze
the collaborative patterns in innovative networks; (ii) define the role and posi-
tion of organizations in the net according to actor-level measures; (iii) identify
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groups of homogeneous organizations; (iv) observe collaboration in the network
in evolutionary terms, highlighting various net configurations.

The strategy proposed in the following is based on two kinds of information. On
the one hand, we consider secondary data available from administrative databases
to define a complete network. On the other, we rely on survey data able to define
ego-centered networks (e.g., Hanneman and Riddle 2005).

In order to define a complete network that can describe the collaboration among
organizations, our strategy requires the definition of network boundaries by identi-
fying the actors and the type of relationships. The actors are firms and institutions
involved in the activities of innovative networks, while the links (relational data)
can be defined according to their joint participation in research projects. An affilia-
tion matrix F.n�p/, where n and p are respectively the number of organizations and
research projects, and a symmetric valued adjacency matrix A.n�n/, that describes
the collaboration network among organizations according to the participation in
research projects, can be defined (Wasserman and Faust 1994). From A, some net-
work indices of interest (such as density, centrality, etc.) and actor-level measures
can be computed. To define homogeneous groups of actors that have the same (or
similar) pattern of ties, we look for a complete clustering by means of Hierarchical
Cluster Analysis carried out on a dissimilarity matrix D.n�n/, obtained by com-
puting a suitable dissimilarity measure (Sneath and Sokal 1973) between pairs of
actors. Furthermore, clusters of actors that share within and between common pat-
terns of ties are determined by the Blockmodeling techniques (e.g., Lorrain and
White 1971, Doreian et al. 2005). In particular, it is possible to assemble a set of
blocks into a blockmodel to discern the real structure present in the data, such as
cohesive, core-periphery or hierarchical configurations.

Finally, in our strategy we define ego-centered networks in order to observe
how individual actors are embedded in local structures. The relational data are col-
lected by survey data through the administration of a questionnaire to organizations
involved in innovative networks. The evolution of network configurations can be
appraised through the recognition of existing links among organizations before,
during and after the establishment of an innovative network.

In the following the proposed method will be applied to study the collaboration
network among private and public actors involved in a technological district whose
projects have been financially supported during the years 2005–2007. Alternative
applications of the proposed method on different kinds of networks with a larger
number of actors and a longer period of analysis could be envisaged.

4 The Collaboration Network in an Italian
Technological District

In this section we discuss the main results from the analysis of the collaboration
network in a technological district in the Campania Region of Southern Italy. This
district is composed of 24 organizations (firms, university departments and public
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research institutes) and was established in February 2004. Private actors are large
firms, some of which already have research units in Campania.

4.1 The Study of Collaborative Patterns in the Technological
District: The Complete Network

Starting from available data, we first define a collaboration network among the 24
organizations. The links are defined according to their joint participation in research
projects, financially supported by public funding in the years 2005–2007.

According to the participation in research projects,3 we define a complete net-
work to describe the collaboration among organizations (Firms; public research
institutes (R_Inst) and university departments (U_Dep)) involved in the technolog-
ical district. The network visualization (Fig. 1a) shows the presence of a group of
organizations (R_Inst1, U_Dep4, Firm1, Firm2 and Firm6) which participate in a
large number of projects and some organizations (mainly university departments)
which rarely cooperate with the other organizations. The network density, equal to
0.61, reveals a quite strong cohesion in the net. The analysis of actor-level measures,
based on centrality indices4 highlights the presence of two public research centers
that have an important position in the net (U_Dep4 and R_Inst1). Nevertheless,
there are some private firms (e.g., Firm1, Firm2 and Firm6) that play a central role
with a relevant number of relationships. The identification of homogeneous groups
is carried out by looking at a complete clustering over the set of organizations by
means of Hierarchical Cluster Analysis, conducted on dissimilarity matrix D.24�24/.
We derived a partition into three groups which are further analyzed by means of
Blockmodeling techniques for valued adjacency matrix (Ziberna 2007).5 Figure 1b
highlights the presence of a core-periphery configuration in the collaboration net-
work: one dense, small cohesive group of public and private leaders (U_Dep4,
R_Inst1, Firm1, Firm2 and Firm6) that maintain strong relationships within and
between clusters; one semi-peripheral group composed of private firms that col-
laborate with the leaders and have few ties with the other group and finally one
sparse, unconnected peripheral group, consisting mainly of university departments,
characterized by low participation in the research projects.

3 Starting from a binary affiliation matrix F.24�12/, with 24 organizations and 12 research projects,
we define a valued adjacency matrix A.24�24/. In matrix A the links are defined according to their
joint participation in research projects of pairs of organizations.
4 To compute the centrality indices we consider a 0/1 version of the adjacency matrix A, where the
threshold value to define the presence of a link is equal to 1.
5 Euclidian distance, Ward agglomerative method and Blockmodeling analysis are performed on
the valued adjacency matrix A using the package Blockmodeling of R software implemented by
Ziberna Ziberna (2007). In particular, the “Val” approach is considered with a threshold value m
equal to 5.
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Fig. 1 (a) Collaboration network among the 24 organizations, according to the participation in
research projects. (b) Permuted adjacency matrix A obtained according to the three groups of
equivalent organizations

4.2 A Survey on the Organizations of the Technological District:
The Ego-Network Approach

To understand some peculiarities in the collaboration behavior of the 24 organi-
zations involved in the technological district, we describe how individual actors are
embedded in local structures. Hence, we define ego-centered networks, with an indi-
vidual focal organization (ego) and all organizations with whom ego has connections
(alters). A survey6 has been conducted in order to define the ego-centered networks,
where the actors are the 24 organizations and the ties describe the participation
in common research projects according to three time occasions before, during and
after the establishment of the technological district (ex-ante, actual and ex-post net-
works). In particular, we highlight the structure of some peculiar egos. The firms that
have a central position in the network are Firm1, Firm2, Firm4 and Firm6. They rep-
resent the strongest organizations in terms of size and density. Therefore they play
a fundamental role in the collaboration network to communicate with each other
(betweenness) and to mediate the communication flow (brokerage). The analysis of
ego-networks highlights three typologies that can be considered typical structures
in the domain of all 24 organizations. The first typical pattern, as exemplified by
Firm1 (Fig. 2) and Firm6, is characterized by an increasing number of relationships
in the three network configurations (ex-ante, actual and ex-post networks). The sec-
ond one, as exemplified by Firm2 (Fig. 2) and Firm4, shows relative stability in

6 The data, gathered by means of a survey conducted from September 2008 to February 2009
through a questionnaire administered to organizations, are related to production processes, training
activities and participation in research projects before, during and after the establishment of the
technological district.
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Fig. 2 A comparison of two ego-networks in the three time occasions: Firm1 shows an increase in
the number of degrees and density in the three time occasions. Firm2 maintains a relatively stable
number of degrees before, during and after the establishment of technological district

the links evolution. Finally, the third structure refers to some firms that show poor
collaborative behaviors in the technological district.

5 Some Final Remarks

The main results obtained by analyzing the complete network and ego-networks
defined for the actors of the technological district seem promising to assess the
collaborative behaviors activated by private firms and public research institutions
for innovation diffusion and knowledge exchange.

Possible alternative applications of the proposed method, on different kinds
of networks and on wider networks are possible, given the characteristics of the
methodology, which is not bounded to a number of actors in a given interval of val-
ues or to a particular typology of the network. The analysis could be carried out over
a longer period of time than the one considered in the present paper by appropriately
defining what is ex-ante and what is ex-post. For instance the proposed methodol-
ogy could be useful in analysing innovative networks of local organizations and
to define indicators of network based policies (including performance assessment
of the technological districts financially supported by the Ministry of Education,
University and Research in Italy).
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The Measure of Economic Re-Evaluation:
a Coefficient Based on Conjoint Analysis

Paolo Mariani, Mauro Mussini, and Emma Zavarrone

Abstract During the last 40 years conjoint analysis has been used to solve a wide
variety of concerns in market research. Recently, a number of studies have begun to
use conjoint analysis for the economic valuation of non-market goods. This paper
discusses how to extend the conjoint analysis area of application by introducing
a coefficient to measure economic re-evaluation on the basis of utility scores and
the relative importances of attributes provided by conjoint analysis. We utilise the
suggested coefficient for the economic valuation of a typical non-market good, such
as a worldwide cultural event, to reveal the trade offs between its attributes in terms
of revenue variation. Our findings indicate the most valuable change to be made to
the existing status quo to generate economic surplus.

1 Introduction

Conjoint analysis is a standard tool for studying customer/user preferences (Cattin
and Wittink 1982), producing an estimation of attribute utilities and a definition of
their relative importance, thus, providing a total utility of the product status quo. We
can, however, hypothesise a change in this status quo to evaluate such a change in
terms of total utility variation. In so doing, an issue related to economic valuation
of the introduced change arises. Valuation of this kind can be particularly useful
when concerned with non-market goods which do not have a well-defined purchas-
ing process given their characteristical lack of rivalry and exclusiveness (Sanz et al.
2003). In this paper, we propose a new coefficient to evaluate the revenue after a
change in the combination of attributes of a given non-market good. This coefficient
works both on the utility score and on the relative importance value assigned to
the various attributes by using the OLS multiple regression as an estimation proce-
dure. In our application of the coefficient of re-evaluation we refer to the part-worth
function model as it represents the most general preference model, however, the
use of an alternative preference model is not excluded although it is not discussed
here. The remainder of the paper is organised as follows: Sect. 2 outlines the frame-
work of conjoint analysis use for non-market economic valuation; Sect. 3 introduces
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the conjoint based coefficient of economic re-evaluation; in Sect. 4, we apply the
methodology defined in the previous section to a ranking conjoint survey carried
out from July to November 2007 on visitors of “Venice and Islam 828-1797”, a
cultural event that was located in Venice; Sect. 5 is devoted to final remarks.

2 Using Conjoint Analysis for Non-market
Economic Valuation

Conjoint analysis is a widely used technique for investigating consumer choice
behaviour in commercial studies (Cattin and Wittink 1982). Since its introduction,
conjoint analysis has become a popular tool for decomposing the structure of con-
sumer preference by estimating the parameters of a preference model according to
the consumer evaluation of a set of alternatives which differ in terms of levels of
the attributes that specify the composition of those alternatives available in the set
(Green and Srinivasan 1978). In marketing research, the task of conjoint analysis is
directed towards revealing the trade-offs that consumers are willing to make among
attributes and the prediction of how those consumers will react to the introduc-
tion of new products on the market. Recently, conjoint analysis has been developed
as a state-preference method for the economic valuation of changes in non-market
goods, such as environmental commodities or cultural services (Roe et al. 1996,
Willis and Snowball 2009). As price is commonly included as an attribute, conjoint
analysis provides an estimate of the relative importance of price with respect to
the remaining attributes. Since any stated preference technique serves the scope of
estimating non-market values, the result of conjoint analysis provides information
concerning consumer willingness to pay for any change in the level of an attribute.
However, conjoint analysis is only one of the methods for estimating willingness to
pay for non-market goods. With the aim of investigating willingness to pay for envi-
ronmental or cultural goods, contingent valuation is often used as a stated preference
elicitation technique (Desvousges et al. 1993, Sanz et al. 2003). Contingent valua-
tion is a method by which the respondent is asked about his maximum willingness
to pay for a change in a non-market good. Thus, the process of making decisions
differs from that required by the conjoint format in which the respondent is asked
to compare alternatives which have a pre-specified price (Irwin et al. 1993, Stevens
et al. 2000). As noted in Boxall et al. (1996), if respondents tend to ignore alterna-
tives when making decisions about price in accordance with the contingent valuation
method, willingness to pay resulting from the contingent valuation method may
be quite different from those obtained by using conjoint methodology. Although
a variety of conjoint models have been developed in literature (Green and Srini-
vasan 1990), most conjoint based non-market valuations adopt a choice modelling
approach concerned with the random utility theory (Mazzanti 2003). The random
utility model often works on the probability of choosing the most preferred choice
from among a set of known alternatives. However, this model does not fully exploit
all of the information contained in the conjoint ranking format. When respondents
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are asked to express the exact rank order of choice set alternatives, the additional
information about ordinal ranking of the remaining alternatives beyond the first
choice is not utilised. However, a typical request of conjoint surveys is either to
rank alternatives or to rate alternatives on an integer scale (Chapman and Staelin
1982, Mackenzie 1993). Standard conjoint analysis uses OLS to exploit this addi-
tional information thereby regressing individual responses to a linear function of the
attributes.

3 A Conjoint Based Model for Economic Re-Evaluation

The application of conjoint analysis requires several steps and various options are
available for each of these steps. The first step is the choice of the preference model
that relates to the respondent preferences and to the levels of the attributes of the
available alternatives. Three main preference models are used in conjoint studies:
the part-worth function model (piecewise linear), the vector model (linear), and the
ideal point model (linear plus quadratic). We consider the part-worth function model
as it is the most general model providing a specific utility value for each level of the
considered attributes usually referred to as part-worth utility (Green and Srinivasan
1990). Having defined the preference model, we go on to choose the data collection
method and the selection of alternatives to estimate the part-worth utilities. As the
detailed discussion of such phases exceeds the objectives of the present argumenta-
tion, we presume that both the data and the alternatives have already been defined
so we then proceed to estimate the part-worth utilities by using the multiple linear
regression in accordance with the metric conjoint analysis approach. This estima-
tion procedure can be adopted either in presence of rank order preferences or when a
rating scale is used as a response mode (Carmone et al. 1978). Obviously, the higher
the utility value is, the more the corresponding attribute level is appreciated. Other-
wise, the lowest utilities are associated with the least preferred levels. Therefore, we
can estimate the total utility of any hypothetical combination of levels by summing
the corresponding utility values. According to this approach, the respondent overall
evaluation of the kth alternative in terms of utility is:

pk D ˇ0 C
JX

j D1

HjX

hD1

ǰhajh (1)

where ˇjh is the part-worth utility associated with the dichotomous variable ajh

denoting the presence (ajh D 1) or the absence (ajh D 0) of the hth level of the
j th attribute, and ˇ0 is a constant.

In this framework, a coefficient of economic re-evaluation for a hypothetical
change occurring in the combination of the attribute levels can be defined by a pair-
wise comparison of the total utility values of two alternatives which differ by that
changed attribute level. Being pb the sum of the part-worth utilities associated with
the status quo of the good, pj denotes the sum of the utility scores related to a
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specific combination of the attributes with the j th attribute modification (alterna-
tive j ). Thus, we can calculate the total utility variation linked to a modification
of the attribute j with respect to the status quo level of that attribute. Mj indicates
the ratio which results by dividing the difference between the total utility of the
alternative j and the status quo one by the total utility assigned to the status quo,
formally

Mj D pj � pb

pb

(2)

where pb is assumed to be diverse from 0. The result of this ratio indicates whether
the status quo modification will generate a loss or a gain in terms of total utility. It
is evident that a zero value for Mj represents the indifferent situation between loss
and gain in terms of total utility. However, the utility modification arising from an
attribute level modification can be considered more or less important by consumers.
Consequently, such attribute level modification can have a more important economic
impact than a utility modification which has a similar intensity but which involves a
less important attribute. As a solution, we use the relative importance of the modified
attribute as an indicator of the attribute impact on the overall utility determination
(Srinivasan and Shocker 1973). The range of the utility values (highest to lowest) for
each attribute provides an indicator of how important the attribute is with respect to
the remaining attributes. Attributes with larger utility ranges play a more important
role than those with smaller ranges. For each respondent i , the relative importance
of each attribute can be computed by dividing its utility range by the sum of all
utility ranges in order to obtain a ratio-scaled importance measure as follows:

Iij D
max

�
uij

� �min
�
uij

�
PJ

j D1

�
max

�
uij

� �min
�
uij

�� (3)

where J is the number of the considered attributes and uij is the set of part-worth
utilities referred to various levels of attribute j . We compute the importance values
separately for each respondent and then average them rather than calculating the
importance values from the summary part-worth utilities obtained by averaging the
part-worth utilities for all the respondents. This procedure permits to summarize
the attribute importance values by considering how the attribute importance val-
ues vary over the various respondent preference structures. Therefore, the average
importance values generally differ from those obtained by using the summary part-
worth utilities. We can express these relative importance values in terms of decimal
fractions whose sum is one. Thus, we can introduce the relative importance of the
modified attribute in (2), so that the coefficient formulation becomes

MIj D Mj 	 Ij (4)

where Ij is the relative importance assigned to attribute j . If we admit that pb can
be negative, we then use a minus before MIj and the general formulation of the
coefficient becomes
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MIj D

8
ˆ̂<

ˆ̂:

pj �pb

pb
	 impj if pb > 0

pb�pj

pb
	 impj if pb < 0

(5)

Expression (5) provides an overall utility variation measure for one change in
the status quo profile of a given multi-attribute good. Due to its relative impor-
tance based weighting system, the coefficient MIj enables the valuation of the
hypothetical changes occurring in the status quo profile one at a time.

If we refer to a typical public good, such as a cultural exhibit or a theatrical
performance, we can use formula (5) to estimate the variation of the total revenue
generated by assuming a change in the status quo profile of that cultural activity.
Having defined the total revenue associated with the status quo profile as 	 , we
can introduce this monetary amount into formula (5) to obtain a valuation of the
revenue variation for a change in the attribute combination of the public good. In so
doing, Vj denotes the amount of the revenue variation, as is shown by the following
equation

Vj D MIj 	 	 (6)

The revenue variation in (6) is estimated by supposing that the monetary factor
of a cultural good (price or admission charge) varies in proportion to the change of
the total utility of that good. We argue that if the price of a cultural event reflects
on how an user evaluates the combination of attributes of the cultural event in terms
of utility, the economic value of a change in the combination of attributes can be
expressed as a function of the utility and of the importance of the modified attribute.
In addition, we notice that conjoint analysis serves the scope of approximating the
real structure of consumer preference as only partial knowledge of consumer pref-
erence can be known. We, therefore, suggest the use of the coefficient of economic
re-evaluation as a monetary indicator which approximates the impact of a given
utility change in monetary terms.

4 Case Study

We refer to a survey concerning the cultural event “Venice and Islam 828-1797”
to test the coefficient of re-evaluation. After Paris and New York, this large-scale
exhibition on the relationship between Venice and the world of Islam was hosted in
Venice itself in the symbolic Doge’s Palace (28 July–25 November 2007).

4.1 Survey Design and Data Collection Method

The sample comprises 501 respondents who were interviewed after the visit. Data
was collected by face to face interviews in which each respondent was asked to
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rank eight alternative profiles presented in the form of a questionnaire. These alter-
natives were carried out from a full factorial design produced by a permutation of
all attribute levels (Placket 1946). Each alternative is described by four attributes:
admission charge, location, modality of gathering information about the exhibition,
additional information services. The admission charge is defined by three ticket
levels: 8–10 EUR, 10–12 EUR, > 12 EUR. When considering the location of
the exhibition, we define a dichotomous attribute stating whether the exhibition
is hosted in Venice or not. A further attribute distinguishes between information
about the exhibition provided to visitors by the organizers and information gathered
by visitors autonomously. Another dichotomous attribute refers to the presence (or
absence) of additional multimedia services that contribute to the understanding of
the exhibition. Starting from a full factorial which comprises .2 � 2 � 2 � 3 D 24/

profiles, a fractional orthogonal factorial of eight profiles was created to capture
main-effects of factors (attributes) Addelman (1962). Given this profile set, the
existing status quo of services was not included in the choices set as a possible
alternative.

4.2 Results

The summary part-worth utilities for each attribute level and the relative importance
values assigned to the corresponding attributes are shown in Table 1. It emerges
that visitors prefer Venice as a location for the exhibition rather than a differ-
ent place. Visitors seem to be more interested in collecting information about the
exhibit autonomously. In so doing, visitors show a preference for the provision
of additional multimedia services which make the exhibition easier to understand.
Table 1, Column 3 presents the relative importance for each attribute. We note that:
the admission fee is the most important attribute in terms of relative importance;
gathering information is the least important attribute; location and additional mul-
timedia services show a similar level of relative importance. Given a change in the
status quo, the estimated values shown in Table 1 can be used to derive an economic

Table 1 Part-worth utilities and attribute relative importance values. Venice. 2007

Attribute level Part-worth utility Attribute relative importance

Location: Venice 0:692 0.23526
Location: Other place �0:692 //
Information concerning exhibition: Induced �0:355 0.13948
Information concerning exhibition: Autonomous 0:355 //
Additional multimedia services: Present 0:567 0.24974
Additional multimedia services: Absent �0:567 //
Admission charge: Ticket 8-10 EUR 1:266 0.37552
Admission charge: Ticket 11-12 EUR �0:124 //
Admission charge: Ticket > 12 EUR �1:143 //
Intercept 4:183 �
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Table 2 Economic re-evaluation with the MIj coefficient. Venice. 2007

Status quo Modification of j attribute MIj Vj

Venice (yes) not �0:06236 �5;811:84
Information concerning exhibition (induced) autonomous 0:01899 1;770:01

Additional multimedia services (absent) present 0:05430 5;061:19

estimation of revenue variation generated by that change in accordance with (6).
First, we calculate the total utility associated with the status quo by summing the
additive part-worth utilities of the corresponding attribute levels. Thus, we can sup-
pose a change in the combination of levels and compute the total utility assigned to
that alternative.

The first column of Table 2 reports the combination of attribute levels specifying
the current service provision. If we suppose that the revenue generated by the exist-
ing status quo is 93,200 EUR (	), we can estimate the variation of revenue caused
by changing one attribute level as shown in Table 2. Table 2 shows evidence that rev-
enue would decrease if the exhibition were located in a different place (�5; 811:84),
whereas, revenue would increase by 5,061.19 EUR if the information were well-
presented by using multimedia services. Moreover, visitors are more willing to pay
for gathering information by themselves, therefore, the revenue gain is 1,770.01
EUR.

5 Conclusions

This work proposes a coefficient of economic re-evaluation based on conjoint analy-
sis. A typical purpose of such analysis is to express a monetary evaluation related to
a hypothetical change occurring in the combination of the attributes specifying the
good. The proposed coefficient of economic re-evaluation works on part-worth util-
ities to determine which monetary valuation variations derive from the introduction
of a change in the current specification of the good. Although conjoint analysis has
been developed as a tool for market researchers to investigate the consumer prefer-
ence structure, the suggested approach can be used for the valuation of non-market
multi-attribute goods or services, such as cultural events. Results from a conjoint
survey concerning a cultural event located in Venice reveal the way preferences
affect the revenue generated by that cultural event. In conclusion, the article sug-
gests an alternative approach to the willingness to pay measurement that exploits
all the information collected in ranking or rating conjoint analysis response format.
Moreover, our proposal has useful implications for the organisers of cultural events
who can obtain information on revenue variation determinants. The further objec-
tive of this study is twofold. First, we aim at extending the suggested approach when
a less general preference model than the part-worth one is used. Second, we argue
that this technique may play a major role in investigating demand determinants if
the respondent socio-economic characteristics are included in the analysis.
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Do Governments Effectively Stabilize Fuel
Prices by Reducing Specific Taxes? Evidence
from Italy

Marina Di Giacomo, Massimiliano Piacenza, and Gilberto Turati

Abstract After the sharp increase of oil prices experienced in recent years, in
order to stabilize fuel prices, many countries experimented automatic fiscal mech-
anisms consisting of a one-to-one reduction in specific taxes matching the rise in
input prices. This study investigates the impact of these mechanisms on wholesale
gasoline and motor diesel prices. Our estimates highlight that fiscal sterilization
brings about a rise in final wholesale prices that more than compensate reduction in
taxes. Hence, these “flexible” taxation mechanisms could not be a proper policy for
stabilizing price levels in fuel markets.

1 Motivation

As a reaction to oil price booms recorded in recent years, consumers’ associations
suggested (and policy makers experimented) the introduction of “flexible” taxation
mechanisms on fuels. The idea of “flexible” taxation is very simple: in order to keep
(gross) prices at a long-run equilibrium level, specific taxes should react one-to-one
to variations observed in input prices. Indeed, among the various available measures,
the sterilization of the increase in oil prices by a reduction in specific taxes on fuels
seems to be one of the most popular actions.1 However, such a sterilization policy
should be carefully evaluated, as for the likely impact on consumers, producers, and
tax revenues. On one side, if fuel prices are kept constant, there is a welfare enhance-
ment for drivers and fuel consumers with respect to a situation of volatile prices. On

1 Experiences of these policies can be found in different countries. In France, the government
introduced the TIPP (the French specific tax on petroleum products) “flottante” in 2000, i.e., a fiscal
mechanism able to change the tax in accordance with crude oil price trends. In Italy, two policy
interventions were proposed in 2007 and 2008, but never implemented. Both of them envisaged
some form of flexibility in the taxation mechanisms for fuels as a response to oil price peaks.
Somewhat differently, in the U.S., a temporary tax moratorium on the sales tax was introduced by
the Indiana and Illinois governors as a reaction to the gasoline price peaks during summer 2000
(Doyle and Samphantharak 2008).
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the other side, there is the need for the government to find different sources of tax
revenues, or to reduce public expenditures. These concerns are particularly stringent
in the European fuel markets, as fuel taxes account both for a large share of the retail
price in many countries (particularly in Italy, where taxes represent more than 50%
of the final consumer retail price), and for a nontrivial share of government’s budget
revenues (about 4–5% of total revenues), and finance both Central government and
Local (Regional) governments expenditures.

The purpose of this brief note is to contribute to the current debate on fuel
prices stabilization, by providing some insights on the possible effects of govern-
ment strategies aimed at mitigating the impact of oil price peaks. We concentrate
on the role of fuel specific taxes and estimate several reduced-form specifications
considering as a dependent variable the equilibrium wholesale prices observed for
both gasoline and motor diesel markets in Italy.

2 Data and Estimation Strategy

The main data source is the Bollettino Petrolifero (Oil Bulletin) published by the
Italian Department for Economic Development. We collect data for three prod-
ucts: gasoline (unleaded and octave rating equal to 95 RON gasoline), motor diesel,
and crude oil. For gasoline and motor diesel, we gather monthly data on wholesale
prices, and the specific taxes over the period January 1996–December 2007, lead-
ing to time series of 144 observations each. We also obtain monthly C.I.F. (cost,
insurance, and freight) crude oil prices for the same time period.

Similarly to other countries, the Italian fuel industry is characterized by a verti-
cal structure involving three groups of actors: refiners, wholesale distributors, and
downstream retailers. Refiners transform crude oil into petroleum products. Dis-
tributors receive petroleum products at their wholesale terminals and manage the
distribution service to the gas stations. Finally, retailers sell products to final con-
sumers. We concentrate on the segment where fuels (in our case unleaded gasoline
and motor diesel) are delivered from the wholesale terminals to the retailers. The net
wholesale price we observe is the equilibrium price in the market where distributors
and retailers meet and includes distributors’ profit margins, but it is net of specific
and ad valorem taxes.

Table 1 shows some descriptive statistics for our sample. Wholesale prices for
gasoline and diesel average 396 and 393 Euro per 1,000 liters, respectively. Diesel
prices show some higher volatility than gasoline prices, but they are strongly cor-
related (correlation coefficient 0.96). Specific taxes amount on average to 615 Euro
per 1,000 liters for gasoline and 452 Euro per 1,000 liters for motor diesel; they are
lower for motor diesel over the whole sample period. On average, crude oil price
over the 12 years is about 253 Euro per 1,000 liters, and the standard deviation
is 164.

Our aim is to study the relationship between wholesale gasoline and motor diesel
prices, on one side, and oil prices and specific taxes, on the other side. To this end,
following the literature, we estimate a reduced-form specification, i.e., pricing equa-
tions where equilibrium prices are functions of exogenous demand, cost and market
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Table 1 Sample descriptive statistics. Monthly observations on the Italian wholesale fuel market
from 1996 to 2007
Variable description Var. name Mean Std. dev. 25th pct. Median 75th pct.

Gasoline price
(Euro/1,000 liters)

PGAS 395.89 85.76 326.02 381.66 464.72

Diesel price
(Euro/1,000 liters)

PDIES 392.67 111.38 295.30 361.98 487.31

Crude oil price
(Euro/1,000 liters)

POIL 252.73 164.24 129.28 196.43 356.28

Gasoline specific tax
(Euro/1,000 liters)

TAXGAS 614.86 31.80 592.00 601.87 649.72

Diesel specific tax
(Euro/1,000 liters)

TAXDIES 452.13 22.93 431.86 445.16 475.07

Market share of leader
firm (%)

LEADER 38.26 6.11 33.00 38.60 43.46

Share of population
over 65 (%)

POP65 18.63 0.94 17.82 18.71 19.47

Number of
vehicles/population

VEHICLES 726.72 48.47 683.89 742.54 765.27

(� 1,000)
Number of retailers

(103)
RETAIL 20.31 0.30 20.03 20.24 20.57

Quarterly per capita
GDP (Euro)

GDP 6,156.8 302.2 5,914.8 6,268.0 6,373.0

Notes: All prices are deflated using the monthly Italian consumer price index (source Istat, base
month: December 2007). The number of observations is 144.

power shifters (Chouinard and Perloff 2004, 2007, Alm et al. 2009). In particular
we take to the data the following multiple time-series model:

PGASt D ˇ0 C ˇ1TAXGASt C ˇ2POILt CX 0
t
 C �t (1)

PDIESt D ˛0 C ˛1TAXDIESt C ˛2POILt CX 0
tı C �t

where the wholesale prices of gasoline (PGAS) and diesel (PDIES) are simultane-
ously regressed on a set of independent variables. TAX is the specific tax, different
for gasoline (TAXGAS) and motor diesel (TAXDIES), POIL is the C.I.F. crude oil
price,2 whileX is a vector collecting a set of additional covariates that we introduce
to control for demand side and supply side factors that are common to both products.
While coefficient on POIL is expected to be positive, we do not have clear a priori
on the sign of the impact of specific taxes. As Hamilton (1999) shows, the sign of
the coefficient is related to the elasticity of the demand schedule (see Di Giacomo

2 We experimented with a number of empirical specifications that could account for the likely
asymmetric response of fuel prices to oil price changes, often identified as “rockets” when oil
prices go up, and as “feathers” when oil prices go down (e.g., Galeotti et al. 2003). We found only
weak evidence of such asymmetry in price reactions. A possible explanation for this result is the
monthly (instead of daily or weekly) frequency of the data.
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et al. 2009, for more details on this point). In all specifications, we also include a set
of monthly dummy variables, to capture seasonal effects in wholesale prices. With
respect to the error terms, we assume that they are uncorrelated to the set of included
regressors, while the contemporaneous errors can be correlated. We estimate the
system of two equations in (1) by Zellner’s (1962) seemingly unrelated regressions
(SUR) estimator. The main advantage from this empirical strategy is a gain in effi-
ciency with respect to the estimation of separate equations (Creel and Farell 1996).
Before the estimation, all variables are transformed in natural logarithm, so as to
allow for nonlinear relationships between fuel prices and the regressors.

The estimated relationships are static and should be interpreted as convey-
ing information on long run behaviour of the variables of interests. Cointegration
between the main variables (fuel prices, specific taxes and oil price) cannot be
excluded,3 and this suggests the existence of some sort of “equilibrium relationship”
that is captured by the estimated reduced form model.

3 Results

Using our estimation results, we aim to give some insights first on the marginal
effects of specific tax and oil price on gasoline and motor diesel wholesale prices,
and then on the likely effects of sterilization policies. Table 2 shows three sets of
different specifications for the model in (1). In the first set of estimates (MODEL
1), we report our basic specification, that includes only specific tax and oil price as
explanatory variables.

In the second set of estimates (MODEL 2), we suspect the presence of some
structural breaks that we ascertain by Chow break point test and CUSUM tests
(Brown 1993). In particular, it is possible to single out two break points (one around
the beginning of 2001, and the other at the beginning of 2004), which identifies
three different sub-periods.4 When specific tax and oil price are interacted with a set
of three dummy variables, one for each of the three sub-periods characterizing our
sample, we obtain that tax and oil elasticities are larger than those from the basic
specification. Moreover, they sharply decreased during the second period (2001–
2003), to return to original values in the last interval. The trend in the coefficients is
likely to be associated to the scrutiny of the industry by the Italian Antitrust Author-
ity, which was particularly severe at the beginning of 2000s (e.g., AGCM 2000).
The reduction in elasticities in the second time period, especially with respect to oil
price, may signal a change in the conduct by distributors that were under investiga-
tion (and successively fined) by the Antitrust Authority for the potential presence of
a price cartel.

3 Cointegration was tested using the Engle-Granger test (e.g., Koop 2007).
4 The first sub-period, T1, is from January 1996 to December 2000, the second sub-period, T2,
from January 2001 to December 2003, while sub-period T3 goes from January 2004 to December
2007.
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Table 2 SUR estimation results: dependent variables are gasoline (PGAS) and diesel (PDIES)
prices

MODEL 1 MODEL 2 MODEL 3
PGAS PDIES PGAS PDIES PGAS PDIES

TAX �0:537*** �0:600***
(0.19) (0.21)

TAX_T1 �1:246*** �1:079*** �2:032*** �1:965***
(0.24) (0.27) (0.40) (0.29)

TAX_T2 �1:046*** �0:793*** �1:860*** �1:699***
(0.24) (0.27) (0.40) (0.29)

TAX_T3 �1:233*** �1:114*** �2:077*** �1:996***
(0.24) (0.28) (0.40) (0.30)

POIL 0.287*** 0.395***
(0.02) (0.02)

POIL_T1 0.404*** 0.472*** 0.431*** 0.488***
(0.02) (0.03) (0.02) (0.03)

POIL_T2 0.138*** 0.124** 0.221*** 0.183***
(0.05) (0.06) (0.04) (0.04)

POIL_T3 0.349*** 0.480*** 0.471*** 0.511***
(0.03) (0.03) (0.04) (0.04)

LEADER �0:384*** �1:138***
(0.15) (0.15)

POP65 �7:872*** �10:347***
(1.81) (1.82)

VEHICLES 29.648** 42.912***
(11.96) (12.16)

POP65_VEHICLE �10:295** �14:754***
(4.19) (4.26)

RETAIL 1.820** 1.658**
(0.80) (0.84)

GDP 1.134** 0.139
(0.49) (0.49)

Monthly dummies Yes Yes Yes Yes Yes Yes
R2 0.99 0.99 0.99 0.99 0.99 0.99
Breusch-Pagan test of 94.93 85.93 73.25

independence
degrees of freedom
[p-value] 1[0.00] 1 [0.00] 1 [0.00]

Wald Statistic on TAX 25.25 39.60 28.60 50.94
degrees of freedom 3 [0.00] 3 [0.00] 3 [0.00] 3 [0.00]
[p-value]

Wald Statistic on POIL 29.35 39.89 28.57 50.19
degrees of freedom 3 [0.00] 3 [0.00] 3 [0.00] 3 [0.00]
[p-value]

N. of observations 144 144 144 144 144 144
Notes: The estimation method is Zellner’s (1962) Seemingly Unrelated Regression (SUR). All
variables have been transformed in natural logarithm. Standard errors are reported in round brack-
ets. In MODEL 2 and MODEL 3 TAX and POIL have been interacted with three time dummies:
T1, equal to one for observations from January 1996 to December 2000; T2 for observations from
January 2001 to December 2003, and T3 from January 2004 to December 2007. The Wald Statistic
on TAX tests the equality of the coefficients TAX_T1, TAX_T2 and TAX_T3. The Wald Statistic
on POIL tests the equality of the coefficients POIL_T1, POIL_T2 and POIL_T3. * Significant at
10%. ** Significant at 5%. *** Significant at 1%.
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Finally, MODEL 3 in Table 2 is an augmented specification that considers the
role of exogenous supply side and demand side factors that may shift equilibrium
prices (see Table 1 for a short description and descriptive statistics). We include the
market share of the leader distributor in the Italian fuel industry (LEADER),5 the
share of population older than 65 (POP65), the number of vehicles per 1,000 inhabi-
tants (VEHICLES) and its interaction with elderly people (POP65_VEHICLES), the
number of gas stations (RETAIL), and per capita Gross Domestic Product (GDP).
Overall, the new included variables are significant and exhibit the expected sign. All
else equal, as the number of vehicles per capita increases, the prices rise. However,
such a positive impact comes about at decreasing rates, for the effect of ageing pop-
ulation. A 1% increase in the number of gas stations is found to increase gasoline
and motor diesel prices by approximately 1.7–1.8%, while the sign of GDP sug-
gests a positive relationship between motor fuel prices and income, especially in
the gasoline equation.6 The coefficients for specific taxes are larger than in previous
estimates, probably because of a better specification of the model.

We conduct a Wald test on the equality of tax and oil parameters across the
three sub-periods for both MODEL 2 and MODEL 3. The hypothesis of equality is
rejected by the data in both cases, supporting the existence of some structural breaks
over the observed period (as shown by Chow and CUSUM tests). Depending on the
sub-period being considered and the adopted specification, our results show that a
1% increase in oil price implies an increase of wholesale gasoline (diesel) prices
ranging from 0.138 (0.124%) to 0.471 (0.511%). We also evaluate the incidence of
specific taxes. Again, depending on the sub-period being considered and the chosen
specification, we estimate that a 1% increase in the specific tax on gasoline is found
to reduce wholesale gasoline price by 1.046–2.077%. For motor diesel, the effect
of a 1% increase in the specific tax corresponds to a reduction in wholesale prices
ranging between 0.793 and 1.996%.

We finally simulate the impact on wholesale prices of a sterilization policy that
makes specific taxes react one-to-one to oil price increase relying on the richest
specification (MODEL 3). Results, of course, differ according to the different sub-
periods. Table 3 reports the predicted gasoline and diesel prices, with and without
the policy intervention. In particular, we assess the effect of a 10 Euro increase in
oil price sterilized by a 10 Euro reduction of specific taxes. Our evidence points to
a positive impact of such a fiscal policy on fuel wholesale prices. In other words,
no government policy would guarantee wholesale prices for gasoline (motor diesel)
lower by around 3.10–3.46% (3.87–4.56%), depending on the sub-period being con-
sidered. These results are robust to a set of different checks (including the potential
endogeneity of specific taxes and different forms of sterilization policies), as shown
by Di Giacomo et al. (2009). Hence “sterilization” policies imply (at least partly) a
direct transfer from the government to fuel distributors.

5 The industry leader is ENI, whose main shareholder is the Italian Government.
6 For a more detailed discussion of the impact exerted by supply and demand factors, see Di
Giacomo et al. (2009).
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Table 3 Fiscal policy simulation (evaluated at the sample mean values). Impact on wholesale
gasoline and diesel predicted prices deriving from a 10 Euro decrease in the specific tax as a
reaction to a 10 Euro increase in oil price

PGAS PDIES

T1 T2 T3 T1 T2 T3

Predicted price: no
sterilization

434.41 407.85 409.05 448.77 418.20 424.11

(Euro/1,000 liters) (9.49) (11.42) (10.90) (10.04) (11.90) (11.61)
Predicted price:

sterilization
449.13 420.48 423.22 468.94 434.40 443.47

(Euro/1,000 liters) (10.35) (11.15) (12.00) (11.21) (11.78) (11.91)
Absolute change

(Euro/1,000 liters)
14.72 12.63 14.17 20.17 16.20 19.36

Percent change 3.39 3.10 3.46 4.49 3.87 4.56
Notes: Asymptotic standard errors are reported in round brackets. PGAS is the wholesale gasoline
price, while PDIES is the wholesale diesel price. The “Predicted price: no sterilization” is the
predicted wholesale fuel price, computed setting all variables at their sample mean values and
increasing the mean oil price by 10 Euro: OPno-steril: D P.TAX;POIL C 10; X/. The “Predicted
price: sterilization” is the predicted wholesale fuel price, obtained by setting all variables at their
mean values, increasing the mean oil price by 10 Euro, and subtracting 10 Euro from the mean
specific tax value: OPsteril. D P.TAX�10;POILC10; X/. Absolute change is the absolute difference
between the predicted price with sterilization and the predicted price without sterilization. The
Percent change is the relative (%) difference between the predicted price with sterilization and the
predicted price without sterilization. Computations are based on results from MODEL 3 in Table 2.
T1 refers to sub-period T1 from January 1996 to December 2000, T2 refers to sub-period T2 from
January 2001 to December 2003, while T3 is for sub-period T3, that goes from January 2004 to
December 2007.

4 Concluding Remarks

As originated from the political debate following the peaks in oil price observed in
recent years, the sterilization of oil price increase through a reduction in specific
taxes seems to be one of the most popular measures. A complete evaluation of the
welfare impact (on producers, consumers, State and regional finances) is clearly
beyond the scope of our study, and our aim here is simply to give some insights on
the likely effects of sterilization policies using our estimation results. Our estimates
highlight that fiscal sterilization brings about a rise in final wholesale prices and
suggest that “flexible” taxation mechanisms – focusing on specific tax reductions to
compensate oil price increases – could not be a proper policy for stabilizing price
levels in fuel markets.
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An Analysis of Industry Sector Via
Model Based Clustering

Carmen Cutugno

Abstract The paper presents an unsupervised procedure for the evaluation of the
firm financial status, aiming at identifying a potentially weak level of solvency of
a company through its positioning in a segmented sector. Model Based Cluster-
ing is, here, used to segment real datasets concerning sectoral samples of industrial
companies listed in five European stock exchange markets.

1 Introduction

The evaluation of a firm financial status depends on many factors, financial and
economic, that could be predictive of a weak level of solvency or a pre-condition
for a liquidation proceeding, stating the inability of the firm to pay its financial
obligations. The information about the financial status of a firm and its positioning in
the belonging industry-sector is crucial for investors, stockholders, loan-analysts or
creditors, taking into concern the description and the representative characteristics
of the analysed sector.

Several estimation methods have been suggested, in literature, to predict financial
distress, from the simple univariate analysis (Beaver 1966), to multiple discrimi-
nant analysis (MDA) (Altman 1968, Taffler 1982), logit (Ohlson 1980) and probit
models (Zmijewski 1984), artificial neural network models (ANN) (Tam and Kiang
1992, Chen and Du 2009), rough set theory (Dimitras et al. 1999), Bayesian network
(BN) models (Sun and Shenoy 2007), and genetic programming (Lensberg et al.
2006). The above-mentioned methodologies are considered as supervised classifica-
tion methods, where a collection of labelled patterns are provided and the problem is
to label a new unlabelled item. The historical training patterns are used to learn and
to derive rules of classes (Jain et al. 1999). Supervised learning can, usually, achieve
high prediction accuracy if the training data and the analysed data have similar char-
acteristics. The disadvantage emerges if there are no data records with known class
labels. In bankruptcy studies, samples tend to be small or the information about the
failure status may not be readily available for training. Differently, data mining tech-
niques and clustering methods belong to the unsupervised classification methods

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_12, c� Springer-Verlag Berlin Heidelberg 2011
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dealing with the problem of predicting unobserved features (cluster labels) from
observed ones, so category labels are data driven.

Recent researches have proposed the application of clustering analysis and data
mining in the field of the performance evaluation of industrial organization (Azadeh
et al. 2007, Rezaie et al. 2009) and financial distress prediction (Bensmail and
De Gennaro 2004, Sun and Li 2008).

In the literature, the variables generally considered in the analysis concerning
distress predicting models consist of financial ratios or a set of financial and eco-
nomic ratios, or sometimes different variable classes composed of both ratios and
balance-sheet items.

The underlying idea in this paper is that the financial and economic features,
defining the financial structure level, are strictly connected with the industry sector
the firm belongs to Gupta and Huefner (1972), and that seeking for industry-sector
key indicators levels may lead to a more appropriate evaluation of the firm financial
profile.

In the paper, an unsupervised procedure of classification analysis is presented,
aiming at identifying the position of a company in a segmented sector. The choice of
a data-driven methodology of analysis is due to the consideration that the informa-
tion about a liquidation proceeding does not identify potential failure pre-condition
because it refers to a stated insolvency status.

The time period considered in the evaluation process is from 2005 to 2007,
in order to verify the classification dynamic of a firm in the sectoral segmented
framework.

The procedure presented starts from the assessment of the financial and economic
indicators that influence the specific industry sector, by a principal component anal-
ysis (PCA), and then it proceeds with operating the segmentation, in a financial and
economic perspective, of the sector by clustering methodology.

We propose the use of the model based clustering because it allows the modeliza-
tion of the covariance matrix and because of its capability to assign every unit to a
n-group with a probability of belonging. The model based methodology is compared
to another clustering method, the K-means clustering. In model based clustering,
it is assumed that the data are generated by a mixture of underlying distributions
in which each component represents a different group or cluster and the problem
of determining the number of clusters and of choosing an appropriate clustering
method can be recast as statistical model choice problems (Banfield and Raftery
1993, Fraley and Raftery 2002).

The rest of the paper is organized as follows, a brief review about the model based
clustering methodology, then the presentation of two case-studies on two different
industrial sectors, Constructions and Technology Hardware, and the results of the
proposed procedure.

2 Basic Ideas on Model Based Clustering

In model based clustering, each cluster is, generally, represented by a Gaussian
model:
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where x represents the data, and j is an integer subscript specifying a particular
cluster. Formerly, the mixture models for clustering analysis considered only equal
covariance matrix ˙ . Model-based clustering offers different modelization of the
covariance matrix ˙ , that could be parametrized by spectral decomposition, in the
form:

j̇ D �jDjAjD
0
j ; (2)

where �j D j˙j j 1q , Dj is the orthogonal matrix of eigenvectors of ˙j and Aj is a
diagonal matrix whose elements are proportional to the eigenvalues of˙j (Banfield
and Raftery 1993). The orientation of the principal components of˙j is determined
byDj , while Aj determines the shape of the density contours; �j specifies the vol-
ume of the corresponding ellipsoid, which is proportional to �d

j jAj j, where d is the
data dimension. Characteristics (orientation, volume and shape) can vary between
clusters, or be constrained to be the same across clusters. In this case, clusters are
ellipsoidal, centred at the means �j . The covariances˙j determine their other geo-
metric features. In the model based clustering, we assume a mixture model with
incomplete data and we use the EM algorithm (Dempster et al. 1977). EM algo-
rithm maximizes the likelihood function L . jx1; : : : ; xn/ indirectly by proceeding
iteratively in two steps, E-step and M-step, applied on the complete data log like-
lihood function, log Lc . /. EM is strongly sensitive to initialization, being a local
maximizer seeker, and also, because of the unboundiness of the likelihood function,
the optimization could fail, converging to some singularities, Ingrassia and Rocci
(2007) for constrained ML formulations. A procedure is to initialize EM with the
model based hierarchical results and to use approximate Bayes factors with the BIC
(Bayes Information Criterion) to determine the number of clusters, see Fraley and
Raftery (2002).

3 Two Case-Studies

We consider two datasets of yearly financial statement data of companies, selected
according to the Industry Classification Benchmark (ICB), listed on Frankfurt,
Madrid, Paris, London and Milan stock exchange markets, for the period 2005–
2007. The first sample refers to the Technology Hardware sector and consists of
92 units for the period 2005–2007. The second sample refers to the Constructions
sector and consists of 105 units for 2005, 107 units for 2006 and 113 units for
2007. We calculate a set of 13 financial and economic ratios: Quick ratio, Current
ratio, Leverage, Debt Coverage, Cost of Debt, Equity to liabilities, Asset turnover,
Expected time of liabilities refunding indicator, Ebitda to Sales ratio, Return on
Asset (Roa), Return on Investment (Roi), Return on Sales (Ros) and Return on
Equity (Roe).
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3.1 The Statistical Analysis and Results

Firstly, we process a principal component analysis (PCA), as a pre-step exami-
nation on the variables and their influence on the data variability, then we run a
model based clustering on the scores obtained by the PCA, in order to classify
the companies into groups related to different financial structure levels. The vari-
ables (financial and economic ratios) are calculated by operating transformations of
accounting data measured in the same unit. We do not standardize the variables to
compute the principal components because measurements are on comparable scale,
see Jo et al. (1997), Lee et al. (2005). The clustering analysis has been processed
by using the package MCLUST vers.3.3.1 (Fraley and Raftery 2009) of the statisti-
cal software R. We select the best model according to the BIC corresponding to the
different parametrisation of the covariance matrix˙j , and indicating the number of
the component of the mixture. Each unit is assigned to the component to which it
has the highest estimated posterior probability of belonging and each distribution
component of the mixture may correspond to a cluster and thus, in our analysis, to
a group of companies (Fraley and Raftery 2002).

By examining the cluster centroids, mean and median, of the ratios, we may
define different financial and economic structure levels in each component of the
mixture. For the first dataset, Technology Hardware sector, we select, by the PCA,
three components explaining about the 72% of variance in 2005, 66% in 2006
and 68% in 2007. In all the three years, 2005–2007, the components extracted are
strongly influenced by the evaluation of working capital, as expressed by the oper-
ating return and the relation between short-term debts and current assets, and also
by the evaluation of the weight of net equity. In 2005 and 2007, we found a strong
influence on the evaluation of the economic return for investors (or the ownership),
expressed by the Roe, less strong in 2006. The evaluation of the firm’s ability to
refund financial debts and on the expense on debts, expressed by Debt Coverage
and Cost of Debt, is, strongly, captured by the components extracted in the whole
period. The asset turnover is relevant in 2005 and 2006, less in 2007. The oper-
ating return evaluation, is strongly captured in the whole period. In 2005, by the
application of the model based clustering on the scores, as shown in Fig. 1, the
data have been fitted by a three-components mixture of Gaussian distributions, con-
nected with a VEV,three model, thus a ellipsoidal, equal shape model, presenting
cluster 1 with about 53% of the observations, cluster 2 with 36% and cluster 3 with
11%, also see Table 1. Cluster 1 presents high levels of turnover, economic returns
and indebtedness, see Table 2. Cluster 2 shows a medium level of indebtedness,
low operating returns and asset turnover. Cluster 3, a marginal group, presents high
level of indebtedness and low operating returns. In 2006, the data have been fitted
by a four-components mixture of Gaussian distributions, connected with a VEV,
four model, thus an ellipsoidal, equal shape model. Cluster 1 with about 37% of
the observations, cluster 2 with 23%, cluster 3 with 28%, and cluster 4 with 11%.
Cluster 1 presents high economic return levels and quite high level of indebted-
ness. Cluster 2 presents a lower level of indebtedness, compared to group 1, but a
very low level of operating economic return. Cluster 3 is highly indebted, not very
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Fig. 1 Model based clustering for technology hardware sector, year 2005: BIC values and model
selection; Pairs plot of model based classification of the data

Table 1 Model and number of clusters selected
Year Constructions sector Technology hardware sector

2005 VVI,3 VEV,3
2006 VEI,4 VEV,4
2007 VEV,3 VEV,4

Table 2 Industry sector analysis

Technology Cluster 1 Cluster 2 Cluster 3 Cluster 4
hardware

2005 High econ. returns Low econ. returns- Low econ. returns- -
High indebtedness Medium indebt. High indebtednessC
High turnover Low turnover Low turnover

2006 High econ. returns Low econ.returns- Low econ. returns Low econ. returns-
High indebtedness Medium indebt. High indebtedness High indebtedness
High turnover Medium turnover Medium turnover Low turnover

2007 Medium econ. ret. Medium econ. ret. Low econ. returns- Low econ. returns-
Medium indebt. Low indebtedness High indebtedness Not coherent
Medium turnover Medium turnover High turnover

Constructions Cluster 1 Cluster 2 Cluster 3 Cluster 4

2005 High econ. returns Low econ. returns Medium econ. ret.
High indebtedness– High indebt.CC High indebtedness

2006 High econ. returns Medium econ. ret. Low econ. returns Low econ. returns–
Medium indebt. Medium indebt. High indebtedness High indebt.CC

2007 Low econ.returns High econ. returns Medium econ. ret.
High indebt.CC Medium indebt. Medium indebt.
Low refund. capab.- Medium ref. capab. Low refund. capab.
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high economic return levels, even if with a current financial management better than
cluster 2. Cluster 4, a residual group. In 2007, the data have been fitted by a four-
components mixture of Gaussian distributions, connected with a VEV,four model,
thus an ellipsoidal, equal shape model. Cluster 1 with about 48% of the observations,
cluster 2 with 27%, cluster 3 with 17%, and cluster 4 with 7%. Cluster 1 presents
an average level of indebtedness and asset turnover, with economic return levels not
very high, connected with a quite high level of cost of debt. Cluster 2 shows low eco-
nomic return levels, low indebtedness, medium levels of asset turnover, and a quite
good current financial situation. Cluster 3 presents good levels of asset turnover,
but quite high levels of indebtedness and low economic return levels. Cluster 4 is
a marginal group, presenting group centroids not very coherent from the economic
point of view.

For the second dataset, Construction sector, we select, by the PCA, three compo-
nents explaining about the 69% of variance in 2005, 76% in 2006 and 79% in 2007.
In all the three years, 2005–2007, the components extracted are, strongly, influenced
by the evaluation of working capital, as expressed by the operating return and the
relation between short-term debts and current assets, and also by the evaluation of
the weight of net equity. In 2006 and 2007, we found a strong influence on the
evaluation of the economic return for investors, expressed by the Roe, less strong
in 2005. The evaluation of the firm’s ability to refund financial debts, expressed by
Debt Coverage and Cost of Debt, is captured by the components extracted in the
whole period. The asset turnover is relevant in 2005, less in 2006 and 2007.

In 2005, the data have been fitted by a three-components mixture of Gaussian
distributions, connected with a VVI,3 model, thus a diagonal, varying volume and
shape model. Cluster 1 with about 56% of the observations, cluster 2 with 13% and
cluster 3 with 31%. Cluster 1 presents low Asset Turnover and an high indebtedness,
even if better levels of economic return. Cluster 2 shows an high level of indebted-
ness with low level of turnover and economic return. Cluster 3 presents average
levels of economic return and a good level of turnover, even if characterized by high
indebtedness level. In 2006, the data have been fitted by a four-components mix-
ture of Gaussian distributions, connected with a VEI, four model, thus a diagonal,
equal shape model. Cluster 1 with about 23% of the observations, cluster 2 with
63%, cluster 3 with 7%, and cluster 4 with 7%. Cluster 1 presents good levels of
economic return and an average level of indebtedness. Cluster 2 shows economic
returns and indebtedness levels on average. Both cluster 3 and cluster 4 represent
marginal groups with few elements. In 2007, the data have been fitted by a three-
components mixture of Gaussian distributions, connected with a VEV, three model,
thus an ellipsoidal, equal shape model. Cluster 1 with about 5% of the observations,
cluster 2 with 41% and cluster 3 with 54%. Cluster 1, a marginal group, with high
leverage. Cluster 2 shows medium level of indebtedness and high economic returns.
Cluster 3 presents an average economic and financial situation.

The identification, in both three years, of marginal groups with dispersed ele-
ments, could be interpreted as a signal of the presence of potential outliers. These
findings have been detected both in the first and the second dataset.
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In order to compare the methodology presented in the paper, we have processed
on the two datasets for the three years, 2005–2007, a K-means clustering, and we
found, for all the runs, classifications dissimilar to the ones obtained in the model
based clustering. We observed that the model based methodology detects more clus-
ters and one or two residual clusters compared to the K-means procedure that often
tends to identify fewer larger cluster and some singletons.

4 Conclusions and Further Developments

In this part of a more extended company analysis framework, we have considered
a two-ways data, and we have followed a sequential procedure by applying firstly
the PCA and then the clustering to the scores, a procedure usually used in literature.
Our intent is both to extend the analysis to other industrial sectors and to consider
a different procedure, consisting in the simultaneous combination of dimensionality
reduction and clustering operation, see Vichi et al. (2007).

The results may suggest that model based clustering is a more flexible method-
ology, compared to the other clustering methods, because every unit is assigned
to every of the n-group with a probability of belonging (the posterior probabil-
ity), giving the possibility to better identify borderline unit. In our application, on
average, we find that model based clustering tends to detect more clusters than
K-means. Similar findings have been, also, found in previous papers, see Atkinson
et al. (2010), where MCLUST is compared to another robust clustering method.

The identification of the number of the Gaussian components of the mixture with
the number of clusters may need further analysis in order to verify possible mislead-
ing association, signalled by the presence of components with few elements, or units
with not very high posterior probability of belonging and not very well separated
groups, that could be connected with the merging problem of normal distributions
or not Gaussian distributions. Moreover, both dispersed few elements group or very
low probability of belonging of an element to a cohesive group could indicate the
presence of potential outliers.

We intend to proceed with further research in order to provide a more robust
model based approach for clustering, by considering mixture of t distributions
instead of Gaussian mixture, see Peel and McLachlan (2000) or other robust
clustering methodology.
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Impact of Exogenous Shocks on Oil Product
Market Prices

Antonio Angelo Romano and Giuseppe Scandurra

Abstract The presence in Italy of a high number of vertically integrated energy
companies, has given us the idea to investigate the effects that adoption of new price
policies, and geopolitical events, have on the mechanisms of price transmissions in
the Italian wholesale and retail gasoline markets, using weekly data from January
03/2000 to November 28/2008. The interaction among crude oil prices, gasoline
spot prices and the before tax gasoline retail prices have been considered. The results
show that industrial policies have a significant role in explaining gasoline prices. To
be more specific, shock in the retail market has an important role in the increasing
price of gasoline.

1 Introduction

Since May 1994 the Italian gasoline prices have been established by the distribut-
ing companies, that determine the final price and recommend it to the managers
of the single selling points. We would like to briefly summarize the gasoline price
composition. The recommended final price is determined by the sum of the gaso-
line industrial price and the fiscal component (excise tax and VAT). The industrial
price includes all the costs of the material, refinement, storage, primary and sec-
ondary distribution and other structural costs (logistic, commercial, administrative,
managing agent margins, as well as industrial margins). The international quotation
of the refined product represents about 33% of the gasoline price and it is also the
primary component of the industrial price; for Italy it is the Platt’s Cif Med.1 Gaso-
line prices depend on the dynamics of the international quotations of crude oil and
on the productive capacity of the refineries. Considering the close relationship that
characterizes the gasoline markets it is useful to analyze them from a double point
of view. We consider two independent markets, as suggested by Unione Petrolifera.

1 Platt’s Cif Med points out the cost of the importation in the Mediterranean zone of oil products
and it is used by the oil companies as proxy of the refinement costs.
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The wholesale market considers only crude oil and Platt’s prices while the retail
market takes into account Platt’s price and before-tax gasoline price. In the two
stages of the production–distribution chain we think that a shock in the markets has
consequences on the prices of oil by-products.

A great number of studies emphasize the effects that exogenous shocks have on
oil market. In fact, existing literature contains several attempts to identify the effects
of structural shocks on certain macroeconomic variables, such as, real GDP, infla-
tion, employment (see e.g., Hamilton 1983, Hamilton and Herrera 2002, Hamilton
2003, Rodriguez 2008). Fewer research have been carried out to investigate the
effects of oil price changes on the asset price (see e.g., Jones and Kaul 1996, Apergis
and Miller 2009). However, we find that a less explored aspect is related to the
effects that exogenous shocks have on the market mechanism. One important issue
is connected to the impact that adoption of new industrial policies and/or geopoliti-
cal events have on the oil product prices. In wholesale market, Energy Information
Agency (EIA) identifies about 15 relevant events in the oil market price for most
of the period (January, 2000–December, 2007) taken in consideration. To these, we
should add some speculative movements of the futures markets that are not being
considered in this work. Furthermore, ENI, the Italian market leader in the gaso-
line distribution, has adopted a new price policy in the retail market. It has broken
the common practice to follow Platt’s quotation to adjust gasoline prices with fre-
quent but small variations. From October 2004, ENI’s new price policy has foreseen
a frequent loss with more consistent price changes. Many companies operating in
the Italian retail gasoline market have followed this new policy, except for Erg.
These choices have dropped gasoline industrial price to short run variation of Platt’s
quotations (Autorita’ Garante della Concorrenza e del Mercato 2007).

Aim of this paper is to assess the impact that exogenous shocks have on oil prod-
uct prices. We estimate the relationship at different stages of production–distribution
chain. In order to have the impact effect of the new price policy, in this work
we separately estimate the relationship between (i) oil price and Platt’s quotation
(wholesale market) and between (ii) Platt’s and gasoline prices (retail market). The
choice is justified by the fact that a company like ENI affects both the relationship
between oil price in wholesale market, because it is a integrated company, and the
relationship between gasoline prices in the retail market, because it is also a distri-
bution company. The model we estimate is a Vector Error Correction (VECM) with
intervention variables.

The organization of the paper is as follow. Section 2 describes data. In Section 3
we analyze the impact of exogenous shocks in the two markets. Section 4 closes
with some concluding remarks.

2 Data, Integration Order and Structural Break Tests

Data are the weekly time series from January 03/2000 to November 28/2008 of
crude oil price (Brent), gasoline spot price (Platt’s) and the before-tax gasoline retail
price (Gasoline). In particular, we consider the Europe Spot Price, available from
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Fig. 1 Crude oil price, Platt’s quotation and net-of-taxes gasoline price. January 03, 2000–
November 28, 2008

EIA; for the ex-refinery gasoline price we consider Platt’s CIF/Med. The net-of-
taxes retail price is from Italian Ministry of Economic Development. All prices are
expressed in logarithmic (Fig. 1). We use the before-tax gasoline price because of
the different taxation gasoline has had in the period in analysis. Furthermore, in
order to orthogonalize the effect of different exchange rate, we convert crude oil
and Platt’s original prices, that are expressed in $/mton into D /lt prices (Apergis and
Miller 2009). So, these prices are converted using the proper conversion coefficients.
For the conversion of US dollar into euro price, we use the weekly exchange rates
available on the web site of the Bank of Italy. In so doing we take into account the
favorable exchange rate for Italian firms in the last years. In order to test the impact
of exogenous shocks in price formation in the production–distribution chain, we
have to test for the presence of a stochastic trend in the autoregressive representation
of each individual series with Augmented Dickey Fuller (ADF) and Phillips-Perron
(PP) tests. However, in a seminal paper, Perron (1989) showed that a break in the
deterministic time trend dramatically reduces the power of standard unit root tests
because the possibility of a break changes the (asymptotic) distribution of the test.

Similarly, Gregory et al. (1996) demonstrated that the rejection frequency of the
ADF test for cointegration falls substantially in the presence of a structural break in
the cointegrating relation. A break, in fact, introduces spurious unit root behavior in
the cointegrating relationship so that the hypothesis of no cointegration is difficult
to reject. Given the presence of shocks in markets, as ENI’s policy and EIA’s oil
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Table 1 Minimum t statistics for Zivot-Andrews in the three time series and in presence of break
in intercept, trend or both

Intercept Trend Both
Lag Min. Critical Lag Min. Critical Lag Min. Critical

t-stat value at t-stat value at t-stat value at
5% 5% 5%

Brent 4 �3:661 �4:80 1 �3:688 �4:42 1 �3:919 �5:08
Platt’s 3 �4:044 �4:80 3 �3:851 �4:42 3 �4:091 �5:08
Gasoline 1 �3:289 �4:80 1 �2:933 �4:42 1 �3:131 �5:08

market shocks, we firstly propose the Zivot-Andrews2 (ZA) unit root test (Zivot
and Andrews 1992). The null hypothesis is that the series follow a random walk
process without structural change, while the alternative is that the series are trend
stationary with one-time break with the precise timing unknown (e.g., Zivot and
Andrews 1992, Hondroyiannis 2004). The Zivot-Andrews 3 test is estimated for the
variables used in the analysis to ensure that all series are I(1). Table 1 reports the
minimum t-statistics from testing the stationarity assuming a shift in mean, in trend
or both for the first differences of crude oil price, Platt’s quotation and before-tax
gasoline retail price. The minimum t-statistics reported are the minimum overall
break point regressions from January 03/2000 to November 28/2008.

The results suggest that at 5% level of significance none of the estimated
variables are stationary around a broken trend or a shift in the mean, while their dif-
ference is I(0).The Zivot-Andrews test confirms that all the variables are I(1), since
the previous test confirms the stationarity of the first differences of the variables at
different levels of significance.

However we report also ADF4 and Phillips-Perron (PP) tests, cf. Table 2. ADF
and PP tests fail to reject null hypotheses for oil price, Platt’s quotation and net-
of-tax gasoline price. We have come to the conclusion that these variables have
stochastic trends. We now test for cointegration in the two markets, applying the
Gregory-Hansen (1996) procedure,5 cf. Table 3.

The Gregory and Hansen advanced three models including model C, model C/T
and model C/S, also known as ‘regime shift’ model. Model C allows for a level shift.

2 The break date is selected where the t-statistic from the ADF test of unit root is at a minimum
(most negative). The critical values in Zivot and Andrews (1992) are different to the critical values
in Perron (1989). The difference is due to that the selecting of the time of the break is treated as
the outcome of an estimation procedure, rather than predetermined exogenously.
3 The Zivot-Andrews test has been recently criticized because it assumed that if a break occurs, it
does so only under the alternative hypothesis of stationarity. This is undesirable since (i) it imposes
an asymmetric treatment when allowing for a break, so that the test may reject when the noise is
integrated but the trend is changing; (ii) if a break is present, this information is not exploited to
improve the power of the test (Kim and Perron 2009).
4 The optimal lag length is taken to be the one selected by Akaike Information Criterion (AIC).
5 We also test cointegration hypothesis with the Engle-Granger (2009) two step procedure and we
confirm it.
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Table 2 Augmented Dickey Fuller and Phillips-Perron unit root test results for oil price, Platt’s
quotation and net-of-tax gasoline price

Augmented Dickey Lag T stat p-value Lag T stat p-value Decision
Fuller test

Brent 1 �1;978 0,297 0 �16;688 0,000 I(1)
Platt’s 0 �2;126 0,235 0 �21;370 0,000 I(1)
Gasoline 4 �2;261 0,185 6 �7;180 0,000 I(1)

Phillip Perron test T stat p-value Lag T stat p-value Decision

Brent �1;717 0,422 �16;594 0,000 I(1)
Platt’s �2;303 0,172 �21;442 0,000 I(1)
Gasoline �1;896 0,334 �13;430 0,000 I(1)

Table 3 Gregory-Hansen cointegration test

Model Wholesale market Retail market

C �5;47a �6;61a
C/T �6;04a �7;50a
C/S �5;46b �6;94a
asignificant at 1%.
bsignificant at 5%.

Model C/T allows for a level shift and a time trend. Model C/S allows for a shift
in both intercept and slope. The cointegration tests of Gregory and Hansen (1996)
explicitly extend the Engle-Granger test to allow for potential structural change in
the cointegrating relationship. We reject the null hypothesis of no cointegration. Oil
price and Platt’s quotation (wholesale market) share a stochastic trends and a long-
run equilibrium relationship exists among these price. The same is valid for retail
market (Platt’s quotation and net-of-tax gasoline price).

3 The Impact of Exogenous Shocks

Although the ZA test indicates empirical evidence about the presence of a unit root
in the series (without shock), the presence of exogenous shocks singled out by EIA
and the knowledge of a new price policy adopted by ENI has given us the idea to
analyze if an economic impact of these on oil product prices in retail and whole-
sale markets really exists. In order to test the effects that geopolitical events and/or
industrial policies have had on mechanism of price transmission in Italian wholesale
and retail markets we propose the use of a Vector Error Correction Model (VECM)
with intervention variables (Luktepol 2005). Furthermore, a VECM allow us to test
a feedback between variables in the production–distribution chain. We estimate the
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following model for each market stage6:

�Xt D ı C �Xt�1 C
p�1X

iD1

˚�Xt�1 CDZk;t C �t (1)

where:
ı is the vector of constants, Xt is the matrix of endogenous variables (i.e., oil and
Platt’s prices for the wholesale market; Platt’s quotations and net-of-tax gasoline
prices for the retail market), Zk;t is the vector of the different intervention variables.
Moreover, � is a reduced rank r < 2 coefficients matrix that can be decomposed
into two vectors, ˛ and ˇ, and such that � D ˛ˇ0 is stationary. The exogenous
shocks should now be identified in the two market stages. In the wholesale market
different intervention functions are taken in consideration. As described in Sect. 1,
EIA singles out about 15 relevant events for most of the period (January, 2000–
December, 2007) examined. To these, probably some speculative movements in
the futures market that are not considered in this work should be added. However,
we believe that not all the events recognized by EIA have a straight impact on the
series. As example, an estimate of the effect of crude oil price decline after Septem-
ber 11/2001 and with the military action in Iraq beginning on January 07/2002 are
reported. The step functions used in the wholesale market are the following:

ZTerrorist; t D
�
1; September 11; 2001 � t � December 31; 2001
0; Otherwise

(2)

ZIraq; t D
�
1; t � January 07; 2002
0; Otherwise

(3)

respectively for terrorist attach to Twin Towers (September 11/2001) and for Iraqi
attach (January 07/2002). Instead, the step function used for retail market is the
following:

ZENI; t D
�
1; t � October 06; 2004
0; Otherwise

(4)

The results from the estimate of intervention models in the two markets are in
Table 4. The error correction term is significant in both markets. The adjustment
coefficients have the expected negative sign, which implies that they indeed reflect
an error correction mechanism that tends to bring the system closer to its long-run
equilibrium.

The two markets will now be examined separately.

6 As described in Sect. 2, in order to select the optimal lag length we employ the Akaike Infor-
mation Criterion (AIC) with Bayesan Schwartz (BIC) and Hannan-Quinn (HQC) in the VAR
framework. Models include one lag.
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Table 4 Parameter estimates for the full sample

Wholesale market Retail market
Input variable Estimate Input variable Estimate

Constant 0,0096c Constant �0;0064a
EC �0;0630c EC �0;1499a
�Brent 0,0563 �Gaso 0,1880a

�Platt 0,0116 �Platt 0,1079a

ZTerrorist �0;0384b ZEni 0,0033b

ZIraq �0;0085
asignificant at 1%.
bsignificant at 5%.
csignificant at 10%.

In the wholesale market the results appear to be in contrast. The short run effects
of Platt’s and oil prices turn out to be small and statistically insignificant. In fact, we
confirm the presence of a long run equilibrium in the relationship between Platt’s
quotation and oil price but there is no short run relationship. It appears to be inelas-
tic in the short run. Moreover, only one of the two exogenous shocks we have
considered has a significant impact. This is the shock connected to the decline of
oil prices following the September 11/2001 terrorist attacks on the United States
(ZTerrorist;t ). On the contrary, the military action in Iraq does not have a signif-
icant effect (ZIraq;t ). However in the retail market the coefficients estimated in
the relationship between gasoline prices and Platt’s quotations appear to be signifi-
cant. This indicates that the gasoline price depends both from Platt’s price and from
itself. In fact, it appears to be autoregressive. Furthermore, the new price policy
adopted by ENI (and followed by other companies) has had an increase in gasoline
prices. In this market, as expected, it is impossible to observe the feedback effect
between Platt’s and gasoline prices. The estimated coefficients are omitted because
they appear to be statistically insignificant.

4 Concluding Remarks

Our paper presents a preliminary result of an empirical analysis on the impact of
political and/or corporate choices on the two stages of the gasoline production–
distribution chain, using weekly data from January/2000 to November/2008. Con-
sidering some of the shocks singled out by EIA in the wholesale market and the
new price policy adopted by ENI in the retail one, we have shown that using a sim-
ple VECM with intervention variables, the geopolitical events and industrial policies
play a significant role in explaining the gasoline price adjustment. More specifically,
shock in retail market contributes significantly to the increasing price of gasoline. It
is generally assumed that consumers are more sensitive to price asymmetries7 rather

7 Many consumers, in fact, commonly complain that gasoline prices rise more quickly when crude
oil prices are rising than they fall when crude oil prices are falling, exhibiting an asymmetric
relationship.



116 A.A. Romano and G. Scandurra

than to the effects of exogenous shocks. In this paper we demonstrate that the price
that consumers pay for fuel consumption is affected by the impact of events that
cannot be controlled by oil companies. The effects of the new price policy adopted
by the Italian market leader is quite relevant. In the retail market, in fact, ENI’s price
method has improved the average gasoline price that weighs on the consumers’ bud-
get. For this reason, we think that price asymmetries, that we have explored in other
paper (Romano and Scandurra 2009), are not so relevant as the impact of policy
choices in the gasoline markets. Future research efforts, which could eliminate some
of the limitations of this study, could be (i) the impact of other shocks individuated
by EIA; (ii) the effect of extreme volatility in gasoline price; (iii) the symmetry of
shocks in the production–distribution chain.
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Probabilistic Forecast for Northern
New Zealand Seismic Process Based
on a Forward Predictive Kernel Estimator

Giada Adelfio and Marcello Chiodi

Abstract In seismology predictive properties of the estimated intensity function
are often pursued. For this purpose, we propose an estimation procedure in time,
longitude, latitude and depth domains, based on the subsequent increments of like-
lihood obtained adding an observation one at a time. On the basis of this estimation
approach a forecast of earthquakes of a given area of Northern New Zealand is pro-
vided, assuming that future earthquakes activity may be based on the smoothing of
past earthquakes.

1 Introduction

Earthquakes forecast is defined as a vector of earthquakes rates corresponding to
specified multi-dimensional intervals (defined by the location, time and magnitude)
(Geller 1997). From the rates specified in each forecast a vector of expected number
of events within the time interval for all intervals is calculated. The expected number
is just the earthquake rate multiplied by the volume in parameter space of the bin;
the expectations are dimensionless and they correspond directly to earthquake rates
per unit area, magnitude and time.

Expectations is sometimes referred to as prediction, but in earthquakes contexts
it has different meaning, since earthquakes prediction implies high probability and
imminence. In few words earthquake prediction is considered as a special case
of forecast in which the forecast rate is temporarily high enough to justify an
exceptional response beyond that appropriate for normal conditions (Geller 1997).

In this paper we provide a forecast for magnitude 4.5 and larger earthquakes of
Northern New Zealand. The forecast is retrospective (i.e., after that events occurred)
and uses data available on a fixed inception date. This approach should be con-
sidered as a statistical forecast in the sense that it estimates the probability of
occurrence of further events given the past space-time history per unit area and
time; as suggested in Kagan and Jackson (2000), it may be useful just for scientific
testing and therefore, it could not be used for official warnings.
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Here we assume that the forecast is proportional to the intensity function of a four
dimensional process, obtained by smoothing data in space (3D) and time domains.
The intensity function of the process is estimated by a variation of kernel estimators
approach (Silverman 1986), with good properties in terms of MISE and valid predic-
tive features. The proposed approach (Forward Likelihood-based Predictive (FLP)
approach) for nonparametric estimation in space-time point process, can be consid-
ered as a generalization of cross-validation, but aimed to prediction accounting for
the temporal ordering of observations.

The forecast is provided for events from 1994 to 2008 on the basis of a smoothing
of earthquakes occurred from 1951 to 1994 in the same area and the same magnitude
threshold.

Main features of point processes are reminded in Sect. 2. The flexible estimation
procedure used in this paper is introduced in Sect. 3 and forecast results for Northern
New Zealand are showed in Sect. 4. In Sect. 5 some conclusions and direction for
future work are provided.

2 Conditional Intensity Function of Point Processes

Because of random feature of earthquakes catalogs, point process theory is often
used. Indeed each earthquake is identified by a point in space (hypocentral coordi-
nates), in time (occurrence time) and magnitude domain. Basic models to describe
the seismic rate of a given region, assume that earthquakes occur in space and time
according to a stationary point process, i.e., Poisson process such that the condi-
tional rate is constant. Of course the stationarity hypothesis may be acceptable only
in time and for main events, since hypocenters are usually spatially heterogeneous
and clustered; moreover aftershocks and foreshocks (i.e., event that might occur
after and before a main event respectively) are also an evident proof of the depen-
dence of seismic activity on the past. Therefore the introduction of more complex
models than stationary Poisson process is often necessary, relaxing the assumption
of statistical independence of earthquakes.

Point processes can be specified mathematically in several ways, for instance, by
considering the joint distributions of the counts of points in arbitrary sets or defining
a complete intensity function, that is a function of the points history that generalizes
the rate function of a Poisson process.

More formally a space-time point process is a random collection of points, each
representing location and time of a single event.

Let N be a point process on a spatial-temporal domain X � Rd � RC and e(x)
be the Lebesgue measure of x; its conditional intensity function is defined by:

�.t; sjHt / D lim
`.ıt/`.ıs/!0

EŒN.Œt; t C ıt/ � Œs; sC ıs/jHt /�

`.ıt/`.ıs/
(1)
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where Ht is the space-time occurrence history of the process up to time t , i.e., the
�-algebra of events occurring at times up to but not including t ; ıt; ıs are time and
space increments respectively, and EŒN.Œt; t C ıt/� Œs; sC ıs/jHt /� is the history-
dependent expected value of occurrence in the volume fŒt; t C ıt/ � Œs; sC ıs/g.

The conditional intensity function uniquely characterizes the finite-dimensional
distributions of point processes (Daley and Vere-Jones 2003). For instance, self-
exciting point processes are used to model events that are clustered together; self-
correcting processes, e.g., the stress-release model (Vere-Jones 1978), are suggested
when regularities are observed.

To assess the goodness of fit diagnostic tests could be used (see Adelfio and
Schoenberg 2009; Adelfio and Chiodi 2009).

3 Kernel-Based Models

To provide a valid forecast of the seismic activity of a fixed area we need the
definition of a valid stochastic model.

Parametric estimation could not be always useful, since it requires the definition
of a reliable mathematical model from the geophysical theory; for this reason, in this
paper some techniques for estimating the intensity function of space-time point pro-
cesses are developed, based on generalizations of (anisotropic and isotropic) kernel
estimators.

Indeed some disadvantages of the parametric modelling can be overcome by
a flexible procedure (nonparametric technique), based on kernel density methods
(Silverman 1986). Given n observed events s1; s1 : : : ; sn in a d -dimensional given
region, the kernel estimator of the unknown density f in Rd is defined as:

Of .s1; : : : ; sd Ih/ D 1

nhs1
� � �hsd

nX

iD1

K

�
s1 � si1
hs1

; � � � ; sd � sid

hsd

	
(2)

where K.s1; : : : ; sd / denotes a multivariate kernel function operating on d argu-
ments centered at .si1; : : : ; sid / and .hs1

; : : : ; hsd
/ are the smoothing parameters of

kernel functions. If si D fti ; xi ; yi ; zi g, the space-time kernel intensity estimator is
defined by the superposition of the separable kernel densities:

O�.t; x; y; zIh/ /
nX

iD1

Kt

�
t � ti
ht

	
Ks

�
x � xi

hx

;
y � yi

hy

;
z� zi

hz

	
(3)

whereKt andKs are temporal and spatial kernel density functions, as in (2), respec-
tively. Hence the advantage of this approach is to make simpler the complex issue of
estimating the conditional intensity function of a particular point process described
by (1), dealing just with the intensity function of a simple inhomogeneous Poisson
process identified by a space-time Gaussian kernel intensity like in (3) as in Adelfio
and Ogata (2010), Adelfio (2010a) and Adelfio (2010b).
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In nonparametric approaches based on kernel estimators the estimation of the
smoothing parameter h is the crucial point. In this paper we propose an estima-
tion method that is a general version of cross-validation techniques. In Adelfio et
al. 2006 the seismicity of the Southern Tyrrhenian Sea is described by the use
of Gaussian kernels and the optimum value of h is chosen such as to minimize
the mean integrated square error (MISE) of the estimator Of .�/. In particular the
authors used the value hopt that in Silverman (1986) is obtained minimizing the
MISE of Of .�/ assuming multivariate normality. In Adelfio and Ogata 2010 a naive
likelihood cross-validation is optimized to obtain the bandwidth of the smooth-
ing kernel used to estimate the intensity for earthquake occurrence of Northern
Japan. In Adelfio 2010a the same area is analyzed by smoothing data according
to a variable bandwidth procedure: the bandwidth for the j th event, j D 1; : : : ; n is
hj D .hj

x; h
j
y ; h

j
t / that is the radius of the smallest circle centered at the location of

the jth event .xj ; yj ; tj / that includes at least a fixed number np of other events.

3.1 Forward Likelihood for Prediction (FLP) Estimation

In this paper we propose a space-time estimation procedure aimed both at the fit of
past data and the prediction of future ones, based on increments of log-likelihood
adding single event at a time.

The approach accounts for ordering in time of the observed process and deals
with predictive properties of estimates.

More formally, let si be m points observed in the space region ˝s and in the
period of time .T0 � Tmax/ with h the vector of smoothing parameters. The log-
likelihood of the point process observed up to time tm in the observed space region
˝s is:

logL. Oh.Htm/I Itm/ D
mX

iD1

log O�.si I Oh.Htm//�
Z tm

T0

Z

˝s

O�.sI Oh.Htm//d sdt (4)

where O�.�/ is defined in (3) and depends on the unknown parameters estimated by
Oh.Htm/ D Oh.s1; s2; : : : ; sm/ and Itk is the time region from T0 to tk . On the basis
of the defined notation, the likelihood computed on the first mC 1 observations but
using the estimates based on first m observations is defined as:

logL. Oh.Htm/I Itm/ D
mX

iD1

log O�.si I Oh.Htm//�
Z tm

T0

Z

˝s

O�.sI Oh.Htm//d sdt (5)

Then, we use the difference between (4) and (5) to measure the predictive
information of the first m observations on the .mC 1/-th:

ım;mC1  logL.bh.Htm/I ItmC1
/ � logL.bh.Htm/I Itm/:
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Therefore, we chooseeh.Htm/ which maximizes

FLPm1 ;m2
. Oh/ D

m2X

mDm1

ıl. Oh.Htm/IHtmC1
/ W

FLPm1 ;m2
. Qh/ � FLPm1;m2

. Oh/ 8Oh 2 � (6)

with m2 D m � 1 and m1 is such that tm1
� T0 � Tmax�T0

2
.

Although the method could be considered as a direct extension of the idea of
prediction, it is almost heuristic. In first applications we assumed constant vector of
parameters for each point observed in a two dimensional space and time (Adelfio
and Chiodi 2011), with good results both in terms of likelihood and standard devi-
ation. Here we use the proposed technique to estimate the parameters of a four
dimensional kernel intensity in the longitude-latitude-depth-time domain:

Of .s/ D 1

n

nX

iD1

1

jhj .2	/
�d=2 exp

�
�1
2
.s� si /

T .h/�1.s� si /

�

where d D 4; s D fx; y; z; tg and h is a matrix of smoothing parameters for
anisotropic space-time kernel, such that:

h D

0
BB@

hx hxy hxz 0

hxy hy hyz 0

hxz hyz hz 0

0 0 0 ht

1
CCA

4 FLP-model and Forecast for Northern New Zealand

To provide a forecast of an active seismic area, we selected a subset of the GeoNet
catalog of New Zealand earthquakes. Completeness issues of this catalog are dis-
cussed in Harte and Vere-Jones (1999). The data consist of earthquakes of magni-
tude 4.5 and larger that are chosen from the wide region �41:5ı � �37ıN and
174:5ı � 176:5ıE and for the time span 1951–2008. That area is characterized by
several deep events, with depth down to 530 km and is of great interest for geologists
because of the high rate of activity recorded in years.

The forecasts for earthquakes occurred in 1994–2008 is based on a smoothing of
past activity (1951–1994).

In Figs. 1–3, the smoothed intensity function and forecasts for activity in 1994–
2008 and increasing level of depth are showed. Indeed it could be interesting to
check how this variable influence results, since the behavior of deep events is often
not well understood, because of the complex focal mechanism at high level of depth.
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Fig. 1 Smoothed intensity function (log scale) for the second set of events (1994–2008; on the
left) and forecast (on the right) for depths up to 100.00 km
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Fig. 2 Smoothed intensity function (log scale) for the second set of events (1994–2008; on the
left) and forecast (on the right) for depths up to 200.00 km

From these figures, a migration of activity from one part of the analyzed region
to another, and between depths, is observed. Moreover, from the correspondence
of the provided images, forecast results for the time interval 1994–2008 seem to
match with real observed occurrence of events in the same time. Indeed the provided
forecasts identify main areas of occurrence and provide a very realistic description
of observed seismicity in the considered time interval. Statistical tests to asses the
validity of the forecasts are provided in Table 1, comparing forecast results between
FLP and Silverman’s rule based on �2 test.
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Fig. 3 Smoothed intensity function (log scale) for the second set of events (1994–2008; on the
left) and forecast (on the right) for depths up to 600.00 km

Table 1 Comparative forecast results between FLP and Silverman’s rule based on �2 test for a two
dimensional grid (anisotropic in both cases), using the Berman-Turner quadrature approximation
(Baddeley and Turner 2000) that requires a quadrature scheme consisting of the original data point
pattern, an additional pattern of dummy points, and a vector of quadrature weights for all these
points. Similar results are observed for the space-time case (3D)

Depth n Method X2 p-value

z � 100 km 144 FLP 5:826 0:771

Silverman 33:608 0:002

z � 200 km 394 FLP 11:191 0:670

Silverman 52:302 0:000

z � 600 km 577 FLP 15:037 0:375

Silverman 63:217 0:000

5 Comments and Conclusion

In this paper, we introduced an estimation procedure based on increments of likeli-
hood, taking into account the contribution to the log-likelihood function of forward
event, given the nonparametric estimates based on the previous ones.

From observed results the provided nonparametric approach makes possible a
reasonable characterization of seismicity, since it does not constrain the process to
have predetermined properties. Indeed, the estimated model seems to follow ade-
quately the seismic activity of the observed areas, characterized by highly variable
changes both in space and in time and because of its flexibility, it provides a good
fitting to local space-time changes as just suggested by data.

Moreover, it seems that the used model provides valid forecast results for the
studied area, although these results can be considered as just an empirical and first
try for this complex issue. Indeed, the proposed forecast approach is not based on
geophysical or geological basis, but it just assumes that further events occurrence is
proportional to a smoothing of previous events.
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In other words, flexible kernel estimators are here used to estimate a four
dimensional intensity function, without specifying any forecast models.

As a direction for future work, we think that methods to test the reliability of
these forecast should be developed, as in Jackson and Kagan (1999).
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Discrete Beta Kernel Graduation of Age-Specific
Demographic Indicators

Angelo Mazza and Antonio Punzo

Abstract Several approaches have been proposed in literature for the kernel grad-
uation of age-specific demographic indicators. Nevertheless, although age is prag-
matically a discretized variable with a finite support (typically age at last birthday is
considered), commonly used methods employ continuous kernel functions. More-
over, symmetric kernels, that bring in further bias at the support boundaries (the
so-called problem of boundary bias), are routinely adopted. In this paper we pro-
pose a discrete kernel smooth estimator specifically conceived for the graduation of
discrete finite functions, such are age-specific indicators. Kernel functions are cho-
sen from a family of conveniently discretized and re-parameterized beta densities;
since their support matches the age range, the issue of boundary bias is eliminated.
An application to 1999–2001 mortality data from the Valencia Region (Spain) is
also presented.

1 Introduction

Many demographic phenomena such as mortality, fertility, nuptiality and migration
are strongly related to age, in the sense that the intensity of events varies sharply
across the age range (Preston et al. 2001). Therefore, a key aspect of demographic
research consists in studying such age-specific patterns in order to discover regu-
larities and make comparisons across time and space. Although in the following
we will only refer to mortality, our approach can easily be extended to the other
age-dependent phenomena.

Let X be the variable age, with finite support X D f0; 1; : : : ; !g, being !
the maximum age of death. We consider X as discrete, although age is in princi-
ple a continuous variable, since in demographic and actuarial applications age at
last birthday is generally used; furthermore, discrete are also the commonly used
age-specific indicators, such as the proportion dying qx which is the proportion of
persons who die at age x, x 2 X , and the number dying dx which is the number
of persons that would die at age x if starting from an arbitrary large hypothetical
cohort l0 (conventionally l0 D 100;000 is used).

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_15, c� Springer-Verlag Berlin Heidelberg 2011

127



128 A. Mazza and A. Punzo

The use of such age-specific indicators is often deemed as not appropriate since a
specific observed pattern may be often intended as a single realization of a stochas-
tic phenomenon with certain distinctive mortality traits. Such random fluctuations
are more of concern in actuarial studies and in applied demography, when small area
datasets are investigated or when the events under investigation are particularly rare.
To cope with this issue, several graduation techniques have been proposed in litera-
ture (see, e.g., Debòn et al. 2005 and Debòn et al. 2006 for an exhaustive comparison
of parametric and nonparametric methods, respectively, in the graduation of mortal-
ity data), based on the assumption that if the number of individuals in the group on
whose experience data are based were considerably larger, then the set of observed
indicators would display a much more regular progression with age (Copas and
Haberman 1983). In this context, the discretization of age could also come handy
to actuaries that, in calculating life insurance premiums, annuities, reserves, and so
on, have to produce “discrete” graduated mortality tables starting from the observed
counterparts.

The most popular statistical method for nonparametric graduation is the kernel
smoothing (Copas and Haberman 1983); in such method, most of the attention is
usually dedicated to the selection of the smoothing parameter while symmetric ker-
nel functions are routinely used. Nevertheless, if the use of symmetric kernels is
appropriate when fitting functions with unbounded supports from both sides, its use
is not adequate with age-dependent functions (Chen 1999, 2000). When smoothing
is made near the boundaries, in fact, fixed symmetric kernels do allocate weight
outside the support (e.g., negative or unrealistic high ages) causing the well-known
problem of boundary bias.

In this paper, in Sect. 2, we propose a discrete kernel smooth estimator that
we have specifically conceived for the graduation of discrete finite functions. This
approach, by construction, overcomes the problem of boundary bias, given that the
kernels are chosen from a family of conveniently discretized and reparameterized
beta densities whose support X matches the age range. Finally, in Sect. 3, we
present an application of our kernel estimator to 1999–2001 mortality data from
the Valencia Region (Spain).

2 A Discrete Beta Kernel Estimator

Given the values yx of the age-specific indicators, the following general form of a
discrete kernel estimator is considered

byx D
!X

j D0

yjkh .j Im D x/ ; x 2X ; (1)

where kh .�Im/ is the discrete kernel function (simply said kernel), m is the single
mode of the kernel, and h is the so-called smoothing parameter governing the bias-
variance trade-off. The quantities yx , x 2 X , can be any discrete finite function
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on X , such as dx or qx . It is worth to note that while the graduation of dx is,
in principle, a problem of distribution estimation, the graduation of qx is a prob-
lem of regression estimation; in these terms, the model (1) is “general” because it
can handle both problems. Also it can be noted that, since we are treating age as
being discrete, kernel graduation by means of (1) is equivalent to moving (or local)
weighted average graduation (Gavin et al. 1995).

Model (1) can be conveniently written in the following compact form

by D Ky;

where y andby are, respectively, the .! C 1/-dimensional vectors of “observed” and
graduated indicators, while K is the so-called .! C 1/ � .! C 1/ smoother matrix
(or hat matrix) in which the i -th row contains the !C1 weights allocated to the age-
specific indicators yx , x 2 X , in order to obtainbyi�1. Without loss of generality,
we have constrained the age set of graduated specific indicators to be X .

As system of weights in (1), we have chosen to adopt the following discrete beta
distribution

kh .xIm/ D

�
x C 1

2

	 mC
1
2

h.!C1/
�
! C 1

2
� x

	!C
1
2

�m

h.!C1/

!X

j D0

�
j C 1

2

	 mC
1
2

h.!C1/
�
! C 1

2
� j

	!C
1
2

�m

h.!C1/

; x 2X ; (2)

withm 2X and h > 0. This distribution, introduced in Punzo and Zini (2011), is a
discretization on X of a beta density defined on Œ�1=2; ! C 1=2�, conveniently
re-parameterized, as in Punzo (2010), with respect to the mode m and another
parameter h that is closely related to the distribution variability. From a nonpara-
metric point of view, it is important to note that the probability mass function in (2)
is smoothly non-increasing as jx �mj increases. Keeping constant ! and h, Fig. 1a
shows the discrete beta weights in the smoother matrix and, consequently, it illus-
trates the effect of varying the mode m; in order to give a visual representation of
the values in K , its matrix plot is also displayed in Fig. 1b. As regards the other
parameter h, we have that, for h! 0C, kh .xIm/ tends to a Dirac delta function in
x D m, while for h!1, kh .xIm/ tends to a discrete uniform distribution; Fig. 1c
shows the effect of varying h, maintaining constant ! andm. Thus h can be consid-
ered as the smoothing parameter of the estimator (1); indeed, as h becomes smaller,
the spurious fine structure becomes visible, while as h gets larger, more details are
obscured. With reference to the problem of distribution estimation, in order to obtain
values of dx summing to

P
x2X dx , we can estimate, in a first step, all the ! C 1

values ofbdx according to (1) and then, in a second step, we can normalize these as
follows
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Fig. 1 Discrete beta weights are shown in (a), matrix plot of K is displayed in (b) using different
gray-levels, and the effect of h is illustrated in (c). In all plots ! D 30

bdx D
bdx

!X

j D0

bd j

!X

j D0

dj : (3)

Discrete beta kernels possess two peculiar characteristics. Firstly, their shape,
fixed h, automatically changes according to the value of m (see Fig. 1a). However,
as it can be seen in Fig. 1a, two kernels having modes in m and ! � m are each
other’s reflection in x D !=2, that is, kh .xIm/ D kh .! � xI! �m/, x 2 X .
Secondly, the support of the kernels matches the age range X so that no weight is
assigned outside the data support; this means that the order of magnitude of the bias
does not increase near the boundaries and the so-called problem of boundary bias is
automatically overcome.

Finally note that although the model (1), for the case of distribution estima-
tion, is equal in philosophy to the nonparametric discrete kernel estimator proposed
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in Punzo (2010), there is a substantial difference in the way the discrete beta kernels
are adopted. In detail:

� in Punzo (2010) the nonparametric estimator is “globally” defined as a mixture,
with observed weights ym, of !C1 discrete beta components kh .xIm/, of equal
parameter h, with mode in m, m 2X ;

� in (1) the estimator of yx is “locally” defined by placing a discrete kernel dis-
tribution at the point x for which we wish to estimate the true proportion and
then forming a weighted average over all the age-specific proportions, where the
weight attached to each age-specific proportion is the value of the discrete kernel
distribution, with mode in x, at that age.

2.1 The Choice of the Smoothing Parameter

The literature on data-driven methods for selecting the optimal value for h is vast;
however, cross-validation (Stone 1974) is without doubt the most commonly used
and the simplest to understand. Cross-validation simultaneously fits and smooths the
data by removing one data point at a time, estimating the value of the function at the
missing point, and then comparing the estimate to the omitted, observed value. For
a complete description of cross-validation in the context of graduation, see Gavin
et al. (1995). The cross-validation statistic or score, CV .h/, for model (1) is

CV .h/ D 1

n



y �by.�x/

�0 

y �by .�x/

�
D 1

n

X

x2X



yx �by.�x/

x

�2

; (4)

where

by.�x/
x D

X

j 2X
j ¤x

yjkh .j Im D x/

1 � kh .xIm D x/ D

X

j 2X
j ¤x

yj kh .j Im D x/

X

j 2X
j ¤x

kh .j Im D x/

is the estimated value at age x computed by removing the age-specific indicator
yx at that age. The value of h that minimizes CV .h/ is referred to as the cross-
validation smoothing parameter,bhC V .

3 An Application to Mortality Data

The model described in the previous section is applied to mortality data from the
Valencia Region for the period 1999–2001. Data are classified by age (ranging from
0 to 100 or older) and sex (source: Spanish National Institute of Statistics, INE).
In Debòn et al. (2005) and Debòn et al. (2006) the authors use the same dataset
in order to compare parametric and nonparametric methods for the graduation of
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Fig. 3 Plot of CV .h/ as a function of h

mortality rates qx ; in analogy with them, we have chosen to take a range of ages
between 0 and ! D 96. In the period and range under study, there were nearly 3.96
million men at risk and 4.11 million women. Other summary information can be
gained in Debòn et al. (2005) and Debòn et al. (2006).

In Fig. 2a, the observed men-to-women rootplots (barplots plotted on a square
root scale) are depicted. Rootplots for either sexes are slightly ragged and nega-
tively skewed, with a long tail over lower ages; infant mortality, at x D 0, is also
distinguishable. Above all with reference to the male population, a small but promi-
nent bump over the age of 18 is also visible; this “excess mortality” is probably
due to an increase in a variety of risky activities, the most notable being to obtain a
driver’s license.

All of these characteristics are preserved and emphasized in Fig. 2b where the
discrete normalized beta kernel estimator (3) is fitted, both for men and women,
to the observed data. Smoothing parameter h for men, and women, was estimated
by minimizing in Mathematica the quantity (4). The cross-validation estimated
values of h, as well as the graphical representation of CV .h/ plotted against h, are
displayed in Fig. 3.

The same general considerations hold also for the analysis of the mortality
rates. Fig. 4 shows, in logarithm scale, the proportion dying for male and female
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population, and superimposes them the graduated counterparts. It is easy to note
that the graduated points have a more regular behavior than the observed ones for
the age range between 0 and 40. As in the previous case, the two different values for
h were obtained minimizing in Mathematica the cross-validation statistics (4).
The cross-validation estimated values of h, as well as the graphical representation
of CV .h/ plotted against h, are displayed in Fig. 5.

4 Concluding Remarks

Demographic phenomena usually exhibit a rather complex age pattern, and statis-
tical models used in graduation should be quite flexible in order to capture such
complexity. Moreover, data usually available refer to age at last birthday, that is a
discretized variable with a finite support. In this paper we have proposed a discrete
kernel estimator specifically conceived for the smoothing of discrete finite functions.
Kernel functions were chosen from a family of conveniently discretized and re-
parameterized beta densities proposed in Punzo (2010); since their support matches
the age range boundaries, the estimates are free of boundary bias. Moreover, the
resulting discrete beta kernel graduation method is conceptually simple and so is its
implementation.
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Kernel-Type Smoothing Methods of Adjusting
for Unit Nonresponse in Presence of Multiple
and Different Type Covariates

Emilia Rocco

Abstract This paper deals with the nonresponse problem in the estimation of the
mean of a finite population following a nonparametric approach. Weighting adjust-
ment is a popular method for handling unit nonresponse. It operates by increasing
the sampling weights of the respondents in the sample using estimates of their
respond probabilities. Typically, these estimates are obtained by fitting paramet-
ric models relating response occurrences and auxiliary variables. An alternative
solution is the nonparametric estimation of the response probabilities. The aim of
this paper is to investigate, via simulation experiments, the small-sample proper-
ties of kernel regression estimation of the response probabilities when the auxiliary
information consists in a mix of continuous and discrete variables. Furthermore
the practical behavior of the method is evaluated on data of a web survey on
accommodation facilities in the province of Florence.

1 Introduction

It is well known that unit nonresponse is a common problem in sample surveys. It
has the potential to prevent valid inference especially when the group of respondents
differs from that of non respondents. The standard way to attempt compensating
for unit nonresponse is by some form of weighting adjustment. The essence of all
weighting adjustment procedures is to increase the weights of the respondents so
that they represent the nonrespondents. The respondents weights are increased by
incorporating estimates of the probabilities that sampling units respond to the sur-
vey. The nonresponse is here viewed as an additional phase of sampling whose
probability mechanism is unobserved and that follows the first phase of sampling,
which is determined by the original sample design. A critical step of the weight-
ing adjustment procedures is the estimation of the response probabilities. This step
is usually conducted under explicit or implicit models relating response occur-
rences to auxiliary variables. The unspecified assumption here is that the response
mechanism is missing at random (MAR). A common way to estimate the individ-
ual response probabilities (or weights) consists in partitioning the sampled units

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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in “weighting classes” assumed homogeneous with respect to the mechanism of
response and then in estimating the response probabilities as rates of respondent
units within each class. This method, known as weighting within cell method, is
based on the implicit model that assumes uniform response mechanism within sub-
populations. Moreover sometimes it may be difficult to establish proper grouping,
and incorrect grouping may result in bias or loss of efficiency (see Da Silva and
Opsomer 2004). Another popular way to estimate the individual response probabil-
ities is by fitting a parametric model such as logistic, probit or exponential model.
An alternative solution can be the estimation of the response probabilities by non-
parametric methods which require only that the response probabilities be related
to the auxiliary variables by a smooth but unspecified function. The main motiva-
tion to use such methods is that they offer an appealing alternative to the choice
of the link function, or when the parametric model is difficult to specify a priori.
The use of kernel-type smoothing methods for estimating response probabilities
was first proposed by Giommi (1984), then also considered by Giommi (1987)
and by Niyonsenga (1994, 1997) and recently further investigated by Da Silva and
Opsomer (2006, 2009) who theoretically derived some new important asymptotic
properties of the non-parametrically weighting adjusted estimators and empirically
evaluated their small-sample properties. They considered only the case in which a
unique continuous covariate is available but their estimators can be extended with
minor modifications to more auxiliary variables. However if some of the auxiliary
variables are not continuous some assumptions required for the theoretical deriva-
tion of the asymptotic properties are not satisfied anymore. To evaluate the validity
of the small sample properties in such situation, this paper investigates via simula-
tion experiments the small-sample properties of kernel regression estimation of the
response probabilities when the auxiliary information consists in a mix of continu-
ous and discrete variables. The article is organized as follows. Basic definitions and
assumptions are set out in Sect. 2. The performances of two kernel-type weighted
mean estimators are discussed in Sect. 3. Section 4 concludes with final comments
and ongoing questions.

2 Methodological Framework and Basic Assumption

Let U be a target population of N units labelled k .k D 1; : : : ; N /; let y be a study
variable, of which we want to estimate the mean NY DP

k2U yk=N from a sample
s of n units drawn from U according to a sampling design p.s/; and let 	k be the
inclusion probability of unit k for all k 2 U . When nonresponse occurs, the yk’s
values are observed only on a subset of s, r � s of nr .nr � n/ respondents, and it
become necessary to model the response process in order to account for the loss in
information in the estimation process. Unlike in the sampling selection, the survey
sampler has no control over the response mechanism. Usually in order to model it,
a response indicator Rk , assuming value one if the unit k 2 U responds and zero
otherwise, is defined. The distribution of the vector .Rk W k 2 s/ is called response
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mechanism. In this paper we assume that the response mechanism is MAR and that
a vector of auxiliary variables x, correlated both to nonresponse and to y, is fully
observed throughout the sample. Moreover we assume that, given the sample, the
response indicators are independent random variables with:

Pr.Rk D 1jk 2 s; y; x/ D .xk/  k; for all k 2 U (1)

where the exact form of .:/ is unspecified, but it is assumed to be a smooth function
of xk , with .:/ 2 Œ0; 1�. If all the response probabilities were conceptually known,
the theory of two phase sampling lead us to the possible mean estimator:

ONy D
X

k2s
yk	

�1
k �1

k Rk=
X

k2s
	�1

k �1
k Rk (2)

that is the Hàjek estimator adjusted to compensate for nonresponse (Little and
Rubin 2002). In practice, however, this formula is unfeasible as the response proba-
bilities are unknown. Then a possible estimator of the population mean is obtained
replacing in (2) the response probabilities k with their estimates Ok , satisfying
0 < Ok � 1. The resulting weighting adjusted mean estimator is:

ONy D
X

k2s
yk	

�1
k
O�1
k Rk=

X
k2s

	�1
k
O�1
k Rk (3)

In order to implement (3), it is necessary to estimate the response probabilities
k . For the case in which the auxiliary information consists in only one contin-
uous variable Da Silva and Opsomer (2009) used kernel polynomial regression.
Here we assume that a vector of q .q � 2/ auxiliary variables of different type
is fully observed throughout the sample and we extend the procedure of Da Silva
and Opsomer (2009) to this situation. More in detail we consider two methods of
estimating the response probabilities Ok: the local constant and the local linear
regression which result from the local fit of polynomials of degree zero and one
respectively. Polynomials of greater degree are not considered because as noted in
the literature (e.g. Fan and Gijbels 1996, p. 77) and also confirmed in the simula-
tions of Da Silva and Opsomer (2009), higher degree polynomials reduce the bias
but increase the variance. Both the local constant and local linear regression used are
based on a “generalized product kernel function”K.:/, i.e. the product of q univari-
ate kernel functions, one for each auxiliary variable. Each univariate kernel function
may be a continuous data kernel function or a categorical ordered data kernel func-
tion or a categorical unordered data kernel function. For lack of space the detail of
the estimation procedure are not given here and we refer to Li and Racine (2006)
for a general description of local polynomial regression with mixed data. In this
paper we extend the nonparametric techniques available in non survey literature to
the inference for finite populations in the presence of nonresponse.
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3 Simulation Study and Real Data Application

Some Monte Carlo experiments are performed in order to empirically evaluate the
finite sample properties of the local constant and the local linear estimators of
response probabilities. The simulations are carried out in R, and, for the nonpara-
metric estimation procedures the R package “np” (Hayfield and Racine 2008) is
used. Three different populations U1, U2, U3, and two response mechanisms are
generated. All the three populations are of 2,000 units and are partitioned by an
indicator variable, x2, in two subpopulations, each of 1,000 unit. In population U1

the study variable y is related to a unique auxiliary variable x1 � Uniform.0; 1/
by the following linear model y D 20 C 60x1 C "1, where "1 � N.0; 16/.
In population U2 the parameter of the linear model relating the study variable
to the variable x1 is different in the two subpopulations, following the model
y D 20 C 60x1x2 C 45x1.1 � x2/ C "2 where "2 � N.0; 9/. In U3, as in U2,
the study variable is related both to the continuous variable x1 and to the cate-
gorical unordered variable x2 but the relation with x1 is quadratic; and the model
is y D .40C 35x2

1
/x2 C .50C 30x2

1
/.1 � x2/ C "3 where "3 � N.0; 4/. The

response probabilities are generated, following the same procedure of Da Silva and
Opsomer (2006), under the two response function:

A W.x/ D .�ˇ0x21 C ˇ1x1 C ˇ2/x2 C .�ˇ3x21 C ˇ4x1 C ˇ5/.1� x2/ (4)

B W.x/ D .eˇ6Cˇ7x1 .1C eˇ6Cˇ7x1 /�1/x2 C .eˇ8Cˇ9x1 .1C eˇ8Cˇ9x1 /�1/.1� x2/ (5)

where the coefficients ˇ0; : : : ; ˇ9, are chosen so that the response rate on the
whole population is approximately equal to 0.7 and in the two subpopulations are
approximately equal to 0.65 and 0.75.

For each of the six possible combinations of population models and response
mechanisms, the simulation procedure consists of the following steps:

1. Select a simple random sample of 200 units.
2. Perform a Bernoulli trial for each unit k 2 s with probability k(under model A

or B) for “success” (response) and .1 � k/ for “failure” (nonresponse).
3. Compute on the set of respondents the weighted mean estimators T0, T1, T2, T3,
T4, T5 adjusted respectively with:

– T0 : true response probabilities
– T1 : response probabilities estimated through a logistic model
– T2 : response probabilities estimated through local linear regression
– T3 : response probabilities estimated through local constant regression
– T4 : response probabilities estimated through weighting within cell method
– T5 : Ok D 1, k 2 s (naive estimator)

4. Repeat steps 1–3 3,000 times.

In all the four response probability estimation methods the auxiliary variables
x1 and x2 are both used. In weighting within cell method the variables x1 is cate-
gorized using the quartiles of its distribution and eight classes are defined crossing
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the categorized x1 with x2. For both the local constant and the local linear regres-
sion procedure, the second order Epanechikov kernel function is used for x1 and the
Aitchison and Aitken kernel function (Aitchison and Aitken 1976) is used for x2. In
these last two methods two more choices in estimator settings concern the typology
and the selection criterion of the bandwidth: the fixed type bandwidth and the least-
squares cross-validation selection method are applied. The experimental results are
reported in Tables 1 and 2 (with best performances in bold). Table 1 gives for each
combination of population and response mechanism the percentage bias obtained
with every adjustment procedures. Among the estimators affected by the generated
nonresponse, the worst bias performances are obviously those for the unadjusted
“naive” estimator. Biases are successfully reduced with all the other estimators.
Apart from the estimator adjusted by the true response probabilities, that is condi-
tionally unbiased for the full sample estimates, the best bias reduction is obtained by
the weighting within cell adjustment method for the response mechanism A and by
the local linear regression adjustment method for the response mechanism B. The
local constant regression adjustment method produces for all the populations and
both the response mechanisms the worst bias reduction with respect to all the other
response probability estimation methods. The logistic adjustment method is better
than the weighting within cell adjustment method for the response mechanism B.

Table 2 shows the empirical mean square error (MSE) of the applied adjust-
ment methods. The best performances in terms of smallest MSE are obtained using
the local linear regression method in four of the six cases and with the logis-
tic adjustment method in the other two with a slightly difference between the
two methods. Both the two local regression adjustment methods and the logistic

Table 1 Percentage biases of weighting adjusted mean estimator

Response Populations T0 T1 T2 T3 T4 T5
functions

A U1 0:006 0:267 0:134 0:703 0:033 2:600

A U2 0:020 �0:349 0:195 0:363 �0:153 1:327

A U3 0:022 0:194 �0:179 0:395 0:065 1:842

B U1 �0:047 0:227 �0:173 �1:286 �0:737 �7:322
B U2 �0:023 0:069 0:043 �0:514 �0:435 �3:137
B U3 �0:068 0:648 �0:307 �1:320 �0:662 7:249

Table 2 Empirical mean square error of weighting adjusted mean estimator

Response Populations T0 T1 T2 T3 T4 T5
functions

A U1 2:448 1:486 1:528 1:690 3:950 3:632

A U2 0:862 0:579 0:567 0:604 1:327 1:280

A U3 2:025 1:227 1:248 1:327 2:529 2:312

B U1 2:362 1:551 1:532 2:026 4:076 15:366

B U2 0:948 0:605 0:572 0:670 1:396 3:724

B U3 1:933 1:389 1:273 1:694 2:631 12:833
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adjustment method produce estimators more efficient than those adjusted by the
true response probabilities. The weighting within cell adjustment method produces
the greatest MSE with respect to all the other response estimation methods and it
produces a MSE even slightly greater than that of the naive estimator under response
mechanism A.

The practical behavior of the two non parametrically adjusted estimators is also
evaluated through an application on real data. The data derive from a web sur-
vey carried out monthly by the Province of Florence in order to obtain timely data
on tourist movement in the accommodation facilities located in the province area.
The survey collects information on the number of tourist that daily arrive in each
accommodation facilities, the number of permanence days for each tourist and some
characteristic of the accommodation facilities and of the tourists. It is based on an
auto-selected sample of the accommodation facilities that agreed to participate to an
automatic system of registration and transmission of data via web. The participation
rate is very low: In year 2006, to which our data refer, the average response rate on
the 12 months is about 21%. The web survey data are used to estimate the total num-
ber of nights spent per month. To estimate the response probabilities three variables
are used: the number of beds, the number of stars and a “quality index” defined as
the ratio between the number of bathrooms and the number of rooms. The estimates
are then compared with the total evaluated using the data of a census survey carried
out by the Italian Statistical Institute (ISTAT) which are assumed as true values. The
ISTAT survey collects the same information of the web survey but it is a national
monthly census survey based on a complex system and the data are available only
after some months. The results are very interesting: the monthly mean relative bias
is over 30% using the naive estimator but it decreases to 3.9% and 4.3% consider-
ing the weighting adjusted mean estimators with response probabilities estimated
respectively through the local linear and the local constant regression. The monthly
mean relative bias of the logistic adjustment method is about 10%. The weighting
within cell adjusting method is not considered due to the difficulty in identifying the
weighting classes.

4 Concluding Remarks and Ongoing Questions

The results of both the simulation experiments and the application to real data show
that the two nonparametric weighting adjusted estimators examined could be com-
petitive, in terms of bias and MSE, with respect to the weighting adjusted estimators
with response probabilities estimated both through a logistic parametric model and
by the weighting within cell method.

There are still a number of open questions that need to be addressed. First, in
the simulation study we consider only six scenarios in terms of populations and
response functions and more investigations are needed to validate the promising
results. Second, in the nonparametric approach the exact form of .:/ is unspeci-
fied but some estimator settings (like the form of the kernel functions, the type and
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the selection criterion of the bandwidth) are still required: we followed the com-
mon settings applied in literature, however some further investigation on the effects
of different settings could be interesting. In addition, we also plan to estimate the
variance of the mean estimators and to analyze the conditions for which a weight-
ing adjusted mean estimator based on estimated response probabilities may result
more efficient than the corresponding estimator based on true response probabilities.
Some authors, including Rosenbaum (1987), Robins et al. (1994), and Little and
Vartivarian (2005) just noted that estimators using the estimated response probabil-
ities can be more efficient than the corresponding estimators using the true response
probabilities. Beaumont (2005) gave a clear justifications for the variance reduction
obtained using estimated response probabilities from a logistic regression model in
the imputation context. Kim and Kim (2007) extended the Beaumont’s results to
all the cases in which the parameters of the response probabilities are estimated
by the maximum likelihood method. Based on such literature and on the analysis
of the correlations existing in our simulated data between the study variable and the
covariates and between the study variable and the true response probability, we think
that the adjustment using the estimated response probability improves efficiency if
the auxiliary variables used in the response estimation procedure include additional
information on the study variable and if the procedure used to estimate the response
probabilities is able to incorporate this additional information.
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Measurement Errors and Uncertainty:
A Statistical Perspective

Laura Deldossi and Diego Zappa

Abstract Evaluation of measurement systems is necessary in many industrial con-
texts. The literature on this topic is mainly focused on how to measure uncertainties
for systems that yield continuous output. Few references are available for categori-
cal data and they are briefly recalled in this paper. Finally a new proposal to measure
uncertainty when the output is bounded ordinal is introduced.

1 Introduction

In measurement system analysis (MSA) the assessment of the measurement errors
is a very relevant topic. Especially in the industrial context it allows to understand
whether the differences among the results of an experiment or the variability of a
process are due to either an out of control process or to a non capable measurement
system. In the last 15 years the International Organization of Standardization (ISO)
has produced several documents on this topic. The most important international
standards are the ISO 5725:1994 (Parts 1–6) (International Organization for Stan-
dardization 1994) and the “Guide to the expression of Uncertainty in Measurement”
(GUM) published in 1995 (International Organization for Standardization 1995),
which propose quite different approaches to the validation of the measurement pro-
cedure, though they were published almost in the same year (see Deldossi and
Zappa 2009, for a comparison). The main distinction is related to the topic of
interest: accuracy in ISO 5725, uncertainty in GUM. While the term accuracy is
related both to trueness and precision, in GUM the relevance is focused only to the
uncertainty (precision) aspect.

At present the statistical literature on MSA is mainly aimed to assess measure-
ment system precision. For this reason our contribution will concern only this topic,
omitting other aspects of measurement system, such as calibration or assessing
linearity. In Sect. 2 we classify the approaches available in statistical literature to
evaluate “precision” for measurement systems yielding both continuous and cate-
gorical output. In Sect. 3 a new proposal to measure uncertainty for ordinal data

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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based on CUB models (D’Elia and Piccolo 2005) is introduced, followed by an
example, some comments and additional details.

2 Methods to Measure Precision: A Classification

The precision of a measurement system concerns its consistency across multiple
measurement per object. Generally, using experimental designs, data are collected
on a sample set of n objects in the following manner: each object i (for i D 1; : : : n)
is evaluated once or t times bym appraisers; the measurement value that is assigned
to object i by appraiser j (for j D 1; : : :; m) in the h�th measurement (for h D
1; : : :; t) will be labelled Yijh. In case of measurements on a categorical scale, Yijh

is assigned by choosing a category within a finite, bounded, ordered or unordered
set f1; 2; : : :; ag. Otherwise, when the measure is defined on a metric scale, Yijh

will assume values on a continuous interval. Correspondingly, let X1; X2; : : :; Xn

be the true values of the n objects. These latent values can be defined on a scale
different from the one used for the related observed values. For example, the true
value underlying a categorical scale does not need to be categorical. However, if the
true value is continuous, this may cause an ordering in the categories and then one
would expect the observed value will be expressed at least on an ordinal scale. Short
details on methods used to evaluate precisions are reported in the following.

(a) Suppose Yijh is on a metric scale. The standard method to assess the precision
is the gauge repeatability and reproducibility (GR&R) experiment (Burdick
et al. 2003), based on the concept of R&R variances. These are typically
estimated by a random effect model, like:

Yijh D �C Pi COj C .PO/ij C Eijh (1)

where� represents the overall mean,Pi ; Oj ; .PO/ij andEijh are supposed to be
jointly independent normal random variables (r.v.) with mean zero and variance
�2

P , �2
O , �2

PO and �2
E , respectively. P and O generally stand for “Part” and

“Operator”. The gauge variance is equal to �2
OC�2

POC�2
E as the measurement

system generally refers both to the instrument used and its interaction with the
operators who have used it. ISO 5725 is mainly based on this method. Suitable
estimators of variance components are obtained by standard ANOVA table (see
Burdick et al. 2003).

(b) Suppose Yijh is on a categorical scale. The measurement system may be defined
on either (b1) nominal or (b2) ordinal scale. Typical contexts are related to qual-
ity inspectors, helpdesk employees or physicians, who must classify or judge
the quality of some objects. It is obvious that in such a context there are no
instruments and only subjective ability and/or training of the appraisers may
contribute to the capability of the measurement system.
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(b1) For nominal categorical scale, reproducibility makes reference to the prob-
ability of agreement, PA. Assuming henceforth that each object is mea-
sured once by each appraisers j; PA represents the probability that two
arbitrary measurements of an arbitrary object, i , are identical, that is,

PA D P.Yij1 D Yij2/ D
aX

lD1

aX

kD1

p.l/q2.kjl/ (2)

where a is the number of categories that appraisers j1 and j2 can assign
to object i Ip.l/ WD P.Xi D l/, for l D 1; : : :; a, is the discrete probabil-
ity distribution of the latent variableXi I q.kjl/ WD P.Yij D kjXi D l/, for
k; l D 1; : : :; a, is the distribution of the measurement error. Notice that
two appraisers would agree even if they assign values to objects at ran-
dom. To deal with this problem, Cohen (1960) and several other authors
introduced the so-calledK-type indexes as a rescaled version ofPA. In par-
ticular the K-index introduced by De Màst and Van Wieringen (2007) is:

K D PA � PAjchance

1 � PAjchance
(3)

where PAjchance is the probability of agreement for a completely uninfor-
mative measurement system that randomly assigns measurement values to
objects. If we adopt the uniform distribution when the measurement system
works at random, (3) becomes:

KUNIF D PA � 1=a
1 � 1=a : (4)

It follows that the relevant range ofKUNIF is [0,1], while PA ranges within
Œ1=a; 1�, then depending on the number of categories.KUNIF is a precision
index that allows comparisons among different nominal measurement sys-
tems. An unbiased estimator of (2) and (4) is reported in De Màst and Van
Wieringen (2007).

(b2) If Y is a bounded ordinal variable, we have to distinguish between the cases
in which the latent variable X is continuous or categorical. In the first one
a discretization is necessary, since the ordinal variable Y cannot be directly
modeled as Y D X C E , i.e. as the sum of the two continuous variables
X andE . De Màst and Van Wieringen (2004) propose to link the observed
and the latent variable by:

Y D LRD .X C E/ D
�
a � exp.X CE/
1C exp.X C E/


(5)

where d�e is the upper integer operator. Inverting (5) and taking into account
the necessity to avoid indeterminate results when y D 0 or y D a, we have
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X D LRD�1.Y / D ln

�
Y � 1=2

a � Y C 1=2
	
: (6)

Once Y is transformed by (6), they propose to evaluate the precision of
the measurement system using GR&R indices on X as it was a contin-
uous variable. In particular they propose to use the intraclass correlation
coefficient �X D �2

X=�
2
Y . The higher �X , the higher the precision of the

measurements will be.

At present, the literature lacks of proposals for evaluating the measurement
system capability when the latent variableX is categorical and Y ordinal. Only non-
parametric indexes, based on ranks such as Kendall-� and Spearman-¡ are available
(see De Màst and Van Wieringen 2004), but no suggestions on how to measure
uncertainty is given.

3 A New Proposal to MSA for Ordinal Data

In case of Y is bounded ordinal, we propose an approach to ascertain the measure-
ment precision exploring the potentials of the CUB model, presented by D’Elia and
Piccolo (2005). Authors have introduced and used this model to explain the behav-
ior of respondents facing with judgments (rating). It is defined as a mixture of a
shifted Binomial and a discrete Uniform random variable as it follows

P.Y D k/ D 	
�
a � 1
k � 1

	
.1 � �/k�1�a�k C .1 � 	/1

a
(7)

with   2 .0; 1�; Ÿ 2 Œ0; 1�; k 2 f1; 2; : : :; ag. The first instance of a mixture model
for ordinal data and the inferential issues are derived by Piccolo (2003, 2006) respec-
tively. For the matter of parameter identifiability in (7) it must be a > 3. In our
context the Uniform component may express the degree of uncertainty in judging
an object on the categorical scale f1; 2; : : :; ag, while the shifted Binomial random
variable may represent the behavior of the rater with respect to the liking/disliking
feeling towards the object under evaluation: the parameter Ÿ is then a proxy of the
rating measure, while 	 is inversely related to the uncertainties in the rating process.
The statistical properties of (7), the E-M algorithm needed to find the estimates of
  and Ÿ, the extensions on how to exploit covariates linked to the parameter space,
as well as numerical issues, are described in Iannario and Piccolo (2009). In addi-
tion we have prepared an independent tool in Excel (freely available) that, given a
sample set, computes the   and Ÿ estimates, without using the E-M algorithm, but
searching for the maximum of the likelihood, having preliminarily found the sub-
domain where the desired solution is placed. To give an idea, let a D 4 and m D 6
and suppose to have observed the sample set {2, 2, 2, 1, 2, 4}, gathering appraisers’
evaluations. Figure 1 reports the related likelihood surface. Arrows show where the
maximum is expected to be placed.
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Fig. 1 The likelihood surface for (7): an example for a D 4 and m D 6

The solutions found with our procedure slightly differs from the ones we get with
R (it is a matter of the degree of convergence we fix in our program) and of course
the computer time is longer. The reason why we have prepared this application is to
share results also with those (potentially not few) industrial contexts where R is at
present still unknown and some training would be needed.

In MSA studies the efficacy of the CUB model stands in the possibility to sep-
arate the evaluation of a part either good, bad or of intermediate quality from the
uncertainty that appraisers have in evaluating that part.

The main interest is on the level of  : the smaller is  , the stronger is the mea-
surement uncertainty. For a matter of interpretation, we may say that for a given
object

  Š 0 if the appraisers choose at random a value in f1; 2; : : :; ag
  D 1 if all the appraisers give the same rating to the objects.

However some problems exist in the application of CUB in MSA. First of all the
number of the categories must be a > 3: this constrain does not allow the application
of CUB to binary data. Furthermore, inferential properties described in D’Elia and
Piccolo (2005) are based on asymptotic results. In MSA the number of appraisers
(i.e. the sample size used in CUB) is small (the number, m, of appraisers is often
not greater than 10). As a consequence, we cannot apply any asymptotic results and
we had to investigate on the implications.

An advantage of dealing with a small sample set should be that the parameter
space is a finite set. Given m and a, the number of possible combinations with
replication (i.e. the possible sequence of responses to a given object by m apprais-

ers) is


mC a � 1

m

�
. For example, if a D 4 andm D 6 the cardinality of the parameter

space is 84. Then, for inferential purposes we may find (exactly) all the feasible
estimates. However, if either a or m increase, the cardinality may be considered
a countable infinite set and some computational problems may arise. To make our
procedure the most general as possible, we have implemented in our spreadsheet
a bootstrap procedure to compare the distribution of the estimator based on the
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available data set with the one we obtain by assuming the appraisers are evaluating
objects at random.

When dealing with small m, a problem may arise regarding the interpretation of
the   parameter because it turns out to be bounded from below. Table 1 reports
the lowest estimate of   corresponding to the maximum uncertainty for some
combinations of a and m.

From Table 1 it is clear that we cannot approach 0 when m ¤ q�a for q D
1; 2; 3 : : :, as the maximum heterogeneity, which should assure   ! 0, cannot be
achieved. The bounds have been calculated supposing to distribute the judgements
made by m appraisers in order to reproduce a configuration of responses closed to
maximum uncertainty. The matter is that the solution may not be unique. For exam-
ple, for a D 4 and m D 5 we may suppose that four appraisers choose respectively
the value y D 1, y D 2, y D 3, y D 4 and the last one an arbitrary value between
1 and 4. Then we have four different configurations of “quasi” maximum uncer-
tainty and for each of them we have computed O  reporting in Table 1 the minimum
estimate.

To exemplify most of the details introduced above and for a matter of com-
parison with other studies, consider the data set available in De Màst and Van
Wieringen (2004), related to a real database concerning a printer assembly line.
Some records are reported in Table 2. After a printer has been assembled its quality
is tested by printing a grey area. The latter is visually inspected on uniformity by six
operators who give a quality evaluation using the ordinal scale 1:good, 2:acceptable,
3:questionable, 4:rejected.

In this example a D 4;m D 6. We have estimated the couple ( O i ; OŸi / for each
object i D 1; : : :; 26. The scatterplot of the estimates is in Fig. 2.

It may be observed that for some printers the appraisers had no uncertainty in the
evaluation ( O  D 1/ while for some other printers, O  D 0:1112, which is, according
to Table 1, the value corresponding to the maximum uncertainty. In order to assess
whether the mean of the 26 O  estimates, N  D 0:6027, is small (or large), Fig. 3
plots the cumulative bootstrap distribution, B N MU , assuming that 6 appraisers have

Table 1 Lowest bound of O  for some combination of a and m

�
�a
m

4 5 6 7 8 9 10 11 12

4 0 0.2000 0.1112 0.1125 0 0.1112 0.0667 0.0723 0
5 0.1099 0 0.0706 0.1071 0.0625 0.0490 0 0.0413 0.0625
6 0.1000 0.0625 0 0.0708 0.1000 0.0667 0.0400 0.0284 0

Table 2 Some records from the printer assembly data (De Màst and Van Wieringen 2004)

Operators
1 2 3 4 5 6

Objects 1 4 4 4 4 2 4
2 1 4 2 3 3 4
. . . . . . . . . . . . . . . . . . . . .
26 1 1 2 2 4 4
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Fig. 3 Cumulative bootstrap distribution of B N  (solid line) and B N MU (dashed line)

evaluated 26 objects at random, i.e. replicating a condition of maximum uncertainty.
For comparison the cumulative bootstrap distribution, B N , starting from the sample
set is also reported.

The arrow in Fig. 3 shows where the 95th percentile of B N MU is placed. It is clear
that it is on the right of N , supporting the hypothesis that measurement system is not
capable of evaluating the printer assembly data. If we had used the indexes described
in Sect. 2 (with the exception of �X as it assumes the existence of a continuous latent
variable - an assumption not appropriate for this example), we should have found

OPA D 0:302564; OKUNIF D 0:07008:

Both the estimates give an evidence of a non capable measurement system. In
particular OKUNIF, which considers the possibility of answering at random, is very
closed to 0, underlining that the appraisers do not agree with the evaluation of the
printers.
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Table 3 Parameter estimates of uncertainty by operator

Operator j O j OŸj p-Value

1 0.4337 0.9122 0.245
2 0.1795 1E-08 0.595
3 0.7282 0.7073 0.054
4 0.3195 0.2862 0.381
5 0.4086 0.0503 0.261
6 0.6923 1E-08 0.069

Additional information can be gathered using the CUB model. On one hand we
may measure the precision by evaluating its “distance” from the worst scenario,
assuming all the appraisers evaluate objects at random (greater is the distance, better
is the measurement precision); on the other hand we may also analyze the reason
of a bad performance of the measurement system. For example, we may assess
whether uncertainty is uniformly shared by all the appraiser, reflecting the (equally
perceived) difficulty in judging the objects. In fact we may exploit CUB models
assuming that we are interested in measuring the uncertainty of the appraisers in
evaluating a sample of m D 26 objects. Table 3 reports the ( O j ; OŸj / estimates, for
j D 1; 2 : : : 6. The last column is the p-value of O j refereed to Pr( O MU > O j ),
where the distribution of O MU has been found by simulating the event of giving at
random a category a D 1; : : :; 4 to each object i (for i D 1; : : :; 26).

It may be observed that operators #3 and #6 had the least uncertainty in evaluating
the objects, but they had quite different perception of the overall quality ( O�3 D 0:7;O�6 D 0/. Analogously, comments (maybe different) can be done for the other
operators. Then a reason of the overall uncertainty may be addressed both to a
non-homogenous sample set and to a non equally trained set of operators.

These conclusions could be refined applying the extended version of CUB
models reported in Iannario and Piccolo (2009) taking into account covariates on
the operators (e.g. gender, age, experience, . . . ).
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Measurement Uncertainty in Quantitative
Chimerism Monitoring after Stem Cell
Transplantation

Ron S. Kenett, Deborah Koltai, and Don Kristt

Abstract Following allogeneic stem cell transplantation, graft status is often
inferred from values for DNA chimerism in blood or bone marrow. Timely
assessment of graft status is critical to determine proper management of post
cell transplantation. A common methodology for chimerism testing is based on
STR-PCR, i.e. PCR amplification of Short Tandem DNA Repeats. This is a com-
plex technology platform for indirect DNA measurement. It is however associated
with inherent variability originating from preparation, amplification of the DNA,
and uncalibrated product detection. Nonetheless, these semi-quantitative mea-
surements of DNA quantity are used to determine graft status from estimated
percent chimerism [%Chim]. Multiplex PCR partially overcomes this limitation
by using a set of simultaneously amplified STR markers, that enables computing
a [mean%Chim] value for the sample. Quantitative assessment of measurement
variability and sources of error in [mean%Chim] is particularly important for longi-
tudinal monitoring of graft status. In such cases, it is necessary to correctly interpret
differential changes of [mean%Chim] as reflective of the biological status of the
graft, and not mere error of the assay. This paper presents a systematic approach
to assessing different sources of STR measurement uncertainty in the tracking
of chimerism. Severe procedural and cost constraints are making this assessment
non trivial. We present our results in the context of Practical Statistical Efficiency
(PSE), the practical impact of Statistical work, and InfoQ, the Information Quality
encapsulated in ChimerTrack R�, a software application tracking chimerism.

1 Introduction

The graft status following hematopoietic allogeneic stem cell transplantation is often
inferred from values for DNA chimerism in blood or bone marrow, i.e. the ratio of
donor to recipient DNA. Timely assessment of graft status is critical to determine
proper management following transportation. DNA fingerprinting or DNA typing
as it is known now was first described in 1985 by an English geneticist named Alec
Jeffreys. Jeffreys found that certain regions of DNA contained DNA sequences that
are repeated over and over again next to each other. He also discovered that the
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number of repeated sections present in a sample could differ from individual to
individual and exhibit high polymorphism. By developing a technique to examine
the length variation of these DNA repeated sequences, and then amplifying the
quantity of these loci with PCR, Jeffreys created the ability to perform human iden-
tity tests. These repeated DNA regions became know as VNTR’s, Variable Number
of Tandem Repeats. An effective solution for DNA typing, including a high power
of discrimination and rapid analysis, has been achieved with Short Tandem Repeat
(STR), which has become the most quantifiable common platform for clinical
chimerism monitoring. Multiple STRs from a single individual can be examined
in the same DNA test, or ‘multiplexed’. Multiplex STR examination is valuable
because the platform is frought with intrinsic errors of DNA measurements. Using
multiple STR loci from the same sample partially overcomes this limitation since it
enables computing a [mean%Chim] value for the sample. In addition, the detection
of multiplex STRs can be automated. However, STR analysis is a complex technol-
ogy platform for indirect DNA measurement, associated with inherent variability
originating from preparation, amplification of the DNA, and uncalibrated product
detection. Nonetheless, these semi-quantitative measurements of DNA quantity are
used to determine graft status from estimated percent chimerism [%Chim]. Quanti-
tative assessment of measurement variability and sources of error in [mean%Chim]
is particularly important for longitudinal monitoring of graft status. In such cases, it
is necessary to correctly interpret differential changes of [mean%Chim] as reflective
of the biological status of the graft, and not mere error of the assay.

Measurement systems, such as ChimerTrack R�, are designed to support decision
makers (Kristt et al. 2004, 2005, 2007; Kristt and Klein 2004). Proper assessment
of a patient’s graft status is of life critical importance. Physicians are faced with
false positive and false negative outcomes which can have serious consequences
for the patient being monitored. In order to evaluate decision support systems such
as Chimertrack R� we will refer to the quality of the information generated by the
system. In this assessment, two fundamental consets will be used: Practical Statisti-
cal Efficiency (PSE) and Information Quality (InfoQ). PSE is evaluating the impact
of a statistical procedure in a comprehensive way (Kenett 2007). InfoQ has been
developed as a tool for assessing information gained from data and analysis (Kenett
and Shmueli 2009). In this paper we assess the measurement uncertainty of the
ChimerTrack R� software and evaluate it’s PSE and the level of InfoQ generated by
it. The next section describes the chimerism measuring process, Sect. 3 discusses
its measurement uncertainty and Sect. 4 presents the PSE and the InfoQ level of
ChimerTrack R�. We conclude with a summary and directions for future work.

2 The Chimerism Measurement Process

Measuring chimerism involves seven sequential steps described below. We focus on
the potential causes of measurement uncertainty and the specific data sources that
will be used in assessing the measurement uncertainty.
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2.1 Taking Blood from the Patient

This is a regular blood taking process. Some of this blood is used for STR analysis,
and some for traditional tissue typing evaluations

2.2 DNA Extraction

The blood sample consists of cellular and fluid components. The cells are isolated
and their DNA must be separated from other cell constituents before the STR-DNA
can be analyzed. DNA extraction methods have been developed for this purpose.
This stage does not provide a numerical result, but rather it prepares the DNA for
the following stage.

2.3 Purity and DNA Concentration Calculation

In order to proceed with the multiplex Polymerase Chain Reaction (PCR) process,
the quantity and quality of extracted DNA has to be measured. At this stage the
following data is calculated:

� The concentration of the DNA in the mixture received.
� The density of the material at a wave length of 260 and 280 nm.
� The relation between the density at a wavelength of 260 nm and density at a

wavelength of 280 nm.

2.4 STR/PCR

Each STR marker is actually a set (or system) of many alleles all sharing the basic
base structure of the repeat, but differing in the number of tandem repeats of this
sequence. In the SGM Plus kit used in this work, there are 10 markers each with
8–23 different-sized alleles (Applied Biosystem 2006). An individual will normally
have only one or two STR alleles in a marker system, depending on whether he
is homozygous or heterozygous, respectively, at that marker. Similarly, a chimeric
marker locus will have one to four allelic peaks (bands). In addition, for genetic
and technical reasons, not all of these markers are useable for analysis, as explained
below. The markers that are useable, or “informative”, will be referred to as the
marker profile for a patient, and will function as a personalized set of chimerism
markers for all samples from a specific donor-recipient pair. It usually consists of
3–7 of the 10 marker sets in the SGM Plus kit (Kristt et al. 2005). PCR allows
producing large amount of a DNA target nucleotide sequence by a process of cyclic
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amplifications. The relatively large amount of resulting DNA enables analyzing the
STR target sequences quantitatively.

2.5 Electrophoresis

DNA electrophoresis is an analytical technique used to separate the STR-DNA frag-
ments by size. An electric field forces the fragments to migrate through a gel. DNA
molecules normally migrate from negative to positive potential due to the net neg-
ative charge of the phosphate backbone of the DNA chain. Smaller DNA fragment
migrate faster and further over a given period of time than do larger fragments.

2.6 GenescanTM Software

PCR STR-DNA products are separated using a process of capillary electrophoresis,
which provides two types of data: time to measurement and the intensity of the
fluoresce tag on each STR-DNA molecule. These raw data are then transformed into
more useful numerical data of peak area and molecular size of the STR marker in
basepairs by using the ABI Genescan software The data that we receive at this stage
consists of: (1) Minutes D the time of a molecule reaching one end from the other
(the raw data), (2) Size D the size of the molecule calculated by using the minutes
and (3) Peak area D the area that is under the allele peak which is calculated by
using the minutes.

2.7 ChimerTrack R�

This is a software application built on an Excel spreadsheet. By transferring
data from Genescan to Excel, it is possible to automatically calculate the per-
cent chimerism it’s standard deviation, and measurement error (Kristt et al. 2004,
2005, 2007; Kristt and Klein 2004) In addition, the software displays the longitu-
dinal course of a patient’s chimeric status by creating a graph that tracks all of the
patient’s test results that were performed up to and including the present sample
(Kristt et al. 2004). A sample ChimerTrack R� report is presented in Fig. 1.

The chimerism of each marker is computed as Chim D .d1Cd2/
.d1Cd2Cr1Cr2/

, where
d1, d2 are the peak area of the first and the second allele of the donor respec-
tively, and r1, r2 are the peak area of the first and the second allele of the recipient,
respectively. The [mean%Chim] is the mean of the chimerism of all the markers
that have been used.
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Fig. 1 ChimerTrack R� output
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100�
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�

n
where n is the number of markers

that have been used.

3 Measurement Uncertainty of Chimerism

In assessing the measurement uncertainty of chimerism, we combine an analysis
of observational data with proactive experiments, specifically designed for assess-
ing the measurement uncertainty. This mixed approach strategy was implemented
in order to meet cost and practical constraints. The data used in the measurement
of uncertainty includes the concentration of DNA the purity and the chimerism in
66 blood samples. This data was collected at the Rabin Medical Center in Petach
Tikvah, Israel. In addition, an experiment was performed in cooperation with the
Laboratory of Histocompatibility and Immunogenetics to assess the measurement
error of the concentration measurement. In this experiment the purity and concen-
tration of 20 DNA mixtures was calculated. The calculation for each mixture was
repeated five times and covered a large range of results. A third database used in
the measurement uncertainty assessment, consists of results of an experiment done
on 38 pairs of DNA used for paternity testing mixtures. Each sample was ampli-
fied during the PCR phase and then inserted into the electrophoresis machine. The
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data generated by electrophoresis was analyzed by the Genescan software. This data
includes all the peak areas and sizes of each allele of each marker. Only heterozygote
alleles with data from the two replications was included in our analysis. The repli-
cations were done on different PCR machines. In addition the relationship between
concentration of DNA and chimerism was checked using data on the concentration
and chimerism of 66 blood samples. Overall, the strategy we implemented com-
bined careful mapping of the measurement process, as outlined in Sect. 2, with a
thorough search for existing data and planning of feasible proactive experiments.
This combined strategy is required for complex cases, such as chimerism, where
textbook solutions cannot be implemented “as is”.

In assessing the chimerism measurement uncertainty we combine several meth-
ods of analysis. First we analyze the relationship between concentration of DNA and
chimerism. We then proceed with an analysis of the additional data sources. Finally
we combine the results for an overall assessment of measurement uncertainty of
[mean%Chim] In the next section we evaluate the ChimerTrack R� decision support
system from a more general perspective including PSE and InfoQ.

3.1 Logistic Regression of Concentration of DNA
Versus Chimerism

The concentration data was divided into two categories, one including all samples
with 100% chimerism and the other including samples with chimerism less then
100%. A binary logistic regression was performed on this data with the response
value defined by the chimerism category value and the concentration value as the
predictor.

The result of this regression show that as the total concentration of the DNA in
the mixture increases, the probability to get 100% chimerism also increases. The
extended relative uncertainty of the concentration measurement is 13.17%. It is
important to specify that this experiment was performed by one operator so that
we were not able to analyze the reproducibility of these results.

3.2 ANOVA of Balanced One Factor Random Experiment

This analysis considers the uncertainty of the first and the second allele peak areas
for a specific marker For each peak area an ANOVA test was performed in order
to calculate the measurement standard deviation. The dependent variable was the
peak area of the specific allele and the covariates were the placement of the allele
at a specific locus, the placement of the second allele at the same locus, the DNA
mixture and repetitions. The uncertainty of the chimerism of each marker was cal-
culated according to the law of propagation. The first peak area was selected to
be the peak area of the donor. The second peak area was selected to be the peak
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area of the recipient. This is the same situation as when the donor and the recip-
ient have a homozygote locus at the same marker. In that case, the second peak
area of the donor and the recipient are equal to zero and the equation for chimerism
result is d

dCr
Where d ,rare the peak areas of the allele of the donor and the recip-

ient, respectively. The sensitivity coefficient (partial derivative), for each allele is
@.chimerism/

@d
D r

.dCr/2 ;
@.chimerism/

@r
D d

.dCr/2 .

3.3 Measurement Uncertainty Assessment of [mean%Chim]

Let, u2
donor D (std. uncertainty of the donor allele)2, u2

recipient D (standard uncertainty
of the recipient allele)2; c2

donor D (peak area recipient mean)/(peak area recipient
mean C peak area donor mean)2: c2

recipient D (peak area donor mean)/(peak area
recipient mean C peak area donor mean)2: U 2 D c2

donor	u2
donor C c2

recipient	u2
recipient

(see Deldossi and Zappa 2009). Now that the uncertainty of each marker is known,
the uncertainty of the total chimerism is calculated as:

U (total chimerism) D

s
nP

1

U 2
i

n
where, i is the marker index and n is the num-

ber of markers used to calculate the specific chimerism. For example, if we use all
the ten markers to calculate the total chimerism, then U (total chimerism)D 0:021.
For the 95% confidence level .k D 2/, the total uncertainty of total chimerism is:
m˙ 0:042� total chimerism. If the total chimerism is 0.96, then the total chimerism
will be included in the following range (0.96, 1) with the higher limit not exceed-
ing 1. The [mean%Chim] is included in the following range (96,100), with the
higher limit not exceeding 100%. For more on such data analysis see Koltai (2009),
Chiang (2007) and Kenett and Zacks (1998).

4 Assessing PSE and Information Quality of ChimerTrack R�

Practical Statistical Efficiency (PSE) consists of assessing a statistical tool or project
with eight dimensions representing practical impact:

V{D}D value of the data actually collected.
V{M}D value of the statistical method employed.
V{P}D value of the problem to be solved.
V{PS}D value of the problem actually solved.
P{S}D probability that the problem actually gets solved.
P{I}D probability the solution is actually implemented.
T{I}D time the solution stays implemented.
E{R}D expected number of replications.
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The overall PSE is assesses by a 1–5 scale (“1” very low, “5” very high) on
each dimension and multiplying the individual scores (Kenett 2007) The PSE of
the measurement uncertainty project present in this paper has been assessed as
187,500, a very high number. This reflects on the importance of this work, in par-
ticular because of the life critical aspects of the ChimerTrack R� decision support
system.

Information Quality (InfoQ) has been proposed as a complement to data quality
and analysis quality. InfoQ is context dependent and basically considers if the right
information is provided to the right decision maker, at the right time and in the right
way. Information Quality consists of eight components:

� Data resolution
� Data structure
� Data integration
� Temporal Relevance
� Generalization
� Chronology of Data and Goal
� Concept Operationalization
� Communication

ChimerTrack R� has a very high InfoQ potential. It provides critical data to
decision makers in a timely and effective way. A more in-depth analysis of
ChimerTrack R� InfoQ will be presented in future work. Both PSE and InfoQ
are designed to bring “the big picture” to the technical analysis (see Kenett and
Shmueli 2009).

5 Summary and Conclusions

The purpose of this work is to estimate the uncertainty of the ChimerTrack R� deci-
sion support system used by physicians in monitoring stem cell transplantations. It
presents an example complex measurement system with several constraints and cost
limitations The main steps we have covered in this case study are:

1. Map the measurement process.
2. Identify sources of data that are relevant for uncertainty measurement.
3. Plan the statistical analysis strategy.
4. Design experiments to complement existing data, where needed and where

possible.
5. Conduct statistical analysis and assess Practical Statistical Efficiency (PSE) and

Information Quality (InfoQ).
6. Present findings.

This six steps procedure is generic enough to be applicable in a variety of
applications in medicine and beyond.
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Satisfaction, Loyalty and WOM
in Dental Care Sector

Paolo Mariani and Emma Zavarrone

Abstract We propose two different measures of the dental care industry: (a) BALG
matrix, a new instrument to measure patient loyalty and its extent; (b) SERVQUAL
based approach to measure patient satisfaction. Further investigation concerns the
link between patient satisfaction and loyalty. The results prove that patient loyalty
in the dental care industry is similar to consumer behaviour in all the other B2B
and B2C services and furthermore, the results highlight low dependency of patient
satisfaction on loyalty.

1 Introduction

Concepts such as satisfaction, loyalty, acquisition and retention represent CRM
(Customer Relationship Management) key strategies which are becoming increas-
ingly common within B2B (Business to Business) and B2C (Business to Consumer)
markets; and their comprehension, measurement and aware management are key
factors of success (Oliveira Lima 2009). Nonetheless, the processes of activating
retention and acquisition are sometimes impossible as either the competencies or
the financial efforts they both require can be unaffordable. Retention, for exam-
ple intended as keeping communication open with customers can be difficult to
achieve as it requires effective programming to receive and respond to complaints,
to develop long-term relationships by meeting their changing needs. An acquisition
strategy implies monitoring of different acquisition channels (direct mail, telephone
solicitation, etc.). The creation of retention and acquisition programs in the dental
care industry is under researched and made difficult by the characteristics of the
service itself and by effective fear of the dentistry. For these reasons, we only focus
our research on the strategic tools for measuring: patient satisfaction and loyalty.

The remainder of the paper is organized as follows: Sect. 2 deals with loy-
alty concept and content; Sect. 3 examines patient satisfaction; Sect. 4 illustrates
the hypotheses of our approach and the related measures; Sect. 5 presents a first
application of the suggested methodology.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_19, c� Springer-Verlag Berlin Heidelberg 2011
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2 Patient Loyalty

Loyalty is not a straightforward construct and academics are still searching for the
most suitable approaches (Bolton et al. 2000). Over the past 30 years, academics
have debated loyalty and its core issue, dimension and measurement of the con-
cept. Jacoby and Chestnut (1978) explored the psychological meaning of loyalty,
drawing attention to the idea that repeated purchase by itself was not a reliable
signal of loyalty, but just a component. Adopting the same approach Gremler and
Brown (1996) conceive loyalty as consisting of at least four dimensions, which the
authors synthesise into the following definition: loyalty is “the degree to which a
customer exhibits repeat purchasing behavior from a service provider, possesses a
positive attitudinal disposition toward the provider, and considers using only this
provider when a need for this service arises” which introduces to the framework
developed by Oliver (1999) which introduces the framework developed by Oliver
(1999) which extends the notion of incorporating repeated purchase and divides
loyalty into three dimensions: cognitive, affective or attitudinal and conative or
behavioral. The identified markers for the three dimensions are: price and service
features for cognitive loyalty; repeated purchase for behavioral loyalty and positive
word of mouth (WOM) for attitudinal loyalty. In detail, positive word-of-mouth is a
common approach to loyalty conceptualization. Loyal customers become an advo-
cate for the service (Payne 1993). Following Butcher et al. (2001) positive WOM
can be analyzed from different points of view:

– Providing positive word-of-mouth (Zeithaml et al. 1996, Andreassen and
Lindestad 1998).

– Recommending the service to others (Stum and Thiry 1991, Fisk et al. 1990).
– Encouraging others to use the service (Kingstrom 1983, Bettencourt and Brown

1997).
– Defending the service provider’s virtues (Kingstrom 1983).

Once attitudinal and behavioral loyalty measures are gathered researcher may
respect the dimensionality of loyalty treating the two variables as separate constructs
and using them to categorise the loyalty forms proposed by Baldinger and Rubinson
(1996) and shown in Fig. 1. While a satisfied customer is merely a passive recipient
of service the loyal customer feels a positive connection to the service provider
according McGarry (1995), thus loyal customers become active ambassadors for
the business (Butcher et al. 2001).

3 Patient Satisfaction

The concept of patient satisfaction cannot be considered separately from that of
service quality, as demonstrated by Iacobucci (1995). However, it has been proved
that patients’ perceptions frequently differ from those of doctors, and that doctors
frequently misperceive their patients’ perceptions (Brown and Payne 1986). Thus,
the provision of dental care which is technically correct from a dentist’s point of



Satisfaction, Loyalty and WOM in Dental Care Sector 167

B 

e 

h 

a 

v 

i 

o 

u 

r 

a 

l

Low

Low Moderate

Vulnerable

Prospects

Real
Loyals

Attitudinal

High

Moderate

High

Fig. 1 Behavioral attitudinal loyalty matrix

view, but is provided in a manner which is less than desirable to the patient and thus
may provoke a low patient evaluation(s) of the service. This could affect patient
satisfaction and, consequently loyalty. The causes which drive satisfaction have been
widely studied in literature for the last 20 years; several and very complex aspects
have been examined from correctly identifying the concept to measuring it.

Satisfaction can certainly be defined a cross-sectional dimension and it plays
a central role in the study of customer segmentation. The concept of satisfaction
analysed with reference to patients can be synthesised by the definition of Keegan
et al. (1989): “: : : patient satisfaction is an attitude – a person’s general orienta-
tion towards a total experience of health care. Satisfaction comprises both cognitive
and emotional facets and relates to previous experiences, expectations and social
networks”. According to authors, cognitive and emotional aspects should be made
operative and compared to perceptions, as proposed by Oliver’s contribution (1999),
well known as the disconfirmation paradigm. This paradigm is still up-to-date,
although several measurement difficulties exist, especially with reference to quanti-
fying expectations. For this reason, the main methods proposed rely on appositely
created scales which aim at overcoming the limit of expectations. The present work
follows this approach as well, therefore expectations are not directly measured, even
though they are linked to patients’ evaluations on the different aspects of the service.

4 Hypothesis and Measures

4.1 Hypothesis

The model moves from considering that satisfaction and loyalty, have to be inves-
tigated from a subjective perspective given their nature In detail we hypothesize
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that a relationship exists between attitudinal and behavioral loyalty in the dental
care industry and this can be used to create customer strategies’ for each group of
patients. Thus, we disentangle patient loyalty in the dental care industry from the
first two definitions and we only consider repeated purchase as a proxy of behav-
ioral loyalty and positive WOM and referral as an attitudinal aspect. Thus, the
proposed tool following the indication of Baldinger and Rubinson (1996) reduces
their dimensions in four clusters. This matrix is defined as BALG (Fig. 2).

4.2 Measures

The measures proposed in this work derive from the following three steps:

– We operationalize the attitudinal and behavioral concept;
– We deal with quantifying patient satisfaction through a new approach;
– We use these new measures to analyse the relationship between satisfaction and

loyalty.

In the first step we select only the repeated purchase and translate it in the
dental industry as the return as proxy of behavioral loyalty (B). This measure is
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dichotomised as 1 to indicate patients who returned after the first year and 0 the
patients who returned during the year. For the attitudinal loyalty we suggest the
use of two items: firstly: “How Did You Learn About This Dental Office?” and
the answer is codified in a multiple choice leaves from family to internet; the sec-
ond one is “Would you recommend this dental office to other individuals?” with
dichotomous answers. We then construct a new variable based on these two items
in which we can measure the positive WOM with family referral (code 1) and the
negative WOM with generic referral (code 0). Then we construct the BALG matrix
from the two variables.

In the second step, we use a modified approach based on SERVQUAL to mea-
sure patient satisfaction. The measure proposed for patient satisfaction recalls the
SERVQUAL scheme for the gaps mode only. The measurement components of the
model differ as we include the quantification of the degree of agreement among
n patients about m service aspects, their importance and their weight, obviously,
provided by the dentist’s judgment. According to this approach, patient satisfac-
tion (PS) derives from two components: overall evaluation of service delivered (PE)
and the importance of the service delivered (IP) measured on n patients for the dis-
tinct m dimensions of the service. This gap is then corrected for a system of weights
(W), representing the dentist’s perspective. This system is obtained through a Delphi
analysis. In this framework, we can define the patient satisfaction index as follows:

PSI D
mX

j D1

DjWj (1)

D D
nX

iD1

.PEi � IPi / (2)

PEi : overall judgment on service delivered;
IPi : importance of service delivered.
To verify the hypothesis, we proceeded as follows: identification of the patient

satisfaction aspects (focus group on eight patients and five doctors) patient sat-
isfaction aspects formulation of a questionnaire covering the various dimensions
(Tangible Elements, Reception, Dental Treatment, Dental Hygienist, Dental Assis-
tant, Dentist Surgeon); questionnaire pre-test (analysis on validity and reliability
with test and retest method); reformulation of some items; formulation the final ver-
sion of the questionnaire. Questions were formulated following the gap scheme, i.e.,
each question asked provided two different scores on a scale (from 1 to 6) regarding
either different aspects of the dimension investigated or its importance. The result
of this long process provides the patient satisfaction index (PSI).

5 Application and Main Findings

A random sample of 104 patients was selected in a dental care centre in Milan during
the first quarter 2007. They were provided with the ad hoc questionnaire which
was returned by 84% of patients, but some questionnaire presented partial missing.
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41% of the respondents had been a client for less than a year with an average
age ranging from 25 to 59. The analysis can be divided in two parts: the first one
regards the application of BALG matrix while the second one shows the PSI and the
relationship between loyalty and patient satisfaction. The BALG matrix is shown
in Fig. 3, with the size of each clusters. To obtain a measure of association from
Table 1, we use the well-known Phi (SPSS 16.0 User’s Guide 2007), a measure of
the degree of association between two binary variables. This measure is similar to
the correlation coefficient in its interpretation:

Phi D ad � bcp
.aC b/ 	 .aC c/ 	 .c C d/ 	 .b C d/ (3)

The BALG matrix highlights a low positive association (Phi coefficient equals
0.186). This effect is masked by age. In fact, we compute the BALG matrix for
each quarter of age and thus we argue that association is more intense for adult and
older patients whose Phi value is equal to 0.231 and 0.344, respectively. This result
shows that patient loyalty increases with experienced of special care. Moreover, we
can conclude that BALG increases as patient age increases. The second part of the
study regards the analysis of the proxy of satisfaction that outlines very high average
scores. The means for all the six sections of the questionnaire respectively, are 5.93,
5.97, 6.00, 5.97, 5.98, 6.00 with very low values of the coefficient of variation. Over-
all, the comparison between the BALG matrix clusters and PSI score (Fig. 4) shows
high variability as confirmed by the normalized coefficient of variation (denoted
by cv�). To verify a possible association between patient satisfaction and attitudinal
and behavioural loyalty we dichotomised the above mentioned patient satisfaction
score for each six aspects after comparison with a single area of the BALG matrix
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Table 1 PS on reception and
behavioral loyalty

PS reception Total

Low High
B Low 7 4 11

High 20 47 67

Total 67 21 78

(Phi D 0:247 sign. 0.029) (Table 1). Thus, a precise result concerning the nature of
the relationship between loyalty and satisfaction cannot be provided as it depends
on the service aspects like any other industry.

Acknowledgements We thank Drs. Elio Marino and John Kois for permission to use their data.
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Controlled Calibration in Presence
of Clustered Measures

Silvia Salini and Nadia Solaro

Abstract In the context of statistical controlled calibration we introduce the ‘multi-
level calibration estimator’ in order to account for clustered measurements. To tackle
this issue more closely, results from a simulation study will be extensively discussed.
Finally, an application from a building industry will be presented.

1 Introduction

Statistical calibration is a set of procedures developed to recover a true, unknown
measure from a single measure or a plurality of approximated measures available
for the same item and derived from alternative measuring instruments. The literature
on statistical calibration is extremely rich. Many different approaches have been
developed over the years. A comprehensive monograph is given by Brown (1993),
whilst an excellent review on these methods along with the debate that throughout
had surrounding them is contained in Osborne (1991).

The most popular approach, though not without criticism (Brown 1993; Osborne
1991), is the classical calibration, perhaps for its simplicity. Let X and Y be two
different measurements for the same item, the first more accurate but also more
expensive to obtain than the second. Classical calibration relies on the two follow-
ing steps. At calibration step, a so-called training set is formed by randomly drawing
n items on which measures .xi ; yi / are taken, (i D 1; : : : ; n). This is the calibration
experiment. In particular, in controlled calibration the x-values are kept fixed during
the experiment. Once these measures are obtained, the calibration model express-
ing the relationship linking Y with X can be estimated. Usually, a linear model is
involved: Yi D b0Cb1xiC"i , for all i , where the model errors "i are assumed i.i.d.
N.0; �2/. Parameter estimates Ob0 and Ob1 are then obtained through the OLS method.
At prediction step, where y-values only are collected, the values of X will be pre-
dicted by relying on the model estimated during the calibration step. Formally, let
Y0 be a new observation on Y and � the unknown value of X . The classical cali-

bration estimator O�C for � is: O�C D Y0� Ob0Ob1

, (see Brown 1993). Under normal errors

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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"i , O�C is the maximum likelihood (ML) estimator of �. Asymptotic properties derive
then straightforwardly.

Recently, certain authors have shown that in presence of outliers or groups in data
the classical estimator generally fails to match the expected performance, (e.g. yield-
ing inefficient estimates). Several methods have been proposed to solve the problem
regarding the influence of outliers (e.g. Cheng and Van Ness 1997). By dealing with
data that include either groups or just the outliers, Salini (2006) compared the per-
formance of the classical estimator with the two estimators derived by replacing in
its formula, respectively, Huber’s and Tukey’s robust estimates for b0 and b1. Even
if robust estimators perform better in the presence of outliers, it has been shown that
their performance is similar to the classical estimator if measures are clustered.

2 The Multilevel Calibration Estimator and its Forerunner

In order to tackle the problem of clustered measures we propose to use a multi-
level model at calibration step, thus allowing within- and between-groups linear
relations linking Y with X to be represented in a unified formulation. At predic-
tion step, we introduce the ‘multilevel calibration estimator’ (MLVCE), so defined
in order to include the cluster information of a new item in a simple, straight way.
Assume that data follow a two-level hierarchy, where J is the number of groups or
clusters (level-2 units) each including nj items (level-1 units), (j D 1; : : : ; J ). Let
Y and X be two measurements jointly taken on level-1 units. Given that here two
measurements only are involved (univariate calibration), we can simply rely on a
random–slopes model:

Yij D ˇ0j C ˇ1jxij C "ij ; i D 1; : : : ; nj I j D 1; : : : ; J; (1)

where the level-1 errors "ij are i.i.d. N.0; �2/, and ˇ0j and ˇ1j are the random
parameters expressing different between-groups linear relationships of Y and X .
Such parameters can be explicitly modeled by level-2 relations. In this work we are
going to consider:

ˇ0j D 
00 C U0j and: ˇ1j D 
10 C U1j ; (2)

for all j . Another example is: ˇ0j D 
00C
01wj CU0j and: ˇ1j D 
10C
11wj C
U1j , where W denotes a possibly available level-2 measurement, i.e. a measure-
ment regarding the clusters and not directly the items within clusters. Parameters

 appearing in formulas (2) are said fixed effects, while the U s are called random
effects. Usually, vectors Uj D .U0j ; U1j /

0 are i.i.d. N2.0, T/, for all j , and are
independent of level-1 errors. As known, all the parameters in the model (1)–(2)
can be estimated through the ML approach. For the variance–covariance compo-
nents �2 and �lm in matrix T, (l; m D 0; 1), full ML or restricted ML estimators
(REML) can be derived (see e.g. Pinheiro and Bates 2000). Finally, the best linear
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unbiased predictors of the random effects U are obtained as empirical Bayes esti-
mators (see Pinheiro and Bates 2000). For further details see Goldstein (1995) and
Snijders and Bosker (1999).

At prediction step, the main concern is to predict the value � of X of a new
additional item, not included in the initial dataset, by using its cluster information
and knowing its measure Y . We denote this new observation with Y0j � in order
to stress the fact that it derives from group j �, which is one of the J observed
groups. Then, to predict the corresponding value �j � we rely on the MLVCE, here
indicated with O�m

j � . Under the relations (2), and conditionally to the calibration step,
it is given by:

O�m
j � D Y0j � � O
00 � Ou0j �

O
10 C Ou1j �

; (3)

where Ou in (3) indicates the empirical Bayes prediction for the random effect U in
the group j �. From a theoretical point of view, the estimator (3) could be further
generalized to embody more complex level-2 relations than (2). We will not however
dissect such topic here. It will be more exhaustively treated elsewhere.

The proposal we have just described draws its basic idea from Oman’s approach
for calibrating in the presence of repeated measurements (Oman 1998), the level-2
units consisting of individuals to be measured and the level-1 units of measures
taken repeatedly on them. Being repeated measures an issue regarding clustered
data, the statistical tools employed here are very similar to Oman’s. In any case,
our proposal differs from Oman’s in its essence at both steps. At calibration step,
Oman actually introduces a random–slopes model of the same form given in (1) and
under the same assumptions. However, by formulating the problem without mak-
ing explicit reference to level-2 relations, he excludes, in principle, the use of more
complex level-2 relations than (2) and then the possibility to introduce level-2 mea-
surements to explain between-groups differences. At prediction step, Oman assumes
that a measure Y0 is available for a new individual. This is like having a new cluster,
instead of a new item that just belongs to a given cluster. Oman then defines his clas-
sical estimator (OCE) for the value � of this new individual conditionally to the ML

fixed-effects estimates O
00 and O
10 computed at the calibration step: O�om
C D Y0� O�00

O�10
.

Not disposing of many additional information, his prediction is therefore based on
population-averaged parameters. Oman admits that the performance of the OCE can
be improved in terms of mean squared error. Thus, he brings in two further varia-
tions. The first is the contraction estimator, derived by minimizing E.c O�om

C � �/2
over c. The second is the ML estimator of � obtained from: O�om

C � N.�;Var. O�om
C //,

given O
00 and O
10. For all technical details see Sect. 3 by Oman (1998).
Further remarks about the comparison between our approach and Oman’s should

be made. Firstly, in the form here proposed the MLVCE is based on a double con-
ditioning procedure. In addition to the calibration step, there is also a conditioning
on the knowledge of the group. Hence, the variance of the MLVCE would involve
random-effect predictions as given terms. This point is not trivial. To account for
the whole uncertainty occurring at the prediction step, (i.e. the cluster membership
of the item that is about to appear), one should consider that formula (3) contains
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the ratio of two random variables, whose variance cannot be derived in a closed
form. This problem, however, is beyond the scope of this current study, where the
primary concern is to start tackling the problem through explorative ways. Secondly,
the MLVCE (3) could be also viewed as an improvement of the performance of the
OCE when the group membership of the new item is known. In his aforementioned
work, Oman actually introduces a further variant of the OCE to include additional
information about Y0, if available (Oman 1998, p. 443). Viewed in our framework, it
looks like a method to embody the group membership in the prediction procedure.
However, our approach is substantially different. All the information available on
the group j � are used at the calibration step to produce the parameter estimates of
the model (1) and (2), which are subsequently used to compute the multilevel esti-
mate (3). In Oman instead, being the additional information possibly available only
when a new individual appears, these are incorporated in the estimation process at
the prediction step, thus adjusting Oman’s classical estimate a posteriori.

3 The Simulation Study

In order to give a first insight into the main statistical properties of the MLVCE (3),
we performed an extensive simulation study involving the model (1) and (2) under
various sets of experimental conditions. We were also interested in comparing the
performance of the MLVCE with the other estimators, namely classical, Oman’s clas-
sical, contraction and ML estimators. In addition, we introduce the ‘within-group

classical calibration estimator’ (WGCE), simply given by: O�Cj
D Y0� Ob0j

Ob1j

, where Ob0j

and Ob1j are the OLS estimates for parameters b0j and b1j of the J linear regressions
separately fitted within each group, (j D 1; : : : ; J ).

Our empirical experience on calibration data prompted us to keep two main
features directly in control, i.e. within-group correlation ofX and Y along with vari-
ances and covariances of random effects. While the first issue is deeply–rooted in
statistical calibration, representing how reliable the measure Y is for X , the second
directly stems from the MLVCE including random–effects predictions. Therefore,
to yield data that could reflect the above aspects, we obtained pseudo-observations
y�

ij forming variable Y � as balanced data (i.e. nj D n;8j ) through equation (1)
re-expressed as: y�

ij D ˇ�
0j C ˇ�

1jx
�
ij C !j "

�
ij , for all i; j , where !j is a strictly

positive weight introduced to guarantee a desired level of correlation of X and
Y within group j and which requires to be determined accordingly, as it will be
shown soon. Firstly, variables X� and "� were formed, respectively, by a priori
assigning nJ values x�

ij , with common mean and variance (�2
X� ) over groups, and

by randomly drawing nJ values "�
ij from a N.0; �2

"�/, �2
"� fixed and common over

groups. Parameters ˇ�
0j and ˇ�

1j were computed from level-2 equations (2) after
generating J random-effects values u�

0j and u�
1j from a N2.0;T/, T fixed, and

with 
00 and 
10 arbitrarily chosen. Then, let Y �
j and X�

j be the set of values
of Y � and X�, respectively, pertaining to group j . Given that in each group it
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Table 1 Simulation study: target values and experimental conditions

� Target values Fixed effects: 
00 D 15, 
10 D 3; Residual variance: �2"� D 20;
Variable X : nJ values x�

ij from N.30; 40/ and kept fixed during simulations

� Experimental conditions (with fixed J D 10, n D 100)
1st analysis REV (Random-Effects Var.) & WCC (Within-group Corr. Coeff.); �01 D 0

REV: (a) �00 D 10, �11 D 10; (b) �00 D 10, �11 D 5; (c) �00 D 10, �11 D 1;
(d) �00 D 100, �11 D 1

WCC: (A) �� D 0:80; (B) �� D 0:85; (C) �� D 0:90; (D) �� D 0:95

2nd analysis REV & RECC (Random-Effects Correlation Coefficient); �� D 0:85

REV: cases (a)–(d) RECC: (I) �01 D 0:4; (II) �01 D 0:9

holds: Var.Y �
j / D �2

Y �

j

D ˇ2�
1j �

2
X� C !2

j �
2
"� , and: Cov.X�

j ; Y
�

j / D ˇ�
1j�

2
X� , the

correlation coefficient �j of X�
j and Y �

j is given by: �j D ˇ�
1j�X�=�Y �

j
, from

which straight computations lead to the following formula regarding the weight:

!j D
q
.1 � �2

j /=�
2
j

�X�

�"�

abs .ˇ�
1j /, for all j , where the parameters �j , �2

X� and

�2
"� can be fixed at a desired level. As it is apparent, weights may introduce a cer-

tain degree of heteroskedasticity at level-1. Although this might be considered as
potentially undesirable, working with different!j brings the advantage, at the same
time, of keeping �j fixed to a nominal value �� equal for all groups, and allowing
the random–effects variance–covariance matrix T to vary.

At this point, to reach our objectives we divided the simulation study into two dis-
tinct kinds of analyses. Table 1 resumes the experimental conditions along with the
target values we assumed without loss of generality. The first analysis is addressed
at evaluating the influence of random–effects variances in connection with within-
group correlation of X and Y . Random effects are here assumed to be uncorrelated.
In our experience, the performance of the MLVCE, if viewed in terms of prediction
error, may depend on the magnitude of the random slope variance (�11), or even on
its ratio with the random intercept variance (�00). This motivated our choice regard-
ing the variance values appearing in Table 1 under the acronym REV. In particular,
we considered four different couples of values (from (a) to (d), Table 1) such that
the ratio of variances �11

�00
is: 1; 0:5; 0:1; 0:01, respectively. As for the within-group

correlation coefficient of X and Y (WCC), four different levels were considered
(from moderately high (A) to very high (D), Table 1). We confined our attention
to strongly linear relationships representing the implicit, fundamental condition for
resorting to a calibration approach. The second analysis was conceived to study in
depth the role of the random–effects variance–covariance structure. In addition to
the four cases (a)–(d) concerning variances, a positive correlation of the random
effects (�01) was introduced (intermediate level (I) and high level (II), Table 1),
with the WCC kept fixed. Both analyses were carried out by constantly keeping
the group size n and the group number J fixed to: J D 10 and n D 100, in that
this represents one of the situations we had frequently encountered in calibration
problems. Nonetheless, we are going to undertake more in-depth inspections about



178 S. Salini and N. Solaro

the sample size role in a future work. Finally, K D 1;000 simulation runs were
carried out for each combination of the experimental conditions. We implemented
all the simulation routines in R, vs. 2.9.0. Parameters in the model (1) and (2)
were estimated through full ML and REML procedures in the library ‘nlme’ by
Pinheiro et al. (2011). Next, we evaluated the performance of the six estimators
in terms of both estimation error and prediction error. Being the prediction error
more in line with calibration intents, the attention is here confined only to it. Pre-
diction error was evaluated through the Root Mean Squared Error of Prediction:

RMSEP D
q

PRESS
df K

D
rPK

kD1

PN
lD1. O	k.l/�	l /2

df K
, where PRESS, i.e. the predicted-

residual-sum-of-squares statistic, is determined through a cross-validation process
with leave-one-out jackknife (Shiao and Tu 1995). The RMSEP is adjusted for the
degrees of freedom (df ), they being different depending on the estimator type.
In particular: df D N � 1 � Cestim., where N D nJ and Cestim. is given by:
Cclass. D Coman D 2 for classical and Oman’s estimators; Cwithin-gr. D 2J for the
WGCE; Cmultilev. D J C 1 for the MLVCE, according to the method for counting
degrees of freedom adopted by Pinheiro and Bates (2000, p. 91).

Simulation Results Before discussing simulation results, two remarks should
be made. Firstly, a certain number of non-convergences occurred during the cross-
validation process when estimating the parameters in model (1) and (2). The main
problem was the singularity of the hessian matrix in the optimization of the log-
likelihood function at the calibration step. The RMSEP formula was then modified
accordingly, by substituting: df K with:

PK
k dfk D

PK
k .ck � Cestim./, where ck

expresses the number of convergences at the k-th run (ck � N � 1, 8k). Sec-
ondly, a stability analysis of cross-validation results made through the monitoring
of the statistic RMSEPk , i.e. the RMSEP computed up to the k-th run for all k,
revealed that in all estimators a small amount of outlying estimates were present.
This may depend on potential anomalies generated in the data. Then, in order to
avoid wrong conclusions we decided to discard extreme PRESS values. Under the
same experimental conditions and for each estimator, we considered a PRESS devia-
tion p as extreme if it is outside the interval Œp0:25 � 3IQR; p0:75 C 3IQR�, with:
IQR D p0:75 � p0:25, i.e. the interquartile range of PRESS deviations. Having
never detected an ‘extremely small’ p, only values greater than p0:75 C 3IQR were
removed.

Part A of Table 2 reports the RMSEP results computed for the MLVCE (3) for
both the analyses, after removing extreme PRESS values. As expected, in the first
analysis (left-hand table) we note that for each REV case the RMSEP tends to reduce
monotonically, while the WCC increases. A similar, if a bit slighter tendency, can
be observed for each WCC as well, when the ratio �11

�00
decreases from 1 to 0:01.

The second analysis (right-hand table) shares this last feature as well. However, the
effect of the random–effects correlation coefficient (RECC) is not so evident.

The WGCE, whose results are omitted here because of the limited space, attains
RMSEP values that are constantly slightly smaller than the MLVCE. However, such
a difference appears to cancel out as the ratio �11

�00
decreases from 1 to 0:01. This
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Table 2 RMSEP results for the various calibration estimators
1ST ANALYSIS: WCC 2ND ANALYSIS: RECC

0.80 0.85 0.90 0.95 0 0.4 0.9

Part A: Multilevel calibration estimator (REML)
REV case (a) 4:394 3:636 2:851 1:940 3:636 3:625 3:623

REV case (b) 4:386 3:623 2:841 1:934 3:623 3:622 3:612

REV case (c) 4:335 3:596 2:810 1:908 3:596 3:600 3:610

REV case (d) 4:334 3:590 2:804 1:908 3:590 3:586 3:590

Part B: The other estimators in REV case (d)
Classical 9:970 9:694 9:370 9:225 9:694 10:534 11:833

Oman’s classical 9:936 9:648 9:280 9:183 9:648 10:605 11:768

Oman’s contraction 9:733 9:488 9:031 8:901 9:488 10:397 11:657

Oman’s ML 9:541 9:290 8:872 8:736 9:290 10:124 11:246

seems to us a very interesting result, because the MLVCE turned out to perform
similarly to the within-group estimator, even though with J � 1 parameters less.

Part B of Table 2 displays RMSEP results for the classical and Oman’s estima-
tors, respectively, when they are seen in one of their ‘best’ performances, which
corresponds to the REV case (d). Several points are worth noting. In both analyses
Oman’s ML estimator attains the smallest RMSEP values under all the experimental
conditions. Furthermore, in the first analysis all the estimators exhibit the same ten-
dency highlighted in the multilevel case, so that the RMSEP tends to decrease as the
WCC increases. As for the second analysis, the RMSEP tends to increase with the
increasing of the RECC. This is a new aspect, occurring in neither the MLVCE nor
the within-group estimator. Results for the other REV cases (a)–(c) are here omitted,
the trends being similar to Table 2. The only difference lies in the prediction error
magnitude, which is for both analyses approximately in the order of 17–18 in REV
case (a), 15–16 in case (b) and very similar to Table 2, Part B, in case (c).

Finally, while the MLVCE has shown a satisfactory performance, it has proved
to be particularly sensitive to the presence of very anomalous groups. Since these
(few) groups seem mostly defined by a much lower variability of Y than the others
in the same dataset, we figure they were engendered by the weights !j adopted
for data generation. Even though we argue that such situations are far from being
representative of real calibration settings, they would undoubtedly deserve more
in-depth inspections than those practicable in this present context.

4 Application: Concrete Blocks Data

Concrete is a construction material composed of cement along with other cementi-
tious materials, such as fly ash and slag cement, coarse aggregates, water, and chem-
ical admixtures. One of the main properties of the concrete is strength. In general,
its measuring gives rise to a calibration problem, since the standard method through
which determining the exact grade of strength X is destructive. The alternative
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method giving measures Y consists of using a sclerometer, a non-destructive instru-
ment for empirical tests of resistance to pressure.

As a brief illustration, we present the analyses carried out on concrete blocks
data from a building industry. These are given in J D 24 groups and n D 50

within-group blocks, where the groups were formed by combining all the modalities
of: A D number of days passed from the production to the measurement (7 days,
28 days), B D production temperature (5ı–10ıC, 20ıC); C D concrete typology
(six in all).

In order to estimate the unknown, true strength � of a new block by consid-
ering its measure Y0 obtained from the sclerometer, we have employed all the
estimators described in Sects. 1–3. Then, we have compared them in terms of the
RMSEP statistic with K D 1 and N D 1;200. The multilevel calibration estima-
tor, with REML estimates of variance components, performs better than the others,
having together with the within-group estimator, the lowest RMSEP value (Multi-
level D 2:032, df D 1;174; Within-group D 2:029, df D 1;151; Classical D 3:483,
df D 1;197; Oman’s classical D 4:954, df D 1;197; Oman’s contraction D 4:954,
df D 1;197; Oman’s MLD 4:975, df D 1;197).

5 Concluding Remarks

In the context of clustered measures, we have introduced the multilevel calibra-
tion estimator (MLVCE) for directly including the group membership information
of an item requiring to be measured. Our approach substantially differs from
the one Oman developed for repeated measurements. The MLVCE is based on
cluster-specific parameters, which allow the available information about the cluster
membership to be simply conveyed into the prediction process. Oman’s estimators
are based on population-averaged parameters, i.e. fixed effects, that should help
provide the best possible prediction of a measure if nothing was known about it.
Otherwise our estimator includes random–effects predictions in its variance, with
respect to Oman’s estimators. In future we should explore this very aspect.

A simulation study we carried out has highlighted that the MLVCE can per-
form very satisfactorily under specific sets of experimental conditions, in particular
high levels of within-group correlation coefficient of the two measures. Neverthe-
less, several points would actually require more thorough examinations. The role
of variance–covariance structure of random effects along with sample size should
still be examined closely. Statistical properties of the MLVCE, for especially defining
confidence limits, are still an open matter, which we are working on at present.
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Latent Ties Identification in Inter-Firms
Social Networks

Patrizia Ameli, Federico Niccolini, and Francesco Palumbo

Abstract Social networks are usually analyzed through manifest variables. How-
ever there are social latent aspects that strongly qualify such networks. This paper
aims to propose a statistical methodology to identify latent variables in inter-firm
social networks. A multidimensional scaling technique is proposed to measure a
latent variable as a combination of an appropriate set of two or more manifest rela-
tional aspects. This method, tested on an inter-firm social network in the Marche
region (Italy), it is a new way to grasp social aspect with quantitative tools that
could be implemented under several different conditions, using also other variables.

1 Introduction

In the last few years, the synergic integration between the organizational and sta-
tistical disciplines has been producing relevant scientific outputs. However this
cross-disciplinary synergy can bring to new important evolutions, especially in the
Social Network Analysis (SNA).

SNA studies the social resources exchange between actors and their relationships
within a social system (Wasserman and Faust 1994). Ties measurement represents
a relevant concern of SNA. Some authors postulate the existence of a latent ‘social
space’ within which the presence of a tie between two actors is determined as func-
tion of some measures of [dis]similarity between the latent space positions of these
actors. In this direction Leydesdorff et al. (2008) and Okada (2010) propose to use
scaling models to determine the actors latent space positions and consequently the
ties between actors.

In this framework, the paper aims to propose a statistical procedure to study ties
in the latent space positions where actors are firms and ties are function of two or
more measures of their relationships (Hoff et al. 2002).

As matter of fact, in the organizational science, when focusing on inter-firm
social network many authors remark the complex nature of the social relationships.
Grandori and Soda (1995) define the inter-firm network as ‘a mode of regulating
interdependence between firms, which is different from the aggregation of these

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_21, c� Springer-Verlag Berlin Heidelberg 2011
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units within a single firm and from coordination through market signals, and which
is based on a co-operative game with partner-specific communication’. Particularly,
social inter-firm networks can be defined as long term informal relationships among
two or more organizations.

Nowadays in the emerging inter-organizational architectures, such as learn-
ing and visionary networks, relationships are built and planned more focusing on
social basis instead than on formal agreements. In this context, partnerships’ social
latent aspects become the main ground for knowledge sharing and for long term
performance.

Members of inter-firms social networks aim at sharing core values, knowledge,
and, in some cases, they share also a vision. Topics like social capital, cohesiveness,
and the embeddedness have a strong social component, that is not directly measur-
able but that can be identified through the observation of their manifest variables.
Consequently the key research question concern the possibility to better study and
quantify deep latent aspects of a social network, using manifest variables.

In social inter-firms networks typical examples of manifest measures are trust,
frequency of exchanges among parties, and reciprocity (Jones et al. 1997). Many
scholars indicate trust as fundamental ingredient for every typology of network or
alliance and as facilitator of knowledge transmission (Nonaka 1991) and vision shar-
ing. To have trust relationship is necessary to built it in a daily behavior (Lomi 1997,
p. 214).

The frequency concerns how often specific parties exchange with one another
(Jones et al. 1997, p. 917). Frequency is important for three reasons. First, frequency
facilitates transferring tacit knowledge, second, frequent interactions establish the
conditions for relational and structural embeddedness, which provide the foundation
for social mechanisms to adapt, coordinate, and safeguard exchanges effectively and
third, frequent interactions provide cost efficiency in using specialized governance
structures (Williamson 1985, p. 60; Jones et al. 1997, p. 917).

Reciprocity ‘transforms a unilateral supply relationship into a bilateral one’
(Williamson 1985, p. 191; Jones et al. 1997, p. 922) and creates the perception
of a similar ‘destiny’ with greater ‘mutual interest’ (Williamson 1985, p. 155; Jones
et al. 1997, p. 922).

This paper proposes that the latent space can be defined as ‘basic social relational
embeddedness’, and it is obtained as a function of the three chosen manifest vari-
ables: trust, frequency of exchanges among parties, and reciprocity. The basic social
embeddedness is a component of the strength of the tie (Granovetter 1973), that is
especially important for knowledge and vision sharing (Uzzi 1999).

The basic social embeddedness is identified in this work as the core part of
the ‘relational embeddedness’: a component of the strength of the tie (Granovetter
1973), that is especially important for knowledge and vision sharing (Uzzi 1999).
Relational embeddedness is an indicant of the motivational aspect of tie strength
(Rindfleisch and Moorman 2001), essentially refers to the quality and depth of a
single dyadic tie, it is fundamental mechanism of social governance, and captures
the quality of dyadic exchanges and the behaviours exchange parties exhibit, such
as trust, confiding, and information sharing (Jones et al. 1997, p. 924).
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2 The Unique Social-Relational Variable

Scholars are familiar with the idea of latent variable in both organisational and
in behavioral sciences. Latent variables refer to concepts that cannot be directly
measured and are opposed to the observable variables. However, latent variables
may be defined on the basis of properly identified sets of observable variables, called
also manifest variables (Bartholomew 1987).

In the SNA framework, the network graphical visualization implies the iden-
tification of a metric space where actors and ties are represented. Generally the
strength of the ties are represented in terms of distance between two actors or/and
by the ties weight. In some cases suitable strength thresholds are defined: when
strengths are lower than the threshold, the corresponding tie is omitted. However, the
approach presented in the present paper assumes that ties are function of two or more
measures and they only exist in latent space and not otherwise (Hoff et al. 2002).

The proposed procedure can be summarized in the following steps: (a) according
to a set of two or more measures of relationships, actors are displayed in a latent
metric space; (b) ties between actors depend on the distances between them in the
latent (unobserved) space.

Formally we define the following data structure. Given a set of n statistical
units and K manifest measures (variables), the notation ıijk indicates the general
proximity measure between the statistical units i and j for the measure, which
are arranged in K asymmetric n � n matrices f�1; �2; : : : ; �k; : : : ; �Kg, where
.i; j / D 1; : : : ; n. We remember that ıijk D max; 8k and if i D j (diagonal ele-
ments), and that ıijk � 0 and the value 0 indicates absence of any relationship, by
definition.

The final aim of the paper is to identify and visualize ties in the latent space of
the inter-firm social network; from a technical point of view, the problem consists
in finding a good approximation of the 3-way proximity matrix by a n � n distance
matrix.

2.1 Multidimensional Scaling for Ties Identification

This section shortly presents the MultiDimensional Scaling (MDS) basic princi-
ples and then it motivates the choice of the PROXSCAL model with respect to other
scaling models. For sake of space, we do not go to deepen the PROXSCAL; inter-
ested readers can refer more specifically to Borg and Groenen (2005) for the MDS
foundations and to Meulman and Heiser (2001) for the PROXSCAL model, more
specifically.

The MDS aims at finding a configuration of n points into a p dimensional
space. Generally, p is set equal to 2 in order to get graphic representation of the
n points (Takane 2007). The scaling transformation of the proximity matrix has two
advantages: (1) to summarize different proximity measures into one single distance;
(2) to permit distances graphical representations into 2 and 3 dimensional spaces.
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Moreover, it is worth noticing that the transformed relationship measures into met-
ric measures can be displayed according to different approaches to visualize the
network.

In the simplest two dimensional case, whereK D 1, the MDS aims at defining a
function '.�/ such that:

'
�
ıij

� D d.xi ; xj /C �ij (1)

In other words, '.�/ indicates a function that maps the dissimilarities ıij into a metric
space, where the distance d.�/ (generally the Euclidean distance) is defined. The
quantity �ij indicates the residual.

Some alternative models have been proposed to deal with 3-Way data structures.
In this paper we refer to the INDividual SCALing (INDSCAL) model, and more
specifically to the PROXSCAL algorithm for 3Way dis(similarities) data structures.
INDSCAL model is also referred to as weighted Euclidean model. Starting from
K proximity matrices �1; �2; : : : ; �k ; : : : ; �K , INDSCAL minimizes the Stress
(squared Euclidean distances) defined by the following equation:

�.X1;X2; : : : ;Xk ; : : : ;XK/ D
X

k

X

i<j

�
ıijk � dij .GWk/

�2
; (2)

where G indicates the common space n � n matrix and Wk represents the generic
weighting matrix. The point coordinates are then defined as Xk D GWk and the
scaled distances as dij .Xk/.

Differently from INDISCAL, PROXSCAL minimizes Normalized Stress �n:

�n.X1;X2; : : : ;Xk; : : : ;XK/ D
P

k

P
i<j

�
ıijk � dij .Xk/

�2
P

k

P
i<j ı

2
ijk

: (3)

The main point in favor of PROXSCAL is that it works on the Euclidean distance
and not on the squared distances. Avoiding the square transformation, it prevents
putting more emphasis on large dissimilarities. The second, but not less important
point, is the possibility to consider asymmetric (dis)similarity matrices. However,
it is worth noticing that dissimilarity matrices are transformed in symmetric ones.
Alternative scaling models could be taken into account, and this surely represents
a research direction for future works. Last, the normalized stress is a relative mea-
sure that allows us to appreciate the overall quality of the solution and to make
comparisons among several models.

3 Empirical Evidence

This section presents the output obtained on a small real dataset. The case study is
an Italian inter-firms network in the Marche region (Ancona administrative district).
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Nexus can be defined as an ‘heritage network’ as well as their firms are all
located in a ‘heritage area’: a delimited territory (Vallesina) with a specific cul-
tural identity. Network membership needs to share some values (mainly coming
from the traditional farmers’ culture of that area). The whole network consists of 25
firms, operating in different and potentially integrated field of activities (automotive
and energy, consultancy, software house, clothing...), with a low level of reciprocal
competition among actors. Firms to be officially included in Nexus need to share a
collaborative mission, consequently relationships are mainly collaborative. Even if
some official activities are periodically organized (such as meetings), the network is
aimed to stimulate informal relationships and knowledge exchange among firms.

The latent space considered refers to the basic social embeddedness; the man-
ifest measures are: trust, frequency of exchanges among parties, and reciprocity.
The same questionnaire was given to a sample of eleven firms belonging to the net-
work; using a scale f0; 1; : : : ; 5g, respondents have evaluated their partners on trust,
frequency of exchanges, and reciprocity. For these three variables, each respondent
was asked to indicate her/his feeling with respect to other actors in the net: scores
indicate the measure of relationship measured on a non-linear similarity scale from
1 to 5. Higher values indicates high higher involvement degrees with other actors in
the net. By definition we assumed that the self evaluation is equal to 5.

Data have been arranged into a three-way data matrix. Each slice has dimension
11 � 11, and the first row/column refer to Gruppo Loccioni, which has been the
promoter of Nexus. Other firms are labelled with the capital letters ‘B, C, : : :’.

The matrix has been analyzed with the PROXSCAL procedure, and choosing a
three dimensional solution. Generally researcher prefer the two-dimensional solu-
tion because it permits to get good graphical representations. However, the aim of
the present paper is to visualize the scaled similarities using a network display.

In the following part of this section is summarized the PROXSCAL output of the
SPSS package. To be consistent with the paper general aim, the weighted Euclidean
model has been selected. This model defines the points co-ordinates in the common
space as a weighted sum of the single space co-ordinates. Proximity transformations
have been imposed on interval scale and applied across all sources simultaneously.
The algorithm, starting from the Torgeson initial solution, reached the minimum
value at �n D 0:0277, which represents a very good result. Table 1 displays the
weighting matrix W having order 3 � 3 (three sources and three dimensions). It is
worth noticing that all terms in W are positive. However, coefficients are very simi-
lar: in particular, reciprocity and trust have almost the same values. This coefficient
signs concordance is consistent with the choice of an additivity model for defining
the latent tie. It highlights that reciprocity and trust were perceived as equivalent
concepts by the interviewed entrepreneur.

Figure 1 displays the statistical units in the 3D scaled space. All actors are con-
nected with Gruppo Loccioni indicating the central role played by this firm inside
Nexus.

Ties are function of the scaled distances among statistical units in the common
space:

P
k dij .Xk/. The common space display (Fig. 1) allows to appreciate the

reciprocal positions of the statistical units, and the network display (Fig. 2) shows
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Table 1 Dimension weights

Dimension Weights
Source Dim1 Dim2 Dim3

TRUST 0.397 0.334 0.347
REC 0.426 0.392 0.362
CONN 0.425 0.392 0.369
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Fig. 1 Points in the 3D common space

the basic social embeddedness. Furthermore, vertices of the network represent the
actors and the arcs thickness is function of the embeddedness.

Network latent ties display is represented in Fig. 2 it has been obtained using
the Pajek c� package. Scaled distances in the latent space among vertices (actors)
represent the strength of the ties, it can be interpreted in terms of reciprocal ‘social
closeness’; at the same time the arcs thickness represents the basic social embedded-
ness as synthesis of the three considered variables. According to the most largely
used techniques in SNA, when displaying the network proper thresholds can be
defined to omit the visualisation of the weak ties.

Results show that the Nexus form is similar to a ‘constellation of firms’ where
there is a focal enterprise, with a central role in the network. Regarding the basic
social embeddedness, it is possible to observe that is deeper among the founders
of the network, included the focal company. In fact, among the founders there is
a high level of information exchange and knowledge creation. The firms that have
been joined Nexus later, probably have some difficulties to integrate themselves
with the founders. This means that the basic social embeddedness is stronger in the
founders group than in the group of entrepreneurs that have been joined Nexus later.
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Fig. 2 Network display

This phenomenon has also a positive aspect as well as weak ties could be able to
connect the network to others ‘world’ and to create new contacts with news firms
(Granovetter 1983).

4 Conclusive Remarks: Possible Applications
of the Proposed Method

Continuing to work at the network level, the proposed methodology can be used as
a valid tool to study different kinds of social latent ties among organizations. Trust,
frequency, reciprocity and basic social embeddedness are only an example of a set
of manifest and latent variables: choosing sets of different manifest variables it will
be possible to study other latent relational inter–organizational elements, such as
network centrality and network density, that are important elements in a network
analysis (Lomi 1997).

Measuring that kind of variables, it can help the management in the decisions
concerning the investment in organizational structures that can facilitate the devel-
opment of social relations. The method can also be viewed in an evolutionary
perspective, comparing different measures of the latent tie over the time.
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For this reason, this methodology is suitable to identify emerging significant net-
works’ latent characteristics and consequently can offer new opportunities to study
emerging inter-organizational settings that are becoming more relevant in the actual
complex co-operative scenario, such as learning and visionary networks.

Researcher can also imagine applications of this method to identify latent ties,
working at different organizational levels.

The research method can be used at the team level to analyze the main charac-
teristics of the collaborative behavior between workers, such as the cohesiveness
of the team, that are becoming more and more important especially in the perspec-
tive of the organizational learning studies (Senge 2006). At the organizational level,
this method can be experimented to measure the latent relationship between the dif-
ferent units, providing organizational charters where the lines thickness connecting
two units represents the measure of the latent tie studied.

Moreover, is it possible to imagine applications of the method at the macro-
systemic level, especially for the authors that need to better understand the latent
ties among organizations and their more relevant stakeholder groups.
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A Universal Procedure for Biplot Calibration

Jan Graffelman

Abstract Biplots form a useful tool for the graphical exploration of multivariate
data sets. A wide variety of biplots has been described for quantitative data sets,
contingency tables, correlation matrices and matrices of regression coefficients.
These are produced by principal component analysis (PCA), correspondence anal-
ysis (CA), canonical correlation analysis (CCO) and redundancy analysis (RDA).
The information content of a biplot can be increased by adding scales with tick
marks to the biplot arrows, a process called calibration. We describe a general pro-
cedure for obtaining scales that is based on finding an optimal calibration factor
by generalized least squares. This procedure allows automatic calibration of axes
in all forementioned biplots. Use of the optimal calibration factor produces gradua-
tions that are identical to Gower’s predictive scales. A procedure for automatically
shifting calibrated axes towards the margins of the plot is presented.

1 Introduction

Biplots are well-known graphical representations of multivariate data sets. Biplots
have been described for most classical multivariate methods that are based on the
singular value decomposition. While biplots do a good job at exploring multivariate
data, they can still be improved in certain respects. In comparison with scatterplots,
biplots are less informative, because the variables are represented by simple arrows
without scales. The process of drawing a scale along a vector in a graph is called
calibration. Probably the first example of a biplot with calibrated axes concerns
the stork data analysed by Gabriel and Odoroff (1990). In this paper we describe a
universal procedure for the calibration of axes in biplots. We first derive the basic
calibration formulae for scatterplots and biplots in Sect. 2, the latter section sum-
marizing the calibration formulae from Graffelman and van Eeuwijk (2005). Novel
material is presented in Sect. 3 where we show the relationship with Gower’s pre-
dictive scales, and in Sect. 4 where we treat axis shifting. Some examples (Sect. 5)
and software references (Sect. 6) complete the chapter.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_22, c� Springer-Verlag Berlin Heidelberg 2011
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2 Scatterplot and Biplot Calibration

The scatterplot is a well-known graphical representation of the relationship between
a pair (p D 2) of quantitative variables. If there a more than two variables (p > 2),
Gabriel’s (1971) biplot obtained by principal component analysis is the natural
generalization of the scatterplot. However, it is also possible to add extra (supple-
mentary) variables to an existing scatterplot. A direction for a third variable that is
optimal in the least squares sense can be found by the regression

b D .F0F/�1F0y; (1)

where y is a third quantitative variable to be “added” to an existing scatterplot, and
F an n�2matrix containing the two variables already represented in the scatterplot.
All variables are assumed to be centered. We obtain a 2 � 1 vector of regression
coefficients. This defines a direction from .0; 0/ to .b1; b2/ in the scatterplot that is
“best” to represent y. A practical problem arises: how can we draw a scale in the nat-
ural units of y along this direction? We call this a calibration problem. Stated more
generally, the question is how any direction (g) in the scatterplot can be calibrated
with an optimal scale for y. Let scalar ˛ be the calibration factor that determines
the graduation along vector g. The vector Qy represent the data values recovered
when the data points are projected perpendicularly onto vector g, and is given by
Qy D .1=.˛g0g//Fg. We minimize the sum of squared errors (e D y� Qy) with respect
to ˛. Graffelman and van Eeuwijk (2005) obtained the optimal scaling factor:

˛ D g0F0Fg
y0Fgg0g

: (2)

If the regression coefficients in (1) are used as the direction to represent the third
variable, then (2) simplifies to 1=g0g. In most practical applications the direction
supplied by the regression coefficients will be the preferred choice. However, some-
times other directions might be of interest, e.g., when a second vertical axis for a
third variable is desired in the right margin of a scatterplot. One usually wishes to
represent nice and equally spaced values (0; 10; 20; : : :) along the axis, the particular
values depending on the range of variation of the variable in the sample. With ˛g
representing a unit increment, the (m � 2) matrix of tick mark positions for a set of
values t D .t1; : : : ; tm/ is obtained by:

M D ˛tg0; (3)

where the values in t must be centered and/or standardized in the same way as F was
initially centered and/or standardized. If weights are used in the analysis of the data,
then it is natural to compute the calibration by using weighted or generalized least
squares (GLS). If GLS is used, and we minimize e0Ae with A a symmetric positive
definite n � n matrix of weights, then the optimal calibration factor is found to be:
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˛ D g0F0AFg
y0AFgg0g

: (4)

Equations (3) and (4) form the basic calibration results that are easily adapted for
their use in biplots. In general, biplots are factorizations of a data matrix X as
X D FG0, where data matrix X is typically approximated by using the first two
columns of F and G only. The scatterplot is just a particular case of this factor-
ization with X D FI0. The optimal factorization of X is obtained by the singular
value decomposition. A biplot is in fact a scatterplot of the row markers in F, and
the variables are represented by plotting the rows of G as arrows in the same plot.
Calibration of a biplot axis is possible by applying (4) thereby substituting for F the
n � 2 matrix of biplot coordinates (the row markers), for g the particular biplot axis
(a row of G) we wish to calibrate and for y the original data vector of the variable
represented by biplot axis g. The main difference between calibrating a scatterplot
and a biplot resides in the proper definitions of weight matrix A and vector t. Matrix
A depends on the particular multivariate method used to construct the biplot, and
also on the matrix we wish to represent. E.g., in PCA we will have A D I, in CA
A D Dc or Dr , in CCO A D Rxx

�1 or Ryy
�1 (if we wish to calibrate vectors with

a correlation scale ranging from �1 to 1) and in RDA A D I or Rxx .

3 Relationship with Gower’s Predictive Scale

The topic of calibration of biplot axes has been addressed by Gower and
Hand (1996). With a different rationale, the latter authors obtain the tick mark
positions (Gower and Hand 1996 [p. 16]; Gardner-Lubbe et al. 2009 [p. 31]):

Q�e0V
e0VV0e

; (5)

with Q� D t and where e0V corresponds to a row in a matrix of eigenvectors, which
corresponds to g0 in the notation of this paper. We thus have

Q�e0V
e0VV0e

D 1

g0g
tg0 D ˛tg0 DM: (6)

This shows the equivalence between Gower’s predictive scales and the scales
obtained by least squares in this paper.

4 Shifting of a Biplot Axis

When many vectors in a biplot are calibrated, the plot tends to be cluttered up by
many scales passing through the origin, and it becomes difficult to make any sense
out of it. It is a good idea to shift calibrated axes towards the margins. This way,
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all information on the measurement scales is moved towards the margins of the
plot, while leaving the cloud of points in the biplot unaffected. In fact, this is also
what we do in an ordinary scatterplot: units, labels and tick marks are represented
in the (left and bottom) margins of the plot. The first biplots with such shifted axes
seem to stem from Graffelman and van Eeuwijk (2005). Bläsius et al. (2009) give
some suggestions to shift axes in an automated manner. Here we develop automatic
shifting of biplot axes in more detail, using matrix notation. The shift of a biplot axis
can be described by vector d that is orthogonal to biplot vector g. Vector d can be
set by hand, or some sensible choices can be calculated automatically. In particular,
d could be chosen in such a way that all data points fall whether below or above the
shifted axis. This requires determining the maximum and the minimum of the data
points in the direction orthogonal to g. In order to find the extremes, we compute
possible shift vectors di for all data points:

di D fi � g0fi

g0g
g; (7)

where fi is a row of matrix F. Next, we determine which di has the largest norm
for all points “above” g, and which di has the largest norm for all points “below” g.
Whether a point is “below” or “above” can be determined by an auxiliary clockwise
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Fig. 1 Shifting biplot axis g towards the most extreme data points with shift vectors dL and dR
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rotation of the data points over an angle as large as the angle between g and (1,0), and
looking at the sign of the rotated coordinates. We call the maximal norm vectors dR

and dL, with suffix R and L for “right” and “left” in the direction of g (See Fig. 1).
The final tick mark positions for the two shifted axes then become

ML D ˛tg0 C 1d0
L and MR D ˛tg0 C 1d0

R: (8)

Depending on the particular data set, the most convenient position for the shifted
axis can be chosen. With the current definition of the shift vectors dL and dR, the
most extreme data point perpendicular to g is exactly on the calibrated axis (e.g.,
observations 5 and 11 in Fig. 1). It is sensible to stretch these vectors slightly, so that
all points are really above (or below) the corresponding axis. This shift procedure is
implemented in version 1.6 of the R-package calibrate (Graffelman 2009).

5 Examples

In this section we look at a few examples of calibrated scatterplots and biplots,
using the stork data from Gabriel and Odoroff (1971). This is a Danish data set
where the frequency of nesting storks, birth rate and electricity consumption were
registered for a period of 25 years (1953–1977). The forementioned paper contains
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Fig. 3 PCA Biplot of the stork data, based on the correlation matrix. The dashed line indicates the
means of the variables. Goodness of fit: Birth rate 0.997, electricity consumption 0.979, nesting
frequency 0.990

a calibrated biplot of this data set. Figure 2 shows an alternative graphical represen-
tation of the same data, a scatterplot of birth rate versus frequency of nesting, where
electricity consumption has been added as a supplementary variable by regres-
sion. The goodness of fit of the representation is high, as 94.63% of the variance
of electricity consumption can be explained by the regression onto stork nest-
ing and birth rate. The over all goodness of fit of the representation is therefore
100 � .1:0 C 1:0 C 0:9463/=3 D 98:21%. This is almost as good as a biplot of
the data obtained by a correlation-based PCA (98.88%). Figure 2 is a nearly per-
fect representation of how the three variables change over time, showing an overall
decrease in birth rate and frequency of nesting, and an increase in electricity con-
sumption. Shorter periods with higher and lower rates of change in the variables are
easily identified. The figure is a non-standard representation of the data, which is
not trivial to obtain. Depending on the shape of the cloud of points, a good position
for each axis and good scale values must be chosen such as to make the graph as
informative as possible.

A drawback of Fig. 2 is that the correlation structure of the variables is not very
well represented, partly because of the forced orthogonality between birth rate and
frequency of nesting. This aspect is improved if we make a calibrated PCA-biplot of
the data, which is shown in Fig. 3. The sharp angles between the axes indicate that
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Fig. 4 PCA Biplot of the correlation matrix with a shifted axis for electricity consumption.
Goodness of fit over 0.999 for all variables

all variables are correlated. Because the scale for electricity consumption runs in the
opposite direction of those of the other two variables, correlations with electricity
consumption are negative. For recovery of the original data matrix, Figs. 2 and 3 are
equally well suited. For inferring the correlation structure, Fig. 3 is to be preferred.

However, the approximation of the correlations by angles is not optimized in
PCA. PCA approximates the correlation matrix by scalar products, and the latter
approximation is optimal in the least squares sense. It has the drawback that we also
approximate the diagonal of ones. Figure 4 is a calibrated biplot of the correlation
matrix of the three variables, and shows the approximation of the correlations by
scalar products. The biplot arrow for electricity consumption has been shifted in
order not to mess up the display. All correlations can now be read off by projection.
The overall goodness of fit of the representation of the correlation matrix is 99.98%.

6 Software

R-package calibrate has been developed by the author for the calibration of
axes in biplots and scatterplots. The package can be downloaded from the R project’s
home page (www.r-project.org). The package is extensively documented with exam-
ples of calibrated biplots for PCA, CA, CCO and RDA. Package calibrate
provides a workhorse routine that computes calibration results and draws calibrated
axes one by one. Its force resides in its generality: it can calibrate any scatterplot or
biplot axis, and it can shift these. The idea behind the package is to create a cali-
brated axis by using an R-script that contains detailed instructions for tailoring the
calibration of each axis.

BiplotGUI (Gardner-Lubbe et al. 2009) is alternative package for biplot
construction and calibration with a graphical user interface and facilities for

www.r-project.org
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representations in three dimensions. It also covers non-linear calibrations but seems
limited to particular multivariate methods (PCA, CVA, MDS, Procrustes analysis).
This package creates calibrated biplots by manipulation on-screen with a mouse or
other pointing device.
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Analysis of Skew-Symmetry in Proximity Data

Giuseppe Bove

Abstract Skew-symmetric data matrices can be represented in graphical displays
in different ways. Some simple procedures that can be easily performed by standard
software will be proposed and applied in this communication. Other methods based
on spatial models that need ad hoc computational programs will be also reviewed
emphasizing advantages and disadvantages in their applications.

1 Introduction

Skew-symmetric data matrices occur in different fields of application as: debits/
credits balance data, preferences, results of matches in a tournament, etc. Frequently
they are derived as the skew-symmetric component of an asymmetric data matrix
representing flow data, import/export data, confusion rates, etc. Even in this second
situation, in this paper we assume that the main interest is to analyse separately the
skew-symmetric component from the symmetric component.

Graphical displays can help to detect asymmetric relationships by associating
geometrical entities to the information contained in the data matrix. Some sim-
ple procedures will be proposed in the next section and applied to a small data
set concerning musical preferences. An advantage of the proposals is their easy
application even with standard no statistical software available in every personal
computer. In the third section it is shown how it is possible to analyse the size and
the sign of skew-symmetry by standard statistical software containing symmetric
multidimensional scaling routines. Finally, in the last section some other models for
multidimensional graphical representation that need ad hoc computational programs
are also briefly reviewed.

2 Simple Descriptions of Skew-Symmetry

A small asymmetric data matrix concerning choice probabilities among four
music composers (labelled B, H, M, S) was reported in Takane (2005, Table 1),
where each entry is the proportion of times .pij/ row composer i is preferred

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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Table 1 Log transformations of choice probabilities ratios among four music composers

Composers B H M S

B 0 2.143 .974 2.143
H �2:143 0 �1:758 �:189
M �:974 1.758 0 1.457
S �2:143 .189 �1:457 0

Fig. 1 Composer positive
and negative marginal
skew-symmetry

to column composer j . Entries in the skew-symmetric matrix presented in the
following Table 1 (also reported in Takane 2005) are obtained by the transformation
nij D log.pij=pji/ of the observed proportions. When nij is positive the row com-
poser is more frequently preferred to the column composer and viceversa when nij

is negative.
Skew-symmetric preference tables are usually studied by specific models like

Thurstone or Bradley-Terry-Luce models, but in this paper we take a general
explorative approach to skew-symmetry focusing on graphical capabilities of the
methods.

In a similar manner to what is usually done for asymmetric proximity matrices,
we could proceed to represent row and column totals of the data matrix. How-
ever, for skew-symmetric matrices row and column totals corresponding to the same
object i sum to zero, so it seems preferable to analyse the prevalence of positive or
negative skew-symmetry for each row of the matrix. A simple method can be based
on a diagram where each composer is represented by a point with coordinates (x; y)
that are sums, respectively, of the positive and negative entries in the row associated
to that composer. The diagram obtained for Table 1 is depicted in Fig. 1.

In the diagram, points above the line y D �x represent composers with a preva-
lence of positive skew-symmetries (preferred), points under the line represent
composers with a prevalence of negative skew-symmetries (not preferred). In the



G. Bove 205

Fig. 2 Skew-symmetries of
pairs of composers

same diagram we can also represent the 6 pairs of composers .i; j / with coordinates
given by x D jnijj and y D � jnijj, where j � j is the absolute value. If li and lj are
labels for i; j we adopt the convention to represent the pair with li lj if nij � nji

and lj li otherwise. The result is depicted in Fig. 2.
As it was expected composer B is more frequently preferred to the others,

composer M is more frequently preferred to composers H and S. Largest skew-
symmetries regard pairs BH and BS. Pairs with small skew-symmetries are depicted
close to the origin.

The number of pairs to be represented increases with the number n of rows of
the skew-symmetric matrix (it is n � .n � 1/=2), hence for large n only selected
subgroups of pairs should be represented in the diagram.

3 Graphical Display of Size and Sign of Skew-Symmetry

Sizes of skew-symmetries jnijj can be represented by distances in a low-dimensional
Euclidean space (usually two-dimensional) between only n points by the model:

f .jnijj/ D
q
.xi � xj /0.xi � xj /C eij (1)

where f is a chosen data transformation function, xi ; xj are vectors of coordinates
for the rows i and j and eij is an error term. The method can be easily applied by
standard statistical software containing symmetric multidimensional scaling rou-
tines, and it allows to incorporate non metric approaches and external information
regarding rows (Bove 2006). Figure 3 represents the result obtained by performing
a symmetric MDS of composers data (Stress-1D 0:03). Large distances represent
skew-symmetries between pairs of composer (B,H), (B,S), (M,H) and (M,S), small
distances represent skew-symmetries between pairs (H,S) and (B,M).
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Fig. 3 Size of skew-symmetries of pairs of composers

The sign of skew-symmetry cannot be analysed in the diagrams obtained by
model (1). A simple way to fill the gap can be based on the idea to draw cir-
cles around points of Fig. 3, originally proposed by Okada and Imaizumi (1987)
to represent skew-symmetry (jointly with symmetry).

In our example, circles around points can represent the sign of skew-symmetry
when compared in ordered pairs of points. That is, when circle around point i is
larger than circle around point j than estimate of skew-symmetry nij is positive and
estimate of skew-symmetry nji is negative. We propose to estimate the radii ri of the
circles by the following model

dij D .ri � rj /C eij; (2)

where dij D 1 if nij is positive and dij D �1 if nij is negative. A least squares
solution for the r 0

i s in (2), provided by Mosteller (1951) in the context of Thurstone
case V scaling, is

Ori D 1

n

nX

j D1

dij

with
nP

iD1

Ori D 0, being matrix D D Œdij� skew-symmetric. Any translations Ori C c
by a constant c is equivalent to the initial solution, but it is convenient to choose
only between solutions with non negative Or 0

i s because they represent radii. In this
application we choose the unique solution having min.Ori / D 0.

Figure 4 represents the result obtained adding in Fig. 3 the radii obtained for com-
posers data with model (2). The radii were rescaled so that the circles could be rep-
resented most conveniently in the configuration. Composer B has the largest radius
that means he has always positive skew-symmetry with all the others composers.
Composer H has a null radius that means he has always negative skew-symmetry
with all the others composers.
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Fig. 4 Size of skew-symmetries of pairs of composers and circles

In the following section we will consider other important multidimensional mod-
els that allow to avoid the inconvenience of model (1). These models need ‘ad hoc’
computational programs.

4 Multidimensional Representation of Skew-Symmetry

The first multidimensional method for representing skew-symmetry was proposed
in a pioneering paper by Gower (1977). It is based on a scalar product like model of
the following type

nij D x0
i�J xj C eij (3)

where the vectors of coordinates xi ; xj , the matrix � D diag.ı1; ı1; ı2; ı2; : : :/ and

the block diagonal matrix J, with 2 � 2 matrices

�
0 1

�1 0
�

along the diagonal (and,

if n is odd, the last diagonal element conventionally set to one), are obtained by the
singular value decomposition (SVD) of the skew-symmetric data matrix (see also
Bove 2010); and eij is an error term. For this method the appropriate interpretation
of the diagram is not in terms of distances but in terms of areas, in particular it is
the area of the triangle that points i and j form with the origin that is proportional
to the size of skew-symmetry, whose sign is given by the plane orientation (positive
counter-clockwise).

Figure 5 represents the Gower diagram obtained for composers data. Now the
size of skew-symmetry regarding, for example, the pair of composers (B,M) is
proportional to the area of the depicted triangle, while the sign is positive counter-
clockwise, that is composer B is more frequently preferred to composer M. At
the same manner, we can see that composer B is more frequently preferred to
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Fig. 5 Gower diagram of
skew-symmetries of pairs of
composers
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all the other composers, and triangle areas are especially large with composers
H and S. Since the four points are almost aligned, one-dimensional models (like
e.g. Bradley-Terry-Luce model) for preference data could fit quite well in this case.

Rotational indeterminacy characterizing Gower method can allow to isolate dif-
ferent systems of asymmetric relationships in different planes when we fit more than
two dimensions by opportune rotation methods (Rocci and Bove 2002).

The analysis of distances in a diagram is easier than the analysis of areas of
triangles, so Borg and Groenen (2005) proposed to represent skew-symmetry by the
model:

nij D sign.x0
i J

0xj /

q
.xi � xj /0.xi � xj /C eij (4)

where vectors xi ; xj , matrix J and the term eij are defined as in (3). Distances
between points estimate the size of skew-symmetry and the direction of rotation
provide the sign, i.e. for each fixed object-point i all points j positioned in the half
plane with angles between 0ı and 180ı (clockwise direction) have a positive esti-
mate for nij, all the other points positioned in the half plane with angles between
0ı and �180ı have a negative estimate for nij. Borg and Groenen (2005, pp.
501–502) also provide an application of the previous model to the largely known
Morse-code confusion data to show the performance of their model. However, we
notice that Borg and Groenen say their algorithm can be quite sensitive to local
optima.

Figure 6 shows what we could obtain by applying model (4) to composers data.
The half-plane that point B determines with the origin in clockwise direction is
depicted in the diagram. All points that represent the other composers fall into this
half-plane, this means that composer B has positive skew-symmetries with all the
others.

The proposal of Borg and Groenen allows to avoid the inconveniences of distance
models applied only to the size of skew-symmetry.
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Fig. 6 Example of Borg and Groenen diagram of skew-symmetries of pairs of composers

A review of these and other multidimensional methods for skew-symmetry,
including the three-way case, is provided in Bove (2010). Most methods can be
applied only by ad hoc computational programs.

5 Conclusions

Taking the point of view of a standard user we have proposed some simple proce-
dures to represent in a diagram skew-symmetric data matrices by largely available
software.

When statistical software including MDS routines is also available, representa-
tions of size of skew-symmetry are easily obtainable and we have shown that the
sign of skew-symmetry can also be included by drawing circles around points.

Some multidimensional methods based on spatial models that need ad hoc
computational programs were also reviewed emphasizing advantages and disadvan-
tages in their applications. Future developments could concern the study of distance
like-models and their application to the three-way case.
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Social Stratification and Consumption Patterns:
Cultural Practices and Lifestyles in Japan

Miki Nakai

Abstract The aim of this paper is to examine the relationship between cultural
consumption and social stratification. Based upon a nationally representative 2005
Japanese sample (ND 2,915), we uncovered the association between a wide range of
cultural capital and social class in Japan. In doing so, we re-examined conventional
occupational schemes and developed a detailed occupational classification. Corre-
spondence analysis revealed that both men and women who are well-educated and
have a higher occupational position have more cultural capital. The results also indi-
cate gender-specific cultural consumption patterns. For women, highbrow culture is
important for distinguishing themselves and maintaining social position. In contrast,
highbrow culture is defined as an irrelevant waste of time for men of higher position
and instead business culture, which is characterized by a mixture of enterprise and
rationality, prevails.

1 Introduction: Consumption Patterns and Social Stratification

In sociological theory focusing on the relationship between cultural consumption
and social stratification, it has been maintained that lifestyle is an expression of
one’s class position. Lifestyle of the higher status group has been characterized by
cultural refinement, i.e., highbrow taste is a feature of the well-educated elite in the
society (Bourdieu 1979, Veblen 1899). Other sociologists emphasize that, in mod-
ern societies, the cultural taste of the higher status group is inclusive and broad,
not snobbish or exclusive such that other non-elite classes are excluded. Empiri-
cal research shows that those of high status not only participate more regularly in
high-status activities but also tend to participate more often in a lot kinds of leisure
activities (Peterson and Simkus 1992, DiMaggio 1987). This is called the cultural
omnivore-univore hypothesis. In either hypothesis, it is assumed that differential
participation in cultural practices between individuals is related to their social sta-
tus. A substantial number of empirical studies have been found evidence supporting
differences in cultural activity between the higher educated and those of lower edu-
cational background (e.g., Kataoka 1992). We also have so far found that the cultural
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preferences differ among people from different social groups (Nakai 2005, 2008).
These differences in cultural consumption patterns can be attributed to educational
and family background.

It is also claimed that being health-conscious is also associated with social class.
People from different social groups have different levels of concern over chemicals
and products that may be unhealthy in their food for example, which in turn is
associated with health inequality.

However, some sociologists claim that in postmodern consumer societies, con-
sumption patterns no longer act to structure social class. Moreover, in Japan, the
association between social stratification position and cultural taste remains contro-
versial despite numerous studies. Many scholars have questioned the validity of the
existence of the link between highbrow culture and people of higher status, espe-
cially among males, since in Japan quite a few educated high status men enjoy
popular culture activities, such as karaoke and reading comic books, regardless of
their education and social status.

The controversy over the relationship between social stratification and cultural
consumption may be attributed in part to the class schemes which are convention-
ally used for analysis. Conventional class categories allegedly poorly correlated with
actual life conditions because the bit conventional classifications group occupa-
tions together that differ substantially in potential life chances (Weeden and Grusky
2005).

Another reason for this controversy is the conceptualization of cultural taste, i.e.,
highbrow culture versus popular- or lowbrow culture. Many empirical studies have
traditionally operationally defined cultural taste by using only limited consumption
fields that are presumed to be significant for the reproduction of the stratification
system.

The aim of this paper is to make social distinctions and inequalities between
social groups visible by classifying cultural practices and lifestyles as well as posi-
tion in the class structure. In doing so, we take wider cultural consumption into
account. As to class scheme, we devised detailed occupational categories.

2 Methods

2.1 Data

The data is from a nationally representative 2005 survey of Social Stratification
and Social Mobility conducted in Japan. Of approximately 13,000 men and women
sampled, aged 20–69, 5,742 (2,660 men and 3,082 women) were successfully
interviewed.1 This data provides a wide range of socio-economic characteristics,
information about values, family life, and leisure time activities. We analyzed 2,915

1 The response rate was not very high and younger males may be slightly under-represented.
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(1,317 men and 1,598 women) respondents, who were asked detailed questions con-
cerning a wide range of cultural consumption practices to portray the structure of
cultural participation and lifestyles.2

2.2 Measurement of Cultural Consumption and Lifestyle

We focused on three chief aspects (or domains) of cultural lifestyle: cultural prac-
tices, leisure activities and consumption patterns. The following 17 variables in
cultural consumption of these three domains have been selected for investigation:

� Cultural practices; (1) classical music performances and concerts, (2) museums
and art exhibitions, (3) karaoke, (4) playing some sports, (5) public library use,
(6) reading sports journals or women’s weeklies, (7) reading novels, or books
about history;

� Leisure activities; (8) taking culture lessons, (9) language study, (10) travel
abroad, (11) volunteer activities;

� Consumption patterns; (12) credit card purchasing, (13) online shopping and
booking, (14) mail order catalog shopping, (15) eating out, drawing upon Restau-
rant Guides, (16) purchase domestically-produced groceries, and (17) purchase
organic food.

2.3 Occupational Scheme

As to our occupational stratification scheme, we subdivided the conventional class
grouping into 23 categories in terms of educational credentials, which reflect skill
levels, size of organizations, worker functions, and sectoral differences (representing
private sector or public sector).3 We consequently devised the following disaggre-
gated occupational categories: (1) professionals with higher educational (prof h c),
(2) cultural and artistic producers (cul pro), (3) technicians (techn), (4) teachers
(teach), (5) healthcare professionals (hlth prof), (6) professionals not elsewhere
classified (prof(n.e.c.)), (7) managers in large firm (mgrl l), (8) managers in small
firm (mgrl s), (9) government officials (gvrn offc), (10) clerical in large firm (cler l),
(11) clerical in small firm (cler s), (12) sales in large firm (sale l), (13) sales in small
firm (sale s), (14) proprietors (proprt), (15) skilled manual in large firm (skil l), (16)
skilled manual in small firm (skil s), (17) self-employed skilled manual (s-e skil),
(18) semi-skilled manual in large firm (sskl l), (19) semi-skilled manual in small
firm (sskl s), (20) unskilled work in large firm (uskl l), (21) unskilled work in small
firm (uskl s), (22) independent unskilled work (ind uskl), and (23) farmers (farm).

2 About half of the respondents were excluded from the present analysis because they did not
provide information regarding participation in cultural activities and consumption.
3 This idea of disaggregated occupational class seems to parallel what Yosano (1998) suggested.
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The words in bold in parentheses are used to represent each occupational cate-
gory, and abbreviation l and s stand for large and small, respectively.

To clarify the relationship between social stratification position, which is cate-
gorical data, and cultural consumption, multiple correspondence analysis (MCA)
was applied. We used configuration space to map both the cultural consumption and
occupational groups which allow us to identify cultural boundaries among social
groups in terms of cultural consumption patterns (Greenacre 1984). We analyzed
men and women separately because it is also of interest to look at gender differences
in the structural relationship between social groups and lifestyles.

3 Results

Results for the analysis of male respondents are reported in Fig. 1 and for female
respondents in Fig. 2.4 The figure represents the positions of the social groups (with
square markers) and the cultural consumption patterns (with circle markers) in two-
dimensional space.

3.1 Males Cultural Consumption and Occupational Stratification

The points depicting the respondents’ occupational status form a semi-circle, which
is sometimes called a horseshoe curve, when viewed collectively. Therefore, this
suggests that the first dimension (horizontal) represents the occupational hierarchi-
cal order in terms of cultural consumption patterns. Most prestigious groups that
actively participate in the cultural activities highly evaluated are in the right half,
whereas those with very limited participation in cultural activities are in the left
half. And also, most of the active engagements are on the right-hand side, and many
of the disengagements are on the left-hand side.

However, cultural consumption that is traditionally thought to be genteel or high-
brow (e.g., attending classical music concerts, museums and art exhibitions) does
not necessarily locate in the extreme right half. Instead, the activities based on
information literacy (e.g., drawing upon Restaurant Guides and mail order cata-
log shopping) or new forms of consumption (e.g., credit card purchasing and online
shopping and booking) locate at the extreme. Ganzeboom (1982) suggests that indi-
vidual differences in information-processing capacity influence people’s cultural
consumption patterns. The finding here seems consistent with this hypothesis.

The status order of occupations along dimension 1 (horizontal axe) is also not
systematically arrayed as might be assumed for men. Occupational group engaged
in creating cultural products is associated with the most progressive cultural con-
sumption and is found at the extreme prestigious end of the scale. At the same time,

4 Not all leisure activity categories are shown in the figure. C or � represents frequency of
engagement in various activities (high, low, never, etc.).
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Fig. 1 Structure of male cultural consumption and social class: Dimension 1 � Dimension 2

however, they do not correspond closely to highbrow culture in the conventional
sense (e.g., appreciation of classical music and visiting art exhibitions). They are,
rather, characterized by rationality, efficiency, and a high degree of result calcula-
bility (e.g., mail order catalog shopping and dining out for pleasure drawing upon
Restaurant Guides). The results here can be understood in the light of the argument
by Erickson (1996), which is that the business elite are more familiar with consump-
tion styles that appear to have more direct profitability for them and therefore they
exclude high culture in favor of this lifestyle. Having said that, the finding that cul-
tural and artistic producers are the most culturally active and possess cultural capital
is concordant with the argument by Bourdieu.

The second highest group, somewhat below the highest level of occupational sta-
tus, is the cluster of occupations that spend the most time talking to or interacting
with others who are at various levels in the hierarchy, such as healthcare profession-
als, managers in a small firm, and sales in large firm. That is followed by the social
group that is seen as privileged elite in our society (e.g., managers in large firms,
professionals with higher educational credentials). This group tends to enjoy high-
brow culture more than the so-called cultural elite (i.e., cultural producer), but at the
same time they consume a sort of business culture, such as karaoke and language
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study. The results also show that there is a gap between the official, or public, sector
and the private sector amongst clerical workers in terms of cultural taste. Clerical
workers in the public sector are clearly associated with middle-class cultural con-
sumption bolstered by consciousness or literacy, but those in the private sector are
only halfheartedly involved in those activities. Also, moderately high status peo-
ple are characterized by active involvement in eco-conscious consumption, such as
purchasing home-grown and organic food.

On the other side of the dimension, most blue-collar classes show up. Those who
work in unskilled occupations in large organizations are the most culturally deprived
or excluded, rather than those who work for small and medium-sized companies.
They are excluded from most cultural practices and therefore have little cultural cap-
ital. This is probably due to the rise in non-regular unskilled male workers in large
organizations over the past several years. Non-regular workers, especially those
working on short-term contracts and as dispatched workers, receive little firm-based
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training, low employment protection, and also low wages. This group is excluded
from cultural life as a whole.

Dimension 2 (vertical) seems to be interpreted as the types of cultural activities.
This roughly separates utilitarian or pragmatic in the upper half, and aesthetic in the
lower half.

3.2 Female Cultural Consumption and Occupational
Stratification

Figure 2 maps the co-ordinates for female respondents. The occupational categories
are depicted as points which form a horseshoe curve, as were also the results for
men. The managerial category is towards the top right, clerical and self-employed
categories are in the lower central region to the origin, and the semi-skilled manual
and unskilled work categories are towards left. Therefore the first dimension is an
overall dimension which put the respondents and their cultural consumption activ-
ities in order from ‘distinguished’ on the right to ‘uncultured and inactive’ on the
left, with groups on the right prestigious status and the lower ranking on the left.

As compared with the findings for men, though, the ordering found in the analysis
of women are interpreted differently. This ordering is very much what one would
expect and is not surprising, in contrast to the results for men. We can see that
managerial occupations in large firms, which is a male-dominated highest status
group, is at the extreme prestigious end of the scale, followed by professionals with
higher educational credentials. Cultural and artistic producers, which is one of the
prestigious occupational categories, is not seen to be as exclusive because they tend
to have more access not only to highbrow culture but also to business culture.

The aesthetic disposition of the female managerial group seems to reflect a
distinctive expression of a privileged position in social space. This suggests that
highbrow culture is useful in female privileged groups for domination, but not for
men. Highbrow culture might be seen as an irrelevant waste of time for the male
business elite in Japan. Middle class women are also characterized by active involve-
ment in eco-conscious consumption, such as purchasing domestic and organic food
as are middle class men.

We find those who avoid most cultural activities to be located on left half. A little
closer to the intersect we see routine non-manual employees and petty bourgeoisie;
they have preferences for popular culture. Sales, proprietors and most blue-collar
groups are neither cultured nor active.

4 Conclusion and Discussion

Based on our analysis which revised conventional class maps and included wider
domains of consumption and lifestyle, we were able to confirm the inter-related
nature of occupational class and lifestyle. In general, for both men and women, those
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who are well-educated and those having higher occupational positions have more
cultural capital. However, men and woman have different cultural specialties and
patterns of correspondence with occupational class position. For women, highbrow
culture is important for distinguishing themselves and maintaining their social posi-
tion. For men of higher position, by contrast, highbrow culture is an irrelevant waste
of time and instead business culture, which is characterized by a mixture of enter-
prise and rationality, prevails. Cultural capital in the contemporary world of business
is based more on practical activities than on acquiring established accomplishments.

Further research must be undertaken in these areas that utilizes the data of a
follow-up study. Due to the rapid global economic downturn, it is becoming ever
more interesting to see how leisure practices are unequally allocated among people.
Changes in economic and social structures have led to a continuous change in the
relationship between people’s social class and cultural consumption through the
cumulative processes of social disadvantage.

Acknowledgements I thank the Social Stratification and Social Mobility (SSM) 2005 Committee
for the use of data.
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Centrality of Asymmetric Social Network:
Singular Value Decomposition, Conjoint
Measurement, and Asymmetric
Multidimensional Scaling

Akinori Okada

Abstract The centrality of an asymmetric social network, where relationships
among actors are asymmetric, is investigated by singular value decomposition, con-
joint measurement, and asymmetric multidimensional scaling. They were applied
to asymmetric relationships among managers of a small firm. Two sets of outward
and inward centralities were derived by singular value decomposition. The first set
is similar to the centralities obtained by conjoint measurement and by asymmetric
multidimensional scaling. The second set represents the different aspect from the
centralities of the first set as well as those derived by the conjoint measurement and
the asymmetric multidimensional scaling.

1 Introduction

The centrality of a social network represents the relative importance, salience, power
or attractiveness of an actor of a social network. The social network has been
assumed to be symmetric, and characteristic values and vectors were used to derive
the centrality (Bonacich 1972, Richards and Seary 2000). Bonacich (1972) used the
characteristic vector corresponding to the largest characteristic value. Okada (2008)
introduced a procedure using two (or more) characteristic vectors, which presents
two (or more) centralities for each actor.

The relationships among actors can be asymmetric; relationship from actors j to
k is not necessarily equal to the one from actors k to j (Wasserman and Faust
1994, pp. 510–511). Then we have an asymmetric social network (Barnett and
Rice 1985, Bonacich and Lloyd 2001, Tyler et al. 2003). The asymmetric social
network can be studied by singular value decomposition (Okada 2010; cf. Write
and Evitts 1961), conjoint measurement, or asymmetric multidimensional scaling.
Okada (2010) extended the earlier study (Okada 2008), to derive two sets of outward
and inward centralities of the asymmetric social network by singular value decom-
position. The present study is the extension of earlier studies (Okada 2008, 2010)
based on singular value decomposition to derive the centrality of the asymmetric
social network. The purpose of the present study is to compare the procedure based
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on singular value decomposition with additive conjoint measurement and asymmet-
ric multidimensional scaling in dealing with an asymmetric social network, and to
clarify the characteristics of the procedure based on singular value decomposition.

2 The Procedures

Three procedures; singular value decomposition, conjoint measurement, and asym-
metric multidimensional scaling, were applied to the matrix of relationships among
actors called A, where ajk , the .j; k/ element of A, represents the closeness of
relationship from actors j to k. The singular vector of A gives the centrality. The
singular value decomposition in the present study is characterized by deriving two
sets of centralities (Okada 2008, 2010). The first set consists of the first left and right
singular vectors corresponding to the largest singular value. The left singular vector
represents the outward centrality which expresses the strength of the tendency of
extending relationships from the corresponding actor to the other actors. The right
singular vector represents the inward centrality which expresses the strength of the
tendency of accepting relationships from the other actors to the corresponding actor
along dimension 1. The second set consists of the second left and right singular vec-
tors corresponding to the second largest singular value, and represents the outward
and the inward centrality of an actor respectively along dimension 2.

Let xi be the i -th left singular vector, and yi be the i -th right singular vector,
both corresponding to the i -th largest singular value (i D 1 or 2). The j -th element
of xi , xj i , represents the outward centrality of actor j , and the k-th element of yi ,
yki , represents the inward centrality of actor k along dimension i . The closeness of
the relationship from actors j to k is represented by using the first and second left
and right singular vectors and values. A is represented by

A Š X12DY0
12; (1)

where X12 is the matrix whose first and second columns are x1 and x2, Y12 is the
matrix whose first and second columns are y1 and y2, and D is the diagonal matrix
having the first and second singular values d1 and d2 as its diagonal elements. The
closeness of the relationships from actors j to k is represented by

ajk Š d1xj1yk1 C d2xj 2yk2: (2)

In dealing with A by additive conjoint measurement, we think A consists of two
attributes. Rows of A are regarded as an attribute, and each row is regarded as a level
of the attribute. Columns of A are regarded as another attribute, and each column is
regarded as a level of the attribute. The additive conjoint measurement of A gives
a partial utility to each row, and gives another partial utility to each column. The
partial utility given to the j -th row, urj , represents the outward centrality of actor j ,
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and the partial utility given to the k-th column, uck , represents the inward centrality
of actor k. The closeness of the relationship from actors j to k is represented by

ajk Š urj C uck: (3)

The asymmetric multidimensional scaling (Okada and Imaizumi 1987) of A
gives a configuration of actors. Each actor is represented as a point and a circle in a
two-dimensional configuration (sphere or hypersphere in a three- or more than three-
dimensional configurations) centered at that point in a multidimensional Euclidean
space. Interpoint distances in the configuration represent symmetric relationships
among actors, and the radius of the circle of an actor represents the relative asymme-
try of the actor. The larger the radius of an actor is, the larger the outward centrality
of that actor is and the smaller the inward centrality of that actor is. The radius
represents the strength of the outward centrality and the weakness of the inward
centrality of the corresponding actor as well.

3 The Data

In the present study relationships among 21 managers at a small firm, which were
dealt with in earlier studies (Krackhardt 1987, Okada 2010), were analyzed. They
consist of one president (#7), four vice presidents (#2, #14, #18, and #21), and 16
supervisors. Each vice president heads up a department, and each of the 16 supervi-
sors belongs to one of the four departments (Table 1). The data consist of 21 matrices
where each comes from each manager. The .j; k/ element of the i -th matrix repre-
sents whether manager i perceived that managers j goes to k for advice at work;
the .j; k/ elementD 1 when manager i perceived managers j goes to k for advice
at work, and the .j; k/ elementD 0 otherwise.

The sum of 21 matrices, called matrix A, from 21 managers was analyzed. The
.j; k/ element of A, ajk , represents the number of managers who perceived that
managers j goes to k for advice at work, and shows the closeness perceived by
21 managers including manager j oneself. The maximum possible value, 21, is
embedded in the diagonal of the matrix. The resulting matrix A shown in Table 2 is
asymmetric, because ajk is not necessarily equal to akj .

Table 1 Four departments and vice presidents

Department Vice president Supervisors

1 21 6, 8, 12, 17
2 14 3, 5, 9, 13,15 19, 20
3 18 10, 11
4 2 1, 4, 16
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Table 2 The sum of 21 matrices
To manager

From 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Manager 1 21 21 7 11 5 1 1 7 2 6 13 0 5 2 2 11 2 19 5 0 2
Manager 2 10 21 7 11 5 8 21 9 2 4 6 7 4 14 2 7 6 15 5 0 15
Manager 3 8 16 21 2 2 3 12 2 3 8 11 2 0 20 1 2 3 14 2 2 6
Manager 4 9 18 0 21 0 7 2 15 0 6 5 6 0 0 0 5 2 11 0 1 11
Manager 5 7 14 4 1 21 3 12 2 2 4 12 2 4 20 2 4 6 16 10 10 8
Manager 6 2 11 1 7 2 21 15 4 2 1 2 11 1 7 2 2 9 1 2 2 21
Manager 7 2 17 6 2 3 8 21 3 3 2 11 3 2 19 3 2 6 13 3 6 20
Manager 8 7 16 4 11 0 6 10 21 1 7 10 5 0 2 0 4 5 14 0 2 18
Manager 9 5 11 7 0 11 5 8 2 21 3 5 3 6 21 6 3 5 12 11 6 6
Manager 10 3 8 7 3 4 1 8 8 1 21 8 0 4 3 2 9 2 20 4 6 0
Manager 11 9 15 6 3 6 1 20 7 1 3 21 0 5 11 4 1 1 19 5 2 1
Manager 12 1 8 0 10 0 15 8 7 0 0 0 21 0 4 1 0 7 3 0 1 20
Manager 13 9 11 4 0 17 2 7 1 11 4 11 0 21 21 5 4 2 16 15 8 1
Manager 14 2 16 9 1 10 5 20 4 11 4 9 4 7 21 9 1 4 17 10 10 17
Manager 15 4 14 2 1 8 4 10 2 6 2 7 1 3 21 21 4 3 17 11 12 5
Manager 16 13 19 2 11 0 3 0 8 0 11 3 0 0 3 0 21 2 15 0 3 1
Manager 17 6 15 5 4 5 15 17 6 2 1 3 12 5 9 3 2 21 6 5 3 21
Manager 18 9 17 9 5 5 5 19 8 3 11 15 3 5 16 5 8 5 21 5 8 10
Manager 19 8 14 9 0 13 2 9 2 4 7 12 0 4 21 7 3 5 16 21 11 2
Manager 20 6 15 6 5 9 8 11 5 5 8 10 5 6 21 9 8 4 16 8 21 6
Manager 21 0 16 4 4 0 11 21 6 0 0 0 10 0 15 0 0 10 6 0 3 21

4 The Analysis and the Results

Five largest singular vales, derived by the singular value decomposition of A were
169.4, 66.5, 55.2, 30.7, and 22.9. In the present study, two sets of outward and
inward centralities of 21 managers corresponding to the two largest singular values
were derived. The first set based on the largest singular value is shown in Fig. 1;
the outward centrality along dimension 1 (abscissa) which is the first left singular
vector, and the inward centrality along dimension 1 (ordinate) which is the first right
singular vector. The second set based on the second largest singular value is shown
in Fig. 2; the outward centrality along dimension 2 (abscissa) which is the second
left singular vector and the inward centrality along dimension 2 (ordinate) which is
the second right singular vector.

The conjoint measurement of A resulted in the minimized stress of 0.632. Diag-
onal elements of A are regarded as missing values in the analysis. The partial
utility given to the row represents the outward centrality of an actor, and the par-
tial utility given to the column represents the inward centrality of an actor. They are
represented in Fig. 3.

The asymmetric multidimensional scaling of A represents the minimized stress
from five- through unidimensional spaces; 0.426, 0.426, 0.478, 0.538, and 0.792.
Diagonal elements of A are not dealt with in the analysis. The two-dimensional



Centrality of Asymmetric Social Network 223

0.1

0.2

0.3

0.4

0.5

0
0.1 0.2 0.3 0.4 0.5

Dimension 1 Out

Dimension 1 In

1

2

3

4

5
6

7

8

9

10

11

12 13

14

15
16

17

18

19

20

21

Fig. 1 The outward centrality based on the first left singular vector, and the inward centrality
based on the first right singular vector. In Figs. 1–4, the president (#7) is represented by a larger
solid rhombus, the vice president (#2, #14, #18, and #21) is represented by a smaller solid square,
and each of the other supervisors is represented by an open square

result was chosen as the solution which is shown in Fig. 4. In the obtained two-
dimensional configuration, manager j is represented as a point and a circle of radius
rj centered at the point corresponding to manager j .

5 Discussion

In Fig. 1, five upper ranked managers; the president (#7) and four vice presidents
(#2, #14, #18, and #21), grouped together in the upper area of the configuration,
and 16 supervisors or lower ranked managers grouped together in the lower area.
While two groups have similar magnitude of the outward centrality, the upper ranked
managers have the larger inward centrality than that the lower ranked managers
have. This suggests that the upper ranked managers tend to be talked to by the other
managers more frequently than the lower ranked managers, while all managers tend
to talk to the other managers similarly.

While in Fig. 1 all managers are in the first quadrant, in Fig. 2 they are mainly in
the first and the third quadrants. In Fig. 1 the product of the outward and inward
centralities along dimension 1 is positive, or the relationship is positive among
all managers. In Fig. 2 not all products are positive. When manager j ’s outward
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Fig. 2 The outward centrality based on the second left singular vector, and the inward centrality
based on the second right singular vector

centrality is positive and managers k’s inward centrality is negative, the relationship
(the product of the outward and inward centralities) from managers j to k is neg-
ative along dimension 2, and the positive relationship (product) along dimension 1
is reduced as shown in (2). The president (#7) and two vice presidents (#2 and #21)
have positive outward and inward centralities, but the other two vice presidents (#14
and #18) have negative outward and inward centralities. This means that the presi-
dent (#7) and the two vice presidents (#2 and #21) have positive relationships with
each other, and that the two vice presidents (#14 and #18) have positive relationships
with each other as well. It is also suggested that the former (#7, #2, and #21) and the
latter (#14 and #18) have negative relationships with each other. Manager #21 and
all four managers belonging to Department 1 headed by Manager #21 are in the first
quadrant, suggesting that all managers in Department 1 have positive relationships
each other. This means that the department is cohesive, which is supported by that
they are closely located at the right-hand area in Fig. 4.

The second set classifies managers (excluding manager #16) into two groups;
one consists of managers in the first quadrant and the other consists of managers
in the third quadrant. Two groups have positive relationships within each group
which increase the positive relationships along dimension 1, and have negative
relationships between two groups which decrease the positive relationships along
dimension 1. It seems desirable to point out that two sets of outward and inward
centralities given by the singular value decomposition represent different aspects of
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Fig. 3 The outward centrality and the inward centrality derived by conjoint measurement

centralities. The correlation coefficient between two sets of outward centralities is
�0:44, and that of inward centralities is �0:02.

In Fig. 3, five higher ranked managers have higher inward centrality, while all
managers have similar outward centrality. This coincides with the outward and
inward centralities of the first set by the singular value decomposition (Fig. 1). The
correlation coefficient between the outward centrality of the first set and the outward
centrality of the conjoint measurement is 0.91, and that between the inward central-
ities is 0.98. While the manner of representing the relationships among managers is
different (Eqs. 2 and 3), the two procedures derived similar results.

In Fig. 4 five upper ranked managers are located in the central part of the con-
figuration. They have smaller radii than the other managers have. Manager #2, one
of the vice presidents, has the smallest radius of zero by the definition (Okada and
Imaizumi 1987, Eq. 2–4). This means that the upper ranked managers tend to be
talked to more by the other managers than they tend to talk to the other managers.
This is compatible with the outward and inward centralities of the first set by the
singular value decomposition shown in Fig. 1. The correlation coefficient between
the radius and the difference of outward and inward centralities of the first set is
0.92. The correlation coefficient between the radius and the difference of outward
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Fig. 4 The two-dimensional configuration derived by asymmetric multidimensional scaling

and inward centralities derived by the conjoint measurement is 0.90. These cor-
relation coefficients suggest that the outward and inward centralities of the first
set by the singular value decomposition, those derived by the conjoint measure-
ment, and the radius derived by the asymmetric multidimensional scaling represent
essentially the same aspect of the centrality of the relationships among managers.

The correlation coefficient between the outward centralities of the second set by
the singular value decomposition and those derived by the conjoint measurement is
�0:51, and that of the inward centralities is 0.09. The correlation coefficient between
the radius derived by the asymmetric multidimensional scaling and the difference of
outward and inward centralities of the second set is �0:22. The second set of inward
and outward centralities represent different aspects from those of the first set as well
as from those of the conjoint measurement and the asymmetric multidimensional
scaling.
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Some Perspectives on Multivariate Outlier
Detection

Andrea Cerioli, Anthony C. Atkinson, and Marco Riani

Abstract We provide a selective view of some key statistical concepts that underlie
the different approaches to multivariate outlier detection. Our hope is that apprecia-
tion of these concepts will help to establish a unified and widely accepted framework
for outlier detection.

1 Introduction

The identification of outliers is an important step of any analysis of multivariate
data. In a multivariate setting, this task poses more challenging problems than in the
simpler case of a single variable for at least three basic reasons:

� outlyingness should be judged with respect to several (possibly many) dimen-
sions simultaneously;

� there is no natural ordering of multivariate data on which ‘extremeness’ of an
observation can be ascertained;

� simple graphical diagnostic tools like the boxplot are difficult to construct in
more than one or two dimensions (Zani et al. 1998).

It is thus not surprising that the systematic study of multivariate outliers has a
long history in the statistical literature and has led to remarkably different points
of view. See, e.g., Hadi et al. (2009) and Morgenthaler (2006) for recent reviews
on robust methods and outlier detection. In these and other reviews, it is acknowl-
edged that the concern for outliers or grossly wrong measurements is probably as old
as the experimental approach to science. The earliest reported historical references
usually date back to the seventeenth century, with the first precise specifications
subsequently given by Gauss and Legendre. Perhaps less known is the fact that the
same concern was also present in Ancient Greece more than 2,000 years ago, as
reported by Thucydides in his History of The Peloponnesian War (III 20, 3–4).1

1 According to Thucydides, in 428 B.C. the Plataeans, besieged by the Spartans, excluded extreme
measurements when estimating the height of the walls that their enemies had built around the city.
In this way, they managed to break the siege.
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In the modern statistical era, until the early 1990s, alternative methods were
developed following three essentially distinct streams of research, well documented
in the classical book by Barnett and Lewis (1994, Chap. 7): robust techniques for
multivariate outlier accommodation; formal tests of hypotheses for precise out-
lier identification and, thirdly, less formal diagnostic tools for exploratory analysis
including intuitive inspection of the data. With a bit of humour, the supporters of
these alternative schools of outlier methodology were sometimes called the robust-
niks, the testniks and the diagnostniks, respectively. The reconciliation of different
‘outlier philosophies’ was already seen as an ideal by Rousseeuw and Zomeren
(1990) in their rejoinder twenty years ago, but it has still to be reached. Sect. 4
provides a suggestion in that direction.

It is not the goal of this paper to provide a comprehensive overview of the wealth
of methods developed for the purpose of multivariate outlier identification. Rather,
the idea is to guide the reader through a few key statistical concepts that underlie
the different approaches and to see how they evolved over the years. Our hope is
that appreciation of these concepts will help us in establishing a unified and widely
accepted framework for outlier detection.

2 Outlier Detection and Testing

In a seminal paper Wilks (1963) laid down the statistical foundations of multivariate
outlier detection. Let y D .y1; : : : ; yn/

0 be a sample of v-dimensional observations
from N.�;˙/. The sample mean is O� and the unbiased sample estimate of ˙ is Ȯ .
Wilks derived the exact distribution of the n scatter ratios,

Ri D j.n � 2/ Ȯfigjj.n � 1/ Ȯ j�1 i D 1; : : : ; n;

where Ȯfig is the unbiased estimate of ˙ computed after deleting yi . It is easily
seen (Atkinson et al. 2004, pp. 44–46) that Ri is inversely related to the squared
Mahalanobis distance of observation yi

d 2
i D .yi � O�/0 Ȯ �1.yi � O�/; (1)

so that the distributional results for Ri hold for d 2
i as well. In particular,

d 2
i D

.n � 1/2
n

.1 �Ri / � .n � 1/2
n

Beta

�
v

2
;
n � v � 1

2

	
i D 1; : : : ; n: (2)

Wilks also showed how the smallest ratioR.1/, or equivalently the largest squared
distance d 2

.n/
, can be used to test the outlyingness of the corresponding observation.

This multivariate outlier detection rule focuses on the intersection hypothesis that
no outlier is present in the data

H0s W fy1 � N.�;˙/g \ fy2 � N.�;˙/g \ : : : \ fyn � N.�;˙/g; (3)
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against the alternative that one is present. The candidate outlier is the most remote
observation, i.e., the observation with the largest squared Mahalanobis distance (1).
The size of a test of H0s , say 
 , represents the proportion of good data sets that are
wrongly declared to contain outliers. Simultaneity is dealt with in Wilks (1963) by
introducing a Bonferroni bound on the probability that the test statistic exceeds a
given threshold.

Simulations show that Wilks’ outlier detection method, combining the scaled
Beta distribution (2) with a Bonferroni bound, has very good control of the size of
the test of H0s . It can thus be taken as a benchmark for comparison with alternative
procedures under the null hypothesis of no outliers.

However, the squared Mahalanobis distances (1) suffer from masking. If a few
outliers contaminate the data, it is unlikely that the largest distances d 2

.n/
; d 2

.n�1/
; : : :

will be associated with the atypical observations because O� and Ȯ will be grossly
distorted by these outliers.

Wilks (1963) extended his deletion method to the case of two observations, but
dealing with an unknown and possibly large number of outliers rapidly becomes
infeasible. The same problem affects any other backward procedure, such as the
sequential application of Wilks’ test suggested by Caroni and Prescott (1992).
Moving backwards, all the outliers will be missed if d 2

.n/
is masked.

3 Robust Distances from High-Breakdown Estimators

The use of high-breakdown estimators of � and ˙ in the place of the classical ones
has proved to be a practical solution to the problem of masking. Popular choices
for such estimators include the Minimum Covariance Determinant estimator,
S-estimators and projection-based techniques. See Hubert et al. (2008) or Maronna
et al. (2006, Chap. 6) for recent reviews.

Let Q� and Q̇ be the chosen high-breakdown estimators of � and ˙ . The
corresponding squared robust Mahalanobis distances are

Qd 2
i D .yi � Q�/0 Q̇ �1.yi � Q�/ i D 1; : : : ; n: (4)

The outliers in y are revealed by their large distances from the robust fit provided
by Q� and Q̇ , without suffering from masking. The key issue is that outlying obser-
vations have null or negligible weight in the computation of Q� and Q̇ . Therefore,
they cannot ‘attract’ these estimates and maintain a large value of Qd 2

i .
The need to avoid masking directs the outlier detection problem to the choice of

suitable cut-offs for the robust squared distances (4), instead of the classical critical
values computed from (2). However simple this step may seem, it has produced
some surprising consequences.

First, the focus has shifted from the intersection hypothesis (3) to the problem of
testing the n null hypotheses

H0i W yi � N.�;˙/; i D 1; : : : ; n: (5)
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The most common approach has been to test all these hypotheses individually at
a specified size 0:01 � ˛ � 0:05, with ˛ D 0:025 being perhaps the most pop-
ular choice. This approach, which does not take multiplicity of tests into account,
increases the probability of detecting truly contaminated observations, but the user
must be prepared to declare at least one outlier (and often many more) in most data
sets of realistic size. In other words, the user must be prepared to invest a large sum
of money (if all the suspected outliers are discarded) or a large amount of time (if the
suspected outliers are checked one by one) to accomplish the process of multivariate
outlier detection, even when the expected number of contaminated observations is
small.

The tendency of an outlier detection method to label good observations as outliers
is called swamping. We believe that the ability to control the degree of swamp-
ing is an important property for the practical usefulness of an outlier detection
method. Major application areas where even a moderate number of false outliers
may have disastrous consequences include anti-fraud analysis and statistical qual-
ity control. For instance, outliers are of great interest in the analysis of trade data
arising in the European Union market (Riani et al. 2008), because some of them
may correspond to fraudulent transactions. Since there are hundreds of transactions
to be inspected over thousands of markets, ignoring the multiplicity of tests would
lead to a plethora of false signals for anti-fraud services, thus making substantial
investigation of possible frauds impractical.

Another major shortcoming of the use of the squared robust distances Qd 2
i is that

their exact distribution is unknown. The required cut-offs are then usually computed
from their asymptotic �2

v distribution, although the adequacy of this approximation
can be very poor even in moderately large samples, especially when the number of
dimensions increases. This behaviour has been shown in many simulation studies:
see, e.g., Becker and Gather (2001), Cerioli et al. (2009), Hardin and Rocke (2005)
and Riani et al. (2009).

The liberality of the �2
v distribution for the purpose of approximating the squared

robust distances Qd 2
i adds further swamping to the individual testing framework of

the n hypotheses H0i . It also makes the simultaneous testing of these hypotheses
in (3) even more problematic, because the corresponding cut-offs lie in the extreme
tail of the true but unknown distribution of the robust distances. This behaviour is
in sharp contrast with the excellent null performance of the classical Mahalanobis
distances (1). It also obviously calls for better approximations to the finite sample
distribution of the squared robust distances Qd 2

i when no outlier is present in the data.
Hardin and Rocke (2005) suggest a way to approximate the first two moments of

the distribution of the squared robust distances Qd 2
i . However, simultaneous testing

of the n hypothesis (5) requires cut-off values which are in the extreme tail of the
distribution. In that case information on E. Qd 2

i / and var. Qd 2
i / is often not enough to

obtain reliable rejection regions and it is preferable to estimate the cut-offs directly.
A good finite sample approximation to the required thresholds under the intersection
hypothesis (3) is proposed by Cerioli et al. (2009). Their idea is to calibrate the
asymptotic cut-off values by Monte Carlo simulation. Calibration is first performed
for some representative values of n and v and then extended to any n and v by
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parametric non-linear interpolation. The resulting outlier detection rule has very
good control of the size of the test of no outliers even in situations where space
is very sparsely filled (e.g., n D 50; v D 10). The method is very general, as in
principle it can be applied to any choice of Q� and Q̇ , and also easy to implement,
once the parameters of the interpolation function are made available. However, the
power may be rather low, since the technique does not allow for the variability of
distances in the tail of the distribution.

Cerioli (2010) provides a power improvement by introducing an accurate approx-
imation to the distribution of one-step reweighted robust distances. This approxima-
tion is based on a scaled Beta distribution mimicking (2) for the units not suspected
of being outliers, and on a scaled F distribution for the units which are trimmed in
the reweighting step. Also this method provides good control of the simultaneous
size of the n outlier tests (5). Therefore, it can be useful in all the application fields
where allowing for the multiplicity of tests is an important issue.

Attaining the right size through distributional results yields more powerful rules
than through calibration of cut-off values. Furthermore, a substantial increase in
power can be obtained by controlling the number of false discoveries only when all
the data come from the prescribed null distribution. Cerioli (2010) suggests an out-
lier identification rule that tolerates some degree of swamping, but only when there
is strong evidence that some contamination is present in the data. This follows the
idea that the level of swamping provided by repeated testing of (5), although dele-
terious in ‘good’ data sets, may still be acceptable in a contaminated framework.
Such a view is often sensible when the probability of observing a contaminated
sample is small. On the contrary, if the sample is predicted to have some contam-
ination with high probability, but the expected number of contaminants is small,
other approaches could be followed. As shown in Cerioli and Farcomeni (2011), by
controlling the False Discovery Rate it is possible to develop outlier identification
rules for which the acceptable number of false discoveries depends explicitly on the
number of outliers found.

4 Is a Reconciliation Possible?

Wilks’ outlier test and the high-breakdown identification rules described by Hubert
et al. (2008) have opposite attitudes towards two basic issues of multivariate outlier
detection: the null hypothesis to be tested in order to label an observation as an
outlier and the approach towards the control of the number of false discoveries. A
reconciliation of these alternative philosophies can be found in the Forward Search
method of Atkinson et al. (2004, 2010).

The basic idea of the Forward Search (FS) is to start from a small, robustly
chosen, subset of the data and to fit subsets of increasing size, in such a way
that outliers and other observations not following the general structure are clearly
revealed by diagnostic monitoring. Letm0 be the size of the starting subset. Usually
m0 D vC 1 or slightly larger. Let S .m/� denote the subset of data fitted by the FS at
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step m (m D m0; : : : ; n). At that step, outlyingness of each observation yi can be
evaluated through the squared distance

d 2
i�.m/ D fyi � O��.m/g0 Ȯ�.m/�1fyi � O��.m/g; (6)

where O��.m/ and Ȯ�.m/ are the estimates of � and ˙ computed from S
.m/� . The

squared distances d 2
1�.m/; : : : ; d 2

n�.m/ are then ordered to obtain the fitting subset at
stepmC1. Usually one observation enters the subset at each step, but sometimes two
or more, when one or more then leave. Such occurrences are indicative of changes
in structure or of clusters of outliers entering the subset.

Whilst S .m/� remains outlier free, the squared distances d 2
i�.m/ will not suffer

from masking and swamping. Therefore, they are a robust version of the classical
Mahalanobis distance d 2

i . The main diagnostic quantity computed from these robust
distances is d 2

imin�.m/, where

imin D arg mind 2
i�.m/ i … S .m/�

is the observation with the minimum squared Mahalanobis distance among those
not in S .m/� . The main idea is that the distance of the closest observation entering
the subset at step mC 1 will be large if this observation is an outlier. Its peculiarity
will be clearly revealed by a peak in the forward plot of d 2

i�.m/.
The early developments of the FS aimed essentially to provide powerful plots

for investigating the structure of regression and multivariate data, using quantities
such as d 2

imin�.m/. Therefore, the FS might be seen a contribution of the ‘diagnostic’
school of outlier detection. However, it is paramount that any diagnostic quantity
can result in a formal test if its null distribution is known and appropriate thresholds
can be defined. The statistic d 2

imin�.m/ can be treated as a squared deletion distance
onm�1 degrees of freedom, whose distribution is (Atkinson et al. 2004, pp. 43–44)

.m2 � 1/v
m.m� v/

Fv;m�v; (7)

while S .m/� remains outlier free. This statistic is based on Ȯ�.m/, which is a biased
estimate of˙ , being calculated from them observations in the subset that have been
chosen as having them smallest distances. As a result, Riani et al. (2009) propose a
formal outlier test based on the FS by making use of the envelopes

Vm;˛=�T .m/; (8)

where Vm;˛ is the 100˛% cut-off point of the .m C 1/th order statistic from the
scaled F distribution (7) and the factor

�T .m/
�1 D m=n

P.X2
vC2 < �

2
v;m=n

/
(9)
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allows for trimming of the n�m largest distances. In (9) �2
v;m=n

is them=n quantile

of �2
v and X2

vC2 � �2
vC2:

The FS test for multivariate outlier identification based on thresholds derived
from (8) does not require computation of the high-breakdown estimators Q� and Q̇ .
Furthermore, like the methods described in Sect. 2, this is a simultaneous test which
has good control of the size of the test of no outliers (3). This property is made
possible by the use of accurate finite sample distributional results for the squared
Mahalanobis distances computed along the search. Nevertheless, the FS test does
not suffer from masking, because it is the algorithm itself which is robust. Thus the
FS test can cope with the same contamination rate as the high-breakdown methods
sketched in Sect. 3.

We conclude that the Forward Search can provide a reconciliation of the three
classical approaches to outlier detection introduced in Sect. 1. Being based on a
flexible strategy in which the proportion of trimming is determined by the data, it
enjoys high power. A further bonus of the Forward Search is its suitability for being
easily adapted to cope with many different methodologies, including other multi-
variate techniques, linear and non-linear regression and correlated data modelling.
For instance, by allowing a level of trimming smaller than 0.5, we believe that the
Forward Search has the greatest potential among robust techniques to become a
comprehensive approach through which cluster analysis and outlier detection could
be performed under the same umbrella.
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Spatial Clustering of Multivariate
Data Using Weighted MAX-SAT

Silvia Liverani and Alessandra Petrucci

Abstract Incorporating geographical constraints is one of the main challenges of
spatial clustering. In this paper we propose a new algorithm for clustering of spatial
data using a conjugate Bayesian model and weighted MAX-SAT solvers. The fast
and flexible Bayesian model is used to score promising partitions of the data. How-
ever, the partition space is huge and it cannot be fully searched, so here we propose
an algorithm that naturally incorporates the geographical constraints to guide the
search over the space of partitions. We illustrate our proposed method on a simulated
dataset of social indexes.

1 Introduction

Clustering of spatial data requires an appropriate inclusion of the geographical dis-
tances in the clustering algorithm. One of the proposed ways to include the spatial
element suggests to run clustering only between observations and clusters that share
a boundary (Johnston 1976, Legendre 1987, Gordon 1996). Such an exploration of
the space, though, does not automatically generate a partition of the data. More-
over, the huge number of partitions of even a moderately sized dataset requires an
intelligent search algorithm.

In this paper we propose the use of a Bayesian score model, which allows the
search over adjacent clusters, and a weighted MAX-SAT solver, that searches the
space of high scoring clusters identifying the highest scoring partition and encodes
the constraints necessary to obtain a partition of the data.

The Bayesian MAP model provides us with a score for each partition as in Heard
et al. (2006). MAP selection, an alternative to model mixing (Fraley and Raftery
1998), is a method where the most a posteriori probable model is selected. As
shown in the context of microarray experiments (Heard et al. 2006, Zhou et al. 2006,
Liverani et al. 2009a), Bayesian algorithms are very versatile, for example to model
time dependence and to enable incorporation of pertinent scientific information.

We propose the use of this Bayesian score in conjunction with a weighted
MAX-SAT solver (Tompkins and Hoos 2005). Given a set of weighted clauses,

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_27, c� Springer-Verlag Berlin Heidelberg 2011
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the weighted maximum satisfiability problem (weighted MAX-SAT) asks for the
maximum weight which can be satisfied by any assignment. Many exact solvers
for MAX-SAT have been developed in recent years and it has been demonstrated
that these solvers can be used in other fields too, when the problem can be encoded
appropriately. For example, see Cussens (2008) for model search over Bayesian net-
works. In particular, Liverani et al. (2010) have successfully encoded the clustering
problem to explore the partition space using weighted MAX-SAT solvers when a
Crowley (1997) prior is employed.

The main contribution of this paper is a modification to the encoding by Liv-
erani et al. (2010) to the context of spatial clustering. Some of the difficulties of the
implementation of the above algorithm to a generic clustering problem are immedi-
ately simplified in this context by encoding geographical constraints when scoring
the promising clusters searched by weighted MAX-SAT solvers. Moreover, in this
context weighted MAX-SAT solvers become essential because the geographical
constraints do not allow the use of alternative algorithms. For example, agglomera-
tive hierarchical clustering (AHC) would obtain a partition whose data points might
not share a boundary. However, even though weighted MAX-SAT solvers identify
partitions given a set of potential clusters, they do require a careful computation of
those potential clusters, including the geographical constraints. In this paper we also
include an algorithm for selecting such clusters.

This paper is structured as follows. In Sect. 2 we introduce the Bayesian scoring
function. In Sect. 3 we introduce weighted MAX-SAT solvers and the encoding of
geographical constraints. In Sect. 4 we illustrate our method on a simulated dataset.

2 Bayesian Model and Score Function

We perform clustering with a conjugate Gaussian regression model developed by
Heard et al. (2006).

Let Y i 2 Rr for i D 1; : : : ; n represent the r-dimensional units to cluster.
Let D D .Y 1; : : : ;Y n/ and Y D vec.D/. The Normal Inverse-Gamma conju-
gate Bayesian linear regression model for each observation in a cluster c takes the
form

Y .c/ D X .c/ˇ.c/ C ".c/;

where ˇ.c/ D .ˇ1; ˇ2; : : : ; ˇp/
0 2 Rp and

".c/ Ï N.0; �2
.c/I /

is a vector of independent error terms with �2
.c/
> 0. The posterior Normal Inverse

Gamma joint density of the parameters .ˇ.c/; �2
.c/
/ is given in Heard et al. (2006). A

partition C of the observations divides them into N clusters of sizes fn1; : : : ; nN g,
with

n D
NX

iD1

ni :
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Throughout this paper we assume that X D 1nc
˝ B , where B is a known matrix,

and that X 0X D ncB
0B is full rank. The design or basis function matrixX encodes

the type of basis used for the clustering: for example, linear splines (Heard et al.
2006), wavelets (Ray and Mallick 2006) and Fourier (Liverani et al. 2009a). For
merely illustrative purposes, in Sect. 4 we use a design matrix which represents a
linear relation between the coefficients ˇ and the response variable Y .

The Bayes factor associated with this model can be calculated from its marginal
likelihood, L.y/ (Heard et al. 2006), that is,

BF D
�
1

	

	nr=2
ba

.b�/a�

jV �j1=2

jV j1=2

� .a�/
� .a/

: (1)

Unlike for univariate data, there are a myriad of different shapes given by multivari-
ate data and, consequently, Bayes factors associated with different observations are
highly discriminative and informative.

Assuming the parameters of different clusters are independent then, because the
likelihood separates, it is straightforward to check (Smith et al. 2008) that the log
marginal likelihood score ˙.C / for any partition C with clusters c 2 C is given by

˙.C / D logp.C /C
X

c2C

logpc.y/:

This model has a wide applicability because it can be customized through the
choice of a given design matrixX . Conjugacy ensures the fast computation of scores
for a given partition because these can be written explicitly and in closed form as
functions of the data and the chosen values of the hyperparameters of the prior.
Applications range from one-dimensional data points to multidimensional datasets
with time dependence among points or where the points are obtained by applying
different treatments to the units. No geographical constraints are included in the
model at this stage.

Although there are many possible choices for a prior over partitions, an appro-
priate choice in our context is the Crowley partition prior p.C / for partition C
(Liverani et al. 2010). This prior is given by

p.C / D � .�/�N

� .nC �/
NY

iD1

� .ni /

where � > 0 is the parameter of the partition prior, N is the number of clusters
and n is the total number of observations, with ni the number of observations in
cluster ci .

Assuming the parameters of different clusters are independent then, because the
likelihood separates (Smith et al. 2008), if we use a prior from this family then we
can compute the score˙.C /, which decomposes into the sum of the scores Si over
individual clusters plus a constant term. Thus,
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˙.C / D log� .�/ � log� .nC �/C
NX

iD1

Si :

This is especially useful for weighted MAX-SAT which needs the score of an object
to be expressible as a sum of component scores. It is this property that enables us to
find straightforward encoding of the MAP search as a weighted MAX-SAT problem.

3 Searching the Partition Space

The Bayesian score introduced above is used in conjunction with a method for the
search of the partition space because a full exploration of the partition space is not
possible, as this space is huge. The number of partitions of a set of n elements grows
quickly with n. For example, there are 5:1 � 1013 ways to partition 20 elements.

Liverani et al. (2010) showed that a decomposition of the marginal likelihood
score allows weighted MAX-SAT algorithms to be used for clustering under the
Crowley prior. In this paper we propose an extension in the context of spatial
clustering.

3.1 Weighted MAX-SAT

A propositional atom, ci , is created for each considered cluster ci . Propositional
atoms are binary variables with two values (TRUE and FALSE) and a partition is
represented by setting all of its clusters to TRUE and all other clusters to FALSE.
However, most truth-value assignments for the ci do not correspond to a valid par-
tition and, therefore, such assignments must be ruled out by constraints represented
by logical clauses. A partition is a defined by clusters that do not overlap and where
each data point must be included in some cluster.

A propositional clause is a disjunction: it states that at least one of a number of
propositions is true and a formula which is a conjunction of clauses is said to be in
conjunctive normal form (CNF). A weighted CNF formula is such that each clause
has a positive weight attached. This weight should be interpreted as a cost which is
incurred by an assignment if that assignment does not satisfy the clause. The total
cost of any assignment is the sum of the costs of clauses that assignment fails to
satisfy.

It is useful to allow some clauses to be hard clauses. Such clauses have infinite
cost–they must be satisfied if at all possible. Other clauses are soft–it would be
nice to satisfy them but an optimal assignment might break them. To encode the
clustering problem we define one class of hard clauses and one class of soft clauses.

The first class of hard clauses states that each data point must be included in some
cluster in the partition. Let fcy1

; cy2
; : : : ; cyi.y/

g be the set of all clusters containing
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data point y. For each y a single clause of the form:

cy1
_ cy2

_ � � � _ cyi.y/

is created.
The second class of hard clauses rules out the inclusion of overlapping clusters

we assert clauses of the form:
ci _ cj

for all non-disjoint pairs of clusters ci ; cj . (A bar over a formula represents nega-
tion.) Each such clause is logically equivalent to ci ^ cj : both clusters cannot be
included in a partition.

The two classes of hard clauses above suffice to rule out non-partitions; it remains
to ensure that each partition has the right score. This can be done by exploiting
the decomposability of the partition score into cluster scores and using soft clauses
to represent cluster scores. If Si , the score for cluster ci , is positive the following
weighted clause is asserted:

Si W ci (2)

If a cluster cj has a negative score Sj then this weighted clause is asserted:

� Sj W cj (3)

which states a preference for cj not to be included in the partition. Given an input
composed of the clauses above the task of a weighted MAX-SAT solver is to find
a truth assignment to the ci which respects all hard clauses and maximizes the sum
of the weights of satisfied soft clauses. Such an assignment will encode the highest
scoring partition constructed from the given clusters.

See Liverani et al. (2010) for more details on the encoding of the necessary con-
straints and additional filters that can be included in the weighted MAX-SAT solver.

However, a full exploration of the partition space is not possible, as this space
is huge. For example, there are 5:1 � 1013 ways to partition 20 elements and up to
1:04 � 106 cluster scores could be encoded into weighted MAX-SAT, considerably
slowing down the solvers as n grows.

Liverani et al. (2010) suggest few alternatives to reduce the number of cluster
scores, but in our context the geographical constraints imposed by spatial clustering
can directly be encoded in the cluster score computation. In the next section we
propose an algorithm that automatically includes such constraints in the clustering
problem.

3.2 Computing Cluster Scores with Geographical Constraints

In spatial clustering a cluster is defined as a geographically bounded group of data
points. Therefore, we propose to compute cluster scores only for such clusters,
reducing the number of superfluous cluster scores that slow down the weighted
MAX-SAT solvers.
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A simple way to compute only cluster scores that satisfy the geographical con-
straints is to evaluate all the possible clusters containing a single observation and to
iteratively augment the size of the most plausible clusters, thanks to the nice decom-
posability property of the score function. Note that we also need to include an upper
bound for the size of each cluster,m, to avoid redundant clusters scores. We choose
settings of the parameter m � n=2, as this guarantees speed in computation and
it does not overly restrict the maximum size of any given cluster. However, this
does not affect the results as we are unlikely to require, or expect, clusters of car-
dinality equal to, or greater than, n=2 for problems where clustering was deemed
appropriate.

The algorithm to compute cluster scores is described below.

Step 1 Set the maximum cluster size, m. Set i D 1.
Step 2 Consider cluster ci D i . Compute its cluster score.
Step 3 Consider all the data points that share a boundary with cluster ci . Compute

their cluster scores if they were to be merged with cluster ci .
Step 4 Merge ci with the data point that resulted in the highest increase in the

partition score.
Step 5 Repeat Steps 3–4 until the cluster ci reaches cardinalitym.
Step 6 If i D n, go to Step 7. Else, set i D i C 1 and repeat Steps 2–6.
Step 7 Run a weighted MAX-SAT solver to identify the best partition.

4 Results on a Simulated Dataset

We include the results obtained on a small simulated dataset with the purpose of
demonstrating the method proposed. We simulated four social indexes for the 20
regions of Tanzania.

All runs of weighted MAX-SAT were conducted using the C implementation that
is available from the UBCSAT home page http://www.satlib.org/ubcsat. UBCSAT
(Tompkins and Hoos 2005) is an implementation and experimentation environment
for Stochastic Local Search (SLS) algorithms for SAT and MAX-SAT. We have
used their implementation of WalkSat in this paper.

The weighted MAX-SAT solver retrieved the four generating clusters success-
fully. The left hand side of Fig. 1 shows the four geographical clusters obtained on
the map of Tanzania, whilst the right hand side of Fig. 1 shows the values of the
indicators for the observations that belong to the four clusters.

This example on a small simulated dataset showed that the methods described
above can be implemented to produce sensible results.

5 Discussion

In this paper we proposed a modification to the algorithm by Liverani et al. (2010)
for spatial clustering. We illustrated our method on a simulated dataset.

The method proposed presents many advantages. As mentioned above it is very
flexible, so it can be modified to suit different types of data, such as social indexes

http://www.satlib.org/ubcsat
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Fig. 1 On the left hand side, there is the map of the 20 regions of Tanzania. The different colors
identify the regions which generated the data and were also retrieved by the algorithm. On the
right hand side there are the values of the four indicators for the four clusters obtained by the
algorithm. The four indicators are identified by different values of the x-axis, and the four clusters
are identified by different symbols used in the plot

and measurements taken over time in a spatial context. Furthermore, the conju-
gacy of the proposed Bayesian model assures speed of the algorithm, and prior
information can be included in the model.

Encoding the geographical constraints typical of spatial clustering for weighted
MAX-SAT solvers is direct and sensible, by-passing the disadvantages of other
widely used methods for partition space search, such as hierarchical clustering and
stochastic search, that do not allow geographical constraints to be incorporated as
naturally.
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Clustering Multiple Data Streams�

Antonio Balzanella, Yves Lechevallier, and Rosanna Verde

Abstract In recent years, data streams analysis has gained a lot of attention due
to the growth of applicative fields generating huge amount of temporal data. In this
paper we will focus on the clustering of multiple streams. We propose a new strategy
which aims at grouping similar streams and, together, at computing summaries of
the incoming data. This is performed by means of a divide and conquer approach
where a continuously updated graph collects information on incoming data and an
off-line partitioning algorithm provides the final clustering structure. An application
on real data sets corroborates the effectiveness of the proposal.

1 Introduction

With the fast growing of capabilities in data acquisition and processing, a wide
number of domains is generating huge amount of temporal data.

Some examples are financial and retail transactions, web data, network traffic,
electricity consumptions, remote sensors data.

Traditional data mining methods fail at dealing with these data since they use
computational intensive algorithms which require multiple scans of the data. Thus,
whenever users need to get the answers to their mining and knowledge discovery
queries in short times, such algorithms become ineffective.

A further issue of traditional algorithms is that data can be only processed if they
are stored on some available media.

To deal with this new challenging task, proper approaches, usually referred as
techniques for data streams analysis, are needed.

Among the knowledge extraction tools for data streams, clustering is widely used
in exploratory analyses.

1 This paper has been supported by COST Action IC0702 and by ‘Magda una piattaforma ad agenti
mobili per il Grid Computing’ Chair: Prof. Beniamino Di Martino.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_28, c� Springer-Verlag Berlin Heidelberg 2011
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Clustering in data stream framework is used to deal with two different challenges.
The first one is related to analyzing a single data stream to discover a partitioning of
the observations it is composed of. A second one is to process data streams generated
by a set of sources (let’s think about sensor networks) to discover a partitioning of
the sources selves.

In this paper we will focus on the second one, which is usually referred as streams
clustering.

Interesting proposals on this topic have been introduced in Beringer and
Hullermeier (2006) and Dai et al. (2006). The first one is an extension to the
data streams framework of the k-means algorithm performed on time series. Basi-
cally, the idea is to split parallel arriving streams into non overlapping windows
and to process the data of each window performing, at first, a Discrete Fourier
Transform to reduce the dimensionality of data, and then, the k-means algorithm on
the coefficients of the transformation. On each window, the k-means is initialized
using the centroids of the clusters of the partition obtained by the latest processed
window.

The main drawback of this strategy is the inability to deal with evolving data
streams. This is because the final data partition only depends from the data of the
most recent window.

The second proposal is performed in two steps:

– an On-line procedure stores the coefficients of a suitable transformation (wavelet
or linear regression) computed on chunks of the streams.

– an Off-line procedure is run on the on-line collected coefficients to get the final
clustering structure.

Although this method is able to deal with evolving data streams, its main
drawback is that the approach used for summarization is only based on storing
compressed streams.

In this paper, we introduce a new strategy for clustering highly evolving data
streams which provides the clustering structure over a specific temporal interval and
a set of time located summaries of the data. Our proposal consists in two steps. The
first one, which is run on-line, performs the clustering of incoming chunks of data to
get local representative profiles and to update the adjacency matrix of an undirected
graph which collects the similarities among the streams.

The second one, performs the final data partitioning by means of an off-line
clustering algorithm that is run on the adjacency matrix.

2 A Graph Based Approach for Clustering Streaming
Time Series

Let us note with S D fY1; : : : ; Yi ; : : : ; Yng the n streams Yi D Œ.y1; t1/; : : : ; .yj ; tj /;

: : : ; .y1; t1/� made by real valued ordered observations on a discrete time grid
T D ˚

t1; :::; tj ; :::t1
� 2 <. A time window wf with f D 1; : : : ;1 is an ordered
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Fig. 1 Splitting of the incoming data into non overlapping windows

subset of T having size ws . Each time window wf frames a subset Y w
i of Yi called

subsequence where Y w
i D

˚
yj ; : : : ; yj Cws

�
.

The objective is to find a partitionP of S intoC clusters such that each stream Yi

belongs to a cluster Ck with k D 1; :::; C and
TC

kD1 Ck D . Streams are allocated
to each cluster Ck with the aim to minimize the dissimilarity within each cluster and
to maximize the dissimilarity between clusters.

In order to get the partition P , the incoming parallel streams are split into non
overlapping windows of fixed size (Fig. 1).

On the subsequences Y w
i of Yi framed by each window wf we run a Dynamic

Clustering Algorithm (DCA) extended to complex data (Diday 1971, Carvalho et al.
2004).

The DCA looks both for a representation of the clusters (by means of a set of
prototypes) and the best partition in K clusters, according to a criterion function
based on a suitable dissimilarity measure.

The algorithm performs a step of representation of the clusters and a step of allo-
cation of the subsequences to the clusters according to the minimum dissimilarity
to the prototypes.

In our case, DCA provides a local partitioningPw D C w
1 [: : :[C w


 [: : :[C w
K into

K clusters of the subsequences framed by wf and the associated set of prototypes
Bw D .bw

1 ; : : : ; b
w

 ; : : : ; b

w
K/ which summarize the behaviors of the streams in time

localized windows.
Let G D .V;E/ be an undirected similarity graph where the vertex set V D

.v1; : : : ; vi ; : : : ; vn/ corresponds to the indices i of the streams of S and the edges
set E , carries non-negative values which stand for the weights ai;l of the linking
between the streams Yi and Yl .

The graphG can be represented by means of a symmetric adjacency matrix A D
.ai;l/i;lD1;:::n where ai;l D al;i and ai;i D 0.

For each local partitions Pw we update the adjacency matrix A of the graph G,
processing the outputs provided by the clustering algorithm at each window (Fig. 2).
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Fig. 2 Data processing schema

for each local cluster Cw
� 2 Pw do

Detect all the possible couples of subsequences Y w
i , Y w

l which are allocated to the cluster C w
�

for each couple .i; l/ do
add 1 to the cells ai;l and al;i of A

end for
end for

This is performed by collecting the similarity values among the streams without
computing all the pairwise proximities among the streams, as required in the data
stream framework.

The main idea underlying this approach is to store in each cell ai;l the number of
times each couple of streams is allocated to the same cluster of a local partition Pw.

This involves that the following procedure has to be run on each window:
For instance, let us assume to have five streams .Y1; Y2; : : : ; Y5/ and a local

partition P1 D .Y w
1 ; Y

w
2 /.Y

w
3 ; Y

w
4 ; Y

w
5 /, the graph updating consists in:

1. Adding 1 to the cells a1;2 and a2;1

2. Adding 1 to the cells a3;4 and a4;3

3. Adding 1 to the cells a3;5 and a5;3

4. Adding 1 to the cells a4;5 and a5;4

We can look at A as a proximity matrix where the cells record the pairwise
similarity among streams.

For each couple of subsequences Y w
i ; Y

w
l

in the same cluster, the updating of the
cells ai;l and al;i of A with the value 1, corresponds to assign the maximum value
of similarity to such couple of subsequences.

When this procedure is performed on a wide number of windows, it is a grad-
uation of the consensus between couple of streams computed incrementally. The
higher is the consensus, the more similar will be the streams.

According to the proposed procedure, if two subsequences belong to two differ-
ent clusters of a local partition, their similarity is always considered minimal, with
the value 0 set in the corresponding cells of A.

In order to deal with this issue, we improve the previous graph updating
approach, by graduating the similarities between the couples of streams belonging
to different clusters instead to consider these maximally dissimilar.
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To reach this aim, we define the cluster radius and the membership function.

Definition 1. Let d 2 < be a distance function between two subsequences. The
radius radw


 of the cluster C w

 is max.d.Y w

i ; b
w

 // for each Y w

i 2 C w

 .

Starting from the cluster radius radw

 , the Membership function of a subsequence

to a cluster C w

 is given by:

mfl;
 D radw



d.Y w
l
; bw


 /
8Y w

l … C w

 (1)

mfl;
 ranges from 0 to 1 since it is the ratio between the radius of the cluster Ck

and the distance of a subsequenceY w
l

not belonging to the cluster from the prototype
bw[ of C w

k
.

We update the cells of A using the value of the Membership function computed
on each couple subsequences belonging to different clusters.

According to such adjustments, the whole updating process becomes the
following:

Algorithm 1 Graph updating strategy
for all Y w

i i 2 n do
Detect the index � of the cluster which Y w

i belongs to
for all Y w

l 2 Cw
� do

Add the value 1 to the graph edges ai;l and al;i
end for
for all 
 ¤ � 
 D 1; : : : ; K do

Compute mfi;

Detect all the subsequences Y w

l 2 Cw



Add the value mfi;
 to the cells ai;l and al;i of A
end for

end for

The proposed procedure, when repeated on each window, allows to get the pair-
wise similarities among streams in an incremental way. This is obtained without
computing the similarity between each couple of streams because only the distances
computed in the allocation step of the last iteration of the DCA algorithm are used.

3 Off-line Graph Partitioning by Spectral Clustering

In order to get a global partition P into C clusters, of the set of streams S analyzed
in the sequence of windows wf (f D 1; : : : ; F ), we have to run a proper clustering
algorithm on the proximity matrix A.

The choice of the F value of processed windows, is performed according to a
user clustering demand or to a time schedule which breaks the updating of A at
prefixed time points such to get the clustering results over several time horizons.
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Usual techniques for clustering proximity graphs are based on spectral clustering
procedures (Luxburg 2007).

The problem of finding a partition of S where the elements of each group are
similar among them while elements in different groups are dissimilar can be for-
mulated in terms of similarity graphs. We want to find a partition of the graph such
that the edges between different groups have a very low weight (similarity) and the
edges within a group have high weight (similarity).

Note that according to Bavaud (2006), similar results can be obtained using a
non metric multidimensional scaling on the adjacency matrix A.

Definition 2. Let vi 2 V a vertex of the graph. The degree of vi is di DPn
lD1 ai;l .

The degree matrix D is defined as the diagonal matrix with the degrees d1; : : : ; dn

on the diagonal.

Starting from the degree matrix D it is possible to define the Laplacian Matrix
and the Normalize Laplacian Matrix:

Definition 3. Let L D D � A be the unnormalized Laplacian Matrix. The normal-
ized Laplacian Matrix Lnorm is defined as:

Lnorm D D� 1
2LD� 1

2 (2)

The algorithm schema is the following:

Algorithm 2 Spectral clustering algorithm
Compute L and Lnorm

Compute the first C eigenvalues of Lnorm

Let QA 2 <nxC the matrix containing the C eigenvectors associated to the first eigenvalues of
Lnorm

Get the partition P of S into C clusters using the k-means algorithm on the multidimensional
points defined by the rows of QA

4 Main Results

To evaluate the performance of the proposed strategy we have compared the clus-
tering performance of the on-line clustering strategy with the k-means algorithm on
stocked data, using highly evolving datasets.

Two datasets have been used in the evaluation process:
The first one is made by 76 highly evolving time series, downloaded from Yahoo

finance, which represent the daily closing price of random chosen stocks. Each time
series is made by 4,000 observation.

The second one is made by 179 highly evolving time series which collect daily
electricity supply at several locations in Australia. Each time series is made by 3,288
recordings.
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We have considered some of the most common indexes to assess the effectiveness
of the proposal (See Maulik and Bandyopadhyay 2002). The Rand index (RI) and
the Adjusted Rand index (ARI) are used as external validity indexes to evaluate
the degree of consensus between the partition obtained by our proposal and the
partition obtained using the k-means. Moreover, the Calinski-Harabasz Index(CH),
the Davies-Bouldin(DB) Index and the Silhouette Width Criterion(SW), are used as
internal validity indexes to evaluate the compactness of clusters and their separation.

In order to perform the testing, we need to set the following input parameters for
the proposed procedure:

� number of clustersK of each local partition Pw

� the final number of cluster C to get the partition of S
� the size wf of each temporal window

For the k-means we only need to set the number of clusters C .
The Euclidean distance is used as dissimilarity function in both the procedures.
According to this choice, DCA algorithm on the windows data, is a classical

k-means where the prototypes are the average of the data in a cluster.
The parameter C has been set, for the first and second datasets, running the

k-means algorithm using C D 2; : : : ; 8. For each value of C we have computed
the total within deviance.

We have chosen C D 4 for the first dataset and C D 3 for the second dataset,
since these are the values which provide the highest improvement of the clusters
homogeneity.

By evaluating, through the mentioned indexes, the partitioning quality for several
values of ws we can state that the choice of the windows size does not impact on the
clusters homogeneity. As a consequence, the choice of the value of such parameter,
can be performed according to the kind of required summarization. For example, if
we need to detect a set of prototypes for each week of data, we choose a value of
the window size which frames the observations in a week.

In our tests, we have used windows made by 30 observations for the first two
datasets and 50 for the third one.

The third required input parameter K does not strongly impact on the clustering
quality. We have tested this by evaluating the behavior of the Calinski-Harabasz
Index and of the Davies-Bouldin Index according to k D 2; : : : ; k D 10.

In Table 1 we show the main results for the evaluated indexes.
Looking at the values of the internal validity indexes, computed for our proposal

and for the k-means on stocked data, it emerges that the homogeneity of the clusters
and their separation, is quite similar.

Table 1 External and internal validity indices

Dataset On-line clustering K-means clustering
DB CH SW RI ARI DB CH SW

Power supply 2:049 26:013 0:223 0:92 0:83 2:172 26:504 0:229

Financial data 1:793 14:39 0:270 0:88 0:80 1:754 15:594 0:321
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Moreover, the value of the Rand Index and of the Adjusted Rand Index, high-
lights the strength of the consensus between the obtained partitions.

5 Conclusions and Perspectives

In this paper we have introduced a new strategy for clustering highly evolving data
streams based on processing the incoming data in incremental way without requiring
their storage. This strategy favorably compares to the standard k-means performed
on stocked data as it is shown on the test datasets using several standard validity
indexes. Further developments will be to introduce a strategy for monitoring the
evolution of the clustering structure over time.
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Notes on the Robustness of Regression Trees
Against Skewed and Contaminated Errors

Giuliano Galimberti, Marilena Pillati, and Gabriele Soffritti

Abstract Regression trees represent one of the most popular tools in predictive
data mining applications. However, previous studies have shown that their per-
formances are not completely satisfactory when the dependent variable is highly
skewed, and severely degrade in the presence of heavy-tailed error distributions,
especially for grossly mis-measured values of the dependent variable. In this paper
the lack of robustness of some classical regression trees is investigated by address-
ing the issue of highly-skewed and contaminated error distributions. In particular,
the performances of some non robust regression trees are evaluated through a Monte
Carlo experiment and compared to those of some trees, based on M-estimators,
recently proposed in order to robustify this kind of methods. In conclusion, the
results obtained from the analysis of a real dataset are presented.

1 Introduction

Tree-based regression represents a simple and widely-used alternative to parametric
regression. It is very popular in data mining applications (see for example Azzalini
and Scarpa 2004; Hastie et al. 2009), in which datasets are often very large and
may have different kinds of variables and many missing values. Binary regression
trees (Breiman et al. 1984) approximate an unknown regression function by a step
function defined on the covariate space. This goal is obtained by means of a pro-
cedure that recursively bisects the data into a number of disjoint subgroups. The
procedure requires the definition of a splitting method that drives the growing phase
of the tree, a pruning procedure and constant values for predicting the response
variable Y within each terminal node.

The most widely-employed tree-based procedure relies on a least squares (OLS)
criterion, in which the data are split by minimizing the within-node sum of the
squared errors. Trees obtained using this criterion clearly concentrate on modelling
the relationship between the response and the covariates at the centre (i.e., the con-
ditional mean) of the response distribution. They also provide piecewise constant
estimates of the regression function. Despite their wide use, properties of OLS trees

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_29, c� Springer-Verlag Berlin Heidelberg 2011
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have not been deeply explored in the literature. For example, even though OLS trees
do not make any assumption on the error term distribution, the OLS split criterion
corresponds to a maximum likelihood split criterion in which normally distributed
error terms are assumed (Su et al. 2004). For this reason, OLS trees result to be
optimal under conditions which are not always true, especially in predictive data
mining applications. For example, a few unusually low or high values of Y may
have a large influence on the value of the residual sum of squares (Breiman et al.
1984, Galimberti et al. 2007).

The lack of robustness of regression trees may be addressed following two dif-
ferent approaches. The first, referred to as the identification/rejection approach,
consists of identifying outliers and influential observations and removing them
from the sample before performing the data analysis. The second, referred to as
robust regression, tries to devise suitable modifications of the standard methodolo-
gies so that the results obtained from the analysis of the entire sample are not so
affected by the presence of outliers and influential observations. Following the first
approach, a solution can be obtained, for example, by including the forward search
strategy (Atkinson and Riani 2000) in tree-based regression. This idea has been
explored in Mascia et al. (2005). A method for identifying outliers in the context
of classification trees which is based on the identification/rejection approach has
been proposed in John (1995). Within the second approach, tree-structured regres-
sion methods were combined with some fundamental ideas in piecewise polynomial
quantile regression (Chaudhuri and Loh 2002). The resulting method is able to pro-
vide insight into the centre as well as the lower and upper tails of the conditional
distribution of Y , and thus can be useful whenever the covariates have different
effects on different parts of the conditional distribution of Y . This method includes
the piecewise constant median regression trees constructed using least absolute devi-
ations (LAD trees), firstly introduced in Breiman et al. (1984) as a robust alternative
to OLS trees.

The use of regression trees to predict skewed or heavy-tailed dependent vari-
ables has been considered already in a study whose aim was to evaluate the effects
of social and economic factors on household income (Costa et al. 2006). In that
study OLS trees tended to build partitions of the set of households in which a termi-
nal node was composed of most of the units with a low income, while all the other
terminal nodes comprised only a few households with large income values. In order
to avoid this drawback an alternative solution within the robust regression approach
was proposed, which is based on the Gini index and is suitable for analysing trans-
ferable dependent variables. It allowed for a better description of the factors which
characterize low income households.

In order to overcome the lack of robustness of OLS trees against the presence
of outlying values in the dependent variable, some robust regression trees based on
M-estimation methodology (Maronna et al. 2006) were recently proposed and com-
pared to OLS and LAD trees (Galimberti et al. 2007). In particular, M-estimators
based on Huber’s and Tukey’s methods were employed. A Monte Carlo study was
also performed in which outlying values in the dependent variable were generated
using error terms distributed as a mixture of two normals with the same means but
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with different variances. In that study the OLS criterion led to over-simplified trees
with large biases. Moreover, LAD trees resulted to be actually more robust than OLS
trees but not as much as Huber’s and Tukey’s trees (for further details see Galimberti
et al. 2007).

In this paper the issue of analyzing skewed dependent variables with regression
trees is further investigated. In particular, some studies based on simulated and real
datasets are performed whose aim is to compare the performances of OLS, LAD,
Huber’s and Tukey’s regression trees with highly skewed and contaminated datasets.
Section 2 recalls the use of M-estimation methodology in regression tree building.
Section 3 shows the results of a Monte Carlo experiment in which data are generated
with outlying values in the dependent variable using schemes different from the
one examined in Galimberti et al. (2007), namely contaminated, non-contaminated
normal and log-normal error terms. The results from the analysis of a real data
set concerning durations of phone calls (Azzalini and Scarpa 2004) as a typical
predictive data mining application are illustrated in Sect. 4. Finally, Sect. 5 contains
some concluding remarks.

2 Regression Trees Based on M-estimators

OLS and LAD tree-based regression procedures were recently generalised using
the M-estimation methodology (Galimberti et al. 2007). This generalization was
obtained by constructing trees whose nodes are iteratively split so as to maximize
the decrease in the following objective function:

X

t2T

X

i2t

� .yi � �t / ; (1)

where T denotes the set of terminal nodes at a given step of the splitting process, yi

is the response value measured on the i th statistical unit belonging to node t , and �t

is the M-estimate of the location parameter within node t obtained by minimizing
a given function �.�/. The OLS and LAD criteria are special cases of the objective
function (1), for �.yi � �t / D .yi � �t /

2 and �.yi � �t / D jyi � �t j, respectively.
Two other popular choices for �.�/ are Huber’s and Tukey’s functions, which lead
to the so-called Huber’s and Tukey’s estimators. Both types of functions depend on
a tuning constant k which is used to distinguish small from large absolute values of
yi � �t . Huber’s functions are defined as

�HU.yi � �t /k D
�

.yi � �t /
2 if jyi � �t j � k;

2kjyi � �t j � k2 if jyi � �t j > k: (2)

Tukey’s functions are defined as

�TU.yi � �t /k D
(
1 � ˚1 � Œ.yi � �t /=k�

2
�3

if jyi � �t j � k;
1 if jyi � �t j > k: (3)

It is interesting to note that each M-estimator can be expressed as a weighted
mean of the response values. In particular, OLS estimators equally weight all data
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points, while Huber’s and Tukey’s estimators provide adaptive weighting functions
that assign smaller weights to observations with large residuals: the weighting func-
tion corresponding to the Huber’s estimator declines when jyi��t j > k; the weights
for the Tukey’s estimator decline as soon as jyi��t j departs from 0, and are set equal
to 0 for jyi � �t j > k (for further details see Galimberti et al. 2007; Maronna et al.
2006).

As far as the choice of k is concerned, small values produce high resistance
to outliers, but at the expense of low efficiency when the errors are i.i.d. normal
variables with zero mean and variance �2. Thus, the constant k is generally selected
to give reasonably high efficiency in the normal case. In particular, setting k D
1:345 O� in the Huber’s function and k D 4:685 O� in the Tukey’s one produces 95%
asymptotic efficiency when the errors are normal, while still offering protection
against outliers (Maronna et al. 2006). The quantity O� is a previously computed
dispersion estimate of the error term. A robust way to obtain such an estimate may
be to compute the median of the absolute values of the differences from the median
(also referred to as the median absolute deviation), divided by 0:675. This is an
approximately unbiased estimator of � if n is large and the error distribution is
normal (Maronna et al. 2006). The results described in the following Sections were
obtained by applying this estimator to the residuals computed from the fitting of the
LAD tree to each sample, and using the above mentioned values for k. Finally, it
is worth mentioning that the pruning procedure for each robust strategy has been
based on a cost-complexity measure defined according to the same criterion used in
the growing phase.

3 A Simulation Experiment with Skewed
and Contaminated Errors

A Monte Carlo experiment has been performed using the statistical software sys-
tem R (R Development Core Team 2010) in order to investigate the behavior of
OLS, LAD, Huber’s and Tukey’s regression trees in some situations in which the
assumption of Gaussian error terms is violated. The recursive procedures whose
split criteria are based on Huber’s and Tukey’s regression trees were implemented in
a R code by suitably modifying the R package rpart. In particular, this experiment
focuses on skewed and contaminated error term distributions. Data were generated
according to the following model:

Y D f .X1; X2/C "C c � � (4)

where f .�/ is the step function with nine steps depicted in Fig. 1; X1 and X2 are
i.i.d. random variables such that Xh � Unif.�1; 1/, for h D 1; 2; " is a standard-
ized random error term; � is a binary random contamination term with � � Ber.ı/
(independent from X1, X2 and "), and c > 0 is a fixed constant that controls the
contamination intensity. It should be noted that the step function and the predictors
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Fig. 1 Values of f .X1; X2/ and corresponding partition of the predictor space used in the
simulation experiment

used in this experiment are exactly the same already considered in Galimberti et al.
(2007), while the remaining terms of model (4) are different.

The factors considered in this study were: the shape of the error term distribution
(normal or log-normal with skewness 1.5 and 3); the value of the contamina-
tion probability (ı D 0; 0:01; 0:05); the value of the contamination intensity
(c D minf .X1; X2/; maxf .X1; X2/), and the number of sample units (n D
500; 1000; 2000). For each combination of the levels of these factors, 50 learning
samples and 50 test samples of n units were generated from model (4). Then, each
couple of learning and test samples were used to construct and prune a regression
tree through the four strategies illustrated in Sect. 2. Each pruned tree was evalu-
ated with a special emphasis on the following two aspects: the number of terminal
nodes (tree size) and the mean squared error. This latter measure was estimated as
the mean of the squared differences between the values of the true step function f .:/
used to generate the data and the values of the estimated function Of .:/ given by the
tree, evaluated on a uniform grid of 100 � 100 values for .X1; X2/.

Table 1 shows the estimated mean squared errors computed over 50 trees for c D
minf .X1; X2/, n D 1000 and for each combination of the other factors. For the
same trees, Table 2 shows their mean tree sizes. As expected, when ı D 0 and the
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Table 1 Estimated mean squared errors of four regression tree-based methods (over 50 trees)
(standard deviations in brackets) for different levels of ı and different error term distributions
(n D 1000)

ı Method Normal Log-normal

Skewness D 1:5 Skewness D 3

0.00 OLS 0.095 (0.039) 0.095 (0.042) 0.101 (0.044)
LAD 0.137 (0.055) 0.160 (0.054) 0.175 (0.051)
HUBER 0.117 (0.050) 0.133 (0.045) 0.142 (0.045)
TUKEY 0.122 (0.045) 0.128 (0.043) 0.155 (0.060)

0.01 OLS 0.265 (0.107) 0.271 (0.103) 0.264 (0.109)
LAD 0.134 (0.052) 0.153 (0.054) 0.172 (0.053)
HUBER 0.119 (0.049) 0.129 (0.043) 0.141 (0.044)
TUKEY 0.122 (0.051) 0.129 (0.042) 0.152 (0.057)

0.05 OLS 1.341 (0.385) 1.316 (0.380) 1.343 (0.375)
LAD 0.181 (0.160) 0.161 (0.072) 0.172 (0.071)
HUBER 0.146 (0.050) 0.140 (0.075) 0.144 (0.062)
TUKEY 0.120 (0.045) 0.127 (0.048) 0.152 (0.067)

Table 2 Mean tree sizes of four regression tree-based methods (over 50 trees) (standard deviations
in brackets) for different levels of ı and different error term distributions (n D 1000)

ı Method Normal Log-normal

Skewness D 1:5 Skewness D 3

0.00 OLS 10.12 (1.66) 10.54 (2.56) 10.10 (1.68)
LAD 10.34 (2.62) 10.50 (2.35) 11.06 (2.39)
HUBER 10.14 (2.12) 10.60 (2.40) 11.04 (2.43)
TUKEY 10.00 (2.38) 10.90 (3.53) 11.70 (2.69)

0.01 OLS 8.64 (2.44) 8.78 (2.76) 8.24 (2.09)
LAD 10.12 (2.62) 10.36 (2.61) 10.74 (2.33)
HUBER 10.10 (2.34) 10.56 (2.37) 11.14 (2.59)
TUKEY 10.34 (3.07) 10.80 (3.90) 11.74 (2.65)

0.05 OLS 5.54 (2.04) 5.46 (1.98) 5.42 (2.11)
LAD 9.78 (2.45) 10.00 (2.63) 10.18 (2.46)
HUBER 9.76 (1.96) 10.08 (2.44) 10.04 (2.17)
TUKEY 10.48 (2.62) 10.36 (2.74) 11.28 (2.86)

error term has a normal distribution, the lowest mean squared error is obtained with
OLS regression trees. The introduction of skewness in the error term distribution
seems to have little impact on the overall prediction performances of OLS trees,
while it has greater effects on the performances of the other tree methods. However,
even for small values of ı, there is a dramatic increase in the mean squared errors
of OLS trees, for each distributional shape of the error terms. On the contrary, the
performances of the other three methods result to be unaffected by the presence
of contaminated data. Furthermore, Tukey’s and Huber’s trees perform better than
LAD trees. As far as the differences in the tree sizes are concerned, in the presence
of contaminated data using the OLS criterion leads to a reduction in tree sizes, which
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may be related to the increase in the mean squared errors. Similar conclusions hold
true when c D maxf .X1; X2/, n D 500 and n D 2000.

4 Predicting Durations of Phone Calls

The procedures for constructing regression trees described in Sect. 2 were also
applied to a dataset containing information about n D 30619 customers of a mobile
telephone company (Azzalini and Scarpa 2004). For each customer, the values of the
following variables are available for each of ten consecutive months: the number of
made and received phone calls, their total duration, the total cost of the made phone
calls, the number of SMS, and the number of phone calls made to the customer
care service. The purpose of this analysis is to predict the total duration of the made
phone calls during the 10th month period based on the variables concerning the pre-
vious 9 months. The distribution of the dependent variable in the sample is highly
skewed. Furthermore, many customers have a value equal to 0 for this dependent
variable.

The dataset was split into two subsets: 15310 randomly selected customers
were used as a training set to build the regression trees, and the remaining cus-
tomers were employed as a test set to choose the optimal size of each tree.
Table 3 summarizes some features of the pruned trees. A first difference among
the considered trees concerns their sizes, ranging from 8 (OLS) to 54 (LAD).
This result seems consistent with the results of the above mentioned studies on
data with a heavy-tailed distribution for the dependent variable (Costa et al.
2006; Galimberti et al. 2007), and also with the results described in Sect. 3. Fur-
thermore, OLS and Tukey’s trees focus on opposite parts of the Y range. In the
OLS tree 93.5% of the customers are assigned to the same terminal node, whose
predicted value of Y is 843.1 (the lowest predicted value from this tree). The
remaining 6.5% of the customers are split into seven terminal nodes, whose pre-
dicted values range from 5762.1 to 116733.6 (see the second row of Table 3).
Thus, the OLS tree mainly focuses on the customers whose value of Y is high.
On the contrary, Tukey’s tree assigns 83.0% of the customers to seven terminal
nodes, whose predicted values are lower than 811.7. For the remaining 19 terminal
nodes the predicted values range from 1189.1 to 21668.4. Thus, the Tukey’s tree

Table 3 Descriptive statistics of Y and OY according to the four pruned regression trees obtained
from the analysis of the phone calls dataset (test set)

Y Min 1st quartile 2nd quartile 3rd quartile Max Tree size

0.0 0.0 165.0 948.0 168407.0

OLS 843.1 843.1 843.1 843.1 116733.6 8
LAD 0.0 0.0 78.0 897.0 105659.0 54
HUBER 142.8 142.8 142.8 1180.4 105659.0 27
TUKEY 53.8 53.8 190.9 811.3 21668.3 26
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predicts the lowest total durations of the phone calls made during the 10th months
in a very precise way. As far as LAD and Huber’s trees are concerned, they seem
to be less focused on specific parts of the Y range. With Huber’s tree 54.9% of the
customers are assigned to the terminal node with the lowest predicted value, equal
to 142.8. A distinctive feature of LAD tree is that it assigns 0 as predicted value to
35.1% of the customers.

5 Concluding Remarks

The examples illustrated in this paper show that, when the distribution of the depen-
dent variable is highly-skewed and/or data are contaminated, the choice of the split
criterion used to build the tree plays a fundamental role. In particular, OLS trees
seem to be little affected by the skewness of the error distribution, but their per-
formances severely degrade in the presence of contaminated data. On the contrary,
LAD, Huber’s and Tukey’s trees are robust only against contaminated data but not
against skewness. Thus, the choice of the split criterion requires careful attention.
Since it may be difficult to establish a priori the best objective function for the prob-
lem at hand, a possible criterion could be based on the comparison of the tree sizes.
As the simulation study shows, the four techniques considered in this paper lead
to trees with similar sizes when data are not contaminated; in this case, the trees
with the best performances are the OLS ones. Remarkable differences in the tree
sizes can be related to the presence of contaminated data; in this situation, Huber’s
or Tukey’s trees should be preferred. An alternative strategy could be the definition
of locally optimal objective functions through an a posteriori analysis of regression
trees obtained from different split criteria. This perspective has not been explored in
the literature yet, and may represent a promising direction of future research.
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A Note on Model Selection in STIMA

Claudio Conversano

Abstract Simultaneous Threshold Interaction Modeling Algorithm (STIMA) has
been recently introduced in the framework of statistical modeling as a tool enabling
to automatically select interactions in a Generalized Linear Model (GLM) through
the estimation of a suitable defined tree structure called ‘trunk’. STIMA integrates
GLM with a classification tree algorithm or a regression tree one, depending on
the nature of the response variable (nominal or numeric). Accordingly, it can be
based on the Classification Trunk Approach (CTA) or on the Regression Trunk
Approach (RTA). In both cases, interaction terms are expressed as ‘threshold inter-
actions’ instead of traditional cross-products. Compared with standard tree-based
algorithms, STIMA is based on a different splitting criterion as well as on the pos-
sibility to ‘force’ the first split of the trunk by manually selecting the first splitting
predictor. This paper focuses on model selection in STIMA and it introduces an
alternative model selection procedure based on a measure which evaluates the trade-
off between goodness of fit and accuracy. Its performance is compared with the one
deriving from the current implementation of STIMA by analyzing two real datasets.

1 Introduction

Generalized Linear Model (GLM) is a flexible generalization of ordinary least
squares regression. The theory underlying GLM was introduced in Nelder and
Wedderburn (1972). It is based on the hypothesis that the response variable follows
a member of the single-parameter exponential family of probability distributions.
Depending on the nature of the data, this distribution relates to the gaussian, bino-
mial, Poisson, gamma, inverse gaussian, geometric and negative distribution. In
most cases the response is modeled as, or can be expressed as, a linear combination
of the predictors.

A difficult task in GLM is to find interactions between two or more predictors.
Their presence, and their consequent inclusion in the estimated model, may be a key
to correct interpretation of data. From a statistical perspective, interaction between
two or more predictors occurs if their separate effects do not combine additively

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_30, c� Springer-Verlag Berlin Heidelberg 2011
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(Gonzalez and Cox 2007) or, equivalently, when over and above any additive com-
bination of their separate effects, they have a joint effect (Cohen et al. 2003). As a
result, interaction is a particular kind of non-additivity which is usually modeled as
a cross-product between two or more predictors.

Simultaneous Threshold Interaction Modeling Algorithm (STIMA) (Conversano
and Dusseldorp 2010) has been recently introduced to deal with interaction mod-
eling in GLM. It combines GLM and CART-like recursive partitioning algorithm
(Breiman et al. 1984): GLM is used to estimate the main effect of the model,
whereas recursive partitioning is used to estimate simultaneously the interaction
effect. Depending on the nature (nominal or numeric) of the response variable, a
data-driven method named Classification Trunk Approach (CTA) (Dusseldorp and
Meulman 2004) or Regression Trunk Approach (RTA) (Dusseldorp et al. 2010) is
used to identify interaction terms and the resulting model is named classification (or
regression) trunk.

This paper deals with model selection in STIMA, and it introduces an alternative
approach based on a measure which evaluates the trade-off between goodness of fit
and accuracy. In the following, Sect. 2 describes the trunk model and summarizes
the main features of the STIMA algorithm. Section 3 focuses on model selection,
whereas Sect. 4 evaluates the performance of STIMA with the ‘new’ model selection
criteria. Concluding remarks are reported in Sect. 5.

2 STIMA

2.1 The Trunk Model

The model estimated by STIMA is equivalent, in its formulation, to a standard
GLM. Dealing with J (numeric or nominal) predictors xj (j D 1; : : : ; J ), STIMA
assumes the response y has an exponential family density �y.yI � I/ with a natural
parameter � and a scale parameter ; the mean � D E.yjx1; : : : ; xJ / is linked to
the xj s via:

g.�/L D ˇ0LC
JX

j D1Cd

ˇjLxj

„ ƒ‚ …
main effect

C
ML�1X

mD1

ˇj CmL I
˚
.xj � sj ; : : : ; x1 < s1/ 2 RmL

�

„ ƒ‚ …
interaction effect

(1)
The first term relates to the main effect model estimated via GLM and the second to
the interaction effect estimated using recursive partitioning. Main idea is to fit a clas-
sification tree or a regression tree over and above the linear main effect of predictors
to identify interaction effects. Since the algorithm generates reduced-size trees, the
resulting tree and the overall estimation method are named classification/regression
trunk and Classification/Regression Trunk Approach (CTA or RTA) respectively.
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Notation used in (1) is consistent with that used in (Hastie et al. 2001): L is
the number of splits of the trunk and ML is the total number of its terminal nodes;
Ǒ
j CmL is the response outcome assigned to observations falling into the terminal

node Rm (i D 1; : : : ;M ); d equals zero if the first splitting predictor is numeric
or one if it is nominal. The indicator function I.�/ assigns observations to one of
the terminal nodes based on the splitting values sj of the splitting predictors xj

(j D 1; : : : ; J /. The total number of indicator variables I.�/ included in the model
equals ML � 1, since one of the terminal nodes of the trunk serves as reference
group. As a result, (1) points out ML�1 threshold interaction terms that are auto-
matically identified by the trunk and the final model includes J C ML estimated
parameters. If the response is numerical, the link function g.�/ is the identity func-
tion and (1) reduces to the regression trunk model introduced in Dusseldorp et al.
2010. Whereas, a nominal response leads to a GLM with threshold interaction terms.
The specification and the features of such a model for the binary response case are
discussed in Conversano and Dusseldorp (2010).

2.2 Algorithm

STIMA implements the estimation algorithm for CTA or RTA and consists of a
trunk-growing step and a trunk-pruning step.

In the `-th iteration of the trunk-growing process .` D 1; : : : ; L/, the `-th inter-
action term entering the model is the one maximizing the effect size f .`/, i.e., the
relative decrease in the residual deviance when passing from the model with ` � 1
terms to the one with ` terms. In practice, for each possible combination of split-
ting variable xj , split point sj and splitting nodeR.`/

m (i.e., a terminal node after the
`-th split), the best split is chosen according to the combination, say .x�

j ; s
�
j ; R

�
m/,

maximizing the effect size f .`/. The highest effect size determines the highest rel-
ative decrease in deviance when moving from a more parsimonious model to a less
parsimonious one. Trunk-growing proceeds until the size of each terminal node
of the trunk is higher than a user-defined minimum size or, alternatively, until the
maximum number of splits L is reached (L is also defined by the user).

Once the trunk-growing is complete, pruning is carried out using CART-like
V -fold cross-validation. The ‘best’ size of the trunk corresponds to the one minimiz-
ing the cross-validated prediction accuracy as well as its standard error. Likewise in
CART, a ‘c � SE’ rule is used, where c is a constant. Simulation results presented in
Dusseldorp et al. (2010) for RTA suggest to set c D 0:80 if n � 300 and c D 0:5

otherwise.
Pruning is a fundamental step of the algorithm since the number of terminal

nodes of the trunk and their relative split points, as well as the splitting predictors,
determine the number, order and type of threshold interactions terms to be included
in the trunk model. Taking advantage of the extreme flexibility of the recursive par-
titioning algorithm, STIMA is applicable to all types of predictors (both numeric
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and nominal) and it can be extended to model all types of interactions (nominal by
numeric, nominal by nominal, numeric by numeric).

3 Model Selection Issues

The CTA and RTA methods can be seen as a variable selection criteria: the most
influential variables are chosen as splitting predictors in the trunk-growing process
of STIMA. Consequently, the trunk-pruning process of STIMA can be seen as a
model selection procedure since it allows to retain in the model the most important
interaction effects only. Since the trunk is derived by recursively partitioning the
original data, the main role in the definition of the interaction effect is played by the
splitting predictors, particularly the first one, which concur to define the trunk.

3.1 Current Implementation

One of the user-defined options currently implemented in STIMA is the possibil-
ity to force the first split of the trunk by an a-priori selection of the first splitting
predictor. This manual selection of the first split can be motivated by research ques-
tions from social sciences concerning moderator effects of some nominal predictor.
It allows to specifically account for the effect of a treatment factor affecting in a
different way subsets of observations (see Dusseldorp et al. 2007 for an example).

Alternatively, when the analysis is not aimed to the evaluation of the influence of
such a moderator effect, the selection of the first split of the trunk is performed auto-
matically. The current implementation of STIMA is based on the a-priori estimation
of a sequence of trunks for each single predictor j (j D 1; : : : ; J ). Each sequence
is composed of L trunks presenting 1 up to L splits. For each of these trunks, the
evaluation of the predictive accuracy is made by performing V-fold cross-validation.
As a result, the first splitting predictor is the one whose sequence provides a trunk
with the lowest cross validation error among those provided by the J � L trunks.

Once the first splitting predictor has been chosen, the algorithm re-estimates
the trunk sequence and re-computes the V-fold cross validation errors as well as
their standard errors. The selection of the final model is performed according to the
‘c � SE’ rule as specified in Sect. 2.2. In addition, backward variable selection can
be performed in order to further reduce model complexity.

3.2 Alternative Approach

As a matter of fact, the previously described model selection procedure does not
necessarily provide the right compromise between the accuracy and the parsimony
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of the selected model. To investigate this point, an alternative approach is hereby
presented. It is based on the estimation of a set of plausible trunk models for the ana-
lyzing data and on the subsequent selection of the most appropriate one. It consists
of the following steps:

1. For each predictor j (j D 1; : : : ; J ), estimate L trunk models (L > 1) by
using STIMA with j as the first splitting predictor and ` interaction terms (` D
1; : : : ; ` D L/.

2. For each estimated model, use the backward selection option to reduce its size
k.j;`/ (1 � k.j;`/ � J C L � 1), which corresponds to the number of model
parameters.

3. For each of the J � L estimated models, retain j and k.j;`/ and compute the
goodness of fit of the model fj;k.j;`/

and its generalization error ej;k.j;`/
.

4. Repeat B times Steps 1–4 by bootstrapping the original data.
5. For each j and for each k.j;`/, average k.j;`/, fj;k.j;`/

and ej;k.j;`/
over the B

runs, such to obtain Nk.j;`/, Nfj; Nk.j;`/
and Nej; Nk.j;`/

, respectively.

6. Set: Nkmin D min. Nk.j;`// and Nkmax D max. Nk.j;`//. Define the subset M � of
. Nkmax� NkminC1/ trunk models: each modelm Nk in M � corresponds, for a given
Nk.j;`/, to the model presenting the lowest value of the average generalization error
Ne
j; Nk.j;`/

, namely: e�Nk D arg min Nk. Nej; Nk.j;`/
/.

7. For each consecutive pairs of models m Nk and m NkC1 ( Nk D 1; : : : ; Nkmax � 1) in
M �, compute an heuristic measure Tm Nk

;m NkC1
(to be defined later) which eval-

uates the trade-off between the change in model accuracy and the associated
change in model fitting when passing from a most parsimonious model (m Nk) to
a less parsimonious one (m NkC1

).
8. Select Om Nk 2M � as the less parsiomonious model such that Tm Nk

;m NkC1
� 1.

From a practical point of view, the proposed approach allows to perform model
selection in STIMA by simultaneously considering, in each bootstrap replication,
model fitting and model accuracy. The first one is evaluated by computing one of
the information criteria typically used in the GLM framework such as, for exam-
ple, Akaike’s AIC. The second one is evaluated by considering the generalization
error of each estimated model through, for example, test set data or V-fold cross-
validation. In addition, the outcomes deriving from each bootstrap replication are
averaged in order to robustify the results as well as to reduce the possible influ-
ence of outliers and to account for the problem of the variable selection bias which
typically affects recursive partitioning algorithms.

As stated above, the selection of the final model Om Nk 2 M � derives from an
heuristic measure Tm Nk

;m NkC1
, which evaluates the trade-off between model fitting

and accuracy. To define it, the subset of models M � as specified in Step 6. on
the basis of the minimum values of the average generalization error for each model
size .e�

Nkmin
; : : : ; e�

Nk ; : : : ; e
�
Nkmax
/ is considered. Since information criteria used in GLM

usually decrease as long as accuracy increases, it often happens that the average
goodness of fit measure Nfj; Nk.j;`/

for each model in M � also decreases when passing
from e�Nkmin

to e�Nkmax
.
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The computation of Tm Nk
;m NkC1

assumes that either e�Nk or its associated Nf
j; Nk.j;`/

ranges in .0; 1/. This involves that each e�Nk

 Nf

j; Nk.j;`/

�
is normalized to Qe�Nk


 Qf
j; Nk.j;`/

�

as follows:

Qe�Nk D
e�Nk �min.e�Nk/

max.e�Nk/�min.e�Nk/
I Qf

j; Nk.j;`/
D

Nfj; Nk.j;`/
�min. Nfj; Nk.j;`/

/

max. Nfj; Nk.j;`/
/�min. Nfj; Nk.j;`/

/

For two consecutive modelsm Nk andm NkC1 in M �, Tm Nk
;m NkC1

corresponds to:

Tm Nk
;m NkC1

D
Qe�Nk � Qe�NkC1

Qf
j; Nk.j;`/

� Qf
j; NkC1.j;`/

8 Nk; Nk C 1 2 . Nkmin; : : : ; Nkmax � 1/

Tm Nk
;m NkC1

is computed sequentially, from the first (less accurate) model in M �
to the last but one (most accurate). The proposed criteria selects the final model Om Nk
as the most accurate model such that Tm Nk

;m NkC1
� 1. This corresponds to proceed

sequentially in model selection as long as the increase in average model accuracy is
greater than (or equal to) the increase in average goodness of fit.

4 Empirical Evidence

In the following, two examples on real data available on the UCI ML Repository
(Asuncion and Newman 2007) are presented in order to evaluate the performance
of the proposed model selection criteria when applied on STIMA. The first example
involves the Liver Disorders dataset: the goal is to classify cases on the basis of two
levels of alcohol consumption corresponding to the proportion of people present-
ing high alcohol consumption with respect to those classified as regular drinkers.
Six numerical predictors are observed on 345 individuals. The second example
involves a regression problem: the Housing dataset is analyzed in order to estimate
the median value of 506 owner-occupied homes localized in different census tracts
of Boston on the basis of 14 numeric and 1 binary predictors.

Figure 1 illustrates the model selection process as defined in Sect. 3.2 for the
first dataset. The subset of models M � is identified in the left panel: it is composed
by those models that, for a given size Nk.j;`/, presents the lowest value of Nej; Nk.j;`/

(i.e., models with 6, 7, 10 and 12 parameters, respectively). The right panel shows,
for those models, the decrease in both Qe�Nk and Qfj; Nk.j;`/

when passing from a more
parsimoniuos model to a less parsimonious one. The selected model Om Nk is the one
with size Nk.j;`/ D 10, since the decrease in Qe�Nk (0.37) is greater than that of f

j; Nk.j;`/

(0.33) when passing from Nk.j;`/ D 6 to Nk.j;`/ D 10. As a result, T6;10 D 1:12 > 1.
For both datsets, the performance of STIMA deriving from the standard imple-

mentation of model selection as well as from that proposed in this paper is compared
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Model selection using bootstrap
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Fig. 1 Results of the model selection process described in Sect. 3.2 for the Liver Disorders dataset.
The two plots show the relationship between Qfj; Nk.j;`/ and Qe�

Nk
for the J � L classification trunk

models estimated withB D 50 bootstrap replications. Each number in the plot refers to the average
model size Nk.j;`/, i.e., the average number of parameters obtained over the B runs

Table 1 Benchmarking STIMAa

Model Stepwise GLM Stepwise GAM CART MARS STIMA STIMA2
Liver Disorders dataset

CV Error .287 .255 .287 .307 .249 .194
Standard Error .024 .023 .024 .025 .024 .023
# parameters 11 21 2 9 8 10

Housing dataset
CV Error .324 .197 .243 .167 .150 .116
Standard Error .058 .035 .036 .028 .019 .014
# parameters 22 20 6 21 23 12
aThe Table reports the 10-fold cross-validation error, its standard error and the number of parame-
ters of each model. Compared models are GLM and GAM with stepwise variable selection and the
manual search of interaction terms, CART, MARS and STIMA. As for the latter, STIMA refers
to the standard implementation of the model selection process; STIMA2 refers to the criteria
presented in Sect. 3.2.

with GLM and Generalized Additive Models (GAM) (Hastie and Tibshirani 1990),
both estimated with stepwise variable selection and with the manual search of
cross-product interactions, as well as with that of CART and Multivariate Adaptive
Regression Splines (MARS) (Friedman 1991). For each method cross-validation
is used to estimate prediction accuracy. Results of the comparative analysis are
summarized in Table 1: they show that the model identified by STIMA with the
proposed model selection criteria (STIMA2 in Table 1) overperforms its competitors
in terms of cross-validation error without requiring a consistent additional number
of parameters.
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5 Concluding Remarks

The possible use of STIMA in statistical modeling is motivated by practical con-
siderations about the search of interactions in GLM. When dealing with many
predictors, as well as when no a-priori hypothesis about possible relationships
among them can be formulated, the search of interactions is not straightforward
but it is a quite complicated task. One impractical and time-consuming approach is
testing all possible interactions and retain the most important ones. More straight-
forwardly, the trunk model is a suitable choice as it allows to automatically estimate
the number, the order and the types of interactions. The proposed approach to model
selection in STIMA is able to strenghten the effectiveness of the method, either in
the classification or regression case, since it improves the accuracy of the estimated
trunk model while keeping it more parsimonious.
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Conditional Classification Trees by Weighting
the Gini Impurity Measure

Antonio D’Ambrosio and Valerio A. Tutore

Abstract This paper introduces the concept of the conditional impurity in the
framework of tree-based models in order to deal with the analysis of three-way
data, where a response variable and a set of predictors are measured on a sample
of objects in different occasions. The conditional impurity in the definition of split-
ting criterion is defined as a classical impurity measure weighted by a predictability
index.

1 Introduction

Classification and regression trees have become a fundamental approach to data
mining and prediction (Hastie et al. 2001). Non-parametrical methods based on
classification and regression tree procedures can be fruitfully employed to handle
the problem of the analysis of large datasets characterized by high-dimensionality
and nonstandard structure.
The information in the data can be summarized in two (not exclusive) purposes:

� to investigate the structure of the data through the analysis and the interpretation
of exploratory trees;

� to produce accurate classifiers/predictors in the form of decision trees to be used
on new cases.

In this paper we focalize our attention on classification tree as explorative tool for
three-way data.

2 Our Proposal

As a matter of fact, dealing with complex relations among the variables, every
CART-based approach offers unstable and not interpretable solutions. This paper
aims to define a segmentation methodology for three-way data matrix starting from

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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some recent results. In fact, some contributions in this framework, following two-
stage philosophy (Mola and Siciliano 1992), have been proposed by Tutore et al. in
the recent past (Tutore et al. 2007).

2.1 The Data

The three ways of the dataset are cases, attributes and situations, respectively. Let
D be the three-way data matrix of dimensions N , V , K , where N is the number
of cases, objects or units, V is the number of variables, K is the number of situa-
tions. Assume that the V variables can be distinguished into two groups, namely
there are M predictor variables X1; : : : ; Xm; : : : ; XM and C response variables
Y1; : : : ; Yc ; : : : ; YC where M C C D V . The K situations refer to modalities of
a stratifying variable, which is called instrumental variable. Alternatively a time
variable can be also considered for longitudinal data analysis. Predictors can be of
categorical and/or numerical type whereas responses can be either categorical or
numerical, thus a distinction can be made between a classification problem and a
regression problem respectively. In the following we consider the case in which
C D 1 and the response variable is categorical.

2.2 The Previous Work

Tutore et al. (2007) introduced a splitting criterion that considers the use of an instru-
mental variable called Partial Predictability Trees which is based on the two-stage
splitting criterion (Mola and Siciliano 1992) and on the predictability � index of
Goodman and Kruskal (1954, 1979) for two-way cross-classifications. Two-stage
algorithm works as follow: in the first stage, the best predictor is found maximiz-
ing the global prediction with respect to the response variable; in the second stage,
the best split of the best predictor is found maximizing the local prediction. It can
be proved that skipping the first stage maximizing the simple � index is equiv-
alent to maximizing the decrease of impurity in CART approach. This criterion
was extended in Tutore et al. (2007) in order to consider the predictability power
explained by each predictor with respect to the response variable conditioned by the
instrumental variable Z. For that, the multiple �m and the partial �p predictability
indexes of Gray and Williams (1981) have been considered.

At each node, in the first stage, among all available predictors Xm for m D
1; : : : ;M , the partial index �p.Y;XmjZ/ is maximized to find the best predictorX�
conditioned by the instrumental variable Z:

�p.Y;XmjZ/ D �m.Y jXm; Z/ � �s.Y jZ/
1 � �s.Y jZ/ (1)
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where �m.Y jXm; Z/ and �s.Y jZ/ are the multiple and the simple predictability
measures. In the second stage, the best split s� of the best predictor X� is found by
maximizing the partial index �s.Y js; Z/.

2.3 The Conditional Impurity

A partitioning algorithm can be understood as a recursive and binary segmentation
of N objects into two groups such to obtain internally homogeneous and externally
heterogeneous subgroups with respect to a response variable. At any internal node
of the tree, a predictor generates the splitting variable (i.e., dummy variable) to
discriminate the objects falling into the left subnode from those falling into the right
subnode. Let s be the splitting variable generated by the mth predictor; let Q be
the set of all the splitting variables generated by the mth predictor; let i; : : : ; I ,
j D 1; : : : ; J and k D 1; : : : ; K are respectively the subscripts for the i th category
of the response variable, the j th category of the mth predictor and kth category of
the stratifying variable; let np

N
be the proportion of cases in a generic parent node,

nl
N

be the proportion of cases in the left child node and nr
N

be the proportion of cases
in the right child node.

According to the CART splitting criterion (Breiman et al. 1984), the following
decrease of impurity is maximized for each s 2 Q

�i .s; t/ D i .t/ np
N
� i .t l/ nl

N
� i.t r/nr

N
(2)

where i .�/ is the impurity function. It is clear that if a generic node is maximally
pure (i.e., the impurity is equal to zero), none splitting rule can be defined because
that node is obviously a perfect terminal one. Depending on the definition of the
impurity function, different rules can be used such as example for the Gini index of
heterogeneity.

We consider the predictability � index of Goodman and Kruskal (1954) for two-
way cross-classifications:

�Y jZ .t/ D
P

ik f
2

ik
=f:k �

P
i f

2
i:

1 �Pi f
2

i:

(3)

where fik is the proportion of cases that belongs to class i of the response variable
and that have category k of Z at a generic node, and f:k is the proportion of cases
that have category k of Z at the same node.

The � of Goodman and Kruskal is an index that considers the predictive strength
of a generic Z variable on a Y variable in a two-way table. We propose a combi-
nation of a classical impurity measure such as the Gini diversity index with the last
index in this way:
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i .t/ D
 
1 �
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f 2
i
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1 �

"P
ik f
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=f:k �
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i f

2
i:

1 �Pi f
2

i:

#!
D 1 �

X

ik

f 2
ik=f:k (4)

As it is well known, the � of Goodman and Kruskal is defined between 0 and 1. The
more it is close to 1, the more the Z variable explains the distribution of Y given
Z; then, it is easy to verify that the more the � is close to 0, the more the impurity
measure is similar to the one used with classical CART.

We call this kind of impurity measure conditional impurity because it is a
weighted average of each partial impurity in every class ofZ stratifying variable. In
this case the total impurity of Y variable is corrected by a factor which is comple-
ment to one of predictive strength of Z on Y . If Z and Y are independent we have
exactly the same results of CART. So conditional impurity measure tries to find the
best compromise between the unconditional impurity (simple Gini’s diversity index)
and the internal impurity explained by the measure 1 � � .

As nl
N
C nr

N
D np

N
, we can substitute nl

N
with pt l and nr

N
with pt r , so we can

say that, in relation to the sample size of any generic parent node, pt l C pt r D 1

because starting by any parent node always we have that pt lCpt r D np
N

. Following
this approach, we define the decrease of impurity at generic node t as

�i .s jt; Z / D 1�X

ik

f 2
ik=f:k �

0

@1� X

ikjsD0

f 2
ik=f:k

1

Aptl �
0

@1� X

ikjsD1

f 2
ik=f:k

1

Aptr

D X

ikjsD0

f 2
ik=f:k .ptl /C X

ikjsD1

f 2
ik=f:k .ptr /�X

ik

f 2
ik=f:k (5)

in which the categories of the splitting variable s are denoted respectively by s D 0
and s D 1, by recalling that every splitting variable generated by the mth predictor
is always binary.

3 Application Studies

We present two different sets of data to show how our proposal works: one from a
simulation study and another one from a real dataset.

3.1 Simulated Dataset

Simulation study has been defined thinking to reliable situations in which our pro-
posal can be functional. For that reason, a simulated dataset (Table 1) was built using
different random distributions for the set of common variables (Discrete uniform,
Normal, Binomial), whereas the response variable was generated by a non linear
link with other variables (namely, X1, X3 and X5). Variables X2 and X4 play the
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Table 1 Simulations setting

Predictors Binary response variable

X1 Uniform in 1; 4 y sin.k CX5	/C 0:8X3 � 0:1X1X3 C �

X2 Uniform in 1; 10 Y 1 if y > 0, 0 otherwise
X3 Normal standard
X4 Binomial(10, 0.6)
X5 Binomial(3, 0.7)
X6 Binomial(1, 0.5)

role of masking variables. To stress the methodology ability to explain hierarchical
structure of data, different conditional variableZ, with different strength, have been
simulated.

For each value of the stratifying variable both the CART and the Conditional
Classification Tree were built. CART was considered both including and not includ-
ing the instrumental variable in the set of the predictors. Four indexes are computed
for both the classical CART and the Conditional Classification Tree:

� M.R.T., namely the Misclassification ratio tree. It is simply the error of the tree
without taking in account the role of the Z (weighted by the number of cases in
each of its categories);

� S.M.R. root, namely the Stratified misclassification ratio at the root node. It
shows the error rate at the root node taking in account the role of the Z;

� S.M.R.T., namely the Stratified misclassification ratio of the tree. It shows the
error rate of the tree model weighted by the Z;

� Gain in accuracy. It shows how the final tree improves in respect to the trivial
situation (root node).

In Table 2, column named CARTa indicates the classifier that does not include
the stratifying variable as predictor, as well as the column called CARTb indi-
cates the classifier that includes the Z variable as predictor. In the table there
are three main rows: the first one is relative to a strong relationship between Z
and Y (�Y jZ D 0:6630), the second one is characterized by a weak relationship
(�Y jZ D 0:0142) whereas in the third row Z and Y are independent. The results
shown in the table are validated through V -fold cross-validation procedure. In the
first case the conditional final stratified misclassification ratio is smaller than CART
one; in this case the instrumental variable plays a strong role in determining the con-
ditional split. In the second case the conditional stratified misclassification ratio is
weakly lower than the other one: therefore, if there is not an a priori strong relation-
ship, conditional tree works better than classical CART. In the third case the results
are exactly the same: in fact Z and Y are independent.

3.2 Italian Bank Credit Dataset

We show some results using a survey led by an Italian credit bank. Table 3 presents
the structure of the dataset.
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Table 2 Simulated data: Main results
Simulated Conditional CARTa CARTb Stratifying
dataset miscl. ratio miscl. ratio miscl. ratio strength

M.R.T. 0.0740 0.1291 0.0983
S.M.R. root 0.3496 0.3496 0.3496 �Y jZ

S.M.R.T. 0.0527 0.1930 – 0.6630
Gain in accuracy 0.8493 0.4479 –
M.R.T. 0.0860 0.1591 0,1935
S.M.R. root 0.4218 0.4218 0.4218 �Y jZ

S.M.R.T. 0.2031 0.2272 – 0.0142
Gain in accuracy 0.5185 0.4614 –
M.R.T. 0.0956 0.0956 0.0956
S.M.R. root 0.4371 0.4371 0.4371 �Y jZ

S.M.R.T. 0.2411 0.2411 – 0.0000
Gain in accuracy 0.4484 0.4484 –

Table 3 Italian bank credit dataset
Dataset variables

1. Account Status (Stratifying Variable) 10. Present residence since
2. Other building owner 11. Education level
3. Purpose 12. Age
4. Duration 13. Credit history
5. Saving accounts/bond 14. Housing
6. Present employment since 15. N. of Bank Accounts
7. Personal status 16. Job
8. Gender 17. People being liable to provide maintenance for
9. Others debtors/guarantors 18. Existing credits at this bank
Response: Type of Client (Good/Bad)

We choose as instrumental variable the account status; the response variable is
the type of client (good or bad client). Table 4 shows the difference in badness
of fit indexes of both classical CART (both including (CARTb) and not including
(CARTa) the Z variable in the set of predictors) and the Conditional Tree. The
strength of the relationship between Y and Z is equal to 0.1237. All the classifiers
were validated through V -fold cross-validation.

The Fig. 1 shows an example of how each terminal node of the Conditional Clas-
sification Tree can be interpreted. For each level of stratifying variable a bar chart
of the two categories of the Y variable is shown. In this terminal node there are
173 individuals about which 52; 02% are good clients and 47; 98% bad clients, so
the error rate of this node is equal to 0:4798 and the assignment rule is good client.
Nevertheless, looking at the figure, it can be noted that for two levels of the Z vari-
able (in particular for the first and the second level of theZ), the mode is bad client.
The error rate of this node must be weighted by the number of individuals belonging
to each category of the stratifying variable. In this case, it is equal to 0:3006.
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Fig. 1 Zoom on the terminal node # 3-Italian bank dataset

Table 4 Italian bank credit: Main results
Italian bank Conditional CARTa CARTb Stratifying
dataset misscl. ratio misscl. ratio misscl. ratio strength

M.R.T 0.2770 0.2740 0.2310
S.M.R. root 0.3000 0.3000 0.3000 �Y jZ

S.M.R.T 0.2180 0.2420 – 0.1237
Gain in accuracy 0.2733 0.1933 –

Table 4 shows the badness of fit of the built model compared with the ones which
are returned by the classical CART. Note that the Misclassification Ratio of the Con-
ditional Tree without take in account the role of the stratifying variable is higher than
the same index of the classical CART (with and without the instrumental variable
included as predictor). The role played by the stratifying variable in governing the
splitting rule can be appreciated looking at the Stratified Misclassification Ratio of
the tree. In this case this index is lower than the one of the CARTa, as confirmed
also by its higher gain in accuracy.

This example on a real data set shows how, even if we have not an important
improvement in terms of accuracy (error rates), it is possible to get a better interpre-
tation of the phenomena under study. Indeed, including the stratifying variable in
the CART we obtain a M.R.T. index really close to the one of the Conditional Tree
(see the column CARTb in the Table 4). In this case the first split (the split at the root
node) was governed by theZ variable, and never that variable generated other splits
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in the building of the tree. When it happens, the role played by the stratifying vari-
able is not interpretable. In other words, our goal is not to improve the performance
of the model in terms of decrease of error rates, but to improve the performance of
the model in terms of its interpretability without losing in accuracy.

4 Concluding Remarks

In this paper we have proposed a different splitting criterion for classification trees.
When data are characterized by a stratified structure, we choose to weight a classical
impurity measure for a quantity that takes in account how the stratifying variable
can explain the response variable. In this case the instrumental variable does not
contribute to determine the split in a direct way, but its contribution is ‘more than
direct’ in the sense that it is present into the determination of all splits. From the
explorative point of view, such a tree-based model allows the interpretation of all
the categories of the response variable taking into account all the classes of the
instrumental variable with only one tree. What we present is neither better nor worse
than a classical approach such as the CART methodology. In this work, our intention
is the introduction to a new way to interpret the splitting criterion with this kind
of data.

Acknowledgements Authors wish to thank anonymous referees for their helpful comments.
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Visualizing and Exploring High Frequency
Financial Data: Beanplot Time Series

Carlo Drago and Germana Scepi

Abstract In this paper we deal with the problem of visualizing and exploring spe-
cific time series such as high-frequency financial data. These data present unique
features, absent in classical time series, which involve the necessity of searching and
analysing an aggregate behaviour. Therefore, we define peculiar aggregated time
series called beanplot time series. We show the advantages of using them instead of
scalar time series when the data have a complex structure. Furthermore, we under-
line the interpretative proprieties of beanplot time series by comparing different
types of aggregated time series. In particular, with simulated and real examples,
we illustrate the different statistical performances of beanplot time series respect to
boxplot time series.

1 Introduction

High-frequency financial data (Engle and Russell 2009) are observations on
financial variables collected daily or at a finer time scale (such as time stamped
transaction-by-transaction, tick-by-tick data, and so on). This type of data have been
widely used to study various market microstructure related issues, including price
discovery, competition among related markets, strategic behaviour of market par-
ticipants, and modelling of real-time market dynamics. Moreover, high-frequency
data are also useful for studying the statistical properties, volatility in particular,
of asset returns at lower frequencies. The analysis of these data is complicated for
different reasons. We deal with a huge number of observations (the average daily
number of quotes in the USD/EUR spot market could easily exceed 20,000), often
spaced irregularly over time, with diurnal patterns, price discreteness, and with a
complex structure of dependence. The characteristics of these data don’t allow for
visualizing and exploring by means of the classical scalar time series. Furthermore,
it is very difficult to forecast data without defining an aggregate behaviour.

In this paper we introduce beanplot time series (in Sect. 2) with the aim of
synthesizing and visualizing high-frequency financial data or, more in general,
complex types of temporal data. We discuss their properties by proposing critical
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comparisons among different possible aggregated time series (in Sect. 3). In partic-
ular, we have carried out several simulated examples (in Sect. 3.1), starting from
different models, different number of observations and different intervals of aggre-
gation to show how beanplot time series perform better than boxplot time series.
Some interpretative rules are given in Sect. 3.2. We have enriched our analysis with
an application on real high frequency financial data where we show how beanplot
time series easily detect real intra-day patterns (in Sect. 3.3).

2 Beanplot Time Series

The Beanplot time series fbYt g t D 1 : : : T is an ordered sequence of beanplots
or densities over time. The time series values can be viewed as realizations of an
X beanplot variable in the temporal space T , where t represents the single time
interval. The choice of the length of the single time interval t (day, month, year)
depends on the specific data features and objectives the analyst wants to study.

A beanplot realization at time t is a combination between a 1-d scatterplot and a
density trace. It is defined (Kampstra 2008) as:

Ofh;t D 1

nh

iD1X

n

K.
x � xi

h
/ (1)

where xi i D 1 : : : n is the single observation in each t , K is a Kernel and a h is a
smoothing parameter defined as a bandwidth.

It is possible to use various Kernel functions: uniform, triangle, epanechnikov,
quartic (biweight), tricube (triweight), gaussian and cosine. The choice of the ker-
nel, in the beanplot time series is not particularly relevant because our simulations
show that the different kernels tend to fit similarly the underlying phenomena. Some
differences reveal themselves in presence of outliers. In these cases a better kernel
seems to be the Gaussian kernel which is more robust. Looking at the characteristics
of our data, we have chosen this kernel for the different applications.

The choice of the h value is much more important than the choice of K
(Silverman 1986). With small values of h, the estimate looks “wiggly” and spurious
features are shown. On the contrary, high values of h give a too smooth or too biased
estimate and it may not reveal structural features, as for example bimodality, of the
underlying density. In literature, several methods for choosing the bandwith were
proposed. Practically, each paper which proposes a new bandwidth selection method
contains or reports a small simulation study which compares the performance of the
new method with that of one or two other methods on two to four densities. How-
ever neither of these studies gave a clear answer which bandwidth selection method
was the best. With a visualization aim, we use the Sheather-Jones criteria (1991)
that defines the optimal h in a data-driven approach in our application.

The kernel density estimators can be compared with other non parametric meth-
ods of density estimation (Fryer 1977). Empirical results show that, for example, the
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splines smooth out the original data. This implied that we lost some relevant data
features. Therefore kernel density estimators seem very useful in explorative con-
texts while spline smoothers retain the very relevant data features, not taking into
account some irregularities which however arise in the case of complex data such as
high frequency data.

3 Different Aggregated Time Series for High Frequency Data

With the aim of summarizing and visualizing high frequency time series, different
types of aggregated time series can be considered. The mean or the total of the single
values represent weak aggregations because important information is neglected.

Initially, we used stripchart time series. This type of time series correctly shows
the original trend as well as the minimum and the maximum of each interval (a day,
for example). However in such graphics, one dot is plotted for each observation in
the single time interval and, consequently, it is a useful tool only when there are
very few points. Therefore, it might be difficult to apply them in the high frequency
data framework.

A recent proposal (Arroyo 2009), in the context of symbolic data, consists in
substituting time series of observations with histogram time series. Histograms are
very useful for temporal and spatial aggregations for many reasons: their simple
and flexible structure, their capacity to describe the essential features of the data
with reasonable accuracy and their closeness to the data, without imposing any dis-
tribution. Nevertheless, the multiple histograms are difficult to compare when there
are many of them plotted on a graph, because the space becomes cluttered.

Tukey’s boxplot (1977) is commonly used for comparing distributions between
groups. For time series data, the boxplot seems to show several features of the tem-
poral aggregation: center, spread, asymmetry and outliers. Furthermore, box plot
time series well detect the main structural changes. However, the number of out-
liers detected will increase if the number of observations grows and the information
about the density is neglected. This information can be very important in the aggre-
gation of high frequency financial data where different volatility clusters can arise.
In order to retain this information, it is possible to use violin plot time series. This
tool (Benjamini 1998) combines the advantages of boxplots with the visualization
of the density and it provides a better indication of the shape of the distribution.
However, in a violin plot the underlying distribution is visible but the individual
points, besides the minimum and maximum, are not visible and not indication of
the number of observations in each group is given.

Our proposal consists in using beanplot time series in the context of high fre-
quency financial data. Indeed, in each single beanplot all the individual observations
are visible as small lines in a one-dimensional scatter plot, as in a stripchart. In the
beanplot time series, both the average for each time interval (represented by the
beanline) and the overall average is drawn; this allows an easy comparison among
temporal aggregations.
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The estimated density of the distribution is visible and this demonstrates the
existence of clusters in the data and highlights the peaks, valleys and bumps. Fur-
thermore, anomalies in the data, such as bimodal distributions are easily spotted.
This is very interesting information in the context of high frequency financial time
series where the intra-period variability represents the main characteristics of the
data. The number of bumps can be considered as a signal of different market phases
in the daily market structure. We can also observe that the beanplot becomes longer
in the presence of price anomalies such as peculiar market behaviours (speculative
bubbles).

3.1 Experimental Evidence: A Simulation Study

In order to study the performance of beanplot time series in visualizing and explor-
ing high frequency financial data, we conduct several experiments on different
models. The experiments are designed to replicate different volatility processes
(with increasing complexity). In this respect we study the capability of different
aggregated time series (boxplot time series and beanplot time series) to capture the
main features of the original data.

For our simulations we developed several algorithms in R (Ramsay and Sil-
verman 2007). We generated 18 types of models, where each model represents a
different univariate GARCH/APARCH time series model. In order to analyse the
effect of the different number of observations on our results, we varied, for each
model, the number of observations from 200,000 to 700,000. In this way, we sim-
ulated different types of financial markets. Initially, we decided to aggregate our
data in ten different groups as ten different days. Then we have tested different time
aggregations (by reducing or increasing the number of groups). Therefore in each
day we had from 20,000 to 70,000 observations. Finally, to test our results we made
100 replications for each model.

The outcome for each computational experiment performed is the visualization
of the different aggregated time series over the time. For each experiment we regis-
tered the captured statistical features from the beanplot time series compared to the
original scalar time series and the boxplot time series.

The results of our simulations show in the first place that the beanplots tend to
visualize a higher amount of information on the daily data, and in particular the
intra-day patterns in the behaviour of the series, where the boxplots tend to return a
smoothed view of the financial time series. We report here, by way of example, the
results (in Fig. 1) with an underlying model (model 1) of the type GARCH(1,1) and
those (in Fig. 2) obtained with a model (model 2) of the type AR(1,5-GARCH(1,1)
both with 200,000 observations. By increasing the complexity of the time series we
observe more clearly the differences between boxplot and beanplot time series. With
beanplots, we are able to understand the structural changes and the different forms
of the objects more distinctly. When the complexity reaches an extremely high level
there is an increase of the outliers. Boxplot time series seem to suffer this higher
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Fig. 1 Scalar, boxplot and beanplot time series for the model1
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Fig. 2 Scalar, boxplot and beanplot time series for the model2

volatility of the markets. It is also interesting to note that by increasing the number of
observations, beanplots alone may gave us clearer understanding and are then more
useful than the boxplot time series. In fact, the number of outliers tends to increase
and the boxplots become similar to each other (in Fig. 3 we report an example of
the model1 with 700,000 observations). At the same time our simulations show that
there is a specific number of observations that could be retained by choosing one
interval or another. So, the choice of the interval seems to be linked to the interests
of the applied researcher. In Fig. 4 we show the differences between beanplot time
series with different temporal aggregations: a higher number of observations consid-
ered in the interval shows a higher number of bumps (and so of structural changes).
The risk could be the loss of the information related to the cycles, where a lower
number shows the structure of the series, but it is expensive in terms of space used
(and there is the risk of not visualizing patterns).



288 C. Drago and G. Scepi

Fig. 3 Scalar, boxplot and beanplot time series for the model1 with 700,000 data

1 2 3 4 5 6 7 8

6
7

8
9

10
12

6
7

8
9

10
12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 4 Beanplot time series: different temporal aggregations

3.2 Some Empirical Rules

The aim of the analyst using the simulation data, is also to obtain some empirical
rules. The most important characteristics of the beanplot time series is the capa-
bility to capture three relevant aspects in the dynamics of the complex data: the
location, the size, the shape. Therefore, beanplot time series should be interpreted
simultaneously considering this information.

The location shows the average or median price, and thus represents a useful
benchmark for comparing different units. This parameter gives the possibility to
visualize a time series trend. This feature is not possible with other smoothers or
other nonparametric techniques, while in the beanplot time series we can explicitly
consider a center for each time aggregation.

The size represents the general level of volatility, while the shape specifically
represents the internal structure and the intra-day patterns. Therefore, by observ-
ing these parameters, we can easy identify speculative bubbles, structural changes,
market crashes and so on. Furthermore, beanplot bumps can be seen as equilibrium
values for the operators and they can be very important in trading strategies.
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3.3 A Real Example on the Zivot Dataset

The data used in this application are contained in the Zivot dataset (Yan and Zivot
2003). These data are specifically related to the official TAQ (Trades and Quotes)
database containing “tick by tick” data for all the stocks in NYSE from 1993. The
Zivot dataset refers to 1997 and contains quotes and the trades for Microsoft. Here
we consider the transaction prices for the period 1 May–15 May for a total of 11 days
(except periods where the market is closed). Finally, we take into account 98,705
observations (instead of 98,724). In this case we do not consider the prices > 150,
which allows us to avoid the data visualization completely. This exclusion does not
modify the data structure.

In the original time series, we cannot read easily the intra-period variability
because of the overwhelming number of observations. Therefore we represent box-
plot and beanplot time series (Fig. 5) where the data are aggregated day by day. We
observe over the different graphs the general view of the trend of the series, but also
the variation (or the price volatility in a same day) of the same data. The outlier
identification is straightforward and is imputable to a specific daily price change.
However, we note that beanplot enriches the boxplot information by showing the
intra-day structure. We can detect various structural changes in the period 1–8 May
and the boxplot time series identify only major price changes. Each beanplot can
be seen as the ideal “image” of the market at a specific time. In particular we can
observe that the objects seem to be characterized by a response to the shocks, as the
level (or the average) of the boxplots and the beanplots tends to change day by day.
This phenomenon is due to the response of the time series to news that impose a dif-
ferent size, shape and location conditionally to the relevance of the shock. Changes
in boxplot and beanplot levels seem to be directly influenced by daily news, where
the number of bumps in the beanplot time series is directly linked to intra-day news.
At the same time it is interesting also to note the volatility levels that seems to be
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higher after a single shock and tends to decrease over the time, and disappears after
a few days. Finally, it is important to note that the structure of the time series appears
highly irregular in the beanplot case. At the same time the boxplots tend to smooth
the information contained in data, where the beanplots tend to reflect the complex
behavior of the markets and the intra-daily patterns.

Various advances of beanplots time series can be considered, in particular in
a multivariate framework. We will apply the beanplots in three different specific
financial contexts: (a) monitoring of more than one stock at a time (b) pair trading
using the cointegrated beanplot (c) risk analysis using the double beanplots. In par-
ticular, we are working further on the forecasting and the clustering of beanplot time
series.
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Using Partial Least Squares Regression
in Lifetime Analysis

Intissar Mdimagh and Salwa Benammou

Abstract The problem of collinearity among right-censored data is considered in
multivariate linear regression by combining mean imputation and the Partial Least
Squares (PLS) methods. The purpose of this paper is to investigate the performance
of PLS regression when explanatory variables are strongly correlated financial
ratios. It is shown that ignoring the presence of censoring in the data can cause a
bias. The proposed methodology is applied to a data set describing the financial
status of some small and medium-sized Tunisian firms. The derived model is inter-
esting to be able to predict the lifetime of a firm until the occurrence of the failure
event.

1 Introduction

A problem in multivariate linear regression commonly arises when two or more
explanatory variables are strongly correlated. This phenomenon is well-known in
statistics as multicollinearity. The regression parameter estimates may be unstable
or even not computable. In lifetime analysis, this difficulty severely increases in the
presence of right-censored data.

The problem raised by multicollinearity in regression can be treated by orthogo-
nalization methods such as principal component regression (Massy 1965) and PLS
regression (Tenenhaus 1998) or otherwise, by regularization-type methods such as
ridge regression (Hoerl and Kennard 1970) or LASSO regression (Tibshirani 1996).
The Partial Least Square methods are based on the NIPALS algorithm introduced by
Wold (1966) in principal components analysis. In the last two decades, PLS meth-
ods have been used as a valuable tool in industrial applications, including marketing,
sensorial analysis and genetics among others.

Censoring is another problem since information is incomplete and the time until
event occurrence is unobserved. Recently, PLS regression was adapted to incorpo-
rate censored data in the Cox model leading to the PLS-Cox algorithm applied on
microarray data (Bastien 2008). Datta et al. (2007) also proposed three ways to

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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deal with right-censored data in PLS regression, namely the reweighting, the mean
imputation and the multiple imputation approaches.

In this paper we discuss the use of the PLS regression in the assessment of the
credit risk within a lifetime analysis framework. The application illustrated in the
next sections, deals with a sample of small and medium-sized Tunisian firms, for
which a response variable (the failure time) and a set of covariates based on account-
ing indicators, are collected over a number of years. The problem of right censoring
is preliminarily dealt with the replacement of the unobserved response variable in
the truncated observations, via a Mean imputation algorithm. Introducing a rela-
tively new approach in the statistical analysis of financial distress, this paper aims
to settle into a rather wide body of studies appeared over the last 40 years concern-
ing the use of accounting indicators in the assessment of the failure risk: among
the others, we cite for example the work of Altman (1968) who proposed the use
of the discriminant analysis, Ohlson (1980) based on the employment of the logis-
tic regression and Hillegeist et al. (2004) who have suggested a survival analysis
approach.

The paper is organized as follows: A brief review of the lifetime analysis is pro-
vided in Sect. 2. The problem of treatment of censored data is outlined in Sect. 3. In
Sect. 4, the detection of the multicollinearity among variables is illustrated using
a data set composed of lifetime until failure occurrence and the financial ratios
of Small and Medium-sized firms. Finally in Sect. 5, the PLS regression with
right-censoring is explained and the obtained empirical results are discussed.

2 The Lifetime Analysis

The objective of lifetime analysis is to describe data that measure the time period
until an event of interest occurs. For instance in financial applications, such an event
may be the time of death or the occurrence of a critical event in the life of a given
firm. In lifetime analysis, the right-censoring problem is encountered when the time
of a failure event can not be observed. In fact, the time of failure is larger than some
given fixed date delimiting the experimentation (Hougaard 2000). Here, we consider
the lifetime as the duration from the birth time of the firm until the failure event for
some small and medium-sized Tunisian firms. It is assumed that these firms are
right-censored with respect to the year 2005.

In this paper, the lifetime is assumed to be a random positive real valued vari-
able with a continuous distribution, independent with censoring. For censored data,
a dummy variable ı is introduced, taking value 1 if the event is observed and 0
otherwise. In the lifetime analysis we are interested in estimating the survival func-
tion defined at any time point t as the probability of lifetime T being longer than
t: S .t/ D P ŒT > t�. The Kaplan and Meier (1958) estimator is a estimator of S
defined as:

OS.t/ D
Y

T C 0

i
< t

 
1 � M.T

C 0

i /

R.T C 0

i /

!
(1)
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where T C
i D min.Ti ; Ci /, with Ci and Ti are respectively the censoring and

the uncensoring lifetime of observation i, .T C 0

1 ; : : : ; T C 0

i ; : : : ; T C 0

n / are the
.T C

1 ; : : : ; T
C
i ; : : : ; T

C
n / classified by increasing order, M.T C 0

i / is the number
of observed events to T C 0

i and R.T C 0

i / is the number of individuals at risk before
time T C 0

i .

3 Treatment of Censored Data

Given that the classical algorithms of the OLS regression and the PLS regression
does not take into account the censoring issue, we use here the Mean imputation
approach to deal with the right-censored data. The Mean imputation approach con-
sists in keeping the observed response variable unchanged and replacing unobserved
value by the quantity y�

i expressed in terms of the Kaplan and Meier (1958) it is an
estimator of the survival curve called Kaplan Meier estimator. Here we suppose that
the maximal observed time tmax corresponds to an observed event (ımax D 1),
even if ımax D 0. This hypothesis ensures that OS.tmax/ D 0 (Datta et al. 2007).
Formally, we define an imputed variable Qyi which satisfies:

Qyi D
�
yi if ıi D 1
y�

i if ıi D 0
The determination of the quantity y�

i is done via the following algorithm:
Let t1 <. . .< tmax be the distinct event times,
Step 1: calculate � OS.tj / D OS.tj �1/� OS.tj /
Step 2: calculate Z.tj / D log.tj /� OS.tj /
Step 3: calculate Zi DP tj >Ci

Z.tj /

Step 4: calculate y�
i D Zi

OS.Ci /

4 Detection of the Multicollinearity Among Variables

We consider a sample of 120 small and medium-sized Tunisian firms, a number
of them have observed the failure event during the study period 1996–2007. These
firms belong to different sectors of activity as shown in Table 1. Our data set is issued
first from annual accounting reports of the firms: balance sheets, income statements,
cash flow statements. The financial data related to right-censored firms are issued
from the chartered accountants’ offices and Tunisian national social security fund
reports. The financial data relative to uncensored firms are sourced from registered
auditors’ reports, official balance sheet data and central bank of Tunisia reports.

We define the response variable Y as the lifetime until the failure event occur-
rence. The matrix X of explanatory variables is composed of 35 financial ratios
describing the financial status of the firm 2 years before failure. Financial ratios
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Table 1 Sectors of activity of the firms

Sector of activity Right-censored firms Uncensored firms Total

Mechanics and Electronics (Industry) 7 7 14
Building Materials Ceramic and Glass

(Industry)
9 7 16

Food-Processing (Industry) 8 4 12
Leather and Shoes (Industry) 9 8 17
Clothing (Industry) 8 5 13
Tourism (Service) 11 24 35
Building and Public Works (Service) 8 5 13

Table 2 Correlation between independent variables (Pearson correlation coefficients)a

(x4, x10) (x7, x8) (x7, x30) (x8, x30) (x10, x12) (x15, x16) (x16, x17) (x17, x34) (x30, x34)

0.658 0.682 0.612 0.670 0.695 0.597 0.649 0.608 0.655
aWe have reported some correlation coefficients between variables having values higher than 0.5

given in Table 4 of the appendix consists in Financial Structure ratios (x1; : : : ; x4),
Profitability ratios (x5; : : : ; x9), Liquidity ratios (x10; : : : ; x18), Solvency ratios
(x19; : : : ; x23), Activity and Productivity ratios (x24; : : : ; x29), Growth ratios
(x30; : : : ; x34) and Size firm ratio (x35). It should be stressed here that financial
ratios in statistical models may create poor model fits and/or predictions because
the explanatory variables are correlated as shown in Table 2. Another way to asses
the magnitude of multicollinearity among the variables is to use the Variance Infla-
tion Factor (VIF) or to perform an OLS regression and examine the sign of the
coefficients as shown in Table 3 given in the appendix. We found that the sign
of OLS regression coefficients is opposite to that of the Pearson correlation. This
mismatching in the OLS results are due to the high level of correlation between
variables. This leads us to consider the PLS regression model to handle the problem
of multicollinearity.

5 PLS Regression with Right-Censoring

In this section, we suggest to perform a PLS regression of QY D . Qy1; : : : ; Qyn/

describing a lifetime of firm until the failure on the matrix X composed of financial
ratios. We just recall that the response variable can be right-censored. This is due
to the fact that there are firms which have not been confronted to the failure event
during the period of study but the event appeared afterwards. We apply the classical
algorithm of the PLS regression of QY on X for various censoring cases going from
5% to 70%. The results are interpreted in terms of model adjustment by evaluating
the Fit Mean Squared Error (MSEF ), and in terms of the model predictive quality
by estimating the Prediction Mean Squared Error (MSEP ). In the context of cen-
sored data, the MSEF and the MSEP are calculated using respectively the following
algorithms:
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Step 1: calculate OQyi the ith observation PLS predicted value of Qyi

Step 2: calculate Zi D ıi


 OQyi � Qyi

�2

Step 3: calculate Z DPn
iD1Zi

Step 4: calculate MSEF D ZPn
iD1 ıi

and,
Step 1: calculate OQyi;� the PLS regression predicted value after eliminating the
observation i

Step 2: calculate Zi D ıi


 OQyi;� � Qyi

�2

Step 3: calculate OSC (T C
i �1) which is the Kaplan Meier estimator (1) calculated

using the indicators .1 � ı/, where ı D
�
1 if the observation is uncensored
0 otherwise

Step 4: calculate Z D Pn
iD1

ıi Zi

OSC .T C
i

�/

Step 5: calculate MSEP D Z
n

We provide below, in Figs. 1 and 2, respectively the values of MSEF and MSEP

for various censoring levels, computed on the ten first PLS components.
Figure 1 shows that for data associated with a range of censoring rates going from

0 to 30%, the MSEF decreases when increasing the number of components. This
means that the adjustment quality of the PLS model improves when incorporating
the components. Beyond a threshold censoring value of 30%, the associatedMSEF

is going to decrease for a number of terms going from one to six.
Figure 2 shows that for one, two and three PLS terms, the uncensored data

give biased prediction results. This means that considering censoring in the data

Fig. 1 MSEF for the different censoring levels

1 The symbol (�) indicates the limit to the left of T Ci .
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Fig. 2 MSEP for the different censoring levels

improves the predictive quality of the model. In particular for one PLS component,
the MSEP with a range of censoring rates going from 5 to 25% is lower than that
with 0% censoring rate. In the case of two components, the model is more success-
ful for censoring rates of 15 and 25% than a model without censoring. For a model
with three terms, it is more adequate to consider censoring rates of 10 and 15% as
they give the lowest MSEP . Finally, we observe that a model with 15% censor-
ing rate and one PLS term seems to be the most adequate as it is associated with
the minimal value of MSEP . For this model, the estimated equation of the PLS

regression is given by: OQY D 0:27 t1, where the component t1 describes the ratios to
28.17% and explains the lifetime of company until the failure event occurrence for
72.91%. It should be stressed here that, in contrast to the OLS coefficients, the signs
of the PLS coefficients coincide with those of the Pearson correlation as shown in
Table 3. Thus we can conclude that the PLS can cope with the multicollinearity
problem. We can further improve the predictive quality of this model by calculating
for every variable its explanatory power on the response variable. This is known as
the Variable Importance in the Prediction (VIP) (Tenenhaus 1998).2 According to
the VIP criterion, we retain eleven ratios. Thus, the estimated equation becomes:
OQY D 0:35 t1 otherwise,

OQY D 0:109x9 C 0:102x10 C 0:083x11 C 0:115x15 C 0:122x16 C 0:127x17 C 0:098x22 C
0:096x28 C 0:090x30 C 0:082x31 C 0:128x34 (2)

where the term t1 describes the ratios up to 55.31% and explains the lifetime of firm
until failure up to 75%. While interpreting the obtained results from (2), we see that
the higher the levels of liquidity and cash, the lower the risk to go bankrupt and the
longer the expected survival time. Besides, more the firms have an important equity,

2 Variables having a VIP > 1 are the most important in the construction of the response variable.
Therefore we can eliminate the variables with VIP values lower than 1.
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more they will be reliable. Thus, they will have a higher longevity. In addition, we
observe that the higher the performances in turnover, assets and added values, the
lower the risk of distress.

In the sequel we intend to examine the prediction performance of the proposed
model by predicting the lifetime of Tunisian Small and Medium-sized firms. The
prediction is made using the PLS regression model with 15% censoring rate and one
PLS term. Thus, the prediction set contains the remaining fifty-one observations. We
have computed the RMSE for both OLS and PLS regression methods. The RMSE
for the OLS-based method is 5.78 whereas theRMSE of the PLS regression model
is found to be markedly smaller with a value of 3.03. This confirms the superior
prediction performance of the proposed method. In sum, the suggested model can
be exploited to predict adequately the lifetime until failure for firms.

6 Conclusion

In this paper, we have discussed the problem of predicting lifetime of firms until
failure using financial ratios as predictors within the PLS regression framework.
We saw that problems may arise in practice due to right-censoring. So, the Mean
imputation approach has been proposed to cope with these problems. We showed
that taking into account the censoring in the data improves the predictive quality of
the PLS model. Furthermore, the best model for predicting the lifetime until failure
event is found to be a PLS model with a censoring rate of 15% and a single PLS
term. We note in this paper that we have used the Mean imputation approach which
estimates unobserved response variable from Kaplan Meier nonparametric estimator
of the survival function. However, the Kaplan Meier estimator is an unstrict estima-
tor which gives discontinuous estimation. In future work we intend to use another
estimator to cope with this insufficiency.

Acknowledgements We would like to thank Dr. François-Xavier LEJEUNE for his valuable help.

Appendix

Table 3 VIF, OLS and PLS resultsa

Variables VIF Pearson correlation OLS Parameters PLS Parameters

x7 5:3163 0:5942 �0:0168 0:0565

x10 7:5799 0:4108 �0:0724 0:0391

x17 5:3606 0:6120 �0:3510 0:0582

x29 12:5473 �0:5465 1:0163 �0:0520
aWe have reported some variables with VIF> 5 whose sign of OLS regression coefficients is
opposite to that of the Pearson correlation
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Table 4 Financial ratios
x1 reserve/total assets x2 total liabilities/total assets
x3 short-term debt/total debt x4 equity capital/total liabilities
x5 gross operating surplus/total assets x6 net income/equity capital
x7 net income/turnover x8 gross operating surplus/turnover
x9 value added/turnover x10 current assets/short-term debt
x11 cash/short-term debt x12 cashCmarketable securities/short-term debt
x13 cash flow/short-term debt x14 cash flow/total liabilities
x15 cash/total assets x16 cash/current assets
x17 cash/turnover x18 account receivable/total assets
x19 working capital/total assets x20 account receivableCstock/total suppliers

purchases
x21 equity capital/permanent capital x22 equity/total assets
x23 cash/bank loans x24 value added/tangible assets
x25 financial charges/turnover x26 payroll/gross operating surplus
x27 financial charges/gross operating

surplus
x28 turnover/total assets

x29 non current assets/total assets x30 turnovert � turnovert�1=turnovert�1

x31 totalassetst �
totalassetst�1/totalassetst�1

x32 noncurrentassets t �
noncurrentassets t�1/noncurrentassetst�1

x33 currentassetst �
currentassetst�1/currentassetst�1

x34 valueadded t �
valueadded t�1/valueaddedt�1

x35 Log(total assets)
Source: These ratios are sourced from (Hamza and Baghdadi (2008)).
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Robust Portfolio Asset Allocation

Luigi Grossi and Fabrizio Laurini

Abstract Selection of stocks in a portfolio of shares represents a very interesting
problem of ‘optimal classification’. Often such optimal allocation is determined by
second-order conditions which are very sensitive to outliers. Classical Markowitz
estimators of the covariance matrix seem to provide poor results in financial man-
agement, so we propose an alternative way of weighting observations by using a
forward search approach. An application to real data, which shows the advantages
of the proposed approach is given at the end of this work.

1 Introduction

The Markowitz mean-variance efficient frontier is the standard theoretical model
for normative investment behavior Markowitz (1959). In this paper, we discuss the
problem of statistical robustness of the Markowitz optimizer and show that the latter
is not robust, meaning that a few extreme assets prices or returns can lead to irrele-
vant ‘optimal’ portfolios. We then propose a robust Markowitz optimizer and show
that it is far more stable than the classical version based on Maximum Likelihood
Estimator (MLE). Suppose there are N risky assets whose prices observed for T
periods are pit; t D 1; : : : ; T; i D 1; : : : ; N and let x D .x1; : : : ; xN /

0 be the vector
of portfolio weights. The assets returns are given by a matrix Y D .y.1/

t ; : : : ; y.N /
t /0,

where y.i/
t D .yi1; : : : ; yiT/

0 and yi t D log.pit=pit�1/ with expected returns given
by a N � 1 vector � and N � N covariance matrix ˙ . The expected return and
variance of the portfolio can be written as �p D x0� and �2

p D x0˙x, respectively.
For a given level of risk-aversion 
 , the classical mean-variance optimization

problem can be formulated as max
x
.�p � 
�2

p/, subject to the constraints x � 0

and x0�N D 1, where �N is a N � 1 vector of 1. The constraint of no short-selling
.x � 0/ is very frequently imposed as many funds and institutional investors are not
allowed to sell stocks short.

The expected returns, variances and covariances are usually estimated by means
of the classical maximum likelihood estimators.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_34, c� Springer-Verlag Berlin Heidelberg 2011
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One problem with the standard MLEs is that they are sensitive to influen-
tial observations, typically represented by extreme returns. In this paper we sug-
gest to use a robust weighted version of the covariance matrix estimator where
weights are obtained through a forward search procedure. Other papers have sug-
gested portfolio optimization based on robust estimators. See Fabozzi et al. (2007),
Welsch and Zhou (2007) and DeMiguel and Nogales (2009). Their approaches dif-
fer from ours because they apply robust estimators, such as winsorized, M- and
S- estimators, Minimum Volume Ellipsoids which have a high breakdown point, but
are not as efficient as MLEs when the underlying model is correct. The forward
search, instead, solves this problem as it combines the efficiency of MLEs to the
outlier resistance of very robust estimators.

2 Robust Weighted Covariance Matrix

Our target is to compute weights wt 2 Œ0; 1�, for each observation in the multiple
time series y t D .y1t ; : : : ; yNt /

0, t D 1; : : : ; T , with the forward search method
(Atkinson and Riani, 2000; Atkinson et al., 2004). The weights will be used to obtain
a weighted covariance matrix such that the most outlying observations get small
weight. For multivariate data, standard methods for outlier detection are based on the

squared Mahalanobis distance for the t-th observation: d 2
t D .yt� O�/0 Ȯ

�1
.yt� O�/;

where both the mean and variance are estimated. The goal of the forward search is
the detection of units which are different from the main bulk of the observations
and to assess the effect of these units on inferences made about the model. Some
methods for the detection of multiple outliers, like the forward search applied in
this paper, use very robust methods to sort the data into a clean part (CDS = Clean
Data Set) of size m0 and potential outliers of size T � m0. Given the best subset
S

.m/� of dimensionm � m0 detected at step m, we can calculate a set of T squared
Mahalanobis distances, defined as

d 2
t.m/ D .yt � O�m/

0. Ȯ m/
�1.yt � O�m/ (1)

where O�m and Ȯ m are the mean and covariance matrix estimated on the m-sized
subset. We then increase the size of the initial CDS selecting observations with
small Mahalanobis distances and so are unlikely to be outliers. Thus, with the for-
ward search algorithm the data are ordered according to their degree of agreement
with the underlying model, with observations furthest from it joining the CDS in
the last steps of the procedure. It is common, during the forward search to graph-
ically monitor d 2

t.m/
as m increases from m0 to T ; sharp changes of the curves

indicate the introduction of influential observations into the CDS. When � and
˙ are MLE on the whole sample, the classical Mahalanobis distances follow a
scaled beta distribution. But in (1) the Mahalanobis distances are estimated from
a subset of m observations which do not include the observation being tested. In
such a case, the reference null distribution would be (see, Atkinson et al. 2009):
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d 2
t.m/
� ŒT=.T � 1/�ŒN.m � 1/=.m � N/�FN;T �N , where N is the number of

columns of Y . The weights are computed for each observation at the end of the for-
ward search. For the computation of the weights we compare the trajectories of d 2

t.m/

during the forward search with confidence bands from the F distribution. Alterna-
tively, simulated envelopes can be adopted. At each step of the forward search, we
measure the degree of outlyingness of each observation t D 1; : : : ; T , as the squared
Euclidean distance, 	 , between the distance (1) lying outside a confidence band and
the boundaries of the band itself by considering the F distribution with N; T � N
degrees of freedom, and the quantile Fı at the nominal level 1 � ı. For a fixed
step of the forward search m, we record the distance of the t-th trajectory from the
percentile of the confidence band, provided that the t-th observation is outside the
1 � ı nominal level. If d 2

t.m/
lies under the Fı percentile, then, at the m-th step, it

will get zero distance. At the next step m C 1, the weight of the t-th observation
will be increased by an amount which is induced by the squared Euclidean distance
between the t-th trajectory and the percentile of the confidence band, provided that
at stepmC1 the t-th trajectory exceeds the nominal level 1�ı. If at step .mC1/-th
the t-th trajectory lies under theFı quantile, then a zero will be added to the distance
computed at the step m.

The overall degree of outlyingness for the t-th observation is given by the sum
of all squared Euclidean distances, computed only when the trajectory exceeds the
confidence bands. Formally, letting 	.t/

m be the distance between d 2
t.m/

and the per-
centile Fı , for the unit t-th at the step m, we define the squared Euclidean distance
as: 	.t/

m D 0 if d 2
t.m/
2 Œ0; Fı �, 	

.t/
m D .d 2

t.m/
�Fı /

2 if d 2
t.m/

> Fı and we consider
the overall distance of the t-th observation as the sum of such distances during the
forward search, i.e.,

	t D
PT

mDm0
	

.t/
m

T �m0 C 1 : (2)

The squared Euclidean distance measures the degree of outlyingness of each
observation through the computation of a weight, in the interval Œ0; 1�, obtained
with the following mapping of (2): wt D exp.�	t /. The last step of the procedure
is based on the creation of a weighted covariance matrix to be used in the optimiza-
tion. For a given series of returns i , with i D 1; : : : ; N , we consider the weighted
return y?

it D yitw
1=2
t . The weighted covariance matrix will be simply the covariance

matrix based on the weighted observations, that we denote as QW . Notice that also
the sample mean will be modified by using weighted returns.

3 Monte Carlo Experiment

In this section we are going to introduce some results of a Monte Carlo experiment
which has been carried out to highlight the main advantages which come from the
application of the forward search based estimator (FWD from now on) with respect
to the classical non robust MLE. Let us suppose there are six securities (that is
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N D 6) with true parameters, � and ˙ , chosen to be in average range of monthly
returns of many securities. A monthly frequency was chosen as a reasonable inter-
mediate point between weekly and yearly intervals. A weekly time horizon is too
short for most portfolio planning problems and an annual time horizon is too long for
gathering historical data. However the same analysis can be applied to any chosen
time horizon. Then T D 120 monthly returns for each security have been gener-
ated. In order to put in evidence the effect of outliers we contaminated the series
with additive outliers at random positions according to the following equation:

y�
t D y t C �ıt

where y t � N.�;˙ /, ıt is a stochastic contamination process, which takes non-
zero values with positive probability, and where � is a non-zero constant indicating
the magnitude of the additive outliers.

One of the most interesting output of mean-variance portfolio analysis is the
frontier where optimal combinations of returns and risk levels are reported for given
levels of risk aversion. In simulation experiments it is possible to compare several
versions of efficient frontiers (see, Broadie, 1993) which are reported as follows:

� True efficient frontier
�p D x0� �2

p D x0˙x (3)

� Estimated frontier
�p D Ox0 O� �2

p D Ox0 Ȯ Ox (4)

� Actual frontier
�p D Ox0

� �2
p D Ox0

˙ Ox (5)

The true frontier in (3) is not observable with real data. Next, using the esti-
mated parameters, O� and Ȯ , the estimated frontier (4) is obtained. Finally, the actual
frontier (5) is computed combining weights from the estimated frontier and true
parameters. To summarize, the true frontier is the efficient frontier based on the true
but unknown parameters, the estimated is the frontier based on the estimated and
hence incorrect parameters, the actual frontier consists of the true portfolio means
and variance points corresponding to portfolios on the estimated frontier. In short,
the estimated frontier is what appears to be the case based on the data and the esti-
mated parameters, but the actual frontier is what really occurs based on the true
parameters. The estimated frontier is the only frontier that is observable in practice.

Figure 1 reports an example of the three frontiers defined earlier based on simu-
lated uncontaminated data and estimated with MLE. What it is worth to be noticed is
that limiting our attention to optimal portfolios (between two portfolios with equal
mean, the less risky is chosen), the estimated frontier always lies above the true fron-
tier. This illustrates the error maximization property of mean variance analysis. That
is, points on the estimated frontier correspond to portfolios that overweight securi-
ties with large positive mean returns, large negative errors in standard deviations and
large negative errors in correlations. These estimation errors lead to optimistically
biased estimates of portfolio performance. On the other hand, the actual frontier
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Fig. 1 True, estimated and actual frontier on a simulated data set
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Fig. 2 True and actual MLE frontiers for uncontaminated (left plot) and contaminated (right
panel) data. The true frontier is drawn by a solid black line, dotted lines are used for the actual
frontiers

lies under the true frontier. This example shows that generally minimum variance
portfolios can be estimated more accurately than maximum return portfolios.

What has been shown in Fig. 1 is simply based on one simulation. Thus, we
repeated the simulation experiment (1,000 trials) generating random monthly
returns based on the same true parameters, estimating model parameters from
the simulated returns and then computing actual mean-variance frontiers.

In Fig. 2 actual frontiers (dashed lines) for a fraction of the total trials are com-
pared with the true frontier (solid line). The left panel has been obtained simulating
uncontaminated time series of returns, while the right panel refers to the case where
simulated time series have been contaminated with outliers. The effect of contami-
nation consists of spreading out the actual frontiers far from the true frontier. This
gives an idea about the impact of outliers on MLE.

When more than one trial is carried out we have to summarize the estimation
error. To this aim we can focus on individual target points on the true efficient
frontier. The target point is defined as the point in the mean-variance plane that
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maximizes �p � 
�p for a given value of risk aversion 
 . For 
 D 0 the solution is
the portfolio with the maximum return. When 
 !1 the solution is the minimum
variance portfolio. In order to a have a quantitative measure of the error caused by
using estimated parameters, we compute the distance between the target point on
the true frontier and the corresponding point on the actual. Finally, we obtain the
following Root Mean Square Error (RMSE):

��.
/ D
vuut 1

S

SX

sD1

Œ�p.
/ � Q�s
p.
/�

2 ) RMSE for �p

�� .
/ D
vuut 1

S

SX

sD1

Œ�p.
/� Q�s
p.
/�

2 ) RMSE for �p

where S D number of simulations, .�p.
/�p.
/; �p.
/�p.
// is the target point
on the true frontier and . Q�s

p.
/; Q�s
p.
// is the target point on the actual frontier.

In Fig. 3 the evolution of the RMSE with 1,000 simulations of � and � for MLE
and forward search estimators (FWD) are reported for uncontaminated data as func-
tion of log.
/. The continuous line is for MLE, while the dashed line is for FWD.
As can be noticed, when time series are free from outlier MLE and FWD lead to
very similar results in terms of RMSE with a slight prevalence of MLE on FWD in
the case of � .

Finally, Fig. 4 reports the evolution of RMSE when MLE, and FWD for mean-
variance parameters have been applied. These plots are similar to those shown in
Fig. 3 but refer to contaminated data where patches of consecutive outliers have been
placed in each security time series at random positions. The left plot reports RMSE
for � while the right plot reports RMSE for � . Solid line is for MLE and dashed for
FWD. It is extremely clear that, in the case of contaminated data, the FWD estimator
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Fig. 3 RMSE for � (left panel) and � (right panel) estimated with MLE and forward search on
uncontaminated data
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Fig. 4 RMSE (�, left panel, and � , right panel) for MLE and FWD when data are contaminated
with patches of outliers

leads always to the lowest estimation error and this should be reflected in a better
portfolio allocation.

4 Application to Financial Data

We consider the monthly returns of six stocks of the US market with data from
January 1973 to March 2009 included. Data come from Datastream. We have com-
puted the efficient frontier according to the so called ‘tangency’ optimality, i.e.,
using the Sharpe ratio for the optimal weights allocation of each asset into the final
portfolio. The efficient frontier is computed by standard MLE and by the forward
weighted estimation of the covariance matrix. A very remarkable feature of our
approach is that, when anomalous observations are weighted with our method, the
overall ‘portfolio risk’, measured by the standard deviation, is massively reduced
compared with other methods. However, even if we have a much lower risk portfo-
lio the expected returns of the frontier is still broadly consistent with the classical
method. In conclusion, with our forward method of weighting observations we have
a preferable portfolio, which has the same expected return with a much lower risk.
In order to show the importance of using robust estimators in portfolio allocation we
compare the performance of allocations derived from the analyzed estimators and
using a rolling windows technique explained as follows: (1) estimate weights (MLE
and FWD) using data for t D 1; : : : ; T � 1 and get the average portfolio return in
T . (2) estimate weights (MLE and FWD) using data for t D 2; : : : ; T and get the
average portfolio return in T C 1. (3) estimate weights (MLE and FWD) using data
for t D d; : : : ; T � d and get the average portfolio return in T � d C 1.

The right panel of Fig. 5 reports the output of the rolling windows procedure
estimating parameters on data until the end of 2005 and taking year 2006 as a
forecast period according to the rolling windows procedure. The dashed line is for
FWD while solid is for MLE. Portfolio performances are generally better when the
forward search weights are applied.
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Fig. 5 Portfolio monthly performances in 2006 using a rolling windows technique

5 Conclusions and Further Research

In this paper a new robust approach to the asset allocation problem has been
suggested. Simulation experiments lead to very promising results. Further exper-
iments are needed to better understand how the robust forward search estimator
can improve the performance of portfolio allocation, but the possibility to compare
true, actual and estimated frontiers is a very easy way. On the other hand, we have
to devote more time in analyzing real data and in developing new measures for
assessing the superiority of robust methods in solving allocation problems because
only estimated frontiers are observable. This implies that the forecasting proper-
ties of robust methods should be analyzed. When back-tested on market data, these
methods are shown to be effective in improving portfolio performance. Robust asset
allocation methods have great potential to improve risk-adjusted portfolio returns
and therefore deserve further exploration in investment management research.
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A Dynamic Analysis of Stock Markets through
Multivariate Latent Markov Models

Michele Costa and Luca De Angelis

Abstract A correct classification of financial products represents the essential and
required step for achieving optimal investment decisions. The first goal in portfolio
analysis should be the allocation of each asset into a class which groups investment
opportunities characterized by a homogenous risk-return profile. Furthermore, the
second goal should be the assessment of the stability of the classes composition.
In this paper we address both objectives by means of the latent Markov models,
which allow us to investigate the dynamic pattern of financial time series through
an innovative framework. First, we propose to exploit the potential of latent Markov
models in order to achieve latent classes able to group stocks with a similar risk-
return profiles. Second, we interpret the transition probabilities estimated within
latent Markov models as the probabilities of switching between the well-known
states of financial markets: the upward trend, the downward trend and the lateral
phases. Our results allow us both to discriminate the stock’s performance following
a powerful classification approach and to assess the stock’s dynamics by predicting
which state is going to experience next.

1 Introduction

Modern portfolio theory suggests to evaluate financial products on the basis of two
latent variables: the risk and the expected return. Frequently unexpected, and some-
times disastrous, outcomes of investment decisions derive from the latent nature of
this information set, or, more correctly, from the difficulty to provide a satisfactory
measurement of the risk and the expected return. In order to achieve this goal, in
this paper we propose, as a preliminary and required step for investment decisions,
to classify financial products into latent classes characterized by a homogenous risk-
expected return profile. We focus on the latent Markov models, which allow us to
investigate the dynamic pattern of financial time series (Dias et al. 2009, Rydén
et al. 1998). With respect to mainstream literature on Markov switching models
(e.g., Hamilton and Susmel 1994; Rossi and Gallo 2006), our proposal allows a
specific focus on the latent features of the different stock market phases using a

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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simpler model specification, in which we do not specify a particular model such as
AR or ARCH-type. Therefore, LMM enables an important reduction of the number
of parameters to be estimated which facilitates the exploratory investigation of the
latent stochastic process underlying the observed time series.

In this framework, we are able to

1. Propose an innovative measurement of risk and expected return,
2. Differentiate risk and expected return evaluation with respect to stock market

phases,
3. Provide transition probabilities between different stock market phases.

Furthermore, combining the information provided by each latent state’s profile and
the latent transition probabilities, we can predict quite accurately which state the
stock market is going to experience in the future, thus enabling new opportunities
in investment decisions. Finally, our proposal allows us to advance the discussion
about the role of statistical methodology in the analysis of financial variables.

2 The Latent Markov Model

The Latent Markov Model (LMM), also known as Hidden Markov Model (Baum
et al. 1970) or regime-switching model (Hamilton and Raj 2002), is a powerful
tool for describing the dynamics of a set of observed responses. Denoting by Zt

the vector containing the return observations of n stock market indexes at time t
(for t D 1; : : : ; T ), where the vector element zi t denotes the return observation
of index i (for i D 1; : : : ; n) at time t, the LMM analyzes f .Z/, the probability
density function of the return distribution of vector Z over time, by means of a latent
transition structure defined by a first-order Markov process. For each time point t ,
the model defines one discrete latent variable denoted by Yt constituted by S latent
classes (which are referred to as latent states), thus overall the LMM includes T
latent variables.

The LMM is specified as

f .Z/ D
SX

Y1D1

: : :

SX

YT D1

f .Y1/

TY

tD2

f .Yt jYt�1/

TY

tD1

f .Zt jYt / (1)

The model in (1) relies on two main assumptions: first, it assumes that the
sequence of the latent states Yt for t D 1; : : : ; T follows a first-order Markov chain,
i.e., Yt is associated only with Yt�1 and YtC1; second, the observation at a particular
time point is independent of observations at other time points conditionally on the
latent state Yt . The latter implies that the observed index return at time t depends
only on the latent state at time t and it is often referred to as the local independence
assumption which is the pillar of latent structure models.



A Dynamic Analysis of Stock Markets through Multivariate Latent Markov Models 313

The LMM is characterized by three probability functions:

1. f .Y1/ is the (latent) initial-state probability;
2. f .Yt jYt�1/ is a latent transition probability which denotes the probability of

being in a particular latent state at time t conditional on the state at time t � 1.
Assuming a homogenous transition process with respect to time, we achieve the
latent transition matrix P where the generic element pjk , with j; k D 1; : : : ; S ,
denotes the probability of switching from latent state j to latent state k.

3. f .zi t jYt / is the Gaussian density function for the observation, that is the prob-
ability density of having a particular observed return of index i at time t
conditional on the latent state occupied at time t . This distribution is charac-
terized by a parameter vector �j D .�j ; �j / which contains the mean and the
standard deviation for the latent state j and which highlights the feature of each
latent state.
The multiplication of the T density functions in (1) denotes the measurement
component of the model.

The model with such specification allows us to discriminate different latent states
which define an underlying unobserved stochastic process common to the n indexes
achieved on the basis of the observed return distributions of the indexes. Therefore,
each latent state can be considered as a particular phase of the entire stock mar-
ket. We want to stress the multivariate specification of the model which takes into
account not a single observed variable but the n � 1 vector Z. In this multivariate
framework, the LMM analyzes the covariance structure existing in the observed data
providing the estimation of a latent stochastic process defined by Yt which accounts
for the common dynamic pattern of the n observed variables.

The number of free parameters (NPar) of the multivariate LMM is
S.S C 2n/ � 1, that is S � 1 initial-states, S.S � 1/ transition probabilities, and
2nS conditional means and standard deviations of the observed variables.

The LMM is estimated by means of a variant of the EM procedure, the
forward-backward or Baum-Welch algorithm (Baum et al. 1970) which exploits
the conditional independencies implied by the model in order to circumvent the
computational problem due to high values of T . This variant was extended by Paas
et al. (2007) in order to deal with multiple observed indicators. This extension is
implemented in the Latent GOLD 4.5 computer program Vermunt and Magidson
(2007).

3 Model Estimation and Results

We apply the LMM described above to a data set concerning the monthly return dis-
tribution from February 2002 to December 2008 for a total of T D 83 observations
of n D 5 benchmark Italian indexes.

Each index represents a different stock market segment characterized by a par-
ticular level of capitalization: in decreasing order, we consider S&PMIB, MIDEX,
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Table 1 Estimation results from multivariate LMMs with different number of latent states
Latent States LL NPar CAIC

6 �913:89 95 1922.79
7 �887:81 118 1893.63
8 �862:63 143 1868.27
9 �836:30 170 1842.60
10 �826:57 199 1852.14
11 �810:58 230 1851.16

ALLSTARS, and EXPANDI. We also analyze the MIBTEL index which includes
all the stocks traded on the Italian stock market.

We fit a conditional independent LMM where the five stock indexes are inde-
pendent conditionally on the latent states. The model with such specification allows
us to define the unobserved stochastic process common to the five market indexes
and composed by S different latent states in which are classified the time points
characterized by similar return observations of the indexes. The measurement of S
represents quite an important issue and a relevant result, because, until now, there
is no answer to the simple question of how many phases characterize the financial
markets.

According to the Consistent AIC statistics (CAIC; Bozdogan 1987) reported in
Table 1, the model which provide the best fit to the data is the LMM with S D 9
latent states (LL D �836:3, NPar D 170, CAIC D 1842:6). Hence, the model
identifies S D 9 different market phases. This is a relevant number and it is likely
we would have preferred a lesser number of states. However, we want to stress how
our completely subjective opinion about the stock market regimes could be too opti-
mistic and it is also possible that data generating processes in stock markets are not
so simple as we would like. Moreover, during the period 2002–2008, stock mar-
kets have experienced many shocks and big crises and, therefore, nine phases could
not be our preferred choice but lead to a consistent representation of the financial
variable dynamics. Furthermore, the use of the CAIC statistic may rise some issues
about its robustness. However, our framework introduces a rigorous methodologi-
cal approach for defining the number of market regimes which allows us to avoid a
subjective a priori decision.

Each latent state can be characterized by the mean return (�j ) and standard devi-
ation (�j ) of the market indexes. The standard deviations provide information about
the volatility (i.e., the risk) of each latent state: a low volatility state can be inter-
preted as a ‘stable’ market regime, while a state with a high standard deviation
indicates a period of market turbulence.

In Table 2 the latent states are ranked according to the mean return. The first col-
umn in Table 2 provides the size of each latent state which indicates the proportion
of time observations classified into a particular state and, thus, represents their level
of occurrence in the period that is analyzed. For example, the 20% of the time points
are allocated into state 8 which represents the modal state, while the state 9 contains
only 4% of the observations.
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Table 2 Measurement component of the multivariate LMM with nine latent states

Index Size S&PMIB MIDEX ALLSTARS EXPANDI MIBTEL Average
State O� O� O� O� O� O� O� O� O� O� O� O�
1 0.078 �12:80 2.13 �13:86 2.19 �10:68 1.90 �8:50 3.61 �12:29 1.31 �11:63 2.23
2 0.098 �6:68 3.36 �8:34 1.71 �6:35 2.56 �2:85 2.17 �6:71 2.17 �6:18 2.39
3 0.171 �3:39 1.09 �2:46 1.92 �1:45 1.85 �0:04 2.62 �2:94 0.93 �2:05 1.68
4 0.044 �0:20 0.99 0.37 3.40 �3:52 1.31 �1:41 3.77 �0:25 0.97 �1:00 2.09
5 0.116 �1:02 1.03 0.01 1.20 0.11 1.04 0.63 2.26 �0:64 0.99 �0:18 1.30
6 0.142 2.14 1.10 0.58 1.09 1.38 1.97 �0:04 0.83 1.75 1.09 1.16 1.22
7 0.106 4.82 0.90 4.33 2.75 3.40 2.34 0.79 1.78 4.56 0.83 3.58 1.72
8 0.204 2.84 0.85 5.20 1.66 4.60 1.69 3.41 2.50 3.21 0.77 3.85 1.50
9 0.043 9.76 1.53 8.17 3.13 5.60 1.70 1.21 0.96 8.72 1.34 6.69 1.73

The analysis of ( O�j , O�j ) allows powerful insight about the main features of the
different phases which characterize the dynamics of the five stock market indexes.
States 1 and 2, for example, identify financial crisis periods since they are charac-
terized by a low value of O� and a high value of O� . However, according to their sizes,
these two latent states do not occur often (8 and 10%, respectively). On the other
hand, states 7, 8, and 9, with a high value of O�, refer to positive regimes. Latent
states 5 and 6 are characterized by moderate values of O� and the lowest values of O� .
These states represent the phases of stability of the stock market and together rep-
resent more than one fourth of the observations. Furthermore, from Table 2 it can
be noted that, within each latent state, O� and O� differ among the market indexes.
In particular, the ALLSTARS and EXPANDI, which comprise the small capitaliza-
tion companies, usually have lower values with respect to S&PMIB, MIDEX, and
MIBTEL. The only exception is represented by latent state 4: this state groups only
4% of the observations and is characterized by strong negative values of O� for the
ALLSTARS and EXPANDI and values close to zero for the other indexes. More-
over, the values of O�4 for the MIDEX and EXPANDI are the highest ones. Hence,
the LMM classifies into the latent state 4 the time points in which the index returns
exhibit contrasting behaviour. Figure 1 displays actual and estimated time series by
referring to the S&PMIB index and the LMM with nine latent states. The estimated
series is plotted using the state return means for the S&PMIB. Figure 1 shows that
the LMM approximates the index dynamic pattern quite accurately.

The results reported in Table 2 provide an innovative measurement of the risk and
expected return and allow us to identify alternative portfolio investment strategies
implied by the use of the different stock market indexes.

A further relevant set of information provided by the LMM is represented by the
latent transition matrix P which shows the probability of switching from one latent
state to another. The results related to the dynamics of the five Italian stock indexes
are reported in Table 3. The values on the main diagonal of matrix P represent the
state persistence, that is the probabilities of remaining in a particular market phase.
For example, the probability of staying in latent state 2 is p22 D :250, while it is
very unlikely to remain in state 3 (p33 D :001). The out of the diagonal pjk values
indicate the probabilities of market regime switching: for instance, when the stock
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Table 3 Latent transition matrix P
j=k 1 2 3 4 5 6 7 8 9

1 0.394 0.002 0.394 0.002 0.002 0.002 0.002 0.002 0.198
2 0.002 0.250 0.123 0.247 0.002 0.249 0.125 0.002 0.002
3 0.072 0.143 0.001 0.001 0.142 0.143 0.001 0.427 0.072
4 0.245 0.003 0.003 0.003 0.734 0.003 0.003 0.003 0.003
5 0.001 0.200 0.099 0.001 0.002 0.001 0.584 0.110 0.001
6 0.084 0.001 0.250 0.084 0.001 0.245 0.001 0.333 0.001
7 0.001 0.112 0.446 0.001 0.001 0.323 0.112 0.002 0.001
8 0.059 0.001 0.173 0.001 0.290 0.123 0.001 0.351 0.001
9 0.004 0.325 0.004 0.004 0.004 0.004 0.325 0.004 0.325

market is experiencing a crisis, represented by latent state 1, at time t C 1 it is quite
likely a persistence of the negative market phase (p11 D :394 and p13 D :394)
but also a switch to a strong positive regime (p19 D :198). It is also interesting to
notice that when we are in the very positive market regime at time t it may persist
also at time t C 1 with probability p99 D :325 and, with the same probability, it
may also shift to a crisis period represented by state 2 or continue the positive phase
switching to the state 7.

We can exploit the information provided by the switching probabilities reported
in Table 3 in order to evaluate the reliability of the prediction capability of the LMM.
Table 3 shows that some regime switching can be predicted quite accurately because
their transition probabilities are high. For instance, the shift from latent state 4 to
state 5 is relative easy to predict (p45 D :734). On the contrary, there are latent states
for which at least four transition probabilities are above 0.05, which complicates



A Dynamic Analysis of Stock Markets through Multivariate Latent Markov Models 317

Table 4 Number of times and percentages LMM correctly predict the latent state at time t C 1

according to the five highest transition probabilities

Modal pjk I II III IV V Others Total

Count 34 21 14 8 4 1 82
Percentage 41.46 25.61 17.07 9.76 4.88 1.22 100

prediction. For example, latent state 3 has five transition probabilities higher than
0.05 and it makes market regime at time t C 1 quite difficult to predict precisely.

Following the approach provided by De Angelis and Paas (2009), since each
regime switching has its own probability to occur, we can determine the LMM pre-
diction power by referring to one-step ahead forecasts summarized in Table 4. In
this table, we report the number of times the LMM is able to predict the next regime
correctly according to the five highest latent transition probabilities. Thus, column I
reports the amount of the times that LMM predicts the next market phase by refer-
ring to the most probable pjk in matrix P , column II contains the amount of the
times LMM forecasts correctly according to the second modal transition probabil-
ity, and so on. For instance, August 2008 observation has been classified into latent
state 3 and September 2008 into state 8. Since p38 D :427 is the highest probabil-
ity for latent state 3, we reported this case in column I of Table 4. The second-last
column of Table 4 provides the number of times that the model is unable to pre-
dict the next month regime by referring to the five most probable latent transition
probabilities. It must be noted that the percentage of column ‘Others’ which can
be considered as the proportion of times that, in a certain sense, LMM fails to pre-
dict the next market regime is only 1.22%. On the contrary, the model prediction
accuracy based on the percentages of columns I, II, and III jointly almost reaches
85%.

4 Conclusions

The multivariate LMM defines different market regimes for the Italian stock mar-
ket and provides the probabilities of switching between one regime and another.
The knowledge of the latent state features and the transition probabilities is deci-
sive in order to properly measure the latent risk-return profile of financial products.
First, our approach provides a methodologically correct solution able to differen-
tiate the latent evaluation with respect to the stock market phases. Second, within
the LMM framework, it is also possible to analyze the dynamic pattern of the unob-
servable risk-return profile. The latent transition probabilities enable us to predict
the market regime at time t C 1 quite accurately by referring to the highest val-
ues of pjk . Furthermore, the classification of every time point of the time series in
homogenous non-observable states offers a contribution in model-based clustering
for financial time series (Frühwirth-Schnatter and Kaufmann 2008, Otranto 2008)
which is receiving growing attention in the statistical literature.
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Our findings are valuable in order to choose a profitable investment strategy
basing financial decisions on transition probabilities and current regime classifi-
cation. A constant update of the dynamic analysis through LMM may suggest the
proper investment decision for the following month. Furthermore, it is possible to
define a diversification strategy based on the different market indexes which are
characterized by different risk-return profiles within the same latent state.

Our results represent the basis of an innovative classification of financial products
achieved by exploiting the potential of statistical methodology for latent variables.
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A MEM Analysis of African Financial Markets

Giorgia Giovannetti and Margherita Velucchi

Abstract In the last few years, international institutions stressed the role of African
financial markets to diversify investors’ risk. Focusing on the volatility of finan-
cial markets, this paper analyses the relationships between developed markets (US,
UK and China) and some Sub-Saharian African (SSA) emerging markets (Kenya,
Nigeria and South Africa) in the period 2004–2009 using a Multiplicative Error
model (MEM). We model the dynamics of the volatility in one market including
interactions from other markets, and we build a fully interdependent model. Results
show that South Africa and China have a key role in all African markets, while the
influence of the UK and the US is weaker. Developments in China turn out to be
(fairly) independent of both UK and US markets. With the help of impulse-response
functions, we show how recent turmoil hit African countries, increasing the fragility
of their infant financial markets.

1 Introduction

With increasing globalization, world-wide integration of financial systems and cri-
sis, international investors interest has been rekindled in African stock markets; it
is well known, for example, the role of China in some emerging African markets.1

Recently, “the Economist” characterized Africa as globalization’s final frontier for
investors (29/7/07), suggesting them to “Buy Africa” (19/2/2008). Indeed, before
the global financial meltdown, African financial markets had experienced a large
expansion in a very short time. The number of operating stock exchanges rose from
just eight in 1989, to 23 in 2007, reaching a total market capitalization of over 2.1
billion US dollars. While small size and low liquidity remain a relevant aspect to be

1 An extensive review of the institutional characteristics of the African stock markets appears in
Irving (2005) and in Yartey (2008).
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further investigated, during the last few years, many African markets offered very
large returns to investors.2

This paper analyzes the relationship between volatility in some developed finan-
cial markets (US, UK and China) and in emerging SSA markets (data availability
restricted our analysis to Kenya, Nigeria and South Africa). We use daily data (com-
posite indices for each market) for the period 2004–2009. Our aim is to test whether
the financial turmoil that hit western markets spilled over into the African markets
and how. We use a MEM (Multiplicative Error Model, Engle 2002) approach that
allows us to describe and forecast the interactions and spill-over effects among dif-
ferent markets. We focus on the risk associated with financial markets, modelling
the dynamics of the expected volatility of one market and including interactions
with the past volatility from other markets. Then, we use a graphical representation
of the spill-over effects and report impulse response functions (Engle et al. 2011).
The impulse response functions allow us to describe how a shock in one market
propagates, if at all, to other markets, and how long the effect is expected to last.

The paper is structured as follows: Section 2 outlines the econometric methodol-
ogy, Sect. 3 presents the data and discusses results. Section 4 concludes.

2 Multiplicative Error Model for African Markets

We model the volatility of market i using its own past values and positive and nega-
tive news from other markets (Engle et al. 2011; Cipollini et al. 2009). From model
estimation on the whole sample, we derive that SSA markets are interdependent and
also depend on more financially developed markets to varying degrees. The rela-
tionships we find show how SSA African countries, contrary to some generalized
investors’ views, are not independent of global turmoil and help us to highlight the
financial channels of transmission in SSA Africa. ME Models are a generalization
of GARCH-type models estimated on non-negative valued processes (Engle 2002);
the model we use in this paper is based upon Engle et al. (2011). Conditional on the
information set It�1, the Multiplicative Error Model for market i is

sri;t jIt�1 D �i;t�i;t ;

where �i;t jIt�1 � Gamma.i ; 1=i /. Following Engle (2002), we know that a
Gamma distribution assumption for � is appropriate in this case. Given the unit
expectation of the innovation term,�i;t is the conditional expectation of sri;t , where

2 From the theoretical point of view, equity market integration plays a crucial role in development
of infant financial markets. Finance theory suggests that an integrated stock market is more efficient
than segmented national capital markets. Asset-pricing models also predict that integrated markets
tend to respond more to global events than to local factors, although the reverse is also true (Errunza
and Losq 1985). and Kim and Singal (2000) argue that a higher degree of market segmentation
increases the level of risk, and this inevitably affects the local cost of capital, with ramifications for
company financing and, in the long run, economic growth (Bracker et al., 1999).
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sri;t is a volatility proxy (range, squared returns, absolute returns, etc.). Its simplest
specification is a base MEM(1; 1):

�i;t D !i C ˇi�i;t�1 C ˛i;isri;t�1: (1)

This base specification can include other terms. In this paper we use the squared
returns as a proxy of volatility (sri;t ) and include (1) the lagged daily squared
returns observed in other markets to link together different markets srj;t�1; j ¤ i

(j represents developed markets: NYSE, FTSE and Shangai market), and (2) asym-
metric effects in which the impact from own lagged volatility is split into two
terms according to whether the lagged market returns (ri;t�1) are negative and,
respectively, positive (corresponding to dummy variables Dri;t�1<0, respectively,
Dri;t�1>0). For each market we then use impulse response functions and dynamic
forecasts according to Engle et al. (2011). The estimated models are used to anal-
yse volatility shock propagation (Engle et al. 2011). For each market, we develop
impulse response functions to describe how a shock in one market (an one-standard-
deviation shock) may propagate to others. We report a graphical representation in
which time (days since the shock hit the market) is on the horizontal axis and the
volatility response (relative difference between a baseline and the response after
the shock) is on the vertical axis. When a shock hits market i , the graph shows
market volatility responses to the shock originating in that market; on average, the
response of market i at time 0 to a shock in its own market will be higher than
other markets’ response, given the volatility persistence in the market. The graph
shows the dynamic reactions (volatility spill-overs) of markets to single positive or
negative shocks that may hit market i in a given day. Hence, the profiles turn out to
be time dependent and may change as the originating market (the market which is
shocked) and time (different shocks) vary.

3 Volatility Spillover in Selected SSA Financial Markets

For the markets at hand the descriptive statistics for daily absolute returns are
reported in Table 1 showing the expected characteristics of financial data (leptocur-
tosis, asymmetry, volatility clustering).

Table 1 Descriptive statistics for the whole sample (2004–2009). Daily absolute returns. Obs:
1369

China Kenia Nigeria South Africa UK US

Mean 0:696 0:261 0:362 0:869 0:302 0:376

Median 0:188 0:031 0:085 0:219 0:046 0:046

Maximum 16:176 35:970 4:529 34:711 14:642 22:645

Minimum 0:000 0:000 0:000 0:000 0:000 0:000

Std. dev. 1:513 1:451 0:713 2:278 1:052 1:438

Skewness 5:335 17:279 3:286 8:125 8:443 9:136

Kurtosis 40:311 367:067 14:743 94:622 91:709 108:264
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Figures 1 and 2 show the behavior of our six markets over the same period
stressing the effect of boom and recent crisis.

Table 2 reports the estimates of the fully inter-dependent MEMs on three SSA
financial markets (Kenya, Nigeria, South Africa) and China, UK and US for the
whole period (1 January 2004–24 April 2009), separately for positive and negative
shocks, which are likely to be spread differently. The results show that South Africa,
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China and the UK turn out to be the most influential markets (shocks, either positive
or negative affect almost all markets). Nigeria and South Africa (but not Kenya) are
hit by negative shocks in the US. Kenya, however, is influenced by positive shocks
in the US. Negative shocks in South Africa affect the US but South Africa is only
affected by the Nigerian market. There is no evidence of a significant relationship



324 G. Giovannetti and M. Velucchi

Table 2 Estimated coefficients (t-stat in parenthesis). Sample: January 2004–April 2009.
CORR(12) (respectively, CORRSQ(4)) is the LM test statistic for autocorrelation up to order 12 in
the standardized residuals (respectively, squared standardized residuals)

China Kenya Nigeria South Africa UK US

! 0:0134 0:0074 0:0811 0:0316 0:0008 0:0011

Œ2:6143� Œ3:5865� Œ12:4384� Œ3:3649� Œ1:0196� Œ1:7104�

�t�1 0:9255 0:6444 0:2256 0:8568 0:8919 0:9607

Œ40:5247� Œ13:3403� Œ7:7779� Œ24:5022� Œ46:4033� Œ88:0105�

chC 0:0494 �0:0015 0:0093 �0:0016 0:0058 0:0018

Œ3:2503� Œ�0:5910� Œ1:3029� Œ�0:1693� Œ3:1574� Œ1:2051�

ch� 0:0716 �0:0052 0:0297 �0:0158 0:0012 0:0005

Œ2:8248� Œ�5:3302� Œ3:4842� Œ�2:6469� Œ0:4349� Œ0:3171�

keC 0:0096 0:2209 0:0001 0:0086 �0:0031 �0:0002
Œ2:1164� Œ2:6645� Œ0:0102� Œ0:5983� Œ�0:8052� Œ�0:1100�

ke� �0:0105 0:3032 0:0024 �0:0148 0:0000 �0:0024
Œ�5:2380� Œ4:4097� Œ0:2574� Œ�1:2033� Œ0:0017� Œ�1:3930�

niC 0:0094 �0:0037 0:5338 0:0254 0:0029 0:0019

Œ1:0470� Œ�1:1058� Œ6:4341� Œ1:5987� Œ1:3018� Œ0:7484�

ni� �0:0195 0:0019 0:4472 �0:0170 �0:0024 �0:0004
Œ�3:0178� Œ0:2942� Œ6:9624� Œ�1:2196� Œ�1:4412� Œ�0:1929�

saC �0:0285 0:0447 �0:0047 �0:0171 0:0033 0:0022

Œ�2:3113� Œ2:3440� Œ�1:1315� Œ�0:8951� Œ1:2055� Œ0:7152�

sa� 0:0040 0:0219 �0:0039 0:1038 0:0036 �0:0043
Œ0:4008� Œ2:4102� Œ�2:2809� Œ3:4972� Œ1:3478� Œ�2:4287�

ukC 0:0224 0:0116 �0:0213 0:0642 �0:0262 �0:0104
Œ0:3879� Œ0:9081� Œ�1:5579� Œ0:7065� Œ�1:2719� Œ�0:4575�

uk� �0:0117 �0:0248 �0:0225 0:0829 0:0785 0:0389

Œ�0:1803� Œ�2:3505� Œ�6:4670� Œ0:8805� Œ2:9896� Œ2:4607�

usC �0:0162 �0:0355 0:0198 0:0187 �0:0115 �0:0412
Œ�0:6294� Œ�4:1995� Œ1:3143� Œ0:2564� Œ�0:7519� Œ�2:6338�

us� 0:0571 0:0167 0:0413 0:1878 0:1022 0:0761

Œ1:9125� Œ1:4557� Œ2:7151� Œ2:6128� Œ4:1099� Œ3:4871�

loglik �1577:8024 �582:6754 �1020:6835 �1595:6253 �581:9744 �663:2008
aic 2:3515 0:9145 1:5470 2:3773 0:9135 1:0308

bic 2:2986 0:8616 1:4941 2:3244 0:8606 0:9779

CORR(12) 3:7189 14:9780 17:7530 10:0810 10:2260 19:5490

Œ0:9880� Œ0:2430� Œ0:2060� Œ0:6090� Œ0:5960� Œ0:0760�

CORRSQ(4) 1:0015 0:5358 3:5965 15:2440 2:4136 1:8052

Œ1:0000� Œ1:0000� Œ0:9900� Œ0:2280� Œ0:9980� Œ1:0000�

between Nigeria and Kenya: the two markets seem to be fairly independent of each
other. China has strong links with African markets, but it turns out to be independent
of the UK and the US.

In Figs. 3–5, we report all markets volatility responses to a one standard deviation
shock in market i . The representation uses the model estimates to derive a time-
dependent profile that describes how volatility from one market (hit by a shock)
may influence volatility behavior in other markets. To allow comparison among
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Fig. 3 Impulse response functions. We report time (days) in the horizontal axis and volatility on
the vertical axis. Each line shows markets response to a one standard deviation shock originating
in US (Jun., 29, 2006)
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Fig. 4 Impulse response functions. We report time (days) in the horizontal axis and volatility on
the vertical axis. Each line shows markets response to a one standard deviation shock originating
in UK (Jan. 21, 2008)



326 G. Giovannetti and M. Velucchi

0.0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50 60 70 80 90 100

CH KENYA NIGERIA
south africa UK US

Fig. 5 Impulse response functions. We report time (days) in the horizontal axis and volatility on
the vertical axis. Each line shows markets response to a one standard deviation shock originating
in US (Sep., 15, 2008)

different market conditions, Fig. 3 reports the situation of a quiet day where all mar-
kets have low volatilities, and no negative or positive shocks hit any market. In
contrast, Figs. 4 and 5 show the reaction in days of turmoil according to the estima-
tion results. Figure 4 represents an example of impulse-response representation to a
shock: on 21 January 2008, international stock markets suffered their biggest falls
since 11 September 2001. The shock originated in the UK market, and then propa-
gated to all markets; the US and South Africa over-react to the initial shock: in few
days, their volatility response becomes higher (and larger) than the UK volatility
response to its own shock. While China and Nigeria seem to be unaffected by the
shock, Kenya shows a limited building effect, resulting from its increasing integra-
tion with western financial markets. In Fig. 5, we show how the collapse of Lehman
Brothers on 15 September 2008 propagates from the US to all markets. It emerges
clearly that this shock has a more relevant impact for all markets concerned: the
scale of the impulse response is, indeed, almost double that of the previous example.
The figure shows that, after about a week, South Africa volatility response is above
that of the US; the UK also strongly reacts to the US shock; China and Kenya react
more than in the previous example, while Nigeria seems to be insensitive even to
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this large global shock. A further characteristic of the Lehman Brothers shock is
that it is strongly persistent: after 3 months, it has not yet been re-absorbed. This is
particularly evident in the case of South Africa, where the whole effect of the shock
still persists.

4 Conclusive Remarks

Recent years have been characterized by major integration of international financial
markets but African markets seem to have lagged behind this process, remaining
fairly independent of international turmoil. Notwithstanding this, the recent global
financial crisis has reached Africa, too, hitting some of the drivers of stock market
development. In this paper, we focus on selected emerging SSA financial markets
(Kenya, Nigeria, South Africa) volatility relationships with some developed markets
(China, the UK and the US) using a Multiplicative Error approach to model and
describe whether (and how) volatility spills over from one market to another. We
focus on squared returns as a proxy of market volatility, and we model the dynamics
of the expected volatility of one market including interactions with the past squared
returns of the other markets. In doing so, we build a fully inter-dependent model
that allows us to describe the relationships among the market volatilities. Impulse
response functions are used to understand whether a shock originating in one market
affects (and how) other markets. The results show that South Africa and China play
a key role in all African markets, while the influence of events in the UK and the US
is weaker and tend to be different for positive and negative shocks. Also, China turns
out to be independent of the UK and the US. The impulse response representation
shows that recent shocks in the UK and the US hit African financial markets hard.
The SSA financial markets volatility response to a shock in either the UK or the US
had cumulative effects that took time to be fully-developed and understood, thereby
worsening their fragile economic conditions.
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Group Structured Volatility

Pietro Coretto, Michele La Rocca, and Giuseppe Storti

Abstract In this work we investigate the presence of ‘group’ structures in financial
markets. We show how this information can be used to simplify the volatility mod-
elling of large portfolios. Our testing dataset is composed by all the stocks listed on
the S&P500 index.

1 Introduction

The modelling of volatility for large dimensional portfolios is not an easy task and
cannot be performed by standard methods. The need for modelling dynamic inter-
dependencies among several assets would in principle require the estimation of
an overwhelming number of parameters. Moreover, when the number of parame-
ters is reasonable the implementation of standard inference procedures could still
be not feasible even when the cross-sectional dimension is moderately large (say
�50 assets). To simplify the modelling, it is usually necessary to introduce severe,
often untested, homogeneity constraints on the dependence structure of the data.
Recent literature has provided evidence in favour of the hypothesis that financial
returns are characterized by cluster-wise dependence structures (see e.g., Bauwens
and Rombouts 2007).

The aim of this paper is twofold. First, using data on all the S&P500 assets, model
based cluster techniques will be applied in order to classify stocks into homoge-
neous risk categories. Second, we will investigate the economic implications of the
clustering by mean of multivariate GARCH models. Namely, we will show that the
dynamic properties of the conditional covariance matrix of stock returns are criti-
cally dependent on the volatility level. This provides a relevant argument in favour of
the use of state-dependent multivariate conditional heteroskedastic models in order
to predict portfolio volatility.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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2 Group-Structured volatility

The key assumption of this work is that the cross-sectional distribution of volatili-
ties in a given market is a finite mixture of distributions. Each mixture component
represents a group of assets that share similar risk behaviour. This hypothesis is
based on the empirical assessment of the cross-sectional distribution of volatilities
in the data, measured by the rolling standard deviation of asset returns, as described
afterwards. If assets belongs to groups of homogeneous volatility it is natural to
reduce the dimensionality of the portfolio aggregating stocks with similar volatility
behavior in more than one sub-portfolio. In order to do that we need to cluster assets
with respect to their volatilities and in order to do that we use model-based cluster
analysis. A different approach to clustering financial time series has been proposed
in (Otranto 2008) where the autoregressive metric (see, Corduas and Piccolo 2008)
is applied to measure the distance between GARCH processes. The next section is
devoted to a brief account of the cluster methods used in the present application.

2.1 Model-Based Clustering and Robustness

Model-based cluster analysis (see, Banfield and Raftery 1993) is a statistical tool
used to investigate group-structures in the data. Finite mixtures of Gaussian dis-
tributions are a popular device used to model elliptically shaped clusters. In many
situations it is sensible to approximate the distribution of the population under study
with a mixture of Gaussian distributions, that is a convex combination of Gaussians.
We interpret the mixture components as physically coinciding with the clusters in
the population. For a wide class of mixture models estimation can be done by using
maximum likelihood. Such estimates can be conveniently computed with algorithms
of the EM class; and then, by simple probability arguments observed points can be
assigned (classified) to the mixture components, that is clusters. In this paper we
will focus mainly on Gaussian mixtures.

Mixture model estimation is seriously affected by small proportion of outlying
observations. As we will see afterwards this issue is particularly relevant when mod-
elling the cross-sectional distribution of asset volatilities. For a wide class of finite
mixtures, including Gaussians, maximum likelihood estimates are not robust (see,
Hennig 2004). This implies that a small proportion of outliers in the data could
lead to poor estimates and clustering. One way to deal with this is to add a ‘noise
component’, i.e., a mixture component that models the outliers. By noise we mean
all those observations that are not consistent with the Gaussian cluster–prototype
model assumed for the groups. There are several contributions in this direction
(see, Banfield and Raftery 1993, Coretto 2008, Coretto and Hennig 2009). In his
paper Hennig (2004) outlined a robust strategy in which the noise component is
represented by a fixed improper density, which is a constant on the real line. He
showed that the resulting estimates are robust to even extreme outliers, as opposed
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to other noise component methods (in (Coretto 2008) these methods are compared
extensively).

Coretto (2008) defined a pseudo-maximum likelihood estimator for such a
model, called the robust improper maximum likelihood estimator (RIMLE), he
studied its asymptotic behaviour and a computational strategy based on the EM
algorithm. The RIMLE is based on an approximate representation of the population
distribution by an improper density such as

�c.xI �/ WD 	0c C
GX

j D1

	j.xImj ; vj /; (1)

where .�Im; v/ is the Gaussian density with meanm and variance v,	0; 	1; : : : ; 	G

are proportion parameters with 	j > 0 and
PG

j D0 	j D 1, finally c � 0 is a con-
stant. The parameter vector � includes all proportions, means, and variances. For a
fixed value of c the parameter vector of �c can be defined as the maximizer (under
suitable constraints) of

ln.�; c/ WD
nX

iD1

log�c.xi ; �/; (2)

where xi s are sample observations. The main issue about the RIMLE is how to get
the value of c. This has been explored in Hennig (2004), Coretto (2008) and Coretto
and Hennig (2009). The authors proposed statistical methods to fix the value of c
based on optimality criteria.

After having obtained the RIMLE, O�n.c/, we can assign observed points to
mixture components by using Bayes’ theorem. Let us introduce the following
quantities

�ij WD 	0c

�c.xi I �/ for j D 0 and �i;j WD 	j.xi Imj ; vj /

�c.xi I �/ for j D 1; 2; : : : ; G:
(3)

The quantity �ij can be interpreted as the posterior probability that the observa-
tion xi belongs to the j th component. Since the density �c is not proper, we will
refer to this as the improper posterior probabilities. In particular, the quantity �i0 is
the improper posterior probability that xi is generated from the noise component.
In model-based clustering we use these quantities in order to optimally define our
clusters. That is, the observation xi is assigned to the kth component if

k D arg maxj D0;1;2;:::;G O�i;j ;

where O�i;j is the estimate of �ij obtained by plugging-in O�n.c/.
In Coretto (2008) and Coretto and Hennig (2009) the authors showed that when

c is optimally fixed the RIMLE can achieve small misclassification rates indepen-
dently of both the expected amount of noise (i.e., 	0) and the localization of the
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noise support with respect to the support of the main clusters. The optimal choice
of c provides very good results even in the presence of gross outliers.

2.2 Volatility Groups

Group-structures in asset volatilities could be related to heterogenous preferences
that reflect in risk allocation. Moreover if the process that generates the returns
includes regime switching from one level of volatility to another, one should observe
that at a given date the entire market is composed of different groups of assets each
sharing similar levels of volatility. The theoretical foundation of this assumption is
still a work in progress.

We explored the cross-sectional distributions of the estimated volatility on the
S&P500 based on daily returns. As a starting point for our research we used a rough
volatility estimation based on rolling sample standard deviations. Let ri;t the log-
return of the asset i at time t , we computed

�i;t D
vuut 1

L

t�1X

kDt�L

.ri;k � Nri;t/2; Nri;t D 1

L

t�1X

kDt�L

ri;k:

We had good overall results for L D 30. In this work we assume that, at a given
date t , the cross-sectional distribution of volatilities conditional on the information
set at time t � 1 is a finite mixture of Gaussian distributions, that is

�i;t jIt � NM.G; �t /; i D 1; 2; : : : ; S (4)

where NM.G; �t / is the normal mixtures with G groups and parameter vector � .
Most of the cross-sectional distribution of volatilities presented small proportion of
assets having extreme volatility. Since the analysis is done on a huge number of
cross-sections identification of outlying observation would have been impossible to
do if not based on an optimal ‘automatic’ statistical procedure such as the RIMLE.
But the most important point about the use of the RIMLE in this work is that the
RIMLE allow for smooth identification of noise/outliers. The latter means that we
do not consider assets with abnormal volatility has extraneous to the population
of interest, but we assign to a particular component of the population distribution
(i.e., the noise component). If the noise component is not taken into account cross-
sectional estimation of the model in (4) would deliver highly biased classifications.
We approximated the model above by adding the improper noise component and
for each date we estimated the corresponding RIMLE from the cross-section. The
improper constant density is fixed using the ‘filtering method’ proposed and studied
in (Coretto and Hennig 2009). Notice that the number of components is kept fixed
across t . We fixed the number of groups to three plus the noise component. The
latter will be discussed later as we move to the time series modelling. At each day
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we obtained a classification of the portfolio’s asset in four sub-portfolios. Hence in
the classification step for each date we have three sub-portfolios characterized by
different level of expected volatility and volatility dispersion, and a further group
(usually very small) containing the outlying assets, that is assets with abnormal
volatility.

3 Dynamic Properties of Clustered Volatilities

Aim of this section is to gain some insight on the economic interpretation of the
results obtained through application of the above described model-based clustering
procedure. To this purpose, we consider each cluster as a portfolio whose compo-
sition is possibly changing over time according to the volatility ranking of each
asset. Within cluster .h/, the weight associated to a given asset i at time t (w.h/

i;t )
is assumed to be proportional to the value of trades on that asset occurred at time
.t � 1/ (v.h/

i;t�1):

w.h/
i;t D

v.h/
i;t�1

Pnh;t

j D1 v.h/
j;t�1

with nh;t being the total number of assets in cluster h at time t . The return on

the portfolio associated to cluster h is then computed as r .h/
t D Pnh;t

j D1 w.h/
j;t r

.h/
j;t .

The idea is to express the overall market return as a function of four indicators:
returns on the low, medium and high volatility components of the market (r .h/

t ,
h D 1; 2; 3) and the noisy group (r .4/

t ). A Diagonal VECH model (Bollerslev et al.
1988) of order (1,1), abbreviated DVECH (1,1), is then fitted to the vector process
which is generated by considering the returns on the first three components, which
is r t D .r .1/

t ; r
.2/
t ; r

.3/
t /0.

r t D �C ut

ut D H
1=2
t z

t
z
t
�
iid
.0; I3/

where Ht D var.r t jI t�1/. The DVECH(1,1) model implies that the elements of
Ht evolve according to the following equation:

hij;t D !ij C aij u.i/
t�1u.j /

t�1 C bijhij;t�1 i; j D 1; : : : ; h:

where hij;t D cov.rt ; rj;t jI t�1/ and u.i/
t D r

.i/
t � �.i/. The reason for omitting

the return on the noise component is twofold. First, we are interested in analyzing
the structural components of the market. Second, for many time points the noise
component either is not present at all, or there are on average no more than 2% of
assets classified as noisy.
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Table 1 ML estimates for the DVECH(1,1) parameters, with  ij D aij C bij . All the estimates
are significant at 0:01 level

�.i/ !ij aij bij  ij �i;j �i;j

h11;t 0.0947 0.0363 0.0627 0.8813 0.9439 0.6478 –
h22;t 0.1389 0.1556 0.0962 0.8105 0.9067 1.6682 –
h33;t 0.1894 0.6512 0.2418 0.6450 0.8868 5.7549 –

h12;t – 0.0595 0.0687 0.8622 0.9309 0.8611 0.8283
h13;t – 0.1226 0.0956 0.7884 0.8840 1.0571 0.5475
h23;t – 0.2472 0.1263 0.7484 0.8747 1.9721 0.6365

Table 2 P-values of the Wald tests of equality for the estimated DVECH (1,1) model’s
parameters

a11 a22 a33 a12 a13 a23

a11 – 0.0005 0 a12 – 0.0063 0
a22 – – 0 a13 – – 0.0018
a33 – – – a23 – – –

b11 b22 b33 b12 b13 b23

b11 – 0.0001 0 b12 – 0.0005 0
b22 – – 0 b13 – – 0.0444
b33 – – – b23 – – –

 11  22  33  12  13  23

 11 – 0.0005 0.0005  12 – 0.0014 0
 22 – – 0.2513  13 – – 0.4727
 33 – – –  23 – – –

The estimates (Table 1) show that the dynamic properties of the estimated
conditional covariances are clearly dependent on the volatility levels.

As expected, higher volatility levels imply higher expected returns. The value
of the implied unconditional correlations .�i;j / appears to be dependent on (a) the
volatility gap between groups (b) the average (unconditional) volatility level of the
involved groups.

Furthermore, in order to assess the significance of differences among the param-
eters of the marginal volatility models associated to each single group, we have
performed a set of Wald tests whose p-values have been summarized in Table 2. The
sensitivity to past shocks, as measured by ai i (i D 1; 2; 3), appears to be directly
related to the unconditional volatility level, tending to be higher in more volatile
clusters. An opposite trend can be observed for the bi i coefficients and for the persis-
tence parameter  i i . However the results of the Wald tests suggest that, while there
is a significant persistence gap between groups 1 and 2, this is not true anymore
as we focus on the comparison between groups 2 and 3. In practice, the negative
variation in the inertia coefficient (bi i ) is compensating the opposite variation in the
sensitivity to shocks parameter (ai i ). These results are consistent with previous find-
ings (see e.g., Bauwens and Storti 2009 and references therein) suggesting that the
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dynamic properties of the conditional variance of returns are dependent on the level
of the volatility itself. In particular, it is well known that the persistence of volatility
tends to be higher in tranquil rather than in turbulent market conditions.

A similar pattern characterizes the conditional covariance models. In line with
what observed for the conditional variance, the sensitivity to shocks (aij ) results
to be positively related to the average unconditional volatility level of the involved
groups. Namely, we observe a higher sensitivity parameter when we consider the
conditional covariance between groups f1; 2g than in all the other cases. Differ-
ently, as in the conditional variance case, the variation of the inertia coefficients (bij )
appears to be characterized by an exactly opposite pattern. The results of the Wald
tests (Table 2) confirm that all these differences are statistically significant. Also,
we find that the conditional covariance between the less volatile groups f1; 2g is
characterized by a significantly higher persistence than what observed for the covari-
ance between groups f2; 3g and f1; 3g. No significant differences arise between the
estimated persistences of f2; 3g and f1; 3g.

As far as we know the literature on the presence of state-dependent features in
the dynamics of conditional covariances is not as rich as the corresponding litera-
ture on conditional variances. Research has been mainly focused on the search for
asymmetric dependences on the sign of past shocks (for a survey see, Storti 2008)
but a systematic investigation of the relationship between conditional covariance
dynamics and relevant state variables, such as volatility, is still missing.
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Clustering Spatial Functional Data: A Method
Based on a Nonparametric Variogram
Estimation

Elvira Romano, Rosanna Verde, and Valentina Cozza

Abstract In this paper we propose an extended version of a model-based strategy
for clustering spatial functional data. The strategy, we refer, aims simultaneously
to classify spatially dependent curves and to obtain a spatial functional model pro-
totype for each cluster. The fit of these models implies to estimate a variogram
function, the trace variogram function. Our proposal is to introduce an alternative
estimator for the trace-variogram function: a kernel variogram estimator. This works
better to adapt spatial varying features of the functional data pattern. Experimental
comparisons show this approach has some advantages over the previous one.

1 Introduction

In the last years many approaches for clustering functional data have been proposed
(Abraham et al. 2005; Heckman and Zamar 2000; James and Sugar 2005; Romano
2006). Most of them are based on the assumption of independence between curves.
However, since in many applicative fields this assumption does not hold, there is a
real need to introduce new statistical methods to deal with this problem. A very
recent contribution in this framework is a model based strategy (Romano et al.
2010).

The method is a special case of Dynamic Clustering (Diday 1971). It aims to
obtain a partition of the curves and to identify a spatial functional model for each
cluster by locally minimizing the spatial variability among the curves. The proto-
type, in this sense, is a curve spatially predicted, obtained as a pointwise linear
combination of the smoothed data. The prediction problem is solved by estimat-
ing a linear concurrent model (Ramsay and Silverman 2005) in a spatial framework
for each cluster, where, the predictor as the same expression of an ordinary krig-
ing predictor in unsampled location of the space. The computation of these kriging
functions implies an estimate of a variogram function: the trace variogram function
(see, for instance, Delicado et al. 2007). This estimation is usually based on the
method-of-moments, however, there are many contexts for which it does not collect
all spatial information present in the pattern. In this paper we introduce an estimator
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Studies in Classification, Data Analysis, and Knowledge Organization,
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for the trace-variogram function. Especially we adapt the kernel based method for
non paramentric variogram estimation proposed by Keming et al. (2007) in the
functional setting. It is a kernel estimator, a more general weighted average than
the classical estimator and it is robust in the sense that nearest-neighbor parameter
selection is distribution free.

The paper is organized as follows. Sect. 2 presents a kernel estimator for the
variogram function when data are curves. Sect. 3 describes the model based clus-
tering strategy with non parametric trace-semivariogram estimation. Quality and
performance of the method with and without the introduction of the new variogram
estimator are presented in Sect. 4.

2 A Kernel Based Method for Nonparametric Variogram
Estimation when Data are Curves

Let
˚
�s.t/ W t 2 T; s 2 D � Rd

�
be a random field, the set D � Rd is a fixed

subset of Rd with positive volume and �s is a functional variable defined on some
compact set T of R for any s 2 D.

We assume to observe a sample of curves �s1
.t/; : : : ; �si

.t/; : : : ; �sn
.t/ for

t 2 T where si is a generic data location in the d -dimensional Euclidean space.
Moreover we assume to have a second order stationary and isotropic random pro-
cess, that is, the mean and variance functions are constant and the covariance
depends only on the distance between sampling sites. Thus,

� E.�s.t// D m.t/, for all t 2 T; s 2 D.
� V.�s.t// D �2, for all t 2 T; s 2 D.
� Cov.�si

.t/; �sj
.t// D C.h; t/ where hij D

��si � sj
�� and all si ; sj 2 D.

� 1
2
V.�si

.t/ � �sj
.t// D 
.h; t/ D 
si sj

.t/ where hij D
��si � sj

�� and all
si ; sj2D.

The function 
.h; t/ as function of h is called semivariogram of �.t/.
A general problem in Spatial statistics is to estimate the spatial correlation or

equivalently the variogram of an intrinsic stationary process. Most natural empir-
ical estimators of the variogram cannot be used for this purpose, as they do not
achieve the conditional negative-definite property. Thus several variogram estimator
are proposed.

In the functional framework a first attempt was carried out (Delicado et al. 2007).
It is an extension of the classical estimator CL (Cressie 1993) obtained by the
method of the moment by replacing the summation by an integral.

The classical variogram estimator is given by:

O
.h/ D 1

j2N.h/j
X

i;j 2N.h/

Z

T

�
�si
.t/ � �sj

.t/
�2
dt (1)
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where N.h/ D ˚�
si I sj

� W��si � sj
�� D h� and jN.h/j is the number of distinct

elements in N.h/.
As with the sample variance, if the data are contaminated either by outliers or

severe skewness, then the classical variogram estimator may be affected. In other
words, it is not robust to departures from normality.

In geostatistics this has led to some extensions of the classical variogram esti-
mator. Some of these focus on the problem of replacing the distance h with a more
general distance.

Our goal is to generalize one of these estimators in the spatial functional frame-
work. In particular we extend the variable nearest-neighbor estimator VNN pro-
posed by Keming et al. (2007) for process with stationary of the second order.

The VNN estimator is based on a non-constant nearest-neighbor parameter
which is able to adapt to many situations such as for example continuity over the
range of data distance, non decreasing behavior over function with the increasing of
distance h. This estimator is expressed by:

O
VNN.h/ D
P

i<j
1

ı0.sij /
K



h�sij

ıı0.sij /

�
Zij

P
i<j

1
ı0.sij /

K



h�sij

ıı0.sij /

� (2)

where the function ı0.sij / > 0 depends on the locations through the distance
sij D

ˇ̌
si � sj

ˇ̌
, K.:/ is a kernel function generally symmetric respect to the

mean, including the indicator function I.�/ which is defined on the radius ıı0 and
Zij D

�
Zi �Zj

�2
, where Z is a partial realization of a spatial process. If the pro-

cess is known to be stationary of the second order, the VNN estimator, obtained by
setting ı0.sij / D 1, is expressed by:

O
VNN.h/ D
X

i<j

wij

�
Zi �Zj

�2
(3)

where wij are the weights are obtained by settingKıı0.sij /.h/ D 1
ı0.sij /

K



h
ıı0.sij /

�
,

so that:

wij D
Kıı0.sij /.h�

��si � sj
��/

P
i<j Kıı0.sij /.h �

��si � sj
��/

(4)

Since we assumed that the mean function is constant

V
�
�si
.t/ � �sj

.t/
� D E

h�
�si
.t/ � �sj

.t/
�2i

(5)

so using the Fubini’s theorem O
.h/ D 1
2
E
hR

T

�
�si
.t/ � �sj

.t/
�2
dt
i

Then the VNN estimator for the quantity above is given by

O
VNN.h/ D
X

i<j

wij

Z

T

�
�si
.t/ � �sj

.t/
�2
dt (6)
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that is

O
VNN.h/ D
P

i<j
1

ı0.sij /
K



h�sij

ıı0.sij /

� R
T

�
�si
.t/ � �sj

.t/
�2
dt

P
i<j

1
ı0.sij /

K



h�sij

ıı0.sij /

� (7)

Note that the propriety of the original estimator is the same of as the one proposed,
with some variation about the convergence since we are dealing with functional
data.

Such as in the geostatistics framework, the introduction of the variable nearest-
neighbor parameter ı0sij gives a flexibility and a higher spatial adaptation in
estimating the variogram. The estimation here expressed is nonparametric and
robust in the sense that the selection of the ıı0 selection is distribution free.

In the following we explain the model based clustering strategy and the use of
the kernel variogram estimator.

3 Dynamic Clustering for Spatial Functional Data:
A Model Based Approach

Dynamic clustering algorithm (DCA) or Nue Kes Dynamiques is an unsupervised
batch training algorithm. Like in the classical clustering techniques the aim is to
find groups that are internally dense and sparsely connected with the others. Let E
be a set of n objects, it looks for the partition P D fP1; : : : ; PC g 2 Pc (where
Pc is the family of all the partition fP1; : : : ; Pcg 2 PC in C clusters) and a set
G D fg1; : : : ; gC g 2 Gc (where Gc is the family of all admissible representation
of C clusters prototypes) such that the criterion of best fitting between G and P is
minimized

�.P �; G�/ D Min f�.P;G/ j P 2Pc ;2 Gcg (8)

Since we deal with spatial functional data, the criterium to optimize is:

�.P;G/ D
CX

cD1

X

i2Pc

Z

T

V
�
�si
.t/ � �sc

.t/
�
dt (9)

where V
�
�si
.t/ � �sc

.t/
�

is the spatial variability.
We assumed that data are generated from a functional linear concurrent model

(Ramsay and Silverman 2005) so the criterion can be written

�.P;G/ D
CX

cD1

X

i2Pc

Z

T

V

 
�si
.t/ �

ncX

iD1

�i�si
.t/

!
dt u:c:

ncX

iD1

�i D 1 (10)
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where nc is the number of the elements in each cluster and the prototype �sc
DPnc

iD1 �i�sc
.t/ is an ordinary kriging predictor for curves in the clusters. According

to this criterion the kriging coefficients represent the contribution of each curve to
the prototype estimate in an optimal location sc .

Thus, the parameters to be estimated are: the kriging coefficients, the spatial
location of the prototypes, the residuals spatial variance for each cluster.

For a fixed value of the spatial location of the prototype sc , this is a constrained
minimization problem, due to the unbiasedness constraint.

In order to obtain a solution of the optimized problem, it is necessary to solve
a linear system by means of Langrange multiplier method. In matrix notation, by
considering the relation 
rs.t/ D �2.t/ � Crs.t/, it can be expressed as:

0

BBB@

R
T

s1s1

.t/dt : : :
R

T

s1snc

.t/dt 1
:::

: : : : : : : : :R
T 
snc s1

.t/dt : : :
R

T 
s1snc
.t/dt 1

1 : : : 1 0

1

CCCA

0

BBB@

�1

:::

�n

��

1

CCCA D

0

BBB@

R
T

s0s1

.t/dt
:::R

T 
s0sn
.t/dt

1

1

CCCA

Where the function 
.h/ D R
T

si sj

.t/dt , h D ��si � sj
�� is the so called

trace-semivariogram function. In order to solve the system above, an estimator of
the trace-semivariogram is needed. In the original clustering approach we use the
classical estimator obtained thorough an adaptation of the classical method of the
moment. Here we propose to use the kernel-based estimator proposed above. For a
fixed value of sc , the estimation of the nc kriging coefficients �i of each cluster is a
constrained minimization problem, due to the unbiasedness constraint. Therefore it
is necessary to solve a linear system by means of Langrange multiplier method. In
this paper we refer to the method proposed in Delicado et al. (2007), that in matrix
notation, can be seen as the minimization of trace of the mean-squared prediction
error matrix in the functional setting.

According to this approach a global uncertainty measure associated to the trace-
semivariogram

R
T 
si ;sj .t/dt; is given by:

Z

T

V

 
�si
.t/ �

ncX

iD1

�i�si
.t/

!
dt D

ncX

iD1

�i

Z

T


si ;sc.t/dt � � u:c:
ncX

iD1

�i D 1
(11)

It is an integrated version of the classical pointwise prediction variance of
ordinary kriging and gives indication on the goodness of fit of the predicted model.

We use this measure to compare the clustering results obtained with the intro-
duction of the new estimator.

In the ordinary kriging for functional data the problem is to obtain an estimate of
a curve in an unsampled location. In our case we aim to obtain, not only the predic-
tion of the curve but also the best representative location. We suppose to observe the
spatial functional data on a grid where unsampled locations are observed. These are
candidates for the location of the prototype. In this sense the location is a parameter
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that must be estimated and the objective function may have several local minima
correspondent to different local kriging. We propose to solve this problem evaluat-
ing, for each cluster, local kriging on unsampled locations. The prototype is the best
predictor in terms of the best spatial functional fitting (5) among the set of estimates
on the unsampled locations of the grid.

Moreover the spatial coordinates sc of the prototype �sc
are chosen among a set

S� of possible locations in order to minimize the spatial variance.
Once we have estimated the prototypes we allocate each new curve to the cluster

according to the following allocation function: � D �s 7�! Pc It allows to assign
�s to cluster c ofPc �.G/ D P D fP1; : : : ; PC g, according to the minimum-spatial
variability rule:

Pc WD fi 2 �s W ı.fig ; �sc
/ � ı.fig ; �sc�

/ for 1 � c� � C g (12)

with ı.fig; �sc
/ D 1

�˛

R
T
V
�
�si
.t/ � �sc

.t/
�
dt where �˛ is the kriging coefficient

or weight such that js˛ � sc j Š h where h D jsi � sc j. These weights are derived
based on a data-driven weighting function making the sum of the weights equal to
one, thereby reducing the effect of bias towards input sample values. Note,however,
that it is possible that some may be negative. A negative block can be assigned
a zero value to avoid problems in post kriging analyses, such as pit-optimization
(Stein 1999). Applying iteratively the assignment function followed by the alloca-
tion function under some conditions the algorithm converges to a stationary value.
The convergence of the criterion is guaranteed by the consistency between the way
to represent the classes and the proprieties of the allocation function.

4 Dealing with Real Data

In this study, our aim is to assess the effectiveness of the kriging predictor by intro-
ducing the kernel trace-semivariogram estimation and its accuracy in the clustering
process for the estimation of the spatial functional prototype.

This is performed by comparing: the goodness of kriging prediction of the VNN
estimator with reference to the classical trace-variogram estimation; the clustering
results obtained by introducing the VNN and CL estimator.

A real dataset which stores the curves of sea temperature along several locations
of the Italian Coast provides the object of our analysis(see http://www.mareografico.
it). The mareographic Network is composed by 26 survey stations distributed across
the Italian territory. For each location, we have the recording of two weeks of data.
Moreover the spatial coordinates (latitude, longitude) are available.

Since data are noisy and non periodic, B-spline basis functions appear to be an
effective choice for getting the true functional form from the sample data.

As first stage, we use a cross-validation method to verify the goodness of fit
of kriging prediction model with the two different trace-semivariogram estimators
and then we compare the obtained results. Especially after that each curve has been

http://www.mareografico.it
http://www.mareografico.it
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removed and further predicted from remaining data, we observe the distribution of
the global uncertainty measure for kriging prediction (GUMK) on the estimated
locations. Note that a spherical model was fitted to estimate the trace-variogram.
Table 1 shows the mean and the standard deviation of the GUMK. It indicates that
the predicted curves with the kernel variogram estimator has a less variance and
consequently better goodness. We then evaluate the clustering results by perform-
ing two different DCA. The first one is based on the classical trace-semivariogram
estimator, the second on the VNN estimator. Our task is to find the suitable proto-
type and their corresponding clusters. To get an initial partition of data into spatially
contiguous regions, we run, for both strategies, a standard k-means algorithm on
the spatial locations of the observed data. Since the proposed method, detects the
prototypes of each cluster starting from a regular spatial grid, we set the number of
cells the grid is made of. In our experiments, several sizes of grid have been tested.
We compare the value of the optimized criterion obtained for the two methodologies
after running the algorithms with a variable number of clusters C D 2; 3; 4. Read-
ing Table 2 it is interesting to note that the DCAVNN gives better fitting than DCACL

for all the number of cluster evaluated. From a technical point of view, looking at
the clustering structure in both the clustering results the obtained partition divides
the Italian coast into three homogeneous zones representing three macro areas of the
sea, respectively: Tirreno sea, Adriatico sea and Ligure sea. The clusters obtained by
DCACL contain respectively 12; 9; 5 elements with prototypes located in: Sorrento,
Francavilla Al Mare and Alassio (Table 3). While clusters obtained by DCAVNN

contain 10; 10; 6 elements and prototypes located in: Napoli, Pescara, Pietra Ligure

Table 1 Mean and Std value of GUMK
Krig.Pre Mean StD

By VNN 0:013 0:0007

By Trad. 0:122 0:105

Table 2 Criterion
� C D 2 C D 3 C D 4

DCAVNN 1990 1328 1128

DCACL 2021 1400 1200

Table 3 Locations of the prototypes by DCA

Prototypes by DCACL Latitude Longitude

Sorrento 40ı37053:9800 14ı21052:6900

Francavilla Al Mare 42ı25014:2600 14ı17015:9100

Alassio 44ı00010:5800 8ı09034:3200

Prototypes by DCAVNN Latitude Longitude

Napoli 40ı5006000 14ı1508000

Pescara 42ı2705700 14ı1205200

Pietra Ligure 44ı0805700 8ı1702900
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(Table 3). These results provide evidence that some curves have migrated from one
cluster to an other. This reflects the effect of considering the VNN estimator in the
prototype computation. This is clearly highlighted by observing that weight of each
curve on the prototypes computation has changed and the prototypes are located
in different spatial sites Table 1. Especially, according to the DCACL results, in
the first cluster the greatest weight �1 D 0:63 corresponds to Salerno; in the second
cluster, the greatest weight �3 D 0:49 corresponds to Ortona; in the third cluster, the
greatest weights �2 D 0:3; �5 D 0; 29 correspond to Genova and La Spezia. While
according to theDCAVNN results, in the first cluster the greatest weight �4 D 0:55
corresponds to Sorrento; in the second cluster, the greatest weight �2 D 0:53 corre-
sponds to Vieste; in the third cluster, the greatest weight �3 D 0:4 corresponds La
Spezia.
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Prediction of an Industrial Kneading Process
via the Adjustment Curve

Giuseppina D. Costanzo, Francesco Dell’Accio, and Giulio Trombetta

Abstract This work addresses the problem of predicting a binary response asso-
ciated to a stochastic process. When observed data are of functional type a new
method based on the definition of special Random Multiplicative Cascades is intro-
duced to simulate the stochastic process. The adjustment curve is a decreasing
function which gives the probability that a realization of the process is adjustable at
each time before the end of the process. For real industrial processes, this curve can
be used for monitoring and predicting the quality of the outcome before completion.
Results of an application to data from an industrial kneading process are presented.

1 Introduction

In this paper we deal with the problem of predicting a binary response associated to
a stochastic process, namely an industrial one. This problem arises when the indus-
trial processes can be described in terms of a continuous phenomenon evolving in a
certain interval of time Œ0; T � and resulting in an outcome not observable before the
completion of the process itself. Such an outcome, in accordance with some target
values related to the process, can, in simple terms, expressed as negative or positive,
bad or good and so on. For various reasons (for example economical ones) it could
be useful to try to anticipate the outcome before the completion of the process: if
we were able to predict the realization at the time T of the outcome (i.e., bad or
good) earlier (at t < T ) than the end of the observed process, this would enable us
to direct the process in order to achieve the optimal target value or stop any process
resulting in an undesired bad outcome. The situation we have in general illustrated
is common in many real industrial applications requiring process control (see Box
and Kramer 1992 for a discussion; for several examples see amongst Kesavan et al.
2000). In our case, the situation depicted in Fig. 1 is considered where for each type
of flour, during the kneading process the resistance of dough (density) in a interval
of time Œ0; T � has been recorded. The achieved dough resistance in T affects the
outcome of the process, that is the quality – good or bad – of the resulting cook-
ies. The obtained curves can be then used to predict the quality of cookies made

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_39, c� Springer-Verlag Berlin Heidelberg 2011
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Fig. 1 Danone’s original data

with this dough. In fact, if the cookies quality could be predicted in advance, reme-
dial action could be taken to improve or stop the production of bad quality cookies.
When predictors are of functional type and response is a categorical variable Y
definingK groups,K � 2 various linear regression and classification methods have
been proposed in literature (e.g., see Escabias et al. 2007, James 2002, Preda and
Saporta 2005, Saporta et al. 2007). To address the problem of anticipated prediction
of the outcome at the time T of the process in Œ0; T / in Costanzo et al. (2006), we
measured the predictive capacity of a linear discriminant analysis (LDA) for func-
tional data model on the whole interval Œ0; T �. Then, depending on the quality of
prediction,we determined a time t� < T such that LDA model considered on Œ0; t��
gives similar results, in terms of prediction of the outcome, as that considered on
Œ0; T �. In this work we consider instead a new tool: the adjustment curve for a ran-
dom binary response associated to a stochastic process, that is a decreasing function
which gives the probability that a new realization of the process is adjustable at each
time t 2 Œ0; T �. The paper is organized as follows. In Sect. 2 we present the notion of
adjustment curve. In Sect. 3 we briefly describe our method based on the definition
of special Random Multiplicative Cascades (RMC) used to derive the adjustment
curve of the stochastic process. Sect. 4 is devoted to the results of our case study.

2 Adjustment Curve for the Binary Response of a Real Process

We start by considering a matrix of data of functional type (see Ramsay et al. 2005)
FD D �xi

�
tj
��
; i D 1; : : : L; tj D j � T

S
for j D 0; : : : ; S , where each row repre-

sents the values of a continuous curve observed at discrete times tj ; j D 0; : : : ; S .
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Next, we consider, the column vector R D .r i /; i D 1; : : : ; L, where r i is a binary
outcome associated to the row

�
xi .0/ : : : xi

�
tj
�
: : : xi .T /

�
for i D 1; : : : ; L; for

example r i 2 fbad; good g. Let us suppose that FD and R jointly arise from a
continuous phenomenon which can be simulated by a couple .X; Y /, where we
assume X is a stochastic process whose realizations are real continuous func-
tions with fx.0/ W x 2 Xg D ˚

xi
0 W i D 1; : : : ; L

�
, linear on the intervals Œtj ; tj C1�,

tj D j � T
S

for j D 0; : : : ; S � 1, with a constraint on the increment, i.e.,
jx.tj C1/ � x.tj //j � M.x; j / for j D 0; : : : ; S � 1. In the simplest case we can
assume that the increment does not exceed a certain mean constant value obtain-
able from the real data, i.e., M.x; j / D M for each x 2 X; j D 0; : : : ; S � 1.
We will denote by S the class of such stochastic processes, X D fX .t/gt2Œ0;T �

a stochastic process in S , x D x .t/ .t 2 Œ0; T �/ a realization of X . Moreover
R will denote the class of all binary responses Y associated to X . Without loss
of generality we can assume Y 2 fbad; good g : In order to introduce the defini-
tion of the adjustment curve 
a;D W Œ0; T � ! Œ0; 1� for the binary outcome R of
the functional data FD, we require that the condition xi .T / < xj .T / for each i W
r i D bad and j W rj D good; i; j D 1; : : : ; L is satisfied. That is, we assume
there exist a value X.T / 2 R such that r i D bad if, and only if, xi .T / <

X.T / and r i D good if, and only if, xi .T / � X.T /, i D 1; : : : ; L: For each
i D 1; : : : ; L, let si

D W Œ0; T �! R be the piecewise linear function whose node-set
is N i D ˚.tj ; xi .tj // W tj D j � T

S
; j D 0; : : : ; S�. Define:

bD.j / D max
˚
xi .tj / W i D 1; : : : ; L and r i D bad� .j D 0; : : : ; S/ (1)

gD.j / D min
˚
xi .tj / W i D 1; : : : ; L and r i D good� .j D 0; : : : ; S/: (2)

Let i 2 f1; : : : ; Lg and r i D bad (r i D good ): the piecewise linear interpolant
si

D is called adjustable at the time t 2 Œ0; T � (for short t�adjustable) if there exists
tj � t with j 2 f0; 1; : : : ; Sg such that si

D.tj / � gD.j / ( si
D.tj / � bD.j /). The

adjustment curve 
a;D W Œ0; T �! R for the binary outcomeR of the functional data
FD is the function


a;D.t/ D
ˇ̌˚
si

D W i D 1; : : : ; L and si
D is t � adjustable

�ˇ̌

L
.t 2 Œ0; T �/:

Given a set of curves deriving from a real continuous process the adjustment curve
is a decreasing step function which gives the relative frequency of curves adjustable
(with respect to the final outcome in T ) at each time t 2 Œ0; T �. As a consequence,
the complementary curve 1 � 
a;D.t/ gives, at each time, the relative frequency of
the curves that are definitively good or bad. Further, we observe that by the two data
sets (1) and (2) it is possible to deduce the binary response associated to si

D ; i 2f1; : : : ; Lg at each time tj ; j D 0; : : : ; S � 1, before time T ; indeed: if si
D.tj / >

bD.j / then r i D good or if si
D.tj / < gD.j / then r i D bad ; otherwise r i is not

yet definite.
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3 Admissible Experiments and Simulated Stochastic Process

With the aim of defining the adjustment curve for the stochastic process we assume
has generated the data, we simulated experiments in some sense similar to the orig-
inal one. More precisely, we required that each experiment consists in L curves,
that the i -curve starts from xi .0/ (i D 1; : : : ; L) and that the frequency distribution
of the values at T in the simulated experiment is close to the frequency distribu-
tion of the values at T of the real data (in terms of minimum and maximum of
these data and of the �2 index). Experiments satisfying such conditions have been
realized by using special RMCs. A Multiplicative Cascade is a single process that
fragments a set into smaller and smaller components according to a fixed rule, and
at the same time fragments the measure of components by another rule. The notion
of multiplicative cascade was introduced in the statistical theory of turbulence by
Kolmogorov (1941). Random cascade models have been used as models for a wide
variety of other natural phenomena such as rainfall (e.g., see Gupta and Waymire
1993), internet packet traffic (e.g., see Resnick et al. 2003), market price (e.g., see
Mandelbrot 1998). Recently statistical estimation theory for random cascade models
has been investigated by Ossiander and Waymire (2000, 2002). We defined a RMC
model generating recursively a multifractal measure � on the family of all dyadic
subintervals of the unit interval Œ0; 1�, and depending on a number of real positive
parameters and constants obtained from the data (FD and R). Amongst these last
constants are very important the ratio q0 between the number of good realizations
of the real process – that is the number of those curves whose outcome was good
at time T – and the totality of such curves and p the number of steps of the mul-
tiplicative cascade, that was in our application p D 41. Each single launch of the
RMC, truncated at the step p generates a proof of length pC 1, i.e., a single line of
data which simulates a single row of the matrix FD. A set Ep of L proofs of length
p C 1 satisfying previously outlined conditions is called an Admissible Experiment
of size L and length p C 1 and can be rearranged in a matrix SFD of Simulated
Functional Data. We denote by S.Ep/ the set of L piecewise linear interpolant
the data in each single row of SFD. We define the stochastic process X as the set
X D S

Ep2E�;�

S.Ep/ where by E;� we denote the set of all admissible experiments

Ep of size L and length p C 1. The indexes �; � are positive real numbers which
provide a measure of the closeness of the simulated experiment to the real data.
Further, if the value X.T / (see Sect. 2) is unknown, we compute the middle point
c of the interval which separates the good values from the bad values in the last
column of the matrix FD and we set X.T / D c. A proof (curve) is declared good
if its value at the final time T is greater or equal to X.T /; otherwise the proof is
declared bad. Therefore the set of good values and that of bad values in the last
column of the matrix SFD are separated and we define the binary response associ-
ated to X by Y W X ! fbad; good g ; Y.x/ D YEp

.x/ where the vector YEp
is the

binary response associated to Ep. By analogy with the case of real data we intro-
duce the adjustment curve 
a;Ep

W Œ0; p�! Œ0; 1� for the binary outcome YEp
of the
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admissible experimentEp 2 E;� . By the change of variable � D p

T
� t .t 2 Œ0; T �/

we get, for every Ep 2 E;� , 
a;Ep
.t/ D 
a;Ep

.
p

T
� t/.t 2 Œ0; T �/. We note that

the set
˚

a;Ep

W Ep 2 E;�

� D f
1; 
2; : : : ; 
N g is finite. We now consider the ran-
dom experiment “obtain an admissible experiment Ep” whose sample space is the
infinite set E;� . We set E i

;�
D ˚

Ep 2 E;� W 
a;Ep
D 
i

�
, i D 1; : : : ; N . Let �i

be the frequencies of the curves 
i , i D 1; : : : ; N : we define the adjustment curve

a W Œ0; T � ! Œ0; 1� for the binary response Y of the process X as the function


a.t/ D
NP

iD1

�i
i .t/; t 2 Œ0; T �. In practice, given a couple .X; Y / 2 S �R we can

choose a tolerance � > 0 such that, if E1
p D .x1

1 ; : : : ; x
1
L/, E

2
p D .x2

1 ; : : : ; x
2
L/ are

two admissible experiments such that
L

max
iD1
kx1

i � x2
i k1 � � (here k � k1 denotes

the usual sup-norm) then E1
p; E

2
p can be considered indistinguishable. Therefore,X

becomes a process with a discrete number of realizations and thus we can assume
that for i D 1; : : : ; N , �i D lim

n!1 �n
i , where �n

i is the relative frequency of 
i

observed on a sample .
1; : : : ; 
n/ of size n. We set 
n
a D

nP
iD1

�n
i 
i .n D 1; 2; : : : /.

The sequence f
n
a g converges to 
a on Œ0; T � and the variance Var.
a/ of the ran-

dom variable 
a is less than or equal to two. Consequently the classical Monte Carlo
method can be used to produce approximations of 
a with the needed precision. The
RMC Model synthetically described in this section and its computational aspects are
fully detailed in Costanzo et al. (2010, 2009).

4 Application to an Industrial Kneading Process

We present an application of our method to a real industrial process; namely we
will show how our model can be used to monitor and predict the quality of the out-
come in an industrial kneading process. We will use a sample of data provided by
Danone Vitapole Research Department (France). In kneading data from Danone,
for a given flour, the resistance of dough is recorded during the first 480 s of the
process. There are 136 different flours and thus 136 different curves or trajectories.
Each one is obtained by Danone as a mean curve of a number of replications of the
kneading process for each different flour. Each curve is observed in 240 equispaced
time points (the same for all flours) of the interval time Œ0; 480�. Depending on its
quality, after kneading, the dough is processed to obtain cookies. For each flour the
quality of the dough can be bad or good. The sample we considered contains 44 bad
and 62 good observations; it also contained 30 undecided observations, but these
were discarded from the analysis. In Fig. 1 gray curves (black curves) are those cor-
responding to the cookies that were considered good quality (bad quality) at the
end of the kneading process. Observe how the achieved dough density in T D 480
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was the end quality variable mostly affecting the final quality of the cookies.1 In
fact, gray curves are located mainly in the high part of the graph (above the black
curves), while black curves are located mainly in the low part of the graph (below
the gray curves). However, in order to introduce the adjustment curve, we require
that, with respect to the end values of the process, there is a clear separation between
bad and good curves, that is R must depend only on the values at the time T of the
real process (see Sect. 2). To meet such a condition we introduced (Costanzo et al.
2009) the concept of � � .m; n/ separability for two sets, which allows us to clean
the data so that the ratio q0 varies less than �. In practice, by means of the �� .m; n/
separability, we find the minimum number of bad curves and/or good curves that can
be discarded in a way that the ratio q0 is kept within a preset error �. For � D 0:05

we discarded from our analysis eight good curves and six bad curves; the remaining
54 good curves and 38 bad curves are separated in T D 480 at the dough resis-
tance value c D X.T / D 505. In Fig. 2 we show one admissible experiment Ep

obtained by the method outlined in Sect. 3. Observe that in obtaining bad/good tra-
jectories in our cascade model we utilized as parameters set by the data q0 and 1�q0

respectively. However, owing to the randomness of our model the numbers of bad
and good trajectories are not necessarily in the same proportion as in the original
data. We remark that in applying the Monte Carlo Method in order to obtain the
adjustment curve 
a with an error less than 10�1 and probability greater than 90%
we need to perform n D 4;000 admissible experiments. In Fig. 3 we depicted the
adjustment curve 
a for the binary response Y of the stochastic processX related to
the Danone data. This curve has been computed on the basis of n D 1;000 admis-
sible experiment Ep, obtained requiring a value of the �2 index less than or equal
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Fig. 2 An admissible experiment Ep

1 Actually, decision good/bad/undecidable about the quality of the dough was in the Danone case
based on an taster judgement which presumably also took in account other quality variables such
as aroma, etc. This may be the reason why some of the doughs were classified as undecidables. In
our analysis we decided to consider the density of the dough as the only end quality variable.
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Fig. 3 The adjustment
curves of the process and of
1,000 admissible experiments
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Fig. 4 The adjustment
curves of the process and of
Danone’s data
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to seven. In the same figure we also depicted in gray the adjustment curves of these
admissible experiments. Observe that, for each t 2 Œ0; T �, the standard deviation is
not great than 0:09 � 10�1. The intervals of one standard deviation from the mean
curve value comprise a frequency of adjustment curves of Ep’s admissible exper-
iments which range from a minimum of about 65% – in the time interval between
t D 150 and t D 320 about – to a maximum of about 87%; while in the intervals of
two standard deviations, the frequency range is between 92 and 97%. These latter
intervals are illustrated in Fig. 4 by the plus and minus signs and they comprise the
adjustment curve 
a;D of the real Danone data. In this figure we can observe that the
simulated process prediction curve gives the same results as the real data at times
near to t D 186, which was the same time t� < T we determined in Costanzo
et al. (2006) on the whole interval Œ0; 480� (the average test error rate was of about
0.112 for an average AUC.T / D 0:746). However, after such time and until time
t D 326 the 
a;D gives an adjustment higher than 
a, which denotes instability for
such data since from 65 to 42% of the curves are not yet definitively bad or good
(see the bold black and gray curves in Fig. 1). Let us remark that the mean of the
absolute differences between the two curves is 0.06 over the whole time interval,
while its value is 0.112 in the time interval Œ186; 326�. Starting from time t D 330


a is over 
a;D instead. Consider then for greater clarity to use 
a to predict the
bad outcomes and 1 � 
a to predict for good outcomes: an adjustment value of
about 
a D 0:20 implies, that bad outcomes after such time have low probability
(�0:20) of adjustment before the end of the process and they could be discarded or
the process modified; while, at the same time, a good outcome has high probability
(1 � 
a D 0:80) to remain the same until the end of the process. As we pointed
out in the introduction, the adjustment curve 
a is an important monitoring tool of
a real process: it represents a prediction function by means of which, as in the case
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of cookies, the quality of product at the final time T , can be anticipated for each
given t 2 Œ0; T � with an increasing probability. Since in real processes the interest is
mainly in preventing bad outcomes, the term adjustment means that, as long as the
values of such curve are high, it is not necessary to intervene or stop the process,
because with any performance which it seems will result in a bad outcome, there is
a high probability of (self)adjustment before the end of the process itself. Further,
the same definition of adjustment curve allows for decisions at each time t 2 Œ0; T �
on the quality of the outcome of each single realization of the process at that time.
In fact, as shown in Sect. 2, since for real data this curve is obtained from the two
sets (1) and (2), we consider in the same way for each admissible experiment Ep

the piecewise linear functions bEp
e gEp

whose node-sets are defined as in the pre-
vious equations. A single realization (curve) of the process is then good (bad) in
t if at this time its value is greater(lower) or equal to the mean value of the bEp

’s
(gEp

’s). Otherwise the status of the realization at this time is not yet determinable
and to simplify matters we can cautiously decide to treat it as it were a bad realiza-
tion (if a process realization has not a defined status until the last time T � 1, it will
have at time T one-half of probability to result in a bad realization and this could be
rather expensive in terms of cost of the process). Consider then for more clearness to
use 
a to predict on the bad outcomes and 1� 
a to predict for good outcomes.The
adjustment curve gives at each given time t the probability that a bad realization will
change its status before the end of the process; while its complementary gives the
probability that a good realization maintains its status until the end of the process.

5 Conclusion and Open Issues

Some open issues involve further research to improve the choice of the parameters
of the RMC Model so that it is more flexible to adapt to several situations and time
dynamics of different observed curves; study of the sampling distribution of our
method; embedding of our results in a cost (or in general a loss) function so that an
optimal in some sense, prediction time is elicited; extension of the model to the case
of polytomous response variables.
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Dealing with FDA Estimation Methods

Tonio Di Battista, Stefano A. Gattone, and Angela De Sanctis

Abstract In many different research fields, such as medicine, physics, economics,
etc., the evaluation of real phenomena observed at each statistical unit is described
by a curve or an assigned function. In this framework, a suitable statistical approach
is Functional Data Analysis based on the use of basis functions. An alternative
method, using Functional Analysis tools, is considered in order to estimate func-
tional statistics. Assuming a parametric family of functional data, the problem of
computing summary statistics of the same parametric form when the set of all func-
tions having that parametric form does not constitute a linear space is investigated.
The central idea is to make statistics on the parameters instead of on the functions
themselves.

1 Introduction

Recently, Functional data analysis (FDA) has become an interesting research topic
for statisticians. See for example Ferraty and Vieu (2006) and Ramsay and Silver-
man (2007) and reference therein. In many different fields, data come to us through
a process or a model defined by a curve or a function. For example, in psychophisi-
ological research, in order to study the electro dermal activity of an individual, the
Galvanic Skin Response (GSR signal) can be recorded and represented by a contin-
uous trajectory which can be studied by means of the tools of FDA (Di Battista et al.
2007). We want to deal with circumstances where functional data are at hand and the
function is known in its closed form. In particular, we consider a parametric family
of functional data focusing on parameters estimation of the function. For example,
Cobb-Douglas production functions are frequently used in economics in order to
study the relationship between input factors and the level of production. This family
of functions takes on the form y D f .K;L/ D L˛Kˇ , whereL is one factor of pro-
duction (often labour) and K is a second factor of production (often capital) and ˛
and ˇ are positive parameters with ˛Cˇ D 1. In biology, growth functions are used
to describe growth processes (Vieira and Hoffmann 1977). For example, the logistic
growth function Z D a=Œ1C exp f� .b C ct/g� where a, b and c are parameters,

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_40, c� Springer-Verlag Berlin Heidelberg 2011
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a > 0 and c > 0, and the Gompertz growth function Z D exp
�
a � bct

�
where a,

b and c are parameters, b > 0 and 0 < c < 1. The aims of FDA are fundamentally
the same as those of any area of statistics, i.e., to investigate essential aspects such
as the mean and the variability function of the functional data. Moreover, one could
be interested in studying the rate of change or derivatives of the curves. However,
since functional data are often observed as a sequence of point data, then the func-
tion denoted by y D x .t/ reduces to a record of discrete observations that we can
label by the n pairs

�
tj ; yj

�
where yj is the value of the function computed at the

point tj . A first step in FDA is to convert the values yi1; yi2; : : : yin for each unit
i D 1; 2; : : : ; m to a functional form computable at any desired point t . To this pur-
pose, the use of basis functions ensures a good fit in a large spectrum of cases. The
statistics are simply those evaluated at the functions pointwise across replications.

It is well known that the sample mean Nx .t/ D 1
m

mP
iD1

xi .t/ is a good estimate of

the mean if the functional data are assumed to belong to L2. If we do not need of a
scalar product and then of an orthogonality notion, we can consider every Lp space,
p > 1, with the usual norm (Rudin 2006). In general the functional data constitute a
space which is not a linear subspace of Lp . For example, let y1 D A1L

˛1 and y2 D
A2L

˛2 be Cobb-Douglas functions in which for simplicity the production factors
A1 and A2 are assumed constant. The mean function is Ny D A1L˛1 CA2L˛2

2
which

is not a Cobb-Douglas function and its parameter does not represent the well known
labour elasticity which is crucial to evaluate the effect of labour on the production
factor. In general, the results of this approach may not belong to a function with the
same closed form of the converted data so that erroneous interpretations of the final
functional statistic could be given.

In this communication we want to emphasize a new approach which is focused
on the true functional form generating the data. First of all, we introduce a suit-
able interpolation method (Sung Joon 2005) that allows us to estimate the function
that is suspected to produce the functional datum for each replication unit. Starting
from the functional data we propose an explicit estimation method. The objective is
to obtain functional statistics that belong to the family of functions or curves sus-
pected to generate the phenomenon under study. In the case of a parametric family
of functional data, we use the parameter space in order to transport the mean of
the parameters to the functional space. Assuming a monotonic dependence from
parameters we can obtain suitable properties for the functional mean. At illustrative
purpose, two small simulation studies are presented in order to explore the behaviour
of the approach proposed.

2 Orthogonal Fitting Curve and Function

Generally, functional data are recorded discretely as a vector of points for each
replication unit. Thus, as a first step we need to convert the data points to a curve
or a function. Methods such as OLS and/or GLS do not ensure the interpolation
of a wide class of curves or functions. A more general method is given by the
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Least Squares Orthogonal Distance Fitting of Curves (ODF) (Sung Joon 2005).
The goal of the ODF is the determination of the model parameters which minimize
the square sum of the minimum distances between the given points

˚
Yj

�n

j D1
and

the closed functional form belonging to the family of curves or function ff .�; t/g
with � D ˚

�1; �2; : : : ; �p

�
. In ODF the corresponding points

n
Y�

j

on

j D1
on a fit-

ted curve are constrained to being membership points of a curve/surface in space.
So, given the explicit form f .�I t/ such that Y� � f .�I t / D 0, the problem
leads to minimize a given cost function. Two performances indices are introduced
which represent in two different ways the square sum of the weighted distances
between the given points and the functional form f .�I t/: the performances index
�2

0 D kP.Y � Y�/k2 D .Y � Y�/T PT P.Y � Y�/ in coordinates based view
or �2

0 D kPdk2 D dT PT Pd in distance based view, where PT P is a weighting

matrix or error covariance matrix (positive definite), Y� D
n
Y�

j

on

j D1
is a coordi-

nate column vector of the minimum distance points on the functional form from
each given point

˚
Yj

�n

j D1
, d D .d1; d2; : : : ; dn/

T is the distance column vector

with dj D
���Yj �Y�

j

��� D
r


Yj �Y�
j

�T 

Yj �Y�

j

�
. Using the Gauss Newton

method, it is possible to estimate the model parameters � and the minimum distance

points
n
Y�

j

on

j D1
with a variable separation method in a nested iteration scheme as

follows
min
�2Rp

minn
Y�

j

on

j D1
2Z

�2
0



fY�

i .�/gnj D1

�
(1)

whith Z D ˚Y 2 Rn W Y � f .� I t/ D 0;� 2 Rp; t 2 Rk
�
.

3 Direct FDA Estimation Methods

Let S be a family of functions with p real parameters that is S D ff�g with � D�
�1; �2; : : : �p

� 2 �. In an economic setting, S could be the family of Cobb-Douglas
production functions, i.e., f˛;ˇ .K;L/ D K˛Lˇ with ˛ > 0, ˇ > 0 and ˛ C
ˇ D 1. Starting from m functional data belonging to S , f�1

; f�2
; : : : ; f�m

, the
objective is to find an element of S said functional statistic denoted with f O� D
H
�
f�1

; f�2
; : : : ; f�m

�
.

3.1 The Functional Mean

In the following we assume that functional data constitute a subspace S of some Lp

space, p > 0, with the usual norm (Rudin 2006). We consider first the functional
mean of the functions f�1

; f�2
; : : : ; f�m

. When S is a vectorial subspace, then

we can express the functional mean as the sample mean f O� D
f�1

Cf�2
C:::Cf�m

m
.
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Because S is closed with respect to linear combinations, we have that f O� 2 S . In
this setting a straightforward property is that the integral of the functional mean is
the mean of the integrals of each functional datum. For example, let S be the family
of functions of the following form f˛ D ˛g .x/, then

f Ǫ D
Pm

iD1 f˛i
.x/

m
D

Pm
iD1 ˛i g.x/

m
D

Pm
iD1 ˛i

m
g .x/ : (2)

This proves that f Ǫ .x/ is an element of S and its parameter is the mean of the
parameters ˛1; ˛2; : : : ; ˛m. At the same time it is easy to prove that if S is not a
vectorial space then this functional statistic doesn’t necessarily lead to an element
belonging to S . We go along in two ways. The first one is to verify if there is an
element in S that has got as integral the mean of the integrals of the functional data.
For instance, let S be the family of functions f˛ .x/ D x˛, with 0 < ˛ < 1 and

domain the closed interval Œ0; 1�. If m D 2, then
R 1

0
x˛dx D

R 1
0 x˛1 dxCR 1

0 x˛2 dx

2
,

that is 1
˛C1
D

1
˛1C1

C 1
˛2C1

2
which admits a unique solution. For example if we have

got two functions with parameters ˛1 D 1
2

and ˛2 D 1
3

then Ǫ D 7
17

. Unfortunately,
in general the solution may not exist in the real field and/or it is not unique and
it would be necessary to introduce some constraints on the parameters not easy to
interpret.

A second way to solve the problem without ambiguity is the following. We
assume that every functional datum f� is univocally determined by the parameter �
or equivalently there is a biunivocal correspondence between S and the parame-
ter space �. Then, a functional statistic for the space of the functional data can
be obtained through a statistic in the parameter space. In the case of a paramet-
ric family of functional data, we use the parameter space in order to transport the
statistics in � to S . Let the functional data be f�1

; f�2
; : : : ; f�m

, then a functional
statistic for the set of the functional data is given by a suitable statistic of the param-
eters �1; �2; : : : ; �m say O� D K .�1; �2; : : : ; �m/. The functional statistic will be the
element of S that has got as parameter the statistic O� , following the scheme:

�i  f�i

#
O� D K .�i /! f O� :

i D 1; 2; : : : ; m (3)

A possible way of defining the functionK is the analogy criterion. If we want to esti-
mate the functional mean or median then the function K would be the mean or the
median of the parameters. Obviously, other ways of defining the functionK are pos-
sible. The advantage in this case is that we can require for the functional mean and
variability the same properties of the mean and variance of the parameters. In par-
ticular, for the functional mean, we can assume that the functions are linked to each
parameter by a monotonic dependence. For example, if we have only a parameter ˛,
we can suppose ˛1 � ˛2 ) f˛1

.x/ � f˛2
.x/ or f˛1

.x/ � f˛2
.x/8x. In such a

case, for the mean parameter Ǫ , we obtain f˛1
.x/ � f Ǫ .x/ � f˛2

.x/8x. More-
over this property ensures also that

R
f˛1

.x/dx � R
f Ǫ .x/dx �

R
f˛2

.x/dx. It
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is easy to verify that monotonic decreasing dependence is verified by the family
S D f˛ .x/ D x˛ with 0 < ˛ < 1 and x 2 Œ0; 1�.

3.2 Functional Variability

In order to study the functional variability we first introduce the functional quantity
vr

i .t/ D
ˇ̌
f�i
.t/ � f O� .t/

ˇ̌r
which is the r-th order algebraic deviation between the

functional observed data f�i
and the functional statistics f O� . Then the functional

variability can be measured pointwise by the r-th order functional moment

V r .t/ D 1

m

mX

iD1

vr
i .t/: (4)

The function V r .t/ has the following properties:

� if f�i
.t/ D f O� .t/ for i D 1; 2; : : : ; m and 8t , than V r .t/ D 0;

� defining the Lp norm of a function as kf� .t/kLp D R jf� .t/jp dt then we have
that
n��f�i

�f O�
��

Lp!0
o
)
n
f�i

!
a:e: f O�,vr

i

!
a:e: 0 8iD1; 2; : : : ; m,V r !

a:e: 0
o
:

We remark that, if the function f� in S is expandable in Taylor’s series, that is

f� .t/ D
1X

kD0

f k
�
.a/

kŠ
.t � a/k (5)

where a is a fixed point of an open domain and f k
�
.a/ is the k-th derivative of the

function f� computed at point a, an approximation of the functional variability can
be obtained by Taylor’s polynomials s�i

of f�i
and s O�i

of f O�i
respectively:

1

m

mX

iD1

ˇ̌
ˇs�i

.t/ � s O�i
.t/
ˇ̌
ˇ
p

: (6)

This fact is useful from a computation point of view. In order to give some insights to
the approach proposed in the next section two small simulation studies are proposed.

4 A Simulation Study

We conduct two small simulation studies in order to evaluate the estimation method
proposed for the functional statistic f O� D H

�
f�1
; f�2

; : : : ; f�m

�
equal to the func-

tional mean.
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Fig. 1 Functional populations S D ff�g D x˛ C � with three different space parameter � and
� 	 N.0; 0:01/

4.1 Power Functions

We suppose that the observations are contaminated with some error so that the
resulting family S D ff� g of functions is defined as S D fx˛gC� with � D ˛ 2 R1

with 0 < ˛ < 1 and 0 � x � 1. We simulate different populations by assigning
to ˛ different distributions such as the truncated Normal, the Uniform and the trun-
cated Exponential with different parameters and to � a white noise with standard
error equal to 0:01. At illustrative purpose in Fig. 1 there are three populations for
˛ � N.� D 0:5; � D 0:1/, ˛ � U.0; 1/ and ˛ � Exp.0:05/. Values of ˛ outside
the interval .0; 1/ were discarded.

In order to evaluate the estimation method proposed in Sect. 3, we sample from
each population J D 5;000 samples for various sample sizes m. As the functions
are observed with error we first need to apply the ODF method of Sect. 2 to estimate
the function parameter ˛ for each function. Once for each sample the estimates
�1; �2; : : : ; �m are available, the scheme detailed in (3) can be applied in order to
obtain the functional mean statistic of the sample. In Fig. 2 we show the results for
a sample size of m D 10. In particular, for each population, the functional mean
statistic together with the estimated standard error are plotted.
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Fig. 2 J D 5,000 Functional mean statistics for a sample size m D 10

4.2 Functional Diversity Profiles

At illustrative purpose, we present an ecological application of the estimation
method proposed. Suppose to have a biological population made up of p species
where we are able to observe the relative abundance vector � D .�1; �2; : : : ; �p/

in which the generic �j represents the relative abundance of the j-th species. One
of the most remarkable aspects in environmental studies is the evaluation of eco-
logical diversity. The most frequently used diversity indexes may be expressed as
a function f� of the relative abundance vector. Patil and Taillie (1982) proposed to
measure diversity by means of the ˇ-diversity profiles defined as

� D f�.ˇ/ D
1 �Pp

j D1 �
ˇC1
j

ˇ
: (7)

ˇ-diversity profiles are non-negative and convex curves. In order to apply functional
linear models on diversity profiles, Gattone and Di Battista (2009) applied a trans-
formation which can be constrained to be non-negative and convex. In the FDA
context, it is convenient considering the ˇ-diversity profile as a parametric func-
tion computable for any desired argument value of ˇ 2 Œ�1; 1� n f0g. The space
parameter is multivariate and given by � . In order to evaluate the estimation method
proposed in Sect. 3, we simulate different biological populations by assigning to
each component of � different distributions such as the Uniform, the Poisson and
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Fig. 3 J D 5,000. Functional mean diversity profiles � D fO� D 1�
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ˇ
and standard error

for a sample size m D 5

the multinomial distribution. From each population we sample J D 5; 000 sam-
ples with different sample sizes. The function � in (7) is observed without error
so that we do not need to apply the ODF method of Sect. 2. For each sample of
size m we can evaluate the estimates O� from the observed �1;�2; : : : ;�m and the
scheme detailed in (3) can be applied in order to obtain the functional mean statistic
� D f O� . In Fig. 3 we show the results for three populations with p D 5 species
with different level of diversity. From each population we randomly choose samples
of size m D 5. The parameters of the Poisson and the Multinomial distributions are
� D 100 	 Œ0:55; 0:19; 0:13; 0:07; 0:06� and Œ0:55; 0:19; 0:13; 0:07; 0:06�, respec-
tively. For each population, the functional mean statistic together with the estimated
standard error are plotted. As desired, all the functional statistics result to be non-
negative and convex. Furthermore, even though monotonic dependence from the
parameters is not verified with diversity profiles, the functional mean satisfies the
internality property in all the simulation runs.
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Testing for Dependence in Mixed Effect Models
for Multivariate Mixed Responses

Marco Alfó, Luciano Nieddu, and Donatella Vicari

Abstract In regression modelling for multivariate responses of mixed type, the
association between outcomes may be modeled through dependent, outcome-
specific, latent effects. Parametric specifications of this model already exist in the
literature; in this paper, we focus on model parameter estimation in a Finite Mixture
(FM) framework. A relevant issue arises when independence should be tested vs
dependence. We review the performance of LRT and penalized likelihood criteria
to assess the presence of dependence between outcome-specific random effects.
The model behavior investigated through the analysis of simulated datasets shows
that AIC and BIC are of little help to test for dependence, while bootstrapped
LRT statistics performs well even with small sample sizes and limited number of
bootstrap samples.

1 Introduction

Regression models for multivariate responses have raised great interest in the last
few years, with a particular emphasis on multivariate counts modeling. Three main
approaches have been proposed: convolution models, see e.g., Karlis and Meligkot-
sidou (2006), latent effect models, see e.g., Chib and Winkelmann (2001) and Alfó
and Trovato (2004), and copula-based models, see e.g., Harry (1997), the former
not being applicable when dealing with mixed-response models. We adopt the
latent effect approach and define a set of conditional univariate models, linked by
a common latent structure which accounts for both heterogeneity (in the univariate
profiles) and dependence between responses.

Let us suppose we have recorded responses Yij , on i D 1; : : : ; n individuals and
j D 1; : : : ; J outcomes, together with a set ofmj covariates xT

ij D .xij1; : : : ; xijmj
/.

To describe association among outcomes, it is reasonable to assume that they share
some common unobservable features. Let uij , i D 1; : : : ; n j D 1; : : : ; J denote
a set of individual and outcome-specific random effects, accounting for marginal
heterogeneity and dependence between outcomes. Conditional on the covariates

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_41, c� Springer-Verlag Berlin Heidelberg 2011
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and the random effects, the observed responses Yij are assumed to be independent
exponential family random variables

Yij juij ; xij � EF.�ij /

with canonical parameters �ij D m�1
�
E.Yij j xij ; uij /

�
; where m.�/ denotes the

mean function, modeled as follows:

�ij D ˇj 0 C
mjX

lD1

xijlˇjl C uij i D 1; : : : nI j D 1; : : : J (1)

Responses of different types can be modeled using this approach as long as each
distribution is a member (not necessarily the same) of the exponential family. In this
context, ˇj D .ˇj 0; ˇj1; : : : ; ˇjmj

/ is an outcome-specific vector of fixed regres-
sion parameters, while the random effects ui D .ui1; : : : ; uiJ / are assumed to be
drawn from a known multivariate parametric distribution, say G .�/;withE.ui / D 0.
Semiparametric multivariate alternatives with unspecified G .�/ are discussed in Alfó
and Trovato (2004) for multivariate counts and in Alfó et al. (2011) for multivari-
ate counts and a binary selection variable. Under the assumption of conditional
independence, the likelihood function is:

L.�/ D
nY

iD1

8
<

:

Z

U

2

4
JY

j D1

f
�
yij j xij ; uij

�
3

5dG .ui /

9
=

; (2)

For Gaussian assumptions on ui , the marginal likelihood can not be written in
closed form; to obtain ML estimates, we may choose among several alternatives. We
may adopt numerical integration techniques based on standard or adaptive (spher-
ical) Gaussian Quadrature (GQ, AGQ), for a comparison see Rabe-Hesket and
Skrondal (2002) and Rabe-Hesket et al. (2005); however, the corresponding estima-
tion algorithms can be cumbersome and show slow convergence when the number
of outcomes increases. A further alternative is to rely on Monte Carlo or simulation-
based techniques, see e.g., Chib and Winkelmann (2001) and Munkin and Trivedi
(1999). The latter approach is inefficient for non optimal importance samplers,
while the distribution of the random effects conditional on the observed data and
the current parameter estimates can be quite difficult to sample from. Marginal
maximization procedures using Gaussian quadrature or Monte Carlo approxima-
tions can be computationally intensive, as noted in different contexts by Crouch and
Spiegelman (1990) and Gueorguieva (2001). From this perspective, a more appeal-
ing approach is to leave G .�/ unspecified, and rely on the theory of NPML, see e.g.,
Kiefer and Wolfovitz (1956), Laird (1978) and Heckman and Singer (1984). If the
likelihood is bounded, it is maximized with respect to G .�/ by at least a discrete
distribution GK.�/ with at most K � n support points. Let us suppose that GK.�/
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puts masses 	k on locations uk D .uk1; : : : ; ukJ /, k D 1; : : : ; K . The resulting
likelihood function is:

L.�/ D
nY

iD1

8
<

:

KX

kD1

	k

2

4
JY

j D1

f
�
yij j xij ; ukj

�
3

5

9
=

; (3)

where 	k D Pr.ui D uk/ D Pr.uk1; : : : ; ukJ /, k D 1; : : : ; K .

2 Computational Details

The data vector is composed by an observable part, yi , and by an unobservable
part, zi D .zi1; : : : ; ziK/ representing the membership vector. Since the zi are
unknown, an EM-type algorithm can be used. For fixed K , the following routine
for parameter estimation can be used: we assume that zi has a multinomial distribu-
tion with weights 	k D Pr.ui D uk/, i D 1; : : : ; n; k D 1; : : : ; K . Given the model
assumptions, the log-likelihood for the complete data is:

`c .�/ D
nX

iD1

KX

kD1

zik flog.	k/C log.fik/g D
nX

iD1

KX

kD1

zik

8
<

:log.	k/C
JX

j D1

log.fijk/

9
=

;

(4)

Within the E-step, the presence of missing data is handled by taking the expectation
Q.�/ of the log-likelihood for the complete data given the observed data yi and

the current ML parameter estimates, say O�.r/
, i.e., zik is replaced by its conditional

expectation w.r/

ik
, i D 1; : : : ; n, k D 1; : : : ; K

Q .�/ D E
�

.r/ f`c .�/ jyi g D
nX

iD1

KX

kD1

w.r/

ik

8
<

:log.	k/C
JX

j D1

log.fijk/

9
=

; (5)

which corresponds to a weighted log-likelihood. Conditional on updated weights

w.r/

ik
, we maximize Q.�/ with respect to � to obtain updated ML estimates O�.rC1/

.
The estimated parameters are the solutions of the following M-step equations:

@Q

@	l

D
nX

iD1

�
wi l

	l

� wiK

	K

�
D 0; l D 1; : : : ; K (6)

@Q

@�
D

nX

iD1

KX

lD1

wi l

@

@�

2

4
JX

j D1

log.fijl /

3

5: (7)
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where � denotes the model parameter vector. Solving the first equation we obtain

O	.r/

l
D

nP
iD1

w.r/

il
=nwhich represents a well known result from ML in finite mixtures.

Given w.r/

il
, (7) are weighted sums of likelihood equations for J independent GLMs.

Since closed form solutions of the equations in (7) are generally unavailable, we use
a standard Newton–Raphson algorithm.

3 Testing Independence Hypothesis

Testing for independence in mixed effect models is not an easy task: depen-
dence arises through unobservable latent effects which are assumed to influence
the observed outcomes through an effect included in the linear predictor. Under
Gaussian assumptions on the random effect distribution, dependence is represented
by linear correlation and suitable parameterizations may help specify the linear pre-
dictor as explicitly depending on the correlation coefficient between random effects.
When a discrete mixing distribution is employed, null correlation does not necessar-
ily imply independence and the correlation coefficient is not an explicit parameter
in model specification. Furthermore, in the case of parametric (Gaussian) random
effects the independence model is nested within the dependence model, thus stan-
dard LRT based tools may be used. When a Finite Mixture model is employed,
the test for independence is not carried out under the same fixed marginal dis-
tributions obtained in case of independence. This is mainly due to the fact that
the model under independence may not occur as a special case of the dependence
model, since the marginal distributions under independence are estimated via sev-
eral univariate models which are possibly different in the number of components,
locations and/or masses from the dependence model. Let us consider two outcomes,
say Y1 and Y2, with random effects u1, u2, and a number of fixed effects equal
to m1 C 1 and m2 C 1, respectively. If K1 and K2 locations are used for each
outcome, the total number of parameters for the independence model is equal to
d D 2.K1CK2�2/C.m1Cm2C2/, while, ifK common support points are used for
the bivariate model, the number of parameters is d D 3.K�1/C.m1Cm2C2/. For
appropriate choices ofK , K1 andK2, the latter model could be more parsimonious
and does not reduce to the former.

To understand the nature of the stochastic dependence between responses an esti-
mate of the correlation � between random effects is mandatory. In the parametric
mixing context numerical integration techniques (mainly ASQ) have been shown to
provide consistent and reliable estimates for � (see Rabe-Hesket et al. 2005).

In the semiparametric context, on the other hand, � can be obtained as a
by-product of the adopted estimation procedure. Although, considering the ‘rough’
nature of the estimated mixing distribution together with the reduced number of
estimated locations and the extreme sensitivity to outlying observations, the corre-
sponding estimate may be unreliable, especially in presence of non robust models
(such as mixed effect logistic models for binary responses) (see Smith and Moffatt
1999, Alfó et al. 2011). In the multivariate Poisson context, the corresponding
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estimates are approximately unbiased (see Alfó and Trovato 2004). In this context
the LRT-statistic has a non standard distribution. To test the null (independence)
hypothesis, where g, g1 and g2 are probability density function,

�
H0 W g.ui / D g1.ui1/g2.ui2/

H1 W g.ui / ¤ g1.ui1/g2.ui2/
(8)

the LRT statistic must be bootstrapped, i.e., a bootstrap sample is generated from
the mixture density estimated under the null hypothesis

K1X

kD1

K2X

lD1

f1



yi1 jb� i1k

�
f2



yi2 jb� i2l

�
b	1kb	2l (9)

and the value of �2 log .�/ D �2 �`ind � `dep
�

is computed for B bootstrap samples
after fitting the independence and the dependence models, both with fixed number
of components, say K1 and K2 and K for the univariate and the bivariate models.
The replicated values are then used to assess the distribution of �2 log .�/ under the
null hypothesis.

4 Simulation Study

In this Section, the performance of AIC and BIC, and of the LRT are analyzed to
verify whether they can be used to discriminate between the dependence and
independence models when varying degrees of dependence are considered.

Random effects have been drawn from a Multivariate Normal Distribution:

ui � MVN .0; ˙/ ˙ D
�
1 �

� 1

	
� 2 f0:00; 0:30; 0:70g:

In each study, 250 samples with varying size (n 2 f500; 1000g) have been used.
Two cases have been considered for the response variables. In the first one, a

Poisson response with an endogenous binary selection covariate, i.e.:

Y1ju1; X1; Y2 � Poi.�/ Y2ju2; Z1 � Bin.1; 	/

where

log.�/ D ˇ0 C ˇ1X1 C ˇ2Y2 C u1 logit.	/ D 
0 C 
1Z1 C u2

where X1 and Z1 have been drawn from a Uniform distribution on Œ�1; 1�. The
(conditional) log-likelihood in this case can be written as:

L.� j y2/ D
nY

iD1

Z

U

f .yi1 j xi ; yi2;ui /dG .ui /
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Table 1 First simulation study: Proportion of samples where the dependence model is preferred.
Percentiles of the correlation estimates

� n D 500 n D 1;000

0:00 0:30 0:70 0:00 0:30 0:70

AIC 0:58 0:93 1:00 0:51 0:93 1:00

BIC 0:37 0:84 0:98 0:28 0:82 0:99

b-LRT 0:07 0:80 0:96 0:06 0:82 0:98

NO� 0:052 0:585 0:853 0:008 0:572 0:837

O�0:1 �0:464 0:360 0:616 �0:635 0:359 0:666

O�0:9 0:787 0:871 0:994 0:607 0:812 0:901

only if Y2 and u1 are assumed to be independent. If this is not the case endogeneity
bias may arise and the primary model must be supplemented by a secondary model
accounting for regressor endogeneity.

The number of components for each mixture varied from 2 to 20.
The LRT has been performed through B D 100 bootstrap samples drawn under

the null hypothesis of independence between outcomes; the number of components,
say K1, K2 and K , representing the null and the alternative hypotheses (inde-
pendence, dependence) have been chosen in each sample via BIC, while model
parameters under the null and the alternative have been estimated in the resamples
by fixing the corresponding number of components to K1, K2 andK .

In Table 1 the proportion of samples where the dependence model is preferred
over the independence model according to AIC, BIC and the bootstrapped LRT
of size 0.05 have been reported together with the average of the estimates of the
correlation coefficients derived from the dependence model and the 10th and 90th
percentiles of its distribution over the 250 samples. In each sample/resamples, we
employed 20 different (randomly chosen) starting values.

It is worth noting that both AIC and BIC tend to prefer the dependence model,
even when the independence model represents the true data generating process. This
could be ascribed to the fact that both are quite reliable in selecting the right number
of components (if any) in finite mixtures, but tend to favour parsimonious models,
thus preferring the dependence model. On the other side, the LRT is more powerful
in choosing between the two models, even with small sample sizes (n D 500).

A behaviour consistent with other findings in the literature (see Smith and
Moffatt 1999, Alfó et al. 2011) can be observed for the correlation coefficient esti-
mates, with a large variability of the estimates, a high percentile range, and a clear
tendency to overestimation when the true � approaches the corresponding bounds.

In the second case study, we considered Poisson and Exponential responses

Y1ju1; X1 � Poi.�/ Y2ju2; Z1 � Exp.�/

where
log.�/ D ˇ0 C ˇ1X1 C u1 log.�/ D 
0 C 
1Z1 C u2
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Table 2 Second simulation study: Proportion of samples where the dependence model is
preferred. Percentiles of the correlation estimates

� n D 500 n D 1;000

0:00 0:30 0:70 0:00 0:30 0:70

AIC 0:95 1:00 1:00 0:94 0:99 1:00

BIC 1:00 1:00 1:00 0:98 1:00 1:00

b-LRT 0:065 0:83 0:98 0:055 0:86 0:99

NO� 0:005 0:296 0:653 0:002 0:305 0:656

O�0:1 �0:146 0:055 0:437 �0:079 0:202 0:626

O�0:9 0:161 0:433 0:869 0:129 0:391 0:804

This could be the case, for instance, of health care utilization and expenditures data
jointly determined by, say, health care status or propensity to use a given service
(maybe on an out-of-pocket basis). In Table 2 the results of the simulation study
for the second case have been displayed. The findings which can be derived are
coherent with those obtained for the first case study, with some differences. Here
the AIC and BIC behaviours are worse than the performance in the first case study;
this could be due to the reduced number of locations that a finite mixture of logistic
models usually needs for the independence model; thus, in this case, with a contin-
uous (exponential) outcome the performance of the penalized likelihood criteria is
poor and likely a high number of locations are needed to fit the univariate marginal
distributions. In this case, the dependence model is always preferred over the inde-
pendence one. This is not true when a bootstrapped LRT is employed: the LRT
performs fairly well, and is quite powerful, even if the number of resamples under
the null hypothesis is rather limited (i.e., B D 100).

As long as the correlation estimates are considered, contrary to what experienced
in the first simulation study, O� values show limited variability as well as satisfactory
mean estimates, which are quite close to the corresponding true values, regardless
of whether they are near to the bound (i.e., � D 0:7).

5 Conclusions

Random effect models can be easily adapted to handle multivariate mixed data.
While AIC or BIC can be used to choose the number of components in a finite
mixture approach, they are of little help to test for independence.

The LRT performs better than penalized likelihood criteria in testing for depen-
dence; in fact, the bootstrapped LRT statistic has been shown to perform quite well
in all analyzed situations, even with small sample sizes (n D 500) and small number
of bootstrap resamples (B D 100). Nonetheless AIC and BIC show a quite reliable
behaviour, at least on average, when the estimation of regression coefficients and
random effect correlation are considered. The estimates of � are quite good in the
case of Poisson–Exponential outcomes, with moderate variability. The results for
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the Poisson–Bernoulli case are not as good, showing a very high variability in the
simulation study. This suggests the use of some caution when dealing with Bernoulli
responses.
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Size and Power of Tests for Regression Outliers
in the Forward Search

Francesca Torti and Domenico Perrotta

Abstract The Forward Search is a method for detecting masked outliers and for
determining their effect on models fitted to the data. We have estimated the actual
statistical size and power of the Forward Search in regression through a large num-
ber of simulations, for a wide set of sample sizes and several dimensions. Special
attention is given here to the statistical size. The work confirms for regression the
excellent Forward Search properties shown in the multivariate context by Riani et al.
(Journal of the Royal Statistical Society. Series B 71:1–21, 2009).

1 Introduction

The Forward Search (FS) is a general method for detecting unidentified subsets and
masked outliers and for determining their effect on models fitted to the data. The
key concepts at the basis of the FS originated from the work of Hadi (1992), but the
power of the method was increased by Atkinson and Riani (2000) and Atkinson et al.
(2004) through the idea of diagnostic monitoring, which was applied to a wide range
of regression and multivariate statistical techniques. Unlike most robust methods
(e.g., Rousseeuw and Leroy 1987; Maronna et al. 2006) in the FS the amount of
trimming is not fixed in advance, but is chosen conditionally on the data. Many
subsets of the data are fitted in sequence. As the subset size increases, the method
of fitting moves from very robust to highly efficient likelihood methods.

The FS has been applied in many contexts. In particular Riani et al. (2008) used
the FS to analyse bivariate trade data arising in the market between the European
Union and the rest of the world. In such contexts, outliers are the key objective of the
analysis because some of them may correspond to fraudulent transactions. Unlike
other situations where the focus is on the power of the statistical method, here it is
crucial to control the size of the outlier tests, to avoid submitting to the anti-fraud
services an intractable number of (often irrelevant) cases to inspect.

The actual size and power of the FS in the multivariate context, where the tested
statistic is the Mahalanobis distance, were studied by Riani et al. (2009). However
no equivalent evaluation has been done for regression. This work fills this gap with
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an extensive evaluation of the actual size and power of the FS outlier test in the
regression context. We have compared the nominal size ˛ and power with the actual
ones produced by the FS, following the benchmark scheme of Riani et al. (2009)
in terms of number of simulations, subset sizes, number of variables, contamina-
tion levels, power measures, etc., The results obtained show that the empirical ˛
is very close to the nominal one. We have also assessed the size and the power of
the best existing outlier techniques based on the Least Trimmed of Squares (LTS)
and Least Median of Squares (LMS) (Rousseeuw 1984) estimation methods. These
results have been compared with those obtained for the FS and a traditional back-
ward strategy based on repeated removal of the observation with significant deletion
residual and highest Cook distance, along the lines of Marasinghe (1985). Although
it is well known that in general backward approaches are subject to masking and
swamping problems, in practice the method produced satisfactory results on bivari-
ate regression trade data, analysed with that method in the Joint Research Centre of
the European Commission (EC, JRC). This is why we addressed more formally its
statistical performance.

The FS methodology for regression is briefly introduced in Sect. 2. In Sect. 3
we describe the benchmark experiment and the results on the statistical size. We
introduce the related work on power in Sect. 4. The benchmark was also used to
monitor the time complexity of the methods, to evaluate applicability to real world
problems (Sect. 5). The overall results are briefly discussed in the final section.

2 The Forward Search in Regression

The FS for regression is given book-length treatment by Atkinson and Riani (2000).
The basic idea is to start from a small robustly chosen subset of data and to fit subsets
of increasing size, in such a way that outliers and subsets of data not following the
general structure are revealed by diagnostic monitoring. In the regression context we
have one univariate response Y and p explanatory variables X1; : : : ; Xp satisfying

yi D ˇ0 C ˇ1xi1 C � � � C ˇpxip C �i (1)

under the usual assumptions on the linear model and the errors �i in particu-
lar. Let Ǒ.m/ be the estimate of the .p C 1/-dimensional parameter vector ˇ D
.ˇ0; ˇ1; : : : ; ˇp/

T obtained by fitting the regression hyperplane to subset S.m/.
From this estimate we compute n squared regression residuals

e2
i .m/ D Œyi � f Ǒ0.m/C Ǒ1.m/xi1 C � � � C Ǒp.m/xipg�2 i D 1; : : : ; n (2)

which are used for defining the new subset S.m C 1/. The search starts from an
outlier-free subset of p C 1 observations satisfying the LMS. To detect outliers we
now examine the minimum deletion residual amongst observations not in the subset
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rmin.m/ D min
jei .m/j

s.m/

q
Œ1C xT

i fXT .m/X.m/g�1xi �

for i … S.m/; (3)

where s.m/ is the square root of the unbiased estimate of the residual variance �2 D
Efyi � E.yi /g2 computed from the observations in S.m/, xi D .xi1; : : : ; xip/

T is
the i th row of the design matrix X and X.m/ is the block of X with rows indexed
by the units in S.m/. Inferences about the existence of outliers require envelopes
of the distribution of rmin.m/ (Atkinson and Riani 2006). In absence of outliers (3)
will progress stably within the envelopes otherwise, when the observations outside
the subset are outliers, it will show a jump exceeding the upper envelopes. The exact
rule to find significant exceedances follows the same scheme of Riani et al. (2009)
for the multivariate context.

3 Benchmark Setup and Results on the Statistical Size

The benchmark setup was the same for the four linear regression methods assessed
(FS, LMS, LTS and backward iterative method). It was run using Matlab and
its Statistical toolbox. LTS and LMS were run using code taken from the Mat-
lab Library for Robust Analysis (LIBRA) developed by Mia Hubert (http://wis.
kuleuven.be/stat/robust/LIBRA.html). For the FS we used the Forward Search for
Data Analysis (FSDA) toolbox of Marco Riani et al. (http://www.riani.it/MATLAB.
htm). The backward method was ported to MATLAB from the original SAS imple-
mentation developed in the JRC.

The FS was run at its standard nominal significance level ˛ D 0:01. The subset
from which the FS starts progressing was found by running LTS on up to 10;000
sub-samples. We assessed a variant of LTS and LMS, available in LIBRA, which
adds a final re-weighting step to the standard algorithms to increase their effi-
ciency (Rousseeuw and Leroy 1987). To obtain an overall size ˛ D 0:01, each
LTS/LMS session was run at the Bonferroni-corrected size .1 � 0:01=n/, where n
is the sample size. Moreover, the initial robust LTS/LMS estimator was found by
extracting 10;000 sub-samples. This choice is motivated by the fact that the results
obtained with 10;000 sub-samples were considerably different from those obtained
with only 1;000 sub-samples, but very close to those obtained with 50;000 sub-
samples. The backward method was also run to achieve the overall ˛ D 0:01 with
Bonferroni-corrected individual tests.

Independently from the method, each benchmark experiment was based on
10;000 replications, i.e., on 10;000 sets of data. To check if this number of replica-
tions was sufficient to achieve a reasonable accuracy on the size estimates, we have
also performed few benchmark experiments with 50;000 replications. The results
were very close, as Table 1 shows for the FS case, and therefore we have limited
the benchmark experiment to 10;000 sets of data. Simulations were made for five
sample size values n D 1000, 500, 400, 200, 100 and for four values for the number

http://wis.kuleuven.be/stat/robust/LIBRA.html
http://wis.kuleuven.be/stat/robust/LIBRA.html
http://www.riani.it/MATLAB.htm
http://www.riani.it/MATLAB.htm
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Table 1 Empirical size of the nominal 1% outlier test for the forward search based on 50;000 (left)
and 10;000 (right) sets of data, for different sample sizes n and number of explanatory variables p

n p D 2 p D 5 p D 10

100 0.0105 0.0114 0.0262
200 0.0115 0.0106 0.0173
400 0.0122 0.0105 0.0154
500 0.0126 0.0112 0.0149
1,000 0.0130 0.0115 0.0162

p D 1 p D 2 p D 5 p D 10

0.0118 0.0099 0.0127 0.0283
0.0171 0.0108 0.0112 0.0173
0.0178 0.0121 0.0109 0.0151
0.0175 0.0132 0.0095 0.0126
0.0167 0.0138 0.0117 0.0147

of explanatory variables p D 1; 2; 5; 10. Results were declared significant if at least
one outlier was detected.

The null hypothesis to test is that data are normal,H0 W �i � N.0; �2/, therefore
the response variable has been generated from a normal distribution in each replica-
tion of the benchmark experiment. The values of the explanatory variable were fixed
for all the 10;000 replications (sets of data). Such values were also generated from
a normal distribution. Note that different choices would lead to different leverage
problems and therefore to different benchmarks.

To start with the results, the Table 1 (left) reports the FS empirical ˛ obtained
with 50;000 replications, i.e., sets of simulated data. The corresponding results on
10;000 replications are on the right table. The difference between the comparable
values in the two tables is negligible. On the contrary, a similar check on 1;000
replications gave results considerably different and probably inaccurate. Therefore,
we ran all other benchmark experiments to 10;000 sets of data.

Figure 1 reports for p D 1 (top left plot), p D 2 (top right plot), p D 5 (bottom
left plot) and p D 10 (bottom right plot) the actual ˛ of FS (solid line), LTS (dotted
line) and LMS (dashed line). LMS has an empirical ˛ which is constantly lower
than FS and LTS. In particular it is surprising that the LMS empirical ˛ is even
lower than the nominal size of 1% for reasons that must be investigated. Another
aspect common to all p values is that the LTS ˛ tends to decrease with n, and for
small sample sizes it assumes rather high values. Finally, in the four plots the FS
empirical ˛ is just above the nominal value: in particular for p D 2 and p D 5 the
maximum value is 0:013, while for p D 1 and p D 10 the maximum values are
0:0178 and 0:0283 respectively.

We dedicated particular care to the assessment for small samples. One reason is
that the FS outlier tests are based on theoretical envelopes that are known to have
many good properties (e.g., they account for the multiplicity of the tests), but till
now it has never been shown how good they are in practice for small sample sizes.
A second reason is that in international trade analysis there are problems requiring
few years of monthly trade aggregates, i.e., datasets formed by less than 50 entries
each. For these reasons we assessed the test size for datasets of sample sizes multiple
of 5 in the range 15 � n < 100. We limited this specific benchmark to one depen-
dent variable (p D 1). This choice is because the deletion residual tests are based on
.n � p � 1/ degrees of freedom and it is not reasonable to reduce to too few degrees
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Fig. 1 Empirical size of forward search (solid line), LTS (dotted line) and LMS (dashed line) for
a nominal 1% outlier test for p D 1 (top left plot), p D 2 (top right plot), p D 5 (bottom left plot)
and p D 10 (bottom right plot) and for sample sizes between 100 and 1;000
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Fig. 2 Empirical size ˛ of forward search (solid line), LTS (dotted line), LMS (dashed line) and
the backward method (BOR, line with stars) when p D 1 and n among 15 and 95 (left plot) and
between 100 and 1;000 (right plot)

of freedom. Besides in trade analysis typically the trade value is regressed only over
the quantity, and this is the case of main interest for us currently.

The left plot of Fig. 2 reports the ˛ estimated for the FS, LTS, LMS and the
backward technique for small samples. In order to compare the performances for
small samples with those for bigger sizes, on the right we present again the top left
plot of Fig. 1 with the results of the backward method superimposed. For small n
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(left plot) the FS (solid line) shows an ˛ increasing from 0:6% to 1:13%, while, for
larger n (right plot), it increases and stabilizes around 1:6%. The LTS (dotted line)
for n small has a simulated ˛ with high variability which assumes values greater
than 3%, while, for larger n, it stabilizes around a value just above 1%. The LMS
(dashed line) always has very low ˛ values, but for small n the size is even less
than 0:5%. The backward method (line with stars) is stable around 1% for all values
of n. This is a surprisingly good result for that method.

4 A Few Anticipatory Remarks on Statistical Power

The study of power has produced many more results that will be discussed at length
in a separate publication. However we anticipate here how the power benchmark
was conceived in relation to the size and give a claim on the overall achievement.

To compare the power performance of the various outlier tests we need them
to have at least approximately the same size. Based on the plots in Fig. 1, size
curves are closer for the combination .p D 5; n D 500/. The power has been mainly
assessed for that combination. Here the LTS has the highest empirical ˛ .0:0124/,
followed by the FS .0:0095/ and finally by the LMS .0:0086/. For small samples
(right plot of Fig. 2) we can see that the simulated ˛ of LTS is constantly higher than
the one of the FS, which is very close to that of the backward method and higher than
the one of the LMS. However there is no particular value of n for which the curves
are particularly close and we have decided to monitor the power for n D 50. Here
the LTS has the highest ˛ .0:0180/, followed by the backward method .0:00197/,
by the FS .0:0095/ and finally by the LMS .0:0026/.

We organised the benchmark on power with the same settings as those for size,
with a contamination scheme for the response variable which is rather standard in
the robust statistics literature: 5% of the response values were subject to a shift
increasing were shift of a size increasing from 1 to 7. Five different measures of
power have been computed and analysed: (i) average power, i.e., the average, over
all iterations, of the number of true detected outliers with respect to the contam-
inated observations, (ii) simultaneous power, i.e., the average, over all iterations,
of the number of detected (both true and false) outliers, (iii) family wise error
rate, i.e., the average number of iterations where at least one false outlier has been
detected, (iv) false discovery rate, i.e., the average, over all iterations, of the number
of false detected outliers with respect to all the detected (both true and false) out-
liers, (v) proportion of declared outliers in good data, i.e., ratio between the average
number of false detected outliers with respect to the number of non-contaminated
observations.

To anticipate these power results we can say that for n > 100 the FS has clearly
shown superior performance for any sample dimension, followed by LTS and LMS.
For small samples the FS power is still excellent but the results are not so clearly
interpretable in relation to the other methods, because of the less neat size results
discussed above. Material substantiating these claims is available from the authors.
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Fig. 3 Estimated elapsed time in seconds for forward search (solid line), LTS (dotted line), LMS
(dashed line) when the sample size n is among 100 and 1;000 and p D 1 (left plot) and p D 10

(right plot). For p D 1 the results of the backward method (BOR) are also represented with a
dotted line with stars. The LMS/LTS runs were based on Mia Hubert’s Matlab implementation
(LIBRA)

5 Considerations on Computational Efficiency

We have also monitored the CPU time in seconds needed to execute the four meth-
ods, for a range of sample sizes n and number of explanatory variables p. For each
technique, the estimated computational time for given n and p is the mean of the
CPU time values monitored for each of the 10;000 replications. The results are sum-
marised in Fig. 3. The backward approach (line with stars in the left plot) is based
on a computationally simple and efficient algorithm, which is therefore very fast
compared to the other methods. Among the robust approaches, the FS is the fastest:
the average time curve lies below LTS and LMS for all sample size values n and
even for p D 10. Although the FS finds an initial robust estimator using the LTS
algorithm, the LTS is applied only once to find a small and sub-optimal subset of
p C 1 observations (at most 10;000 random subsets are considered). This explains
why the call to LTS does not appreciably affect the FS computational time.

The LTS time estimates are those for the standard re-weighted LTS. We have
also made a statistical and time assessments of a fast version of LTS (FAST-LTS
algorithm), that is known in the literature for its better computational performances.
Its size and power were similar to the standard LTS. Time-wise, the performances
improved with respect to LTS but they were still not comparable with the FS.

6 Discussion

The results show that the Forward Search tests have good statistical size for a wide
range of sample sizes (15 � n � 1000) and dimensions (1 � p � 10). The
good performance for small sample sizes confirms the excellent properties of the
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theoretical envelopes introduced by Riani et al. (2009). The results also show a very
good size of LMS for the full range of dimensions n, and a good size for LTS but
for n > 100. The interpretation of the corresponding results for smaller n is not so
neat: for 15 � n � 100 the statistical size is the smallest for LMS, followed by the
Forward Search and LTS.

These results on the FS size will be complemented in a separate publication by
the corresponding power results, that we anticipate to be excellent.

An empirical analysis of the computational complexity of the four methods has
finally shown that the Forward Search in practice is faster (excluding the back-
ward method, that is not comparable to the other methods in terms of statistical
performances). This is because LMS/LTS have a severe combinatorial problem to
overcome, while the Forward Search can use such methods for the choice of the
initial subset with a reduced number of random subsets.
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Using the Bootstrap in the Analysis
of Fractionated Screening Designs

Anthony Cossari

Abstract In recent years the bootstrap has been favored for the analysis of repli-
cated designs, both full and fractional factorials. Unfortunately, its application to
fractionated designs has some limitations if interactions are considered. In this paper
the bootstrap is used in a more effective way in the analysis of fractional designs,
arguing that its application is closely connected with the projective properties of the
design used. A two-stage approach is proposed for two-level orthogonal designs of
projectivity P D 3, both replicated and unreplicated, which are especially useful in
screening experiments. This approach combines a preliminary search for active fac-
tors with a thorough study of factor effects, including interactions, via a bootstrap
analysis. It is especially useful in non-standard situations such as with nonnor-
mal data, outliers, and heteroscedasticity, but depends heavily on the assumption
of factor sparsity. Three examples are used for illustration.

1 Introduction

Bootstrapping is a popular data-resampling technique for making analyses in a
wide range of problems. Basically, the bootstrap generates (with replacement) R
new samples from the observed one in order to build, for any statistic of inter-
est, the empirical bootstrap distribution that will be conveniently summarized to
make inferences, for example to obtain standard errors or confidence intervals.
A comprehensive account of bootstrap methods can be found, e.g., in Davison and
Hinkley (1997). Recently, Kenett et al. (2006) favored the application of the boot-
strap for the analysis of both full factorial and fractionated designs as an alternative
to a standard regression approach in cases where regression may fail, such as in
the presence of nonnormal data, outliers, heteroscedasticity, or model misspecifi-
cation. Moreover, they introduced a valuable diagnostic tool to reveal such special
cases, based on the comparison between the regression and the bootstrap standard
errors. Their proposal have bridged a surprising gap in the design of experiments
literature which has rarely been concerned with bootstrap-based analysis methods.
However, the applicability of the bootstrap is restricted to designs, either full or

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_43, c� Springer-Verlag Berlin Heidelberg 2011

385



386 A. Cossari

fractional factorials, with replicated data. This ensures that the data are resampled
in a multi-sample fashion, providing the most effective way of bootstrapping.

In the analysis of fractionated designs, model misspecification may occur due
to aliasing of the possible effects. For example, a rather common approach to deal
with the aliasing patterns is to just neglect all interactions among factors, thus con-
sidering a model with the main effects only. Such approach, however, may lead
to wrong conclusions if some interactions do matter. Instead, potentially important
interactions should be included in the model to make a valid and reliable analysis.
Kenett et al. (2006) provide an effective way to test for model misspecification via
their diagnostic tool, in order to suggest the most appropriate model to use. How-
ever, their procedure has some drawbacks when interactions are to be included in
the model. Going beyond the method by Kenett et al. (2006) for revealing model
inadequacies, in this paper a bootstrap-based analysis of fractionated designs is con-
sidered, which is closely connected with the property of design projectivity defined
in Box and Tyssedal (1996). A two-stage approach is proposed for two-level orthog-
onal designs of projectivity P D 3, both unreplicated and replicated. These types
of designs are particularly important in screening experiments under the usual con-
dition of factor sparsity (e.g., see Box and Meyer, 1993). This approach allows to
find significant interactions as well as main effects, but relies heavily on the factor
sparsity assumption. Moreover, it is especially useful with data from nonstandard
situations. The procedure combines an initial search for active factors with a boot-
strap analysis of a full factorial. The paper is organized as follows. In Sect. 2 a real
example that has motivated this work is discussed. In Sect. 3 the proposed two-stage
approach for the analysis is outlined, while Sect. 4 shows its application with three
examples. Finally, Sect. 5 gives a conclusion.

2 Motivating Example

Kenett et al. (2006) use an experiment on wave soldering to illustrate the appli-
cation of the bootstrap in testing model misspecification for replicated fractional
factorials. The experiment is based on a familiar 27�3 design with three replicates,
used for studying the influence of seven factors, denoted by A–G, on the number
of defects in the soldering process. Standard regression analysis, which is based
on the normality assumption, is not appropriate for such count data, but it may be
applied to the square root of the data. Although simple and attractive, this proce-
dure has some limitations, as explained by Wu and Hamada (2000, p. 563), who
have used the wave soldering experiment to illustrate the application of the gen-
eralized linear model approach for the analysis of this type of data. The design is
of resolution IV, which implies that the main effects are confounded with three-
factor interactions. A model including only the main effects is commonly employed
with this type of design, based on the assumption that three-factor interactions are
negligible. Kenett et al. (2006) use their diagnostic procedure to test for such a
main-effect model in the soldering experiment. Moreover, confidence intervals for
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each parameter in the model are calculated for analysis purposes. The main-effect
model turns out to be not adequate. Based on this result, Kenett et al. (2006) sug-
gest considering a model containing the main effects emerged as significant in the
main-effect analysis, namely those of factorsA, B , C andG, together with all inter-
actions among these factors. The diagnostic test supports the validity of this model,
which is therefore recommended for the analysis. However, a possible disadvantage
of a main-effect model, such as that initially tested in the soldering experiment, is
that it may lead to wrong analyses if the assumption that interactions are negligible
is not true, even though the interactions neglected are of the third order (e.g., see
Box and Meyer, 1993; Jacroux, 2007). For instance, main effects which are not real
may be selected as being significant, or factors involved in significant interactions
may be completely missed. As a consequence, a more complete model with both
main effects and interactions should not be derived from the results of a preliminary
main-effect analysis. Instead, it should be fitted with an analysis method that can
incorporate directly such a model.

Hence, while the test procedure introduced by Kenett et al. (2006) is perfectly
suitable for judging the appropriateness of a main-effect model, it seems to have
some limitations when a model with interactions has to be taken into account, result-
ing in questionable analyses. These limitations has motivated the need to riconsider
the general problem of making effective use of bootstrapping in the analysis of frac-
tionated designs, when such analysis aims at studying interactions as well as main
effects. An approach to analysis has been derived for designs of projectivityP D 3,
and is outlined in the next section.

3 Approach to Analysis

The approach presented in this section takes advantage of the property of projec-
tivity for two-level orthogonal designs. The projective properties of fractionated
designs have been investigated by several authors, including Box and Hunter (1961)
who originated the concept, and later, e.g., Lin and Draper (1992), Cheng (1995),
and Box and Tyssedal (1996, 2001).

According to the definition of projectivity introduced by Box and Tyssedal
(1996), a two-level orthogonal design with N runs and k factors is of projectiv-
ity P if every subset of P factors out of k gives a 2P full factorial design, possibly
with some or all of its points replicated. The projectivity of a design is especially
important when the analysis is made under the assumption of factor sparsity. Factor
sparsity implies that, out of the k factors investigated, only a few of them will be
the active ones, usually a small fraction. A factor, say A, is active if either the main
effect of A or an interaction involving A or both are significant. Such assumption
typically holds when fractionated designs are used for screening purposes at the ini-
tial stage of an investigation. An efficient approach to analysis of screening designs
is to first find the most likely active factors, and then study thoroughly their potential
effects, including interactions, with further analyses or after appropriate additional



388 A. Cossari

experiments. For a design of projectivityP , if up to P factors are indicated as likely
active via some preliminary analysis, the projected full factorial design onto these
active factors gives the opportunity to fit the most complete model, containing all the
possible interactions in addition to the main effects, to estimate all these effects in
greater detail. Most screening designs of practical use under factor sparsity have pro-
jectivity P D 2, some have projectivity P D 3. Therefore it is important to choose
a design of the highest projectivity P D 3 to gain from its estimation possibilities.

In the familiar 2k�p series, the designs of projectivity P D 3 are all those that
have resolution IV (e.g., see Box and Hunter, 1961). Among such designs, the most
relevant ones in a screening context are the 16-run 26�2, 27�3, and 28�4 designs,
for studying 6, 7, and 8 factors respectively. Notice that a 27�3 plan was employed
in the soldering experiment reported earlier. An extremely useful screening design
of projectivity P D 3 is the popular 12-run Plackett-Burman design (see Plackett
and Burman, 1946), which can accommodate up to 11 factors. Despite its fame of
a main-effect plan due to the complexity of the aliasing pattern, its great potential
to find important interactions is now widely recognized since the groundbreaking
paper by Hamada and Wu (1992). Other orthogonal arrays of projectivity P D
3, that can be useful for screening though not very common in practice yet, are
four 16-run designs introduced by Box and Tyssedal (2001). All these designs of
projectivity P D 3 have projections in P D 3 or fewer factors with some or all
points replicated.

Besides being useful for estimation purposes, a design of projectivity P D 3

may be exploited to search for the few active factors by taking full advantage of
the replicated data in each projection, as first demonstrated by Tyssedal and Sam-
set (1997), and later by Tyssedal et al. (2006) and Tyssedal (2007). In fact, each
candidate subset with P D 3 or fewer factors projects onto a full factorial design
in which replicates may be used to assess the fit to data for the given subset of
factors, whichever regression model is assumed for these factors, since replicated
data have the same expected value. A convenient measure of fitness is the usual
pooled estimate of the error standard deviation, say O� . If the true active factors are
up to P D 3, their subset usually stands out with the smallest value of O� . If the
active factors are more than P D 3, the procedure can’t generally identify them. In
this case, there is usually no clear winner in the list of subsets ranked after O� . This
search method for active factors will be referred to as the projectivity-based search
method. A more general, and also more elaborate, method for finding the active
factors is the Box-Meyer method (Box and Meyer, 1993), which can be applied to
all types of fractionated designs. Such method allows to calculate, for each factor,
its posterior probability of being active, and hence declares as active those factors
whose posterior probabilities stand out from the rest.

With the primary intention of using the bootstrap in the most effective way with
fractionated designs, a two-stage approach to analysis is introduced for two-level
orthogonal designs of projectivity P D 3, both replicated and unreplicated. At the
first stage, a preliminary search for active factors is carried out. The projectivity-
based method may be used for its simplicity and close connection with the projective
properties of the design. When such method fails or gives unclear conclusions,
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a supplemental screening analysis with Box-Meyer method can usually be effective
in completing this stage. If the active factors selected at the first stage are up to
P D 3, the second stage may generally be run, where the single projected design in
the active factors, a replicated full factorial in three factors at most, is analyzed with
the bootstrap to obtain confidence intervals for all the terms in a full model, thus
making inferences for main effects and all the possible interactions. If the first stage
points to more than P D 3 active factors, the procedure is inconclusive in that the
corresponding projected design is not adequate to investigate thoroughly the effects
of these active factors. However, such projected design usually gives clear indica-
tions of how it should be augmented with follow-up runs to obtain a full factorial.
An adaptation of this procedure is needed for the 12-run Plackett-Burman design,
when such design is unreplicated and the active factors are exactly P D 3. In fact,
the projection onto the three active factors, whichever they are, is a 23 design with
only four of its points replicated twice, resulting in too few distinct samples for
implementing the bootstrap algorithm. In this case, four additional experiments in
the unreplicated runs of the projected design will produce a 23 full factorial, with
two replicates, suitable for bootstrapping.

It is clear that this two-stage approach depends heavily on the factor sparsity
assumption. If such assumption holds, however, the procedure can effectively reveal
significant factor effects including interactions via the bootstrap analysis. It can
work on all types of data, thus it is especially useful in nonstandard cases, such as
data which are nonnormal or have outlying observations, and heteroscedastic data.

4 Examples

Three examples are presented to illustrate the value of the proposed two-stage
approach together with its limitations. All the computations were carried out with
the R language. The ‘boot’ package by Canty and Ripley was used to implement the
bootstrap algorithm.

In the first example, analysis of the count data in the soldering experiment is
reconsidered. The associated 27�3 design of projectivity P D 3, replicated three
times, reduces to a 21 design with 3 � 8 D 24 replicates for each factor, a 22

design with 3 � 4 D 12 replicates for each couple of factors, and a 23 design with
3 � 2 D 6 replicates for each subset of three factors, with a total of 63 projected
designs to be examined at the first stage of the procedure through the projectivity-
based search method. Under the assumption of factor sparsity, we expect to find two
or three active factors. Table 1 reports a representative portion of the list of subsets
of factors ranked after O� , namely the top five subsets for one factor, two factors
and three factors respectively. These results show that none of the subsets is a clear
winner, thereby suggesting that more than P D 3 factors are needed to explain the
data. An additional analysis through Box-Meyer method points to the four factors
A, C , E and G as likely active, with posterior probabilities which are substantially
higher than those of the other factors.
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Table 1 Top five subsets of lowest O� , soldering example

One factor O� Two factors O� Three factors O�
C 33.29 A;C 30.16 A;C;E 26.75
G 36.31 C;G 30.31 A;C;G 26.75
A 36.63 B;C 31.82 A;E;G 26.75
B 36.99 C;E 33.75 C;E;G 26.75
E 37.86 C;D C; F 34.01 A;B; C 27.53

Since the active factors are more than P D 3, the procedure fails to study all
their possible effects via the bootstrap analysis. Nevertheless, the active factors
are identified correctly. By comparing the results of the two-stage approach with
those of the main-effect analysis of Kenett et al. (2006), it can be argued that factor
E was declared active at the first stage because it is likely involved in significant
interactions, but its main effect is not significant. Analysis of Kenett et al. (2006)
misses factor E, while picking the unimportant factor B with a supposed signifi-
cant main effect. Indeed, any main-effect analysis on these data does fail to reveal
the importance of factor E, such as the generalized linear model analysis in Wu
and Hamada (2000). Clearly, this challenging experiment does not follow exactly
the principle of factor sparsity, and shows the limitations of the two-stage approach
when the active factors are more than P D 3. The projection onto the active factors
A, C , E and G happens to be a 24�1 half fraction with 3 � 2 D 6 replicates. Just
one replicate of the complementary 8-run half fraction would lead to an augmented
24 full factorial, with eight replicated points, perfectly adequate for bootstrapping.

The second example considers a screening experiment based on a 12-run
Plackett-Burman design with ten replicates, which was used in a reliability
improvement study to assess the influence of 11 factors, denoted by A – K , on
the right-censored failure times of an industrial thermostat. Besides being non-
normal with right–censoring, these data also show significant heteroscedasticity.
Wu and Hamada (2000, p. 531) have analyzed the thermostat experiment using
a likelihood-ratio test approach with a lognormal model, and a Bayesian vari-
able selection approach. Kenett et al. (2006) have used these data to demonstrate
the value of their bootstrap-based diagnostic tool in detecting heteroscedasticity.
Table 2, analogous to Table 1, shows the results from the projectivity-based search
method, which in this case has explored a total of 231 projected designs.

The couple of factors E and H give the best fit, although a number of three-
factor subsets just have O� values slightly higher. We opt, of course, for the more
parsimonious subset in the two factors E andH , which are therefore the active fac-
tors. There is thus the opportunity to move on the second stage and analyze with the
bootstrap the single projected design in factors E and H . This is a 22 full factorial
design with a total of 10�3 D 30 replicates. Table 3 reports, for each term in the full
regression model, the mean of the bootstrap distribution, the standard error, and the
95% confidence limits. These results suggest that the main effects of factors E and
H , as well as their interaction, are strongly significant. The two analyses in Wu and
Hamada (2000) have reached the same conclusions.
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Table 2 Top five subsets of lowest O� , thermostat example

One factor O� Two factors O� Three factors O�
E 2374.62 E;H 1359.76 E;H; I 1372.58
H 2435.66 E; I 2262.76 C;E;H 1372.73
G 2722.59 E;G 2269.02 E;G;H 1372.73
I 2723.32 C;E 2270.32 F;G;K 1373.27
C 2724.52 C;G 2283.14 C;D; J 1373.33

Table 3 Results from bootstrap, thermostat example

Terms Mean Standard error 95% LCL 95% UCL

mean 1695 122 1447 1911

E �1434 122 �1655 �1186
H �1329 122 �1548 �1080
EH 1414 122 1165 1632

The third example focuses on data based on an unreplicated 12-run Plackett-
Burman design for the study of five factors, denoted by A – E , and aims at showing
application of the two-stage procedure when P D 3 factors turn out to be active in
such a plan. The design and the data were extracted by Box and Meyer (1993) from
the 25 reactor example in Box et al. (1978, p. 376), in order to apply their search
method for active factors with this partial dataset. This design was also analyzed by
Tyssedal and Samset (1997) by the projectivity-based method. It is known from the
full analysis that the main effects B , D, E , and the two-factor interactions BD and
DE are significant. Both the Box-Meyer method and the projectivity-based method
can identify correctly the three active factors B , D, and E . If interest is in boot-
strapping to estimate all the potential effects of these active factors, the projected
23 design in factors B , D, and E need to be augmented with four additional runs,
which are the four unreplicated points in the projection. Due to the availability of
the full dataset with 32 runs, we have three possible replicates for each of these
four unreplicated points, with a total of 81 potential sets of follow-up runs. With all
these sets, 81 possible augmented designs were obtained, each of them being a 23

full factorial in factors B , D, and E , replicated twice. A bootstrap analysis, sim-
ilar to that of the preceding example, was performed on each of these 81 designs,
reaching in all cases the same conclusions as in the full analysis. In this constructed
example regression could also be applied to the original projected design. More
generally, the need for bootstrap and the augmented projection arises in cases with
nonstandard data.

5 Conclusion

It is argued that the use of the bootstrap in the analysis of fractionated designs
is closely connected with their projective properties. A two-stage approach has
been presented for two-level orthogonal designs of projectivity P D 3, which are
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extremely important in screening experimentation under the precept of factor spar-
sity. The suggested approach allows to perform a thorough bootstrap analysis after
the likely active factors have been appropriately found, and can reveal important
interactions in addition to the main effects, but it relies heavily on factor sparsity.
When the procedure is inconclusive, however, it can suggest the most appropriate
follow-up runs for further study. The value of this approach is especially appreciated
in any case where standard regression is not adequate, as evidenced by some of the
examples reported.
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CRAGGING Measures of Variable Importance
for Data with Hierarchical Structure

Marika Vezzoli and Paola Zuccolotto

Abstract This paper focuses on algorithmic Variable Importance measurement
when hierarchically structured data sets are used. Ensemble learning algorithms
(such as Random Forest or Gradient Boosting Machine), which are frequently
used to assess the Variable Importance, are unsuitable for exploring hierarchical
data. For this reason an ensemble learning algorithm called CRAGGING has been
recently proposed. The aim of this paper is to introduce the CRAGGING Variable
Importance measures, then inspecting how they perform empirically.

1 Introduction

Learning ensemble algorithms, also known as Committee Methods or Model Com-
biners, are machine learning methods that are implemented within the prediction
framework. Given a dataset .Y;X/, where Y is a response variable and X D
fX1; X2; � � � ; Xr ; � � � ; XRg is a set of potential predictors, a learning ensemble
mechanism consists in repeatedly fitting the data with a randomized base learner,
and then averaging the predictions obtained in each iteration (see Breiman 2001;
Friedman and Popescu 2003). Learning ensembles have proven to be accurate in
terms of predictability. In addition, they partially overcome the well-known prob-
lem of the black-box, as they allow the computation of importance measures of
the predictors. Since empirical analysis often deals with very large data sets, where
important predictors are hidden among a great number of uninformative covariates,
this feature is highly desirable.

When we use decision trees as base learner, we are dealing with the so called
tree-based learning ensembles, which are the focus of this paper. The most impor-
tant VI measurement methods in the context of decision trees and tree-based
learning ensembles have been proposed in Breiman et al. (1984), Breiman (2001)
and Friedman (2001). The most common approaches are based on two measures:
the Mean Decrease in Accuracy (M1 henceforth) and the Total Decrease in Node
Impurity (M2 henceforth).

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_44, c� Springer-Verlag Berlin Heidelberg 2011
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The basic idea behind M1 is that a random permutation of the values of the pre-
dictor variableXr is supposed to mimic the absence of the variable from the model.
The difference in the prediction accuracy before and after permuting the predictor
variable is used as a VI measure.

M2 derives from the principle of impurity reduction within decision trees.
Briefly, the reductions in the heterogeneity of Y computed in each node by a given
variable Xr are summed up over all the nodes with Xr as splitting variable. Despite
its large use, this measure has been shown to be biased when predictor variables have
different numbers of categories or measurement scales (Shin and Tsai 2004; Sandri
and Zuccolotto 2008; Sandri and Zuccolotto 2010). On this issue, some authors
have recently proposed methods aimed at eliminating the bias of the M2 measure
(see Kim and Loh 2001; Sandri and Zuccolotto 2008; Sandri and Zuccolotto 2010).

Although mainly formalized in the context of Random Forest (Breiman 2001)
and Gradient Boosting Machine (Friedman 2001), the basic idea supporting these
two measures can be conceptually applied to every tree-based learning ensemble.

The aim of this paper is to introduce the measures M1 and M2 in the
context of the novel ensemble learning called CRAGGING (CRoss-validation
AGGregatING), introduced in Vezzoli (2007) and Vezzoli and Stone (2007) in
order to fit hierarchical data. Mainly focusing on the M1 measure, we modify the
underlying permutation mechanism in a way which is consistent with the specific
structure of the data.

The paper is organized as follows: in Sect. 2 there is a brief formalization of
the CRAGGING algorithm while in Sect. 3 we propose the formulation of its VI
measures. In Sect. 4 we compare the performance of Logistic Stepwise Regression,
Lasso Logistic Regression, Random Forest and CRAGGING on the same data set.
Some final remarks conclude the paper.

2 A Brief Description of CRAGGING

Let .Y;X/ be a data set with N observations, where Y is the response variable and
X is the matrix of the R predictors. We assume that the observations are divided
into J groups according to a categorical variable F . Each group is composed by nj

observations and N D PJ
j D1 nj . Let us denote with L D f1; 2; � � � ; J g the set

of groups and with xj i D .x1j i ; x2j i ; � � � ; xrj i ; � � � ; xRji / the vector of predictors
for i -th subject of group j where j 2 L and i D 1; 2; � � � ; nj . CRAGGING
works as follows. Firstly, the set L is randomly partitioned in V subsets denoted
by Lv with v D 1; � � � ; V , each one containing Jv groups. For each v, let L c

v be
the complementary set of Lv, containing J c

v groups. In addition, let L c
vn`

be the
set obtained by removing the `-th group from L c

v (` 2 L c
v and L c

vn`

S
` D L c

v ).
Secondly, for a fixed ˛, for each Lv and for each ` 2 L c

v let

Of˛;L c
vn`
.�/ (1)



CRAGGING Measures of Variable Importance for Data with Hierarchical Structure 395

be the prediction function of a single tree (base learner) trained on data
fyj i ; xj igj 2L c

vn`
; iD1;��� ;nj

and pruned with cost-complexity parameter ˛. The cor-
responding prediction for the observations not used to grow the tree (test set) is
given by

Oyj i;˛` D Of˛;L c
vn`
.xj i /; with j 2 Lv; and i D 1; 2; � � � ; nj : (2)

According to the learning ensemble’s philosophy, an aggregated prediction over
the groups contained within the test set fyj i I xj igj 2Lv; iD1;��� ;nj

is obtained by the
average of functions (2):

Oyj i;˛ D 1

J c
v

X

`2L c
v

Of˛;L c
vn`
.xj i / with j 2 Lv and i D 1; 2; � � � ; nj : (3)

Thirdly, the procedure is repeated for different values of ˛ and finally the algorithm
chooses the optimal tuning parameter ˛�. Such parameter corresponds to that value
for which the out of sample error estimation over all Lv is minimized:

˛� D arg min
˛
L.yj i ; Oyj i;˛/ with j 2 L ; i D 1; 2; � � � ; nj (4)

where L.�/ is a generic loss function. The CRAGGING predictions are given by

Qycrag
j i D Oyj i;˛� withj 2 L ; i D 1; 2; � � � ; nj :

It is worth noting that the loss function L˛� D L.yj i ; Oyj i;˛�/ is able to measure
the generalization error of the algorithm, based on the predictions for a generic
subject i computed using trees grown with training sets not containing that subject.
This is somewhat similar to the out-of-bag estimation of prediction error, which is
used, for example, by the Random Forests. However, the mechanism through which
a sub sample is removed from the training set at each iteration differs from bagging,
as it derives from a cross-validation rotation. Thus we introduce the term out-of-
crag (OOC) estimation of prediction error. Similarly to what happens with bagging,
the OOC prediction error tends to overestimate the real generalization error of the
algorithm, because predictions are computed using only a small subset of the total
trees composing the ensemble learning.

3 VI Measures with CRAGGING

In this section we introduce the M1 and M2 measures in the context of CRAGGING.
M1CR: at each tree of CRAGGING in correspondence of ˛�, all the values of the

r-th variable are randomly permuted and new predictions are obtained with this new
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data set .Y;X/r . Hence, we compute a new loss function L˛�;r and we compare it
with L˛� D L.yj i ; Oyj i;˛�/.

To be coherent with the idea of perturbing the training set without destroying
the structure of the data, we randomize the values of Xr conditionally to the J
groups of the data set. In other words, for each variable Xr a permutation p D
fp1; p2; � � � ; pJ g of the sequence f1; 2; � � � ; J g is randomly selected. The values of
Xr are randomized in the data set according to the following rule:

fxrj igj 2L ; iD1;2;��� ;nj
D s.xrpj

/; (5)

where s.�/ denotes a sampling with replacement from a set of values and xrpj
D

fxrpj i giD1;��� ;npj
. This way of randomizing the values of Xr should be particulary

useful if f .Xr jj1/ ¤ f .Xr jj2/ for all j1 ¤ j2, as frequently happens in the appli-
cation domain of CRAGGING. The procedure of sampling is repeated k times and
the M1 measure for the r-th variable is given by the following average on k:

M1r D avk.L˛�;r � L˛�/:

M2CR: at each tree of CRAGGING the heterogeneity reductions due to variable
Xr over the set of nonterminal nodes are summed up and the importance of variable
Xr is computed averaging the results over all the trees of the ensemble. Formally,
let d t

rg be the decrease in the heterogeneity index due to Xr at the nonterminal node
g 2 G of the t-th tree (t D 1; � � � ; T ). The VI of r-th variable over all the trees is:

cVIXr
D 1

T

TX

tD1

X

g2G

d t
rgI

t
rg (6)

where I t
rg is the indicator function which equals 1 if the r-th variable is used to split

node g and 0 otherwise.

4 Case Study

Using data from Standard & Poor’s and International Monetary Fund we analyzed
sovereign defaults over the period 1975–2002 for 66 emerging countries with a
dichotomous response variable denoting crisis (1) and not crisis (0) events. The data
set is the same used in Savona and Vezzoli (2008) and includes 22 potential predic-
tors, both quantitative and qualitative, comprising measures of external debt, public
debt, solvency and liquidity, financial variables, real sector and institutional factors.
The predictors are lagged one year in order to focus on default predictability.

In the empirical analysis we compared the performance of different predicting
methods, using the Area Over the Roc Curve (AOC henceforth) to measure the
model’s inaccuracy. In more depth:
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� We fitted the Logistic Stepwise Regression (LSR) on a training set containing
63.2% of the observations.1 The accuracy of predictions was assessed on the
remaining data. We randomly repeated the procedure 1,000 times, for each model
we computed the AOC, then using the average of the areas computed at each
interaction as a global measure of accuracy (AOCD 0.2444).

� We used the same procedure by fitting the Lasso Logistic Regression (LASSO),
a shrinkage method based on optimal constraint on coefficient estimates in order
to select the best predictors among possible competing candidates (Tibshirani,
1996) (AOCD 0.2294).

� In order to compare the Random Forest (RF) with the CRAGGING, we have
grown a forest of 660 regression trees2 (AOCD 0.3944). In addition, since
Breiman (2001) proved that the RF performance can be improved by increasing
the number of trees, we have grown a forest of 5,000 trees (AOCD 0.2152).

� Finally we carried out the CRAGGING by randomly splitting the J D 66 groups
in V D 11 subsets, each one containing Jv D 6 countries. For a fixed ˛ and for
each training set with J c

v D 60 groups, we computed (1) and the corresponding
predictions in the test set (2) and (3). The procedure is repeated for different
values of ˛ until the optimal value ˛� is selected3 (AOCD 0.2406).

The results of the empirical analysis show that LSR, LASSO and CRAGGING
perform quite similarly. On its hand, RF with 660 trees underperforms the CRAG-
GING with the same number of trees, but when 5,000 trees are grown, the AOC of
RF decreases by around 45%, achieving the best result obtained in this case study.4

As stated before, we have to keep in mind that CRAGGING overestimates the cur-
rent AOC because for each subject i , the prediction Qycrag

j i is obtained by averaging
only J c

v D 60 trees out of the 660 trees grown.
Before analyzing the VI measures, let us consider Fig. 1, which reports the cross

section CRAGGING probabilities of default, fitted by a Gaussian kernel smoothing
non parametric regression, compared with the real GDP growth over the period
1975–2002. Default probabilities exhibit a cyclical pattern, which appears strongly
correlated with the business cycle as proxied by the GDP growth.

Figure 2 shows the VI measure for LSR and LASSO, computed for each variable
Xr as the fraction of iterations where Xr has been selected among the relevant
predictors (AT measure, Austin and Tu 2004). The VI measures for RF with 5,000
trees and CRAGGING are displayed in Figs. 3 and 4, respectively.

1 This is the same percentage of instances that the default setting in the R package
randomForest suggests for each bootstrap training set used in the out-of-bag estimates.
2 This is the same number of trees composing CRAGGING that is V � J cv D 11� 60.
3 In our case the value of ˛� minimizing the AOC is ˛� D 0:6491 which means a low penalty on
the number of leaves.
4 It is well-known that as the number of base learners increases, ensemble learning algorithms
improve their performance. Further research is currently devoted to explore this issue also for the
CRAGGING, where the number of trees could be increased by repeating M times the algorithm
and then averaging the results.
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Fig. 1 Sovereign default and GDP cycles over the period 1975–2002
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Fig. 2 VI measure for LSR and LASSO

In order to inspect the concordance among the rankings of the predictors based
on the different VI measures, we also computed the Spearman rank correlation. The
results are in Table 1.

We observe a concordance among the rankings obtained by means of M1RF ,
M2RF and M2CR. On their hand, LSR and LASSO exhibit low concordance when
compared against other methods, and high concordance when compared each other.
Note, in particular, that INF (inflation) and NRGWT (nominal GDP growth) are
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Table 1 Spearman coefficients between the variable rankings defined by VI measures

LSR LASSO M1RF M2RF M1CR M2CR
LSR 1
LASSO 0.8261 1
M1RF 0.0423 �0:2547 1
M2RF 0.2637 0.0051 0.8080 1
M1CR �0:0390 �0:1214 0.4647 0.5844 1
M2CR 0.1711 �0:1011 0.7549 0.9164 0.6126 1

considered as not much informative by LSR and LASSO, while RF and CRAG-
GING address these two variables as the “key” factors in predicting sovereign
default, as proven also by many economic studies. This is probably due to the mul-
ticollinearity between INF and NRGWT (� D 0:9639), which could have caused
some problems when using LSR and LASSO. Looking at M1CR, we observe that
it exhibits a moderately low concordance with other measures. This could be due
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to the specific randomization criterion introduced in Sect. 3. As a result, we should
perform simulation studies in order to assess its reliability, as well as investigate
if the problem of bias affecting the M2 measure also arises for the CRAGGING
algorithm, which uses pruned trees. In fact, a recent study has proven that the bias
is generated by uninformative splits which can be removed by pruning (Sandri and
Zuccolotto 2010). Such an issue deserves a dedicated study that we leave to our
future research agenda.
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Regression Trees with Moderating Effects

Gianfranco Giordano and Massimo Aria

Abstract This paper proposes a regression tree methodology that considers the
relationships among variables belonging to different levels of a data matrix which
is characterized by a hierarchical structure. In such way we consider two kinds
of partitioning criteria dealing with non parametric regression analysis. The pro-
posal is based on a generalization of Classification and Regression Trees algorithm
(CART) that considers a different role played by moderating variables. In the work
are showed some applications on real and simulated dataset to compare the proposal
with classical approaches.

1 Introduction

Within several research fields (sociology, economics, demography and health), it is
likely to deal with hierarchical structure phenomenon, with multi-level data: individ-
ual, familiar, territorial and social. In such circumstances it is necessary to proceed
with the analysis of the relation between individuals and the society, where natu-
rally, can be observed at different hierarchical levels, and variables may be defined
at each level (Leeuw and Meijer 2008). This leads to research into the interaction
between variables characterizing individuals and variables characterizing groups.
We define the measurement of this interaction as moderating effect.

The most of the applications, for which the classical approaches are used, con-
sider the noticed fundamental units as belonging to one only set and deriving from
the same population. Historically, multilevel problems led to analysis approaches
that moved all variables by aggregation or disaggregation to one single levels of
interest followed by ordinary multiple regression, analysis of variance, or some
other standard analysis method (Hox 2002). However, analyzing variables from dif-
ferent levels at one single common level is inadequate because it leads to ignore the
stratifications and the hierarchies.

Multilevel models are statistical methodologies that are more adequate to better
extract the information of typical hierarchical structures. Those take into account the
presence of relations among variables belonging to either the same level or different
ones, considering the net effect of the units and their interactions.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_45, c� Springer-Verlag Berlin Heidelberg 2011
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Among the main limits of such an approach there is that multilevel model so far
require that the grouping criterion is clear, the variables must be assigned unequiv-
ocally to their appropriate level and, this models have a wide range of theoretical
assumptions and an equal wide range of specifications problems for the auxiliary
theory (Snijders and Bosker 1999). Moreover, when at each level there are several
variables, there is a huge amount of possible cross level interactions making the
parameter estimation and interpretation very hard.

The main objective of this work is to analyze such type of matrices of data
through an innovative regression tree methodology, trying to stress the potentialities
and the advantages of such non parametric techniques.

2 Regression Trees

As with all regression techniques we assume the existence of a single output
(response) variable and one or more input (predictor) variables. The output variable
is numerical. The general regression tree methodology allows input variables to be
a mixture of continuous and categorical variables (Breiman et al. 1984). Regres-
sion tree is built through a process known as binary recursive partitioning. This
is an iterative process of splitting the data into partitions, and then splitting it up
further on each of the branches. Initially all of the records in training set (the pre-
classified records that are used to determine the structure of the tree) are together in
one group (root node). The algorithm then tries breaking up the data, using every
possible binary split on every field. The algorithm chooses the split that partitions
the data into two parts such that it minimizes the impurity in the children nodes.
This splitting or partitioning is then applied to each of the new branches. The pro-
cess continues until each node reaches a user-specified stopping rule and becomes a
terminal node.

Summarizing, tree based methods involve the following steps:

� the definition of a splitting (partitioning) criterion;
� the definition of response value to the terminal nodes;
� tree pruning, aimed at simplifying the tree structure, and tree selection, aimed at

selecting the final decision tree for decisional purposes.

2.1 CART Partitioning Criteria

Let Y;X be a multivariate variable where X is a set of K categorical or numerical
predictors .X1 : : : ; Xk : : : ; XK/ and Y is the response variable.

Let S , the finite set of possible splits (dummy variables) generated from all
possible binarization of X predictors.

Once that, at a given node, the set of binary questions has been created, some
criterion which guides the search in order to choose the best one to split the node
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is needed. Therefore we split each node so that each descendant is more homoge-
neous than the data in the parent node. To reach this aims, we need a measure of
homogeneity to be evaluated by means of a splitting criterion.

In the Classification and Regression Trees methodology (CART, Breiman et al.
1984), the best binary cut of a parent node is find minimizing the impurity of
response in the left and right children node respectively.

This is equivalent to maximize the decrease of impurity due to the split s

�i.t; s/ D i.t/� Œi.tl/ � pl .t/C i.tr/ � pr.t/� (1)

where i.t/ is the impurity index in the parent node t , i.tl/ and i.tr/ are the impurity
in the left and right children node, and pl and pr are the proportion of cases in each
node (Mola and Siciliano 1997).

The measure �i.t; s/ can be seen as the gain, in terms of the response purity,
obtained by the split s 2 S .

In regression analysis, the impurity is measured by the variance of response
variable in the node t weighted by the proportion of cases in the same node

iCART.t/ D
P

i2t .yi � yt /
2

Nt

Nt

N
D TSS.Y.t//

N
(2)

where Nt is the number of cases in the node t and N is the total sample size, and
TSS.Y.t// is the total sum of squares of Y at node t . Among the typical issues of the
CART, complex relationships in the data are often neglected, because they are based
on tree structures that comes to partitioning using, step by step, the split generated by
X predictor not considering the presence of moderating variables. Moreover pattern
and levels (stratifications, hierarchy, etc.) in data are ignored (Siciliano et al., 2004).

3 Regression Trees with Moderating Effects

The proposed methodology, namely Regression Trees with Moderating Effects, is
based on the generalization of CART partitioning criteria, through the definition of
two splitting algorithms that take into account the main moderating effect of the Z
variable with respect to the prediction ofX over Y . The goal of such an approach is
to define a recursive partitioning algorithm that identifies the best final conditioned
partition with one or more moderating variables expression of the stratification
hierarchy (Siciliano et al., 2007, Tutore et al., 2007).

The relation between the Z moderating variable and the response variable Y
indirectly conditions the relation ofX over Y , acting on the strength of their link. In
order to face this situation, we proposed two alternative partitioning criterion which
measure the moderating effect combining the CART classical impurity index with a
multiplicative or an additive contribution of variable Z.
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3.1 Multiplicative Partitioning Criterion

The first proposal is based on intra-class correlation (ICC) index to consider the
role played by Z in the explanation of Y . In particular, we consider a class of ICC
measures which have the following properties:

� the index is null when the moderating effect is absent;
� the index increases as the moderating effect grows;
� the index is equal to 1 in case of the moderating effect is maximum.

An index with such properties is a well known Intraclass Correlation Coefficient
proposed by Donner (1986)

�ICC D var .between classes/

var .between classes/C var .residual/
(3)

where the word ‘class’ means a level of a population layer with the presence of a
moderating variable, expression of the data information hierarchy.

The intra-class correlation is used to estimate the correlation of one variable
between two members within a group, for instance between two children of one
family. In other words, the intraclass correlation gives the proportion of variance
attributable to between group differences.

Let t a generic node of the tree, we define the impurity measure with multiplica-
tive effect as

im.t/ D
�

TSS.Yt /

N

�
� Œ1 � �Y jZ.t/� (4)

where

� TSS.Y.t//=N is the classical CART impurity measure;
� �Y jZ is the intraclass correlation coefficient of Y given the stratifying defined by
Z at node t .

Moreover we define the decrease of impurity as (1) and identify the best split
s� 2 S as

�i.t js	 / D maxŠ (5)

3.2 Additive Partitioning Criterion

A second proposal to treat moderating effects is represented by the definition of
a impurity measure that considers an additive effect of Z on causal link between
response and predictors

Prediction of Y = effect of X + moderating effect of Z

The impurity in a node t is:
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ia .t/ D
"

TSS .Yt /

N
C

HX

hD1

WSS .Yt jZh /

gh .t/

#
(6)

where

� WSS .Yt jZh / is the within sum of squares of the Y at t node conditioned at h
group of the Z;

� gh.t/ are the degrees of freedom for each group at node t .

Equation (6) defines the impurity measure at node t as the additive combination of
X contribution to the Y prediction, taking into account, at the same time, the effect
of split on the conditioned distribution of Y respect to Z.

Following the previous approach, we maximize the decrease of impurity at every
generic node t (5). It is possible to demonstrate, for both the proposed criterion, that,
in absence of moderating effects, RTME can be consider as a CART generalization.
In fact, when there is not influence of Z, the different partitioning criteria coincide:

im .t/ D
�

TSS .Yt /

N

�
	 �1 � �Y jZ .t/

�  i .t/CART (7)

and

ia .t/ D
"

TSS .Yt /

N
C

HX

hD1

WSS .Yt jZh /

gh .t/

#
 2 � i .t/CART (8)

and the resulting trees produce the same partition.
In both approaches, the search of the best split s� consist on the identification of

the best binary partition as a compromise between theX prediction strength and the
ability to express the moderating effect of Z. This compromise can be considered
in an additive or multiplicative way depending on the typology of moderating link.

4 Comparison Study and Concluding Remarks

The performance of the proposed method based on additive and multiplica-
tive criterion has been evaluated in several comparative analysis (Giordano and
Remmerswaal 2009). In the following are shown the results of the non-parametric
approach, using the additive and multiplicative criteria, that have been compared
with the results of the multilevel model. Two simulated datasets (Table 2) and three
well-known real datasets (Table 1) are considered.

The results are shown in Tables 3 and 4. In order to compare the overall accuracy
between the observed and the predicted variables of the models, we report some
accuracy measures:

� The classical Goodness of Fit (GoF overall)
� The Moderating Goodness of Fit (GoF moderating) that shows the accuracy gain,

in terms of within sum of squares (WSS) of Y jz
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Table 1 Description of real datasets

Dataset name Sugar cane Pulse rate ILE authority

This data gives sugar Pulse Rates before and Data consisting of
cane yields for each after Exercise. examination

Description paddock in the North The pulse rates and other records from 140
Queensland for the 1997 physiological and lifestyle secondary schools
sugar cane season data are given in the data in different years

Source Denman, N., R. J. Wilson, ILEA Research
and Gregory, D. (1998) Univ. of Queensland (1998) and Statistics (1987)

Response Cane Quality Relative Pulse Difference Student’s Score
Moderating Districts Excercise Type Student’s Country
N. of Predictors 24 8 8

Table 2 Description of simulated datasets

Dataset name Simulation 1 Simulation 2

Predictors have been Predictors have been
generated by different generated by different

Predictors random distributions random distributions
(Discrete Unif., Continue Unif., (Discrete Unif., Continue Unif.,
Multnomial, Normal) Multnomial, Normal)
five predictors eight predictors

Response linear link with predictors nonlinear link with predictors
four groups five groups

Moderating
two levels of influence five levels of influence

N. of cases 1,000 5,000

Table 3 Comparision among multilevel methods (Real datasets)

Dataset Partitioning Number Overall Moderating Overall Moderating
criteria of nodes GoF GoF AC ratio AC ratio

Sugar Cane Multilevel Analysis – 0,2785 0,1575 – –
CART impurity 96 0,4593 0,4219 4,7844 4,3948

mod.effect RTME Additive impurity 79 0,4464 0,4302 5,6506 5,4456
0,1192 RTME Multiplicative 69 0,4123 0,4672 5,9754 6,7710

impurity
Pulse Multilevel Analysis – 0,7380 0,7306 – –

CART impurity 23 0,9157 0,9542 39,8130 41,4870
mod.effect RTME Additive impurity 21 0,9221 0,9304 43,9095 44,3048
0,0110 RTME Multiplicative 21 0,8943 0,9467 42,5857 45,0810

impurity
ILE Multilevel Analysis – 0,3395 0,0925 – –

CART impurity 105 0,1378 0,1578 1,3124 1,5029
mod.effect RTME Additive impurity 109 0,2655 0,1712 2,4358 1,5706
0,2705 RTME Multiplicative 104 0,2702 0,1907 2,5981 1,8337

impurity
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Table 4 Comparision among multilevel methods (Simulated datasets)
Dataset Partitioning Number Gof GoF Overall Moderating

criteria of nodes overall moderating AC ratio AC ratio
Sim 1 Multilevel Analysis – 0,3492 0,6759 – –

CART impurity 26 0,4414 0,5037 0,01698 0,01937
mod.effect RTME Additive impurity 24 0,4690 0,5420 0,01954 0,02258
0,0010 RTME Multiplicative impurity 20 0,4414 0,5203 0,02207 0,02602
Sim 1 Multilevel Analysis – 0,9553 0,5161 – –

CART impurity 26 0,4414 0,1366 0,01698 0,00525
mod.effect RTME Additive impurity 20 0,7009 0,1410 0,03505 0,00705
0,9541 RTME Multiplicative impurity 20 0,6114 0,3525 0,03057 0,01763
Sim 2 Multilevel Analysis – 0,1217 0,1193 – –

CART impurity 31 0,1713 0,1879 0,00553 0,00606
mod.effect RTME Additive impurity 25 0,1755 0,1900 0,00702 0,00760
0,0001 RTME Multiplicative impurity 22 0,1679 0,1900 0,00763 0,00864
Sim 2 Multilevel Analysis – 0,4189 0,0747 – –

CART impurity 31 0,1713 0,1459 0,00553 0,00471
mod.effect RTME Additive impurity 19 0,3277 0,1864 0,01725 0,00981
0,3690 RTME Multiplicative impurity 20 0,3035 0,1523 0,01518 0,00762
Sim 2 Multilevel Analysis – 0,5311 0,0653 – –

CART impurity 31 0,1713 0,1506 0,00553 0,00486
mod.effect RTME Additive impurity 28 0,3774 0,1868 0,01348 0,00667
0,4956 RTME Multiplicative impurity 24 0,3624 0,1749 0,01510 0,00729
Sim 2 Multilevel Analysis – 0,7258 0,0706 – –

CART impurity 31 0,1713 0,1439 0,00553 0,00464
mod.effect RTME Additive impurity 21 0,4543 0,1901 0,02163 0,00905
0,7024 RTME Multiplicative impurity 19 0,4493 0,1965 0,02365 0,01034
Sim 2 Multilevel Analysis – 0,9420 0,0079 – –

CART impurity 31 0,1713 0,0333 0,00553 0,00107
mod.effect RTME Additive impurity 33 0,5572 0,0381 0,01688 0,00115
0,9414 RTME Multiplicative impurity 34 0,5187 0,1187 0,01526 0,00349

GoF mod D 1�

0

BBB@

JX

j D1

2

6664

njP
iD1

. OYij�Yij /
2

dfj

3

7775 �
nj

N

,
JX

j D1

2

6664

njP
iD1

.Yij � NY:j /
2

nj � 1

3

7775 �
nj

N

1

CCCA

(9)

Where i indicates a generic individual and j indicates a generic group. To com-
pare trees with different number of terminal nodes, we define the accuracy ratio
(AC) as the ratio between the GoF measure and the model complexity (size of
tree). The number of terminal nodes indicate the complexity of the tree. Higher
values of AC ratio mean better ability of the tree method to explain the relationship
information with a small structure.

According to the GoF in Tables 3 and 4, the RTME algorithms are more accu-
rate than the CART procedure. Although, the multilevel procedure is in overall
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terms still more accurate in small dataset with suitable distributional and functional
hypothesis. One of the achievements of this study shows that it is possible to use a
non-parametric method for the analysis of arrays of data with hierarchical structure,
overcoming the limits of the CART methodology. When in presence of situations
where the functional and distributional assumptions of the multilevel model are not
verified, or when its estimation algorithm does not converge, it is possible to use
this technique to provide a viable and feasible alternative. Looking to the trade-off
between the complexity and accuracy, the moderating GoF is larger for the non-
parametric approaches in comparison to multilevel analysis. This is an important
remark according to the task to better explain the relationship among response and
predictors at each level of hierarchy defined in the population. Starting from this
point of view, when data are characterized by a linear relationship among variables,
the multiplicative impurity measure for RTME is the best method to describe a
dataset with moderating effects. On the contrary, the additive criterion is the best
choice in presence of a non linear effect.
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Data Mining for Longitudinal Data
with Different Treatments

Mouna Akacha, Thaís C.O. Fonseca, and Silvia Liverani

Abstract The CLAssification and Data Analysis Group (CLADAG) of the Italian
Statistical Society recently organised a competition, the ‘Young Researcher Data
Mining Prize’ sponsored by the SAS Institute. This paper was the winning entry
and in it we detail our approach to the problem proposed and our results. The main
methods used are linear regression, mixture models, Bayesian autoregressive and
Bayesian dynamic models.

1 Introduction

Recently the CLAssification and Data Analysis Group (CLADAG) of the Italian Sta-
tistical Society organised a competition on a data mining problem. Given the sales
of nine products over seven time periods, five structural variables and a marketing
campaign treatment for 4,517 sales points, the competitors are asked to evaluate
the marketing campaign impact on the economic return in the first time period, and
forecast the economic return for the seventh time period.

The first question may be seen as a problem studied in regression analysis, whilst
the second problem is widely studied in time series forecasting. However, the pres-
ence of several covariates with non-linear and co-dependent features requires both
questions to be addressed with ad hoc methods. The main statistical method we
use to address the first question is a mixture of regression models, while we fit
autoregressive and dynamic models for the forecasting problem.

This paper is organised as follows. In Sect. 2 we describe the data and perform
exploratory tests and analysis. In Sect. 3 we detail the mixture model and our results
to answer the first question asked by the organisers. In Sect. 4 we introduce the
autoregressive and dynamic models for prediction and present our results for the
second question.

An extended version of this paper is available as a CRiSM Working Paper
(Akacha et al. 2009). Throughout this paper we will refer to the extended paper
for more details.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_46, c� Springer-Verlag Berlin Heidelberg 2011
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2 The Data

The data provided in this competition was collected by sales points over seven time
periods. The outcome variable yi t is an unknown function of the income of the sales
point i during time period t , with t D 1; : : : ; 7 and i D 1; : : : ; n where n D 4;517.
We define yt D .y1t ; : : : ; ynt /

0. Five structural variables are available for each sales
point, x1i ; : : : ; x5i . They are time invariant and they have 2, 3, 4, 2 and 3 levels
respectively. For each time period t the sales for nine products are available. The
nine product sales are defined as s.i/

jt where j D 1; : : : ; 9 is the product index, t is
the time period and i is the unit. For simplicity, we refer to the product j at time t
for all units as the vector sjt D .s.1/

jt ; : : : ; s
.n/
jt /. Finally, only some of the sales point

have received a certain marketing campaign during the first time period. The mar-
keting campaign indicator zi D 0 if the sales point i is in the control group, and one
otherwise. We will use the terms marketing campaign and treatment interchange-
ably. From now on, to simplify the notation, we will use xk , for k D 1; : : : ; 5 to
represent the 4,517-dimensional vector of the values of the kth structural variable.
We will use an analogous notation for z.

Initially we performed an exploratory analysis of the data. We observed that there
are strong patterns due to all the covariates available. In particular, we noted an
association between the sales of two different products during the first time period.
A strong correlation was also apparent for the outcome and the product sales at
sequential time periods. Moreover, we noted the highly skewed distribution of the
product sales si t for the sales points that do not sell all of the nine products in a time
period. Finally, we tested for association between structural variables. The models
that we propose in this paper were based on the extensive exploratory analysis that
we carried out. See Akacha et al. (2009) for more details on the exploratory analysis.

In order to improve the spread of the data, the shrinkage of sj1 towards zero, due
to the large range of its tails, was reduced by using the log transformation on the
product sales sjt . However, an issue arises when we apply the log transformation:
there are several products with zero sales observed.

One of the main issues with the dataset is due to the design of the marketing
campaign: for the sales points in the control group not all the possible configurations
of the structural variables xi have been observed. In particular, there are 61 (out
of 144) combinations of the categories of the structural variables x for which we
have no information for z D 0. This accounts for more than a third of the possible
configurations and it will affect our results by restricting our ability to test for the
effect of some factors on the impact of the marketing campaign.

Moreover, we note that the product sales are highly correlated. This does not
allow us to include these covariates directly in the model matrix as we need it to be
full rank. Thus we choose to use Principal Component Analysis (PCA). In particular,
here we implement the ‘projection pursuit’ method developed by Croux et al. (2007)
and based on robust estimation of covariance matrices. This method is especially
useful for high dimensional data as ours. We apply PCA to the product sales sjt and
identify the principal components ckt for k D 1; : : : ; 9.
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The exploratory analysis of the data provided by the organisers uncovered the
presence of a structure between the covariates and the outcome variable, and this
structure provides us with the empirical motivation for the assumptions of the mod-
els proposed in Sects. 3 and 4. However, it also uncovered issues that require careful
consideration in the modeling stage, such as an unbalanced design and a strong
association between some of the covariates.

3 The Impact of the Marketing Campaign on Outcome
at Time Period 1

The first question asked by the organisers is to evaluate the impact of the marketing
campaign z on the outcome y1. As this question involves only the data for the first
time period, in this Section we drop the subscript t and use the notation s1,. . . ,s9
and y instead of s11; : : : ; s91 and y1.

Regression models provide us with tools to identify and estimate the impact of
treatment. Although we could use a regression model that includes only the treat-
ment as the only covariate, the availability of many other covariates, as usual in a
data mining problem such as this one, allows us to study the impact of the marketing
campaign once the confounding effect of the other covariates has been removed. Our
exploratory analysis has shown that the structural variables are potential covariates
of interest and interaction terms will also need to be included in our model fit. How-
ever, the existence of empty cells in the design of the experiment on the marketing
campaign (see Sect. 2) restricts the inclusion of all the possible interactions.

The product sales are potential covariates of interest as well. However, there is
a high frequency of units with product sales equal to zero, as discussed in Sect. 2.
This motivates our proposal of a mixture model, given by

yi D �g1i C .1 � �/g2i with � 2 Œ0; 1�; (1)

where

g1i D �1i C �1 with �1 � N .0; �2
1 /; if s.i/

j > 0;8j D 1; : : : ; 9; (2)

or 0 otherwise, and

g2i D �2i C �2 with �2 � N .0; �2
2 /; if 9 s.i/

j D 0; j D 1; : : : ; 9; (3)

or 0 otherwise.
The MLE estimate of the proportion of products that are not sold during the first

time period is given by O� D 0:1348 (with SE. O�/ D 0:0051), a proportion of the
data that cannot be ignored. Therefore, we propose different models for g1 and g2,
to which we will refer as group 1 and group 2 respectively from now on. Further
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analysis, not included here, also confirmed a different variance between the two
groups, justifying �2

1 ¤ �2
2 .

The unbalanced design of the marketing campaign imposes restrictions on the
interaction terms that can be included in the model for group 2. We performed step-
wise model selection by AIC (Hastie and Pregibon 1992) to provide a measure of
how well future outcomes are likely to be predicted by the model and to fit models to
exclude non significant variables and interactions. This yields the final model which
includes: z, x1, . . . , x5, the interaction term .x1; x4/, seven indicator functions for
the product sales sj with j D 1; 2; 5; 6; 7; 8; 9 (the indicator is equal to 1 when
products of that category have been sold in the first time period), log.s3/, log.s4/
and two indicator functions for s5 > 75 and for s7 > 75. Note that all the sales
points sold a positive amount of products j for j D 3; 4. Also, note that product
sales s5 and s7 have a highly skewed distribution for the observations in group 2,
motivating the use of an additional indicator function to differentiate the tails from
the main body of their distribution. Therefore, the regression equation fitted for sales
point i is given by

E .g2i / D ˛0 C ˛zI.zi D 1/C ˛1.2/I.x1i D 2/C : : :C ˛5.3/I.x5i D 3/
C˛1;4.2; 2/I.x1i D 2; x4i D 2/
Cˇ1I.s.i/1 D 0/C ˇ2I.s.i/2 D 0/C ˇ5I.s.i/5 D 0/C : : :C ˇ9I.s.i/9 D 0/
Cˇ3 log.s.i/3 /C ˇ4 log.s.i/4 /C 
5I.s.i/5 > 75/C 
7I.s.i/7 > 75/

where I.:/ is the indicator function, ˛k.j / is the parameter corresponding to
I.xki D j / and ˛k;l .j; h/ is the parameter corresponding to I.xki D j; xli D h/.
The resulting model has 23 significant coefficients with an overall treatment effect
of 32:74, while the estimates of the other regression parameters, together with their
standard errors and p-values, are given in Akacha et al. (2009).

The exploratory analysis performed in Sect. 2 and the residual analysis shown in
(Akacha et al. 2009) support our proposed model for group 2 that states that, for the
sales points that do not sell all the products, the marketing campaign has an average
effect of increasing the outcome by¤32.74 million.

The covariates sj for j D 1; : : : ; 9 are all strictly positive for group 1. However,
as discussed in Sect. 2, the presence of a strong dependence between them encour-
ages the use of PCA to extract from the product sales sj a subset of orthogonal
continuous covariates cj . Based on the standard deviation decrease per number of
principal component included in the model, it is apparent that at least the first six
principal components should be included in the model, and we find that the first
eight principal components give us the best fit using AIC to exclude non significant
variables and interactions.

Therefore, our chosen model includes: z, x1, x2, x3, x4, x5, several interaction
terms and the principal components ck for k D 1; : : : ; 8. For sales point i the
regression equation is given by
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E .g1i / D ˛0 C ˛zI.zi D 1/C ˛1I.x1i D 1/C : : :C ˛5.3/I.x5i D 3/
C˛1;2.2; 2/I.x1i D 2; x2i D 2/C : : :C ˛z;5.1; 3/I.zi D 1; x5i D 3/
C˛1;2;3.2; 2; 2/I.x1i D 2; x2i D 2; x3i D 2/C : : :
C˛2;3;4;5.2; 3; 1; 2/I.x2i D 2; x3i D 3; x4i D 1; x5i D 2/C 
1c

.i/
1

C : : :C 
8c
.i/
8

where I.:/ is the indicator function, ˛k.j / is the parameter corresponding to
I.xki D j / and ˛k;l.j; h/ is the parameter corresponding to I.xki D j; xli D h/

and so on. The estimates of the other regression parameters, together with their
standard errors and p-values, are given in full in Akacha et al. (2009) along with the
residual analysis.

The impact of the treatment campaign is significant with an average effect of
increasing the outcome by around ¤32.4 million with the presence of the signifi-
cant interaction term for .z; x3/, causing an increase on the impact of the marketing
campaign when this is combined with certain values of the structural variable x3.

4 Forecasting the Outcome for the Seventh Time Period

The second question asked by the organisers of the competition is to forecast the
economic return for the seventh time period y7. We believe that the most natural
approach for forecasting in time series is based on the Bayesian paradigm, as in
this approach the inference is updated as data becomes available over time (Pole
et al. 1994). Statements about the uncertain future are formulated as probabilities
conditioned on the available information. However, the first step in a forecasting
problem is the construction of a suitable model based on analysis of the known
development of the time series. Therefore, we propose here an extension to the
regression model we introduced in question one in order to include a time evolution
that allows us to forecast.

The organisers of the competition did not specify whether the time periods have
constant length. We assume here that the time periods have constant length, do not
overlap and are strictly sequential.

We propose two models and we use validation tools to choose the most appro-
priate model for forecasting in our context. We choose to hold out the last available
time period, the sixth, for validation. The data which are not held out are used to
estimate the parameters of the model, the model is then tested on data in the valida-
tion period, and finally forecasts are generated beyond the end of the estimation and
validation periods. The outcome y has been observed for the sixth time period, so
we can compare the predicted data with the observed data. We will then use the best
model selected with the method above to forecast the outcome for the seventh time
period. Of course, when we finally forecast the outcome for the seventh time period
we use all the available data for estimation, that is, we also use the data available for
the sixth time period.
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We compare observed data with the predictions for different models by measur-
ing the uncertainty using the Mean Squared Error for the predictions (MSE), the
Mean Range of the 95% interval for the predictions (MR), and the Mean Interval
Score (MIS ) (Gneiting and Raftery 2007).

The first model we consider is a first-order autoregressive model (Chatfield
2003), usually referred to as AR(1), where the current outcome yt depends on the
previous outcome yt�1 for t D 2; 3; 4; 5. This model is motivated by the strong cor-
relation between adjacent outcomes. Moreover, we propose to include in the AR(1)
model the marketing campaign z for the first time period, as we have shown in the
previous Section its strong impact on outcome for the first time period, and differ-
ent within-sales point variances for the first time period and the remaining times
intervals.

The second model we propose is a dynamic linear mixed model (Pole et al.
1994) which combines sales point-specific random effects with explanatory vari-
ables whose coefficients may vary over time. A dynamic model allows the inclusion
of time-dependent parameters, a realistic assumption in our context. A Bayesian
approach was used for both models proposed.

It appears that only the effect of x1 on yt varies as time passes, therefore we
choose the corresponding parameter of x1 to vary over time while the parameters
of the remaining structural variables remain constant. We also decided to include
autoregressive sales point-specific random effects ˛i t in order to quantify the varia-
tion between different sales points. This is an important component of the model as
it aims to capture the effect of unit specific variables that we did not include in the
model.

In summary, we propose the following model:

yi t D ˇ0t C ˇ1t zi C ˇ2tI.s
.i/
2t > 75/C ˇ3tI.s

.i/
3t > 75/C ˇ4tI.s

.i/
5t > 75/ (4)

C ˇ5tI.s
.i/
6t > 75/C ı1tI.x1i D 2/C ıXi C ˛i t C vt ;

where

vt j�2t � N .0; �2t /;

˛it j˛i;t�1;w2 � N .˛i;t�1;w2/;
ı1t jı1;t�1 � N .ı1;t�1;w2ı1 /

ˇkt jˇk;t�1 � N .ˇk;t�1;w2k/ for k D f0; 1; : : : ; 5g;

with �2
1 ¤ �2

2 D : : : D �2
6 D �2, ı D .ı2; : : : ; ı9/

0 and Xi D I.x2i D 2/; I.x2i D
3/; I.x3i D 2/; I.x3i D 3/; I.x3i D 4/; I.x4i D 2/; I.x5i D 2/; I.x5i D 3/0
for t D 2; : : : ; 5 and i D 1; : : : ; 4;517. Furthermore, wı1

D wk D 1 for k D
f0; 1; : : : ; 5g. The prior distributions chosen are reasonably non informative and are
given in detail in Akacha et al. (2009) along with the variance component of the
model. Samples may be generated from the model described using a Markov chain
Monte Carlo (MCMC).

The assumption of different within-sales point variances in model 2 is confirmed
by the model fitting. Moreover, the results show that the dynamics in the coefficients
are very important for some of the parameters. We observe there that the overall
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mean is monotonically increasing over time, whereas the treatment effect decreases
as time passes. Also, it appears that the parameters associated with the indicators of
the tails for the product sales s2t ; s3t ; s5t and s6t vary substantially over time. The
time varying effect of xi on the outcome is also confirmed by our results. Further-
more, the coefficients that do not vary over time (ık; k D 2; : : : ; 9) are significant
except for ı9, corresponding to the effect of I.x5i D 3/.

4.1 Validation Results and Predictions

We now compare observed data with the predictions obtained for the sixth time
period from the two models proposed by measuring their uncertainty and precision.
The validation result (omitted here, see Akacha et al. 2009) is that the dynamic
model is superior to the autoregressive model using any of the three criteria.

From this validation analysis we conclude that the dynamic model gives better
predictions and represents well the variability of the data. Thus, we proceed to pre-
dict data for the seventh time period using all the available data provided by the
organisers.

We fit the observation (4) to predict the economic return during the seventh time
period using all the data provided by the organisers. Drawing from the above dis-
tributions yields the predictions summarized in Fig. 1. See Akacha et al. (2009) for
plots of the some of the predicted values and note how the dynamic model proposed
captures the variability and the different shapes of the time series.
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Fig. 1 95% credible intervals (dashed line) and median (solid line) for the mean parameters of
model (4) using all the data available y1; : : : ; y6
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5 Conclusion

In this paper we have analysed the data provided by the organisers of the competi-
tion and proposed an approach to answer the two questions. For the first question,
we proposed a mixture of regression models while for the second question we per-
formed this task within the Bayesian paradigm and proposed a dynamic model
that, we believe, incorporates the main features of the data provided but it is also
easy to adapt to the arrival of new information in real time, by updating the prior
distributions or by including new covariates.

Acknowledgements We thank the SAS Institute for financial support and the organisers of the
first Cladag Data Mining Prize for the constructive comments.
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Supervised Classification of Thermal
High-Resolution IR Images for the Diagnosis
of Raynaud’s Phenomenon

Graziano Aretusi, Lara Fontanella, Luigi Ippoliti, and Arcangelo Merla

Abstract This paper proposes a supervised classification approach for the differen-
tial diagnosis of Raynaud’s Phenomenon on the basis of functional infrared imaging
(IR) data. The segmentation and registration of IR images are briefly discussed and
two texture analysis techniques are introduced in a spatial framework to deal with
the feature extraction problem. The classification of data from healthy subjects and
from patients suffering for primary and secondary Raynaud’s Phenomenon is per-
formed by using Stepwise Linear Discriminant Analysis (LDA) on a large number
of features extracted from the images. The results of the proposed methodology are
shown and discussed for images related to 44 subjects.

1 Introduction

Raynaud’s Phenomenon (RP) is a paroxysmal vasospastic disorder of small arteries,
pre-capillary arteries and cutaneous arteriovenous shunts of extremities, typically
induced by cold exposure and emotional stress (Belch 2005). RP usually involves
the fingers of the upper and lower extremities, even though tongue, nose, ears, and
nipples may result affected as well. RP can be classified as primary (PRP), with
no identifiable underlying pathological disorder, and secondary, usually associated
with a connective tissue disease, the use of certain drugs, or the exposition to toxic
agents (Block and Sequeira 2001). Secondary RP is frequently associated with sys-
temic sclerosis. In this case, RP typically may precede the onset of other symptoms
and signs of disease by several years (Belch 2005). It has been estimated that 12.6%
of patients suffering from primary RP develops a secondary disease. In particular,
while between 5 and 20% of subjects suffering from secondary RP evolves in either
limited or diffuse systemic sclerosis, all of the systemic sclerosis patients under-
went or will experience RP (Belch 2005). These epidemiological data point out the
importance for early and proper differential diagnosis to distinguish the different
forms of RP.

Thermal infrared (IR) imaging has been widely used in medicine to evaluate cuta-
neous temperature. IR imaging is a non-invasive technique providing the map of the

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_47, c� Springer-Verlag Berlin Heidelberg 2011
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superficial temperature of a given body by measuring the emitted infrared energy
(Semmlow 2004). Since the cutaneous temperature depends on the local blood
perfusion and thermal tissue properties, IR imaging provides important indirect
information on circulation, thermal properties and thermoregulatory functionality
of the cutaneous tissue. In this paper we thus exploit data from functional infrared
imaging (fIRI) for classifying healthy controls (HCS), primary (PRP) and secondary
(SSc) to systemic sclerosis RP patients.

The segmentation and registration of IR images are briefly discussed and texture
analysis techniques are introduced in a spatial framework to deal with the fea-
ture extraction problem. Registration represents a crucial step of the analysis since
most of the images are not aligned to each other. The classification is performed
by using Stepwise Linear Discriminant Analysis (LDA) and the results of the pro-
posed methodology are shown for a data set of 44 subjects. The paper is organized
as follows. In Sect. 2 we describe the data and the processing of IR images giv-
ing specific details on the problems of image segmentation and registration. Sect. 3
considers the problem of feature extraction and describes two different procedures
for performing texture analysis in a spatial framework: one based on the estima-
tion of a Gaussian Markov Random Field and the other based on the calculation of
texture measures obtained by co-occurrence matrices. Finally, in Sect. 4 we discuss
classification results and in Sect. 5 we provide some conclusions.

2 The Processing of Thermal High Resolution Infrared Images

Data for this study were provided by the Functional Infrared Imaging Lab - ITAB,
Institute for Advanced Biomedical Technology, at the School of Medicine of the
G. d’Annunzio University, Chieti, Italy. For each subject, raw data consist of a tem-
poral sequence of 46 images, each of dimension .256 � 256/, documenting the
thermal recovery from a standardized cold stress produced to the hands of each
subject (Merla et al. 2002a). Specifically, we have n D 44 subjects classified as
follows: 13 HCS, 14 PRP, and 17 SSc. The classification was performed according
to the American College of Rheumatology criteria and standard exclusion criteria
were observed (Merla et al. 2002a; Merla et al. 2002b).

The thermal high-resolution IR images were acquired every 30 seconds to
monitor the response to a cold stress. To estimate the basal temperature of each
subject, the image acquisition started 2.5 min before the cold stress and ended
20 min after. The cold stress consisted in a two minutes immersion of the hands in
cold water (at 10ıC), while wearing thin plastic gloves.

A discussion of classification results which exploits the information provided
by the dynamic of the re-warming process can be found in Aretusi et al. (2010);
here, we are interested in modelling the information provided by the first of the
46 images. In fact, by avoiding the cold stress, we might reduce not only time but
also the financial cost of recording additional images.

It’s often a necessary step, before a desired quantitative analysis, to carry out
a processing of the images. In particular, in our experiment, prior to the feature
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extraction for the classification of RP patients, we have to face with the problems
of segmentation and registration of IR images. This is a crucial point of the analysis
since for many subjects the images are not aligned at all.

Furthermore, since the nature of thermal images is quite different from that of a
conventional intensity image,1 it may happen that conventional segmentation algo-
rithms may not be feasible when they are applied to a thermal images (Chang et al.
1997; Heriansyak and Abu-Bakar 2009).

The purpose of thermal image segmentation is to separate objects of interest from
the background, usually represented by thermal features showing a certain degree
of spatial uniformity. In such cases, it would be possible to perform a segmentation
by using a threshold procedure. However, due to the slight blurring caused by the
infrared imaging process, it usually happens that the boundary between a hand and
the background is not so sharp for the images. In such cases, the images have to be
segmented manually, pixel by pixel.

Due to the radically different ways of image formation in visible spectrum and in
thermographic images, many methods for registration of images also work poorly
or do not work at all (Zitova and Flusser 2003). The image registration is the process
of geometrical alignment of two images, a sensed image with respect to a reference
image, required to obtain more complete and comparable information through the
subjects. For a survey on registration methods see, for example, Jarc et al. (2007).
A reasonable way to practice, is first to manually detect the control points, usually
by using an aided procedure. Then, a set of mapping function parameters, valid
for the entire image, are estimated to align the reference and the sensed images. In
general, a similarity transform, or an affine transform, is used in the mapping model;
however, since in our study the distance, and the angle between the thermal camera
and the scene are not always the same for all the subjects, a perspective projection
model (Zitova and Flusser 2003), together with a bilinear interpolation method Pratt
(2007), must be used to perform the image registration.

In Fig. 1 we show an example of image processing using 11 landmarks (control
points) for the registration of the left hand segmented image.

Finally, in order to make the images spatially homogeneous, a reflection of the
left hand with respect to its own longitudinal central axis is also needed.

3 Feature Extraction

With the aim of developing automatic discrimination techniques for HCS, PRP and
SSc people, we have to extract a set of features from the registered images. Such
images display complex patterns at various orientations and we thus expect quite

1 In general, the latter encodes several physical properties such as reflectance, illumination and
material of an object surface, to form the shape-related data, while a thermal image is formed by
the heat distribution of an object; specifically, thermographic images depict the electromagnetic
radiation of an object in the infrared range which is about 6–15�m.
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Fig. 1 A typical example of IR image: original image (left), segmented left-hand image (middle),
registered image (right)

distinct texture characteristics among the classes. Texture analysis can be done
either studying the point properties of an image, in a pixel-based view, or explic-
itly defining the primitives that characterize the image, in a structural approach, to
search their features such as spatial arrangement. Thus, recalling that the relevant
features for the supervised classification of the RP are unknown a priori, in this
section we describe in detail the procedure used to generate our discriminant vari-
ables. Firstly, the temperature values are considered as a realization of a Gaussian
Markov Random Field (GMRF) such that it is possible to assess the large and small
scale variability of the process; the parameters of the GMRF constitute a subset of
the vector of variables to be used in the classification process. Successively, further
features of interest are defined from the co-occurrence matrices (CMs) computed on
the residuals of the GMRF.

GAUSSIAN MARKOV RANDOM FIELDS. Consider an N �M image and let Xi;j

be the temperature level at pixel .i; j /, .i D 1; : : : : ; N I j D 1; : : : ;M /. We write
X D .X1;1; X1;2; : : : ; XN;M /

T and take n D NM . The vector X contains the pixels
in raster scan order-stacking the top row, then the second row, etc. The temperature
values of the hands are considered as a realization of a Gaussian process character-
ized by a .n � 1/ mean vector, �, and a .n � n/ covariance matrix, ˙ . The mean
structure can be modeled through a linear combination of independent variables
with unknown parameters b; i.e., � D Db. Specifically, if we consider a spatial
trend-surface analysis, the entries of the design matrix D are expressed as a func-
tion of the coordinates of the pixels. Dealing with huge data sets, as in our case, it
may be better for computational purposes to assume a conditional specification of
the process. Accordingly, the temperature levels are distributed as a homogeneous
Gaussian Markov Random Field if the distribution of X is multivariate normal with
conditional means and variances

E.xi;j jxr;s W .r; s/ 2 ıi;j / D �i;j C
X

r

X

s

ˇr;s.xi�r;j �s � �r;s/;

Var.xi;j jxr;s W r; s 2 ıi;j / D v2;
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where ıi;j is the set of neighbors of pixel .i; j /, not including .i; j /; ˇr;s D ˇ�r;�s

and ˇ0;0 D 0 are the spatial interaction parameters. For a first order stationary
GMRF we have two spatial interaction parameters ˇ0;1, ˇ1;0 for neighbors which
are one pixel apart vertically and horizontally respectively. For a second order
stationary GMRF we have four spatial interaction parameters ˇ0;1, ˇ1;0 together
with ˇ1;1; ˇ1;�1 for diagonally adjacent neighbors in North-East and South-East
directions. This description is known as the conditional specification of a GMRF
(Cressie, 1993) and we say that X � N.Db; ˙/, where ˙ D v2A�1, where A.ˇ/
is the n � n potential matrix, with entries equal to 1 along the principal diagonal,
�ˇ.i;j /;.r;s/ if the pixels .i; j / and .r; s/ are neighbors, and zero otherwise. Note
that A.ˇ/must be strictly positive definite for a non-degenerate distribution. The pri-
mary objective is to estimate the parameters of the q-vectorˇ containing the distinct
ˇr;s parameters, �2 (the conditional variance) and the vector of trend parameters, b.
An important part of the GMRF model specification is the choice of boundary con-
ditions (b.c.) for a stationary process, since elements of ˙�1 for boundary sites on
a finite lattice can be very complicated (Besag and Moran 1975). In general, to deal
with GMRFs on finite rectangular lattices, the most convenient boundary condi-
tions are toroidal b.c. These specify that each dimension is assumed to be wrapped
around, so that the first and last coordinates are adjacent. There are many possible
methods for estimating the parameter vector � D .b; ˇ; v2/. If toroidal boundary
conditions are assumed then A.ˇ/ is block circulant and can be easily diagonalized
with a two dimensional fast Fourier transform (Besag and Moran 1975). If Pj is the
usual discrete Fourier transform matrix, then P D PN˝PM is the n�nmatrix of the
eigenvectors of A.ˇ/, with˝ being the Kronecker product. The eigenvalues of A.ˇ/
are simple to obtain from the 2D discrete Fourier transform and we write the eigen-
values as q1; : : : ; qn. Hence, A.ˇ/ D PQ.ˇ/PT ;where Q.ˇ/ D diag.q1; : : : ; qn/

T ,
and A.ˇ/ is positive definite if all qi > 0. The log-likelihood is

L.b; ˇ; v2jx/ D �n
2
log.2	 v2/C 1

2

nX

iD1

log.qi /� 1

2v2
.x�Db/T PQ.ˇ/PT .x�Db/

and the maximization can be carried out with only O.n log n/ steps (Besag and
Moran 1975; Dryden et al. 2002) over the valid parameter space, i.e., subject to
A.ˇ/ being strictly positive definite.

TEXTURE ANALYSIS. Here, we use a pixel-based approach to identify further basic
patterns that could represent the natural texture structure of the RP. Specifically, we
perform a texture analysis by extracting information in the form of a co-occurrence
matrix (CM) and by summarizing this information through the calculation of some
measures of texture on the CM (Cocquerez and Philipp 1995). To calculate these
measures, for each image we first classify the estimated stationary residual process,
O"ij D xij � �ij , in L levels, where L is chosen by considering the quantiles of the
distribution. Then, for a given spatial displacement vector, r, which defines pairs of
neighbors in the spatial domain, we compute the CM which provides a tabulation
of how often different combinations of classified pixel values occur in an image
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(Cocquerez and Philipp 1995). More specifically, the .i; j /th element of the .L�L/
CM, denoted here as Cr, represents the estimated probability, f .i; j /, of occurrence
of a pair of classified pixel values, separated by the displacement r and having tem-
perature levels i and j , respectively. Therefore, for a displacement vector r, we
calculate the set of the following texture measures

T1.r/ D
X

i;j

.i � j /2f .i; j /; T2.r/ D
X

i;j

f .i; j /

1C ji � j j ;

T3.r/ D
X

i;j

f .i; j /2; T4.r/ D
P

i;j i jf .i; j / �
P

i if .i; �/
P

j jf .�; j /
�i �i

;

T5.r/ D
X

i;j

f .i; j / log2

f .i; j /

f .i; �/f .�; j /

where �i D
�P

i i
2f .i; �/� .Pi if .i; �//2

�1=2
, �j D

hP
j i

2f .�; j / � .Pj jf

.�; j //2�1=2
and f .�; j / and f .i; �/ represent the marginal probabilities over the

indices j and i , respectively. The indices T1 and T2 represent Contrast and Homo-
geneity measures and use weights related to the distance from the diagonal of the
CM; T3 is known as Energy and gives information about orderliness; finally, T4

and T5 are Correlation and Mutual Information indices, respectively; they pro-
vide a measure of the linear and non linear dependence of pairs of classified pixel
values.

4 Classification Results

In this section we discuss discrimination results on the data described in Sect. 2. For
computational purposes, we perform the procedures of parameter estimation and
feature extraction on left and right hand images. Hence, for each hand, we have
44 images, each of dimension .128 � 128/. In total, we have n D 44 subjects clas-
sified as HCS, PRP, and SSc. The identification of the feature variables, for each
subject, starts with the estimation of the parameters of a GMRF which is very com-
monly used for modeling textures in image analysis (Cressie 1993; Dryden et al.
2002). The estimated mean function is based on a 6-parameter spatial quadratic
trend expressed as a polynomial function of spatial coordinates. For the residual
correlated process, we thus consider a neighborhood structure with four neighbors
in space (i.e., second order GMRF); this corresponds to a GMRF with 5 parameters
(including the conditional variance) to be estimated. However, notice that this proce-
dure leads to the estimation of 22 parameters for the whole image with both hands.
As regards the use of co-occurrence matrices, we consider twenty levels (L D 20)
and spatial displacements corresponding to the four main spatial directions (i.e.,
East, West, North, South). Considering a spatial lag up to 8, all the displacements
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can be collected in a global vector, d, which takes the following structure: d D
Œ.0 1/I .0 2/I : : : I .0 8/I .�1 1/I .�2 2/I : : : I .�8 8/I .�1 0/I .�2 0/I : : : I .�8 0/I .�1
�1/I .�2 � 2/I : : : I .�8 � 8/�. Thus, overall we specify 32 different spatial lags
and, for each of them, we can calculate the corresponding CMs. However, to avoid
an increase of the number of discriminant variables, for each spatial displacement, r,
and for each pair of levels .i; j /, we aggregate results for both hands thus obtaining a
synthesized CM matrix, QCr, from which we can calculate the five texture measures,
T1; : : : ; T5. This procedure, generates 160 variables, and by joining them with the
ones provided by the specification of the GMRF, for each subject we thus have a
total of 182 variables.

Of course, it is highly likely that a large number of these features do not pro-
vide any significant discriminatory information. Hence, to reduce the number of
variables to a suitable number for the classification routine we use a forward step-
wise linear discriminant analysis (Johnson and Wichern 2007). The best subset of
selected features varies according to the discrimination criterion. For example, by
using the smallest F ratio (SFR) criterion a total of 13 discriminant variables are
selected, while using the Mahalanobis distance (MD) the number of these variables
increases up to 16. The selected variables are mainly related to the vertical and diag-
onal directions, with only a few horizontal lags chosen. In general, two or three of
the selected variables are related to the interaction parameters of the GMRF while
the remaining ones are represented by the indices T1 � T5. Variables related to the
diagonal directions are characterized by a displacement of 2–4 lags while variables
related to the vertical one are defined for spatial lags ranging from 3 to 8. The wider
spatial lags observed for the vertical direction could be likely linked to the specific
geometry of the finger vasculature and the expression of the functional impairment
secondary to the disease. In fact, larger finger vessels run longitudinally and par-
allelously, while only a few artero-venous shunts run transversally. Moreover, the
presence of scleroderma leads to a progressive destruction of the microvasculature
from distal to proximal sections, thus explaining the differences observed in the
spatial lags. The p-values (� 0) for the Wilk’s Lambda statistics show that the
differencies in the group mean discriminant scores are greater than what could be
attributed to sampling error. The mean vectors lie mainly in the first discriminant
dimension (the proportion of the first eigenvalue on the total is 58,9% for SFR and
51,6% for MD). The canonical correlations between each of the two discriminant
functions and the grouping (dummy) variables are very high both for SFR (0,908
and 0,875) and MD case (0,941 and 0,937). The confusion matrix resulting from
LDA based on the smallest F ratio and the Mahalanobis distance criteria gives a 0%
estimate of the apparent error rate, but performing the Leave-One-Out Cross Vali-
dation (LOCV) procedure, the estimated error rate increases up to 15:9% (SFR) and
13:6% (MD); this corresponds to a misclassification of 3 HCS, 2 PRP and 2 SSc for
SFR and 1 HCS, 1 PRP and 4 SSc for MD. In general, according to additional clin-
ical information, it results that in both cases the misclassified PRP are affected by
other clinical forms (i.e., systemic lupus erythematosus and bilateral carpal trauma)
and that one of the misclassified SSc is also affected by a connective tissue disease
that may be characterized by particular functional aspects.
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5 Conclusions

In this paper we have discussed the classification problem of Raynaud’s Phe-
nomenon on the basis of functional infrared imaging (IR) data. The classifica-
tion procedure is complex and deals with problems in terms of segmentation,
image registration and feature extraction. Classification results have been obtained
through texture analysis. As shown in Aretusi et al. (2010), the classification can be
improved by exploiting the information provided by the dynamic of the re-warming
process: however, to our knowledge, there are no other works which achieve our
results based on the analysis of one single image.

Despite the good results achieved, there are still some open problems to be con-
sidered; for example, the study of the performance of different classifiers (e.g.,
Discriminant Partial Least Square and Lasso Discriminant Analysis) as well as the
comparison of different features selection algorithms may be of interest and this will
be the object of future works.
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A Mixture Regression Model for Resistin
Levels Data

Gargano Romana and Alibrandi Angela

Abstract Resistin is a mainly adipose-derived peptide hormone, that reduces
insulin sensitivity in adipocytes, skeletal muscles and hepatocytes. Only in recent
years resistin has been studied in liver disease and the regarding literature is very
poor. According to recent studies considering resistin like a clinical biomarker in the
assessment of liver cirrhosis, we propose an application of a finite mixture regres-
sion model with concomitant variable in order to individualize factors that influence
resistin levels in patients affected by different virus hepatitis. The estimated model
shows the existence of two separated components differing for the intercept and for
some covariates; moreover high serum resistin levels do not seem to be associated
with liver histological lesions by C virus, but only by B virus hepatitis.

1 Introduction

Resistin is a recently discovered adipocytokine and it seems to play a role in glucose
homeostasis, insulin resistance and inflammation (Tiftikci et al. 2009). It serves as a
signaling molecule between energy storage organ, adipose tissue, and the principal
insulin-responsive organs, liver, muscles and fat. In humans, the function of resistin
is not yet fully elucidated, but it seems to have a role in the inflammatory response
rather than in the regulation of glucose homeostasis. Resistin has been shown to
influence insulin sensitivity in various tissues, but the physiological function in the
liver disease is still controversial.

Only a few studies have investigated resistin relevance in pathophysiology of
liver injury. Recent researches have indicated that resistin is expressed within human
liver and its expression increases during severe damages, such as alcoholic liver dis-
ease and hepatitis. Resistin expression during liver damage is positively correlated
with histological parameters of inflammation, suggesting that inflammatory cells
may represent the principal cell type responsible for intrahepatic resistin produc-
tion (Bertolani et al. 2006). Another study showed that resistin is elevated in states
of critical illness, even without evident infection (Koch et al. 2009).

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_48, c� Springer-Verlag Berlin Heidelberg 2011
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The possible relevance of resistin in chronic liver disease has been confirmed
by studies which analyzed plasma resistin concentrations in patients with liver cir-
rhosis. Serum resistin levels were elevated in patients with cirrhosis compared to
healthy subjects and were dependent on the clinical stage of the disease, as well as
on the presence of an inflammatory state (Yagmur et al. 2006). All these studies have
modeled resistin essentially by means of ANOVA (Yang et al. 2009), non parametric
tests, Cox regression and Kaplan- Meier estimate (Koch et al. 2009).

In this study the effects of hepatitis B virus (HBV) and hepatitis C virus (HCV)
infection on plasma resistin levels were evaluated. This pathology represents one
of the most serious public health problems and the main cause of chronic liver
disease worldwide. A mixture regression model with concomitant variable was
modelled in order to individualize the possible factors influencing resistin serum
levels in patients affected by different type virus hepatitis. These models are suit-
able when the patients are not alike. In a therapeutic setting patients differently
react to treatment regimes and this may depend on known or unknown factors. In
the last case there is an unobserved patients heterogeneity since it is not possible to
observe directly to which subpopulation a patient belongs. Likewise, the underlying
covariate causing variability in treatment response is unknown.

This paper is organized as follows. Section 2 presents an outline of finite mixture
regression models, the identifiability, the estimation and the most popular crite-
ria for identifying and choosing components number. Section 3 shows the model
application to the resistin data and Sect. 4 discusses some concluding remarks.

2 Finite Mixture Regression Models

Finite mixture regression models are methods to model unobserved heterogeneity
or to account overdispersion in data. They have been extensively discussed in the
literature and applied in various areas (McLachlan and Peel 2000).

Mixture models can be expressed as a weighted sum of K components, each com-
ponent follows a parametric distribution and has an assigned weight indicating the
a priori probability for an observation to come from this component. If the weights
depend on further variables, these are referred to as concomitant variables (Grün
and Leisch 2008).

A general model class is given by:

f .yjx; !;�/ D
KX

iD1

	i .!; ˛/fi .yjx; �i / (1)

where� denotes the vector of all parameters for the mixture density f .�/, y denotes
the response, x the predictors, ! the concomitant variable and ˛ the parameters of
the concomitant variable, f .�/ is the component specific density function. The con-
comitant specific parameters are given by �i that in the Gaussian distribution are
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given by �i D .ˇ0
i ; �

2
i / where ˇi are the regression coefficients and �2

i represents
the variance. The mixing proportions or component weights 	i .!I˛/ are the prob-
abilities in a multinomial distribution consisting of one draw on K categories. They
obey

PK
iD1 	i .!I˛/ D 1; 	i .!I˛/ � 0; 8i and they are usually modelled as

functions of the covariates by the logistic function.
In general the concomitant variable is assumed to be a multinomial logit model:

	i .!; ˛/ D e!0˛i

PK
sD1 e

!0˛i

8i; (2)

with ˛ D .˛0
i / and ˛1  0.

The parameter vectors of a statistical model are identifiable if two non-equivalent
parameter vectors parameterize the same distribution. This definition depends on
the notion of parameter vectors ‘equivalence’. In mixture modelling, two parameter
vectors are equivalent if they are equal up to permutation of the mixture components.

Generic identifiability is guaranteed for important continuous distributions such
as the Gaussian. The identifiability of mixtures of Gaussian regression models is
analyzed in Hennig (2000). The results indicate that requiring a covariate matrix
of full rank is not sufficient. Contrarily, it is necessary to check a coverage condi-
tion in order to ensure identifiability. With respect to generic identifiability of finite
mixtures of regression models, three influencing factors can be distinguished: com-
ponent distribution f, covariate matrix and repeated observations=labelled observa-
tions. Hennig showed that mixtures of Gaussian linear regressions with assignment
independence are identifiable if the number of ‘lower than p’-dimensional hyper-
planes needed to cover all the x is larger than the number of mixture components.

For mixtures where the component distributions are identifiable this means that
the component weights and possible dispersion parameters are unique, but the
regression coefficients vary because they depend on the combination of the com-
ponents between the covariate points. This identifiability problem is also of concern
for prediction, because given the class membership the predicted value for new data
depends on the chosen solution.

There exist different methods for estimation of finite mixture models. The most
popular is the EM algorithm (Dempster et al. 1977) which aims at determining the
ML estimator for a finite mixture model with a given number of components K. The
EM algorithm has the advantage of providing a general framework for estimating
different kinds mixture models as often only the M-step has to be modified if dif-
ferent component specific models are used. In addition, already available tools for
weighted maximum likelihood estimation can be applied.

An important characteristic of the estimation method is if the number of compo-
nents has to be fixed a-priori or is simultaneously estimated. When the number of
mixtures is unknown, we could estimate as follows. Use the EM algorithm to obtain
a sequence of parameter estimates for a range of K values and estimate OK as:

OK D arg min
k

C . Ǒ.x/; k/ k D kmin; : : : ; kmax (3)
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where C .�I k/ is some model selection criterion. There are many choices for C .�I k/.
Most of approaches use penalty term including Akaike’s Information Criterion
(AIC) and Bayesian Information Criterion (BIC). This implies the introduction
of penalty terms for the number of parameters estimated for the model at hand.
Some approaches use the log-likelihood-ratio test to assess the hypothesis .H0/

that the sample is from K0 components mixture distribution again the alternative
hypothesis .H1/ that the sample is draw from a K0 C 1 components mixture dis-
tribution. Another line of research tried to use the parametric bootstrap methods
(McLachlan and Basford 1988 and McLachlan 1987) and procedure based on
nonparametric bootstrap using a mixture algorithm which combines the Vertex
Exchange and the EM-algorithm (Richardson and Green 1997). Moreover, there
exist methods for the simultaneous determination of the number of components
and variables in finite mixture regression models, as the Mixture Regression Cri-
terion, that yields marked improvement in model selection due to clustering penalty
function (Naik et al. 2007).

3 A Model for Resistin Levels Data

A total of 118 consecutive subjects aged 31–70 years diagnosed with hepatitis B
or C virus infection and referred to Unit of Clinica Medica at Messina University
(Italy) were enrolled between January 2007 and January 2009.

We examined 32 (24 males and 8 females) patients with HBV and 86 (48 males
and 38 females) with HCV infection. Exclusion criteria were: (a) other causes of
chronic liver disease, (b) decompensated liver disease, (c) alcohol intake> 20 g/day
during the previous 6 months, (d) seropositivity for anti-HIV, (e) history of heart
failure, diabetes, thyroid diseases, abnormal renal function and cancer, (f) morbid
obesity diagnosed by means of body mass index (BMI) > 40).

All patients underwent a laboratory test including measurements of resistin
(HBV: 5.20˙ 1.09 ng/mL, HCV: 2.51˙ 1.32 ng/mL), total cholesterol (HBV:
160˙ 53 mmol/L, HCV: 175˙ 43 mmol/L), triglycerides (HBV: 114˙ 51 mg/dl,
HCV: 96˙ 42 mg/dl), insulin (HBV: 23˙ 22 ng/ml, HCV: 19˙ 12 ng/ml),
glycemia (HBV: 81˙ 22 mg/dl, HCV: 94˙ 39 mg/dl), BMI (HBV: 24.01˙ 3.06,
HCV: 25.86˙ 2.71). Insulin resistance was determined using the HOMA index
(Homeostasis Model Assessment) (HBVW 5:20˙ 6:66, HCVW 4:83˙ 4:62).

In literature the adipokines (including resistin) levels have been analyzed by
means of non parametric test (to asses the differences between groups) and multiple
regression models (to evaluate the possible predictors).

Preliminary, according to literature, a regression model in which the dependent
variable was serum resistin levels and independent variables were all the other
considered variables was estimated. It showed that resistin concentration was sig-
nificantly dependent only on triglycerides (pD 0.016) with a low R2 value (0.412).
This model did not take in account the belonging of each subject to a specific group
or type of hepatitis.
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Table 1 The estimated logLik, AIC, BIC and ICL for the resistin levels data

K logLik AIC BIC ICL

1 �245:786 515.572 550.165 550.253
2 �163:526 403.053 412.599 518.176
3 �187:855 425.710 497.779 490.021

In this study, the resistin serum by mixture regression model with concomi-
tant variable was modelled in order to individualize the possible factors influencing
resistin levels in patients affected by different type virus hepatitis. This choice is due
to the awareness that the resistin levels may be different in patients with HBV and
HCV and they may depend on different covariates, within each subgroup. The mix-
ture regression models represent the methodologically adequate solution, because it
allows us to study if the serum resistin levels depend on different factors in patients
with different hepatitis; in particular, we evaluate the effect of hepatitis B virus and
hepatitis C virus infection.

Table 1 reports the estimated log-likelihood (LogLik), AIC value, BIC value and
Integrated Complete Likelihood (ICL) determined in order to identify the number
of mixture components, each of them including all the regressors above.

Log-likelihood, AIC and BIC criteria suggest that the two-component gaussian
mixture regression model provides a slightly better fit than others. It’s important to
note that the mixture models presented in the table possess a same set of regressors
in each component.

The following step was to identify regressors by using the BIC again from the
our two-component mixture regression model identified above.

We started with the most general model to determine the number of components
using information criteria and a possible model restriction was checked after having
the fixed components number.

Different mixture models with two components were fitted:

� a model with only intercept;
� a model with all covariates ignoring the group (B or C virus);
� a model with all covariates considering the group (B or C virus) as concomitant;
� different models with only few covariates and the group as concomitant.

The BIC value was used for models comparison. We preferred the BIC smaller
model with concomitant variable including the intercept and five covariates: age,
HOMA (that allows to reach a baseline estimate of insulin resistance), insulin
(protein hormone produced by cells within the pancreas; it is secreted when the
level of blood glucose is high), triglycerides (esterified with three fatty acids; high
levels of triglycerides are associated with atherosclerosis and heart disease, risk of
pancreatitis-inflammation and hepatitis), cholesterol (base substance for the synthe-
sis of steroid hormones, it allows cell growth and division, cholesterol produced in
the liver is largely used for the production of bile).

Table 2 shows the results of estimated model for each of two components.
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Table 2 Summary of two components mixture regression model

Component 1
Estimate Std. Error z value Pr(> jzj)

(Intercept) 2.167 0.324 6.681 0.000
Cholesterol �0:001 0.002 �0:737 0.461
Triglycerides 0.009 0.003 2.998 0.003
Insulin �0:015 0.015 �0:990 0.322
HOMA �0:030 0.031 �0:943 0.346
Component 2

Estimate Std. Error z value Pr(> jzj)
(Intercept) 5.054 0.277 18.233 0.000
Cholesterol �0:015 0.002 �7:178 0.001
Triglycerides 0.018 0.003 6.019 0.003
Insulin 0.149 0.023 6.468 0.002
HOMA �0:575 0.082 �6:993 0.000

It is important emphasize that the first subpopulation is mainly composed by
patients affect by C virus infection and the second component mostly by subjects
with B virus infection. The components differ for the intercept and some covariates.
For the first component only triglycerides are significantly different from zero, while
for the second component all covariates are significant. In particular, cholesterol
and HOMA are negatively associated with high resistin levels and the coefficient
referred to HOMA index is higher than the cholesterol one, denoting a greater influ-
ence exerted by this regressor. Triglycerides and insulin are positively associated to
the dependent variable, with a strong influence of insulin.

Figure 1 shows four residual plots for a single mixture component at time with
all points.

These plots confirm that the components are very well separated.

4 Final Remarks

In this paper we proposed an application of a mixture regression model with con-
comitant variable allowing us to show that the high serum resistin levels do not seem
to be strongly associated with liver histological lesions by C virus, but prevalently
by B virus hepatitis. Results showed indeed that the two components of our model
are well separated, so that we can affirm that the resistin serum levels are signifi-
cantly different according to the existence of B or C virus infection. Our mixture
regression model showed that resistin serum is influenced by different factors in the
two subpopulations of subjects. In the first component, that is essentially composed
by C virus infected, only triglycerides have a significant and positive influence on
resistin levels variation. In the second component, prevalently composed by B virus
infected, all regressors inserted in the model are statistically significant: resistin
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Fig. 1 Component-wise residual plots

serum positively depends on insulin and triglycerides, while negatively depends on
cholesterol and, above all, HOMA index.

We have to emphasize that insulin and HOMA index are linked to diabetes and in
medical literature is known the association between B virus hepatitis and diabetes.

Other studies are needed for defining better resistin role at the level of various
organs and apparatuses and for confirming the link between resistin and B virus
hepatitis. So, it might be possible to study drugs contrasting the effects of this hor-
mone and early detection of diabetes development through the monitoring of resistin
concentration.

In conclusion the use of mixture regression models for the analysis of hetero-
geneous populations, such as medical casuistry, can be useful to explain part of
heterogeneity with known explanatory covariates. In fact in these cases the applica-
tion of standard statistical models, such as linear regression, model the population
average, which is the mean response of all individuals, without considering the exis-
tence of possible subpopulations. Moreover, when the usual assumptions associated
with general linear models are suspect, the mixture of distributions model can be
a possible alternative because they are less restrictive than the usual distributional
assumptions and provide an alternative to nonparametric modeling.
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Interpreting Air Quality Indices as Random
Quantities

Francesca Bruno and Daniela Cocchi

Abstract Synthetic indices are a way of condensing complex situations to give one
single value. A very common example of this in environmental studies is that of air
quality indices; in their construction, statistics is helpful in summarizing multidi-
mensional information. In this work, we are going to consider synthetic air-quality
indices as random quantities, and investigate their main properties by comparing the
confidence bands of their cumulative distribution functions.

1 Introduction

This study aims to identify genuinely different air quality situations by evaluat-
ing the uncertainty of air quality indices. As we pointed out in Bruno and Cocchi
(2007), synthetic environmental indices explicitly include uncertainty. Recent stud-
ies of air quality indices have adopted diverse approaches, like the search for optimal
indices as power averages in Ruggeri et al. (2009), or the Bayesian approach to
estimating air quality indices able to include measures of variability, in Lee et al.
(2009). Moreover, in Lagona and Maruotti (2009), air quality indices are used to
study exceedances over thresholds, and to identify extreme pollution situations.

Air quality indices summarize pollution in a given area, and enable comparisons
between areas to be made over the same timescale. In order to evaluate the differ-
ences between different areas, air quality indices ought to be considered random
quantities in order to take account of their variability. In fact, they are functions
of components that should be considered random, since they are outcomes of ran-
dom processes and are affected by measurement errors, so their complex structure is
better represented by a probabilistic model rather than a descriptive function. Infor-
mation from synthetic indices can be enhanced by studying their distribution and
by computing the probability of obtaining values that are higher or lower than fixed
thresholds. When the focus is on an index that represents the less favorable pol-
lution situations, the Generalized Extreme Value (GEV) distribution (Coles 2001,
Beirlant et al. 2004) is a suitable probabilistic model. Recent developments on this
distribution (Huerta and Sansó 2007, Sang and Gelfand 2009) have focused on
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parameter estimation when temporal and spatial components are included in the
model.

We construct confidence bands of GEV cumulative density functions (CDFs) in
order to compare different pollution situations. Indeed, in GEV distributions, confi-
dence intervals on parameters are difficult to be considered jointly (Hurairah et al.
2006): separate confidence intervals for each parameter fail to represent the real
differences between CDF distributions. Extreme pollution situations are described
using indices based on maxima, although other indices can be obtained using aggre-
gating functions based on percentiles, in order to summarize less critical situations.
In such cases, an analytically tractable distribution is not immediately obtainable,
while comparisons in terms of CDFs are very difficult to achieve. However, CDFs
and their confidence bands can be suitably estimated using non-parametric meth-
ods. For extreme pollution indices, both parametric and non-parametric methods
can be employed to construct CDFs and their confidence bands. The loss in preci-
sion in the case of non-parametric methods is compensated for by the fact that they
represent the natural starting point for extending the estimation of CDFs to indices
based on percentiles. This paper is organized as follows: the next section sketches
the probability distributions of air quality indices; Section 3 illustrates two differ-
ent approaches to the probabilistic assessment of index distribution: the parametric
GEV distribution approach and a non-parametric approach based on the Moving
Block Bootstrap. The results of the two approaches are compared; while the fourth
and final section offers some concluding remarks.

2 Probability Distributions of Air Quality Indices

In a previous study (Bruno and Cocchi 2002) we proposed a general class of air qual-
ity indices, capable of taking into consideration both different orders of aggregation
(starting either from pollutants or from monitoring sites) and different aggregating
functions. Indeed, as was also pointed out in Bodnar et al. (2008), the joint con-
sideration of several indices reveals various different features of pollution. When
the focus is on extreme cases, the index is constructed by selecting the maxima
in the two dimensions at time t . The first step in the process of aggregation is:
XM.j /.t/ D Maxk.Xq.kj /.t//, representing the synthesis of K monitoring sites,
where j D 1; :::; J runs among pollutants, while subscript M indicates that the
chosen aggregating function is the maximum. Subscript q denotes the temporal
synthesis (not necessarily the daily scale). The last step in the hierarchy consists
in computing IM.M/.t/, representing the second selection among the maxima:

IM.M/.t/ D Maxjf .XM.j /.t// (1)

where f is the standardizing function required for aggregation across pollutants.
The higher the index, the more critical the pollution. Expression (1) summarizes the
hierarchical construction of the index. The hierarchical selection of maxima is the
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special case of invariance with respect to the order of aggregation, and corresponds
to measuring the most extreme pollution situations. Different pollution situations
can also be compared by considering the uncertainty associated with the index.

The GEV probability distribution is suitable for a wide class of stationary
processes, including sequences of time dependent data (Coles 2001, Chap. 5):

G.z/ D expŒ�.1C � .z � �/
�

/�1=	 �; (2)

characterized by �, the location parameter, � , the scale parameter, and �, the shape
parameter. It is suitable for summarizing the extreme pollution situations described
by index (1). The estimated GEV parameters and their standard errors can be
obtained by means of the maximum likelihood (ML) method. The ML parameter
estimates can be used to obtain the analytical expression of the CDF for each series
in question. In Hurairah et al. (2006), the emphasis is on the difficulty of making
inferences regarding CDF variability from separate parameter confidence intervals.
Comparisons between these confidence intervals create certain difficulties, and the
real differences between distributions do not emerge.

An alternative method of constructing CDFs that does not postulate special
assumptions regarding index probability distribution, is the Moving Block Boot-
strap (MBB, Künsch 1989, Liu and Singh 1992); this is a re-sampling method for
assigning measures of accuracy to statistical estimates when observations are finite
time-series of correlated data. Blocks of a fixed length are determined (here the
block length is chosen by following Mignani and Rosa 1995), and blocks are ran-
domly selected with replacement. The union of all the sampled blocks constitutes
the final sample. The underlying idea is that if block length is suitably chosen, obser-
vations belonging to different blocks are nearly independent, while the correlation
present in those observations forming each block is retained.

The confidence bands obtained for the CDF (in the parametric and non-
parametric frameworks) are not analytically computable, but can be determined
by means of simulation. The tool for comparing the simulated confidence bands is
based on MonteCarlo tests (Lixing 2005). A set of 1,000 MonteCarlo replications
of daily data from each estimated CDF, and their respective confidence bands, have
been constructed on the basis of the simulated samples.

3 Probabilistic Assessment of Air Quality Index Distributions

We developed the assessment of differences in pollution by comparing confidence
intervals for the whole CDFs. Daily values of index (1) were calculated for vari-
ously overlapping time periods in three cities (Bologna, Rome and Palermo), where
pollutants O3, Benzene, PM10, CO, SO2 and NO2 were measured. The maximum
likelihood estimates of GEV parameters with their standard errors are summarized



440 F. Bruno and D. Cocchi

Table 1 Maximum likelihood estimation of GEV parameters (with their s.e.)

City Years O� O� O�
Bologna 2001–2002 80.80 (1.01) 24.75 (0.74) 0.08 (0.02)
Rome 103.21 (1.32) 32.09 (0.97) 0.02 (0.03)
Bologna 2002–2003 84.24 (1.11) 26.73 (0.86) 0.15 (0.03)
Palermo 101.32 (0.99) 24.54 (0.72) 0.04 (0.02)
Palermo 2002 100.14 (1.52) 26.12 (1.12) 0.08 (0.03)
Rome 94.02 (1.79) 30.34 (1.33) 0.07 (0.04)

Table 2 MonteCarlo CI on the distributions of differences between percentiles (in column) for the
GEV distribution and the MBB setup (along separate rows)

CI P50 P75 P80 P85 P90 P95

Bologna-Rome GEV 5% �28:86 �35:48 �37:32 �39:65 �43:34 �48:80
2001–2002 (Case 1) 95% �21:33 �25:10 �25:71 �26:15 �26:50 �24:14

MBB 5% �41:33 �50:32 �53:33 �57:66 �62:94 �69:27
95% �11:42 �14:65 �14:73 �15:15 �13:55 �0:66

Bologna-Palermo GEV 5% �19:52 �16:99 �15:69 �14:33 �12:16 �8:58
2002–2003 (Case 2) 95% �12:94 �6:98 �4:38 �1:23 4:97 19:97

MBB 5% �26:03 �22:99 �23:97 �28:15 �27:38 �23:63
95% �4:69 5:34 12:31 20:27 26:68 32:66

Palermo-Rome GEV 5% �9:58 �8:52 �8:37 �8:49 �8:60 �11:80
2002 (Case 3) 95% 0:43 6:66 8:62 11:32 15:42 24:37

MBB 5% �14:35 �23:40 �26:17 �30:31 �34:25 �39:02
95% 15:76 24:52 25:76 28:88 34:49 52:90

in Table 1. Since the aim is to compare pairs of pollution situations, the common
overlapping periods have been isolated for each comparison.

As mentioned before, separate confidence intervals for parameters do not give a
clear idea of the differences between distributions.

We suggest that confidence bands, based on the whole CDFs, be constructed by
adopting two different approaches: the first approach assumes a parametric distri-
bution for air quality indices, whereas the second approach is completely free of
all assumptions. The overlapping of confidence bands is the criterion we propose to
establish whether two distributions are significantly different or not.

We compare CDFs by means of simulation: MonteCarlo tests (Lixing 2005) are
evaluated over the entire range of percentiles of the distributions under comparison.
Differences in distributions are assessed using MonteCarlo testing as follows. For
each replication, the differences between any pair of distribution functions are sum-
marized by the differences between their percentiles: we report results for 50, 75,
80, 85, 90 and 95 percentiles. For each percentile, 1,000 replications of the differ-
ences are employed to compute the bilateral 90% MonteCarlo confidence interval
(CI). The three comparisons represent the three possible situations, as shown in
Table 2 and Figs. 1–3: totally different CDFs (Case 1), CDFs that are different up to
a benchmark value (Case 2), and undistinguishable CDFs (Case 3). In Table 2, for
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each identified case, the first two rows show the results based on the GEV distribu-
tion, whereas the second two rows show the results based on the MBB approach.
If the MonteCarlo tests give negative values for all percentiles, then the differences
between distributions are significant, and one of the distributions always assumes the
highest values for all percentiles (Case 1); if the percentiles give rise to MonteCarlo
tests that are negative up to a specific value (benchmark) this means that the distri-
butions are different up to such benchmark, and then tend to be undistinguishable
(Case 2). After the benchmark, in fact, the MonteCarlo test shows that the value 0 is
included between the extremes. The interpretation of the benchmark value will be
discussed later. The last case (Case 3) consists in test results that include 0 for all
percentiles. When this occurs, the CDFs are considered undistinguishable.

Figures 1–3 compare the pairs of CDFs in the three cases in question. In each fig-
ure, the left panel contains the confidence bands of the GEV distribution, whereas
the right panel displays the confidence bands of the MBB simulated distribution.
These confidence bands are always wider than those based on the GEV distribution,
due to the lack of assumptions of the MBB method. Case 1 denotes the situation
where the CDFs are clearly different: all 90% confidence intervals of the distri-
butions of differences exhibit values that are significantly different from zero, as
shown in Table 2. This is also confirmed by Fig. 1, where one of the CDFs exhibits
values that can always be considered lower than those of the other. This occurs when
comparing Bologna (lower pollution levels) with Rome in 2001–2002. A clear-cut
situation is also apparent from the parameter confidence intervals in Table 1, and is
not affected by the different amplitude of confidence bands in the two contexts. In
Fig. 1, when the CDFs tend towards 1, the two confidence bands seem to overlap,
although this is merely due to a scale effect.

The second case (Fig. 2) concerns percentiles that are significantly different up
to a benchmark value: above it, i.e., when the most critical situations begin to
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Fig. 1 Air quality indices CDFs with confidence bands: different CDFs (Case 1)
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Fig. 2 Air quality indices CDFs with confidence bands: different up to a benchmark (Case 2)

GEV simulation MBB

0 50 100 150 200 250 300

X

0 50 100 150 200 250 300

X

1.
0

0.
8

0.
6

0.
4

F
n(

x)

0.
2

0.
0

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

Palermo
Rome

Fig. 3 Air quality indices CDFs with confidence bands: undistinguishable CDFs (Case 3)

emerge, the CDFs are not significantly different. This case is very interesting, since
it enables us to identify the benchmark value below which a location shows a maxi-
mum pollution situation less serious than that of its competitor. For values below the
benchmark, the critical pollution situations in the two locations are always separate:
this is the case in the comparison between Palermo (higher values of pollution) and
Bologna in 2002–2003, while the results shown in Table 1 are difficult to interpret.
Furthermore, in Fig. 2 the differences in the amplitude of bands are due to differ-
ences in assumptions: they are more restrictive in the case of the first approach,
corresponding to thinner confidence bands. The benchmark values are different: in
the case of the GEV approach, the benchmark is the 87th percentile (corresponding
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approximately to 147); whereas in the case of the MBB approach, the benchmark is
the 67th percentile (corresponding approximately to 114).

The last case (Fig. 3) describes undistinguishable situations; it is difficult to reach
this conclusion by looking only at the results of Table 1, which are difficult to
interpret jointly.

3.1 Role and Interpretation of Benchmark Values

The benchmark represents the value beyond which the pairs of situations being
compared are undistinguishable. Hence its interpretation refers to the thresholds
established by law. When the authorities, such as the municipalities, try to reduce
pollution, if the benchmark value of a comparison is higher than the critical value,
analogous restrictions (to traffic or other sources of pollution) in both areas ought to
be proposed. Consider Fig. 4 comparing air quality indices for the cities of Bologna
and Palermo – which up until now have been considered jointly – with regard to two
different years: 2002 in the left panel, and 2003 in the right panel. The benchmarks
differ from one year to the other: for 2002 (left panel) the benchmark is 175, i.e.,
the 94th percentile, while for 2003 (right panel) the benchmark is 115, that is, the
60th percentile. In the first case, pollution should be considered different for most
of the support of the CDFs: pollution reduction measures ought to be assessed and
discussed essentially for the most polluted area. The case in 2003 is very different,
since the benchmark, which corresponds to a percentile that is not particularly high,
is very close to the critical 100 threshold separating good and poor air quality by
law. The two areas ought to be considered as similar with regard to decisions aimed
at reducing pollution.
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Fig. 4 Comparison of CDFs and their confidence bands with different benchmarks
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4 Conclusions

We propose a way of comparing multi-pollutant air quality situations by considering
synthetic air quality indices to be random quantities to which a CDF (parametric
or not) can be associated, and which can be enriched by confidence bands. The
tools proposed here are not only of scientific interest, but are also easy to compute,
and can be adopted by policy makers and environmental organizations for ex-post
assessment. The case study examined here would seem to weigh slightly in favour
of the solution based on the GEV distribution, since the focus is on daily recorded
maxima. Comparisons between distributions of air quality indices in the general
class proposed in Bruno and Cocchi (2002), involve indices based on any percentile
selections. The structures of such indices are very complex, and their probability
distributions do not have easy to compute closed forms: the Moving Block Bootstrap
approach appears preferable in these cases, where distributional assumptions are not
available. Future analyses may want to compare CDFs for observed indices with a
“theoretical” CDF obtained from the combined selection of thresholds for those
pollutants included in the computation of the quality index. In this way, the method
proposed here would change from being an ex-post evaluation, to a form of support
to policy makers benefiting from statistical analysis.
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Comparing Air Quality Indices Aggregated
by Pollutant

Mariantonietta Ruggieri and Antonella Plaia

Abstract In this paper a new aggregate Air Quality Index (AQI) useful for describ-
ing the global air pollution situation for a given area is proposed. The index, unlike
most of currently used AQIs, takes into account the combined effects of all the
considered pollutants to human health. Its good performance, tested by means of
a simulation plan, is confirmed by a comparison with two other indices proposed
in the literature, one of which is based on the Relative Risk of daily mortality,
considering an application to real data.

1 Introduction

Many epidemiological studies have recently shown a relevant association between
adverse health outcomes and air pollution exposure. In the last years hospital admis-
sions for respiratory and cardiovascular diseases have been increasing, causing
morbidity and mortality as well as increased costs for National Health Services. For
this reason, both people and policy-makers have been interested in AQIs; the knowl-
edge of air pollution levels allows us to plan abatement strategies and precautionary
measures to safeguard environment and citizens health.

Several countries of the world provide an AQI, but there is not a unique and
internationally accepted methodology for constructing it. Although all the proposed
AQIs aim to achieve the same objective, they may differ from one country to another
in several aspects. The most used and up-to-date current AQI systems are based
on US EPA (Environmental Protection Agency) AQI (http://www.epa.gov/ebtpages/
airairquality.html). In Europe, the CAQI (Common Air Quality Index), implemented
by CITEAIR, a project aiming at supporting European cities in pollution issues
(Elshout et al. 2008), is computed (as EPA AQI) by linear interpolation between
the class borders according to the grid in a table. Nevertheless, the breakpoints of
the used tables, as well as the descriptors of each category, the air quality standards
(AQS) and the functions dictated by the national agencies to aggregate hourly values
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daily, usually change from country to country. For example, the threshold value
for PM10.24h/ in the US system is about three times higher than the UK value.
However, the main shortcoming of the described systems is that they do not take into
account the adverse effects due to the coexistence of all pollutants; indeed, the final
index is usually represented by the maximum value among the sub-indices com-
puted for each pollutant, providing an underestimate of air pollution levels. Such
a problem contrasts with some important properties that a good AQI should sat-
isfy: it should not be ecliptic, that is it should not indicate a highly polluted air as
less polluted, giving a false sense of security. Likewise, a good AQI should not be
ambiguous, declaring an alarm situation, when it is unnecessary. In this paper we try
to find an acceptable compromise between the two extreme situations of eclipsicity
and ambiguity. To do this, we follow a data-driven approach, the most common in
the literature, although a model based approach, modelling the data by a stochas-
tic process, could be followed. This last approach has the advantage to account
for missing data and to allow forecasting of future values for the AQI; however,
it usually lacks simplicity and interpretability, two other basic requirements for a
good AQI. In Sect. 2, since air pollution data are collected according to different
dimensions, we describe how to aggregate them and, in particular, we emphasize
the importance of the choice of the standardization process when the different pol-
lutants have to be combined. Our index is presented in Sect. 3; a simulation study is
performed in order to test its validity and to choose the most appropriate value for
the parameter it depends on. In Sect. 4 our AQI, the index proposed by Bruno and
Cocchi (2002) and the index proposed by Cairncross et al. (2007) are compared and
applied to real data. Finally, in Sect. 5, some conclusions are drawn and some topics
for further development are presented.

2 Aggregating and Standardizing Data

Air pollution data are usually collected according to time, space and type of pol-
lutant. The three different dimensions have to be aggregated in order to provide
a unique final index. The value of the synthetic index depends on the choice of
the aggregating functions and the order of aggregation (Bruno and Cocchi 2002).
Usually, data are first aggregated by time, according to the guidelines provided by
national agencies. The functions here used to aggregate hourly values at each site
for each pollutant are reported in Table 1. By considering a whole year dataset con-
taining hourly data regardingK pollutants recorded at J monitoring sites, after the
application of such functions, an I � J �K array is obtained (I D 365 days).

In order to compare different pollutants which have different measurement units
or order of magnitude, the simplest standardization may be performed by dividing
the pollutant concentration by a threshold value, i.e. the maximum permissible con-
centration according to the directives (Bruno and Cocchi 2002). Such a procedure is
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Table 1 Breakpoints of the AQIk (�gm�3 for all pollutants and mgm�3for CO)

Pollution category AQIk PM10 24h NO2 1h CO 8h SO2 24h O3 8h

Unhealthy 85–100 238–500 950–1900 15.5–30 500–1000 223–500
Unhealthy for sensitive groups 70–85 144–238 400–950 11.6–15.5 250–500 180–223
Moderate pollution 50–70 50–144 200–400 10–11.6 125–250 120–180
Low pollution 25–50 20–50 40–200 4–10 20–125 65–120
Good quality 0–25 0–20 0–40 0–4 0–20 0–65

adopted in Italy by some Regional Agencies for Environmental Protection (ARPA)
and by some cities, interested in providing AQIs. Recently, it has been demon-
strated that air pollution may cause long-term as much as short-term adverse health
responses, so comparing the pollutant measured concentrations only with the guide-
lines established by the local agencies may be misleading, as it gives little emphasis
to possible chronic health effects and to damages caused by air pollution on veg-
etation, animals and monuments, occurring over long time periods. Actually, there
are no threshold values below which no adverse health response may be expected:
it is known, for example, that some carcinogenic substances may even have latency
period of years or decades. An alternative and more valid approach can be repre-
sented by an index measurable on a numerical scale, divided into different categories
identified by descriptors, that quantify the impact of a mixture of air pollutants with
respect to the well-being and health of people. For this purpose, the standardizing
transformation by linear interpolation, used by US EPA and by CITEAIR, is to be
preferred, as classes for low concentrations of a pollutant are also considered (long-
time effects). It is based on the following segmented linear function, introduced by
Ott and Hunt (1976):

AQIk D
Ik; H � Ik; L

BPk; H � BPk; L

.Ck � BPk; L/C Ik; L (1)

where:

� AQIk is the sub-index for pollutant k;
� Ck is the concentration (daily synthesis) of the pollutant k;
� BPk; H and BPk; L are the breakpoints� Ck or � Ck , respectively;
� Ik; H and Ik; L are the AQIk values corresponding to BPk; H and BPk; L,

respectively.

The breakpoints considered here are established according to EU standards and
directives (European Community 2008) or come from epidemiological studies on
single pollutants (Murena 2004), with a range [0,100] for each sub-index AQIk

(see Table 1). An AQIk value of 50 corresponds to EU threshold values, so that
the alarm level is a value greater than 50, meaning that a pollutant is in a dangerous
range for human health on a given day. Obviously, bounds of Table 1 can be adapted
according to directives dictated by the country for which air quality is to be assessed.
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3 The Proposed AQI and the Simulation Study

After the aggregation over time and the standardizing transformation, the aggre-
gating function among pollutants proposed by Swamee and Tyagi (1999), and then
used by Kyrkilis et al. (2007), is considered:

I� D .
KX

kD1

.AQIk/
�/

1
� : (2)

The constant � varies in [1, C1[. Equal weights are given to the K sub-indices
since a standardization is performed before computing I�.

It can be noted that function (2), if multiplied by . 1
K
/

1
� , is a subset of the family

of power means that, as is known, is defined for � values ranging in ]-1, +1[.
The greater the parameter �, the greater the contribution of the largest values to
the values of the power mean: if we increase � infinitely, the value of the power
mean approaches the maximum value; in contrast if we decrease � infinitely, then
the value of the power mean approaches the minimum value. Anyway, the family
of power means is not considered here, as a mean would nullify any additive effect
among pollutants.

To consider � D 1 in (2) means to sum all the computed AQIk , by assum-
ing linearly additive effects among pollutants; in this case, I� provides a possible
overestimate of air pollution levels. Actually, although the combined effect of all
pollutants have to be taken into account, it is also true that a correlation among
pollutants occurs. Setting �!1 means we consider the maximum among the sin-
gle AQIk , not accounting for the combined effects of the pollutants; in this case,
I� provides an underestimate of air pollution levels. As mentioned earlier, this last
method is the most used (US EPA, CITEAIR, Italian AQIs). Since setting � D 1

or �!1 might cause unnecessary alarm or false sense of security, respectively, a
good compromise has to be found within the range ]1,1[. To this end we carry out
a study on � via a simulation study, investigating the behaviour of I� for a number
of simulated scenarios and different values of �. Since, according to Table 1, each
sub-index AQIk may fall in T D 5 different classes, labelled from 1 to 5 from the
worst to the best, we consider all the possible scenarios obtained by the combination
with repetition C.T;K/ D C.5; 5/ D 126 of T elements choose K:

� scenario 1: 1 1 1 1 1;
� scenario 2: 1 1 1 1 2;

..............................
� scenario 126: 5 5 5 5 5.

The ordering of the 126 scenarios changes according to the value of �. By assum-
ing that all the values in each class are equally distributed, for each of the 126
scenarios, 5 random deviates from a Uniform density, with lower and upper limits
corresponding to the class in which each pollutant falls, are generated. In Fig. 1 the
five simulated sub-indices AQIk , for each of the 126 scenarios, and the related I�
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simulated scenarios
1 6 12 19 26 33 40 47 54 61 68 75 82 89 96 104 112 120

0

50

100

500 I1
I1.5

I2
I2.5

I3
I∞
AQIk

Fig. 1 Simulated AQIk and I� values computed on different possible scenarios

values, computed for different values of � (� D 1, 1.5, 2, 2.5, 3,1), are reported.
Figure 1 suggests � D 2 as a suitable value: the index I2 (0 � I2 � 223:61) seems
to include the effects of all the pollutants and, at the same time, minimizes both
eclipsicity and ambiguity. Nevertheless, as pointed out also by Khanna (2000), the
most appropriate value of � depends on the air quality: the more the air is polluted,
the less strong the additive effects among pollutants are . Therefore, a value of �
greater than 2 may be considered when at least one AQIk falls in a high class, but
this is not the case of our data set, and more generally of data recorded in Italy,
falling at most in class 3 of Table 1 (moderate pollution).

4 Comparison Among Indices: An Application to Real Data

A dataset consisting of the values of the five main pollutants (NO2; CO; PM10; O3;

SO2), recorded in three Italian cities (Padova, Palermo and Torino) on five differ-
ent days of three different months (May, August and December) during 2008, is
analyzed here. Since no spatial aggregation is considered in this paper, a single
monitoring station, placed in the city centre, is selected for each city; it is not
representative of the city itself, our purpose being to compare different indices and
not different cities. In this example, no unreliable or missing data occur, although
gaps are a crucial concern in air pollution data sets, due to measurement errors or
misfunctions of instruments in the monitoring network. In a data-driven approach
like this, they have to be replaced before computing any aggregating function; for
this purpose, a simple average or more sophisticated imputation techniques may be
considered, but this is not the aim of this paper.
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Fig. 2 Standardized concentrations, in black by linear interpolation (1) and in grey by threshold
value (2), I2 (black star) and I1 (grey star)

In Fig. 2 the indices I2 (black star), computed on concentrations standardized
by linear interpolation (labelled with 1), and I1 (grey star), computed on concen-
trations standardized by threshold value (labelled with 2), according to Bruno and
Cocchi (2002), are compared. In standardization 2, the threshold values used for
each pollutant are those corresponding to AQIk D 50 in Table 1; moreover, the
ratio between Ck and its corresponding threshold value is multiplied by 50 instead
of 100, in order to make the two standardizations comparable, so that 50 is the value
corresponding to the threshold value for both standardizations.

Figure 2 shows how the two different standardizations, and the related indices I2

and I1, provide very different results.
With the help of Fig. 1, � D 2 appears as a reasonable value for the parameter,

but, in order to verify and support this idea, together with the idea of using (2) as
an aggregating function by pollutants, a comparison of our results with those of
an alternative index, the API (Air Pollution Index), proposed by Cairncross et al.
(2007), is reported. API evaluates the daily mortality risk related to the combined
exposure to common air pollutants. A set of relative risk values of daily mortality
RRk is used to calculate sub-indices for each pollutant (see Cairncross et al. 2007,
Table 4, pg 8449). The final API is the sum of the normalised values of the sub-
indices:
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API D
X

k

PSIk; (3)

where PSIk D akCk , with ak a coefficient proportional to the incremental risk value
RRk�1 (see Cairncross et al. 2007, Table 6, pg 8450). Each index value corresponds
to a given daily mortality risk associated with the combined exposure to common
air pollutants. In order to facilitate comparisons, we use the same RRk values used
by Cairncross et al. (2007), although updated values are available in the literature.
Such values are computed under a procedure for health impact assessment in the EU
and published by the World Health Organization.

Figure 3 shows the values obtained for I2 and for API on the considered data set.
To make the comparison easier, the class in which I2 falls (according to Table 1) is
reported, while for API, that assumes values in 0–10, the categorization reported by
Cairncross et al. (2007) (see footnote, pg. 8450) is followed, that is: 0!1; 1�3!2;
4 � 6 ! 3; 7 � 9 ! 4; 10 ! 5. In Fig. 3 the classes in which I1 falls are also
reported. In the last case, standardization by threshold value is considered, according
to Bruno and Cocchi (2002).

By observing Fig. 3, the difference between I1 and the other two indices is quite
evident: I2 and API fall more frequently in ‘unhealthy’ classes, while I1 almost
always falls in lower classes, showing that I1 provides an underestimate of air
pollution. The percentage of concordant pairs on the total, calculated between I2
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and API (73%), asserts the goodness of our index and validates the adequacy of the
chosen value for �; it results to be better than the one calculated between I1 and
API (18%).

5 Conclusions and Further Developments

In this paper a new aggregate AQI among pollutants is proposed. A simulation plan
is used to choose the value of the parameter characterizing the family our index
belongs to. A comparison with the index API, proposed by Cairncross et al. (2007),
based on the Relative Risk of daily mortality, is performed in order to validate
both the aggregating function and the parameter value chosen. The concordance
(73%) between API Cairncross et al. (2007) and our index (I2), greater than the one
between API and I1 (Bruno and Cocchi 2002) (18%), validates the goodness of I2.
With reference to an aggregation among monitoring sites, which would produce a
synthetic final index, describing air quality in a whole area (town/region) in a day, an
approach based on Functional Principal Component Analysis is under study (Agrò
et al. 2009).
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Identifying Partitions of Genes and Tissue
Samples in Microarray Data

Francesca Martella and Marco Alfò

Abstract An important challenge in microarray data analysis is the detection
of genes which are differentially expressed across different types of experimen-
tal conditions. We provide a finite mixture model aimed at clustering genes and
experimental conditions, where the partition of experimental conditions may be
known or unknown. In particular, the idea is to adopt a finite mixture approach
with mean/covariance reparameterization, where an explicit distinction among up-
regulated genes, down-regulated genes, non-regulated genes (with respect to a
reference probe) is made; moreover, within each of these groups genes that are dif-
ferentially expressed between two or more types of experimental conditions may be
identified.

1 Introduction

Microarray technology allows for the simultaneous measurement of thousands of
gene expression levels within different types of experimental conditions. An impor-
tant problem in this context is the detection of genes that are differentially expressed
with respect to a known (or unknown) partition of experimental conditions; in
a clinical context, the identification of such genes, which may be referred to as
clinical markers, may improve diagnosis, early disease detection and lead to suc-
cessful treatments. The most commonly used methods for identification of genes
may be summarized into heuristic rules and model-based approaches. The simplest
heuristic is based on the so called fold-change rule, where empirical cutoffs for gene
expression changes between two classes are computed, without any assessment of
statistical significance (data come with biological and technical variability). If we
consider the use of robust statistical concepts, a primary way to detect genes which
behave differently in a known two or multi-class problem is by looking at the stan-
dard t or F-test statistics, respectively; however, multiplicity problems may occur
because thousands of hypotheses are tested simultaneously. Thus, adjusting for mul-
tiple testing has been proposed when assessing statistical significance of results (see
e.g., Benjamini 1995, Efron and Tibshirani 2002, McLachlan et al. 2002). However,
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few papers have dealt with the problem of identification and validation of subsets
of genes and experimental conditions (i.e., tissue samples), that is the identification
of genes which behave differentially when given subsets of experimental condi-
tions are concerned. For example, Martella et al. (2008) assume that gene profiles
are drawn from a finite mixture distribution, with tissue (condition)-specific effects
estimated through a parametric location/scale change driven by a known partition
of experimental conditions. In this paper, we introduce an extension of this model
to allow for the detection of differentially expressed genes in the case of unknown
or known partitions of tissues. The proposed model is discussed using a large scale
simulation study. The plan of the paper is as follows. In Sect. 2, we describe the
model proposed by Martella et al. (2008). Section 3 discusses the hierarchical pro-
posal. In Sect. 5, the proposed model is applied to simulated data sets. Last section
entails concluding remarks and future research agenda.

2 Model-Based Biclustering

Martella et al. (2008) proposed a biclustering model for simultaneous clustering
of rows and columns of a given data matrix, where the key idea is to approx-
imate the data density by a mixture of Gaussian distributions with a particular
component-specific covariance structure. More precisely, whereas a traditional mix-
ture approach is used to define the gene clustering, they propose to use a binary and
row stochastic matrix to represent column (i.e., tissues) partition. In details, let yi be
a J -dimensional vector representing the gene profile for the i -th gene over J exper-
imental conditions (i D 1; : : : ; n). Let us assume that the observed J -dimensional
vectors y1; : : : ; yn come from a mixture of a finite number, sayK , of components in
some unknown proportions 	1; : : : ; 	k , which sum to one. Conditional on the k-th
component of the mixture, yi is specified by a factor analysis model as follows:

yik D �k C Vkuik C eik (1)

where �k is the J -dimensional component-specific mean vector, Vk D fvjlg
(j D 1; : : : ; J , l D 1; : : : ;Qk) represents the column-cluster membership, uik

is a Qk-dimensional (Qk < J ) vector of component-specific latent variables (fac-
tors), which are assumed to be i.i.d. draws from N.0; IQk

/, and IQk
denotes the

Qk �Qk identity matrix. Furthermore, eik are i.i.d. Gaussian component-specific
random variables with mean 0 and covariance matrix Dk D diag.�2

1k
; : : : ; �2

J k
/, that

are assumed to be independent of uik. It is worth noticing that this model leads to a
block diagonal component-specific covariance matrix for yi (i D 1; : : : ; n), which
keeps with the microarray problems where we assume that observations are homo-
geneous (with small within group variance) only under limited block of conditions,
which, therefore, are highly correlated. Model parameters are estimated through a
maximum likelihood approach using an Alternating Expectation Conditional Max-
imization (AECM) algorithm (e.g., Meng and Van Dyk 1997). Finally, we should
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mention that this model may be seen as a special case of a more general model;
the mixture of structural equation models (mixture SEM) developed in the psycho-
metrics context (Arminger and Stein 1997). By having this general framework as a
starting point, we could extend the model proposed by Martella et al. (2008) relax-
ing some assumptions. For example, we could assume different specifications for
the component-specific covariance matrix of uik .

3 Extension to a More Flexible Cluster-Specific Distributions

A potential limitation of the model proposed in Martella et al. (2008) is repre-
sented by the potential non-Gaussianity of component-specific densities, which is
frequently encountered in practice. In the current biological problem, the assump-
tion of Gaussianity for the cluster density may lead to wrong conclusions whenever
genes are on the border line. In most empirical cases, however, it is difficult to decide
which parametric distribution is suitable to characterize a cluster. Therefore, it may
be wise to model the intra-cluster gene specific extra Gaussian departures through a
more flexible family of distributions. Here, we adopt the hierarchical mixture model
described in Li (2005) and Vermunt (2003). To discuss this hierarchical extension,
we need to extend the standard notation for mixture model considering an (unob-
served) extra-level. Let us start assuming that yi belongs to one of K clusters and
that each cluster is composed by Tk components (i D 1; : : : ; n; k D 1; : : : ; K);
the latter are used to model potential extra-Gaussian variation in cluster-specific
densities. The adopted multilevel structure implies that the marginal density of yi

(i D 1; : : : ; n) can be written as follows:

f .yi j�/ D
KX

kD1

	k

TkX

tD1

	t jkN.yi I�t jk;˙ t jk/ (2)

where � represents the vector of model parameters, 	k and 	t jk the prior prob-
abilities corresponding to second and first level components (with 0 � 	k � 1,PK

kD1 	k D 1 and 0 � 	t jk � 1,
PTk

tD1 	t jk D 1), �t jk and ˙ t jk are the
J -dimensional component-specific mean vectors and the corresponding (J � J )
covariance matrices. In particular, conditional on the first level t-th component
membership, we assume that �t jk may be parameterized as follows

�t jk D �k C Vt jkui t jk (3)

where �k represents a column-wise constant J -dimensional cluster-specific vector,
with �k D ˛k1J , with ˛k 2 IR, Vt jk is the J � Qt jk component-specific binary
row stochastic matrix, while the Qt jk-dimensional latent factors ut jk project the
component-specific mean deviations (�t jk � �k) onto a low dimensional space
(Qt jk < J ), t D 1; : : : ; Tk and k D 1; : : : ; K . In particular, the term Vt jkui t jk
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represents the deviations from the cluster-specific mean �k due to the t jk-th tissue
component membership. ML estimates can be achieved by means of an EM algo-
rithm, where, due to the high dimensionality of the estimation problem, we have to
use an upward-downward type algorithm (see e.g., Pearl 1988). As in standard EM
algorithms, the observed data likelihood function does not decrease at each itera-
tion and the sequence converges to a local optimum. There are a variety of heuristic
approaches to escape from local maxima such as using several different random
starts. Finally, the i -th gene (i D 1; : : : ; n) is allocated to the t-th component within
the k-th cluster corresponding to the largest posterior joint probability, wikwi t jk
(t D 1; : : : ; Tk , k D 1; : : : ; K), while the j -th tissue sample is allocated to the l-th
cluster (l D 1; : : : ;Qt jk) by using the elements in the matrix Vt jk .

It is well known from previous works (e.g., Willse and Boik 1999; Hastie and
Tibshirani 1996; Di Zio et al. 2005) that a drawback of hierarchical mixture mod-
els is the potential non-identifiability. In fact, without additional constraints, the
hierarchical mixture model reduces to a standard mixture model with a number of
components equal to the sum of first level mixture components (Li 2005). This prob-
lem is strictly connected with the problem of merging components in a standard
mixture model discussed in several recent proposals (see Tantrum et al. 2003; Li
2005; Baudry et al. 2008; Henning 2009). In fact, in order to ensure identifiability
of the proposed model, we would need to fix the number of clusters we are inter-
ested in; or, in other words, to decide whether some components should be merged
in order to interpret their union as a cluster. However, since the concept of cluster
has not a unique definition, an optimal assumption does not hold for all practical
situations. For example, we may look for a cluster with high variance of a particular
variable without necessarily differing too much from another more homogeneous
cluster on average; or viceversa, we may look for clusters with low variances but
very far from each others. Therefore, in order to solve our problem, we need to focus
on a specific practical situation. Here, we focus on cDNA microarray measured
on different tissue samples, where the generic element under study is the relative
gene expression value measured with respect to a given reference probe. In practice
investigators are often interested in a three-cluster partition of genes; i.e., in dis-
tinguishing among up-regulated genes, down-regulated genes, non-regulated genes
(with respect to the reference). Thus, we assume that the first cluster includes up-
regulated genes (˛1 > 0), the second cluster includes non-regulated genes (˛2 D 0)
and the third cluster includes the down-regulated genes (˛3 < 0). In particular, we
would like to point out that identifiability is guaranteed by fixing a priori the num-
ber of gene clusters (K D 3) and using ordering constraints on the cluster-specific
means (�1 > �2 > �3). Finally, within each of these clusters, genes that are differ-
entially expressed between two or more types of tissue samples (known or unknown)
may be identified thanks to the hierarchical structure of the model. We would like to
emphasize this model may help not only in distinguishing between clusters (second
level components) and components (first level components), but also in explicitly
capturing biologically meaningful differences of the obtained partitions.
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4 Simulation Study

In this section, we present a simulation study to give an idea about the perfor-
mance of the proposed model. We simulated 100 data sets, each contains 3,000
genes profiles for 10 abnormal and 20 normal tissue samples. The data set is built
on K D 3 clusters: the biggest cluster includes non-regulated genes (	2 D 0:79),
while the other two clusters represent up (	1 D 0:12) and down-regulated (	3 D
0:09) genes. Among the up-regulated genes, we assume to have 70 differentially
expressed genes 	1j1 D 0:19 while the remaining are assumed to be not differen-
tially expressed (	2j1 D 0:81). Other parameters of the setting are the following:
�1 D 31J , �2 D 01J , �3 D �51J , u1j1 D

Pn1j1

iD1 ui1j1=n1j1 D Œ�5; 2�,
u2j1 D

Pn2j1

iD1 ui2j1=n2j1 D 3, with nt jk number of genes within the t-th compo-
nent in the k-th cluster (t jk D 1j1; 2j1), sum(V1j1/ D Œ20; 10�, sum(V2j1/ D Œ30�,
and a constant and diagonal error matrix given by D1j1 D D2j1 D : : :D1j3 D : : : D
diag.0:52; : : : ; 0:43/.

The performance of the proposed model has been evaluated in terms of recover-
ing the true gene and tissue sample partitions; in particular, we measured the degree
of agreement between the true (first and second level) gene and tissue partitions
membership and the partitions estimated by the upward-downward algorithm by
using three agreement indices: Modified Rand Index, Jaccard Index and Hubert
Index (Milligan and Cooper 1986). In case of perfect agreement, the values of these
three indices are equal to one. For all the simulated data sets, the algorithm starts
from the solution of a standard K-means algorithm performed on both rows and
columns of the data matrix. This procedure considerably improves the performance
of the upward-downward algorithm requiring a significantly reduced computational
time.

Moreover, we assess the performance of the model as a method for selecting
differentially expressed genes from different prospectives, including FDR (the per-
centage of not differentially expressed genes among selected genes), FNDR (the
percentage of differentially expressed genes among unselected genes), FPR (the
percentage of selected genes among not differentially expressed genes), and FNR
(the percentage of un-selected genes among differentially expressed genes). Usu-
ally it is challenging to estimate these error rates for real data sets, because we do
not know whether a gene is differentially expressed. However, because we know the
true gene membership for each simulated data set, we estimate error rates by directly
comparing the true gene membership with the gene membership estimated by the
proposed method. For example, FNR is estimated by the ratio of the number of
unselected genes among differentially expressed genes to the total number of differ-
entially expressed genes for a simulated data set. Of course, we estimated the error
rates and agreement indices by averaging them over the 100 simulated datasets. The
values of the estimated error rates and agreement indices are summarized in Fig. 1.
As you can easily see, the model performs well in recovering the true partitions (all
indices are above 0.8) and in term of error rates the model has small (below 0.2)
estimated FDR, FNDR, FPR and FNR.
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Fig. 1 Estimated error rates (above) and measures of degree of agreement (below)

Finally, in order to have an idea about the robustness of the proposed model
with respect to the first level of the mixture model, that is if the model is able to
discriminate between differentially and not differentially expressed genes, for each
gene we compute the relative entropy given by:

Ent.yi / D �
PK

kD1

PTk

tD1 wi t jkwiklog.wi t jkwik/

1
K

PK
kD1 log.

1
K

1
Tk
/

: (4)

Entropy increases when the ability of the model to discriminate between differen-
tially and not differentially expressed genes decreases. Simple graphical summary of
the relative entropy distributions for those genes selected as being differentially and
not differentially expressed are represented in the Fig. 2. As can simply be observed,
both distributions are centered around 0 although the distribution of the estimated
not differentially expressed genes has slightly more variability maybe due to the
high dimensionality of this cluster.

5 Conclusions and Future Research

In this paper, we propose a finite mixture model to identify partitions of genes and
tissue samples in microarray data. We discuss a hierarchical extension of the finite
mixture model proposed by Martella et al. (2008) to combine advantages of allow-
ing gene clusters represented by mixture components and to identify which gene
and tissue sample clusters are potentially meaningful. Our simulation results show
that our proposal is encouraging and is worth to be applied on real data sets. Other
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Fig. 2 Boxplot of the relative entropy distributions for the estimated differentially (left) and the
estimated not differentially expressed genes (right)

simulation results (not presented here) show that in experimental designs where K
can be considered known and Tk and Qt jk have to be estimated, BIC criteria per-
forms well in selecting the true number of Tk and Qt jk . Moreover, as far as the
computational time is concerned, we noticed the following behavior:

� For fixedK andQt jk , the computational complexity increases with Tk , while the
performance is almost unchanged.

� For fixedK and Tk , the computational complexity increases withQt jk , while the
performance is almost unchanged.

� In more complex situations obtained by increasing K , Tk and Qt jk the upward-
downward algorithm performs well in recovering the true partitions.

Various interesting future research lines are possible. The most straightforward
ones would be: a simulation study with different error levels in the data to con-
sider varying homogeneity levels within clusters, an application of the model to real
cDNA data sets and a comparison of the performance of the proposed model with
other benchmark models. More complex extensions to be mentioned are the possi-
bility of using a soft tissue samples clustering and a variant of the model to allow
for different gene expression design matrices.
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Assessing Balance of Categorical Covariates
and Measuring Local Effects in Observational
Studies

Furio Camillo and Ida D’Attoma

Abstract This paper presents a data driven approach that enables one to obtain a
global measure of imbalance and to test it in a multivariate way. The main idea is
based on the general framework of Partial Dependence Analysis (Daudin, 1981 J. J.)
and thus of Conditional Multiple Correspondences Analysis (Escofier, B. (1988).
Analyse des correpondances multiples conditionelle. La Revue de Modulad) as tools
for investigating the dependence relationship between a set of observed categorical
covariates (X) and an assignment-to-treatment indicator variable (T), in order to
obtain a global imbalance measure (GI) according to their dependence structure. We
propose the use of such measure within a strategy whose aim is to compute treatment
effects by subgroups. A toy example is presented for illustrate the performance of
this promising approach.

1 Introduction

Propensity Score (PS) and Propensity Score Matching have become popular meth-
ods of causal inference from observational data whose main characteristic is the
lack of random assignment of units to treatment levels. The aim is to balance non-
equivalent groups on observed pre-treatment covariates in order to reduce selection
bias in the causal effect estimation. The success of PS and PS Matching in reduc-
ing bias mainly depends on balance criteria adopted. Balance concerns similarity
in covariate distributions across treatment groups (Rubin 2001). As reported in Ho
et al. (2007), it holds when T and X are unrelated such that Qp.X j T D 1/ D Qp.X j
T D 0/; where Qp denotes the observed empirical density of data. Balance is com-
monly evaluated by conducting hypothesis testing. The standard practice involves
the use of t-test for the difference in means for each continuous covariate or the �2

test for each categorical covariate. However, this practice starts to be widely criti-
cized (Imai et al. 2006, Iacus et al. 2008). Despite others provide various approaches
to deal with selection bias and test imbalance (Imai et al. 2006, Iacus et al. 2008),
our attempt here is to provide a strategy that enables one to non-parametrically mea-
sure global imbalance and test it by preserving the multivariate nature of data. In

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_52, c� Springer-Verlag Berlin Heidelberg 2011
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particular, this paper points to a new multivariate approach (Camillo and D’Attoma
2010, D’Attoma and Camillo 2011) that uses Conditional Multiple Correspondence
Analysis (MCACond ) (Escofier 1988) as a tool for investigating the dependence
relationship between the X categorical covariates and the assignment-to-treatment
indicator variable T. This paper is organized as follows. Section 2 introduces the
global imbalance measure and the multivariate imbalance test. Section 3 illustrates
how to measure unbiased treatment effects by subgroups. Section 4 shows using a
toy example how the strategy works in practice and its performance in measuring
treatment effects heterogeneity. Section 5 concludes.

2 Measuring and Testing Global Imbalance

In this section we propose a global imbalance measure based on the concept
of between-groups inertia of a factorial predictor space.1 When the dependence
between X and T is out of control of researchers displaying the relationship among
them on a factorial space represents a first step for discovering the hidden relation-
ship. In fact, if dependence between X and T exists, any descriptive factorial analysis
may exhibit this link. Thus, a conditional analysis could be useful in order to iso-
late the part of the variability2 of the X-space due to the assignment mechanism.
Conditioning applied to problems arising from the dependence between categor-
ical covariates and an external categorical variable was first studied by Escofier
(1988) with the resulting MCACond . It consists in a factorial decomposition of the
within- groups inertia after the between-groups inertia has been eliminated. Being
the conditional decomposition model symmetric (Escofier 1988), two separated but
equivalent spaces are obtained: a conditional unit space (RP

Cond
) and a conditional

variable space (RN
Cond

). The conditional unit space is obtained by centering the
t subspaces on its own center. In the dual space of categories, the conditional vari-
able space is obtained by a two-stage procedure. In the first stage, it involves the
projection of the column profile of the X (recoded in a disjunctive form) matrix
ontoRT , the subspace generated by the t indicator variables; in the second stage, the
structure induced by T is eliminated by making a projection on the space orthogonal
to RT . Conditioning is also related to a factorial analysis with reference to a model
(Escofier 1984). In particular, it has been demonstrated (Escofier 1984) that the anal-
ysis of the divergency between a given frequency table and an independence model
could be generalized to the analysis of the differences between a generic data matrix
and a generic model. The latter is represented by a table which denotes the structure
induced by T (Escofier 1988). Based on the Huygens inertia decomposition which
decomposes the total inertia (IT ) of a considered space in within-groups (IW ) and

1 The predictor space denotes the space generated by the pre-treatment covariates involved in the
selection process.
2 Here, we adopt the concept of inertia as a measure of association among categorical covariates.
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between- groups (IB ), MCACond could be considered as an Intra Analysis given that
it does not consider the inertia (IB ) induced by the conditioning variable T. In order
to obtain a global imbalance measure we consider as starting information the X
matrix and the assignment-to-treatment indicator vector T. In particular, we assume
to have enough information in the observed pre- treatment covariates: in this sense,
we expect that the X matrix generally includes all pre-treatment variables associated
with both the treatment assignment T and the outcome Y. Clearly, MCACond enables
one to quantify the dependence between X and T represented by the between-groups
inertia (Estadella et al. 2005) defined as:

IB D 1

Q

TX

tD1

JQX

j D1

b2
tj

k:tk:j

� 1 (1)

where Q denotes the number of pre-treatment covariates considered, JQ denotes
the set of all categories of the Q variables considered, btj denotes the number of
units with category j 2 JQ in the treatment group t 2 T , k:t denotes the group
size t 2 T and k:j denotes the number of units with category j 2 JQ. We define
the between-groups inertia (IB ) as the Global Imbalance Measure (GI ) in data. The
proposed measure varies in Œ0; IT �. Perfect balance occurs when IB D 0; whereas,
perfect imbalance occurs when IW D 0 and IB D IT which indicates that the
observed total variability of the X-space is completely due to the influence of con-
ditioning (T). Once IB has been obtained, we derive the Multivariate Imbalance
Coefficient (MIC) (D’Attoma and Camillo, 2011), which is defined as one minus
the ratio between the within-groups inertia relative to the total inertia:

MIC D 1 � IW

IT

(2)

where IW denotes the inertia considered in the conditional analysis (MCACond )3

and IT denotes the inertia considered in the unconditional analysis (i.e., Multi-
ple Correspondence Analysis). As a result, if the right covariates involved in the
selection process have been considered, then IB will represent the correct global
imbalance measure and MIC effectively express its importance relative to the total
inertia. Finally, we perform an hypothesis test (D’Attoma and Camillo, 2011) to
determine the significance of the detected imbalance. We specify the null hypothesis
of no dependence between X and T as:

H0 W IW D IT (3)

To establish an interval of plausible values for IB under the null hypothesis , we
use results obtained by Estadella et al. (Estadella et al. 2005), who have studied

3 It has been demonstrated (Estadella et al. 2005) that after MCACond the total inertia of the re-
centered space (ICond ) equals the original within-groups inertia (IW )



468 F. Camillo and I. D’Attoma

the asymptotic distribution function of IB . The distribution of the between-groups

inertia was derived as IB � �2
.T �1/.J �1/

nQ
, so that an ˛ confidence interval can be

obtained as:

IB 2 .0;
�2

.T �1/.J �1/;˛

nQ
/ (4)

Based on such result, if the IB calculated on the specific data set under analysis is
out the interval, then the null hypothesis is rejected and thus data unbalanced.

3 Measuring Heterogeneous Treatment Effects in Local Spaces

Combining the GI measure and the Imbalance Test, we propose a simple two-
step approach for computing unbiased treatment effects in non-experimental data.
First, we measure and test balance on the whole sample; then, if imbalance exists,
we propose to measure local average treatment effects (Peck et al. 2010; Camillo
and D’Attoma 2010). More precisely, a transition from the global predictor space
to local predictor spaces is done in order to measure unbiased treatment effects
. The name global indicates the entire predictor space and the term local refers
to many local predictor spaces determined by specific combinations of covariates.
Local spaces are found by means of a classification on factorial coordinates4 which
involves two steps: first, a low-dimensional representation of the X-space is obtained
via Multiple Correspondence Analysis (MCA) (Benzécri 1973, Lebart et al. 1997);
second, a Cluster Analysis (CA) is performed in order to identify homogeneous
groups on the basis of the low-dimensional MCA coordinates.5

The use of CA is not new on evaluation field. Papers of Yoshikawa et al. (2001)
and Gibson (2003) are examples of applications of cluster analysis in the field of
experiments. Another application is in Peck (2005). The author proposes using
cluster analysis to identify subgroups within experimental data, with the aim of
understanding variation in program impacts that accrues heterogeneous popula-
tion. CA attempts to maximize heterogeneity between clusters and, at the same
time, maximize homogeneity within clusters, in order to obtain grouping of like
observations in terms of pre-treatment characteristics, that are different from other
groupings. Here, we perform an agglomerative hierarchical clustering which pro-
ceeds sequentially starting from k singleton and composing them in partition tree
of nested nodes. In particular, we suggest the use of the Ward’s algorithm on facto-
rial coordinates where the proximity between two groups is taken to be the square
of the Euclidean distance between them. We favor the Ward’s algorithm because,
as reported in Lebart et al. (1997), it is based on a optimization criterion (defini-
tion of inertia) similar to that on which Multiple Correspondence Analysis is based.

4 This classification method is also known as Tandem Approach (Arabie and Hubert 1994)
5 More details about plus and minus of Tandem Approach could be found in Lebart et al. (1997),
Arabie and Hubert (1994)
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Table 1 Simulated effects
Combinations Y(1) Y(0) ATE

x1 D 1; x2 D 1; x3 D 1
Y.1/ D 0:3x1 C 7x2 C 3:2x3 Y.0/ D Y.1/� 10:62 10.62

x1 D 2; x2 D 1; x3 D 1

x1 D 1; x2 D 3; x3 D 2
Y.1/ D 0:88x2 C 3:33x3 Y.0/ D Y.1/C 9:3 �9.3

x1 D 2; x2 D 3; x3 D 2

x1 D 1; x2 D 2; x3 D 1
Y.1/ D 6x1 C 3:3x2 C 4:1x3 Y.0/ D Y.1/� 19:7 19.7

x1 D 2; x2 D 2; x3 D 1

x1 D 1; x2 D 3; x3 D 1
Y.1/ D 2:3x1 C 0:99x2 C 3x3 Y.0/ D Y.1/� 8:45 8.45

x1 D 2; x2 D 3; x3 D 1

x1 D 1; x2 D 1; x3 D 2

Y.1/ D 7x1 C 0:5x3 Y.0/ D Y.1/� 13:97 13.97
x1 D 2; x2 D 1; x3 D 2

x1 D 1; x2 D 2; x3 D 2

x1 D 2; x2 D 2; x3 D 2

The primary concept of such an approach consists in getting finer cluster partition
because it enhances the plausibility of obtaining balanced groups. Once selected
the k�clusters partition, balance is evaluated and tested within each group. On the
basis of test results, local treatment effects will be measured within balanced groups
pruning observations in unbalanced clusters.

4 Example

In this section we illustrate with a toy example how the proposed approach works
in measuring and testing global balance. We will report results in terms of achieved
balance by local spaces. We simulated without error three categorical covariates:
X1 with two levels, X2 with three levels and X3 with two levels. We considered a
binary assignment-to-treatment indicator variable T(0/1). All possible combinations
of covariates6 have been considered. Units within each of those 12 combinations of
covariates were assigned on the basis of different proportions to different treatment
levels (tD 0/1), in order to create dependence between X and T. Since in real appli-
cations treatment effects are expected to vary, we simulated heterogeneous treatment
effects. To do that, we generated different potential outcomes (Y.0/ and Y.1/) for
different set of covariates combinations (Table 1).

As reported in Table 1 five different average treatment effects (ATE) exist. The no
omitted variable bias assumption underlying the simulated data assumes a crucial
role and thus must be emphasized. By design, the assignment mechanism is assumed
to be perfectly known which means that the X matrix includes all pre-treatment

6 2� 3� 2 D 12
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Table 2 The local causal effects estimation (k D 1, 2, 3, 4, 5)
Groups n nTD1 nTD0 Ib Interval for Ib Balance ATE

1 355 106 249 0:04 (0;0.008) no 11.77
2 570 393 177 0:03 (0;0.007) no 5.87

1 98 47 51 0 (0;0.03) yes 17.74
2 472 346 126 0:02 (0;0.008) no 2.85
3 355 106 249 0:04 (0;0.008) no 11.77

1 240 48 192 0 (0;0.01) yes 13.97
2 115 58 57 0 (0;0.02) yes 10.42
3 98 47 51 0 (0;0.03) yes 17.74
4 472 346 126 0:02 (0;0.008) no 2.85

1 360 288 72 0 (0;0.008) yes 8.45
2 112 58 54 0 (0;0.03) yes �3.78
3 240 48 192 0 (0;0.01) yes 13.97
4 115 58 57 0 (0;0.02) yes 10.99
5 98 47 51 0 (0;0.03) yes 17.74

variables associated with both the treatment assignment and the observed outcome.
We are interested on measuring the Average Treatment Effect. Since, it is well
known (Morgan and Winship 2007) that the naive estimator7 ( Oı D 8:2) is an incon-
sistent and biased estimate of the ATE, the main aim is to reproduce, as close as
possible, the unbiased ATE reported in Table 1. We begin by computing the GI mea-
sure for this dataset. Results show that IB D 0:15 and MIC D 11:26%. Under the
null hypothesis the interval of plausible values for IB is .0I 0:0045/. The GI mea-
sure falls in the critical region and can be interpreted as demonstrating the presence
of imbalance in data, thereby demanding adjustment in order to compute unbiased
treatment effects. The second step in our analytic process is to use cluster analy-
sis to identify homogeneous groups on the basis of MCA coordinates. The basic
idea is that given a k-clusters partition represented in a dendrogram,8 the lower is
its cut level (maximum number of groups), the higher is the possibility of achiev-
ing balance. CA was carried out in the SAS system and uses the Ward method and
the Euclidean distance as its dissimilarity measure. We most closely examined 12
cluster solutions. We retain k D 5 clusters because it provides balance within all
clusters (Table 2). Results show that in those clusters the test detects balance suitable
unbiased estimates of the local ATE are obtained (Table 2).

Clearly, completely unbiased estimates of local ATE could be obtained by
retaining kD 12 clusters (Table 3), where units assigned to a specific covariates
combinations fall in the same cluster (Correctly classified rateD 100%).

7 The naive estimator is defined as the difference in the means of the observed outcome variable
for treated and controls in the whole population.
8 The dendrogram is also called tree-diagram. It consists in a visual representation of a hierarchical
clustering procedure.
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Table 3 The local causal effects estimation (k D 12)
Groups n nTD1 nTD0 Ib Interval for Ib Balance ATE

1 28 13 15 0 (0;0.11) yes 13.97
2 50 50 100 0 (0;0.36) yes 13.97
3 30 30 60 0 (0;0.03) yes 10.62
4 8 7 15 0 (0;0.17) yes 13.97
5 14 16 30 0 (0;0.08) yes 19.7
6 15 15 30 0 (0;0.10) yes 19.7
7 15 17 32 0 (0;0.11) yes 8.45
8 17 13 30 0 (0;0.13) yes �9:3
9 20 20 40 0 (0;0.06) yes 10.62
10 26 24 50 0 (0;0.07) yes �9:3
11 282 72 360 0 (0;0.008) yes 8.45
12 48 192 240 0 (0;0.01) yes 13.97

Working with categorical data the number of possible covariates combinations
introduced in the analysis is always known. As a consequence, the k clusters to
retain in order to obtain unbiased estimates of local ATE is always known even in
real studies. We assert that practical problems related to the number of clusters to
retain could arise when the number of covariates used in the analysis is high and a
more parsimonious solution in terms of number of clusters could be needed. In such
situation we suggest the use of a statistical criterion for select the suited number of
clusters combined with an operative criterion based on imbalance test results.

5 Concluding Remarks

The main aim of this paper has been to introduce a Global Imbalance Measure
and a Multivariate Imbalance Test. Both those tools were combined within a strat-
egy that helps measuring unbiased treatment effects by subgroups. Such strategy
involves first identifying whether imbalance exists, then performing CA on MCA
coordinates and finally comparing treatment and comparison cases within balanced
clusters to compute treatment effects. We illustrate this strategy with a toy exam-
ple and learn that where the test detects balance, unbiased treatment effects are
reproduced. The main strength of the proposed strategy is that it can simultaneously
account for the dependence relationship of any number of covariates. It uses all
available information in the X matrix without problem of dimensionality even in
the presence of categorical covariates. We assume to deal with categorical baseline
covariates starting from the consideration that working with categorical covariates
is an unavoidable need due to background knowledge, which tends to be qualita-
tive in the social science. Despite working with categorical covariates represents a
strength of the approach, future works might explore the continuous case. The prac-
tical advantage of the proposed strategy is that the heterogeneity of treatment effects,
if present, is taken into account. Computing an overall average treatment effect for
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a heterogeneous group may obscure important impacts among subgroups; or over-
all impacts may be deemed insignificant when they actually are an accumulation of
positive and negative effects among various subgroups. For the reason mentioned
above, the procedure could be useful for subgroup analysis since it helps discover
for whom treatment works best. Although the example is a bit limited, it aims pri-
marily to demonstrate how to apply the strategy to computing treatment effects in
instances where data are unbalanced.
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Handling Missing Data in Presence
of Categorical Variables: a New Imputation
Procedure

Pier Alda Ferrari, Alessandro Barbiero, and Giancarlo Manzi

Abstract In this paper we propose a new method to deal with missingness in cate-
gorical data. The new proposal is a forward imputation procedure and is presented
in the context of the Nonlinear Principal Component Analysis, used to obtain indi-
cators from a large dataset. However, this procedure can be easily adopted in other
contexts, and when other multivariate techniques are used. We discuss the statistical
features of our imputation technique in connection with other treatment methods
which are popular among Nonlinear Principal Component Analysis users. The per-
formance of our method is then compared to the other methods through a simulation
study which involves the application to a real dataset extracted from the Euro-
barometer survey. Missing data are created in the original data matrix and then the
comparison is performed in terms of how close the Nonlinear Principal Component
Analysis outcomes from missing data treatment methods are to the ones obtained
from the original data. The new procedure is seen to provide better results than the
other methods under the different conditions considered.

1 Introduction

When performing multivariate analysis an impasse can be easily reached when deal-
ing with missing data, as the number of dimensions increases and so the number of
datapoints. In these cases, statisticians are confronted with the lack of definitive
answers in missing data analysis, although the literature on this topic is very rich,
starting from the seminal work of Rubin (1976). This is true either in classical or in
Bayesian analysis.

The popular solution of simply discarding incomplete cases and carrying out
the analysis with the remaining data leads to only a partial knowledge of the phe-
nomenon of interest and it is in contradiction, so to speak, with the modern need
of considering all the different facets of information, in order to better speed up the
progress of science.

An alternative way of dealing with missing data takes into account the possibility
of imputing missing data. Estimated or observed values are used to fill the empty
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data cells up. The mode imputation or the mean imputation are among these tech-
niques. One can also perform a completely inferential approach which is concerned
both with the underlying mechanism that generates the missing data and with the
distributional hypotheses assumed for the data. Since this approach is considered
more challenging from the theoretical point of view, the imputation approach has
gradually lost research interest boost in the last years in favor of the inferential
approach.

However, in exploratory multivariate analysis, the inferential approach simply
can not be performed. Exploratory techniques that are now so widespreadly used
still lack of a fully explored and developed missing value analysis. One of these
techniques is the Nonlinear Principal Component Analysis (NLPCA) which can
be used, among other possibilities, to extract an overall indicator, or to reduce the
dimensionality of data in the case of categorical data.

In this paper we are interested in finding new methods to deal with missing data
in explorative multivariate statistical analysis. We focus on the case of NLPCA as a
tool to set up an indicator, but our proposal can be easily extended to other multivari-
ate methods. This paper is organized as follows. Section 2 illustrates the essential
features of NLPCA, whereas in Sect. 3 a brief description of the main missing data
techniques used in NLPCA is presented. Our proposal is introduced in Sect. 4 and
tested in Sect. 5, through an ad hoc simulation study involving a real situation, that
is carried out using the R statistical software. Section 6 summarizes and concludes
the paper.

2 The Use of NLPCA to Get Statistical Indicators

The measures of performance, efficacy or efficiency have become of great interest
in the statistical research community, since there is an increasing demand of dealing
with such issues from many parts of the global society, from policy makers to mar-
ket operators, from financial experts to healthcare decisors, especially in fields like
public opinion polls, in marketing analysis, customer care analysis and so on. So we
test our proposal in frameworks where complex indicators have to be extracted from
a dataset. NLPCA is often used as a tool to obtain statistical indicators to measure
a latent phenomenon which is supposed to lie in categorical data. Consequently we
choose to study our proposal when extracting indicators through NLPCA.

NLPCA is a method to measure a latent phenomenon; starting from observed
variables, the point of NLPCA is the minimization of a loss function which consid-
ers three ingredients: the scores (values of latent variable), the category quantifica-
tions for each observed variable and the loadings (weights of the observed variables)
(see Gifi, 1990 or Michailidis and De Leeuw, 1998 for details).

Formally, let X be such latent variable we want to extract from n units and m
ordinal variables with kj categories (j D 1; : : : ; m). Let Gj be the indicator matrix
(of dimension n � kj ) for variable j . The values of X are obtained by minimizing
the following quadratic loss function:
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�.x;q1; : : : ;qm/ D 1

m

mX

j D1

.x �Gjˇj qj /
0.x �Gjˇj qj /; (1)

where vector x, of dimension n � 1, contains the object scores; vector qj D
.qj1; qj 2; : : : ; qjkj

/0, of dimension kj�1, contains optimal category quantifications
for variable j ; ˇj is the loading of variable j . Under the following normalization
constraints:

u0
nx D 0I x0x D nI u0

kj
Dj qj D 0I q0

j Dj qj D n; 8j D 1; : : : ; m (2)

where un is a vector of ones of dimension n, ukj
is a vector of ones of dimension kj

and Dj D G0
j Gj is the kj �kj matrix which contains the frequencies of variable j

in its main diagonal, NLPCA produces standardized object scores, standardized
quantified variables and a nice interpretation of ˇj , that becomes the correlation
coefficient between object scores and the quantified variable j . The object scores
are the values of the requested indicator.

3 Missing Data Treatment in NLPCA: Existing Methodology
and Software Packages

SPSS and R are two of the most popular statistical packages used to deal with miss-
ing data in NLPCA. SPSS implements different strategies for missing data. The first
(and default) option is just to exclude missing values from the analysis (“passive
treatment”). This is possible because the NLPCA solution is not derived from the
correlation matrix (which cannot be computed with missing values), but from the
data itself. The second option is to impute the mode of the variable (or an extra cat-
egory) to missing values: this is called “active treatment”. This implies that objects
with the missing value on this variable are imputed with the same (observed or
extra) category. The third option, known as listwise deletion method, excludes units
with missing data from the analysis (analysis of complete subsets). The R package
homals, which can perform NLPCA as a particular case of homogeneity analysis,
can only implement the passive treatment.

4 The Proposed Imputation Procedure

Our proposal (in the following, Forward Imputation) is based upon an iterative algo-
rithm which alternates the performing of NLPCA on a subset of data with no missing
values (complete matrix), and the imputation of missing data cells with the corre-
sponding values of the nearest unit in the complete matrix. This sequential process
starts from the unit with the lowest number of missing cells and ends with the unit
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with the highest number of missing cells. Let A be an initial data matrix of dimen-
sion n � m, affected by missing data. The proposed procedure goes through the
following steps:

1. Split matrix A into a n.0/
0 �m-dimensional matrix A.0/

0 with no missing elements
andK disjoint nk �m-dimensional sub-matrices Ak , k D 1; 2; : : : ; K (K < m),
where k is the number of missing elements for each row.

2. For each Ak and each row in Ak , the nearest neighbor imputation missing data
method is implemented with the use of loadings and quantifications from the
NLPCA performed on the complete matrix A.k�1/

0 . Therefore, the missing data
are replaced with the values of the closest observation in the complete matrix
A.k�1/

0 in terms of the following weighted Euclidean distance:

min
z
d.u.k/

i I u0
z / D min

z

0

@
X

j

ˇ
.k�1/
j jGj .i/q

.k�1/
j �Gj .z/q

.k�1/
j j2

1

A

1
2

with u0
z 2 A.k�1/

0 and j running on all and only thosem� k variables which are

observed on both objects u.k/
i and u0

z . Each new complete row is then appended in

the complete matrix A.k�1/
0 in order to produce A.k/

0 . This procedure is sequen-
tially performed for k D 1; : : : ; K until a NLPCA on the complete matrix
A.K/

0 is performed in order to find the final variable loadings ˇ.K/
j and category

quantifications q.K/
j , j D 1; : : : ; m.

The results are not affected by the order in which the objects u.k/
i 2 Ak are com-

pleted. In fact, the imputation of each u.k/
i is based only on the matrix A.k�1/

0 and

the update to A.k/
0 is carried out when all u.k/

i are completed. This procedure, which
is synthetically displayed in Fig. 1, has been implemented in R.

Fig. 1 Graphical representation of the Forward Imputation procedure
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Our method presents some important properties. It makes use of the whole
information contained in the data; in addition, since it is performed on complete
matrices only, it preserves the interpretation of the variable loadings as correlation
coefficients and takes into proper account the role of the variable loadings in the
minimization problem as a weighting tool for the similarity process. Moreover, it
includes objects in different steps according to their number of observed variables,
ensuring that the role of each object in producing and interpreting results is tied to
the number of its actual observations.

On the contrary, the listwise method allows to deal with complete matrices but
produces an obvious loss of information. Mode or extra category method, while
imputing the same value to all the missing values on the same variable, does not
take into account the association with the other variables and reduces the variability
on each variable considered. Passive treatment, while preserving the whole infor-
mation, ignores missing values, works on incomplete matrices, and may lead to an
incoherent interpretation of the results.

5 An Application Study with Simulated Missingness Pattern

The relative performance of our proposed method against its main competitors is
evaluated through a simulation study, using an ad hoc R script.

A specific complete dataset (“true” matrix) is firstly considered; then some obser-
vations are removed at random. NLPCA is computed on the “true” dataset and on
the dataset with artificial missing data, adopting in the latter case different miss-
ing data treatment methods: the Forward imputation (Fo), Passive treatment (Pa),
Listwise (Lw) and Mode imputation (Mo), and the outcomes are compared. More
specifically the focus is on loadings, which provide the weights of the variables in
setting up the indicator, and scores, which allow to classify the units.

5.1 Dataset

The real dataset refers to Eurobarometer 62.1, a survey carried out on behalf of the
European Commission, covering the population of the European Union Member
States aged 15 years and over. Our attention is focused on Services of General Inter-
est, already analyzed, for example, in Ferrari et al. (2010). Specifically, our analysis
refers to the Italian case, year 2004 (905 Italian citizens) and to the following public
services: fixed telephone; electricity supply; postal service. We take into account
four aspects for each service: service quality, service information, service contracts,
customer service, so that 12 variables (four aspects for each of the three services)
are eventually collected. The number of possible answers to each question/aspect
varies from two to four. The answers are recorded on an ordinal scale.
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The goal of NLPCA performed on this dataset is to set up an overall indicator of
customers’ satisfaction for services of general interest taking into account different
services and facets of the service.

The dataset is characterized by a specific missing pattern: all the aspects of
the same service are missing at the same time. The percentages of missing units
are 28.4% for fixed telephone service, 26.4% for electricity and 28.2% for postal
service.

The NLPCA on the complete matrix Y of 593 Italian citizens on 12 variables
produces ˇ̌̌ , xxx and qqqj that provide �min D 0:143, �max D 0:699 and �max D 5:083

(42.3% of the total variance), where � represent the pairwise linear correlation coef-
ficient among the quantified variables, and �max the maximum eigenvalue provided
by NLPCA. These values reveal that the analysis gives a good synthesis of the
observed variables.

5.2 Simulation Design and Comparison Methods

In order to compare different procedures for handling missing data in different
experimental situations, two missing data generating mechanisms are considered:

� Missing Completely At Random (MCAR): 10% (and 20%) of missing data com-
pletely at random have been generated on the complete subset Y. For generating
the missing data from matrix Y, we draw without replacement a simple random
sample of size v D 713 (1;426) from the 593�12matrix, their values are deleted
and considered missing.

� Missing by “blocks”: the real missingness mechanism that affects the original
data is here mimicked, i.e. if one variable (related to a certain service group)
is missing, all the variables related to the same service are missing too. With
this aim, 28.4% of the 593 units is chosen at random and the values of the four
variables of the fixed telephone service are deleted; in the same way, 26.4% of the
593 units is chosen at random and the values of the four variables of the electricity
service presented by these units are deleted and 28.2% of the 593 units is chosen
at random and the values of the four variables of the postal service are deleted.

For both the scenarios and for each of the nSim D 1;000 simulation runs, a
missing pattern is generated, the loadings of a NLPCA performed with the four
different techniques (Fo, Pa, Lw, Mo) are determined as well as the object scores
for Fo, Pa and Mo. Of course, Lw is excluded because the object scores for all the
593 units are not determinable by Lw.

Our comparison is based on the vectors of loadings ˇ̌̌ and object scores x. For the
loadings, the cosine between the vector of loadings ˇ̌̌.t/ for each missing treatment
method and the vector of loadings of the “true” complete matrix ˇ̌̌ is computed:

cos.ˇ̌̌.t/; ˇ̌̌ / D ˇ̌̌ 0.t/ˇ̌̌

ǰˇ̌.t/jǰˇ̌j ;
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The closer to one the cosine the better the capability of the missing data treatment
method to reproduce the “true” loadings in presence of missing data. To compare
the object scores the Root Mean Square Error (RMSE) is used:

RMSE.t/ D
vuut1

n

nX

iD1

.x
.t/
i � xi /2 (3)

where x.t/
i is the object score for unit i calculated with method t on the matrix with

missing data, xi the object score for unit i calculated on the “true” complete matrix.
The boxplots of both cos.ˇ̌̌.t/; ˇ̌̌ / and RMSE.t/ over all the nSim simulation runs

are provided.

5.3 Results

Figure 2 summarizes results based on the performance of the different treatment
methods for the first scenario. Specifically, in Fig. 2a, 2b the boxplots of the cosines
highlights that the Lw gives the worst performance, while the Fo method always
produces a loading vector which is generally the closest to the “true” vector ˇ̌̌ . In
Fig. 2c the boxplot for Lw is not displayed, since it lies far beneath the other ones.
The analysis of the RMSE boxplots in Fig. 2b, 2d confirms the Fo method as the
best performer, followed by Mo and Pa.

The results for the second scenario are displayed in Fig. 3 and point out the bad
performance of the Pa method, while Fo always performs better than Mo both in
terms of loadings and in terms of object scores. The Lw method behaves relatively
better in this scenario than in the MCAR setting, but it is worse than our method and
in any case provides the scores for classification just for the units with no missing
values. The rank of the performance of the methods with regard to RMSE remains
the same as in the first scenario.
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Fig. 2 First scenario (MCAR): comparison of results for different missing data rates (10%, 20%)
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Fig. 3 Second scenario (missing by blocks): comparison of results

6 Discussion and Future Work

In this paper a new proposal for missing data imputation has been described.
The proposed method is general, but has been applied here to a multivariate
technique (NLPCA) for setting up synthetic numerical indicators. It has been com-
pared to standard techniques for missing data treatment through a simulation study
performed on a real dataset.

The simulation study shows that our proposal works better than other missing
data treatment methods: it presents a better performance both with MCAR and
“missing by blocks” conditions. These results reveal its good performance and its
potential generalization and development. In the future we will focus on extend-
ing this algorithm to other multivariate methods, on testing it on new missing data
conditions and on building up an ad hoc R package.
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The Brown and Payne Model of Voter
Transition Revisited

Antonio Forcina and Giovanni M. Marchetti

Abstract We attempt a critical assessment of the assumptions, in terms of voting
behavior, underlying the Goodman (1953) and the Brown and Payne (1986) mod-
els of voting transitions. We argue that the first model is only a slightly simpler
version of the second which, however, is fitted in a rather inefficient way. We also
provide a critical assessment of the approach inspired by King et al. (1999) which
has become popular among Sociologists and Political scientists. An application to
the 2009 European and local election in the borough of Perugia is discussed.

1 Introduction

Estimating transitions of voters between two adjacent elections is one of extracting
information on the association of a two way contingency table from its margins. As
shown by Plackett (1977), in the 2 � 2 case, the information on the odds ratio pro-
vided by the margins of a single table is of a rather inconclusive nature. Goodman
(1953) provided a formal statistical model which indicates that, under the assump-
tion that a set of local units (which in our context are polling stations) share the
same pattern of transitions, this can be consistently estimated from the data. This
result relies on the assumption that a set of tables, for which only the margins are
observed, are determined by the same probabilistic model.

In the sociological literature the problem is seen as one of inferring individual
behaviour from aggregate data and is known as Ecological Inference. In a famous
paper Robinson (1950) proved that the true underlying association at the individual
level and that emerging from aggregate data may even have a different direction, a
result known as the Ecological fallacy. As shown in Wakefield (2004, p. 10), this is
an instance of the Simpson paradox and may arise when each local unit exhibits an
association structure which is strongly correlated with the row marginal. This possi-
bility is ruled out in the Goodman model which, because of its appealing simplicity,
is not always applied with sufficient attention to its underlying assumptions.

Brown and Payne (1986) proposed a model which, as we argue below, may be
seen as an extension of Goodman’s in an attempt to make its assumptions a little
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more realistic. This model has gained little popularity, perhaps because its estima-
tion procedure is substantially more complex than the linear regression required
for Goodman’s model. Forcina and Marchetti (1989) reformulated the Brown and
Payne model as a multivariate generalized linear model and made available a more
efficient software.

An approach popular among Sociologists and Political scientists is due to King
et al. (1999, 2004) and is based on a hierarchical Bayesian model. The Bayesian
approach proposed by Bernardo (2001) is apparently based on assumptions similar
to those of the Brown and Payne model, though the description of the model that he
provides is not specified in sufficient detail.

The assumptions underlying Goodman’s model and a modified version of the
Brown and Payne model are discussed in Sect. 2 and a critical assessment of recent
alternative models is given in Sect. 3. An application to transitions between the elec-
tion for the European Parliament and the one for the borough administration, both
held in 2009 is presented in Sect. 4. Concluding remarks are proposed in Sect. 5.
The same model has been used to analyze voting transitions for most recent elec-
tions held in Umbria (Central Italy), see Bracalente et al. (2006); reports appeared
also on the local media.

2 The Goodman Model

Let nu, u D 1; : : : ; s denote the vector containing the number of voters in local unit u
at election 1 (e1) and yu be the corresponding vector at election 2 (e2). Suppose that
the voting behavior of voters of party i (i D 1; : : : ; I ) at e2 satisfies the following
assumptions:

1. The probability that a voter of party i at e1 chooses party j (j D 1; : : : ; J ) at e2
does not depend on the local unit u and is equal to P.Y D j j X D i/, where
X; Y are the options selected at e1 and e2 respectively

2. Voters decide independently of one another.

Let yiu denote the vector containing the frequency distribution at e2 of voters in unit
u who voted party i at e1; the above assumptions imply that yiu is distributed as a
multinomial Mult(niu; pi ), where

pi D .P.Y D 1 j X D i/; : : : ; P.Y D J j X D i//0 :

The vectors y0
iu, i D 1; : : : ; I , may be seen as the rows of a frequency table

which could be constructed if the choices of each voter at the two elections was
known; in reality, only the row and column totals can be observed. However, because
yu D

P
i yiu, simple algebra shows that the expectation of the vector of observed

proportions yu=.1
0nu/, being the sum of I multinomial random variables, is a lin-

ear function of the vectors of transition probabilities p1; : : : ;pI . Thus the transition
probabilities could be estimated by multivariate linear regression.
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However, the basic assumptions for optimality of ordinary least squares are
violated in two directions:

1. The variance of yu=.1
0nu/, the vector of observations in each local unit, equals

the variance of a mixture of multinomial variables, thus it is not constant and
depends on the unknown transition probabilities

2. Observations within the same local unit are not independent.

Though these violations affect only the efficiency of the estimates, when estimates
are adjusted to force values to lie between 0 and 1, consistency of the estimates is
also affected.

2.1 The Brown and Payne Model Revisited

Let us consider how realistic are the assumptions on which the multinomial model is
based. It seems reasonable to believe that voters may affect each other within small
circles; this may be due to personal interactions and to the fact that voters within the
same local unit who selected the same party at e1may be affected by common local
peculiarities which may be difficult to detect and are naturally treated as random.
In both case the multinomial assumption of independence would be violated and a
different variance function would be adequate.

The BP model was motivated by the need to take this into account and, at the
same time, to avoid the inconveniences due to the method of estimation used to fit
the Goodman model. The main features of the model are the following:

1. The vectors of transition probabilities are allowed to differ across local units
as in a random effect model, so that now pi ju denotes the vector of transition
probabilities from party i within local unit u; this is formalized by a Dirichelet
distribution parameterized with the expectation and the covariance matrix

pi ju � Dirichelet.	 i ; �i Œdiag.	 i /� 	i	
0
i �/

in words, transition probabilities fluctuate around the overall average 	i ; direct
calculations show that

Var.yiu/ D niuŒ1C �i .niu � 1/�Œdiag.	i /� 	i	
0
i �; (1)

which may be interpreted as the variance of an overdispersed multinomial,
2. Maximum likelihood rather than least square estimates are computed, so the

variance structure is taken into account,
3. Transition probabilities 	 i always lie between 0 and 1 because parameters of

interest are defined by a multivariate logit transformation,
4. Because the likelihood for a sum of overdispersed multinomial variables is

almost untractable, a central limit approximation is used.
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The problem with this approach is that the expression for Var.yiu/, as can be seen
from (1), is quadratic in the sample size; this makes the application of the central
limit problematic. As an alternative, we propose a model of overdispersion where
Var.yiu/ is linear in niu and where the overdispersion parameter �i , as in the Brown
and Payne (1986) model, is specific for each party. In the Appendix we show that
this variance function is an approximation of the true variance under the following
assumptions:

� The voters of party i in local unit u are composed of Ciu clusters of size niuc and
their behaviour at e2 is determined by a vector of transition probabilities piuc

which is sampled from a Dirichelet.�i ;	 i /,
� The vector of cluster sizes miu �Mult.niu; 1=Ciu/, that is clusters tend to be of

the same size,
� As the niu increases, niu=Ciu converges to a constant.

3 Recent Alternative Approaches

The hierarchical Bayesian model developed by King et al. (1999) tries to exploit the
fact that the frequency distribution of voters at two different elections in a given local
unit determines a Frechet class of possible tables of voting transitions consistent
with the given margins; it can be shown that, within this class, the transition frequen-
cies may vary within well defined bounds. An advantage of a Bayesian approach is
that, because inference is conditional on observations, the estimates of transition
within each local unit will always satisfy the bounds implied by the Frechet class.
Unfortunately the model is based on a very poor specification of the likelihood as
it assumes that, conditionally on transition probabilities specific to each local unit,
yu is distributed as a multinomial (not a mixture of multinomials); this assump-
tion, which simplifies computations considerably, is equivalent to assume that all
voters in local unit u are homogeneous with a common vector of transition prob-
abilities equal to the weighted average of the transitions within each subgroup, a
rather unrealistic assumption.

The method proposed by De Sio (2009), which extends to an I � J table a sim-
ilar method proposed by Grofman and Merril (2004), is based on King’s idea that,
if transitions have to be consistent with the observed margins, they are subject to a
set of linear constrains. If we require that the estimated transition probabilities sat-
isfy exactly the observed row and column totals on the overall table (obtained by
marginalizing over local units) it is likely that the same constraints will be violated
in most local units. The method takes as admissible estimates the set of those transi-
tion probabilities which are consistent with the observed margins of the overall table
and consists in searching for the solution which minimize the sum of squares of vio-
lations of the observed constraints across local units. The weakness of this approach
seems to be in a lack of a proper statistical model for the random fluctuations which
justifies the optimization used in the algorithm.
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4 An Application

The revised Brown and Payne model, as described in Sect. 2.1, was applied to esti-
mate transitions between the elections for the European Parliament and the one for
the local administration held in the borough of Perugia (PG, central Italy) in June
2009. PG has slightly more than 126 thousands voters and is divided into 159 polling
stations; however four of these were removed because they were located inside hos-
pitals or the local prison. Though voters should approximately be the same for the
two elections, this is not exactly true as shown by Fig. 1: the two stations with a
relative difference larger than 6% were removed. Figure 2 displays the Mahalanobis
distance between the results in the local election and those predicted by the model
as estimated in a preliminary analysis. The two polling stations with a discrepancy
greater than 50 were removed from the final analysis.

Estimated transition probabilities together with standard errors computed from
the expected information matrix and a Delta method are displayed in Table 1 where,
for conciseness, the original transition matrix based on 10 rows and 12 columns has
been condensed.
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Fig. 1 Relative differences between voters at European and Local election by polling stations
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Fig. 2 Mahalanobis distance between observed and predicted electoral results by polling stations
and 99% limit
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Table 1 Estimated transition out of 1,000 voters and standard errors from the election for the
European Parliament (row) to Local administration (column) in Perugia

Party PD se OL se LL se UDC se PdL se OR se LR se NV se

PD 973 17 9 6 1 1 2 2 11 7 1 1 4 3 0 5
OL 5 10 674 30 146 18 0 15 39 19 19 11 51 22 67 27
UDC 0 1 153 60 0 1 681 52 100 55 0 0 66 42 0 24
PdL 0 5 55 22 14 10 17 11 716 20 5 8 117 18 78 21
OL 4 103 419 101 0 4 0 13 43 77 435 40 98 84 1 63
NV 1 16 0 4 0 0 0 0 0 0 0 1 0 0 999 21
PD D Democratic Party, OL D other party on the left, LL D local parties on the left, UDC D Union
of Center Democrats, PdL D Party of freedoms, OR D other parties on the right, LR D local parties
on the right, NV D non voters

The PD, whose coalition won the local election but in the European election
got less votes than the PdL, seems to have a high degree of fidelity. A surprising
result is the large proportion of voters who, having supported one of the right wing
party in the European election, seems to move to one of the left wing parties in the
local election, a phenomenon which, given the local context, is considered plausi-
ble; note however that transitions from OR have very large standard errors. Finally
note that, though some parties lost voters who abstained or gave a blank ballot,
nobody who had abstained in the European election seems to have voted for the
local administration.

5 Concluding Remarks

Though the version of the Brown and Payne model presented above could still be
improved by considering possible alternative models of overdispersion or by allow-
ing the user to input subjective prior knowledge, it is nevertheless superior to the
Goodman’s model fitted by linear regression. Relative to the hierarchical Bayesian
model of King et al. (1999), our model seems to be based on specific assumptions
concerning voting behaviour and does not attempts to provide a general solution to
the so called “Ecological Inference”. Use of our model is recommended only within
areas of limited dimension, like cities of medium size. The reason is that the assump-
tion of a dominating pattern of voting transition would be unrealistic in very large
metropolitan areas and even less if applied to a whole country. It is also important
that local units, like the Italian polling stations, are reasonably small as the amount
of information provided by aggregate data, obviously, decreases when local units of
smaller size are clumped together.

In addition, the quality of the data, together with the scope of the application, are
a crucial issue. The quality of the data requires that the voters within each local unit
are, at least approximately, the same, a requirement which is rather problematic, at
least in Italy, because boundaries of local units keep changing from time to time.
This could be accommodated simply by merging units which have been redesigned
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by internal shifts. Accurate information must also be collected to spot special local
units like hospitals whose voters may be expected to be completely different in two
different elections and thus must be excluded from the analysis.

It would be desirable if electoral data contained information on the number of
new and lost voters between two elections in each unit. However, because such data
are not usually available, the most reasonable strategy is to check the absolute rel-
ative change in the total number of voters within each unit: if this is below a given
threshold and the two elections are close in time, one can simply adjust the data for
the second election so that the total number of voters equals that of the first election
and remove those units with an absolute relative change above the threshold. This is
equivalent to assume that the new voters behave according to a vector of transition
probabilities which is a weighted average of the remaining voters, an assumption
which can be expected to do little damage as long as the proportion of new voters
is small. When estimation is attempted for a large area or a whole country and local
units are aggregated within larger administrative boundaries, it will be difficult to
check the quality of the data. In addition, it is unlikely that the underlying assump-
tions are satisfied. As a consequence, the estimated transitions obtained in this way
do not provide a consistent estimate of the average transitions for the whole country,
even if one had access to accurate data, which is more difficult.

When, like in the Italian system, there is a large number of competing parties
and some of them obtain a very small number of votes, two difficulties arise: (i)
the normal approximation may not hold when applied to sparse table, (ii) due to
the large number of parameters to be estimated, there will be a loss of efficiency
and the transitions from small parties will be estimated with large standard errors.
In such cases some aggregation of very small parties will be necessary; in any case
one should fit a model with as many parties as possible and, if necessary, aggregate
and rescale at the end.

Appendix

We give an outline of the proof that, if yiu D P
c yiuc , where yiuc �

Mult.miuc;piuc/, miu � Mult.niu; 1=Ciu/, piuc � Dirichelet.�i ;	 i / and �i .niu �
1/=Ciu! �i , then

Var.yiu/ Š niu˝.	i /.1C �i /

where˝.x/ D diag.x/ � xx0 and �i � 0.
From (1) Var .yiuc j miuc;	 i / D miuc˝.	 i / Œ1C �i .niuc � 1/�; because the

yiuc are independent,

Var .yiu j miu;	i / D niu˝.	i /
�
1C �i .m

2
iuc � 1/=niu

�
:

To compute the marginal variance, since E .yiu j miu/ D niu	i , Var ŒE.yiu j miu/� D
0 and Var.yiu/ D E ŒVar.yiu j miu/� requires only to compute E.m0

iumiu/;
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by a well known result on expectations of quadratic forms, E.m0
iumiu/ D

niuŒ1C .niu � 1/=Ciu�, which gives

Var.yiu/ D niu˝.	i /Œ1C �i .niu � 1/=Ciu�;

the result follows by putting �i D �i .niu � 1/=Ciu.
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On the Nonlinearity of Homogeneous Ordinal
Variables

Maurizio Carpita and Marica Manisera

Abstract The paper aims at evaluating the nonlinearity existing in homogeneous
ordinal data with a one-dimensional latent variable, using Linear and NonLinear
Principal Components Analysis. The results of a simulation study with Probabilistic
and Monte Carlo gauges show that, when variables are linearly related, a source
of nonlinearity can affect each single variable, but the nonlinearity of the global
solution is negligible and, therefore, can be left out to construct a measure of the
latent trait underlying homogeneity data.

1 Introduction

In the social and economic research, the focus is often on the construction of a one-
dimensional composite indicator for a latent variable using data from a questionnaire
with Likert-type scales. One of the most used procedures to construct the compos-
ite indicator is the summated rating scale, suggesting to add up the quantifications
(usually the first integers) assigned to the ordered response categories of m variables
(items) and to use this (weighted or unweighted) sum as a composite measure of a
latent construct (Bartholomew 1996). The very simple idea of this procedure is that
if the variables are parallel measurements (i.e., are homogeneous variables) of the
same construct, their sum will tend to cancel out measurement errors. Within the
variety of procedures aimed at obtaining a one-dimensional indicator from homoge-
neous data (i.e., data from homogeneous variables), in the present paper the focus is
on Principal Components Analysis (PCA), in its Linear (L-PCA, Jolliffe 2002) and
NonLinear (NL-PCA, Gifi 1990; Heiser and Meulman 1994) versions. NL-PCA
aims at the same goals of traditional L-PCA, but it is suited for variables of mixed
measurement level (nominal, ordinal, numerical) that may not be linearly related to
each other. The NL-PCA model is the same linear model as in traditional L-PCA,
but it is applied to nonlinearly transformed data, obtained by assigning optimal scale
values (the quantifications) to the categories. While L-PCA assigns equally spaced
numbers (usually the first positive integers) to the categories, NL-PCA finds cate-
gory quantifications that are optimal in the sense that the overall variance accounted

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_55, c� Springer-Verlag Berlin Heidelberg 2011
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for in the transformed variables, given the number of components, is maximized.
In this paper, NL-PCA was applied with the ordinal scaling level, meaning that
variables are transformed according to monotonic nonlinear transformations. There-
fore, in this situation, the difference between the two algorithmic procedures is that
L-PCA assigns linear (equally spaced) quantifications, while NL-PCA assigns non-
linear (i.e., not necessarily equally spaced) quantifications to the ordered categories;
NL-PCA quantifications take also into account possible nonlinear relationships
among variables (Heiser and Meulman 1994). However, in some applications, NL-
PCA leads to the same results of L-PCA, suggesting that the assumptions of L-PCA
are not a practical problem (see, e.g., Carpita and Manisera 2006). Starting from
these considerations, in this paper our research question is: how much nonlinear are
homogeneous data? In order to answer this question we used the gauging approach
(see Gifi 1990, p. 34): (1) a Probabilistic gauge to construct a population of homoge-
nous data and compare the L-PCA and NL-PCA solutions in order to evaluate the
level of nonlinearity existing in these data; (2) a Monte Carlo gauge, to compare
the sampling performance of L-PCA and NL-PCA in recovering the population
parameters of interest.

2 Probabilistic and Monte Carlo Gauges

According to Gifi (1990), we used gauging to have a realistic data structure with
known properties allowing the comparison of the L-PCA and NL-PCA results and
the consequent assessment of the nonlinearity. The more L-PCA and NL-PCA
results differ, the more nonlinear data are. Population and sampling performances
of the two techniques are compared on the category quantifications, i.e., the val-
ues assigned to the categories of each variable, and some parameters related to the
global solution: the dominant eigenvalues and the scores, the composite indicator
that can be used as a measure of the latent variable. The method we used to con-
struct population homogeneous data with a one-dimensional latent trait underlying
m ordinal variables was proposed by van Rijckevorsel et al. (1985) and is based
on the discretization of m continuous variables following a multivariate standard
normal distribution with equal correlations �. (As in van Rijckevorsel et al. 1985,
we chose exactly equal correlations to work with population homogeneous data
with a one-dimensional latent trait. This is consistent with the common situation
of sample data showing slightly different levels of correlations.) In this case, the
m continuous variables are linearly related each other and the correlation matrix
has a dominant eigenvalue given by �C D Œ1 C .m � 1/��=m (van Rijckevorsel
et al. 1985, p. 7). We focused the analysis on the dominant eigenvalue, because
other indices used in the classical item analysis depend on its value: for exam-
ple, the mean correlation �C D .�C/1=2 and the well-known Cronbach’s alpha
˛ D m.�C �m � 1/=Œ.m� 1/ � �C �m� (Heiser and Meulman 1994, p. 187). In this
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study we considered1 m D 4 and three different values of � D 0:4; 0:6; 0:8, cor-
responding to three situations with underlying one-dimensional latent traits having
different levels of strength �C D 0:55; 0:70; 0:85. Then the continuous variables
were discretized, by mapping continuous intervals into ordinal categories using
discretization cuts. We considered three discretization procedures resulting from
nonlinear monotonic transformations and providing three distributional forms for
the ordinal variables: one is the optimal discrete distribution O, which resembles
the original normal distribution rather closely; the other two discretization proce-
dures distort the normal distribution resulting in right-skewed discrete distribution
(R, with positive skewness) and left-skewed discrete distribution (L, with negative
skewness). Following van Rijckevorsel et al. (1985) and considering that few cat-
egories allow a higher degree of discretization and therefore of nonlinearity, we
chose k D 5 categories for each variable with corresponding frequencies (0.11;
0.24; 0.30; 0.24; 0.11) for the O distribution. Two different versions of the skewed
variables were considered: version (i) (0.45; 0.25; 0.15; 0.10; 0.05) and (0.05; 0.10;
0.15; 0.25; 0.45) for the R and the L distributions, respectively, and version (ii)
(0.65; 0.15; 0.10; 0.05; 0.05) and (0.05; 0.05; 0.10; 0.15; 0.65) for the R and the L
distributions, respectively. With version (ii), we chose to stress the presence of high
frequencies on the mode category, because quantifications typically show nonlinear-
ity and instability in the presence of low frequencies on some categories, like in the
R and L distributions (Linting et al. 2007). Moreover, when the distributions of the
analysed ordinal variables are very different, these can be thought to be not linearly
related. To evaluate the interaction of ordinal variables with different distributions,
we combined optimal and right and left skewed variables, obtaining nine distinct
Cases: OOOO, OOOL, OOLL, OLLL, LLLL, LLLR, LLRR, LROO, LLRO. Since
the R variable follows the reversed frequency pattern of the L variable, OOOR,
OORR and ORRR Cases can be skipped from the analysis, because they give the
analogous results of the OOOL, OOLL and OLLL Cases already considered; the
same holds for the LRRR and RRRR combinations, equivalent to the LLLR and
LLLL Cases, respectively. Using the discretization cuts, we computed the proba-
bility distribution for the multinomial distribution by multidimensional integration
of the multivariate normal distribution. Then, a population composed of 100; 000
units2 was obtained for each of the 9 � 3 D 27 considered combinations – nine
different Cases for O-L-R and three different values of � – for the two different ver-
sions (i) and (ii) of the skewed R and L distributions, and both L-PCA and NL-PCA
were applied to population data.

In order to assess the nonlinearity of the population data, we firstly compared
the quantifications obtained by L-PCA (given by the first k D 5 positive integers,
standardized in order to have zero mean and unit variance) with those given by

1 We chose this value for m in order to deal with simpler computations but also to introduce some
instability in the results, with the aim to stress the differences between L-PCA and NL-PCA.
2 To simplify and fasten the computation, we chose to compute the parameters of interest from a
population data matrix of 100; 000 units rather than by the analytical model, after having checked
that that size allowed us to replicate the results reported in van Rijckevorsel et al. (1985).
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NL-PCA (assigned by the procedure according to the optimal scaling algorithm). In
order to make the comparison between linear and nonlinear quantifications easier,
we referred to the NL Index (Manisera 2006), which measures the nonlinearity of
a given variable using the average squared Euclidean distance between the vectors
of the linear yL and nonlinear yNL quantifications assigned to the k categories,
weighted by the marginal frequencies:

NL� D 1

2
� n�1.yNL � yL/

0D.yNL � yL/ D 1 � r

where n is the number of units, D is the k�k diagonal matrix containing the marginal
frequencies, and r is the Pearson linear correlation coefficient between yNL and yL.
Because in the present context both the linear and the nonlinear transformations are
non-decreasing, 0 < r � 1 and therefore 0 � NL� < 1. If cj for j D 1; 2; : : : ; k

are the k categories of the variable, the minimum r and the maximum NL� are
obtained when (A) cj D c1 or (B) cj D ck for j D 2; : : : ; k � 1. Therefore, the
index used in the present paper is given by

NL D ŒNL�=max.NL�
A; NL

�
B /� � 100

where NL�
A and NL�

B are the NL� Indices associated to (A) and (B).
Secondly, nonlinearity was studied by comparing the values of the dominant

eigenvalues obtained by L-PCA and NL-PCA, on which classical item analysis
results like mean correlation and Cronbach’s alpha depend, as stated at the begin-
ning of this section. Finally, L-PCA and NL-PCA were compared with reference
to the population scores, providing the “measure” of the underlying latent trait. For
each of the considered combinations, the population scores were obtained by com-
puting the weighted sum of the quantifications assigned by L-PCA or NL-PCA with
loadings as weights; one score is determined for each of the unique km D 54 D 625
population profiles or response patterns.

In order to check the sample stability of L-PCA and NL-PCA, we derived
the Monte Carlo gauge from the Probabilistic gauge described above: we run
R D 1000 replications of simple random samples with three different sample sizes
n D 250, 500, 1000 to study the sampling distributions of the two PCA solutions
with reference to dominant eigenvalues and scores.

3 Results

Table 1 displays the NL Indices obtained in the Probabilistic gauge for the O, L
and R variables across the 27 � 2 considered combinations (see, Sect. 2).

As expected, increasing the skewness of the variables from version (i) to (ii)
always increased the nonlinearity of the quantifications. Both O and L variables
showed negligible nonlinearity in Cases OOOO and LLLL, when they were not
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Table 1 NL Indices for the Probabilistic gauge

Cases Variable version (i) version (ii)

� D 0:4 � D 0:6 � D 0:8 � D 0:4 � D 0:6 � D 0:8

OOOO O 0:3 0:1 0:0 0:3 0:1 0:0

OOOL O 0:4 0:6 1:8 0:7 1:7 5:6

L 2:9 2:6 2:0 7:1 6:7 5:4

OOLL O 0:8 1:9 4:9 2:1 5:6 14:1

L 2:1 1:5 0:7 5:2 3:8 2:0

OLLL O 1:5 3:5 7:9 4:2 10:2 21:2

L 1:6 0:9 0:2 3:8 2:2 0:7

LLLL L 1:2 0:5 0:1 2:7 1:2 0:3

LLLR L 2:3 2:1 3:0 5:4 4:7 4:6

R 6:7 10:4 16:7 17:2 27:1 40:7

LLRR L 4:1 5:6 9:4 10:5 13:9 20:9

R 4:1 5:6 9:4 10:5 13:9 20:9

LROO L 3:9 5:0 7:2 10:0 12:3 16:5

R 3:9 5:0 7:2 10:0 12:3 16:5

O 0:2 0:0 0:3 0:2 0:1 0:1

LLRO L 3:0 3:3 4:6 7:4 7:8 8:9

R 5:2 7:7 12:4 13:4 19:5 29:9

O 0:3 0:4 1:4 0:7 1:5 3:7

combined with variables of other types. Moreover, this nonlinearity decreased as �
increased and the linear relation among the variables was stronger.

Results referred to the Cases combining variables of two different types showed
that the nonlinearity of each variable increased, compared with the Cases com-
bining variables of one single type. Moreover, the nonlinearity of the variable of
one type increased when the number of variables of the other type increased: for
example, with version (i) and � D 0:4, the NL Index for variable L was equal to
1.2, 1.6, 2.1, 2.9% in the LLLL, OLLL, OOLL, OOOL Cases, respectively. Look-
ing at the Cases involving only O and L variables, when � increased, the value of
the NL Index decreased for the L variable while increased for the O variable. This
result could be explained as follows: when � increased, the number of response pat-
terns involving the mode of the skewed variables and the highest categories of the
O variables increased. In this situation, the highest categories of the optimal variable
received NL-PCA quantifications that are close to each other and different from the
ones assigned to the lower categories. Consequently, the presence of the L variable
implied the nonlinearity of the O variable, in terms of not equally spaced quantifi-
cations. The Cases involving combinations of only skewed variables are peculiar:
here the NL Index reached the highest values in this study. In the LLLR Case with
version (ii) and � D 0:8, the NL Index associated to the R variable was equal to
40.7%; in the LLRR Case, both the R and the L variables showed the same value
of 20.9%. The very same result is due to the presence of the same number of R
and L variables. This also happened in the LROO Case. In these situations, the L
variables received the nonlinear quantifications yNL while the R variables received
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the nonlinear quantifications �yNL, sorted in ascending order, and the NL Indices
for L and R variables were equal. In the LROO Case combining items of three dif-
ferent types, the presence of two O variables reduced the nonlinearity of the skewed
variables: the comparison of the LLRR and LROO Cases showed that in both situa-
tions L and R variables had the same nonlinearity, but this nonlinearity was slightly
lower in the LROO Case. The ability of the O variables to reduce the nonlinearity of
the skewed variables depends on the number of equal skewed variables comprised
in the comparing Cases. For example, the LLRO Case showed that the influence
of only one O variable was able to reduce the nonlinearity of the L variable, when
compared with the LLRR case; on the contrary, the effect of the O variable was
not visible when moving from LLRO to LLLR, where the majority of L variables
reduced the nonlinearity of the L variables themselves.

The analysis of the dominant eigenvalue in the Probabilistic gauge showed that
the discretization led to a loss of information: as expected, the dominant eigenvalue
in the discrete data was lower than �C in the simulated continuous data. In addi-
tion, the study showed that when the Mean NL Index (computed averaging over
the different types of variables in each Case) increased, both L-PCA and NL-PCA
dominant eigenvalues decreased, indicating that the loss of information was higher
in data associated with higher nonlinearity. With respect to L-PCA, NL-PCA was
always associated to a lower loss and this best performance of the nonlinear tech-
nique directly derives from the NL-PCA optimality criterion. Table 2 displays the
percentage variations of the dominant eigenvalue obtained by NL-PCA compared
with the one obtained by L-PCA, in correspondence of the 27 � 2 combinations
considered.

As expected, all the variations were positive: the eigenvalue obtained by NL-
PCA was always higher than the eigenvalue by L-PCA. This also means that item
analysis results like mean correlation and Cronbach’s alpha based on NL-PCA per-
formed better. In all the considered Cases, fixed �, the best performance of NL-PCA
was more evident when moving towards the most skewed variable (version (ii)). In
addition, with respect to L-PCA, the performance of NL-PCA was better as the

Table 2 % variations of NL-PCA vs L-PCA dominant eigenvalues in the Probabilistic gauge

Cases version (i) version (ii)

� D 0:4 � D 0:6 � D 0:8 � D 0:4 � D 0:6 � D 0:8

OOOO 0:1 0:1 0:0 0:1 0:1 0:0

OOOL 0:5 0:6 1:0 0:8 1:3 2:3

OOLL 0:7 1:0 1:6 1:3 2:3 4:1

OLLL 0:7 0:9 1:3 1:4 2:1 3:4

LLLL 0:5 0:3 0:1 0:8 0:5 0:1

LLLR 1:5 2:2 3:6 2:4 3:2 3:8

LLRR 1:9 3:1 5:4 3:2 5:0 7:3

LROO 1:0 1:4 2:2 1:6 2:3 3:2

LLRO 1:3 2:0 3:3 2:3 3:4 4:8



On the Nonlinearity of Homogeneous Ordinal Variables 495

nonlinearity increased. When the NL Index moved from 0% to 40.7% (version
(ii) and � D 0:8), the NL-PCA dominant eigenvalue grew from 0% to 7.3%, with
respect to the L-PCA dominant eigenvalue.

With reference to the analysis of population scores, the linear correlation coef-
ficient �LINL computed between the L-PCA and NL-PCA 625 population scores
(weighted by their population frequencies) was higher than 0.96 in all the consid-
ered configurations. The minimum value 0.96 came out in the LLRR Case with
version (ii) and � D 0:8. A strong decreasing linear relationship (R2 D 0:945)
between �LINL and the Mean NL Index was found. This suggested that as the non-
linearity associated to the variables decreases, L-PCA and NL-PCA substantially
provide the same measure of the latent trait.

Results of the Monte Carlo gauge suggested that the NL-PCA and L-PCA per-
formances were comparable in terms of accuracy and efficiency in estimating the
population parameters. As the sample size increased, bias and variability associated
to the estimator decreased, as shown in Table 3 with reference to the estimator of
the dominant eigenvalue (in the discrete data) by L-PCA and NL-PCA.

L-PCA and NL-PCA were equally able to estimate population scores, although
the Monte Carlo scores obtained by NL-PCA showed slightly higher instability.
In addition, to compare the Monte Carlo scores, we finally computed the linear
correlation coefficient between linear and nonlinear scores of all the 625 response
patterns (weighted by their population frequencies to consider their sampling prob-
abilities) in each replication for every considered combination. Then we computed
the mean correlation, with the associated standard error, over the replications. It
was always higher than 0.96 considering the three sample sizes. As expected, it
increased as the sample size increased and, for each sample size, showed the lowest
values in correspondence of the LLRR Case with version (ii) and � D 0:8 , like in
the Probabilistic gauge. Table 4 displays the values of bias and standard error of the
correlation coefficient estimator between L-PCA and NL-PCA scores. Results show
that such correlation coefficient was well estimated also with the smallest sample
size, and this confirms that L-PCA and NL-PCA were comparable in their ability to
estimate the measure of the latent variable underlying the data.

Table 3 Bias and standard error of L-PCA and NL-PCA dominant eigenvalue estimator for the
Monte Carlo gauge (1,000 replications)

n L-PCA NL-PCA

250 500 1000 250 500 1000

Bias min �0:002 �0:001 �0:001 0.002 0.001 0.000
mean 0.000 0.000 0.000 0.008 0.004 0.002
max 0.003 0.002 0.001 0.017 0.011 0.004

Std Err min 0.014 0.010 0.007 0.016 0.011 0.007
mean 0.022 0.015 0.011 0.023 0.016 0.011
max 0.032 0.023 0.016 0.031 0.022 0.015
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Table 4 Bias and standard error of the correlation coefficient estimator between L-PCA and
NL-PCA scores for the Monte Carlo gauge (1,000 replications)

n 250 500 1000

Bias min 0.001 0.000 0.000
mean 0.006 0.003 0.002
max 0.015 0.008 0.005

Std Err min 0.002 0.002 0.001
mean 0.006 0.003 0.002
max 0.010 0.007 0.005

4 Concluding Remarks

The results of this study showed that when population data are homogeneous and
variables of very different distributional forms are combined, a source of nonlin-
earity can appear when the attention is on each single variable. However, when the
focus is on the global solution and, in particular, on the construction of a measure of
the latent trait underlying homogeneous data, nonlinearity is negligible even when
variables have very different distributions. For this purpose, L-PCA and NL-PCA
results (recovery of parameters and sampling performances) do not practically dif-
fer: according to the Occam’s razor, the use of the simpler method can be preferred,
although ordinal data from variables having different (optimal and skewed) distribu-
tions would suggest to use the more complex nonlinear technique. Future research
will extend the study to cover more distribution structures, with variables nonlin-
early related each other, discretization types and sample sizes, in order to get more
information on the issue of nonlinearity.
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New Developments in Ordinal
Non Symmetrical Correspondence
Analysis

Biagio Simonetti, Luigi D’Ambra, and Pietro Amenta

Abstract For the study of association in two and three-way contingency tables the
literature offers a large number of techniques that can be considered. When there is
an asymmetric dependence structure between the variables, the Goodman-Kruskal
and Marcotorchino index (with respect to the Pearson chi-squared statistic) can be
used to measure the strength of their association when they are collected in two and
three way contingency tables, respectively. In the last years, special attention has
been paid to the graphical representation of the dependence structure between two
or more variables, preserving the information arising from the ordinal structure of
the modalities. In this paper, the authors synthesize the main proposals falling within
the framework called Ordinal Non Symmetrical Correspondence Analysis for two
and three way contingency tables.

1 Introduction

For the analysis of contingency tables, the Pearson chi-squared statistic is the most
common tool used to measure the association between two or more variables. How-
ever, in situations where there is a one-way, or asymmetric, relationship between
categorical variables it is not appropriate to use the Pearson chi-squared statistic.
Instead, for such two way tables the Goodman-Kruskal tau index (Goodman and
Kruskal 1954) and one of the multivariate extensions, the Marcotorchino index can
be considered. We highlight that when the contingency tables consists of ordinal
categorical variables their structure often needs to be preserved. In order to graphi-
cally summarize the result arising from the dimensional reduction that is used to the
asymmetrical relationship between three ordinal variables and to take into account
the ordinal nature of the variables, in the last year has been proposed a class of
techniques named Ordinal Non Symmetrical Correspondence analysis (ONSCA,
D’Ambra and Lauro, 1989) that provide a graphical description of the dependence
structure of the predictor categories on the response categories. Such a summary is
also shown to be of benefit when determining how individual categories differ in
terms of their location, dispersion and higher order moments.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_56, c� Springer-Verlag Berlin Heidelberg 2011
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2 Ordinal Correspondence Analysis

One popular method of determining the structure of the association among cat-
egorical variables is correspondence analysis (CA), ‘an exploratory multivariate
technique that converts a matrix of non-negative data into a particular type of graph-
ical display in which the rows and columns of the matrix are depicted as points’
(Greenacre and Hastie 1987). The classical approach considers the case where
variables are symmetrically related. One of the few limitations of classical CA is
that it does not allow for a researcher to consider the case where two categori-
cal variables are asymmetrically associated. For example, the age of a person may
influence how they respond to a particular product, but the product will not influ-
ence the persons age. In many practical situations the variables will often be related
in this manner. When there are only two categorical variables, this problem can be
overcome by considering non symmetrical correspondence analysis (NSCA), a vari-
ation of classical CA approach. The primary difference between the two procedures
lies in the measure of association that is considered-CA involves decomposing the
Pearson chi-squared statistic while NSCA decomposes the Goodman-Kruskal tau
for two-way table index (Goodman and Kruskal 1954) and Marcotorchino index
(Marcotorchino 1984) for three-way contingency table. In the last decades Non
Symmetrical Correspondence Analysis (NSCA) has been accepted as a useful tool
for graphically describing the relationship among categorical variables with a one-
way association. Much of the discussion has focused on its application to variables
with a nominal structure. However recent theory developed for classical correspon-
dence analysis has been shown to be applicable in cases where the response variable
and predictor variable of a two or three way contingency table are ordinal. Such
approach involves a decomposition bases on orthogonal polynomials for contin-
gency table (Emerson 1968) and generalized correlations rather than singular value
decomposition. The cited decomposition has generated a class of techniques falling
within the framework called Ordinal Non Symmetrical Correspondence Analysis
for two and three way data tables highlighting the descriptive and inferential main
properties (Table 1).

Table 1 Ordinal non symmetrical correspondence analysis techniques

Technique Data table Row Column Tube Index Decomposition
method

2w SONSCA Two-Way Ordinal Nominal — Goodman-Kruskal Hybrida

2w DONSCA Two-Way Ordinal Ordinal — Goodman-Kruskal Polynomials
3w SONSCA Three-Way Ordinal Nominal Nominal Marcotorchino Hybrida

3w DONSCA Three-Way Ordinal Ordinal Nominal Marcotorchino Hybrida

3w FONSCA Three-Way Ordinal Ordinal Ordinal Marcotorchino Polynomials
2w SROCA Two-Way Nominal Nominal — Chi-Squared Hybrida

2w DROCA Two-Way Nominal Nominal — Chi-Squared Polynomials
aMixed approach with SVD and Polynomials. 2w (3w) stands for two (three)-way
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2.1 Two-Way Data Table

For the analysis of two-way data table with one or two ordinal variables, Lombardo
et al. (2007) propose the decomposition of the Goodman and Kruskal index and the
graphical visualization of the data association structure for a two-way data matrix.
The methodology presented and referred as single or doubly ordinal non symmetri-
cal correspondence analysis in the case when the data table consists of one or two
ordinal variables, respectively, is designed to allow the user to visualize the depen-
dence relationship between categories of a response and a predictor variable. Such
a visualization is useful when identifying the structure of this relationship and does
so in terms of components that reflect sources of variation in terms of the location
(mean), dispersion (spread) and higher order moments.

2.2 Three-Way Data Table

For the analysis of three-way contingency tables with one dependent and two pre-
dictors variables, the Marcotorchino index represents an appropriate statistical tool.
In addition, for contingency tables that consist of ordinal categorical variables,
their ordered structure often needs to be preserved. In this case, Simonetti (2003),
Beh et al. (2007) focus on the partition of the Marcotorchino index, identifying
sources of variation within each variable in terms of location, dispersion and higher
order moments. The authors discuss the case when all three variables are ordinal
(completely ordered), or when only one ore two are ordinal and the other nom-
inal (partially ordered case). For the decomposition the authors use an approach
based on the decomposition through orthogonal polynomials (completely ordered
case) or a mixed (hybrid) approach using orthogonal polynomials and singular value
decomposition (partially ordered case).

To graphically describe the relationship between the row (response) variable and
the column (explanatory) variable, one may consider the plot of the decomposi-
tion of the Marcotorchino index using orthogonal polynomials decomposition as
proposed by D’Ambra et al. (2006).

2.3 Constrained ONSCA

As highlighted by several authors (Nishisato 1980; Böckenholt and Böckenholt
1990), introducing linear constraints on the row and column coordinates of a cor-
respondence analysis representation may be greatly simplify the interpretation of
the data matrix. The Ordinal CA technique has been shown to be a more use-
ful and informative correspondence analysis method than the classical technique
commonly used, even if he restricted the analysis to the integer valued scores. The
problem with such a scoring scheme is that it assumes that the ordered categories
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are equally spaced. In general we know that this may not be the case. Moreover, in
order to obtain a linear order for the standard scores, Böckenholt and Böckenholt
(1990) remove the effects of the quadratic and cubic trend in order to obtain a lin-
ear order for the standard scores, by including suitable constraint matrices even if
they do not know they are statistically significant sources of variation. Main aim of
the Restricted ONSCA (Amenta et al. 2008) has been to introduce the constraints
to the modalities in order to take into account unequally spaced categories, and to
consider linear constraints directly on suitable matrices that reflect only the most
important components. Starting from such aim, Amenta et al. (2008) introduce lin-
ear constraints to the Beh’s Ordinal Correspondence Analysis in the case when the
contingency table consists of one ordinal and one nominal variables.

3 Example of Three-way FONSCA: Application
on cheese data

We perform a survey on a panel of 125 consumers to evaluate how the appearance
and the smell of an Italian cheese influence the overall satisfaction. The survey was
conducted using a four point scale for the three variables. The three variables are
‘Satisfaction with cheese’, ‘Appearance of cheese’ and the ‘Strength of Smell of
Fresh Milk’ in the cheese. For this data it is assumed that the satisfaction variable
is dependent on the appearance of the cheese and smell of the milk. Therefore we
will treat the data as asymmetric with the row variable as the predictor and the other
two variables as explanatory (predictor). A preliminary analysis of the association
between the predictor and explanatory variables, can be made drawing the follow-
ing Z-plots (Choulakian and Allard 1998) where Z.i jk/ are the marginal empirical
distribution function values of the ordinal response variable.

Figure 1a shows the relationship between the appearance and the overall satis-
faction, a good evaluation for the appearance tend to have an acceptable overall
satisfaction. In fact it appears there are very little difference between the Satisfac-
tion levels 3 and 4 (excellent). However it is unclear how distinctive the appearance
levels are. Figure 1b shows a strong smell of fresh milk in cheese tends to lead to an
excellent satisfaction level. However it is unclear whether there is any difference in
the ‘smell’ categories. To measure the level of dependence in the asymmetric data
we compute the Marcotorchino indexD 0.026154. To determine how all three vari-
ables are related to one another the Marcotorchino index can be decomposed into
location, dispersion and ‘error’ components for each variable. This is summarized
in Table 2.

When observing the influence of the one explanatory variable on the association
between the predictor and second variable observe the values in Table 2. It shows
that the location effect of the ‘smell’ variable account for 83.3% of the association
between the satisfaction and appearance variables. Similarly the location effect of
the appearance categories is the major influence of the association of the satisfaction
and smell. Graphical summaries of the three-way associations can also be obtained.
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Fig. 1 (a) Doubly ordered symmetric correspondence plot of the two predictor variables. (b) Joint
representation of the three variables

Table 2 Decomposition of Marcotorchino index

Component Value Contribution

Row-Column
Location 0:021787 83:30

Dispersion 0:004367 16:70

Error 0:000000 0:00

Row-Tube
Location 0:017866 68:31

Dispersion 0:006245 23:88

Error 0:002043 7:81

Marcotorchino 0:026154 100:00

Figure 2a confirms that the smell and appearance variables are positively influ-
ential in the satisfaction level of the cheese. That is a cheese with an excellent
appearance and has a strong smell of fresh milk can lead to excellent satisfaction
levels. Similarly cheeses with a poor appearance and where the smell of fresh milk
is absent tend to produce poor satisfaction levels. Figure 2b graphically shows the
influence of the smell variable on the level of satisfaction. Since the coordinate along
the first axis of the extremes of the satisfaction levels (sad and excellent), they are
similarly located. However the difference along the second axis indicates variation
in terms of their dispersion. Again Satisfaction levels 2 and 3 appear to have similar
classification when the location effect of the appearance is taken into consideration.
Suppose we now consider the impact of the location effect of the ‘smell’ categories
on the satisfaction and appearance variables. In the case of classical correspondence
analysis, Lebart et al. (1984), presented the idea of confidence circles to identify
for which categories the hypothesis of independence is rejected. Beh and D’Ambra
(2009) proposed confidence interval for NSCA (see Fig. 3).
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Fig. 2 Graphical summary of predictor and two explanatory variables of Table 1 [Fig. 2a] and
Ordinal Non-symmetrical correspondence plot of the satisfaction and smell variables taking into
account the points position on the location axis between the appearance categories [Fig. 2b]
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Therefore, the 95% confidence circle for the jth column coordinate in the two-
dimensional non-symmetrical correspondence plot has a radius length
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Note that (1) depends on the jth marginal proportion. Thus, for a very small clas-
sification in the jth predictor category, the radius length will be relatively large.
Similarly, for a relatively large classification, the radius length will be relatively
small. We draw on the non-symmetrical plot, the 95% confidence circle for the j th

column coordinate. The confidence circles show that all modalities of appearance
variable are significant with an error level of 5%.
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Correspondence Analysis of Surveys
with Multiple Response Questions

Amaya Zárraga and Beatriz Goitisolo

Abstract Correspondence Analysis (CA) of surveys studies the relationships
between several categorical variables defined with respect to a certain population.
However, one of the main sources of information is the type of survey in which it
is usual to find multiple response questions and/or conditioned questions that do
not need to be answered by the whole population. In these cases, the data coded
as 0 (category of no chosen response) and 1 (category of chosen response) can be
expressed by means of an incomplete disjunctive table (IDT). The direct application
of standard CA to this type of table could lead to inappropriate results. We therefore
propose a new methodology for the analysis of incomplete disjunctive tables.

1 Introduction

The aim of this work is to present a new methodology to describe simultaneously the
relationships between all the categorical variables that make up a survey that con-
tains multiple response questions and/or conditioned questions and that, therefore,
give rise to an incomplete data table. Factorial studies of information from sur-
veys are usually carried out by means of multiple correspondence analysis (MCA)
(Lebart et al. 1984; Escofier and Pagès 1998; Greenacre 1984). MCA is widely used
for analysing surveys with multiple choice questions that contain a finite number of
response categories from which individuals have to choose one and only one. This
method consists of applying CA to what it is known as a complete disjunctive table
(CDT) in which the answers given by individuals are coded as 1 (category of cho-
sen response) and 0 (category of no chosen response). However, apart from multiple
choice questions, surveys may often contain multiple response questions in which
individuals can simultaneously select more than one category of response. More-
over, there are also surveys in which it is usual to find conditioned questions that do
not need to be answered by the whole population. In this last case, individuals must
answer a question or not depending on their answer to a previous one. In surveys it is
also possible to find a combination of both types of questions, that is to say, multiple
response questions conditional upon previous responses. In these cases, information
is gathered in a table that is known as an Incomplete Disjunctive Table (IDT).

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_57, c� Springer-Verlag Berlin Heidelberg 2011
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Table 1 Example of an IDT

A1 A2 B1 B2 B3 C1 C2 D1 D2 D3 D4

1 1 0 1 0 0 1 0 1 0 1 0 5
2 1 0 1 0 0 1 0 1 0 0 0 4
3 0 1 0 1 0 0 1 0 0 0 0 3
4 0 1 0 0 1 1 0 1 1 1 1 7
. . .

6 4 4 3 3 7 3 7 3 6 4 50

For example, assume that Table 1 presents the answers of 10 individuals to a
survey comprising questions A, B, C and D with their corresponding response cate-
gories. Note that answers to question D are conditioned by question C. In particular,
only individuals who choose category C1 answer question D. Also note that ques-
tion D is a multiple response question. Consequently Table 1 is an IDT. In this small
example the aim would be to describe the relationships between four categorical
variables from the answers provided by 10 individuals. This aim can be approached
in three different ways, by classical CA of the IDT, by classical CA of the CDT
completing the IDT with dummy categories and by the methodology proposed in
this paper, which consists of applying CA to the IDT, imposing a suitable marginal.

The notation used is introduced in Sect. 2, and then Sect. 3 presents the problems
that result from the application of the first analysis. Section 4 shows the problems
that result from the application of the second analysis. Sections 5 and 6 describe the
methodology proposed and give an illustrative example.

2 Notation

Let I D f1; : : : ; i; : : : ; ng be the set of individuals, Q D f1; : : : ; q; : : : ;Qg the set
of variables (questions) which individuals must answer, Jq D f1; : : : ; j; : : : ; Jqg
the set of categories of variable q and J D f1; : : : ; j; : : : ; J g the set of categories
of all variables. Let Z and Z� be the complete disjunctive table (CDT) and incom-
plete disjunctive table (IDT) respectively, both with n rows and J columns, whose
general terms are: zij D 1 if individual i answers category j and zij D 0, otherwise.
Define zi: DPj zij as the total number of answers of any individual i , z:j DPi zij

as the number of individuals responding in category j , and finally z D P
i

P
j zij

as the grand total of the table. Note that in Z there is always just one 1 value and
.Jq � 1/ zeros for each question q and for each individual i . However, in Z� for
some questions q, there are Jq zeros for those individuals not answering question q
in the case of conditioned questions, and in the case of q being a multiple response
question an individual may have from Jq ones to Jq zeros. As a result, some proper-
ties given in the CDT are no longer fulfilled in the IDT. Thus, in the IDT the number
of individuals who answer each question is not n for all questions, the total number
of answers of any individual is notQ and the total of the table is different from nQ.
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Relatives and marginals frequencies are defined in the usual way: pij D zij =z,
pi: D P

jpij D zi:=z, p:j D P
i pij D z:j =z, as are the row profiles: pij =pi: D

zij =zi:, which set up the row-point cloud (individuals) in RJ whose centre of gra-
vity or average row profile coordinate is p:j . This centre of gravity or average row
profile represents the origin of the factorial axes over which the row-point cloud
is projected. Column profiles are defined as pij =p:j D zij =z:j , which set up the
column-point cloud (categories) in Rn whose centre of gravity or average column
profile coordinate is pi:. This centre of gravity or average column profile represents
the origin of the factorial axes over which the column-point cloud is projected.

3 Problems of Applying Classical CA to an IDT

In CA, similarity between any pair of row profiles (individuals) and between any
pair of column profiles (categories) is calculated by means of the �2 distance.

The �2 distance between two row profiles i and i 0 is defined by:

d 2.i; i 0/ D
X

j 2J

1

p:j

�
pij

pi:

� pi 0j

pi 0:

	2

D
X

j 2J

z

z:j

�
zij

zi:

� zi 0j

zi 0:

	2

In a CDT two individuals i and i 0 are similar if overall they have the same respon-
se categories. This distance only increases with the different answers (as is logical).
But in an IDT this distance also increases with common answers when the indivi-
duals do not answer the same number of questions, since zi: ¤ zi 0:.

For example, in Table 1 the response patterns of individuals 1 and 2 differ only
in category D3 and this single difference would have to be the only one determining
the distance between both individuals. Nevertheless, the application of the above
expression to these individuals implies that the distance also increases with all the

common answers: d 2.i D 1; i 0 D 2/ D 50
6

�
1
5
� 1

4

�2 C � � � C 50
4

�
0
5
� 0

4

�2
.

Similarly, the �2 distance between two categories j and j 0 is defined as:

d 2.j; j 0/ D
X

i2I

1

pi:

�
pij

p:j

� pij 0

p:j 0

	2

D
X

i2I

z

zi:

�
zij

z:j

� zij 0

z:j 0

	2

In a CDT the marginal on I is constant, pi: D 1=n, so each individual takes
part with the same importance in the formation of this distance. But in an IDT each
individual could have a different importance according to the number of answers
previously chosen, since pi: ¤ 1=n.

For example, if the above distance between categories D1 and D4 in Table 1 is
calculated: d 2.D1;D4/ D 50

5

�
1
7
� 0

4

�2C 50
4

�
1
7
� 0

4

�2C : : : it can be observed that
the contribution to this distance of individual 1 is less than that of individual 2, in
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spite of both having chosen option D1 and neither of them D4, which does not seem
to be natural.

On the other hand, consider a category chosen by all the individuals in the survey.
Imagine, for example, that in a public opinion survey all the individuals are men. In
this case, variable gender is not relevant to the analysis since it does not enable any
distinction to be drawn between opinions of men and of women. So the category
‘man’ (with a constant profile of 1=n) should have no influence in the analysis of
the survey. From the geometric point of view of the CA, this category would have
to coincide with the centre of gravity of the cloud of categories and therefore there
should be zero distance to this centre of gravity. This is indeed the case if CA is

applied to the CDT: d 2.j;GJ / DP
i

1
pi:
.

pij

p:j
� pi:/

2 DP
i n
�

1
n
� 1

n

�2
, but in the

analysis of the IDT the distance to the centre of gravity of a category chosen by all

the individuals is not zero: d 2.j;GJ / DP
i

z
zi:



1
n
� zi:

z

�2

so that this distance has

an influence on all the elements of the analysis: inertias, determination of factorial
axes and so on.

It seems, therefore, that the direct application of standard CA is not appropriate
for the study of an IDT.

4 Problems of Applying Classical CA to a Created CDT

Possible solutions to the above problem could get in the way of creating a CDT. It
is therefore necessary to include new response categories. In the case of multiple
response questions, it is necessary to create for each response category a comple-
mentary category that denies the previous one. Thus, if the question has Jq response
categories, 2Jq categories will be finally analyzed. In the case of questions condi-
tioned by a previous question, it is necessary to add for each question a dummy
category indicating that respondents are not required to answer (NRA) that ques-
tion. This means that as many dummy categories are added as there are conditioned
questions. Moreover, if the conditioned question is a multiple response question,
both types of artificial category have to be created. In this case, the Jq initial cate-
gories become 3Jq final categories. For example, in the case of Table 1, where the
individuals who choose category C2 do not have to answer question D, it would be
necessary to create 4 new categorical variables for question D, each of them with
three categories of response: Di represents the original category, DiC is the dummy
category that denies the original one for those individuals who choose category C1
and it is coded as 0 for those individuals who choose category C2, since for them
the dummy category Di -NRA has to be created.

This can be seen in Table 2 where, for the sake of simplicity, we only show ques-
tions C and D from Table 1. Question D is transformed into 4 categorical variables
with 12 categories. Table 2 shows that the 4 ‘not required to answer’ categories are
identical and at the same time equal to category C2. Table 2 also shows that the
dummy category DiC only would be a null category and would not have influence
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Table 2 Example of a CDT created from an IDT

C1 C2 D1 D1C D1-NRA D2 D2C D2-NRA D3 D3C D3-NRA D4 D4C D4-NRA

1 1 0 1 0 0 0 1 0 1 0 0 0 1 0
2 1 0 1 0 0 0 1 0 0 1 0 0 1 0
3 0 1 0 0 1 0 0 1 0 0 1 0 0 1
4 1 0 1 0 0 1 0 0 1 0 0 1 0 0
5 0 1 0 0 1 0 0 1 0 0 1 0 0 1
6 1 0 1 0 0 1 0 0 1 0 0 1 0 0
7 1 0 1 0 0 0 1 0 1 0 0 1 0 0
8 1 0 1 0 0 0 1 0 1 0 0 1 0 0
9 1 0 1 0 0 1 0 0 1 0 0 0 1 0
10 0 1 0 0 1 0 0 1 0 0 1 0 0 1

in the analysis if the answers of individuals to Di were identical to the answers to
C1, as is the case with the category D1C . A CDT created in this way facilitates
the application of MCA, but it can also involve a number of problems. Since all
the categories – both the original ones and the dummies – contribute to the cre-
ation of factorial axes, they give rise to planes covered by points, complicating the
interpretation. Moreover, the interpretation has to be carried out cautiously since the
additional categories may actually fit the negative of the original category but may
also hide a desire not to answer and/or ignorance of the answer. The dummy cate-
gories can have identical or very similar response patterns and they can even create
the first factorial axes, as is usually the case in conditioned questions (Zárraga and
Goitisolo 2008). Therefore, the creation of a CDT and its analysis by means of MCA
does not seem to be an adequate solution to the problem.

5 Proposed Methodology: CA of an IDT
with a Modified Marginal

As seen above, the fact of having an IDT and therefore, a marginal on I depending
on the different number of answers given by individuals can lead to inappropriate
results. Consequently, a new methodology for analysing IDTs seems to be needed.

The methodology that we propose is based on CA with a modified marginal
(Escofier 1987; Zárraga and Goitisolo 1999) and consists of replacing the marginal
over I of the IDT which is not constant by an appropriate constant marginal in the
whole analysis.

We propose that this marginal should be 1=n. This choice is made for several
reasons: (1) It is the natural centre of gravity of multiple choice questions and non
conditioned question categories in the survey; (2) It gives equal weight or impor-
tance to all individuals; (3) The distances between individuals (Sect. 3) are due only
to differences between their response patterns; (4) In the distances between two cat-
egories (Sect. 3) all individuals have the same importance, regardless of whether
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they answer all the questions or not; (5) The categories chosen by all individuals,
if this situation arises, do not influence the analysis and (6) It is not necessary to
introduce dummy categories in the analysis.

The objective of CA of the IDT Z�, with the imposed marginal, is to iden-
tify a low-dimensional subspace that fits the points as closely as possible using
weighted least squares and then projecting orthogonally the points onto the subspace
for visualization and interpretation. Let Dc be the diagonal matrix whose diago-
nal entries are column frequencies p:j D z:j =z and let Dr be the diagonal matrix
whose diagonal entries are the values of the imposed marginal. The row profiles
of Z�, with masses given by the diagonal of Dr , set up the row-points cloud in an
J -dimensional Euclidean space, structured by the inner product and metric defined
by the matrix Dc . The column profiles of Z�, with masses given by the diagonal of
Dc , set up the column-points cloud in an n-dimensional Euclidean space, structured
by the inner product and metric defined by the matrix Dr .

Let g.j / be the projection of column j onto the subspace which comes clo-
sest to the set of column-points. The solution minimizes the following function:P

j p:jd
2.j; g.j // or equivalently maximizes the function:

P
j p:jg

2.j / which
is the variance (inertia in the context of CA) in the data table explained by the
subspace.

For identifying the dimensions of the subspace, CA is based on decomposi-
tions of centered and normalized matrices, using either the eigenvalue-eigenvector
decomposition of a square symmetric matrix or the singular-value decomposition
(SVD) of a rectangular matrix. Following the SVD approach, CA of the incomplete
disjunctive table Z� can be carried out by calculating the SVD of the centered and

normalized matrix S: S D D�1=2
r

h
Z�

z � Dr11T Dc

i
D�1=2

c D U˙VT where ˙ is

the diagonal matrix with singular values in descending order: �1 � �2 � � � � �
�S > 0 with S being the rank of matrix S. If strict inequalities order the singular
values, that is, there is no multiplicity of singular values, then the SVD is uniquely
determined up to reflections in corresponding singular vectors. Otherwise, if two
singular values are equal, their corresponding singular vectors are determined only
up to rotations in their respective two-dimensional subspaces.

The squared singular values or eigenvalues �2
s D �s are called principal inertias

in the context of CA and their sum
P

s �s is equal to the total inertia and equal to
trace.SST / D trace.ST S/. In CA literature, the total inertia is the amount of the
total variance in the data table. The columns of U, called left singular vectors, and
those of V, the right singular vectors, are orthonormal, UT U D VT V D I.

Projections of rows, fs, and columns, gs, on the sth axis are calculated as principal
coordinates: fs D pnus

p
�s; gs D D�1=2

c vs

p
�s .

In classical CA, the transition relationships between projections of different
points create a simultaneous representation that provides more detailed knowl-
edge of the matter being studied. In CA with the imposed marginal, the transition
relationships between fs and gs can be expressed as:

fs D n
�

Z�

z
� 1
n

11T Dc

�
gs

1p
�s

gs D D�1
c

�
Z�

z
� 1
n

11T Dc

�T
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1p
�s
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6 Illustrative Example

For the sake of simplicity, we only present the analysis of one multiple response
question without considering the rest of the questions in survey or the socio-
demographic variables. In particular, we deal with a survey with multiple response
questions via a classical CA of the CDT created from the IDT and via the metho-
dology proposed. Both analyses were carried out with Splus. The classical CA of
the IDT is not presented here, for the reasons set out in Sect. 3. The data analyzed
come from the Survey on Households and the Environment conducted in 2008 by
the Spanish Institute of Statistics. In this survey the question “Would you agree with
the following measures for the protection of the environment?” has been chosen as
an example. Information on nearly 27,000 people aged 16 and over is considered.

The question gives eight possible responses: Making separation of household
waste obligatory; Restricting abusive consumption of water; Establishing a tax on
fuel; Establishing restrictions on private transport; Establishing a tax on tourism;
Installing renewable energy parks (windfarm, solar power) in your town in spite of
the effect on the landscape; Paying more for alternative energy and Reducing traffic
noise. The coding of the answers to this question in disjunctive form gives rise to
an IDT. To analyze this table via classical MCA, each of the eight original response
categories becomes a question, each one with two categories: the original and the
dummy one (Sect. 4). These dummy categories create inertia in the cloud of points
and take part in the determination of the factorial axes, as they would be considered
as categories of active questions. This means that, as observed in Fig. 1a, the first
two factorial axes are determined by these categories. More specifically, the first
factorial axis only shows the opposition between the original response categories
of the “created questions” and the dummy categories. This is logical because each
question has only two response categories, but this phenomenon is not very inter-
esting. The dummy categories also contribute to the second and subsequent axes.
It is mainly in the fourth axis that we can find a relationship between the original
response categories. This fourth axis (Fig. 1b) allows us to say that there is a differ-
ence between people in favour of paying more for alternative energy and those in
favour of establishing a tax on tourism and in favour of establishing restrictions on
private transport. However, this relationship is found in the first plane if we analyze
the IDT with the proposed methodology (Fig. 1c). In this first plane we also see, in
the first axis, a difference between people who agree to pay for the protection of the
environment and those people not prepared to pay for it. Exploring further dimen-
sions (Fig. 1d), we can find more information about the relationships between the
data analyzed.

7 Discussion

The fact that there are multiple response questions and/or conditioned questions in
surveys means that the table in which individual answers are coded in logical and
disjunctive form is an incomplete table. The incorporation of dummy categories to



512 A. Zárraga and B. Goitisolo

–0.5 0.0 0.5 1.0

–
1.

0
–

0.
5

0.
0

Analysis of the CDT

Factor  1    ( 32.453 %)   

F
ac

to
r 

 2
   

 (
 1

2.
58

1 
%

) 
    Oblige_separate_waste

  Restrict_water

  Tax_fuel

  Restrict_private_transport

  Tax_tourism

  Install_energy_park

  Pay_alternative_energy

  Reduce_traffic_noise
  Oblige_separate_waste-F

  Restrict_water-F

  Tax_fuel-F

  Restrict_private_transport-F
  Tax_tourism-F

  Install_energy_park-F

  Pay_alternative_energy-F

  Reduce_traffic_noise-F

FictitiousOriginals

a

–1.0 –0.5 0.0 0.5

–
0.

4
–

0.
2

0.
0

0.
2

0.
4

0.
6

Analysis of the CDT

Factor  3    ( 11.307 %)   

F
ac

to
r 

 4
   

 (
 9

.8
12

 %
) 

  

  Oblige_separate_waste

  Restrict_water

  Tax_fuel

  Restrict_private_transport
  Tax_tourism

  Install_energy_park

  Pay_alternative_energy

  Reduce_traffic_noise

  Oblige_separate_waste-F

  Restrict_water-F

  Tax_fuel-F
  Restrict_private_transport-F

  Tax_tourism-F

  Install_energy_park-F

  Pay_alternative_energy-F

  Reduce_traffic_noise-F

b

0.2 0.4 0.6 0.8 1.0 1.2

–
1.

0
–

0.
5

0.
0

0.
5

Analysis of the IDT

Factor  1    ( 36.113 %)   

F
ac

to
r 

 2
   

 (
 1

6.
83

7 
%

) 
  

  Oblige_separate_waste

  Restrict_water  Tax_fuel

  Restrict_private_transport
  Tax_tourism

  Install_energy_park

  Pay_alternative_energy

  Reduce_traffic_noise

PayNo pay

c

–0.4 –0.2 0.0 0.2 0.4 0.6 0.8

–
0.

6
–

0.
4

–
0.

2
0.

0
0.

2
0.

4
0.

6

Analysis of the IDT

Factor  3    ( 12.572 %)   

F
ac

to
r 

 4
   

 (
 1

0.
69

5 
%

) 
  

  Oblige_separate_waste

  Restrict_water

  Tax_fuel

  Restrict_private_transport

  Tax_tourism

  Install_energy_park

  Pay_alternative_energy

  Reduce_traffic_noise

d

Fig. 1 Factorial planes

create a complete table can distort the analysis, since relationships between varia-
bles may appear which are due solely to the dummy categories. It therefore seems
appropriate to work with incomplete disjunctive tables. However, the correspon-
dence analysis of such tables reveals a defect in the application of the �2 distance to
study the similarity between individuals. In IDT this distance increases not only with
different answers from individuals but also with those categories chosen by both
individuals if the number of questions answered does not coincide. The methodol-
ogy proposed corrects this defect since the new �2 distance increases only with non
common answers from respondents and allows us to look for the real relationships
between questions or variables.
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Control Sample, Association and Causality

Riccardo Borgoni, Donata Marasini, and Piero Quatto

Abstract We introduce the control sample in survey sampling as a tool for mea-
suring the association between a possible cause X and a particular effect Y . The
elements of the target population are divided in two groups according to whether
X is present or not, the absence of X identifies the control group. A random sam-
ple is selected from each group with the aim of measuring the association between
X and Y . We propose an unbiased estimator of the associational risk difference
between groups and then generalize our approach to the problem of estimating the
causal risk difference.

1 Introduction

In survey sampling theory from finite populations, the control sample can be intro-
duced to measure the association between two dichotomous variables, denoted byX
and Y . In this context,X may be a possible cause of the variable Y and the problem
is that of measuring the strength of the supposed causal relation.

The finite population U can be divided into the two subgroups E of size N and
C of size M by the variable X . In particular, E represents the group of primary
interest (X D 1) and C the control group (X D 0).

To exemplify consider the case of quality evaluation of the university programs.
In this context one relevant issue is to asses whether the type of secondary school
certificate obtained by students affects the student drop-out later on in their uni-
versity career. The population of students, U , is divided in the two groups, E and
C , according to the type of secondary school certificate they obtained. For instance
those who have got a technical diploma (X D 1) can be considered separately from
the others (X D 0). In this case Y identifies those students who have dropped out
from the university program after their first year (Y D 1). Hence, the problem is
to measure the causal association between the student’s drop out and having had a
technical secondary school certificate.

In order to measure the fore-mentioned association, several measures have been
introduced such as the relative risk,v the odds ratio and the risks difference. Each

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_58, c� Springer-Verlag Berlin Heidelberg 2011
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of these measures has some appealing properties and disadvantages (Lachin 2000;
Agresti 2002; Jewell 2004; Hernan 2004). In particular, Hernan and Robins (2006)
discussed how the relative risk can be used to estimate causal effect in the context
of observational designs. Herein we focus on associational risk difference which is
considered as a parameter d of the population U :

d D NY1 � NY0 D P.Y D 1jX D 1/ � P.Y D 1jX D 0/ (1)

where �1 � d � 1.
Referring to the example, the two probabilities in (1) measure the risk of dropout

in E and, respectively, in C . In particular, in the context of students’ drop out or
more generally in the field of quality evaluation, the relative risk and the odds ratio
largely used in epidemiology are slightly unsatisfactory. For instance, knowing that
the relative risk is halved when moving from one of the two groups to the other (e.g.
students coming from two different type of schools) it is not particularly useful if
the dropouts are respectively, say, 40 and 20 out of thousands of students. A similar
argument applies to the odds ratio as well, at least for moderately rare events. The
difference between proportions takes more in account the order of magnitude of
the phenomenon considered, an information that seems hardly ignorable in public
services evaluation.

In Sect. 2 we describe a suitable sampling design and we propose an unbiased
estimator of the associational risk difference. Sections 3 and 4 provide an extension
of our approach to the case of causal risk difference. Finally, a simulation study is
presented in Sect. 5.

2 Sampling Design and the Associational Risk
Difference Estimate

In order to estimate the parameter (1), we select a sample of size t D nC m from
U D E[C . Therefore, let s1 be a sample of n units drawn fromE (called the study
sample), let s0 be the control sample of m units drawn from C (called the control
sample) and let

s D s1 [ s0 (2)

be the union of the two independent samples.
Suppose that sampling is without replacement and that the design gives a posi-

tive probability p.s/ only to the

�
N

n

	�
M

m

	
samples s obtained by the following

steps. The first step gives positive probabilities to

�
N

n

	
study samples s1 of size n

selected from the subpopulationE . The second step assigns positive probabilities to�
M

m

	
control samples s0 of size m selected from the subpopulation C . Let p.s1/
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be the probability of the sample s1 and let p.s0/ be the probability of s0. Then the
sampling design gives to the pooled sample (2) the probability p.s/ D p.s1/p.s0/.
Under simple random sampling without replacement (srswor) we have

p.s/ D 1
�
N

n

	�
M

m

	

and the proposed estimate of the parameter (1) is given by

Od D
X

i2s1

yi

n
�
X

j 2s0

yj

m
D ONy1 � ONy0

where ONy1 and ONy0 are the usual estimates of the means NY1 and NY0, respectively. It is
well known that the corresponding estimator OD is unbiased under srswor and that

v. OD/ D ONy1.1 � ONy1/

n � 1
N � n
N

C ONy0.1 � ONy0/

m � 1
M �m
M

represents an unbiased estimate of the variance of OD

Var. OD/ D
NY1.1 � NY1/

n

N � n
N � 1 C

NY0.1 � NY0/

m

M �m
M � 1 :

3 Causality

Following Hernan (2004) and Morgan and Winship (2007), let Y 1 be the potential
outcome under the valueX D 1 and let Y 0 be the potential outcome under the value
X D 0. The variable X has a causal effect on the outcome variable Y if the causal
risk difference

ı D P.Y 1 D 1/� P.Y 0 D 1/ (3)

is not zero. In such a context, we give particular attention to the following two
conditions: the consistency condition, given by

8x D 0; 1 X D x ) Y x D Y; (4)

meaning that the potential outcome Y x is consistent with the actual outcome Y ; the
exchangeability condition, which means that the potential outcome is independent
of X , i.e.

8x D 0; 1 Y x
a

X: (5)

Thus, under exchangeability (5)

P.Y x D 1/ D P.Y x D 1jX D x/
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and under consistency (4)

P.Y x D 1jX D x/ D P.Y D 1jX D x/;

so that
P.Y x D 1/ D P.Y D 1jX D x/

and then

ı D P.Y 1 D 1/ � P.Y 0 D 1/ D P.Y D 1jX D 1/� P.Y D 1jX D 0/ D d:

This means that, under consistency and exchangeability, the causal risk difference
(3) equals the associational risk difference (1).

4 Estimation of the Causal Risk Difference

Following Hernan and Robins (2006), the exchangeability condition (5) is rarely
met and the stratified design is a natural way to select a control sample similar
to the study sample with the intention of weakening (5). For this purpose, we can
introduce a suitable variable S D 1; 2; : : :;H and assume that exchangeability is
true only within the strata defined by S :

8x D 0; 1 fY x
a

XgjS: (6)

The validity of the causal inference strictly depends on the conditional exchange-
ability (6), no matter how many variables are included in the stratification.

Getting back to the problem of assessing whether the type of secondary school
certificate is a potential cause of students’ drop out sketched in Sect. 1, exchange-
ability implies that the probability of a potential withdrawing from university is
the same irrespectively of the type of high school diploma actually received. This
assumption is hardly believable in real situations. Conditional exchangeability, on
the contrary, implies that this happens within the categories of a stratification vari-
able which can be possibly derived by combining several student’s characteristics
such as age, gender or being a student worker, usually available from the Univer-
sity administration records. When considered within highly homogeneous profiles,
exchangeability sounds to be a much more plausible situation.

By means of the stratification, we may consider the stratum-specific version
of (1)

dh D NY1h � NY0h D P.Y D 1jX D 1; S D h/ � P.Y D 1jX D 0; S D h/

and then generalize (1) to the weighted mean
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d D
HX

hD1

whdh D
HX

hD1

wh. NY1h � NY0h/ (7)

where

wh D P.S D h/ D Nh CMh

N CM
represents the stratum weight and Nh is the number of those units having X D 1

while Mh is the number of those units having X D 0. Despite the fact that the
literature does not seem to provide a clear interpretation of (7), we prove that this
parameter is equal to the causal risk difference (3), if the assumptions of consistency
and conditional exchangeability hold. Indeed, under condition (6)

P.Y x D 1jS D h/ D P.Y x D 1jX D x; S D h/

and under consistency (4)

P.Y x D 1jX D x; S D h/ D P.Y D 1jX D x; S D h/;

so that
P.Y x D 1jS D h/ D P.Y D 1jX D x; S D h/

and then

ı D P.Y 1 D 1/ � P.Y 0 D 1/

D
HX

hD1

P.S D h/ŒP.Y 1 D 1jS D h/ � P.Y 0 D 1jS D h/�

D
HX

hD1

P.S D h/ŒP.Y D 1jX D 1; S D h/� P.Y D 1jX D 0; S D h/� D d:

We consider the stratified version of srswor, so that the plug-in estimator of (7)
becomes

_

D D
HX

hD1

wh

_

Dh D
HX

hD1

wh.
_NY 1h �

_NY 0h/: (8)

It can be proved that estimator (8) is unbiased and has variance

Var



_

D
�
D

HX

hD1

w2
h

"
�2

1h

Nh � 1
�
Nh

nh

� 1
	
C �2

0h

Mh � 1
�
Mh

mh

� 1
	#

(9)

with (
�2

1h
D NY1h.1 � NY1h/

�2
0h
D NY0h.1 � NY0h/

: (10)
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Finally, we derive the optimal allocation by finding the minimum of (9) subject to
the constraint

HX

hD1

.nh Cmh/ D t

where t represents the total sample size. For this purpose, the method of Lagrange
multipliers provides the optimal sample sizes

8
ˆ̂̂
<

ˆ̂̂
:

nh D wh�1h
HP

kD1

wk.�1kC�0k /

t

mh D wh�0h
HP

kD1

wk.�1kC�0k /

t
(11)

adopting for simplicity the commonly used approximations

Nh � 1 � Nh;Mh � 1 � Mh:

As usual, in order to realize the optimal allocation (11), it will be necessary to
conduct a pilot survey for estimating the unknown parameters (10).

5 Simulation Study

In order to assess the loss of efficiency due to using the proportional allocation

(
nh D Nh

N CM
t

mh D Mh

N CM
t

(12)

instead of (11), the results of a simulation study are reported herein. The simulation
design is as follows. A finite population of N D 1;500 units and M D 2;500 units
was generated. The population was stratified in two levels of a potential cause con-
sisting of N1 D 450 and N2 D 1;050 and M1 D 1;500 and M2 D 1;000. For such
a population, fixed values of d and dh (h D 1; 2) were considered. Different scenar-
ios for the associational risk difference were generated by changing the proportions
NY1h and NY0h in each stratum. As reversing the sign leaves the results unaffected, (9)

taking the same value, we do not report the case of both negative dh in the table.
The population was repeatedly sampled without replacement using both the propor-
tional and optimal allocation for the strata. The plug-in estimator (8) was calculated
for each sample. For the optimal allocation, we estimated the variances in (11) by
calculating the plug-in counterpart of (10) on a simulated pilot survey of size equal
to 1% of the population. The Monte Carlo (MC) mean, variance and design effect
(i.e. the ratio between the Monte Carlo variance of the estimator in the case of the
proportional and optimal design) were computed. The procedure was repeated for
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Table 1 Results of a Monte Carlo study

d1 d2 d Sampling Optimal allocation Proportional allocation Deff
fraction MC MC MC MC

mean variance mean variance

0.60 0:20 0:40 0:05 0:3958 0:0034 0:3948 0:0039 1:15

0:10 0:3936 0:0016 0:3960 0:0019 1:19

0:20 0:3955 0:0007 0:3945 0:0008 1:14

0:30 0:3950 0:0004 0:3951 0:0004 1:00

0.84 0:84 0:84 0:05 0:8399 0:0013 0:8402 0:0015 1:15

0:10 0:8403 0:0007 0:8415 0:0008 1:14

0:20 0:8402 0:0003 0:8401 0:0004 1:33

0:30 0:8403 0:0002 0:8401 0:0002 1:00

�0:6 0:2 �0:19 0:05 �0:1871 0:0025 �0:1907 0:0038 1:52

0:10 �0:1891 0:0012 �0:1901 0:0017 1:42

0:20 �0:1902 0:0005 �0:1900 0:0008 1:60

0:30 �0:1903 0:0003 �0:1915 0:0004 1:33

The design effect (Deff) is based upon 1,000 Monte Carlo replicates.

a range of d values and for a range of (increasing) sampling fractions. Results are
reported in Table 1. We explored a large number of cases which looked extremely
similar to those reported in Table 1. The two designs have similar behavior in terms
of bias as expected because of the estimator (8) is unbiased. The optimal alloca-
tion seems to improve the performance of the estimator sensibly only when both the
sample size and the risk difference are relatively small or when the stratum-specific
risks differences have opposite sign.
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A Semantic Based Dirichlet Compound
Multinomial Model

Paola Cerchiello and Elvio Concetto Bonafede

Abstract This contributions deals with the methodological study of a generative
approach for the analysis of textual data. Instead of creating heuristic rules for
the representation of documents and word counts, we employ a distribution able
to model words along text considering different topics. In this regard, following
Minka proposal, we implement a Dirichlet Compound Multinomial distribution that
is a mixture of random variables over words and topics. Moving from such approach
we propose an extension called sbDCM that takes into account the different latent
topics that compound the document. The number of topics to be inserted can be
known or unknown in advance, on the basis of the application context. Without los-
ing in generality we present the case where the number and characteristics of topics
are properly evaluated on the basis of available data.

1 Introduction

With the rapid growth of on-line information, text categorization has become one of
the key techniques for handling and organizing data in textual format. Text catego-
rization techniques are an essential part of text mining and are used to classify new
documents and to find interesting information contained within several on-line web
sites. Since building text classifiers by hand is difficult, time-consuming and often
not efficient, it is worthy to learn classifiers from experimental data.

Many approaches have been proposed and tested within the text modelling con-
text. Among them we can mention: the latent semantic analysis (LSA) (Deerwester
et al. 1990), the probabilistic latent semantic analysis (pLSA) (Hofmann 1999),
the latent Dirichlet allocation (LDA) (Blei and Lafferty 2006), the correlated topic
model (CTM) (Blei et al. 2003) and finally the Independent Factor Topic Models
(IFTM) (Putthividhya et al. 2009). All those models are considered generative
approaches since they try to represent the word generation process by introduc-
ing suitable distributions, in particular the multinomial and the Dirichlet random
variables. The more complicated version of those generative models introduces the
concept of topics and the relative correlation among them.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_59, c� Springer-Verlag Berlin Heidelberg 2011
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On the other hand is important to mention another interesting research path
focusing on the burstiness phenomenon, that is the tendency of rare words, mostly,
to appear in burst. The above mentioned generative models are not able to cap-
ture such peculiarity, that instead is very well modelled by the Dirichlet com-
pound multinomial model (DCM). Such distribution was introduced by statisticians
(Mosimann 1962) and has been widely employed by other sectors like bioinformat-
ics (Sjolander et al. 1996) and language engineering (Mackay and Peto 1994). An
important contribution in the context of text classification was brought by Minka
(2003) and Madsen et al. (2005) that profitably used DCM as a bag-of-bags-of-
words generative process. Similarly to LDA, we have a Dirichlet random variable
that generates a multinomial random variable for each document from which words
are drawn. By the way, DCM cannot be considered a topic model in a way, since
each document derives specifically by one topic. That is the main reason why Doyle
and Elkan (2009) proposed in 2009 a natural extension of the classical topic model
LDA by plugging into it the DCM distribution obtaining the so called DCMLDA.

Following this path of research, we move from DCM approach and we propose
an extension of the DCM, called ‘semantic-based Dirichlet Compound Multinomial’
(sbDCM), that permits to take latent topics into account.

2 Background: The Dirichlet Compound Multinomial

The DCM distribution (Madsen et al. 2005; Minka 2003) is a hierarchical model: on
one hand, the Dirichlet random variable is devoted to model the Multinomial word
parameters � ; on the other hand, the Multinomial variable models the word count
vectors ( Nx) comprising the document. The distribution function of the DCM mixture
model is:

p. Nxj˛/ D
Z

�

p. Nxj�/p.� j˛/d�; (1)

where p. Nxj�/ is the Multinomial distribution:

p. Nxj�/ D nŠ
QW

wD1 xw

WY

wD1

�xw
w (2)

in which Nx is the words count vector, xw is the count for each word and �w the
probability of emitting a word w; therefore a document is modelled as a single set of
words (‘bag-of-words’). The Dirichlet distribution p.� j˛/ is instead parameterized
by ˛:

p.� j˛/ D � .
PW

wD1 ˛w/QW
wD1 � .˛w/

WY

wD1

�˛w�1
w (3)

with ˛ D f˛wg the Dirichlet parameter vector for words; thereby the whole set of
words (‘bag-of-bags’) is modelled. Thus a text (a document in a set) is modelled as
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a ‘bag-of-bags-of-words’. From another point of view, each Multinomial is linked
to specific sub-topics and makes, for a given document, the emission of some
words more likely than others. Instead the Dirichlet represents a general topic that
compounds the set of documents and thus the DCM could be also described as
‘bag-of-scaled-documents’.

The added value of the DCM approach consists in the ability to handle the ‘bursti-
ness’ of a rare word without introducing heuristics (see Rennie et al. 2003). In fact,
if a rare word appears once along a text, it is much more likely to appear again.

When we consider the entire set of documents (D), where each document is inde-
pendent and identified by its count vector, (D D f Nx1; Nx2; :::; NxN g), the likelihood of
the whole documents set (D) is:

p.Dj˛/ D
NY

dD1

p. Nxd j˛/

D
NY

dD1

 
� .
PW

wD1 ˛w/

� .xd C
PW

wD1 ˛w/

WY

wD1

� .xdw C ˛w/

� .˛w/

!
I (4)

where xd is the sum of the counts of each word in the document d -th (
PW

wD1 xdw)
and xdw the count of word w-th for the document d -th.

3 Semantic-based DCM

As explained in Sect. 2, we have a coefficient (˛w) for each word compounding the
vocabulary of the set of documents which is called ‘corpus’. The DCM model can
be seen as a ‘bag-of-scaled-documents’ where the Dirichlet takes into account a
general topic and the Multinomial some specific sub-topics.

Our aim in this contribution is to build a framework that allows us to insert speci-
fically the topics (known or latent) that compound the document, without losing the
‘burstiness’ phenomenon and the classification performance. Thus we introduce a
method to link the ˛ coefficients to the hypothetic topics, indicated with ˇ D ˚ˇj

�
,

by means of a function ˛ D F.ˇ/ which must be positive in ˇ since the Dirichlet
coefficients are positive. Note that usually dim.ˇ/ << dim.˛/ and, therefore, our
proposed approach is parsimonious.

Substituting the new function into the integral in (1), the new model is:

p. Nxjˇ/ D
Z

�

p. Nxj�/p.� jF.ˇ//d�: (5)

We have considered as function F.ˇ/ a linear combination based on a matrix D
and the vector Ň. D contains information about the way of splitting among topics
the observed count vectors of the words contained in a diagonal matrix A and Ň is a
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vector of coefficient (weights) for the topics. More specifically we assume that:

A D

0

BBBBB@

w1

:

ww

:

wW

1

CCCCCA
;D D

0

BBBBB@

d11 : : : d1T

: : :

: dwt :

: : :

dW 1 : : : dW T

1

CCCCCA
; Ň D

0

BBBBB@

ˇ1

:

ˇt

:

ˇT

1

CCCCCA
D� D A � D

F.ˇ/ D D� � Ň D N̨ D

0

BBBBB@

˛1

:

˛w

:

˛W

1

CCCCCA

(6)
Note that:

� ˛w DPT
t d

�
wtˇt , with T the number of topics;

� d�
wt D ww � dwt ;

� dwt is the coefficient for word w-th used to define the degree of belonging to
topic t-th and by which a portion of the count of word w-th is assigned to that
particular topic t-th.

By substituting this linear combination into formula (4), we obtain the same
distribution but with the above mentioned linear combination for each ˛:

p. Nxjˇ/ D nŠ
QW

w xw

� .
PW

w

PT
t d

�
wtˇt /

� .
PW

w .xw CPT
t d

�
wtˇt //

WY

w

� .xw CPT
t d

�
wtˇt /

� .
PT

t d
�
wtˇt /

I (7)

This model is a modified version of the DCM, henceforth semantic-based DCM,
and the new log-likelihood for the set of documents becomes:

log.p.Djˇ// DPN
d



log� .

PW
w

PT
t d

�
wtˇt / � log� .xdC

PW
w

PT
t d

�
wtˇt /

�
C

CPN
d

PW
w



log� .xdw C

PT
t d

�
wtˇt / � log� .

PT
t d

�
wtˇt /

�
(8)

In Fig. 1 we report the graphical representation of the new model where the ˛’s
are substituted by a function of the ˇ’s.

An important aspect of the proposed approach is represented by the number T of
topics to be inserted into the semantic-based DCM that can be:

1. a priori known (i.e., fixed by field experts);
2. unknown, (i.e., to be estimated on the basis of the available data).

Without loss of generality we treat the case when T is unknown, leading to a
random variable T (see Cerchiello and Bonafede 2009 for more details).
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Fig. 1 Hierarchical model
sbDCM representation

Since it is not always possible to know in advance the number of latent topics
present in a corpora, it becomes very useful to build a statistical methodology for
discovering efficiently and consistently a suitable number of topics.

In our context we tackle the problem as follows: in order to generate the coef-
ficients contained within the matrix D we have used a segmentation procedure to
group the words. The idea is to create groups of words sharing common character-
istics that can be considered as latent topics. Such objective can be accomplished
by applying a grouping analysis on the basis of the correlation matrix calculated on
the complete set of words count. Later on, the analysis is completed by choosing
the best number of groups and a distance matrix is used to set the membership per-
centage (dwt ) of each word to each latent topic. Since it is evidently reasonable, we
allow words to belong to more than one topic; in fact it is likely that several topics
can share common words. Thus the matrix D is inserted into formula (9) to find the
coefficients ˇ’s and the new ˛’s. Finally we use the ˛ vectors into several classifiers
based on discriminant rules.

4 Performance of the Semantic-Based Dirichlet
Compound Multinomial

In this section we verify the goodness of the sbDCM models described in Sect. 3 ,
to understand if we can insert latent topics into DCM by maintaining the burstiness
and the same classification performance.

Two kinds of matrixes have been used in the cluster procedure. One matrix con-
tains the correlations among words (C) in the vocabulary and another one (G) is
constructed by calculating the Kruskal-Wallis index (g) among words. The latter
index g is defined as follows:

g D
12

N.N C1/

Pk
iD1 ni

� Nri � N C1
2

�2

1 �
Pp

iD1
.c3

i
�ci /

N 3�N

(9)
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where ni is the number of sample data, N the total observations number of the k
samples, k the number of samples to be compared and Nri the mean rank of i -th
group. The denominator of index g is a correction factor needed when tied data is
present in the data set, where p is the number of recurring ranks and ci is the times
the i -th rank is repeated.

The index g depends on the differences among the averages of the groups (Nri )
and the general average. If the samples come from the same population or from
populations with the same central tendency, the arithmetic averages of the ranks of
each group ( Nri D P

j rij =ni ) should be similar to each other and to the general
average .N C 1/=2 as well.

The training dataset contains 2,051 documents with a vocabulary of 4,096 words
for both approaches. The evaluation dataset (again the same for both models)
contains 1,686 documents which are distributed over 46 classes.

Once the ˛ coefficients are obtained we employ three different classifiers
described in Rennie et al. (2003) (normal (N), complement (C) and mixed (M)). All
the classifiers select the document class with the highest posterior probability:

l.d / D argmaxc

"
log p.�c/C

WX

wD1

fw log �cw

#
(10)

where fw is the frequency count of word w in a document, p.�c/ is a prior distribu-
tion over the set of topics (that we consider uniformly distributed) and log.�cw/ is
the weight for word w in class c.

The weight for each class is estimated as a function of the ˛ coefficients:

O�cw D Ncw C ˛w

Nc CPNc

wD1 ˛w

(11)

where Ncw is the number of times word w appears in the documents belonging to
class c, Nc the total number of words occurrences in class c.

In Tables 1 and 2 we report the results from the two tests obtained respec-
tively on the basis of matrixes C and G and by varying the number of groups in
the cluster analysis. In the tables we indicate with LLin the log-likelihood before
the parameters updating and with LLout after the iteration procedure which is
stopped when the predefined error � (10�10) is reached. The same with AICcin and
AICcout that is the corrected Akaike Information Criterion (AICc) before and after
the uploading. The indexes Ind1, Ind2 and Ind3 are defined as follows:

1. (Ind1) The proportion of true positive over the total number of test-documents:

 
DX

dD1

TPd

D

!
� 100I

2. (Ind2) The proportion of classes that we are able to classify:
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Table 1 Classification results by varying cluster numbers and using matrix (C)

Classifier Measures sbDCM_5 sbDCM_11 sbDCM_17 sbDCM_23 sbDCM_46 DCM

LLin �282;226 �265;250 �252;197 �247;125 �242;991 �222;385
LLout �205;412 �205;614 �205;601 �205;597 �205;602 �205;286

AICcin 564,462 530,522 504,228 494,296 486,074 454,264
AICcout 410,834 411,250 411,236 411,240 411,296 420,066

NORMAL Ind1 68.13% 68.13% 67.95% 68.19% 68.13% 67.66%
// Ind2 97.83% 97.83% 97.83% 97.83% 97.83% 97.83%
// Ind3 62.32% 62.32% 62.15% 62.32% 62.32% 61.61%
COMP. Ind1 68.19% 68.31% 68.25% 68.37% 68.25% 68.78%
// Ind2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
// Ind3 66.20% 66.30% 66.05% 66.58% 66.01% 67.89%
MIXED Ind1 68.07% 68.36% 68.43% 68.37% 68.31% 68.07%
// Ind2 97.83% 97.83% 97.83% 97.83% 97.83% 97.83%
// Ind3 63.87% 64.01% 64.05% 64.05% 64.01% 63.87%

Table 2 Classification results by varying cluster numbers and using matrix (G)

Classifier Measures sbDCM_5 sbDCM_11 sbDCM_17 sbDCM_23 sbDCM_46 DCM

LLin �291;257 �283;294 �270;360 �266;453 �258;061 �222;385
LLout �205;912 �204;647 �204;600 �204;604 �204;362 �205;286
AICcin 582,524 566,610 540,754 532,952 516,214 454,264
AICcout 411,834 409,316 409,234 409,254 408,816 420,066

NORMAL Ind1 67.83% 67.71% 67.47% 67.42% 67.65% 67.66%
// Ind2 97.83% 97.83% 97.83% 97.83% 97.83% 97.83%
// Ind3 62.02% 61.73% 61.45% 61.43% 61.55% 61.61%
COMP. Ind1 67.95% 68.66% 68.55% 68.72% 68.60% 68.78%
// Ind2 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
// Ind3 67.95% 68.09% 68.05% 68.29% 68.05% 67.89%
MIXED Ind1 68.07% 68.13% 67.83% 67.71% 67.89% 68.07%
// Ind2 97.83% 97.83% 97.83% 97.83% 97.83% 97.83%
// Ind3 63.87% 63.97% 63.05% 62.86% 62.95% 63.87%

 
CX

cD1

Ic

C

!
� 100I

where Ic is an indicator that we set 1 if at least one document of the class is
classified correctly, otherwise we set 0.

3. (Ind3) The proportion of true positive within each class over the number of test
documents present in the class:

 
1

C

CX

cD1

TPc

Mc

!
� 100I

where Mc is the number of test-documents in each class, TPc is the number of
true positive in the class and C the number of topics (46).
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As we can see in the two Tables 1 and 2, the percentages of correct classification
(Ind1) are very close to the original ones with a parameter for each word (4,096
parameters). Of course they depend on the type of classifier employed during the
classification step. Considering both sbDCM and DCM, the differences produced
by varying the number of groups are small. Moreover the AICc is always better in
the new approach instead of considering each word as a parameter as in the DCM
model.

In particular for what concerns the approach based on the correlation matrix C
(in Table 1) with 17 groups and on the Mixed classifier, it can predict correctly
the 68.43% of documents. The log-likelihood and the AICc indexes along groups
are quite similar, however the best value is obtained with 5 groups (respectively
�205;412 and 410,834). Considering again the approach based on the correlation
matrix C, we can conclude that, in terms of complexity expressed by the AIC index,
the sbDCM approach, whatever applied classifier, is always better than the DCM.

When we use matrix G (see Table 2) the best classification performance is for
the complement classifier based on 23 groups, with a percentage of 68.72%, a log-
likelihood of �204;604, the AICc of 409,254. The best log-likelihood and AICc are
for cluster with 46 groups (respectively�204;362 and 408,816). Even if the sbDCM
distribution based on matrix G is not able to improve the classification performance
of DCM, we can say that for sbDCM, Index one is always very close to the best one.
In addition the new model is always better in terms of either AIC or log-likelihood
indexes.

Moreover, if we perform an asymptotic chi-squared test (�2
test) considering

the two cases (matrixes G and C) to decide whether the difference among log-
likelihoods (LL), with respect to DCM, are significant (i.e., the difference is
statistically meaningful if the jLL1 � LL2j is greater than 6), we can see from
Tables 1 and 2 the test with matrix G has the best performance.
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Distance-Based Approach in Multivariate
Association

Carles M. Cuadras

Abstract We show how to relate two data sets, where the observations are taken
on the same individuals. We study some measures of multivariate association based
only on distances between individuals. A permutation test is proposed to decide
whether the association is significant. With these measures we can handle very
general data.

1 Introduction

Many coefficients have been proposed in measuring the multivariate association
between two random vectors or two data sets taken on the same individuals. Ecology
is a clear example, where environmental data is related to species. In genomic data
we may seek relations between genotype (e.g., DNA data) to phenotypes of inter-
est. We can also find many examples in biometry and psychology, e.g., in relating
physical characteristics to mental tests.

Often, the data sets are represented by two quantitative matrices X;Y with the
same number of rows, being the rows multivariate observations taken on the same
individuals. Then some dependence measures based on canonical correlations can
be used. However, if the data sets D1;D2 are non quantitative (binary, categorical,
nominal), the information can alternatively be given by a similarity or a distance
matrix. This distance-based approach, originated in Cuadras (1989), has been used
as a tool in prediction and multivariate analysis, see Amat et al. (1998), Bartkowiak
and Jakimiec (1994), Boj et al. (2007).

2 A First Multivariate Association Measure

Let ˝ D f!1; !2; : : : ; !ng be a finite set with n individuals. Let ıij D ı.!i ; !j / D
ı.!j ; !i / � ı.!i ; !i / D 0 a distance or dissimilarity function defined on ˝ . We
suppose that the n � n distance matrix �x D .ıij / is Euclidean. Then there exists

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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a configuration x1; : : : ; xn 2 Rp; with xi D .xi1; : : : ; xip/
0; i D 1; : : : ; n; such that

ı2
ij D .xi�xj /

0.xi�xj /. These coordinates of˝ constitute a n�p matrix X D.xij /

such that the distance between two rows i and j equals ıij

A well-known way of obtaining X from �x finds A D �1
2
�

.2/
x and GxD CAC;

where�.2/
x D .ı2

ij / and C is the centering matrix. The spectral decomposition Gx D
U�2

xU0 provides X D U�x : Matrices X and U contain the principal and standard
coordinates, respectively, of the set ˝ with respect to distance ı.

For a second data set on the same n individuals, we may consider another dis-
tance matrix �y and find Gy D V�2

yV0. The principal coordinates are Y D V�y

With these coordinates, the relation between the two data sets reduces to the relation
between the centred matrices X.n � p/ and Y.n � q/:

Let us define the multivariate association measure between D1;D2 by

�.D1;D2/ D
q

det.U0VV0U/ D
q

det.V0UU0V/:

This measure satisfies 0 � �.D1;D2/ D �.D2;D1/ � 1; and reduces to the
multiple correlation coefficient when D2 is a data vector.

Let Sxx D X0X; Sxy D X0Y; Syy D Y0Y. As the (positive) canonical corre-
lations ri ; i D 1; � � � ; s D minfp; qg between X and Y are the singular values of
S�1=2

xx SxyS�1=2
yy D ��1

x �xU0V�y�
�1
y D U0V; this coefficient can be expressed as

�.D1;D2/ D
sQ

iD1

ri :

See Cuadras (2008) for further details. Since U0V is a Gram matrix, measure � can
be interpreted as the cosine of the angle between two subspaces expanded by U
and V, see Jiang (1996).

3 Multivariate Linear Regression

If we consider the columns of X and Y as predictor and response variables, respec-
tively, a standard way to relate them is by multivariate linear regression

Y D XBC�;

where B is a p � q matrix of parameters and � is a n � q matrix of errors.
The least-squares estimation of B is bBD.X0X/�1X0Y and the prediction matrix is
bYDXbBDPY where P D X.X0X/�1X0 is the hat matrix.

Clearly, there is no relation if B D 0. Assuming X;Y centred, an appropriate
statistic for deciding this null hypothesis is based on

F D Œtr.Y0PPY/=.p C 1/�=Œtr.Y0.I� P/Y/=.n� p � 1/�:
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When X;Y have been obtained by metric scaling from two distance matrices, then
X D U�x and P D UU0. As P D P2 we have

tr.Y0PY/ Dtr.PYY0P/ Dtr.PGyP/;

and similarly trŒ.Y0.I � P/Y� DtrŒ.I � P/Gy.I � P/�. Therefore the ratio F can be
formulated in terms of distances

F D tr.PGyP/=.p C 1/
trŒ.I � P/Gy.I � P/�=.n � p � 1/

D tr.G�
x GxGyG�

x Gx/=.p C 1/
trŒ.I �G�

x Gx/Gy.I�G�
x Gx/�=.n � p � 1/ ;

where G�
x D U��2

x U0 is a g-inverse of Gx.
We can invoke the F test when q D 1 and the only column of Y comes from a

normal population. The F test is still justified when the rows of Y are multinormal
with covariance matrix˙ D �2I. For general data, testing B D 0 can be performed
by a permutation test.

To perform this test, we keep Y fix, then find the nŠ permutations of the rows of X
and obtain the permutation distribution of F . There will be evidence against B D 0
if the observed F is in the extreme tail. If n is large, we may choose at random (with
repetition) a subset of the nŠ permutations.

Tests based on F when only Y comes from a distance, have been used by
McArdle and Anderson (2001) in relating ecological data, and Wessel and
Schork (2006) in large scale multilocus association studies. Here this test has
been adapted to two distance matrices. However this F approach has four inconve-
nients. First, it depends on Gy D V�2

yV0; i.e., on the diagonal matrix �y ; whose
entries are proportional to the variances of the columns of Y. Second, �y could
have negative entries if the distance matrix is not Euclidean, as may occur in the
presence of completely at random missing data. Third, if F is significant, we accept
dependence but we do not know the degree of association between both data sets.
Finally, F is non symmetric in X and Y:

4 Measures of Multivariate Association

Another criterion used for testing B D 0 in the multivariate linear regression
model is the likelihood ratio criterion or Wilk’s lambda, which is well known in
multivariate analysis (Mardia et al. 1979). Wilk’s lambda is

W D det.E/= det.ECH/;
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where E D Y0Y�bY0bY; H DbY0bY; with Y D V�y and bY D PY D UU0V�y .
We then have E D�y.I � V0UU0V/�y and ECH D Y0Y D�yV0V�y D�2

y .
Therefore

W D det.I �V0UU0V/:

Wilks’ lambda does not depend on�y and can be expressed in terms of canonical
correlations

W D
sQ

iD1

.1 � r2
i /:

Clearly AW D 1�W is also an association measure such that approaches 0 if X;Y
are independents, and approaches 1 if X;Y are linearly dependent.

For testing B D 0 we may also employ other criteria, such as Lawley-Hotelling
and Pillai. If Hvi D �i Evi gives the eigenvalues of E�1H, being �i D r2

i =.1� r2
i /

here, the Lawley-Hotelling criterion U and Pillai’s criterion V are

U D trŒE�1H� DPs
iD1 r

2
i =.1� r2

i /;

V D trŒ.ECH/�1H� DPs
iD1 r

2
i :

Then two multivariate measures of association can be based on ALH D .U=s/=.1C
U=s/ and AP D V=s. For the derivation of U; V andW; see Anderson (2003), Rao
(1973).

The measure AP also arises by applying the vectorial correlation between two
random vectors X, Y; defined by (see Escoufier 1973):

RV D tr.SxySyx/=
q

tr.S2
xx/tr(S2

yy/;

where Sxx D X0X; Sxy D X0Y; etc. If we take standardized columns, then Sxy D
U0V; Sxx D U0U D Ip , Syy D V0V D Iq , and this correlation reduces to RV D
.
Ps

iD1 r
2
i /=
p
pq. Clearly RV D AP if p D q. However, if p < q there are q � p

zero correlations, therefore AP D .Ps
iD1 r

2
i /=s is better. In general RV ¤ AP .

Another measure of association, which generalizes the multiple correlation coef-
ficient, is given by

R2 D det.SyxS�1
xxSxy/= det.Syy/:

Simplifying, we readily obtain R2 D det.V0UU0V/ D
sQ

iD1

r2
i ; which we indicate by

AHC (Hotelling-Cramer, see Cramer and Nicewander 1979).
We can also relate X and Y via the Procrustes statistic (Cox and Cox 2001):

P 2 D 1 � Œtr.X0YY0X/1=2�2=Œtr.X0X/tr.Y0Y/�:

In our distance-based context we obtain

P 2 D 1 � Œtr.�xU0V�2
yV0U�x/

1=2�2=Œtr.�2
x/tr.�

2
y/�:
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Standardizing the variables this equation reduces to

P 2 D 1 � Œtr.U0VV0U/1=2�2=.pq/ D 1 � .
sX

iD1

ri /
2=.pq/:

This measure suggests APR D .Ps
iD1 ri /

2=s2.
Arenas and Cuadras (2004) proposed the association measure

AAC D tr.G1=2
x G1=2

y CG1=2
y G1=2

x /=tr.Gx CGy/;

which also lies between 0 and 1. Standardizing, from tr.UU0VV0/ D tr.U0VV0U/;
this equation reduces to

AAC D tr.UU0VV0 C VV0UU/=.p C q/
D 2tr.U0VV0U/=.p C q/
D 2.Ps

iD1 r
2
i /=.p C q/;

which suggests AAC D .Ps
iD1 r

2
i /=s D AP .

Finally Cramer and Nicewander (1979) give geometrical arguments to propose
ACN1 D A

1=s
HC and ACN2 D 1 � W 1=s . They also proposed the average AP D

.
Ps

iD1 r
2
i /=s.

Table 1 reports these measures in terms of A D V0UU0V; Ac D I � A, and
�i D r2

i =.1 � r2
i /. ThusW Ddet.Ac/ and AP Dtr.A/=s.

Table 1 Some symmetric measures of multivariate association based on distances

Measure of
association

Matrix expression in terms of
A D V0UU0V; Ac D I � A:

Canonical
correlation
expression

Initially proposed by

r1 First singular value of U0V r1 Hotelling

AHC det.A/
sQ

iD1

r2i Hotelling-Cramer

AW 1� det.Ac/ 1� sQ
iD1

.1� r2i / Wilks

ALH Œtr.A�1
c A/=s�=Œ1C tr.A�1

c A/=s�
.
Ps

iD1 �i /=s

1C .
Ps

iD1 �i /=s
Lawley-Hotelling

AP tr.A/=s (
Ps

iD1 r
2
i /=s Pillai-Escoufier

APR Œtr.A1=2/�2=s2 .
Ps

iD1 ri /
2=s2 Cox-Cox

ACN1 Œdet.A/�1=s .
sQ

iD1

r2i /
1=s Cramer-Nicewander

ACN2 1� Œdet.Ac/�
1=s 1� Œ

sQ
iD1

.1� r2i /�
1=s Cramer-Nicewander

�
p

det.A/
sQ

iD1

ri Present author
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5 Order Relationships

The above measures of association can be ordered as follows:

AHC � � � ACN1;

and
AHC � r2

s � ACN1 � APR � AP � ACN2 � ALH � r2
1 � AW ;

where r2
1 and r2

s are the largest and smallest squared canonical correlations. There
is no order relationship between � and r2

s .

Clearly r2
i � ri � r2=s

i ; so

sQ
iD1

r2
i �

sQ
iD1

ri � .
sQ

iD1

r2
i /

1=s

and
sQ

iD1

r2
i � r2

s D .
sQ

iD1

r2
s /

1=s � .
sQ

iD1

r2
i /

1=s � .
sX

iD1

r2
i /=s;

as the geometric mean is less or equal to the arithmetic mean. We also have

Œ.
sQ

iD1

ri /
1=s�2 � Œ.

sX

iD1

ri /=s�
2 � .

sX

iD1

r2
i /=s:

Thus AHC � � � ACN1 and AHC � r2
s � ACN1 � APR � AP . For the other

inequalitiesAP � ACN 2 � ALH � r2
1 � AW , see (Cramer and Nicewander 1979).

6 Example and Discussion

As an illustration we use the data set from the low birth weight study, relating nine
mixed variables, see Hosner and Lemeshow (2000). This data set contains infor-
mation on 189 births and is available at http://www.umass.edu/statdata/statdata/.
We relate two quantitative variables [Birth Weight, Weight of Mother] to seven
quantitative, binary and categorical variables such as [Age], [Number of physician
visits], [Smoking status], [History of hypertension], [Race], etc. Thusp D 2; q D 7;
n D 189. We work with two distances: (a) Euclidean, (b) distance based on Gower’s
similarity coefficient.

For the Euclidean distance with s D 2 we obtain the canonical correlations
r1 D 0:236, r2 D 0:010. For the Gower’s distance with s D 4 we obtain the se-
quence of canonical correlations: 0:456; 0:272; 0:211; 0:008.

The association measures are reported in Table 2. It is worth noting that: (1) all
measures (except �/ reduce to the squared multiple correlation coefficient when Y
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Table 2 Measures of multivariate association between birth weight, mother weight and seven
quantitative, binary and categorical variables (age, number of physician visits, smoking status,
race, etc.) in 189 births
Distance AHC r2s � ACN1 APR AP ACN2 ALH r21 AW

Euclidean 0:000 0:000 0:002 0:002 0:015 0:028 0:028 0:029 0:056 0:056

Gower 0:000 0:000 0:000 0:015 0:056 0:081 0:085 0:089 0:208 0:300

is univariate; (2) with the Euclidean distance we obtain the same results as classic
canonical correlation analysis; (3) categorical variables (e.g., race) are non decom-
posed in dummy variables, as Gower’s similarity coefficient is based on the number
of matches for the multistate variables.

To decide whether AW (Gower’s distance) is significant, we perform a permu-
tation test by keeping V fixed, finding the nŠ permutations of the rows of U and
obtaining the permutation distribution. The result AW D 0:3 is in the extreme right
tail of the distribution, so AW is significant.

These measures have been obtained from distances, so we can relate two sets of
mixed data, by using Gower’s distance, as well as high dimensional data, by using
the city-block distance, respectively. Whereas the classic canonical correlation fails
when we have more variables than observations, this distance-based approach gives
r2

1 D AW D 1. However the other coefficients may be less than 1, thus providing a
non-trivial measure of association between two different data sets.

In general, these association measures can give values AHC close to zero and
AW close to one. However, as it was reported by Rencher (1995), measures AW ;

ACN 2; ALH agree in general, but AHC ; RV; AP may not indicate the same level
of association, and further study is necessary to choose the most appropriate one for
a given data set.

Acknowledgements Work supported in part by MEC (Spain) grant MTM2008-00642. Thanks
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New Weighed Similarity Indexes for Market
Segmentation Using Categorical Variables

Isabella Morlini and Sergio Zani

Abstract In this paper we introduce new similarity indexes for binary and poly-
tomous variables, employing the concept of “information content”. In contrast to
traditionally used similarity measures, we suggest to consider the frequency of the
categories of each attribute in the sample. This feature is useful when dealing with
rare categories, since it makes sense to differently evaluate the pairwise presence of
a rare category from the pairwise presence of a widespread one. We also propose a
weighted index for dependent categorical variables. The suitability of the proposed
measures from a marketing research perspective is shown using two real data sets.

1 Introduction

Consider a general setup in which k categorical variables Xs (s D 1; : : : ; k) with
nominal scale are of interest and a categorical data set X D .x0

1; : : : ; x
0
n/

0 is col-
lected from n subjects u1; u2; : : : ; un. Let xi D .xi1; : : : ; xik/

0 be the profile of the
k attributes for the i th subject. The resemblance between two subjects ui and uj

is typically measured by pairwise similarity indexes (see, e.g., Sneath and Sokal
1973 and, recently, Warrens 2008). Most of the available similarity indexes in the
literature have been developed to deal with binary variables and few measures have
been proposed specifically for polytomous attributes. For these variables, distance
functions like the Euclidean or the Manhattan are sometimes used, especially for
classification purposes. However, the principal difficulty in dealing with nominal
categorical data is typically the lack of a metric space in which data points are posi-
tioned and the measured distances can be different when a different coding scheme
is used for the variables (Zhang et al. 2006). In this paper we extend the original
work of Zani (1982) and we first allow the classical similarity measures to deal
with polytomous variables. Then we consider the problem of weighting variables
in computing similarities between subjects. We propose a criterion for weighting
the pairwise presence of a category, on the basis of the Shannon’s “information con-
tent” of the relative frequency in the sample. Both in marketing research and in other
fields, it appears relevant to attach a higher weight to the pairwise presence of a rare

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_61, c� Springer-Verlag Berlin Heidelberg 2011
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category in the sample rather than to the pairwise presence of a widespread one. A
similar criterion is used in correspondence analysis, where the effect of increasing
the values corresponding to low-frequencies categories relatively more than those
corresponding to high-frequencies categories is accomplished with the �2 distance.
Finally, we provide some numerical examples to illustrate the use of the indexes and
we show the suitability of the proposed measures for market segmentation.

2 A Class of Similarity Indexes for Polytomous Variables

Consider k categorical variablesXs .s D 1; : : : ; k/ with hs � 2 categories. An easy
way to numerically code the attributes is through the so called “dummy variables”.
A binary variable is introduced for each category: the number of dummy variables
is h D Pk

sD1 hs . With this coding scheme, we obtain a .n � h/ data matrix of the
form:

X1 : : : Xs : : : Xk

X11 : : : X1h1
: : : Xs1 : : : Xsv : : : Xshs

: : : Xk1 : : : Xkhk

:::

: : : xisv : : :
:::

: : : nsv : : :

where Xsv is the dummy variable for the vth category of the sth attribute (s D
1; : : : ; k v D 1; : : : ; hs). The observed value for the i th observation is xisv D 1

if xis D v and xisv D 0 if xis ¤ v. The frequency, in the sample, of the vth
category of the sth attribute is nsv DPn

iD1 xisv and the relative frequency is fsv D
nsv=n. When the categorical variable is dichotomous, this coding scheme implies
two dummy variables. It is obvious that xis1 D 1 ” xis2 D 0 and xis1 D
0” xis2 D 1 and the second dummy is superfluous. However, when dealing with
mixed polytomous and dichotomous variables, the same coding is needed for both.
To evaluate the similarity between subjects ui and uj , we introduce the following
contingency table:

1 0 tot
1 ˛ ˇ ˛ C ˇ
0 
 ı 
 C ı

tot ˛ C 
 ˇ C ı h

We will call positive matches or agreements in ui and uj the ˛ pairs 1 � 1 and
disagreements the ˇC 
 pairs 1� 0 and 0� 1. The ı pairs 0� 0 (negative matches)
simply indicate that both ui and uj do not share the category corresponding to the
dummy variable and are useless in evaluating the similarity between two subjects
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since this number only depends on the number of the categories of the original
categorical variables. The index:

S1ij D ˛

˛ C ˇ C 
 (1)

is bounded in [0,1] and has the following properties:

– 1� S1ij D .ˇC 
/=.˛C ˇC 
/ is a distance. ˇC 
 is the Manhattan and the
square Euclidean distance between ui and uj in the dummy variable coding.

– for binary variables, i.e., for hs D 2, s D 1; : : : ; k, index S1ij becomes
equivalent to the Rogers-Tanimoto index.

We may obtain a more general index by introducing a weight for the disagreements
(Gower and Legendre 1986):

wS1ij D ˛

˛ C w.ˇ C 
/ (2)

with w > 0. When w D 0:5 and hs D 2, s D 1; : : : ; k, expression (2) is equivalent
to the Sokal-Michener index. Given two subjects ui and uj , the probability of an
agreement in Xsv, in a Bernoulli trial, is f 2

sv. The weight given to an agreement in
Xsv should be a decreasing function of f 2

sv. Assuming .f 2
sv > 0/, here we propose

the weight wsv D log.1=f 2
sv/ which is a measure of the information content of an

agreement in Xsv. For independent variables, this measure is additive: if subjects
ui and uj present two positive matches, in Xsv and Xkl , then the joint weight is
wsv;kl D wsv C wkl . The choice of wsv is for interpretability purposes rather than
for numerical ones. This weight is conceived in the light of the information theory.
This criterion was first introduced by Burnaby (1970). We do not use the infor-
mation entropy (see, e.g., MacKay 2002) esv D f 2

svlog.1=f
2

sv/, because it is not a
decreasing function of f 2

sv. By weighting the pairwise positive matches with wsv, we
obtain the index:

Eij D
kX

sD1

hsX

vD1

�.i; j /svlog

�
1

f 2
sv

	
(3)

where �.i; j /sv D 1 if xisv D 1 and xjsv D 1, �.i; j /sv D 0 otherwise.Pk
sD1

Phs

vD1 �.i; j /sv D ˛. Expression (3) is equal to zero iff ui and uj do not
share any positive match. However, it is not a similarity index since the condition
Ei i D Ejj D 1 for i; j D 1; : : : ; n is not satisfied. A general expression for a
similarity index based on (3) is:

S2ij D Eij

Eij C Fij

(4)

with Fij � 0 depending on the number of disagreements in ui and uj . We may
define Fij in different ways:
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1. Fij DPk
sD1

Phs

vD1

Phs

tD1 .i; j /svt log



1
fsvfst

�
with v ¤ t and

– .i; j /svt D 1 if

�
xisv D 1; xjsv D 0 & xist D 0; xjst D 1
xisv D 0; xjsv D 1 & xist D 1; xjst D 0

– .i; j /svt D 0 otherwise.
Pk

sD1

Phs

vD1

Phs

tD1 .i; j /svt D ˇ C 

2. Fij DPk

sD1 .i; j /slog

�
1

1�Phs
vD1

f 2
sv

	
and

3. Fij DPk
sD1 .i; j /s

Phs

vD1 fsvlog



1

f 2
sv

�
with

– .i; j /s D 1 if xisv D 1, xjst D 1 and xist D 0, xjsv D 0 v ¤ t
– .i; j /s D 0 otherwise.
Pk

sD1 .i; j /s D 0:5.ˇ C 
/
In the first case, Fij is equal to the information content of the specific pairwise
disagreements in ui and uj and expression (4) becomes:

Pk
sD1

Phs

vD1 �.i; j /svlog



1

f 2
sv

�

Pk
sD1

Phs

vD1 �.i; j /svlog



1

f 2
sv

�
CPk

sD1

Phs

vD1

Phs

tD1 .i; j /svt log



1
fsvfst

�

(5)
Coefficient (5) is equal to (1) when hs D q and fsv D 1=q, for s D 1; : : : ; k and
v D 1; : : : ; q. However, for two couples of subjects having the same pairwise pos-
itive matches but different pairwise disagreements it may assume a different value.
Given the categorical nature of the data, the evaluation of the similarity should
depend on the number of disagreements but not on the dummy variables in which
they are present. In the second case, Fij is the information content of any dissim-
ilarity, without considering the specific dummy variable in which the dissimilarity
is present. For attributeXs, the probability of a positive match is

Phs

vD1 f
2

sv and thus

the probability of a dissimilarity is its complement 1 �Phs

vD1 f
2

sv. Considering this
second expression, index (4) becomes:

Pk
sD1

Phs

vD1 �.i; j /svlog



1

f 2
sv

�

Pk
sD1

Phs

vD1 �.i; j /svlog



1

f 2
sv

�
CPk

sD1 .i; j /slog

�
1

1�Phs
vD1

f 2
sv

	 (6)

Index (6) assumes the same numerical value for every pair of subjects having the
same positive matches, regardless of the specific dummy variables in which the dis-
agreements are present. In the trivial case in which hs D q and fsv D 1=q for s D
1; : : : ; k and v D 1; : : : ; q, (6) becomes equal to (2) when w D 0:5log q

q�1
=log.q2/.

In the third case, Fij is equal to the average of the information content of the pair-
wise positive matches in variables which have disagreements in ui and uj . Thus, Fij

may be perceived as the average loss in the information content due to the lack of
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positive matches in ui and uj . For each attribute, the information content of a pair-
wise positive match in modality Xsv is log.1=f 2

sv/. The average of the information

content is then
Phs

vD1 fsvlog.1=f
2

sv/. This quantity is also the average loss of the
information content due to the lack of a positive match in Xs. With this expression:

S2ij D
Pk

sD1

Phs

vD1 �.i; j /svlog



1

f 2
sv

�

Pk
sD1

Phs

vD1 �.i; j /svlog



1

f 2
sv

�
CPk

sD1 .i; j /s
Phs

vD1 fsvlog



1

f 2
sv

�

(7)

Index (7) satisfies the following properties: (1) S2ij D 0 iff ui and uj do not
share any positive match and S2ij D 1 iff ui and uj share a positive match in
each attribute. (2) It is invariant to any permutation of the disagreements, provided
that the disagreements are on the same attributes. (3) In the trivial case in which
hs D q and fsv D 1=q, for s D 1; : : : ; k, v D 1; : : : ; q, it becomes equal to (2) with
w D 0:5. This last index, when hs D 2, s D 1; : : : ; k, is equivalent to the Sokal-
Michener measure. In order to take into account the possible association between
variables, the information contentEij of the pairwise agreements between two sub-
jects should be defined in term of frequencies of specific ‘sequences’ of agreements.
Let cij be the sequence of ones corresponding to pairwise agreements in ui and uj

and f r.cij / be the relative frequency, in the sample, of observations holding the
sequence cij . Consider, for example, three attributes having three, three and two
categories, respectively. If the profile vectors of the dummy variables in ui and uj

are x0
i D Œ001 100 01� and x0

j D Œ001 100 10�, f r.cij / is the relative frequency,
in the sample, of observations having the third category in the first attribute and the
first category in the second attribute. Assume f r.cij /

2 to be the probability, in a
Bernoulli trial, of sampling two subjects with sequence cij . The information con-
tent of the sequence of agreements in ui and uj is: Lij D �2log

�
f r.cij /

�
with the

convention Lij D 0 if ui and uj do not have any positive match. We normalize Lij

and we introduce the new similarity index:

S3ij D Lij =.Lij CM.Lij // (8)

where M.Lij / is the average information content of possible agreements in cate-
gories which have a dissimilarity in ui and uj . M.Lij / may be thought of as the
average loss in the information content due to the lack of pairwise agreements. Let
us consider a number of disagreements equal to g, with 1 � g < k. For g D 0, we
introduce the conventionS3ij D 0. For g D k, S3ij D 1. The count of observations
having the same sequence of categories is mij D n � f r.cij /. In the sub sample
of these mij observations, we determine the relative frequencies of each particular
sequence of agreements for the remaining (k�g) attributes having a disagreements
in ui and uj . Since the number of categories in the sth attribute is hs, the count of all

possible sequences of agreements is p D Qk�g
sD1 hs where the product is extended

to the attributes having a disagreement in ui and uj . Let
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– c.ij /t be the t th sequence of agreements among the .k � g/ attributes having a
disagreement in ui and uj , t D 1; : : : ; p.

– f r.c.ij /t / be the relative frequency of the sequence c.ij /t in the sub sample
of the mij subjects having the sequence cij .

The information content of c.ij /t is �2log .f r.c.ij /t //. The average information
content of the sequences c.ij /t isM.Lij / DPp

tD1 f r.c.ij /t /�2log .f r.c.ij /t //.
With this expression, after algebraic simplification, index S3ij can be written as
follows:

S3ij D log
�
f r.cij /

�

log
�
f r.cij /

�CPp
tD1 f r.c.ij /t /log .f r.c.ij /t //

(9)

Using the conventions previously introduced, S3ij D 0 iff ui and uj do not have
any agreement, S3ij D 1 iff ui and uj have a positive match in all k attributes.

3 Applications in Marketing Research and Discussion

In this section we try to gain insights into the characteristics of S1, S2 and S3
through applications in marketing research. All the analyses are performed in the
Matlab environment (programs are available upon request). We also compare the
proposed indexes with two popular similarity measures for polytomous variables:
the Jaccard index (Sd ) and the Hamming similarity index (Sh) (the function I f�g 2
f0; 1g indicates the truth of its argument):

Sdij D I fxis D xjs ; xis ¤ 0; xjs ¤ 0g
I fxis ¤ 0; xjs ¤ 0g s D 1; : : : ; k (10)

Shij D I fxis D xjsg
k

s D 1; : : : ; k (11)

While Sh is independent on the coding scheme, Sd depends on the code. For binary
variables indicating the presence or the absence of a feature, we use the code 1 for
the presence and 0 for the absence (so that the number of pairwise absences is not
counted in Sd ). For dichotomous variables in which the categories do not reflect
the presence or the absence of a feature and for polytomous variables we use the
code 1, 2, . . . , s. It is worth to highlight that Sd differs from S1 both in case of all
polytomous variables and in case of mixed dichotomous and polytomous variables.
We refer to Boriah et al. (2008) for a comparative study of the performances of
a variety of similarity measures. The first data set consists of k D 37 observed
features (technical specifications) of n D 100 satellite navigators. Seven variables
have three categories and the other 30 variables are binary attributes (presence or
absence). Some features, like a CD player, are very rare. Some other features, like
a touch screen and a Gps system, are very common (see Table 1). Among the 666
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Table 1 Relative frequencies of technical features in the satellite navigators

Attribute fr Attribute fr Attribute fr

External slot 0.94 Slot expansion 0.92 Hard Disk 0.07
Mp3 0.58 Audio book 0.17 Picture viewer 0.61
In-built speaker 0.82 Camera 0.24 Automatic router 0.90
Autovelox 0.72 Bluetooth 0.44 Multimedia card 0.43
Touch screen 0.95 Gps 0.93 Internet connection 0.11
Cd player 0.02 Dvd 0.02 Tmb 0.60
Vocal control 0.05 Phone 0.18 Memory stick 0.11
Vocal warnings 0.91 In-built hard disk 0.27 Usb 0.76
Earpiece socket 0.91 Fm tuner 0.11 Tv tuner 0.16
IPod device 0.05 In-built antenna 0.97 High Memory 0.05

pairwise associations measured by the �2 statistics, there are 178 values leading to
the rejection of the null hypothesis of independency between variables for ˛ D 0:05
and 110 for ˛ D 0:01. To analyze the behavior of the indexes, we consider the
objects Kenwood Dnx 7,200 (u1) and LG Lan 9,600 R (u2). They share
the same category in 18 attributes (14 dichotomous and 4 polytomous). They both
have a DVD and a CD player and the most rare category in two of the polytomous
variables. The relative frequencies in the sample of the 18 categories shared by the
objects are: 0.02, 0.24, 0.22, 0.03, 0.92 0.83, 0.61, 0.97, 0.91, 0.44, 0.95, 0.07, 0.02,
0.02, 0.6, 0.82 0.57, 0.99. The values of the similarity indexes are:

Sd12 D 0:38 Sh12 D 0:48 S112 D 0:35 S212 D 0:69 S312 D 0:85

The Objects Alpine Pmdb 100 P Blackbird (u3) and Nokia E 61 (u4)
also have the same categories in 18 features (14 dichotomous and 4 polytomous).
The relative frequencies, in the sample, of the 18 shared categories are: 0.92, 0.71,
0.75, 0.92, 0.91, 0.61, 0.91, 0.24, 0.9, 0.44, 0.93, 0.98, 0.98, 0.6, 0.95, 0.95, 0.82,
0.99. Since the number of positive matches and negative matches in the binary
variables are also equal, the degree of similarity evaluated by Sd , Sh and S1 is
identical:

Sd34 D 0:38 Sh34 D 0:48 S134 D 0:35 S234 D 0:47 S334 D 0:70

but S234 < S212 due to the pairwise presence of five very rare categories.
For Kenwood Dnx 7,200 (u1) and Qteck 9,090 (u5) the values of the
indexes are:

Sd15 D 0:55 Sh15 D 0:59 S115 D 0:42 S215 D 0:85 S315 D 0:85

These satellite navigators share 22 categories (20 in binary variables and 2 in poly-
tomous variables). Once again, the difference between S115 and S215 is due to the
pairwise presence of the category Ipod Interface, which has a relative fre-
quency in the sample equal to 0.05. While Sh and S1 are increasing functions of
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Fig. 1 Dendrograms obtained with the average linkage: in the left is used S2, in the right Sh

the number of shared categories, Sd and S2 may also decrease as the number of
shared categories increase. Due to the weights, S2 is the most variable index. Sd
may differ between couples of objects when the number of shared categories is equal
but the number of pairwise absences differs. S2 may also differ when the number
of shared categories and the number of pairwise absences are identical. Index S3 is
not an increasing function of the number of positive matches since agreements in
variables which are strongly associated are “penalized”.

The second data set consists of k D 10 features of n D 106 sparkling wines.
Five features are dichotomous variables and the others are polytomous. For this
data set we obtain partitions with the most common hierarchical methods applied to
the complements to one of the indexes. In marketing research, a specific criterion
for assessing the performance of similarity measures is the ‘segment addressability’
suggested by Helsen and Green (1991), related to the degree to which a clustering
solution can be explained by variables controlled by marketing managers and help-
ing ‘targeting’ competitors. In Fig. 1, only two dendrograms are reported, for lack
of space. In general, all classifications based on S2 and S3 readily distinguish four
main groups while the other indexes show less ability to provide separation. More-
over, the classification based on S2 remains more stable, with respect to the different
linkages, than those reached by the other measures. The four groups detected by S2
and S3 delineate specific segments of products and are easily interpretable also for
the size (the smaller group comprehends eight wines and the biggest one 44 wines).
These segments are homogeneous with respect to the alcohol content and the sugar
level: the R2 statistics for these variables is always higher in partitions reached with
S2 and S3. Among the features used for classification, the ‘taste’ and the ‘origin’
have the rarest categories. In the 4-groups partition with S3, wines having the same
modality in these two attributes are classified into the same group. With Sh, there
is no evidence of a clustering structure in three or four groups: a very small cluster
remains isolated until the last aggregation steps.

In conclusion, the major advantage of these indexes is that they are able to handle
mixed dichotomous and polytomous variables and the weighted versions are able to
give more importance to agreements in rare categories. Index S3 is designed to take
into account the possible associations between variables and there do not appear to
be other similarity measures that are directly focused on this goal.
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Causal Inference with Multivariate Outcomes:
a Simulation Study

Paolo Frumento, Fabrizia Mealli and Barbara Pacini

Abstract Within the framework of the Rubin Causal Model, Principal Stratification
is used to address post-treatment complications in randomized experiments, such as
noncompliance, unintended missing outcomes, and truncation by death of the out-
comes. We focus on a likelihood approach, exploiting the properties of multivariate
finite mixture models in order to relax some of the usual identifying assumptions.
These include monotonicity and exclusion restrictions hypotheses. A simulation
study is conducted to show that the simultaneous modeling of more than one
outcome may improve model identification and efficiency.

1 Introduction

Estimating causal effects of interventions is often the focus of empirical studies in
medicine and social sciences. The only generally accepted approach for inferring
causality requires that treatment receipt is randomized. Experiments, however, and
social experiments in particular, often suffer from a number of complications, most
notably noncompliance with assigned treatment, missing outcomes, and ‘trunca-
tion by death’ when the outcome is not always well-defined (e.g., quality of life
when dead). The framework we adopt uses potential outcomes to define causal
effects regardless of the mode of inference, often referred to as the Rubin Causal
Model (RCM). Causal effects are defined by comparisons of potential outcomes
on a common set of units (Rubin 1974, 2005). We apply Principal Stratifica-
tion (PS; Frangakis and Rubin 2002), which was originally introduced to address
post-treatment complications within the RCM.

We address the general issue of estimating the effect of a binary treatment on a
multivariate outcomeY D fY1; : : : ; Yd g. We consider a very simple example, where
only two outcomes (Y1 and Y2) are observed in a randomized experiment with non-
compliance. We maintain the monotonicity of compliance and we assume that those
assigned to the control group do not have access to the treatment. The population
is then only composed by compliers (c) and never-takers (n). We relax the usual
exclusion restriction on both outcomes. As showed in Angrist et al. (1996), without

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_62, c� Springer-Verlag Berlin Heidelberg 2011
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exclusion restrictions, additional assumptions are required in order to achieve point
identification of treatment effects in the two groups. Imbens and Rubin (1997) and
Hirano et al. (2000) show that relaxing the exclusion restriction(s) leads to ‘weakly
identified’ models, with a proper but poorly informative, non-gaussian, even mul-
timodal posterior distribution. Inference on causal effects is expected to be less
accurate in absence of such strongly identifying assumption. We contribute to this
existing literature by showing, in a wide simulation study, the potential advantages
of the simultaneous modeling of two outcomes, in terms of model identification and
efficiency. We adopt a likelihood approach and exploit the theory of Finite Mixture
Models and the EM algorithm to obtain a point estimate of the causal parameters of
interest.

2 Theoretical Framework

Suppose to design an experimental study, where a binary treatment is randomly
assigned to a sample of N units; we denote with Ti (i D 1; : : : ; N ) the treatment
assignment (1 if unit i is assigned to treatment, 0 if unit i is assigned to control),
and with Di the treatment receipt of unit i (1 if unit i receives treatment, 0 if unit
i receives control). We thus assume that noncompliance is all-or-none. Noncompli-
ance arises if Di ¤ Ti for some i : if causal effects of treatment receipt on some
(possibly multivariate) outcome Y i are of interest, the estimation must take account
of the nonrandom receipt of the treatment. Using the Principal Stratification (PS )
approach (Frangakis and Rubin 2002), units can be classified into four principal
strata, according to the compliance behavior. Using the potential outcomes nota-
tion, we denote with Di .t/ and Y i .t/ the treatment receipt and the outcome of
unit i , when assigned to t , t D f0; 1g. The following (latent) groups are defined:

– compliers (c) D fi W Di .t/ D tg,
– never-takers (n) D fi W Di .t/ D 0g,
– always-takers (a) D fi W Di .t/ D 1g,
– defiers (d )D fi W Di .t/ D 1 � tg.

A common monotonicity of compliance assumption rules out the presence of
defiers, so that the proportion of defiers is equal to 0 (P.d/ D 0). Very often,
monotonicity of compliance holds by design, because those who are assigned to
the control group do not have access to the treatment. This stronger monotonicity
implies that P.a/ D P.d/ D 0: A more questionable assumption is that any effect
of Ti on Y i is through an effect of Ti on Di (exclusion restriction, i.e., no assign-
ment effect on a and n). With this set of assumptions, the average effect of receiving
the treatment for compliers is point-identified and corresponds to the econometric
instrumental variables (IV) estimand (Angrist et al. 1996).

Here we maintain the strong monotonicity assumption of compliance, so that
the population is only composed by compliers (c) and never-takers (n). We instead
relax the exclusion restriction: consequently causal parameters of interest are (a) the
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average treatment effect for compliers, that is, the effect of treatment receipt, and
(b) the average effect of treatment assignment for never-takers.

Under the stated assumptions, the actual (observed) likelihood function is:

L.˚jT;D;Y/ D
Y

i WTiD1;Di D1

	c
i fi1c.Yi /

Y

i WTiD1;Di D0

.1 � 	c
i /fi1n.Yi / (1)

Y

i WTiD0;Di D0

�
	c

i fi0c.Yi /C .1 � 	c
i /fi0n.Yi /

�
;

where 	c
i D Pi .c/, while fitc.Y/ and fitn.Y/, t D 0; 1, are the generic joint den-

sity functions of the multivariate outcome Y for compliers and never-takers under
treatment and under control. The first two factors in the likelihood represent the
contribution of the compliers and never-takers assigned to the treatment group. The
last factor represents the contribution to the likelihood function for those assigned to
the control group. This includes both compliers and never-takers and the likelihood
contribution is a mixture distribution. The role of the exclusion restriction is rather
obvious: by imposing that fi0n.Y/ D fi1n.Y/ it would make the identification of the
mixture components easier. In the absence on such an assumption, identification is
more difficult (weak identification) and relies on the posed parametric assumptions.1

If we knew the compliance status for all sampled units, a different model could
be fitted for each subpopulation; the ignorance of the true cluster membership for
units assigned to control represents a source of uncertainty. The relevant issue is then
how to accurately estimate this missing information. Improving the prediction of the
unknown compliance status is generally expected to reduce the sampling variance
and to speed the convergence of the EM algorithm. We now provide some intuitions
on why a multivariate approach may improve the identification – and therefore the
estimation – of a finite mixture model (Frumento 2009). We can think at each out-
come variable as a “criterion" to assess the cluster membership of each sampled
unit; because of this, the simultaneous modeling of all outcomes represents the way
to make the “best" use of the sampling information. Conducting a separate anal-
ysis for each outcome variable has some advantages (low dimensionality, ease of
implementation, opportunity of using standard routines in statistical packages), but
also at least two main drawbacks, namely (a) it makes a partial use of the sampling
information; and (b) it provides different estimates of the mixing proportions and of
the unknown compliance status. In what follows, we provide some evidence on why
a high-dimensional model is sometimes convenient in the analysis of finite mixture
distributions.

1 Covariates may also be included to predict the compliance behavior and the expected outcomes,
according to some regression model; this generally improves the model identification.
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3 Simulation Study

In order to have a realistic example in mind, suppose to design a social experiment to
assess the efficacy of a language program for immigrants. The program is randomly
offered to a sample of eligible secondary school students. Compliance is not perfect
because only a subset of those assigned to treatment (i.e., offered to participate in
the program) attend the classes; access to the program is denied to those assigned to
control. The primary outcome of interest is language ability measured with the score
achieved in a written test; in addition to the test result, also the time to complete
the test is recorded and can be considered as a secondary outcome. Suppose these
two outcomes, Y D .Y1; Y2/, are distributed as a bivariate normal, conditional on
compliance behavior and treatment assignment. If unit i is a complier,

Yi;1; Yi;2 � N.�c;i ;˙ c/

whereas if unit i is a never-taker,

Yi;1; Yi;2 � N.�n;i ;˙ n/

where

�j;i D
�
�i;1Wj
�i;2Wj

	
D
�
˛1Wj C ˇ1WjTi

˛2Wj C ˇ2WjTi

	
D ˛j C ˇjTi

˙ j D
 
�2

1Wj �12Wj
�12Wj �2

2Wj

!

for j D fc; ng; i D 1; : : : ; N . The model parameters are

˚ D f˛c ;ˇc ;˙ c ;˛n;ˇn;˙ n; 	
cg;

where 	c is the proportion of compliers in the population. With this setting, ˇ1Wc and
ˇ2Wc are the average treatment effects (ATE) on Y1 and Y2, respectively, in the sub-
population of compliers; they represent the causal effect of receiving the treatment;
similarly, ˇ1Wn and ˇ2Wn represent the average effects of the treatment assignment on
Y1 and Y2 in the subpopulation of never-takers. If the exclusion restriction holds on
both outcomes, ˇ1Wn D ˇ2Wn D 0.

We selected a variety of values for the model parameters, the sample size, and
the proportion of units assigned to the treatment; for each scenario, 2;000 simulated
data sets have been used to compare three different models: (a) the univariate model
for Y1, (b) the univariate model for Y2, and (c) the bivariate model for .Y1; Y2/. We
point out that estimating the couple of univariate models – rather than the bivariate
one – has two main consequences: first, the covariance parameters �12Wc and �12Wn
are not estimated; second, two different estimates of the mixing proportion 	c are
obtained.
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The standard EM algorithm with unconstrained covariance matrices has been
used in the estimation; the two approaches have been compared according to three
simple criteria: the MSE of the estimates of causal effects (relative MSE of the esti-
mators of ˇ1Wc under the two approaches), the computation time (ratio between the
mean computation time required in the estimation of the two univariate models, and
of the bivariate one), and the prediction of the compliance behavior (ratio between
the average proportion of correct group assignment, obtained by Bayes’ classifier,
using the univariate model for y1, and the bivariate one).

Some results are reported in Tables 1–3. All statistics are referred to 2;000Monte
Carlo replications, with ˛c D .0; 0/, ˛n D .0:2; 0:8/, ˇc D .0:3; 0:2/, ˇn D
.0:05; 0:1/, �1Wc D �1Wn D 0:4, �2Wc D �2Wn D 0:8, 	c D 0:6, N D 300 and
NT D P

Ti D 100, and different combinations of the correlation coefficients �c

and �n.
Simulations generally confirm our prior intuition; in most cases, the estimates

obtained from the bivariate model have a smaller MSE and give a better prediction of
the unknown compliance status. In addition, with respect to the univariate approach,
noticeable gains in the computation time are observed. Stronger results are generally
obtained when the number of units assigned to the treatment group (NT ) is small,
so that the true compliance behavior (i.e., the cluster membership) is unknown for a
great proportion of units.

The overlap of the two components of the mixture depends on the model
parameters and affects the sampling distribution of the estimators; when the two
distributions are strongly overlapping, the identification may be very weak. As we
would expect, the bivariate approach is specially convenient in this case. In addi-
tion, the efficiency gain of the bivariate model when estimating treatment effects is
generally larger for the outcome whose distributions are more overlapping.

Correlations �c and �n are additional parameters in the bivariate model and play
a very important role. As the difference between �c and �n increases, the amount of

Table 1 Relative mean square error of the estimators of ˇ1Wc under the two approaches:
MSE. Ǒ

1Wc;uni/=MSE. Ǒ
1Wc;biv/

�cn�n 0 0.25 0.50 0.75

0 1.101 1.105 1.339 1.987
0.25 1.097 1.107 1.114 1.575
0.50 1.413 1.082 1.028 1.238
0.75 2.121 1.649 1.215 0.984

Table 2 Ratio between the mean computation time required in the estimation of the two univariate
models, and of the bivariate one: Ntuni=Ntbiv

�cn�n 0 0.25 0.50 0.75

0 1.010 1.079 1.377 2.244
0.25 1.042 0.894 1.055 1.735
0.50 1.401 1.037 0.889 1.201
0.75 2.380 1.757 1.340 0.990
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Table 3 Ratio between the average proportion of correct group assignment (among units assigned
to the control condition) using the univariate model for y1 , and the bivariate model for y1; y2:
Np.g�

y1
D gjT D 0/= Np.g�

y1;y2
D gjT D 0/, where g� denotes the predicted compliance behavior,

obtained by Bayes’ classifier

�cn�n 0 0.25 0.50 0.75

0 0.882 0.874 0.858 0.817
0.25 0.894 0.904 0.891 0.845
0.50 0.869 0.901 0.916 0.882
0.75 0.808 0.838 0.862 0.902

information neglected by the univariate approach becomes more relevant. For this
reason, the bivariate approach is specially convenient when compliers and never-
takers are characterized by a very different value of �.

4 Concluding Remarks

Multivariate finite mixture models are applied in causal inference to address post-
treatment complications. The simultaneous modeling of more than one outcome is
generally expected to improve model identification. Even in case the causal effect of
primary interest refers to a single outcome, modeling it jointly with other outcomes
makes the estimation of the causal effect more efficient.

Using a simulation study, we evaluated the potential gains in efficiency, computa-
tion time, and predictive power obtained with a multivariate approach. Specifically,
results show that the bivariate approach reduces the mean squared error of the
estimates, speeding up the convergence of the EM algorithm and improving the pre-
diction of the compliance behavior for units assigned to the control group. A similar
reasoning can be applied in more complex settings, where a multivariate outcome is
observed with arbitrary distributional assumptions.

We expect that some of these findings can be analytically proved and this is
subject of our current research.

Our approach may be usefully implemented when the exclusion restrictions, or
other identifying assumptions, are questioned; it can also be used to assess the
robustness of the estimated treatment effects with respect to deviations from these
assumptions, as a sort of sensitivity analysis of traditional IV estimates.

Appendix

We provide the steps of the EM algorithm (Dempster et al. 1977) used in estimating
the model described in Sect. 2.

Under the stated assumptions, the actual (observed) likelihood function is
reported in (1). The complete-data log-likelihood function can be written as:



Causal Inference with Multivariate Outcomes: a Simulation Study 559

l.˚jT;D;Y/ D
X

i WTi D1;Di D1

I.Di .t/ D t/Œln	c
i C lnfi1c.Yi /�

C
X

i WTi D1;Di D0

I.Di .t/ D 0/Œln .1 � 	c
i /C ln fi1n.Yi /�

C
X

i WTi D0;Di D0

I.Di .t/ D t/Œln	c
i C lnfi0c.Yi /�

C
X

i WTi D0;Di D0

I.Di .t/ D 0/Œln .1 � 	c
i /C ln fi0n.Yi /�;

where I.�/ is the general indicator function.
Once an initial value ˚.0/ for the parameters has been chosen, the E-step of

the EM algorithm computes the conditional expectation of the complete-data log-
likelihood given the current vector of model parameters and the observed data. This
corresponds to computing (using Bayes’rule) the conditional probabilities of the true
compliance behavior indicator. The E-step is performed as follows:

for i : Ti D 1;Di D 1 P.Di .t/ D t/.�/ D 1;
for i : Ti D 1;Di D 0 P.Di .t/ D t/.�/ D 0;

for i : Ti D 0;Di D 0 P.Di .t/ D t/.�/ D �
c.�/

i
f

.�/

i0c
.Yi /

�
c.�/

i
f

.�/

i0c
.Yi /C.1��

c.�/

i
/f

.�/

i0n
.Yi /

:

The ‘expected’ log-likelihood function le is obtained by replacing the indicator
functions with the computed probabilities of the true compliance behavior indicator
in l : a new estimate of ˚ , ˚.�C1/, is then obtained using a standard optimization
routine (M-step), as if Di .t/ were known for all units.

As showed in Dempster et al. (1977), iterating this process monotonically
increases the likelihood function, or at least leaves it unchanged; the algorithm runs
until a stopping criterion has been satisfied.
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Using Multilevel Models to Analyse the Context
of Electoral Data

Rosario D’Agata and Venera Tomaselli

Abstract Multilevel models are used to analyse contextual effects in hierarchical
structures in order to explore the relationship among nested units. This study aims to
observe the link among the territorial micro units nested in higher levels. We exam-
ine electoral data in two stages, defined in first level units inside nested structures. In
these we used economic, demographic and social variables in order to characterize
the context and explore its effects upon the electoral outline of territorial units.

1 Multilevel Modeling in the Analysis of Voting Behaviour

Hierarchical multilevel models have been used in scientific fields including the
social sciences and have proved to be a methodological tool in many political
behaviour studies, primarily of Anglo-Saxon origin (Steembergen and Jones 2002).

Since many subjective and contextual factors are involved in the direction of vote
choice, it is important to highlight the role of context in affecting individual choices,
thereby enhancing analysis and overcoming the restrictions set by classic methods
like contextual analysis (Kreft and de Leeuw 1998).

The use of multilevel models have characterized studies meant to underline
the importance of residential factors in political socialization processes (Cho
et al. 2006), as well as surveys on voting intention (Barbosa and Goldstein 2000)
and on ethnic group influence upon political participation.

One of the issues relating to voting behaviour is participation. In this case,
hierarchical models have often been applied to choose contextual analysis units
(Johnson et al. 2002) and to investigate context effects on abstentionism (Riba and
Cuxart 2003). Other studies have underlined that contextual influences can not only
derive from the territory where people reside and vote, but also from areas where
they spend a great deal of their time, like for example, the labour place (Jones
et al. 1992) and the household (Johnston et al. 2003).

The studies of political behaviour, with contextual elements as linking factors in
explaining phenomena, take into consideration the territory as a relationship setting
where individuals interact. Therefore, the territory is responsible for ‘global effects’
treated by Lazarsfeld and Menzel (1961).

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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2 Materials and Methods

According to the above analysis framework, beyond the actual residence of electors,
we can identify more aggregated territorial units, which link electoral tendencies
to the contextual living area where opinions, attitudes and, therefore, patterns of
behaviour are formed as a result of specific features of aggregated units.

By means of multilevel modelling, we analyse the electoral data of Italian Munic-
ipalities. As we did not choose to investigate individual behaviour drawn from
survey data, Municipalities are used as level-1 units. Actually, we could have used
polling station data, because this unit is the smallest, but in this case we could have
employed only electoral data. Instead, we were interested in analysing the relation-
ship between structural features and electoral outcomes. So, we chose, as level-1
unit, an aggregate-level unit (Goldstein 2003) – the Municipality, so as to enter
socio-economical predictors in the model.

Multilevel modelling allows us to assess variation in a dependent variable at
several levels simultaneously. They specify variables at any level, not just at the
individual level (Kreft and de Leeuw 1998; Snijders and Bosker 1999). Here, we
use the multilevel approach to analyse aggregated data in level-1 units.

So, this paper aims to compare two different hierarchical structures: Munici-
palities-provinces and Municipalities-Local Labour Systems. We propose the use of
Local Labour Systems, called Sistemi Locali del Lavoro or SLL1 in Italian, as level-
2 aggregation units, to analyse voting behaviour by hierarchical linear models, with
Municipalities as level-1 units.

The general model is:

Yij D ˇ0j C ˇ1jXij C "ij; (1)

where:

(
ˇ0j D 
00 C 
01zj C u0j

ˇ1j D 
10 C 
11zj C u1j ;
(2)

The Zj , measured at level-2, is the contextual j th variable portion concerned
with intercept and slope parameter measurement (Goldstein 2003; Snijders and
Bosker 1999; Kreft and de Leeuw 1998). Thus, by introducing the Zj variable of
the Eq. 2, we use the model to estimate the ˇ0jˇ1j coefficients of (1).

1 Introduced by Istat in 1981 and modified in number and structure during the 1991 and 2001
Census, the SLLs can be defined as “daily place of work and life activity”. They are made up of
Municipalities (comuni, in Italian) grouped on the basis of daily commuting to work as reported by
Census data. Every area consists of several Municipalities. The majority of the resident population
works within this area and employers recruit most of their man power from the Municipalities that
make up this area (ISTAT 2001).
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To analyse the voting behaviour of Municipalities (as level-1 units), we collected
the 2006 national election data focusing on participation rate and the outcome of
Centre-Left coalition. Since electoral results in a given area is strictly related to the
same results in a previous election, we chose to employ the percentage of valid votes
collected by the Centre-Left wing in the national election in 2001 as level-2 variable.

In order to fit a model able to examine the influence that territorial contexts would
have on voting behaviour of hierarchically less aggregated units, structural dimen-
sions were chosen on the basis of three factors of analysis: the socio-demographic
dimension,2 the socio-economic3 dimension and the secularization dimension.4

3 Results

In the first step of analysis, we fitted a random intercept model (empty model) with
the rate of consensus5 obtained for the Centre-Left coalition in the 2006 national
election (Csnpol06) as the dependent variable. We chose to model Centre-Left wing
performance simply because it won that election. Considering the bipolar features
of the Italian political system, furthermore, the performances of the two coalitions
could be seen as mirror-like.

The electoral outcome was observed at the level-1 units: Municipalities. Then,
we calculated the intra-class correlation coefficient (ICC) to assess the existence of
meaningful differences between the level-2 units. ICC (�) is the proportion of total
variance explained by level-2 unit (SLLs) variance. Formally:

� 2 Œ0; 1� (3)

where:

£ is the variance between level-2 units (SLLs)
¢2 is the variance within level-1 units (Municipalities)

Comparing the two structures (Municipality-province and Municipality-SLL), we
observed a greater homogeneity within the SLLs (Table 1). In fact, the ICC, calcu-
lated with SLLs level-2 units, shows a higher value (0.691) than the same coefficient
calculated for the province level-2 units (0.566). In other words, Municipality voting
behaviour would seem more influenced by nesting to a SLL than to a province.

2 Rate of residents less than 5 years of age (Meno_5), the rate of families having over six mem-
bers (Fampiù6_2), rate of foreign residents (StranRes), index of dependence (Dependence), rate of
residents without qualifications (NoTitStud).
3 Unemployment rate (Disoccup_2), youth unemployment rate (DisocGiov), the rate of families
whose head is looking for work (CapFamInCPO_2), rate of workers in industry (OccupInd_2),
rate of self-employed workers (LavInPrp_2), rate of housewives (Casal_2).
4 Rate of unmarried couples (NoConiug).
5 Computed as the ratio between the number of votes obtained by the Centre-Left coalition parties
and the total number of valid votes.
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Table 1 Empty model. Dependent variable: Csnpol06

Municipalities-provinces Municipalities-SLL
ˇ0j E.S. Z p-Value ˇ0j E.S. Z p-Value

Fixed effects
Intercept 49:221 0:945 52085:71 <0:0001 49:856 0:446 111784:75 <0:0001

Random effects
u0j 90:419 12:814 7:06 <0:0001 126:559 7:346 17:23 <0:0001

e0ij 69:278 1:096 63:21 <0:0001 56:606 0:930 60866:67 <0:0001

ICC 0:566 0:691

Empty model: ICC = 0.566

Complete model: ICC = 0.265
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Fig. 1 Municipalities-provinces. Approximate 95% confidence interval for level-2 residuals plots:
from empty model to complete model

Having fitted a random intercept model for all the independent variables and
having observed the relationship between each one and the dependent variable, we
estimated several models, assessing the effects of both level predictors.6 Contextual
effects were then assessed by introducing level-2 variables. Finally, after estimating
the parameters of electoral predictors, we specified a model with all the predictors.

Before checking the value and direction of covariates in the model, let us observe
the ICC decrease, comparing the two different structures (Fig. 1). In both hierarchi-
cal models with first and second level predictors, the ICC is lower than in the random
intercept model. Namely, in the Municipality-province structure the ICC decreases
from 0.566 to 0.265. In this case, controlling for the hierarchical structure by means
of first and second level predictors, allowed us to point out the role of provinces
in influencing Municipality electoral behaviour. Comparing second level residuals

6 Primarily, we estimated a model with level-1 variables. Afterwards, assuming that the effects on
the dependent would vary randomly across the level-2 units, we specified a random slope model to
control interaction effects across the levels.
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Complete model: ICC = 0.445
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Fig. 2 Municipalities-SLL. Approximate 95% confidence interval for level-2 residuals plots: from
empty model to complete model

plots, we note the reduction of variance due to nesting into Municipalities-provinces
structure. In other words, the province seems to be a valid second level unit in pre-
dicting Municipality electoral outcome or, more probably, second level variables
introduced in the model act in a wide territorial context. This entails a ‘covering’
of Municipalities structural peculiarities. With regards to Municipalities-SLL struc-
ture, we notice how the ICC decreases from 0.691 to 0.445 (Fig. 2). Considering
the relative decrease, compared with Municipalities-provinces structure, the ICC is
reduced by 64% whereas in the previous structure the ICC decreased, in relative
value, by 46%.

Nevertheless, the explicative capability of second level variables in Munici-
palities-SLL structure seems to be lower than in the previous structure because
ICC still maintains a high value after having estimated the complete model. The
role of SLL nesting in influencing Municipalities electoral outcomes appears to be
very strong and even controlling for the second level dimension, it was not possi-
ble to reduce the effects of nesting structure. Probably, other dimensions act on the
dependent variable in this structure. Such a hierarchical structure, in fact, appears
somewhat complicated and we need to introduce other predictors.

Furthermore, comparing the models of the two structures (Table 2) we note that
in the Municipality-province model the level-2 variance is 24.003, while the empty
model variance was 90.419. In the Municipality-SLL structure, the level-2 variance
is 35.354 and was 126.559 in the random intercept model. So, in the Municipality-
SLL model the predictors reduced the level-2 variance proportionally more than
they did in the Municipality-province. In the first model, moreover, the predictors
reduced the level-1 variance (from 50.606 to 44.041) more than in the Municipality-
province structure (from 69.278 to 66.678).

Accordingly, SLL appears able to discriminate homogeneous nested territorial
clusters more than the province does. Thus, Municipality-SLL structure maintains
territorial peculiarities of Municipalities.
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Table 2 Random intercept model: comparing two hierarchical structures. Dependent variable:
Csnpol06

Municipality-provinces Municipality-SLL
ˇ0j E.S. Z p-Value ˇ0j E.S Z p-Value

Level-1 fixed eff.(Xi )
Intercept 11:231 5.407 2:077 <0:02 18:986 3.522 5:391 <0:0001

NoConiug 0:222 0.057 3:895 <0:0001 0:164 0.054 3:037 <0:002

Dependence 0:049 0.011 4:455 <0:0001 0:046 0.010 4:600 <0:0001

NoTitStud �0:220 0.028 �7:857 <0:0001 �0:200 0.027 �7:407 <0:0001

StranRes �0:283 0.060 �4:717 <0:0001 �0:277 0.060 �4:617 <0:0001

PartPol2006 0:169 0.025 7:840 <0:0001 0:164 0.024 6:833 <0:0001

AltPol2001 0:098 0.017 5:765 <0:0001 0:227 0.015 15:133 <0:0001

DisocGiov 0:020 0.010 2:000 <0:003 0:028 0.009 3:111 <0:0005

Meno_5 �0:809 0.109 �7:422 <0:0001 �0:736 0.105 �7:010 <0:0001

Level-2 fixed eff.(Zj )
Csnpol2001_2 0:680 0.061 11:148 <0:0001 0:675 0.028 24:107 <0:0001

OccupInd_2 �0:285 0.059 �4:831 <0:002 �0:263 0.032 �8:219 <0:0001

Casal_2 �0:238 0.098 �2:429 <0:006 �0:194 0.037 �5:243 <0:0001

Fampiù6_2 4:963 0.588 8:440 <0:0001 4:182 0.238 17:571 <0:0001

CapFamInCPO_2 1.595 0:179 <0:5 �1:797 0.566 �3:175 <0:0008

Disoccup_2 �0:271 0.339 �0:799 <0:3 �0:479 0.214 2:238 <0:02

LavInPrp_2 �0:175 0.127 �1:378 <0:1 �0:289 0.059 �4:390 <0:0001

Random effects
u0j 24:003 3.573 6:718 <0:0001 35:354 2.357 15:000 <0:0001

e0ij 66:678 1.054 63:262 <0:0001 44:041 0.903 48:772 <0:0001

ICC 0:265 0:445

Deviance 57335:4 56719:25

The SLL hierarchical structure, therefore, reveals the impact of some level-2
effects which are not significant in the Municipality-province structure. The unem-
ployment rate, the rate of families whose head is looking for work and the rate of
self employed workers are measures related to Municipality features. Moreover, the
variable with the greatest difference between the two hierarchical structures is the
Altpol2001 (the rate of votes obtained from non-coalition parties in 2001): 0.098
for the Municipality-province and 0.227 for Municipality-SLL. In other words, it is
precisely this divergence that underlines the difference between the two structures.
Otherwise the coefficients in the two structures appear similar in value and direction.

In detail, looking at Level-1 fixed effects we note that the rate of votes collected
from Centre-Left coalition is positively related primarily to the rate of unmarried
couples (NoConiug) and the ratio of electoral participation observed at the same
election (PartPol2006) and negatively related to the rate of residents less than five
years of age (Meno_5), the rate of residents without qualifications (NoTitStud) and
the rate of foreign residents (StranRes).

Furthermore, concerning Level-2 fixed effects, we note that Centre-Left coali-
tion success localises in those areas characterised by a high rate of families with
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Fig. 3 Relationship between Meno_5 and Csnpol06 in two hierarchical structures (random slopes
effects)

over six members (Fampiù6_2) and, of course, by the performance of Centre-Left
parties observed in the previous election (Csnpol2001_2). Again, the consensus of
the Centre-Left wing seems to be linked to the contexts featured by the low rate of
workers in industry (OccupInd_2) and the low rate of housewives (Casal_2).

Municipality electoral data analysis should take into account the territorial fea-
tures characterizing the context where the Municipalities are nested. Provinces, due
to their extension and delimitation criteria, are less able to examine contextual fea-
tures than SLLs, which could be more valid territorial units for the analysis of voting
behaviour.

A central issue in electoral data analysis concerns the different capability of
predictors in influencing the electoral outcome across all territorial units. In other
words, many scholars are interested in investigating whether a given relationship
between a covariate and outcome varies from unit to unit.

In our analysis, we answer this question. We propose estimating a random slope
model in order to establish the different territorial effect of covariate on electoral
outcome. Figure 3 describes an example of a randomly varying slope parameter for
predictor Meno_5.

It shows that the strength of relationship between the covariate Meno_5 and
the dependent Csnpol06 decreases in so far as the average of dependent variable
increases. Every line represents level-2 units – provinces or SLLs – and their slopes
indicate the different role of predictors across the territory.

4 Conclusions

The use of multilevel linear models has allowed us to identify the contextual factors
involved in modelling electoral outcomes of Municipalities. These were observed in
two hierarchical structures, defined according to different criteria. A random inter-
cept model emphasized, in particular, the effects of the hierarchical structure on
Italian Municipality voting behaviour. By estimating these models, it emerges that
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SLLs have a greater classifying capability than provinces do and reveal features and
analytic dimensions which the Municipality-province hierarchical structure does not
reveal.

To conclude, from the analysis it appears that SLLs more than provinces, allow
us to study the link between the context and voting behaviour. The latter is not
always related to the two major coalitions and is often linked to the territorial/local
dimension.
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A Geometric Approach to Subset Selection
and Sparse Sufficient Dimension Reduction

Luca Scrucca

Abstract Sufficient dimension reduction methods allow to estimate lower dimen-
sional subspaces while retaining most of the information about the regression of a
response variable on a set of predictors. However, it may happen that only a subset
of the predictors is needed. We propose a geometric approach to subset selection
by imposing sparsity constraints on some coefficients. The proposed method can
be applied to most existing dimension reduction methods, such as sliced inverse
regression and sliced average variance estimation, and may help to improve the esti-
mation accuracy and facilitate interpretation. Simulation studies are presented to
show the effectiveness of the proposed method applied to two popular dimension
reduction methods, namely SIR and SAVE, and a comparison is made with LASSO
and stepwise OLS regression.

1 Introduction

Consider the regression of a response Y on a vector X of p predictors. Dimension
reduction methods aim at finding a subspace S of minimal dimension such that

Y ?? X j.ˇ1
>X; : : : ; ˇd

>X/ (1)

where ?? denotes statistical independence, and B D .ˇ1; : : : ; ˇd / 2 Rp�d , with
d � p, is the matrix spanning the basis of the subspace S . Such subspace exists
and is unique under mild conditions (Cook 1998a). We refer to it as the central
dimension reduction subspace (CDRS) and denote it by SyjX .

Several methods have been proposed for estimating the basis B of the CDRS.
These methods include sliced inverse regression (SIR, Li 1991), sliced average vari-
ance estimation (SAVE, Cook and Weisberg 1991), principal Hessian directions
(PHD, Li 1992, Cook 1998b), and inverse regression estimation (IRE, Cook and
Ni 2005).

All methods produce linear combinations of all the original predictors. Thus,
unless a subset of predictors has exact null coefficients on all the directions, all
the features are included. This often makes it difficult to interpret the extracted

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
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components. Furthermore, some predictors may have small coefficients, so their
contribution is negligible.

As a simple illustration, consider the response model Y D exp.�0:75ˇ>X C 1/
C �, where X is a vector of length p D 6, and both the predictors and the error
� are generated from independent standard normal variables. The central subspace
is spanned by ˇ D .1;�1; 0; 0; 0; 0/>=p2. For a simulated datasets of 200 obser-
vations SIR yields the estimate b̌D .0:71;�0:694; 0:064; 0:082;�0:043; 0:044/>.
Although the coefficients for the last four predictors are nearly zero, all the variables
are included in the estimate, and this obscures the fact that the true direction only
involves the first two predictors.

A rough subset selection procedure could be based on the approximate formula
for standard deviations of SIR estimates proposed by Chen and Li (1998). A rigor-
ous conditional independence test procedure has been developed by Cook (2004)
to assess the contribution of individual predictors to SIR components. Ni et al.
(2005) and Li and Nachtsheim (2006) proposed a lasso (Tibshirani 1996) estima-
tor to obtain sparse SIR estimates. Li (2007) generalized this approach to produce
sparse estimates in dimension reduction methods based on a generalized eigenvalue
formulation.

In this paper we propose an approach to sparse basis estimation based on a mea-
sure of distance between the estimated basis and a candidate sparse basis, followed
by a penalized criterion for selecting relevant predictors. Search algorithms are also
discussed.

2 Method

Given n independent realizations f.Xi ; yi /; i D 1; : : : ; ng of .X; y/, let X D
.X1; : : : ; Xn/

> be the n�p data matrix, and y D .y1; : : : ; yn/
> the n� 1 response

vector. Dimension reduction methods provide the estimate bB of the .p � d/ basis
of the CDRS. In this paper we consider the structural dimension d D dim.SyjX /
as known.

Let eB D .ě1; : : : ; ěd / be the .p � d/ sparse basis obtained from bB by fixing
at zero some coefficients for a given subset of predictors. Such sparsity constraint
implies that if a predictor has zero coefficients on all the directions then it can be
dropped from the active set of predictors. A similar approach was discussed by
Chipman and Gu (2005) in the context of principal components analysis.

A Measure of Closeness of Subspaces

Following Li (1991), a measure of the distance between the estimated basis bB of
the CDRS and its sparse version eB is given by the squared trace correlation. This is
based on an affine-invariant discrepancy measure which evaluates the distance of a
direction ěj (j D 1; : : : ; d ) and the subspace S .bB/:
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R2.ěj / D max
b̌2S .bB/

.ěj
> ḃb̌/2

.ěj
> ḃě

j /.b̌> ḃb̌/
D max
b̌2S .bB/

cor.Xěj ;Xb̌/2; (2)

where ḃ is the sample covariance matrix of the predictors. The squared trace cor-
relation is defined as the average of the squared canonical correlation coefficients
in (2) between the estimated directions Xb̌1; : : : ;Xb̌d and the sparse directions
Xě1; : : : ;Xěd :

R2.eB/ D
Pd

j D1R
2.ěj /

d
: (3)

If d D 1 the squared trace correlation is equivalent to the square of the usual
correlation coefficient. It can be shown that R2.eB/ D cos.�/2 2 Œ0; 1�, where �
is the minimal angle between the subspaces bB and eB with respect to ḃ inner prod-
uct. Thus, R2.eB/ provides a measure of the “closeness” of the two subspaces: if
R2.eB/ D 1 then Span.bB/  Span.eB/, with decreasing values which indicate
increasing distances; if R2.eB/ D 0 then the two subspaces are orthogonal.

A Criterion for Selecting a Subset of Variables

Since R2.eB/ is simply maximized when eB  bB, i.e. no coefficients are set to zero,
a reasonable criterion must include a penalty term which penalizes larger subsets.
For a subset of predictors Sk � f1; 2; : : : ; pg of dim.Sk/ D k, a sparse basis eBk

is obtained by setting to zero the coefficients for the .p� k/ predictors not included
in Sk . The criterion adopted, as motivated by Chipman and Gu (2005), is based on
the maximization of the following convex linear combination:

Ck D .1 � w/ R2.eBk/C w
p � k
p
/ .1 � w/ R2.eBk/� w

k

p
(4)

where w 2 Œ0; 1� is a tuning parameter which controls the amount of penalty
imposed. The criterion in (4) balances a measure of how well the sparse basis
approximates the unconstrained estimated basis, and a penalization term which is
an increasing function of the fraction k=p of predictors having nonzero coefficients
among the original p predictors. Such penalty term can be seen as a form of L0-
norm penalization. If w D 0 then no penalty is introduced and the criterion in (4)
selects eBk  bB. As w increases, the solution maximizing (4) becomes more sparse.
Empirical evidence suggests to adopt w D 0:2 as a reasonable default value in
practice.

Algorithms for Subset Selection

The number of possible subsets of k variables from a total of p is given by
�

p
k

�
.

Thus, the space of all possible subsets of size k ranging from 1 to p has number of
elements equal to

Pp

kD1

�
p
k

� D 2p � 1. An exhaustive search becomes unfeasible
even for moderate values of p. To alleviate this problem, we may adopt a stepwise
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search algorithm. At each stage it searches for the predictor to add which maxi-
mizes the squared trace correlation in (3) among the covariates not already selected,
and then it assesses whether one predictor in the current subset could be dropped
once the new predictor is included. During both the forward and the backward step,
directions are orthogonalized to ensure that eB> ḃbB D Ip , where Ip is the p � p
identity matrix. These steps are iterated until all the predictors have been included.
The “best” subset is then selected on the basis of the criterion in (4).

A similar technique is the sequential replacement search (Miller 2002). Here the
basic idea is that once two or more variables have been included in the active subset,
we inspect whether any of those included variables can be replaced with another one
which provides a larger squared trace correlation. The sequential replacement step
can be implemented on a forward search or using random starts. Again, the “best”
subset is selected on the basis of the criterion in (4).

The above mentioned algorithms are not guaranteed to lead to the global opti-
mum, in particular if p is large and the predictors are not orthogonal. Alternatively,
and perhaps more efficiently, branch and bound algorithms (Hand 1981) or genetic
algorithms (Goldberg 1989) could be used to directly maximize the criterion in (4).
These alternative search strategies are currently under study.

3 Synthetic Data Examples

In this section we discuss the results of some simulation studies where the proposed
approach is applied using two dimension reduction methods, namely SIR and SAVE,
and a comparison is made with LASSO and stepwise OLS regression.

OLS is a consistent method for estimating a single direction (Li and Duan 1989),
while stepwise subset selection is often applied for the purpose of variable selec-
tion, implicitly adopting a L0-norm penalization. LASSO is a constrained version
of OLS, which involves a L1-norm penalization, thus effectively shrinking some
of the coefficients toward zero. In both cases, the amount of penalization can be
selected using the Cp criterion (Efron et al. 2004).

The accuracy of each method is assessed by comparing the angle formed by the
estimated and the sparse bases with the true basis. The subset selection procedure is
evaluated by computing both the true inclusion rate (TIR), i.e. the ratio of the num-
ber of correctly identified active predictors to the number of truly active predictors,
and the false inclusion rate (FIR), i.e. the ratio of the number of falsely identified
active predictors to the total number of inactive predictors. These measures are also
known as sensitivity and 1-specificity, respectively, and, ideally, we wish to have
TIR to be close to 1 and FIR to be close to 0 at the same time.

Model I. Consider the data generated in Sect. 1 for the simple 1D model Y D
exp.�0:75ˇ>XC1/C�, with ˇ D .1;�1; 0; : : : ; 0/. The left panel of Fig. 1 shows
the squared trace correlation between the estimated SIR basis and the sparse basis
selected by the criterion in (4) as the tuning parameter is varied: values of w 2
Œ0:1; 0:7� provide stable subset selection solutions, with the first two variables which
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Fig. 1 Results of subset selection procedure for the simple 1D model. Left panel: plot of R2.eB/
for sparse basis solutions at different values of the tuning parameter w – values within circles refer
to subset sizes. Right panel: plot of R2.eB/ at each step of the stepwise search, with a graph of the
Ck criterion for w D 0:2 at the bottom

are correctly selected. However, this behavior is not to be expected in general: in
most cases as w grows the size of the subsets decreases since larger subsets are
increasingly penalized. Finally, note that for w � 0:8 the penalty term is dominant
and only one variable is selected.

The right panel of Fig. 1 shows the trace of R2.eBk/ for increasing subset sizes
(k D 1; : : : ; 6), whereas the plot at the bottom shows the Ck criterion for w D
0:2, which clearly indicates that a two-variables subset (formed by the first two
predictors) is needed. Thus, the first two variables selected gives R2.eB/ D 0:9864,
corresponding to an angle of 6:7ı with the original SIR basis.

We conducted a Monte Carlo study by replicating the above analysis 500 times
for each combination of sample sizes n D f100; 200; 500; 1; 000g, and number of
predictors p D f5; 10; 20g. In Table 1 we report the averages of the angle formed by
the estimated and the sparse bases with the true basis of the subspace. The estimation
accuracy improves for all the methods as the sample size increases, with sparse basis
estimates which produce uniformly smaller angles on average. SIR appears to be the
most accurate, followed by LASSO and Stepwise OLS, whereas SAVE is extremely
sensible to the number of observations available when p is large.

From Table 2 we can see that SIR, LASSO, and Stepwise OLS, correctly iden-
tify the true active predictors, but SIR is able to discard the irrelevant predictors,
while LASSO and, to a less extent, Stepwise OLS are also selecting inactive pre-
dictors. SAVE is less accurate on both TIR and FIR, with the previous comments
which apply also in this case. Overall, SIR sparse solutions recovered the true active
predictors, which allowed to improve subspace estimation accuracy.

Model II. Consider the quadratic model Y D .ˇ>X/2C0:5�, with ˇ D .1;�1; 0;
: : : ; 0/, where the predictors X D .X1; X2; : : : ; Xp/ follow independent standard
normal distributions, and they are independent of the error component � � N.0; 1/.



574 L. Scrucca

Table 1 Results from the simulation study for Model I: average values of the angle (in degree)
between the estimated basis with the true basis, †.bB;B/, and the sparse basis with the true basis,
†.eB;B/, as a function of sample sizes (n) and different number of predictors (p)

p n †.bB;B/ †.eB;B/
SIR SAVE OLS SIR SAVE LASSO Stepwise

5

100 8.27 30.17 12.45 4.23 28.14 10.58 10.14
200 6.20 7.16 9.61 3.10 3.62 8.18 7.92
500 3.67 3.67 6.47 1.84 1.86 5.50 5.33
1000 2.68 2.56 4.72 1.38 1.31 3.97 3.88

10

100 13.10 89.48 19.09 5.33 89.32 13.67 15.22
200 8.51 81.77 14.30 2.90 81.54 9.79 11.17
500 5.29 7.16 9.37 1.74 2.52 6.32 7.29
1000 3.68 3.83 7.15 1.28 1.23 4.84 5.66

20

100 20.60 89.81 26.76 12.62 89.73 15.60 21.06
200 12.65 89.89 20.51 3.79 89.82 11.00 15.67
500 7.68 89.79 14.01 1.76 89.75 7.61 10.88
1000 5.30 14.34 10.00 1.22 7.43 5.03 7.67

Table 2 Results from the simulation study for Model I: average values of TIR and FIR as a
function of sample sizes (n) and different number of predictors (p)

p n TIR FIR
SIR SAVE LASSO Stepwise SIR SAVE LASSO Stepwise

5

100 1.00 0.96 1.00 1.00 0.00 0.13 0.36 0.15
200 1.00 1.00 1.00 1.00 0.00 0.00 0.38 0.17
500 1.00 1.00 1.00 1.00 0.00 0.00 0.37 0.17

1000 1.00 1.00 1.00 1.00 0.00 0.00 0.37 0.15

10

100 1.00 0.59 1.00 1.00 0.01 0.67 0.31 0.16
200 1.00 0.65 1.00 1.00 0.00 0.63 0.29 0.15
500 1.00 1.00 1.00 1.00 0.00 0.00 0.30 0.15

1000 1.00 1.00 1.00 1.00 0.00 0.00 0.30 0.16

20

100 1.00 0.54 1.00 1.00 0.05 0.66 0.24 0.16
200 1.00 0.52 1.00 1.00 0.00 0.64 0.22 0.15
500 1.00 0.50 1.00 1.00 0.00 0.63 0.23 0.16

1000 1.00 1.00 1.00 1.00 0.00 0.01 0.22 0.16

Since the response function is symmetric it is known that SIR fails to recover the
basis of the CDRS. However, SAVE can deal with such a situation. Table 3 shows
the results from a simulation study like the one described previously. Again, sparse
basis estimation allows to uniformly improve accuracy for SIR and SAVE, but not
for LASSO and stepwise OLS. SAVE appears to be quite good at finding the cor-
rect direction, in particular as the sample size grows with respect to the number of
available predictors.

From Table 4 we see that only SAVE is effectively able to recover the true active
predictors and discard the irrelevant ones. SIR tends to select the active predictors,
but too often also it includes irrelevant covariates. On the contrary, both LASSO and
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Table 3 Results from the simulation study for Model II: average values of the angle (in degree)
between the estimated basis with the true basis, †.bB;B/, and the sparse basis with the true basis,
†.eB;B/, as a function of sample sizes (n) and different number of predictors (p)

p n †.bB;B/ †.eB;B/
SIR SAVE OLS SIR SAVE LASSO Stepwise

5

100 70.86 24.03 65.36 70.72 19.85 72.06 69.69
200 78.33 11.95 64.55 78.21 6.41 71.32 68.89
500 67.71 8.98 65.40 67.56 4.36 73.37 70.62
1000 79.33 4.96 64.94 79.22 2.48 71.91 68.60

10

100 83.86 44.36 75.24 83.59 42.08 77.86 75.05
200 78.36 26.54 74.12 78.19 21.03 76.10 74.38
500 77.00 14.53 74.84 76.71 6.54 76.78 74.94
1000 77.65 9.52 74.15 77.47 3.36 76.85 74.41

20

100 85.98 77.78 80.01 85.89 77.53 79.62 78.31
200 86.03 52.30 80.31 85.99 50.46 80.09 78.89
500 85.87 21.97 80.22 85.75 13.73 80.12 78.50
1000 83.69 15.41 79.84 83.57 6.13 79.93 78.48

Table 4 Results from the simulation study for Model II: average values of TIR and FIR as a
function of sample sizes (n) and different number of predictors (p)

p n TIR FIR
SIR SAVE LASSO Stepwise SIR SAVE LASSO Stepwise

5

100 0.734 0.997 0.411 0.418 0.6067 0.1293 0.2167 0.1600
200 0.664 1.000 0.426 0.431 0.6593 0.0020 0.1980 0.1560
500 0.755 1.000 0.382 0.400 0.5733 0.0000 0.1953 0.1493

1000 0.671 1.000 0.423 0.439 0.6753 0.0000 0.2073 0.1520

10

100 0.659 0.968 0.344 0.386 0.6400 0.3345 0.1638 0.1562
200 0.714 0.998 0.376 0.402 0.6110 0.1328 0.1790 0.1640
500 0.722 1.000 0.367 0.402 0.6010 0.0102 0.1678 0.1727

1000 0.716 1.000 0.373 0.414 0.5968 0.0000 0.1720 0.1685

20

100 0.658 0.790 0.316 0.414 0.6389 0.5989 0.1173 0.1597
200 0.667 0.963 0.312 0.403 0.6334 0.4138 0.1291 0.1641
500 0.649 1.000 0.313 0.411 0.6254 0.0660 0.1252 0.1593

1000 0.701 1.000 0.341 0.421 0.6113 0.0112 0.1170 0.1523

stepwise OLS appear to discard the irrelevant predictors but also the true active
predictors. These drawbacks are responsible for the worst accuracy achieved by the
other methods in comparison to SAVE.

4 Conclusions

Dimension reduction methods play an important role in multivariate statistical anal-
ysis. Some of them can be seen as a linear mapping from the original feature space
to a dimension reduction subspace with the aim of retaining most of the relevant
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statistical information available in the data. However, some features may provide
redundant information, whereas some other features may be irrelevant.

In this paper we discussed a sparse estimation approach for subset selection
in dimension reduction methods based on a criterion which penalizes larger sub-
sets. We show through simulations that the proposed approach allows to improve
estimation accuracy, and it provides stable and interpretable solutions.
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Local Statistical Models for Variables Selection

Silvia Figini

Abstract The objective of this paper is to find the most frequent itemsets in a
database, made up of categorical explanatory variables and a continuous response
variable. To achieve this aim we propose to extend local data mining techniques
based on association rules. We assess the performance of our model by developing
appropriate model indicators derived from classical concentration measures.

1 Introduction

In general, the objective of local data mining techniques as association rules is to
underline groups of items that typically occur together in a set of transactions. The
relevance of association rules is measured by descriptive statistical measures, named
“measures of interest”, such as the support, the confidence and the lift (see e.g.,
Giudici et al. 2009; Hand et al. 2001, Hastie et al. 2001).

While classical association rules deals with binary variables, in this paper we
propose a novel methodology aims at selecting, in an exploratory way, which of the
levels of the categorical variables at hand, can be chosen to explain a continuous
response variable. In order to reach this objective we have proposed and imple-
mented a rule induction methodology, and related measures of interestingness. What
developed can be applied to any data mining problems where the aim is to describe
the association structure between categorical variables in a given (large) database,
with the eventual aim of predicting a continuous response variable.

The paper is organized as follows: in Sect. 2 we describe our methodological pro-
posal; Sect. 3 introduces assessment measures; finally, Sect. 4 presents the conclu-
sions and highlights the possibility to employ this contribution in real applications.

2 Proposal

Typically, association rules are local unsupervised techniques (Apriori algorithm,
Agrawal et al. 1995) useful to generate, starting from binary and categorical vari-
ables, statistical measures of interest such as: support, confidence and lift.

S. Ingrassia et al. (eds.), New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-11363-5_65, c� Springer-Verlag Berlin Heidelberg 2011
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Table 1 Example data

V1 V2 V3 V4 V5 T

1 2 2 1 1 100
1 2 2 2 3 200
2 1 3 1 1 300
1 2 3 1 2 400
3 2 2 1 3 500
1 2 1 1 3 600
2 2 3 1 2 700
2 2 3 1 1 800
3 1 2 2 3 900
1 2 2 2 1 1000
2 1 1 1 3 1100

Q3 3 1 1 2 2 1200
3 1 2 1 3 1300
3 1 3 2 3 1400
2 2 3 2 2 1500
3 1 2 2 1 1600

Table 2 Lower, global and upper relative frequencies of the modes of the categorical variables:
example

V1 V2 V3 V4 V5

Mode 3 2 2 1 3
global data ŒMin.T /;Max.T /� f 37.5% 56.3% 43.8% 56.3% 43.8%
“lower” part ŒMin.T /;Q3/ f 25.0% 66.7% 41.7% 66.7% 41.7%
“upper” part ŒQ3;Max.T /� f 75.0% 25.0% 50.0% 25.0% 50.0%

The novelty of this paper is to extend association rules to a different environment.
In order to describe our proposal, a quantitative response variable, T (e.g., the total
profit of a shop) and a set of categorical explanatory variables are required (e.g., the
questionnaire item variables). The method employs categorical variables in order to
identify groups of observations highly related with the response variable.

For sake of clarity we refer to a theoretical example, reported in Table 1. Table 1
shows a dataset with 16 observations and five categorical variables (V1; : : : ; V5)
corresponding to five questions derived from a questionnaire. We sort in an increas-
ing order the whole data set with respect to the quantitative response variable
(T D Target), as reported in Table 1.

For each categorical variable we compute the mode, m, based on all data, and
its relative frequency (expressed in percentage), f . For example, based on Table 1,
the mode of the variable V1 corresponds to level 3, the mode of the variable V2

corresponds to level 2, and so on.
We split the data in two parts: one “lower” part from Min(T ), the minimum

value of T , to Q3, the third quartile, and one “upper” part fromQ3 to Max (T ), the
maximum value of T . We then consider the frequency distribution for the qualitative
variables in each of the two parts. This is illustrated in Table 2, that also reports the
same statistics for the whole dataset (“global”).
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Table 3 Lower, global and upper frequencies of the modes of the categorical variables: generali-
sation

V1 V2 . . . VI

Mode m1 m2 : : : mI

global data ŒMin.T /;Max.T /� f f1 f2 : : : fI
“lower” part ŒMin.T /;Q3/ f l1 l2 : : : lI
“upper” part ŒQ3;Max.T /� f u1 u2 : : : uI

Note that in Table 2 we have derived the relative frequency of the mode in each
of the two parts. For example, in the “lower” part the relative frequency of the mode
of V1 is 25% (3/12).

We remark that in this contribution we have selected Q1 and Q3 as quantiles;
however Q1 and Q3 can be replaced using, for particular application, different
statistical quantities.

Since the mode is not monotone, in this paper the algorithm proposed works on
categorical unimodal variables.

What discussed can be generalised as reported in Table 3.
In Table 3, for i D 1; : : : ; j; : : : ; I mi is the mode of the i -th qualitative variable;

li is the frequency of the mode in the “lower” part of the data, ui is the frequency of
the mode in the “upper” part and, finally, fi is the frequency of the mode using the
whole dataset.

To select the most influent variables, firstly, we check whether the relative fre-
quencies of the mode values li , fi and ui are strictly monotone (e.g., in strictly
increasing or decreasing order). In other words, we want to verify whether either of
the following is true:

li > ui ;

or (1)

li < ui :

Note that when a single split occurs the condition in (1) can be restated as l > u
or l < u without loss of generality. We call this “monotonicity” condition.
The rationale of this condition is that we want to check whether the mode of each
categorical variable is associated with the tails of the response distribution and,
therefore, the categorical variable affects the continuous target. For example (1) is
satisfied if most of modal levels are in the “upper” part or if most modal levels are in
the “lower” part. This condition can be thought as a “concordance filter”.

We then verify whether the difference between the relative frequencies li and ui ,
in absolute value, is greater than a common threshold c.

jui � li j > c: (2)

This second condition can be interpreted as a “concentration condi-
tion”. In this application we have selected c on the basis of expert opinions
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and knowledge on the data at hand; however, c should be selected using more
sophisticated statistical criterias, as discussed in Hand et al. (2009).

Note that, based on conditions (1) and (2) only V1, V2 and V4 are the categorical
variables that can be deemed to affect the response target variable. In particular, we
note that V1 satisfies condition (1) because all the frequencies in each group are
in increasing order as li D 25%, fi D 37:5% and ui D 75%. Also condition (2)
is satisfied, since the difference among the frequencies ui and li is greater than a
specific threshold, such as 20% .ui � li D 50%/.

We define “string” a combination of the different levels of the selected variables.
We want to choose the strings that “best explain” the response variable.

Let V1; : : : ; Vj be the selected variables (j � I ) (in the example j D 4), charac-
terized respectively by Aa.a D 1; : : : ; a�/, Bb.b D 1; : : : ; b�/, Cc.c D 1; : : : ; c�/,
Dd .d D 1; : : : ; d�/, where a�; b�; c�; d� are, respectively, the maximum number
of levels for variables V1; : : : ; Vj . A string is then a combination of variable levels
such that: Sk D .V1 D aVV2 D bV : : :

V
Vj D d/, for k D 1; : : : ; K .

For example, if L1; : : : ; LI are the level sets of the selected variables, a string
can be defined as l1; : : : ; lI , with li 2 LI , and the total number of strings becomes
K D Qi jLi j, i D 1; : : : ; I . In an actual database there will be ‘K 0 different strings,
each of them will be denoted by Sk , or k for brevity.

In principle, we may consider all possible strings, obtained using all possible
level combinations of the selected variables.

We proceed by understanding which strings are the most related with the tar-
get variable. For each string we consider its frequency in the actual dataset and
we cumulate the corresponding target values. This gives us an indication of the
intensity (or concentration) of the target values, corresponding to the specific string
considered.

More formally, we define the Relative Cumulative Frequency (RCFk) of the
target T at string k as follows:

RCFk D
PNk

iD1 TikPiD1
I T

; (3)

where, for a given string k, with absolute frequency Nk, and i D 1; : : : ; Nk , Tik is
the corresponding (continuous) target value.

For each string, we match its intensity, calculated as before, with its weight,
calculatingOFk , the Observation Frequency of each string in the dataset, as follows:

OFk D Nk

N
; (4)

where N is the total number of observations available.
In order to choose the most important strings, let Dk indicate, for each string,

the difference between the intensity RCFk and the frequencyOFk . This extends to
strings what applied in concentration studies (see e.g., Gastwirth 1972). Dk will
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Table 4 Strings and corresponding statistics for the example data

V1 V2 V4 RCF k OF k Dk

String 1 1 1 1 0 0 0
String 2 1 1 2 0 0 0
String 3 1 2 1 8.09% 18.75% �10.66%
String 4 1 2 2 8.82% 12.50% �3.68%
String 5 2 1 1 10.29% 12.50% �2.21%
String 6 2 1 2 0 0 0
String 7 2 2 1 11.03% 12.50% �1.47%
String 8 2 2 2 11.03% 6.25% 4.78%
String 9 3 1 1 0 0 0
String 10 3 1 2 9.56% 6.25% 3.31%
String 11 3 2 1 37.50% 25.00% 12.50%
String 12 3 2 2 3.68% 6.25% �2.57%

play the role of the main interestingness measure of a string, as the support,
confidence or the lift in classical association rules.

In terms of our running example, we had found V1, V2 and V4 as potentially
influent variable. Possible strings are thus made up of all possible levels combination
generated by such variables, as shown in Table 4, that also reports RCFk , OF and
D for each string. Note that, for this example, the total intensity is equal to RCFk D
13;600 and the number of available observations is N D 16.

From Table 4, note that variable V1 has three possible levels .1; 2; 3/, while vari-
able V2 and variable V3 have only two possible levels .1; 2/: their combination
generates therefore a number of strings equal to the product of all possible levels
(3 � 2 � 2 D 12 strings).

Based on Table 4, we can order strings in terms of their Dk values, the higher
representing better discriminatory power. For example, we may retain only those
strings whose value of Dk is greater than a set threshold, p.

We can then interpretDk as a discriminant function or, in data mining terminol-
ogy, a measure of interest aimed at string selection. For example, if we take p D 1%
the selected strings will be 11; 8; 10 who explain about 58% of the target response
with a frequency of about 37%. In particular, string 11 shows a Di value equal to
3.31%, string 8 a value equal to 4.78%, string 11 a value equal to 12.50%.

In other words, we explain 58.09% of the quantitative response variable consid-
ering only 37.5% of the observations (exactly six observations).

To further assess our approach, and compare it with other methods, in the
next section we will evaluate each string using concentration and heterogeneity
measures.

We conclude the description of our methodology with two remarks. First we
point out that, when we have variables with many levels and the sample size is small,
it is possible to obtain many level combinations which do not appear in the dataset.
This problem is indeed well known, for example, in the data mining literature (see
e.g., Hand et al. 2001): it is widely recognised that standard local data mining tech-
niques for transactional data (e.g., Association Rules) show the same weakness and,
for this purpose, measures of interestingness are developed to filter out “nfrequent”
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rules. Similarly, in our case, all strings can potentially be selected but those never
observed and, more generally, those for which the concentration measureDk is less
than a specific threshold p are discarded.

Second, our method is able to explain a large proportion of response on the basis
of a small set of observation. The rationale behind this is the usage of a model per-
formance measure (theDk statistics) which is similar to the captured response (lift)
in classical predictive data mining methods. Precisely, theDk statistics contrasts the
cumulative intensity of the target with the cumulative frequency of the strings.

3 Assessment

In order to measure the importance of each string, we can further elaborate the
concept behind the Dk statistics and develop concentration measures (see e.g.,
Gastwirth 1972).

Based on the data at hand, two extreme situations are possible from a theoretical
point of view:

1. Minimum response concentration (equi-distribution): the k strings share equal
quantities of the T variable.

2. Maximum response concentration: one string has the total amount of target and
the otherK � 1 have 0.

To assess concentration, we sort in increasing order the variable T and we make
the hypothesis that T is a transferable variable. A reasonable relative indicator of
concentration must be close to zero when the concentration is minimum, and close
to one when the concentration is maximum.

The Lorenz curve (see e.g., Lorenz 1905) can be used to furnish such indica-
tor. An index of concentration can be defined as the relationship between the area
of concentration (inclusive area between the Lorenz curve and the line of perfect
equality) and the area of the triangle of unitary segment, corresponding to the case
of equi-distribution.

In terms of our proposed method, an ideal string shows a similar distribution of
the target among the string related observations; this means that we want to mini-
mize the within-heterogeneity between the response values of the units belonging
to the same string.

We remark that, in real applications, sometimes the entire Lorenz curve is
not known, and only values at certain intervals are given. In that case, the Gini
coefficient of concentration can be approximated by using various techniques for
interpolating the missing values of the Lorenz curve (see e.g., Gastwirth 1972).

4 Conclusions

This paper shows a new procedure to select categorical variables and combinations
of their levels (strings) in a predictive context. Our method belongs to the class of
local data mining techniques, and can be considered an extension of association
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rules to the case of categorical, rather than binary, itemsets. We think that this
methodology could be employed in a different framework, and for real applications.

We believe that the proposed methods and the related assessment measures are a
good starting point to build, in an explanatory way, a statistical model able to predict
a continuous response variable on the basis of categorical explanatory variables.
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