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Abstract. We propose Considerate Reasoning, a novel specification and
verification technique based on object invariants. This technique sup-
ports succinct specifications of implementations which follow the pattern
of breaking properties of other objects and then notifying them appropri-
ately. It allows the specification to be concerned only with the properties
directly relevant to the current method call, with no need to explicitly
mention the concerns of subcalls. In this way, the specification reflects
the division of responsibility present in the implementation, and reflects
what we regard as the natural argument behind the design.

We specify and prove the well-known Composite design pattern using
Considerate Reasoning. We show how to encode our approach in Boogie2.
The resulting specification verifies automatically within a few seconds;
no manual guidance is required beyond the careful representation of the
invariants themselves.

1 Introduction

Verification for imperative object-oriented languages is challenging. The arbi-
trarily complicated heap structures which can arise out of even quite short pro-
grams, and the potential for aliasing make it difficult to structure the verification
argument in an organised fashion, or to predict the effects of code fragments.

Some approaches to these challenges use specification languages which re-
flect the heap structure explicitly, describing the intended topology of objects
and references in a logic which includes customised assertions for the purpose.
Such approaches include separation logic [18,20], dynamic frames [10], implicit
dynamic frames [23] and regional logic [2].

Other approaches build on the concept of object invariant, and usually sup-
port some variation of visible states semantics (with the notable exception of the
Boogie methodology [3]). In visible states semantics, object invariants should
hold at the pre- and post-states of method calls, but may be temporarily bro-
ken during method execution. Various refinements have been proposed, usually
based on some notion of ownership - a way of imposing structure on the heap by
requiring that one object is encapsulated within another. This idea neatly sup-
ports client-provider implementations in which the encapsulated object is only
modified via its owner; but it cannot support another programming pattern,
whereby methods may break other objects’ invariants and then notify them, ie
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class Composite {
private Composite parent;
private Composite[] comps;
private int count = 0;
private int total = 1;

// Inv1 : 1 ≤ total ∧ 0 ≤ count

// Inv2 : total = 1 +
∑

0≤i<count

comps[i].total

// requires : c �= null && c.parent = null;
public void add(Composite c) {

// resize array if necessary
comps[count] = c;
count++;
c.parent = this ;
addToTotal(c. total ) ;

}

private void addToTotal(int p) {
total += p;
if (parent != null) parent .addToTotal(p);

}
}

Fig. 1. A single-class variant of the Composite pattern

call other methods to fix them. This kind of pattern is prevalent, e.g., in the
Marriage example, the Subject-Observer and Composite patterns [7], and the
Priority Inheritance Protocol [22].

The Composite pattern, recently proposed as a verification challenge in [11],
was the 2008 challenge problem at the SAVCBS workshop. It describes a tree-
structure, and allows addition of subtrees in any part of the tree. Figure 1 con-
tains a simplified version of the code from [11]. A Composite node has fields
comps which contain all its direct descendants, parent which points to its parent,
and integer total. The code has to preserve the invariant that the total field of
an object is equal to the size of the subtree rooted at that object.

The major difficulty in verifying this invariant is that the data structure can
be directly modified at any point, by calling add on any Composite object. This is
problematic for, e.g., ownership-based approaches, since these typically require
modification of owned objects to be controlled by the owning object (thus modi-
fication would be preceeded by a top-down traversal of the tree-structure). Sim-
ilarly, separation logic specifications of such patterns typically require recursive
predicates describing properties over the data structure [17,18]; such predicates
are easier to fold/unfold from the root of the structure downwards.

In this paper we propose Considerate Reasoning, a novel approach to verifica-
tion, and apply it to the Composite problem. Considerate Reasoning was briefly
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outlined in [24]; it extends the work of Middelkoop et. al. [15], and is related to
[4,12]. It is based on visible states semantics; in order to support methods meant
to fix invariants, it introduces the specification construct broken. Invariants de-
clared “broken”in a method specification are not expected to hold before calls to
the corresponding methods, but are expected to be re-established by these meth-
ods. All invariants are expected to hold at the end of a method execution. Thus,
the specification of method addToTotal contains broken : Inv2(this), cf. Fig. 2.

In Fig. 2 we give a specification of the Composite in Considerate Reasoning.
This specification is concerned only with properties directly relevant to the cur-
rent method call, without needing to explicitly mention the concerns of subcalls.
In this way, the specification reflects the division of responsibility present in the
implementation, and reflects what we regard as the natural argument behind
the design.1 This is the specification we ultimately expect the user to have to
write (up to a couple of additional keywords whose use will become apparent).

Considerate Reasoning also introduces concerns-descriptions, which describe
which invariants may be broken by a field update. These are used to determine
which invariants may be broken (ie are vulnerable) at each code point, and there-
fore must be re-established at the end of a method body. Because no tool directly
supports Considerate Reasoning, we have encoded our approach in Boogie2 [13],
using explicit assume and assert statements to describe our handling of invari-
ants. We developed refinements which allow for simplifications of the required
proof obligations. The resulting specification is natural and succinct, and verifies
automatically in approximately six seconds. In section 3.5 we outline how a tool
could infer concerns-descriptions and other internal concepts.

Conventions. To simplify the presentation, we make the following simplifying
assumptions: The names of fields declared in different classes should be distinct.
The names of invariants declared in different classes should be distinct. Type-
incorrect expressions in the specifications are considered false. The predicate
describing the meaning of an invariant I is called PI. Invariants only depend
on path expressions containing field accesses, and in particular do not feature
predicates. 2

2 A Considerate Specification of the Composite

We first identify what we believe to be the intuitive argument underlying the
implementation. By making this argument precise, we are able to identify and

1 Our specification does not express framing, which we left to further work. Note
however, that in the Composite example, we believe that the client naturally should
not depend on the value of total remaining unmodified.

2 The last assumption is the only one to represent a true restriction. Note, however,
that all invariants we require for the Composite pattern have definitions we permit,
even though other specifications of the Composite used recursive predicates. We
expect recursively defined predicates to be expressible through explicit invariants in
a semantics where the invariants of all objects are expected to hold by default.
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incorporate invariants and conditions which are necessary for soundness but
missing from the original code.

Had we only been interested in the preservation of Inv2(this), then the fol-
lowing would have been an adequate implementation for adding a component:

public void addWeak(Composite c) {
// resize array if necessary
comps[count] = c;
count++; // breaks Inv2(this)
c.parent = this ;
total += c.total; // fixes Inv2( this ) ,

// breaks Inv2(o), where this ∈ o.comps
}

This simpler implementation does preserve the invariant of the receiver, but
in turn it breaks Inv2 of any object with the receiver in its comps. The real

class Composite {
private Composite parent;
private Composite[] comps;
private int count = 0;
private int total = 1;

// Inv1(o): 1 ≤ o.total ∧ 0 ≤ o.count

// Inv2(o): o. total = 1 +
∑

0≤i<o.count

o.comps[i].total

// Inv3(o): ∀0≤i<o.count : o.comps[i].parent = o
// Inv4(o): o.parent �= null ⇒ ∃0≤i<o.parent.count : o.parent.comps[i] = o
// Inv5(o): ∀0≤i�=j<o.count : o.comps[i] �= o.comps[j]

// requires : c �= null;
// requires : c.parent = null ;
public void add(Composite c) {

comps[count] = c;
count++;
c.parent = this ;
addToTotal(c. total ) ;

}

// broken: Inv2( this )

// requires : this.total + p = 1 +
∑

0≤i<count

comps[i].total

private void addToTotal(int p) {
total += p;
if (parent != null) parent .addToTotal(p);

}
}

Fig. 2. A considerate-style specification in Java
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implementation takes account of this fact: the method addToTotal performs the
role not only of fixing the invariant of the receiver, but also of being considerate
of the invariants of other objects. In particular, after the total field of the receiver
is updated, the parent of the receiver is notified of the change by another call to
addToTotal, in order to ensure that their invariant can also be maintained.

How do we know that this implementation is indeed correctly considering ex-
actly the concerned invariants? In particular, why is it correct for the addToTotal
method to recursively call the parent of the current receiver? The intuitive argu-
ment here depends on the assumption that the comps of any object are exactly
those objects which point to it via parent fields. This assumption is implicit in
the design pattern, but was missing in [11]. We add two further invariants:

Inv3(o): ∀0≤i<o.count : o.comps[i].parent = o
Inv4(o): o.parent �= null ⇒ ∃0≤i<o.parent.count : o.parent.comps[i] = o

A further subtle problem arises if the comps of an object are not distinct. If
an object is in the comps of another object twice, then the implementation of
addToTotal would be incorrect. We add a further invariant:

Inv5(o): ∀0≤i �= j<count : o.comps[i] �= comps[j]
This invariant may seem redundant, since it is preserved by the methods of the
class Composite; however there is no guarantee that the heap structure is already
a tree; this is indispensable in the proof that the information propagated upwards
through addToTotal is correct. Note that the combination of the invariants Inv3,
Inv4 and Inv5 guarantee that the whole Composite structure is a tree.

We now give a specification of the Composite in Figure 2. We include in the
specification of addToTotal the declaration broken : Inv2(this), reflecting that this
method fixes a broken invariant. The precise semantics of this construct will be
made clear in the following section. In order to make it possible for addToTotal to
guarantee to fix the declared invariant, we add a pre-condition requiring that the
value of total is “out” by exactly the value passed as argument to the method.

3 Considerate Reasoning

Our proposed methodology, once fully supported by tools, requires the user to:

1. Define the invariants.
2. Declare certain invariants as structural (Definition 5 below).
3. Define the broken declarations along with method specifications.

We will now explain the workings of our methodology, and then in Section 3.5 we
will outline how it can be automated. Our methodology consists of the following:

1. An invariant semantics, specifying which invariants must hold at which
points in execution.

2. The concept of a concerns-description, which describes which objects’ in-
variants are concerned with field updates in a program.

3. The derivation of vulnerable invariants at all intermediate program points,
computed from the code and concerns-description.

4. A verification technique, defining sufficient proof obligations to guarantee
soundness with respect to the invariant semantics.
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3.1 Invariant Semantics

Visible states semantics [19,16] requires all invariants of all objects to hold im-
mediately before and immediately after any method calls. For simplicity of the
presentation, we base the work in this paper on this simple visible states se-
mantics, but our work could be applied to weaker variants of the semantics,
in which only the invariants of certain objects need hold in the visible states.
programming patterns which involve calling certain methods to fix broken in-
variants (e.g method addToTotal in our example), the visible states semantics
requirement is too restrictive. In the Considerate Reasoning methodology we
add the necessary flexibility with the extra specification construct broken : to
explicitly declare exceptions to the visible states semantics. Invariants declared
“broken” in a method specification are not required to hold before calls to the
corresponding methods, but are expected to be fixed by these methods.

Definition 1 (Broken Declarations and Invariant Semantics). A method
specification may contain a declaration broken : I1(e1), I2(e2), .., In(en).
A verification methodology is sound if for any method m whose specification
contains broken : I1(e1), I2(e2), .., In(en), it guarantees that:

1. At the beginning of execution of m, all invariants of all objects must hold,
except for Ii for those objects denoted by an expressions ei, for i ∈ {1, ..., n}.

2. At the end of method execution, all invariants of all objects must hold.

3.2 Concerns-Descriptions

Updating objects’ fields may break invariants of other objects. For example, up-
dating total of this, may break Inv2 of this.parent. We say that objects whose
invariants may be broken when a field of another object is updated, are concerned
with the field. Obviously, concern is naturally a dynamic notion. For a static ap-
proximation of this notion, we define concerns-descriptions which associate with
each field name f (the field to be updated) and invariant name I (the invariant un-
der consideration), a description of the set of concerned objects. This set usually
depends on the identity of the object being updated, therefore the set description
may mention a special variable mod, which denotes the object being modified.
Thus, the variable mod has a special meaning for concerns-descriptions, similar
to the way the variable this has a special meaning for methods. Furthermore,
we allow additional flexibility to the descriptions by also including a (possibly
empty) list of invariant names, which we call supporting invariants. Their intu-
itive meaning is that the set described is only guaranteed to be conservative at
program points where the supporting invariants are guaranteed to hold (for all
objects). This allows us to use more-refined definitions of the sets of concerned
objects, which depend on the guarantees that other invariants provide - the use
of this feature will become clear shortly.

Definition 2 (Concerns Descriptions). A concerns-description D is a map-
ping from a field name and an invariant name to a pair consisting of a set
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description, and a (possibly-empty) set of invariant names - the supporting in-
variants. 3 A set description is a description of a set of references, parameterised
by a special variable mod; it may be described using usual set-theoretical opera-
tions, including comprehensions.

For the Composite pattern, a possible concerns-description would determine
D(count, Inv1) = ({mod}, ∅), specifying that when the field count of any ob-
ject mod is modified, at most the single object mod has invariant Inv1 broken.
To obtain a sound verification methodology, the concerns-descriptions should
be “big enough”, i.e., any object whose invariant could be violated by a field
update should fall within the corresponding described set. In fact, we make the
weaker requirement that the set must be guaranteed “big enough” so long as the
supporting invariants hold for all objects.

Definition 3 (Admissible Descriptions). A concerns-description D is ad-
missible if, for all invariants I, I1, I2, . . . , Im, such that D(f, I)↓2 = {I1, I2, . . . , Im}
and for any (sub-)expression o.f1.f2 . . ..fn.f (with n ≥ 0) occurring in PI(o), we
can prove for arbitrary o that:

(∀o′, PI1(o
′) ∧ PI2(o

′) . . . PIm(o′)) ∧ PI(o) ⇒ o ∈ D(f, I)↓1[o.f1.f2 . . . .fn/mod]

Consider the simple case of no supporting invariants being specified (i.e., D(f, I)
= (S, ∅) for some set description S, and m = 0 in the definition above). Then
admissibility guarantees that whenever we modify the field f of an object mod
and the invariant I of an object o can become broken as a result, it must be the
case that o∈ S.

Note that we only need to show that o is in the described set if the invariant
of o actually held - since we are trying to predict the invariants which get broken
by a particular field update, we are only interested in the case where an invariant
held prior to the update. There is a simple, mechanical way of deriving one such
admissible concerns-description directly from the definitions of the invariants:

Definition 4 (Simplest Concerns-Descriptions). For expressions e1 and e2

we write e1 � e2 to mean e1 is a syntactic subexpression of e2. We then define
the simplest concerns-description DS for any field f and invariant I as follows:

DS(f, I) =

⎛

⎝
⋃

n≥0, this.f1.f2....fn.f�PI(this)

{o | o.f1.f2 . . . .fn = mod} , ∅
⎞

⎠

We treat array accesses analogously to field accesses, except that if any quantified
variables occur in an array index expression, we additionally include existential
quantifiers (with the same bounds) around the equality generated in the set com-
prehension.

3 We write Q↓1 and Q↓2 for the first and second projections of pair Q, respectively.
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For the Composite, we derive the following simplest concerns-description, in
which the shorthand o∈o′.comps stands for ∃0≤i<o′.count :: o′.comps[i] = o:

DS(parent, Inv3) = ({o | mod ∈ o.comps}, ∅) DS(parent, Inv4) = ({mod}, ∅)
DS(comps, Inv2) = ({mod}, ∅) DS(comps, Inv3) = ({mod}, ∅)
DS(comps, Inv4) = ({o | o.parent = mod}, ∅) DS(comps, Inv5) = ({mod}, ∅)
DS(count, Inv1) = ({mod}, ∅) DS(count, Inv2) = ({mod}, ∅)
DS(count, Inv3) = ({mod}, ∅) DS(count, Inv4) = ({o | o.parent = mod}, ∅)
DS(count, Inv5) = ({mod}, ∅) DS(total, Inv1) = ({mod}, ∅)
DS(total, Inv2) = ({mod} ∪ {o | mod ∈ o.comps}, ∅)
DS(f, I) = (∅, ∅) otherwise

Admissibility is trivially satisfied by the simplest concerns-description:

Proposition 1. The simplest concerns-description DS is admissible.

Observe that DS given above uses sets {mod}, {o | o.parent = mod}, and
{o | mod ∈ o.comps}. We call a set description direct, if any field access paths
start at mod, and indirect otherwise. Thus, the set description {mod} is direct,
and the other two above are indirect. Indirect set descriptions turn out to be
undesirable in practice, since they give rise to proof obligations concerning indi-
rectly described objects, which are often too difficult for the automated theorem
prover.

We shall attempt to transform the four cases of indirect sets in our example
into direct ones. We start with DS(parent, Inv3), which specifies that modification
of parent of an object mod may break invariant Inv3 for those objects which
contain mod in their comps. Recall however that the “structural” invariant Inv3
guarantees that for any o′, if o′ ∈ o.comps then o′.parent = o. Therefore, we can
conclude that if an object o satisfies Inv3, then o ∈ {o | mod ∈ o.comps} ⇒ o ∈
{mod.parent}; the latter set is direct. Since the definition of admissibility allows
us to assume that the concerned invariant (in this case Inv3) holds, applying the
invariant’s definition to the set description does not affect admissibility:

Proposition 2. Suppose D and D′ are concerns-descriptions, and that for all
fields f and invariants I, it holds that D(f, I)↓2 = D′(f, I)↓2 and we can prove for
arbitrary o that if PI(o) holds and o ∈ D(f, I)↓1 then o ∈ D′(f, I)↓1. Then, if D is
admissible then D′ is admissible.

Using this proposition, we can take a set description from a concerns-description
known to be admissible, and rewrite it using the definition of the invariant it is
concerned with. Admissibility of the resulting concerns description is guaranteed
to be preserved. In particular, for the Composite we can replace the concerns-
description for parent and Inv3 as follows:

D(parent, Inv3) = ({mod.parent}, ∅)
Similarly, we can replace the next two indirect set descriptions with the following:

D(comps, Inv4) = ({o ∈ mod.comps}, ∅)
D(count, Inv4) = ({o ∈ mod.comps}, ∅)
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This leaves us now with one remaining indirect set description:
D(total, Inv2) = ({mod} ∪ {o | mod ∈ o.comps}, ∅)

This set comprehension is the same as for the first case, therefore if we could
assume that Inv3 held for all objects in the set, we could rewrite the set into the
direct form, {mod.parent} as before. In this case, Proposition 2 does not apply,
because we wish to use a different invariant Inv3 to rewrite the set description
for Inv2. In order to justify the desired rewriting of the set comprehension, we
can instead make use of the supporting invariants, and explicitly mark that the
correctness of the new set description depends on Inv3 holding, i.e., we define

D(total, Inv2) = ({mod} ∪ {o | mod.parent}, {Inv3})
This can be understood at an intuitive level also: We can be sure that the objects
whose invariants Inv2 are affected by modifying the total of mod are (at most)
the objects mod and mod.parent only if we can be sure that mod cannot be in
the comps of any other object. This is what invariant Inv3 guarantees. We can
generalise the process we applied above with the following result:

Proposition 3. Suppose D is an admissible concerns-description, and D′ is a
concerns-description identical to D except for the definition of D(f, I) for some
particular f and I. Suppose further that for some invariant J we have D′(f, I)↓2 =
D(f, I)↓2 ∪ {J}. Then, if by assuming that ∀o, PJ(o) holds, we can prove that
D(f, I)↓1 ⊆ D′(f, I)↓1, then D′ is admissible.

Using this proposition, we can take a set description from a concerns description
known to be admissible, and rewrite it using the definition of any invariant we
like (adding the invariant to the supporting invariants). Admissibility of the
resulting concerns-description is guaranteed to be preserved. However, in order
for a verification technique based on the resulting concerns-description to be
sound, we require a mechanism for guaranteeing that supporting invariants will
hold when required. For example, in case of the Composite, we require some
way of ensuring that whenever we wish to use DS(total, Inv2)↓1, the condition
∀o :: PInv3(o) holds. For this reason, we need a way of treating the invariant
Inv3 in some special fashion. We recall that the invariants Inv3 and Inv4 were
introduced to make explicit the inverse relationship between components and
parent, which is implicitly intended in the implementation. As such, we expect
these invariants to hold almost all of the time. The only reason the invariants
ever need to be broken is that it is impossible to simultaneously update the
necessary fields to keep the implementation of this relationship consistent. For
this reason, the invariant semantics of Definition 1 seems too coarse-grained
for these invariants, since it allows them to be broken for arbitrarily long code
fragments (so long as no method boundaries are reached), whereas in fact they
are only required to be broken for a handful of consecutive statements at a time.

Using this observation, we introduce a refinement of our treatment of invari-
ants. The idea is to allow some invariants to be declared as more fundamental,
and to only allow these invariants to be broken for short and prescribed sec-
tions of the code. A scoped declaration unreliable is used to specify that cer-
tain named invariants may possibly be violated for the duration of the scope
(which is expected to enclose only a brief fragment of the code). This follows
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the intuition behind why these “structural invariants” are broken at all - it is
just while the necessary field updates can all be made, to modify the intended
parent-components relation.

Definition 5 (Structural Invariants and Unreliable Declarations). The
keyword structural may be placed before an invariant declaration, to mark the
invariant as a structural invariant. By default, invariants are not structural.

1. Concerns-descriptions D are restricted to only allow structural invariants to
be mentioned in the supporting invariants.

2. A scoped construct unreliable : I1, I2, . . . , In{..}, may be placed around any se-
quence of statements which do not contain any method calls (specifying which
structural invariants may possibly be broken within the scope).

3. Programs are restricted as follows: for any field update e.f = e′, and for any
invariant I, if D(f, I)↓1[e/mod] is non-empty, then the field update must not
occur within an unreliable declaration which names any (structural) invari-
ants I′ in D(f, I)↓2. Additionally, if I is itself a structural invariant, then the
field update must occur within an unreliable block declaring I.

4. Structural invariants may not be mentioned in broken declarations.

Note that the restrictions in the latter two points above do not introduce extra
proof obligations for the verification process, since they can be guaranteed by
syntactic checks on the program code.

Intuitively, this approach guarantees that structural invariants can only be vi-
olated within unreliable blocks which explicitly declare that they might be, while
structural invariants may be depended on to accurately predict the concerns of a
field update only outside the scope of such blocks. Furthermore, any structural
invariants violated within an unreliable block should be re-established by the end
of the block4. From a practical perspective, the burden of determining which ob-
jects’ invariants are “concerned” with a field update can be completely lifted
from the prover - not only are supporting invariants used to precisely identify
which objects should be considered, but the validity of the supporting invariants
is guaranteed by purely syntactic means.

3.3 Verification Technique

We say that an object’s invariant is vulnerable at some point in the code, if we
have no guarantee that it holds at that point. We calculate vulnerable invariants
based on the concerns-descriptions D. Namely, for an update to r.f, and invariant
I, the set D(f, I)↓1[r/mod] gives a conservative approximation of the vulnerable
invariants. For sequences of statements we accumulate the vulnerable invariants

4 Our unreliable blocks described are similar to the expose blocks used in the Spec�
methodology [3], but are simpler since they only mention invariants by name, rather
than distinguishing them for particular objects.
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for each statement, in a similar fashion to standard static code analysis tech-
niques. 5 For conditional branches we accumulate the effects of each branch.6

Finally, according to the invariant semantics, after a method finishes executing
all invariants must hold, and so it is justified after a call to “reset” the vulnerable
set to empty.

Definition 6 (Vulnerable Invariants). At any program point, the vulnerable
invariants are represented by a map V from invariant names to descriptions of
sets of references (denoting which objects may possibly not satisfy the invariant).
It is computed as follows.

1. At the start of a method body, the vulnerable invariants are exactly those
declared by the method’s broken constructs (if any).

2. After a field assignment e.f = e′, if V describes the vulnerable invariants
before the assignment, then the vulnerable invariants after the assignment,
V ′ are defined for each invariant I, by: V ′(I) = V(I) ∪ D(f, I)↓1[e/mod].7

3. After a conditional statement, the vulnerable invariants for each invariant
is the union of those at the end of each branch.

4. After the end of an unreliable block, for each (structural) invariant I named
by the block and not named by a further enclosing unreliable block, V(I) is
empty. For all other invariants, V(I) is as it was at the end of the block.

5. After a method call, V(I) is empty for all invariants I.

Note that we allow for the possibility of nesting unreliable blocks within each
other. While we don’t require this feature for our specification of the Composite,
it could add extra flexibility in a setting where several structural invariants are
mutually dependent - in this case it may be useful to accurately reflect the
situation when some structural invariants are re-established before others by
closing one block and leaving another open.

Our verification technique allows us to make assumptions about the validity
of invariants and imposes proof obligations for invariants as follows:

Definition 7 (Considerate Verification Technique). Given a program an-
notated with specifications, invariants, an (admissible) concern-description D
and unreliable blocks, our methodology handles invariants as follows:

1. At the start of a method body, all invariants of all objects may be assumed to
hold, except those explicitly declared as broken in the method specification.

2. Before call to a method m, for every invariant I, if S is the set of expressions
e for which I(e) is mentioned in a broken declaration of m, then ∀o, o ∈
V(I) ∧ o /∈ S ⇒ PI(o) must be proven.

5 In fact, the meaning of the set descriptions may be affected by subsequent field
updates. We cater for this by recording copies of the symbolic heap, and writing
assert and assume statements in terms of these copies, cf. [1]

6 For simplicity we do not handle loops here, but believe that they can be handled by
suitably extending the usual loop-invariant-based approach from Hoare Logic.

7 Recall that we are eliding details of how to handle field updates which change the
meaning of the vulnerable invariants recorded so far.
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3. After a method call, all the invariants of all objects may be assumed to hold.
4. At the end-point of an unreliable block, for every invariant I declared in the

block but not in an enclosing such block, ∀o, o ∈ V(I) ⇒ PI(o) must be proved.
5. At the end of a method body, for every invariant I, ∀o, o ∈ V(I) ⇒ PI(o) must

be proven.

Proposition 4. The Considerate Verification Technique is sound.

Proof sketch. We first show as an easy lemma that the vulnerable set for a
structural invariant I is empty at all program points which are not inside an
unreliable block declaring I.

This allows us to prove that any invariants which are broken by any field as-
signment fall within the described vulnerable set, as follows. Because we assume
invariants only depend on the heap via field accesses, we know that if I(o) holds
in heap h, but does not hold in heap h′, and h′ differs from h only in the value
of o′.f , then there exist fields f1, ... fn, such that o.f1...fn.f appears in PI(o),
and o.f1...fn = o′ in h. By the previous lemma, we know that for any struc-
tural invariant I′∈ D(f, I)↓2, it is safe to assume ∀o′, PI′o

′ holds. By definition 3,
we obtain that o ∈ D(f, I)↓1[o.f1...fn/mod]. The latter set corresponds in h to
D(f, I)[o′/mod], which is the set added to the vulnerable invariants.

We can now show that assuming that all methods have been checked according
to Def. 7, then execution preserves the property that any invariants which do
not hold are within those calculated to be vulnerable according to Def. 6. This
can be shown by induction on the execution.

At all point where our invariant semantics (Def. 1) specifies that invariants
must hold, our technique imposes proof obligations to show that all required
invariants which are also vulnerable, are shown to hold. Therefore, by the above,
no required invariants can be false at these points.

3.4 Verification of the Composite Pattern

For the Composite code, we use the improved concerns-description developed
earlier in the paper, which we recall here in full, for reference:

D(parent, Inv3) = ({mod.parent}, ∅) D(parent, Inv4) = ({mod}, ∅)
D(comps, Inv2) = ({mod}, ∅) D(comps, Inv3) = ({mod}, ∅)
D(comps, Inv4) = ({o | o ∈ mod.comps}, ∅) D(comps, Inv5) = ({mod}, ∅)
D(count, Inv1) = ({mod}, ∅) D(count, Inv2) = ({mod}, ∅)
D(count, Inv3) = ({mod}, ∅) D(count, Inv4) = ({o | o ∈ mod.comps}, ∅)
D(count, Inv5) = ({mod}, ∅) D(total, Inv1) = ({mod}, ∅)
D(total, Inv2) = ({mod, mod.parent}, {Inv3})
D(f, I) = (∅, ∅) otherwise

We consider the invariants Inv3,Inv4 and Inv5 to be structural, and place an
unreliable block around the three assignment statements in the add method which
temporarily violate these invariants. Def. 5 requires that a total field is not mod-
ified within such a block - this is indeed the case. Using the concerns-description,
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we analyse the code to predict vulnerable invariants at each point, and generate
proof obligations according to Def. 7. Figure 3 shows the complete code, includ-
ing assume/assert statements which encode the proof obligations. Note that these
statements are exactly as specified by Def. 7 - no additional manual assertions
are required, and no further assert/assume statements need to be provided. We
map this specification to Boogie2, which then passes the proof obligations to the
Z3 automatic theorem prover for verification.

Verification of the Boogie2 code opens up a low-level problem concerning
the prover’s treatment of quantifiers. In particular, some control needs to be
imposed to stop the prover from taking arbitrarily many (mostly irrelevant)
instances of a quantifier formula it “knows”, and thus looping forever. The very
strong assumptions made by our methodology at the beginning of a method body
and after a method call, can actually negatively impact the performance of the
prover, if not controlled. This problem is generic to the use of quantifiers with
the Z3 prover, and can be tackled by using triggers [6,13,14], a mechanism which
restricts the situations under which the prover instantiates quantified formulae.
We do not go into detail here; however, we have developed a methodology for
defining triggers for the formulae concerned with our methodology, which we
will describe in future work. Our Boogie2 code [1] uses triggers.

Verification of the Boogie2 code succeeds, in approximately six seconds. In-
terestingly, if one takes the simplest concerns-description instead (which still
employs indirect set comprehensions), the resulting specification does not verify.
Therefore, the improvements introduced by Propositions 2 and 3 are essential for
our approach to be practical. However, the current need to annotate the code
with unreliable declarations and concerns-descriptions seems to place an extra
burden to the user; we next consider how to alleviate it.

3.5 Automation of Our Technique

We now explain how the various aspects of our methodology could be supported
by automatic tools.

Determine Concerns-Description: A tool can straightforwardly derive the
simplest concerns-description D′ (Def. 4). Next, any declared structural invari-
ants expressing “inverse” relationships (e.g., o.components[i].parent = o) can be
used to rewrite any indirect set descriptions. Given a set description of the form
{o | o.f1 . . . .fm−1.fm = mod.g1 . . . .gn} a structural invariant of the form o′.fm.h =
o′ (i.e., declaring an inverse relationship for the field fm) should be sought. The
set description can then be rewritten to {o | o.f1 . . . .fm−1 = mod.g1 . . . .gn.h}
in which the length of the “indirect” field access from o has been reduced. To
preserve admissibility, a structural invariant used to rewrite the set must be
recorded in the supporting invariants (cf. Prop. 3), unless it is the same invari-
ant as the one being described by D (c.f. Prop. 2). This process of rewriting
the set can be repeated until the length of the indirect field access is zero, at
which point the set comprehension describes precisely one object, and the set
can be made direct. In practice, invariants of the desired kind tend to exist in
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// requires : c �= null;
// requires : c.parent = null ;
public void add(Composite c) {

assume ∀ o :: Inv1(o) ∧ Inv2(o) ∧ Inv3(o) ∧ Inv4(o) ∧ Inv5(o);

// unreliable : Inv3 , Inv4 , Inv5 {
this .comps[this.count] = c;
this .count = this .count + 1;
c.parent = this ;
assert Inv3( this ) ∧ Inv3(c.parent);
assert ∀ o :: o=c ∨ (∃0≤i≤this.counti:int :: this.comps[i] = o) ⇒ Inv4(o);
assert Inv5( this ) ;
// }

assert Inv1( this ) ;
assert this �= this ⇒ Inv2(this); // trivial − by ”broken” declaration
addToTotal(this,c. total ) ;
assume ∀ o :: Inv1(o)∧Inv2(o)∧Inv3(o)∧Inv4(o)∧Inv5(o);

}

// broken: Inv2( this )

// requires : this . total + p = 1 +
∑

0≤i<count

comps[i].total

private void addToTotal(int p) {
{

assume ∀ o :: Inv1(o)∧Inv3(o)∧Inv4(o)∧Inv5(o);
assume ∀ o :: o�= this ⇒ Inv2(o);

this . total = this . total + p;
if (parent != null) {

assert Inv1( this ) ;
assert ∀ o :: (o=this ∨ o=this.parent) ∧ o�= this.parent ⇒ Inv2(o);
parent .addToTotal(p);
assume ∀ o :: Inv1(o)∧Inv2(o)∧Inv3(o)∧Inv4(o)∧Inv5(o);

}

assert Inv1( this ) ;
assert ∀ o :: (o=this ∨ o=this.parent) ⇒ Inv2(o);

}

Fig. 3. Proof Obligations for the Composite

“considerate” implementations, since the inverse field references are required for
the implementation to be able to notify objects appropriately (e.g., the parent
field in the Composite). However, if at any point a suitable structural invari-
ant cannot be found, either an error can be reported to the user (suggesting
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that further structural invariants may need to be specified), or a warning could
be given, and the verification optimistically continued using the indirect
description.

Introduce unreliable blocks: One can automatically infer when an unreliable
block needs to begin, and which invariants need to be named, by using D to
identify the points in the code at which structural invariants may be invalidated.
Inferring where to end the unreliable blocks is more challenging, since we need to
“guess” how soon we re-establish these invariants. The simplest solution is to be
lazy, and leave the block open until these invariants are required to hold again,
either because a method call, end of method or conditional block is reached, or
because they appear in the supporting invariants of a concerns-description for a
field update. In practice, this typically doesn’t leave much scope for “laziness”,
and showing that the structural invariants are re-established at the derived point
is not problematic. For example, in the Composite add method, the structural
invariants must be re-established before addToTotal can be called.
Calculate proof obligations: The vulnerable invariants can be calculated
(Def. 6) and corresponding assume/assert statements derived (Defs. 7 and 5).

4 Conclusions, Related and Future Work

We have proposed Considerate Reasoning, a specification/verification method-
ology based on object invariants, which, we claim, neatly reflects the natural
argument of the implementation, and leads to succinct specifications. We have
outlined soundness of the technique, described how its support could be auto-
mated, and applied it to specify the Composite pattern.

Our work is based on, and extends, that of Middelkoop et. al. [15]. Our
concerns-descriptions add to their “coop-sets” the concept of supporting in-
variants; we introduced inference of admissible concerns-descriptions, structural
invariants, unreliable blocks, and the application to Boogie2.

Several specifications of the Composite were proposed for SAVCBS 2008. For
example, Jacobs et. al. [9] give a specification in separation logic, which ex-
presses the decomposition of a tree-structure into different context-tree views
from the viewpoint of the current receiver. The specification is not able to en-
force invariants for all objects, and thus cannot guarantee preservation of the
main invariant, Inv2, for all objects in the heap. It was machine-verified using
VeriFast [8]. The verification was interactive, and required the manual addition
of lemmas, and open/close and assert statements.

Bierhoff and Aldrich [5] present a specification using data groups, fractional
permissions, type states, and explicitly marking the violation/re-establishing of
invariants through unpack/pack statements. Permissions control state dependen-
cies in invariants - essentially each object depending on certain state for its in-
variant must carry some permission to that state. The authors outline a manual
verification, and discuss how a tool could infer unpack/pack statements.

More recently, Rosenberg et. al. [21] give a specification of the Composite using
regional logic [2]. They express an invariant semantics similar to ours, whereby
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they explicitly quantify over the set of all allocated objects, and require in the
pre- and post- conditions of the methods the invariants of all objects to hold,
except for those objects belonging to a further region (this corresponds to our
broken declarations). They mapped the specification into Boogie2 and verified it
in approx 6 secs. However, because their handling of invariants is explicit, rather
than with a prescribed methodology, some guidance is needed for the verified,
which takes the form of several lemmas, and manually annotating the Boogie
code with several assume/assert statements.

All these specifications required significant technical development; this is re-
flected in their length. Conversely, we have tried to retain in the specification
only those details which are essential and intuitive from the point of view of the
programmer. Furthermore, verification of these specifications requires further
work from the programmer, in that he needs to provide lemmas and insert fur-
ther annotations into the code. Conversely, our methodology can be automated
as we discussed earlier on; with our hypothetical tool, the programmer will only
need to provide the 25 lines of code and specification shown in Fig. 2. On the
other hand, our methodology does not deal with framing, whereas the above
approaches address this issue.

In future work we will formalise and prove soundness of Considerate Reason-
ing, and will combine it with other methodologies supporting complementary pro-
gramming patterns, as e.g., ownership-based methodologies. We will also address
the framing problem, and investigate extending our work to more-general kinds of
invariants and patterns in which collections of objects may be broken at a time.

We have considered the extension of our approach to concurrency. We propose
a locking discipline based on the calculated vulnerable invariants (calculated per
thread). Any object in the vulnerable invariants should be locked by the current
thread. Correspondingly, objects can only be unlocked if all of their invariants
which are vulnerable, can be shown to have been re-established. When applied
to the Composite, this idea allows a hand-over-hand locking discipline which can
handle many threads updating the tree structure concurrently. Formalising this
idea and its extensions will be interesting future work.
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