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Preface

In the multi-agent systems area, linking theory to practical applications is still a
fertile research topic. The aim of the workshop on Declarative Agent Languages
and Technologies (DALT 2009), in its seventh edition this year, is to achieve
this goal, which needs developing and using advanced declarative technologies
and languages, particularly agent programming, communication languages, and
reasoning and decision-making mechanisms. Developing these technologies is a
particularly challenging issue from many perspectives: formal foundations, prac-
tical feasibility, degree of flexibility, etc. In this context, the declarative paradigm
is arguably the most appropriate as unlike imperative approaches, the focus is
on what the solution should accomplish rather than on describing how to accom-
plish it. This is because agent computing, as a paradigm, is about describing the
logic of computation instead of describing how to accomplish it. DALT is about
investigating, studying, and using the declarative paradigm as well as combining
declarative and formal approaches with engineering and technology aspects of
agents and multi-agent systems.

This volume presents the latest developments in the area of declarative lan-
guages and technologies, which aim to provide rigorous frameworks for designing,
specifying, implementing and verifying autonomous interacting agents. These
frameworks are based on computational logics and other formal methods such as
mathematical models and game theoretical approaches. Using such models and
approaches facilitates the development of agents that reason and act rationally
while at the same time being able to verify the behavior of these agents against
their specification. The main theme of DALT 2009 was the further advance-
ment of relevant specification and verification techniques, such as, for instance,
modal and epistemic logics, model checking, constraint logic programming, and
distributed constraint satisfaction.

As one of the well-established workshops in the multi-agent systems area,
DALT 2009 was held as a satellite workshop of the 8th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), in
Budapest, Hungary. Following the success of DALT 2003 in Melbourne (LNAI
2990), DALT 2004 in New York (LNAI 3476), DALT 2005 in Utrecht (LNAI
3904), DALT 2006 in Hakodate (LNAI 4327), DALT 2007 in Honolulu (LNAI
4897), and DALT 2008 in Estoril (LNAI 5397), DALT 2009 aimed at provid-
ing a discussion forum to both (a) support the transfer of declarative paradigms
and techniques to the broader community of agent researchers and practitioners;
and (b) bring the issue of designing complex agent systems to the attention of
researchers working on declarative languages and technologies. DALT has tradi-
tionally fostered the development of declarative approaches to engineering agent-
based systems and applications in different areas such as the Semantic Web,
service-oriented computing, Web services, security, and electronic contracting.
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The book includes 15 chapters: one by the invited speaker; 3 from AAMAS
2009 short papers (revised and augmented versions); and 11 from DALT 2009.
All the papers were carefully reviewed to check the originality, quality, and tech-
nical soundness. The DALT 2009 workshop received 17 papers. After a rigor-
ous reviewing process by at least 3 reviewers, 11 papers were selected by the
Program Committee to be published in this volume. Chapter 1: “Playing with
Rules” by João Leite is about discussing agent-oriented programming languages
by focussing on two languages that use logic rules and rule updates, namely,
answer-set programming and evolving logic programming. Chapter 2: “The Re-
finement of Choreographed Multi-Agent Systems” by Lǎcrǎmioara Aştefǎnoaei,
Mehdi Dastani and Frank S. de Boer is about generalizing a theory of agent re-
finement to multi-agent systems, where coordination mechanisms and real time
are key issues. The proposed refinement is compositional, which reduces the veri-
fication process. Chapter 3: “Goal Generation from Possibilistic Beliefs Based on
Trust and Distrust” by Célia da Costa Pereira and Andrea Tettamanzi discusses
some agents belief behaviors used in a goal generation and adoption framework
by focussing on the trustworthiness of the source of information that depends
not only on the degree of trust but also on an independent degree of distrust.
Chapter 4: “Monitoring Directed Obligations with Flexible Deadlines: a Rule-
Based Approach” by Henrique Lopes Cardoso and Eugénio Oliveira introduces,
in a B2B cooperation setting, an approach to model contractual commitments
through directed obligations with time windows, where authorizations granted
at specific states of an obligation life cycle model are considered.

Chapter 5: “Unifying the Intentional and Institutional Semantics of Speech
Acts” by Carole Adam, Andreas Herzig, Dominique Longin and Vincent Louis
addresses the semantic issue of agent communication languages mixing the men-
talist and social approaches. This semantics extends FIPA-ACL with new speech
acts along with new institutional features. Chapter 6: “Tableaux for Acceptance
Logic” by Mathijs de Boer, Andreas Herzig, Tiago de Lima and Emiliano Lorini
presents a modal logic for modeling individual and collective acceptances called
acceptance logic and a sound and complete tableau method that automatically
decides whether a formula of the logic is satisfiable. Chapter 7: “Ontology and
Time Evolution of Obligations and Prohibitions Using Semantic Web Technol-
ogy” by Nicoletta Fornara and Marco Colombetti formalizes conditional obliga-
tions and prohibitions with starting times and deadlines using social commit-
ments and models them in OWL, the logical language used to specify semantic
web applications. Chapter 8: “Prioritized Goals and Subgoals in a Logical Ac-
count of Goal Change – A Preliminary Report” by Shakil Khan and Yves Les-
perance develops a logical framework for goal change considering the dynamics
of prioritized goals and subgoals. Lower priority goals are not drop permanently,
but they are considered inactive and can become active in the future.

Chapter 9: “Declarative and Numerical Analysis of Edge Creation Process
in Trust-Based Social Networks” by Babak Khosravifar, Jamal Bentahar and
Maziar Gomrokchi addresses the efficiency issue of the interactions among agents
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in a social network by focussing on some trust-based factors. It presents declar-
ative and numerical analysis of the proposed model and its assessment along
with empirical evaluation. Chapter 10: “Computing Utility from Weighted De-
scription Logic Preference Formulas” by Azzurra Ragone, Tommaso Di Noia,
Francesco M. Donini, Eugenio Di Sciascio and Michael Wellman proposes
a framework to compute the utility of a proposal considering a preference set in
a negotiation process, where preferences are dealt with as weighted formulas in a
decidable fragment of first order logic. Chapter 11: “Explaining and Predicting
the Behavior of BDI-Based Agents in Role-Playing Games” by Michal Sindlar,
Mehdi Dastani, Frank Dignum and John-Jules Meyer discusses the use of BDI
agents to model virtual characters in games. It illustrates how these agents can
infer the mental state of other virtual characters by observing others’ actions in a
role-playing game. Chapter 12: “Correctness Properties for Multiagent Systems”
by Munindar Singh and Amit Chopra discusses the characteristics of some cor-
rectness properties for interacting agent-based systems, which are commitment-
centered. Examples of these properties are interoperability, which is mapped to
commitment alignment and compliance expressed as commitment discharge.

Chapter 13: “Reasoning and Planning with Cooperative Actions for Multi-
agents Using Answer Set Programming” by Tran Cao Son and Chiaki Sakama
introduces a framework to represent and reason about plans with cooperative
actions of an agent operating in a multi-agent system. An extended action lan-
guage (the action language A) has been used to formalize the multi-agent plan-
ning problem and the notion of joint plans that are computed using answer set
programming. Chapter 14: “Social Commitments in Time: Satisfied or Com-
pensated” by Paolo Torroni, Federico Chesani, Paola Mello and Marco Mon-
tali formalizes the time evolution of commitments within a framework based
on computational logic and on a reactive axiomatization of the event calcu-
lus. The framework proposes a new characterization of commitments with time
that enables run-time and static verification. Chapter 15: “Verifying Dribble
Agents” by Doan Thu Trang, Brian Logan and Natasha Alechina addresses the
model-checking problem of programs written in the agent programming language
Dribble. An extension of the computation tree logic CTL, which describes tran-
sition systems corresponding to a Dribble program, has been proposed and the
MOCHA model checker has been used for simulation.

We would like to thank all the authors for their enthusiasm to submit papers
to the workshop and revise them for inclusion in this book, the members of the
Steering Committee for their valuable suggestions and support, and the members
of the Program Committee for their excellent work during the reviewing phase.

November 2009 Matteo Baldoni
Jamal Bentahar

John Lloyd
M. Birna van Riemsdijk
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Playing with Rules

João Leite

CENTRIA, Universidade Nova de Lisboa, Portugal
jleite@di.fct.unl.pt

Abstract. In this paper we revisit Logic Programming under the answer-set se-
mantics - or Answer-Set Programming - and its extension Evolving Logic
Programming, two languages that use logic rules and rule updates and exhibit
characteristics that make them suitable to be used for knowledge representation
and reasoning within Agent Oriented Programming Languages. We illustrate the
power of these rule based languages by means of examples showing how several
of its features can be used to model situations faced by Agents.

1 Introduction

Recently, there has been considerable amount of research in designing Agent Oriented
Programming Languages (AOPL). From the definition of the syntax and semantics to
the development of the necessary tools and infrastructure (editors, debuggers, environ-
ments, etc.), the results of such efforts are key in turning these AOPLs into practical
tools which exhibit the necessary level of maturity to make them compete with more es-
tablished languages, and help widespread the Agent Oriented Programming paradigm.
The collections of papers [8,9] reflect the state of the art on this subject.

In most cases, the designers of Agent Oriented Programming Languages have fo-
cused on developing an appropriate syntax which promotes to first class citizens notions
such as beliefs, goals, intentions, plans, events, messages, etc., and defining a semantics
which, for most cases, concentrates on the interaction between these notions and the
definition of more or less complex transition rules which define the behaviour of the
agent. These two tasks are not trivial ones. On the one hand, defining and fixing a par-
ticular syntax faces the big tension between flexibility and ease of use: fewer prescribed
syntactical constructs, as often seen in declarative languages, usually provide greater
flexibility but are harder to use, while more prescribed syntactical constructs are usu-
ally easier to use, at the cost of flexibility. On the other hand, defining a semantics that
properly deals with these high level notions (beliefs, intentions, plans, goals, etc...), is
efficient, to some extent declarative, and keeps some desirable (theoretical) principles
is a very hard task.

When looking at existing AOPLs, one often sees that in order to achieve accept-
able results in what concerns the appropriate balance between the definition of a syntax
with high level agent oriented notions and an appropriate semantics, their developers
need to make some compromises, often in the form of simplifications in the expres-
siveness of the languages used for specifying the underlying high level notions, with
consequences in what can be expressed and how the agent can behave. For example, if

M. Baldoni et al. (Eds.): DALT 2009, LNAI 5948, pp. 1–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 J. Leite

we consider the representation of beliefs, it is often the case that the knowledge repre-
sentation languages used are not more expressive than a set of horn clauses, and belief
revision/update mechanisms amount to the simple addition/retraction of facts. In prac-
tice, it is often the case that PROLOG is used to represent and reason about knowledge,
and implementations diverge from the theoretical definitions, often with unforeseen,
unintended and unintuitive results.

There is substantial literature illustrating the need for knowledge representation lan-
guages that are richer than those limited to horn clauses, e.g. exhibiting non-monotonicity
[10,23], and richer belief change operators that permit not only the update of the ex-
tensional part of existing knowledge (the facts), but also the intensional part (the rules)
[19,5]. And these should be accompanied by implementations that accurately implement
the theory, which should preferably be (at least) decidable. The incorporation of richer
forms of knowledge representation in current AOPLs should be investigated, not only
to allow agent’s beliefs to be more expressive, but also to specify other agent high level
notions such as their goals (e.g. to represent conditional goals and their updates), richer
forms of intentions, etc.

In this paper we revisit Logic Programming under the answer-set semantics [15]
- or Answer-Set Programming - and its extension Evolving Logic Programming, [3],
two languages with characteristics that make them suitable to be used for knowledge
representation and reasoning within AOPLs, and illustrate some of their characteristics
by means of examples.

Answer-Set Programming (ASP) is a form of declarative programming that is simi-
lar in syntax to traditional logic programming and close in semantics to non-monotonic
logic, that is particularly suited for knowledge representation. Some of the most impor-
tant characteristics of ASP include: the use of default negation to allow for reasoning
about incomplete knowledge; a very intuitive semantics based on multiple answer-sets
for reasoning about several possible consistent worlds; possibility to compactly rep-
resent all NP and coNP problems if non-disjunctive logic programs are used, while
disjunctive logic programs under answer sets semantics capture the complexity class
ΣP

2 [14]; fully declarative character in the sense that the program specification resem-
bles the problem specification; the existence of a number of well studied extensions
such as preferences, revision, abduction, etc. Enormous progress concerning the theo-
retical foundations of ASP (c.f. [7] for more) have been made in recent years, and the
existence of very efficient ASP solvers (e.g. DLV and SMODELS) has made it possi-
ble to use it in real applications such as Decision Support for the Space Shuttle [24],
Automated Product Configuration [26], Heterogeneous Data Integration [20], Inferring
Phylogenetic Trees [11], Resource Allocation [17], as well as Reasoning about actions,
Legal Reasoning, Games, Planning, Scheduling, Diagnosis, etc.

While ASP can be seen as a good representation language for static knowledge,
if we are to move to a more open and dynamic environment, typical of the agency
paradigm, we must consider ways and means of representing and integrating knowl-
edge updates from external as well as internal sources. In fact, an agent should not
only comprise knowledge about each state, but also knowledge about the transitions be-
tween states. The latter may represent the agent’s knowledge about the environment’s
evolution, coupled to its own behaviour and evolution. The lack of rich mechanisms to
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represent and reason about dynamic knowledge and agents i.e. represent and reason
about environments where not only some facts about it change, but also the rules that
govern it, and where the behaviours of agents also change, is common to most existing
AOPLs.

To address this issue the paradigm of Evolving Logic Programming (EVOLP) was
introduced in [3]1. In a nutshell, EVOLP is a simple though quite powerful extension
of ASP [15] that allows for the specification of a program’s evolution, in a single uni-
fied way, by permitting rules to indicate assertive conclusions in the form of program
rules. Syntactically, evolving logic programs are just generalized logic programs2. But
semantically, they permit to reason about updates of the program itself. The language of
EVOLP contains a special predicate assert/1 whose sole argument is a full-blown rule.
Whenever an assertion assert (r) is true in a model, the program is updated with rule
r. The process is then further iterated with the new program. These assertions arise both
from self (i.e. internal to the program) updating, and from external updating originating
in the environment. EVOLP can adequately express the semantics resulting from suc-
cessive updates to logic programs, considered as incremental specifications of agents,
and whose effect can be contextual. Whenever the program semantics allows for several
possible program models, evolution branching occurs, and several evolution sequences
are made possible. This branching can be used to specify the evolution of a situation
in the presence of incomplete information. Moreover, the ability of EVOLP to nest rule
assertions within assertions allows rule updates to be themselves updated down the line.
Furthermore, the EVOLP language can express self-modifications triggered by the evo-
lution context itself, present or future – assert literals included in rule bodies allow
for looking ahead on some program changes and acting on that knowledge before the
changes occur. In contradistinction to other approaches, EVOLP also automatically and
appropriately deals with the possible contradictions arising from successive specifica-
tion changes and refinements (via Dynamic Logic Programming3 [19,5,2]).

In this paper we start by revisiting EVOLP and illustrate how its features, many
of which inherited from ASP, seem appropriate to represent and reason about several
aspects related to Agents and Agent Oriented Programming.

The remainder of the paper is structured as follows: In Sect. 2 we present a very
simple agent architecture that will be used in the remainder of the paper. In Sect. 3
we illustrate many features of EVOLP and ASP in this context, and we draw some
conclusions and pointers to future work in Sect. 4. In Appendix A we recap the syntax
and semantics of EVOLP.

1 There are implementations of EVOLP [25] available at http://centria.di.fct.unl.pt/˜jja/updates.
2 Logic programs that allow for rules with default negated literals in their heads.
3 Dynamic Logic Programming determines the semantics of sequences of generalized logic pro-

grams representing states of the world at different time periods, i.e. knowledge undergoing
successive updates. As individual theories may comprise mutually contradictory as well as
overlapping information, the role of DLP is to employ the mutual relationships among dif-
ferent states to determine the declarative semantics, at each state, for the combined theory
comprised of all individual theories. Intuitively, one can add newer rules at the end of the se-
quence, leaving to DLP the task of ensuring that these rules are in force, and that previous ones
are valid (by inertia) only so far as possible, i.e. they are kept for as long as they are not in
conflict with newly added ones, these always prevailing.
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2 Simple Agent Architecture

In this Section we define a very simple agent architecture with the purpose of facilitating
the illustration of EVOLP as a language for knowledge representation and reasoning to
be used in the context of Agent Oriented Programming. Accordingly, we will only be
concerned with the mental part of the agent, namely the representation of beliefs, agent
behaviour and epistemic effects of actions.

To this purpose, we assume that an agent’s initial specification will be given by an
EVOLP program P over some language A, which will be used to concurrently rep-
resent the beliefs, behaviour and epistemic effects of actions. To simplify our presen-
tation, we assume the existence of a set AC ⊆ A of propositions, each representing
an action that the agent is capable of preforming, and a set Ado(C) ⊆ A such that
Ado(C) = {do (α) : α ∈ AC} and Ado(C) ∩ AC = ∅. Propositions of the form do (α)
will be used to indicate that some current belief state prescribes (or permits) the exe-
cution of action α, somehow encoding the agent’s behaviour. Propositions of the form
α ∈ AC will indicate the actual execution of action α, possibly causing some update
representing the epistemic effects of executing it. Furthermore we assume that at each
state the agent perceives a set of events which, besides any observations from the en-
vironment or incoming messages, will also include a sub-set of AC representing the
actions that were just performed, effectively allowing the agent to update its beliefs ac-
cordingly. Finally, we assume some selection function (Sel ()) that, given a set of stable
models (at some state), selects the set of actions to be executed4. Accordingly, at each
state, and agent mental state is characterised by its initial specification and the sequence
of events it has perceived so far.

Definition 1. An agent state is a pair 〈P, E〉 where P is an evolving logic program and
E an event sequence, both over language A.

An agent evolves into the next state as per the following observe-think-act cycle and
definition:

cycle (〈P, E〉)
observe (percieve E from inbox)
think (determine SM (〈P, (E , E)〉))
act (execute actions Sel (SM (〈P, (E , E)〉)))
cycle (〈P, (E , E)〉)

3 Playing with Rules

In this section we illustrate how some of the features of EVOLP, many of which in-
herited from ASP, can be used to represent and reason about several aspects related to

4 Throughout this paper, we assume that the selection function returns all actions belonging to
one of the stable models, non-deterministically chosen from the set of stable models provided
as its input. Other possible selection functions include returning the actions that belong to all
stable models, those that belong to at least one stable model, or some more complex selection
procedure e.g. based on priorities between actions/models.
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Agents and Agent Oriented Programming. This illustration will be done incrementally
through the elaboration of the specification of an agent whose purpose is to control the
access to a building of some company with several floors. Some basic facts about this
scenario include:

– the existence of 4 floors, numbered 0 through 3, represented by the following facts
in P :

floor (0) . floor (1) . floor (2) . floor (3) . (1)

– the existence of 4 people, named Birna, John, Jamal and Matteo, represented by the
following facts in P :

person (birna) . person (john) . person (jamal) . person (matteo) . (2)

– John, Jamal and Matteo are employees, represented by the following facts in P :

employee (john) . employee (jamal) . employee (matteo) . (3)

– John is the company’s director, represented by the following fact in P :

director (john) . (4)

Deductive Reasoning. Rules in ASP provide an easy way to represent deductive
knowledge. Suppose, for example, that according to the initial access policy of the
building, any person who is employed by the company has permission to access any
floor. This can be represented in ASP through the following deductive rule in P :

permit(P, F ) ← person(P ), f loor(F ), employee(P ). (5)

It is trivial to see that P has the following stable model (given an empty event se-
quence)5:

{f (0) , f (1) , f (2) , f (3) , p (birna) , p (john) , p (jamal) , p (matteo) ,
e (john) , e (jamal) , e (matteo) , d (john) ,
permit (0, john) , permit (1, john) , permit (2, john) , permit (3, john) ,
permit (0, jamal) , permit (1, jamal) , permit (2, jamal) , permit (3, jamal) ,
permit (0, matteo) , permit (1, matteo) , permit (2, matteo) , permit (3, matteo)}

It is interesting to note how rules in ASP can be seen as a query language (or a way to
define views). If we interpret predicates as relations (e.g. person/1 as representing the
relation person with one attribute and four tuples: birna, john, jamal and matteo)
then, intuitively, the head of a rule represents the relation (view) obtained from the
natural inner join of the relations in its body (when no negation is present).

5 With the obvious abbreviations.
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Reactive Behaviour. The same kind of deductive rules, when coupled with the previ-
ously presented agent cycle, can be used to express the reactive behaviour of an agent.
For example, to express that any request to access some floor should result in the action
of opening the corresponding door if the requester has a permit for that floor, we can
include the following rule in P :

do (open door (F )) ← person (P ) , f loor (F ) , permit (P, F ) , request (P, F ) .
(6)

If the agent perceives the event sequence E = (E1, E2) with:

E1 = {request (matteo, 3) . request (birna, 1)}
E2 = {request (john, 2) .}

Then, do (open door (3)) will belong to the only stable model at time 1, resulting in the
execution of action open door (3), while do (open door (2)) will belong to the only
stable model at time 2, resulting in the execution of action open door (2). Note that
request (birna, 1) will not cause the execution of any action since permit (birna, 1)
is not true. Furthermore, since events do not persist by inertia (i.e. they are only used to
determine the stable models at the state they were perceived and are ignored at subse-
quent states) each only triggers the execution of the actions once.

Effects of Actions. According to the simple agent architecture being used, we assume
that the agent is aware of the actions it (actually) executes, inserting them at the subse-
quent set of events6. In the previous example, the action open door (3) would actually
belong to E2, while action open door (2) would belong to E3, together with other ob-
served events. We can take advantage of the inclusion of these actions in the events to
express their epistemic effects, through ASP rules. For example, if we want to express
that while we open the door, the door is open, we can include the following rule in P :

open (F ) ← open door (F ) . (7)

It is easy to see that open (3) is true at state 2 while open (2) is true at state 3.

Persistent Effects of Actions. In the previous example, the effect of open door (F )
does not persist i.e. open (F ) is only true while the action open door (F ) is true. Often
we need to make the effects of actions persist. This can be done using the assert pred-
icate provided by EVOLP. If we want open door (F ) to cause the door to be open and
stay open, we include the following rule in P :

assert (open (F )) ← open door (F ) . (8)

6 Since the actions actually executed depend on the selection function, the presence of do (α)
in some (even every) model is not a guarantee that the action is going to be executed, e.g.
because the selection function only selects a sub-set of those actions. This can also be used to
filter those actions whose execution failed (e.g. a hardware error when moving the arm of the
robot) by not inserting them in the events.
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Now, open (3) is not only true at state 2, but also at subsequent states. If we wish to
close the door when someone enters the open door, provided there is no other action to
open it, we can add the rule:

do (close door (F )) ← open (F ) , enters (P, F ) ,not open door (F ) . (9)

together with the effects of closing the door:

assert (not open (F )) ← close door (F ) . (10)

Considering also these new rules, if enters (matteo, 3) is observed at state 5, then
do (close door (3)) also belongs to the stable model at that state, causing the action
close door (3) to be performed with the consequent update with not open (3) at state
6, so that open (3) will not be true from state 7, until another action opens the door
again.

Default Reasoning. One of the main characteristics of ASP is its use of default nega-
tion (not) permitting, among other things, to non-monotonically reason with the Closed
World Assumption. This is useful to represent exceptions. For example, if we wish to
permit access to the ground floor to all people, except those on some black list, we can
add the following rule to P :

permit(P, 0) ← person(P ),not black list(P ). (11)

The default not black list(P ) evaluates to true whenever black list(P ) is not in the
stable model. For example, if request (birna, 0) belongs to some event at state n,
then do (open door (0)) will be true at that state causing the door to be open, because
black list(birna) is not true (by default).

Open and Closed World Assumptions. ASP permits, besides default negation (not),
strong negation (¬). Strong negation behaves just as positive atoms i.e. in order for
some ¬A to evaluate to true, there must be some rule with head ¬A and whose body
is true, unlike not A whose only requirement is that A is not true in the model7. For
example, if we wish to implement an access policy where anyone not known to be a
terrorist could access the first floor, we could add the following rule to P :

permit(P, 1) ← person(P ),not terrorist(P ). (12)

With this rule, Birna, not known to be a terrorist in our example, would have permission
to access the first floor i.e. permit(birna, 1) is true. If we wish to impose a stricter
policy for granting access to the second floor, where one is only allowed if (s)he is
known to not be a terrorist, then we could add the following rule to P :

permit(P, 2) ← person(P ), ¬terrorist(P ). (13)

7 Recall that for a language A with one propositional atom A, there are three possible interpre-
tations: {A} , {¬A} and {}, indicating, respectively, that A is true, A is (strongly) false, and
A is neither true nor (strongly) false. ¬A evaluates to true in the second interpretation while
not A evaluates to true in both the second and the third interpretations.



8 J. Leite

With this rule, Birna, would not have permission to access the second floor i.e. permit
(birna, 2) is false since ¬terrorist(birna) is not true. in order to gain access to the
second floor, the agent would have to know that ¬terrorist(birna) is true (e.g. by con-
ducting an investigation to clear Birna, leading to the assertion of ¬terrorist(birna)).

It is possible to turn strong negation into default negation. In our example, if we
wish to represent that we should conclude ¬terrorist(P ) whenever not terrorist(P )
is true, we simply add the rule:

¬terrorist(P ) ← person(P ),not terrorist(P ). (14)

This would turn the policies for both the first and second floors equivalent.

Non-deterministic Choice of Actions. In ASP, default negation, together with a spe-
cial pair of rules known as even loop through default negation, allow for the generation
of two (or more) stable models, which can be exploited to generate possible alternative
behaviours. For example, if, for every person entering the ground floor, we wish to ei-
ther perform a body search or simply ask for an id, we can add the following pair of
rules to P :

do (body search(P )) ← enters (P, 0) ,not do (ask id(P )) .
do (ask id(P )) ← enters (P, 0) ,not do (body search(P )) .

(15)

If enters (jamal, 0) is observed at some state, then, at that state, there will be two
stable models:

{enters (jamal, 0) , do (body search(jamal)) , ...}
{enters (jamal, 0) , do (ask id(jamal)) , ...}

encoding both possible agent behaviours.

Uncertainty. The even loop through default negation and the generation of several
models can also be used to represent uncertainty. For example, if we wish to state that
everyone is either a friend or a terrorist, but we do not know which, we can add the
following two rules to P :

terrorist(P ) ← person(P ),not friend(P ).
friend(P ) ← person(P ),not terrorist(P ). (16)

These rules will generate many stable models, with all possible combinations where
each person is either a friend or a terrorist. Some od these models include:

{friend(jamal),friend(birna),friend(matteo),friend(john), ...}
{friend(jamal),terrorist(birna),friend(matteo),friend(john), ...}

{friend(jamal),friend(birna), terrorist(matteo), terrorist(john), ...}
{terrorist(jamal),friend(birna),friend(matteo),friend(john), ...}

...

Each of these models can be seen as a possible state of the world. Each of these worlds
could prescribe some particular behaviour i.e. have some predicates of the form do (α)
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true them. However, this use of ASP would require a different selection function since
different models would no longer encode different possible courses of action, as be-
fore, but rather different possible worlds in which different courses of action would be
appropriate. Whereas in the former a selection function that chooses one model would
be appropriate (as each can be seen as one possible course of action), in the latter the
agent is unsure about which model represents the real world and simply flipping a coin
to choose one of them may yield the incorrect choice (we may choose the second model
above and treat Birna as a terrorist when in fact it turns out not to be the case). A se-
lection function that returns the actions that are true in all models is probably a more
appropriate choice, with natural consequences in the way knowledge is represented.

Integrity Constraints. When using the even loop through default negation to generate
several models, we may want to eliminate some of them given the knowledge we have.
This is easily done through the use of integrity constraints, which are rules of the form

← L1, . . . , Ln. (17)

and prevent any interpretation in which L1, . . . , Ln is true to be a stable model8. For
example, if we wish to state that John is not a terrorist, we simply add the following
integrity constraint to P :

← terrorist (john) . (18)

This would eliminate the third model above, as well as any other models in which
terrorist (john) was true.

Uncertainty, as encoded through the even loop through default negation, can also be
eliminated through the existence of factual or deductive knowledge. For example, if we
know that all employees are friends, then we add the following rule to P :

friend (P ) ← employee(P ). (19)

This will make friend(jamal),friend(matteo) and friend(john) true, eliminating
some of the uncertainty generated by rules (16). The remanning models would be:

{friend(jamal),friend(birna),friend(matteo),friend(john), ...}
{friend(jamal),terrorist(birna),friend(matteo),friend(john), ...}

Problem Solving. The combination of the even loop through default negation and in-
tegrity constraints has been successfully employed as a general technique to use ASP to
solve many problems (e.g. hamiltonian cycles, graph coloring, large clique, planning,
resource allocation, etc...). It is possible to use such ASP programs within this agent ar-
chitecture, providing agents with the ability to solve complex problems through simple
declarative specifications. Given that ASP can encode planning problems, it is possible
to encode, without requiring changes in the agent architecture, the implementation of
a planning agent where each model would encode a plan and the agent would select
one of them for execution. More about using ASP for planning and problem solving in
general can be found in [21,7,12].

8 The semantics of an Integrity Constraint of the form← L1, . . . , Ln.is given first translating it
into the (normal) rule a← not a,L1, . . . , Ln., where a is a reserved atom.
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Rule Updates. So far, with the exception of persistent effects of actions, we have only
focused on features of ASP. We now turn our attention to those features introduced by
EVOLP that allow for updating the agent specification. The semantics of EVOLP pro-
vides an easy mechanism to update the knowledge of some agent. This is due, on the
one hand, to the fact that events do not persist by inertia and, on the other hand, that
rules inside assert predicates that are true at some state are used to update the agent’s
knowledge. Accordingly, if we wish to update some agent’s program with some rule r,
all we have to do is include, in the events, the predicate assert(r). If we further want
to make such update conditional on the current state of events e.g. on some condition
L1, . . . , Ln being true, we add, instead, the rule assert(r) ← L1, . . . , Ln. In our sce-
nario, imagine that it has been decided that, from now on, unless for the director(s), no
one should have permission to access the third floor. This can be achieved by adding
the fact to the next set of external events9:

assert (not permit(P, 3) ← person(P ),not director(P )) . (20)

Note that it is substantially different to update the agent and to simply add the rule
inside the assert predicate to P . Whereas if we simply add this rule to P we obtain a
contradiction with rule (5), if we update P with this rule such contradiction is auto-
matically detected and avoided by assigning preference to the rule for the director (the
newer one) than to the rule for employees (the original one)10. After this update, no one
but John will be allowed on the third floor, and permissions regarding other floors will
still be governed by the previously stated policy.

To illustrate an update conditioned on the current state of events, let’s suppose that,
later on, we want to grant permission to all current directors to access the third floor,
even after they cease to be directors. This can be done by including the following rule
in the events:

assert (permit(P, 3)) ← director(P ). (21)

With this rule, the knowledge base will be updated with permit(P, 3) for all people
(P ) that are currently directors of the company, in this case, John. note however that
the verification of director(P ) is only performed at the current state, and the update is
done with permit(john, 3). When John ceases to be a director, he will still be allowed
in the third floor, despite the effect of rule (20) which would, before this latter update,
mean that John would not be allowed in the third floor.

9 Some security mechanisms should be added to prevent anyone from being able to update some
agent from the outside. This can also be expressed in EVOLP, although outside the scope of
this presentation.

10 The reader may be thinking that the same effect could be achieved by replacing the original
rule with one where there was an exception for the director. Despite being true in this case, it
is arguably simpler, on the one hand, to state what we want to be the case from now on (i.e. no
one except for the director should access the third floor), and let the semantics of EVOLP deal
with the resulting conflicts, while on the other hand coming up with such refined rules may
be, for more elaborate cases, a very difficult task requiring knowledge of all rules in the agent
program.
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External Agent Programming. Rule updates, as exemplified above, be them sim-
ple assertions (updates) of rules, or updates conditioned on the current state of affairs,
provide a flexible mechanism to incrementally program agents after they have been de-
ployed. All aspects of the agent that are programmed in EVOLP can be incrementally
specified, and the agent specification completely changed as the agent progresses. Not
only can we change the knowledge of the agent, but we can also update the agent be-
haviour (providing new, better, ways to react), the effects of the actions (even allowing
the agent to learn new actions e.g. a robot was serviced with a new arm), and any other
aspect specified in EVOLP. For example, we can update the behaviour of the agent ex-
hibited when someone enters the ground floor (specified by rules 15) in a way such that
directors are neither body searched nor asked for an id, by updating with the rules:

not do (body search(P )) ← enters (P, 0) , director(P ).
not do (ask id(P )) ← enters (P, 0) , director(P ). (22)

We can update the effects of action open door so that it does not open in case of mal-
function, by updating with the rule (in the case where it’s effect is persistent):

not assert (open (F )) ← open door (F ) , malfunction(F ). (23)

Evolution. Assert predicates can be present in the agent program, specifying the way in
which the agent should evolve (its knowledge, behaviour, etc...). Furthermore, the fact
that assertions can be nested allows for expressing more complex evolutions. Imagine
that we decide to implement a policy according to which, after the agent observes a
(terrorist) attack, it starts behaving in a way that, after asking someone for an ID, it will
treat that person as a terrorist if the person does not have an ID. Recall that ask id(P )
is an action (hence non-inertial), and attack is an observation. this policy could be
implemented with the following rule:

assert (assert (terrorist (P ) ← not id(P )) ← ask id(P )) ← attack. (24)

In the event of an attack (i.e. attack belongs to some set of events), then the agent
evolves to a new specification resulting from the update with the rule

assert (terrorist (P ) ← not id(P )) ← ask id(P ). (25)

If, for example, Birna is asked for an ID, e.g. due to the non-deterministic choice of
actions specified in rules (15), the agent is updated with the rule

terrorist (birna) ← not id(birna). (26)

and, from then on, until revoked by some other update, Birna will be considered a
terrorist if she doesn’t have an ID.

Complex Behaviour. The possibility provided by EVOLP to include assert atoms in
the body of rules, as well as actions, allows for the specification of more complex be-
haviours in a simple way. For example, if we wish to specify that some action should be
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followed by some other action (e.g. that a body search should be reported), we simply
include the rule:

do (report (P )) ← body search(P ). (27)

To specify that some action should always be performed together with some other action
(e.g. arresting someone should be done together with informing the person of his rights),
can be done with the rule:

do (read rights (P )) ← do (arrest (P )) . (28)

The ability to include assertive literals in rule bodies allows for looking ahead on some
program changes and acting on that knowledge before the changes occur. For example,
to inform someone that (s)he will be added to the company’s black list, we use the rule:

do (inform (P )) ← assert (black list (P )) . (29)

It could be important to have a timer to allow for updates to depend on it. Such timer
can be encoded in EVOLP with the rules

assert (time (T + 1)) ← time (T ) .
assert (not time (T )) ← time (T ) .

(30)

together with the fact time (0) in P .
With this clock, we can easily encode effects of actions (or reactive behaviours) that

span over time, e.g. delayed effect of actions or behaviours, i.e. when the effect of some
action (or observation) only occurs after a certain amount of time. For example, if we
wish to close the door, ten time steps after it is opened (even if no one enters it as
specified in rule (9)), we can add the rule:

assert (do (close door (F )) ← time (T + 10)) ← open door (F ) , time (T ) .
(31)

Complex Effects of Actions. Many Agent Oriented Programming Languages are very
limited in what concerns representing the effects of actions. It was shown that Logic
Programming Update Languages, including EVOLP, are able to capture Action Lan-
guages A, B and C, making them suitable for describing domains of actions [1]. This in-
cludes, for example, representing effects of executing parallel actions, non-deterministic
effects of actions, etc.

Communication. Messages can be treated in a straight forward manner. On the one
hand, sending a message is treated just as any other action i.e. through some predicate of
the form do (send msg (To, T ype, Content)), possibly with some internal effect (e.g.
recording the sent message). Similarly, incoming messages are just events (observa-
tions) of some agreed form, e.g. a predicate of the form msg (From, Type, Content),
and can be treated by the agent just as any other event. For example, to store (with a
timestamp) all incoming messages sent by employees, the following rule could be used:

assert (msg (F, Ty, C, T )) ← msg (F, Ty, C) , time (T ) , employee (F ) . (32)
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4 Conclusions, Current and Future Work

In this paper we revisited Logic Programming under the answer-set semantics - or
Answer-Set Programming - and its extension Evolving Logic Programming, two lan-
guages that use logic rules and rule updates, and exhibit characteristics that make them
suitable to be used for knowledge representation and reasoning within Agent Oriented
Programming Languages. We illustrated the power of these rule based languages by
means of examples showing how several of its features can be used to model situations
faced by Agents.

The use of EVOLP has previously been illustrated in Role Playing Games to repre-
sent the dynamic behaviour of Non-Playing Characters [18] and Knowledge Bases to
describe their update policies [13]. Furthermore, it was shown that Logic Programming
Update Languages are able to capture Action Languages A, B and C, making them
suitable for describing domains of actions [1].

Even though we only presented EVOLP with its stable model based semantics, which
means that it inherits the complexity of ASP i.e. it is in the NP class when only non-
disjunctive programs are used, EVOLP also allows for the use of a well founded three
valued semantics which is less expressive but permits more efficient top down polyno-
mial proof procedures [27,6].

Extensions of EVOLP include the introduction of LTL-like temporal operators that
allow more flexibility in referring to the history of the evolving knowledge base [4].

It was not the purpose of this paper to present yet another agent architecture and
language to populate the already dense field of AOPLs. Instead, the purpose was to
present several features of a well known language (ASP) and a more recent extension
(EVOLP) in a way that brings forward the possible advantages of their usage within
existing AOPLs. This is precisely the subject of ongoing research where ASP and rule
updates are being used in conjunction with the AOPL GOAL [16].

References

1. Alferes, J.J., Banti, F., Brogi, A.: From logic programs updates to action description updates.
In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 52–77. Springer,
Heidelberg (2005)

2. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for semantics
of dynamic logic programming. Studia Logica 79(1), 7–32 (2005)

3. Alferes, J.J., Brogi, A., Leite, J.A., Pereira, L.M.: Evolving logic programs. In: Flesca, S.,
Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 50–61.
Springer, Heidelberg (2002)

4. Alferes, J.J., Gabaldon, A., Leite, J.: Evolving logic programming based agents with tempo-
ral operators. In: IAT, pp. 238–244. IEEE, Los Alamitos (2008)

5. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.: Dynamic up-
dates of non-monotonic knowledge bases. Journal of Logic Programming 45(1-3), 43–70
(2000)

6. Banti, F., Alferes, J.J., Brogi, A.: Well founded semantics for logic program updates. In:
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A Evolving Logic Programming

A.1 Language

We start with the usual preliminaries. Let A be a set of propositional atoms. An ob-
jective literal is either an atom A or a strongly negated atom ¬A. A default literal is an
objective literal preceded by not . A literal is either an objective literal or a default literal.
A rule r is an ordered pair H (r) ← B (r) where H (r) (dubbed the head of the rule)
is a literal and B (r) (dubbed the body of the rule) is a finite set of literals. A rule with
H (r) = L0 and B (r) = {L1, . . . , Ln} will simply be written as L0 ← L1, . . . , Ln. A
generalized logic program (GLP) P , in A, is a finite or infinite set of rules. If H(r) = A
(resp. H(r) = not A) then not H(r) = not A (resp. not H(r) = A). If H (r) = ¬A,
then ¬H (r) = A. By the expanded generalized logic program corresponding to the
GLP P , denoted by P, we mean the GLP obtained by augmenting P with a rule of the
form not ¬H (r) ← B (r) for every rule, in P , of the form H (r) ← B (r), where
H (r) is an objective literal. Two rules r and r′ are conflicting, denoted by r �� r′, iff
H(r) = not H(r′).

An interpretation M of A is a set of objective literals that is consistent i.e., M does
not contain both A and ¬A. An objective literal L is true in M , denoted by M � L,
iff L ∈ M , and false otherwise. A default literal not L is true in M , denoted by M �
not L, iff L /∈ M , and false otherwise. A set of literals B is true in M , denoted by
M � B, iff each literal in B is true in M .

An interpretation M of A is an answer set of a GLP P iff

M ′ = least (P ∪ {not A | A 	∈ M}) (33)

where M ′ = M ∪ {not A | A 	∈ M}, A is an objective literal, and least(.) denotes the
least model of the definite program obtained from the argument program by replacing
every default literal not A by a new atom not A.

In order to allow for logic programs to evolve, we first need some mechanism for
letting older rules be supervened by more recent ones. That is, we must include a
mechanism for deletion of previous knowledge along the agent’s knowledge evolution.
This can be achieved by permitting default negation not just in rule bodies, as in ex-
tended logic programming, but in rule heads as well[22]. Furthermore, we need a way
to state that, under some conditions, some new rule should be asserted in the knowl-
edge base11. In EVOLP this is achieved by augmenting the language with a reserved
predicate assert/1, whose sole argument is itself a full-blown rule, so that arbitrary
nesting becomes possible. This predicate can appear both as rule head (to impose
internal assertions of rules) as well as in rule bodies (to test for assertion of rules).
Formally:

Definition 2. Let A be a set of propositional atoms (not containing assert/1). The
extended language Aassert is defined inductively as follows:

11 Note that asserting a rule in a knowledge base does not mean that the rule is simply added to it,
but rather that the rule is used to update the existing knowledge base according to some update
semantics, as will be seen below.
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– All propositional atoms in A are propositional atoms in Aassert;
– If r is a rule over Aassert then assert(r) is a propositional atom of Aassert;
– Nothing else is a propositional atom in Aassert.

An evolving logic program over a language A is a (possibly infinite) set of general-
ized logic program rules over Aassert.

Example 1. Examples of EVOLP rules are:

assert (not a ← b) ← not c.
a ← assert (b ←) .
assert (assert (a ←) ← assert (b ← not c) , d) ← not e.

(34)

Intuitively, the first rule states that, if c is false, then the rule not a ← b must be
asserted in the agent’s knowledge base; the 2nd that, if the fact b ← is going to be
asserted in the agent’s knowledge base, then a is true; the last states that, if e is false,
then a rule must be asserted stating that, if d is true and the rule b ← not c is going to
be asserted then the fact a ← must be asserted.

This language alone is enough to model the agent’s knowledge base, and to cater, within
it, for internal updating actions that change it. But self-evolution of a knowledge base
is not enough for our purposes. We also want the agent to be aware of events that hap-
pen outside itself, and desire the possibility too of giving the agent update “commands”
for changing its specification. In other words, we wish a language that allows for in-
fluence from the outside, where this influence may be: observation of facts (or rules)
that are perceived at some state; assertion commands directly imparting the assertion
of new rules on the evolving program. Both can be represented as EVOLP rules: the
former by rules without the assert predicate in the head, and the latter by rules with it.
Consequently, we shall represent outside influence as a sequence of EVOLP rules:

Definition 3. Let P be an evolving program over the language A. An event sequence
over P is a sequence of evolving programs over A.

A.2 Semantics

In general, we have an EVOLP program describing an agent’s initial knowledge base.
This knowledge base may already contain rules (with asserts in heads) that describe
some forms of its own evolution. Besides this, we consider sequences of events repre-
senting observation and messages arising from the environment. Each of these events in
the sequence are themselves sets of EVOLP rules, i.e. EVOLP programs. The semantics
issue is thus that of, given an initial EVOLP program and a sequence of EVOLP pro-
grams as events, to determine what is true and what is false after each of those events.

More precisely, the meaning of a sequence of EVOLP programs is given by a set
of evolution stable models, each of which is a sequence of interpretations or states.
The basic idea is that each evolution stable model describes some possible evolution
of one initial program after a given number n of evolution steps, given the events in
the sequence. Each evolution is represented by a sequence of programs, each program
corresponding to a knowledge state.
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The primordial intuitions for the construction of these program sequences are as
follows: regarding head asserts, whenever the atom assert(Rule) belongs to an inter-
pretation in a sequence, i.e. belongs to a model according to the stable model semantics
of the current program, then Rule must belong to the program in the next state; asserts
in bodies are treated as any other predicate literals.

The sequences of programs are treated as in Dynamic Logic Programming [19,5,2],
a framework for specifying updates of logic programs where knowledge is given by a
sequence of logic programs whose semantics is based on the fact that the most recent
rules are set in force, and previous rules are valid (by inertia) insofar as possible, i.e.
they are kept for as long as they do not conflict with more recent ones. In DLP, default
negation is treated as in answer-set programming [15]. Formally, a dynamic logic pro-
gram is a sequence P = (P1, . . . , Pn) of generalized logic programs and its semantic
is determined by (c.f. [19,2] for more details):

Definition 4. Let P = (P1, . . . , Pn) be a dynamic logic program over language A. An
interpretation M is a (refined) dynamic stable model of P at state s, 1 ≤ s ≤ n iff

M ′ = least ([ρs (P) − Rejs(M)] ∪ Defs(M)) (35)

where:

Defs(M) = {not A | �r ∈ ρ(P), H(r) = A, M � B(r)}
Rejs(M) = {r | r ∈ Pi, ∃r′ ∈ Pj , i ≤ j ≤ s, r �� r′, M � B(r′)} (36)

and A is an objective literal, ρs (P) denotes the multiset of all rules appearing in the
programs P1, ...,Ps, and M ′ and least(.) are as before. Let DSM (P) denote the set
of (refined) dynamic stable model of P at state n.

Intuitively, given an interpretation M , the set Rejs(M) contains those rules which are
overridden by a newer conflicting rule whose body is true according to the interpretation
M . The set Defs(M) contains default negations not A of all unsupported atoms A, i.e.,
those atoms A for which there is no rule, in any program, whose body is true according
to the interpretation M , which can thus be assumed false by default.

Before presenting the definitions that formalize the above intuitions of EVOLP, let
us show some illustrative examples.

Example 2. Consider an initial program P containing the rules

a.
assert(not a ←) ← b.
c ← assert(not a ←).
assert(b ← a) ← not c.

(37)

and that all the events are empty EVOLP programs. The (only) answer set of P is
M = {a, assert(b ← a)} and conveying the information that program P is ready to
evolve into a new program (P, P2) by adding rule (b ← a) at the next step, i.e. to P2. In
the only dynamic stable model M2 of the new program (P, P2), atom b is true as well
as atom assert(not a ←) and also c, meaning that (P, P2) evolves into a new program
(P, P2, P3) by adding rule (not a ←) at the next step, i.e. in P3. This negative fact in P3
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conflicts with the fact in P , and the older is rejected. The rule added in P2 remains valid,
but is no longer useful to conclude b, since a is no longer valid. So, assert(not a ←)
and c are also no longer true. In the only dynamic stable model of the last sequence both
a, b, and c are false.

This example does not address external events. The rules that belong to the i-th event
should be added to the program of state i, and proceed as in the example above.

Example 3. In the example above, suppose that at state 2 there is an external event with
the rules, r1 and r2, assert(d ← b) ← a and e ←. Since the only stable model of P
is I = {a, assert(b ← a)} and there is an outside event at state 2 with r1 and r2, the
program evolves into the new program obtained by updating P not only with the rule
b ← a but also with those rules, i.e. (P, {b ← a; assert(d ← b) ← a; e ←}). The only
dynamic stable model M2 of this program is {b, assert(not a ←), assert(d ← b), e}.

If we keep with the evolution of this program (e.g. by subsequent empty events), we
have to decide what to do, in these subsequent states, about the event received at state 2.
Intuitively, we want the rules coming from the outside, be they observations or assertion
commands, to be understood as events given at a state, that are not to persist by inertia.
I.e. if rule r belongs to some set Ei of an event sequence, this means that r was per-
ceived, or received, after i − 1 evolution steps of the program, and that this perception
event is not to be assumed by inertia from then onward. In the example, it means that if
we have perceived e at state 2, then e and all its possible consequences should be true
at that state. But the truth of e should not persist into the subsequent state (unless e is
yet again perceived from the outside). In other words, when constructing subsequent
states, the rules coming from events in state 2 should no longer be available and con-
sidered. As will become clear below, making these events persistent can be specified in
EVOLP.

Definition 5. An evolution interpretation of length n of an evolving program P over A
is a finite sequence I = (I1, I2, . . . , In) of interpretations Aassert. The evolution trace
associated with evolution interpretation I is the sequence of programs (P1, P2, . . . , Pn)
where:

– P1 = P ;
– Pi = {r | assert(r) ∈ Ii−1}, for each 2 ≤ i ≤ n.

Definition 6. An evolution interpretation (I1, I2, . . . , In), of length n, with evolution
trace (P1, P2, . . . , Pn) is an evolution stable model of an evolving program P given a
sequence of events (E1, E2, . . . , Ek), with n ≤ k, iff for every i (1 ≤ i ≤ n), Ii is a
dynamic stable model at state i of (P1, P2 . . . , (Pi ∪ Ei)).

Notice that the rules coming from the outside do not persist by inertia. At any given step
i, the rules from Ei are added and the (possibly various) Ii obtained. This determines
the programs Pi+1 of the trace, which are then added to Ei+1 to determine the models
Ii+1. The definition assumes the whole sequence of events given a priori. In fact this
need not be so because the events at any given step n only influence the models in the
evolution interpretation from n onward:
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Proposition 1. Let M = (M1, . . . , Mn) be an evolution stable model of P given a
sequence of events (E1, E2, . . . , En). Then, for any sets of events En+1, . . . , Em (m >
n), M is also an evolution stable model of P given (E1, . . . , En, En+1, . . . , Em).

EVOLP programs may have various evolution models of given length, or none:

Example 4. Consider P with the following two rules, and 3 empty events:

assert (a ←) ← not assert (b ←) , not b.
assert (b ←) ← not assert (a ←) , not a.

(38)

The reader can check that there are 2 evolution stable models of length 3, each repre-
senting one possible evolution of the program after those empty events:

M1 = 〈{assert(a ←)}, {a, assert(a ←)}, {a, assert(a ←)}〉
M2 = 〈{assert(b ←)}, {b, assert(b ←)}, {b, assert(b ←)}〉

Since various evolutions may exist for a given length, evolution stable models alone do
not determine a truth relation. A truth relation can be defined, as usual, based on the
intersection of models:

Definition 7. Let P be an evolving program, E an event sequence of length n, both
over the language A, and M an interpretation over Aassert. M is a Stable Model of P
given E iff (M1, . . . , Mn−1, M) is an evolution stable model of P given E with length
n, for some interpretations M1, . . . , Mn−1. Let SM (〈P, E〉) denote the set of Stable
Model of P given E .We say that propositional atom A of A is: true given E , denoted
by 〈P, E〉 |= A, iff A belongs to all stable models of P given E; false given E , denoted
by 〈P, E〉 |= not A, iff A does not belong to any stable models of P given E; unknown
given E otherwise.

A consequence of the above definitions is that the semantics of EVOLP is, in fact, a
proper generalization of the answer-set semantics, in the following sense:

Proposition 2. Let P be a generalized (extended) logic program (without predicate
assert/1) over a language A, and E be any sequence with n ≥ 0 of empty EVOLP
programs. Then, M is a stable model of P given E iff the restriction of M to A is an
answer set of P (in the sense of [15,22]).

The possibility of having various stable models after an event sequence is of special
interest for using EVOLP as a language for reasoning about possible evolutions of an
agent’s knowledge base. Like for answer-set programs, we define the notion of categor-
ical programs as those such that, for any given event sequence, no “branching” occurs,
i.e. a single stable model exists.

Definition 8. An EVOLP program P is categorical given event sequence E iff there
exists only one stable model of P given E .
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Abstract. This paper generalises the theory of agent refinement from [1] to
multi-agent systems in the presence of new coordination mechanisms extended
with real time. The generalisation is such that refinement is compositional. This
means that refinement at the individual level implies refinement at the multi-agent
system level. Compositionality is an important property since it reduces heavily
the verification process. Thus having a theory of refinement is a crucial step to-
wards the verification of multi-agent systems’ correctness.

1 Introduction

In [1] a general framework is proposed for designing and verifying agent languages.
The authors promoted the idea of having different levels of abstractions for agents, em-
phasising the principles of UNITY [2], a classical design methodology. Such principles
state that abstract models should disregard control issues and should specify as little as
possible. Control should be added at later phases of design. In the same vein, BUnity
and BUpL were proposed as two modelling agent languages in [1], each correspond-
ing to a distinct level of abstraction. BUnity was considered as being a specification
language and BUpL as an implementation. The authors then posed the problem of the
correctness of a given BUpL implementation with respect to a given BUnity specifica-
tion. The problem was equally stated as a refinement problem, where refinement was
defined in terms of trace inclusion. Traces were sequences of observable actions con-
sidered to represent agents’ behaviours. Being that a direct approach to deciding trace
inclusion is hard, they adapted simulation as a proof technique to agent refinement.
Their approach considers only individual agents.

In this paper, we aim at extending the refinement relation to multi-agent systems.
A first step consists of lifting the notion of abstraction levels from individual agents to
multi-agent systems. Considering that the behaviour of the multi-agent system is simply
the sum of the behaviours of individual agents is a too unrealistic idea. Instead, we
propose action-based coordination mechanisms, to which we refer as choreographies.
They represent global synchronisation and ordering conditions restricting the execution
of individual agents.

Introducing coordination while respecting the autonomy of the agents is still a chal-
lenge in the design of multi-agent systems. We note that choreographies might constrain
agents’ autonomy, however, this is a very common practice in multi-agent systems
when specific properties need to be guaranteed. The advantage of the infrastructures
we propose lies in their exogenous feature: the update of the agent’s mental states is
separated from the coordination pattern. Nobody changes the agent’s beliefs but itself.
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Besides that choreographies are oblivious to mental aspects, they control without hav-
ing to know the internal structure of the agent. For example, whenever a choice between
plans needs to be taken, a BUpL agent is free to make its own decision. The degree of
freedom can be seen also in the mechanism for handling action failures. The agent
chooses one among possibly many available repair rules without being constraint by
the choreography. In these regards, the autonomy of agents is preserved.

Extending the refinement relation from [1] to multi-agent systems requires solving
a new problem since choreographies may introduce deadlocks. It can be the case that
though there is refinement at the individual agent level, adding a choreography dead-
locks the concrete multi-agent system but not the abstract one. We take, as example,
a choreography which “tells” an agent to execute an action not defined in the agent
program itself (but only in the agent specification). In this situation, refinement as trace
inclusion trivially holds since the set of traces from a deadlocked state (where the agent,
after eventually applying repair rules, cannot execute the action specified by the chore-
ography) is empty.

Our methodology in approaching the above stated problem consists of, basically,
formalising the following aspects. On the one hand, we define the semantics of multi-
agent systems with choreographies as the set of maximal traces, where we make the dis-
tinction between a success and a deadlock. These traces consist of the parallel agents’
executions guided by the choreography. We define multi-agent system refinement as
maximal trace inclusion. On the other hand, agent refinement becomes ready trace in-
clusion, where a ready trace records not only the actions being executed, but also those
ones which might be executed. We show that multi-agent system refinement is compo-
sitional. More precisely, the main result of this paper is that agent refinement implies
multi-agent system refinement in the presence of any choreography. Furthermore, the
refined multi-agent system does not introduce deadlocks with respect to the multi-agent
system specification.

A more expressive framework can be obtained when action synchronisations depend
also on time, not only on the disposal of the agents to perform the actions. Thus, we
address the problem of incorporating time into choreographies such that the compo-
sitionality result we have remains valid in the timed version. A first step is to extend
choreographies by means of timed automata [3] such that they constrain the timings of
the actions. Having timed choreographies requires, however, to introduce time in the
agents’ programs. Thus, in our case, BUnity and BUpL need to be extended to reflect
the passing of time. In this respect, we bare in mind that basic actions are a common
ontology shared by all agents. Since the nature of basic actions does not specify when
to be executed, our extension is thought such that the ontology remains timeless and
“when” becomes part of the specific agent applications.

Our contribution consists of introducing a general methodology for a top-down de-
sign of multi-agent systems by refinement. We emphasise that our the effort is moti-
vated by the need to perform verification. Multi-agent systems are clearly more complex
structures, and their verification tends to become harder. However, in our framework,
given the compositionality result, it is enough to verify individual agents and/or chore-
ographies in order to conclude properties about the whole multi-agent system.
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The paper is structured as follows. Section 2.1 is a brief overview of agent refine-
ment. Section 3 introduces the notion of choreographies and describes multi-agent sys-
tem refinement. Section 4 discusses time extensions for multi-agent systems. Section 5
concludes the paper.

1.1 Related Works

The design methodology we propose integrates in a unifying approach different con-
cepts and results from process theory [4]. Some aspects we deal with have been taken
into account in different works, however, from a distinct angle.

Multi-agent system verification is discussed in [5,6,7]. However, we focus on the
compositionality of the refinement relation which reduces the problem of verifying the
whole multi-agent system to verifying the agents composing it.

Concerning agent interaction, this is usually achieved by means of communication.
Communication, in turn, is implemented by message passing, or channel-based mech-
anisms. This latter can be seen as the basis of implementing coordination artifacts in
terms of resource access relation in [8], or action synchronisation [9]. We also men-
tion the language Linda [10] which has not been applied to a multi-agent setting but to
service oriented services, where the notion of data plays a more important role than syn-
chrony. Organisation-based coordination artifacts are recently discussed in [11,12,13].

The concepts of choreography and orchestration have already been introduced to
web services in [14,15]. With respect to [16], though we use the same terminology, our
framework is in essence different since we deliberately ignore communication issues.
Our choreography model is explicit whereas in [16] is implicit in the communication
protocol. Thus, we need to take into account deadlocks that may appear because of
“mall-formed” choreographies. Being external, the choreography represents, in fact,
contexts while in the other approaches there is a distinction between the modularity and
the contextuality of the communication operator.

Considering timed automata, its application in a multi-agent system is new. However,
timed automata has already been applied to testing real-time systems specifications [17]
or to scheduling problems [18].

2 Preliminaries

A labelled transition system (LTS) is a tuple (Σ, s0, Act, →, F ), where Σ is a set of
states, s0 is an initial state, Act is a set of actions (labels), → describes all possible
transitions and F is a set of final states. The notation s

a→ s′ means that “s becomes
s′ by performing action a”. Invisible actions are denoted by τ steps. The “weak” arrow
⇒ denotes the reflexive and transitive closure of →, and

a⇒ stands for ⇒ a→⇒. A trace
σ(s) is a sequence of actions a1, a2, ... such that s

a1→ s1
a2→ s2.... The set of all traces

from s is T (s).

2.1 Recalling Agent Refinement

The configuration of a BUnity agent is a tuple 〈B0, A, C〉, where B0 is an initial be-
lief base, A is a set of basic actions, and C is a set of conditional actions. Beliefs are
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ground atoms, and basic actions are pairs of pre- and post-conditions. The mental state
of a BUnity agent is represented by the belief base, the only structure that changes. The
mechanism of basic actions is based on an update operation. When the pre-condition
of the action holds, beliefs are added and/or removed from the mental state, according
to the post-condition. Basic actions are understood as a common ontology which can
be shared among different agents. Conditional actions are built on top of basic actions
by adding guards. In order to avoid confusion, we recall that though apparently similar,
basic and conditional actions are in essence different as they demand information at
distinct levels. The precondition of a basic action is a built-in restriction which inter-
nally enables belief updates. It is independent of the particular choice of application.
A conditional action is executed in function of certain external requirements (reflected
in the mental state). Thus it is application dependent. The external requirements are
meant to be independent of the built-in enabling mechanism. Whether is agent i1 or
agent i2 executing action a, the built-in condition should be the same for both agents.
Nevertheless, each agent may have its own external trigger for action a.

We take, as an illustration, a known problem, which we first found in [19], of an agent
building a tower of blocks. We represent blocks by naturals. An initial arrangement of
three blocks 1, 2, 3 is given there: 1 and 2 are on the table (0), and 3 is on top of 1. The
goal1 of the agent is to rearrange them such that they form the tower 321 (1 is on 0, 2
on top of 1 and 3 on top of 2). We further imagine that the agent has an extra task to
clean the floor, if it is dirty. The only actions the agent can execute is to clean or move
one block on the table, or on top of another block, if the latter is free.

B0 = { on(3, 1), on(1, 0), on(2, 0),
free(2), free(3), free(0) }

A = {move(x, y, z) =
(on(x, y) ∧ free(x) ∧ free(z),
{ on(x, z), ¬on(x, y), ¬free(z) }),
clean = (¬ cleaned, {cleaned}) }

C = { ¬(on(2, 1) ∧ on(3, 2)) � do(move(x, y, z)),
¬cleaned �do(clean)}

Fig. 1. A BUnity Toy Agent

The example from Figure 1 is taken in order to underline the difference between
enabling conditions (for basic actions) and triggers (for conditional actions): on the one
hand, it is possible to move a block x on top of another block z, if x and z are free; on the
other hand, given the goal of the agent, moves are allowed only when the configuration
is different than the final one (application specific).

The configuration of a BUpL agent is a tuple 〈 B0, A, P , p0, R〉, where P is a set of
plans, p0 is the initial plan and R is a set of repair rules. Plans are orderings “;” and/or
choices “+” of actions. Repair rules apply when actions fail. Their purpose is to replace

1 For simplification, goals are not modelled in the agent languages [1].
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B0 = { ... }
A = { ... }
P = { rearrange(x,y, z) =

move(x, 0, y);move(z, 0, x)
mission = clean + rearrange(2,1, 3) }

p0 = mission
R = { on(x, y)← move(x, y, 0); mission

¬cleaned← clean; mission }

Fig. 2. A BUpL Toy Agent

the plan in execution. The mental states of a BUpL agent are pairs consisting of belief
bases and plans.

We take as an example a BUpL agent that can choose between either to clean or to
solve the tower of blocks problem or to do both tasks.

The BUpL agent from Figure 2 has the same initial belief base and the same basic
action as the BUnity agent (we use the dots “. . . ” to substitute them). The agent is
modelled such that it illustrates the use of repair rules. The plan rearrange(2, 1, 3)
leads to the desired configuration 321 only if the blocks are already on the table. If the
agent initially decides to execute rearrange(2, 1, 3), that is, to move block 2 on 1 and
block 3 on 2, the first move fails because block 3 in on 2. The failure is handled by
on(x, y) ← move(x, y, table); mission. Choosing [x/1][y/3] as a matcher, enables
the agent to move block 3 on the table and after, the initial plan can be restarted. We
note that the application of the repair rule ¬cleaned ← clean; mission cannot handle
the failure. It can, at most, result in the success of the action clean (when the action has
not been already executed).

One might be interested whether the BUpL agent in Figure 2 is a refinement of the
BUnity agent in Figure 2. For the ease of reference, we identify the BUnity agent by
ia (since it is more abstract) and the BUpL agent by ic (since it is more concrete).
The methodology introduced in [1] consists of defining refinement in terms of trace
inclusion. A BUpL agent with the mental state ms refines a BUnity agent with the
mental state ms′ (ms ⊆ ms′) if and only if T (ms) is included in T (ms′). However,
trace semantics is one of the coarsest (makes the most identifications) in the literature
on concurrency. Proving refinement by definition is hard since the sets of traces are
considerably large (or infinite). Instead, simulation has been adapted as a proof tech-
nique for the refinement of agent programs. The states ms and ms′ are in a (weak)
simulation relation ∼ if and only if whenever ms executes an action eventually with in-
visible τ steps (ms

a⇒ ms1) there is also the possibility that ms′ executes the same
action (∃ms′1(ms′ a→ ms′1)) and the resulting agents are in a simulation relation
(ms1 ∼ ms′1). The following proposition states that in the framework of BUpL and
BUnity agents simulation is a sound and complete proof technique for refinement.

Proposition 1. [1] Given a BUnity agent ms′ and a BUpL agent ms we have that ms′

simulates ms (ms′ ∼ ms) iff ms refines ms′ (ms ⊆ ms′).

We stress that a key factor in having simulation as a complete proof technique is the
determinacy of BUnity agents [1].
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As a final note, Proposition 1 tells us that ic refines ia since ia can mimic any visible
action that ic executes.

3 Towards Multi-Agent Systems

If previously it was enough to refer to an agent by its current mental state, this is no
longer the case when considering multi-agent systems. This is why we associate with
each agent an identifier and we consider a multi-agent system as a finite set of such
identifiers. We further denote a state of a multi-agent system by M = {(i, msi) | i ∈
I}, where I is the set of agent identifiers and msi is a mental state for the agent i.
For the moment, we abstract from what is the mental state of an agent. The choice of
representation is not relevant, we only need to consider that the way to change (update)
the mental state of an agent is by performing actions. However, we will instantiate such
generic msi by either a BUnity or a BUpL mental state whenever the distinction is
necessary.

In order to control the behaviour of a multi-agent system we introduce action-based
choreographies. We understand them as protocols which dictate the way agents behave
by imposing ordering and synchrony constraints on their action executions. They rep-
resent exogenous coordination patterns and they are useful in scenarios where action
synchrony is more important than passing data.

3.1 Action-Based Choreographies

For the ease of presentation, we represent choreographies as regular expressions where
the basic elements are pairs (i, a). Such pairs denote that the agent i performs the ac-
tion a. They can be combined by sequence, parallel, choice or Kleene operators, with
the usual meaning: (i1, a1); (i2, a2) models orderings, agent i1 executes a1 which is
followed by agent i2 executing a2; (i1, a1) ‖ (i2, a2) models synchronisations between
actions, agent i1 executes a1 while i2 executes a2; (i1, a1) + (i2, a2) models choices,
either i1 executes a1 or i2 executes a2; (i, a)∗ models iterated execution of a by i.
The operators respect the usual precedence relation2. As expected, the BNF grammar
defining a choreography is c ::= (i, a) | c + c | c ‖ c | c; c | c∗. In order to describe
the transitions of a multi-agent system in the presence of a choreography c, we first
associate an LTS Sc to the choreography. We do this in the usual way, inductively on
the size of the choreography such that the labels are of the form ‖i∈I (i, ai). Such a
transition system always exists (see [20] or [21] for a direct deterministic construction
using the derivatives of a given regular expression). We take, as an illustration, the tran-
sition system from Figure 3 which is associated with the choreography c defined as the
following regular expression:

(i1, clean) ‖ (i2, move(3, 1, 0));
(i1, move(2, 0, 1)); ((i1, move(2, 0, 1)) ‖ (i2, clean)) +
(i2, move(2, 0, 1)); ((i2, move(2, 0, 1)) ‖ (i1, clean)).

2 ’+’ ≤p ’‖’ ≤p ’;’ ≤p ’*’, where ≤p denote the precedence relation.
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The choreography specifies that two agents i1, i2 work together in order to build the
tower 321 and that while one is building the tower the other one is cleaning the table.
More precisely, the definition of c says that first i2 deconstructs the initial tower (by
moving block 3 on 0) while i2 is synchronously cleaning; next, either i1 constructs the
final tower while i1 cleans or the other way around; afterwards, the system is in a final
state. Further variations (for example, in the case of a higher tower, one agent builds
an intermediate shorter tower leaving the other to finish the construction) are left to the
imagination of the reader.

cs2 cs3

cs0 cs1

cs4 cs5

(i1, clean) ‖

(i2,move(3, 1, 0))

(i1,m
ove(2

, 0, 1)
)

(i2 ,move(2, 0, 1))

(i1,move(3, 0, 2))

‖ (i2, clean)

(i2,move(3, 0, 2))

‖ (i1, clean)

Fig. 3. The LTS associated to a choreography

We denote the synchronised product of a choreography c and a multi-agent system
I by Sc ⊗ I. Its states are pairs (cs, M) with cs being a choreography state and M a
multi-agent system state. The transition rule for Sc ⊗ I is:

cs
l→ cs′

∧
j∈J msj

aj⇒ ms′j

(cs, M) l→ (cs′, M′)
(mas)

where cs, cs′ are states of Sc, l is a choreography label of the form ‖j∈J (j, aj) with J
being a subset of I, msj, ms′j are mental states of agent j and M, M′ are states of the
multi-agent system with M′ being M \{(j, msj) | j ∈ J }∪ {(j, ms′j) | j ∈ J }. The

notation msj
aj⇒ ms′j is used to denote that agent j performs action aj (eventually with

τ steps) in msj resulting in ms′j . “Eventually τ steps” is needed for agents performing
internal actions, like making choices among plans or handling failures in the case of
BUpL agents. In the case of agents “in the style of BUnity”,

a⇒ is simply
a→ since

Bunity agents do not have τ steps.
The transition (mas) says that the multi-agent system advances one step when the

agents from J perform the actions specified by label l. The new state of the multi-agent
system reflects the updates of the agents’ mental states.

3.2 A Finer Notion of Refinement

We would like to have the result that if the agents (for example BUpL) in a multi-agent
system I1 are refining the (BUnity) agents in I2 then Sc ⊗I1 is a refinement of Sc ⊗I2.
When refinement is defined as trace inclusion, this is, indeed, the case, as it is stated in
Proposition 2.

Proposition 2. Given two multi-agent systems I1, I2 such that (∀i1 ∈ I1)(∃i2 ∈
I2) (msi1 ⊆ msi2) and a choreography as Sc we have that Sc ⊗ I1 ⊆ Sc ⊗ I2.
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Proof. Let M1 and M2 be the initial states of the multi-agent systems I1 and I2. Let
also cs0 be the initial state of the transition system Sc associated to the choreography c.
It is enough to notice that Tr((cs0, M1)) = Tr(cs0)∩Tr(M1) and that msi1 ⊆ msi2

for all i1 ∈ I1 implies Tr(M1) ⊆ Tr(M2). ��

However, adding choreographies to a multi-agent system may introduce deadlocks. On
the one hand, we would like to be able to infer from the semantics when a multi-agent
system is in a deadlock state. On the other hand, we would like to have that the re-
finement of multi-agent systems does not introduce deadlocks. Trace semantics is a
too coarse notion with respect to deadlocks. There are two consequences: neither is
it enough to define the semantics of a multi-agent system as the set of all possible
traces, nor is it satisfactory to define agent refinement as trace inclusion. We further
illustrate these affirmations by means of simple examples. We take, for example, the
choreography c = (i, move(2, 0, 3)), where i symbolically points to the agent ic from
Section 2.1. Looking at the plans and repair rules of ic we see that such an action cannot
take place. Thus, conforming to the transition rule (mas), there is no possible transition
for the product Sc ⊗ I. Just by analysing the behaviour (the empty trace) we cannot
infer anything about deadlocked states: is it that the agent has no plan, or is it that the
choreography asks for an impossible execution?

In order to distinguish between successful and deadlocked executions, we explicitly
define a transition label

√
different from any other action label. We then define for the

product Sc ⊗ I an operational semantics O
√

(Sc ⊗ I) as the set of maximal (in the
sense that no further transition is possible) traces, ending with

√
when the last state is

successful (where the choreography state is final):

{tr
√ | (cs0, M0)

tr→ (cs, M) 	→, cs ∈ F (Sc)} ∪
{tr | (cs0, M0)

tr→ (cs, M) 	→, cs 	∈ F (Sc)} ∪ {ε | (cs0, M0) 	→},

where tr is a trace with respect to the transition (mas), M0 (resp. cs0) is the initial state
of I (resp. Sc), F (Sc) is the set of final choreography states and ε denotes that there
are no possible transitions from the initial state. We further denote by ⊥ all product
states (cs, M) which are deadlocked, i.e., (cs, M) 	→ (no possible transition) and cs 	∈
F (Sc).

We can now define the refinement of multi-agent systems with respect to the above
definition of the semantics O.

Definition 1 (MAS Refinement). Given a choreography c, we say that two multi-agent
systems I1 and I2 are in a refinement relation if and only if the set of maximal traces of
Sc ⊗ I1 are included in the set of maximal traces of Sc ⊗ I2. That is, O

√
(Sc ⊗ I1) ⊆

O
√

(Sc ⊗ I2).

We now approach the problem that appears when considering agent refinement defined
as trace inclusion. It can be the case that the agents in the concrete system refine (with
respect to trace inclusion) the agents in the abstract system, nevertheless the concrete
system deadlocks for a particular choreography. We take, for instance, the agents ia and
ic from Section 2.1. We can easily design a choreography which works fine with ia
(does not deadlock) and on the contrary with ic. One example is the already mentioned
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c = (i, move(2, 0, 3)), where now, i points to either ia or ic up to a renaming. We recall
that ic is a refinement of ia. However, ic cannot execute the move ic cannot execute
the move (since the move is irrelevant for building the tower 321 and at implementa-
tion time it matters to be as precise as possible), while ia can (since in a specification
“necessary” is more important than “sufficiency”).

What the above illustration implies is that refinement as trace inclusion, though being
a satisfactory definition at individual agent level, is not a strong enough condition to
ensure refinement at a multi-agent level, in the presence of an arbitrary choreography.
It follows that we need to redefine individual agent refinement such that multi-agent
system refinement (as maximal trace inclusion) is compositional with respect to any
choreography. In this sense, a choreography acts as a context for multi-agent systems,
i.e., whatever the context is, it does not affect the visible results of the agents’ executions
but restricts them by activating only certain traces (the other traces still exist, however,
they are inactive).

In order to have a proper definition of agent refinement we look for a finer notion
of traces. The key ingredient lies in enabling conditions for actions. Given a mental
state ms, we look at all the actions enabled to be executed from ms. We denote them
by E(ms) = {a ∈ A | ∃ms′(ms

a→ ms′)} and we call E(ms) a ready set. We
can now present ready traces as possibly infinite sequences X1, a1, X2, a2, . . . where
ms0

a1→ ms1
a2→ ms2 . . . and Xi+1 = E(msi). We denote the set of all ready traces

from a state ms0 as RT (ms0). Compared to the definition of traces, ready traces are a
much more finer notion in the sense that they record not only actions which have been
executed but also sets of actions which are enabled to be executed at each step.

Definition 2 (Ready Agent Refinement). We say that two agents with initial mental
states ms and ms′ are in a ready refinement relation (i.e., ms ⊆rt ms′) if and only if the
ready traces of ms are included in the ready traces of ms′ (i.e., RT (ms) ⊆ RT (ms′)).

We can now present our main result which states that refinement is compositional, in the
sense that if there is a ready refinement between the agents composing two multi-agent
sytems it is then the case that one multi-agent system refines the other in the presence
of any choreography.

Theorem 1. Let I1, I2 be two multi-agent systems such that (∀i1 ∈ I1) (∃i2 ∈ I2)
(msi1 ⊆rt msi2) and a choreography c with the associated LTS Sc. We have that I1
refines I2, that is, O

√
(Sc ⊗ I1) ⊆ O

√
(Sc ⊗ I2).

Proof. What we need to further prove with respect to Proposition 2 is that the set
of enabled actions is a key factor in identifying failures in both implementation and
specification. Assume a maximal trace tr in O

√
(Sc ⊗ I1) leading to a non final cho-

reography state cs. Given cs0 and M1 as the initial states of Sc, I1, we have that

(cs0, M1)
tr→ (cs, M) (cs, M) 	 l→ for all l =‖j∈J (j, aj) such that cs

l→ cs′. By
rule (mas) this implies that there exists an agent identified by j which cannot perform
the action indicated. Thus the corresponding trace of j ends with a ready set X with
the property that aj is not included in it. We know that each implementation agent has
a corresponding specification, be it j′, such that j ready refines j′. If we, on the other
hand, assume that j′ can, on the contrary, execute aj we would have that in a given state
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j′ has besides the ready set X another ready set Y which includes aj . This contradicts
the maximality of the ready set. ��

As a direct consequence of the above theorem, we are able to infer the absence of
deadlock in the concrete system from the absence of deadlock in the abstract one:

Corollary 1. Let I1, I2 be two multi-agent systems with initial states M1 and M2. Let
c be a choreography with the associated LTS Sc and initial state cs0. We have that if I1
refines I2 (O

√
(Sc ⊗ I1) ⊆ O

√
(Sc′ ⊗ I2)) and c does not deadlock the specification

((cs0, M2) 	→∗ ⊥) it is then also the case that c does not deadlock the implementation
((cs0, M1) 	→∗ ⊥).

As we have briefly explained in Section 2.1, proving refinement by deciding trace inclu-
sion is an inefficient procedure. Since the same argument holds for ready refinement, a
more adequate approach is needed. If previously we have adopted simulation as a proof
technique for refinement, now we consider weak ready simulation.

Definition 3 (Weak Ready Simulation). We say that two agents with initial mental
states ms and ms′ are in a (weak) ready simulation relation (ms �rs ms′) if and only
if ms � ms′ and the corresponding ready sets are equal (E(ms) = E(ms′)).

As it is the case for simulation being a sound and complete proof technique for re-
finement, analogously we can have a similar result for ready simulation. We recall that
determinacy plays an important role in the proof for completeness.

Proposition 3. Given two agents with initial mental states ms and ms′, where the one
with ms is deterministic, we have that ms �rs ms′ iff ms′ ⊆rt ms.

Remark 1. For the sake of generality, in the definitions from this section we have used
the symbolic notations ms, ms′. BUnity and BUpL agents can be seen as (are, in fact)
instantiations. Proposition 3 relates to Proposition 1.

Recalling the BUpL and BUnity agents ia and ic, we note that though ia simulates ic it
is not also the case that it ready simulates. This is because the ready set of the BUnity
agent is always larger than the one of the BUpL agent. One basic argument is that ia
can always “undo a block move”, while ia cannot. However, let us see what would
have happened if we were to consider changing ia by replacing the conditional action
¬(on(2, 1) ∧ on(3, 2)) � do(move(x, y, z)) with the set from Figure 4:

C = { ¬on(2, 1) � do(move(2, 0, 1)),
¬on(3, 2) ∧ on(2, 1) � do(move(3, 0, 2)),
¬(on(2, 1) ∧ on(3, 2)) � do(move(x, y, 0)) }

Fig. 4. Adapting ia to ready simulate ic

We now have a BUnity agent which is less abstract. Basically, the instantiation
from the first two conditional actions disallows any spurious “to and fro” sequence
of moves like move(x, y, z) followed by move(x, z, y) which practically undoes the
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previous step leading to exactly the previous configuration. The instantiation is ob-
vious when one looks at the final (wanted) configuration. The last conditional action
allows “destructing” steps by moving blocks on the table. It can still be considered as a
specification. It provides no information about the order of executing the moves since
this is not important at the abstraction level. With the above change, the new BUnity
agent ready simulates ic. To see this, it suffices to notice that the only BUpL ready trace
is {move(3, 1, 0)}, move(3, 1, 0), {move(2, 0, 1)}, move(2, 0, 1), {move(3, 0, 2)},
move(3, 0, 2) which is also the only BUnity ready trace. The same equality of ready
traces holds when we consider the additional clean action.

We recall the choreography from Figure 3 and we consider a BUnity multi-agent
system which consists of two copies of ia (enabled to execute also clean). For either
branch, the executions (with respect to the transition (mas)) of the multi-agent sys-
tem are successful (the choreography reaches a final state). Since ic ready refines ia,
by Corollary 1 we can deduce that also the executions of a multi-agent system which
consists of a two ic copies are successful.

4 Timing Extensions of MAS

Our approach in adding time to multi-agent systems consists of adapting the theory
of timed-automata [3]. A timed automaton is a finite transition system extended with
real-valued clock variables. Time advances only in states since transitions are instanta-
neous. Clocks can be reset at zero simultaneously with any transition. At any instant,
the reading of a clock equals the time elapsed since the last time it was reset. States and
transitions have clock constraints, defined by the following grammar:

φc ::= x ≤ t | t ≤ x | x < t | t < x | φc ∧ φc,

where t ∈ Q is a constant and x is a clock. When a clock constraint is associated with
a state, it is called invariant, and it expresses that time can elapse in the state as long
as the invariant stays true. When a clock constraint is associated with a transition, it is
called guard, and it expresses that the action may be taken only if the current values of
the clocks satisfy the guard.

In our multi-agent setting, timed choreographies are meant to impose time con-
straints on the actions executed by the agents. We model them as timed automata. We
take, as an example, the choreography from Figure 5. There is a single clock x. The
initial state cs0 has no invariant constraint and this means that an arbitrary amount of
time can elapse in cs0. The clock x is always reset with the transition from cs0 to cs1.
The invariant x < 5 associated with the state cs1 ensures that the synchronous actions
clean and move(C, A, floor) must be executed within 5 units of time. The guard x > 6
associated with the transition from cs2 to cs3 ensures that the agents cannot spend an
indefinite time in cs2 because they must finish their tasks after 6 units of time.

cs0
cs1

x < 5
cs2 cs3

(i2,move(3, 1, 0)) ‖

(i1, clean), x := 0

(i1,move(2, 0, 1)) (i1,move(3, 0, 2)) ‖

(i2, clean), x > 6

Fig. 5. A timed choreography
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We now approach the issue of modelling time in BUnity and BUpL agents. In this
regard, we consider that agents have a set of local clocks and that clock valuations are
can be performed by an observer. We further pose the problem of how agents make use
of clocks. We recall the design principle: “the specification of basic actions does not
come with time”, thus actions are instantaneous. This implies that, in order to make the
time pass, we need to extend the syntax of the agent languages with new application
specific constructions such that the ontology of basic actions remains timeless (basic
actions being specified only in terms of pre/post conditions). This is why we introduce
delay actions, φ → I , where φ is a query on the belief base and I is an invariant like
x ≤ 1. Basically, their purpose is to make time elapse in a mental state where certain
beliefs hold. As long as the invariant is true, the agent can stay in the same state while
time passes. We refer to D as the set of delays of either a BUnity or a BUpL agent. In
what follows, we discuss the time extension for each language separately.

In order to extend BUnity with time, we only have to focus on conditional actions.
First, their queries are defined on both belief bases and clock valuations. Second, con-
ditional actions specify the set of clocks to be reset after the execution of basic actions.
The syntax becomes {φ ∧ φc} � do(a), λ. Timed conditional actions are meant to say
that if certain beliefs φ hold in the current mental state of a BUnity agent (as before)
and additionally, certain clock constraints φc are satisfied, then the basic action a is
executed and the clocks from the set λ are reset to 0.

We note that our design decision is to separate the implementation of action delays
from the one of conditional actions. This is because a construction like {φ}�I, do(a), λ
is ambiguous. If φ holds, it can either be the case that time elapses with respect to the
invariant I and a is suspended, or that a is immediately executed.

To illustrate the above constructions we recall the BUnity agent ia with the update
from Figure 4. We basically extend the BUnity agent such that the agent has one clock,
be it x, which is reset by conditional actions, and such that the agent can delay in given
states, thus letting the time pass.

C = { � � (do(clean), x := 0),
¬on(2, 1) � do(move(2, 0, 1)),
¬on(3, 2) ∧ on(2, 1) � do(move(3, 0, 2)),
¬(on(2, 1) ∧ on(3, 2)) �
(do(move(x1, x2, 0)), x := 0) }

D = { on(3, 0) ∨ cleaned← (x < 9),
on(2, 1) ∨ cleaned← (x < 10) }

Fig. 6. Extending ia with clock constraints

Figure 6 shows a possible timed extension. The clock x is reset after either perform-
ing clean or moving a block on the table. The agent can delay until the clock valuates
to 9 (resp. 10) units of time after moving 3 on 0 (resp. 2 on 1).

In order to extend BUpL with time we focus on plans and repair rules. With respect
to plans, previous calls a; p are replaced by (φc, a, λ); p and (φ → I); p, where φc is
time constraining the execution of action a and λ is the set of clocks to be reset. To
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simplify notation, if clock constraints and clock resets are absent we use a instead of
(a). With respect to repair rules, we only need to consider that the enabling conditions
can be defined not only on belief bases but also on clock valuations.

We remark that if previously actions failed when certain beliefs did not hold in a
given mental state, it is now the case that actions fail also when certain clock constraints
are not satisfied. Consider, for example, the plan ((x < 1), a, [x := 0]); ((x > 2), b, ∅).
There is no delay action between a and b, thus the time does not pass and x remains 0,
meaning that b cannot be executed. Such situations are handled by means of the general
semantics of the repair rules. There are two possibilities: either to execute an action with
a time constraint that holds, or to make time elapse. The latter is achieved by triggering
a repair rule like true ← δ, where for example δ is a delay action true → true which
allows an indefinite amount of time to pass.

To see a concrete example, we recall the BUpL agent ic. We consider two delay ac-
tions true ← (x < 9) and true ← (x < 10). We further make the delays and the clock
resets transparent in the plans. The plan rearrange(x1, x2, x3) changes to true ←
(x < 9);move(x1, 0, x2); true ← (x < 10); move(x3, 0, x1) such that time passes be-
tween moves. The plan mission changes to (true, clean, x := 0) + rearrange(2, 1, 3)
such that the clock x is reset after the action clean has been executed.

The observal behaviour of either timed BUnity or BUpL agents is defined in terms of
timed traces. A timed trace is a (possibly infinite) sequence (t1, a1) (t2, a2) . . . (ti, ai)
. . . where ti ∈ R+ with ti ≤ ti+1 for all i ≥ 1. We call ti a time-stamp of action ai

since it denotes the absolute time that passed before ai was executed. We then have that
a timed BUnity or BUpL agent computation over a timed trace (t1, a1)(t2, a2) . . . (ti,
ai) . . . is a sequence of transitions:

ms0, ν0
δ1→ a1→ ms1, ν1

δ2→ a2→ ms2, ν2 . . .

where msi is a BUnity (BUpL) mental state and ti are satisfying the condition ti =
ti−1 + δi for all i ≥ 1.

For example, a possible timed trace for either the timed BUpL or BUnity agent is
(0, clean), (7, move(3, 1, 0)), (8, move(2, 0, 1)), (9, move(3, 0, 2)). It is, in fact, the case
that any BUpL timed trace is also a BUnity timed trace, thus the two agents are again
in a refinement relation. We do not elaborate more on timed refinement. We only men-
tion that the methodology we described in Section 3 applies in the timed framework.
Along the same line, the key factor is determinacy, which is ensured by the disjointness
condition, i.e., clocks associated with the same action must be disjoint.

5 Conclusion

We have extended the notion of refinement of individual agents to multi-agent systems,
where the behaviour of the agents is coordinated by choreographies. Our approach to
introducing choreographies to multi-agent systems consisted of defining them as action-
based coordination mechanisms. In such a framework, we have the results that agent
refinement is a sufficient condition for multi-agent system refinement and that this lat-
ter notion preserves deadlock freeness. We have further illustrated a timed extension of
multi-agent systems by means of timed automata where the same refinement method-
ology can be adapted.
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We have stressed the importance of verification from the introduction. Our goal
was to describe a general methodology for a top-down design of multi-agent systems
which makes it simple to execute and verify agent programs. Concerning this practi-
cal side we mention that we have already implemented our formalism in Maude [22],
a rewriting logic software. Maude is an encompassing framework where we proto-
typed the agent languages we described such that it is possible to (1) execute agents
by rewriting; (2) verify agents by means of simulation, model-checking, searching, or
testing. Since we were mainly interested in refinement, the properties we focused on
were correctness properties, i.e., model-checking for the absence of deadlock in the
product of a BUpL and BUnity agent. However, we have experimented with differ-
ent other safety and liveness properties. With respect to the timed extensions of the
languages, we have prototyped them using Real-Time Maude. We have also exper-
imented with UPPAAL [23], however at a more abstract and syntactical level. Fur-
ther details, the current version and updates of the implementation can be found at
http://homepages.cwi.nl/˜astefano/agents. Extensions with respect
to model-checking timed agents and automatically generating test cases for verifying
infinite state agents need to be further investigated.
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Abstract. The extent to which a rational agent changes its beliefs may depend
on several factors like the trustworthiness of the source of new information, the
agent’s competence in judging the truth of new information, the mental spirit of
the agent (optimistic, pessimistic, pragmatic, etc), the agent’s attitude towards
information coming from unknown sources, or sources the agent knows as being
malicious, or sources the agent knows as providers of usually correct information,
and so on.

We propose and discuss three different agent’s belief behaviors to be used in a
goal (desire) generation and adoption framework. The originality of the proposals
is that the trustworthiness of a source depends not only on the degree of trust but
also on an independent degree of distrust. Explicitly taking distrust into account
allows us to mark a clear difference between the distinct notions of negative trust
and insufficient trust. More precisely, it is possible, unlike in approaches where
only trust is accounted for, to “weigh” differently information from helpful, ma-
licious, unknown, or neutral sources.

1 Introduction and Motivation

The goals to be adopted by a BDI agent [22] in a given situation may depend on the
agent’s beliefs, desires, and obligations [23]. Most of the existing works on goal gen-
eration, like for example the one proposed in [11], consider the notion of belief as an
all-or-nothing concept: either the agent believes something, or it does not. However, as
pointed out by Hansson in [16] for example, believing is a matter of degree. He under-
lines two notions of degree of belief. One is the static concept of degree of confidence.
In this sense, the more an agent’s degree of belief in a sentence is higher, the more con-
fidently it entertains that belief. The other notion is the dynamic concept of degree of
resistance to change. In that sense, the higher an agent’s degree of belief in a sentence
is, the more difficult it is to change that belief.

In classical logic, beliefs are considered to be certainly true, and the negation of
beliefs to be certainly false. This assumption does not cover the intermediate cases
pointed out by Hansson, that is, the cases in which beliefs are neither fully believed
nor fully disbelieved. In the possibility theory setting [12, 13], the notion of graded
belief is captured in terms of two measures: necessity and possibility. A first degree
of belief in a proposition, computed thanks to the necessity measure, is valued on a
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unipolar scale, where 0 means an absence of belief rather than believing the opposite
(Paul does not believe p does not mean that Paul believes ¬p). A second degree, valued
on a different unipolar scale and attached to propositions, expresses plausibility and is
computed thanks to the possibility measure. If the plausibility of a proposition is 0, it
means certainty of falseness (If Paul thinks that it is fully impossible that it will rain
tomorrow, it means that Paul is certain that tomorow it will not rain), whereas 1 just
reflects possibility, not certainty (If Paul thinks that it is fully possible that it will rain
tomorrow, it does not mean that Paul is certain that tomorow it will rain). Thanks to the
duality between necessity and possibility measure, the set of disbelieved proposition
can then be inferred from the set of believed ones.

Recently, we have proposed [7] a belief change operator for goal generation in line
with Hansson’s considerations. In that approach, the sources of information may also
be partially trusted and, as a consequence, information coming from such sources may
be partially believed.

The main lack in that approach is the way the concept of distrust is implicitly con-
sidered, that is, as the complement of trust (trust = 1 − distrust). However, trust and
distrust may derive from different kinds of information (or from different sides of the
personality) and, therefore, can coexist without being complementary [15, 9, 20]. For
instance, one may not trust a source because of lack of positive evidence, but this does
not necessarily mean (s)he distrusts it. Distrust can play an important role in an agent’s
goal generation reasoning complementing trust. In particular, in a framework of goal
generation based on beliefs and desires1, taking distrust explicitly into account allows
an agent, e.g., to avoid dropping a goal just because favorable information comes from
an unknown source (neither trusted nor distrusted) — the absence of trust does not
erroneously mean full distrust.

We propose a way to take these facts into consideration by using possibility theory
for representing degrees of beliefs and by concentrating on the influence of new infor-
mation in the agent’s beliefs. The latter point supposes that a source may be trusted
and/or distrusted to a certain extent. This means that we explicitly consider not only the
trust degree in the source but also the distrust degree. To this aim, the trustworthiness
of a source is represented as a (trust, distrust) pair, and intuitionistic fuzzy logic [1] is
used to represent the uncertainty on the trust degree introduced by the explicit presence
of distrust. On that basis, we propose three belief change operators to model the attitude
of an agent towards information from trusted, malicious, neutral (trusted and malicious
to same extent) or unknown sources. Besides, such operators allow us to account for the
fact that the acceptance or rejection of new information depends on several factors like
the agent’s competence in judging the truth of incoming information, the agent’s state
of spirit, the correctness of information provided by the source in the past, and so on.

The paper is organized as follows: Section 2 provides minimal background on fuzzy
sets, possibility theory, and intuitionistic fuzzy logic; Section 3 motivates and discusses
a bipolar view of trust and distrust; Section 4 introduces an abstract beliefs-desires-goals
agent model; Section 5 presents a trust-based belief change operator adapted from pre-
vious work and proposes three extensions thereof for dealing with explicitly given trust
and distrust; Section 6 describes the goal generation process; and Section 7 concludes.

1 Here, for sake of simplicity, we will not consider intentions.
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2 Basic Considerations

2.1 Fuzzy Sets

Fuzzy sets [26] allow the representation of imprecise information. Information is impre-
cise when the value of the variable to which it refers cannot be completely determined
within a given universe of discourse. For example, among the existing fruits, it is easy
to define the set of apples. Instead, it is not so easy to define in a clear cut-way the set of
ripe apples because ripeness is a gradual notion. A fuzzy set is appropriate to represent
this kind of situation.

Fuzzy sets are a generalization of classical sets obtained by replacing the character-
istic function of a set A, χA, which takes up values in {0, 1} (χA(x) = 1 iff x ∈ A,
χA(x) = 0 otherwise) with a membership function μA, which can take up any value in
[0, 1]. The value μA(x) or, more simply, A(x) is the membership degree of element x
in A, i.e., the degree to which x belongs in A. A fuzzy set is then completely defined
by its membership function.

2.2 Possibility Theory and Possibility Distribution

The membership function of a fuzzy set describes the more or less possible and mutually
exclusive values of one (or more) variable(s). Such a function can then be seen as a
possibility distribution [27]. Indeed, if F designates the fuzzy set of possible values
of a variable X , πX = μF is called the possibility distribution associated to X . The
identity μF (u) = πX(u) means that the membership degree of u to F is equal to the
possibility degree of X being equal to u when all we know about X is that its value
is in F . A possibility distribution for which there exists a completely possible value
(∃u0; π(u0) = 1) is said to be normalized.

Possibility and Necessity Measures. A possibility distribution π induces a possibil-
ity measure and its dual necessity measure, denoted by Π and N respectively. Both
measures apply to a crisp set A and are defined as follows:

Π(A) ≡ sup
s∈A

π(s); (1)

N(A) ≡ 1 − π(Ā) = inf
s∈Ā

{1 − Π(s)}. (2)

In words, the possibility measure of set A corresponds to the greatest of the possibilities
associated to its elements; conversely, the necessity measure of A is equivalent to the
impossibility of its complement Ā.

A few properties of possibility and necessity measures induced by a normalized pos-
sibility distribution on a finite universe of discourse U are the following, for all subsets
A, B ⊆ U :

1. Π(A ∪ B) = max{Π(A), Π(B)};
2. Π(∅) = 0, Π(U) = 1;
3. N(A ∩ B) = min{N(A), N(B)};
4. N(∅) = 0, N(U) = 1;
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5. Π(A) = 1 − N(Ā) (duality);
6. Π(A) ≥ N(A);
7. N(A) > 0 implies Π(A) = 1;
8. Π(A) < 1 implies N(A) = 0.

An immediate consequence of these properties is that either Π(A) = 1 or Π(Ā) = 1.
Both a set A and its complement having a possibility of 1 is the case of complete
ignorance on A.

2.3 Intuitionistic Fuzzy Logic

Fuzzy set theory has been extended to intuitionistic fuzzy set (IFS for short) theory [1].
In fuzzy set theory, it is implicitly assumed that the fact that an element x “belongs” with
a degree μA(x) in a fuzzy set A implies that x should “not belong” to A to the extent
1 − μA(x). An intuitionistic fuzzy set S, instead, explicitly assigns to each element x
of the considered universe of discourse both a degree of membership μS(x) ∈ [0, 1]
and one of non-membership νS(x) ∈ [0, 1] which are such that μS(x) + νS(x) ≤ 1.
Obviously, when μS(x)+νS(x) = 1 for all the elements of the universe, the traditional
fuzzy set concept is recovered.

Deschrijver and Kerr showed [10] that IFS theory is formally equivalent to interval-
valued fuzzy set (IVFS) theory, which is another extension of fuzzy set theory in which
the membership degrees are subintervals of [0, 1] [24]. The IFS pair (μS(x), νS(x))
corresponds to the IVFS interval [μS(x), 1−νS(x)], indicating that the degree to which
x “belongs” in S can range from μS(x) to 1 − νS(x). The same authors define the
hesitation degree, h ∈ [0, 1], as the length of such interval, h = 1 − μS(x) − νS(x).
Hesitation h represents the uncertainty about the actual membership degree of x.

IFS is suitable to representing gender, for example. Indeed, according to the Inter-
sex Society of North America [21], approximately 1 in 2000 children are born with a
condition of “ambiguous” external genitalia – it is not clear if they are female or male.
Let M be a fuzzy set representing males, and F be a fuzzy set representing females. A
newborn x can be identified as a male if μM (x) = 1, νM (x) = 0, and h = 0; or as a fe-
male if μF (x) = 1, νF (x) = 0, and h = 0; or as “ambiguous” if μM (x)(μF (x)) = α,
νM (x)(νF (x)) = β, and h = 1 − α − β > 0.

3 Representing Trust and Distrust

Most existing computational models usually deal with trust in a binary way: they as-
sume that a source is to be trusted or not, and they compute the probability that the
source can be trusted. However, sources can not always be divided into trustworthy and
untrustworthy in a clear-cut way. Some sources may be trusted to a certain extent. To
take this fact into account, we represent trust and distrust as fuzzy degrees. A direct
consequence of this choice is that facts may be believed to a degree and desires and
goals may be adopted to a given extent.

It must be stressed that our aim is not to compute degrees of trust and distrust of
sources; like in [18], we are just interested in how these degrees influence the agent’s
beliefs, and, by way of a deliberative process, desires and goals.
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Approaches to the problem of deriving/assigning degrees of trust (and distrust) to
information sources can be found, for example, in [5], [8], [2].

We propose to define the trustworthiness score of a source for an agent as follows:

Definition 1 (Trustworthiness of a Source). Let τs ∈ [0, 1] be the degree to which an
agent trusts source s, and δs ∈ [0, 1] the degree to which it distrusts s, with τs +δs ≤ 1.
The trustworthiness score of s for the agent is the pair (τs, δs).

Following Deschrijver and Kerr’s viewpoint, the trustworthiness (τ, δ) of a source cor-
responds to the interval [τ, 1 − δ], indicating that the trust degree can range from τ to
1 − δ. Therefore, the hesitation degree h = 1 − τ − δ represents the uncertainty, or
doubt, about the actual trust value. E.g., if a source has trustworthiness (0.2, 0), this
means that the agent trusts the source to degree 0.2, but possibly more, because there is
much room for doubt (h = 0.8). More precisely, it means that the agent may trust the
source to a degree varying from 0.2 to 1. Instead, if the trustworthiness is (0.6, 0.4), the
agent trusts the source to degree 0.6 but not more (h = 0).

Thanks to these considerations, we can represent the trustworthiness score of a
source more faithfully than in existing approaches. In particular, we can explicitly rep-
resent the following special cases:

(0, 1): the agent has reasons to fully distrust the source, hence it has no hesitation
(h = 0);

(0, 0): the agent has no information about the source and hence no reason to trust the
source, but also no reason to distrust it; therefore, it fully hesitates in trusting it
(h = 1);

(1, 0): the agent has reasons to fully trust the source, hence it has no hesitation (h = 0).

As we can see, by considering both the (not necessarily related) concepts of trust and
distrust, it is possible to differentiate between absence of trust caused by presence of
distrust (e.g., information provided by a malicious source) versus by lack of knowledge
(e.g., as towards an unknown source).

Let us consider the following example. Paul’s son needs urgent treatment. John,
Robert and Jimmy claim they can treat Paul’s son. In Situation 1 (S1), John is the first
who meets Paul and his son. In Situation 2 (S2), the first to meet them is Robert; and in
Situation 3 (S3), the first to meet them is Jimmy.

S1. Paul has reason to think that John is an excellent physician, therefore he trusts John;
S2. Paul knows that Robert is an ex-physician. Paul has motivations to think that the

reason why Robert does not practice medicine anymore is he failed several times
when treating people in a situation similar to that of his son. In this case, the rational
behavior would be to distrust Robert;

S3. Paul does not know Jimmy who introduces himself as a physician. In this case
trusting or distrusting Jimmy depends on Paul’s internal factors like his compe-
tence in judging the truth of incoming information, his state of spirit (optimistic,
pessimistic, or pragmatic), etc. For example, if Paul is wary and pessimistic, he
will distrust Jimmy; instead, if Paul is optimistic and does not perceive malicious
purposes from somebody he does not know, he will accept Jimmy’s help.
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We can notice that in S3, Paul has lack of positive and negative evidence. The fact is
that Paul neither trusts nor distrusts Jimmy. He just does not know him.

This case shows that trust is not always the complement of distrust. Indeed, here
we have trust degree = 0; distrust degree = 0, and we do not have trust 	= 1 −
distrust. In this particular case the doubt (hesitation degree) is maximal, i.e., 1. It
means that Paul behavior can depend on uncertain trust values going from completely
trusting Jimmy to completely distrusting Jimmy.

We can distinguish information sources thanks to the extent of negative and positive
evidence we dispose of for each source. Let (τ, δ) be the trustworthiness of a source for
an agent.

Definition 2. A source is said to be helpful if τ > δ, malicious if τ < δ, neutral if
τ = δ 	= 0. When τ = δ = 0, the source is said to be unknown.

Definition 3 (Comparing Sources). Let s1 and s2 be two sources with trustworthiness
scores of (τ1, δ1) and (τ2, δ2) respectively. Source s1 is said to be more trustworthy
than source s2, noted s1 � s2, if and only if τ1 ≥ τ2 and δ1 ≤ δ2.

This is a partial order in the sense that it is not always possible to compare two trust-
worthiness scores.

Working Example. John thinks his house has become too small for his growing family
and would like to buy a larger one. Of course, John wants to spend as little money as
possible. A friend who works in the real estate industry tells John prices are poised to
go down. Then John reads in a newspaper that the real estate market is weak and prices
are expected to go down. Therefore, John’s desire is to wait for prices to lower before
buying. However, John later meets a real estate agent who has an interesting house on
sale, and the agent tells him to hurry up, because prices are soaring. On the way home,
John hears a guy on the bus saying his cousin told him prices of real estate are going
up.

To sum up, John got information from four sources with different scores. The first
source is friendly and competent; therefore, its score is (1, 0). The second is suppos-
edly competent and hopefully independent: therefore, its score might be something like
(1
2 , 1

4 ). The third source is unknown, but has an obvious conflict of interest; therefore
John assigns it a score of (0, 1). Finally, the guy on the bus is a complete stranger re-
porting the opinion of another complete stranger. Therefore, its score cannot be other
than (0, 0).

We all have a basic intuition, suggested by common sense, of how information from
these sources should be accounted for to generate a goal (buy now vs. wait for prices
to go down) and planning actions accordingly. Below, we provide a formalization of
the kinds of deliberations a rational agent is expected to make in order to deal with
information scored with trust and distrust degrees.

4 Representing Graded Beliefs, Desires and Goals

An agent’s belief is a piece of information that the agent believes in. An agents’s de-
sire is something (not always material) that the agent would like to possess or perform.
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Here, we do not distinguish between what is positively desired and what is not re-
jected by explicitly considering positive and negative desires like it is done by Casali
and colleagues [3]. This is an interesting point that we will consider in a future work.
Nevertheless, our “desires” can be regarded as positive desires.

Desires (or motivations) are necessary but not sufficient conditions for action. When
a desire is met by other conditions that make it possible for an agent to act, that desire
becomes a goal. Therefore, given this technical definition of a desire, all goals are de-
sires, but not all desires are goals. The main distinction we made here between desires
and goals is in line with the one made by Thomason [23] and other authors: goals are
required to be consistent whereas desires need not be.

4.1 Basic Notions

In this section, we present the main aspects of the adopted formalism.

Definition 4 (Language). Let A be a set of atomic propositions and let L be the propo-
sitional language such that A ∪ {�, ⊥} ⊆ L, and, ∀φ, ψ ∈ L, ¬φ ∈ L, φ ∧ ψ ∈ L,
φ ∨ ψ ∈ L.

Ω = {0, 1}A is the set of all possible interpretations on A. An interpretation I ∈ Ω is
a function I : A → {0, 1} assigning a truth value to every atomic proposition and, by
extension, to all formulas in L.

Representing Graded Beliefs. As convincingly argued by Dubois and Prade [12, 13],
a belief can be regarded as a necessity degree. A cognitive state of an agent can then be
modeled by a normalized possibility distribution π:

π : Ω → [0, 1]. (3)

π(I) is the possibility degree of interpretation I. It represents the plausibility order of
the possible word situation represented by interpretation I. If the agent deems more
plausible the world I1 than I2, then π(I1) ≥ π(I2).
The notation [φ] denotes the set of all models of a formula φ ∈ L:

[φ] = {I ∈ Ω : I |= φ}.

Definition 5 (Possibility of a world situation). The extent to which the agent considers
φ as possible, Π([φ]), is given by:

Π([φ]) = max
I∈[φ]

{π(I)}. (4)

A desire-generation rule is defined as follows:

Definition 6 (Desire-Generation Rule). A desire-generation rule R is an expression
of the form βR, ψR ⇒+

D d, where βR, ψR ∈ L, and d ∈ {a, ¬a} with a ∈ A. The
unconditional counterpart of this rule is α ⇒+

D d, which means that the agent (uncon-
ditionally) desires d to degree α.

Intuitively this means: “an agent desires d as much as it believes βR and desires ψR.
Given a desire-generation rule R, we shall denote rhs(R) the literal on the right-hand

side of R.
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Example (continued). John’s attitude towards buying a larger house may be described
as follows:

R1 : need larger house, � ⇒+
D buy house,

R2 : ¬prices down, buy house ⇒+
D ¬wait.

R3 : prices down, buy house ⇒+
D wait.

4.2 Agent’s State

The state of an agent is completely described by a triple S = 〈B, RJ , J 〉, where

– B is the agent’s belief set induced by a possibility distribution π;
– RJ is a set of desire-generation rules, such that, for each desire d, RJ contains at

most one rule of the form α ⇒+
D d;

– J is a fuzzy set of literals.

B is the agent’s belief set induced by a possibility distribution π (Equation 3); the the
degree to which an agent believes φ is given by Equation 5. RJ contains the rules
which generate desires from beliefs and other desires (subdesires). J contains all lit-
erals (positive and negative form of atoms in A) representing desires which may be
deduced from the agent’s desire-generation rules. We suppose that an agent can have
inconsistent desires, i.e., for each desire d we can have J (d) + J (¬d) > 1.

4.3 Semantics of Belief and Desire Formulas

The semantics of belief and desire formulas in L are the following.

Definition 7 (Graded belief and desires formulas). Let S = 〈B, J , RJ 〉 be the state
of the agent, and φ be a formula, the degree to which the agent believes φ is given by:

B(φ) = N([φ]) = 1 − Π([¬φ]). (5)

Straightforward consequences of the properties of possibility and necessity measures
are that B(φ) > 0 ⇒ B(¬φ) = 0 and

B(�) = 1, (6)

B(⊥) = 0, (7)

B(φ ∧ ψ) = min{B(φ), B(ψ)}, (8)

B(φ ∨ ψ) ≥ max{B(φ), B(ψ)}. (9)

If φ is a literal, J (φ) is directly given by the state of the agent. Instead, the desire degree
of non-literal propositions is given by:

J (¬φ) = 1 − J (φ), (10)

J (φ ∧ ψ) = min{J (φ), J (ψ)}, (11)

J (φ ∨ ψ) = max{J (φ), J (ψ)}. (12)

Note that since J needs not be consistent, the De Morgan laws do not hold, in general,
for desire formulas.
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Definition 8 (Degree of Activation of a Rule). Let R be a desire-generation rule. The
degree af activation of R, Deg(R), is given by

Deg(R) = min(B(βR), J (ψR))

and for its unconditional counterpart R = α ⇒+
D d: Deg(R) = α.

Definition 9 (Degree of Justification). The degree of justification of desire d is defined
as

J (d) = max
R∈RJ :rhs(R)=d

Deg(R).

This represents how rational it is for an agent to desire d.

Example (continued). John’s initial state may be described by a possibility distribution
π on

Ω =

⎧⎪⎪⎨⎪⎪⎩
I0 = {need larger house �→ 0, prices down �→ 0},
I1 = {need larger house �→ 0, prices down �→ 1},
I2 = {need larger house �→ 1, prices down �→ 0},
I3 = {need larger house �→ 1, prices down �→ 1}

⎫⎪⎪⎬⎪⎪⎭ ,

such that
π(I0) = 0, π(I1) = 0, π(I2) = 1, π(I3) = 1,

whereby

B(need larger house) = 1 − max{π(I0), π(I1)} = 1,

B(¬need larger house) = 1 − max{π(I2), π(I3)} = 0,

B(prices down) = 1 − max{π(I0), π(I2)} = 0,

B(¬prices down) = 1 − max{π(I1), π(I3)} = 0.

Therefore, the set of John’s justified desires will be

J (buy house) = 1 (because of Rule R1),

J (¬buy house) = 0 (no justifying rule),

J (wait) = 0 (because of Rule R3),

J (¬wait) = 0 (because of Rule R2).

5 Belief Change

Here, we discuss and compare three possible extensions of a trusted-based operator akin
to the one proposed in [7] to deal with bipolar trust and distrust degrees. To begin with,
we define a basic belief change operator based on trust.

5.1 Trust-Based Belief Change Operator

Here, we suppose that a source of information may be considered trusted to a certain
extent. This means that its membership degree to the fuzzy set of trusted sources is
τ ∈ [0, 1]. Let φ ∈ L be incoming information from a source trusted to degree τ . The
belief change operator is defined as follows:
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Definition 10 (Belief Change Operator *). The possibility distribution π′ which in-
duces the new belief set B′ after receiving information φ is computed from possibility
distribution π relevant to the previous belief set B (B′ = B ∗ τ

φ ) as follows: for all
interpretation I,

π′(I) = π̄′(I)/ max
I

{π̄′(I)}, (13)

where

π̄′(I) =

⎧⎨⎩π(I), if I |= φ and B(¬φ) < 1;
τ, if I |= φ and B(¬φ) = 1;
π(I) · (1 − τ), if I 	|= φ.

(14)

Notice that Equation 13 guarantees that π′ is a normalized possibility distribution. The
condition B(¬φ) < 1 in Equation 14 is equivalent to ∃I′ : I ′ |= φ ⇒ π(I ′) > 0, i.e.,
Π([φ]) > 0; likewise, the condition B(¬φ) = 1 is equivalent to Π([φ]) = 0, which
implies π(I) = 0. Therefore, the second case in Equation 14 provides for the revision
of beliefs that are in contradiction with new information φ. In general, the operator
treats new information φ in the negative sense: being told φ denies the possibility of
world situations where φ is false (third case of Equation 14). The possibility of world
situations where φ is true may only increase due to normalization (Equation 13) or
revision (second case of Equation 14).

In the following, we present three alternatives for extending the belief change oper-
ator ∗. In such extensions, we suppose that a source of information may be considered
trusted to a degree τ ∈ [0, 1] and/or distrusted to a degree δ ∈ [0, 1]; τ and δ are re-
spectively the source’s membership degrees in the fuzzy sets of trusted and distrusted
sources.

5.2 Open-Minded Belief Change Operator

This operator represents the changes in the beliefs of an agent which is both optimistic
and does not perceive malicious purposes from neutral sources (“An optimistic agent
discerns (him)herself as luckier” [17]). The proposed operator provides a formal rep-
resentation of how an agent which gives the benefit of the doubt to the sources could
change its beliefs when new information is received. More precisely, the following defi-
nition illustrates the attitude of an open-minded agent when choosing which among the
possible trust degrees in [τ, 1 − δ] to consider as its trust degree.

Definition 11 (Open-Minded Operator). Let φ be the incoming information with the
trustworthiness score (τ, δ). An open-minded belief change operator ∗m can be defined
as follows:

B ∗m
(τ, δ)

φ
= B ∗ τ + (h/2)

φ
. (15)

As we can see, such an agent chooses a degree of trust which is proportional to the de-
gree of hesitation. Due to its optimism, the greater the hesitation, the higher the adopted
trust degree.

Observation 1. If h = 0, then, by applying the ∗m operator, information φ coming
from any source with trustworthiness degree (τ, δ), is perceived as trusted with degree
τ : B ∗m

(τ,δ)
φ = B ∗ τ

φ .
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Observation 2. By applying the ∗m operator, information coming from a neutral source
is considered as half-trusted.

Indeed, ∀ α ∈ [0, 1/2]2 we have: B ∗m
(α,α)

φ = B ∗ 1/2
φ . In particular, when a piece

of information comes from a completely unknown source, (i.e., with a trustworthiness
score equal to (0, 0)), the agent considers that information anyway by giving it a half
degree of trust.

Observation 3. By applying the ∗m operator, information is not considered at all only
in the cases in which it comes from a completely distrusted source, i.e., a source with a
trustworthiness score equal to (0, 1). Benefit of the doubt is given in all the other cases.

Example (continued). By using the open-minded change operator, John’s initial beliefs
would change to

B′ = B ∗m
(1, 0)

φ
∗m

(1/2, 1/4)
φ

∗m
(0, 1)
¬φ

∗m
(0, 0)
¬φ

= B ∗ 1
φ

∗ 5/8
φ

∗ 0
¬φ

∗ 1/2
¬φ

,

where φ = prices down. This is how the possibility distribution over belief interpreta-
tions changes, given that I1, I3 |= φ and I0, I2 |= ¬φ:

π(I0) π(I1) π(I2) π(I3)
initial 0 0 1 1
∗ 1

φ 0 0 0 1

∗ 5/8
φ 0 0 0 1

∗ 0
¬φ 0 0 0 1

∗ 1/2
¬φ 1 0 1 1

This yields: B′(prices down) = B′(¬prices down) = 0. Therefore, an open-minded
John would not change the justification degree of his desires, that is, his justification to
buy a house would still be full, while he would be unresolved whether to wait or not,
for neither desire would be justified.

5.3 Wary Belief Change Operator

Here, we present a belief change operator which illustrates the attitude of a conservative
(pessimistic) agent which does not give the benefit of the doubt to unknown sources and
perceives information coming from malicious sources as false (to some extent, depend-
ing on the degree of distrust).“A pessimistic agent discerns (him)herself as unluckier”.

Definition 12 (Effective Trust/Distrust). Let (τ, δ) be the trustworthiness score of a
helpful source (malicious source). The degre of effective trust τe (effective distrust δe)
is given by τe = τ − δ ∈ (0, 1] (δe = δ − τ ∈ (0, 1]).

2 by definition, i.e. because τ + δ ≤ 1, the highest value τ and δ can take up in case of equality
is 1/2.
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Definition 13 (Wary Operator). Let φ be incoming information with trustworthiness
score (τ, δ). A wary belief change operator ∗w can be defined as follows:

B ∗w
(τ, δ)

φ
=

⎧⎨⎩
B ∗ τe

φ if τe > 0 and h 	= 0;
B ∗ δe

¬φ if δe > 0 and h 	= 0;
B if τ = δ.

(16)

Observation 4. Whereas in the previous generalization proposal the special case that
falls back to operator ∗ is when δ = 1 − τ , here we start from the assumption that
operator ∗ applies to the special case where δ = 0.

Observation 5. If the agent has motivations for (effectively) distrusting, with degree α,
the source of information from which comes the new piece of information φ, by applying
the operator ∗w, it will trust its opposite ¬φ, with degree α.

Observation 6. In both cases of unknown sources (i.e., trustworthiness score equal to
(0, 0)), or neutral sources (i.e., trustworthiness score of the form (α, α)), applying ∗w

will not change at all the agent degrees of beliefs.

Example (continued). By using the wary change operator, John’s initial beliefs would
change to

B′ = B ∗w
(1, 0)

φ
∗w

(1/2, 1/4)
φ

∗w
(0, 1)
¬φ

∗w
(0, 0)
¬φ

= B ∗ 1
φ

∗ 1/4
φ

∗ 1
φ

∗ 0
¬φ

,

where φ = prices down. This is how the possibility distribution over belief interpreta-
tions changes, given that I1, I3 |= φ and I0, I2 |= ¬φ:

π(I0) π(I1) π(I2) π(I3)
initial 0 0 1 1
∗ 1

φ 0 0 0 1

∗ 1/4
φ 0 0 0 1

∗ 1
φ 0 0 0 1

∗ 0
¬φ 0 0 0 1

This yields B′(prices down) = 1 and B′(¬prices down) = 0. Therefore, a wary John
would increase the justification degree of the desire to wait for prices to go down before
buying. The justification of waiting is now equal to that of buying a house.

5.4 Content-Based Belief Change Operator

Neither of the previous two proposed operator extensions attempts to consider the con-
tent of incoming information as well as the agent competence in judging its truth.

Some experiments have shown, however, that this consideration can help when eval-
uating the truth of new information. Fullam and Barber [14] showed that integrating
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both policies for information valuation based on characteristics of the information and
the sources providing it yields significant improvement in belief accuracy and precision
over no-policy or single-policy belief revision.

Experiments on human trust and distrust of information in the context of a military
sensemaking task have concluded that people tend to trust information from an un-
known source (whose prototypical case is τ = δ = 0) to the extent that it does not
contradict their previous beliefs [19]. The basic rationale for this behavior appears to be
that people trust themselves, if anybody.

The third proposed extension of the belief change operator intends to model this type
of behavior.

Definition 14 (Content-Based Operator). Let φ be incoming information with trust-
worthiness score (τ, δ). A content-based belief change operator ∗c can be defined as
follows:

B ∗c
(τ, δ)

φ
= B ∗ τ + h · B(φ)

φ
. (17)

Observation 7. By applying operator ∗c, the only case in which information will be
completely rejected is when the source is fully distrusted.

Observation 8. By applying operator ∗c, the only case in which the information con-
tent does not influence the agent’s beliefs is when h = 0.

Example (continued). By using the content-based change operator, John’s initial beliefs
would change to

B′ = B ∗c
(1, 0)

φ
∗c

(1/2, 1/4)
φ

∗c
(0, 1)
¬φ

∗c
(0, 0)
¬φ

= B ∗ 1
φ

∗ 3/4
φ

∗ 0
¬φ

∗ 0
¬φ

,

where φ = prices down. This is how the possibility distribution over belief interpreta-
tions changes, given that I1, I3 |= φ and I0, I2 |= ¬φ:

π(I0) π(I1) π(I2) π(I3)
initial 0 0 1 1
∗ 1

φ 0 0 0 1

∗ 3/4
φ 0 0 0 1

∗ 0
¬φ 0 0 0 1

∗ 0
¬φ 0 0 0 1

This yields: B′(prices down) = 1 and B′(¬prices down) = 0. Therefore, in this case,
John would behave like a wary John.

5.5 Further Observations

Observation 9. By applying the operators ∗m and ∗c, a completely distrusted piece of
information (δ = 1, τ = 0 and h = 0) is not considered at all.
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When there is no doubt about the trust degree, both the open-minded and content-based
agents behave like a trust-based agent.

Observation 10. If there is no hesitation, i.e., if h = 0,

B ∗m
(τ, δ)

φ
= B ∗c

(τ, δ)
φ

= B ∗ τ

φ
.

Observation 11. By using the open minded operator or the content-based operator, the
more different not fully distrusted sources confirm formula φ, the more φ is believed.

Observation 12. By using a wary operator, the more different and:

– helpful sources confirm a belief by providing the same information, the more be-
lieved is the information provided;

– malicious sources confirm a belief by providing the same information, the less be-
lieved is the information provided.

6 Desire and Goal Change

Belief change may induce changes in the justification degree of some desires/goals.
Actually, this is the only way to modify the agent goals from the outside (external
reason) [4]. As we have seen in the previous sections, different kinds of agent may have
different behaviors (open-minded, wary, or content-based, for example) when changing
their beliefs on the basis of new incoming information. This may result in different
belief behaviours for different agents in the same situation and, as a consequence, in
different desire/goal sets. To account for the changes in the desire set caused by belief
change, one has to recursively [7]:

(i) calculate for each rule R ∈ RJ its new activation degree by considering B′ and
(ii) update the justification degree of all desires in its right-hand side (rhs(R)).

Desires may also change for internal reasons. This is represented by the insertion of a
new desire-generation rule in RJ or the retraction of an existing rule. The new fuzzy
set of justified desires, J ′, is computed as follow:

(i) calculate for each rule R ∈ RJ its new activation degree by considering the fact
that a rule is inserted or retracted and

(ii) update the justification degree of all desires in the right-hand side of the rules in
RJ .

Goals serve a dual role in the deliberation process, capturing aspects of both intentions
[6] and desires [25]. The main point about desires is that we expect a rational agent to
try and manipulate its surrounding environment to fulfill them. In general, considering a
problem P to solve, not all generated desires can be adopted at the same time, especially
when they are not feasible at the same time. We assume we dispose of a P-dependent
function FP wich, given a possibility distribution inducing a set of graded beliefs B and
a fuzzy set of desires J , returns a degree γ which corresponds to the certainty degree
of the most certain feasible solution found. We may call γ the degree of feasibility of J
given B, i.e., FP(J |B) = γ.
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Definition 15 (γ-Goal Set). A γ-goal set, with γ ∈ [0, 1], in state S is a fuzzy set of
desires G such that:

1. G is justified: G ⊆ J , i.e., ∀d ∈ {a, ¬a}, a ∈ A, G(d) ≤ J (d);
2. G is γ-feasible: FP(G|B) ≥ γ;
3. G is consistent: ∀d ∈ {a, ¬a}, a ∈ A, G(d) + G(¬d) ≤ 1.

In general, given a fuzzy set of desires J , there may be more than one possible γ-goal
sets G. However, a rational agent in state S = 〈B, J , RJ〉, for practical reasons, may
need to elect one precise set of goals, G∗, to pursue, which depends on S.

In that case, a goal election function should be defined. Let us call Gγ the function
which maps a state S into the γ-goal set elected by a rational agent in state S: G∗ =
Gγ(S).

The choice of one goal set over the others may be based on a preference relation on
desire sets. Therefore, Gγ must be such that:

– (G1) ∀S, Gγ(S) is a γ-goal set;
– (G2) ∀S, if G is a γ-goal set, then Gγ(S) is preferred at least as G, or more.

(G1) requires that a goal election function Gγ does indeed return a γ-goal set; while
(G2) requires that the γ-goal set returned by function Gγ be “optimal”, i.e., that a
rational agent always selects one of the most preferrable γ-goal sets.

7 Conclusion

The issue of how to deal with independently and explicitly given trust and distrust de-
grees of information sources within the context of goal generation has been approached
by generalizing a trusted-based belief change operator.

The three proposed alternative extensions have different scopes. The open-minded
operator makes sense in a collaborative environment, where all sources of information
intend to be helpful, except that, perhaps, some of them may lack the knowledge needed
to help. The wary operator is well suited to contexts where competition is the main
theme and the agents are utility-driven participants in a zero-sum game, where a gain for
an agent is a loss for its counterparts. The content-based operator is aimed at mimicking
the usual way people change their beliefs.
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Abstract. Real-world business relationships have an essentially cooper-
ative nature. However, when modeling contractual norms using norma-
tive multi-agent systems, it is typical to give norms a strict and domain
independent semantics. We argue that in B2B contract enactment coop-
eration should be taken into account when modeling contractual com-
mitments through obligations. We introduce an approach to model such
commitments based on directed obligations with time windows. Our pro-
posal is based on authorizations granted at specific states of an obligation
lifecycle model, made possible by handling deadlines in a flexible way. We
formalize such obligations using linear temporal logic and provide an im-
plementation to their semantics using a set of monitoring rules employed
in a forward-chaining inference engine. We show, through experimenta-
tion, the correctness of the obtained monitoring tool in different contract
enactment situations.

1 Introduction

Real-world business relationships have an essentially cooperative nature. When
considering B2B Virtual Organizations, different enterprises share their own
competences and skills in a regulated way, through commitments expressed as
norms in contracts. The essence of such contracts is commitment [1]: contracts
provide a legally binding agreement including legal sanctions in case of failure to
honor commitments. However, the importance of successfully proceeding with
business demands for flexibility of operations: contractors should try to facilitate
the compliance of their partners. This common goal of conducting business is
based on the fact that group success also benefits each partner’s private goals.
These goals are not limited to the ongoing business relationship, but may also
concern future opportunities that may arise.

Multi-agent systems have been used to address B2B settings, where agents
represent different enterprises and engage in (automated) contract negotiations.
Furthermore, software frameworks are being designed and engineered that try to
provide normative environments [2][3][4][5][6] enabling monitoring and enforce-
ment of contractual norms. Nevertheless, many approaches to normative multi-
agent systems are abstracted away from their potential application domain. As
such, deontic operators used to describe norms are typically modeled with a
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universal and domain independent semantics. For instance, deadline obligations
are violated if the obliged action or state is not obtained before the deadline.

We argue that in some domains – such as in business contracts – such an
approach is not desirable. For instance, the United Nations Convention on Con-
tracts for the International Sale of Goods (CISG) [7] establishes what parties
may do in case of deadline violations. In some cases they are allowed to ful-
fill their obligations after the deadline (Article 48), or even to extend deadlines
with the allowance of their counterparties. Furthermore, a party may extend his
counterparty’s deadlines (Articles 47 and 63), which denotes a flexible and even
cooperative facet of trade contracts.

In this paper we present and explore a different approach (in comparison
with [8][9][10][11]) to the use of obligations in agent-based contracts. Following
a cooperative business enactment principle, we argue that obligations should
be directed (as in [11]), and that deadlines should be flexible (as they seem to
be in the real world [7]). In section 2 we motivate our research with insights
from a real-world legislation, and we present an approach to model contractual
obligations with time windows. Our approach (more deeply analyzed in [12])
is based on authorizations, and includes a new lifecycle for directed obligations
with temporal restrictions. A formalization is given using linear temporal logic.
Section 3 describes a normative environment for norm monitoring, and includes
a rule-based inference approach to our obligation semantics. Section 4 presents
an implementation of the system, including monitoring rules, an example con-
tract, and illustration of the system’s response in different contract enactment
situations. Finally, section 5 concludes and discusses our developments in the
light of other approaches in the literature.

2 Modeling Contractual Obligations

Norms in MAS have been used for modeling regulated environments for agents.
Deontic operators – obligation, permission and prohibition – form the basis for
such approaches. In our case, we find obligations to be particularly relevant in
the scope of business contracts.

Approaches to model obligations in MAS that have an implementation in mind
typically consider two attributes: the bearer of the obligation and the deadline.
We may represent such an obligation as Ob(f, d): a deadline obligation indicating
that agent b (the bearer of the obligation) is obliged to bring about fact f (a state
of affairs) before deadline d (either a time reference or more generally defined as
a state of affairs).

When recalling the usual approach to model the semantics of deadline obli-
gations, as well as when presenting our proposal, we will make use of linear
temporal logic (LTL) [13], with a discrete time model. Let x = (s0, s1, s2, ...) be
a timeline, defined as a sequence of states si. The syntax x |= p reads that p is
true in timeline x. We write xk to denote state sk of x, and xk |= p to mean
that p is true at state xk. We use a weak version of the before LTL operator B,
where q is not mandatory: x |= (p B q) iff ∃j (x j |= p ∧ ∀k<j (x k |= ¬q)).
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The semantics of deadline obligations has been studied before (e.g. [8][9]).
The usual approach is to consider the following entailments:

– Ob(f , d) ∧ (f B d) |= Fulfb(f , d) — If the fact to bring about occurs before
the deadline, the agent has fulfilled his obligation.

– Ob(f , d) ∧ (d B f ) |= Violb(f , d) — If the deadline occurs before the fact to
bring about, the agent has violated his obligation.

The introduction of Fulf and Viol enables reasoning about the respective situ-
ations. The implementation of this semantics using forward-chaining rules has
been studied in [9]. Although intuitive, this semantics is quite rigid in that vio-
lations are all defined in a universal way.

The analysis of contracts brings into discussion the notion of directed obli-
gations [14]. An obligation Ob,c(f) is seen as directed from agent b (the bearer
responsible for fulfilling the obligation) to agent c (the counterparty). We inter-
pret obligations of this kind as claims from counterparties to bearers (as in [11]):
if b does not bring about f then c is authorized to react against b. Note that this
reaction is discretionary, not mandatory.

In our approach we combine deadline obligations [8] with directed obligations
[14][11], in order to obtain a more precise definition of when it is that a counter-
party may claim against the inability of a bearer to fulfill the obligation. We will
motivate and formalize the notion of directed deadline obligation – Ob,c(f, d):
agent b is obliged towards agent c to bring about f before d. An extension of
directed (contractual) obligations with temporal restrictions is also introduced
in [10], but that approach is based on a rigid model of violations, in that they
are automatically obtained at the deadline. In our approach deadlines have a
distinct role in the semantics of obligations. We will introduce the notion of
deadline violation (as opposed to obligation violation) in order to obtain a flexi-
ble approach to handle non-ideal situations: each deadline violation is different,
as each may have a different impact on the ongoing business, and each occurs
between a specific pair of agents with a unique trust relationship.

2.1 Directed Obligations with Time Windows

When specifying norms in contracts, deadline handling is central to define the
semantics of contractual obligations. In order to motivate our approach, we take
some inspiration from the United Nations Convention on Contracts for the Inter-
national Sale of Goods (CISG) [7]. Some excerpts of this legislation are included
in the following discussion.

Article 48: (1) [...] the seller may, even after the date for delivery, remedy

at his own expense any failure to perform his obligations, if he can do so

without unreasonable delay [...]; (2) If the seller requests the buyer to make

known whether he will accept performance and the buyer does not comply with

the request within a reasonable time, the seller may perform within the time

indicated in his request. [...]
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This means that even though a deadline has been violated, the bearer may still
be entitled to fulfill the same obligation. This kind of delay is also called a grace
period : a period beyond a due date during which an obligation may be met
without penalty or cancellation.

In fact, the successful enactment of a contract is dependent on the need to
make contractual provisions performable in a flexible way:

Article 47: (1) The buyer may fix an additional period of time of reasonable

length for performance by the seller of his obligations.

Article 63: (1) The seller may fix an additional period of time of reasonable

length for performance by the buyer of his obligations.

These articles emphasize the need for flexible deadlines. Note that the counter-
party’s benevolence on conceding an extended deadline to the bearer does not
prescribe a new obligation; instead, the same obligation may be fulfilled within
a larger time window. Furthermore, it is also in the counterparty’s best interest
that this option is available, given the importance of reaching success in the
performance of the contract.

In some other cases, a party may decide that the non-fulfillment of an obli-
gation should be handled in a more strict way. The CISG convention specifies
conditions for cancelling a contract in case of breach:

Article 49: (1) The buyer may declare the contract avoided: (a) if the failure

by the seller to perform any of his obligations [...] amounts to a fundamental

breach of contract; [...]; (2) However, in cases where the seller has delivered

the goods, the buyer loses the right to declare the contract avoided unless he

does so: (a) in respect of late delivery, within a reasonable time after he has

become aware that delivery has been made; [...]

Article 64: (1) The seller may declare the contract avoided: (a) if the failure

by the buyer to perform any of his obligations [...] amounts to a fundamental

breach of contract; [...]; (2) However, in cases where the buyer has paid the

price, the seller loses the right to declare the contract avoided unless he does

so: (a) in respect of late performance by the buyer, before the seller has become

aware that performance has been rendered; [...]

These articles allow contract termination in both non-performance and late per-
formance cases. However, the second case is limited to the awareness of the
offended party.

The deadline approach is often taken to be appropriate for specifying temporal
restrictions on obligations. However, in certain cases a time window should be
provided. In international trade transactions, for instance, storage costs may be
relevant. Also, perishable goods should be delivered only when they are needed,
not before.

Article 52: (1) If the seller delivers the goods before the date fixed, the buyer

may take delivery or refuse to take delivery.
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Therefore, anticipated fulfillments are not always welcome. We find it necessary
to include a variation of directed deadline obligations, to which we add a liveline:
a time reference after which the obligation should be fulfilled. In this case we
have Ob,c(f, l, d): agent b is obliged towards agent c to bring about f between l
(a liveline) and d (a deadline).

The intuitive semantics of directed deadline obligations and directed obliga-
tions with liveline and deadline are illustrated in Figures 1 and 2. The shaded
areas represent the period of time within which the achievement of f will cer-
tainly bring a fulfillment of the obligation. The region to the left of l (Figure 2)
entitles c to react if f is accomplished; also, regions to the right of d in both
figures indicate that counterparty c is entitled to react if f is not accomplished.
However, as long as no reaction is taken, b can still fulfill his obligation.

Fig. 1. Directed obligation with deadline

Fig. 2. Directed obligation with liveline and deadline

2.2 Formalization with LTL

Following the discussion above, in Table 1 we identify the possible states for an
obligation, together with the elements we shall use to signal some of those states
(when obtained, these elements are supposed to persist over time).

We now proceed to formalizing each type of obligation using LTL.

Directed Deadline Obligations. Figure 3 illustrates, by means of a state
transition diagram, the lifecycle of directed deadline obligations. We take obliga-
tions as being prescribed from conditional norms; the confirmation of the norm’s
conditions will change the prescribed obligation’s state from inactive to active.
The obligation is also automatically pending, since it may be legitimately fulfilled
right away. We set the obligation to have a violated deadline – DViolb,c(f , d) –
when the deadline occurs before the obliged fact. The counterparty’s reaction
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Table 1. Obligation states

inactive: the obligation is not yet in effect, but will eventually be pre-
scribed by a norm

active: the obligation was prescribed by a norm: Ob,c(f, d) or
Ob,c(f, l, d)

pending : the obligation may be fulfilled from now on
liveline violation: the fact being obliged has been brought ahead of time:

LViolb,c(f , l ,d)
deadline violation: the fact being obliged should have been brought already:

DViolb,c(f , d) or DViolb,c(f , l , d)
fulfilled : the obligation was fulfilled: Fulfb,c(f , d) or Fulfb,c(f , l ,d)
violated : the obligation was violated and cannot be fulfilled anymore:

Violb,c(f , d) or Violb,c(f , l , d)

Fig. 3. Lifecycle of a directed deadline obligation

to a deadline violation will only change the obligation’s state if the option is
to deem the obligation as violated, by denouncing this situation. For this we
introduce the element Denc,b(f , d), which is a denounce from agent c towards
agent b regarding the failure of the latter to comply with his obligation to bring
about f before d.

The lifecycle of directed deadline obligations is formalized as follows:

– Ob,c(f , d) ∧ (f B d) |= Fulfb,c(f , d)
– Ob,c(f , d) ∧ (d B f ) |= DViolb,c(f , d)
– DViolb,c(f , d) ∧ (f B Denc,b(f , d)) |= Fulfb,c(f , d)
– DViolb,c(f , d) ∧ (Denc,b(f , d) B f ) |= Violb,c(f , d)

Directed Obligations with Liveline and Deadline. Figure 4 contains the
state transition diagram for directed obligations with liveline and deadline. In
this case, the obligation will only be pending when l arises, since only then it may
be fulfilled in a way that is compliant with the terms of the contract. We have now
two kinds of temporal violations: liveline violations of the form LViolb,c(f , l , d)
and deadline violations of the form DViolb,c(f , l , d). In both cases, a denounce
(Denc,b(f , l , d)) may establish the obligation as violated, if issued before l or f ,
respectively.

The lifecycle of directed obligations with liveline and deadline is formalized
as follows:

– Ob,c(f , l , d) ∧ (f B l) |= LViolb,c(f , l , d)
– LViolb,c(f , l , d) ∧ (l B Denc,b(f , l , d)) |= Fulfb,c(f , l , d)
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Fig. 4. Lifecycle of a directed obligation with liveline and deadline

– LViolb,c(f , l , d) ∧ (Denc,b(f , l , d) B l) |= Violb,c(f , l , d)
– Ob,c(f , l , d) ∧ (l B f ) ∧ (f B d) |= Fulfb,c(f , l , d)
– Ob,c(f , l , d) ∧ (d B f ) |= DViolb,c(f , l , d)
– DViolb,c(f , l , d) ∧ (f B Denc,b(f , l , d)) |= Fulfb,c(f , l , d)
– DViolb,c(f , l , d) ∧ (Denc,b(f , l , d) B f ) |= Violb,c(f , l , d)

3 A Normative Environment for Monitoring Norms

In this section we describe our efforts to bring the formalizations presented above
towards an implementation of a normative environment with norm monitoring in
place. The normative environment is composed of three main ingredients: norma-
tive state, institutional rules and norms. The normative state is a set of
fully-grounded facts describing relevant events. Institutional rules are rules that
manipulate the normative state. Norms are a special kind of rules, in that they are
used to prescribe behavior. The next subsections detail each of these elements.

3.1 Normative State

In business contracts it is common to have deadlines that are dependent on the
fulfillment date of other obligations. Therefore, instead of having fixed (absolute)
dates, these may at times be relative, calculated according to other events. CISG
[7] expresses this by saying that dates can be determinable from the contract:

Article 33: The seller must deliver the goods: (a) if a date is fixed by or deter-

minable from the contract, on that date; (b) if a period of time is fixed by or

determinable from the contract, at any time within that period [...]

Article 59: The buyer must pay the price on the date fixed by or determinable

from the contract [...]

It is therefore useful to timestamp each event. For this reason, we will use explicit
time references in the constituting elements of the normative state. Furthermore,
rules and norms will make use of these time references.

We will call each element of the normative state an institutional reality element
(IRE ). These elements allow us to record all relevant events regarding the social
context that is being monitored. We distinguish several kinds of IRE, as shown
in Table 2.
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Table 2. Institutional reality elements

Ifact(f )t : fact f is institutionally recognized as being the case at time t

Ob,c(f , l , d)t : agent b is obliged, since t, towards agent c to bring about f
between l and d

LViolb,c(f , l , d)t : there was a liveline violation at time t (fact f has been brought
too early)

DViolb,c(f , l , d)t : there was a deadline violation at time t (fact f should have
been brought already)

Fulfb,c(f , l , d)t : agent b has fulfilled, at time t, his obligation to bring about f
between l and d

Violb,c(f , l , d)t : agent b has violated, at time t, his obligation to bring about
f between l and d

Denc,b(f , l , d)t : agent c has denounced, at time t, the failure of agent b to bring
about f between l and d

Time(t): instant t has elapsed

An institutional fact (Ifact) is a piece of evidence that certifies the occurrence
of an event, where such event (a consequence of an agent action) may be external
to the normative environment itself, while being part of the social context it is
supposed to regulate. Time elements are used to signal the reach of contractually
relevant time instants (namely those concerning livelines and deadlines).

3.2 Rules and Norms

Some of the IRE’s that are part of the normative state are interrelated, in the
sense that some IRE’s are obtained from other IRE’s. These interrelations are
captured with institutional rules and norms. In the literature [15][16] a distinc-
tion has been made between regulative and constitutive rules. We see norms as
regulative rules, that is, rules that change the normative positions of agents, e.g.
by prescribing obligations. Our institutional rules allow us to iterate through
institutional facts and to further obtain IRE’s other than obligations. For in-
stance, institutional rules may be defined to indicate how a denouncement may
be obtained from an institutional fact. This kind of inference has therefore a
constitutive nature. In this paper we will concentrate on a particular kind of
institutional rules: monitoring rules, that are used to implement the semantics
of directed obligations with liveline and deadline.

Both institutional rules and norms have a rule-based materialization. Their
left-hand-sides (conditions) are composed of (possibly negated) conjunctions of
patterns of IRE’s, which may contain (universally quantified) variables; restric-
tions may be imposed on such variables through relational conditions. The right-
hand-sides (conclusions) of institutional rules are conjunctions of non-deontic
IRE’s which are allowed to contain bounded variables; the right-hand-sides of
norms are conjunctions of deontic IRE’s (obligations) which are allowed to con-
tain bounded variables.1

1 A detailed formalization can be found in [9], with a more complex model that includes
context-dependent information elements, which is out of the scope of this paper.
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When the conditions of a rule (or norm) match the normative state using a
first-order logic substitution Θ, and if all the relational conditions over variables
hold, the atomic formulae obtained by applying Θ to the consequent of the rule
are added to the normative state as fully-grounded elements.

3.3 Monitoring Rules

The LTL logical relationships in Section 2.2 provided us a formalism to define
directed obligations with liveline and deadline. However, in order to monitor
contracts at run-time, we need to ground this semantics into a reasoning engine
capable of responding to events in a timely fashion. Elements describing obliga-
tion states should allow us to reason about those states as soon as they occur. A
natural choice we have made before [9] is the use of a rule-based inference engine,
with which the following (forward-chaining) rules can be defined to implement
the semantics of directed obligations with liveline and deadline:

– Ob,c(f , l , d)i ∧ Ifact(f )t ∧ t < l → LViolb,c(f , l , d)t

– LViolb,c(f , l , d)i ∧ Time(l) ∧ ¬(Denc,b(f , l , d)u ∧ u < l) → Fulfb,c(f , l , d)l

– LViolb,c(f , l , d)i ∧ Denc,b(f , l , d)u ∧ u < l → Violb,c(f , l , d)u

– Ob,c(f , l , d)i ∧ Ifact(f )t ∧ l < t ∧ t < d → Fulfb,c(f , l , d)t

– Ob,c(f , l , d)i ∧ Time(d) ∧ ¬(Ifact(f )t ∧ t < d) → DViolb,c(f , l , d)d

– DViolb,c(f , l , d)i ∧ Ifact(f )t ∧ ¬(Denc,b(f , l , d)u ∧ u < t) → Fulfb,c(f , l , d)t

– DViolb,c(f , l , d)i ∧ Denc,b(f , l , d)u ∧ ¬(Ifact(f )t ∧ t < u) → Violb,c(f , l , d)u

These rules take into account the time instants when each institutional reality
element occurs in order to assert other elements with accurate timestamps. No-
tice the use of relational conditions in order to assess the temporal ordering of
events that may match each rule’s conditions.

In the next section we provide an implementation for these rules using a
forward-chaining rule-based inference engine.

4 Implementation with Jess

We have chosen Jess2 [17] to implement our norm monitoring system. Jess is a
very efficient rule engine based on the Rete algorithm for pattern matching. We
start by defining appropriate templates (through deftemplate constructs) for
each type of element in the normative state. Jess facts follow a frame-like nota-
tion, in which each fact has associated slots to be filled in. Template inheritance
is possible via the extends keyword. We have:

(deftemplate institutional-reality-element

(slot when) )

(deftemplate ifact extends institutional-reality-element

(multislot fact) )

2 The code presented in this section includes some simplifications in order to make it
more simple to understand.
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(deftemplate obligation extends institutional-reality-element

(slot bearer) (slot counterparty) (multislot fact)

(slot liveline) (slot deadline) )

(deftemplate liveline-violation extends institutional-reality-element

(slot obl) )

(deftemplate deadline-violation extends institutional-reality-element

(slot obl) )

(deftemplate fulfillment extends institutional-reality-element

(slot obl) )

(deftemplate violation extends institutional-reality-element

(slot obl) )

(deftemplate denounce extends institutional-reality-element

(slot obl) )

(deftemplate time extends institutional-reality-element)

(deftemplate cancel-contract extends institutional-reality-element)

For simplification, we included an obligation reference inside some templates.
The time template is used to assert the occurrence of time events (associated
with livelines and deadlines), which is done by scheduling alerts using a system
clock. The cancel-contract template enables contract cancellation assertions,
and will be used in our contract example below.

4.1 Monitoring Rules

Implementing monitoring rules in Jess is straightforward. A Jess rule is writ-
ten in the form LHS => RHS , where LHS includes fact patterns that will be
matched against facts in working memory (our normative state). The RHS in-
dicates actions to execute (such as asserting new facts) when the rule is fired.
The following rules (defined with defrule constructs) translate directly from
the monitoring rules shown in Section 3.3 (identifiers starting with a question
mark are variables).

(defrule detect-liveline-violation

?obl <- (obligation (fact $?f) (liveline ?l))

?ifa <- (ifact (fact $?f) {when < ?l})

=>

(assert (liveline-violation (obl ?obl) (when ?ifa.when))) )

(defrule detect-early-fulfillment

?lviol <- (liveline-violation (obl ?obl))

?obl <- (obligation (liveline ?l))

(time (when ?l))

(not (denounce (obl ?obl) {when < ?l}))

=>

(assert (fulfillment (obl ?obl) (when ?l))) )
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(defrule detect-violation-before-liveline

?lviol <- (liveline-violation (obl ?obl))

?obl <- (obligation (liveline ?l))

?den <- (denounce (obl ?obl) {when < ?l})

=>

(assert (violation (obl ?obl) (when ?den.when))) )

(defrule detect-fulfillment

?obl <- (obligation (fact $?f) (liveline ?l) (deadline ?d))

?ifa <- (ifact (fact $?f) {when >= ?l && when <= ?d))

=>

(assert (fulfillment (obl ?obl) (when ?ifa.when))) )

(defrule detect-deadline-violation

?obl <- (obligation (fact $?f) (deadline ?d))

(time (when ?d))

(not (ifact (fact $?f) {when <= ?d}))

=>

(assert (deadline-violation (obl ?obl) (when ?d))) )

(defrule detect-belated-fulfillment

(deadline-violation (obl ?obl))

?obl <- (obligation (fact $?f))

(ifact (fact $?f) (when ?t))

(not (denounce (obl ?obl) {when <= ?t}))

=>

(assert (fulfillment (obl ?obl) (when ?t))) )

(defrule detect-violation-after-deadline

(deadline-violation (obl ?obl))

?obl <- (obligation (fact $?f))

(denounce (obl ?obl) (when ?u))

(not (ifact (fact $?f) {when < ?u}))

=>

(assert (violation (obl ?obl) (when ?u))) )

In order to determine denouncements from institutional facts, we define the
following (constitutive) institutional rule:

(defrule denounce-recognition

(ifact (fact denounce $?f) (when ?w))

?obl <- (obligation (fact $?f))

=>

(assert (denounce (obl ?obl) (when ?w))) )

These rules enable us to monitor the compliance of agents with their obliga-
tions. Norms are used to prescribe such obligations, by asserting them into the
normative state. The normative environment’s monitoring capabilities may be
used as a tool for alerting agents when certain contract-related events occur.
Further rules may be defined with such a purpose. The RHS of Jess rules may
include function calls that implement the desired level of responsiveness of the
normative environment in which notifications are concerned.



62 H. Lopes Cardoso and E. Oliveira

4.2 Example Contract

In this section we show a simple example where the concept of flexible deadlines
is exploited in an electronically supervised business relationship. We have a con-
tract between two agents, say B and S, wherein S commits to supply, whenever
ordered, good X for 7.5 per unit.

The norms below (implemented as Jess rules) define the contractual relation-
ship and are included in the institutional normative environment for monitoring
purposes. Agent S is supposed to deliver the ordered goods between 3 to 5 days
after the order (norm n1), and agent B shall pay within 30 days (norm n2).
Furthermore, if agent B does not pay in due time, he will incur in a penalty
consisting of an obligation to pay an extra 10% on the order total (norm n3).
Finally, if agent S violates his obligation to deliver, the contract shall be canceled
(norm n4).

(defrule n1

(ifact (fact order item X quantity ?q) (when ?w))

=>

(assert

(obligation (bearer S) (counterparty B) (fact delivery X qt ?q)

(liveline (+ ?w 3)) (deadline (+ ?w 5)) (when ?w)) ) )

(defrule n2

(fulfillment (obl ?obl) (when ?w))

?obl <- (obligation (fact delivery X qt ?q))

=>

(assert

(obligation (bearer B) (counterparty S) (fact payment (* ?q 7.5))

(liveline ?w) (deadline (+ ?w 30)) (when ?w)) ) )

(defrule n3

(deadline-violation (obl ?obl))

?obl <- (obligation (fact payment ?p) (deadline ?d))

=>

(assert

(obligation (bearer B) (counterparty S) (fact payment (* ?p 0.10))

(liveline ?d) (deadline (+ ?d 30)) (when ?d)) ) )

(defrule n4

(violation (obl ?obl) (when ?w))

?obl <- (obligation (fact delivery X qt ?q))

=>

(assert (cancel-contract (when ?w)) ) )

In this example we can see that interests applied on payments are automatic once
deadline violations are detected (norm n3). On the other hand, a contract can-
cellation (norm n4) requires that agent B denounces the inability of agent S to
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Enactment 1: everything goes as agreed

f-6 * (ifact (when 1) (fact order item X quantity 5))

f-7 (obligation (when 1) (bearer S) (counterparty B)

(fact delivery X qt 5) (liveline 4) (deadline 6))

f-11 (time (when 4))

f-13 * (ifact (when 5) (fact delivery X qt 5))

f-14 (fulfillment (when 5) (obl <Fact-7>))

f-15 (obligation (when 5) (bearer B) (counterparty S)

(fact payment 37.5) (liveline 5) (deadline 35))

f-16 (time (when 5))

f-18 (time (when 6))

f-26 * (ifact (when 13) (fact payment 37.5))

f-27 (fulfillment (when 13) (obl <Fact-15>))

f-50 (time (when 35))

Fig. 5. A perfect enactment

fulfill the delivery. It is therefore up to agent B whether to wait further and accept
a delayed delivery or not. If the agreed upon contract conditions are important
enough, allowing a counterparty deviation (and hence taking a cooperative atti-
tude regarding the compliance of the contract) may be a good decision.

4.3 Contract Enactments

In this section we show the outcomes of applying monitoring rules and contrac-
tual norms in different contract enactment situations, taking into account the
contract presented above.

Figures 5, 6 and 7 show the response of monitoring rules to different enactment
situations. The listings in these figures show the normative state after contract
enactment, including relevant IRE that are produced by rules and norms, to-
gether with institutional facts originated by agent actions (these are marked with
an asterisk). Time events (associated with livelines and deadlines) triggered by
a system clock are also shown.

Figure 5 shows the normative state after a perfect contract enactment, where
everything goes as agreed. No temporal violations are detected in this case, since
agents abide to their obligations. Figure 6 depicts several enactment outcomes
in which delivery problems are detected. In enactments 2 and 3 the delivery
liveline or deadline is violated (and detected by rules adding f-10 and f-15,
respectively), while the counterparty does not denounce this situation. Enact-
ment 4 shows a situation in which the counterparty chooses to denounce (f-17)
a deadline violation (detected in f-14); as indicated in contractual norm n4, this
results in a contract cancellation (f-20). Finally, figure 7 shows an enactment
in which the payment deadline was violated, bringing an interest rate to be ap-
plied according to contractual norm n3. Agent B eventually payed both the price
(f-57) and the interest rate (f-58).
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Enactment 2: delivery liveline violation without denounce

f-6 * (ifact (when 1) (fact order item X quantity 5))

f-7 (obligation (when 1) (bearer S) (counterparty B)

(fact delivery X qt 5) (liveline 4) (deadline 6))

f-9 * (ifact (when 2) (fact delivery X qt 5))

f-10 (liveline-violation (when 2) (obl <Fact-7>))

f-13 (time (when 4))

f-14 (fulfillment (when 4) (obl <Fact-7>))

f-15 (obligation (when 4) (bearer B) (counterparty S)

(fact payment 37.5) (liveline 4) (deadline 34))

f-18 (time (when 6))

f-26 * (ifact (when 13) (fact payment 37.5))

f-27 (fulfillment (when 13) (obl <Fact-15>))

f-49 (time (when 34))

Enactment 3: delivery deadline violation without denounce

f-6 * (ifact (when 1) (fact order item X quantity 5))

f-7 (obligation (when 1) (bearer S) (counterparty B)

(fact delivery X qt 5) (liveline 4) (deadline 6))

f-11 (time (when 4))

f-14 (time (when 6))

f-15 (deadline-violation (when 6) (obl <Fact-7>))

f-19 * (ifact (when 9) (fact delivery X qt 5))

f-20 (fulfillment (when 9) (obl <Fact-7>))

f-21 (obligation (when 9) (bearer B) (counterparty S)

(fact payment 37.5) (liveline 9) (deadline 39))

f-22 (time (when 9))

f-27 * (ifact (when 13) (fact payment 37.5))

f-28 (fulfillment (when 13) (obl <Fact-21>))

f-55 (time (when 39))

Enactment 4: delivery deadline violation with denounce

f-5 * (ifact (when 1) (fact order item X quantity 5))

f-6 (obligation (when 1) (bearer S) (counterparty B)

(fact delivery X qt 5) (liveline 4) (deadline 6))

f-10 (time (when 4))

f-13 (time (when 6))

f-14 (deadline-violation (when 6) (obl <Fact-6>))

f-17 * (ifact (when 8) (fact denounce delivery X qt 5))

f-18 (denounce (when 8) (obl <Fact-6>))

f-19 (violation (when 8) (obl <Fact-6>))

f-20 (cancel-contract (when 8))

Fig. 6. Delivery problems
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Enactment 5: payment deadline violation

f-7 * (ifact (when 1) (fact order item X quantity 5))

f-8 (obligation (when 1) (bearer S) (counterparty B)

(fact delivery X qt 5) (liveline 4) (deadline 6))

f-12 (time (when 4))

f-14 * (ifact (when 5) (fact delivery X qt 5))

f-15 (fulfillment (when 5) (obl <Fact-8>))

f-16 (obligation (when 5) (bearer B) (counterparty S)

(fact payment 37.5) (liveline 5) (deadline 35))

f-17 (time (when 5))

f-19 (time (when 6))

f-49 (time (when 35))

f-50 (deadline-violation (when 35) (obl <Fact-16>))

f-51 (obligation (when 35) (bearer B) (counterparty S)

(fact payment 3.75) (liveline 35) (deadline 65))

f-57 * (ifact (when 40) (fact payment 3.75))

f-58 * (ifact (when 40) (fact payment 37.5))

f-59 (fulfillment (when 40) (obl <Fact-16>))

f-60 (fulfillment (when 40) (obl <Fact-51>))

f-86 (time (when 65))

Fig. 7. Payment problems

5 Conclusions

In B2B relationships contracts specify, through obligations, the interdependen-
cies between different partners, and provide legal options to which parties can
resort in case of conflict. However, when this joint activity aims at pursuing a
common goal, the successful performance of business benefits all involved parties.
Therefore, when developing automated monitoring tools, one should take into
account that partners may be cooperative enough to allow counterparty devia-
tions. Taking this into account, we have developed a novel model for contractual
obligations, where these are seen as either directed deadline obligations or directed
obligations with liveline and deadline. The directed aspect concerns the need to
identify the agent who will be authorized to react in case of non-fulfillment. We
link authorizations with a flexible model of livelines and deadlines. Obligation
violations are dependent on the counterparty motivation to claim them. Using
flexible deadlines ensures a degree of freedom for agents to make decisions in
the execution phase of contracts, which is important for dealing with business
uncertainty. Our approach is based on real-world evidence from business con-
tracts (namely the United Nations Convention on Contracts for the International
Sale of Goods [7]), which denotes a flexible and even cooperative facet of trade
contracts.

Most implementations of norms in multi-agent systems ignore the need for
having directed obligations from bearers to counterparties. The most likely rea-
son for this is that in those approaches obligations are seen as (implicitly) di-
rected from an agent to the normative system itself. It is up to the system (e.g.
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an electronic organization [18] or an electronic institution [19]) to detect vio-
lations and to enforce the norms which are designed into the environment (in
some cases they are even regimented in such a way that violation is not possible).
On the contrary, our flexible approach towards an Electronic Institution [5][20]
allows agents to define the norms that will regulate their mutual commitments.

An issue that we have not included in our model is the need for agents to
communicate their intentions regarding an obligation with a violated deadline.
In fact, CISG’s Article 48 seems to go in this direction, in order to protect
the bearer’s efforts toward a late fulfillment of the obligation. This concern has
been taken into account in [21], where a contract fulfillment protocol demanding
agents to communicate their intentions drives an obligation lifecycle model. The
states of this lifecycle are obtained according to the performance of a contractual
relationship.

Our implementation using a forward-chaining rule-based approach is appli-
cable to run-time monitoring of contracts. A requirement of this kind of usage
however is that events are reported in a timely fashion to the normative envi-
ronment. We assume that agents are interested in publicizing their abidance to
commitments. The monitoring capabilities of our implementation may, however,
be used as a tool to alert agents when certain contract-related events are em-
inent, such as a forthcoming deadline. Jess [17] allows for an easy integration
of our monitoring rules implementation with other rules including function calls
that address the level of responsiveness that is intended.

We have shown how the normative environment may effectively monitor con-
tract enactment at run-time. Monitoring rules may also be used a posteriori, in
order to check off-line if contractual norms were indeed followed by every part-
ner. In this case, after collecting all events concerning a contract, the inference
engine may run in order to check if the contract was enacted in a conforming
way.
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Abstract. Research about the semantics of agent communication lan-
guages traditionally sees the opposition between the mentalist and social
approaches. In this paper we adopt a mixed approach since we propose a
logical framework allowing us to express both the intentional and insti-
tutional dimensions of a communicative action. We use this framework
to give a semantics for some speech acts representing each of Searle’s
categories except expressives. This semantics relaxes the criticized con-
straints imposed in FIPA-ACL and also extends this standard with new
speech acts and new institutional features to characterise them. It has
been implemented in an extension of the Semantic Add-on for the JADE
agent development platform, and used in an industrial application in the
context of automated B2B exchanges.

1 Introduction

Designing efficient Agent Communication Languages (ACL) is an essential issue
in Multi-Agent Systems in order to standardise exchanges between the agents.
Research about the semantics of ACL sees the subscribers of the social approach
[17,8,27] criticize mentalist approaches [24,15] for only grounding on the agents’
private mental attitudes. But one can similarly reproach to social approaches
to provide a semantics only based on the agents’ public commitments, indepen-
dently of their mental attitudes. Now these “social attitudes” are mainly descrip-
tive, while mental attitudes allow one to predict the agents’ behaviour. Moreover
mental attitudes allow agents to reason about social notions. It is thus essential
to consider both mental and social attitudes. Some researchers thus propose a
mixed approach based both on public and private aspects [18]. But they do not
formalise institutional speech acts like declarations. Now such speech acts are
essential in new application fields involving communication about norms, roles
or powers of agents, for instance in electronic commerce or automated business
to business exchanges.

In this paper we thus want to propose an alternative to the well-known stan-
dard FIPA-ACL [16] through the following changes: relaxed feasibility precon-
ditions to allow a more flexible utilisation of the speech acts in various contexts;
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new institutional speech acts like declarations and promises; an institutional
interpretation of speech acts coupled with their classical intentional interpreta-
tion. Therefore we adapt an existing logical framework for the formalisation of
institutional notions like roles, powers and norms [10]. We then formalise in this
logical framework the institutional interpretation of some specific communicative
actions, each one representing one of Searle’s categories of speech acts (except
expressive ones) [25]. Our notion of institution is very large: it is a set of rules
and facts adopted by a group of agents, like the rules of a game, or the laws of a
country; it covers formal, legal institutions as well as informal ones (e.g. social
rules in a group...).

The paper is structured as follow. Section 2 discusses some other social se-
mantics of speech acts. Section 3 briefly describes the syntax, semantics and
axiomatics of our logical framework. The core of the paper (Section 4) is dedi-
cated to the unified semantics of speech acts. We are then able to compare our
semantics of ACL with some related ones in more details (Section 5). Finally we
conclude about the future prospects opened by this work (Section 6).

2 State of the Art

The mentalist approach consists in grounding the semantics of speech acts on
the agents’ internal mental attitudes. These are represented by belief, desire and
intention modalities provided by BDI logics, that are classically used to formalise
the reasoning of autonomous agents [23,28]. This resulted in the design of several
standards of agent communication languages like KQML [15] or FIPA [16], this
latter one grounding on Sadek’s rational interaction theory [24].

These approaches were criticised a lot for being only based on private con-
cepts (mental attitudes) instead of public verifiable notions (like commitments).
Therefore some work exist aiming at enriching BDI logics with deontic operators
like obligation [13,3] or with institutional operators like count as or institutional
power [21], in order to formalise the institutional interpretation of speech acts
exchanged by the agents. In previous work we used such an extended BDI frame-
work to express the semantics of speech acts with institutional effects [11] but
we were limited to declarative speech acts, and the intentional and institutional
dimensions were quite blended.

Various other work aim at providing an institutional semantics for speech acts.
For example Dignum and Weigand [14] propose a logical framework combining
illocutionary and deontic logic to study and model the norms resulting from
communication between agents; however, they only consider directive speech
acts. Boella et al. [1] propose a role-based semantics allowing them to combine
social commitments and mental attitudes to express the semantics of speech acts
in the context of persuasion dialogues. Actually they rewrite the FIPA feasibility
precondition and rational effects of speech acts but replace the private mental
attitudes involved by public mental attitudes attributed to the agents’ roles
instead of the individual agents. This solves the flaw of mentalist approaches,
criticised for grounding on unverifiable mental attitudes, but finally there is
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no distinct institutional interpretation of speech acts, that could differ from
one institution to another. In the following subsections we give some details
about two approaches: Fornara and Colombetti’s approach based on the notion
of commitments, and Lorini et al. ’s approach based on the notion of acceptance.

2.1 Fornara and Colombetti: Semantics in Terms of Social
Commitments

As opposed to the mentalist approach, the social one [26,27,8] assumes that
private mental attitudes are not verifiable and thus grounds on the concept of
public (thus verifiable) commitments [7] to express the semantics of speech acts.
All the commitments taken by the agents are stored for possible future reference.
The semantics of speech acts is expressed only in terms of such commitments.

For example Fornara and Colombetti [17] ground on Castelfranchi’s notion of
commitment [7] to define a library of communicative acts. From the classifica-
tion of speech acts into four categories (assertives, directives, commissives and
declaratives) inspired from Searle’s work [25], they redefine for each category
the semantics of its speech acts in terms of social commitments. Thanks to this
library, they provide a communication tool based on social commitments, alter-
native to the FIPA-ACL standard. This tool allows rational agents to reason
about the underlying rules of communication and to respect them in order for
the system to behave well.

However these authors are limited to the institutional dimension of speech acts
and neglect their relations with the agents’ mental attitudes. Yet agents must be
able to reason autonomously about the institution before making their decision
to perform a given speech act. Moreover no specific institution is explicit in their
commitments, making it impossible to have different commitments in different
institutions; therefore it is also impossible for speech acts to have different effects
depending on the institution within which they are interpreted. For example the
action of nodding one’s head is interpreted in the context of French gestural
language as meaning “yes”, while in the context of Bulgarian gestural language
it is interpreted as meaning “no”. In this example the considered institutions are
the respective sets of communicative rules in these two cultures.

2.2 Lorini et al. : Semantics in Terms of Group Acceptance

Lorini et al. [22] define a new semantics for speech acts using Gaudou et al. ’s
Acceptance Logic [19]. A L is a modal logic extended with the notion of accep-
tance, representing what a group of agents willingly accept to consider as true
(even if some (or all) members of the group believe the opposite) in a given insti-
tutional context (and that they can refuse in another context). Acceptances in an
institutional context influence the agents’ behaviour and utterances in this con-
text. They are represented with the operator [C : x ]ϕ reading “agents in group
C accept that ϕ while functioning as members of this group in the institutional
context x”.

Institutional notions are not primitive but defined from this notion of accep-
tance. Thereby a fact is an institutional fact (that it, a fact that is only valid
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in an institutional context, but not objectively valid) if and only if, for every
non-empty set of agents, the agents in this set accept this fact as true while
functioning as group members in this institutional context. In the context of
ACLs, this may be a particular rule of the specific Ordinary Communication
institution that these authors consider.

The authors then consider the speech act Promise in the institutional context
of Ordinary Communication (OC). According to them, if i informs j that he
is going to perform action α for him, and j intends i to perform this action
for him, this counts as a promise at the next instant. The consequence of this
promise is that i is obliged to perform action α for j. Moreover the acceptance
by these two agents i and j while functioning as a group in institution OC that
i has promised to perform action α for j and that j intends him to do so implies
a social commitment of i towards j to perform α for him. This framework is
interesting but Lorini et al. have only formalised the promise yet. Moreover they
do not seem to make a clear distinction between the intentional and institutional
preconditions to perform a speech act.

3 Our Logical Framework

We adapt here an existing logical framework for norms, institutional powers and
roles defined in [10]. It is a multi-modal logic with modal operators of belief,
intention, obligation, institutional facts and consequences, and action.

3.1 Syntax

Let AGT = {i, j, ...} be a finite set of agents. Let ACT = {α, β...} be the set
of actions. We suppose that some actions in ACT are of the form i:α, where i
is the author of action α (the agent who performs it). Let ATM = {p, q, ...}
be the set of atomic formulas. Let INST = {s, t, ...} be the set of institutions.
Complex formulas are denoted by ϕ, ψ... The language of our logic is defined by
the following BNF grammar:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|Biϕ|Chiϕ|Iiϕ|Dsϕ|ϕ ⇒s ϕ|Oϕ|beforeαϕ|afterαϕ

where p ranges over ATM , α over ACT , i over AGT , and s over INST . The
classical boolean connectives ∧, →, ↔, � (tautology) and ⊥ (contradiction) are
defined from ∨ and ¬ in the usual manner. The operators doneαϕ, happensαϕ,
Pϕ, Fϕ and power(i , s , ϕ, α, ψ) will be defined as abbreviations.

3.2 Semantics and Axiomatics

We only give here the informal meanings of our operators. It is sufficient to know
that they have a Kripke semantics in terms of possible worlds. We also give some
useful axioms. This framework is adapted from Demolombe and Louis’ logic of
norms, roles and institutional powers [10]. But please notice that actually, the
details of the semantics of operators is not important, and any other institutional
logic would work.
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Belief, Intention and Action. Bip means that agent i believes that p. Chip
means that agent i prefers p to be true. These two normal operators have a
standard KD45 axiomatics. Iip means that agent i intends that p. Ii are operators
defined in a KD normal modal logic. Their axiomatics is that defined for FIPA
by Sadek [24]. In particular intention is linked with belief by the following mix
axioms:

– introspection: Iip ↔ Bi Iip
– automatic dropping of achieved intentions: Iip → ¬Bip

beforeα and afterα are normal modal operators defined in standard tense logic
in linear time version [6]. doneαϕ = ¬beforeα¬ϕ means that action α has just
been performed, and ϕ was true before. happensαϕ = ¬afterα¬ϕ means that
action α is about to be performed and ϕ will be true just after.

Institutional Modalities. Finally this framework also provides some specific
operators to formalise institutional concepts. These operators have a parameter
s specifying the institution within which they are valid. Here we consider an
institution as a set of institutional facts and rules that a group of agents (the
“members” of this institution) adopt. This is a general view that can account
for various institutional contexts, be they formal institutions or informal ones:
the law of a country, a contract between two parties in a business relationship,
a social structure, the rules of a game...

An institutional fact is a fact that is recognised to be valid in the context of
a given institution, but that can make no sense in itself; i.e. it is not a physically
observable fact (what Searle calls a “brute fact”) but something written in the
registry of this institution. For example the fact that two people are married, or
that one is authorised to drive a truck, is only valid w.r.t. the law of a country;
all deontic facts should also be encapsulated in an institutional fact to make
the institution in which they hold explicit. We represent these institutional facts
with the operator Dsϕ meaning that for institution s, it is officially established
that ϕ holds. In particular if ϕ is an agent’s mental attitude, then Dsϕ can
be understood as this agent’s commitment (either a propositional commitment
if ϕ is a belief, or a commitment in action if ϕ is an intention). For instance,
DFrenchLawvotingAgeis18 means that following the French law, voting age is
reached at 18 years; DEU euroOfficialMoney means that in the European Union,
the official money is Euro.

Institutional facts can be deduced from other facts thanks to the rules of
the institution. For example the presentation of an invoice by a provider to
his client counts as an obligation for the client to pay it. The existence of the
invoice is physically observable, while the obligation is only valid in an institu-
tional context. We represent these normative consequences with the primitive
operator p ⇒s q, meaning that according to the norms holding in institution s,
p entails q. This operator is known in the literature as count as, and has been first
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formalised by Sergot and Jones [21]. The following mix axioms explicit the link
between institutional facts and normative consequences:

(ϕ ⇒s ψ) → Ds(ϕ → ψ) (SD)
(ϕ ⇒s ψ) → (ϕ → Dsϕ) (SC)

From these axioms and the properties of Ds (see [10, p.8] for details) we can
deduce:

(ϕ ⇒s ψ) → (ϕ → Dsψ) (SP)

A particular case of normative consequence concerns the consequences of the
performance of an official procedure. Actually some agents can have the power
when performing a given procedure under some conditions to create new in-
stitutional facts. We represent these institutional powers as an abbreviation
power(i , s , cond , α, ϕ) = ((done i:α� ∧ cond) ⇒s ϕ). Intuitively this means that
i has the power in institution s, by performing action α and if condition cond
holds, to see to it that ϕ becomes officially true in institution s. For example a
mayor has the power in the law of the French Republic, by performing a decla-
ration, and on condition that the two people agree, to marry them. Obviously
these powers result from the agent’s role in the institution, but this is not the
focus of this paper so we will not remind how roles are formalised in the original
framework (the interested reader can refer to [10] for details on this point).

Deontic Modalities. We have a modality for impersonal obligation to be: Oϕ
reads “it is obligatory that ϕ”, and its axiomatic is that of the Standard Deontic
Logic [20], that is KD. Obligations to do can be expressed as obligations to be in
a state where the obliged action has been performed. Obligations are impersonal
since no agent is explicitly responsible for their fulfilment, but such an agent
can implicitly appear in their content. For instance Odonei:α� means that it is
obligatory (for no one in particular) to be in a state where i has just performed
action α; this can be understood as “i has the obligation to perform action α”.

Permissions and interdiction are defined from obligations in a standard way:
Pϕ = ¬O¬p means that it is permitted that ϕ, and Fϕ = O¬ϕ means that it
is forbidden that ϕ.

Please notice that no institution is explicit as a parameter of this obligation
modality. But such obligations will be encapsulated in institutional facts to ex-
press the institution in which they are valid. For example DsOϕ means that “in
institution s, it is obligatory that ϕ”.

4 Semantics of Speech Acts

4.1 Preliminary Remarks

Intentional and Institutional Dimensions. The FIPA-ACL standard [16]
defines features allowing one to give an intentional dimension to the observa-
tion and interpretation of a communicative action: the feasibility precondition
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(the appropriate mental attitudes to perform the speech act) and the rational
effect (this is a formula ϕ representing the content of the speaker i’s intention
that he intends the receiver j to know; so the performance of the speech act al-
lows any observer k to deduce this corresponding intentional effect: Bk IiBj Iiϕ).
Please notice that, following [24], the performance of the speech act does not
automatically allow one to deduce its rational effect, but only its intentional
effect, meaning that any agent k believes that the speaker i intends the hearer j
to recognize its (i’s) intention to achieve the rational effect ϕ. However, nothing
ensures that i indeed achieves ϕ, his speech act may fail, for example the hearer
may not obey an order, or may not believe an assertion. Thus the rational effect
can only be deduced under some constraining hypotheses such as the sincerity
and competence hypotheses used in FIPA.

In a similar way, we want to provide here the institutional dimension of
the observation and interpretation of a communicative action relative to one or
several institutions. This institutional interpretation is composed of the following
features:

– a permission condition that is necessary and sufficient for the speaker to be
allowed to perform this speech act;

– a power condition that also needs to be true for the speech act to have an
institutional effect;

– an explicit institutional effect that is obtained when the speech act is per-
formed while permission and power conditions were true.

We will thus be able to combine the intentional and institutional dimensions of
communicative actions (formalised as speech acts [25]), both essential to fully
characterise their interpretation. Lorini et al. have also investigated such a uni-
fied approach but they have only formalised the interpretation of a promise in
the context of ordinary communication; we aim at being much more generic.
In particular we formalise one speech act from each of Searle’s categories of
illocutionary forces, except the expressive one.

Actually we have relaxed some of the (widely criticised) strong constraints
imposed by FIPA-ACL semantics on the appropriate context of performance of
speech acts. Instead of imposing these conditions as strong constraints, we have
moved them into the permission preconditions of the speech act. The agents
are thus physically able to disobey these constraints, but it is forbidden by the
interaction norms, and they may incur sanctions for such violations. For example,
relaxing the sincerity hypothesis physically allows the agents to lie, but this will
be interpreted by other agents as a violation of communicative norms.

Notations. In the sequel we use the following abbreviations:

– FP = feasibility preconditions
– RE = rational effect
– PermC = (institutional) permission condition
– PowC = power condition
– EE = institutional explicit effect
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Speech acts are actions of the form Force(sp, ad , inst , content) where sp ∈
AGT is the speaker, ad ∈ AGT is the addressee, inst ∈ INST is the institu-
tional context, content is the propositional content and can be any formula of
our language, and Force ∈ {inform, promise, command, declare} is the illocu-
tionary force.

Action Laws. We now explain how the intentional and institutional dimensions
of actions interact by providing the action laws governing the performance of
speech acts.

We notice that FP is a factual executability precondition, while PermC is an
ideal one. But even ideal worlds are submitted to physical world laws, i.e. PermC
is not sufficient for the action to be executable, FP also has to be true. For
example a mayor has the permission to marry people by making a declaration,
but the declaration must be executable; thus if he is voiceless one day, he will
be unable to marry anyone.

We thus have the following executability laws. The factual executability law
(FELα) means that an action happens iff its feasibility precondition is true and
the agent chooses to perform it. The ideal executability law (IELα) means that
ideally, an action should happen only if it is permitted.

happensα� ↔ (FP(α) ∧ Chihappens i:α�) (FELα)
O(happensα� → PermC (α)) (IELα)

We also have the following effect laws. The rational effect law (RELα) means
that if the power precondition of an action is false, then only its rational effect
can be deduced after its performance. The power effect law (PELα) means that
if the power condition of an action is true, then both its rational and institutional
effects can be deduced after its performance.

¬PowC (α) → afterαRE (α) (RELα)
PowC (α) → afterα(RE (α) ∧ EE (α)) (PELα)

From these laws we can deduce the following theorems clarifying the factual
executability and effects of α depending on the different combinations of its
feasibility and power preconditions. If FP(α) is false then α is not executable.

¬FP(α) → afterα⊥

If i chooses to perform α when FP(α) is true but PowC (α) is false, then α is
about to happen after which its rational effect will be true.

(Chihappens i:α� ∧ FP(α) ∧ ¬PowC (α)) → (happensα� ∧ afterαRE (α))

Finally if i chooses to perform α when both FP(α) and PowC (α) are true, then
α is about to happen after which both its rational and institutional effects will
be true.

(Chihappens i:α�∧FP(α)∧PowC (α)) → (happensα�∧afterα(RE (α)∧EE (α)))
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Please notice that PermC (α) does not appear in these last two theorems, since
it does not influence the feasibility of α. Indeed an agent can choose to perform
a forbidden action. If we had specified an explicit sanction S (α) for forbidden
performance in the institutional interpretation of α, then we could write the
following theorem:

Chihappens i:α� ∧ FP(α) ∧ ¬PermC (α) → (happensα� ∧ afterαS (α))

However we did not specified such a sanction because it depends on many con-
textual parameters.

4.2 Assertives: Inform

The assertive speech act Inform commits the speaker to the truth of a proposi-
tion. The notation inform(i , j , s , ϕ) reads “agent i informs j in institution s that
ϕ is true”.

Intentional Interpretation. As we said before we have relaxed FIPA con-
straints on the executability of speech acts. We thus impose no feasibility pre-
condition here.

FP (inform(i , j , s , ϕ)) = �
The rational effect (the content of the speaker i’s intention that he intends the
receiver j to know) is that j believes the promised proposition ϕ to be true:

RE(inform(i , j , s , ϕ)) = Bj ϕ

Institutional Interpretation. The permission precondition to inform j that
ϕ in institution s includes the constraints removed from the factual feasibility
preconditions: the speaker should not believe that the hearer already knows if
ϕ, and he should not be already committed on ¬ϕ in the same institution.

PermC (inform(i , j , s , ϕ)) = ¬DsBiBifj ϕ ∧ ¬DsBi¬ϕ

Now the institutional effect of Inform is to retract possible opposite commit-
ments contracted before and to assert a new commitment on ϕ. Indeed, even if
agent i was previously committed on ¬ϕ (and therefore was not permitted to in-
form anyone that ϕ), he may violate that obligation. But these two commitments
are inconsistent so the previous one must be retracted while asserting the new
contradictory one. Though one can still detect that the opposite commitment was
true when i performed the action and that he has thus violated the rules of the
institution. Actually due to the seriality of Ds we have that DsBiϕ → ¬DsBi¬ϕ.
So the explicit institutional effect of inform is a new institutional fact that can
be interpreted as i’s commitment to the truth of ϕ:

EE (inform(i , j , s , ϕ)) = DsBiϕ

This effect is always obtained and does not depend on particular powers of i, so
the power condition is trivial.

PowC (inform(i , j , s , ϕ)) = �



Unifying the Intentional and Institutional Semantics of Speech Acts 77

Example. For example in the context of B2B exchanges, if a provider sends
his catalogue to a client, this counts as information about the prices given in
this catalogue. As an effect of this action, the provider is thus committed to
these prices during the validity of his catalogue. In the specific institution s
constituted by the contract between the provider and the client, we assume that
we have a specific rule forbidding to contradict one’s commitments, which takes
the form DsO(DsBip → afterαDsBip), for every speech act α, where p is the
proposition denoting that the price is 100. This means that according to the
institutional contract s between i and j, it is obligatory that if an agent i is
committed to believe that the price of an item is 100, then after any speech
act he is still committed to this (in other words it is forbidden to retract this
commitment by any speech act). From this we can deduce that the provider is
obliged to respect the given prices, i.e. DsO(DsBip → after Inform(i,j,s,¬p)⊥) (it
is obligatory that if i is committed to p, then the action of informing agent j
that ¬p is not feasible).

Please note that the provider i can set up different contracts with different
clients, in particular with different prices. This is made possible by making the
institution explicit in the semantics of speech acts, and thus allowing us to specify
different semantics in different institutions.

4.3 Commissives: Promise to

This commissive speech act commits the speaker on a course of action. The
notation promise-to(i , j , s , α) reads “i promises to j in institution s to perform
action α”.

Intentional Interpretation. We begin with specifying the intentional dimen-
sion of this speech act, that is not given in FIPA-ACL. A promise-to is feasible
if the speaker believes that the hearer intends the concerned action to be per-
formed1. For example it makes no sense that a child promises to his father to
play (this is rather an assertive), while it makes sense to promise him to make
his schoolwork. So:

FP (promise-to(i , j , s , α)) = BiIjdoneα�

The rational effect pursued by the speaker is that the hearer be aware of his
intention to perform the promised action:

RE(promise-to(i , j , s , α)) = Bj Iidone i:α�

Institutional Interpretation. In an institutional context s, this promise to
perform an action α is permitted on condition that the action i :α is not explicitly
forbidden itself, and that the speaker is not committed to an opposite course of
action. So the permission precondition is the following:

PermC (promise-to(i , j , s , α)) = ¬DsO¬happens i:α� ∧ ¬DsIi¬done i:α�
1 Please notice that threats such as “I promise that I will kill you” cannot be considered

as promises in the sense of Searle.
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The institutional effect consists in ratifying in institution s the speaker’s inten-
tion to perform action α; so after promise-to(i , j , s , α) the speaker has stored
in the registry of s its intention to perform α, which is similar to him being
committed in s to this course of action.

EE (promise-to(i , j , s , α)) = DsIidone i:α�

This is thus similar to the inform(i , j , s , ϕ) speech act except that a promise stores
a commitment in action while an inform stores a propositional commitment.

There is no power precondition, so the institutional effect of a (permitted)
promise is always reached.

PowC (promise-to(i , j , s , α)) = �

Example. A client c promises to pay his provider p once the ordered goods
have been delivered. The action to pay is denoted by αpay This promise is
valid in the context of a B2B exchange contract, that is a particular institu-
tion denoted b2b here. So this promise is formalised as: promise(c, p, b2b, αpay).
This promise is permitted since obviously the promised action to pay is not for-
bidden (¬Db2bO¬happensc:αpay

�) and the client is not committed not to pay
(¬Db2bIc¬donec:αpay�). So when the client receives the delivery, his promise al-
lows to deduce his commitment (or ratified intention) to pay: Db2bIcdonec:αpay�,
that is the institutional effect of this speech act.

4.4 Directives: Command

This directive speech act is commonly used by the speaker to make the hearer
perform some action. The notation command(i , j , s , α, cond) reads “i orders to
j in institution s, in virtue of condition cond, to perform action α”.

Intentional Interpretation. According to the FIPA-ACL semantics, a request
is feasible only if the speaker does not believe the hearer to already intend to
perform the commanded action, and does believe that the part of the feasibility
preconditions of the commanded action that concerns him (i.e. that are his
mental attitudes) are valid. Here we consider that when α is an action of agent
j then FP(α) is of the form FPi(α) ∧ FP�=i(α) where the former is “i’s part of
FP(α)” (similar to FIPA-ACL notation FP(α)[i\j], that is the part of FP(α)
that are mental attitudes of agent i). But we do not impose this latter constraint
on the feasibility of α as a feasibility precondition of the command. So:

FP(command(i , j , s , α, cond)) = ¬BiIjdone j :α�

The rational effect of a command (i.e. the effect that i intends j to believe that
i intends to achieve) is that j has performed the commanded action:

RE(command(i , j , s , α, cond)) = done j :α�
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Institutional Interpretation. The permission precondition to command
someone to perform an action is to be empowered to do so, i.e. to dispose of the
institutional power to create the obligation to perform the commanded action
by commanding it under some condition cond given as an explicit attribute of
the command.2

An additional permission precondition is the constraint coming from FIPA
feasibility precondition that we relaxed, that is that the part of the feasibility
preconditions of α that depends on i hold (one should not command someone
to perform an action whose preconditions are made false by his own mental
attitudes). Finally, one is not permitted to command someone to perform a
forbidden action.
PermC (command(i , j , s , α, cond)) = ¬DsO¬happens j :α�∧

power(i , s , cond , command(i , j , s , α, cond),Odone j :α�) ∧ FPi(α)

The explicit institutional effect of this power is to create two new institutional
facts, corresponding to the obligation for j to perform α, and the recording
of j’s knowledge of his obligation. Actually this obligation could exist before,
and in this case the command corresponds to a notification; but it can also be
created from scratch by the command (see the examples in the next paragraph
for clarification).

EE (command(i , j , s , α, cond)) = DsOdonej :α� ∧ DsBj Odonej :α�
This explicit institutional effect is only deduced if the power applies in the

current context, i.e. if its condition is true. So:

PowC (command(i , j , s , α, cond)) = cond

Example. For example a parent can command his children to clean his room.
In this case, the action becomes obligatory through the command, because of
the parent’s authority over his son. In other words, his parent role gives him
the institutional power to command his child to perform actions, under some
conditions on the nature of the actions. Similarly a professor commanding his
students to make some schoolwork creates the obligation for them to do so, on the
strength of his role of professor. Indeed the role of professor gives an institutional
power to command students to perform schoolwork, under the condition that it
is related to the course.

But an order does not necessarily create an obligation, and may just put in
focus an existing one. For example a bailiff can be sent to officially command an
uncooperative client to pay an invoice. In this case the obligation already exists
(and is attested by the invoice) so the bailiff only reminds the client of it3. He is
2 Institutional powers obviously depend on roles. This notion has been explored in

previous work [10] but we will not enter in the details here since they are not in the
scope of this paper.

3 Actually this seems to be a notification rather than a command, but the aim is to
make the client behave, while the aim of a notification is only to make the receiver
officially aware of what is notified. In further work we expect to study into more
details the links between declarations, commands and notifications.
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permitted to perform such a command in virtue of his role of bailiff (which gives
him the power to force clients to pay) and because he is sent by the provider
(which constitutes the applicability condition of this power).

4.5 Declaratives: Declare

This declarative speech act changes the institutional reality by creating a new
institutional fact. The notation declare(i , j , s , cond , ϕ) reads “i declares to j in
institution s that given condition cond, the fact ϕ is now established”. The
condition usually bears upon the speaker’s role that empowers him to perform
such a declaration.

Intentional Interpretation. This intentional interpretation is partly inspired
from the intentional interpretation of an inform(i , j , s ,Dsϕ). The feasibility pre-
condition of a declaration is that the speaker does not believe the declared fact
to be already established (indeed a declaration must create a new institutional
fact). The rational effect (i.e. the intended effect) has two parts: the first one
is to make the declared institutional fact true; the second part is similar to the
rational effect of an inform about Dsϕ, i.e. to make the hearer aware of this
information. So:

FP(declare(i , j , s , cond , ϕ)) = ¬BiDsϕ

RE(declare(i , j , s , cond , ϕ)) = BjDsϕ ∧ Dsϕ

Institutional Interpretation. The permission precondition to perform
declare(i , j , s , cond , ϕ) is that i really has the power to establish the declared
fact ϕ by declaring it under the announced conditions cond. This power is lo-
cally granted by each specific institution to some agents depending on their role.
For example the French republic grants the mayors the right to pronounce two
people husband and wife, under the condition that they both consent to it. Thus
an ordinary agent who is not mayor does not have this power, so that he is not
allowed to pronounce marriages.

PermC (declare(i , j , s , cond , ϕ)) =
power(i , s , cond , declare(i , j , s , cond , ϕ), ϕ)

The explicit effect of a declaration is to store the declared fact in the institution,
as well as the fact that the hearer is officially aware of this fact.

EE (declare(i , j , s , cond , ϕ)) = Dsϕ ∧ DsBjDsϕ

This explicit effect is only obtained under the additional condition that cond is
valid:

PowC (declare(i , j , s , cond , ϕ)) = cond
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Example. For example a country can declare war to another one, by the voice
of its representative that is empowered to do so, and under some conditions
like the agreement of some counsellors. A mayor is empowered by its country
to pronounce weddings under some conditions that the people are of age and
consenting.

Citizens have to declare their income to the public treasury in order to calcu-
late the amount of tax that they will pay. This is a declaration since the effect
is a new institutional fact officially establishing one’s declared income as being
believed by him. Any citizen is empowered to do so. Moreover the law imposes
a constraint on the generated commitment, that is an obligation to believe this
income to be true. Thereby if the declared income was false the citizen is liable
for prosecution and sanctions.

4.6 Example of Reasoning with Our Action Laws

This example is situated in the context of a B2B exchange (in institution b2b)
between a buyer b and a seller s. The seller intends potential clients to know the
prices of his products, e.g. IsBbp. With our relaxed feasibility precondition, he
can use an assertive speech act whatever the context. Though if the buyer has
already been informed of the prices before (Db2bBsBbp), the seller is not permit-
ted to inform him again. Thus if he informs him anyway, according to IELα he
violates an obligation. This can be detected by other agents, and specific rules
of the institution may specify sanctions to compensate this. Being aware of such
pre-specified sanctions, an agent can deliberately choose to violate an obligation
if the intended outcome (here, that clients be aware of the seller’s offer) is more
important than the incurred sanction. This shows the importance of having both
intentional and institutional semantics of speech acts, to allow agents to reason
about the relative importance of their goals and their obligations, in order to
make an appropriate decision.

5 Detailed Comparison with Other Work

In this section we compare our semantics of speech acts with those proposed by
Fornara and Colombetti, and by Lorini et al. (that we have presented above).

5.1 Concept of Commitment

We have shown before that what we mean by commitment in this work is a
ratified mental attitude, i.e. a mental attitude (belief or intention) stored in
the institution. This notion is similar to Fornara and Colombetti’s commitment
that is also a public concept, except that we have not made explicit its creditor.
Actually the debtor is committed towards the whole institution, but an implicit
creditor can sometimes be found in the content ϕ of the commitment. For ex-
ample if agent i promises to j to pay him, he commits himself to a proposition
involving agent j, expressing that j will be payed at some future instant. The
creditor can sometimes be found in the sanction associated with the violation of
the commitment, too; for example the obligation to pay damages to an agent.
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Our notion of ratified mental attitude is also similar to Gaudou et al. ’s notion
of acceptance, because it must influence the agent’s behaviour and utterances.
Indeed, the agent’s ratified mental attitudes are mental attitudes that he has
expressed, that are stored in the institution, and to which he must conform
while subsequently acting and speaking, even if they are not consistent with his
real mental attitudes. For example an agent who promises that he has seen a
given movie must then be able to talk about it in order to be consistent with his
promise; if he is unable to narrate the end of the movie one can notice that he
is contradicting his commitment.

5.2 Notion of Institution

By institution we mean a set of rules and facts that are adopted by a group of
agents (the members of the institution). This seems to be a more generic notion
than Lorini et al. ’s concept of informal institution, since it accounts for this
particular kind of institutions but also for various other ones: laws of a country,
rules of a game, contract between businesses, social norms of a culture... In
particular it allows to have institutional rules that are ignored by the members
of the institution, what is the case for law for example, since one cannot be aware
of the whole set of laws of his country, while he is one of its citizens. Fornara and
Colombetti do not make explicit the institutional context in which their speech
acts are interpreted, so we believe that they also consider a kind of “ordinary
communication” institutional context.

In our view informal institutions are described by a specific set of facts and
rules, determining their specific functioning. In particular the fact that all agents
must accept a fact for it to become institutional is a particular institutional law.
In other kinds of institutions, facts must be adopted by a majority of members
(voting to create a law or to elect the president for example), or the opinion
of one single member can suffice (the referee is always right). Thus we cannot
adopt such an hypothesis in our account. Indeed on the contrary we consider
the generic interpretation of speech acts in any institution s. More specific rules
can be additionally specified in each particular interpretation, but the object of
this paper is to identify for each category of speech acts the features that are
common to their institutional interpretations whatever the institutional context.

6 Conclusion

In this work we have provided an expressive logical framework blending the
agents’ mental attitudes (beliefs, intentions) with their social attitudes (obli-
gations, institutional facts and powers...). To illustrate its expressivity, please
notice that our framework allows to represent some forms of contrary-to-duty
obligations-to-do. Such obligations take the form:

Oafterα⊥ → afterαOdonerepairα�
where repairα is the contrary-to-duty obligation associated to the violation of
the obligation to refrain from doing α. This means that if it is forbidden to
perform α, then after α it is obligatory to perform a repairing action repairα.
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We have then used this framework to provide a semantics for an agent com-
munication language based on FIPA-ACL but relaxing its widely criticised too
constraining feasibility conditions, and adding permission preconditions. This
way, agents can choose to perform forbidden speech acts but would then be
liable to sanctions in the corresponding institution. Our ACL semantics also
includes new speech acts (commissives and declaratives). It generalises existing
approaches by unifying the intentional and institutional dimensions in one single
framework, while strongly distinguishing them; moreover it allows to consider
various kinds of institutional contexts; finally it provides action laws taking both
dimensions into account.

In future work we intend to improve the institutional and intentional seman-
tics of speech acts by accounting for deadlines. Various researchers [4,12,9] have
shown that an important feature of obligations to perform an action is the dead-
line before which this action must be performed, that is essential to be able to
assess the violation or fulfillment of such obligations. Though for the sake of
simplicity we have omitted deadlines in this paper. An idea to manage them in
future work could be to use existing formalisations of norms with deadlines, or
to ground on linear temporal logic with until and since operators [5].

Finally we would like to mention that our framework for the institutional
interpretation of speech acts has been successfully implemented into institutional
agents that have been used in a prototype of industrial application: a multi-agent
mediation platform for automated business to business exchanges [2].
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Abstract. We continue the work initiated in [1,2,3], where the accep-
tance logic, a modal logic for modelling individual and collective accep-
tances was introduced. This logic is aimed at capturing the concept of
acceptance qua member of an institution as the kind of attitude that
agents are committed to when they are “functioning as members of an
institution”. Acceptance logic can also be used to model judgement ag-
gregation: it deals with how a collective acceptance of the members of
an institution about a certain fact ϕ is created from the individual ac-
ceptances of the members of the institution. The contribution of this
paper is to present a tableau method for the logic of acceptance. The
method automatically decides whether a formula of the logic of accep-
tance is satisfiable thereby providing an automated reasoning procedure
for judgement aggregation in the logic of acceptance.

Keywords: Semantic tableaux method, acceptance logic, judgement
aggregation, discursive dilemma.

1 Introduction

The notion of ‘acceptance’ has been extensively studied in philosophy and social
sciences where several authors have distinguished it from the classical notion of
belief (see [4,5,6] for instance). Other authors have been interested in studying
the foundational role of acceptance in the existence and in the dynamics of groups
and institutions. It has been stressed in [7] (see also [8]) that the existence and the
dynamics of an institution depend on the acceptances of the norms and the rules
of the institution by the members of the institution. For example, for a certain
norm to be a norm of institution x, all members of institution x must accept
such norm to be valid. This relationship between acceptance and institutions
was already emphasised in the philosophical doctrine of Legal Positivism [9].
According to Hart, the foundations of a normative system or institution consist
of adherence to, or acceptance of, an ultimate rule of recognition by which the
validity of any rule of the institution may be evaluated.1

In some recent works [1,2,3] we have presented a logical framework in which
such relationship between acceptances and institutions can be formally studied.
1 In Hart’s theory, the rule of recognition is the rule which specifies the ultimate

criteria of validity in a legal system.
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We conceive institutions as rule-governed social practices on the background of
which the agents reason. For example, take the case of a game like Cluedo. The
institutional context is the rule-governed social practice which the agents con-
form to in order to be competent players and on the background of which agents
reason. In the context of Cluedo, an agent accepts that something has happened
qua player of Cluedo (e.g., the agent accepts that Mrs. Red is the murderer qua
player of Cluedo). Our logic is aimed at capturing the state of acceptance qua
member of an institution as the kind of acceptance one is committed to when one
is “functioning as a member of the institution” [7]. Moreover, it enables to for-
malise the concept of ‘collective acceptance’ of groups of agents. Following [10,7],
we conceive a collective acceptance held by a set of agents G qua members of a
certain institution x as the kind of acceptance the agents in G are committed to
when they are “functioning together as members of this institution”. For exam-
ple, in the context of Greenpeace agents (collectively) accept that their mission
is to protect the Earth qua members of Greenpeace. The state of acceptance qua
members of Greenpeace is the kind of acceptance these agents are committed
to when they are functioning together as members of Greenpeace. Thus, in our
logical framework a collective acceptance by a set of agents G is based on the
identification of the agents in G as members of a certain institution (or group,
team, organisation, etc.) and on the fact that the agents in G recognise each
other as members of the same institution (or group, team, organisation, etc.).

More recently [11], we have shown that our logic of acceptance can also be
applied to modelling some interesting aspects of judgement aggregation. In the
logic of acceptance the problem of judgement aggregation is a particular case of
the problem of explaining how collective acceptance of the members of a certain
group about a certain fact ϕ is created from the individual acceptances of the
members of this group.

The contribution of this article is to present a tableau method for the logic of
acceptance we introduced in [1,2]. The method automatically decides whether a
formula of the logic of acceptance is satisfiable thereby providing an automated
reasoning procedure for making judgement aggregation in modal logic.

The remainder of the paper is organised as follows. First, in Section 2 we
briefly present acceptance logic. Then, in Section 3 we present our tableau
method. In Section 4 we apply it to a classical scenario in judgment aggregation,
the so-called Discursive Dilemma [12,13]. And finally, Section 5 concludes.

2 Acceptance Logic

The logic AL (Acceptance Logic) was introduced in [1,2]. It allows to express
that some agents identify themselves as members of a certain institution and
what (groups of) agents accept while functioning together as members of an
institution. The principles of AL clarify the relationships between individual
acceptance (acceptances of individual agents) and collective acceptance (accep-
tances of groups of agents).
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2.1 Syntax

Assume a finite non-empty set X of labels denoting institutional contexts, a
finite non-empty set N of labels denoting agents and a countable set P of atomic
formulae. We use 2N� to denote the set 2N \ ∅.

The language LAL of acceptance logic is the set of formulae ϕ defined by the
following BNF:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | AG:xϕ

where p ranges over P , G ranges over 2N�, and x ranges over X .
The other classical Boolean connectives ∧, →, ↔, � (tautology) and ⊥ (con-

tradiction) are defined using ∨ and ¬ in the usual manner. And for simplicity,
we write i:x instead of {i}:x.

The formula AG:xϕ reads ‘the agents in G accept that ϕ while functioning
together as members of institution x’. For example, AG:GreenpeaceprotectEarth
expresses that the agents in G accept that the mission of Greenpeace is to
protect the Earth while functioning as activists in the context of Greenpeace;
and Ai:CatholicPopeInfallible expresses that agent i accepts that the Pope is
infallible while functioning as a Catholic in the context of the Catholic Church.

The same agent may accept contradictory propositions in two different
contexts. For example, while functioning as a Catholic, agent i accepts that
killing is forbidden, and while functioning as a soldier i accepts that killing is
allowed.

The formula AG:x⊥ has to be read ‘agents in G are not functioning together
as members of institution x’. This means that we assume that functioning as a
member of an institution is, at least in this minimal sense, a rational activity.
Conversely, ¬AG:x⊥ has to be read ‘agents in G are functioning together as
members of institution x’. Thus, ¬AG:x⊥ ∧ AG:xϕ stands for ‘agents in G are
functioning together as members of institution x and they accept that ϕ while
functioning together as members of x’ or simply ‘agents in G accept that ϕ qua
members of institution x’. This is a case of group acceptance. For the individual
case, the formula ¬Ai:x⊥ ∧ Ai:xϕ has to be read ‘agent i accepts that ϕ qua
member of institution x’.

2.2 Semantics and Axiomatisation

We use a standard possible worlds semantics. Let the set of all pairs of non-empty
sets of agents and institutional contexts be Δ = {G:x | G ∈ 2N� and x ∈ X}. An
acceptance model is a triple 〈W, A, V〉 where: W is a non-empty set of possible
worlds, A : Δ → W × W maps every G:x ∈ Δ to a relation A(G:x) between
possible worlds in W and V : P → 2W is valuation function associating a set of
possible worlds V(p) ⊆ W to each atomic formula p of P .

Instead of A(G:x) we write AG:x, and we use AG:x(w) to denote the set
{w′ | 〈w, w′〉 ∈ AG:x}. AG:x(w) is the set of worlds that is acceptable by the
agents in G while functioning together as members of institution x.

Given M = 〈W, A, V〉 and w ∈ W , the pair 〈M, w〉 is a pointed acceptance
model. The satisfaction relation |= between formulae of LAL and pointed
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acceptance models 〈M, w〉 is defined as usual for atomic propositions, negation and
disjunction. The satisfaction relation for acceptance operators is the following:

M, w |= AG:xϕ iff M, w′ |= ϕ for all w′ ∈ AG:x(w)

Validity of a formula ϕ (noted: |= ϕ) is defined as usual.
The axiomatisation of AL is presented in Figure 1. As usual, the K-principles

are the axioms and inference rules of the basic modal logic K.

(K) All K-principles for the operators AG:x

(4∗) AG:xϕ→ AH:yAG:xϕ (if H ⊆ G)

(5∗) ¬AG:xϕ→ AH:y¬AG:xϕ (if H ⊆ G)

(Inc) (¬AG:x⊥ ∧AG:xϕ)→ AH:xϕ (if H ⊆ G)

(Una) AG:x(
∧
i∈G

Ai:xϕ→ ϕ)

Fig. 1. Axiomatisation of acceptance logic

Axioms 4∗ and 5∗ are introspection axioms: when the agents in a set G
function together as members of institution x then, for all y ∈ X and all H ⊆ G,
the agents in H have access to all the facts that are accepted (or that are not
accepted) by the agents in G. In particular, if the agents in G (do not) accept that
ϕ while functioning together as members of institution x then, while functioning
together as members of institution x, the agents of every subset H of G accept
that agents in G (do not) accept that ϕ.

Axiom Inc says that, if the agents in G accept that ϕ qua members of in-
stitution x then every subset H of G accepts ϕ while functioning together as
members of institution x. This means that what is accepted by the agents in
G qua members of institution x are necessarily accepted by agents in all of G’s
subsets with respect to the same institutional context x. Axiom Inc describes
the top down process leading from G’s collective acceptance to the individual
acceptances of G’s members.

Axiom Una expresses a unanimity principle according to which the agents in
G, while functioning together as members of institution x, accept that if each
of them individually accepts that ϕ while functioning as member of x, then ϕ
is the case. This axiom describes the bottom up process leading from individual
acceptances of the members of G to the collective acceptance of the group G.

In order to make our axioms valid we impose the following constraints on
acceptance models, for any world w ∈ W , institutional context x ∈ X , and
groups G, H ∈ 2N� such that H ⊆ G:

(C.4∗) if w2 ∈ AH:y(w1) and w3 ∈ AG:x(w2) then w3 ∈ AG:x(w1);
(C.5∗) if w2 ∈ AH:y(w1) and w3 ∈ AG:x(w1) then w3 ∈ AG:x(w2);
(C.Inc) if AG:x(w) 	= ∅ then AH:x(w) ⊆ AG:x(w);

(C.Una) if w2 ∈ AG:x(w1) then w2 ∈
⋃
i∈G

Ai:x(w2).
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Axiom 4∗ corresponds to semantic constraint C.4∗, Axiom 5∗ corresponds to
C.5∗, Axiom Inc to C.Inc, and Una to C.Una (in the sense of correspon-
dence theory). We also note that C.4∗ and C.5∗ together are equivalent to the
following semantic constraint: if w2 ∈ AH:y(w1) then AG:x(w1) = AG:x(w2).
Thus, the acceptance models considered here are exactly the same as proposed
in [1,2,3]. The theorem below has been shown in [2].

Theorem 1. The axiomatisation in Figure 1 is sound and complete with respect
to the class of acceptance models satisfying constraints C.4∗, C.5∗, C.Inc and
C.Una.

2.3 Discussion about the Monotonicity Principle

One may think that the following principle would be desirable in Acceptance
Logic:

(Mon) ¬AG:x⊥ → ¬AH:x⊥ (if H ⊆ G)

which corresponds to semantic constraint: if AG:x(w) 	= ∅ then AH:x(w) 	= ∅.
Principle Mon expresses a property of monotonicity about institution member-
ship. It was also discussed from a different perspective in our previous works on
Acceptance Logic [1,2].

We prefer not including Mon in the current version of AL because we are in-
terested in strong notions of ‘constituted group’ and ‘group identification’ which
are formally expressed by constructions ¬AG:x⊥. As we said above, ¬AG:x⊥
means “the agents in G are functioning together as members of the institution
x” or, stated differently, “G constitutes a group of members of the institution
x”. We suppose here that the latter sentences just express that: every agent in
G identifies himself as a member of institution x and recognizes G as a group of
members of institution x. Under this assumption, Mon is not valid. The follow-
ing example illustrates this point. Imagine that the eleven agents in {1, 2, . . . , 11}
constitute a football team (i.e. ¬A{1,2,...,11}:team⊥ ). This means that every agent
in {1, 2, . . . , 11} identifies himself as a member of the football team and recog-
nizes {1, 2, . . . , 11} as a football team. This does not entail that {1, 2, . . . , 10}
constitute a football team (i.e. ¬A{1,2,...,10}:team⊥ ). Indeed, it is not the case
that every agent in {1, 2, . . . , 10} recognizes {1, 2, . . . , 10} as a football team.
(Only ten players do not constitute a football team!).

It worth noting that Mon becomes a reasonable principle under a different
reading of the construction ¬AG:x⊥. Namely, suppose that ¬AG:x⊥ just means:
every agent in G identifies himself as a member of institution x and recognises
every agent in the set of agents G as a member of institution x. Under this
assumption, ¬AG:x⊥ should imply ¬AH:x⊥, for H ⊆ G.

3 The Tableau Method

In this section we present a proof method for AL that uses semantic tableaux. As
a typical tableaux method, given a formula ϕ, it systematically tries to construct
a model for it. When it fails, ϕ is inconsistent and thus, its negation is valid.
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Each formula in the tableau is prefixed by a natural number that stands for
a possible world in the model under construction, similar to the notion used by
Fitting ([14, Chapter 8]).

Definition 1 (Labelled formula). A labelled formula is a pair of the form
〈n, ϕ〉 such that n ∈ N and ϕ ∈ LAL.

Our method also builds the relations AG:x between possible worlds that form the
model. These relations are represented in tableau by means of arrows between
possible worlds, which are represented as triples of the form 〈G:x, n, n′〉. That
is, the tableau contains a set of labelled formulae and also a set of such triples,
as defined in the sequel.

Definition 2 (Branch). A branch is a pair of the form 〈L, S〉 such that L is
a set of labelled formulae and S ⊆ (Δ × N × N).

Definition 3 (Tableau). Let ϕ ∈ LAL. A tableau for ϕ is a set of branches T
inductively defined as follows:

– T = {〈{〈0, ϕ〉}, ∅〉}. This is called the initial tableau for ϕ.
– T ′ = (T \ {〈L, S〉}) ∪ {〈L′

1, S
′
1〉, 〈L′

2, S
′
2〉, . . . , 〈L′

n, S′
n〉}, where T is a tableau

for ϕ containing the branch 〈L, S〉 and each 〈L′
i, S

′
i〉 is a branch generated

by one of the tableau rules defined below: (A more standard presentation of
some of these tableau rules is given in Figure 2.)
(R.¬) If 〈n, ¬¬ϕ〉 ∈ L then generate L′

1 = L ∪ {〈n, ϕ〉} and S′
1 = S.

(R.∧) If 〈n, ϕ1 ∧ ϕ2〉 ∈ L then generate L′
1 = L ∪ {〈n, ϕ1〉, 〈n, ϕ2〉} and

S′
1 = S.

(R.∨) If 〈n, ¬(ϕ1 ∧ϕ2)〉 ∈ L then generate L′
1 = L∪{〈n, ¬ϕ1〉} and S′

1 = S;
and also L′

2 = L ∪ {〈n, ¬ϕ2〉} and S′
2 = S.

(R.�) if 〈n, AG:xϕ〉 ∈ L and 〈G:x, n, n′〉 ∈ S then generate L′
1 = L ∪

{〈n′, ϕ〉} and S′
1 = S.

(R.♦) if 〈n, ¬AG:xϕ〉 ∈ L then generate L′
1 = L ∪ {〈n′, ¬ϕ〉} and S′

1 =
S ∪ {〈G:x, n, n′〉}, for some n′ that does not occur in L.

(R.4∗) if H ⊆ G and 〈H :y, n, n′〉, 〈G:x, n′, n′′〉 ∈ S then generate L′
1 = L

and S′
1 = S ∪ {〈G:x, n, n′′〉}.

(R.5∗) If H ⊆ G and 〈H :y, n, n′〉, 〈G:x, n, n′′〉 ∈ S then generate L′
1 = L

and S′
1 = S ∪ {〈G:x, n′, n′′〉}.

(R.Inc) If H ⊆ G and 〈H :x, n, n′〉 ∈ S then generate L′
1 = L and S′

1 =
S ∪ {〈G:x, n, n′〉}; and also L′

2 = L ∪ {〈n, AG:x⊥〉} and S′
2 = S.

(R.Una) If G = {i1, . . . , ik} and 〈G:x, n, n′〉 ∈ S then generate L′
1 = L and

S′
1 = S ∪ {〈{i1}:x, n′, n′〉}; L′

2 = L and S′
2 = S ∪ {〈{i2}:x, n′, n′〉}; . . . ;

L′
k = L and S′

k = S ∪ {〈{ik}:x, n′, n′〉}.

Rules R.¬, R.∧ and R.∨ work exactly as for classical propositional logic. Rules
R.� and R.♦ work exactly as for modal logic K, as proposed, e.g., in [14].
The other rules are meant to ensure that the model to be created will be an
acceptance model. Tableau Rule R.4∗ implements semantic constraint C.4∗,
Tableau Rule R.5∗ implements constraint C.5∗, Rule R.Inc implements C.Inc
and R.Una implements C.Una.
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(R.�)
〈n, AG:xϕ〉; 〈G:x, n, n′〉

〈n′, ϕ〉;

(R.♦)
〈n,¬AG:xϕ〉;

〈n′,¬ϕ〉; 〈G:x, n, n′〉 for a new n′

(R.4∗)
; 〈H :y, n, n′〉, 〈G:x,n′, n′′〉

; 〈G:x,n, n′′〉 where H ⊆ G

(R.5∗)
; 〈H :y, n, n′〉, 〈G:x, n, n′′〉

; 〈G:x,n′, n′′〉 where H ⊆ G

(R.Inc)
; 〈H :x, n, n′〉

; 〈G:x,n, n′〉 〈n, AG:x⊥〉; where H ⊆ G

(R.Una)
; 〈G:x,n, n′〉

; 〈{i1}:x, n′, n′〉 . . . ; 〈{ik}:x, n′, n′〉 where G = {i1, . . . , ik}

Fig. 2. Tableau rules

Definition 4 (Closed tableau). The set of labelled formulae L is closed if
and only if {〈n, ϕ〉, 〈n, ¬ϕ〉} ⊆ L, for some n and ϕ. A branch is closed if and
only if its set of labelled formulae is closed. A tableau is closed if and only if all
its branches are closed. A tableau is open if and only if it is not closed.

Example 1. Now, let us see how the method can be used to show that the for-
mula: (Aij:xAi:xp ∧ Aij:xAj:xp) → Aij:xp is valid in acceptance logic. As we will
see, if there is a closed tableau for ϕ, then no model satisfies ϕ, which means
that ¬ϕ is valid. Therefore, if we provide a closed tableau for the negation of
our formula above, we show its validity.

Such a tableau is given in Figure 3. Each line of the figure displays either
a labelled formula, an arrow or both, which are the elements of the tableau
branches. The number in parentheses on the left is used to identify the line.
On the right, also in parentheses, we find the rule that generated that line, and
what lines has been used in the application of such rule. For example, the labelled
formula and arrow in line 6 have been generated by the application of R.♦, using
the labelled formula in line 3. Also, lines 9 and 11 have been generated by the
application of R.Una, using the arrow in line 6.

The input formula is in line 1 (we spelt out the abbreviations). The construc-
tion of the closed tableau started with the initial tableau for the input formula.
The latter corresponds to line 1 alone. Then, a new tableau has been generated
by the application of R.∧ using the labelled formula in line 1. The latter cor-
responds to lines 1 and 2 together, and so on. When R.Una has been applied
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(1) 0, (Aij:xAi:xp ∧Aij:xAj:xp) ∧ ¬Aij:xp
(2) 0, Aij:xAi:xp ∧Aij:xAj:xp (R.∧ : 1)
(3) 0,¬Aij:xp (R.∧ : 1)
(4) 0, Aij:xAi:xp (R.∧ : 2)
(5) 0, Aij:xAj:xp (R.∧ : 2)
(6) 1,¬p ij:x, 0, 1 (R.♦ : 3)
(7) 1, Ai:xp (R.� : 4, 6)
(8) 1, Aj:xp (R.� : 5, 6)
(9) i:x, 1, 1 (R.Una : 6)
(10) 1, p (R.� : 7, 9)

closed (6, 10)

(11) j:x, 1, 1 (R.Una : 6)
(12) 1, p (R.� : 8, 11)

closed (6, 12)

Fig. 3. A tableau for Example 1

(1) 0,¬Ai:xp ∧ Aij:x¬Ai:xp

(2) 0,¬Ai:xp (R.∧ : 1)
(3) 0, Aij:x¬Ai:xp (R.∧ : 1)
(4) 1,¬p i:x, 0, 1 (R.♦ : 2)

(5) ij:x, 0, 1 (R.Inc : 4)
(6) 1,¬Ai:xp (R.� : 3, 5)
(7) ij:x, 1, 1 (R.5∗ : 5)
(8) 2,¬p i:x, 1, 2 (R.♦ : 6)

(9) ij:x, 1, 2 (R.Inc : 8)
(10) ij:x, 0, 2 (R.4∗ : 4, 9)
(11) 2,¬Ai:xp (R.� : 3, 10)
(12) ij:x, 2, 2 (R.5∗ : 9)
(13) 3,¬p i:x, 2, 3 (R.♦ : 11)

...

(14) 1, Aij:x⊥ (R.Inc : 8)
(15) 1,⊥ (R.� : 14, 7)

closed (15)

(16) 0, Aij:x⊥ (R.Inc : 4)

Fig. 4. A tableau for Example 2

using the arrow in line 6, it generated two branches. This is represented in the
figure by the vertical line dividing the tableau in two parts after line 8.

Example 2. On the other hand, if no closed tableau for ϕ exists, then ϕ is satis-
fiable. Let us see what happens when we try to generate a closed tableau for the
formula: ¬Ai:xp∧Aij:x¬Ai:xp which is satisfiable. This is done in Figure 4. Note
that one of the branches is closed. On the other hand, no rule can be applied
in the rightmost branch, which means that this tableau will remain open. On
the leftmost branch we have a rather different phenomenon. We can continue
applying the same set of rules indefinitely. This will generate more branches that
can be closed, but we can never close all of them. This means that we can also
consider such a branch as an open one.

We proceed by proving soundness of the method. But first we need yet another
definition.
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Definition 5 (Satisfiable branch). The branch b = 〈L, S〉 is satisfiable if
and only if there exists an acceptance model M = 〈W, A, V〉 and a function
f : N → W such that:

1. 〈f(n), f(n′)〉 ∈ AG:x, for all 〈G:x, n, n′〉 ∈ S; and
2. M, f(n) |= ϕ, for all 〈n, ϕ〉 ∈ L.

Theorem 2 (Soundness). If there is a closed tableau for ¬ϕ then ϕ is valid.

Proof. We show that if ϕ is satisfiable then there is no closed tableau for ϕ. It is
enough to show that all tableau rules preserve satisfiability. That is, it is enough
to show that: if the branch b = 〈L, S〉 is satisfiable then the set of branches
B = {b′1, . . . , b

′
k} generated by any tableau rule contains a satisfiable branch.

Indeed, and to see that it is enough, suppose that b′i is satisfiable and closed.
Then L′

i contains two labelled formulae 〈n, ϕ〉 and 〈n, ¬ϕ〉. Because b′i is satisfi-
able, there exists an acceptance model M and a function f such that M, f(n) |= ϕ
and M, f(n) |= ¬ϕ, which is a contradiction.

Now, suppose that the branch b is satisfiable. The proof that the rules R.¬
and R.∧ preserve satisfiability is straightforward and thus, left as an exercise to
the reader. We proceed by showing that the modal rules preserve satisfiability.

R.�: M, f(n) |= AG:xϕ and 〈f(n), f(n′)〉 ∈ AG:x (by hypothesis). Then
M, f(n′) |= ϕ (by definition).

R.♦: M, f(n) |= ¬AG:xϕ (by hypothesis). Then there exists w′ ∈ AG:x(f(n))
such that M, w′ |= ¬ϕ (again, by definition). Now, consider the function f ′ :
N → W such that f ′(n) = f(n), for all n occurring in L, and f ′(n′) = w′. Then
M, f ′(n′′) |= ϕ′′, for all 〈n′′, ϕ′′〉 ∈ L (because n′ does not occur in L), and
M, f ′(n′) |= ¬ϕ.

R.4∗: Let H ⊆ G. 〈f(n), f(n′)〉 ∈ AH:y and 〈f(n′), f(n′′)〉 ∈ AG:x (by hy-
pothesis). Then 〈f(n), f(n′′)〉 ∈ AG:x, since M is an acceptance model respecting
C.4∗. Then, the branch 〈L′

1, S
′
1〉 is satisfiable.

R.5∗: Let H ⊆ G. 〈f(n), f(n′)〉 ∈ AH:x and 〈f(n), f(n′′)〉 ∈ AG:x (by hypoth-
esis). Then, 〈f(n′), f(n′′)〉 ∈ AG:x, since M is an acceptance model respecting
C.5∗. Then, the branch 〈L′

1, S
′
1〉 is satisfiable.

R.Inc: Let H ⊆ G. M, f(n) |= AG:xϕ and 〈f(n), f(n′)〉 ∈ AH:x (by hy-
pothesis). Note that M, f(n′) 	|= ⊥ (because we assume that the branch is sat-
isfiable) then M, f(n) |= ¬AH:x⊥. The latter implies 〈f(n), f(n′)〉 ∈ AG:x or
AG:x(f(n)) = ∅, since M is an acceptance model respecting C.Inc. Therefore,
one of the branches generated by R.Inc is satisfiable.

R.Una: Let G = {i1, . . . , ik}. 〈f(n), f(n′)〉 ∈ AG:x (by hypothesis). Then,
〈f(n′), f(n′)〉 ∈ Aij :x for some 1 ≤ j ≤ k, since M is an acceptance model re-
specting C.Una. Therefore, one of the branches generated by R.Una is
satisfiable. ��

In the sequel we prove completeness. First though, we need another auxiliary
definition.

Definition 6 (Saturated tableau). Let T be a tableau for ϕ containing the
branch b = 〈L, S〉. The branch b is ‘saturated under the tableau rule ρ’ if and
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only if L contains L′
i and S contains S′

i for some branch 〈L′
i, S

′
i〉 generated by

the application of the rule ρ to b. A branch is (simply) ‘saturated’ if and only if
it is saturated under all tableau rules. A tableau is saturated if and only if all its
branches are saturated.

Theorem 3 (Completeness). If ϕ is valid then there exists a closed tableau
for ¬ϕ.

Proof. Let 〈L, S〉 be an open and saturated branch of the tableau. We build a
model M = 〈W, A, V〉 such that W = {n | 〈n, ϕ〉 ∈ L}, for some ϕ; AG:x(n) =
{n′ | 〈G:x, n, n′〉 ∈ S}; and V(p) = {n | 〈n, p〉 ∈ L}.

Clearly, M is an acceptance model, because the branch is saturated under
R.4∗, R.5∗, R.Inc and R.Una.

Now, we show that for all 〈n, ϕ〉 ∈ L, M, n |= ϕ. It is done by induction on
the structure of ϕ.

There are two cases in the induction base. (1) ϕ = p, i.e., 〈n, p〉 ∈ L. Then
n ∈ V(p), iff M, n |= p (by definition). (2) ϕ = ¬p, i.e., 〈n, ¬p〉 ∈ L. Then
〈n, p〉 	∈ L, because L is open. Then n 	∈ V(p), iff M, n |= ¬p (by definition).

There are five cases in the induction step. (1) ϕ = ¬¬ϕ1, i.e., 〈n, ¬¬ϕ1〉 ∈ L.
Then 〈n, ϕ1〉 ∈ L, because L is saturated under R.¬. Then M, n |= ϕ1, by
induction hypothesis, iff M, n |= ¬¬ϕ1, by definition. Cases (2) ϕ = ϕ1 ∧ ϕ2
and (3) ϕ = ¬(ϕ1 ∧ ϕ2), are shown analogously as case (1) using rules R.∧ and
R.∨, respectively. They are left as an exercise to the rader. (4) 〈n, AG:xϕ〉 ∈ L.
Then for all n′ ∈ W , if 〈G:x, n, n′〉 ∈ S, then 〈n′, ϕ〉 ∈ L (because L is saturated
under rule R.�). Then for all n′ ∈ W , if n′ ∈ AG:x(n), then M, n′ |= ϕ, by
induction hypothesis. Therefore, M, n |= AG:xϕ. (5) 〈n, ¬AG:xϕ〉 ∈ L. Then
there is n′ ∈ W such that 〈G:x, n, n′〉 ∈ S and 〈n′, ¬ϕ〉 ∈ L (because L is
saturated under rule R.♦). Then there is n′ ∈ W such that n′ ∈ AG:x(n) and
M, n′ |= ¬ϕ, by induction hypothesis. Therefore, M, n |= ¬AG:xϕ. ��
Theorem 4 (Termination). There exists an implementation of the tableau
method that halts for every input formula ϕ.

Proof (Sketch). We assume an implementation of the tableau method that em-
ploys a ‘loop-test’. That is, a procedure that, once the latest generated tableau is
saturated under all rules but R.♦, verifies whether the application of the latter
rule to the witness formula ψ will generate a world such that the set of labelled
formulae having this world as label and the set of arrows involving this world
will be included in the respective sets for a different world already present in the
branch. If it is the case, then ψ is marked and R.♦ will not be applied using this
formula any more.

Then, the argument for termination goes as for logic S4 (as used, e.g., in
[15,16]): the formulae generated by the rules are in a finite set S, and therefore
only a finite number of different nodes can be generated by the tableaux pro-
cedure. The only difference is that here the finite set S is not just the set of
sub-formulae of the initial formula ϕ as for S4, but its closure, which is the set
of sub-formulae of ϕ union the set of AG:x⊥ such that G and x occur in ϕ (due
to rule R.Inc). Moreover, the set of labels of every arrow is finite. ��
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4 An Example: The Discursive Dilemma

In the recent years many researchers in philosophy, computer science and po-
litical sciences have been working on the issue of judgement aggregation (e.g.,
[17,18,19,20,21,22]). The problem is: How can a group of individuals aggregate
the group members’ individual judgements on some interconnected propositions
into corresponding collective judgements on these propositions? Such problems
occur in different social and legal contexts like committees, legislatures, judicia-
ries and expert panels.

Our logic of acceptance is a formal framework in which some important aspects
of judgement aggregation can be modelled. Moreover, the tableau method for
the logic of acceptance presented in Section 3 provides an interesting solution
for making automated reasoning about judgement aggregation.

In the logic of acceptance the problem of judgement aggregation is a particular
case of the problem of explaining how collective acceptance of the members of
a certain group in an institutional context x about a certain fact ϕ is created
from the individual acceptances in x of the members of the same group.

We here consider a well-known problem in judgement aggregation called ‘doc-
trinal paradox’ or ‘discursive dilemma’ [12,13]. The scenario of the discursive
dilemma is a three-member court which has to judge whether a defendant is
liable for a breach of contract. According to the legal doctrine, the defendant is
liable (lia) if and only if he did a certain action (act) and he had a contractual
obligation not to do this action (obl). This is expressed in propositional logic
by the connection rule lia ↔ (act ∧ obl). The three judges use majority rule to
decide on this issue. The opinions of the three judges are given in Table 1.

Table 1. Discursive dilemma

act obl lia ↔ (act ∧ obl) lia

Judge 1 yes yes yes yes
Judge 2 yes no yes no
Judge 3 no yes yes no
Majority yes yes yes no

It is supposed that all the judges accept the rule lia ↔ (act ∧ obl). Judge 1
accepts both act and obl and, by the connection rule, he accepts lia . Judge 2
accepts act and rejects obl and, by the connection rule, he rejects lia. Finally,
judge 3 rejects act and accepts obl and, by the connection rule, he rejects lia .
If the three judges apply a majority rule on each proposition then they face
a paradox. Indeed, a majority accepts act , a majority accepts obl , a majority
accepts the connection rule lia ↔ (act ∧ obl ). But the majority rejects lia .
Thus, when majority voting is applied to each single proposition it yields an
inconsistent collective set of judgements (see the last row in Table 1). Note that
this inconsistency occurs even though the sets of judgements of the individual
judges are all consistent.
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Let us now show how the discursive dilemma can be formalised in the logic
of acceptance.

We first suppose that 1, 2 and 3 qua judges of the court accept the connection
rule:

¬A123:c⊥ (1)
A123:c(lia ↔ (act ∧ obl)) (2)

Then, we have that judge 1 announces that, qua judge of the court, he accepts
act ∧obl . Judge 2 announces that, qua judge of the court, he accepts act ∧¬obl .
Judge 3 announces that, qua judge of the court, he accepts ¬act ∧ obl . This has
the following effect:

A123:cA1:c(act ∧ obl) (3)
A123:cA2:c(act ∧ ¬obl ) (4)
A123:cA3:c(¬act ∧ obl ) (5)

Finally, the three judges use a majority principle for each proposition act , obl and
lia. This majority principle is formally expressed by the following six hypotheses:

Maj = { A123:c

∧
i,j∈{1,2,3},i�=j

((Ai:cact ∧ Aj:cact) → act),

A123:c

∧
i,j∈{1,2,3},i�=j

((Ai:c¬act ∧ Aj:c¬act) → ¬act),

A123:c

∧
i,j∈{1,2,3},i�=j

((Ai:cobl ∧ Aj:cobl ) → obl ),

A123:c

∧
i,j∈{1,2,3},i�=j

((Ai:c¬obl ∧ Aj:c¬obl) → ¬obl ),

A123:c

∧
i,j∈{1,2,3},i�=j

((Ai:c lia ∧ Aj:c lia) → lia),

A123:c

∧
i,j∈{1,2,3},i�=j

((Ai:c¬lia ∧ Aj:c¬lia) → ¬lia) }

It is possible to prove that 1, 2, 3, 4 and 5 together with Maj lead to a contra-
diction using the axiomatisation of acceptance logic. Indeed, from hypotheses 3,
4 and 5 we infer

A123:c(A1:cact ∧ A2:cact) ∧ A123:c(A1:cobl ∧ A3:cobl).

By the first and third hypotheses in Maj, the latter implies

A123:cact ∧ A123:cobl

and by hypothesis 2 and standard modal principles the latter implies

A123:c lia .

From hypotheses 1 and 2, by axioms 4∗ and 5∗, we can infer



Tableaux for Acceptance Logic 97

(H
.1

)
0,
¬

A
1
2
3
:c
⊥

(H
.2

)
0,

A
1
2
3
:c

(l
ia

↔
(a

c
t
∧

o
b
l)

)
(H

.3
)

0,
A

1
2
3
:c

A
1
:c

(a
c
t
∧

o
b
l)

(H
.4

)
0,

A
1
2
3
:c

A
2
:c

(a
c
t
∧
¬
o
b
l)

(H
.5

)
0,

A
1
2
3
:c

A
3
:c

(¬
a
c
t
∧

o
b
l)

(H
.6

)
0,

A
1
2
3
:c

((
A

1
:c
a
c
t
∧

A
3
:c
a
c
t)

→
a
c
t)

(H
.7

)
0,

A
1
2
3
:c

((
A

1
:c
o
b
l
∧

A
2
:c
o
b
l)

→
o
b
l)

(H
.8

)
0,

A
1
2
3
:c

((
A

2
:c
¬
li
a
∧

A
3
:c
¬
li
a
)
→

¬
li
a
)

(1
)

1,
¬
⊥

12
3:

c
,0

,1
(R

.♦
:H

.1
)

(2
)

1,
A

2
:c

(a
c
t
∧
¬
o
b
l)

(R
.�

:H
.4

,1
)

(3
)

1,
(A

2
:c
¬
li
a
∧

A
3
:c
¬
li
a
)
→

¬
li
a

(R
.�

:H
.8

,1
)

(4
)

12
3:

c
,1

,1
(R

.5
∗

:1
)

(5
)

1,
¬
li
a

(R
.∨

:3
)

. . . cl
os

ed
(H

.2
,H

.3
,H

.6
,H

.7
)

(6
)

1,
¬

(A
2
:c
¬
li
a
∧

A
3
:c
¬
li
a
)

(R
.∨

:3
)

(7
)

1,
¬

A
2
:c
¬
li
a

(R
.∨

:6
)

(8
)

2,
¬
¬
li
a

2:
c
,1

,2
(R

.♦
:7

)
(9

)
2,

a
c
t
∧
¬
o
b
l

(R
.�

:2
,8

)
(1

0)
12

3:
c
,1

,2
(R

.I
n
c

:8
)

(1
1)

12
3:

c
,0

,2
(R

.4
∗

:1
,1

0)
(1

2)
2,

li
a
↔

(a
c
t
∧

o
b
l)

(R
.�

:H
.2

,1
1)

. . . cl
os

ed
(8

,9
,1

2)

(1
3)

1,
A

1
2
3
:c
⊥

(R
.I
n
c

:8
)

(1
4)

1,
⊥

(R
.�

:1
3,

4)
cl

os
ed

(1
4)

(1
5)

1,
¬

A
3
:c
¬
li
a

(R
.∨

:1
3)

. . . cl
os

ed
(H

.2
,H

.5
,1

5)

F
ig

.
5
.
A

cl
os

ed
ta

bl
ea

u
fo

r
th

e
di

sc
ur

si
ve

di
le

m
m

a



98 M. de Boer et al.

A123:c(A123:c(lia ↔ (act ∧ obl)) ∧ ¬A123:c⊥).

By Axiom Inc and standard modal principles, the latter implies

A123:c(A1:c(lia ↔ (act ∧ obl ))∧
A2:c(lia ↔ (act ∧ obl)) ∧ A3:c(lia ↔ (act ∧ obl ))).

From this, by hypotheses 3, 4 and 5 and standard modal principles, we can infer

A123:c(A1:c lia ∧ A2:c¬lia ∧ A3:c¬lia)

and by the sixth hypothesis in Maj the latter implies

A123:c¬lia .

Thus, we have A123:c⊥, and by hypothesis 1 we can infer ⊥.
However, if one slightly changes the hypotheses, the proof may change com-

pletely. This means that the axiomatisation does not provide a straightforward
way to automatise the process of finding such kind of inconsistency. On the other
hand, a tableau method is meant to provide a systematic way to search for mod-
els and, thereby, an easy way to automatise the process of deciding whether a
formula is inconsistent or not.

As an illustration, we show a closed tableau for this example (schematically)
in Figure 5. On that figure, the lines identified by H.1–5 correspond to hypothe-
ses 1–5 above, respectively. The line identified by H.6 corresponds to the first
hypothesis in Maj, H.7 to the third hypothesis, and H.8 to the sixth. The branch
containing lines 13 and 14 is already closed. The other branches are not com-
pletely displayed. But it is easy to see that all branches generated from line 12
on can be closed, since lines 8, 9 and 12 together are inconsistent in propositional
logic. The branches generated from line 15 on can be closed in an analogous way
as the latter. And the branches generated from line 5 on need more effort, but
they can be closed too, in a similar way as the latter by using lines H.2, H.3,
H.6 and H.7.

5 Conclusion

The contribution of this paper is a semantic tableau method for acceptance logic.
The method consists in a procedure to check satisfiability of formulae, that can
be easily automatised. Given that acceptance logic can be used to formalise
some aspects of judgement aggregation, our method also provides an automated
reasoning procedure for making judgement aggregation in modal logic.

It is to be noted that, differently from [21,22], in which logical approaches
specialised for judgement aggregation have been proposed, in the logic of accep-
tance judgement aggregation is just an application. We have shown in [2,3] that
the logic of acceptance is a much general formal framework in which the static
and dynamic aspects of institutions can be studied (e.g., static and dynamic
aspects of social roles, norms and rules).

Moreover, this method uses a rather different set of rules. For instance, rules
for axioms 4∗ and 5∗ (which are nothing but a variation of the usual axioms
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4 and 5) are similar to the so-called “structural rules” proposed in [23]. Our
tableau rules are also modular. This means that it is possible to provide a sound,
complete and terminating satisfiability checking method for a logic without one
of the semantic constraints, by just removing the corresponding tableau rule.
The addition of rules is also possible. For example, one could add the tableau
rule:

(R.Mon)
; 〈G:x, n, n′〉
; 〈H :x, n, n′〉

which corresponds to Axiom Mon, thus, obtaining a tableau method for the
acceptance logic with Axiom Mon proposed in [1,2].

As possible future works, we intend to investigate computational complexity,
and also possible extensions of our method able to address acceptance logic with
dynamic operators, such as the logic proposed in [24].
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Abstract. The specification and monitoring of conditional obligations
and prohibitions with starting points and deadlines is a crucial aspect
in the design of open interaction systems. In this paper we regard such
obligations and prohibitions as cases of social commitment, and pro-
pose to model them in OWL, the logical language recommended by
the W3C for Semantic Web applications. In particular we propose an
application-independent ontology of the notions of social commitment,
temporal proposition, event, agent, role and norms that can be used in
the specification of any open interaction system. We then delineate a
hybrid solution that uses the OWL ontology, SWRL rules, and a Java
program to dynamically monitor or simulate the temporal evolution of
social commitments, due to the elapsing of time and to the actions per-
formed by the agents interacting within the system.

1 Introduction

The specification of open interaction systems, where heterogeneous, autono-
mous, and self-interested agents can interact by entering and leaving dynam-
ically the system, is widely recognized to be a crucial issue in the development
of distributed applications on the Internet, like e-commerce applications, or col-
laborative applications for the automatic creation of virtual organizations. An
important aspect of the specification of open systems is the possibility to define
the actions that agents should or should not perform in a given interval of time,
that is, the possibility to define social commitments with starting points and
deadlines, and to monitor and react to their fulfilment or violation.

As we discussed in our previous works [11,12,10] in our OCeAN meta-model
for the specification of artificial institutions, commitments for the interacting
agents can be created by the activation of norms associated to the agents’ roles,
or by the performance of agent communicative acts, like promises. In this paper
we explore how to use OWL (in its OWL 2 DL version1), the logical language
recommended by W3C for Semantic Web applications, to specify the deontic
part of the OCeAN meta-model. More precisely, we show how it is possible to

1 http://www.w3.org/2007/OWL/wiki/OWL Working Group

M. Baldoni et al. (Eds.): DALT 2009, LNAI 5948, pp. 101–118, 2010.
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specify social commitment to express conditioned obligations and prohibitions
on time intervals, in OWL.

There are many advantages of using a decidable logical language like OWL
to specify an open interaction system, and in particular that: (i) Semantic Web
technologies are increasingly becoming a standard for Internet applications; (ii)
the language is supported by reasoners (like Fact++2, Pellet3, and the rule
reasoner of the Jena Semantic Web framework4) that are more efficient than
available alternatives (like the Discrete Event Calculus Reasoner5); (iii) it is
possible to achieve a high degree of interoperability of data and applications,
which is indeed a crucial precondition for the development of open systems.

The idea of using OWL for modelling and monitoring the dynamic evolution
of open artificial institutions can be developed following different approaches. A
first option would be to implement an institutional model in a object oriented
language like Java, and use OWL only to specify the ontology of the content of
communicative acts and norms. As a result reasoning may be used to deduce,
for example, that the performance of a certain act implies the performance of
another act, and thus the fulfillment of a given commitment. An alternative
approach, which we investigate in this paper, consists in using OWL to express,
as far as possible, the normative component of the OCeAN meta-model. As we
shall see, this requires the use of SWRL (Semantic Web Rule Language6) and
Java code to overcome certain expressiveness limitations of OWL. Indeed, with
both OWL 1 (the current standard) and OWL 2 there are at least two major
problems:

– The treatment of time. OWL has no temporal operators; on some occasions
it is possible to bypass the problem by using SWRL rules and built-ins for
comparisons, but in any case this does not provide full temporal reasoning
capabilities. Another possible solution would consist in using the OWL Time
Ontology7, but given that its axiomatization is very weak, this alternative
presents limitations analogous to those previously discussed.

– The open-world assumption. In many applications, nor being able to infer
that an action has been performed is sufficient evidence that the action
has not been performed; one would then like to infer, for example, that
an obligation to perform the action has been violated. As standard OWL
reasoning is carried out under the open world assumption, inferences of this
type cannot be drawn. However, it is often possible to simulate a closed
world assumption by adding closure axioms to an ontology.

The main contribution of this paper, with respect to our previous works, is to
show how obligations and prohibitions can be formalized in OWL and SWRL for

2 http://owl.man.ac.uk/factplusplus/
3 http://clarkparsia.com/pellet
4 http://jena.sourceforge.net/inference/
5 http://decreasoner.sourceforge.net
6 http://www.w3.org/Submission/SWRL/
7 http://www.w3.org/TR/owl-time/, http://www.w3.org/2006/time.rdf
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monitoring and simulation purposes with significant performance improvements
with respect to the solution based on the Event Calculus that we presented
elsewhere [10]. Another contribution of this work is a hybrid solution of the
problem of monitoring the temporal evolution of obligations and prohibition,
based on application independent upper ontology of those concepts, extended
including other ontologies specific for the domain of application, a set of SWRL
rules, and a Java program implemented using suitable OWL libraries (like the
Jena Semantic Web Framework for Java8 or OWL API9).

The paper is organized as follows. In the next section we briefly introduce
OWL and SWRL, that is, the Semantic Web languages that we use to formally
specify the normative component of an open interaction system. In Section 3 we
specify the algorithms that we plan to use to simulate or monitor the temporal
evolution of an interaction system. Then in Section 4 we define the classes,
properties, axioms, and rules that we take to underlie the normative specification
of every interaction system. In Section 5 we present an actual example of a
system specified using the proposed ontology. Finally in Section 6 we compare
our approach with other proposals and draw some conclusions.

2 OWL and SWRL

OWL is a practical realization of a Description Logic system known as
SROIQ(D). It allows one to define classes (also called concepts in the DL liter-
ature), properties (also called roles), and individuals. An OWL ontology consists
of: a set of class axioms to describe classes, which constitute the Terminological
Box (TBox ); a set of property axioms to describe properties, which constitute
a Role Box (RBox ); and a collection of assertions to describe individuals, which
constitute an Assertion Box (ABox ).

Classes can be viewed as formal descriptions of sets of objects (taken from
a nonempty universe), and individuals can be viewed as names of objects of
the universe. Properties can be either object properties or data properties. The
former describe binary relations between objects of the universe; the latter, bi-
nary relationships between objects and data values (taken from XML Schema
datatypes).

A class is either a basic class (i.e., an atomic class name) or a complex class
build through a number of available constructors that express Boolean opera-
tions and different types of restrictions on the members of the class.

Through class axioms one may specify subclass or equivalence relationships
between classes, and that certain classes are disjoint. Property axioms allow one
to specify that a given property is a subproperty of another property, that a
property is the inverse of another property, or that a property is functional or
transitive. Finally, assertions allow one to specify that an individual belongs to
a class, that an individual is related to another individual through an object

8 http://jena.sourceforge.net/
9 http://owlapi.sourceforge.net/
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property, that an individual is related to a data value through a data property,
or that two individuals are equal or different.

OWL can be regarded as a decidable fragment of First Order Logic (FOL). The
price one pays for decidability, which is considered as an essential preconditions
for exploiting reasoning in practical applications, is limited expressiveness. Even
in OWL 2 (the more expressive version currently under specification) certain
useful first-order statements cannot be formalized.

Recently certain OWL reasoners, like Pellet, have been extended to deal with
SWRL rules. SWRL is a Datalog-like language, in which certain universally
quantified conditional axioms (called rules) can be stated. To preserve decidabil-
ity, however, rules have to be used in the safe mode, which means that before
being exploited in a reasoning process all their variables must be instantiated
by pre-existing individuals. An important aspect of SWRL is the possibility of
including built-ins, that is, Boolean functions that perform operations on data
values and return a truth value.

Conventions

In what follows we use the notation p : C →O D to specify an object property p
(not necessarily a function) with class C as domain and class D as range, and
the notation q : C →D T to specify a data property q with class C as domain
and the datatype T as range. We use capital initials for classes, and lower case
initials for properties and individuals.

3 Specification and Simulation or Monitoring of an Open
Interaction System

Our approach is to model an open interaction system using one or more artificial
institutions. The definition of a specific artificial institution consists of: (i) a first
component, called meta-model, which includes the definition of basic entities
common to the specification of every institution, like the concepts of temporal
proposition, commitment, institutional power, role, and norm, and the actions
necessary for exchanging messages; (ii) a second component, pertaining to the
institution in exam, which includes the definition of specific powers and norms
that apply to the agents playing roles in the institution, and the definition of the
concepts pertaining to the domain of the interaction (for example the actions of
paying or delivering a product, bidding in an auction, etc.).

We start from the specification of a system, formalized as an application-
independent OWL ontology (including a TBox, an RBox, and an ABox as de-
tailed in Section 4). We then add an application-dependent ontology (as exem-
plified in Section 5) and use a Java program to let such ABox evolve in time on
the basis of the events, with the goal of monitoring the fulfilment or violation of
obligations and prohibitions. Those events could be actual events that happen
during the run time of the system mainly due to the interaction of the agents or
events registered in a possible history of the system for simulation purposes.

In particular, when the system is used for run time monitoring, a Java program
updates the state of the system, that is, it updates the ABox with new assertions
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to model the elapsing of time, to allow for closed-world reasoning on certain
classes, and to model the actions performed by the interacting agents. When such
updating is completed, a reasoner can be used to deduce the state of obligations
and prohibitions. After that, when the ontology has reached a stable state (in
the sense that all closed-world reasoning has been completed), the agents may
perform queries to know what are their pending obligations or prohibitions or to
react to their violation or fulfillment. We assume that the events or actions that
happen between two phases of update (that is, between two discrete instant of
time) are queued in the data structure ActionQueue for being managed by the
Java program subsequently.

When the system is used for simulation, the set of events that happen at run-
time are known since the beginning, and are represented in the initial version of
the ABox. In such a case the Java program simply updates the state of the system
to represent the elapsing of time and to allow closed-world reasoning on certain
classes; then the reasoner deduces the state of obligations and prohibitions at
each time instant.

Temporal evolution of the ontology

An external Java program is used to update the ABox to model the elapsing
of time, the actions performed by the interacting agents at run-time (in the
monitoring usage), and to allow for closed-world reasoning on certain classes (see
Section 4.1 for details). It is important to underline that the external program
is used to update the ABox of the ontology and only to add new knowledge
acquired due to time elapsing, it is never used to remove knowledge.

The program performs the following operations:

1. initialize the simulation/monitoring time t equal to 0 and close the extensions
of the classes C, on which it is necessary to perform closed-world reasoning,
by asserting that the class KC is equivalent to the enumeration of all indi-
viduals that can be proved to be members of the class C retrieved with the
retrieve(C) query command;

2. insert in the ABox the assertion happensAt(elapse, t);
3. insert in the ABox the events or actions that happen in the system between

t − 1 and t and that are cached in the ActionQueue queue (this involves
creating new individuals of the class Event);

4. run a reasoner (more specifically, Pellet 2.0) to deduce all assertions that can
be inferred (truth values of temporal propositions, states of commitments,
etc.);

5. update the closure of the relevant classes C;
6. increment the time of simulation t by 1 and go to the point 2.

After point 5, given that the ontology has reached a stable state it is possible to
let agents perform queries about pending, fulfilled, or violated commitments in
order to plan their subsequent actions and to apply sanctions or rewards. When
the ontology is used for monitoring purposes, and given that internal time (i.e.,
the time as represented in the ontology) is discrete, it is necessary to wait the
actual number of seconds that elapse between two internal instants.
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The corresponding Java pseudo code is as follows:
t=0
for each class C that has to be closed

assert KC ≡ {i1, ...in} with {i1, ...in} = retrieve(C)
while t<timeSimulation {

assert happensAt(elapse,t)
for each event en in ActionQueue

assert happensAt(en,t)
run Pellet reasoner
for each class C that has to be closed

remove equivalent class axioms of class KC
assert KC ≡ {i1, ...in} with {i1, ...in} = retrieve(C)

run agents queries
t=t+1

}

4 The Ontology of Obligations and Prohibitions

In this section we present the TBox, the RBox, and part of the Abox that have to
be included in the ontology of any interaction system modelled using the OCeAN
concepts of temporal proposition, commitment, role, and norm. In particular we
specify the classes, the properties and the axioms for modelling those concepts
and introduce some SWRL rules to deduce the truth value of temporal proposi-
tions. Social commitments are a crucial concept in our approach because they are
used to model obligations and prohibitions due either to the activation of norms
or created by the performance of communicative acts, like promises. Thanks to
their evolution in time, commitments can be used to monitor the behavior of au-
tonomous agents by detecting their violation or fulfilment, as a precondition for
reacting with suitable passive or active sanctions or with a reward [10].

Somegeneral classesofourontologyareusedasdomain or rangeof theproperties
used to describe temporal propositions and commitments; they are class Event,
class Action and class Agent. In particular, an event may have as a property its
time of occurrence. Class Action is a subclass of Event, and has a further property
used to represent the actor of the action. Such properties are defined as follows:

Event �Agent � ⊥; Action � Event;
hasActor : Action→O Agent;
happensAt : Event→D integer;

To represent the elapsing of time we introduce in the ABox the individual elapse,
that is asserted to be a member of class Event : Event(elapse).

4.1 Temporal Propositions

Temporal propositions are used to represent the content and condition of so-
cial commitments. They are a construct used to relate in two different ways a
proposition to an interval of time. In the current OWL specification, we distin-
guish between positive temporal propositions used in commitments to represent
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obligations (when an action has to be performed within a given interval of time),
and negative temporal propositions used to model prohibitions (when an action
must not be performed during a predefined interval of time).

The classes necessary to model temporal propositions are TemporalProp, with
the two subclassesTPPos andTPNeg used todistinguishbetweenpositive andneg-
ative temporal propositions. The classes IsTrue and IsFalse are used to model the
truth values of temporal propositions. All this is specified by the following axioms:

TemporalProp �Agent � ⊥; TemporalProp � Event � ⊥;
TPPos � TemporalProp; TPNeg � TemporalProp;
TPPos � TPNeg � ⊥;
TemporalProp ≡ TPPos � TPNeg;
IsT rue � TemporalProp; IsFalse � TemporalProp;
IsT rue � IsFalse � ⊥;

The class TemporalProp is the domain of the following object and data properties
further specified with a cardinality axiom:

hasAction : TemporalProp→O Action;
hasStart : TemporalProp→D integer;
hasEnd : TemporalProp→D integer;
TemporalProp �= 1 hasAction � = 1 hasStart � = 1 hasEnd

The classes IsT rue and IsFalse are used to keep track of the truth value of
temporal propositions by means of two SWRL rules, that are different on the
basis of the type of temporal proposition. A positive temporal proposition (i.e., a
member of class TPPos) is used to represent an obligation to do something in a
given interval of time, with starting points tstart and deadline tend. We therefore
introduce a rule that deduces that the truth value of the temporal proposition is
true (i.e., the temporal proposition becomes member of the class IsT rue) if the
action associated to the temporal proposition is performed between the tstart

(inclusive) and the tend (exclusive) of interval of time associated to the same
proposition. In the following SWRL rule we use two built-ins to compare the
current time with the interval of time associated to the temporal proposition:

RuleTPPos1
happensAt(elapse,?t) ∧ happensAt(?a,?t) ∧ TPPos(?tp) ∧ hasAction(?tp,?a) ∧
hasStart(?tp,?ts) ∧ hasEnd(?tp,?te) ∧ swrlb:lessThanOrEqual(?ts,?t) ∧
swrlb:lessThan(?t,?te) → IsTrue(?tp)

We then have to define a rule that, when the time tend of a positive temporal
proposition elapses, and such a temporal proposition is not true, deduces that
the temporal proposition is member of the class IsFalse. Here closed-world
reasoning comes into play, because we cannot assume the ABox to contain an
explicit assertion that an action has not been performed: rather, we want to
deduce that an action has not been performed by the lack of an assertion that
it has been performed. Clearly, an SWRL rule like

happensAt(elapse,?te) ∧ hasEnd(?tp,?te) ∧ TPPos(?tp) ∧(not IsT rue)(?tp)
→ IsFalse(?tp)
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would not work, given that OWL/SWRL reasoners operate under the open world
assumption. This means that the conclusion that a temporal proposition is false
can only be reached for those propositions that can be definitely proved not to
be members of IsT rue. On the contrary, if a temporal proposition is not deduced
to be IsT rue by RuleTp1, even if its deadline has been reached it will not be
deduced to be IsFalse.

To solve this problem we first assume that our ABox contains complete in-
formation on the actions performed before the current time of the system. This
allows us to adopt a closed-world perspective as far as the performance of ac-
tions is concerned. More specifically, we assume that the program specified in
Section 3 will always update the ABox when an event has happened (i.e. the
program can only inset in the ABox the information that an event has happened
at current time t); we then want to deduce that all temporal propositions, that
cannot any longer become true because their deadline has elapsed, are false.

To get this result we need to perform some form of closed world reasoning
on class IsT rue. As stated in [17] “the DL ALCK [7] adds a non-monotonic
K operator (which is a kind of necessity operator) to the DL ALC to provide
the ability to “turn on” the Closed World Assumption (CWA) when needed.
The reasoning support for ALCK language has been implemented in Pellet to
answer CWA queries that use the K operator”. However, our ontology uses a
more expressive DL than ALC; moreover, the use of the K operator in SWRL
rules is not supported.

We therefore take a different approach, based on an explicit closure of class
IsT rue. More precisely, we introduce a new class, KIsTrue, which is meant to
contain all temporal propositions that, at a given time, are known to be true.
Class KIsTrue therefore represents, at any given instant, the explicit closure of
class IsT rue. Given its intended meaning, class KIsTrue has to be a subclass
of IsT rue (and, as a consequence, of TemporalProp):

KIsTrue � IsT rue

To maintain class KIsTrue as the closure of class IsT rue, we define it periodi-
cally as equivalent to the enumeration of all individuals that can be proved to be
members of IsT rue. This can be done by the Java program used to update the
ABox to keep track of the elapsing of time (described in Section 3) by executing
the operations described in the following pseudo-code:

assert KIsTrue ≡ {tp1, ...tpn} with {tp1, ...tpn} = retrieve(IsTrue)

We now introduce a new class, NotKIsT rue, which is intended to contain all
temporal propositions whose deadline is elapsed, and that are not members
of KIsTrue. Such a class is defined as the difference between the set of all
individuals that belong to TemporalProp, and the set of all those individuals
that are members of KIsTrue:

NotKIsT rue ≡ TemporalProp � ¬KIsTrue

We are now ready to write a rule to deduce that the truth value of a positive
temporal proposition is false if the deadline of the temporal proposition has
elapsed, and it is not known that the associated action has been performed:
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RuleTPPos2
happensAt(elapse,?te) ∧ hasEnd(?tp,?te) ∧ TPPos(?tp) ∧ NotKIsT rue(?tp)
→ IsFalse(?tp)

We now turn to negative temporal propositions, that is, temporal propositions
that are members of the class TPNeg and are used to represent the prohibition
to do something in a given interval of time. Such propositions belong to class
IsFalse when the associated action is performed in the interval between tstart

(inclusive) and tend (exclusive). This can be deduced by the following rule:

RuleTPNeg1
happensAt(elapse,?t) ∧ happensAt(?a,?t) ∧ TPNeg(?tp) ∧ hasAction(?tp,?a) ∧
hasStart(?tp,?ts) ∧ hasEnd(?tp,?te) ∧ swrlb:lessThanOrEqual(?ts,?t) ∧
swrlb:lessThan(?t,?te) → IsFalse(?tp)

Similarly to what we did for RuleTPPos2, we now use the closure of class
IsFalse, that we call KIsFalse, to deduce that a negative temporal propo-
sition IsT rue when its tend has been reached and it has not yet been deduced
that the proposition IsFalse:

KIsFalse � IsFalse
NotKIsFalse ≡ TemporalProp � ¬KIsFalse

RuleTPNeg2
happensAt(elapse, ?te) ∧ hasEnd(?tp,?te) ∧ TPNeg(?tp) ∧ NotKIsFalse(?tp)
→ IsTrue(?tp)

4.2 Commitment

In the OCeAN meta-model of artificial institutions, commitments are used to
model a social relation between a debtor a creditor, about a certain content and
under a condition. Our idea is that by means of the performance of communica-
tive acts, or due to the activation of norms, certain agents become committed
with respect to another agent to perform a certain action within a given dead-
line (an obligation), or not to perform a given action during a given interval of
time (a prohibition). Such commitments can be conditional on the truth of some
proposition. In our model we assume that if an action is neither obligatory nor
prohibited, then it is permitted.

In order to detect and react to commitment violation and fulfilment we need
to deduce a commitments state (in our previous works [10] we also introduced
precommitments to define the semantics of requests, but this is not relevant in
the current work). We introduce in the ontology the class Commitment, disjoint
from Event, Agent and TemporalProp.

Commitment �Agent � ⊥; Commitment � Event � ⊥;
Commitment � TemporalProp � ⊥;



110 N. Fornara and M. Colombetti

The Commitment class is the domain of the following object properties:
hasDebtor : Commitment→O Agent;
hasCreditor : Commitment→O Agent;
hasContent : Commitment→O TemporalProp;
hasCondition : Commitment→O TemporalProp;
hasSource : Commitment→O Norm;
Commitment � ∃hasDebtor � ∃hasCreditor� =1hasContent�

=1hasCondition;
The hasSource property is used to keep track of the norm that generated a
commitment, as explained in Section 4.3. Obviously the debtor of a commitment
has to be the actor of the action to which it is committed, as expressed by the
following axiom:

hasContent ◦ hasAction ◦ hasActor � hasDebtor

In some situations it is necessary to create unconditional commitments. To avoid
writing different rules for conditional and for unconditional commitments, we in-
troduce a temporal proposition individual, tpT rue, whose truth value is initially
true; that is, we assert: IsT rue(tpT rue). An unconditional commitment is then
defined as a conditional commitment whose condition is tpT rue.

Our next problem is deducing whether a given commitment is:

– pending, when its condition is satisfied but its content is not known to be
IsT rue or to be IsFalse;

– fulfilled, when is content is known to be IsT rue;
– violated, when its content is known to be IsFalse and its condition is known

to be IsT rue.

Knowing the state of a commitment may be important for the interacting agents
to plan their actions on the basis of the advantages of fulfilling certain commit-
ments. We therefore introduce classes IsPending, IsFulfilled, and IsV iolated,
defined by the following axioms:

IsFulfilled� IsV iolated � ⊥;
IsPending � Commitment; IsFulfilled� Commitment;
IsV iolated � Commitment;
We define the following axiom to deduce that a commitment is member of the

class IsPending:

Axiom1
IsPending ≡ (∃ hasContent.NotKIsT rue) � (∃ hasContent.NotKIsFalse)�
(∃ hasCondition.IsT rue))

Note that as classes NotKIsT rue and NotKIsFalse are updated after run-
ning the reasoner, as soon as the content of a commitment becomes true the
commitment is member of both class IsPending and class IsFulfilled.

Lists of fulfilled and of violated commitments can be obtained by retrieving
the individuals that are respectively members of class IsFulfilled or IsV iolated,
defined by the following axioms:
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Axiom2
IsFulfilled ≡ ∃ hasContent.IsT rue

Axiom3
IsV iolated ≡ (∃ hasContent.IsFalse) � (∃ hasCondition.IsT rue)

4.3 Norms and Roles

In OCeAN, norms are introduced to model obligations and prohibitions that,
contrary to those created at run time by the performance of communicative
acts, are implied by an institutional setting and can be specified at design time.
For example, norms can be used to state the rules of an interaction protocol,
like the protocol of a specific type of auction, or the rules of a seller-buyer
interaction. Given that norms are usually specified at design time, when it is
impossible to know which agents will actually interact in the system, one of their
distinctive features is that they have to be expressed in term of the roles played
by the agents. Therefore at run-time, when a norm becomes active (i.e., when
its activating event happens), the actual debtor and creditor of the obligation
or prohibition generated by the norm have to be computed on the basis of the
roles played by the agents in the system at that moment.

Another important aspect of norms is that to enforce their fulfillment in an
open system, it must be possible to specify sanctions or rewards. In [9] we sug-
gested that a satisfactory model of sanctions has to distinguish between two
different type of actions: the action that the violator of a norm has to perform
to extinguish its violation (which we call active sanction), and the action that the
agent in charge of norm enforcement may perform to deter agents from violating
the norm (which we call passive sanction). Active sanctions can be represented
in our model through a temporal proposition, whereas passive sanctions can be
represented as new specific powers that the agent entitled to enforce the norm
acquires when a norm is violated. As far as passive sanctions are concerned,
another norm (that in [16]) is called enforcement norm) may oblige the enforcer
to punish the violation. Due to space limitations, in this paper we do not model
the notion of power ; thus passive sanctions are not treated in this paper. An
obligation or prohibition generated by a norm can in turn violated; it will there-
fore be necessary to monitor the fulfillment or violation of such obligations or
prohibition t punish the violation.

Role

Typically, artificial institutions provide for different roles. In a run of an auc-
tion, for example, we may have the roles of auctioneer and of participant; in a
company, like an auction house, we may have the roles of boss or employee; and
so on. More generally, also the debtor and the creditor of a commitment may be
regarded as roles. Coherently with these examples, a role is identified by a label
(like auctioneer, participant, etc.) and by the institutional entity that provides
for the role. Such an institutional entity may be an organization (like an auction
house), an institutional activity (like a run of an auction), or an institutional
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relationship (like a commitment). For example an agent may be the auctioneer
of run 01 of a given auction, or an employee of IBM, or the creditor of a specific
commitment.

We introduce class Role to represent the set of possible labels that representing
roles and class InstEntity to represent the institutional entity within which a
given role is played. Elements of class AgentInRole are used to reify the fact
that an agent plays a given role in a given institutional entity. Those classes are
related by the following object properties:

isP layedBy : AgentInRole→O Agent;
hasRole : AgentInRole→O Role;
isIn : AgentInRole→O InstEntity;

Norm

Summarizing, a norm has: a content and a condition, modelled using temporal
propositions; a debtor and a creditor, expressed in term of roles; an activating
event ; and a collection of active and passive sanctions. Norms are represented
in our ontology using class Norm and the following object properties:

hasRoleDebtor : Norm→O Role; hasRoleCreditor : Norm→O Role;
hasNContent : Norm→O TemporalProp;
hasNCondition : Norm→O TemporalProp;
hasActivation : Norm→O Event;
hasASanction : Norm→O TemporalProp;
hasPSanction : Norm→O Power;

When a norm is activated it is necessary to create as many commitments as
there are agents playing the role associated to the debtor property of the norm.
For example, the activation of a norm that applies to all the agents playing
the role of participant of an auction, creates a commitment for each participant
currently taking part to the auction. The creditors of these commitments are the
agents that play the role reported in the creditor property of the norm. All these
commitments have to be related by the hasSource object property (defined in
Section 4.2) to the norm that generated them; this is important to know which
norm generated a commitment and what sanctions apply for the violation of
such commitment.

As every commitment is an individual of the ontology, the activation of a
norm involves the generation of new individuals. However, the creation of new
individuals in an ABox cannot be performed using OWL or SWRL. There are at
least two possible solutions to this problem, which we plan to investigate in our
future work. The first consists in defining a set of axioms in the ontology that
allows the reasoner to deduce the existence of those commitments as anonymous
objects with certain properties. With this solution, an agent that needs to know
its pending commitments instead of simply retrieving the corresponding individ-
uals will have to retrieve their contents, conditions and debtors. Another possible
solution consists in defining a new built-in that makes it possible for SWRL rules
to create new individuals as members of certain classes and with given properties.
A similar problem will have to be solved to manage the creation of a sanctioning
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Fig. 1. Graphical representation of the ontology

commitment generated by the violation of a commitment related to a norm,
which has as content the temporal proposition associated to the active sanction
of the norm.

In Figure 1 classes, subclasses, and properties (dotted lines) of the ontology
described in this section are graphically represented.

5 Example

In this section we show how it is possible to specify the state of an interac-
tion system and to simulate or monitor its evolution in time. To do so it is
necessary to integrate the ontology defined in the previous sections with an
application-dependent ontology, and to insert a set of individuals for represent-
ing commitments and temporal propositions in the ABox. In a real application
these commitments and their temporal propositions will be created by the per-
formance of communicative acts (defined in the OCeAN agent communication
library [10]) or by the activation of norms. If the system is used for monitoring
purposes, we assume that there is a way of mapping the actions that are actually
executed onto their counterparts in the ontology.

Here we describe an example of interaction where a buyer agent, Ann, promises
to pay a certain amount of money for a product (a book) to a seller agent, Bob, on
condition that the seller agent delivers the product to Ann. We also represent the
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prohibition for the seller to deliver a different product (a CD). Different possible
evolution of the state of the interaction are possible on the basis of the agents’
actions.

The ontology described in the previous sections has to be integrated with the
action for paying an amount of money and for delivering a product. In a realistic
application they would be described in a detailed domain-dependent ontology
introducing the class Pay and the class Delivery as subclass of the class Action
described in our application independent ontology. Both of those type of action
have a receiver and an object, the pay action type also has an amount of money.
For simplicity in this example we represent the action of payment of the book
and its delivery with individuals inserted in the ABox.

The agents are represented with the following assertions:
Agent(ann); Agent(bob); �= (ann, bob);

The actions that we are interested to model in the ontology are represented by
the following assertions:

Action(payBook1); Action(deliverBook1); Action(deliverCD1);
hasActor(payBook1, ann); hasActor(deliverBook1, bob);
hasActor(deliverCD1, bob);
�= (payBook1, deliverBook1, deliverCD1, elapse);

Temporal propositions are represented by the following assertions:
TPPos(tpPayBook1); TPPos(tpDeliverBook1); TPNeg(tpNotDeliverCD1);
hasAction(tpPayBook1, payBook1); hasStart(tpPayBook1, 1);
hasEnd(tpPayBook1, 3);
hasAction(tpDeliverBook1, deliverBook1); hasStart(tpDeliverBook1, 1);
hasEnd(tpDeliverBook1, 2);
hasAction(tpNotDeliverCD1, deliverCD1); hasStart(tpNotDeliverCD1, 0);
hasEnd(tpNotDeliverCD1, 3);
�= (tpPayBook1, tpDeliverBook1, tpT rue); �= (tpNotDeliverCD1, tpT rue);

Commitments are represented by the following assertions:
Commitment(c1); Commitment(c2); Commitment(c3);
hasDebtor(c1, ann); hasCreditor(c1, bob);
hasContent(c1, tpPayBook1); hasCondition(c1, tpDeliverBook1);
hasDebtor(c2, bob); hasCreditor(c2, ann);
hasContent(c2, tpDeliverBook1); hasCondition(c2, tpT rue);
hasDebtor(c3, bob); hasCreditor(c3, ann);
hasContent(c3, tpNotDeliverCD1); hasCondition(c3, tpT rue);
�= (c1, c2, c3);

The history of the system is represented by the following assertions (the action
happens at time 1):

happensAt(deliverBook1, 1)
We created the ontology of the interaction system with the free, open source on-
tology editor Protege 4.0 beta10. As this version of Protege does not support the
10 http://protege.stanford.edu/
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editing of SWRL rules, we created them with Protege 3.4 and inserted their
RDF/XML code in the ontology file. We implemented the Java program described
in Section 3 using OWL-API library to operate on the ontologyand the source code
of Pellet 2.0 to reason and query it11.

In Table 1 we report the evolution of the ontology ABox in time, with par-
ticular regard to the truth value of the temporal propositions and the state of
commitments. As the extension of classes KIsTrue and KIsFalse are computed
by an external program, when the reasoner runs their extensions are specified in
the axiom relative to the previous state. In the table we abbreviate the assertion
happensAt(elapse, n) with the expression t = n.

Table 1. Dynamic evolution of the state of the system

time t = 0 t = 1 t = 2 t = 3
tpPayBook1[1, 3] IsFalse

tpDeliverBook1[1, 2] IsT rue IsTrue IsTrue

tpNotDeliverCD1[0, 3] IsT rue

c1(ann, bob,
tpPayBook1, IsPending IsPending IsV iolated

tpDeliverBook1)
c2(bob, ann,

tpDeliverBook1, IsPending IsFulfilled IsFulfilled IsFulfilled
tpT rue)

c3(bob, ann,
tpNotDeliverCD1, IsPending IsPending IsPending IsFulfilled

tpT rue),

Classes updated by the external program
KIsTrue {tpT rue} {tpT rue, {tpT rue, {tpT rue,

tpDeliverBook1} tpDeliverBook1} tpDeliverBook1,
tpNotDeliverCD1}

KIsFalse nothing nothing nothing {tpPayBook1}

6 Conclusions and Related Works

The main contributions of this paper, with respect to our previous works and
with respect to other approaches, are as follows. We show how conditional obli-
gations and prohibitions with stating points and deadlines may be specified and
monitored using OWL and SWRL with significant advantages with respect to
other approach that use other formal languages. Moreover we propose a hybrid
solution, based on an OWL ontology, SWRL rules, and a Java program, to the
problem of monitoring the time evolution of obligations and prohibitions.

In particular if we compare this specification with another one that we pre-
sented elsewhere based on Event Calculus [10] we observe significant

11 The ontology file, its representation in DL, the Java program and its output that rep-
resent the time evolution of the state of the system as depicted in Table 1 can be found
at http://www.people.lu.unisi.ch/fornaran/ontology/DALT09Ontology.html
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improvement in performance (even if a complete comparison will be possible only
when the complete OCeAN meta-model will be formalized with Semantic Web
Technology). Moreover semantic web technologies are becoming an international
standard for web applications and numerous tools, reasoners, and libraries are
available to support the development and usage of ontologies. This, in spite of the
drawbacks on time reasoning and due to the limits of OWL language expressivity,
is a crucial advantage with respect to other languages used in the multiagent
community for the specification of norms and organizations, like as we already
mentioned the Event Calculus [19,1], or other specific formal languages like the
one required by the rule engine Jess [13,5], or a variant of Propositional Dynamic
Logic (PDL) used to specify and verify liveness and safety properties of multi-
agent system programs with norms [6], or Process Compliance Language (PCL)
[14].

In literature there are few approaches that use semantic web languages for the
specification of multiagent systems and in particular of obligations and prohi-
bitions. One of the most interesting one is the approach for policy specification
and management presented in the KAoS framework [18]. Even if in English the
word norm and policy have different meaning and also in informatics literature
they could be referred to two different concepts [3], in the MAS community they
may have very close meanings. In KAoS a policy could be a positive or negative
authorization to perform an action (that is a permission or a prohibition) or it
can be an obligation. Like in our approach in KAoS policies are specified using
a set of concepts defined in an OWL core ontology that could be extended with
application dependent ontologies. A crucial difference between KAoS approach
and the approach presented in this paper is in the methods used for monitoring
and enforcement of policies or norms. In KAoS policies are usually regimented
(as far as is possible given that it is almost impossible to regiment obligations
[9]) by means of ”guards“ and are monitored by means of platform specific mech-
anisms. Differently in our proposal norms are enforced by means of sanctions or
rewards and are monitored by deducing their fulfillment or violation with an
OWL reasoner (we use Pellet but other OWL 2 reasoners could be used) and an
external Java program.

Another example is the one presented in [15] where prohibited, obliged and
permitted actions are represented as object properties from agents to actions.
But without the reification of the notion of obligation and prohibition that we
propose here, it is very difficult to find a feasible solution to express conditional
commitments with deadlines and it is impossible to detect what norms and
how many time were fulfilled or violated. Moreover the approach proposed for
detecting violations is based on the external performance of SPARQL queries
and on the update of the ABox to register that an obligation/prohibition resulted
violated; however SPARQL queries do not exploit the semantics specified by the
ontology, moreover it is necessary to write different queries for every possible
different action that has to be monitored and for the execution of SPARQL
queries it is necessary to use a proper additional tool.
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In [2] a hybrid approach is presented: they define a communication acts
ontology using OWL and express the semantics of those acts through social
commitments that are formalized in the Event Calculus. This work is comple-
mentary with respect to our approach, in fact we specify also the semantics of
social commitments using semantic web technologies. Semantic web technologies
in multiagent systems can be used also to specify domain specific ontologies used
in the content of norms like in [8].

Another interesting contribution of this work is due also to the exemplification
of a solution to the problem to performing closed world reasoning on certain
classes in OWL. Another work that tackles a similar problem in a different
domain, the ontology of software models, is [4].

Indeed this model is still incomplete e we plan to investigate how it is possible
to manage the creation of commitments to model norm activations, and to model
active sanctions, moreover we plan to study how to formalize the notion of
power to express the semantics of declarative communicative acts and of passive
sanctions.
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Abstract. Most previous logical accounts of goal change do not deal with pri-
oritized goals and do not handle subgoals and their dynamics properly. Many
are restricted to achievement goals. In this paper, we develop a logical account
of goal change that addresses these deficiencies. In our account, we do not drop
lower priority goals permanently when they become inconsistent with other goals
and the agent’s knowledge; rather, we make such goals inactive. We ensure that
the agent’s chosen goals/intentions are consistent with each other and the agent’s
knowledge. When the world changes, the agent recomputes her chosen goals and
some inactive goals may become active again. This ensures that our agent max-
imizes her utility. We also propose an approach for handling subgoals and their
dynamics. We prove that the proposed account has some intuitively desirable
properties.

1 Introduction

There has been much work on modeling agent’s mental states, beliefs, goals, and in-
tentions, and how they interact and lead to rational decisions about action. As well,
there has been a lot of work on modeling belief change. But the dynamics of moti-
vational attitudes has received much less attention. Most formal models of goal and
goal change [1,2,3,4,5,6] assume that all goals are equally important and many only
deal with achievement goals (one exception to this is the model of prioritized goals in
[7]). Moreover, most of these frameworks do not guarantee that an agent’s goals will
properly evolve when an action/event occurs, e.g. when the agent’s beliefs/knowledge
changes or a goal is adopted or dropped. Also, they do not model the dependencies
between goals and the subgoals and plans adopted to achieve these goals. For instance,
subgoals and plans adopted to bring about a goal should be dropped when the parent
goal becomes impossible, is achieved, or is dropped. Dealing with these issues is im-
portant for developing effective models of rational agency. It is also important for work
on BDI agent programming languages, where handling declarative goals is an active
research topic [8,9].

In this paper, we present a formal model of prioritized goals and their dynamics
that addresses some of these issues. Specifically, we propose a framework, where an
agent can have multiple goals at different priority levels, possibly inconsistent with
each other. We define intentions as the maximal set of highest priority goals that is
consistent given the agent’s knowledge. Our model supports the specification of general
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temporally extended goals, not just achievement goals, and handles subgoals and their
dynamics.

We start with a (possibly inconsistent) initial set of prioritized goals or desires that
are totally ordered according to priority, and specify how these goals evolve when ac-
tions/events occur and the agent’s knowledge changes. We define the agent’s chosen
goals or intentions in terms of this goal hierarchy. Our agents maximize their utility;
they will abandon a chosen goal φ if an opportunity to commit to a higher priority but
inconsistent with φ goal arises. To this end, we keep all prioritized goals in the goal
base unless they are explicitly dropped. At every step, we compute an optimal set of
chosen goals given the hierarchy of prioritized goals, preferring higher priority goals,
such that chosen goals are consistent with each other and with the agent’s knowledge.
Thus at any given time, some goals in the hierarchy are active, i.e. chosen, while oth-
ers are inactive. Some of these inactive goals may later become active, e.g. if a higher
priority active goal that is currently blocking an inactive goal becomes impossible. We
also show how the dependencies between goals and subgoals can be modeled. Finally,
we prove some interesting properties about the dynamics of chosen goals.

As mentioned above, our formalization of prioritized goals ensures that the agent
always tries to maximize her utility, and as such a limitation of our framework is that
it displays an idealized form of rationality. In Section 5, we discuss how this relates
to Bratman’s theory of practical reasoning [10]. We use an action theory based on the
situation calculus [11] along with our formalization of paths in the situation calculus as
our base formalism.

The paper is organized as follows: in the next section, we outline our base frame-
work. In Section 3, we formalize paths in the situation calculus to support modeling
temporally extended goals. In Section 4, we present our model of prioritized goals. In
section 5, we present our formalization of goal dynamics and discuss some of its prop-
erties. In Section 6, we discuss what it means for an agent to have a subgoal and how
subgoals change as a result of changes to their parent goals. Then in the last section, we
summarize our results, discuss previous work in this area, and point to possible future
work.

2 Action and Knowledge

Our base framework for modeling goal change is the situation calculus [11] as formal-
ized in [12]. In this framework, a possible state of the domain is represented by a situa-
tion. There is a set of initial situations corresponding to the ways the agents believe the
domain might be initially, i.e. situations in which no actions have yet occurred. Init(s)
means that s is an initial situation. The actual initial state is represented by a special
constant S 0. There is a distinguished binary function symbol do where do(a, s) denotes
the successor situation to s resulting from performing the action a. Thus the situations
can be viewed as a set of trees, where the root of each tree is an initial situation and the
arcs represent actions. Relations (and functions) whose truth values vary from situation
to situation, are called relational (functional, resp.) fluents, and are denoted by predi-
cate (function, resp.) symbols taking a situation term as their last argument. There is a
special predicate Poss(a, s) used to state that action a is executable in situation s.
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Our framework uses a theory Dbasic that includes the following set of axioms:1 (1)
action precondition axioms, one per action a characterizing Poss(a, s), (2) successor
state axioms (SSA), one per fluent, that succinctly encode both effect and frame axioms
and specify exactly when the fluent changes [12], (3) initial state axioms describing
what is true initially including the mental states of the agents, (4) unique name axioms
for actions, and (5) domain-independent foundational axioms describing the structure
of situations [14].

Following [15,16], we model knowledge using a possible worlds account adapted
to the situation calculus. K(s′, s) is used to denote that in situation s, the agent thinks
that she could be in situation s′. Using K, the knowledge of an agent is defined as:2

Know(Φ, s)
def
= ∀s′. K(s′, s) ⊃ Φ(s′), i.e. the agent knows Φ in s if Φ holds in all of her

K-accessible situations in s. K is constrained to be reflexive, transitive, and Euclidean
in the initial situation to capture the fact that agents’ knowledge is true, and that agents
have positive and negative introspection. As shown in [16], these constraints then con-
tinue to hold after any sequence of actions since they are preserved by the successor
state axiom for K. We also assume that all actions are public, i.e. whenever an action
(including exogenous events) occurs, the agent learns that it has happened. Note that,
we work with knowledge rather than belief. Although much of our formalization should
extend to the latter, we leave this for future work.

3 Paths in the Situation Calculus

To support modeling temporally extended goals, we introduce a new sort of paths, with
(possibly sub/super-scripted) variables p ranging over paths. A path is essentially an
infinite sequence of situations, where each successor situation along the path can be
reached by performing some executable action in the preceding situation. We introduce
a predicate OnPath(p, s), meaning that the situation s is on the path p. Also, Starts(p, s)
means that s is the starting situation of path p. A path p starts with the situation s iff s
is the earliest situation on p:3

Axiom 1

Starts(p, s) ≡ OnPath(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ s ≤ s′.

In the standard situation calculus, paths are implicitly there, and a path can be viewed
as a pair (s, F) consisting of a situation s representing the starting situation of the path,
and a function F from situations to actions (called Action Selection Functions (ASF) or

1 We will be quantifying over formulae, and thus we assume Dbasic includes axioms for encoding
formulae as first order terms, as in [13]. We will also be using lists of integers, and assume that
Dbasic includes axiomatizations of integers and lists.

2 A state formula Φ(s) takes a single situation as argument and is evaluated with respect to that
situation. Φ may contain a placeholder constant now that stands for the situation in which
Φ must hold. Φ(s) is the formula that results from replacing now by s. Where the intended
meaning is clear, we sometimes suppress the placeholder.

3 In the following, s < s′ means that s′ can be reached from s by performing a sequence of
executable actions. s ≤ s′ is an abbreviation for s < s′ ∨ s = s′.
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strategies in [5]), such that from the starting situation s, F defines an infinite sequence
of situations by specifying an action for every situation starting from s. Thus, one way
of axiomatizing paths is by making them correspond to such pairs (s, F):

Axiom 2

∀p. Starts(p, s) ⊃ (∃F. Executable(F, s) ∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),
∀F, s. Executable(F, s) ⊃ ∃p. Starts(p, s) ∧ ∀s′. OnPathASF(F, s, s′) ≡ OnPath(p, s′).

This says that for every path there is an executable ASF that produces exactly the se-
quence of situations on the path from its starting situation. Also, for every executable
ASF and situation, there is a path that corresponds to the sequence of situations pro-
duced by the ASF starting from that situation.

OnPathASF(F, s, s′) def
= s ≤ s′ ∧ ∀a, s∗. s < do(a, s∗) ≤ s′ ⊃ F(s∗) = a,

Executable(F, s)
def
= ∀s′. OnPathASF(F, s, s′) ⊃ Poss(F(s′), s′).

Here, OnPathASF(F, s, s′) [6] means that the situation sequence defined by (s, F) in-
cludes the situation s′. Also, the situation sequence encoded by a strategy F and a start-
ing situation s is executable iff for all situations s′ on this sequence, the action selected
by F in s′ is executable in s′.

In our framework, we will use both state and path formulae. A state formula is a
formula that has a free situation variable in it, whereas a path formula is one that has
a free path variable. State formulae are used in the context of knowledge while path
formulae are used in that of goals. We use Φ(s), Ψ (s), · · · and φ(p), ψ(p), · · · possibly
with decorations to represent state and path formulae, respectively. Note that, by incor-
porating infinite paths in our framework, we can evaluate goals over these and handle
arbitrary temporally extended goals; thus, unlike some other situation calculus based
accounts where goal formulae are evaluated w.r.t. finite paths (e.g. [7]), we can handle
for example unbounded maintenance goals.

We next define some useful constructs. A state formula Φ eventually holds over the
path p if Φ holds in some situation that is on p, i.e. �Φ(p)

def
= ∃s′. OnPath(p, s′)∧Φ(s′).

Other Temporal Logic operators can be defined similarly, e.g. always Φ: �Φ(p).
An agent knows in s that φ has become inevitable if φ holds over all paths that starts

with a K-accessible situation in s:

KInevitable(φ, s)
def
= ∀p. Starts(p, s′) ∧ K(s′, s) ⊃ φ(p).

An agent knows in s that φ is impossible if she knows that ¬φ is inevitable in s, i.e.
KImpossible(φ, s)

def
= KInevitable(¬φ, s).

Thirdly, we define what it means for a path p′ to be a suffix of another path p w.r.t. a
situation s:

Suffix(p′, p, s)
def
= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s ≤ s′ ⊃ OnPath(p, s′) ≡ OnPath(p′, s′).

That is, a path p′ is a suffix of another path p w.r.t. a situation s iff s is on p, and p′,
which starts with s, is exactly the same as the subpath of p that starts with s.
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Fourthly, SameHistory(s1, s2) means that the situations s1 and s2 share the same
history of actions, but perhaps starting from different initial situations:

Axiom 3

SameHistory(s1, s2) ≡ (Init(s1) ∧ Init(s2))

∨ (∃a, s′1, s′2. s1 = do(a, s′1) ∧ s2 = do(a, s′2) ∧ SameHistory(s′1, s′2)).

Thus, if s1 can be reached from some initial situation by performing a sequence of ac-
tions σ, then s2 can be reached from a (possibly different) initial situation by executing
σ.

Finally, we say that φ has become inevitable in s if φ holds over all paths that starts
with a situation that has the same action history as s:

Inevitable(φ, s)
def
= ∀p, s′. Starts(p, s′) ∧ SameHistory(s′, s) ⊃ φ(p).

4 Prioritized Goals

Most work on formalizing goals only deals with static goal semantics and not their
dynamics. There are two main categories of motivational attitudes, namely goal [1,17]
(AKA choice [2], wish [10] or preference), and intention. While goals are sometimes
allowed to be inconsistent [10], intentions are mostly required to be consistent. An-
other difference is that agents are committed to their intentions, but not necessarily to
their goals [10]. Intention is sometimes primitive [17,3] and sometimes a defined con-
cept, specified in terms of goals [1,2,4]. In this section, we formalize goals or desires
with different priorities, which we call prioritized goals (p-goals, henceforth). These
p-goals are not required to be mutually consistent and need not be actively pursued by
the agent. In terms of these, we define the consistent set of chosen goals or intentions
(c-goals, henceforth) that the agent is committed to. In the next section, we formal-
ize goal dynamics by providing a SSA for p-goals. The agent’s c-goals are automati-
cally updated when her p-goals change. We deal with subgoals and their dynamics in
Section 6.

Not all of the agent’s goals are equally important to her. Thus, it is useful to support a
priority ordering over goals. This information can be used to decide which of the agent’s
c-goals should no longer be actively pursued in case they become mutually inconsistent.
Following [6], we specify each p-goal by its own accessibility relation/fluent G. A path
p is G-accessible at priority level n in situation s (denoted by G(p, n, s)) if all the goals
of the agent at level n are satisfied over this path and if it starts with a situation that has
the same history (in terms of the actions performed so far) as s. The latter requirement
ensures that the agent’s p-goal-accessible paths reflect the actions that have been per-
formed so far. A smaller n represents higher priority, and the highest priority level is 0.
Thus in this framework, we assume that the set of p-goals are totally ordered according
to priority. We say that an agent has the p-goal that φ at level n in situation s iff φ holds
over all paths that are G-accessible at n in s:

PGoal(φ, n, s)
def
= ∀p. G(p, n, s) ⊃ φ(p).
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To be able to refer to all the p-goals of the agent at some given priority level, we also
define only p-goals.

OPGoal(φ, n, s)
def
= PGoal(φ, n, s) ∧ (∀p. φ(p) ⊃ G(p, n, s)).

An agent has the only p-goal that φ at level n in situation s iff φ is a p-goal at n in s, and
any path over which φ holds is G-accessible at n in s.

A domain theory for our framework D includes the axioms of a theory Dbasic as in the
previous section, the axiomatization of paths i.e. axioms 1-3, domain dependent initial
goal axioms (see below), the domain independent axioms 4-7 and the definitions that
appear in this section and the next. The modeler must provide initial goal axioms of the
following form:

INITIAL GOAL AXIOMS

(a) Init(s) ⊃ ((G(p, 0, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ0(p))

∧ (G(p, 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ1(p)) ∧ · · ·
∧ (G(p, k − 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φk−1(p))),

(b) ∀n, p, s. Init(s) ∧ n ≥ k ⊃ (G(p, n, s) ≡ Starts(p, s′) ∧ Init(s′)),
(c) Init(s) ⊃ NPGoals(s) = k.

The p-goals φ0, φ1, · · · , φk−1 (from highest to lowest priority) of the agent in the initial
situations are specified by the Initial Goal Axiom (a); each of them defines a set of initial
goal paths for a given priority level, and must be consistent. We assume that the agent
has a finite number k of initial p-goals. For n ≥ k, we make G(p, n, s) true for every path
p that starts with an initial situation in (b). Thus at levels n ≥ k, the agent has the trivial
p-goal that she be in an initial situation. We also have a distinguished functional fluent
NPGoals(s) that represents the number of prioritized goals that the agent has (i.e. the
location of the first empty slot after the last p-goal). Initially NPGoals is set to k in (c).
Later, we will specify the dynamics of p-goals by giving SSAs for G and NPGoals.

We use the following as a running example. We have an agent who initially has
the following three p-goals: φ0 = �BeRich, φ1 = �GetPhD, and φ2 = �BeHappy
at level 0, 1, and 2, respectively (see second column of Table 1). Assume that while
initially the agent knows that all of her p-goals are individually achievable, she knows
that her p-goal �GetPhD is inconsistent with her highest priority p-goal �BeRich as
well as with her p-goal �BeHappy, while the latter are consistent with each other. It is
straightforward to specify a domain action theory such that it entails this. Thus in our
example, we have OPGoal(φi(p) ∧ Starts(p, s) ∧ Init(s), i, S 0), for i = 0, 1, 2. Also, for
any n ≥ 3, we have OPGoal(Starts(p, s) ∧ Init(s), n, S 0).

Table 1. Example of an Agent’s PGoals and their Dynamics

G-Level S 0, S ′1 S 1 S 2 S 3

4 TRUE TRUE �BeRich ∧ �WorkHard ∧ �BeEnergetic TRUE
3 TRUE �BeRich ∧ �WorkHard �BeRich ∧ �WorkHard TRUE
2 �BeHappy �BeHappy �BeHappy �BeHappy
1 �GetPhD �GetPhD �GetPhD �GetPhD
0 �BeRich �BeRich �BeRich �BeRich
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While p-goals or desires are allowed to be known to be impossible to achieve, an
agent’s c-goals or intentions must be realistic. Not all of the G-accessible paths are
realistic in the sense that they start with a K-accessible situation. To filter these out, we
define realistic p-goal accessible paths:

GR(p, n, s)
def
= G(p, n, s) ∧ Starts(p, s′) ∧ K(s′, s),

i.e., a path p is GR-accessible at level n in situation s if it is G-accessible at n in s, and
if p starts with a situation that is K-accessible in s. Thus GR prunes out the paths from
G that are known to be impossible, and since we define c-goals in terms of realistic p-
goals, this ensures that c-goals are realistic. We say that an agent has the realistic p-goal
that φ at level n in situation s iff φ holds over all paths that are GR-accessible at n in s:

RPGoal(φ, n, s)
def
= ∀p. GR(p, n, s) ⊃ φ(p).

Using realistic p-goals, we next define c-goals. The idea of how we compute c-goal-
accessible paths is as follows: the set of GR-accessibility relations represents a set of
prioritized temporal propositions that are candidates for the agent’s c-goals. Given GR,
in each situation we want to compute the agent’s c-goals such that it is the maximal
consistent set of higher priority realistic p-goals. We do this iteratively starting with the
set of all possible paths (i.e. paths that starts with a K-accessible situation). At each
iteration we compute the intersection of this set with the next highest priority set of
GR-accessible paths. If the intersection is not empty, we thus obtain a new chosen set of
paths at level i. We call a p-goal chosen by this process an active p-goal. If on the other
hand, the intersection is empty, then it must be the case that the p-goal represented by
this level is either in conflict with another active higher priority p-goal/a combination
of two or more active higher priority p-goals, or is known to be impossible. In that case,
that p-goal is ignored (i.e. marked as inactive), and the chosen set of paths at level i
is the same as at level i − 1. We repeat this until we reach i = NPGoals. Axiom 4
“computes” this intersection:4

Axiom 4

G∩(p, n, s) ≡ if (n = 0) then

if ∃p′. GR(p′, n, s) then GR(p, n, s)

else Starts(p, s′) ∧ K(s′, s)

else

if ∃p′.(GR(p′, n, s) ∧G∩(p′, n − 1, s))

then (GR(p, n, s) ∧G∩(p, n − 1, s))

else G∩(p, n − 1, s).

C-goal accessible paths are the result of this intersection after all priority levels have
been considered:

GC(p, s)
def
= G∩(p,NPGoals(s) − 1, s).

4 ifφ then ψ1 else ψ2 is an abbreviation for (φ ⊃ ψ1) ∧ (¬φ ⊃ ψ2).
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We define an agent’s c-goals in terms of the GC-accessible paths:

CGoal(φ, s)
def
= ∀p. GC(p, s) ⊃ φ(p),

i.e., the agent has the c-goal that φ if φ holds over all of her GC-accessible paths.
We also define what it means for an agent to have a c-goal at some level n:

CGoal(φ, n, s)
def
= ∀p. G∩(p, n, s) ⊃ φ(p),

i.e. an agent has the c-goal at level n that φ if φ holds over all paths that are in the
prioritized intersection of the set of GR-accessible paths up to level n.

In our example, the agent’s realistic p-goals are �BeRich,�GetPhD, and �BeHappy
in order of priority. The G∩-accessible paths at level 0 in S 0 are the ones that start with
a K-accessible situation and where �BeRich holds. The G∩-accessible paths at level 1
in S 0 are the same as at level 0, since there are no K-accessible paths over which both
�GetPhD and �BeRich hold. Finally, the G∩-accessible paths at level 2 in S 0 and hence
the GC-accessible paths are those that start with a K-accessible situation and over which
�BeRich∧�BeHappy holds. Also, it can be shown that initially our example agent has
the c-goals that �BeRich and �BeHappy, but not �GetPhD.

Note that by our definition of c-goals, the agent can have a c-goal that φ in situation s
for various reasons: 1) φ is known to be inevitable in s; 2) φ is an active p-goal at some
level n in s; 3) φ is a consequence of two or more active p-goals at different levels in
s. To be able to refer to c-goals for which the agent has a primitive motivation, i.e. c-
goals that result from a single active p-goal at some priority level n, in contrast to those
that hold as a consequence of two or more active p-goals at different priority levels, we
define primary c-goals:

PrimCGoal(φ, s)
def
= ∃n. PGoal(φ, n, s) ∧ ∃p. G(p, n, s) ∧G∩(p, n, s).

That is, an agent has the primary c-goal that φ in situation s, if φ is a p-goal at some
level n in s, and if there is a G-accessible path p at n in s that is also in the prioritized
intersection of GR-accessible paths upto n in s. The last two conjucts are required to
ensure that n is an active level. Thus if an agent has a primary c-goal that φ, then she
also has the c-goal that φ, but not necessarily vice-versa. It can be shown that initially
our example agent has the primary c-goals that �BeRich and �BeHappy, but not their
conjunction. This shows that (strictly speaking) primary c-goals are not closed under
logical consequence.

5 Goal Dynamics

An agent’s goals change when her knowledge changes as a result of the occurrence of an
action (including exogenous events), or when she adopts or drops a goal. We formalize
this by specifying how p-goals change. C-goals are then computed using realistic p-
goals in every new situation as explained above.

We introduce two actions for adopting and dropping a p-goal, adopt(φ) and drop(φ),
and a third for adopting a subgoal ψ w.r.t. a supergoal φ, adopt(ψ, φ). The action pre-
condition axioms for these are as follows:



Prioritized Goals and Subgoals in a Logical Account of Goal Change 127

Axiom 5

Poss(adopt(φ), s) ≡ ¬∃n. PGoal(φ, n, s),

Poss(adopt(ψ, φ), s) ≡ ¬∃n. PGoal(ψ, n, s) ∧ ∃n′. PGoal(φ, n′, s),

Poss(drop(φ), s) ≡ ∃n. PGoal(φ, n, s).

That is, an agent can adopt the p-goal that φ, if she does not already have φ as her p-goal
at some level. An agent can adopt a subgoal ψ w.r.t. the parent goal that φ if she does
not already have the p-goal that ψ at some level, and if at some level she currently has
the parent goal that φ. The drop(φ) action is possible in s if φ is a p-goal at some level
n in s.

In the following, we specify the dynamics of p-goals by giving the SSA for G and
then discuss each case, one at a time:

Axiom 6 (SSA for G)

G(p, n, do(a, s)) ≡
∀φ, ψ. (a � adopt(φ) ∧ a � adopt(ψ, φ) ∧ a � drop(φ) ∧ Progressed(p, n, a, s))

∨ ∃φ. (a = adopt(φ) ∧ Adopted(p, n, a, s, φ))

∨ ∃φ, ψ. (a = adopt(ψ, φ) ∧ SubGoalAdopted(p, n, a, s, ψ, φ)

∨ ∃φ. (a = drop(φ) ∧ Dropped(p, n, a, s, φ)).

The overall idea of the SSA for G is as follows. First of all, to handle the occurrence
of a non-adopt/drop (i.e. regular) action a, we progress all G-accessible paths to reflect
the fact that this action has just happened; this is done using the Progressed(p, n, a, s)
construct, which replaces each G-accessible path p′ with starting situation s′, by its
suffix p provided that it starts with do(a, s′):

Progressed(p, n, a, s)
def
= ∃p′. G(p′, n, s) ∧ Starts(p′, s′) ∧ Suffix(p, p′, do(a, s′)).

Any path over which the next action performed is not a is eliminated from the respective
G accessibility level.

Secondly, to handle adoption of a p-goal φ, we add a new proposition containing the
p-goal to the agent’s goal hierarchy. We assume that the newly adopted p-goal φ has
the lowest priority. Thus in addition to progressing the G-accessible paths at all levels
as above, we eliminate the paths over which φ does not hold from the NPGoals(s)-th
G-accessibility level, and the agent acquires the p-goal that φ at level NPGoals(s):

Adopted(p, n, a, s, φ)
def
= if (n = NPGoals(s)) then (Progressed(p, n, a, s) ∧ φ(p))

else Progressed(p, n, a, s).

The third case of subgoal adoption is discussed in the next section.
Finally, to handle dropping of a p-goal φ, we replace the propositions that imply the

dropped goal in the agent’s goal hierarchy by the “trivial” proposition that the history
of actions in the current situation has occurred. Thus in addition to progressing all G-
accessible paths as above, we add back all paths that share the same history with do(a, s)
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to the existing G-accessibility levels where the agent has the p-goal that φ, and thus these
G-accessibility levels now amount to the “trivial” p-goal that CorrectHist(s, path).5

Dropped(p, n, a, s, φ)
def
=

if PGoal(φ, n, s) then ∃s′. Starts(p, s′) ∧ SameHistory(s′, do(a, s))

else Progressed(p, n, a, s).

The SSA for NPGoals(s) is as follows:

Axiom 7 (SSA for NPGoals(s))

NPGoals(do(a, s)) = k ≡
¬(∃φ. a = adopt(φ)) ∧ ¬(∃ψ, φ. a = adopt(ψ, φ)) ∧ NPGoals(s) = k ∨
∃φ. a = adopt(φ) ∧ NPGoals(s) + 1 = k ∨
∃ψ, φ. a = adopt(ψ, φ) ∧ AdjustSubGoalAdopt(φ, s) = k.

That is, when the agent adopts a p-goal, her current NPGoals is incremented by one. We
discuss the adjustment of NPGoals required for subgoal adoption in the next section.
Finally, NPGoals is not affected by any other action.

Returning to our example, recall that our agent has the c-goals/active p-goals in S 0

that �BeRich and �BeHappy, but not �GetPhD, since the latter is inconsistent with
her higher priority p-goal �BeRich. Assume that, after the action goBankrupt happens
in S 0, the p-goal �BeRich becomes impossible. Then in S ′1 = do(goBankrupt, S 0),
the agent has the c-goal that �GetPhD, but not �BeRich nor �BeHappy; �BeRich is
excluded from the set of c-goals since it has become impossible to achieve (i.e. unre-
alistic). Also, since her higher priority p-goal �GetPhD is inconsistent with her p-goal
�BeHappy, the agent will make �BeHappy inactive.

Note that, while it might be reasonable to drop a p-goal (e.g. �GetPhD) that is in
conflict with another higher priority active p-goal (e.g. �BeRich), in our framework we
keep such p-goals around. The reason for this is that although �BeRich is currently
inconsistent with �GetPhD, the agent might later learn that �BeRich has become im-
possible to bring about (e.g. after goBankrupt occurs), and then might want to pursue
�GetPhD. Thus, it is useful to keep these inactive p-goals since this allows the agent to
maximize her utility (that of her chosen goals) by taking advantage of such opportuni-
ties. As mentioned earlier, c-goals are our analogue to intentions. Recall that Bratman’s
model of intentions limits the agent’s practical reasoning – agents do not always opti-
mize their utility and don’t always reconsider all available options in order to allocate
their reasoning effort wisely. In contrast to this, our c-goals are defined in terms of the
p-goals, and at every step, we ensure that the agent’s c-goals maximizes her utility so
that these are the set of highest priority goals that are consistent given the agent’s knowl-
edge. Thus, our notion of c-goals is not as persistent as Bratman’s notion of intention
[10]. For instance as mentioned above, after the action goBankrupt happens in S 0, the
agent will lose the c-goal that �BeHappy, although she did not drop it and it did not

5 CorrectHist(s, path) is defined as Starts(path, s′) ∧ SameHistory(s′, s); here path is a place-
holder that stands for a path and s represents the current situation.
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become impossible or achieved. In this sense, our model is that of an idealized agent.
There is a tradeoff between optimizing the agent’s chosen set of prioritized goals and
being committed to chosen goals. In our framework, chosen goals behave like inten-
tions with an automatic filter-override mechanism [10] that forces the agent to drop her
chosen goals when opportunities to commit to other higher priority goals arise. In the
future, it would be interesting to develop a logical model that captures the pragmatics
of intention reconsideration by supporting control over it.

We now show that our formalization of prioritized goals has some desirable proper-
ties. Some of these (e.g. Proposition 3a) are analogues of the AGM postulates; others
(e.g. adopting logically equivalent goals has the same result, etc.) were left out for space
reasons. First we show that c-goals are consistent:

Proposition 1 (Consistency)

D |= ∀s. ¬CGoal(False, s).

Thus, the agent cannot have both φ and ¬φ as c-goals in a situation s and there is a
path that is GC-accessible in s. Even if all of the agent’s p-goals become known to be
impossible, the set of GC-accessible paths will be precisely those that starts with a K-
accessible situation, and thus the agent will only choose the propositions that are known
to be inevitable.

We also have the property of realism [1], i.e. if an agent knows that something has
become inevitable, then she has this as a c-goal:

Proposition 2 (Realism)

D |= ∀φ, s. KInevitable(φ, s) ⊃ CGoal(φ, s).

Note that this is not necessarily true for p-goals and primary c-goals – an agent may
know that something has become inevitable and not have it as her p-goal/primary c-
goal, which is intuitive. In fact, this is the reason why we define p-goals in terms of
G-accessible paths rather than GR. While the property of realism is often criticized, one
should view these inevitable goals as something that holds in the worlds that the agent
intends to bring about, rather than something that the agent is actively pursuing.

A consequence of Proposition 1 and 2 is that an agent does not have a c-goal that is
known to be impossible, i.e. D |= ∀φ, s. CGoal(φ, s) ⊃ ¬KImpossible(φ, s).

We next discuss some properties of the framework w.r.t. goal change. Proposition
3 says that (a) an agent acquires the p-goal that φ at some level n after she adopts it,
and (b) that she acquires the primary c-goal (and c-goal) that φ after she adopts it in s,
provided that she does not have the c-goal in s that ¬φ next.

Proposition 3 (Adoption)

(a) D |= ∃n. PGoal(φ, n, do(adopt(φ), s)),

(b) D |= ¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ), s′)) ∧ φ(p′), s)

⊃ PrimCGoal(φ, do(adopt(φ), s)).
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We can also show that after dropping the p-goal that φ at n in s, an agent does
not have the p-goal (and thus the primary c-goal) that the progression of φ at n, i.e.
ProgressionOf(φ, drop(φ), s), provided that ProgressionOf(φ, drop(φ), s) is not
inevitable in do(drop(φ), s).

Proposition 4 (Drop)

D |= PGoal(φ, n, s)

∧ ¬Inevitable(ProgressionOf(φ, drop(φ), s), do(drop(φ), s))

⊃ ¬PGoal(ProgressionOf(φ, drop(φ), s), n, do(drop(φ), s)),

where,

ProgressionOf(φ, a, s)
def
= ∃p′, s′. Starts(p′, s′) ∧ Suffix(p′, do(a, s′)) ∧ φ(p′).

Note that, this does not hold for CGoal, as φ could still be a consequence of two or more
of her remaining primary c-goals.

The next few properties concern the persistence of these motivational attitudes. First,
we have a persistence property for achievement realistic p-goals:

Proposition 5 (Persistence of Achievement RPGoals)

D |= RPGoal(�Φ, n, s) ∧ Know(¬Φ, s) ∧ ∀ψ. a � drop(ψ) ⊃ RPGoal(�Φ, n, do(a, s)).

This says that if an agent has a realistic p-goal that �Φ in s, then she will retain this
realisitc p-goal after some action a has been performed in s, provided that she knows
that Φ has not yet been achieved, and a is not the action of dropping a p-goal. Note
that, we do not need to ensure that �Φ is still known to be possible or consistent with
higher priority active p-goals, since the SSA for G does not automatically drop such
incompatible p-goals from the goal hierarchy.

For achievement chosen goals we have the following:

Proposition 6 (Persistence of Achievement Chosen Goals)

D |= OPGoal(�Φ ∧ CorrectHist(s), n, s) ∧ CGoal(�Φ, s)

∧Know(¬Φ, s) ∧ ∀ψ. a � drop(ψ) ∧ ¬CGoal(¬�Φ, n − 1, do(a, s))

⊃ CGoal(�Φ, n, do(a, s)).

Thus, in situation s, if an agent has the only p-goal at level n that �Φ and the correct
history of actions in s has been performed, and if �Φ is also a chosen goal in s (and
thus she has the primary c-goal that�Φ), then she will retain the c-goal that�Φ at level
n after some action a has been performed in s, provided that:

– she knows in s that Φ has not yet been achieved,
– that a is not the action of dropping a p-goal,
– and that at level n − 1 the agent does not have the c-goal in do(a, s) that ¬�Φ, i.e.
�Φ is consistent with higher priority c-goals after a has been performed in s.
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Note that this property also follows if we replace the consequent with CGoal(�Φ, do(a,
s)), and thus it deals with the persistence of c-goals. Note however that, it does not hold
if we replace the OPGoal in the antecedent with PGoal; the reason for this is that the
agent might have a p-goal at level n in s that φ and the c-goal in s that φ, but not have
φ as a primary c-goal in s, e.g. n might be an inactive level because another p-goal at
n has become impossible, and φ could be a c-goal in s because it is a consequence of
two other primary c-goals. Thus even if ¬φ is not a c-goal after a has been performed
in s, there is no guarantee that the level n will be active in do(a, s) or that all the active
p-goals that contributed to φ in s are still active.

We believe that the dropping of an unrelated p-goal will not affect persistence, and
hence it should be possible to strengthen Proposition 5 and 6. Also, in the future we
would like to generalize these two propositions to deal with arbitrary temporally ex-
tended goals.

6 Handling Subgoals

In this section, we deal with the dynamics of subgoals. As mentioned earlier, a sub-
goal must be dropped when the parent goal is dropped or becomes impossible. When
adopting a subgoal ψ with respect to a supergoal φ, in addition to recording the newly
adopted goal ψ, we need to model the fact that ψ is a subgoal of φ. This information can
later be used to drop the subgoal when the parent goal is dropped. One way of modeling
this is to ensure that the adoption of a subgoal ψ w.r.t. a parent goal φ adds new p-goals
that contain both this subgoal and this parent goal i.e. ψ ∧ φ at a lower priority than
the parent goal φ. This ensures that when the parent goal is dropped, the subgoal is also
dropped. To see this, recall that to handle the dropping of a goal φ, we drop the p-goals
at all G-accessibility levels that imply φ. Thus, if we drop the parent goal φ, it will also
drop all of its subgoals including ψ, since the G-accessibility levels where the parent
goal φ holds include the G-accessibility levels where the subgoal ψ holds. Note that, if
there are more than one level where the supergoal φ is a p-goal, then we copy all these
levels, i.e. for each level n where φ is a p-goal, we add a (lower priority) level to the
goal hierarchy. As we will see, this ensures that the sub-subgoals and sub-sub-subgoals
etc. are also properly dropped when the supergoal is dropped. Also, this means that
dropping a subgoal does not necessarily drop the supergoal.

Before going over the formal details, let us mention some useful bookkeeping tools
that we will use: Length(l) returns the number of elements in list l; Nth(l, i) returns the
i-th element in list l, and -1 if i > Length(l); Sort(l) returns a sorted version of list l. The
part of the SSA for G that handles subgoal adoption is defined as follows:

SubGoalAdopted(p, n, a, s, ψ, φ)
def
= (n < NPGoals(s) ∧ Progressed(p, n, a, s)))∨

(NPGoals(s) ≤ n < NPGoals(s) + Length(AddList(φ, s))

∧ ∃i,m. (n = NPGoals(s) + i ∧m = Nth(AddList(φ, s), i)

∧ Progressed(p,m, a, s) ∧ ψ(p))) ∨
(n ≥ NPGoals(s) + Length(AddList(φ, s)) ∧ Progressed(p, n, a, s)).

That is, if the action involves the adoption of a subgoal ψ w.r.t. a supergoal φ, we adjust
G to incorporate (possibly several) new p-goals. We will discuss each case in turn. First,
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note that the existing p-goals are just carried over by progressing them; this is handled
by the first disjunct.

Secondly, we adjust G starting at level NPGoals(s). We add a number of new levels
that include the conjunction of the only p-goal and the subgoal at a lower priority for
all the current only p-goals that imply the parent goal φ. For example, say at level i
we have an OPGoal that φi and it implies the parent goal that φ; then we add at a
lower priority the conjoined goal of the progressed version of φi and the subgoal ψ.
Our formalization of this uses the abbreviation AddList(φ, s) which is a sorted list of
levels such that the parent goal is implied by the only p-goal at this level. AddList is
defined as: AddList(φ, s)

def
= Sort([n | PGoal(φ, n, s)]). The length of this list indicates

the number of lower priority goals that needs to be added. As discussed above, this
ensures that the agent will drop the subgoal when the parent goal is dropped (but not
necessarily vice-versa). Note that if this process adds two or more new p-goals to the
agent’s goal hierarchy, we maintain the original ordering; e.g. suppose that the agent
adopted ψ w.r.t. φ, that there are two G-accessibility levels m and n such that the agent
has the only p-goal that φm at m and φn at n, that φm implies φ and φn implies φ, and that
n > m. In that case, the SSA for G will add the p-goal φm ∧ φ at level NPGoals(s) and
the p-goal φn ∧ φ at level NPGoals(s) + 1.

Finally, all the remaining levels involving trivially true goals are just carried over by
progressing them.

The part of the SSA for NPGoals that handles subgoal adoption is defined as follows:

AdjustSubGoalAdopt(φ, s)
def
= NPGoals(s) + Length(AddList(φ, s)).

That is, when the agent adopts a subgoal w.r.t. a parent goal, her current NPGoals is
incremented by the number of new p-goals adopted in this process.

Let us go back to our example. Suppose that the agent knows that one way of always
being rich is to always work hard, which in turns can be fulfilled by always being ener-
getic. Assume that with this in mind, our agent adopts the subgoal that �WorkHard
w.r.t. the p-goal that �BeRich, and then adopts the sub-subgoal that �BeEnergetic
w.r.t. the subgoal that �WorkHard starting in S 0. Then the agent’s goal hierarchy in
S 1 = do(adopt(�WorkHard,�BeRich), S 0) should include the p-goal that �WorkHard
and in S 2 = do(adopt(�BeEnergetic, �WorkHard), S 1) should also include the p-goal
that �BeEnergetic. According to the SSA for G, our agent’s goal hierarchy in S 1 and
in S 2 will be as in Table 1.6 In S 0, the supergoal �BeRich holds at level 0 and thus
AddList(�BeRich, S 0) = [0]. Similarly in S 1, the supergoal �WorkHard holds at level
3 and thus AddList(�WorkHard, S 1) = [3]. Now, suppose that in S 2 the agent wants to
drop the p-goal that �WorkHard. Then in S 3 = do(drop(�WorkHard), S 2), she should
no longer have �BeEnergetic as a p-goal, but should retain the supergoal that �BeRich.
After the agent drops the p-goal that �WorkHard, by the SSA for G we can see that all
the G-accessible levels where �WorkHard holds will be replaced by the only p-goal that
CorrectHist(S 2, path) (see S 3 in Table 1). This shows that dropping �WorkHard results
in the dropping of all of its subgoals (in this case �BeEnergetic), but that its parent goal
�BeRich is retained.

6 For simplicity in Table 1, we only show the agent’s relevant p-goals rather than its only p-goals
(which in addition reflect the actions that have been performed so far, i.e. CorrectHist(s)).
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We define the SubGoal relation as follows:

SubGoal(ψ, φ, s)
def
= ∃n. PGoal(φ, n, s) ∧ ¬PGoal(ψ, n, s)

∧ ∀n. PGoal(ψ, n, s) ⊃ PGoal(φ, n, s).

This says that ψ is a subgoal of φ in situation s iff there exists an G-accessibility level
n in s such that φ is a p-goal at n while ψ is not, and for all G-accessibility levels in s
where ψ is a p-goal, φ is also a p-goal. Note that, while our formalization of subgoal
dynamics allows a subgoal to have multiple parents, in this definition we assume that
a subgoal can’t have more than one parent. In the future, we will work on relaxing this
constraint.

We now discuss some properties concerning the dynamics of subgoals and the de-
pendencies between a subgoal and its parent goal. Proposition 7 states that (a) an agent
acquires the p-goal that ψ after she adopts it as a subgoal of another goal φ in s, provided
that she has the p-goal at some level in s that φ, and (b) she also acquires the primary
c-goal that ψ after she adopts it as a subgoal of φ in s, provided that she has the primary
c-goal in s that φ, and that she does not have the c-goal in s that ¬ψ next.

Proposition 7 (Subgoal Adoption)

(a) D |= ∃m. PGoal(φ,m, s) ⊃ ∃n. PGoal(ψ, n, do(adopt(ψ, φ), s)),

(b) D |= PrimCGoal(φ, s)

∧ ¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(ψ, φ), s′)) ∧ ψ(p′), s)

⊃ PrimCGoal(ψ, do(adopt(ψ, φ), s)).

The next property says that after dropping the p-goal that φ in s, an agent does not
have the p-goal (and thus the primary c-goal) that the progression of ψ, provided that ψ
is a subgoal of φ in s, and that the progression of ψ is not inevitable in do(drop(φ), s).

Proposition 8 (Supergoal Drop)

D |= SubGoal(ψ, φ, s) ∧ ¬Inevitable(ProgressionOf(ψ, drop(φ), s), do(drop(φ), s))

⊃ ¬∃n. PGoal(ProgressionOf(ψ, drop(φ), s), n, do(drop(φ), s)).

As with Proposition 4, this does not hold if we replace PGoal in the consequence with
CGoal since ψ could be a consequence of a combination of other active p-goals.

The next two properties say that dropping a subgoal does not effect the parent goal.

Proposition 9 (Subgoal Drop)

(a) D |= SubGoal(ψ, φ, s)

⊃ ∃n. PGoal(ProgressionOf(φ, drop(ψ), s), n, do(drop(ψ), s)),

(b) D |= SubGoal(ψ, φ, s) ∧ PrimCGoal(φ, s)

⊃ PrimCGoal(ProgressionOf(φ, drop(ψ), s), do(drop(ψ), s)).

That is, (a) an agent retains the p-goal that the progression of φ after she drops a subgoal
ψ of φ, and (b) she also retains the primary c-goal that the progression of φ after she
drops a subgoal ψ of φ in s, provided that she has the primary c-goal that φ in s.

Finally, it can be shown that the SubGoal relation is transitive, i.e. if ψ1 is a subgoal
of φ in s, and if ψ2 is a subgoal of ψ1 in s, then ψ2 must also be a subgoal of φ in s.
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7 Discussion and Future Work

In this paper, we presented a formalization of prioritized goals, subgoals, and their
dynamics. Our formalization ensures that an agent’s chosen goals are always consistent
and that goals and subgoals properly evolve as a result of regular actions as well as
of adopting and dropping goals. Although we made some simplifying assumptions, in
this paper we have focused on developing an expressive framework that captures an
idealized form of rationality without worrying about tractability. In would be desirable
to study restricted fragments of the logic where reasoning is tractable. Also, before
defining more limited forms of rationality, one should have a clear specification of what
ideal rationality really is so that one understands what compromises are being made.

While in our account chosen goals are closed under logical consequence, primary
c-goals are not. Thus, our formalization of primary c-goals is related to the non-normal
modal formalizations of intentions found in the literature [3], and as such it does not
suffer from the side-effect problem [1]. For instance, in our framework an agent can
have the primary c-goal to get her teeth fixed and know that this always involves pain,
but not have the primary c-goal to have pain.

Also, since we are using the situation calculus, we can easily represent procedural
goals/plans, e.g. the goal to do a1 and then a2 can be written as: PGoal(∃s, s1. Starts(s1)
∧ OnPath(s) ∧ s = do(a2, do(a1, s1)), 0, S 0). Golog [12] can be used to represent com-
plex plans/programs. So we can model the adoption of plans as subgoals.

Recently, there have been a few proposals that deal with goal change. Shapiro et al.
[18] present a situation calculus based framework where an agent adopts a goal when
she is requested to do so, and remains committed to this goal unless the requester can-
cels this request; a goal is retained even if the agent learns that it has become impossible,
and in this case the agent’s goals become inconsistent. Shapiro and Brewka [7] modify
this framework to ensure that goals are dropped when they are believed to be impossible
or when they are achieved. Their account is similar to ours in the sense that they also
assume a priority ordering over the set of (in their case, requested) goals, and in every
situation they compute chosen goals by computing a maximal consistent goal set that
is also compatible with the agent’s beliefs. However, their model has some unintuitive
properties: the agent’s chosen goals in do(a, s) may be quite different from her chosen
goals in s, although a did not make any of her goals in s impossible or inconsistent with
higher priority goals, because inconsistencies between goals at the same priority level
are resolved differently. In their framework, this can happen because goals are only par-
tially ordered. Note that, while one might argue that a partial order over goals might
be more general, allowing this means that additional control information is required to
obtain a single goal state after the agent’s goals change. Also, we provide a more ex-
pressive formalization of prioritized goals – we model goals using infinite paths, and
thus can model many types of goals that they cannot. Finally they model prioritized
goals by treating the agent’s p-goals as an arbitrary set of temporal formulae, and then
defining the set of c-goals as a subset of the p-goals. But our possible world semantics
has some advantages over this: it clearly defines when goals are consistent with each
other and with what is known. One can easily specify how goals change when an action
a occurs, e.g. the goal to do a next and then do b becomes the goal to do b next, the goal
that �Φ ∨ �Ψ becomes the goal that �Ψ if a makes achieving Φ impossible, etc.
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There has been much work on agent programming languages with declarative goals
where the dynamics of goals and intentions and the dependencies between goals and
subgoals are modeled (e.g. [19,20,9] and the references therein). However, most of
these are not based on a formal theory of agency, and to the best of our knowledge,
none maintains the consistency of (chosen) goals (e.g. when adopting a plan to achieve
a goal, these frameworks do not ensure that this plan is consistent with the agent’s other
concurrent goals/plans). Also, most of these do not deal with temporally extended goals,
and as a result they often need to accommodate inconsistent goal-bases to allow the
agent to achieve conflicting states at different time points (e.g. the default logic based
framework in [21]); chosen goals are required to be consistent. In [22], the authors
formalized two semantics for representing conflicting goals, using propositional and
default logic; they argued that even logically consistent goals can be conflicting, e.g.
when multiple goals/plans are chosen to fulfill the same (super)goal. Unlike us however,
they do not address how an agent chooses the goals that she will actively pursue. In [6],
the authors present a situation calculus based agent programming language where the
agent executes a program while maximizing the achievement of a set of prioritized
goals. However, they do not formalize goal dynamics.

One limitation of our account is that we assume that the agent’s p-goals are totally
ordered in terms of priority. Also, newly adopted p-goals are assigned the lowest pri-
ority. A consequence of this is that an agent’s c-goals depend on the adoption order of
her p-goals. For instance, given a fixed starting situation, an agent can end up with two
different sets of c-goals by adopting φ followed by ψ, and by adopting ψ followed by φ.
This has very different results when φ and ψ conflict with each other. We would like to
address this by incorporating the priority of the p-goal as an argument to the adopt ac-
tion, and handling this in the framework. Finally, one could argue that our agent wastes
resources trying to optimize her c-goals at every step. In the future, we would like to de-
velop an account where the agent is strongly committed to her chosen goals, and where
the filter override mechanism is only triggered under specific conditions.
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Abstract. Online social networks are enjoying drastic increase in their
population and connectivity. One of the fundamental issues in these net-
works is trust, which is an essential factor in quality of the connections
among diverse nodes in the network. To address the efficiency in the
interactions among nodes, we propose in this paper a trust-based archi-
tecture applicable to maintain interactions in multi-agent-based social
networks. We provide a detailed discussion over the network formation
by taking into account the edge creation factors classified as homophily,
confounding and influence. We systematically inspire different involving
factors to observe evolution of trust-based interconnections in a micro-
scopic manner. We also provide declarative and numerical analysis of
the proposed model and its assessment and discuss the system imple-
mentation, along with simulations obtained from a number of executions
compared with the broadly known frameworks.

Keywords: Trust establishment, edge creation, agent communication,
social networks.

1 Introduction

During the last ten years, online social networks have been drastically enlarged.
Facebook, Flicker, Yahoo! Answers are among very popular social networks that
are gaining a very high traffic in terms of the users and their connectivity. In
general, the impact of the features of these networks and analysis on how they
form the behavior of the users have been of a great interest during the very recent
years. A number of theoretical and empirical works have been proposed analyz-
ing the users’ behavior in forming the connection among them. For example,
the analysis on the edge creation process between network nodes (participants),
which is related to the sociality of a node, led to observe the distribution of
a heavy-traffic degree of popular nodes [6,10]. In [1], the authors address the
source of the correlation among agents that led them to extend their activity
and create edges. In [2], the correlation between agents are analyzed in an online
large scale network. In fact, the relation among the agents that just joined the
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network and the agents that are already in the network is discussed. Clearly, all
these proposals investigate the way the networks are formed and enlarged. How-
ever, the reasons behind the edge creations and extensions are not specifically
discussed.

In this paper, we analyze the issue of edge creation from a different perspec-
tive over the social correlation among agents using a combination of declarative
and numerical techniques. In fact, trust is the main issue agents consider when
decide to create edges connecting them within the network. In edge creation
process, we analyze diverse impacts upon the trust that is already established
between two nodes and generalize the trust concept to analyze the socialization
of agents that use different trust evaluation systems. There are some propos-
als in the literature developing frameworks to establish trust among agents.
The purpose of this paper is not to develop a new trust framework, but to
analyze how the trust can affect the status of an agent in a social network,
which is captured by a set of decision rules in the framework. We first discuss
the trust evaluation method and upon that, analyze the connectivity among
agents in a microscopic approach. Some trust models in the literature consider
the direct interaction of two parties [8,15,16]. Some models also rely, to some
extent, on the suggested ratings provided by other agents [9,12,14]; and some
others also consider the suggested ratings of the agent being evaluated [4,8].
Since agents are self-interested, it is hard to analyze an agent’s likely behavior
based on previous direct interactions given the fact that the collected informa-
tion from other agents may be non-reliable and could lead to a non-accurate
trust assessment. So far, these frameworks do not act properly if selfish agents
tend to change their behaviors. Therefore, agents do not properly initiate a so-
cial activity in the sense that they cannot maintain a strong control on the
environment.

In this paper, we use the model we proposed in [11] and discuss the social
network related parameters (classified in [1]) such as homophily, confounding
and influence on the edge creation process of the distributed agents. Homophily
refers to the tendency for agents to have ties with agent who are similar to
themselves. Confounding refers to the external influence where external factors
correlate with the event that two agents become connected. For example, “two
friends are likely to live in the same city, and therefore to post pictures of the
same landmarks in an online photo sharing system” [1]. Influence is a parameter
for the extent to which an agent is prompted to initiate a connection with another
agent caused by an adjacent agent.

The objective of discussing these parameters is to elaborate the impacts that
a proper trust adjustment framework has on the extension of agents’ connec-
tivity. Considering the cost that agents pay for edge creation, the accuracy on
suitable extensions are crucial. In the proposed model, we provide an efficient
assessment process in a twofold contribution. In the first contribution, agents
evaluate the trust of other agents by combining their direct and indirect trust.
In direct trust, the history of interactions is considered as a measure of hon-
esty. In indirect trust, the suggested rates through some consulting agents are
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considered in the measurement of trust. In the second contribution, the evalua-
tor agent updates its belief set considering the difference/similarity between the
proposed rates and the actual trustworthiness of the evaluated agent captured by
its actual behavior. The update (so-called maintenance) considers the evaluated
agent together with the consulting agents that have been suggested in support
of the agent being evaluated. By updating the trust values, agents would recog-
nize the adjacent agents that are worth to extend the connection with. On the
other hand, agents would stay far from bad agents in terms of social connectiv-
ity. Doing so, the agents equipped with the maintenance framework, gradually
recognize the more reliable interacting agents and thus, can quickly propagate
the recent changes in the environment. The edge creations are done towards the
active and accurate communities. Therefore, more efficient social correlation is
formed among interacting agents.

The remainder of this paper is organized as follows. In Section 2, we briefly
define our proposed framework as comprehensive trust assessment process, which
is composed of evaluation and maintenance process. In Section 3, we define the
social network parameters and environment where the interactions are taking
place. In Section 4, we analyze and discuss these parameters in an experimental
setting. We represent the testbed and compare our model results with two well-
known trust models in terms of efficiency in trust assessment. Finally, Section 5
concludes the paper.

2 Trust Evaluation Approach

2.1 General Background

In this section, we combine declarative and numerical techniques to formalize
trust and its assessment between interacting parties in the social network. As
illustrative example, we consider a social network of customers and providers
of some services used for service selection. In this paper, we focus on the trust
assessment formulation and predefined rules that direct the edge extensions of
agents interacting in the social network. Details about the used trust model are
provided in [11]. To characterize the relationship between a trustor agent Aga

(e.g. a customer) and a trustee agent Agb (e.g. a provider), three elements are
used [3]: 1) how much the trustor agent trusts the trustee: TrAgb

Aga
; 2) the number

of past interactions: NIAgb

Aga
or business transactions: NT Agb

Aga
; and 3) the time

recency of the last transactions: T iRAgb

Aga
. Formally, we define a social network

for service selection as follows:

Definition 1 (Social Network). A social network SN for service selection is
a tuple 〈C, P,−→cc,−→cp〉 where C is a set of customers, P is a set of providers,
−→cc⊆ C × R3 × C is a ternary relation (for labelled edges linking customers)
and −→cp⊆ C×R3×P is a ternary relation (for labelled edges linking customers
to providers).
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To simplify the notation for the labelled edges, if ci, cj ∈ C and v ∈ R3, then
(ci, v, cj) ∈−→cc is written as Rcc(ci, v, cj). Likewise, we write Rcp(ci, v, pk) in-
stead of (ci, v, pk) ∈−→cp where pk ∈ P . Our social network for service selection
has two types of nodes: type 1 for customers and type 2 for providers and two
types of edges: type 1 for edges between customers and type 2 for edges linking
customers to providers. The edges of type 1 represent friendship relations in the
network, while edges of type 2 capture business relationships. The existence of
an edge of type 1 Rcc(ci, v, cj) means that ci knows (is friend of) cj such that:
v = (Tr

cj
ci , NI

cj
ci , T iR

cj
ci ). The existence of an edge of type 2 Rcp(ci, v, pk) means

that ci had transactions with pk such that: v = (Trpk
ci

, NT pk
ci

, T iRpk
ci

).
In general, each customer agent ci is linked to a set of customers it knows and

a set of providers it has interacted with in the past. A link (an edge) between
two customers ci and cj is added to the social network when the number of
interactions between them is large enough. In the same way, a link (an edge)
between a customer ci and a provider pk is added to the social network when
the number of transactions between them is large enough. The following two
Prolog-like rules ( having the form: Head← Body: if Body then Head) are used
by ci as decision rules to decide about adding links to the social networks where
μ1 and μ2 are two predefined thresholds:

Rcc(ci, v, cj)← v = (Trcj
ci

, NIcj
ci

, T iRcj
ci

) ∧NIcj
ci

> μ1

Rcp(ci, v, pk)← v = (Trpk
ci

, NT pk
ci

, T iRpk
ci

) ∧NT pk
ci

> μ2

We note that there is no edges in this social network between providers. This does
not mean that there is no social link between providers, but only the existing links
(which could be collaborations or competitions) are not used in our framework.
In fact, links between providers could be used to share information regarding
clients trust. However, sharing such market information in a competitive setting
requires incentives and other considerations such as coalition formation. Game
theory and mechanism design tools could be used to analyze these considerations.
However, this aspect is out of the scope of this paper.

A social link between two customers ci and cj (denoted by SL(ci, cj)) exists
either because there is a link (an edge) between ci and cj (Rcc(ci, v, cj)) or
because ci is linked via an edge to another customer cx, which is socially linked
to cj via a social link SL(cx, cj). This aspect is specified using the following
Prolog-like recursive rules:

SL(ci, cj)← Rcc(ci, v, cj)

SL(ci, cj)← Rcc(ci, v
′, cx) ∧ SL(cx, cj)

In the same way, we specify the social link between a customer ci and a provider
pk as follows:

SL(ci, pk)← Rcp(ci, v, pk)

SL(ci, pk)← Rcc(ci, v
′, cx) ∧ SL(cx, pk)
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2.2 Direct Trust (DTr)

Let T ranpk
ci

be the set of transactions between a customer ci and a provider pk.
The direct evaluation of pk by ci is based on the ratings ci gave to pk for each
past transaction (rl ∈ T ranpk

ci
) combined with the importance of that interaction

(λl) and its time recency. Let n be the number of total transactions between ci

and pk (n = NT pk
ci

= |T ranpk
ci
|), equation 1 gives the formula to compute this

evaluation.

DTrpk
ci

=
∑n

l=1(λl.T iRpk
ci

.rl)∑n
l=1(λl.T iRpk

ci )
(1)

The direct interaction is considered reliable if the history of transactions is strong
enough (n > μ2). If not, the evaluation should be done through consulting with
some other agents. We refer to this evaluation as indirect evaluation ITRpk

ci
. In

fact, if the time recency of the transactions is less than a predefined threshold
μ3, the transactions reflect old behaviors and thus may not reveal the accurate
information. Likewise, if the number of transactions is not high enough to reflect
a strong history, the evaluating agent could not rely on that. The following rule is
a decision rule for ci specifying the pre-conditions of using indirect trust denoted
by Use(ITRpk

ci
):

Use(ITRpk
ci

)← ¬Rcp(ci, v, pk) ∨ T iRpk
ci

< μ3

2.3 Indirect Trust (ITr)

To perform the indirect evaluation, the customer ci solicits information about
the provider pk from other customers, called consulting customers (denoted by
the set Tci), such that for all cj ∈ Tci there is an edge Rcc(ci, v, cj) in the social
network. An agent cj is added to Tci if the size of this set is less than a maximum
size μ4 and the overall trust value of cj (αTr

cj
ci ) is greater than a threshold μ5

where αTr
cj
ci = DTr

cj
ci .NI

cj
ci .T iR

cj
ci . Thus, agents are added in Tci in the sense

that the evaluating agent can rely on their provided information in support of
the provider that is being evaluated. The following is the decision rule used to
update Tci :

Tci = Tci ∪ {cj} ← |Tci | < μ4 ∧ αTrcj
ci

> μ5

To communicate and exchange trust information, agents use messages defined
as follows:

Definition 2. A communication message is a tuple 〈α, β, ci, cj, M, t〉, where α
(α ∈ {Req, Rep}) indicates whether it is a request or a reply communication
message, β (β ∈ {Inf, Refuse, Not Have}) represents the type of the message
as requesting information in case of initiating the communication (Inf), refusing
to reveal information (Refuse), or not having the information in case of replying
to a request message (Not Have). Agents ci and cj are respectively the sender
and receiver of the message, M is the content of the message and finally t is the
time at which the message is sent.
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In order to obtain a trust value of a provider pk (Trust(pk)), the evaluator
agent ci initiates a communication message to get the information from the
consulting agents. The reply from a consulting agent cj consists of providing
the trust value (Inf(pk)), or informing that it does not have the required
information(NotHave), or refusing to answer(Refuse). Formally, these possi-
bilities are represented by the following rules:

〈Rep, Inf, cj, ci, Inf(pk), t1〉 ← 〈Req, Inf, ci, cj , T rust(pk), t0〉

〈Rep, NotHave, cj, ci, ∗, t1〉 ← 〈Req, Inf, ci, cj , T rust(pk), t0〉

〈Rep, Refuse, cj, ci, ∗, t1〉 ← 〈Req, Inf, ci, cj , T rust(pk), t0〉

Proposition 1. Assume cj is collaborating with ci. cj will reply by Inf(pk)
using the first rule iff SL(cj, pk).

The consulting agents are also subject to check for their trust values, and indeed,
the more the consulting agent is trustworthy, the more the evaluating agent can
rely on the provided rating. The equation computing the indirect estimation is
given by equation 2.

IT rpk
ci

=

∑
cj∈Tci

αTr
cj
ci .DTrpk

cj
.T iRpk

cj
.NT pk

cj∑
cj∈Tci

αTr
cj
ci .T iRpk

cj .NT pk
cj

(2)

2.4 Total Trust (Tr)

To compute Trpk
ci

, the direct and indirect evaluations are combined according
to their proportional importance. The idea is that the customer relies, to some
extent, on its own history (direct trust evaluation) and on consulting with its
network (indirect trust evaluation). This merging method considers the propor-
tional relevance of each trust assessment, rather than treating them separately.
To this end, ci assigns a contribution value for the trust assessment method (ω
for direct trust evaluation and 1− ω for indirect trust evaluation when ω < 1).
The value ω is obtained from equation 3.

ω =
log(DTrpk

ci
.NT pk

ci
.T iRpk

ci
)∑

cj∈Tci
log(DTr

cj
ci .NI

cj
ci .T iRck

ci )
(3)

This value could exceed 1 in the case that the history is more informative than
contribution of others. Basically, the contribution of each approach in the eval-
uation of pk is defined regarding to: (1) how informative the history is in terms
of the number of direct transactions between ci and pk (NT pk

ci
) and their time

recency (T iRpk
ci

); and (2) how informative and reliable the consulting customers
are from ci’s point of view (DTr

cj
ci ). Therefore, consultation with other agents

is less considered if the history represents a comparatively higher value for ω,
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which reflects lower uncertainty. Respecting the contribution percentage of the
trust assessments, ci computes the trust value for pk using the following rules:

Trpk
ci

= ω.DTrpk
ci

+ (1 − ω).IT rpk
ci
← ω < 1

Trpk
ci

= DTrpk
ci
← ω ≥ 1

Generally, the merging method is used to obtain the most accurate trust as-
sessment. According to the following rule, the customer agent ci would initiate
the transaction Transact(ci, pk) with pk if the evaluated trust is high enough
(threshold μ6), which means that the customer agent can expect a high quality
of service.

Transact(ci, pk)← Trpk
ci

> μ6

2.5 Maintenance

After performing the transaction, customer ci analyzes the quality of the re-
ceived service regarding to what is expected (i.e. the evaluated trust Trpk

ci
) and

what is actually performed (so-called observed trust value T̂ r
pk

ci
). To this end,

an adjustment trust evaluation should be performed. When ci decides, based
on the previous rule, to transact with pk, the number of transactions is incre-
mented. Then the observed value is checked with the expected trust value. The
corresponding update is applied on the assessed trust value depending on the
difference between the observed and the evaluated values. The following rules
specify the maintenance process where μ7 is a predefined threshold and the value
β is a small value in the sense that 1 + β reflects an increase and 1− β reflects
a decrease in the current value.

NT pk
ci

= NT pk
ci

+ 1← Transact(ci, pk)

Trpk
ci

= Trpk
ci
× (1 + β)← |T̂ r

pk

ci
− Trpk

ci
| < μ7

Trpk
ci

= Trpk
ci
× (1− β)← |T̂ r

pk

ci
− Trpk

ci
| ≥ μ7

In general, the idea is to learn from gained experiences in the sense that ob-
serving the actual value, the agent that performed the evaluation and consulted
with couple of other agents can adjust its trust in them regarding to the ac-
curacy of information they provided. To this end, the consulting agents that
provided bad trust values, which are far from the observed one, will be removed
from the list of potential witnesses in the future. Likewise, the agents that re-
veal accurate information would be considered more trustworthy than before and
would be potentially consulted in future. The evaluating agent ci would check for
each consulting agent the suggested trust value with the observed actual value
(checking the difference with the threshold μ8), and consequently updates the
corresponding values.
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Trcj
ci

= Trcj
ci
× (1 + β)← |T̂ r

pk

ci
− Trpk

cj
| < μ8

Trcj
ci

= Trcj
ci
× (1 − β)← |T̂ r

pk

ci
− Trpk

cj
| ≥ μ8

Tci = Tci \ {cj} ← |T̂ r
pk

ci
− Trpk

cj
| ≥ μ8

In addition, over the recent interactions, high quality providers are recognized
and thus distributed over the adjacent agents in the network. In general, using
the maintenance process (for full description of algorithms, see [11]), correlated
agents could increase their rate of influence to one another, which eventually
would approach to a more active social network. This can be represented by
an optimization problem as shown in equation 4. The minimization problem is
actually inspired by the fact that each time the maintenance is progressed, there
is an actual value to compare with the previously suggested trust values. To
this end, the evaluating agent would learn to minimize the error such that the
upcoming maintenances would be more accurate [13].

min
cj∈Tci

|T̂ r
pk

ci
− Trpk

cj
| (4)

3 Social Network Representation

To analyze our social network for service selection, many parameters described
in the literature about social networks could be considered. A detailed list of
such parameters are presented in [5]. For space limit, we consider only the fol-
lowing parameters and provide equations to compute them in our context of
trust for service selection. Without loss of generality, we would like to measure
the probability (likelihood) of edge creation between a customer and a provider
agent. The focus of this paper is on the study of edge-by-edge evaluation of
the social network in microscopic manner. We compare the network formation
of different types of agents that are using different trust establishment method
and use different strategies. Hence, we effectively analyze the impact of different
trust models in socializing a particular agent that joins a network and seeks
to increase its overall outcome (so-called utility). We basically distinguish be-
tween different models based on their strategies of network formation in agent
arrival, edge arrival and interaction maintenance process (how after-interaction
parameters affect the strategies that are used in the further actions of agents).

3.1 Outdegree

Outdegree is a parameter for the extent to which an agent in the network conveys
information regarding some other agents. Outdegree value from the customer’s
point of view, is to what extent a customer agent knows the providers. The
idea is to reflect the fact that a customer that is connected to more reliable
providers has a higher outdegree than a customer linked to less reliable ones.
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In other words, the outdegree value reflects the extent to which an agent tries
to set up and strengthen more edges connecting it to other agents. Equation 5
computes this parameter for an agent Ag, where αTr

cj

Ag = Tr
cj

Ag.NI
cj

Ag.T iR
cj

Ag

and αTrpk

Ag = Trpk

Ag.NT pk

Ag.T iRpk

Ag.

Dout(Ag) =
∑

cj∈TAg

αTr
cj

Ag +
∑

pk∈T ′
Ag

αTrpk

Ag (5)

where T ′
Ag = {pk ∈ P | ∃v ∈ R3 ∧Rcp(Ag, v, pk)}

3.2 Indegree

Indegree is a parameter for the extent to which a customer in the network receives
information regarding to a particular agent from some other agents. Indegree
value from the customer’s point of view, is the extent that the agent is known
by the close agents in the network. The idea is to reflect the fact that a customer
that is connected to more reliable providers has a higher indegree than a customer
linked to less reliable ones. Indegree value from a provider’s point of view, is the
extent that a provider agent is popular in the social network that causes higher
number of requests from the customer agents. In other words, the indegree value
reflects the popularity of an agent in the sense that any agent would like to
increase it and thus cares not to distract it. Equation 6 computes this parameter
for a generalized agent Ag, that could be a customer or a provider agent.

Din(Ag) =
∑

cj∈SAg

αTrAg
cj

(6)

where SAg = {cj ∈ C | ∃v ∈ R3 ∧ (Rcc(cj , v, Ag) ∨Rcp(cj , v, Ag))}

3.3 Homophily

Homophily is a parameter for the extent to which a customer in the network
chooses to interact with a provider that is known and is already evaluated (this
concept is derived from [1]). This basically raises to strengthen the correlation
of adjacent agents. In the social network, agents that are known from previous
interactions may tend to request for a service, which is expected to be satisfac-
tory. This is the affect of being friend in a network. In general, it is likely that
a customer agent re-selects a particular provider agent aiming to request for a
new service. Thus, provider agents normally try to provide a quality service to
keep their customers. The homophily of agents in the network is a factor that
is not directly compared to other choices of the customer agent, that is seeking
for a service. Basically it is the matter of how well-quality the provider agent
would provide the new service. This means that, the customer agent’s concern
is to measure the probability of gaining the expected quality in the service given
the fact that the provider agent has already provided a similar service to the
same customer. This possibility measurement is mainly related to the indegree
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value of the provider agent in the sense that a provider with high indegree value
is known to be popular, so there is less chance of disturbing its popularity by
providing a not promised service quality. In Section 4, we analyze this effect in
more details showing that the trust models with the after-interaction policies
could lead to a more accurate friendship evaluations.

Equation 7 computes the probability of selecting a provider pk with Din(pk)
as indegree value. In this equation, we do not involve the trust measurement
that the customer agent ci performs for evaluating the provider agent pk (Trpk

ci
).

The reason is that since the customer agent ci is already in relation with the
provider pk, then based on the previous evaluation, could decide whether it
worths to select this provider again. If by any chance, the previous history does
not reflect the efficiency of the provider pk, there is no point for investigating the
probability of the provider’s efficiency if being selected. In equation 7, the value
ω is set to be the uncertainty factor (see equation 3) of the history between
the customer agent ci and the provider agent pk. And the value β represents
the coefficient set for the system inconsistency. In the trust models with after-
interaction strategies, this value is dynamically modified reflecting the system
accuracy level. However, without maintenance process, the value is set initially
and remains fixed.

p(Din(pk)) =
eω log(Din(pk)+1)+β

1 + eω log(Din(pk)+1)+β
(7)

In general, the customer ci would request for transaction with providers that
their total trust values are high enough and their homophily probability exceeds
a predefined threshold μ9. The new rule for initiating a transaction is given as
follows:

Transact(ci, pk)← Trpk
ci

> μ6 ∧ p(Din(pk)) > μ9

3.4 Confounding

Confounding is a parameter for the extent to which a provider as an external
agent influences a customer agent to request for a particular service (this concept
is derived from [1]). This influence affects some close agents in the network to
set up an edge with an unknown provider under the promising conditions that
the provider defines. To this end, the provider that is looking for the customers
requests to interact (Intr) and specifies some conditions that it promises to
provide (conditions(pk)). The customer agent analyzes the request and thus
would may accept or refuse the interaction according to the following rules:

〈Rep, accept, ci, pk, ∗, t1〉 ← 〈Req, Intr, pk, ci, conditions(pk), t0〉

〈Rep, Refuse, ci, pk, ∗, t1〉 ← 〈Req, Intr, pk, ci, conditions(pk), t0〉

In general, the providers that join the network, seek for the agents that are
more likely to request for their services. In other words, when a provider agent
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is being activated, it tries to socialize itself in the network. Thus, starting from
very close customer agents, the provider agent encourages them to request for
its service. To this end, the provider at the beginning acts generously in order
to attract the customers and gain more popularity. Moreover, upon high quality
service, the customer agents may influence their adjacent agents to request for
the same service. So, the provider agent takes the outdegree value of the customer
agents into account and based on the interaction span of the customer agents,
it provides high quality services.

In confounding factor, the probability of activating an agent ci with a provider
agent pk is computed in equation 8. As it is assumed that the provider pk is
unknown to the customer ci, the customer agent would evaluate the social trust-
worthiness value of the provider. Given the fact that the trust measurement
requires some information from the other adjacent agents, the customer agent
takes the entropy value into account in order to partially consider the indirect
trust value (IT rpk

ci
) and the rest for the popularity of the provider agent. Thus,

the customer ci first evaluates the provider pk and then considers the pk’s in-
degree value together with the network inconsistency level. If the information
obtained for evaluating pk is not enough, the entropy value ω would be high, so
that mostly the trust evaluation part would be considered. This would normally
cause to lower the overall probability of activation.

p(ci, Din(pk)) = ω × IT rpk
ci

+ (1− ω)× elog(Din(pk)+1)+β

1 + elog(Din(pk)+1)+β
(8)

The providers whose probability is greater than a predefined threshold μ10 would
likely transact with the customer if the two conditions set in the previous rule
(Section 3.3) are satisfied. The new rule to decide about initiating a transaction
is given as follows:

Transact(ci, pk)← Trpk
ci

> μ6 ∧ p(Din(pk)) > μ9 ∧ p(ci, Din(pk)) > μ10

3.5 Influence

Influence is a parameter for the extent to which an agent is prompted to initiate a
request caused by an adjacent agent (this concept is derived from [1]). This could
take place in a friendship of agents that distribute the idea of some services to be
requested. When an agent needs to request a particular service from a provider,
it may have already set up an edge with that provider, so the evaluation can be
done, or may need to set up a new edge upon which could obtain the service.
This is the affect of getting encouraged by a friend in a network. In general, it
is likely that a person does action because his friend has already done it. Thus,
it is the matter of activation of a new edge, which is set up between a customer
agent and the provider agent, that has already been requested for a service by
the customer’s adjacent agent (friend).

In the confounding factor, we mentioned that when a typical provider agent
advertises its service to a couple of adjacent customer agents, it considers that
some of the customers may propagate its quality of service to their adjacent
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agents, which could lead to more service requests. On the other hand, the cus-
tomer agent that is being prompted to take a service produced by a particular
provider, needs to evaluate both the advertising adjacent agent cj (DTr

cj
ci ) and

the provider itself pk (IT rpk
ci

). Equation 9 computes the influence-based probabil-
ity of activation of a customer agent ci regarding to taking the service produced
by a provider agent pk. In this equation, ωcj is the entropy value related to the
information ci has and thus could rely on, and ωpk

is the entropy value related
to the information that ci has about the provider pk.

p(ci, cj , Din(pk)) = ωcj ×DTrcj
ci

+ (1− ωcj )×Θ (9)

where

Θ = ωpk
× IT rpk

ci
+ (1 − ωpk

)× elog(Din(pk)+1)+β

1 + elog(Din(pk)+1)+β

Finally, the decision about initiating a transaction with a provider can be given
considering the previous conditions (Section 3.4) and the fact that the influence
probability is greater than a predefined threshold μ11. The final rule is then
specified as follows:

Transact(ci, pk)←
Trpk

ci
> μ6 ∧ p(Din(pk)) > μ9 ∧ p(ci, Din(pk)) > μ10 ∧ p(ci, cj , Din(pk)) > μ11

4 Experimental Results and Related Work

In this section, we describe the implementation of proof of concept prototype. In
the implemented prototype, agents are implemented as Jadex c©TM agents. Like
in [7], the testbed environment is populated with two agent types: (1) service
provider agents ; and (2) service consumer agents. The simulation consists of a
number of consequent Runs in which 200 agents are activated and build their
private knowledge, keep interacting with one another, and enhance their overall
knowledge about the environment. Depending on the agent interactions, agent
may extend their connections hoping to be more socialized. However, there is
always the chance of investing on wrong agents that lead to no outcome. Here,
we distinguish agents by the service (or information) quality that they provide.
Table 1 represents four types of the service providers we consider in our simula-
tion: good (15% of the population), ordinary (30% of the population), bad (15%
of the population) and fickle (40% of the population). The first three provide
the service regarding to the assigned mean value of quality with a small range
of deviation. Fickle providers are more flexible as their range of service quality
covers the whole possible outcomes. Upon interaction with service providers,
service consumer agents obtain utilities and consequently rate the quality of the
providers (for simplicity, we assume only the consumers are interconnected to
the provider agents). In the simulation environment, agents are equipped with
different trust models in the sense that their edge creation policies are differ-
ent. In the proposed model, we try to establish a trust mechanism where an
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agent, firstly can maintain an effective trust assessment process and secondly,
accurately updates its belief set, which reflects the other agents likely accuracy.
In order to observe the impact of each contribution, we compare the proposed
model with other trust models in two perspectives. In the first comparison, we use
the agents that only perform a direct trust assessment process. We refer to this
group of agents as Direct Trust Group (DTG). In the second comparison, we use
the agents that (in addition to the direct trust assessment mechanism), perform
maintenance process for evaluating the consulting agents in order to increase
their information accuracy. We refer to this group of agents as Maintenance-
based Trust Group (MTG). The reason of decomposing the proposed model
to two groups is to focus on the efficiency of each model, which enables us to
analyze the impact of each contribution on the accuracy of the agent in edge
creation process. In order to discuss the proposed model’s overall performance,
we compare it with BRS 1 [9] and Travos 2 [14] trust models. These models are
similar to the proposed model in the sense that they do consider other agents’
suggestions while evaluating the trust of some specific agents and discard inac-
curate suggestions aiming to perform most efficient edge creation. The detailed
description of these models is provided in [4]. Here, we basically distinguish [10]
between different models based on their strategy of network formation in agent
arrival, edge arrival and interaction maintenance process (how after-interaction
parameters affect the strategies that are used in the further actions of agents). In
the rest of this section, we discuss the impacts of efficient parameters in the edge
extension of agents and elaborate how different trust mechanisms effectively deal
with these impacts.

Table 1. Simulation summarization over the obtained measurements

Service provider type Density in the network Utility range Utility SD
Good 15.0% ] + 5, +10] 1.0

Ordinary 30.0% ]− 5, +5] 2.0
Bad 15.0% ]− 10,−5] 2.0

Fickle 40.0% ]− 10, +10] −

Provider Popularity. We start the discussion by the probability of selecting
the providers over their different popularity values. As we discussed earlier, the
indegree value of a node reflects their popularity in the social network. Thus,
we could conclude that the chance of selection for a particular service provider
agent would be proportionally relevant to its indegree value (ordinary selection
attitude). However, the trust evaluation method together with its distribution
process would affect this probability of selection. Illustrated in figure 1, the BRS

1 BRS trust model collects the after-interaction ratings and estimates the trust using
beta distribution method. This trust model ignores the ratings from such agents that
deviate the most from the majority of the ratings.

2 Travos trust model is similar to BRS in collecting the after-interaction ratings and
estimating the trust using beta distribution method. But Travos ignores the ratings
from agents that provide intermittent reports in the form of suggestions.
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Fig. 1. Probability of edge creation with provider agent vs. the provider’s indegree
value

agents act independently of the mentioned probability as the BRS agents do not
consider the popularity of the provider. Travos agents also do not consider such
value. However, the probability of selection of the popular providers increase
as they take less risk of changing their behaviors and thus perform satisfactory
services, which would lead to their selection. In general, because of inaccuracy
detection feature of Travos agents, the percentage of selection of provider agents
with high indegree value increases in a gentle manner. At some certain point, the
selection of popular providers are coming down (see plot b). This is explained by
the fact that a popular provider has large number of recommenders that provide
diverse range of information to the agent that is trying to evaluate the provider.
This diversity would lead to confusion state due to high deviation of reports
(the state that this system would generalize the majority of the information
that is obtained and could be inaccurate), which in Travos would cause the
drop of the suggestions and thus the selection would be less. The proposed
model agents (DTG and MTG) follow the information propagation feature as
the adjacent agents influence each other to select the high quality providers.
There is a difference in the slope of selection graph in MTG and DTG models.
This is explained by the fact that agents in the MTG group are characterized
by the maintenance process that enable them to recognize high quality provider
agents and thus their accuracy in influencing adjacent agents are more than
regular DTG agents. In general, since the maintenance feature does not exist in
DTG group, the customer agents loose the track of high quality provider agents,
and thus the probability of selection would not increase so fast.

Interacting Agents Age. In general, in the defined testbed, the agents that are
obtaining a high quality service are encouraged to distribute their experience to
other adjacent agents (influence others). This activity of agents would basically
get increased over the time, or say over the age of the agent. In figure 2, we have
compared the activity of different groups of agents by comparing edge extension
of the agents (outdegree value). Without loss of generality, the edge extension
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Fig. 2. Agent edge extension vs. the agents age

is proportionally related to the accuracy of agent in detecting the high quality
providers. In BRS model, the extension over the time is not increasing as the
agent gets involved with high number of adjacent agents and would be difficult
to effectively extend the social activity, so more or less would be independent of
the age of the agent. Travos and DTG models are increasing, however relatively
with small slope. In MTG group, because of the maintenance process the agents
would be encouraged to initiate a request to high quality service providers and
thus extend their activity. In this graph, the slope is relatively large as over the
time, the agent could manage to categorize the providers that could possibly
act beneficially for the agent, and thus would enlarge his activity area. In figure
2, the second line represents how fast the agents would drop the previous data
and use the recent data for their analysis. This dropping factor is also relevant
to how active an agent is and thus, to what extent there would be available
resource that agents could drop obsolete data. DTG and MTG group use the
same dropping feature (T iR(ΔtAgb

Aga
)), which is derived in equation 10. Variable λ

is an application-dependent coefficient. In some applications, recent interactions
are more desirable to be considered (λ is set to relatively large number). In
contrast, in some other applications, even the old interactions are still valuable
source of information. In that case, a relatively smaller value to λ is used.

T iR(ΔtAgb

Aga
) = e−λ log(Δt

Agb
Aga

) λ ≥ 0 (10)

Homophily-Confounding-Influence. We would like to go further into the
details of the selection history in terms of the microscopic social network affects
(homophily, confounding, and influence) and illustrate them in figure 3. in this
section, we observe the diverse impacts of homophily, confounding and influence
features on each group in the sense that we would capture their edge creation
reasons. Note that the edge creation is not the important issue, however, the
concern is to extend to the agents that are known to be trustworthy. There-
fore, we elaborate the overall outcome of different agents at the following. The
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Fig. 3. Overall comparison of the proposed model with BRS and Travos in terms of
(a) Homophily; (b) confounding; and (c) influence factors

homophily aspect would be caused by the friendship relation of the agents that
have history interaction between them. This is a very general case in the sense
that consumer agents over the time would get to know and select the provider
agents. If the interacted service is satisfactory for the agent, then the consumer
agent may re-select the same provider agent in some future. BRS agents are the
ones that mostly rely on the homophily affect in the sense that they keep the his-
tory of the interaction in order to re-evaluate the provider agent. The providers
that remain trustworthy would be selected over the time. As it is clear from
plot a1, once the providers change their policies, the selection of them would be
affected so fast, as the BRS agents recognize that they should start seeking for
the appropriate friends. Travos agents also rely on the previous history and re-
select the previously interacted service providers (see plot b1). However, over the
time the reports regarding to the accuracy of the providers would be divergent,
which would lead to refuse the selection. The same reason is the case for DTG
and MTG group (shown in plots c1 and d1). These agents to some extent rely
on the previous history and select the providers. After some certain time, these
agents also recognize the inconsistency in the evaluation process of the history
interacted providers. Overall, DTG and MTG agents evaluate the providers in
a very accurate manner. The accuracy that Travos, DTG and MTG agents have
cause the decremented manner after some certain time.
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Confounding factor reflects the extent to which the provider agents adver-
tise their service to the consumers (could be new or previously serviced ones).
This feature also affects BRS group, as they start evaluating the advertising
provider, and thus extend their activation area. Plot a2 indicates that the BRS
group are easy to involve in interaction with the advertising provider agent.
Travos agents act in the same way as the provider agents could induce them
to take their service. However, Travos agents are considering this case less, be-
cause they investigate the previous reports related to the advertising provider
and doubt on the inconsistent ones (see plot b2). In general, the BRS and Travos
agents accept the confounding-related interactions over the time, and thus their
graph has an increasing manner. But in DTG and specially MTG, the agents
would not accept this service all the time, as over the time, once the network
inconsistency level increases, these agents would have confusion in accepting the
confounding-related affect caused by unknown service providers (see plots c2 and
d2). MTG agents would accept this option from the providers, but since they are
equipped with a maintenance process, they would distribute the performance of
the providers to the adjacent agents, which would lead them to get to know the
network faster than the other models. This would let the MTG agents to select
the best providers, and thus would drop the request from most of the unknown
agents while they are already in a good accuracy level.

Influence factor is mostly used by active agents, while they obtain service and
tend to distribute the efficiency of the interaction to the adjacent agents. Since
BRS agents independently select the providers, the influence is not a factor for
these agents (plot a3). Treavos agents would act almost independently, however
the Travos agents are encouraged by the reports they obtain for the evaluation of
a particular provider agent (plot b3). DTG group would be encouraged with the
same factor as Travos agents. Upon evaluating provides, the DTG agents would
consider the reports obtained from adjacent agents and recognize outstanding
service provided by the provider that is just served an adjacent agent (see plot
c3). The influence-related interactions are mostly initiated among MTG group,
shown in plot d3. This is explained by the fact that the MTG group are equipped
with maintenance feature, which enables them to reason about the accuracy and
efficiency of the obtained services and propagate the information to the adjacent
information.

General Performance. Considering all the involved features, at the end we
compare the models in general perspective, starting good provider selection effi-
ciency. In such a biased environment, the number of good providers are compar-
atively low. Therefore, the agents need to perform an accurate trust assessment
to recognize the best providers. As it is clear from the Figures 4, plots a1, b1,
and c1, DTG agents function better than other models (Travos and BRS). The
reason is that in this model, agents are assessing the credibility of the providers
using other agents suggestions depending on their credibility and to what ex-
tent they know the provider. Afterwards these agents rate the provider, which
would be distributed to other agents upon their request (relatively in plots a2,
b2, and c2 the comparison of fickle selection percentage, and in a2, b2, and c2,
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Fig. 4. Overall comparison of the proposed model with BRS and in terms of (a) good
selection percentage; (b) fickle selection percentage; and (c) cumulative utility gained

the gained cumulative utility is shown). Not excluding the fact that DTG agents
are considering partial ratings for consulting agents, we state that they weakly
function when the environment contains agents that do not truthfully reveal
their believes. MTG agents in addition to the direct trust assessment, provide
incentives for consulting agents, which encourages them to effectively provide
the information aiming to gain more utility. Plot d1 shows that MTG agents
outperform other models in best provider selection. This is expressed by the fact
that MTG agents recognize the best providers ensuring that the best selected
provider would provide the highest utility. Relatively plot d2 shows an outper-
form in fickle selection and consequently higher cumulative utility in plot d3.

In BRS model, the trustor agent in the assessment process uses beta distribu-
tion method and discards the ratings that deviate the most from the majority of
the ratings. Concerning this, BRS is comparatively a static trust method, which
causes a low-efficient performance in very dynamic environment. In general, if
a BRS agent decides to evaluate an agent that he is not acquainted with, he
considers the majority of ratings, which are supposed to be truthfully revealed
about the trustee agent. In such a case that the trustee agent has just changed
his strategy, the trustor agent would loose in trust assessment and does not
verify the accuracy of the gained information. Therefore, as illustrated in figure
4, plots a1, the BRS agents would have less percentage of good providers se-
lection, relatively higher percentage of fickle providers selection (plot a2), and
consequently lower gained cumulative utility (plot a3).
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Travos [14] trust model is similar to BRS in using beta distribution to esti-
mate the trust based on the previous interactions. Travos model also does not
have partial rating. Hence, the trustor agent merges his own experience with
suggestions from other agents. However, unlike BRS model, Travos filters the
surrounding agents that are fluctuating in their reports about a specific trustee
agent. To some extent, this feature would cause a partial suggestion considera-
tion and thus, Travos agents would adapt faster comparing to BRS agents. Rates
concerning the good and fickle selection percentage shown in figures 4, plots b1
and b2 reflect higher efficiency of Travos compared to BRS. However, Travos
model considers that agents do not change their behavior towards the elapsing
time. These missing assumptions affect the accuracy of trust estimation in a very
biased environment (lower gained cumulative utility in plot b3).

5 Conclusion

The contribution of this paper is the detailed investigation of a trust-based multi-
agent architecture in edge creation and correlation formation in social networks.
The analysis of this issue is done by combining both declarative and numerical
techniques. The established trust is provided by the proposed framework, that
is briefly explained here. The trust assessment procedure is based on integrating
suggestion of consulting agents, objectively enhancing the accuracy of agents to
make use of the information communicated to them. The surveillance over the
surrounding environment makes distributed agents eager to extend their activity
area by interacting with high quality agents. In the proposed framework, mainte-
nance process considers the communicated information to judge the accuracy of
the consulting agents in the previous trust evaluation process. The ex-interacted
analysis allows the agents to propagate the recent and accurate information to
their adjacent agents, which is considered as homophily and influence factors in
edge creation process.

Our model has the advantage of being computationally efficient as it takes into
account the important factors involved in extending the activity zone of agents.
Moreover, we have done a detailed empirical analysis over the edge creation
and behavior of agents over their age, while they are equipped with different
trust mechanism protocols. The proposed mechanism efficiency is compared with
other related models to prove the capabilities of the proposed model. Our plan
for future work is to advance the assessment model to enhance its efficiency by
considering more efficient learning algorithms. In the maintenance process we
need to elaborate more on the optimization part, trying to formulate it in the
sense to be adaptable to diverse situations. We need to consider more extensions
towards having links and correlations between provider agents and thus, we need
to deal with the selfish actions that providers may perform under the assumption
of having social links with other providers. Game theory and mechanism design
are the most promising techniques to be investigated for such an issue. Finally,
we plan to maintain more detailed analysis in comparison with other models to
capture more results reflecting the proposed model capabilities.
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Abstract. We propose a framework to compute the utility of a proposal w.r.t. a
preference set in a negotiation process. In particular, we refer to preferences ex-
pressed as weighted formulas in a decidable fragment of First Order Logic (FOL).
Although here we tailor our approach for Description Logics endowed with dis-
junction, all the results keep their validity in any decidable fragment of FOL. DLs
offer expressivity advantages over propositional representations, and allow us to
relax the often unrealistic assumption of additive independence among attributes.
We provide suitable definitions of the problem and present algorithms to com-
pute utility in our setting. We also study complexity issues of our approach and
demonstrate its usefulness with a running example in a multiattribute negotiation
scenario.

1 Introduction

Effective and expressive specification of preferences is a particularly challenging re-
search problem in knowledge representation. Preference representation is essential, for
example, to instruct a software agent to act on behalf of the objectives of a human be-
ing. One common approach to preference representation appeals to multiattribute utility
theory [1], which concerns the construction of utility functions mapping vectors of at-
tributes to real values. Given that the size of a multiattribute domain is exponential in
the number of attributes, applications typically exploit independence relations among
the attributes, in the most extreme case to assume that all attributes are additively inde-
pendent, so that the multiattribute utility function is a weighted sum of single-attribute
utility functions.

However, most real-world domains pose significant preferential dependencies, ruled
out by the fully additive model. For example, referring to the desktop computer realm,
we could not with an additive value function capture the fact that the value of some
combination of attributes is not simple the sum of the single attribute values. Indeed,
some operating systems perform very poorly without a minimum amount of memory,
therefore the value (utility) given to a specific operating system will depend on the
amount of memory available.

M. Baldoni et al. (Eds.): DALT 2009, LNAI 5948, pp. 158–173, 2010.
©c Springer-Verlag Berlin Heidelberg 2010
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Some recent approaches support relaxation of the fully additive assumption, for ex-
ample by providing generalized versions [2] or exploiting graphical models of depen-
dence structure [3,4,5], while remaining within the multiattribute framework.

Logical languages likewise provide a means to express interdependencies, but unlike
multiattribute formulations they do not necessarily require that we explicitly decompose
the domain into an orthogonal set of attributes. Furthermore, logical languages support
integration of preference knowledge with domain knowledge modeled through an on-
tology. Using an ontology, indeed, it is possible to model relations among attributes in
the domain (e.g., a Centrino is an Intel processor with a 32-bit CPU), as well as the fact
that some combination of features may be infeasible (therefore of minimal or undefined
preference) due to constraints in the ontology itself (e.g., a Centrino processor is not
compatible with a processor with a 64-bit architecture).

In decision making problems, preferences are expressed over a set of possible alter-
natives, in order to rank them. In many cases, such as e.g., bilateral negotiation, auc-
tions, resource allocation, it is important to compute a utility value for, respectively, an
agreement, an offer, an allocation w.r.t. the set of preferences expressed by the agent. If
preferences are expressed using Propositional Logic, then the utility can be computed
considering a particular propositional model (agreement, offer, allocation), taking into
account formulas satisfied by that model.

While for Propositional Logic it is possible to refer directly to models (interpreta-
tions) in order to compute utility, this computation for First-order Logic (FOL) is less
straightforward, as the number of possible models is infinite.

The main contribution of this paper is an approach that, given a set of preferences,
represented as weighted DL formulas w.r.t. a shared ontology, computes the utility of
a formula (agreement, offer, allocation, etc.) based on its possible models (interpre-
tations). To our knowledge, the only prior method proposed in the literature for this
problem is subsumption, which has some limitations, as we show in Section 4.

We point out that even though the results we show in this paper can be easily applied
to whatever decidable logic with a model-theoretic semantics, we ground our approach
on DLs because of their importance in the development of the Semantic Web.

The remainder of the paper proceeds as follows. First, we introduce Description
Logics, then we give a brief overview of the problem of preference representation in
the field of logic languages. In Section 4, we first introduce the problem of computing
utility of a concept w.r.t. a preference set, showing how, sometime, subsumption leads
to counterintuitive results. Then we analyze some complexity issues. In Section 5 we
illustrate our framework for the computation of utility for a set of weighted DL formulas
with the help of a running example. Finally, we discuss some considerations about the
computational properties of the framework. Conclusion closes the paper.

2 Description Logic Basics

Description logics (DLs) are a family of formalisms well-established in the field of
knowledge representation. Readers familiar with DLs may safely skim this section,
attending mainly to the notation and examples. Those interested in learning more may
refer to the Description Logic Handbook [6] for a much more comprehensive treatment.
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The basic syntax elements of Description Logics are concept names, properties,
and individuals. Concept names stand for sets of objects in the domain1 (Windows,
Intel, LCDMonitor), and properties link (sets of) such objects (hasOS, hasCPU,
hasMonitor). Individuals correspond to special named elements belonging to con-
cepts (HP Pavilion, Apple iMac). When we do not use proper names, we denote
concepts by symbols A, B, C, D, . . . ,�,⊥.

Description logics are usually endowed with a model-theoretic formal semantics. A
semantic interpretation is a pair I = (ΔI , ·I), where ΔI represents the domain and ·I
is the interpretation function. This function maps every concept to a subset of ΔI , and
every property to a subset of ΔI×ΔI . Then, given a concept name CN and a property
name R we have: CNI ⊆ ΔI and RI ⊆ ΔI × ΔI . The symbols � and ⊥ are used
to represent the most generic concept and the most specific concept respectively. Hence
their formal semantics correspond to �I = ΔI and ⊥I = ∅.

Properties and concept names can be combined using existential role quantifica-
tion. For example, PC � ∃netSupport.WiFi describes the set of PCs supporting a
wireless connection. Similarly, we can use universal role quantification, as in PC �
∀hasCPU.AMD, to describe the set of PCs having only AMD processors on board. The
formal semantics of universal and existential quantification is as follows:

∃R.C = {x ∈ ΔI |∃y, (x, y) ∈ RI ∧ y ∈ CI}
∀R.C = {x ∈ ΔI |∀y, (x, y) ∈ RI → y ∈ CI}

Concept expressions can be written using constructors to write concept and property
expressions. Based on the set of allowed constructors we can distinguish different de-
scription logics. Essentially every DL allows one to form a conjunction of concepts,
usually denoted as �; some DLs include also disjunction � and complement ¬ to close
concept expressions under boolean operations.

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(¬C)I = ΔI\CI

Constructs involving number restriction enable us to define concepts in terms of the
numbers of roles with specified properties. For example, Mac � (≥ 4hasUSBport)
describes a Macintosh PC with at least four USB ports. Some DLs integrate concrete
domains into the language [7]. Formally a concrete domain D is a pair 〈ΔD, pred(D)〉
where ΔD is the domain ofD and pred(D) is a set of predicates over ΔD . An example
of concrete domain restrictions appears in the expression PC � ∃hasRam.(≥2 GB),
which describes a PC with at least 2 GB of memory. Here the domain ofD is represented
by natural numbers while ≥2∈ pred(D) is a unary predicate for D. Notice that while
properties, such as hasUSBport, are mapped to a subset of of ΔI × ΔI , concrete
properties, such as GB are mapped to a subset ΔI ×ΔD.

1 We illustrate the main points here (and throughout the paper) using the domain of desktop
computers.
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(≥ n R)I = {x ∈ ΔI | |{b ∈ ΔI |(a, b) ∈ RI}| ≥ n}
(≤ m R)I = {x ∈ ΔI | |{b ∈ ΔI |(a, b) ∈ RI}| ≤ m}

(≤k R)I = {x ∈ ΔI |RI(x) ≤ k}
(≥h R)I = {x ∈ ΔI |RI(x) ≥ h}

In general, the expressiveness of a DL depends on the type of constructors allowed.
Given a generic concept C, we use the notation I |= C to say that CI �= ∅.
In order to formally represent domain knowledge and constraints operating among

elements of the domain, we employ a set of background axioms, that is, an ontology.
Formally, ontology T (for Terminology) comprises axioms of the form D � C, where
D and C are well-formed formulas in the adopted DL, and R � S, where both R and
S are properties. C ≡ D is a syntactic sugor for both C � D and D � C. The formal
semantics of such axioms is: (C � D)I = CI ⊆ DI , (R � S)I = RI ⊆ SI .

We write I |= T to denote that for each axiom C � D in T it results CI ⊆ DI .
Similarly I |= C �T D, with C � D �∈ T , denotes that both I |= T and I |= C � D.

In the rest of the paper we refer to the Ontology T depicted in Figure 1.

DesktopComputer � ∃hasCPU � ∃hasRam

CPUArchitecture ≡ 64BitCPU � 32BitCPU

32BitCPU � ¬64BitCPU

Intel � AMD � CPU

Intel � ¬AMD

hasUSBport � hasPeripheralPort

Athlon64 � AMD � ∃arch � ∀arch.64BitCPU

Centrino � Intel � ∃arch � ∀arch.32BitCPU

∃hasCPU.Centrino � ∃netSupport.WiFi

IntelDuo � Intel � ∃arch � ∀arch.32BitCPU

Sempron � AMD � ∃arch � ∀arch.64BitCPU

Fig. 1. Reference ontology

Description Logics are considered to be highly expressive representation languages,
corresponding to decidable fragments of first-order logic. Reasoning systems based
on DLs generally provide at least two basic inference services: satisfiability and
subsumption.
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Satisfiability: a concept expression C is satisfiable w.r.t. an ontology T when T �|=
C � ⊥, or equivalently C ��T ⊥;

Subsumption: a concept expression C is subsumed by a concept expression D w.r.t. T
when T |= C � D, or equivalently C �T D.

In our setting satisfiability is useful, for example, to catch inconsistencies among a
buyer’s expressed preferences or, analogously, among sellers’ offered configurations.
On the other hand, subsumption can be employed to verify if a particular seller’s offer
satisfies one or more buyer’s preferences.

3 Preference Representation Using Description Logics

The problem of preference representation deals with the expression and evaluation of
preferences over a set of different alternatives (outcomes). This problem can be chal-
lenging even for a small set of alternatives, involving a moderate number of features, as
the user has to evaluate all possible configurations of feature values in the domain.

In this work, we deal with this problem by a combination of expressive language,
to facilitate preference specification, and preference structure exploitation, justified by
multiattribute utility theory.

Several approaches to negotiation have exploited logic languages in order to express
preferences, most of them using propositional logic [8,9,10], however only few of the
approaches proposed in the literature have explored the possibility to use also an on-
tology to model relations among attributes [11] or the use of more expressive logics
as DLs [12,13]. Lukasiewicz and Schellhase [14] propose a framework to model con-
ditional preferences in DLs for matchmaking. In their framework they refer to set of
concepts and the formal semantics of implication is defined in terms of set member-
ship. Such a formulation well suits their target matchmaking task. Indeed, they are not
interesed in computing a utility value for a concept, e.g. an agreement, but they focus
on ranking a set of results w.r.t. a query.

We point out the importance to refer to a background knowledge, i.e., having an on-
tology T , in order to model not only interdependencies among attributes in preference
statements, but also to model inner relations among attributes that cannot be disregarded
e.g., is-a, disjoint or equivalence relations. In order to lay out the importance of an on-
tology and why we cannot abstract from it, we use a simple example involving one
perspective buyer and two sellers.

Example 1. Let us suppose the buyer has among her preferences:

P = ∃hasCPU.(AMD � ∃arch � ∀arch.64BitCPU) � ∃hasRam.(≥2 GB)

(PC with a 64-bit AMD processor and at least 2 GB of memory)

and there are two sellers, A and B, that can provide the respective configurations:

A = ∃hasCPU.Athlon64 � hasRam(=2 GB)
B = ∃hasCPU.Centrino � hasRam(=1 GB)
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If we refer to the ontology T in Figure 1 we can state that seller A can satisfy the
preference expressed by the buyer —from T we know that Athlon64 is a 64-bit AMD
processor. Conversely, seller B cannot satisfy buyer’s preference, because Centrino is
not a 64-bit AMD processor.

�

We extend the well-known approach of weighted propositional formulas [8,9,10], rep-
resenting preferences as DL formulas, where at each formula we associate a value v
representing the relative importance of that formula.

Definition 1. Let T be an ontology in a DL. A Preference is a pair φ = 〈P, v〉 where
P is a concept such that P ��T ⊥ and v is a real number assigning a worth to P .
We call a finite set P of preferences a Preference Set iff for each pair of preferences
φ′ = 〈P ′, v′〉 and φ′′ = 〈P ′′, v′′〉 such that P ′ ≡T P ′′ then v′ = v′′ holds.

From now on, whenever we mention a set of preference we refer to a Preference Set.

Example 2 (Desktop Computer Negotiation). Imagine a negotiation setting where buyer
and seller are negotiating on the characteristics of a desktop computer. The buyer will
have some preferences, while the seller will have some different configurations to of-
fer to the buyer in order to satisfy her preferences. Let us hence suppose the buyer is
looking for a desktop PC endowed with an AMD CPU. Otherwise, if the desktop PC
has an Intel CPU, it should only be a Centrino one. The buyer also wants a desktop
PC supporting wireless connection. Following Definition 1 the buyer’s Preference set
is P = {〈P1, v1〉, 〈P2, v2〉, 〈P3, v3〉}, with:

P1 = ∀hasCPU.Centrino � ∃hasCPU
P2 = ∃hasCPU.AMD
P3 = ∃netSupport.WiFi

On the other side, the seller could offer a Desktop computer supporting either a wire-
less connection or an AMD CPU, specifically a Sempron one, and he does not have a
desktop PC endowed with a Centrino CPU.

A = DesktopComputer � ¬∃hasCPU.Centrino � (∃netSupport.WiFi �
∀hasCPU.Sempron)

Therefore, given a preference set P and a proposal A, how to evaluate the utility of
this proposal w.r.t. buyer’s preferences? Intuitively, the utility value should be the sum
of the value vi of the preferences satisfied by the seller’s proposal. Next sections will
adress this problem, showing a computation method for weighted DL-formulas.

�

4 Utility

Weighted formulas have been introduced for propositional logic to assign a utility value
to a propositional model representing e.g., the final agreement. The computation of the
model and its corresponding utility is quite easy since in propositional logic we deal
with a finite set of models. Following Chevaleyre et al. [10] utility is computed as:∑

{v | 〈P, v〉 ∈ P and m |= P}
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Where P is a propositional Preference Set, m is a propositional interpretation (model)
e.g., representing the final agreement. 2. We call this approach model-based. Less
straightforward is the case of more expressive logics. Some attempts in this direction
have been made by Ragone et al. [12,13] adapting the weighted formulas framework to
Description Logics. There, they do not consider models as final agreements but formu-
las, and the utility value is computed as:∑

{v | 〈P, v〉 ∈ P and A �T P}

Where P is a DL preference set, T is a DL ontology and A is a concept e.g., repre-
senting a proposal in a negotiation process. We call this approach implication-based.
Although very simple to compute and immediate, this basic approach may lead to
counter-intuitive examples when dealing with logic languages allowing disjunction in
the final agreement.

Example 3. Consider the following preference set P (here for the sake of clarity we do
not consider the ontology T )

φ1 = 〈A1, v1〉
φ2 = 〈A2, v2〉
φ3 = 〈A3, v3〉

and a concept A.

A = (A1 �A3) �A2 �

In Example 3, following an implication-based approach the final utility is

uimpl(A) = v2

Indeed, only A � P2 holds.
On the other hand, if we use a model-based approach we can say that the final utility

value is:
umodel(A) ∈ {v1 + v2, v2 + v3, v1 + v2 + v3}

If we consider interpretarions I of A we may have that only one of the conditions below
holds:

I |= A1 � ¬A3 �A2
I |= ¬A1 �A3 �A2
I |= A1 �A3 �A2

Using a model-based approach, if we want to be as conservative as possible we may
consider:

umodel(A) = min{v1 + v2, v2 + v3, v1 + v2 + v3}
Conversely, in the most optimistic case we consider:

umodel(A) = MAX{v1 + v2, v2 + v3, v1 + v2 + v3}
2 ∑{·} indicates the summation over all the elements in the set {·}.
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In the rest of the paper we will refer to the conservative situation but all the results can
be easily adapted to the optimistic case. Consequently, we give a definition of Minimal
Model and of its corresponding Minimal Utility Value.

Definition 2 (Minimal Models – Minimal Utility Value). Given an ontology T , a
concept A, such that T �|= A � ⊥, and a Preference Set P , a Minimal Model is an
interpretation I such that:

1. both I |= A and I |= T
2. the value uc(A) =

∑
{v | 〈P, v〉 ∈ P and I |= P} is minimal

We call uc(A) a Minimal Utility Value for A w.r.t. to P .

4.1 Complexity

In this section, we give some consequences on the complexity of computing the utility
of a formula A, when utility is attached to models. In what follows, we abstract from the
particular logic languageL, which gives our results the maximum attainable generality.

Lemma 1. Given two concepts A, P ∈ L, and an ontology T , we have A �T P iff
there exists a minimal model assigning value v to A when preferences areP = {〈P, v〉}.

Proof. Given a singleton set of preferences P = {〈P, v〉}, then uc(A) can be equal to
either 0, or v. Now if there exists a minimal model with value 0, then such a model is
a model of T and A, and it must be not a model of P ; hence, when the minimal model
has utility 0, T �|= A � P . On the other hand, there exists a minimal model assigning
utility value v to A, then every model of T and A is also a model of P . But this is just
the condition expressing semantically that A �T P . �

A consequence of the above lemma is that computing a minimal model is at least as
hard as computing subsumption in a DL L; below we can even generalize this result to
logical implication.

Theorem 1. Given a language L in which deciding logical implication is C-hard, de-
ciding the existence of a minimal model with a given utility value is C-hard, too.

We observe that the result is the same (by definition) when utilities are directly assigned
to formulas, as done e.g., by Ragone et al. [12].

We now move to upper bounds on computing utilities over formulas by minimal
models. We first assess the upper bound of the decision problem corresponding to com-
puting the utility of a concept.

Theorem 2. Let L be a language in which the satisfiability problem belongs to the
complexity class C, and such that NP ⊆ C; moreover, let v be a positive real number,P
be a set of preferences, T be a Terminology and A a concept, all expressed in L. Then,
deciding whether uc(A) < v is a problem in C.

Proof. Let P = {〈P1, v1〉, . . . , 〈Pn, vn〉}. Then, for each integer m between 0 and
2n − 1, let (m)2 = b1b2...bn be the binary representation of m, and let Dm be the
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concept defined as A � B1 � · · · � Bn, where for each i = 1, ..., n, if bi = 0 then
Bi = ¬Pi, else Bi = Pi. Intuitively, the i-th bit of (m)2 decides whether Pi appears
positively or negatively in Dm. Now let S = {m | 0 ≤ m ≤ 2n−1 and Dm ��T ⊥},
i.e., the set of all integers m ∈ [0, 2n−1] such that Dm be satisfiable in T . Then, the
utility of A can be expressed as

min

{
n∑

i=1

bi ∗ vi

∣∣ m ∈ S and (m)2 = b1b2...bn

}
(1)

Intuitively, one searches the minimum of the objective function (1) over a subset S
of the hypercube {0, 1}n, where the vertices in S are only the ones which define a
satisfiable combination of A and (possibly negated) preferences in P . Clearly, for ev-
ery satisfiable conjunction at least one model M exists, and when the utility computed
by (1) is minimum, M is a minimal model.

Finally, observe that a “right” number m between 0 and 2n−1—i.e., a number indi-
viduating a minimal model—can be guessed nondeterministically in polynomial time.
Hence, a nondeterministic Turing machine deciding uc(A) < v guesses a number m,
checks the satisfiability of Dm (a problem in C), computes u =

∑n
i=1 bi ∗ vi, and halts

with “yes” if u < v, otherwise “no”. Therefore, when C = NP, the overall decision
problem is in NP; when NP ⊂ C, the satisfiability check in C dominates the overall
complexity. �

For languages such that PSPACE ⊆ C, the above theorem yields also an upper bound on
the complexity of computing the utility of a concept. For instance, for L = ALC, and
simple Terminologies, satisfiability is a problem PSPACE-complete [15]. Then comput-
ing (1) is a problem in PSPACE, too.

For languages such that C = NP, the above theorem yields an NPO upper bound
on the complexity of computing the utility of a concept. We discuss this case in more
detail, for L =Propositional Logic (PL). For this case, Theorem 1 implies that the de-
cision problem is NP-hard; yet it does not tell us whether the computation of uc(A)
admits some approximation schema, or not. We can show also NPO-hardness of com-
puting (1), through a (not difficult) reduction from MAX-2-SAT, which is the problem
of finding a model maximizing the number of clauses in a CNF of 2-literals (a.k.a.
Krom) clauses. For convenience, we use the dual problem of finding a model that
minimizes the number of unsatisfied conjunctions in a DNF of 2-literals conjunctions
D = D1 ∨ · · · ∨ Dn. Then such a model minimizes also the utility of any (unused)
literal C w.r.t. the set of preferences PD = {〈D1, 1〉, . . . , 〈Dn, 1〉}. Since computing
such a model is NPO-hard, our claim follows.

Observe that the above theorem does not hold for classes below NP, which need sep-
arate discussions. The case C=PTIME covers the most simple logics, such asL =Conjun-
ctions of Literals, or the DLL =FL− [6]. In fact, satisfiability of a conjunction amounts
to check the absence of a literal and its negation in the conjunction. Yet, observe that
if P ⊇ {〈A, v1〉, 〈¬A, v2〉}, then for every formula C, uc(C) ≥ min(v1, v2). In gen-
eral, deciding if uc(C) ≤ k is NP-complete, based on a simple reduction from 3-TAUT:
given a DNF D = D1∨· · ·∨Dn, where each Di is a conjunction, D is not a tautology iff
uc(A) ≤ k (A being any literal) w.r.t. the preferences P = {〈D1, 2k〉, . . . , 〈Dn, 2k〉}.
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Less obviously, the same reduction holds for L =FL−, using a role Ri for every
propositional atom Ai, and letting the encoding γ be: γ(∧) = �, γ(Ai) = ∃Ri, and
γ(¬Ai) = ∀Ri.B (for some concept name B). Then the previous DNF D is not a tautol-
ogy iff uc(B) ≤ k w.r.t. P = {〈γ(D1), 2k〉, . . . , 〈γ(Dn), 2k〉}. The fact that deciding
the utility of an FL−concept w.r.t. a set of FL−preferences is NP-hard is remarkable,
since satisfiability in FL−is trivial (every FL−concept is satisfiable).

5 Computation of Minimal Utility Value

In this section we show how the computation of the minimal utility value for a set of
preferences P w.r.t. a concept A can be turned out in solving an optimization problem.

Given the set P = {φ1, φ2, φ3} of preferences and the concept A as in Example 3,
we note that:

(a) A is more specific than the simple preference specification A2;
(b) A is more specific than a disjunction of preference specification (that, in the most

general case, may appear even negated).

On the other hand, due to constraints modeled within the ontology we may have some
interrelations among elements of P . For instance, it might result that:

(c) two preferences φ1 and φ2 cannot be satisfied at the same time;
(d) the conjunction of the former with the complement of the latter could be

unsatisfiable;
(e) the combination of the complement of φ1 and φ2 is more specific than (i.e., it im-

plies) a third preference φ3. In other words, (c) no model of A1 can be also a model
of A2, (d) no model of A1 can be also a model of ¬A2, (e) all models of both ¬A1
and A2 are also models of A3.

In term of interpretations it results that for all interpretations I such that I |= T :

(a) AI ⊆ (A2)I

(b) AI ⊆ (A1)I ∪ (A3)I

(c) (A1)I ∩ (A2)I = ∅
(d) (A1)I ∩ (ΔI \ (A2)I) = ∅
(e) (ΔI \ (A1)I) ∩ (A2)I ⊆ (A3)I

Actually, if we consider also a concept A it is easy to see that whenever (c), (d) or (e)
hold, then also the corresponding relations represented below are true (while the vice
versa is false).

(f) A �A1 �A2 �T ⊥ −→ AI ∩ (A1)I ∩ (A2)I = ∅
(g) A �A1 � ¬A2 �T ⊥ −→ ∩AI ∩ (A1)I ∩ (ΔI \ (A2)I) = ∅
(h) A � ¬A1 �A2 �T A3 −→ AI ∩ (ΔI \ (A1)I) ∩ (A2)I ⊆ (A3)I

In fact, in order to compute a Minimal Utility Value, if A represents e.g., a final agreement,
we are more interested in those models satisfying the latter equations rather than the ones
satisfying (c), (d) and (e) because they are also models of A (as the Minimal Model is).
Obviously, (a),(b),(f),(g),(h) can be generalized w.r.t. whatever Preference Set.
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Noteworthy is that, since we use an ontology T , the above observations apply to
preference specifications represented as general concept expressions C and not only as
concept names. We illustrate the above ideas with the help of an example.

Example 4 (Desktop Computer Negotiation cont’d). We again refer to the ontology T
depicted in Figure 1.

We recall that the buyer’s Preference Set is P = {〈P1, v1〉, 〈P2, v2〉, 〈P3, v3〉}, with:

P1 = ∀hasCPU.Centrino � ∃hasCPU
P2 = ∃hasCPU.AMD
P3 = ∃netSupport.WiFi

while the seller proposal is:

A ≡ DesktopComputer � ¬∃hasCPU.Centrino � (∃netSupport.WiFi �
∀hasCPU.Sempron)

Notice that, because of the axioms in ontology T :

Intel � ¬AMD
Centrino � Intel � ∃arch � ∀arch.32BitCPU

preferences P1 and P2 cannot be satisfied at the same time, and, moreover, due to
the axiom

∃hasCPU.Centrino � ∃netSupport.WiFi

in the ontology T , preference P1 is more specific than preference P3.
�

Definition 3 (Preference Clause). Given a set of preferences P = {〈Pi, vi〉}, i =
1 . . . n, an ontology T and a concept A such that A ��T ⊥, we say thatP is constrained
if the following condition holds:

A �T P̂1 � . . . � P̂n (2)

Where P̂i ∈ {Pi,¬Pi}. We call P̂1 � . . . � P̂n a Preference Clause if there is no strict
subsetQ ⊂ P such thatQ is constrained.

Note that with a Preference Clause one can represent not only relations (a) and (b) but
also relations (f), (g) and (h) thanks to the well known equivalence:

C �T D ⇐⇒ C � ¬D �T ⊥

In fact,

(f) A �A1 �A2 �T ⊥ ⇐⇒ A �T ¬A1 � ¬A2

(g) A �A1 � ¬A2 �T ⊥ ⇐⇒ A �T ¬A1 �A2

(h) A � ¬A1 �A2 �T A3 ⇐⇒ A �T A1 � ¬A2 �A3

We may say that a Preference Clause contains the minimal set of preferences such that
Equation (2) holds.
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Definition 4 (Preference Closure). Given a Preference set P = {φi}, i = 1 . . . n, an
ontology T and a concept A ��T ⊥, we call Preference Closure, denoted as CL, the
set of Preference Clauses built, if any, for each set in 2P .

In other words, a Preference Closure represents the set of all possible Preference
Clauses over P . It represents all possible (minimal) interrelations occurring between
A and preference descriptions in P w.r.t. an ontology T .

Proposition 1. Given a concept A, a Preference Closure CL and an ontology T , if Im

is a Minimal Model of A then

Im |= CL (3)

Proof. By Definition 2 since Im is a Minimal Model then Im |= T and Im |= A. As
for all models I such that I |= T , including Im, also I |= CL is satisfied, then the
proposition holds. �

In order to compute Minimal Utility Value uc(A) we reduce to an optimization problem
(OP). Usually, in an OP we have a set of constrained numerical variables and a function
to be maximized/minimized. In our case we will represent constraints as a set χ of
linear inequalities over binary variables, i.e., variables whose value is in {0, 1}, and
the function to be minimized as a weighted combination of such variables. In order to
represent χ we need some pre-processing steps.

1. Compute the Preference Closure CL for P ;
2. For each Preference Clause A�P̂1� . . . P̂n �T ⊥ ∈ CL, compute a corresponding

preference constraint set CL = {¬P̂1, . . . ,¬P̂n}. We denote with CLc
= {CL} the

set of all preference constraint sets.

Observation 1. The reason why we do not consider ¬A when computing CL is that in
order to compute a Minimal Utility Value we are looking for Minimal Models, i.e., models
such that AI (and I |= T ) satisfying properties of Definition 2. Each Preference Clause
can be rewritten asT |= � � ¬A�¬P̂1�. . .¬P̂n. If we rewrite the right hand side of the
relation in terms of interpretation functions, from the semantics of � operator, we have

(¬A)I ∪ (¬P̂1)I ∪ . . . (¬P̂n)I �= ∅ (4)

Since a Minimal Model is an interpretation such that AI �= ∅, then all the models
we are looking for are such that (¬A)I = ∅. As a consequence, for our computation,
the term (¬A)I in Equation (4) is meaningless. We will clarify further this point in
Observation 2 while discussing the OP we build to compute the Minimal Utility Value
in the following.

Example 5 (Desktop Computer Negotiation cont’d). Consider again the Desktop
Computer negotiation of Example 2. Given the set of preference
P = {〈P1, v1〉, 〈P2, v2〉, 〈P3, v3〉} and the proposal A, if we compute the Preference
Closure CL we find:

CL =
{

A � P1 �T ⊥;
A � ¬P2 � ¬P3 �T ⊥

}
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hence, the two corresponding preference constraint sets in CLc
are:

CL1 = {¬P1}
CL2 = {P2, P3}

�

Based on well-known encoding of clauses into linear inequalities (e.g., [16, p.314]) we
transform each set CL ∈ CLc

in a set of linear inequalities χ and then define a function
to be minimized in order to solve an OP.

Definition 5 (Minimal Utility Value OP). LetP be a set of preferences and CLc
be the

set of all preference constraint sets. We define a Minimal Utility Value OP, represented
as 〈χ, u(p)〉, the optimization problem built as follows:

1. numerical variables – for each preference 〈Pi, vi〉 ∈ P , with i = 1, . . . , n intro-
duce a binary variable pi and define the corresponding array p = (p1, . . . , pn)
(see Example 6);

2. set χ of linear inequalities – pick up each set CL ∈ CLc
and build the linear

inequalities ∑
{(1− p) | ¬P ∈ CL}+

∑
{p | P ∈ CL} ≥ 1

3. function to be minimized – given the array p of binary variables

u(p) =
∑
{v · p | p is the variable mapping 〈P, v〉}

Observation 2. If we considered also ¬A when computing the sets CL ∈ CLc
we

would have had inequalities in the form:

(1− a) +
∑
{(1− p) | ¬P ∈ CL}+

∑
{p | P ∈ CL} ≥ 1

Since we are interested in models where AI is interpreted as nonempty, then variable a
has to be equal to 1. Hence the first element of the above summation is always equal to
0. In other words, we can omit ¬A when computing a preference constraint set CL.

The solution to a Minimal Utility Value OP will be an assignment ps for p, i.e., an array
of {0, 1}-values, minimizing u(p).

Example 6 (Desktop Computer Negotiation cont’d). Back to the Desktop Computer
negotiation of Example 2, after the computation of Preference Closures and set CLc

,
we build the corresponding optimization problem in order to find the model with the
minimal utility value:

p = (p1, p2, p3)

χ =
{

1− p1 ≥ 1
p2 + p3 ≥ 1

u(p) = v1 · p1 + v2 · p2 + v3 · p3
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Possible solutions are:

p′
s = (0, 1, 0) , u(p′

s) = v2

p′′
s = (0, 0, 1) , u(p′′

s ) = v3

p′′′
s = (0, 1, 1) , u(p′′′

s ) = v2 + v3

The minimal solution will be either p′
s or p′′

s , depending of the value of v2 and v3.
�

Given a a solution ps to a Minimal Utility Value OP 〈χ, u(p)〉, we call Minimal Pref-
erence Set Pm

and Minimal Assignment Am, respectively, the set and the formula built
as in the following3:

Pm
= {〈Pi, vi〉 | pi = 1 in the solution ps}

Am =
�
{Pi | pi = 1 in the solution ps} �

�
{¬Pi | pi = 0 in the solution ps}

Theorem 3. Given a solution ps to a Minimal Utility Value OP 〈χ, u(P)〉 and a Min-
imal Assignment Am:

1. if Im is a Minimal Model then Im |= Am;
2. u(ps) is a Minimal Utility Value.

Proof. First we show that there exists at least one model Im |= T such that both
Im |= A and Im |= Am. If Im did not exist, then AIm ∩ (Am)I

m

= ∅. We can easily
rewrite the latter relation as A � Am �T ⊥ which is equivalent to A �T ¬Am. But
this is not possible. Indeed, if A and Am were inconsistent with each other w.r.t. T then,
by Proposition 1 we should have the corresponding Preference Clause in CL and the
related inequality in χ:∑

{(1− p) | P appears in Am}+
∑
{p | ¬P appears in Am} ≥ 1

In order to be satisfied, the latter inequality must have either (a) at least one variable
assigned to 0 in the first summation or (b) at least one variable assigned to 1 in the
second one. Case (a) means that the corresponding preference is not satisfied by Am

while case (b) means that the corresponding preference is satisfied by Am. Both cases
are conflicting with the definition of Am.

By construction of χ, we have that if Im |= Am then Im |= A (see Observation 2).
Since Am comes from the minimization of u(ps) then Im |= Am represents a model of
Am (and then of A) such that∑

{v | 〈P, v〉 ∈ P and Im |= P}

is minimal.
It is straightforward to show that u(ps) is a Minimal Utility Value. �

3 With
�{·} we denote the conjunction of all the concepts in the set {·}.
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5.1 Computational Properties of the Method

We now relate the computation method proposed in this section with the computational
complexity results of the previous section. First of all, we observe that the size of the
Preference Closure |CL| can be—in the worst case—exponential in n, the size of the
preference set. Since Linear Integer Programming is an NPO-complete problem[16],
overall our problem can be solved nondeterministically in exponential time and
space.

However, we observe that |CL| does not depend on the size of the ontology T ,
which typically is much larger than the size of P . In some sense, CL compiles out
all the complexity due to the satisfiability problem in the chosen DL, leaving the OP of
the combinatorics related to compatibility of preferences among each other, and with
the formula C whose minimal utility value has to be computed. This is perfectly rea-
sonable when Satisfiability in the chosen DL is a PSPACE-complete problem, or harder,
since the best known procedures for solving PSPACE-complete problems use exponen-
tial time anyway, and the space used is exponential only in the number of preferences,
not in the size of T .

For the cases in which the language for preferences has a low-complexity satisfiabil-
ity problem, say, NP, or PTIME , though, preprocessing into CL the complete structure
of preference compatibilities may be an overshoot. In such cases, it would seem more
reasonable to devise specialized procedures that compute on demand the satisfiability
of a conjunction of preferences.

An orthogonal analysis can be done on the scalability of the method when the utili-
ties of several offers C1, . . . , Cm must be compared. Here it seems that one has to solve
m separate OPs of size exponential in |P|. While this is the worst case, some optimiza-
tion based on the logic for offers is possible. In fact, observe that Ci �T Cj implies
uc(Cj) ≤ uc(Ci) (a model of Ci is also a model of Cj ). Hence, when searching for
the offer with the maximum least utility, Cj can be safely disregarded. Intuitively, more
specific offers are preferred over more generic ones, with the intuition that a generic
offer Cj has a worst-case utility uc(Cj) which is less than the worst-case utility uc(Ci)
of a more specific offer Ci.

6 Conclusion

Logic languages have been proposed here as a natural and powerful preference repre-
sentation tool for automated negotiation purposes. We have shown how it is possible
to compute a utility value for a concept (agreement, proposal, allocation), when pref-
erences are expressed as weighted DL formulas w.r.t. a shared ontology T . Although
we ground our framework in the DLs realm, we point out that the framework itself
is completely general and suitable for whatever decidable fragment of FOL. We also
reported complexity results and showed the applicability and benefits of our approach
with the help of a meaningful example. Currently, we are studying how to combine this
approach with graphical models, and in particular GAI (Generalized Additive Indepen-
dence) [17,3], in order to model multiattribute auctions.
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Abstract. Virtual characters in games operate in a social context in-
volving other characters and possibly human players as well. If such
socially situated virtual characters are to be considered believable to
players, they should appear to adjust their behavior based on their (pre-
sumed) beliefs about the mental states of other characters. Autonomous
BDI-based agents are suitable for modeling characters that base their
actions on mental states attributed to other agents. In this paper, it is il-
lustrated how agent-based characters can infer the mental state of other
virtual characters by observing others’ actions in the context of some
scene in a role-playing game. Contextual information can be utilized in
explanation and prediction of agents’ behavior, and as such can form the
basis for developing characters that appear to be socially aware.

1 Introduction

For games and simulations with interactive virtual characters to provide users
with a satisfying experience, it is of vital importance that those characters are
believable to the user. Appearing to pursue goals and to be responsive to social
context are determining factors for believability [1], and interaction with virtual
characters is indeed richer and more enjoyable if these anticipate the behavior of
other characters [2]. Believable characters that operate in a social context should
exhibit social awareness and not only pursue their own interests, but also be able
to attribute mental states to other characters and take these into account in their
decision-making process. A survey among avid players of role-playing games has
shown that these players are generally dissatisfied with the believability of non-
player characters in these games, in part because they feel that such characters
are not believable as far as their social behavior is concerned [3].

Statistical approaches to game-based plan recognition exist [4] but require
large amounts of gameplay data to be processed, which might not always be
available. Recent work in the agent programming community has focused on
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recognizing an agent’s plan on grounds of its program and observed actions [5],
and inferring the mental state of the agent that plausibly explains observed be-
havior [6]. This offers promising directions for developing virtual characters that
are socially believable, as characters which can infer others’ mental states have
the possibility of incorporating attributed mental states into their own decision-
making process. This allows for plausibly misguided behavior if inferred expla-
nations are valid but incorrect, and can thus contribute to believability [7]. How-
ever, current approaches ignore the social setting in which agents operate and
inferred explanations are independent of social context. If characters in games
are designed to behave as autonomous agents, then a game can be regarded as an
agent society [8], and the behavior of characters in such a game can be explained
and predicted with respect to this context, which can be described or specified
by means of organizational models that define roles, norms, etc. [9].

This paper presents a declarative solution to abducing the mental state of
virtual characters implemented as BDI-based agents, which takes into account
the social context in which these characters operate. It builds on earlier work
regarding mental state abduction, which is reviewed in Sect. 2. Sect. 3 introduces
the game-related context in terms of scenes and roles, and in Sect. 4 it is shown
how this context can be utilized in explaining and predicting agent behavior.
Sect. 5 ties things together in an example, and Sect. 6 concludes with a brief
discussion and ideas for future research.

2 Mental State Abduction

In this section it is described how the observed behavior of agents can be related
to an explanation in terms of a description of their mental state, recapitulating
our work in [6]. In Defs. 1–2 the behavior of agents is described, and in the
remainder of this section it is shown how behavior can be observed and explained.

Let L be a propositional domain language with negation and conjunction over
propositions. Lit ∈ L is the set of literals in this language, and LΓ ⊆ L a simple
language allowing only consistent conjunctions of literals in L. Let Act be a set
of action names. The behavior of an agent can be described as an expression
consisting of actions, which are either atomic observable actions α ∈ Act, or
tests φ? on propositions φ ∈ L. Actions can be composed by means of operators
for sequential composition (;) and choice (+).

Definition 1 (behavioral description). Let α ∈ Act be an atomic observ-
able action, and φ? the test action on proposition φ ∈ L. The set of behavioral
descriptions LΠ with typical element π is then defined as follows.

π : := α | φ? | π1; π2 | π1 + π2

Note that there is no notion of iteration in LΠ . It is assumed, though, that
behavior can be iteratively performed if an agent reapplies a behavioral rule of
the type defined in Def. 2. Such a rule states that the behavior described by π
is appropriate for achieving the goal γ if the condition β is believed to hold, and
is assumed to be operationalized by some agent interpreter [10,11].
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Definition 2 (behavioral rules). Behavioral rules specify a relation between
behavior π ∈ LΠ and a mental state consisting of achievement goals γ ∈ LΓ and
beliefs β ∈ L. The set of behavioral rules LBR has br as its typical element.

br : := γ ← β ↑ π

The atomic actions α ∈ Act of an agent are taken to be publicly observable, such
that a perceived action can be directly related to the performed action. Because
behavioral descriptions do not allow for concurrent actions and interpretation of
the agent program is assumed to do so neither, the perception of multiple actions
performed by a single agent is taken to be sequential. To distinguish sequential
perception of actions — which is an incremental process — from actions in
sequence as part of a plan, a percept is a list of actions.

Definition 3 (percepts). Let α ∈ Act be an observable action and ε a special

empty (null) action, such that (εδ)
def
= (δ)

def
= (δε). The set of percept expressions

LΔ , with typical element δ, is then defined as follows.

δ : := α | ε | δ1δ2

In order to explain perceived actions in intentional terms, a relation has to be es-
tablished between perceived actions, descriptions of behavior, and the behavioral
rules that connect a mental state (goals and beliefs) to behavior. This relation
should be defeasible, because on grounds of observed actions alone it is usually
not possible to analytically infer the mental state that caused the agent to per-
form those actions. For this reason the behavioral rules of Def. 2 are described
as the logical implications defined in Def. 4, stating that a precondition consist-
ing of a goal and belief description implies a certain behavior, which are then
interpreted in an abductive way to find explanations for observed behavior.

Definition 4 (rule description). Let (γ ← β ↑ π) ∈ LBR be a behavioral rule.
The set of rule descriptions LRD , with typical element rd, is defined as follows.

rd : := goal(γ) ∧ belief(β)⇒ behavior(π)

A function desc : LBR −→ LRD maps rules to their description, such that
desc(br) = (goal(γ) ∧ belief(β)⇒ behavior(π)) for any br = (γ ← β ↑ π) ∈ LBR .

Because behavioral rules, as defined in Def. 2, are interpreted in an operational
context, the implications in the rule descriptions defined in Def. 4 do not hold
in a classical logical way with respect to describing agent operation. However,
if perceived actions δ ∈ LΔ can be related to the behavioral descriptions π ∈
LΠ , then abduction — which states that from an observation ψ and a rule
φ ⇒ ψ, the defeasible explanation φ can be abduced — can be used to infer
the preconditions of behavioral rule descriptions. To relate action sequences to
descriptions of behavior, a function is defined that maps behavioral descriptions
to sets of observable traces of behavior by filtering out internal tests, which are
taken to be unobservable, and branching observable traces at points where choice
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occurs. The operator ∪ is standard set union, and ◦ : ℘(LΔ)×℘(LΔ) −→ ℘(LΔ)
is a non-commutative composition operator defined as Δ1 ◦Δ2 = { δ1δ2 | δ1 ∈
Δ1 and δ2 ∈ Δ2 }, where Δ1, Δ2 ⊆ LΔ .

Definition 5 (observable trace function). Let α ∈ Act, φ ∈ L and π ∈ LΠ .
The function τ : LΠ −→ ℘(LΔ) is then defined as follows.

τ(α) = {α} τ(π1 + π2) = τ(π1) ∪ τ(π2)
τ(φ?) = {ε} τ(π1; π2) = τ(π1) ◦ τ(π2)

In order to abduce mental state preconditions of the logical rule descriptions in
Def. 4 on grounds of observed actions, a relation must be established between an
observed action sequence and the traces that represent the observable aspect of
the behavior described in the behavioral description part of a rule. If every action
of the agent is observed and the rules completely describe an agent’s possible
behavior, then an observed sequence of actions must be the (non-strict) prefix
of an observable trace of behavior described by some π ∈ LΠ .

Definition 6 (structural relations). Let � ⊆ LΔ×LΔ be the prefix relation
on sequences δ, δ′ ∈ LΔ and � ⊆ LΔ×LΔ the suffix relation, defined as follows.

δ � δ′ iff ∃δ′′ ∈ LΔ : [δ′ = δδ′′] δ � δ′ iff ∃δ′′ ∈ LΔ : [δ′ = δ′′δ]

Note that δ is a non-strict prefix and suffix of itself iff δ′′ is the empty action ε.

Defining different structural relations, as shown in [6], may allow for relating
observed actions to observable traces also in the case that not every action is
observed. It was proven that this leads to an increase in abduced explanations,
and that the set of explanations inferred on grounds of complete observation is
a subset of explanations in case of partial observation. In order to focus on the
way contextual information can be used to facilitate the process of mental state
abduction, it is assumed in this paper that observation is complete.

An agent’s behavior is to be explained in terms of a description of its mental
state, ie. the preconditions of rule descriptions defined in Def. 4. In order to
refer to these preconditions, let the set LΩ with typical element ω be defined
as LΩ = { goal(γ) ∧ belief(β) | γ ∈ LΓ , β ∈ L }. An explicit ‘lifting’ notation
for functions is used, such that for any f : D −→ D′, the lifted version of f is
℘f : ℘(D) −→ ℘(D′), such that for Φ ⊆ D, ℘f (Φ) = { f (φ) | φ ∈ Φ }.

An explanatory function is now defined that maps observed action sequences
δ ∈ LΔ to preconditions of rule descriptions of the type rd ∈ LRD , such that δ
is a (partial) trace of the behavior ‘implied’ by the rule description.

Definition 7 (explanatory function). The function χ : LRD −→ ℘(LΩ ×
LΔ) maps a rule description to a set of tuples of precondition and trace.

χ(ω ⇒ behavior(π)) = { (ω, δ) | δ ∈ τ(π) }
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Let δ ∈ LΔ be a percept and RD ⊆ LRD a set of rule descriptions. The explana-
tory function explain : LΔ × ℘(LRD ) −→ ℘(LΩ) is then defined as follows.

explain(δ,RD) = { ω | ∃(ω, δ′) ∈ ℘χ(RD) : [δ � δ′] }

Somewhat less formally, the explanatory function defined in Def. 7 states that
the precondition of a rule description is in the set of explanations for a certain
observed sequence of actions, if the observed sequence is a (non-strict) prefix of
any trace of the behavioral description which is described in the postcondition of
the rule description. This function definition is not meant to be computationally
efficient, but it can be proven that explain(δδ′,RD) ⊆ explain(δ,RD) for any
δ, δ′ ∈ LΔ , allowing for an efficient implementation as the set of explanations
and corresponding rules does not increase with cumulating coherent percepts.1

3 Agents Playing Games

Autonomous agents in a multi-agent system have their mental state and (in-
ter)act in pursuit of their private goals, taking into account their beliefs, goals,
capabilities and the means provided by their environment(s) [10]. An agent-based
game, arguably should be more than a ‘regular’ multi-agent system, as the latter
lacks particular qualities that a game might be required to have. When imple-
menting game characters as autonomous agents, a designer gives away part of
the behavioral control that a more traditional approach to character design pro-
vides [12]. In return, the daring move of the designer is rewarded with a plot
that takes unexpected turns because of decisions made by the autonomous char-
acters. However, there are certain aspects of the game’s ‘flow of events’ that the
game designer wants to ensure, without having to rely on providence or agents’
inclination to partake in an interesting story.

In this section declarative game-related concepts are defined, inspired by orga-
nizational principles, that are used to illustrate our view on how an agent-based
game can be designed that respects the storyline marked out by some designer.
Moreover, the same concepts can be used as a guideline with respect to agents’
expected behavior, as will be shown in Sect. 4.

3.1 A Declarative Game Specification

The general concept ‘game’ is hard to define, so that in the present approach a
particular kind of game is considered, namely the agent-based role-playing game.
Such a game is considered to be populated by virtual characters implemented
as autonomous BDI-based agents, which play roles similar to the way actors do
in a movie. Autonomous agents, however, may be allowed more freedom in the
way they enact their role than movie actors are. Such role-enacting agents can
be allowed to have private goals that conflict with or supercede those specified
by their role, which will show in the behavior they exhibit [13,8].

1 The authors thank Henry Prakken for this stronger version of their proofs in [6].
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Most definitions of the concept ‘role’ recognize that a role comes with obliga-
tions, permissions, authority, or rights, which can pertain to actions that agents
have at their disposition or states of the system. As such, roles describe behavior
which can be expected of the role-enacting agent [14], and in recognition of this
fact roles are defined in this paper to provide an agent with goals to achieve,
information that is made available to the role-enacting agent, and a set of be-
havioral rules. These concepts correspond to roughly the Beliefs, Desires, and
Intentions of the BDI-paradigm, and as such can form the basis for instantia-
tion of the role-enacting agent. Note that the relation of role-derived goals and
goal-directed rules is taken to be not necessarily one-to-one; multiple rules for a
single goal can exist, or a conjunctive goal may be provided by the role where
only rules for literal goals exist. To be able to refer to roles and other entities
uniquely, a set of constants ID is introduced.

Definition 8 (role). Let Γ≤ = (Γ ,≤Γ ) be an ordered set of goals Γ ⊆ LΓ ,
with ≤Γ ⊆ LΓ ×LΓ a partial order on Γ . Let I ⊆ L be role-accessible informa-
tion, and BR ⊆ LBR a set of behavioral rules. A role R, identified by a unique
identifier r ∈ ID, is then defined as R = 〈r, Γ≤ , I,BR〉.

It is left in the middle in this paper how role-enacting agents exactly play their
role, leaving open the possibility that they (by design or by deliberation) ignore
the goals their role prescribes. For technical reasons it is assumed, though, that
the behavior of any agent is based on some rule provided by it’s role. A typical
role, featured in many games of the role-playing game (RPG) genre, is that of
the thief. Unsurprisingly, the thief-role may provide the goal to take possession of
a particular item by stealing it. Moreover, a thief could have the goal to steal the
item whilst double-checking that nobody is near. If the thief assesses a particular
situation to be risky, the goal to steal the item but also ensure that nobody is
around might supercede the goal to just steal the item.

Roles do not per definition remain unchanged throughout a game. The context
in which a role is enacted influences the way it should be enacted, and this
context may change as things happen in the game. Autonomous agents can in
principle be assumed to enact their role as they see fit, resulting in different
types of behavior given the same role specification. Nevertheless, agents may
be restricted in their actions by the norms of the agent society in which they
operate. To formalize the norms that regulate behavior, a language of normative
expressions LN is defined which captures prima facie norms, with typical element
N, such that N : := F (α) | O(α). The expression F (α) states that the action
α ∈ Act is forbidden, O(α) states that this action is obligatory.

In [15], prima facie norms are defined to be norms [which] usually do not
arise from actions, but arise in certain situations [and remain] valid as long as
the situation in which they arise stays valid. Scenes are taken to constitute the
norm-governed context in which roles remain unchanged. The scene definition
includes the roles figuring in the scene, a set of norms pertaining to the scene,
and a set of literals denoting the initial state of the scene environment.
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Definition 9 (scene). Let R be a set of roles as defined in Def. 8, N ⊆ LN
a set of norms, and E ⊆ Lit the initial environment state. Scene S, with unique
identifier s, is then defined as S = 〈s,R,N, E〉.

Take a scene in an RPG that features the thief and a store owner in some store
where goods can be purchased. In this scene it is most likely forbidden to take
items without paying for them, or to damage the merchandise.2 Now take a
scene in which the thief and the store owner are joined in the store by a city
guard. The same norms may apply as in the previous scene, but the thief now
gives priority to ensuring nobody is around before stealing anything because of
the presence of the guard, whereas the store owner might be more at ease in
knowing that the eyes of the law are keeping watch over her belongings.

It should be noted that norms can also be considered to be role-dependent,
such that a particular set of norms applies only to some role (the permission to
ignore a red traffic light, for example). This is not currently taken into account,
but in the future could be incorporated to enrich the framework.

3.2 The Multi-Agent Game

A game is taken to be a composition of scenes. The way scenes are composed
(the ‘storyboard’ of the game) is defined in a game specification, which identifies
the scenes occurring in a game, and specifies when a specific scene makes a
transition to another scene. Such transitions might depend on conditions being
fulfilled with respect to the environment of the scene, on specific actions being
(jointly) executed by agents, or even some condition becoming true with respect
to agents’ mental states. To have a system of agents obey this specification,
scene transition has to be operationalized in the semantics of the agent system.
Because a detailed presentation of how the scene transition is realized does not
contribute to the scope of the present approach, this is left unspecified and the
game is taken to simply be a set of scenes, of the type defined in Def. 9.

Agents in 2APL [10] are defined by a configuration, which specifies their
mental state in terms of goals, belief, plans, and rules. In this paper, we do not
commit ourselves to restrictions regarding the language in which the agents are
implemented, but do require that the behavior of agents is somewhat in accor-
dance with the declarative specification of the role they enact, which contains
elements that can be directly related to elements of agents’ mental states, such
as goals, information (beliefs) and behavioral rules. Specifically, the following
assumptions and restrictions are enforced.

– Any agent in the multi-agent game behaves in accordance with some role,
such that the behavior of agents in a scene is completely described by the
behavioral descriptions which are part of the rules of the roles in that scene.

2 Note that the prima facie norms of LN do not allow for conditional statements, and
it is therefore not possible to express statements such as the fact that it is obligatory
to pay for an item after taking it.
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– Roles prescribe specific partially ordered goals, and the rules accompanying
a role are taken to enable achievement of all these goals. However, it is not
necessarily the case that every goal for which there exists some rule is part
of the goals that the role prescribes.

– It is assumed that agents do not interleave plans, even if they have multiple
goals. If an agent has adopted multiple goals and has selected a plan based
on the application of a behavioral rule for one of its goals, it will not apply
a new rule until its selected plan is completed.

The first scene of the multi-agent game is determined by the game’s initial
state, and consecutive scenes are determined as the game evolves; ie. as agents
act in pursuit of their goals and ‘things happen’ in the game. Because it is
not in the interest of the topic at hand, which is explanation and prediction
of agents’ behavior in the context of some scene in a multi-agent role-playing
game, the operational transition of configurations of the multi-agent game will
not be presented formally. It is simply assumed that the game takes place in
some (known) scene, which provides a guideline with respect to behavior that
can be expected of the agents populating the scene, given that the behavior of
each agent is based on some (known) role.

4 Explaining and Predicting Agent Behavior

Mental state abduction can be used to abduce the mental state of BDI-based
agents whose actions can be observed. If these actions are performed in the
context of a multi-agent game, then information about the scene of the game
and the role which agents enact can improve the abduction process. If an agent’s
role is known, the set of rules the agent is taken to have at its disposition is
reduced to the set of rules provided by the role.

4.1 Explaining Agent Behavior

In the approach to mental state abduction as described in Sect. 2 (and in [6]
in more detail), the behavior of an agent is explained on grounds of all rules
this agent can be assumed to have if context is not considered. In the present
setting, only the rules which are ascribed to the agent on account of its role in
a particular scene are considered in the explanatory process. This ensures that
the explanations provided for its behavior are contextually grounded, and that
the set of rules which need to be considered is restricted in size.

The role of the agent contains behavioral rules and a partially ordered set
of goals. There might exist agents which dutifully pursue the goals their role
prescribes, and others which don’t care about their role in the least. To cap-
ture these aspects of role conformance, two refined versions of the explanatory
function are defined. Because the role-prescribed goals do not necessarily have
a one-to-one correspondence with the goals that form the head of behavioral
rules, a relation between the two has to be established. The functions g and b
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are defined which ‘extract’, respectively, the goals and beliefs from mentalistic
explanations for behavior, such that for ω = (goal(γ) ∧ belief(β)), it is the case
that g(ω) = {γ} and b(ω) = {β}. Cn(Φ) denotes the closure of the set Φ under
the consequence operator Cn, such that Cn(Φ) = {φ | Φ |= φ}.
Definition 10 (loosely role-conformant explanation). Let δ ∈ LΔ be a
percept and 〈r, (Γ ,≤Γ ), I,BR〉 a role, as defined in Def. 8. The function
explainlrc for loosely role-conformant explanation is then defined as follows.

explainlrc(δ, 〈r, (Γ ,≤Γ ), I,BR〉) = (Ω,≤Ω), where
Ω = explain(δ, ℘desc(BR)), and for any ω, ω′ ∈ Ω

≤Ω = {(ω, ω′) | [Cn(g(ω)) �⊆ Cn(Γ )] ∧ [Cn(g(ω′)) ⊆ Cn(Γ )]}
∪ {(ω, ω′) | [Cn(g(ω)) ∩ Cn(Γ ) = ∅] ∧ [Cn(g(ω′)) �⊆ Cn(Γ )]} ∪ {(ω, ω)}

A rule can be said to be relevant to a role, if the goal for which this rule applies
is in the closure of the role-derived goals. Thus, the rules for goals φ and ψ are
both relevant to a role that prescribes the goal φ∧ψ, just as the rule for φ∧ψ is
relevant to a role that prescribes φ and ψ independently. The function explainlrc

maps to a poset of explanations, where the explanations are ordered on grounds
of an ordering that ranks explanations containing role-derived goals over those
with goals that derive from behavioral rules only. Explanations which contain
exclusively role-derived goals rank over those with some role-derived goals, which
in turn rank over explanations without role-derived goals.

Definition 11 (strictly role-conformant explanation). The definition of
the function explainsrc is based on explainlrc, but takes into account the order
on Γ .

explainsrc(δ,〈r, (Γ ,≤Γ ), I,BR〉) = (Ω,≤Ω)
where explainlrc(δ, 〈r, (Γ ,≤Γ ), I,BR〉) = (Ω,≤′

Ω), and for any ω, ω′ ∈ Ω

≤Ω = { (ω, ω′) | ∃γ ∈ Cn(g(ω)), ∃γ′ ∈ Cn(g(ω′)) : [γ <Γ γ′] ∧
¬∃γ ∈ Cn(g(ω)), ∃γ′ ∈ Cn(g(ω′)) : [γ′ <Γ γ] } ∪ ≤′

Ω

Strictly role-conformant agents are taken to also obey the priority ordering on
goals specified by their role, and the function for strictly role-conformant expla-
nation explainsrc accordingly takes this ordering into account as well. Because
not all goals need to be explicitly ordered, it is defined that some explanation
ω is preferred to ω′ on grounds of explainsrc if and only if some goal γ, derived
from ω, has explicit priority over some goal γ′, derived from ω′, and no goal
derived from ω′ has explicit priority over any goal derived from ω.

Instead of conforming to their role, agents might rebel against their role.
Also, as explained in [13], agents which are allowed to have private objectives
along with role-derived objectives can enact their roles in a selfish or social
manner. This could imply an ordering which is the reverse of that seen in loose
role conformance, or even of strict role conformance. Although it is not further
dealt with, the fact that our approach allows for modeling explicit rebellion and
different types of role enactment deserves pointing out.
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4.2 Predicting Agent Behavior

An observed and explained sequence of actions can be regarded as the performed
part of some plan trace. Given that the goal for which the plan was selected
is still ‘active’, the agent can be expected to perform the remaining actions,
which are the suffix of the trace of which the observed actions are the prefix. In
explaining an agent’s behavior, it was defined that a description of the agent’s
mental state can be regarded as an explanation. When predicting the behavior
of the agent with respect to actions it has been observed to perform, multiple
(distinct) action sequences may be predicted based on different assumed mental
states. A predictive function is defined, taking these aspects into account.

Definition 12 (predictive function). Let δ, δ′ ∈ LΔ be percepts, ω ∈ LΩ a
mental state description and RD ∈ LRD a set of rule descriptions. The function
predict : LΔ × LRD −→ ℘(LΩ × LΔ) is then defined as follows.

predict(δ,RD) = { (ω, δ′) | (ω, δδ′) ∈ ℘χ(RD) }

Agents in a norm-governed society can be assumed to take norms into account
in choosing their actions, either by design or by deliberation [16]. Similar to the
explanatory functions taking into account role conformance of the agent (Defs. 10
& 11), one can consider norm obedience when predicting agent behavior. The
norms of LN were defined to possibly state about actions whether these are
either forbidden (F ) or obligatory (O). Informally, F (α) is taken to mean that
the action α ∈ Act is forbidden and that agents may be punished if they perform
the action, whereas O(α) states that agents are obliged to perform action α and
they may be punished if they do not perform it. Note that it is not defined
what it means that the agent “may be punished”, but the explanation that the
behavior of the agent is somehow monitored (possibly by law-enforcing agents
in the game), and that this monitoring is not infallible, should suffice.

Thus, it may occur that the agent performs a forbidden action, but gets away
with it. The predicates forb and obl are defined on δ ∈ LΔ , such that

N |= forb(δ) iff ∃α, δ′, δ′′ ∈ LΔ : [(δ = δ′αδ′′) ∧ (F (α) ∈ N)]
N |= obl(δ) iff ∃α, δ′, δ′′ ∈ LΔ : [(δ = δ′αδ′′) ∧ (O(α) ∈ N)]

Based on the above, a predictive function is defined which takes norm obedience
into account. This function predicts a sequence of actions on grounds of an
observed sequence of actions and behavioral rules, and relates it to the presumed
mental state which would account for observed behavior if it were the agent’s
actual mental state. Moreover, this predictive function takes into account that
norms may exist which forbid or oblige the agent to perform specific actions, as
expressed in the ordering that ranks pairs with an action sequence containing
some obliged but no forbidden actions above all others, and pairs with sequences
that contain some forbidden but no obliged actions below all others.3

3 Note that a sequence with forbidden as well as obligatory actions is treated no
differently than one that has only ‘neutral’ actions.
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Definition 13 (norm-obedient prediction). Let δ ∈ LΔ be a percept, the
tuple 〈r, Γ≤ , I,BR〉 a role as defined in Def. 8 and 〈s,R,N, E〉 a scene as defined
in Def. 9. The predictive function predictno is then defined as follows.

predictno(δ, 〈r, Γ≤ , I,BR〉, 〈s,R,N, E〉) = (Θ, ≤Θ), where

Θ = predict(δ, ℘desc(BR)), and for any (ω, δ), (ω′, δ′) ∈ Θ

≤Θ = { ((ω, δ), (ω′, δ′)) | N |= [obl(δ′) ∧ ¬forb(δ′)] }
∪ { ((ω, δ), (ω′, δ′)) | N |= [forb(δ) ∧ ¬obl(δ)] } ∪ { ((ω, δ), (ω, δ)) }

Considering role conformance and norm obedience is not restricted to explana-
tion and prediction, respectively. Behavior which has been observed can give a
guideline with respect to norm obedience, such that an agent which has been
observed to consistently obey the norms in the past can be expected to do so
in the future. Similarly, an agent which is assumed to conform to its role and is
attributed some mental state on grounds of this assumption can be expected to
set forth on its course of action and finish the trace that is in the explanation/-
trace pair given by the predictive function. Prediction of ε — possibly indicating
goal achievement — is outside of the scope of this approach, but very well worth
further investigation. In Sect. 4.1 the remark was made that agents can explicitly
rebel against their role. Similarly, agents might rebel against ‘society’, such that
traces with forbidden actions are considered to be preferred by the agent.

4.3 The Observer

To explain and predict behavior, an abstract external Observer is proposed (in
line with our approach in [6]) which perceives the atomic observable actions
performed by agents, attempting to explain those actions in context of the game
and making predictions about actions it expects agents to perform next. The
Observer maintains a model of each of the agents it observes, which contains the
role the Observer attributes to the agent and a sequence of actions the agent
has been observed to perform, along with explanations and predictions based on
observed behavior in context of the attributed role.

Definition 14 (agent model). Let r ∈ ID name a role of the type in Def. 8,
δ ∈ LΔ a list of actions, Ω ⊆ LΩ and Θ ⊆ LΩ × LΔ a set of explanations and
predictions. An agent model, with identifier i ∈ ID, is then A = 〈i, r, δ, Ω, Θ〉.

The Observer is assumed to have perfect observation of the environment and the
actions agents perform. In many games, the roles of characters are evident from
their external characteristics. The role might be indicated by the color of a suit,
or simply by a label hovering over the character. In the following, it is assumed
that agent i’s role r can be deduced from the state of the environment, such
that E |= enacts(i, r). If scene transitions are taken to depend only on changes in
the environment, the Observer always knows the scene in which the game takes
place if it is made aware of the initial scene when the game starts, and is correct
about the roles it attributes to agents.
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Relaxing these assumptions — either by introducing more uncertainty on
part of the Observer by design or because the game does not allow for perfect
observation of the environment, scene transitions, or agents’ roles — leads to
interesting scenarios. Instead of just performing mental state abduction, the
Observer is forced to perform role abduction and/or scene abduction as well. If
observation of the environment or agents’ actions is imperfect as well, yet more
defeasibility is introduced. Given that our goal is to allow for designing agent-
based game characters which have uncertainty about other characters’ mental
states, it is not in our interest to introduce any more uncertainty than necessary.
Partial observation was discussed in [6], but here perfect observation is assumed.

Definition 15 (Observer). Let G be a set of scenes as defined in Def. 9, and
s ∈ ID a scene identifier such that 〈s, . . .〉 ∈ G. The set of literals E ⊆ Lit is the
environment state and for every (perceived) agent i, Ai is an agent model. The
Observer is then defined as 〈G, s, E, {Ai, . . . , Aj}〉.

The Observer as defined in this approach is an abstract entity, which serves
to illustrate the explanatory and predictive process ultimately to be used by
agents that observe other agents’ behavior in some environment. For this reason
the details of how the Observer configuration evolves with successive action
observations and scene transitions are left to the imagination of the reader, and
instead the focus is on the procedures defined in Sect. 4.1 and 4.2. Given a single
sequence of observed actions for some agent i, the Observer can explain as well
as predict this sequence of actions. Prop. 1 shows that each explanation — in
terms of an agent’s mental state — is accompanied by a matching prediction.

Proposition 1 (explanation matches prediction). Let 〈i, r, δ, Ω, Θ〉 be an
agent model, and 〈r, Γ≤ , I,BR〉 the role of agent i. Given ℘desc(BR) = RD,
explain(δ,RD) = Ω, and predict(δ,RD) = Θ, it holds that every explanation has
a corresponding prediction, such that ∀ω ∈ Ω : [∃θ ∈ Θ, δ′ ∈ LΔ : [θ = (ω, δ′)]].

Proof. Def. 7 and Def. 12 show that explain and predict are both based on ℘χ.
In case of explain(δ,RD) = Ω, some ω ∈ Ω iff ∃(ω, δ′′) ∈ ℘χ(RD) : [δ � δ′′].
For predict(δ,RD) = Θ, some (ω, δ′) ∈ Θ iff (ω, δδ′) ∈ ℘χ(RD). It follows from
Def. 6 that if δ � δ′′, then δ′′ = δδ′ for some δ′ (possibly δ′ = ε), and therefore
(ω, δ′) ∈ Θ. By definition of ∀, the proposition holds for Ω = ∅. ��

Corollary 1. Evidently, every prediction is matched by an explanation. ��

Note that Prop. 1 and Coroll. 1 extend to the functions explainlrc, explainsrc and
predictno, as these are directly based on explain and predict. This is a very welcome
fact, because it ensures that for every explanation a corresponding prediction can
be made, and vice versa, also in the case of the context-dependent explanatory
and predictive functions. Based on role-conformant explanation some explana-
tion may come out as ‘top-ranked’. This can be considered the best explanation
for the agent’s behavior, and corresponding predicted behavior be regarded as
the best prediction.
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It can occur that traces have overlapping segments. In such a case, the pos-
sibility exists that the Observer is able to explain a sequence of actions, but
at a certain point observes an action that can neither be considered coherent
with the currently presumed trace, nor as being the start of a new trace. This
situation is visualized in Fig. 1, where δ′ is the suffix of some trace δδ′, as well as
the prefix of another trace δ′δ′′. Let α be the first action of δ′′, and δ′′′ = δδ′α.
If the Observer explains δδ′ as a coherent whole, then after perceiving α, it
may be that explain(δ′′′,RD) = ∅ because δ′′′ is not the prefix of any trace.
It may, however, also be that α itself is not the prefix of any trace, such that
explain(α,RD) = ∅.

� δ � δ′ ����� � α ��
δ′

�
δ′′

�
Fig. 1. Two traces, δδ′ and δ′δ′′, with an overlapping part δ′. The start of actual traces
is denoted by � and the end by �, explainable (segments of) potential traces end with�, and � denotes a non-matching segment (ie. failure of explanation).

If the situation sketched in the previous paragraph occurs and explanation
fails, then the Observer can backtrack along δ′, starting at the end, until it finds a
suffix δ′′′′ � δ′ that can be explained in coherence with the last observed action α,
such that explain(δ′′′′α,RD) �= ∅. Given the assumption that agents are assumed
to be able to completely execute their plans, the maximum overlap of any two
traces of an agent’s plans can be computed and used to give a measure of the
maximum amount of backtracking the Observer has to perform. Let len : LΔ −→
N be a function that maps a percept to its length, such that len(α1, . . . , αn) = n,
and let binds be predicate denoting that some sequence δ ‘binds’ the sequences
δ′ and δ′′ together with overlapping action sequences, defined as

binds(δ, δ′, δ′′) iff [(δ � δ′ ∧ δ � δ′′) ∨ (δ � δ′′ ∧ δ � δ′)]

Given the definitions of len and binds, let overlap : LΔ ×LΔ −→ N be a function
that computes the overlap between two (distinct) action sequences, defined as

overlap(δ′, δ′′) =

⎧⎨⎩ len(δ) if ∃δ ∈ LΔ : [binds(δ, δ′, δ′′) ∧ (δ′ �= δ′′)], and
¬∃δ′′′ ∈ LΔ : [binds(δ′′′, δ′, δ′′) ∧ (len(δ′′′) > len(δ))]

0 otherwise

Proposition 2 (backtrack with maximum trace overlap). If agents al-
ways finish their plans, given agent model 〈i, r, δ, Ω, Θ〉 and role 〈r, Γ≤ , I,BR〉,
where ℘desc(BR) = RD and δ = δ′α1 · · ·αn, such that explain(δ,RD) = ∅,
explain(δ′α1 · · ·αn−1,RD) �= ∅, and δ′ is the complete trace of some executed
plan, there exists a non-empty suffix δ′′ � δ such that explain(δ′′,RD) �= ∅ and
len(δ′′) is smaller than or equal to one, plus the maximum overlap between any
two traces of any plan which is part of the rules in BR.
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Proof. Let Δ =
⋃
{ τ(π) | (γ ← β ↑ π) ∈ BR } be the set of all (finite) observable

traces of all plans part of the rules prescribed by the role. Because δ′ is a complete
plan trace, explain(δ′,RD) �= ∅ and δ′ ∈ Δ. Let δ′′ � δ such that δ′′ is the prefix
of a trace of the agent’s latest plan and it holds that δ′′ � α1 · · ·αn. Then either
∃δ′′′ ∈ LΔ : [(δ′′′ � α1 · · ·αn) ∧ (δ′δ′′′ ∈ Δ)] such that the actual ‘old’ trace δ′

is also the prefix of a misleading ‘false’ trace δ′δ′′′, or not. If not, then δ = δ′α
such that α � δ, explain(α) �= ∅, and len(α) = 1.

If ∃δ′′′ ∈ LΔ : [(δ′′′ � α1 · · ·αn) ∧ (δ′δ′′′ ∈ Δ)], then δ′′′ is the suffix of a
‘false’ trace δ′δ′′′ and the strict prefix of α1 · · ·αn, such that len(δ′′′) < n. The
‘new’ trace, of which δ′′ is the prefix, is started somewhere after the plan of
which δ′ is a complete trace has finished, such that δ′′ � δ′α1 · · ·αn. If the ‘new’
trace of which δ′′ is the prefix is not started directly after δ′, because inbetween a
complete trace of yet another plan was executed which together with δ′ could be
matched to a misleading trace, then δ′′ is a strict suffix of α1 · · ·αn, such that
len(δ′′) > n. If δ′′ is started directly after δ′, then the sequence δ′δ′′′ and the
sequence δ′′ = α1 · · ·αn have an overlap of n − 1, which is the overlap of δ′δ′′′

and the trace of which δ′′ is the prefix, such that len(δ′′) = n.
Let x be the maximum overlap of any two traces δ1, δ2 ∈ Δ, such that

(overlap(δ1, δ2) = x) ∧ (¬∃δ3, δ4 ∈ Δ : [(overlap(δ3, δ4) = y) ∧ (y > x)]). Given
that the trace δ′δ′′′ and the ‘new’ trace of which δ′′ is the prefix are both in Δ
and have an overlap of n− 1, it holds that 0 ≤ n− 1 ≤ x. ��

Prop. 2 can be guaranteed if the Observer does not ‘forget’ any percepts and
agents complete their plans. Especially the latter condition is unmaintainable in
certain environments. If agents can drop their plans, ‘freak’ scenarios can arise
with respect to explanation/prediction of behavior. Take, for example, the case
where α1 · · ·αn is a plan trace, but the individual actions α1, . . . , αn are also
the initial actions of individual plans. If an agent selects those plans in order,
executing only the first action and then dropping the plan, the resulting sequence
is indistinguishable from the trace.4 In this case Prop. 2 does not hold, because
it relies on the assumption that plans are always completed. It is still possible
in this case to give some measure of backtracking, though, because if traces are
finite and actions perfectly observable then Coroll. 2 still applies.

Corollary 2. If agents can drop their plans before they are completed, then the
Observer backtracks at most up to the length of the longest existing plan trace to
find an explanation if explain(δ,RD) = ∅ occurs.

Proof. Let α1 · · ·αn ∈ Δ be the longest trace of any plan part of the rules pre-
scribed by some agent’s role. As explain(δ,RD) = ∅, it must be that ∃δ′ ∈
LΔ : [δ′ � δ] and δ′ is the prefix of the agent’s current plan. In worst case,
δ = δ′′α1 · · ·αn for some δ′′, such that explain(δ′′α1 · · ·αn−1) �= ∅. After back-
tracking len(α1 · · ·αn) = n actions, Observer finds explain(α1 · · ·αn) �= ∅. ��

4 One might ask whether explaining and predicting behavior has any benefit at all if
such situations abound in some scenario, but that is not the point now.
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5 Example

To illustrate the present approach, an example inspired by the popular role-
playing game Oblivion [17] is introduced. For reasons of presentation and space
conservation some shorthand notation will be used. Lowercase predicate argu-
ments represent ground atoms, and uppercase arguments represent variables.
Our propositional language of course does not allow for variables, and therefore
these are to be interpreted as a finite number of ground expressions, as should
be clear from the context in which the notation is used. Spatial environments re-
quire moving around, and therefore goto(Loc) is defined, where the variable Loc
stands for any valid location in the environment. The construct (φ?; π)+(¬φ?; π′)
is to be read as if φ then π else π′.

goto(Loc) ≡ (¬nearby(Loc)?; walk towards(Loc)) + (nearby(Loc)?)

It is assumed here that, for some specific target location loc, walk towards(loc)
is a single external action — therefore also observable as such — which brings
the character nearby to loc.

The scene S takes place in a store and features ‘thief’ and ‘store owner’ roles.
The norm in this scene forbids stealing any item, as expressed in shorthand nota-
tion using the capitalized Item, such that S = 〈s, {Rt, Rso}, {F (steal(Item))}, E〉.
The ‘thief’ role prescribes the goal to have a particular item of interest, such that
(γ = have(item)), and provides rules to achieve this goal. Also, rules for exploring
the store (by making sure that all cabinets have been inspected) are provided.

Rt = 〈thief , ({have(item)}, {(γ, γ)}), I, {br1t , br2t , br3t , br4t}〉
br1t = have(item)← distracted(owner ) ∧ in(Cabinet , item) ↑

goto(Cabinet); open(Cabinet); steal(item); close(Cabinet)
br2t = have(item)← ¬distracted(owner ) ↑ goto(owner ); distract(owner )
br3t = ensured(safety)← ¬nearby(Person) ↑ double check if nearby(Person)
br4t = explored(store)← ¬inspected(cabinet1 ) ↑

goto(cabinet1 ); inspect(cabinet1 )
...

brmt = explored(store)← ¬inspected(cabinetn) ↑
goto(cabinetn); inspect(cabinetn)

The ‘store owner’ role Rso is left unspecified, except that it is stated she wants
to protect her merchandise. In this paper the use of procedural rules has not been
discussed, but for the sake of the example we (informally) allow them here, if
only used for goal generation in response to events. If a customer breaks an ob-
ject in the store, the perception of this fact prompts the store owner to adopt
the goal to demand money from the culprit. This high-level approach focusing
on mentalistic concepts already remedies shortcomings in scripted character be-
havior in a natural way. In a similar scene in Oblivion it is possible, for example,
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to behave asocially in the store without repercussions, because the store owner
is only scripted to react to theft, and not to other norm violations. We believe
such defective behavior to be typical of games with characters that are scripted
with a focus on reactive behavior, foregoing the underlying mental states, as in
dynamic social settings the complexity of such scripts grows out of hand fast.

The scene S transitions to some new scene S′ upon entry of a city guard, as
mentioned in Sect. 3.1, such that S′ = 〈s′, {R′

t, R
′
so, Rcg}, {F (steal(Item))}, E′〉.

The ‘city guard’ role Rcg is left unspecified, but it should suffice to say that
the guard may merely have come into the store to buy some item or chat with
the store owner. If the guard becomes aware that someone is breaking the law
(possibly he observes the thief stealing the item), he may come into action and
arrest the perpetrator. In the new scene the thief can be expected to show
more cautious behavior because of the presence of the guard. This change in the
thief’s behavior is illustrated by a change in the thief’s role specification, such
that R′

t = 〈thief ′, ({γ, γ′}, {(γ, γ), (γ′, γ′), (γ, γ′)}), I, {br1t , br2t , br3t , br4t}〉. In
this slightly changed role specification, it still is the case that γ = have(item), but
there is another role-prescribed goal γ′ = have(item)∧ ensured(safety) for which
it is the case that γ′ >Γ γ. The thief’s more cautious enactment of his changed
role could show through in his behavior, and use of role-based explanation (or
prediction) on this same grounds would reflect such as well.

Various possibilities exist for elaboration, but here we take the liberty to skim
over subtleties. More interesting is it to see how the Observer comes into play. Let
G be the scenes of the game, and Agent = 〈gent, thief,walk towards(cabinet1 )〉
the model of some agent called gent, such that the Observer has observed gent,
in its role of thief, to perform the action of walking towards a certain cabinet.
Let the Observer configuration for the first scene be 〈G, s, {Agent}〉. Given the
rules BRt for the thief role, which the Observer deduces to be enacted by gent
from the initial state of the environment of s and has knowledge of as part of
the roles for scene s in G, explain(walk towards(cabinet1 ), ℘desc(BRt)) maps to
a set of explanations Ω = {ω1, ω2}, such that g(ω1) = {goal(have(item))} and
g(ω2) = {goal(explored(store))}. Based on role-conformant explanation, either
loose or strict, ω1 > ω2 because having the item is a role-derived goal.

Prop. 1 states that every explanation is matched by a prediction. For the
explanation ω1, the tuple (ω1, [open(Cabinet), steal(item), close(Cabinet)]) (with
the percept in Prolog-style list notation for readability) is in the set of predic-
tions. Given the small scenario and limited set of rules, this is the only possible
prediction for the goal of having the item, given the previously observed action
and the assumption plans are completed. Should we allow for dropping of plans
and belief revision, it may happen that the thief who does have the goal to have
the item in his possession, after walking towards the cabinet the agent comes to
believe the owner is not distracted, such that he does not open the cabinet but
instead walks up to the owner and attempts to distract him first.

The thief can be expected not to be norm-obedient, such that the prediction
that he will open the cabinet and steal the item comes out as a good one, which
is plausible in the given context. Assuming the thief actually is norm-obedient
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(which would be plausible in the scene S′ where the guard is also present) gives
a different picture. In that case another explanation for walking towards the
cabinet might be considered best if the corresponding predicted action sequence
doesn’t contain any forbidden actions. In our example only the goal to explore
the store qualifies, but in a more extensive case this could include the goal to
choose and purchase some item located in the cabinet.

The example in this section is inspired by an actual commercial role-playing
game. It serves mainly to illustrate some of the focal points of the approach
presented in this paper, and is necessarily limited in its scope and detail. Never-
theless, we hope it to be sufficiently developed to convince the reader of the fact
that the high-level concepts of organizational modeling and agent programming
apply transparently to the rich domain of role-playing games. Moreover, the use
of high-level social/intentional concepts has the additional benefit that these
concepts can ideally be used for modeling, programming, and inter-character
explanation and prediction of behavior.

6 Conclusion and Future Work

In this paper mental state abduction in the context of an agent-based game was
described. A declarative game specification based on organizational principles
such as roles, norms, and scenes, was introduced, and it was mentioned how it
can be employed to have a system of autonomous agents behave in accordance
with an intended storyline. An abstract Observer was said to observe the behav-
ior of agents and provide explanations that take into account role-conformant
behavior, making the abduction process more efficient because it is based on
a subset of rules, and ensuring that explanations are relevant to context. The
Observer can also predict agents’ future actions based on previously observed
behavior, taking norm-obedience into account if the situation warrants this as-
sumption. Role-conformant explanation and norm-obedient prediction have been
shown to be complementary.

Future research should focus on explicitly taking models of the environment
and agents’ presumed mental states into account in the abductive process. De-
pending on the nature of the environment, it could be possible for an observer,
be it an abstract entity or situated agent, to actively check whether specific (pre-
dicted) actions are possible, or whether an agent has achieved its goal or can be
inferred to have some particular belief. Investigating the use of even richer social
context does also seem a viable direction. Such scenarios could be where norms
hold for scenes but also for roles (and possibly conflict), violation (obedience)
of norms is quantitatively sanctioned (rewarded) leading to a more fine-grained
measure of prediction, and where uncertainty regarding role enactment or other
components is introduced. Finally, the path of formally investigating the multi-
agent game as an operational system seems promising. The idea of a game of
only software agents without human involvement might seem a tad far-fetched,
but its usefulness becomes apparent if such a game is regarded as being played
by agents (without direct human involvement) as a socially believable backdrop
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to the human player’s actions in the game. Should agent-based virtual char-
acters be required to attribute mental states to human players on grounds of
their observed actions, a desideratum if they are to interact autonomously with
said players, then some other (qualitative or quantitative) model of behavior
would have to be employed in abducing their mental states, as players cannot
be expected to follow fixed action traces.
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Abstract. What distinguishes multiagent systems from other software systems
is their emphasis on the interactions among autonomous, heterogeneous agents.
This paper motivates and characterizes correctness properties for multiagent sys-
tems. These properties are centered on commitments, and capture correctness at a
high level. In contrast to existing approaches, commitments underlie key correct-
ness primitives understood in terms of meaning; for example, commitment align-
ment maps to interoperability; commitment discharge maps to compliance. This
paper gives illustrative examples and characterizations of these and other proper-
ties. The properties cover the specification of the principal artifacts—protocols,
roles, and agents—of an interaction-based approach to designing multiagent sys-
tems, and thus provide the formal underpinnings of the approach.

1 Introduction

Interaction is the key distinguishing feature of multiagent systems. We investigate the
science of interaction as it underlies the engineering of multiagent systems whose con-
stituent agents are heterogeneous (independently designed) and autonomous (indepen-
dently motivated). In such systems, the internal workings of the agents take backstage
to the interactions among them.

We begin from a simple yet profound question: How may we treat interactions as
first-class citizens in modeling and analyzing multiagent systems? The usual objectives
of engineering—modularly specifying, developing, composing, verifying, and validat-
ing parts—apply for interactions just as for traditional software approaches. However,
existing solutions, which are designed for components such as objects, do not readily
lift to interactions: an interaction somehow must simultaneously accommodate more
than one perspective. Thus, importantly, the novelty of the interactive setting yields
fresh and crucial technical challenges, which offer a great opportunity for multiagent
systems research.

Of the many applications of multiagent systems, those in cross-organizational busi-
ness processes provide the happy mix of practical value, theoretical subtlety, and oppor-
tunity (in the form of interest in industry) that our research community needs to sustain
this research effort. Cross-organizational processes fundamentally differ from conven-
tional software in that they are naturally modeled via interactions among heterogeneous
and autonomous agents [1]. The interactions of interest are of an arms-length nature,
and thus naturally understood as communications. In our study, we assume the existence
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of suitable approaches for the transmittal of information and therefore concentrate on
communication understood at the level of meaning.

To engineer a multiagent system based on interactive principles presupposes a no-
tion of the correctness of interactions among agents—in particular, here, of communi-
cations. Given such a notion, we ask if an agent is compliant with its expected behavior.
Further, we can ask if the given agents are interoperable meaning that they are able
to work together as expected. We can ask the above questions from the perspective of
the system as a whole or of any of the participants. To formalize interoperability and
compliance in interactive terms requires that we develop a theory of types using which
we might modularize communications into protocols. We might then create repositories
of protocols; determine if one protocol refines another or aggregates two or more pro-
tocols; modularly validate the protocols; modularly verify agents with respect to each
relevant protocol; and so on. Notice that interfaces in object-oriented computing corre-
spond to protocols and support constructs such as refinement and aggregation as well
as the usual forms of type inference.

1.1 Approach

The meaning of an interaction lies at the crux of the question of its correctness. When
we think at levels above the transmission of information, the meaning of communica-
tion is grounded in the relationships among the parties involved. Communication then is
based on conventions by which such relationships are created, progressed (or otherwise
altered), and ended. We concentrate on the contractual relationships expressed through
the notion of commitments. A commitment involves a debtor, a creditor, an antecedent,
and a consequent; it is represented as C(debtor , creditor , antecedent , consequent).
Roughly, the debtor stakes a claim or makes a promise to the creditor about the speci-
fied consequent provided that the antecedent holds. Commitments naturally express the
what of business relationships, and minimally constrain the how. For example, a com-
mitment to pay for goods received may be discharged by paying directly, or delegated
to someone who would discharge or delegate it, and so on (for any finite sequence of
delegations).

In our approach, a protocol specifies business interactions primarily by stating how
messages affect the participants’ commitments. For example, returning purchased
goods unopened may release the buyer from a commitment to pay. Thus many pos-
sible enactments may result from the same protocol. This is how commitments yield
both rigor and flexibility. Because of its naturalness, the commitment-based approach
has attracted the attention of finance and health care industry groups [2].

Protocols are interfaces: they constrain how agents interact, not how they are imple-
mented. Protocols are doubly modular: in terms both of functionality and autonomy.
For example, for functionality, an ORDER protocol between a customer and a merchant
would specify only interactions dealing with order placement, leaving other function-
alities to separate protocols, e.g., one for INVENTORY FULFILLMENT. Our approach
enables composing protocols to yield more complex protocols, of enhanced function-
ality. Further, for autonomy, ORDER would specify the interactions, leaving to each the
autonomous decision making of whether and how to interact, which could depend on
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its goals [3]. We define a process as the aggregation of the behaviors of the parties
involved, including both their interactions and their local reasoning.

To model a process, we identify the protocols using which the different participants
interact [1]. For example, a merchant and a customer may interact with each other using
a NEGOTIATION protocol; the merchant, customer, and payment agency may interact
via an ESCROW protocol; and, the merchant, customer, and shipper may interact through
some specialized LOGISTICS protocol. When each participant acts according to its local
reasoning but respecting the stated protocols, they jointly enact a multiparty business
process. The contractually significant parts of the process would have been encoded in
the commitments specified in the protocols; the other parts may feature only in the local
policies of the participants and need not be visible externally. An agent’s policies could
be geared to optimize its outcomes. For example, policies would help decide what item
to order, what price to quote, and so on.

The above approach obviates defining a monolithic global flow that specifies the
actions of each party. Each protocol could be refined to capture additional requirements,
e.g., adding receipts or guarantees to SHIPPING or PAYMENT to produce new refined
protocols. Protocols can involve more than two parties; in typical usage, one partner
would play multiple roles in multiple protocols [4]. For example, a purchase process
may be defined as a composition of ORDER, SHIPPING, and PAYMENT protocols where
the buyer in ORDER is the receiver in SHIPPING and the payer in PAYMENT.

The potential benefits of our protocol-based approach over traditional approaches in-
clude the following. One, for process design, protocols are naturally reusable whereas
complete processes are not. More importantly, protocols lend themselves to modeling
abstractions such as refinement and aggregation. Two, for process implementation, im-
plementations of agents playing multiple roles can be more readily assembled from
specifications of the roles. Three, for process enactment, flexible protocols enable each
agent to exercise discretion via its policies or preferences even as it follows a protocol.
For example, a merchant may accept only cash for discounted goods and a customer
may prefer to pay for goods early or late depending upon private considerations such
as of fiscal year accounting. This flexibility also enables us to capture and handle busi-
ness exceptions and opportunities in a natural manner at the level of protocols. Four, for
process monitoring, protocols provide a clean basis for determining that the interacting
agents are complying with their roles in the given protocols.

1.2 Contributions

We motivate and characterize the key properties that would enable engineering mul-
tiagent systems with a special emphasis on applications such as cross-organizational
processes. Compared to traditional formal approaches, the emphases on communica-
tions and commitments give us a novel start. By assigning meaning to communications
in terms of commitments, we accomplish the following. One, we reconstruct the cor-
rectness of behaviors by characterizing compliance as the eventual discharge of com-
mitments. Two, we characterize the interoperability of agents as the alignment of their
commitments, meaning that a creditor’s expectations about a commitment are met by
the debtor. Three, we expand the treatment of design artifacts such as protocols by
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viewing them as communication types and showing how to refine and aggregate them.
Using the above, we characterize the conformance of an agent with a role in a protocol.
Further, we characterize important properties of a protocol such as its transparency in
terms of the ability of the parties involved to verify each other’s compliance. By con-
trast, traditional approaches (formal or otherwise) are largely confined to details such
as message ordering and occurrence, and thus miss the forest for the trees.

Importantly, unlike most other multiagent systems work, our approach is undergirded
by key ideas of distributed computing, especially dealing with the fact that key infor-
mation is not immediately shared by all parties (even if they wish to share it). In fact,
this is why protocols are important beyond plain commitments. This paper character-
izes the above concepts under realistic assumptions, including multiparty settings with
asynchronous communication (which aren’t accommodated even in fairly recent inter-
operability research, e.g., [5,6,7]). Hence, this paper reflects crucial basic research not
being addressed elsewhere. Its relevance to declarative agent languages and techniques
arises from the fact that declarative representations for interaction are central to engi-
neering robust, flexible multiagent systems, and this paper introduces and illustrates
correctness criteria based on such declarative representations.

We do not introduce a formal framework in which to characterize the properties;
nonetheless, we discuss the properties with rigor appropriate to illuminate their essential
nature. This is consistent with our aim of motivating the properties and pointing out the
challenges in their verification.

The rest of this paper is organized as follows. Section 2 introduces commitments and
protocols in greater detail. Section 3 characterizes the correctness properties for inter-
actions. Section 4 describes our contributions in relation to the most relevant literature.
Section 5 lays out an ambitious agenda for multiagent systems research.

2 Background on Protocols and Commitments

In classical software engineering methodologies, information modeling involves the ap-
plication of key abstractions such as classification, aggregation, and association among
components. It would be valuable to develop similar abstractions for interactions. Notice
that traditional flow-based process models don’t readily support such abstractions. One,
existing work imposes severely limiting assumptions to support such abstractions—
refinement is specified for Petri nets restricted to one input and one output place [8],
which are not as expressive as general Petri nets needed to express real processes. Two,
absent a business-level semantics, the models are rigid and any deviation would be po-
tentially erroneous, thus making it difficult to refine or generalize processes.

By contrast, protocols focus on interactions, not on implementations. Our
commitment-based semantics of protocols enables us to determine if a protocol refines
another protocol, and how protocols may be aggregated into other protocols. Further,
we specify a protocol primarily in terms of the vocabulary for communication that it
defines and only secondarily in terms of (generally, ad hoc) constraints on the ordering
and occurrence of messages. By basing correctness on the discharge of commitments,
we enable agents to behave flexibly. For example, a merchant may ship before receiving
payment if it wishes; a customer may pay directly or via a third party; and so on. On
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occasion, an application may impose an otherwise ad hoc constraint. For example, in a
(sit-down) restaurant, the protocol is to pay after food has been received and consumed;
in a drive-through, payment precedes delivery. Such constraints often are merely guide-
lines for the participants and have no bearing on correctness unless they are enshrined
in commitments. For example, a restaurant patron may pay early; a drive-through clerk
may hand over the food before taking payment from the customer.

Flexible enactment and modeling in terms of refinement and aggregation are possi-
ble only because our semantics establishes the correctness criteria by which legitimate
enactments, refinements, and aggregations can be identified [4]. Commitments express
how contractual relationships form and progress during the agents’ interactions. The
commitment-based semantics is readily grounded via operational or messaging-level
constraints [9].

Commitments. Contracts are key to flexible interoperation. Hohfeld [10] clarified a
legal notion of contracts. Commitments cover the relevant aspects of Hohfeld’s notions
[11], and thus naturally represent the contractual relationships of interest.

Two main forms of commitments arise [12]: practical commitments are about bring-
ing about a future condition (i.e., oriented toward tasks), whereas dialectical commit-
ments [13] are about staking a claim (as in argumentation) about the past, present, or
future (i.e., oriented toward assertions). The distinction between them is significant even
when directed to the future. For example, I might commit dialectically that the postman
will ring twice, without committing practically to ensure that the postman rings twice.
This paper deals with practical commitments. For example, the customer’s agreement
to pay the price for the book after it is delivered is a practical commitment that the
customer (as debtor) has towards the bookstore (as creditor) to ensure the price is paid.

Using commitments enables us to model interactions computation independently (us-
ing this term as in Model-Driven Architecture (MDA) [14]). On the one hand, com-
mitments describe the evolving state of the ongoing business interaction and how it
evolves due to the participants’ communications. On the other hand, commitments help
express the expectations that participants have of one another: this is the fundamen-
tal purpose of a protocol. Jointly, these enable us to readily detect and accommodate
business exceptions and opportunities. Consequently, commitments lend coherence to
interactions [15].

Commitments can be manipulated through a small set of operations, including cre-
ate, discharge, cancel, release, assign, and delegate [11], which we lack the space to
discuss here. With additional assumptions, commitments can be enforced—by penaliz-
ing agents who do not comply with their commitments.

Protocols and commitments. An advantage of incorporating commitments in our mod-
els is that they directly represent contractual relationships, are flexible, and lend co-
herence to the interactions of the participants in a process. The formalization of the
specialization and generalization hierarchy of protocols is made the more interesting
and useful because of the presence of commitments and roles in our model. Instead
of considering uninterpreted runs (of actions and states), we consider how the com-
mitments of the various roles evolve over different runs. The use of commitments en-
ables more sophisticated reasoning about meaning than in traditional approaches. In
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Table 1. A purchase protocol (customer is c and merchant is m)

Offer(m, c, payment , book) means Create(m, c, payment , book)
Accept(c, m,payment , book) means Create(c, m, book , payment)
Reject(c, m,payment , book) means Release(m, c, payment , book)
Deliver(m, c, book) means Inform(m, c, book )
Pay(c, m, payment) means Inform(c, m,payment)

particular, it enables us to characterize the similarity of states and protocol refinement
in potentially subtle ways. An example is when a participant from its local perspec-
tive considers two states as interchangeable simply because it features as the creditor
and debtor in the same commitments regardless of the other parties. For instance, in
some settings, Alice may care only of her total accounts receivable, and not care if it is
Bob or Charlie who is committed to paying her the money. In other words, instead of
merely considering raw computations, it makes sense to “normalize” them in terms of
commitments so as to make more precise judgments about how protocols relate to one
another.

Table 1 shows the messages in a purchase protocol and their meanings. Offer from
m to c creates C(m, c, payment , book ); Accept by c creates the countercommitment
C(c, m, book , payment); c’s Reject releases m from his commitment. Deliver means
that m is informing c that the book has been delivered; essentially, it causes the propo-
sition book to hold. Pay means that c is informing m that the payment has been made;
essentially, it causes the proposition payment to hold. The meanings of the messages
are crucial, because they help characterize the protocol declaratively. The meanings are
systematically formalized in a declarative action language. Our language and technique
are introduced in [16,17,18].

Figure 1 shows some possible enactments of the purchase protocol between a cus-
tomer Alice and a merchant EBook concerning the book BNW (for Brave New World)
and a payment of $12. In the figure, cA is C(Alice,EBook ,BNW , $12); cB is
C(EBook , Alice, $12,BNW ); cUA and cUB are the unconditional commitments
C(Alice,EBook , �, $12) and C(EBook ,Alice,�,BNW ), respectively.

Traditional approaches force a tradeoff: checking compliance is simple with rigid
automaton-based representations and difficult with flexible unconstrained reasoning
agents. Commitments help us find the happy middle: protocols maximize flexibility

Fig. 1. Three possible enactments of protocol in Table 1
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by constraining the participants’ interactions at the business level, yet provide a crisp
notion of compliance: a party complies if its commitments are discharged, no matter if
delegated or otherwise manipulated.

Protocols and computations. In essence, each protocol allows a set of computations or
runs, each run being an alternative that requires a specific sequence of actions upon the
participants. Two basic intuitions about protocol refinement are that (1) a more general
protocol includes additional runs (more ways to satisfy) beyond those in a less general
protocol; and (2) a more general protocol includes shorter runs (fewer steps to satisfy)
than a less general protocol.

Our commitment-based semantics yields a rigorous basis for protocol refinement and
aggregation [19]. In principle, these properties enable reusing protocols from a reposi-
tory. For example, PAYMENT BY CHECK refines PAYMENT. Further, ORDER, PAYMENT,
and SHIPPING can be combined into a new protocol for PURCHASE. This composed
protocol would capture the reusable interactions and service agreements that underlie a
business process. For example, PURCHASE would specify how orders may be placed,
payments made, and shipping arranged. When protocols are composed, so are the roles;
e.g., the payer in PAYMENT may be composed with the receiver in SHIPPING. Multiple
copies of the same protocol may be composed: in an ARBITRAGE protocol, the arbi-
trageur role would compose the seller role in one copy of PAYMENT with the buyer role
in the second copy.

As in other formal semantics, the runs are merely abstract entities used to establish
logical properties. We would never explicitly enumerate the potentially infinite number
of possible runs, but we can use the abstract definition to show important algebraic
relationships. Mallya & Singh [19] show important progress, but their approach is far
from complete. Specifically, it deals with sets of runs, but does not apply directly on
protocol specifications as one would find in a repository.

3 Correctness Properties

We begin by motivating some key definitions. Notice that although the above discussion
uses protocols as design artifacts, compliance and interoperability apply without regard
to any protocol. Although our main definitions and methods are oriented toward com-
mitments, they are undergirded by considerations of distributed computing, especially
of asynchrony in messaging.

3.1 Interoperability

The interoperability of a set of roles or agents, regardless of protocol, means that they
jointly meet the expectations they place on each other. Some aspects of interoperability
depend on meanings; others on the messaging system that underlies communications.

We assume that messaging is asynchronous, reliable, and pairwise (for each sender
and receiver) order-preserving: this matches what emerging middleware standards [20]
offer. Thus in two-party cases, each party would eventually learn of the relevant moves
and expectations of the other: the only kind of pathology possible is that the parties
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may view some pairs of messages in opposite orders. In multiparty cases, the messaging
conditions can become more subtle: e.g., a party would lack direct information about
messages exchanged among other parties. Mostly, this is a good thing because the par-
ties can proceed with minimal mutual dependencies. However, when such information
materially affects a desired property, we would need to change either the requirements
(so information about remote events becomes irrelevant) or the specification (so that the
necessary information flows to the appropriate parties).

Interoperation classically is treated as a conjunction of liveness and safety. To these
we add alignment.

Liveness means that progress will take place: desirable states will be visited infinitely of-
ten. Liveness can fail if a receiver blocks (awaiting a message that is never sent). Forexam-
ple, let Buyer-A demand delivery before payment and Seller-A demand payment before
delivery. Now, Buyer-A and Seller-A would deadlock, each awaiting the other’s message.

Safety means that the system doesn’t enter an undesirable state: agents must be ready
to receive the messages being sent to them. Safety is best understood in a multiparty
setting. If a buyer expects to receive a confirmation before a shipment but receives them
in the opposite order, its resultant state is not defined. We should ensure the messages
occur in only those orders that the buyer accepts.

We apply causality [21] to model the above concepts. The sending of a message is
causally prior to its receipt; for any two locally ordered events (sends or receives), the
first is (potentially) causally prior to the second: “potential” because from external ob-
servations we cannot infer if the two events are truly related. We can infer true causality
from the agents’ specifications, in settings where the specifications are available. We
can characterize liveness and safety in terms of the compatibility among causal orders
involving receives and sends. We conjecture that the above will yield superior solu-
tions to those in the recent distributed computing literature, e.g., [5,6,7]. The literature
considers two-party cases or violates substitutability: that substituting an agent with a
conforming agent must preserve interoperability.

Alignment is interoperability with respect to expectations at the level of meaning: do
the participants agree about the states of their commitments to each other? A set of
agents or roles is aligned provided throughout any enactment, whenever one concludes
it is the creditor of a commitment, the corresponding debtor x concludes that x is the
debtor of the commitment [22]. In other words, the debtor recognizes a commitment that
the creditor expects of it. How commitments are created, discharged, and manipulated
depends on the messages sent and received.

From the point of view of interoperability, interesting agent specifications are of two
kinds: constitutive and regulative [22]. An agent’s constitutive specification deals only
with the meaning of messages. In other words, it specifies what messages count as
for the agent. An agent’s regulative specification, in contrast, describes agent behavior;
i.e., it describes the conditions under which the agent sends and receives particular
messages. Regulative specifications are thus closer to implementations.

Agents could be misaligned if, in their constitutive specifications, messages are in-
terpreted differently. For example, if the buyer and seller interpret the Offer message as
different commitments, they would be misaligned [22] even though they satisfy safety.
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Judging the constitutive alignment of a set of agents by statically analyzing their spec-
ifications is nontrivial because message meanings may be conditional, and thus poten-
tially affected by how other messages change the relevant conditions. For example, if
one message constitutes an authorization and the meaning of a second message relies
upon that authorization, the commitments resulting from the second message would
depend upon whether the first message precedes it.

Agents could also become misaligned due to asynchrony: the debtor’s and the credi-
tor’s conclusions about a commitment may conflict because they see different messages
occurrences or orders. Delegations and assignments of commitments inherently involve
three parties, and are thus even more challenging.

A specification may fail safety or liveness without failing alignment. We saw above
that Buyer-A and Seller-A fail liveness. However, they may never disagree about their
commitments and hence would satisfy alignment.

3.2 Conformance and Operability

Conformance and operability apply to each interoperability property: liveness, safety,
and alignment. A role conforms to, i.e., is a subtype of, another role provided the first
role meets all expectations placed on the second and holds no expectations of others
beyond what the second does. Similarly, an agent conforms to, i.e., instantiates, a role.
Conformance is important because it helps us build a library of roles without which
engineering would lapse into one-off solutions. To handle conformance properly would
require considering the semantics of protocols not in terms of simple runs, but in terms
of the choices they afford each role. Echoing the intuition of alternating refinement [23],
expectations placed on a role correspond to “external” choices; expectations held by a
role correspond to “internal” choices.

A protocol is operable, i.e., potentially enactable, if the roles it specifies are interop-
erable. A protocol may fail to be operable when it requires a role to act based on events
that the role cannot observe. Operability is an important quality criterion for protocols:
ideally, the protocols in a library should be operable, so developers may implement
selected roles conformantly, and be assured of interoperation.

Let protocol FLEXIBLE PURCHASE allow a payment to occur before or after the de-
livery of goods. It is easy to see that Buyer-A and Seller-A (introduced above), respec-
tively, conform to the customer and merchant roles in FLEXIBLE PURCHASE. Recall,
however, that Buyer-A and Seller-A together fail liveness. Hence FLEXIBLE PURCHASE

is not operable for liveness. Conversely, let PREPAID PURCHASE require payment to
occur before delivery. Then, any pair of conforming customer and merchant would be
live and safe. Hence, PREPAID PURCHASE is operable. Buyer-A is nonconformant with
the customer role, whereas Seller-A is conformant with the merchant role of PREPAID

PURCHASE. Seller-A and Buyer-A failing liveness doesn’t mean PREPAID PURCHASE

is inoperable: it is Buyer-A that is messed up.

3.3 Compliance and Transparency

Compliance means that each agent performs as expected by others, by discharging its
commitments. We can prove compliance only when we know each agent’s specification
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and relevant assumptions about the environment hold. That is, compliance can be verified
for specific runs but not proved in general for open systems [24]. Notice that alignment
and compliance are independent of each other: e.g., an interoperable buyer may be com-
mitted to pay, but may refuse to do so. An agent may verify a debtor’s compliance based
on its observations in a specific enactment. Assuming that the discharge of a commitment
is observable (e.g., occurs via a message), verifying compliance is simple in two-party
cases. If a debtor complies, the creditor would eventually know. If a debtor does not
comply, then the creditor would eventually know—provided the commitment includes
a deadline. In multiparty cases, a creditor may lack some important observations, and
hence special techniques would be required to verify alignment.

A protocol is transparent if each role in it can verify the compliance of its debtors.
However, not all protocols enable each role to verify compliance at runtime: a protocol
may be such that “news” relevant to a commitment might not be propagated to the
creditor. Transparency is an important quality criterion for protocols: it ensures that
participants can verify if others are not complying.

3.4 Refinement and Compatibility

The refinement of a protocol by another protocol means that the second protocol gener-
ates only computations that are allowed by the first. Modeling via commitments enables
us to finesse the intuitions about protocol refinement. For example, a simple PAYMENT

protocol might require that the payer transfer funds to the payee. A particular refinement
of this might be PAYMENT WITH A CHECK. To pay with a check, the payer would send
a check to the payee, who would deposit the check at his bank, which would present
it to the payer’s bank, which would send the funds to the payee’s bank, which would
make those funds available to the payee. Thus PAYMENT BY CHECK is a specialization
of PAYMENT, but it involves additional roles and steps, and skips some of the steps of
PAYMENT, e.g., direct transfer. With a commitment-based definition, we can formally
establish that PAYMENT BY CHECK refines PAYMENT—something that would not be
possible with traditional approaches because of the above differences between the two
protocols. The key intuition is that the commitments at critical states line up correctly.
This is a significant departure from traditional notions of refinement which, because
they lack commitments, insist upon the computations to match in their detailed steps.

Notice that an agent designed to play a role in a refined protocol may not comply with
any role in the original protocol. This is because the agent may not interpret messages
in a way compatible with the original protocol. For example, in PAYMENT BY CHECK,
a merchant may interpret a check as being adequate as a receipt (once it is cleared and
returned to the customer by the customer’s bank), but the customer may not interpret
it like that and may continue to expect a separate receipt as in PAYMENT. Further, the
agent may fail to interoperate with roles defined in the original protocol. This is because
it may send messages that are not defined in the original protocol. In general we would
not be able to substitute a role from a refined protocol for a role in the original protocol.
The foregoing is motivation for the property of compatibility, which determines if roles
in one protocol conform to roles in another protocol.

Table 2 summarizes the above properties. With the exception of compliance, these
properties can be verified by a static analysis of the appropriate specifications.
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Table 2. The properties summarized

Property Of What?

Refinement, compatibility, operability, transparency Protocols
Interoperability (safety, liveness, or alignment) Agents and roles
Conformance Roles
Compliance Agents

4 Discussion: Relevant Literature

Our main contribution in this paper is in characterizing the key correctness proper-
ties that would support an interaction-oriented approach to building software systems,
particularly cross-organizational business processes. In particular, the correctness prop-
erties reflect high-level requirements of such systems.

Interestingly, Parnas [25] proposed early in the study of software architectures that
connectors be treated not as control or data flow constructs but as assumptions made by
each component about the others. Arguably, much of the subsequent work on software
architecture regressed from Parnas’ insight: it has primarily considered connectors at
the level of flow, e.g., dealing exclusively with message order and occurrence [26]. In
formulating the assumptions at a high level, we see a great opportunity for multiagent
systems research to address some of the long-standing challenges in software.

Conventional formal methods. Current modeling formalisms, such as finite state ma-
chines and Petri Nets, originated in distributed computing and apply at lower levels
of abstraction than needed for flexible business interactions [27,8]. When applied to
business protocols, these formalisms result in specifications that are over-constrained
to the level of specific sequences of actions. Recent approaches have sought to express
scheduling requirements declaratively, via temporal logic [28,29,30]. Although they are
more flexible and modular than operational representations, these approaches do not ex-
press business semantics.

FIPA, the Foundation for Intelligent and Physical Agents (now part of IEEE) recog-
nized the importance of reusable interaction protocols in the late 1990s [31]. Odell et al.
[32] give one of the earliest uses of UML for protocols. They show how various UML
diagrams can be applied for modeling agent interactions. This work shows about how
far you can go in a conventional software framework, and has inspired our work. The
present paper is about fundamental enhancements to conventional models to capture
protocols and their commitment-based semantics.

Leading approaches model conversations via finite-state machines and establish
properties such as how roles may realize a protocol or a protocol subsumes another
[33,34]. Dastani et al. [35] show how to model a rich family of coordination connec-
tors for multiagent systems. Honda et al. [36] develop a type theory that would support
multiparty sessions: in essence this would help robustly generate roles. These works
formalize protocols as data and control flow abstractions. They do not consider the
meaning of messages and thus lack the business-level semantics that distinguishes our
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work. However, their treatment of messages and computations at a low level is useful,
and complementary to our work.

Whereas deontic logic only deals with what is obligatory or permissible and thus
disregards an agent’s obligations to another agent, commitments are directed and con-
text sensitive. Commitments include support for a variety of operations [11,37]. Foster
et al. [38] seek to capture the semantics of process interactions via the notion of obli-
gation policies. Obligations are rather weak in their formulation, however. Specifically,
obligations are not reified, and cannot be manipulated to capture flexible interactions
among independent parties. Lomuscio et al. [39] formalize correctness properties in a
temporal logic and show how to verify them. They consider obligations but do not con-
sider commitments as here. Lomuscio et al. also concentrate on only one correctness
property, which is somewhat like compliance.

Business processes. The MIT Process Handbook (MITPH) [40] is of great relevance in-
tellectually. MITPH includes an extensive classification and systematic organization of
business processes based on two dimensions of process hierarchies, one that composes
the uses of a process out of its constituent parts, and another that subclasses generaliza-
tions of a process into specializations. Our work can provide the rigorous underpinnings
for work such as the MITPH. Grosof and Poon [41] develop a system to represent and
execute business rules from MITPH. Wyner and Lee [42] study specialization for data
flow diagrams. Their approach can form the basis of the processes identified in MITPH.
These concepts turn out to be complex and not readily applied to entire business pro-
cesses. Further, since Wyner and Lee do not capture the content through a high-level
representation such as commitments, the results are not intuitive.

Our approach agrees with the newer declarative forms of artifacts-based process
modeling [43] in terms of deemphasizing low-level operational details in favor of busi-
ness semantics. However, these approaches do not have a central organizing principle
on par with commitments, and thus do not offer a generic and flexible basis for deter-
mining the properties we introduced above.

Agent communications. Fornara and Colombetti [44] describe how commitments re-
late to FIPA messages, demonstrating this with an example. Rovatsos [45] proposes a
commitment-based semantics for communications under synchronous messaging. His
approach violates autonomy by legislating agent behaviors from within the language
specification: this level of prescription is ill-suited to most multiagent applications.

Yolum and Singh [46] [47] offer one of the first accounts of the use of commit-
ments in modeling protocols to improve flexibility for participating agents, which was
enhanced by Winikoff et al. [48]. Johnson et al. [49] develop a scheme for identifying
when two commitment-based protocols are equivalent. Their scheme, however, is sim-
plistic, classifying protocols based solely on their syntactic structure. Our work provides
stronger results from an application point of view and relates better to Web services.

Commitments have found application in formalizing argumentation, e.g., [50,51].
Usually, though, this work makes simplifying assumptions such as (1) maintaining a
unique commitment store; (2) informally specifying the meanings of communicative
acts as effects on the store; (3) assuming synchronous two-party communications.
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Agent-oriented software engineering (AOSE). A number of useful software method-
ologies for building multiagent systems for IT applications have emerged that incorpo-
rate rich metamodels and describe how to build a series of software artifacts [52,53,3].
Garcia-Ojeda et al. [54] synthesize existing metamodels into a comprehensive meta-
model of organizations geared toward process modeling. We recently developed
Amoeba, a protocol-based methodology compatible with the ideas of this paper [1].

The above methodologies address the challenges of autonomy and heterogeneity by
giving prominence to communication. Such works are clearly valuable and worthwhile.
However, current approaches do not consider the full subtleties both of meaning and of
distribution. By contrast, this paper addresses the foundations for business interactions
understood in terms of commitments. The proposed definitions will offer a founda-
tions for building a new family of tools that, in principle, could be used within any of
the above methodologies, because they all support aspects of interaction and of agents
playing roles in interactions.

5 Conclusions and Directions

This paper presents a key step in our program of research to develop underpinnings
of multiagent systems—and indeed, of all software—on interactive grounds with an
emphasis on declarative formulations. The main point to take away is the richness of
the correctness properties. These properties echo well-known conventional properties
but their characterization in a declarative, interactive setting adds a lot of subtlety that
traditional approaches cannot express. The foregoing leads to two broad questions.

– Theory. What are practical decision algorithms for these properties? How can we
specify agents who may play specified roles (while applying their local policies)?
How can we determine that agents (supposedly) enacting a protocol are comply-
ing with the protocol? What are practical algorithms for judging the varieties of
interoperability, conformance, operability, compliance, and transparency?

– Suitability and applicability. Does representing meaning via commitments provide
a sufficiently natural basis for business interoperation? How readily can meaning be
associated with tools to engineer and use protocols? Can we specify commitments
sufficiently precisely in real-life business settings? How can we use the above prop-
erties and algorithms to enable protocol design and agent implementation?

The above questions constitute a substantial research agenda. Addressing this agenda
presupposes an adequate formalization of commitments. Recent work on the formal se-
mantics of commitments [12] and commitment operations [9] are steps in that direction.
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Abstract. In this paper, we investigate the multiagent planning problem in the
presence of cooperative actions and agents, which have their own goals and are
willing to cooperate. To this end, we extend the action language A in [12] to
represent and reason about plans with cooperative actions of an individual agent
operating in a multiagent environment. We then use the proposed language to for-
malize the multiagent planning problem and the notion of a joint plan for multia-
gents in this setting. We discuss a method for computing joint plans using answer
set programming and provide arguments for the soundness and completeness of
the implementation.

1 Introduction

Cooperative actions are actions of an agent which can be executed only if the agent
is operating in a multiagent environment. They can be actions for soliciting something
from other agents or actions for setting up some conditions for other agents. They differ
from individual actions in that they might affect other agents. Cooperative actions are
important not only in situations where multiple agents have to work together to accom-
plish a common goal but also in situations where each agent has its own goal. This can
be seen in the following story, a modified version of the story in [21]:

Example 1. Three new students A, B, and C are moving in a shared apartment and
planning to decorate their rooms. Each would like to hang one of their objects on the
wall, e.g., A would like to hang a mirror, B a diploma, and C a painting. A and B know
how to use either a nail or a screw to complete their job but C knows to use the screw
only. A has neither a nail or a screw. B has both. C has only a nail. To use a nail, one
will need a hammer. Among three, only B has a hammer.

Do the students have a joint-plan that allows each of them to achieve his/her goal?
Intuitively, we can see that only B can accomplish her job independent of A and

C. The three can achieve their goals if B uses the hammer and the nail to hang her
diploma then gives A the hammer and C the screw, respectively. C, on the other hand,
gives A the nail and uses the screw to hang her painting. A uses the nail (from C) and
the hammer (from B) to hang her mirror. Of course, to avoid unpleasant moments, A
should ask for the nail (from C) and the hammer (from B) and C should ask for the
screw (from B).
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However, it is easy to see that if either B or C does not want to give out anything,
then only B can achieve her goal. Furthermore, if B decides to use the screw instead of
using the nail in hanging her diploma, then C has no way of achieving her goal. �

In the above example, the action of giving a nail, a hammer, or a screw between the
students can be considered as cooperative actions. The action of requesting something
from others can also be considered as cooperative actions. It is obvious that without
some cooperative actions, not all students can achieve their own goals. Even with the
cooperative actions at their disposal, the students might still need to coordinate in cre-
ating their corresponding plans.

In Example 1, agents (the students) maintain their own local worlds and their actions
do generally not affect others’ worlds. It should be emphasized that the fact that agents
have their own world representation does not exclude the situations in which the worlds
of different agents overlap and the execution of one agent’s individual actions might
affect others as well or the execution of their joint-action.

Example 2. Let us consider A and B who are in one room and studying at their tables.
Each of them sits next to a switch which can control the lamp in the room. Flipping
either switch will change the status of the light.

Assume that A and B maintain their world representation separately. (They might
use the same theory for this purpose but we will not impose this.) Obviously, if A flips
the switch next to her, the world in which B is in will also change.

Similarly, if A and B lift a table and place it at different location, their joint-action
change the world of both as well. �

In this paper, we will consider multiagent planning problems in which each agent main-
tains its own representation about the world and its capabilities, which includes individ-
ual actions and cooperative actions; and has its own goal. We are mainly interested in
the process of creating a joint plan prior to its execution. We will begin by extending the
languageA in [12] to allow cooperative actions for a single agent. The semantics of the
new language is defined by a transition function which maps pairs of actions and states
to states. We then define the multiagent planning problems and the notion of a joint
plan for multiagents in presence of cooperative actions. Finally, we discuss a method
for computing joint plans using answer set programming [18,19].

2 An Action Language with Cooperative Actions

In this section, we present a language for representing and reasoning about plans for
an agent in the multiagent environment with cooperative actions. To this end, we ex-
tend the language A in [12] to allow cooperative actions1. In this paper, we consider
cooperative actions as actions that an agent would not have if she were in a single
agent environment. Specifically, we consider two types of cooperative actions, one that
requests the establishment of a condition in an agent’s world and another establishes
some conditions in the world of another agent. We will assume an arbitrary but fixed
set of agent identifiersAG. A planning problem of an agent in AG is defined over a set

1 The choice of A will be discussed in Section 5.
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of fluents (or state variables) F, a set of individual actions A, and a set of cooperative
actions C. We will assume that A always contains a special action wait which does not
have any effect on the agent’s world2. Furthermore, we will require that actions in C do
not appear in A. This highlights the fact that the cooperative actions are presented due
to the presence of other agents.

A fluent literal (or literal) is either a fluent or its negation. Fluent formulas are propo-
sitional formulas constructed from literals and propositional connectives.

2.1 Specifying Individual Actions

A domain specification DI over F and A describes the individual actions of an agent
and consists of laws of the following form:

a causes l if φ (1)

a executable φ (2)

where a is an individual action (in A), l is a fluent literal and φ is a set of fluent literals.
A law of the form (1), called a dynamic law, states that if a is executed when φ is true

then l becomes true. (2) is an executability condition and says that a can be executed
only if φ is true. The semantics of a domain specification is defined by the notion of
state and by a transition function Φ, that specifies the result of the execution of an action
a in a state s.

A set of literals S satisfies a literal l (l holds/is true in S), denoted by S |= l, if l ∈ S.
For a set of literals φ, S |= φ if S |= l for every l ∈ φ. A state s is a set of fluent
literals that is consistent and complete, i.e., for every f ∈ F, either f ∈ s or ¬f ∈ s but
{f,¬f} �⊆ s. In the following, l denotes the negation of l, i.e., if l = f and f ∈ F, then
l = ¬f ; if l = ¬f for some f ∈ F, then l = f . For a set of literals S, S = {l | l ∈ S}.

An action a is executable in a state s if there exists an executability condition
(a executable φ) in DI such that s |= φ.

Let ea(s) = {l | ∃(a causes l if φ) ∈ DI.[s |= φ]}. The result of the execution of
a in s is defined by

• Φ(a, s) = fails if a is not executable in s; and

• Φ(a, s) = (s \ ea(s)) ∪ ea(s) if a is executable in s.

A domain specification DI is consistent if Φ(a, s) �= fails holds for every pair of action
a and state s such that a is executable in s.

Φ is extended to reason about effect of a sequence of actions as follows.

Definition 1 (Transition function). Let DI be a domain specification, s be a state,
and α = [a1; . . . ; an] be a sequence of actions.

• Φ̂(α, s) = s if n = 0;

• Φ̂(α, s) = Φ(an, Φ̂([a1; . . . ; an−1], s)), otherwise

where Φ(a, fails) = fails .

2 We envision a multiagent environment where agents may have to wait for other agents to finish
some actions before they can go on with their course of actions.
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An agent can use the transition function to reason about effects of its actions and to
planning. An action sequence α is a plan achieving a set of literals O from a state I iff
O is true in Φ̂(α, I).

Example 3. The domain specification DIA for A in Example 1 is defined over FA =
{h nail, h screw, mirror on, h ham} and AA = {hw nail, hw screw} with the set
of laws3:

hw nail causes mirror on hw screw causes mirror on
hw nail causes ¬h nail hw screw causes ¬h screw
hw nail executable h nail, h ham hw screw executable h screw

In all of the above, the prefix “hw” stands for “hang with” and “h” stans for “has.” �

2.2 Specifying Cooperative Actions

The specification of the set of cooperative actions of an agent, denoted byDC, is defined
over C and F and consists of laws of the following form:

r requests γ from Ai may cause φ if ψ and (3)

p provides γ for Ai causes φ if ψ (4)

r and p are action names in C, γ, φ, and ψ are sets of literals and γ ⊆ φ, and Ai is a set
of agent identifiers in AG. r is called a request for γ and p an offer for γ. Since these
actions are intended to address other agents, we require that the identifier of the agent
having r and/or p does not belong to Ai. Furthermore, for a request-action, we require
that φ̄∩ψ �= ∅ which indicates that an agent will only request for something that he/she
does not have.

Intuitively, (3) represents a set of requests that can be made by the agent; if the agent
makes the request for γ (which is the action r) directed to an agent in Ai then φ might
become true. The condition γ ⊆ φ guarantees that requested literals (γ) are true if the
request is satisfied (φ). Furthermore, the action can only be executed if ψ is true. For
this reason, we call r(γ, i), i ∈ Ai, an instance of a request (3). Similarly, (4) represents
the set of offers p(γ, i), i ∈ Ai. This offer addresses a request made to the agent by
establishing γ (for the requestor). This action is similar to the individual actions in A of
an agent. The main difference is that they also change the worlds of other agents. It can
only be executed if ψ is true and its effects is φ.

For simplicity of the presentation, we will assume that each action in C occurs in
at most one law of the form (3) or (4). We use cooperative action to refer to either a
request- or an offer-action. WhenAi is the set of all other agents, we often omit the part
’fromAi’ from (3) and ’for Ai’ from (4).

Example 4. In Example 1, it is reasonable for A to request and/or offer other agents
on the literal h nail. An action for requesting for (offering of) h nail for A can be
specified by

give me nail requests h nail from {B, C} may cause h nail if ¬h nail
get this nail provides h nail for {B, C} causes ¬h nail if h nail

3 To simplify the representation, we often write l1, . . . , ln instead of {l1, . . . , ln} in describing
the domain.
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where give me nail is a request-action and get this nail is an offer-action. If the
agent A wants to ask for help, then her set of cooperative actions needs to include the
action give me nail. On the other hand, if she wants to help others, then it should
include the action get this nail. �

Definition 2 (Planning problem with cooperative actions). A planning problem with
cooperative actions4 P is a tuple 〈DI, I, O, DC〉 where DI is a domain specification,
I is a state representing the initial state, O is a set of literals representing the goal, and
DC is a set of laws of the form (3) and (4).

Given a planning problem P = 〈DI, I, O, DC〉, we need to specify what is a “plan”
achieving O in the presence of the cooperative actions. Intuitively, we could consider
these actions as the actions of the agent and use the notion of a plan mentioned in
the previous subsection. This is, however, not enough since an agent, when executes
a request, might or might not receive an offer satisfying his/her request. For example,
a request for a nail from A to C might not result in A having the nail because C has
already given the nail to B.

We will therefore extend the transition function Φ of the domain specification DI
to consider cooperative actions. We will use ΦD to denote the transition function of
DI∪DC. By assuming that cooperative actions are different from the individual actions
(i.e., A∩C = ∅), it suffices to specify what is the result of the execution of a request/offer-
action in a given state.

For simplicity of the presentation, we assume that each individual agent executes
only one action at a time. The method presents in this paper can be easily extended to
the case where individual agents can execute parallel actions.

Let s be a state. We say that an instance r(γ, i) of a request-action specified by the
law

r requests γ from Ai may cause φ if ψ

in DC is executable in s if ψ is true in s. Executing the action r(γ, i) in s does not
guarantee that the agent will obtain φ in the resulting state. This is because the agent,
whom the request was made to, might not have the capability to establish φ for the
requestor. We say that the execution of r(γ, i) in s might or might not succeed. As
such, the result of executing r(γ, i) in s is either s, representing the case when the
request is not satisfied (by the agent whom the request was made to); or (s \ φ) ∪ φ,
representing the case when the request is satisfied.

Remark 1. Observe that under the assumption that an agent will execute a request-
action only when it is necessary (i.e., φ̄∩ψ �= ∅), we have that s �= (s\φ)∪φ for every
instance r(γ, i). This allows us to recognize when a request is satisfied.

An instance p(γ, i) of an offer-action specified by the law

p provides γ for Ai causes φ if ψ

4 For simplicity of presentation, we will use planning problem instead of planning problem with
cooperative actions whenever no confusion is possible.
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in DC is executable in s if ψ is true in s. The state resulting from executing p(γ, i) in s
is given by (s \ φ) ∪ φ.

Definition 3 (Transition function). The transition function ΦD over DI∪DC, a map-
ping from pairs of actions and states to sets of states, is defined as follows. Let s be a
state.

• For a ∈ A, ΦD(a, s) = {Φ(a, s)} if Φ(a, s) �= fails; otherwise, ΦD(a, s) = ∅.
• For an instance of an offer-action p(γ, i), ΦD(p(γ, i), s) = {(s \ φ) ∪ φ} if p is
executable in s; otherwise, ΦD(p, s)=∅.
• For an instance of a request-action r(γ, i), ΦD(r(γ, i), s) = {s, (s \ φ) ∪ φ} if
r(γ, i) is executable in s; otherwise, ΦD(r(γ, i), s) = ∅.

Remark 2. The definition of ΦD assumes that each cooperative action occurs in only
one law of the form (3) or (4). The definition can be extended to remove this restriction
by (i) defining a set ecr(γ,i)(s) (resp. ecp(γ,i)(s)), similar to the definition of the set of
effects of an action ea(s) and (ii) changing the definition accordingly.

The transition function is extended to reason about plans as follows.

Definition 4 (Plan with cooperative actions). Let P be a planning problem
〈DI, I, O, DC〉. We define

• A sequence s0, a0, s1, . . . , an−1, sn, where si’s are states and aj’s are actions, is
a trajectory if si+1 ∈ ΦD(ai, si) for 0 ≤ i < n.

• A trajectory s0, a0, s1, . . . , an−1, sn is a possible plan achieving O (or a solution
of P) if s0 = I and sn |= O.

• An occurrence of a request r(γ, i) = aj in a trajectory s0, a0, s1, . . . , an−1, sn is
satisfied if sj+1 �= sj; otherwise, the request is said to be unsatisfied.

Notice that the third item in the above definition is sensible due to Remark 1. A tra-
jectory satisfying the goal O of the planning problem is a solution of P if all satisfied
requests assumed in the trajectory indeed materialized, i.e., for each satisfied r(γ, i) in
the trajectory, the agent i executes the action p(γ, j) (j is the identifier of the agent
issuing the request). The topic of coordination between agents will be discussed in the
next section.

Example 5. Let PA = 〈DIA, IA, OA, DCA〉 be the planning problem for A with DIA

(Example 3), IA = {¬h nail, ¬h screw,¬h ham, ¬mirror on} and
OA = {mirror on}, and DCA is the set of actions give me nail and get this nail
whose specifications are given (Example 4) and the two actions

give me ham requests h ham from {B, C} may cause h ham if ¬h ham,
get this ham provides h ham for {B, C} causes ¬h ham if h ham.

We can easily check the following:

• for n ≤ 2, the problem has no possible plan.

• for n = 3, PA has a possible plan which is the following trajectory:
sA
0 , give me nail(h nail, C), sA

1 , give me ham(h ham, B), sA
2 , hw nail, sA

3
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where

sA
0 = {¬h nail,¬h ham,¬h screw,¬mirror on},

sA
1 = {h nail,¬h ham,¬h screw,¬mirror on},

sA
2 = {h nail, h ham,¬h screw,¬mirror on},

sA
3 = {¬h nail, h ham,¬h screw, mirror on}. �

3 Planning for Multiagents

In a multiagent environment, each agent needs to know her capabilities. She also needs
to know from whom she can ask for some favors or to whom she could offer helps.
Furthermore, it is also common that groups of agents need to know about their joint
capabilities. It is also possible that agents might talk the same language. This can be
summarized as follows.

• Each agent has its own planning problem, which is described in the previous section.

• The agent might or might not share the same world representation. By default, the
world representation of the agent is local. For example, the three agents in Exam-
ple 1 can use the same set of fluents and actions; and A has ¬h nail in her initial
state whereas B has h nail in hers, yet this is not a contradictory statement about
the world since the fluents are local. On the other hand, the two agents in Exam-
ple 2 share certain features (e.g. the light) and therefore the fluents encoding these
features should have the same value in their representations.

• An agent might request another agent to establish certain conditions in her own
world. For example, A might request B to establish h nail to be true for her.

• An agent might execute some actions that change the local world of another agent.
For example, B can give A the nail, thus establishing h nail in the world of A.

• There might be actions that a set of agents should not execute in parallel. For
example, two cars– one goes north-south and another east-west– cannot cross an
intersection at the same time.

• There might be actions that a set of agents need to execute in parallel. For example,
the action of lifting a table by two agents need to be done in parallel.

It turns out that the language developed in the previous section can be extended to
represent and reason about plans/actions of agents in a multiagent environment. With
the help of the notion of a planning problem with cooperative actions, a multiagent
planning problem can be defined as follows.

Definition 5 (Multiagent planning problem). A multiagent planning problemM is a
tuple 〈AG, {Pi}i∈AG ,F , IC, C〉 where

• AG is a set of agents,

• Pi is a planning problem with cooperative actions for each agent i ∈ AG,

• F is the set of tuples of the form (i, j, fi, fj) where i, j ∈ AG and fi ∈ Fi and
fj ∈ Fj , and

• IC and C are sets of sets of agent action pairs of the form (i, ai) where i is an
agent and ai is an action in Ai.
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Intuitively, each tuple (i, j, fi, fj) indicates that fi and fj represent the same state vari-
able in the worlds of two agents i and j and can be changed by either i or j. This mean
that they should have the same value in every state of i and j. A set of agent-action
pairs {(i1, ai1), . . . , (ik, aik

)} ∈ IC indicates that the agents i1, . . . , ik cannot execute
the actions ai1 , . . . , aik

at the same time. On the other hand, a set of agent-action pairs
{(i1, ai1), . . . , (ik, aik

)} ∈ C indicates that the agents i1, . . . , ik must execute the ac-
tions ai1 , . . . , aik

concurrently for their effects to be materialized. The sets F , IC, and
C are called constraints ofM.

Example 6. The planning problem in Example 1 can be represented by
M1 = 〈{A, B, C}, {PA,PB,PC}, ∅, ∅, ∅〉 where
• A, B, and C are the students from Example 1;

• PA is defined as in Example 5;

• PB = 〈DIB , IB , OB, DCB〉 where DIB is defined over
FB = {h nail, h screw, diploma on, h ham} and AB = {hw nail, hw screw}
with the set of laws:
hw nail causes diploma on hw nail causes ¬h nail
hw nail executable h ham, h nail hw screw causes diploma on
hw screw causes ¬h screw hw screw executable h screw

IB = {h nail, h screw, h ham,¬diploma on} and OB = {diploma on}, and
DCB contains cooperative actions similar to that in DCA and DCC (below).

• PC = 〈DIC , IC , OC , DCC〉 where DIC is defined over

FC = {h nail, h screw, painting on}

AC = {hw screw}

with the set of laws: hw screw causes painting on
hw screw causes ¬h screw hw screw executable h screw
IC = {h nail,¬h screw,¬painting on}, OC = {painting on}, and DCC con-
tains the following laws:

give me screw requests h screw from {A, B} may cause h screw if ¬h screw
get this screw provides h screw for {A, B} causes ¬h screw if h screw �

On the other hand, the problem in Exp. 2 can be represented byM2 as follows.

Example 7. M2 = 〈{A, B}, {PA,PB},F , IC, ∅〉 where IC = {{(A, flip1),
(B, flip2)}}, F = {(A, B, light on, light on)}, and PA and PB are the planning
problems of A and B, respectively, where
• PA = 〈DIA, IA, OA, ∅〉 where DIA is defined over FA = {light on} and AA =
{flip1} with the set of laws:

flip1 causes light on if ¬light on flip1 causes ¬light on if light on

Finally, IA = {¬light on} and OA = {light on}.
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• PB = 〈DIB , IB , OB, ∅〉 where DIB is defined over FB = {light on} and AB =
{flip2} with the set of laws:

flip2 causes light on if ¬light on flip2 causes ¬light on if light on

Finally, IB = {¬light on} and OB = {light on}. �

We now define the notion of a solution for a planning problem.

Definition 6 (Joint plan for multiagents). Let M = 〈AG, {Pi}i∈AG ,F , IC, C〉 be
a multiagent planning problem. For each i ∈ AG, let Si = [si

0a
i
0, . . . , a

i
n−1s

i
n] be a

possible plan of Pi. We say that {Si}i∈AG is a joint plan (or solution) of length n for
M if for every 0 ≤ k ≤ n:

• for each instance of a request ai
k = r(γ, j) that is satisfied in Si, we have that

aj
k = p(γ, i);

• for each (i, j, fi, fj) ∈ F , fi ∈ si
k iff fj ∈ sj

k;

• for each S ∈ IC, there exists some (i, a) ∈ S such that ai
k �= a; and

• for each S ∈ C, either {a | (i, a) ∈ S and a = ai
k} = {a | (i, a) ∈ S} or

{a | (i, a) ∈ S and a = ai
k} = ∅.

Intuitively, a joint plan is composed of individual plans which allow the agents to
achieve their own goals and satisfy the various constraints of the problem. In the pro-
cess, agents can help each other in establishing certain conditions. However, if a request
of an agent is assumed (by the requestor) to be satisfied within a joint plan then the joint
plan must also contain an agent who actually executes an offer action satisfying the re-
quest (first item). The second item states that the individual plans must agree with each
other on their effects of shared fluents, i.e., it enforces the constraints in F . The third
and fourth items make sure that non-parallel and parallel constraints in IC and C are
maintained by the joint plan.

Example 8. For the multiagent planning problemM1 from Example 6, We can easily
check the following:

• for n ≤ 2,M1 has no solution.

• for n = 3, it has a solution consisting of the following plans

• SA = [sA
0 , give me nail(h nail, C), sA

1 , give me ham(h ham, B),
sA
2 , hw nail, sA

3 , wait, sA
4 ]

• SB = [sB
0 , hw nail, sB

1 , get this ham(h ham, A),
sB
2 , get this screw(h screw, C), sB

3 , wait, sB
4 , ]

• SC =[sC
0 , get this nail(h nail, A), sC

1 , wait, sC
2 , give me screw(h screw, B),

sC
3 , hw screw, sC

4 ]
where all requests are satisfied and the states are uniquely determined by the initial
states and the executed actions. �

The joint plan for the agents in Example 8 requires that each agent executes some
cooperative actions. It is easy to see that any joint plan for the two agents in the problem
M2 requires that only one agent to flip the switch next to her and other agent to wait.
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4 Computing Joint Plans

In this section, we will present different approaches to computing joint plans. Our ap-
proaches utilize answer set programming [18,19], a declarative programming paradigm
that has recently emerged from the study of logic programming under the answer set
semantics [11].

4.1 Answer Set Semantics of Logic Programs

A logic program Π is a set of rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an (5)

where 0 ≤ m ≤ n, each ai is an atom of a propositional language5 and not represents
negation-as-failure. A negation as failure literal (or naf-literal) is of the form not a
where a is an atom. For a rule of the form (5), the left (right) hand sides of the rule
are called the head (body), respectively. The head and the body can be empty (but not
at the same time). A rule is a constraint if its head is empty; it is a fact if its body is
empty.

Consider a set of ground atoms X . The body of a rule of the form (5) is satisfied by
X if {am+1, . . . , an} ∩ X = ∅ and {a1, . . . , am} ⊆ X . A rule of the form (5) with
nonempty head is satisfied by X if either its body is not satisfied by X or a0 ∈ X . In
other words, X satisfies a rule of the form (5) if its head belongs to X whenever X
satisfies its body. A constraint is satisfied by X if its body is not satisfied by X .

For a set of ground atoms S and a program Π , the reduct of Π w.r.t. S, denoted by
ΠS , is the program obtained from the set of all ground instances of Π by deleting

1. each rule that has a naf-literal not a in its body with a∈S, and

2. all naf-literals in the bodies of the remaining rules.

S is an answer set of Π if it satisfies the following conditions.

1. If Π does not contain any naf-literal (i.e. m = n in every rule of Π) then S is the
smallest set of atoms that satisfies all the rules in Π .

2. If the program Π does contain some naf-literal (m < n in some rule of Π), then S
is an answer set of Π if S is the answer set of ΠS. (Note that ΠS does not contain
naf-literals, its answer set is defined in the first item.)

A program Π is said to be consistent if it has an answer set. Otherwise, it is inconsistent.
To make answer set style programming easier, Niemelä et al. [20] introduce a new type
of rules, called cardinality constraint rule (a special form of the weight constraint rule)
of the following form:

A0 ← A1, . . . , Am,not Am+1, . . . ,not An

where each Ai is a choice atom of the form l{b1, . . . , bk}u with bj are atoms and l and
u are two integers, l ≤ u; and A0 can be empty. An atom l{b1, . . . , bk}u is said to be
true wrt. a set of literals S iff l ≤ |S ∩{b1, . . . , bk}| ≤ u. The satisfaction of a rule wrt.

5 Rules with variables are viewed as a shorthand for the set of its ground instances.
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a set of atoms is extended in the usual way. Using rules of this type, one can greatly
reduce the number of rules of programs in answer set programming. The semantics of
logic programs with such rules is given in [20].

4.2 Finding a Possible Plan for One Agent

We will represent each individual problem of each agent Pi by a logic program. The
program will consist of rules describing the effects of actions, the initial knowledge of
the agent, and the goal of the agent. Answer set planning [16] refers to the use of answer
set programming in planning. This method has been applied to a variety of problems
[10,26]. Let P = 〈DI, I, O, DC〉 be a planning problem. We will now describe the
program Π(P) that encodes P . We adapt the conventional style in logic programming:
terms starting with lower-case letter are constant and others are variables. It also has a
parameter denoting the maximal length of the plan that the agent considers permissible.
The key predicates of Π(P) are:

• h(l, t) – fluent literal l holds at the time step t; and

• o(a, t) – action a is executed (by the agent) at the time step t;

• poss(a, t) – action a can be executed at the time step t.

h(l, t) can be extended to define h(φ, t) for an arbitrary fluent formula φ, which states
that φ holds at the time moment t. In writing the program, we use h({l1, . . . , lk}, T )
as a shorthand for h(l1, T ), . . . , h(lk, T ). In addition, we write ok(r(γ, i), t) to denote
that the request-action r(γ, i) is satisfied at the time step t. The rules of the program is
divided into groups:

• Group 1: The program contains the following facts:

{fluent(f) | f ∈ F} ∪ {action(a) | a ∈ A}∪
{action(r(γ), i) | r occurring in a law of form (3), i ∈ Ai}∪
{action(p(γ), i) | p occurring in a law of form (4), i ∈ Ai}

These facts declare the fluents and the actions of the problem.

• Group 2: rules for reasoning about effects of actions. For each action a ∈ A,

- if DI contains the law (a executable φ) then Π(P) contains the rules

poss(a, T )← h(φ, T ) (6)

← o(a, T ),not poss(a, T ) (7)

- if DI contains the law (a causes l if φ) then Π(P) contains the rule

h(l, T + 1)← o(a, T ), h(φ, T ) (8)

• Group 3: rules for reasoning about request-actions. For each statement of the form

r requests γ from Ai may cause φ if ψ



Reasoning and Planning with Cooperative Actions for Multiagents 219

and each i ∈ Ai, Π(P) contains the rules

poss(r(γ, i), T )← h(ψ, T ) (9)

← o(r(γ, i), T ),not poss(r(γ, i), T ) (10)

0 {ok(r(γ, i), T + 1)} 1← o(r(γ, i), T ). (11)

h(φ, T )← ok(r(γ, i), T ) (12)

where (12) is a shorthand for the collection of rules {h(l, T )← ok(r(γ, i), T ) | l ∈
φ}. Observe that atoms of the form ok(r(γ, i), T ) are used to record the satisfaction
of the request r(γ, i) and there might be different ways for a condition γ to be
satisfied. Hence, (11) and (12) need to be separated even though it looks like they
could have been merged into one.

• Group 4: rules for reasoning about offer-actions. For each statement of the form

p provides γ for Ai causes φ if ψ

and i ∈ Ai, Π(P) contains the rules

poss(p(γ, i), T )← h(ψ, T ) (13)

← o(p(γ, i), T ),not poss(p(γ, i), T ) (14)

h(φ, T + 1)← o(p(γ, i), T ). (15)

These rules are similar to the rules encoding the effect of individual actions of the
agent. The difference between the encoding of a request-action and the encoding
of an offer-action lies in that we do not need to introduce an atom of the form
ok(p(γ, i), T ) to record the execution of p(γ, i), i.e., effects of offer-actions are
deterministic.

• Group 5: rules describing the initial state. For each literal l ∈ I , Π(P) contains the
fact h(l, 0).
• Group 6: rules encoding the goal state. For each literal l ∈ O, Π(P) contains

← not h(l, n). (16)

where n is the desired length of the plan.

• Group 7: rules for reasoning by inertial. For each fluent F ∈ F, Π(P) contains

h(F, T + 1)← h(F, T ),not h(¬F, T + 1). (17)

h(¬F, T + 1)← h(¬F, T ),not h(F, T + 1). (18)

← h(F, T ), h(¬F, T ). (19)

• Group 8: rules for generating action occurrences. Π(P) contains the rule

1 {o(A, T ) : action(A)} 1← T < n. (20)

which states that at any time step, the action must execute one of its actions6.

6 Since we assume that wait always belongs to the set of actions of an agent, this is not a strict
requirement as it might sound.
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Example 9. As an example, some of the rules encoding the problem PA in Example 3
is given next

fluent(h nail)←
h(mirror on, T + 1)← o(hw nail, T ).

h(¬h nail, T + 1)← o(hw nail, T ).
poss(hw nail, T )← h(h nail, T ), h(h ham, T ).

← o(hw nail, T ),not poss(hw nail, T ).
h(¬h nail, 0)←

h(¬h screw, 0)←
← not h(mirror on, n).

The first rule defines the fluent h nail. The next four rules encode the executability
condition of the action hw nail and its effects. The next two rules specify a part of the
initial state and the last rule encodes the goal.

It is instructive to discuss the encoding of the two actions give me nail and
get this nail. For the action give me nail and b (representing the agent B), we have
the following rules:

poss(give me nail(h nail, b), T )← h(¬h nail, T ).
← o(give me nail(h nail, b), T ),not poss(give me nail(h nail, b), T ).
0 {ok(give me nail(h nail, b), T + 1)} 1← o(give me nail(h nail, b), T ).
h(h nail, T )← ok(give me nail(h nail, b), T ).

and for the action get this nail, we have the rules:

poss(get this nail(h nail, b), T )← h(h nail, T ).
← o(get this nail(h nail, b), T ), poss(get this nail(h nail, b), T ).
h(¬h nail, T + 1)← o(get this nail(h nail, b), T ).

Let P = 〈DI, I, O, DC〉 be a planning problem and Π(P , n) denote the set of ground
rules of Π(P) in which the variable T is instantiated with integers between 0 to n. Let
M be an answer set of Π(P , n). Let st[M ] = {l | l is a fluent literal and h(l, t) ∈M}.
By α[M ] we denote the sequence s0[M ], a0, s1[M ], . . . , an−1, sn[M ] where o(ai, i) ∈
M . We can show the following:

Theorem 1. Let P = 〈DI, I, O, DC〉 be a planning problem. Then,

• for each possible plan α of P there exists an n and an answer set M of Π(P , n)
such that α = α[M ];
• for each n, if Π(P , n) has an answer set M then α[M ] is a solution of P; and

• for each n, if Π(P , n) is inconsistent then P does not have a solution of length
less than or equal to n.

Proof. (Sketch) The proof of the first two items is similar to the proof of Theorem 3.2
in [22] and relies on the following properties of an answer set M of Π(P , n):
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– if o(a, i) ∈M then a is executable in si[M ] and si+1 ∈ ΦD(a, si[M ]); and

– O is satisfied by sn[M ].

The last item is obvious given the first two items. �

4.3 Compatible Answer Sets and Joint Plan

Individual possible plans can be computed using the program Π(Pi). We will now
discuss an approach for combining them to create a plan for all the agents. Intuitively,
we need to make sure that if a request is assumed to be satisfied by an agent then
there exists an instance of an offer-action matching this request. This can be easily
characterized by the notion of a compatible answer sets.

Definition 7 (Compatible answer sets). Let M = 〈AG, {Pi}i∈AG,F , IC, C〉 be a
multiagent planning problem and M = 〈Mi〉i∈AG be a sequence of answer sets of
〈Π(Pi, n)〉i∈AG where the constant n is fixed. M is a set of compatible answer sets if
for each k ≤ n,

• for each i ∈ AG, if ok(r(γ, j), k + 1) ∈Mi then o(p(γ, i), k) ∈Mj;

• for each i ∈ AG, if o(p(γ, j), k) ∈Mi then ok(r(γ, i), k + 1) ∈Mj;

• for each (i, j, fi, fj) in F , h(fi, k) ∈Mi iff h(fj , k) ∈Mj;

• for each S ∈ IC there exists some (i, ai) ∈ S such that o(ai, k) �∈Mi; and

• for each S ∈ C, either {ai|(i, ai) ∈ S and o(ai, k) ∈ Mi} = {a|(i, a) ∈ S} or
{ai|(i, ai) ∈ S and o(ai, k) ∈Mi} = ∅.

Intuitively, a set of compatible answer sets corresponds to a joint plan (as we will prove
in the next theorem) similar to the correspondence between answer sets and plans in
the case of a single agent. Observe also that ok(r(.), T ) is present only due to the
successfulness of a request-action, not an offer-action. The conditions imposed on a set
of compatible answer sets make sure that the collection of individual plans extracting
from them satisfies the constraints of the planning problem and the requirement that
satisfying requests must be matched with offers.

Theorem 2. LetM = 〈AG, {Pi}i∈AG,F , IC〉 be a multiagent planning problem and
n be an integer.

• a sequence of answer sets M = 〈Mi〉i∈AG is compatible iff there exists a solution
S = 〈αi〉i∈AG such that α[Mi] = αi for every i ∈ AG.

• if 〈Π(Pi, n)〉i∈AG does not have a set of compatible answer sets thenM does not
have a solution with length n.

Proof. (Sketch) The conclusion of the first item can be derived from the definition of
compatibility answer sets, Theorem 1, and the definition of a solution. The conclusion
of the second item follows from the first item and Theorem 1. �

Example 10. Let M1 be the multiagent planning problem from Example 6. We can
easily check the following:
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• {Π(Pi, n)}i∈{A,B,C} for n ≤ 2 does not have compatible answer sets,

• for n = 3, the three answer sets MA, MB , and MC of Π(PA, 3), Π(PB, 3), and
Π(PC , 3), where

• MA contains o(give me nail(h nail, c), 0), ok(give me nail(h nail, c), 1),
o(give me ham(h ham, b), 1), ok(give me ham(h ham, b), 2),
o(hw nail, 2), and o(wait, 3).
• MB contains o(hw nail, 0), o(get this ham(h ham, a), 1),

o(get this screw(h screw, c), 2), o(wait, 3); and

• MC contains o(get this nail(h nail, a), 0), o(wait, 1), o(give me screw
(h screw, b), 2), ok(give me screw(h screw, b), 2), and o(hw screw, 3).

These answer sets are compatible and correspond to the solution in Example 5. �

The notion of joint plan can be specialized as follows.

Definition 8 (Optimal Joint Plan). LetM = 〈AG, {Pi}i∈AG,F , IC, C〉 be a multia-
gent planning problem and {Si}i∈AG be a plan forM. We say that {Si}i∈AG is optimal
if there exists no unsatisfied request actions in {Si}i∈AG .

Remark 3. The program Π(Pi) can be easily adapted to generate only optimal plans.
Indeed, the only modification that needs to be done is to replace the rule (11) with

ok(r(γ, i), T + 1)← o(r(γ, i), T ).

Intuitively, this rule states that the request r(γ, i) is satisfied. Thus, if a joint plan is
found it will not contain any unsatisfied requests, i.e., it must be optimal.

Definitions 6 and 7 provide us with a way for computing joint plans of length n for a
planning problemM. The process involves (i) computing a set {Mi}i∈AG of answer
sets, where Mi is an answer set of Π(Pi, n); and (ii) checking the compatibility of
{Mi}i∈AG . In what follows, we discuss a method for doing it. This method computes
a joint plan by (a) forming a program representingM from the programs representing
the individual plans and the set of constraints inM; and (b) extracting joint plan from
answer sets of the new program. This method is useful if the planning problemM is
known to an agent or a manager.

4.4 Computing Joint Plans by Answer Set Programming

LetM = 〈AG, {Pi}i∈AG,F , IC, C〉 be a planning problem. We will define a program
Π(M) whose answer sets represent the solutions of M. M is constructed from the
programs Π(Pi) for i ∈ AG as follows. For each i ∈ AG, let Πi(Pi), referred as
the tagged version of Π(Pi), be the program obtained from Π(Pi) by replacing every
literal x in Π(Pi) with the atom xi (e.g., action(a)i for action(a), h(f, t)i for h(f, t),
etc.). The program Π(M) consists of
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• for each i ∈ AG, the tagged version Πi(Pi) of Π(Pi);
• for each tuple (i, j, f i, f j) in F , the constraints

← hi(f i, T ), hj(¬f j , T ) (21)

← hi(¬f i, T ), hj(f j , T ) (22)

ensure that shared variables maintain their consistency.

• for each set S = {(i1, a1), . . . , (ik, ak)} in C, the constraint

← 0 {oi1(a1, T ), . . . , oik(ak, T )} k − 1 (23)

which makes sure that if a part of S is executed, i.e., o(ij , aj) belongs to an answer
set, then the whole set S is executed.

• for each set {(i1, a1), . . . , (ik, ak)} in IC, the constraints

← oi1(a1, T ), . . . , oik(ak, T ) (24)

This constraint guarantees that not all the actions a1, . . . , ak are executed at the
same time.

• for every pair of instance r(γ, j) and p(γ, i) of a request-action r (for γ) of an agent
i and an offer-action p (for γ) of an agent j, the following constraints

← oi(r(γ, j), T ), oki(r(γ, j), T + 1),not oj(p(γ, i), T ) (25)

← oj(p(γ, i), T ),not oi(r(γ, j), T ) (26)

← oj(p(γ, i), T ),not oki(r(γ, j), T + 1) (27)

The first constraint makes sure that if i requests for γ from j and it is satisfied then
j does indeed offer the service. The last two rules guarantee the converse.

For a set X of literals in the language of Π(M), let X |i = {a | a is a literal in the
language of Π(Pi) and ai ∈ X}. We have:

Theorem 3. LetM = 〈AG, {Pi}i∈AG ,F , IC, C〉 be a multiagent planning problem.
M is an answer set of Π(M, n) iff there exists a set of compatible answer sets
{Mi}i∈AG such that M |i = Mi.

The proof of Theorem 3 relies on the Splitting Theorem for logic programs [17]. It is
divided into two steps. First, it is proved for program without the constraints (21)-(27).
The significance of this proposition is that it allows us to compute the solution of a
multiagent planning problem by computing a single answer set of P(M). Since the
problem of determining whether a propositional program has an answer set or not is
NP-complete, the following holds.

Corollary 1. Determining whether a solution of polynomial bounded length of a mul-
tiagent planning problemM exists or not is NP-complete.
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5 Related Works

Multiagent planning could be viewed as a special case of distributed problem solving
[9]. In this respect, our work could be viewed as one in the Centralized Planning for
Distributed Plans group according to the classification in [9]. This is achieved by the
program Π(M). Alternatively, the individual plans can also be computed distributedly
and coordinated using the program consisting of the constraints (21)-(27) and the tagged
versions of the individual answer sets.

Our main goal is to generate a joint plan for the agents before its execution. In this
regards, our work differs from many distributed continual planning systems that were
discussed in the survey [7] and many papers presented in the recent AAMAS confer-
ences which concentrate on planning and replanning or dealing with unexpected events
during the plan execution.

Our approach to generating a joint plan in this paper blends the two components
“planning” and “coordination” in the equation

Multiagent planning = Planning + Coordination

presented in [6] into a single step. Furthermore, we employ a plan representation that
allows for the coordination to be done by using time-steps presented in individual plans.
This is different from several other systems in which partial order plans are used for plan
representation and refinement planning is used for coordination (e.g., [4,3] or earlier
works such as the Partial Global Planning framework).

We use answer set programming [16], a method that has been used for single agent
planning [10,26], in computing the joint plan. The declarativeness and modularity of
answer set programming make the process of computing the joint plan fairly simple and
simplify the coordination of the plans7. Our work is similar to the spirit of that in [8]
where an attempt is made to construct joint plan using SAT-based single agent planner.
Nevertheless, our use of answer set programming does not require the development of
additional algorithms to assemble the final joint plan.

In [2], a language based on PDDL for modeling multiagent planning problems has
been proposed that allows for the specification of and reasoning about several features
important for multiagent planning and execution such as concurrency, individual and
mutual beliefs of agents, planning and acting with incomplete information, communi-
cation, continuous events, etc. A special agent, called env, is present in all problems
for modeling the environment which may act “unpredictably”. Our language is less ex-
pressive than the above mentioned language as our focus is solely on the generation of a
joint plan prior to its execution. On the other hand, the semantics provided in this paper
can be used to prove formal properties of plans as well as the correctness of the logic
program encoding of multiagent planning problem.

We note that collaborative actions presented in this paper is also suitable for the mod-
eling of multiagent planning with resources. Requesting for a resource and offering a
resource can be modeled in a similar fashion to that of asking for and offering of a
nail (Example 4). Since our focus is the generation of joint plan before execution, the

7 Recall that this is achieved by simply adding the rules (21)-(27).
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proposed language is different from the resource logic introduced in [5], whose focus
was on the plan merging phase. The requesting/offering actions can be seen as special
case of negotiation actions discussed in [27].

We would like to point out that we use A because of its simple semantics and its
close relationship to PDDL, the language developed for describing planning problems
[14]. This means that other extensions or variations of A (e.g,. B, C [13], E [15]) could
also be extended to formalize cooperative actions. Observe that there are subtle differ-
ences between request actions and non-deterministic actions. First, a cooperative action
changes the world of other agents while a non-deterministic action does not. Second, a
cooperative action does not change the world of the agent executing this action, while
a non-deterministic action does. In this sense, a cooperative action of an agent is like
an exogenous action for other agents. Thus, modeling cooperative actions using non-
deterministic actions might not be the most natural way.

Finally, we would like to note that an extension of the STRIPS language has been
considered for multiagent planning in [1]. In this framework, a multiagent planning
problem is formulated as a single problem and agent identifiers are attached to the ac-
tions, which is different from what we proposed here. As such, the framework in [1] is
only appropriate for domains where no privacy among agents is required. This is not an
issue in our formulation.

6 Conclusions and Future Works

We extend the action language A to define a language for representing and reasoning
about actions and their effects in presence of cooperative actions between agents. We
define the notion of a plan with cooperative actions and use it in formalizing the notion
of a joint plan. We use answer set programming to generate joint plans. We introduce
the notion of a set of compatible answer sets and provide a translation of a multiagent
planning problem to a logic program whose answer sets represent joint plans.

The work so far has focused on the development of a theoretical framework for gen-
erating joint plans using answer set programming. The encoding of the examples are
available in the technical report version of this paper [25]. It is worth noting that we
have been able to extended the work to allow negotiation in multiagent planning [24].
Our immediate goal for the future is to investigate the scalability and efficiency of the
proposed method. The use of answer set programming allows us to easily incorporate
preferences or domain knowledge in the generation of the joint plans [22,23]. Addi-
tionally, we would like to explore the use of more expressive languages (e.g., action
languages with constraints and sensing actions) in representing and reasoning about
joint-plans of multiagents by addressing various questions mentioned in [2]. This is be-
cause the method provides in Section 2 has proved to be very effective in the single
agent case (e.g. [26]).
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Abstract. We define a framework based on computational logic technol-
ogy and on a reactive axiomatization of the Event Calculus to formalize
the evolution of commitments in time. We propose a new characteri-
zation of commitments with time that enables a rich modeling of the
domain, various forms of reasoning, and run-time and static verification.

1 Introduction

Social commitments are commitments made from an agent to another agent to
bring about a certain property. In broad terms, a social commitment represents
the commitment that an agent, called debtor, has towards another agent, called
creditor, to bring about some property or state of affairs, which is the subject of
the commitment. In some instantiations of this idea, such as [7,16], the subject
of a commitment is a temporal logic formula.

Commitments are a well-known concept in Multi-Agent Systems (MAS) re-
search [2,14]. Representing the commitments that the agents have to one another
and specifying constraints on their interactions in terms of commitments provides
a principled basis for agent interactions [15]. From a MAS modelling perspec-
tive, a role can be modelled by a set of commitments. For example, a seller in an
online market may be understood as committing to its price quotes and a buyer
may be understood as committing to paying for goods received. Commitments
also serve as a natural tool to resolve design ambiguities. The formal semantics
enables verification of conformance and reasoning about the MAS specifications
[6] to define core interaction patterns and build on them by reuse, refinement,
and composition.

Central to the whole approach is the idea of manipulation of commitments:
their creation, discharge, delegation, assignment, cancellation, and release, since
commitments are stateful objects that change in time as events occur. Time
and events are, therefore, essential elements. Some authors distinguish between
base-level commitments, written C(x, y, p), and conditional commitments, writ-
ten CC(x, y, p, q) (x is the debtor, y is the creditor, and p/q are properties).
CC(x, y, p, q) signifies that if p is brought out, x will be committed towards y to
bring about q.

In this work we give emphasis to temporal aspects of commitments. We build
from previous research by Mallya et al. [12,11]. In our opinion, they represent
the best articulated research on time-enhanced commitments to date. The main

M. Baldoni et al. (Eds.): DALT 2009, LNAI 5948, pp. 228–243, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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idea in these articles is to extend a commitment framework with a way to de-
scribe time points and intervals, and alternative outcomes due to commitments
extending into the uncertain future. The perspective on commitment-related
temporal issues proposed by [12] mainly aims to capture the idea of validity of a
commitment. Thus the previous notation C(x, p, y) is extended with existential
and universal temporal quantifiers, which become prefixes of p. There are two
types of quantification. By an existential quantification, [t1, t2]p, we mean that p
is true at one or more moments in the interval beginning at t1 and ending at t2.
By a universal quantification, [t1, t2]p, we indicate instead that p is true at every
moment in the interval beginning at t1 and ending at t2. Nestings are possible.
For example, a commitment from x to y that q is going to hold at every moment
in a week beginning on some day between the 1st and 20th of February could
be written as follows: C(x, y, [01.02.2009, 20.02.2009]([tstart, tstart + 7days]q)).

This is an elegant approach which decouples the temporal quantification from
the proposition, enabling reasoning about the temporal aspect without regard
to the propositions’ meaning. However, there are still some cases in which such
a characterization is difficult to use in practical applications. The main prob-
lems are due to the lack of variables in temporal logic expressions, and from
the separation between such expressions and the other parts of the represented
knowledge. Among the aims of this work there is our intention to identify such
cases and discuss them.

Along with a notation to express commitments, we need a language to express
operations on commitments. For example, Yolum and Singh propose a notation
based on the Event Calculus temporal representation language to describe com-
mitment manipulation inside an operational framework [16]. Moreover, from a
design perspective, we need an architecture in which a commitment notation, a
temporal representation language and a specification and verification framework
are given a specific role.

In this paper, we discuss our ongoing research about commitment frame-
works. We start by introducing some issues regarding social commitment mod-
eling, and define a number of desiderata for social commitment frameworks. We
then propose a new notation for commitments and commitment specification
programs: the Commitment Modeling Language (CML). Finally, we outline an
abstract commitment framework architecture and a concrete instance of it that
supports CML. In such an instance, temporal reasoning with commitments is
operationalized using a reactive implementation of the Event Calculus and var-
ious verification tasks can be accomplished thanks to an underlying declarative,
computational logic-based framework.

2 Some Issues Regarding Modeling

The following informal discussion is example-driven. Examples are mainly taken
from the literature. We start by observing that in some cases Mallya et al.’s no-
tation can be simplified, considering that to represent an existentially quantified
time interval it is sufficient to represent a time point using a variable with a
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domain. We then sketch a new possible notation that accommodates variables
with domains and temporal modeling in several dimensions. Again, based on
literature examples, we demonstrate the possible usage of rules to model condi-
tional commitments. Finally we discuss time associated with commitment state
changes and the issue of compensation.

2.1 Time Variables, Rules and Constraints

Let us analyze the scenario proposed by Mallya et al. in [12].

Example 1. A travel agent wishes to book an airline ticket to a certain destina-
tion, a rental car to use while there, and a hotel room at which to stay. Consider
four situations:

– Situation 1.1. The travel agent wants the passenger to fly on a particular
day while still reserving the right to choose any flight on that day. If the
airline offers such a deal, it becomes committed to maintaining a condition—
a booked ticket—over an extended time period.

– Situation 1.2. The car rental company offers a one-week free rental in
January.

– Situation 1.3. A hotel offers an electronic discount coupon that expires today,
but text on the coupon states that it can only be used during a future spring
break. Note that in this case the commitment violates a constraint about
time. In fact, the coupon expires before it can be used.

– Situation 1.4. The car rental company guarantees that its cars will not break
down for at least two days, promising an immediate replacement if one does.
However, if the company is closed on weekends, then a customer who rents
a car on a Friday would not benefit from the warranty if the car broke down
on Saturday. Thus in this case the car rental company offers a warranty that
cannot be used during the period in which the warranty is valid. �

Following [12], we use the symbols h for hotel, g for guest, r for rental company, c
for customer, a for airline and p for the proposition, subject of the commitment.
How do we model the situations above using commitments?

Situation 1.1. Let p represent that a ticket booking is guaranteed. Thus, using an
existential temporal quantifier, [t1, t1+24hrs]p, we express that a ticket booking
is guaranteed for 1 day, as of t1 [12].

However, in practical applications, it may be interesting to explicitly model
the time at which the commitment is satisfied (e.g., when the ticket is issued). To
this end, we could use an alternative notation, which associates p with a variable,
and binds such a variable to a domain interval: [T ]p, T ∈ [t1, t1 + 24hrs]. We
write the commitment as follows:

C(a, g, [T ]p), t1 ≤ T, T ≤ t1 + 24hrs. (1)

In this way, the commitment is satisfied if there is a possible value of T
which falls in the range [t1, t1 + 24hrs], and such a value can be used for further
inferences.
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Situation 1.2. Let p denote free rental, and t1 January 1st. Thus, using a univer-
sal temporal quantifier, guaranteed free rental for 7 days as of time t3 is denoted
by [t3, t3 + 7days]p. Then to express that such an interval [t3, t3 + 7days] is inside
January, Mallya et al. [12] use a condition on t3, namely t1 ≤ t3 ≤ t1 + 24days,
and they attach an existential temporal quantifier outside of the quantifier above:
[t1, t1 + 31days]([t3, t3 + 7days]p), t1 ≤ t3 ≤ t1 + 24days.

Let us now use the notation introduced above, instead of existential temporal
quantification. We obtain [T, T +7days]p, t1 ≤ T, T ≤ t1 +24days. Note that we
simplified the notation. In particular, we do not need do distinguish any more
between existentially/universally quantified time intervals, because all intervals
are universally quantified, and we can drop the over-line notation. The resulting
commitment is:

C(r, c, [T, T + 7days]p), t1 ≤ T, T ≤ t1 + 24days. (2)

Situation 1.3. Mallya et al. propose the following solution:

C(h, c, [t1, t1 + 24hrs]([t3, t3 + 7days]p)), t1 + 24hrs < t3,

where t1, t1 + 24hrs is “today” (before spring break) and spring break starts
on t3 and lasts one week. In this way, we obtain two disjoint intervals. The
commitment should be resolved before the end of the first interval in order not
to be breached, however it can only be resolved during the second interval, which
implies that it will be necessarily breached. An alternative notation for the same
commitment is the following:

C(h, t, [Ts, Te]p), t1 ≤ Ts, Te ≤ t1 + 7days, t3 ≤ Ts, Te ≤ t3 + 24hrs. (3)

In this way, we eliminate the need for nested intervals, and unresolvability can
automatically be discovered by basic CLP inference [9].

Situation 1.3 shows that in a specific case, we can do away with nesting. In
general, all existential temporal quantifiers can be mapped onto CLP domain
restrictions, so the need for nesting intervals is only due to nested universal
temporal quantifiers. An example of such a situation is the following:

Example 2. The car rental company offers a one-week free rental every month,
for the whole 2009. �

In this case, we cannot do away with nested intervals. It is possible to extend
Mallya et al.’s Solution 2 and write

[t1, t1 + 12months]([t3, t3 + 7days]p), t1 ≤ t3 ≤ t1 + 24days,

however that does not capture the “every month” concept, due to lack of do-
main variables. A different notation is needed. For example, we may use nested
commitments, instead of nested intervals. Alternatively, if the “every month”
concept is often used in the domain, we could define a new (non-binary) con-
straint and a dedicated propagation algorithm which ensures a very compact
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notation and an efficient inference process. Non-binary (global) constraints are
one of the prominent features of constraint programming frameworks. It may
well be that a global constraints that we can use is already available off-the
shelf.1

Situation 1.4. Mallya et al. propose the following solution:

C(r, c, ([t1, t1 + 2days]great car ∨ [t1, t2]replace car)), t2 < t1 + 2days,

where great car means that the car has not broken down, and replace car rep-
resents the warranty that the rental company gives on the quality of the car,
t1 denotes the instant at which the car is rented on Friday and t2 denotes the
closing of the rental company on Friday. Using the framework presented in [12]
is it possible to reason on this “warranty paradox” using CTL and realize that
the warranty cannot be enjoyed if the car is rented on a Friday and it breaks
down on Saturday.

Note that this modeling, however intuitive, may give rise to some counter-
intuitive results. For example, c may decide to satisfy the commitment by
replacing a perfectly functioning car with a broken car.

If we wish to follow Situation 1.4’s description more literally, we should opt for
a different formalization. For example, the commitment about the replacement
car should only be a consequence of the car breaking down:

C(r, c, [T ]replace car)← t1 ≤ T, T ≤ t2,H(break down, T ), T ≤ t1 +2days (4)

where by H(break down(T )) we denote an event occurred (“Happened”) at time
T . Again, it is possible to reason on the “warranty paradox” using basic CLP
inference. The result of such a reasoning would be a “real” validity interval for
the warranty, which excludes Saturday.

Thus using a rule-based notation we can express many situations in a faith-
ful way. In particular, it would be possible to express conditional commitments.
However, there is another possible solution, based on the concept of compen-
sation. A compensation is an action to be taken to recover from a situation of
violation. To this end, we need to explicitly denote the state of commitments.
For instance, we can write [t]viol(C(x, y, p)) to indicate that a commitment has
been violated at time t (due to an event occurring at time t which falsifies p, or
due to the elapsing at time t of a time interval in which p was supposed to be
verified). We obtain:

C(r, c, [t1, t2]great car). (5)
C(r, c, [Tr]replace car)← [Tb]viol(C(r, c, [Ts, Te]great car)),

Ts ≤ Tb, Tb ≤ Ts + 2days, Tb ≤ Te, Tb ≤ Tr.
(6)

1 See Beldiceanu and Carlsson’s global constraints catalog,
http://www.emn.fr/x-info/sdemasse/gccat/

http://www.emn.fr/x-info/sdemasse/gccat/
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(Tb is the time of break down, Tr is the time of replacement). Alternatively,
using an extended notation, we could write:

compensate(r, c, [Tr]replace car, C(r, c, [Ts, Te]great car), Tb))←
Ts ≤ Tb, Tb ≤ Ts + 2days, Tb ≤ Te, Tb ≤ Tr.

(7)

More on compensations below.
Note that we can easily refine the rules above to specify what “immediate

replacement” means (1 day? 3 hours?), by posing another constraint between Tb

and Tr, other than Tb ≤ Tr.

2.2 Time of Commitments

Another temporal dimension could be interesting in many applications. It is the
time of the commitment itself. To the best of our knowledge, this dimension has
not been considered by previous research.

Example 3. Consider a university-like agent organization, in which agent x and
faculty f belong to. There are roles with social responsibilities, which we can
express by way of commitments. One such role is that of director of studies (dos).
x has been appointed dos at Faculty f on October 29, 2008.

We can express that x has been appointed dos for 2009 at Faculty f , using a
notation like:

C(x, f, [01.01.2009, 31.12.2009]dos). (8)

But how can we express that x has been appointed dos on October 29th 2008?
This could be an important element of the domain. Consider a regulation that
says that a Faculty member that has been appointed director of studies cannot
take more commitments in the Faculty. The notation above does not permit to
reason at this level. The closest approximation is probably: a Faculty member
cannot take more commitments in the Faculty while he is director of studies.
Or, we could resort to an additional commitment to express the appointment,
beside the dos commitment. But this would complicate the model by increasing
the number of commitments. A simple solution is to attach the duration of the
commitment to the commitment itself:

[29.10.2008, Tend]active(C(x, f, [01.01.2009, 31.12.2009]dos)). (9)

2.3 Compensations

Contracts often involve deadlines and compensations. Usually, compensation ac-
tions are possibilities given to recover from a situation of violation. In a typical
setting, a commitment not satisfied in time will not become satisfied by actions
taken after the deadline, but it will instead incur in a further commitment from
the debtor’s side to take a compensation action. The extent of the compensation
required may be subject to context-dependent conditions and be directly related
to the time spent after the deadline before the compensation action is taken.
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Example 4. According to the Italian civil code, the owners of real estate must
pay taxes to the municipality (I.C.I.) between June 1 and June 16 of every tax
year, for the property owned during the previous solar year. The Law allows the
debtor who did not pay by the deadline to recover, by their own initiative, from
such a violation by a procedure called spontaneous revision. The spontaneous
revision procedure is permitted only if the debtor has not yet been officially
notified about ongoing investigations related to such a violation. A spontaneous
revision’s compensation of a previous violation amounts to 3% of the amount
not paid, which counts as a sanction, plus the legal interests on the amount not
paid, which depend on the time elapsed between the I.C.I. payment deadline
and the payment by spontaneous revision. �

To model this example, we can resort to a compensate notation like we did above.
Let t1 be June 1st, t2 be June 16th, c a citizen, m a municipality, and let domain-
dependent knowledge such as the interest rate IRate and the amount of taxes
to be paid by a citizen be defined by rules or facts such as interest rate(0.025)
and ici(c, 100euro). A possible solution of Example 4 is the following:

C(c, m, [T ]pay ICI(Amt)), t1 ≤ T, T ≤ t2 ← ici(c, Amt). (10)
compensate(c, m, [Tp]pay ICI(Amt), C(c, m, [Tr]s rev(Amtnew)))←
interest rate(IRate), Amtnew = Amt× (1.03 + IRate× (Tr − Tp)),

¬H(official notification(pay ICI(Amt)), Tn), Tn < Tr.

(11)

(s rev stands for spontaneous revision, Amt for amount, and “=” is a CLP
equality constraint).

Such examples are ubiquitous in legislation bodies, and in many domains in
which contracts are used to establish rights and obligations of interacting parties.
To be able to model such situations and reason about them, a notation should
accommodate variables inside commitments and allow us to relate such variables
with domains and expressions containing other variables.

Note that in this case compensate is syntactic sugar for an alternative and
equally expressive notation. One could resort for instance to conditional com-
mitments, and include original content (pay ICI) and compensating content
(s rev) in one single CC-like fact. However, compensations could be defined in
different ways depending on the domain. For example, one can introduce various
degrees of violation, such as mild/serious violation, depending on whether an
official notification has been issued or not. A commitment modeling framework
should be flexible enough to accommodate all these needs. This notation helps
to abstract away from the specific compensation semantics.

3 Desiderata for a Commitment Modeling Framework

The considerations made above suggest a number of desiderata for a commitment
modeling framework that enables reasoning with time. The first two desiderata
are taken from [12].
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Time intervals. Contracts often involve time bounds. It should be possible
to express such time bounds, in order to enable reasoning about satisfaction or
breach of commitments in general.

Achievement and maintenance. Two kinds of commitment conditions are
possible: achievement conditions (a ticket will be issued by the end of the day),
and maintenance conditions (the car will work without breaking down for 2
days). They should both be accommodated.

Degrees of violation. It should be possible to reason about the extent of
breach of a commitment, to capture ideas such as partial or mild violation of a
contract.

Compensation. The language should enable associating commitments with
compensation actions.

Time of commitment state changes. It should be possible to reason about
the time a commitment assumes a particular state, e.g., the time a commitment
is created, violated or discharged. The framework should enable reasoning about
the state of commitments along time.

Meta-level reasoning. There could be commitments about commitments (and
further nesting). The notation should accommodate contracts in which a com-
mitment is about another commitment that will be created at some later point,
or about some existing commitment.

Simplicity. The notation should be easy and at the same time rigorous. It
should be possible to run automated reasoning tasks on commitment-based con-
tract specifications. Some interesting reasoning tasks are: contract analysis, com-
mitment tracking, and compliance verification.

Modularity. It should be possible to extend the commitment notation or mod-
ify the underlying theories and reasoning procedures in a modular way. Moreover,
it should be possible to integrate a commitment framework with other domain
knowledge, so as to enable reasoners and agents using commitments to reason
using all available knowledge, possibly including ontological knowledge. Such an
integration should preserve the modularity principle.

4 A New Notation for Social Commitments: CML
We propose a new notation for social commitments. We call it CML (Commit-
ment Modeling Language). To enable reasoning, we consider commitments as a
part of a knowledge base. In particular, social commitments are specified inside
CML programs (CPrograms), which could describe for example a contract.

A CML program is made of rules. A rule in the form

CRuleHead← CRuleBody. (12)

is used to define effects of events on the state of commitments. More specifically,
the user can use such rules to define for instance which events create, discharge,
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or break which commitments, in the style of [16]. The body defines the context,
i.e., the conditions that must hold in order for an event to have an effect on the
state of a commitment. If no context is defined, the rule is said to be a fact.

Atoms in the body of rules may be external predicates, not defined in the
commitment specification program (this should be allowed because of the mod-
ularity principle), or they can be fluents modeling the state of commitments.
Such a state can be associated with existentially quantified temporal variables
or with universally quantified intervals.

The CML syntax, shown in Figure 1, is easily extensible to accommodate var-
ious models of commitment evolution. For example, p viol has been introduced
alongside viol and active as a possible new commitment state, and a new type
of commitment operation, e.g., compensate, could be added to the language to
provide the user with such a high-level abstraction.

CMLProgram ::= CRules

CRules ::= CRule[CRules]

CRule ::= CRuleHead"."|CRuleHead"← "CRuleBody"."

CRuleHead ::= OPC"("Terms", "Commitment")"

OPC ::= = "create"|"discharge"|"cancel"|"release"|"assign"|"delegate"| . . .
CRuleBody ::= CRuleBodyElem|[", "CRuleBody]

CRuleBodyElem ::= holds"("Interval State"("Commitment", "T ime"))"|
Atom|Constraint

Commitment ::= C"("Agent", "Agent", "[Interval]CAtom")"

Interval ::= "["TExpr[", "TExpr]"]"

TExpr ::= T ime OPT T ime|T ime OPT Duration

OPT ::= " + "|"− "

T ime ::= Date|Numeral|V ariable|TExpression

Duration ::= Numeral Granularity

Granularity ::= "hrs"|"days"|"weeks"|"months"| . . .
Agent ::= Term

Atom ::= Ident|Ident"("Terms")"

Term ::= Atom|Numeral|V ariable

T erms ::= Term[", "Term]

CAtom ::= Atom|Commitment

Constraint ::= V ariable" ∈ "Domain|V ariable OPCLP TExpr

State ::= "viol"|"p viol"|"active"| . . .
OPCLP ::= " = "|" �= "|" ≤ "|" ≥ "|" < "|" > "

Domain ::= Interval|Set

Fig. 1. Syntax of CML programs
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A sample CProgram, modeling Situation 1.4, is the following:

create(rent a car(Tc, Te), C(r, c, [Tc, Tc + 2days]great car)). (13)
create(car broken(Tb), C(r, c, [Tr]replace car))←

Tr ≤ Tb + 24hours, holds([Tb]viol(C(r, c, [Ts, Te]great car), Tb)).
(14)

Renting a car at time Tc until Te creates a commitment that for 2 days as of
Tc the car does not break down. The car breaking down at a time Tb creates a
commitment that the car must be replaced within 24 hours of the incident, if
the breakdown has caused a breach of commitment.

While CML provides very expressive constructs such as variables with do-
mains, constraints and rules, on the other hand it does not explicitly
accommodate temporal logic expressions, such as pUq or ©p. We are currently
investigating whether and how temporal logic formulae can be mapped onto
CML expressions.

Two fundamental aspects of commitment frameworks are manipulation and
reasoning [15]. Manipulation operates on the state of commitments.

4.1 States of Commitments

Recently, many authors proposed different possible evolutions of the commit-
ment state, from an initial state after creation, down to its satisfaction through
discharge, delegation or cancellation operations, or else to its violation due to the
occurrence of events that contradict the subject of the agreement represented by
the commitment itself. For instance, in [7], Fornara and Colombetti propose the
following set of states for a commitment: empty (e), cancelled (c), precommit-
ment (p), conditional (cc), active (a), fulfilled (f), and violated (v). The states
and their transitions are depicted in Figure 2.

5 Commitment Manipulation and Reasoning

Usually, once the conditions specified in the commitment are either satisfied (for
an achievement commitment) or violated (for a maintenance commitment), the
commitment assumes a final state. However, as discussed above, if we consider
also relevant temporal aspects, such as deadlines, we could define a finer-grained

e

ccp a

f

vc

Fig. 2. Fornara & Colombetti’s commitment state transitions [7]
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Fig. 3. A possible extension to a commitment state transitions accounting for partial
violation (pv) and partial fulfillment (pf) of commitments

characterization of the state of a commitment. For example, after a deadline has
passed, the debtor may still opt for a belated action that partially makes up for
the violation. It may be interesting to distinguish among (1) commitment satis-
fied in time, (2) commitment “violated” before the deadline but “satisfied” after
the deadline (partial violation/partial satisfaction), and (3) violated commitment.
Such a distinction is depicted in Figure 3, which is an extended version of Figure 2.

This issue is discussed in depth by Fornara and Colombetti in [8], where
the authors propose a new commitment life-cycle accommodating two states
after violated: extinguished and irrecoverable. Our contribution here is not in the
theoretical underpinning of sanctions and violations, but rather in building a
framework where different theories of violation and sanction may be instantiated
and operationalized.

5.1 Reasoning about Commitments

Yolum and Singh [16] propose to reason about commitments using the Event
Calculus (EC) [10]. The EC was introduced by Kowalski and Sergot as a logic
programming framework for representing and reasoning about events and their
effects. Basic concepts are that of event, happening at a point in time, and prop-
erty (or fluent), holding during time intervals. Fluents are initiated/terminated
by occurring events. There are many different formulations of the EC axioms. A
simple one, taken from [5], is the one below (F stands for Fluent, Ev for Event).

holds at(F, T )← initiates(Ev, F, TStart)
∧ TStart < T ∧ ¬clipped(TStart, F, T ).

(ec1)

clipped(T1, F, T3)← terminates(Ev, F, T2)
∧ T1 < T2 ∧ T2 < T3.

(ec2)

initiates(Ev, F, T )← happens(Ev, T ) ∧ holds(F1, T )
∧ ... ∧ holds(FN , T ).

(ec3)

terminates(Ev, F, T )← happens(Ev, T ) ∧ holds(F1, T )
∧ ... ∧ holds(FN , T ).

(ec4)
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Axioms ec1 and ec2 are the general ones of EC, whereas ec3 and ec4 are user-
defined, domain-specific axiom schemas. The EC is a suitable formalism to specify
the effects of commitment manipulation, and reason from such operations. As a
sample fragment of Yolum and Singh’s formalization, consider a create operation,
whose purpose is to establish a commitment, and can only be performed by the
debtor. To express that an event e(x) carried out by x at time t creates a com-
mitment C(x, y, p), Yolum and Singh define the operation create(e(x), C(x, y, p))
in terms of happens(e(x), t) ∧ initiates(e(x), C(x, y, p), t).

In the same way, the semantics of CML can be given in terms of EC programs.
This helps simplicity, because the language of EC is very simple, and modularity,
because for different domains we can define different theories of commitments.

The EC is an effective framework for temporal reasoning. It has been exten-
sively used in the literature to carry out two main reasoning tasks: deductive
narrative verification, to check whether a certain fluent holds given a narrative
(set of events), and abductive planning, to simulate a possible narrative which
satisfies some requirements [13]. Chittaro and Montanari [4] proposed a way to
use the EC for run-time monitoring and verification. It is based on a mecha-
nism to cache the outcome of the inference process every time the knowledge
base is updated by a new event. In a nutshell, the Cached Event Calculus (CEC)
computes and stores fluents’ maximum validity intervals (MVIs), which are the
maximum time intervals in which fluents hold, according to the known events.
The set of cached validity intervals is then extended/revised as new events oc-
cur or get to be known. Therefore, the EC can be used as a basis for reasoning
on commitments in many ways, including not only planning and static verifica-
tion, but also tracking, depending on the EC implementation used (abductive,
deductive, reactive).

6 Social Commitment Framework Architecture

We propose an abstract, layered architecture that enables modeling and reason-
ing with social commitments. It consists of:

– a user application layer;
– a commitment modeling layer;
– a temporal representation and reasoning layer;
– a reasoning and verification layer.

On the top layer, the user can define contracts or agent social interaction
rules using commitments. Such definitions are based on a language provided by
the layer below. The commitment modeling language is implemented using a
temporal representation and reasoning framework, which is in turn built on top
of a more general reasoning and verification framework, which lies at the bottom
layer. It is important to rely on a formal framework that accommodates various
forms of verification, because in this way commitments can be operationalized
and the user can formally analyze commitment-based contracts, reason on the
state of commitments, plan for actions needed to reach states of fulfillment, and
track the evolution of commitments at run-time.
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Indeed, the underlying reasoning and verification layer must be powerful
enough to implement a temporal representation and reasoning layer. We pro-
pose a concrete instance of such an architecture, represented in Figure 4.

User and Domain Knowledge Base

Commitment Modeling Language

Reactive Event Calculus

SCIFF Framework

(CML Program)

(REC Theory)

(SCIFF Program)

(Prolog + CLP)

create, discharge, cancel, ...

initiates, terminates

holds_at, clipped, mvi, E, H, ...

SICStus Prolog clauses, 
clp(fd), clp(R), CHR constraints

Fig. 4. Social commitment framework architecture

At the bottom layer, we find a number of Prolog+CLP modules which im-
plement the SCIFF family of proof-procedures and provide the SCIFF language
to the layer above [1]. The SCIFF framework is based on abductive logic pro-
gramming and it consists of a declarative specification language and a family
of proof-procedures for reasoning from SCIFF specifications. Some kinds of rea-
soning are: deduction, hypothetical reasoning, static verification of properties,
compliance checking and run-time monitoring. In general, SCIFF comes in hand
for a number of useful tasks in the context of agent interaction. A high-level
description of SCIFF and of its usage is given in [15], also in relation with com-
mitments. The CLP solvers integrated in SCIFF can work with discrete and
dense domains, depending on the application needs, and they are particularly
useful for reasoning along the temporal dimension.

On top of the SCIFF layer there is a SCIFF implementation of the EC, which
uses ideas taken from CEC and thus enables runtime verification. It is called the
Reactive Event Calculus (REC). This layer provides to the layer above the REC
language, which consists of domain-dependent axioms with schemas ec3 and ec4.

In the third layer, the constructs that define the Commitment Modeling Lan-
guage (CML), i.e., the notation proposed above, are written by way of REC
theories. Thus this layer will provide the top layer with the language to write
a CProgram. The top layer consists of user and domain-dependent knowledge
encoded into a CProgram. An example of a program for the top layer was given
in Section 4.

We believe that such an architecture, and its instantiation based on SCIFF,
REC, and the CML, can successfully address the desiderata identified above.
Modularity is achieved in two directions: in the vertical direction, by making
CML programs, EC theory, and commitment theories independent of each other,
and in the horizontal direction, by letting the user refer to external inputs by
way of simple atoms. Atoms can be mapped into function calls via suitable inter-
faces such as those available in most Prolog engines. CML is a simple and easily
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extensible language, which consists of primitives such as create, discharge, etc.,
in the style of [16]. The language is expressive enough to express time inter-
vals, achievement and maintenance conditions, and time of commitment state
change. Thanks to the expressivity of the language and to the modularity of the
architecture, it is possible to extend the framework to model different kinds of
violation and powerful new constructs such as compensation. In fact, the states
of commitments and manipulation operations are not hard-wired in the archi-
tecture, but they can be (re)defined by the user. Finally, CML accommodates
meta-lavel reasoning on commitments, and the underlying REC engine can rea-
son about commitments at all levels by treating a commitment state as a fluent
which holds for a period of time.

7 Conclusion

We identified some issues regarding the representation of commitments which
are still open, and we formulated a number of desiderata for a commitment
modeling framework. To the best of our knowledge, in the state of the art there
is no framework that satisfies all the desiderata. We believe that a possible
answer could come from a commitment framework organized into four layers.

On top of the stack, at the user level, contracts can be specified by way of
commitment programs. We identified in SCIFF a potential candidate for the
bottom layer and we defined a notation for top-level programs. A prototypical
implementation exists of all the four layers.2 Its usage for commitment tracking
purposes is demonstrated in a companion paper [3].

Our discussion was informal and example-driven. We gave emphasis to tem-
poral aspects of commitments in relation with deadlines. However, deadlines
are only a special case of temporal constraints and CLP constraints in general.
Surely there are many other types of constraint that could be very useful for
modeling the domain correctly and compactly. In particular, global constraints
capture common patterns and help specify complex and recurring constraints
in a simple way. Each global constraint comes with an effective and efficient
propagation algorithm capable of powerful inference. A useful activity could
be to isolate a subset of CLP constraints of interest for commitment-related
domains. A concrete implementation of the commitment modeling framework
should include a library of such CLP constraints. To the best of our knowledge,
the inference potential of such a technology, unlocked by the architecture we
propose, is unprecedented in the domain of commitments.

Currently we are evaluating the CML language and framework empirically on
a number of case studies. Some of the formal properties of the CML framework,
in particular insofar as reasoning is concerned, are discussed in [3]. We plan to
focus not on the expressivity of the top-level commitment programming language
and on the notion of sanctions. To this extent, we found more recent work by
Fornara and Colombetti [8] inspiring and very relevant to our approach. Along
this line, we also intend to investigate how CML and the abstract architecture
2 http://lia.deis.unibo.it/research/sciff/

http://lia.deis.unibo.it/research/sciff/
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fit into the concrete application domain of electronic institutions. Commitments
or obligations are also included in their modeling, and often they work with
deadlines of events taking place instead of time.

Acknowledgments. We thank the anonymous reviewers for their useful com-
ments. This work has been partially supported by the FIRB project TOCAI.IT.
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Abstract. We describe a model-checking based approach to verification of pro-
grams written in the agent programming language Dribble. We define a logic (an
extension of the branching time temporal logic CTL) which describes transition
systems corresponding to a Dribble program, and show how to express properties
of the agent program in the logic and how to encode transition systems as an in-
put to a model-checker. We prove soundness and completeness of the logic and a
correspondence between the operational semantics of Dribble and the models of
the logic.

1 Introduction

BDI-based agent-oriented programming languages [5] facilitate the implementation of
cognitive agents by providing programming constructs to implement concepts such as
beliefs, goals, and (pre-defined) plans. In such languages, an agent selects a plan to
achieve one or more goals based on its beliefs about the environment. However in any-
thing other than toy environments, selecting an appropriate plan does not guarantee that
it can be successfully executed. The beliefs used to select a particular plan for a given
goal is only a heuristic, and cannot capture the preconditions of all the actions in the
plan (some of which may be false when the plan is selected and will only be made true
by actions in the plan). Moreover, in dynamic environments, an agent’s beliefs (and
hence the best way of achieving a goal) may change in unanticipated ways during plan
execution, and a rational agent must be prepared to revise its plans at run time to take
advantage of ‘fortuitous’ changes in the environment (e.g., which allow some steps in
the plan to be skipped) or to recover from ‘adverse’ changes in the environment (e.g.,
when a precondition of an action is discovered not to hold).

Many BDI-based agent programming languages provide facilities to drop plans if
the corresponding goal is ‘unexpectedly’ achieved or when execution of the plan fails
[6,16,17]. More advanced languages, e.g., [18,9] provide support for arbitrary modi-
fication of plans during their execution. However, while such meta-level capabilities
simplify the development of rational agents, they make it more difficult to reason about
the execution of agent programs, e.g., to verify their correctness. In addition to reason-
ing about the agent’s beliefs, goals and plans, we need to model the current state of plan
execution, and the evolution of the agent’s program at run time in response to inter-
actions between the effects the agent’s actions in its environment and its plan revision
capabilities.

In this paper we present an approach to verifying agent programs which admit arbi-
trary revisions at run time. We focus on the BDI agent programming language Dribble

M. Baldoni et al. (Eds.): DALT 2009, LNAI 5948, pp. 244–261, 2010.
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introduced in [18]. Dribble allows the implementation of agents with beliefs, (declara-
tive) goals, actions, abstract actions (procedural goals), plans, and rules for selecting and
revising plans. Although relatively simple and abstract, it is representative of a wider
class of BDI agent programming languages which support plan revision, and presents
significant challenges for verification. Our approach is based on model-checking. We
define a logic (an extension of the branching time temporal logic CTL) which describes
transition systems corresponding to a Dribble program, and show how to express prop-
erties of the program in the logic and how to encode transition systems as an input to
a model-checker. We prove soundness and completeness of the logic and a correspon-
dence between the operational semantics of Dribble and the models of the logic.

The rest of the paper is organised as follows. In the next section, we describe the
syntax and operational semantics of Dribble. In section 3 we introduce a logic for ex-
pressing properties of Dribble programs, and give a complete axiomatisation of the set
of models corresponding to the operational semantics of a Dribble agent program. We
discuss the use of the logic for verification in section 4, where we describe model-
checking of Dribble programs and give a simple example of a program and a property
which can be model-checked. We give a brief survey of related work in section 5.

2 Dribble

In this section, we briefly review the syntax and operational semantics of Dribble.

2.1 Beliefs and Goals

Let Prop be a finite set of propositional variables and L the set of propositional for-
mulas. In order to make L finite, we allow L to contain only formulas in Disjunctive
Normal Form (DNF). A formula is said to be in DNF iff it is a disjunction of conjunc-
tive clauses in which a conjunctive clause is a conjunction of literals. As usual, a literal
is either p or ¬p for any p ∈ Prop. Moreover, formulas of L satisfy the following
conditions:

1. formulas do not contain duplicates of conjunctive clauses;
2. conjunctive clauses of a formula do not contain duplicates of literals; and
3. literals in a conjunctive clause of a formula only occur in some fixed order.

A Dribble agent has both a belief base and a goal base which are finite subsets of L.
The agent’s beliefs and goals are expressed in a language LBG. The syntax of LBG is
defined as follows:

β ← Bα | Gα | ¬β | β1 ∧ β2 where α ∈ L.

The meaning of Bα is that α can be propositionally derived from the belief base of an
agent, and Gα means that α is the consequence of some single goal in the goal base
of an agent. For convenience, a formula β is of LB (LG) iff it does not contain any
subformula of the form Gα (Bα, respectively).

A formula of LBG is interpreted by a pair of a belief base and a goal base 〈δ, γ〉,
in which both δ and γ are finite subsets of formulas of L. The truth of a formula β is
defined inductively as follows.
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– 〈δ, γ〉 |=BG Bα⇔ δ |=Prop α
– 〈δ, γ〉 |=BG Gα⇔ ∃g ∈ γ : g |=Prop α
– 〈δ, γ〉 |=BG ¬ϕ⇔ 〈δ, γ〉 �|=BG ϕ
– 〈δ, γ〉 |=BG β ∧ β′ ⇔ 〈δ, γ〉 |=BG β and 〈δ, γ〉 |=BG β′

2.2 Plans

A Dribble plan consists of basic actions and abstract plans composed by sequence and
conditional choice operators. The sequence operator, ‘;’, takes two plans, π1, π2, as
arguments and states that π1 should be performed before π2. The conditional choice
operator allows branching and generates plans of the form ‘if φ then π1 else π2’.
The syntax of plans is defined as follows:

π ← a | b | if β then π′
1 else π′

2 | π′
1; π

′
2

where a is an abstract plan, b is a basic action and β ∈ LB .
We depart from [18] in that we do not have an empty plan (denoted by E in [18])

as a special kind of plan which can occur as part of other plans. Below, we will use E
as a marker for an empty plan base, but not as a plan expression, to avoid introducing
rewriting rules for E; E to E and π1; E; π2 to π1; π2, etc.

We define length of a plan π, len(π), inductively as follows:

len(a) = 1
len(b) = 1

len(if β then π′
1 else π′

2) = len(π′
1) + len(π′

2) + 4
len(π′; π) = len(π′) + len(π)

Notice that in the case of the if-then-else statement, the length is the sum of lengths of
the plans π′

1 and π′
2 together with the number of extra symbols of the statement, i.e. if ,

then, else and β.
Since in reality, agents can hold a plan up to some fixed length, we make an as-

sumption that all plans have length smaller than a certain preset number. Restricting the
length of plans also makes the set of plans finite. This is necessary for the axiomatisa-
tion of the logic later in the paper.

In the rest of this paper, we denote by Plans the set of all plans whose lengths are
smaller than lenMAX , where lenMAX is a natural number.

Plans = {π | len(π) ≤ lenMAX}

2.3 Dribble Agents

Writing a Dribble agent means writing a number of goal rules and practical reasoning
rules. The syntax of goal rules (PG) and practical reasoning (PR) rules is given below.

– PG rules: β → π where β ∈ LBG and π ∈ Plans
– PR rules: π1 | β → π2 where β ∈ LB and π1, π2 ∈ Plans, and π2 may be

empty.
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One writes a PG rule to intend that an agent with an empty plan base will generate a
plan π if its current belief and goal bases satisfy the condition encoded in β. If the agent
has certain goals in its goal base, it will generate a plan based on its beliefs to hopefully
achieve those goals. A PR rule proposes a possible revision π2 to (the prefix of) a plan
π1 which is applicable if the belief base satisfies the condition encoded in β. That is, if
the agent has certain beliefs which imply that the current plan will be unable to achieve
the intended goal(s) or that the plan is redundant and can be simplified, it can modify
the plan. Note that π2 can be empty, allowing the agent to drop part or all of a plan.

We have slightly modified the meaning of PR rules given in [18]. In Dribble, these
rules apply to complete plans (π1 is the agent’s plan in its entirety, not a plan prefix,
for example a name for an abstract plan). In contrast we allow π1 to be a prefix of the
agent’s plan, which is replaced by π2 followed by the continuation of the original plan.
We could have written PR rules as π′

1; π | β → π2; π where π is a plan variable. In
cases where π1 matches the entire plan, our PR rules are equivalent to those in [18].
We believe that our generalisation is justified programmatically, and it presents an in-
teresting challenge for logical formalisation, in particular model-checking. To enforce
our assumption about the length of plans, we require that Dribble agents consist of PG
and PR rules which do not produce plans of length more than lenMAX .

A Dribble agent only has one intention at a time, i.e., its plan base contains at most
one plan and it can apply a goal rule only when its plan is empty, and is strongly com-
mitted to its goals, i.e., an agent drops a goal only when it believes that the goal has
been achieved.

A Dribble agent is a tuple 〈δ, γ, Γ, Δ〉 in which Γ is a set of goal rules, Δ is set
of practical reasoning rules, δ and γ are the initial belief base and goal base and both
satisfy the following conditions:

1. δ is consistent
2. ∀α ∈ γ, δ �|=Prop α
3. ∀α ∈ γ, α is consistent

that is, the agent’s beliefs are consistent, it does not have as a goal any formula it already
believes to be the case, and each of its goals is consistent (though its goals may be
inconsistent with each other as they can be achieved at different times).

2.4 Operational Semantics

In this section, we describe how a Dribble agent operates. A Dribble program P is a
pair (Γ, Δ) of PG rules and PR rules.

A configuration of an agent is a tuple 〈δ, γ, {π}〉where δ, γ and π are the agent’s cur-
rent belief base, goal base and plan base (where π is the current plan, possibly partially
executed), respectively. In what follows, we will omit the set brackets around the plan
for readability, as in 〈δ, γ, π〉. The plan base can also be empty, which we will write as
〈δ, γ, ∅〉. The initial configuration of an agent is 〈δ0, γ0, ∅〉.

We specify the operational semantics of a Dribble agent as a set of transition rules.
Each transition corresponds to a single execution step and takes the system from one
configuration/state to another. In the cases corresponding to applying PG and PR rules,
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we have additional conditions to guarantee that we do not produce a plan of length
more than lenMAX . Notice that transitions from a configuration in which the plan base
begins with an abstract plan are included in application of PR rules.

Application of a goal rule

ϕ→ π ∈ Γ len(π) ≤ lenMAX 〈δ, γ〉 |=BG ϕ

〈δ, γ, ∅〉 −→apply(ϕ→π) 〈δ, γ, π〉

Application of a plan revision rule

π1 | β → π2 ∈ Δ len(π2; π) ≤ lenMAX 〈δ, γ〉 |=BG β

〈δ, γ, π1; π〉 −→apply(π1|β→π2) 〈δ, γ, π2; π〉

Basic action execution

T (b, δ) = δ′ γ′ = γ \ {g ∈ γ | δ′ |=Prop g}
〈δ, γ, b; π〉 −→execute(b) 〈δ′, γ′, π〉

where T is a belief update function which takes an action and a belief base and returns
the resulting belief base. T is a partial function since an action may not be applicable
in some situations.

Conditional statement

〈δ, γ〉 |=BG β

〈δ, γ, if β then π1 else π2; π〉 →execute(if) 〈δ, γ, π1; π〉

〈δ, γ〉 �|=BG β

〈δ, γ, if β then π1 else π2; π〉 →execute(if) 〈δ, γ, π2; π〉

Note that in the last three rules, π may be absent (or be an empty string), in which case
for example executing b; π will result in 〈δ′, γ′, ∅〉.

For technical reasons, if in a configuration 〈δ, γ, π〉 no transition rule is applicable,
we assume that there is a special ‘stall’ transition to the same configuration:
〈δ, γ, π〉 →stall 〈δ, γ, π〉.

A computation tree CT (c0, P ) for a Dribble agent with a program P = (Γ, Δ) is a
tree with root c0 where each node is a configuration, such that for each node c and each
child c′ of c, c → c′ is a transition in the transition system for P . The meaning of a
Dribble agent 〈δ0, γ0, P 〉 is a tree CT (〈δ0, γ0, ∅〉, P ).

3 A Logic of Dribble Programs

In this section, we introduce a logic which allows us to formalize the properties of Drib-
ble agent programs. Formulas of the logic will be used as input to the model-checker.
In addition, we give a complete axiomatisation of the models of the logic. Axiomati-
sation is, of course not necessary for model-checking, but it helps us to understand the
logic and its models; for example, the axioms may be more intuitive or clearer than the
semantic conditions on models.
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The language of our logic LD is based on Computation Tree Logic (CTL) [7] which
is a logic for reasoning about branching time. The syntax of CTL is as follows:

LCTL : ϕ← p | ¬ϕ | ϕ1 ∧ ϕ2 | EXϕ | E(ϕUψ) | A(ϕUψ) where p ∈ L

The meaning of the temporal operators is as follows: EXϕ means there is a successor
state which satisfies ϕ; E(ϕUψ) means that there is a branch where ϕ holds until ψ
becomes true; A(ϕUψ) means that on all branches, ϕ holds until ψ.

3.1 Syntax

LD extends LCTL with belief, goal and plan operators (Bs, Gs and P).

LD : ϕ ← Bsδ | Gsγ | Pπ | ¬ϕ | ϕ1 ∧ ϕ2 | EXϕ | E(ϕUψ) | A(ϕUψ)

where δ, γ ⊆ L; π ∈ Plans ∪ {E}. Bs and Gs describe the belief base and goal base
of the agent. Note that these operators apply to sets of formulas. P is used to describe
the plan base of the agent. If the agent’s plan is π, this is expressed as Pπ, and if the
plan base is empty, this is expressed as PE.

We will use the usual abbreviation:

AXϕ = ¬EX¬ϕ (in all successor states, ϕ)
AFϕ = A(�Uϕ) (on all branches, in some future state, ϕ)
EFϕ = E(�Uϕ) (there exists a branch, where in some future state, ϕ)
AGϕ = ¬EF¬ϕ (on all branches, in all states, ϕ)
EGϕ = ¬AF¬ϕ (there is a branch, where in all states, ϕ).

3.2 Semantics

In this section we define models for the logic. We show in section 4 that they corre-
spond exactly to the computation trees for Dribble agents generated by the operational
semantics.

Given a Dribble agent program P = (Γ, Δ), a Dribble model of P is a triple MP =
(S, R, V ) in which:

– S is a nonempty set of states
– R ⊆ S × S satisfies the properties below
– V = (Vb, Vg, Vp) a collection of three functions, Vb(s) : S → 2L, Vg(s) : S → 2L

and Vp(s) : S → 2Plans satisfying the following conditions, for all s ∈ S:
1. Vb(s) and Vg(s) are finite subsets of propositional formulas
2. Vb(s) is consistent
3. ∀α ∈ Vg(s) : Vb(s) �|=Prop α
4. ∀α ∈ Vg(s) : α is (propositionally) consistent
5. Vp(s) is a singleton or an empty set.

To simplify the definition, we use the following conventions:∀g ∈ Γ of the form ϕ→ π
then guard(g) = ϕ, body(g) = π, i.e. guard(g) specifies the mental condition for
which situation is a good idea to execute the plan, and body(g) is the plan generated
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after firing the goal rule. Also, ∀r ∈ Δ of the form π1 | β → π2 then head(r) = π1,
guard(r) = β and body(r) = π2. If Vp(s) = {π}, we will write Vp(s) = π for
readability.

Further requirements for R are listed below.

EPG: For all s ∈ S, if Vp(s) = ∅ and there exists g ∈ Γ such that 〈Vb(s), Vg(s)〉 |=BG

guard(g) then there is s′ ∈ S such that (s, s′) ∈ R with Vb(s′) = Vb(s), Vg(s′) =
Vg(s) and Vp(s′) = body(g)

APG: For all (s, s′) ∈ R such that Vp(s) = ∅, then Vb(s′) = Vb(s), Vg(s′) = Vg(s)
and there is g ∈ Γ such that 〈Vb(s), Vg(s)〉 |=BG guard(g) and Vp(s′) = body(g)

EBA: For all s ∈ S, if Vp(s) = b; π then there is s′ ∈ S such that (s, s′) ∈ R
with Vb(s′) = T (b, Vb(s)), Vg(s′) = Vg(s) \ {g ∈ Vg(s)|Vb(s′) |=Prop g} and
Vp(s′) = π

EIF: For all s ∈ S, if Vp(s) = πif ; π, where πif = if β then π1 else π2, then there is
s′ ∈ S such that (s, s′) ∈ R with Vb(s′) = Vb(s), Vg(s′) = Vg(s) and

Vp(s′) =
{

π1; π if 〈Vb(s), Vg(s)〉 |=BG β
π2; π otherwise

EPR: For all s ∈ S, if Vp(s) = π1; π and there exists r ∈ Δ such that head(r) = π1
and 〈Vb(s), Vg(s)〉 |=BG guard(r) then there is s′ ∈ S such that (s, s′) ∈ R with
Vb(s′) = Vb(s), Vg(s′) = Vg(s) and Vp(s′) = body(r); π

ABAvPR: For all (s, s′) ∈ R, such that Vp(s) = b; π′; π, where π′ might be empty,
then either of the following is true:
1. Vb(s′) = T (b, Vb(s)), Vg(s′) = Vg(s) \ {g ∈ Vg(s) | Vb(s′) |=Prop g} and

Vp(s′) = π′; π
2. Vb(s′) = Vb(s), Vg(s′) = Vg(s), and there is r ∈ Δ such that
〈Vb(s), Vg(s)〉 |=BG guard(r), head(r) = b; π′ and Vp(s′) = body(r); π

AIFvPR For all (s, s′) ∈ R such that Vp(s) = πif ; π′; π (π′ might be empty), then
either of the following is true:
1. Vb(s′) = Vb(s), Vg(s′) = Vg(s), and

Vp(s′) =
{

π1; π′; π if 〈Vb(s), Vg(s)〉 |=BG β
π2; π′; π otherwise

2. Vb(s′) = Vb(s), Vg(s′) = Vg(s), and there is r ∈ Δ such that
〈Vb(s), Vg(s)〉 |=BG guard(r), head(r) = πif; π

′ and Vp(s′) = body(r); π
APR For all (s, s′) ∈ R such that Vp(s) = a; π′; π (π′ might be empty), then Vb(s′) =

Vb(s), Vg(s′) = Vg(s), and there is r ∈ Δ such that 〈Vb(s), Vg(s)〉 |=BG

guard(r), head(r) = a; π′ and Vp(s′) = body(r); π
For any state s such that there are no transitions R(s, s′) required by the conditions

above, we stipulate R(s, s). This is required to make the transition relation serial.
No other transitions apart from those required by the conditions above exist in the

model.
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Given a model MP and a state s of MP , the truth of a LD formula is defined induc-
tively as follows:

– MP , s |= Bsδ ⇔ Vb(s) = δ
– MP , s |= Gsγ ⇔ Vg(s) = γ
– MP , s |= Pπ ⇔ Vp(s) = π
– MP , s |= PE ⇔ Vp(s) = ∅
– MP , s |= ¬ϕ⇔MP , s �|= ϕ
– MP , s |= ϕ1 ∧ ϕ2 ⇔MP , s |= ϕ1 and MP , s |= ϕ2
– MP , s |= EXϕ⇔ ∃s′ : (s, s′) ∈ R : MP , s′ |= ϕ
– MP , s |= E(ϕUψ)⇔ ∃ path (s0, s1, ..., sn) such that:

s0 = s; n ≥ 0; (si, si+1) ∈ R ∀0 ≤ i < n and MP , sn |= ϕ, and for all i < n,
MP , si |= ψ

– MP , s |= A(ϕUψ)⇔ ∀ paths (s0, s1, ...) such that:
s0 = s and ∀i ≥ 0 (si, si+1) ∈ R, exists n ≥ 0: MP , sn |= ϕ, and for all i < n,
MP , si |= ψ

Note that the formulas of CTL are evaluated in state s on a tree corresponding to
an unravelling of MP with the root s. Without loss of generality, we can assume that
each model of P is a tree with the root which intuitively corresponds to the initial
configuration of the agent.

3.3 Axiomatization

We will refer to the axiom system below as the Dribble logic of a program P , DLP . To
simplify the axioms, we use guard(g), body(g), head(r), guard(r) and body(r) with
the same meanings as in the model. Finally, we use πif for if β then π1 else π2.

CL classical propositional logic
CTL axioms of CTL
A1a

∨
δ⊆L

Bsδ

A1b Bsδ → ¬Bsδ′, ∀δ′ �= δ
An agent has only one belief base.

A2a
∨

γ⊆L
Gsγ

A2b Gsγ → ¬Gsγ′, ∀γ′ �= γ
An agent has only one goal base.

A3a
∨

π∈Plans∪{E}
Pπ

A3b Pπ → ¬Pπ′, where π, π′ ∈ Plans ∪ {E}, ∀π′ �= π
An agent has only one plan.

A4 ¬Bsδ, ∀δ such that δ |=Prop ⊥
Belief base is consistent.

A5 Bsδ → ¬Gsγ for all γ such that ∃g ∈ γ : δ |=Prop g
All goals in goal base are not consequences of belief base.

A6 ¬Gsγ for all γ such that ∃g ∈ γ : g |=Prop ⊥
Each goal in goal base is consistent.
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EPG Bsδ ∧Gsγ ∧ PE → EX(Bsδ ∧Gsγ ∧ Pπ) if ∃g ∈ Γ such that 〈δ, γ〉 |=BG

guard(g) and π = body(g)
In a state s where some planning goal rule is applicable, i.e. the current plan is

empty, there exists a next state s′ where its plan is the one generated by firing the
planning goal rule.

APG Bsδ∧Gsγ∧PE → AX(
∨

g∈Γ ′
(Bsδ∧Gsγ∧Pπg)) where Γ ′ is a set of planning

goal rules g that satisfies the following two conditions: 〈δ, γ〉 |=BG guard(g) and
πg = body(g), provided Γ ′ �= ∅.

In a state s where the current plan is empty, all possible next states from s are
only reachable by applying some PG rule, i.e. its plan is generated by firing the PG
rule.

EBA Bsδ ∧ Gsγ ∧ P(b; π) → EX(Bsδ′ ∧ Gsγ′ ∧ Pπ) where δ′ = T (b, δ) and
γ′ = γ \ {g | δ′ |=Prop g}

In a state s where a basic action is applicable, there exists a next state s′ in which
the basic action is removed from its plan, and the belief base is updated according
to the basic action (the goal base, therefore, also has to be changed in order to
maintain the disjointness with the belief base).

EIF Bsδ ∧Gsγ ∧P(πif ; π)→ EX(Bsδ ∧Gsγ ∧P(πi; π))
where

πi =
{

π1 if 〈Vb(s), Vg(s)〉 |=BG β
π2 otherwise

In a state s where the current plan begins with a conditional plan, there exists a
next state s′ in which the conditional plan is replaced by one of its two sub plans
depending on whether its condition is derivable or not from the belief base in s,
respectively.

EPR Bsδ ∧Gsγ ∧P(π1; π)→ EX(Bsδ ∧Gsγ ∧P(π2; π))
if ∃r ∈ Δ such that 〈δ, γ〉 |=BG guard(r), head(r) = π1 and
π2 = body(r)

In a state s where a plan revision rule is applicable, i.e. the head of the rule is the
beginning of the current state and the guard of the rule is derivable from the current
belief and goal base, there exists a next state s′ in which the beginning of the plan
in s is replaced by the body of the rule.

ABAvPR Bsδ ∧Gsγ ∧P(b; π′; π)→ AX((Bsδ′ ∧Gsγ′ ∧P(π′; π))∨
∨

r∈Δ′
(Bsδ′ ∧

Gsγ′ ∧ P(π′′; π))) where Δ′ is a set of plan revision rules r that satisfies the
following three conditions: head(r) = b; π′, 〈δ, γ〉 |=BG guard(r) and body(r) =
π′′, provided Δ′ �= ∅ or T (!, δ) is defined.

In a state s where a basic action b is the first element of the plan, we can only
transit to another state by executing the action or applying an applicable practical
reasoning rule.

AIFvPR Bsδ ∧Gsγ ∧P(πif ; π′; π)→ AX((Bsδ′ ∧Gsγ′ ∧P(πi; π′; π)) ∨∨
r∈Δ′

(Bsδ′ ∧ Gsγ′ ∧ P(π′′; π))) where Δ′ is a set of plan revision rules r that
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satisfy three following conditions: head(r) = πif ; π′, 〈δ, γ〉 |=BG guard(r) and
body(r) = π′′; and

πi =
{

π1 if 〈Vb(s), Vg(s)〉 |=BG β
π2 otherwise

In a state s where an if-then-else statement is the first element of the plan, we
can only transit to another state by executing the if-then-else statement or applying
an applicable practical reasoning rule.

APR Bsδ ∧Gsγ ∧P(a; π1; π)→ AX
∨

r∈Δ′
(Bsδ′ ∧Gsγ′ ∧P(π2; π)) where Δ′ is a

set of plan revision rules r that satisfy three following conditions: head(r) = a; π1,
〈δ, γ〉 |=BG guard(r) and body(r) = π2; provided Δ′ �= ∅.

In a state s where an abstract plan is the first element of the plan, we can only
transit to another state by applying a practical reasoning rule.

Stall Bsδ ∧Gsγ ∧Pπ → AX(Bsδ ∧Gsγ ∧Pπ) where Bsδ ∧Gsγ ∧Pπ describes
a configuration from which no normal transitions are available.

We have the following result.

Theorem 1. DLP is sound and complete with respect to the class of models of the
program P .

Proof. The proof of soundness is straightforward and is omitted. In the rest of this
section, we show the completeness of DLP . Most of the proof is from that of CTL [13].

Let BGP = 2L × 2L × (Plans ∪ {E}). BGP intuitively corresponds to the set of
all possible configurations. Note that this is a finite set.

Given a consistent formula ϕ0, we construct the generalised Fischer-Ladner closure
of ϕ0, FL(ϕ0), as the least set H of formulas containing ϕ0 such that:

1. Bsδ ∈ H for all δ ⊆ L
2. Gsγ ∈ H for all γ ⊆ L
3. Pπ ∈ H for all π ∈ Plans ∪ {E}
4. EX(Bsδ ∧Gsγ ∧Pψ) for all (δ, γ, π) ∈ BGP
5. EX(

∨
(δ,γ,π)∈BGP ′

(Bsδ ∧Gsγ ∧Pψ)) for all BGP ′ ⊆ BGP

6. ¬ϕ ∈ H , then ϕ ∈ H
7. ϕ ∧ ψ ∈ H , then ϕ, ψ ∈ H
8. E(ϕUψ) ∈ H , then ϕ, EXE(ϕUψ) ∈ H
9. A(ϕUψ) ∈ H , then ϕ, AXA(ϕUψ) ∈ H

10. EXϕ ∈ H , then ϕ ∈ H
11. AXϕ ∈ H , then ϕ ∈ H
12. ϕ ∈ H and ϕ is not of the form ¬ψ, then ¬ϕ ∈ H

It is obvious that FL(ϕ0) is finite. As usual, we define a subset s of FL(ϕ0) that is
maximally consistent if s is consistent and for all ϕ, ¬ϕ ∈ FL(ϕ0), either ϕ or ¬ϕ is in
s. Repeat the construction of a model M for ϕ0 as in [13] based on the set of maximally
consistent sets of FL(ϕ0), with the condition that the assignments are as follows:
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– Vb(s) = δ for any δ such that Bsδ ∈ s
– Vg(s) = γ for any γ such that Gsγ ∈ s
– Vp(s) = π for any π such that Pπ ∈ s (and Vp(s) = ∅ if PE ∈ s).

The above definition is well-defined because axioms A1x, A2x and A3x guarantee that
there are exactly one Bsδ ∈ s, Gsγ ∈ s and Pπ ∈ s. Our remaining task is to show
that M is, in fact, a model of P .

EPG: Assume that Vb(s) = δ, Vg(s) = γ and Vp(s) = ∅, then we have Bsδ ∧Gsγ ∧
PE ∈ s. Furthermore, assume that there is g ∈ Γ such that 〈δ, γ〉 |=BG guard(g).
By axiom EPG and modus ponens (MP), EX(Bsδ ∧ Gsγ ∧ Pbody(g)) ∈ s.
According to the construction of M , there is s′ such that Bsδ∧Gsγ∧Pbody(g) ∈
s′ and (s, s′) ∈ R. It is obvious that Vb(s′) = δ, Vg(s′) = γ and Vp(s′) = body(g).

APG: Assume that Vb(s) = δ, Vg(s) = γ and Vp(s) = ∅, then we have Bsδ ∧Gsγ ∧
PE ∈ s. Let Γ ′ is the set of PG rules g ∈ Γ such that 〈δ, γ〉 |=BG guard(g). By
axiom APG and modus ponens (MP), AX(

∨
g∈Γ ′

(Bsδ ∧Gsγ ∧ Pbody(g))) ∈ s.

According to the construction of M , for any s′ such that (s, s′) ∈ R,∨
g∈Γ ′

(Bsδ ∧Gsγ ∧Pbody(g)) ∈ s

Then, there exists g ∈ Γ ′ such that Bsδ ∧Gsγ ∧Pbody(g) ∈ s′. It is obvious that
Vb(s′) = δ, Vg(s′) = γ and Vp(s′) = body(g).

The proof of other conditions on R is similar to the two cases above and are omitted.
This shows that M is a model of the program P .

4 Verification

We can express properties of Dribble programs using CTL operators in the usual way.
For example, a safety property that ‘nothing bad will happen’ can be expressed as
AG¬φ, where φ is a description of the ‘bad’ situation. Similarly, a liveness property
that ‘something good will happen’, for example the agent will achieve its goal, can
be expressed as EFφ, where φ is a description of the ‘good’ situation. It is essential
however that we know that we are verifying the properties with respect to the compu-
tation trees which precisely correspond to the operational semantics of the agent. We
prove in the next section that models of the logic correspond to computation trees, and
hence that a CTL formula is true at the root of a Dribble model for P if, and only if,
the corresponding property holds for the initial configuration c0 of its computation tree
CT (c0, P ).

4.1 Correspondence Theorem

We say that a state s of some model MP is corresponding to a configuration c ∈
CT (c0, P ) (notation: s ∼ c) iff c = 〈Vb(s), Vg(s), Vp(s)〉.
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Consider a Dribble agent 〈δ0, γ0, P 〉 and its computational tree CT (〈δ0, γ0, ∅〉, P ).
We claim that it is isomorphic to the Dribble model of P with the root s0 such that
s0 ∼ 〈δ0, γ0, ∅〉 and for every state s, all children of s are distinct. The last condition
is required for isomorphism; there may be Dribble models for P where there are du-
plicated transitions to identical states. Such duplication of identical successors does not
affect the truth of DLP formulas.

Theorem 2. CT (c0, P ) is isomorphic to the Dribble model MP of P with the root s0
such that s0 ∼ c0 satisfying the condition that for every state s, all children of s are
distinct.

Proof. We are going to show that∼ defines a bijection between the states of CT (c0, P )
and MP . We prove the theorem by induction on the distance from the root of the tree.

Base case: Assume that (s0, s) ∈ R in MP . We will show that there exists a unique c0
with c0 → c in CT (c0, P ) and s ∼ c. The other direction (if c0 → c then there is a
unique s such that R(s0, s) and s ∼ c) is similar.

Case 1: Assume that Vp(s0) = ∅, by APG, there is g ∈ Γ such that

〈Vb(s0), Vg(s)〉 |=BG guard(g)

Furthermore, Vb(s) = Vb(s0), Vg(s) = Vg(s0) and Vp(s) = body(g). Let c = 〈Vb(s),
Vg(s), Vp(s)〉. By the operational semantics, c0 →apply(g) c.

Case 2: Assume that Vp(s0) = b; π′; π (π′ might be empty). As (s0, s) ∈ R, ABAvPR
implies that there are two cases to consider. In the first case, Vb(s) = T (b, Vb(s0)),
Vg(s) = Vg(s0) \ {α ∈ Vg(s0) | Vb(s) |=Prop α} and Vp(s) = π′; π. Simply let
c = 〈Vb(s), Vg(s), π′π〉, we have that c0 →execute(b) c. In the second case, we have
Vb(s) = Vb(s0), Vg(s) = Vg(s0) and there is r ∈ Δ such that head(r) = b; π′ and

〈Vb(s0), Vg(s0)〉 |=BG guard(r)

and Vp(s) = body(r); π. Let c = 〈Vb(s), Vg(s), body(r); π〉, then we have c0 →apply(r)
c.

For the other cases of Vp(s0), the proof is done in a similar manner by using the suitable
conditions of R.

Induction step: Assume that the path from s0 to s has length n > 1. That means there
are s1, . . . , sn = s in MP such that (si, si+1) ∈ R for all i > 0. By the induction
hypothesis, there are c1, . . . , cn−1 such that si ∼ ci for all i = 0, . . . , n − 1 and
ci →xi ci+1 by some

xi ∈ {execute(b), execute(if), apply(g), apply(r)}

By repeating the proof of the base case, we have that there is cn such that sn ∼ cn and
cn−1 →x cn by some

x ∈ {execute(b), execute(if), apply(g), apply(r)}.
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4.2 Automated Verification

In this section, we show how to encode DLP models for a standard CTL model checker
to allow the automated verification of properties of Dribble programs. For the examples
reported here, we have used the MOCHA model checker [3], due to the ease with which
we can specify Dribble programs in reactive modules, the description language used by
MOCHA.1

States of the DLP models correspond to an assignment of values to state variables
in the model checker. In particular, the agent’s mental state is encoded as a collection
of state variables. The agent’s goals and beliefs are encoded as boolean variables with
the appropriate initial values. The agent’s plan is encoded as an array of steps of length
lenMAX + 1. step is an enumeration type which includes all basic actions and ab-
stract plans declared in the agent’s program, and a set of special if-tokens. Each if-token
(β, u, v) corresponds to an if-then-else construct appearing one of the agent’s plans, and
encodes the belief(s) tested, β and the lengths of the ‘then’ and ‘else’ branches (denoted
by u and v respectively). All elements of the plan array are initially assigned the value
null.

The execution of plans and the application of goal and practical reasoning rules are
encoded as a MOCHA atom which describes the initial condition and transition relation
for the variables corresponding to the agent’s belief and plan bases. A basic action is
performed if the corresponding step token is the first element in the plan array. Execut-
ing the action updates the agent’s beliefs appropriately and advances the plan, i.e., for
each plan element i > 0, the step at location i is moved to location i − 1. If the first
element of the plan array is an if-token, a test is performed on the appropriate belief(s)
and the plan advanced accordingly. For example, if the first element of the plan array is
(β, u, v) and β is false, the plan is advanced u+1 steps. Goal rules can be applied when
the agent has no plan, i.e., when the first element of the plan array contains ‘null’, and
the rule’s mental condition holds (i.e., the agent has the appropriate beliefs and goals).
Firing the rule writes the plan which forms the body of the goal rule into the plan array.
Practical reasoning rules can be applied when the plan to be revised matches a prefix
of the plan array and the rule’s belief condition is believed by the agent. Firing the rule
writes the plan which forms the body of the rule into the plan array and appends the
suffix of the original plan (if any). In the case in which the first element of the plan
array is an abstract action, application of the appropriate practical reasoning rule inserts
the plan corresponding to the abstract action at the beginning of the plan array. An ad-
ditional atom encodes the agent’s commitment strategy, and drops any goals the agent
has come to believe as a result of executing a basic action.

The evolution of the system’s state is described by an initial round followed by an
infinite sequence of update rounds. State variables are initialised to their initial val-
ues in the initial round and new values are assigned to the variables in the subsequent
update rounds. At each update round, MOCHA non-deterministically chooses between
executing the next step in the plan (if any) and firing any applicable goal and practical
reasoning rules.

1 Note that model checkers such as MCMAS [15] intended for the verification of multi-agent
systems are not appropriate, as they assume that epistemic modalities are defined in terms of
accessibility relations, rather than syntactically as in LD.
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4.3 Example

As an illustration, we show how to prove properties of a simple agent program written
in Dribble. In the interests of brevity, we do not consider abstract plans in this ex-
ample. Consider the following Dribble program for a simple ‘vacuum cleaner’ agent.
The agent’s environment consists of two rooms, room1 and room2, and its goal is to
clean both rooms. The agent has actions which allow it to move between rooms and
to clean a room, and goal rules which allow it to select an appropriate plan to clean a
room. To clean a room the agent’s battery must be charged and cleaning discharges the
battery. The agent has two practical reasoning rules which revise a plan which is not
executable because the battery has become discharged or because charging the battery
is only possible in room2. The agent’s beliefs and goals are expressed using the follow-
ing propositional variables: c1, c2 which mean that room1 and room2 are clean, r1, r2
which mean that the agent is in room1 and room2, and b means that the agent’s battery
is charged. The agent has the following five basic actions:

– mR for ‘move right’. It is applicable if the agent’s belief base δ is such that δ |=prop

r1, for example δ = {b∧¬c1 ∧¬c2 ∧ r1 ∧¬r2}. For this particular δ, T (mR, δ) =
{b∧ ¬c1 ∧ ¬c2 ∧ ¬r1 ∧ r2}, that is, the agent no longer believes that it is in r1 but
believes that it is in r2. In general, T (mR, δ) is defined as follows: for every α ∈ δ,
in every disjunct in α, add to the conjunction ¬r1 ∧ r2 and remove r1 and ¬r2 (if
they were in the conjunction).2

– mL for ‘move left’. The belief update function is defined analogously.
– cR for ‘clean room’. It is applicable if the agent’s belief base δ is such that δ |=prop

b. If the action is executed in room1, it makes c1 true, similarly for executing cR in
room2. In both cases b becomes false.

– cB for ‘charge battery’. It is only applicable in r2 (intuitively because this is where
the charger is) and it makes b true.

The agent’s program consists of the following two PG rules:

pg1 = Gc1 → if Br1 then cR else mL; cR
pg2 = Gc2 → if Br2 then cR else mR; cR

and two PR rules:

pr1 = cR; π | ¬Bb→ cB; cR; π
pr2 = cB; π | Br1 → mR; cB; mL; π

2 The intuition underlying the belief update function T is as follows. Think of every α ∈ δ as
a description of a set of states the agent may believe that it is in. Each disjunct is a (possibly
partial) description of a state. For example, if the agent believes that its battery is not charged,
that it is in room2 and that one of the rooms is clean, then its belief base may be δ1 = {(¬b ∧
c1∧r2)∨(¬b∧c2∧r2)} or δ2 = {¬b∧r2, c1∨c2} (other belief bases representing the same
information are also possible). After an update, for every partial description, we should add
to the description the effect of the action and remove any beliefs inconsistent with this effect.
For example, the effect of executing cB is that the battery is charged. After executing cB the
agent should believe that it battery is charged, so we add b to each disjunct (and remove ¬b if
it is there). δ1 would therefore become {(b ∧ c1 ∧ r2) ∨ (b ∧ c2 ∧ r2)} and δ2 would become
{b ∧ r2, (b ∧ c1) ∨ (b ∧ c2)}.
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In this example, the agent has two PR rules to revise a plan in case it is not executable.
In the first case, if the agent intends to clean a room but its battery is not charged,
pr1 will add an additional action cB before cR. However, charging the battery (cB) is
applicable only if the agent is in room2. If the agent is in room1, pr2 will revise a plan
containing a charge battery action by inserting a sequence of actions to move to room2,
then charge the battery, and then move back to room1.

The program of the vacuum cleaner agent realises the following simple strategy: if
the agent has a goal to clean some room, it moves to that room to clean it. If the agent’s
battery is discharged and it cannot clean the room, it postpones cleaning the room and
goes to charge the battery. Similarly, if agent wants to charge its battery and it is not in
room2, it moves to room2 before attempting to charge the battery before returning to
room1. While this strategy could be implemented without using PR rules, the resulting
set of PG rules would be more complex.

We would like to verify that, starting in a state in which the agent believes that it is in
room1, r1, and its battery is charged, b, the above program results in the agent achieving
its goals c1 and c2. This can be achieved by verifying, for the corresponding model, that
AF (Bc1 ∧ Bc2) is true in the initial configuration where b, ¬c1, ¬c2, r1 and ¬r2 are
true.

The MOCHA encoding for the vacuum cleaner example is given in appendix A

5 Related Work

A logic for proving properties of Dribble agents is presented in [18], based on dynamic
logic rather than on CTL. However, no axiomatisation of the logic or automated ver-
ification procedure is given. In [1,2], Alechina et al. introduced a logic which is also
based on dynamic logic for verification of agent programs written in a sublanguage of
3APL, but this work does not consider rules to revise plans. In [10] Dastani et al. prove a
correspondence between an APL-like agent programming language and a specification
language based on CTL, and show that any agent implemented in the language satisfies
some desirable properties, e.g., relating to commitment strategies. In contrast, our aim
in this paper is to verify whether a given property holds for a particular agent program.
In addition, the APL considered by Dastani et al. does not include practical reasoning
rules, and hence their results are confined to agents which are unable to revise their
plans.

A strand of work on model-checking properties of agent programming languages is
represented by [4] and continued by [11,12] who use Java Path Finder (JPF) which is
a model checker for Java programs. This approach requires writing a Java interpreter
for the language using Agent Infrastructure Layer (AIL). After that, verification pro-
ceeds as for a standard Java program, without exploiting any features specific to agent
programming languages.

A model-checking approach to automated verification of ConGolog programs was
described in [8]. The paper proposes a very expressive logic which includes first-order
language for specifying properties of programs and defines a model-checking algorithm
for the logic. Due to the first-order sublanguage, the algorithm is not guaranteed to
terminate. While ConGolog is a very expressive language, it differs from the APL and
Dribble family of languages in that it lacks an explicit mechanism for revising plans.
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MetateM [14] is another language for agent programming which is based on exe-
cutable temporal statements. Although it is easy to verify automatically properties of
agents written in MetateM, the language is very different from agent programming lan-
guages such as 3APL, AgentSpeak and Dribble, where plan constructs are based on
conventional imperative languages (e.g. plans with branching constructs and loops).

6 Conclusion

This paper describes a temporal logic which allows us to axiomatise the set of transition
systems generated by the operational semantics of a Dribble program, and formulate
properties of a Dribble agent, such as that the agent is guaranteed to achieve its goals
or is not going to violate some safety restrictions. One of the interesting properties of
Dribble are practical reasoning or plan rewriting rules, and we believe that they pose
interesting challenges for logical formalisation; in particular, we had to introduce ex-
plicit ‘plan operators’ in the language to model those rules. We show how to encode
the models of the logic as input to a standard model-checker, which gives an automatic
procedure for verifying properties of a Dribble program.
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A MOCHA Encoding for the Vacuum Cleaner Agent Example

module vacuum
interface G_c1, G_c2, B_c1, B_c2, B_r1, B_r2, B_b : bool
interface Pi : array (0..20) of

{ null, mL, mR, cR, cB, ifBr1_then1_else2, ifBr2_then1_else2 }
interface Pilen : (0..100)

atom actions
controls B_c1, B_c2, B_r1, B_r2, B_b, Pi, Pilen
reads B_c1, B_c2, B_r1, B_r2, B_b, Pi, Pilen, G_c1, G_c2

init
[] true -> B_c1’ := false; B_c2’ := false;

B_r1’ := true; B_r2’ := false;
B_b’ := true;
Pilen’ := 0;
forall i Pi’[i] := null

update
-- PG rules

[] G_c1 & Pilen = 0 ->
Pi’[0] := ifBr1_then1_else2;
Pi’[1] := cR; Pi’[2] := mL;Pi’[3] := cR;
Pilen’ := 4

[] G_c2 & Pilen = 0 ->
Pi’[0] := ifBr2_then1_else2;
Pi’[1] := cR; Pi’[2] := mR; Pi’[3] := cR;
Pilen’ := 4

-- PR rules
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[] Pilen > 0 & Pi[0] = cR & ˜B_b ->
forall i Pi’[i]:= if (i>0) then Pi[i-1] else Pi[i] fi;
Pi’[0] := cB;
Pilen’ := Pilen + 1

[] Pilen > 0 & Pi[0] = cB & B_r1 ->
forall i Pi’[i]:= if (i>1) then Pi[i-2] else Pi[i] fi;
Pi’[0] := mR; Pi’[1] := cB; Pi’[2] := mL;
Pilen’ := Pilen + 2

-- If then else statement
[] Pilen > 0 & Pi[0]=ifBr1_then1_else2 & B_r1 ->

forall i Pi’[i]:= if (i<1) then Pi[i+1] else
if (i<18) then Pi[i+3] else Pi[i] fi

fi;
Pilen’ := Pilen - 3

[] Pilen > 0 & Pi[0]=ifBr1_then1_else2 & ˜B_r1 ->
forall i Pi’[i]:= if (i<19) then Pi[i+2] else Pi[i] fi;
Pilen’ := Pilen - 2

[] Pilen > 0 & Pi[0]=ifBr2_then1_else2 & B_r2 ->
forall i Pi’[i]:= if (i<1) then Pi[i+1] else

if (i<18) then Pi[i+3] else Pi[i] fi
fi;

Pilen’ := Pilen - 3
[] Pilen > 0 & Pi[0]=ifBr2_then1_else2 & ˜B_r2 ->

forall i Pi’[i]:= if (i<19) then Pi[i+2] else Pi[i] fi;
Pilen’ := Pilen - 2

-- Belief update actions
[] Pilen > 0 & Pi[0]=mR -> B_r1’ := false; B_r2’ := true;

forall i Pi’[i]:= if (i<20) then Pi[i+1] else Pi[i] fi;
Pilen’ := Pilen - 1

[] Pilen > 0 & Pi[0]=mL -> B_r1’ := true; B_r2’ := false;
forall i Pi’[i]:= if (i<20) then Pi[i+1] else Pi[i] fi;
Pilen’ := Pilen - 1

[] Pilen > 0 & Pi[0]=cR & B_r1 & B_b -> B_c1’ := true; B_b’ := false;
forall i Pi’[i]:= if (i<20) then Pi[i+1] else Pi[i] fi;
Pilen’ := Pilen - 1

[] Pilen > 0 & Pi[0]=cR & B_r2 & B_b -> B_c2’ := true; B_b’ := false;
forall i Pi’[i]:= if (i<20) then Pi[i+1] else Pi[i] fi;
Pilen’ := Pilen - 1

[] Pilen > 0 & Pi[0]=cB & B_r2 ->
B_b’ := true;
forall i Pi’[i]:= if (i<20) then Pi[i+1] else Pi[i] fi;
Pilen’ := Pilen - 1

endatom

atom goals
controls G_c1, G_c2
reads G_c1, G_c2
awaits B_c1, B_c2

init
[] true -> G_c1’ := true; G_c2’ := true

update
[] B_c1’ & G_c1 -> G_c1’ := false
[] B_c2’ & G_c2 -> G_c2’ := false

endatom

endmodule
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