
Ontology and Time Evolution of Obligations and

Prohibitions Using Semantic Web Technology

Nicoletta Fornara1 and Marco Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{nicoletta.fornara,marco.colombetti}@usi.ch

2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy
marco.colombetti@polimi.it

Abstract. The specification and monitoring of conditional obligations
and prohibitions with starting points and deadlines is a crucial aspect
in the design of open interaction systems. In this paper we regard such
obligations and prohibitions as cases of social commitment, and pro-
pose to model them in OWL, the logical language recommended by
the W3C for Semantic Web applications. In particular we propose an
application-independent ontology of the notions of social commitment,
temporal proposition, event, agent, role and norms that can be used in
the specification of any open interaction system. We then delineate a
hybrid solution that uses the OWL ontology, SWRL rules, and a Java
program to dynamically monitor or simulate the temporal evolution of
social commitments, due to the elapsing of time and to the actions per-
formed by the agents interacting within the system.

1 Introduction

The specification of open interaction systems, where heterogeneous, autono-
mous, and self-interested agents can interact by entering and leaving dynam-
ically the system, is widely recognized to be a crucial issue in the development
of distributed applications on the Internet, like e-commerce applications, or col-
laborative applications for the automatic creation of virtual organizations. An
important aspect of the specification of open systems is the possibility to define
the actions that agents should or should not perform in a given interval of time,
that is, the possibility to define social commitments with starting points and
deadlines, and to monitor and react to their fulfilment or violation.

As we discussed in our previous works [11,12,10] in our OCeAN meta-model
for the specification of artificial institutions, commitments for the interacting
agents can be created by the activation of norms associated to the agents’ roles,
or by the performance of agent communicative acts, like promises. In this paper
we explore how to use OWL (in its OWL 2 DL version1), the logical language
recommended by W3C for Semantic Web applications, to specify the deontic
part of the OCeAN meta-model. More precisely, we show how it is possible to

1 http://www.w3.org/2007/OWL/wiki/OWL Working Group

M. Baldoni et al. (Eds.): DALT 2009, LNAI 5948, pp. 101–118, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

102 N. Fornara and M. Colombetti

specify social commitment to express conditioned obligations and prohibitions
on time intervals, in OWL.

There are many advantages of using a decidable logical language like OWL
to specify an open interaction system, and in particular that: (i) Semantic Web
technologies are increasingly becoming a standard for Internet applications; (ii)
the language is supported by reasoners (like Fact++2, Pellet3, and the rule
reasoner of the Jena Semantic Web framework4) that are more efficient than
available alternatives (like the Discrete Event Calculus Reasoner5); (iii) it is
possible to achieve a high degree of interoperability of data and applications,
which is indeed a crucial precondition for the development of open systems.

The idea of using OWL for modelling and monitoring the dynamic evolution
of open artificial institutions can be developed following different approaches. A
first option would be to implement an institutional model in a object oriented
language like Java, and use OWL only to specify the ontology of the content of
communicative acts and norms. As a result reasoning may be used to deduce,
for example, that the performance of a certain act implies the performance of
another act, and thus the fulfillment of a given commitment. An alternative
approach, which we investigate in this paper, consists in using OWL to express,
as far as possible, the normative component of the OCeAN meta-model. As we
shall see, this requires the use of SWRL (Semantic Web Rule Language6) and
Java code to overcome certain expressiveness limitations of OWL. Indeed, with
both OWL 1 (the current standard) and OWL 2 there are at least two major
problems:

– The treatment of time. OWL has no temporal operators; on some occasions
it is possible to bypass the problem by using SWRL rules and built-ins for
comparisons, but in any case this does not provide full temporal reasoning
capabilities. Another possible solution would consist in using the OWL Time
Ontology7, but given that its axiomatization is very weak, this alternative
presents limitations analogous to those previously discussed.

– The open-world assumption. In many applications, nor being able to infer
that an action has been performed is sufficient evidence that the action
has not been performed; one would then like to infer, for example, that
an obligation to perform the action has been violated. As standard OWL
reasoning is carried out under the open world assumption, inferences of this
type cannot be drawn. However, it is often possible to simulate a closed
world assumption by adding closure axioms to an ontology.

The main contribution of this paper, with respect to our previous works, is to
show how obligations and prohibitions can be formalized in OWL and SWRL for

2 http://owl.man.ac.uk/factplusplus/
3 http://clarkparsia.com/pellet
4 http://jena.sourceforge.net/inference/
5 http://decreasoner.sourceforge.net
6 http://www.w3.org/Submission/SWRL/
7 http://www.w3.org/TR/owl-time/, http://www.w3.org/2006/time.rdf

Ontology and Time Evolution of Obligations and Prohibitions 103

monitoring and simulation purposes with significant performance improvements
with respect to the solution based on the Event Calculus that we presented
elsewhere [10]. Another contribution of this work is a hybrid solution of the
problem of monitoring the temporal evolution of obligations and prohibition,
based on application independent upper ontology of those concepts, extended
including other ontologies specific for the domain of application, a set of SWRL
rules, and a Java program implemented using suitable OWL libraries (like the
Jena Semantic Web Framework for Java8 or OWL API9).

The paper is organized as follows. In the next section we briefly introduce
OWL and SWRL, that is, the Semantic Web languages that we use to formally
specify the normative component of an open interaction system. In Section 3 we
specify the algorithms that we plan to use to simulate or monitor the temporal
evolution of an interaction system. Then in Section 4 we define the classes,
properties, axioms, and rules that we take to underlie the normative specification
of every interaction system. In Section 5 we present an actual example of a
system specified using the proposed ontology. Finally in Section 6 we compare
our approach with other proposals and draw some conclusions.

2 OWL and SWRL

OWL is a practical realization of a Description Logic system known as
SROIQ(D). It allows one to define classes (also called concepts in the DL liter-
ature), properties (also called roles), and individuals. An OWL ontology consists
of: a set of class axioms to describe classes, which constitute the Terminological
Box (TBox); a set of property axioms to describe properties, which constitute
a Role Box (RBox); and a collection of assertions to describe individuals, which
constitute an Assertion Box (ABox).

Classes can be viewed as formal descriptions of sets of objects (taken from
a nonempty universe), and individuals can be viewed as names of objects of
the universe. Properties can be either object properties or data properties. The
former describe binary relations between objects of the universe; the latter, bi-
nary relationships between objects and data values (taken from XML Schema
datatypes).

A class is either a basic class (i.e., an atomic class name) or a complex class
build through a number of available constructors that express Boolean opera-
tions and different types of restrictions on the members of the class.

Through class axioms one may specify subclass or equivalence relationships
between classes, and that certain classes are disjoint. Property axioms allow one
to specify that a given property is a subproperty of another property, that a
property is the inverse of another property, or that a property is functional or
transitive. Finally, assertions allow one to specify that an individual belongs to
a class, that an individual is related to another individual through an object

8 http://jena.sourceforge.net/
9 http://owlapi.sourceforge.net/

104 N. Fornara and M. Colombetti

property, that an individual is related to a data value through a data property,
or that two individuals are equal or different.

OWL can be regarded as a decidable fragment of First Order Logic (FOL). The
price one pays for decidability, which is considered as an essential preconditions
for exploiting reasoning in practical applications, is limited expressiveness. Even
in OWL 2 (the more expressive version currently under specification) certain
useful first-order statements cannot be formalized.

Recently certain OWL reasoners, like Pellet, have been extended to deal with
SWRL rules. SWRL is a Datalog-like language, in which certain universally
quantified conditional axioms (called rules) can be stated. To preserve decidabil-
ity, however, rules have to be used in the safe mode, which means that before
being exploited in a reasoning process all their variables must be instantiated
by pre-existing individuals. An important aspect of SWRL is the possibility of
including built-ins, that is, Boolean functions that perform operations on data
values and return a truth value.

Conventions

In what follows we use the notation p : C →O D to specify an object property p
(not necessarily a function) with class C as domain and class D as range, and
the notation q : C →D T to specify a data property q with class C as domain
and the datatype T as range. We use capital initials for classes, and lower case
initials for properties and individuals.

3 Specification and Simulation or Monitoring of an Open
Interaction System

Our approach is to model an open interaction system using one or more artificial
institutions. The definition of a specific artificial institution consists of: (i) a first
component, called meta-model, which includes the definition of basic entities
common to the specification of every institution, like the concepts of temporal
proposition, commitment, institutional power, role, and norm, and the actions
necessary for exchanging messages; (ii) a second component, pertaining to the
institution in exam, which includes the definition of specific powers and norms
that apply to the agents playing roles in the institution, and the definition of the
concepts pertaining to the domain of the interaction (for example the actions of
paying or delivering a product, bidding in an auction, etc.).

We start from the specification of a system, formalized as an application-
independent OWL ontology (including a TBox, an RBox, and an ABox as de-
tailed in Section 4). We then add an application-dependent ontology (as exem-
plified in Section 5) and use a Java program to let such ABox evolve in time on
the basis of the events, with the goal of monitoring the fulfilment or violation of
obligations and prohibitions. Those events could be actual events that happen
during the run time of the system mainly due to the interaction of the agents or
events registered in a possible history of the system for simulation purposes.

In particular, when the system is used for run time monitoring, a Java program
updates the state of the system, that is, it updates the ABox with new assertions

Ontology and Time Evolution of Obligations and Prohibitions 105

to model the elapsing of time, to allow for closed-world reasoning on certain
classes, and to model the actions performed by the interacting agents. When such
updating is completed, a reasoner can be used to deduce the state of obligations
and prohibitions. After that, when the ontology has reached a stable state (in
the sense that all closed-world reasoning has been completed), the agents may
perform queries to know what are their pending obligations or prohibitions or to
react to their violation or fulfillment. We assume that the events or actions that
happen between two phases of update (that is, between two discrete instant of
time) are queued in the data structure ActionQueue for being managed by the
Java program subsequently.

When the system is used for simulation, the set of events that happen at run-
time are known since the beginning, and are represented in the initial version of
the ABox. In such a case the Java program simply updates the state of the system
to represent the elapsing of time and to allow closed-world reasoning on certain
classes; then the reasoner deduces the state of obligations and prohibitions at
each time instant.

Temporal evolution of the ontology

An external Java program is used to update the ABox to model the elapsing
of time, the actions performed by the interacting agents at run-time (in the
monitoring usage), and to allow for closed-world reasoning on certain classes (see
Section 4.1 for details). It is important to underline that the external program
is used to update the ABox of the ontology and only to add new knowledge
acquired due to time elapsing, it is never used to remove knowledge.

The program performs the following operations:

1. initialize the simulation/monitoring time t equal to 0 and close the extensions
of the classes C, on which it is necessary to perform closed-world reasoning,
by asserting that the class KC is equivalent to the enumeration of all indi-
viduals that can be proved to be members of the class C retrieved with the
retrieve(C) query command;

2. insert in the ABox the assertion happensAt(elapse, t);
3. insert in the ABox the events or actions that happen in the system between

t − 1 and t and that are cached in the ActionQueue queue (this involves
creating new individuals of the class Event);

4. run a reasoner (more specifically, Pellet 2.0) to deduce all assertions that can
be inferred (truth values of temporal propositions, states of commitments,
etc.);

5. update the closure of the relevant classes C;
6. increment the time of simulation t by 1 and go to the point 2.

After point 5, given that the ontology has reached a stable state it is possible to
let agents perform queries about pending, fulfilled, or violated commitments in
order to plan their subsequent actions and to apply sanctions or rewards. When
the ontology is used for monitoring purposes, and given that internal time (i.e.,
the time as represented in the ontology) is discrete, it is necessary to wait the
actual number of seconds that elapse between two internal instants.

106 N. Fornara and M. Colombetti

The corresponding Java pseudo code is as follows:
t=0
for each class C that has to be closed

assert KC ≡ {i1, ...in} with {i1, ...in} = retrieve(C)
while t<timeSimulation {

assert happensAt(elapse,t)
for each event en in ActionQueue

assert happensAt(en,t)
run Pellet reasoner
for each class C that has to be closed

remove equivalent class axioms of class KC
assert KC ≡ {i1, ...in} with {i1, ...in} = retrieve(C)

run agents queries
t=t+1

}

4 The Ontology of Obligations and Prohibitions

In this section we present the TBox, the RBox, and part of the Abox that have to
be included in the ontology of any interaction system modelled using the OCeAN
concepts of temporal proposition, commitment, role, and norm. In particular we
specify the classes, the properties and the axioms for modelling those concepts
and introduce some SWRL rules to deduce the truth value of temporal proposi-
tions. Social commitments are a crucial concept in our approach because they are
used to model obligations and prohibitions due either to the activation of norms
or created by the performance of communicative acts, like promises. Thanks to
their evolution in time, commitments can be used to monitor the behavior of au-
tonomous agents by detecting their violation or fulfilment, as a precondition for
reacting with suitable passive or active sanctions or with a reward [10].

Somegeneral classes of our ontologyareusedasdomainor rangeof theproperties
used to describe temporal propositions and commitments; they are class Event,
class Action and class Agent. In particular, an event may have as a property its
time of occurrence. Class Action is a subclass of Event, and has a further property
used to represent the actor of the action. Such properties are defined as follows:

Event � Agent � ⊥; Action � Event;
hasActor : Action →O Agent;
happensAt : Event →D integer;

To represent the elapsing of time we introduce in the ABox the individual elapse,
that is asserted to be a member of class Event : Event(elapse).

4.1 Temporal Propositions

Temporal propositions are used to represent the content and condition of so-
cial commitments. They are a construct used to relate in two different ways a
proposition to an interval of time. In the current OWL specification, we distin-
guish between positive temporal propositions used in commitments to represent

Ontology and Time Evolution of Obligations and Prohibitions 107

obligations (when an action has to be performed within a given interval of time),
and negative temporal propositions used to model prohibitions (when an action
must not be performed during a predefined interval of time).

The classes necessary to model temporal propositions are TemporalProp, with
the two subclassesTPPos andTPNeg used todistinguishbetweenpositive andneg-
ative temporal propositions. The classes IsTrue and IsFalse are used to model the
truth values of temporal propositions. All this is specified by the following axioms:

TemporalProp � Agent � ⊥; TemporalProp � Event � ⊥;
TPPos � TemporalProp; TPNeg � TemporalProp;
TPPos � TPNeg � ⊥;
TemporalProp ≡ TPPos � TPNeg;
IsT rue � TemporalProp; IsFalse � TemporalProp;
IsT rue � IsFalse � ⊥;

The class TemporalProp is the domain of the following object and data properties
further specified with a cardinality axiom:

hasAction : TemporalProp →O Action;
hasStart : TemporalProp →D integer;
hasEnd : TemporalProp →D integer;
TemporalProp �= 1 hasAction � = 1 hasStart � = 1 hasEnd

The classes IsT rue and IsFalse are used to keep track of the truth value of
temporal propositions by means of two SWRL rules, that are different on the
basis of the type of temporal proposition. A positive temporal proposition (i.e., a
member of class TPPos) is used to represent an obligation to do something in a
given interval of time, with starting points tstart and deadline tend. We therefore
introduce a rule that deduces that the truth value of the temporal proposition is
true (i.e., the temporal proposition becomes member of the class IsT rue) if the
action associated to the temporal proposition is performed between the tstart

(inclusive) and the tend (exclusive) of interval of time associated to the same
proposition. In the following SWRL rule we use two built-ins to compare the
current time with the interval of time associated to the temporal proposition:

RuleTPPos1
happensAt(elapse,?t) ∧ happensAt(?a,?t) ∧ TPPos(?tp) ∧ hasAction(?tp,?a) ∧
hasStart(?tp,?ts) ∧ hasEnd(?tp,?te) ∧ swrlb:lessThanOrEqual(?ts,?t) ∧
swrlb:lessThan(?t,?te) → IsTrue(?tp)

We then have to define a rule that, when the time tend of a positive temporal
proposition elapses, and such a temporal proposition is not true, deduces that
the temporal proposition is member of the class IsFalse. Here closed-world
reasoning comes into play, because we cannot assume the ABox to contain an
explicit assertion that an action has not been performed: rather, we want to
deduce that an action has not been performed by the lack of an assertion that
it has been performed. Clearly, an SWRL rule like

happensAt(elapse,?te) ∧ hasEnd(?tp,?te) ∧ TPPos(?tp) ∧(not IsT rue)(?tp)
→ IsFalse(?tp)

108 N. Fornara and M. Colombetti

would not work, given that OWL/SWRL reasoners operate under the open world
assumption. This means that the conclusion that a temporal proposition is false
can only be reached for those propositions that can be definitely proved not to
be members of IsT rue. On the contrary, if a temporal proposition is not deduced
to be IsT rue by RuleTp1, even if its deadline has been reached it will not be
deduced to be IsFalse.

To solve this problem we first assume that our ABox contains complete in-
formation on the actions performed before the current time of the system. This
allows us to adopt a closed-world perspective as far as the performance of ac-
tions is concerned. More specifically, we assume that the program specified in
Section 3 will always update the ABox when an event has happened (i.e. the
program can only inset in the ABox the information that an event has happened
at current time t); we then want to deduce that all temporal propositions, that
cannot any longer become true because their deadline has elapsed, are false.

To get this result we need to perform some form of closed world reasoning
on class IsT rue. As stated in [17] “the DL ALCK [7] adds a non-monotonic
K operator (which is a kind of necessity operator) to the DL ALC to provide
the ability to “turn on” the Closed World Assumption (CWA) when needed.
The reasoning support for ALCK language has been implemented in Pellet to
answer CWA queries that use the K operator”. However, our ontology uses a
more expressive DL than ALC; moreover, the use of the K operator in SWRL
rules is not supported.

We therefore take a different approach, based on an explicit closure of class
IsT rue. More precisely, we introduce a new class, KIsTrue, which is meant to
contain all temporal propositions that, at a given time, are known to be true.
Class KIsTrue therefore represents, at any given instant, the explicit closure of
class IsT rue. Given its intended meaning, class KIsTrue has to be a subclass
of IsT rue (and, as a consequence, of TemporalProp):

KIsTrue � IsT rue

To maintain class KIsTrue as the closure of class IsT rue, we define it periodi-
cally as equivalent to the enumeration of all individuals that can be proved to be
members of IsT rue. This can be done by the Java program used to update the
ABox to keep track of the elapsing of time (described in Section 3) by executing
the operations described in the following pseudo-code:

assert KIsTrue ≡ {tp1, ...tpn} with {tp1, ...tpn} = retrieve(IsTrue)

We now introduce a new class, NotKIsT rue, which is intended to contain all
temporal propositions whose deadline is elapsed, and that are not members
of KIsTrue. Such a class is defined as the difference between the set of all
individuals that belong to TemporalProp, and the set of all those individuals
that are members of KIsTrue:

NotKIsT rue ≡ TemporalProp � ¬KIsTrue

We are now ready to write a rule to deduce that the truth value of a positive
temporal proposition is false if the deadline of the temporal proposition has
elapsed, and it is not known that the associated action has been performed:

Ontology and Time Evolution of Obligations and Prohibitions 109

RuleTPPos2
happensAt(elapse,?te) ∧ hasEnd(?tp,?te) ∧ TPPos(?tp) ∧ NotKIsT rue(?tp)
→ IsFalse(?tp)

We now turn to negative temporal propositions, that is, temporal propositions
that are members of the class TPNeg and are used to represent the prohibition
to do something in a given interval of time. Such propositions belong to class
IsFalse when the associated action is performed in the interval between tstart

(inclusive) and tend (exclusive). This can be deduced by the following rule:

RuleTPNeg1
happensAt(elapse,?t) ∧ happensAt(?a,?t) ∧ TPNeg(?tp) ∧ hasAction(?tp,?a) ∧
hasStart(?tp,?ts) ∧ hasEnd(?tp,?te) ∧ swrlb:lessThanOrEqual(?ts,?t) ∧
swrlb:lessThan(?t,?te) → IsFalse(?tp)

Similarly to what we did for RuleTPPos2, we now use the closure of class
IsFalse, that we call KIsFalse, to deduce that a negative temporal propo-
sition IsT rue when its tend has been reached and it has not yet been deduced
that the proposition IsFalse:

KIsFalse � IsFalse
NotKIsFalse ≡ TemporalProp � ¬KIsFalse

RuleTPNeg2
happensAt(elapse, ?te) ∧ hasEnd(?tp,?te) ∧ TPNeg(?tp) ∧ NotKIsFalse(?tp)
→ IsTrue(?tp)

4.2 Commitment

In the OCeAN meta-model of artificial institutions, commitments are used to
model a social relation between a debtor a creditor, about a certain content and
under a condition. Our idea is that by means of the performance of communica-
tive acts, or due to the activation of norms, certain agents become committed
with respect to another agent to perform a certain action within a given dead-
line (an obligation), or not to perform a given action during a given interval of
time (a prohibition). Such commitments can be conditional on the truth of some
proposition. In our model we assume that if an action is neither obligatory nor
prohibited, then it is permitted.

In order to detect and react to commitment violation and fulfilment we need
to deduce a commitments state (in our previous works [10] we also introduced
precommitments to define the semantics of requests, but this is not relevant in
the current work). We introduce in the ontology the class Commitment, disjoint
from Event, Agent and TemporalProp.

Commitment � Agent � ⊥; Commitment � Event � ⊥;
Commitment � TemporalProp � ⊥;

110 N. Fornara and M. Colombetti

The Commitment class is the domain of the following object properties:
hasDebtor : Commitment →O Agent;
hasCreditor : Commitment →O Agent;
hasContent : Commitment →O TemporalProp;
hasCondition : Commitment →O TemporalProp;
hasSource : Commitment →O Norm;
Commitment � ∃hasDebtor � ∃hasCreditor� =1hasContent�

=1hasCondition;
The hasSource property is used to keep track of the norm that generated a
commitment, as explained in Section 4.3. Obviously the debtor of a commitment
has to be the actor of the action to which it is committed, as expressed by the
following axiom:

hasContent ◦ hasAction ◦ hasActor � hasDebtor

In some situations it is necessary to create unconditional commitments. To avoid
writing different rules for conditional and for unconditional commitments, we in-
troduce a temporal proposition individual, tpT rue, whose truth value is initially
true; that is, we assert: IsT rue(tpT rue). An unconditional commitment is then
defined as a conditional commitment whose condition is tpT rue.

Our next problem is deducing whether a given commitment is:

– pending, when its condition is satisfied but its content is not known to be
IsT rue or to be IsFalse;

– fulfilled, when is content is known to be IsT rue;
– violated, when its content is known to be IsFalse and its condition is known

to be IsT rue.

Knowing the state of a commitment may be important for the interacting agents
to plan their actions on the basis of the advantages of fulfilling certain commit-
ments. We therefore introduce classes IsPending, IsFulfilled, and IsV iolated,
defined by the following axioms:

IsFulfilled� IsV iolated � ⊥;
IsPending � Commitment; IsFulfilled � Commitment;
IsV iolated � Commitment;
We define the following axiom to deduce that a commitment is member of the

class IsPending:

Axiom1
IsPending ≡ (∃ hasContent.NotKIsT rue) � (∃ hasContent.NotKIsFalse)�
(∃ hasCondition.IsT rue))

Note that as classes NotKIsT rue and NotKIsFalse are updated after run-
ning the reasoner, as soon as the content of a commitment becomes true the
commitment is member of both class IsPending and class IsFulfilled.

Lists of fulfilled and of violated commitments can be obtained by retrieving
the individuals that are respectively members of class IsFulfilled or IsV iolated,
defined by the following axioms:

Ontology and Time Evolution of Obligations and Prohibitions 111

Axiom2
IsFulfilled ≡ ∃ hasContent.IsT rue

Axiom3
IsV iolated ≡ (∃ hasContent.IsFalse) � (∃ hasCondition.IsT rue)

4.3 Norms and Roles

In OCeAN, norms are introduced to model obligations and prohibitions that,
contrary to those created at run time by the performance of communicative
acts, are implied by an institutional setting and can be specified at design time.
For example, norms can be used to state the rules of an interaction protocol,
like the protocol of a specific type of auction, or the rules of a seller-buyer
interaction. Given that norms are usually specified at design time, when it is
impossible to know which agents will actually interact in the system, one of their
distinctive features is that they have to be expressed in term of the roles played
by the agents. Therefore at run-time, when a norm becomes active (i.e., when
its activating event happens), the actual debtor and creditor of the obligation
or prohibition generated by the norm have to be computed on the basis of the
roles played by the agents in the system at that moment.

Another important aspect of norms is that to enforce their fulfillment in an
open system, it must be possible to specify sanctions or rewards. In [9] we sug-
gested that a satisfactory model of sanctions has to distinguish between two
different type of actions: the action that the violator of a norm has to perform
to extinguish its violation (which we call active sanction), and the action that the
agent in charge of norm enforcement may perform to deter agents from violating
the norm (which we call passive sanction). Active sanctions can be represented
in our model through a temporal proposition, whereas passive sanctions can be
represented as new specific powers that the agent entitled to enforce the norm
acquires when a norm is violated. As far as passive sanctions are concerned,
another norm (that in [16]) is called enforcement norm) may oblige the enforcer
to punish the violation. Due to space limitations, in this paper we do not model
the notion of power ; thus passive sanctions are not treated in this paper. An
obligation or prohibition generated by a norm can in turn violated; it will there-
fore be necessary to monitor the fulfillment or violation of such obligations or
prohibition t punish the violation.

Role

Typically, artificial institutions provide for different roles. In a run of an auc-
tion, for example, we may have the roles of auctioneer and of participant; in a
company, like an auction house, we may have the roles of boss or employee; and
so on. More generally, also the debtor and the creditor of a commitment may be
regarded as roles. Coherently with these examples, a role is identified by a label
(like auctioneer, participant, etc.) and by the institutional entity that provides
for the role. Such an institutional entity may be an organization (like an auction
house), an institutional activity (like a run of an auction), or an institutional

112 N. Fornara and M. Colombetti

relationship (like a commitment). For example an agent may be the auctioneer
of run 01 of a given auction, or an employee of IBM, or the creditor of a specific
commitment.

We introduce class Role to represent the set of possible labels that representing
roles and class InstEntity to represent the institutional entity within which a
given role is played. Elements of class AgentInRole are used to reify the fact
that an agent plays a given role in a given institutional entity. Those classes are
related by the following object properties:

isP layedBy : AgentInRole →O Agent;
hasRole : AgentInRole →O Role;
isIn : AgentInRole →O InstEntity;

Norm

Summarizing, a norm has: a content and a condition, modelled using temporal
propositions; a debtor and a creditor, expressed in term of roles; an activating
event ; and a collection of active and passive sanctions. Norms are represented
in our ontology using class Norm and the following object properties:

hasRoleDebtor : Norm →O Role; hasRoleCreditor : Norm →O Role;
hasNContent : Norm →O TemporalProp;
hasNCondition : Norm →O TemporalProp;
hasActivation : Norm →O Event;
hasASanction : Norm →O TemporalProp;
hasPSanction : Norm →O Power;

When a norm is activated it is necessary to create as many commitments as
there are agents playing the role associated to the debtor property of the norm.
For example, the activation of a norm that applies to all the agents playing
the role of participant of an auction, creates a commitment for each participant
currently taking part to the auction. The creditors of these commitments are the
agents that play the role reported in the creditor property of the norm. All these
commitments have to be related by the hasSource object property (defined in
Section 4.2) to the norm that generated them; this is important to know which
norm generated a commitment and what sanctions apply for the violation of
such commitment.

As every commitment is an individual of the ontology, the activation of a
norm involves the generation of new individuals. However, the creation of new
individuals in an ABox cannot be performed using OWL or SWRL. There are at
least two possible solutions to this problem, which we plan to investigate in our
future work. The first consists in defining a set of axioms in the ontology that
allows the reasoner to deduce the existence of those commitments as anonymous
objects with certain properties. With this solution, an agent that needs to know
its pending commitments instead of simply retrieving the corresponding individ-
uals will have to retrieve their contents, conditions and debtors. Another possible
solution consists in defining a new built-in that makes it possible for SWRL rules
to create new individuals as members of certain classes and with given properties.
A similar problem will have to be solved to manage the creation of a sanctioning

Ontology and Time Evolution of Obligations and Prohibitions 113

Commitment

TemporalProp

Event
Agent

Action

IsFulfilled

IsPending IsViolated

subclass

hasContent

hasDebtor

subclass

IsTrue IsFalse

Integer

hasAction

happensAt

TPPos TPNeg

KIsFalseKIsTrue

NotKIsTrue NotKIsFalse

subclass

subclass subclass

Role

Norm

AgentInRoleInstEntity
hasRoleisIn

isPlayedBy hasRoleDebtor
hasRoleCreditor

hasActivation

Power

hasPSanction

hasASanction

hasNContent

hasNCondition

Fig. 1. Graphical representation of the ontology

commitment generated by the violation of a commitment related to a norm,
which has as content the temporal proposition associated to the active sanction
of the norm.

In Figure 1 classes, subclasses, and properties (dotted lines) of the ontology
described in this section are graphically represented.

5 Example

In this section we show how it is possible to specify the state of an interac-
tion system and to simulate or monitor its evolution in time. To do so it is
necessary to integrate the ontology defined in the previous sections with an
application-dependent ontology, and to insert a set of individuals for represent-
ing commitments and temporal propositions in the ABox. In a real application
these commitments and their temporal propositions will be created by the per-
formance of communicative acts (defined in the OCeAN agent communication
library [10]) or by the activation of norms. If the system is used for monitoring
purposes, we assume that there is a way of mapping the actions that are actually
executed onto their counterparts in the ontology.

Here we describe an example of interaction where a buyer agent, Ann, promises
to pay a certain amount of money for a product (a book) to a seller agent, Bob, on
condition that the seller agent delivers the product to Ann. We also represent the

114 N. Fornara and M. Colombetti

prohibition for the seller to deliver a different product (a CD). Different possible
evolution of the state of the interaction are possible on the basis of the agents’
actions.

The ontology described in the previous sections has to be integrated with the
action for paying an amount of money and for delivering a product. In a realistic
application they would be described in a detailed domain-dependent ontology
introducing the class Pay and the class Delivery as subclass of the class Action
described in our application independent ontology. Both of those type of action
have a receiver and an object, the pay action type also has an amount of money.
For simplicity in this example we represent the action of payment of the book
and its delivery with individuals inserted in the ABox.

The agents are represented with the following assertions:
Agent(ann); Agent(bob); �= (ann, bob);

The actions that we are interested to model in the ontology are represented by
the following assertions:

Action(payBook1); Action(deliverBook1); Action(deliverCD1);
hasActor(payBook1, ann); hasActor(deliverBook1, bob);
hasActor(deliverCD1, bob);
�= (payBook1, deliverBook1, deliverCD1, elapse);

Temporal propositions are represented by the following assertions:
TPPos(tpPayBook1); TPPos(tpDeliverBook1); TPNeg(tpNotDeliverCD1);
hasAction(tpPayBook1, payBook1); hasStart(tpPayBook1, 1);
hasEnd(tpPayBook1, 3);
hasAction(tpDeliverBook1, deliverBook1); hasStart(tpDeliverBook1, 1);
hasEnd(tpDeliverBook1, 2);
hasAction(tpNotDeliverCD1, deliverCD1); hasStart(tpNotDeliverCD1, 0);
hasEnd(tpNotDeliverCD1, 3);
�= (tpPayBook1, tpDeliverBook1, tpT rue); �= (tpNotDeliverCD1, tpT rue);

Commitments are represented by the following assertions:
Commitment(c1); Commitment(c2); Commitment(c3);
hasDebtor(c1, ann); hasCreditor(c1, bob);
hasContent(c1, tpPayBook1); hasCondition(c1, tpDeliverBook1);
hasDebtor(c2, bob); hasCreditor(c2, ann);
hasContent(c2, tpDeliverBook1); hasCondition(c2, tpT rue);
hasDebtor(c3, bob); hasCreditor(c3, ann);
hasContent(c3, tpNotDeliverCD1); hasCondition(c3, tpT rue);
�= (c1, c2, c3);

The history of the system is represented by the following assertions (the action
happens at time 1):

happensAt(deliverBook1, 1)
We created the ontology of the interaction system with the free, open source on-
tology editor Protege 4.0 beta10. As this version of Protege does not support the
10 http://protege.stanford.edu/

Ontology and Time Evolution of Obligations and Prohibitions 115

editing of SWRL rules, we created them with Protege 3.4 and inserted their
RDF/XML code in the ontology file. We implemented the Java program described
in Section 3 using OWL-API library to operate on the ontologyand the source code
of Pellet 2.0 to reason and query it11.

In Table 1 we report the evolution of the ontology ABox in time, with par-
ticular regard to the truth value of the temporal propositions and the state of
commitments. As the extension of classes KIsTrue and KIsFalse are computed
by an external program, when the reasoner runs their extensions are specified in
the axiom relative to the previous state. In the table we abbreviate the assertion
happensAt(elapse, n) with the expression t = n.

Table 1. Dynamic evolution of the state of the system

time t = 0 t = 1 t = 2 t = 3

tpPayBook1[1, 3] IsFalse

tpDeliverBook1[1, 2] IsT rue IsTrue IsTrue

tpNotDeliverCD1[0, 3] IsT rue

c1(ann, bob,
tpPayBook1, IsPending IsPending IsV iolated

tpDeliverBook1)

c2(bob, ann,
tpDeliverBook1, IsPending IsFulfilled IsFulfilled IsFulfilled

tpT rue)

c3(bob, ann,
tpNotDeliverCD1, IsPending IsPending IsPending IsFulfilled

tpT rue),

Classes updated by the external program

KIsTrue {tpT rue} {tpT rue, {tpT rue, {tpT rue,
tpDeliverBook1} tpDeliverBook1} tpDeliverBook1,

tpNotDeliverCD1}
KIsFalse nothing nothing nothing {tpPayBook1}

6 Conclusions and Related Works

The main contributions of this paper, with respect to our previous works and
with respect to other approaches, are as follows. We show how conditional obli-
gations and prohibitions with stating points and deadlines may be specified and
monitored using OWL and SWRL with significant advantages with respect to
other approach that use other formal languages. Moreover we propose a hybrid
solution, based on an OWL ontology, SWRL rules, and a Java program, to the
problem of monitoring the time evolution of obligations and prohibitions.

In particular if we compare this specification with another one that we pre-
sented elsewhere based on Event Calculus [10] we observe significant

11 The ontology file, its representation in DL, the Java program and its output that rep-
resent the time evolution of the state of the system as depicted in Table 1 can be found
at http://www.people.lu.unisi.ch/fornaran/ontology/DALT09Ontology.html

116 N. Fornara and M. Colombetti

improvement in performance (even if a complete comparison will be possible only
when the complete OCeAN meta-model will be formalized with Semantic Web
Technology). Moreover semantic web technologies are becoming an international
standard for web applications and numerous tools, reasoners, and libraries are
available to support the development and usage of ontologies. This, in spite of the
drawbacks on time reasoning and due to the limits of OWL language expressivity,
is a crucial advantage with respect to other languages used in the multiagent
community for the specification of norms and organizations, like as we already
mentioned the Event Calculus [19,1], or other specific formal languages like the
one required by the rule engine Jess [13,5], or a variant of Propositional Dynamic
Logic (PDL) used to specify and verify liveness and safety properties of multi-
agent system programs with norms [6], or Process Compliance Language (PCL)
[14].

In literature there are few approaches that use semantic web languages for the
specification of multiagent systems and in particular of obligations and prohi-
bitions. One of the most interesting one is the approach for policy specification
and management presented in the KAoS framework [18]. Even if in English the
word norm and policy have different meaning and also in informatics literature
they could be referred to two different concepts [3], in the MAS community they
may have very close meanings. In KAoS a policy could be a positive or negative
authorization to perform an action (that is a permission or a prohibition) or it
can be an obligation. Like in our approach in KAoS policies are specified using
a set of concepts defined in an OWL core ontology that could be extended with
application dependent ontologies. A crucial difference between KAoS approach
and the approach presented in this paper is in the methods used for monitoring
and enforcement of policies or norms. In KAoS policies are usually regimented
(as far as is possible given that it is almost impossible to regiment obligations
[9]) by means of ”guards“ and are monitored by means of platform specific mech-
anisms. Differently in our proposal norms are enforced by means of sanctions or
rewards and are monitored by deducing their fulfillment or violation with an
OWL reasoner (we use Pellet but other OWL 2 reasoners could be used) and an
external Java program.

Another example is the one presented in [15] where prohibited, obliged and
permitted actions are represented as object properties from agents to actions.
But without the reification of the notion of obligation and prohibition that we
propose here, it is very difficult to find a feasible solution to express conditional
commitments with deadlines and it is impossible to detect what norms and
how many time were fulfilled or violated. Moreover the approach proposed for
detecting violations is based on the external performance of SPARQL queries
and on the update of the ABox to register that an obligation/prohibition resulted
violated; however SPARQL queries do not exploit the semantics specified by the
ontology, moreover it is necessary to write different queries for every possible
different action that has to be monitored and for the execution of SPARQL
queries it is necessary to use a proper additional tool.

Ontology and Time Evolution of Obligations and Prohibitions 117

In [2] a hybrid approach is presented: they define a communication acts
ontology using OWL and express the semantics of those acts through social
commitments that are formalized in the Event Calculus. This work is comple-
mentary with respect to our approach, in fact we specify also the semantics of
social commitments using semantic web technologies. Semantic web technologies
in multiagent systems can be used also to specify domain specific ontologies used
in the content of norms like in [8].

Another interesting contribution of this work is due also to the exemplification
of a solution to the problem to performing closed world reasoning on certain
classes in OWL. Another work that tackles a similar problem in a different
domain, the ontology of software models, is [4].

Indeed this model is still incomplete e we plan to investigate how it is possible
to manage the creation of commitments to model norm activations, and to model
active sanctions, moreover we plan to study how to formalize the notion of
power to express the semantics of declarative communicative acts and of passive
sanctions.

References

1. Artikis, A., Sergot, M., Pitt, J.: Animated Specifications of Computational Soci-
eties. In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings of the 1st Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2002), pp. 535–542. ACM Press, New York (2002)

2. Berges, I., Bermúdez, J., Goñi, A., Illarramendi, A.: Semantic web technology for
agent communication protocols. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 5–18. Springer, Heidelberg
(2008)

3. Bradshaw, J., Beautment, P., Breedy, M., Bunch, L., Drakunov, S., Feltovich, P.,
Hoffman, R., Jeffers, R., Johnson, M., Kulkarni, S., Lott, J., Raj, A., Suri, N.,
Uszok, A.: Making agents acceptable to people, pp. 355–400. Springer, Heidelberg
(2004)

4. Bräuer, M., Lochmann, H.: An ontology for software models and its practical im-
plications for semantic web reasoning. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 34–48. Springer, Hei-
delberg (2008)

5. da Silva1, V.T.: From the specification to the implementation of norms: an au-
tomatic approach to generate rules from norms to govern the behavior of agents.
Autonomous Agents and Multi-Agent Systems 17(1), 113–155 (2008)

6. Dastani, M., Grossi, D., Meyer, J.-J., Tinnemeier, N.: Normative multi-agent pro-
grams and their logics. In: Boella, G., Noriega, P., Pigozzi, G., Verhagen, H.
(eds.) Normative Multi-Agent Systems, Germany. Dagstuhl Seminar Proceedings,
vol. 09121. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl (2009)

7. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A., Nutt, W.: An epistemic oper-
ator for description logics. Artificial Intelligence 200(1-2), 225–274 (1998)

118 N. Fornara and M. Colombetti

8. Felicissimo, C., Briot, J.-P., Chopinaud, C., Lucena, C.: How to concretize norms
in NMAS? An operational normative approach presented with a case study from
the television domain. In: International Workshop on Coordination, Organization,
Institutions and Norms in Agent Systems (COIN@AAAI 2008), 23rd AAAI Con-
ference on Artificial Intelligence, Chicago, IL, Etats-Unis. AAAI Press, Menlo Park
(2008)

9. Fornara, N., Colombetti, M.: Specifying and enforcing norms in artificial institu-
tions. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT
2008. LNCS (LNAI), vol. 5397, pp. 1–17. Springer, Heidelberg (2009)

10. Fornara, N., Colombetti, M.: Specifying Artificial Institutions in the Event Calcu-
lus. In: Handbook of Research on Multi-Agent Systems: Semantics and Dynamics
of Organizational Models of Information science reference, ch. XIV, pp. 335–366.
IGI Global (2009)

11. Fornara, N., Viganò, F., Colombetti, M.: Agent communication and artificial in-
stitutions. Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

12. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: A
model of institutional reality for open multiagent systems. Artificial Intelligence
and Law 16(1), 89–105 (2008)

13. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Con-
straint rule-based programming of norms for electronic institutions. Autonomous
Agents and Multi-Agent Systems 18(1), 186–217 (2009)

14. Governatori, G., Rotolo, A.: How do agents comply with norms? In: Boella, G.,
Noriega, P., Pigozzi, G., Verhagen, H. (eds.) Normative Multi-Agent Systems,
Dagstuhl, Germany. Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, Germany (2009)

15. Lam, J.S.-C., Guerin, F., Vasconcelos, W., Norman, T.J.: Representing and rea-
soning about norm-governed organisations with semantic web languages. In: Sixth
European Workshop on Multi-Agent Systems Bath, UK, December 18-19 (2008)

16. López, F., López, Luck, M., d’Inverno, M.: A Normative Framework for Agent-
Based Systems. In: Proceedings of the First International Symposium on Normative
Multi-Agent Systems, Hatfield (2005)

17. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web 5(2), 51–53 (2007)

18. Uszok, A., Bradshaw, J.M., Lott, J., Breedy, M., Bunch, L., Feltovich, P., Johnson,
M., Jung, H.: New developments in ontology-based policy management: Increasing
the practicality and comprehensiveness of kaos. In: IEEE International Workshop
on Policies for Distributed Systems and Networks, pp. 145–152 (2008)

19. Yolum, P., Singh, M.: Reasoning about commitment in the event calculus: An ap-
proach for specifying and executing protocols. Annals of Mathematics and Artificial
Intelligence 42, 227–253 (2004)

	Ontology and Time Evolution of Obligations and Prohibitions Using Semantic Web Technology
	Introduction
	OWL and SWRL
	Specification and Simulation or Monitoring of an Open Interaction System
	The Ontology of Obligations and Prohibitions
	Temporal Propositions
	Commitment
	Norms and Roles

	Example
	Conclusions and Related Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

