


Lecture Notes in Computer Science 5944
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Gilles Barthe Manuel Hermenegildo (Eds.)

Verification,
Model Checking,
and Abstract Interpretation

11th International Conference, VMCAI 2010
Madrid, Spain, January 17-19, 2010
Proceedings

13



Volume Editors

Gilles Barthe
IMDEA Software
Facultad de Informatica (UPM)
Campus Montegancedo, 28660 Boadilla del Monte, Madrid, Spain
E-mail: gilles.barthe@imdea.org

Manuel Hermenegildo
IMDEA Software and Technical University of Madrid
Facultad de Informatica (UPM)
Campus Montegancedo, 28660 Boadilla del Monte, Madrid, Spain
E-mail: manuel.hermenegildo@imdea.org

Library of Congress Control Number: 2009942234

CR Subject Classification (1998): D.2, D.3, F.3.1, F.3.2, D.2.4, D.2.5, D.3.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-11318-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11318-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12829729 06/3180 5 4 3 2 1 0



Preface

This volume contains the proceedings of the 11th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI 2010), held
in Madrid, Spain, January 17–19, 2010.

VMCAI 2010 was the 11th in a series of meetings. Previous meetings were
held in Port Jefferson (1997), Pisa (1998), Venice (2002), New York (2003),
Venice (2004), Paris (2005), Charleston (2006), Nice (2007), San Francisco (2008),
and Savannah (2009).

VMCAI centers on state-of-the-art research relevant to analysis of programs
and systems and drawn from three research communities: verification, model
checking, and abstract interpretation. A goal is to facilitate interaction, cross-
fertilization, and the advance of hybrid methods that combine two or all three
areas. Topics covered by VMCAI include program verification, program certifi-
cation, model checking, debugging techniques, abstract interpretation, abstract
domains, static analysis, type systems, deductive methods, and optimization.

The Program Committee selected 21 papers out of 57 submissions based on
anonymous reviews and discussions in an electronic Program Committee meet-
ing. The principal selection criteria were relevance and quality.

VMCAI has a tradition of inviting distinguished speakers to give talks and
tutorials. This time the program included three invited talks by:

– Javier Esparza (Technical University of Munich)
– Rustan Leino (Microsoft Research)
– Reinhard Wilhelm (Saarland University)

There were also three invited tutorials by:

– Roberto Giacobazzi (University of Verona)
– Joost Pieter Katoen (Aachen University)
– Viktor Kuncak (EPFL Lausanne)

We would like to thank the members of the Program Committee and the
subreviewers for their dedicated effort in the paper selection process. This was
crucial for the quality of the conference. Our thanks also go to the Steering
Committee members for helpful advice, in particular to Dave Schmidt and Lenore
Zuck for their invaluable experience with VMCAI organization-related aspects.
VMCAI 2010 was co-located with POPL 2010 (the ACM SIGACT/SIGPLAN
Symposium on Principles of Programming Languages) and we thank Manuel
Clavel for his non-ending support as local arrangements chair. Finally, we are also
grateful to Andrei Voronkov for creating (and helping us with) the EasyChair
system.



VI Preface

VMCAI 2010 was sponsored by EAPLS (European Association for Program-
ming Languages and Systems), ACM (the Association for Computing Machin-
ery), and IMDEA Software (the Madrid Institute for Advanced Studies in Soft-
ware Development Technology).

January 2010 Gilles Barthe
Manuel Hermenegildo
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Andrei Voronkov

Deriving Invariants by Algorithmic Learning, Decision Procedures, and
Predicate Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Yungbum Jung, Soonho Kong, Bow-Yaw Wang, and Kwangkeun Yi

Automatic Abstraction for Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Andy King and Harald Søndergaard

Shape Analysis of Low-Level C with Overlapping Structures . . . . . . . . . . . 214
Jörg Kreiker, Helmut Seidl, and Vesal Vojdani

Abstract Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Shuvendu K. Lahiri, Alexander Malkis, and Shaz Qadeer

Shape Analysis with Reference Set Relations . . . . . . . . . . . . . . . . . . . . . . . . 247
Mark Marron, Rupak Majumdar, Darko Stefanovic, and
Deepak Kapur

Shape Analysis in the Absence of Pointers and Structure . . . . . . . . . . . . . . 263
Matthew Might

An Analysis of Permutations in Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Valentin Perrelle and Nicolas Halbwachs

Regular Linear Temporal Logic with Past . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
César Sánchez and Martin Leucker

Model-Checking In-Lined Reference Monitors . . . . . . . . . . . . . . . . . . . . . . . . 312
Meera Sridhar and Kevin W. Hamlen

Considerate Reasoning and the Composite Design Pattern . . . . . . . . . . . . 328
Alexander J. Summers and Sophia Drossopoulou

RGSep Action Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Viktor Vafeiadis

Best Probabilistic Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Björn Wachter and Lijun Zhang

Collections, Cardinalities, and Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Kuat Yessenov, Ruzica Piskac, and Viktor Kuncak

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397



Analysis of Systems with Stochastic Process
Creation

Javier Esparza

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

In many computer science systems entities can “reproduce”, “replicate”, or “cre-
ate new instances”. Paramount examples are threads in multithreaded programs,
processes in operating systems, and computer viruses, but many others exist:
procedure calls create new incarnations of the callees, web crawlers discover new
pages to be explored (and so “create” new tasks), divide-and-conquer procedures
split a problem into subproblems, and leaves of tree-based data structures be-
come internal nodes with children. I use the generic term systems with process
creation to refer to all these entities.

In the last year, Tomáš Brázdil, Stefan Kiefer, Michael Luttenberger and my-
self have started to investigate the behaviour of systems with stochastic process
creation [2,3]. We assume that the probabilities with which entities create new
ones is known or has been estimated. We study random variables modelling
the computational resources needed to completely execute the system, i.e., to
execute the initial process and all of its descendants.

Stochastic process creation has been studied by mathematicians for decades
under the name branching (stochastic) processes [4,1]. However, this work has
been motivated by applications to biology (study of animal populations), physics
(study of particle cascades) or chemistry (study of chemical reactions). From a
computer scientist’s point of view, in these scenarios no process ever waits to
be executed, because there is no separation between processes (software) and
processor (hardware); for instance, in biology scenarios each individual animal
is both a process and the processor executing it. So, in computer science terms,
probability theorists have studied systems with an unbounded number of proces-
sors. The model in which one single or a fixed number of processors execute a
possibly much larger number of processes, seems to have received little attention.

In my talk I interpret some results of the theory of branching processes for a
computer science audience, and present the results of [2,3] on the single processor
case.

References

1. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Heidelberg (1972)
2. Brázdil, T., Esparza, J., Kiefer, S.: On the memory consumption of probabilistic

pushdown automata. In: Proceedings of FSTTCS 2009 (2009)
3. Brázdil, T., Esparza, J., Kiefer, S., Luttenberger, M.: Space-efficient scheduling of

stochastically generated tasks. Technical report, TU München (2009)
4. Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)
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Verifying Concurrent Programs with Chalice

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. One of the problems in verifying concurrent programs is keeping track
of which threads have access to which data at which times. The experimental
language Chalice makes this explicit by requiring every data access to be justi-
fied with a sufficient set of permissions. Permissions can be transferred between
threads and can be stored in the heap. The programming language includes speci-
fication constructs for describing data invariants and permission transfers. Chalice
supports synchronization via shared memory and locks as well as via channels.
The Chalice program verifier checks the correctness of programs with respect to
their specifications and the rules for data access. Programs that have been proved
correct compile to executable code for the .NET platform.

In this talk, I will give an overview and demo of the Chalice language and
its permission model. I will describe the semantic model used to reason about
programs and how this model is encoded in the Boogie intermediate verification
language, from which first-order verification conditions are generated and fed
to an SMT solver. I will also outline some remaining challenges in making the
language and its specifications easy to use, in making the encoding efficient for
SMT solvers, and in presenting verification errors to the user.

Joint work with Peter Müller and Jan Smans.

References

1. Chalice web site, http://research.microsoft.com/chalice
2. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In: Castagna, G.

(ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg (2009)
3. Leino, K.R.M., Müller, P., Smans, J.: Verification of concurrent programs with Chalice. In:

FOSAD 2009. LNCS, vol. 5705, pp. 195–222. Springer, Heidelberg (2009)
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Static Timing Analysis for
Hard Real-Time Systems�

Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière,
Daniel Grund, Jörg Herter, Jan Reineke,
Björn Wachter, and Stephan Wilhelm

Saarland University, Saarbrücken, Germany

Abstract. Hard real-time systems have to satisfy strict timing con-
straints. To prove that these constraints are met, timing analyses aim
to derive safe upper bounds on tasks’ execution times. Processor com-
ponents such as caches, out-of-order pipelines, and speculation cause a
large variation of the execution time of instructions, which may induce
a large variability of a task’s execution time. The architectural platform
also determines the precision and the complexity of timing analysis.

This paper provides an overview of our timing-analysis technique and
in particular the methodological aspects of interest to the verification
community.

1 Introduction

Hard real-time systems have to satisfy strict timing constraints. Traditionally,
measurement has been used to show their satisfaction. However, the use of mod-
ern high-performance processors has created a severe problem. Processor com-
ponents such as caches, out-of-order pipelines, and all kinds of speculation cause
a large variability of the execution times of instructions, which induces a po-
tentially high variability of whole programs’ execution times. For individual in-
structions, the execution time may vary by a factor of 100 and more. The actual
execution time depends on the architectural state in which the instruction is
executed, i.e. the contents of the caches, the occupancy of the pipeline units,
contention on the busses etc.

Different kinds of timing analyses are being used today [1]; measurement-
based/hybrid [2,3,4] and static analysis [5] being the most prominent. Both
methods compute estimates of the worst-case execution times for program frag-
ments like basic blocks. If these estimates are correct, i.e. they are upper bounds
on the worst-case execution time of the program fragment, they can be combined
to obtain an upper bound on the worst-case execution time of the task.
� The research leading to these results has received funding from the following

projects (in alphabetical order): the Deutsche Forschungsgemeinschaft in SFB/TR 14
AVACS, the German-Israeli Foundation (GIF) in the Encasa project, and the Eu-
ropean Community’s Seventh Framework Programme FP7/2007-2013 under grant
agreement number 216008 (Predator).

G. Barthe and M. Hermenegildo (Eds.): VMCAI 2010, LNCS 5944, pp. 3–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



4 R. Wilhelm et al.

While using similar methods in the combination of execution times of program
fragments, the two methods take fundamentally different approaches to compute
these estimates:

– Static analyses based on abstract models of the underlying hardware com-
pute invariants about the set of all execution states at each program point
under all possible initial states and inputs and derive upper bounds on the
execution time of program fragments based on these invariants.

– Measurement executes each program fragment with a subset of the possible
initial states and inputs. The maximum of the measured execution times is
in general an underestimation of the worst-case execution time.

If the abstract hardware models are correct, static analysis computes safe upper
bounds on the WCETs of program fragments and thus also of tasks. However,
creating abstract hardware models is an error-prone and laborious process, es-
pecially if no precise specification of the hardware is available.

The advantage of measurement over static analysis is that it is more easily
portable to new architectures, as it does not rely on such abstract models of the
architecture. On the other hand, soundness of measurement-based approaches is
hard to guarantee. Measurement would trivially be sound if all initial states and
inputs would be covered. Due to their huge number this is usually not feasible.
Instead, only a subset of the initial states and inputs can be considered in the
measurements.

This paper provides an overview of our state-of-the-art timing-analysis ap-
proach. In Section 2, we describe the architecture and the component function-
alities of our framework for static timing analysis.

Section 3 is devoted to several aspects of the memory hierarchy, in partic-
ular caches. Memory-system performance often dominates overall system per-
formance. This makes cache analysis so important for timing analysis. The
most relevant property is predictability [6,7]. This notion—a hot topic of cur-
rent research—is fully clarified for caches [8,9]. A second notion, exemplified
for caches, is the relative competitiveness of different cache architectures. They
allow one to use the cache-analysis results of one cache architecture to pre-
dict cache performance for another one. A third property of cache architectures
is their sensitivity to the initial state. Results show that some frequently used
cache replacement-strategies are highly sensitive. This has severe consequences
for measurement-based approaches to timing analysis. Missing one initial cache
state in a non-exhaustive set of measurements may lead to dramatically wrong
results.

Data-cache analysis would fail for programs allocating data in the heap since
the addresses and therefore the mapping to cache sets would be statically un-
known. We approach this problem in two different ways, firstly, by converting
dynamic to static allocation and using a parametric timing analysis, and sec-
ondly, by allocating in a cache-aware way.

Pipelines are much more complex than caches and therefore more difficult to
model. The analysis of their behavior needs much more effort than cache analysis
since a huge search space has to be explored and no abstract domain with a
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compact representation of sets of pipeline states has been found so far. Symbolic
data structures as used in model checking offer some potential to increase the
efficiency. A novel symbolic approach to timing analysis has shown promising
results [10]. We give a short overview in Section 4.

This article centers around static timing analysis. An extended description of
our approach can be found in [11]. A comprehensive survey of timing-analysis
approaches is given in [1].

1.1 The Architectural Challenge—and How to Cope with It

Hard real-time systems need guarantees expressed in terms of worst-case perfor-
mance. However, the architectures on which the real-time programs are executed
are optimized for average-case performance. Caches, pipelines, and all kinds of
speculation are key features for improving average-case performance. Caches are
used to bridge the gap between processor speed and the access time of main
memory. Pipelines enable acceleration by overlapping the executions of different
instructions. The consequence is that the execution time of individual instruc-
tions, and thus the contribution to the program’s execution time can vary widely.
The interval of execution times for one instruction is bounded by the execution
times of the following two cases:

– The instruction goes “smoothly” through the pipeline; all loads hit the cache,
no pipeline hazard happens, i.e. all operands are ready, no resource conflicts
with other currently executing instructions exist.

– “Everything goes wrong”, i.e. instruction and/or operand fetches miss the
cache, resources needed by the instruction are occupied, etc.

We will call any increase in execution time during an instruction’s execution
a timing accident and the number of cycles by which it increases the timing
penalty of this accident. Timing penalties for an instruction can add up to several
hundred processor cycles. Whether the execution of an instruction encounters

Fr
eq

ue
nc

y

Exec-timeLB BCET WCET UB

In addition: abstraction-induced variance

Input- and state-induced variance Overest.

Fig. 1. Notions in Timing Analysis. Best-cast and worst-case execution time (BCET
and WCET), and computed lower and upper bounds.
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a timing accident depends on the architectural state, e.g. the contents of the
cache(s), the occupancy of other resources, and thus on the execution history.
It is therefore obvious that the attempt to predict or exclude timing accidents
needs information about the execution history.

We use static analysis to compute invariants about the set of all possible
architectural states at all program points. Indeed, due to abstraction, over-
approximations of these sets are computed. They are used to derive safety prop-
erties of the kind: “A certain timing accident will not happen at this program
point.”. Such a safety property allows the timing-analysis tool to prove a tighter
worst-case bound.

Some abstraction of the execution platform is necessary to make a timing
analysis of the system feasible. These abstractions lose information, and thus are
in part responsible for the gap between WCETs and upper bounds and between
BCETs and lower bounds. How much is lost depends both on the methods used
for timing analysis and on system properties, such as the hardware architecture
and the analyzability of the software.

1.2 Timing Anomalies

Most powerful microprocessors have so-called timing anomalies [12]. Timing
anomalies are contra-intuitive influences of the (local) execution time of one in-
struction on the (global) execution time of the whole program. Several processor
features can interact in such a way that a locally faster execution of an instruction
can lead to a globally longer execution time of the whole program. Hence, resolving
uncertainty in the analysis by only assuming local worst-cases might be unsound.

One would assume that a cache miss is always the worst-case possibility for a
memory access. However, the cache miss may prevent an expensive branch mis-
prediction and, thus, globally be the better case. This was observed for the MCF
5307 [13,5]. Since the MCF 5307 has a unified cache and the fetch and execute
pipelines are independent, the following can happen: A data access hitting in the
cache is served directly from the cache. At the same time, the pipeline fetches
another instruction block from main memory, performing branch prediction and
replacing two lines of data in the cache. These may be reused later on and cause
two misses. If the data access was a cache miss, the instruction fetch pipeline
may not have fetched those two lines, because the execution pipeline may have
resolved a misprediction before those lines were fetched.

The existence of timing anomalies forces the timing analysis to explore all
successor states that cannot be excluded, not only the local worst-case ones.
Besides the fact that timing penalties may partly mask each other out, timing
anomalies are another reason why timing is not compositional.

2 A Timing Analysis Framework

Over roughly the last decade, a more or less standard architecture for timing-
analysis tools has emerged. Figure 2 gives a general view of this architecture.
First, one can distinguish four major building blocks:
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– control-flow reconstruction
– static analyses for control and data flow
– micro-architectural analysis computing upper and lower bounds on the exe-

cution times of basic blocks
– global bounds analysis computing upper and lower bounds for the whole

program

The following list presents the individual phases and describes their objectives
and main challenges.

1. Control-flow reconstruction [14] takes a binary executable to be analyzed,
reconstructs the program’s control flow and transforms the program into a
suitable intermediate representation. Problems encountered are dynamically
computed control-flow successors, e.g. those stemming from switch state-
ments, function pointers, etc.

2. Value analysis [15] computes an over-approximation of the set of possible
values in registers and memory locations by an interval analysis and/or con-
gruence analysis. The computed information is used for a precise data-cache
analysis and in the subsequent control-flow analysis. Value analysis is the
only one to use an abstraction of the processor’s arithmetic. A subsequent
pipeline analysis can therefore work with a simplified pipeline where the
arithmetic units are removed. One is not interested in what is computed,
but only in how long it will take.

Binary
Executable

CFG Re-
construction

Control-flow
Graph

Loop Bound
Analysis

Value
Analysis

Control-flow
Analysis

Annotated
CFG

Basic Block
Timing Info

Micro-
architectural

Analysis

Global Bound
Analysis

Legend:

Data

Phase

Fig. 2. Main components of a timing-analysis framework and their interaction
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3. Loop bound analysis [16,17] identifies loops in the program and tries to de-
termine bounds on the number of loop iterations; information indispensable
to bound the execution time. Problems are the analysis of arithmetic on loop
counters and loop exit conditions, as well as dependencies in nested loops.

4. Control-flow analysis [16,18] narrows down the set of possible paths through
the program by eliminating infeasible paths or by determining correlations
between the number of executions of different blocks using the results of
value analysis. These constraints will tighten the obtained timing bounds.

5. Micro-architectural analysis [19,20,21] determines bounds on the execution
time of basic blocks by performing an abstract interpretation of the pro-
gram, combining analyses of the processor’s pipeline, caches, and specula-
tion. Static cache analyses determine safe approximations to the contents of
caches at each program point. Pipeline analysis analyzes how instructions
pass through the pipeline accounting for occupancy of shared resources like
queues, functional units, etc.

6. Global bounds analysis [22,23] finally determines bounds on the execution
times for the whole program by implicit path enumeration using an integer
linear program (ILP). Bounds of the execution times of basic blocks are
combined to compute longest paths through the program. The control flow
is modeled by Kirchhoff’s law. Loop bounds and infeasible paths are modeled
by additional constraints. The target function weights each basic block with
its time bound. A solution of the ILP maximizes the sum of those weights
and corresponds to an upper bound on the execution times.

The commercially available tool aiT by AbsInt, cf. http://www.absint.de/
wcet.htm implements this architecture. It is used in the aeronautics and auto-
motive industries and has been successfully used to determine precise bounds on
execution times of real-time programs [21,5,24,13]. The European Airworthiness
Authorities have validated it for the certification of several avionics subsystems
of the Airbus A380.

3 Cache Analysis

The goal of a static cache analysis is to statically predict the cache behavior
of a program on a set of inputs with a possibly unknown initial cache state.
As the cache behavior may vary from input to input and from one initial state
to another, it may not be possible to safely classify each memory access in the
program as a cache hit or a cache miss. A cache analysis is therefore forced
to approximate the cache behavior in a conservative way if it shall be used to
provide guarantees on the execution time of a task.

To obtain tight bounds on the execution time it is essential to use a precise
cache analysis. Each excluded cache miss improves the provable upper bound
on the worst-case execution time roughly by the cache miss penalty. Conversely,
each guaranteed cache miss improves the provable lower bound on the best-case
execution time.
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WCET and BCET analyses need a classification of individual memory ac-
cesses in the program as cache hits or misses. For most architectures, it is not
sufficient to determine upper and lower bounds on the number of misses for the
execution of the entire program because caches interact with other architectural
components such as pipelines. For instance, a cache reload may overlap with a
pipeline stall. To precisely take such effects into account, a timing analysis needs
to know where and when the cache misses happen.

One may compute may and must cache information in static cache analysis:
may and must caches at a program point are upper and lower approximations,
respectively, to the contents of all concrete caches that will occur whenever
program execution reaches this program point. The must cache at a program
point is a set of memory blocks that are definitely in each concrete cache at
that point. The may cache is a set of memory blocks that may be in a concrete
cache whenever program execution reaches that program point. We call the two
analyses may and must cache analyses.

Must cache information is used to derive safe information about cache hits;
in other words it is used to exclude the timing accident “cache miss”. The com-
plement of the may cache information is used to safely predict cache misses.

3.1 Influence of the Cache Replacement Policy

Caches have a particularly strong influence on both the variation of execution
times due to the initial hardware state and on the precision of static WCET
analyses. A cache’s behavior is controlled by its replacement policy. In [9], we
investigate the influence of the cache replacement policy on

– the amount of inherent uncertainty in static cache analysis, i.e. cache misses
that cannot be excluded statically but never happen during execution

– the maximal variation in cache performance due to the initial cache state
– the construction of static cache analyses, analyses that statically classify

memory references as cache hits or misses

The following subsections explain the three problems in more detail and sketch
our approaches and contributions.

Predictability Metrics—Limits on the Precision of Cache Analyses.
Usually there is some uncertainty about the cache contents, i.e. the may and
must caches do not coincide; there are memory blocks which can neither be
guaranteed to be in the cache nor not to be in it. The greater the uncertainty
in the must cache, the worse the upper bound on the WCET. Similarly, greater
uncertainty in the may cache entails a less precise lower bound on the BCET.

There are several reasons for uncertainty about cache contents:

– Static cache analyses usually cannot make any assumptions about the initial
cache contents. Cache contents on entry depend on previously executed tasks.
Even assuming an empty cache may not be conservative [25].
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– At control-flow joins, analysis information about different paths needs to be
safely combined. Intuitively, one must take the intersection of the incoming
must information and the union of the incoming may information. A mem-
ory block can only be in the must cache if it is in the must caches of all
predecessor control-flow nodes, correspondingly for may caches.

– In data-cache analysis, the value analysis may not be able to exactly de-
termine the address of a memory reference. Then the cache analysis must
conservatively account for all possible addresses.

– Preempting tasks may change the cache state in an unpredictable way at
preemption points [26].

Since information about the cache state may thus be unknown or lost, it is
important to recover information quickly to be able to classify memory references
safely as cache hits or misses. This is possible for most caches. However, the speed
of this recovery greatly depends on the cache replacement policy. It influences
how much uncertainty about cache hits and misses remains. Thus, the speed of
recovery is an indicator of timing predictability.

The two metrics, evict and fill, in-evict
fill

[dex]
[fde]

[gfd]
[hgf ][fec]

[gfe]
[fed]

Fig. 3. Initially different cache sets
converge when accessing a sequence
〈a, b, c, d, e, f, g, h, . . .〉 of pairwise different
memory blocks

dicate how quickly knowledge about
cache hits and misses can be (re-)ob-
tained under a particular replacement
policy [8]. They mark a limit on the
precision that any cache analysis can
achieve, be it by abstract interpreta-
tion or any other sound method. Fig-
ure 3 illustrates the two metrics. evict
tells us at which point we can safely
predict that some memory blocks are
no more in the cache, i.e. they are in
the complement of may information.
Any memory block not contained in
the last evict accesses cannot be in

the cache set. The greater evict, the longer it takes to gain may information.
fill accesses are required to converge to one completely determined cache set.
At this point, complete may and must information is obtained, which allows to
precisely classify each memory access as a hit or a miss. The two metrics mark a
limit on any cache analysis: no analysis can infer any may information (complete
must information) given an unknown cache-set state and less than evict (fill)
memory accesses.

Under the two metrics, LRU is optimal, i.e. may- and must -information can
be obtained in the least possible number of memory accesses. PLRU, MRU, and
FIFO, perform considerably worse. Compared to an 8-way LRU, it takes more
than twice as many accesses to regain complete must -information for equally-
sized PLRU, MRU, and FIFO caches. As a consequence, it is impossible to
construct cache analyses for PLRU, MRU, and FIFO that are as precise as
known LRU analyses.
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Relative Competitiveness of Replacement Policies. Developing cache an-
alyses—analyses that statically determine whether a memory access associated
with an instruction will always be a hit or a miss—is a difficult problem. Precise
and efficient analyses have been developed for set-associative caches that employ
the least-recently-used (LRU) replacement policy [21,27,28,29]. Other commonly
used policies, like first-in-first-out (FIFO) or Pseudo-LRU(PLRU) are more
difficult to analyze [8].

Relative competitive analyses yield upper (lower) bounds on the number of
misses (hits) of a policy P relative to the number of misses (hits) of another
policy Q. For example, a competitive analysis may find out that policy P will
incur at most 30% more misses than policy Q and at most 20% less hits in the
execution of any task.

The following approach determines safe bounds on the number of cache hits
and misses by a task T under FIFO(k), PLRU(l)1, or any another replacement
policy [9]:

1. Determine competitiveness of the desired policy P relative to a policy Q for
which a cache analysis exists, like LRU.

2. Perform cache analysis of task T for policy Q to obtain a cache-performance
prediction, i.e. upper (lower) bounds on the number of misses (hits) by Q.

3. Calculate upper (lower) bounds on the number of misses (hits) for P using
the cache analysis results for Q and the competitiveness results of P relative
to Q.

Step 1 has to be performed only once for each pair of replacement policies.
A limitation of this approach is that it only produces upper (lower) bounds on

the number of misses (hits) for the whole program execution. It does not reveal
at which program points the misses (hits) will happen, something many timing
analyses need. Relative competitiveness results can also be used to obtain sound
may and must cache analyses, i.e. analyses that can classify individual accesses
as hits or misses. Relative competitive ratios can be computed automatically for
a pair of policies [30]2.

One of our results is that for any associativity k and any workload, FIFO(k)
generates at least half the number of hits that LRU(k) generates. Another result
is that may cache analyses for LRU can be safely used as may cache analyses
for MRU and FIFO of other associativities.

Sensitivity of Replacement Policies. The sensitivity of a cache replacement
policy expresses to what extent the initial state of the cache may influence the
number of cache hits and misses during program execution [9]. Analysis results
demonstrate that the initial state of the cache can have a strong impact on
the number of cache hits and misses during program execution if FIFO, MRU,
or PLRU replacement is used. A simple model of execution time demonstrates
the impact of cache sensitivity on measured execution times. It shows that un-
derestimating the number of misses as strongly as possible for FIFO, MRU,
1 k and l denote the respective associativities of FIFO(k) and PLRU(l).
2 See http://rw4.cs.uni-sb.de/∼reineke/relacs for a corresponding applet.
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q1 = [⊥,⊥,⊥,⊥] a−→
M

[a,⊥,⊥,⊥] a−→
H

[a,⊥,⊥,⊥] b−→
M

[b, a,⊥,⊥] c−→
M

[c, b, a,⊥] = q′1

q2 = [a, x, b, c] a−→
H

[a, x, b, c] a−→
H

[a, x, b, c] b−→
H

[a, x, b, c] c−→
H

[a, x, b, c] = q′2

q3 = [x, y, z, a] a−→
H

[x, y, z, a] a−→
H

[x, y, z, a] b−→
M

[b, x, y, z] c−→
M

[c, b, x, y] = q′3

q4 = [x, y, b, z] a−→
M

[a, x, y, b] a−→
H

[a, x, y, b] b−→
H

[a, x, y, b] c−→
M

[c, a, x, y] = q′4

Fig. 4. Dependency of FIFO cache set contents on the initial state

and PLRU may yield worst-case-execution-time estimates that are dramatically
wrong. Further analysis revealed that the “empty cache is worst-case initial
state” assumption [2] is wrong for FIFO, MRU, and PLRU.

3.2 FIFO Cache Analysis

Precise and efficient analyses have been developed for the least-recently-used
(LRU) replacement policy [21,27,28,29]. Generally, research in the field of em-
bedded real-time systems assumes LRU replacement. In practice however, other
policies like first-in first-out (FIFO) or pseudo-LRU (PLRU) are also com-
monly used. In [31], we discuss challenges in FIFO cache analysis. We identify a
generic policy-independent framework for cache analysis that couples may- and
must-analyses by means of domain cooperation. The main contribution is a more
precise may-analysis for FIFO. It not only increases the number of predicted
misses, but also—due to the domain cooperation—the number of predicted hits.
We instantiate the framework with a canonical must-analysis and three different
may-analyses, including the new one, and compare the resulting three analyses
to the collecting semantics.

To see the difficulty inherent in FIFO, consider the examples in Figure 4.
The access sequence s = 〈a, a, b, c〉 is carried out on different cache sets qi of
associativity 4. Although only 3 different memory blocks {a, b, c} are accessed,
some of the resulting cache sets q′i do not contain all of the accessed blocks. In
contrast, a k-way cache set with LRU replacement always consists of the k most-
recently-used memory blocks, e.g. {a, b, c} would be cached after carrying out
s, independently of the initial state. This makes analysis of FIFO considerably
more difficult than analysis of LRU.

To generalize, consider a FIFO cache set with unknown contents. After ob-
serving a memory access to a block a, trivial must-information is available: One
knows that a must be cached, but the position of a within the cache set is
unknown. For example the access to a could be a hit to the second position:

[?, ?, ?, ?] a−−−→hit [?, a, ?, ?] b−−−→hit [?, a, ?, b]

[?, ?, ?, ?] a−−−→hit [?, ?, ?, a] b−−−→miss [b, ?, ?, ?]

However, as in the second case, the access to a could also be a hit on the first-
in (i.e., rightmost) position. Hence, a second access to a different block b may
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already evict the first accessed block a. Thus, without additional information
about the accesses it is not possible to infer that two or more blocks are cached,
i.e. one can only derive must information of poor quality.

However, there are means to gain more precise information: If one can classify
the access to a as a miss for example, then the second access to a different block
b cannot evict a because one knows that a was inserted at the last-in position.

[?, ?, ?, ?] a−−−→miss [a, ?, ?, ?] b−−−→miss [b, a, ?, ?]

On a more abstract level, what this actually means is that may-information can
be used to obtain precise must-information. To do so however, one needs to
realize information flow between may- and must-analyses. This gives rise to the
policy-independent cache-analysis framework explained below that can couple
different analyses to improve analysis precision.

Must- and May-analyses for FIFO. Here, we only describe the ideas behind
the abstract domains and kindly refer the interested reader to [31] for details.
The must-analysis borrows basic ideas from LRU-analysis [21]. For each memory
block b, it infers an upper bound on the number of cache misses since the last in-
sertion of b into the cache set. If the bound for b is smaller than the associativity,
cache hits can be soundly predicted for b. Analogously, to predict cache misses,
the may-analysis infers lower bounds on the number of cache misses to prove
eviction. By distinguishing between hits and misses and taking into account the
order in which they happen, we improve the may-analysis, thereby increasing the
number of predicted cache misses. Through the cooperation of the two analyses
in the generic framework, this also improves the precision of the must-analysis.

Cache Analysis Framework. As motivated above, for FIFO there needs to
be some information flow between may- and must-analyses to obtain precise in-
formation. Indeed, this is not restricted to FIFO and can be generalized: This
section presents a policy-independent cache analysis framework, in which any
number of independent cache analyses can cooperate. The goal is to obtain in-
formation that is more precise than the best information obtained by any of the
individual analyses. The only prerequisite is that the individual analyses imple-
ment a very small interface. Given correct analyses, the framework realizes the
cooperation between these and guarantees correctness of the resulting analysis.

The framework constructs a cache analysis (A, CA , UA , JA), with abstract
domain A, classification function CA , abstract transformer UA , and join function
JA , given any number of cache analyses (Ai, CAi

, UAi
, JAi

) for the same concrete
cache set type QPk

. The domain of the constructed analysis is the cartesian
product

A := A1 × . . . × An

To classify a cache access to some memory block b ∈ B, the classification function,
CA : A×B → {hit, miss}�, combines the classifications of all individual analyses:

CA((a1, . . . , an) , b) :=
�
i

CAi
(ai, b) (1)
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(a1, a2) (a′
1, a

′
2)

QPk QPk

γ1 γ2

UPk

α1 α2

(a) Best abstract transformer would
correspond to αj(UPk (

T

i γi(ai), b))
for all j.

(a1, a2) (a′
1, a

′
2)

QPk QPk

γ1

CA((a1, a2), b) = M

γM(b) = {q ∈ QPk | b �∈ q}

UPk

α1

(b) Abstract transformer using reduction
by classification corresponds to

αi(UPk (γi(ai) ∩ γCA (a,b)(b), b)) for all i.

Fig. 5. Information flow between analyses by update reduction

Since each individual analysis is sound, these classifications cannot contradict
each other, i.e. their meet (�) is always defined.

In abstract interpretation, the term reduction refers to the process of refining
information encoded in a domain by other, external, information. For an exam-
ple, consider value analysis using the Interval - and Parity-domain: Assume the
interval domain infers n ∈ [2, 4] and the parity domain provides isOdd(n). Then,
using the latter, one can reduce the interval to n ∈ [3, 3].

However, in abstract domains for cache analysis, information expressible in
one domain is not necessarily expressible in another one: The syntactical struc-
ture of constraints in domain A1 does not allow to encode information provided
by constraints of domain A2. For example, a must-analysis maintains upper
bounds on the number of cache misses while a may-analysis maintains lower
bounds on that number. In such a case, a reduction on the abstract states would
be ineffective.

Nonetheless, it is possible to use the information provided by other abstract
domains to reduce the abstract transformers. First, consider the two extremes:
On the one hand, the independent update of all Ai, and on the other hand a
best abstract transformer. In an independent update of an Ai no information of
the other domains is used. In a best abstract transformer, which is depicted in
Figure 5(a), all information of the other domains is used: It would correspond
to taking the intersection of all concretizations (sets of cache sets), updating
them in the concrete, and then abstracting to the domains again. However,
best abstract transformers counteract the wish to implement and prove correct
individual domains independently and mostly are computationally expensive,
anyway.

The update reduction of our framework lies in between these two extremes:
The reduced abstract transformers are more precise than independent updates.
And the information exchange is abstract enough such that it can be realized
without knowledge about the participating domains, i.e. domains can be plugged
in without changing the update functions of other domains. The update reduc-
tion of the framework uses the classification of the current access. Figure 5 shows
this at hand of the domain A1. Assume that some domain Ai can classify the
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access to block b as a miss, e.g. CA2
(a2, b) = M. Then the overall classification,

which depends on all individual classifications, will be CA((a1, a2), b) = M, too.
With this information, one can further restrict the concretization γA1

(a1) to
cache sets that additionally do not contain the accessed block {q ∈ QPk

| b �∈ q}.
Using this additional information, one can define abstract transformers that are
more precise than independent ones.

In an implementation, the update reduction amounts to refine the update
functions of each domain by an additional parameter to pass the classification
of the current access. Hence, the update function UA : A ×B → A is defined as:

UA((a1, . . . , an) , b) :=
(
UA1

(a1, b, cl), . . . , UAn
(an, b, cl)

)
, (2)

where cl := CA((a1, . . . , an) , b).
Finally, the join function JA is simply defined component-wise.

3.3 Context Switch Costs

Previous timing analyses assume tasks running to completion, i.e. assuming
non-preemptive execution. Some task sets, however, are only schedulable pre-
emptively. For such systems, we also need to bound the context-switch costs
in addition to the WCET. In case of preemption, cache memories may suffer
interferences between memory accesses of the preempted and of the preempting
task. These interferences lead to some additional reloads, which are referred to
as cache-related preemption delay (CRPD). This CRPD constitutes the major
part of the context switch costs.

Upper bounds on the CRPD are usually computed using the concept of useful
cache blocks (UCB). Memory blocks are considered useful at a program point
if they may be in cache before the program point and may be reused after it.
When a preemption occurs at that point the number of additional cache-misses
is bounded by the number of useful cache blocks. However, some cache accesses
are taken into account as misses as part of the WCET bound anyway. These
accesses do not have to be accounted for a second time as part of the CRPD
bound [26].

A memory block m is called a definitely-cached UCB (DC-UCB) at program
point P if (a) m must be cached before the preemption point and (b) m may be
reused at program point Q, which may be reached from P , and must be cached
along the path to its reuse. Using the notion of definitely-cached UCB, one
computes the number of additional cache misses due to preemption that are not
already taken into account as a miss by the timing analysis. This number does not
bound the CRPD, but the part of the CRPD that is not already included in the
WCET bound. Hence, the global bound on WCET+CRPD can be significantly
improved.

The DC-UCB analysis uses information computed by a preceding cache anal-
ysis. In the following, we denote instruction j of basic block i as Bj

i and use
Access(Bj

i ) to denote the memory block accessed by instruction Bj
i .

To determine the set of definitely-cached UCBs, we use a backward program
analysis over the control flow graph. A memory block m is added to the set of
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DC-UCBs of instruction Bj
i , if m is element of the must cache at Bj

i (computed
by a preceding cache analysis) and if instruction Bj

i accesses m. The domain of
our analysis is the powerset domain of the set of memory blocks M : D = 2M

The following two equations determine the data-flow value before (DC-UCBin)
and after (DC-UCBout) instruction Bj

i :

DC-UCBin(Bj
i ) = gen(Bj

i ) ∪ (DC-UCBout(B
j
i ) \ kill(Bj

i )) (3)

DC-UCBout(B
j
i ) =

⋃

successorBl
k

DC-UCBin(Bl
k) (4)

where the gen/kill sets are defined as follows:

gen(Bj
i ) =

{
{Access(Bj

i )} if Access(Bj
i ) ∈ Must Cache(Bj

i )
∅ otherwise

(5)

kill(Bj
i ) = M \ Must Cache(Bj

i ) (6)

Equation (4) combines the flow information of all successors of instruction Bj
i .

Equation (3) represents the update of the flow information due to the execution
of the instruction. First, all memory blocks not contained in the must cache at
Bj

i are removed from the set of DC-UCBs (6)—only a memory block that is
element of the must cache all along the way to its reuse is considered useful by
our definition. Then, the accessed memory block of instruction Bj

i is added in
case it is contained in the must cache at the instruction (5).

Using these equations, the set of UCBs can be computed via fixed-point itera-
tion (see [15]). The initial values at instruction Bj

i are defined by DC-UCBin(Bj
i )

= gen(Bj
i ) and DC-UCBout(B

j
i ) = ∅.

The analysis obtains a set of memory blocks at each program point P access
that might cause an additional miss upon access in case of preemption at P .
The program point P with the largest DC-UCB set determines an upper-bound
on the number of additional misses for the whole task. In contrast to the former
UCB analysis, the DC-UCB analysis only takes those misses into account that
are not part of the WCET bound. Evaluation shows that up to 80% of the
accesses to a UCB were also considered to be misses in the WCET analysis. The
DC-UCB analysis omits these UCBs. Hence, the analysis derives much better
bounds on the CRPD when used in the context of timing analysis.

3.4 Heap-Allocating Programs

Static timing analyses rely on high cache predictability in order to achieve precise
bounds on a program’s execution time. Such analyses, however, fail to cope with
programs using dynamic memory allocation. This is due to the unpredictabil-
ity of the cache behavior introduced by the dynamic memory allocators. Using
standard allocators, the cache sets to which a newly allocated memory block is
mapped to are statically unknown. This does not only prohibit a cache analysis
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to derive hits or misses for accesses to dynamically allocated objects. It also
forces such analyses to conservatively treat an access to a dynamically allocated
block as an access to all cache sets. In turn, information about the cache de-
rived from an access sequence to statically allocated objects may easily be lost.
Allocators normally traverse some internal structure of free memory blocks in
order to find a suitable block to satisfy an allocation request or reinsert newly
deallocated memory blocks. These statically unpredictable traversals have the
same negative effect on static cache analyses. Additionally, the response times
of allocators can in general not be tightly bounded.

We investigate two approaches to enable precise worst-case execution time
analysis for programs that use dynamic memory allocation.

The first approach automatically transforms the dynamic memory allocation
into a static allocation with comparable memory consumption [32]. Hence, we try
to preserve the main advantage of dynamic memory allocation, namely the reduc-
tion of memory consumption achieved by reusing deallocated memory blocks for
subsequent allocation requests. Ending up with a static allocation allows for using
existing techniques for timing analyses. However, the techniques for transforming
dynamic to static allocation as presented in [32] have limitations. In particular,
the number and sizes of dynamically allocated blocks need to be statically known.
Although this might be reasonable in the hard real-time setting, ongoing research
addresses this problem by investigating a parametric approach to automatically
precompute memory addresses for otherwise dynamically allocated memory.

The second approach replaces the unpredictable dynamic memory allocator
by a predictable dynamic memory allocator [33]. Our predictable memory alloca-
tor takes an additional—possibly automatically generated—argument specifying
the cache set newly allocated memory shall be mapped to. It further gives guar-
antees on the number of cache lines per cache set that may be touched during
(de)allocation. It also features constant response times by managing free blocks
in multi-layered segregated lists.

Both approaches rely on precise information about the dynamically allocated
heap objects and data structures arising during program execution. This in-
formation could be obtained by shape analysis [34] or data structure analysis.
However, these analyses are not allocation-site aware, i.e. they only know about
the shape of a data structure and are ignorant of the allocation requests that
created the nodes of that structure. If we want to modify allocation requests,
either by adding an additional cache set argument to a call to malloc or by re-
placing malloc by some function returning a sequence of static addresses, we rely
on this missing information. Our current approach extends the shape analysis
framework via three-valued logic by adding information about allocation sites
to the logical representatives of heap-allocated objects.

4 Symbolic Representation of Pipeline Domains

Microarchitectural analysis explores execution traces of the program with respect
to a pipeline model. In the pipeline model, information about register values is
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needed to determine addresses of memory accesses and information about cache
content is needed to predict cache hits and misses. To make the analysis com-
putationally feasible, abstractions of register and cache content of the processor
are used. These abstractions may lose information.

Value analysis is invoked prior to microarchitectural analysis. It computes
information about register content, which is later on used in microarchitectural
analysis. For example, for a specific load instruction, value analysis computes
a range of the possible memory addresses that contains the possible values for
all executions that reach the load instruction. Microarchitectural analysis may,
on the other hand, distinguish different traces ending at the load instruction.
However, it uses the less specific approximation of register content from value
analysis and may thus be unable to classify the address.

Further, instead of a more precise and expensive set representation of values,
abstract domains like intervals and congruences are used in value analysis. This
incurs additional loss of information. Similarly, cache analysis employs abstract
domains which also sacrifice precision for efficiency.

Thus, at the level of the pipeline model, the inevitable use of abstraction incurs
uncertainty about memory accesses and cache content. Furthermore, program
inputs are not statically known. The (abstract) pipeline model has to cope with
this lack of information by offering non-deterministic choices. Existence of timing
anomalies forces the pipeline analysis to exhaustively explore all of them. In
certain cases, state explosion can make explicit enumeration of states infeasible
due to memory and computation time constraints [20].

We address the state explosion problem in static timing analysis by storing and
manipulating pipeline states in a more efficient data structure based on Ordered
Binary Decision Diagrams (OBDDs) [35]. Our work is inspired by BDD-based
symbolic model checking [36]. Symbolic model checking has been successfully
applied to components of processors. Its success sparked a general interest in
symbolic representations.

4.1 Symbolic Domain and Analysis

A pipeline model can be regarded as a large, non-deterministic finite state ma-
chine (FSM). Pipeline analysis determines sets of reachable pipeline states by a
fixed-point iteration over the control-flow graph, which involves the computation
of abstract execution traces on the basic block level. WCET bounds for basic
blocks are derived from the lengths of their execution traces.

Sets of pipeline states as well as the transition relation of the model can be
represented implicitly using BDDs. Execution traces are computed by repeated
application of a symbolic image operator to an incoming set of pipeline states.

We account for required program information by translating them into sym-
bolic relations that restrict the non-deterministic choices of the pipeline model.

The resulting symbolic state traversal proceeds in breadth-first search order
where one traversal step corresponds to a particular execution cycle of the pro-
cessor. Savings in memory consumption and running time, compared to explicit-
state analysis, result from the more efficient representation, in particular for
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large sets of states with many redundancies, and from completely avoiding the
explicit enumeration of states.

4.2 Optimizations and Performance

To arrive at an efficient symbolic analysis that scales to pipeline models of real-
life processors and industrial-size programs, we incorporate well-known optimiza-
tions from symbolic model checking, e.g. the image computation methods of [37],
and novel domain-specific optimizations that leverage properties of the processor
and the program. The processor-specific optimizations follow the general pattern
of

– reducing representation size of components by omitting information that is
not timing-relevant and

– statically precomputing information.

For example, the prefetch buffer of the Infineon TriCore processor uses 16 bytes
in hardware, while the timing-relevant information can be stored in only 16
bits. For the same processor, conditions for pipeline stalls in case of unresolved
data dependencies can be precomputed by a data flow analysis. The symbolic
representation then requires only one state bit per pipeline to encode such stalls.

Properties of the analyzed program are exploited to achieve an efficient han-
dling of the many 32 bit instruction and data addresses used by pipeline models.
The optimizations are based on two observations:

– Each program typically uses only a small fraction of the address space.
– The computation of execution traces for a single basic block requires only a

bounded amount of information about neighbouring blocks.

Based on the first observation, we compactly enumerate all addresses used in
the program and then encode these addresses using a number of state bits log-
arithmic in the size of the set of used addresses. This significantly reduces the
required number of state bits.

However, the size of the symbolic representation still depends on the size
of the analyzed program. This dependence can be eliminated using the second
observation. For the symbolic computation of abstract execution traces we enu-
merate only the addresses within range of the current basic block. The resulting
incompatible address encoding in pipeline states of different basic blocks can be
translated during the fixed-point iteration using symbolic image computation.

We enhance the existing framework for static timing analysis with a symbolic
representation of abstract pipeline models. Our prototype implementation is
integrated into the commercial WCET analysis tool aiT and employs the model
of a real-life processor, the Infineon TriCore. The model was developed and
tested within aiT. This enables a meaningful performance comparison between
the two implementations, which produce the same analysis results. Experiments
with a set of industrial benchmarks show that the symbolic domain significantly
improves the scalability of the analysis [10].
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5 Conclusion and Ongoing Work

Computer architects have, for a long time, optimized processor architectures
for average-case performance. This article has given an overview of the problems
created by ignoring the needs of embedded systems, which often need guarantees
for their worst-case performance. Formal methods have been described for the
derivation of timing guarantees. Two architectural components have received
a detailed treatment, caches and pipelines. Caches have nice abstractions, i.e.
compact abstract domains and efficient abstract update functions. Static analysis
of the cache behavior by abstract interpretation is therefore quite fast. Pipelines
seem to require powerset domains with a huge state space. It has been described
how to use symbolic representations popular in model checking to compactly
represent sets of pipeline states. What is still missing is the interaction between
the abstract-interpretation-based cache analysis and the BDD-based pipeline
analysis. The tools (and the communities behind them) don’t talk to each other.

Several important notions, e.g. predictability, sensitivity, and relative com-
petitiveness have been clarified. Similar notions have to be found for non-cache
like architecture components. Future architectures for use in safety-critical and
time-critical applications should be designed under the design goals, high pre-
dictability of the timing behavior and low sensitivity against small changes of
the execution state.
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Hiding information means both hiding as making it imperceptible and obscuring
as making it incomprehensible [9]. In programming, perception and comprehen-
sion of code’s structure and behaviour are deep semantic concepts, which depend
on the relative degree of abstraction of the observer, which corresponds precisely
to program semantics. In this tutorial we show that abstract interpretation can
be used as an adequate model for developing a unifying theory for information
hiding in software, by modeling observers (i.e., malicious host attackers) O as
suitable abstract interpreters. An observation can be any static or dynamic in-
terpretation of programs intended to extract properties from its semantics and
abstract interpretation [2] provides the best framework to understand semantics
at different levels of abstraction. The long standing experience in digital media
protection by obscurity is inspiring here. It is known that practical steganog-
raphy is an issue where compression methods are inefficient: “Where efficient
compression is available, information hiding becomes vacuous.” [1]. This means
that the gain provided by compression can be used for hiding information. This,
in contrast to cryptography, strongly relies upon the understanding of the sup-
porting media: if we have a source which is completely understandable, i.e., it
can be perfectly compressed, then steganography becomes trivial. In program-
ming languages, a complete understanding of semantics means that no loss of
precision is introduced by approximating data and control components while
analysing computations. Complete abstractions [3,8] model precisely the com-
plete understanding of program semantics by an approximate observer, which
corresponds to the possibility of replacing, with no loss of precision, concrete
computations with abstract ones —some sort of perfect semantic compressibility
around a given property. This includes, for instance, both static and dynamic,
via monitoring, approaches to information disclosure and reverse engineering
[4]. The lack of completeness of the observer is therefore the corresponding of
its poor understanding of program semantics, and provides the key aspect for
understanding and designing a new family of methods and tools for software
steganography and obfuscation. Consider the simple statement, C : x = a ∗ b,
multiplying a and b, and storing the result in x. An automated program sign
analysis replacing concrete computations with approximated ones (i.e., the rule
of signs) is able to catch, with no loss of precision, the intended sign behaviour
of C because the sign abstraction O = {+, 0,−}, is complete for integer multi-
plication. If we replace C with O(C): x = 0; if b ≤ 0 then {a =−a; b =−b};
while b �= 0 {x = a + x; b = b − 1} we obfuscate the observer O because
the rule of signs is incomplete for integer addition. Intervals, i.e., a far more
concrete observer, are required in order to automatically understand the sign
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computed in O(C). We show how this idea can be extended to arbitrary obfus-
cation methods and exploited for code steganography, providing the basis for
a unifying theory for these technologies in terms of abstract interpretation. We
show how obfuscation can be viewed as a program transformation making ab-
stractions incomplete and at the same time we show how watermark extraction
can be viewed as a complete abstract interpretation against a secret program
property, extending abstract watermarking [5] to any watermarking method.
Both obfuscation and watermarking can be specified as transformers to achieve
completeness/incompleteness in abstract interpretation [7], provided that the
transformed code does not interfere with the expected input/output behaviour
of programs. This latter correctness criteria can be again specified as a com-
pleteness problem by considering abstract non-interference [6] as the method for
controlling information leakage in obfuscation and steganography. Our approach
is language independent and can be applied to most known obfuscation and wa-
termarking methods, providing a common ground for their understanding and
comparison.
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Abstract. Random phenomena occur in many applications: security,
communication protocols, distributed algorithms, and performance and
dependability analysis, to mention a few. In the last two decades, efficient
model-checking algorithms and tools have been developed to support the
automated verification of models that incorporate randomness. Popu-
lar models are Markov decision processes and (continuous-time) Markov
chains. Recent advances such as compositional abstraction-refinement
and counterexample generation have significantly improved the applica-
bility of these techniques. First promising steps have been made to cover
more powerful models, real-time linear specifications, and parametric
model checking. In this tutorial I will describe the state of the art, and
will detail some of the major recent advancements in probabilistic model
checking.
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Abstract. Techniques such as verification condition generation, predi-
cate abstraction, and expressive type systems reduce software verification
to proving formulas in expressive logics. Programs and their specifica-
tions often make use of data structures such as sets, multisets, algebraic
data types, or graphs. Consequently, formulas generated from verification
also involve such data structures. To automate the proofs of such formu-
las we propose a logic (a “calculus”) of such data structures. We build
the calculus by starting from decidable logics of individual data struc-
tures, and connecting them through functions and sets, in ways that go
beyond the frameworks such as Nelson-Oppen. The result are new decid-
able logics that can simultaneously specify properties of different kinds
of data structures and overcome the limitations of the individual logics.

Several of our decidable logics include abstraction functions that map
a data structure into its more abstract view (a tree into a multiset, a
multiset into a set), into a numerical quantity (the size or the height), or
into the truth value of a candidate data structure invariant (sortedness, or
the heap property). For algebraic data types, we identify an asymptotic
many-to-one condition on the abstraction function that guarantees the
existence of a decision procedure.

In addition to the combination based on abstraction functions, we can
combine multiple data structure theories if they all reduce to the same
data structure logic. As an instance of this approach, we describe a de-
cidable logic whose formulas are propositional combinations of formulas
in: weak monadic second-order logic of two successors, two-variable logic
with counting, multiset algebra with Presburger arithmetic, the Bernays-
Schönfinkel-Ramsey class of first-order logic, and the logic of algebraic
data types with the set content function. The subformulas in this combi-
nation can share common variables that refer to sets of objects along with
the common set algebra operations. Such sound and complete combina-
tion is possible because the relations on sets definable in the component
logics are all expressible in Boolean Algebra with Presburger Arithmetic.
Presburger arithmetic and its new extensions play an important role in
our decidability results. In several cases, when we combine logics that
belong to NP, we can prove the satisfiability for the combined logic is
still in NP.

� This research is supported in part by the Swiss National Science Foundation Grant
“Precise and Scalable Analyses for Reliable Software”.
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Presburger (Integer Linear) Arithmetic

BAPA
sets + cardinality

MAPA [PK08c,PK08a]
multisets + cardinality

WS2S [TW68]
monadic 2nd-order over trees

C2 [PST00]
two-variable with counting

Bernays-Schönfinkel-Ramsey
[Ram30] (EPR)

algebraic data types with
abstraction functions [SDK10]

Fig. 1. Components of our decidable logic and reductions used to show its decidability

1 Introduction

A cornerstone of software verification is the problem of proving the validity
of logical formulas that describe software correctness properties. Among the
most effective tools for this task are the systems (e.g. [dMB08]) that incorpo-
rate decision procedures for data types that commonly occur in software (e.g.
numbers, sets, arrays, algebraic data types). Such decision procedures leverage
insights into the structure of these data types to reduce the amount of unin-
formed search they need to perform. Prominent examples of decision procedures
are concerned with numbers, including (the quantifier-free fragment of) Pres-
burger arithmetic (PA) [Pre29]. For the verification of modern software, data
structures are at least as important as numerical constraints. Among the best
behaved data structures are sets, with Boolean algebra of sets [Sko19] among
the basic decidable examples, others include algebraic data types [Opp78,BST07]
and arrays [SBDL01,BM07,dMB09]. Reasoning about imperative data structures
can be described using formulas interpreted over graphs; decidable fragments of
first-order logic present a good starting point for such reasoning [BGG97].

In this paper we give an overview of some recent decision procedures for
reasoning about data structures, including sets and multisets with cardinality
bounds, algebraic data types with abstraction functions, and combinations of
expressive logics over trees and graphs. Our results illustrate the rich structure of
connections between logics of different data structures and numerical constraints.
Figure 1 illustrates some of these connections; they present combinations that
go beyond the disjoint combination framework of Nelson-Oppen [NO79].

Given logicsAandB weoften consider a combined logic c(A, B) that subsumesA
and B and has additional operators that make the combined logic more useful (e.g.
abstraction functions from A to B, ornumerical measures of the data structure). In
such situation, we have found it effective to reduce the combination c(A, B) to one



28 V. Kuncak et al.

of the logic, say B. Under certain conditions, if we consider another combination
c′(A′, B) we can obtain the decidability of the combination c′′(A, A′, B) of all three
logics. When B is the propositional logic, this idea has been applied to combine
logics that share only equality (e.g. [LS04]).

In our approach, we take as the base logic B a logic of sets with cardinality
operator, which we call Boolean Algebra with Presburger Arithmetic (BAPA).
BAPA is much richer than propositional logic. Consequently, we can use BAPA
to combine logics that share not only equalities but also sets of objects. Differ-
ent logics define the sets in different ways: first-order logic fragments use unary
predicates to define sets, other logics have variables denoting sets (this includes
monadic second-order logic, the logics of multisets, and the logic of algebraic
data types with abstractions). A key technical challenge is establishing reduc-
tions from new logics to existing ones, and casting known decision procedures
as reductions to BAPA. The formulas in our combined logic are quantifier-free
combinations of possibly quantified formulas of component logics. Our approach
leads to the decidability of classes of complex verification conditions for which
we previously had only heuristic, incomplete, approaches.

The results we present follow [KR07,PK08a,PK08c,PK08b,SDK10,WPK09].

2 Boolean Algebra with Presburger Arithmetic

We start by considering a logic that combines two well-known decidable logics:
1) the algebra of sets (with operations such as union, intersection, complement,
and relations such as extensional set equality and subset), and 2) Presburger
arithmetic [Pre29] (with linear arithmetic expressions over integer variables). We
establish a connection between these two logics by introducing the cardinality
operator that computes the number of elements in the set expression. We call
this logic BAPA (Boolean Algebra with Presburger Arithmetic) [KNR06], and
focus on its quantifier-free fragment (QFBAPA). Figure 2 shows the syntax of
QFBAPA. Figure 3 shows example verification conditions that it can express.

Methods to decide QFBAPA. Like Presburger arithmetic [Pre29], BAPA ad-
mits quantifier elimination [KNR06], which gives NEXPTIME decision procedure
for quantifier-free formulas. The logic also admits small model property, but, due
to formulas such as |A0| = 1 ∧

∧
i |Ai| = 2|Ai−1|, the number of assignments to

set variables can be doubly exponential, which would again give NEXPTIME

F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F

A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | (K|T )

B ::= x | ∅ | U | B1 ∪ B2 | B1 ∩ B2 | Bc

T ::= k | K | T1 + T2 | K · T | |B|

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 2. Quantifier-Free Boolean Algebra with Presburger Arithmetic (QFBAPA)
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verification condition property being checked
x /∈ content ∧ size = card content −→

(size = 0 ↔ content = ∅)
using invariant on size to
prove correctness of an
efficient emptiness check

x /∈ content ∧ size = card content −→
size + 1 = card({x} ∪ content)

maintaining correct size
when inserting fresh
element

size = card content ∧
size1 = card({x} ∪ content) −→

size1 ≤ size + 1

maintaining size after
inserting any element

content ⊆ alloc ∧
x1 /∈ alloc ∧
x2 /∈ alloc ∪ {x1} ∧
x3 /∈ alloc ∪ {x1} ∪ {x2} −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting
three objects into a
container data structure

x ∈ C ∧ C1 = (C \ {x}) ∧
card(alloc1 \ alloc0) ≤ 1 ∧
card(alloc2 \ alloc1) ≤ cardC1 −→

card (alloc2 \ alloc0) ≤ cardC

bound on the number of
allocated objects in a
recursive function that
incorporates container C into
another container

Fig. 3. Example verification conditions that belong to QFBAPA

procedure. We can obtain an optimal worst-case time decision procedure for
QFBAPA using two insights. The first insight follows the quantifier elimination
algorithm and introduces an integer variable for each Venn region (an intersec-
tion of set variables and their complements), reducing the formula to Presburger
arithmetic. The second insight shows that the generated Presburger arithmetic
formulas enjoy a sparse model property: if they are satisfiable, they are satisfiable
in a model where most variables (denoting sizes of Venn regions) are zero. Using
an appropriate encoding it is possible to generate a polynomial-sized instead of
exponential-sized Presburger arithmetic formula. This can be used to show that
the satisfiability problem for QFBAPA remains within NP [KR07].

3 Multisets Algebra with Presburger Arithmetic

The decidability and NP completeness of QFBAPA also extends to Multiset Al-
gebra with Presburger Arithmetic, in which variables can denote both sets and
multisets (and where one can test whether a set is a multiset, or convert a
multiset into a set). The motivation for multisets comes from verification of
data structures with possibly repeated elements, where, in addition to knowing
whether an element occurs in the data structure, we are also interested how many
times it occurs. A detailed description of decision procedures for satisfiability of
multisets with cardinality constraints is in [PK08a,PK08c,PK08b].

A multiset is a function m from a fixed finite set E to N, where m(e) de-
notes the number of times an element e occurs in the multiset (multiplicity
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of e). In addition to multiset operations such as multiplicity-preserving union
and the intersection, every PA formula defining a relation leads to an operation
on multisets in our logic, defined point-wise using this relation. For example,
(m1 ∩m2)(e) = min(m1(e), m2(e)) and m1 ⊆ m2 means ∀e.m1(e) ≤ m2(e). The
logic also supports the cardinality operator that returns the number of elements
in a multiset. The cardinality operator is a useful in applications, yet it prevents
the use of previous decision procedures for arrays [BM07] to decide our logic. Fig-
ure 4 summarizes the language of multisets with cardinality constraints. There
are two levels at which integer linear arithmetic constraints occur: to define
point-wise operations on multisets (inner formulas) and to define constraints on
cardinalities of multisets (outer formulas). Integer variables from outer formulas
cannot occur within inner formulas.

First, we sketch the decision procedure from [PK08a]. Given a formula FM ,
we convert it to the following sum normal form:

P ∧ (u1, . . . , un) =
∑

e∈E

(t1, . . . , tn) ∧ ∀e.F

where

– P is a quantifier-free PA formula without any multiset variables
– the variables in t1, . . . , tn and F occur only as expressions of the form m(e)

for m a multiset variable and e the fixed index variable
– formula P can only share variables with terms u1, . . . , un.

The algorithm that reduces a formula to its sum normal form runs in poly-
nomial time. The goal of our decision procedure is to express the subformula
(u1, . . . , un) =

∑
e∈E

(t1, . . . , tn) ∧ ∀e.F as a quantifier-free PA formula and thus

Top-level formulas:
F ::= A | F ∧ F | ¬F
A ::= M=M | M ⊆ M | ∀e.Fin | Aout

Outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
∑
Fin

(tin, . . . , tin)

tout ::= k | |M| | C | tout + tout | C · tout | if Fout then tout else tout

Inner linear arithmetic formulas:
Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= m(e) | C | tin + tin | C · tin | if Fin then tin else tin

Multiset expressions:
M ::= m | ∅ | M ∩ M | M ∪ M | M � M | M \ M | M \\M | set(M)

Terminals:
m - multiset variables; e - index variable (fixed)
k - integer variable; C - integer constant

Fig. 4. Quantifier-Free Multiset Constraints with Cardinality Operator
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reduce the satisfiability of a formula belonging to the language of Figure 4 to
satisfiability of quantifier-free PA formulas. As a first step, we use the fact that
a formula in the sum normal form

P ∧ (u1, . . . , un) =
∑

e∈E

(t1, . . . , tn) ∧ ∀e.F

is equisatisfiable with the formula

P ∧ (u1, . . . , un) ∈ {(t′1, . . . , t′n) | F ′}∗

where the terms t′i and the formula F ′ are formed from the terms ti and the
formula F in the following way: for each multiset expression mi(e) we introduce
a fresh new integer variable xi and then we substitute each occurrence of mj(e)
in the terms terms ti and the formula F with the corresponding variable xj . The
star-closure of a set C is defined as C∗ = {v1 + . . . + vn | v1, . . . vn ∈ C ∧ n ≥
0}. We are left with the problem of deciding the satisfiability of quantifier-
free PA formulas extended with the star operator [PK08c]. For this we need
representations of solutions of PA formulas using semilinear sets.

3.1 Semilinear Sets

Let S ⊆ N
n be a set of vectors of non-negative integers and let a ∈ N

n be a
vector of non-negative integers. A linear set LS(a; S) is defined as LS(a; S) =
{a + x1 + . . . + xn | xi ∈ S ∧ n ≥ 0}. A vector a is called the base vector, while
elements of S are called the step vectors. A semilinear set Z is defined as a finite
union of linear sets: Z = ∪n

i=1LS(ai; Si).
By definition, a semilinear set can be described as a solution set of a PA

formula. [GS66] showed that the converse also holds: the solution of a PA formula
is a semilinear set.

Consider the set {(t′1, . . . , t′n) | F ′}∗. The set of all vectors which are solution
of formula F ′ is a semilinear set. Moreover, it is not difficult to see that applying
the star operator on a semiliner set results with the set which can be described
with the Presburger arithmetic formula. Consequently, applying the star opera-
tor on a semiliner set results in a new semilinear set. Because {(t′1, . . . , t′n) | F ′}∗
is a semilinear set, checking whether (u1, . . . , un) ∈ {(t′1, . . . , t′n) | F ′}∗ is effec-
tively expressible as a Presburger arithmetic formula. Consequently, satisfiability
of an initial multiset constraints problem reduces to satisfiability of quantifier-
free Presburger arithmetic formulas. Following the constructions behind these
closure properties gives the decidability, but, unfortunately, not the optimal NP
complexity.

3.2 NP Complexity of Multisets with Cardinality Constraints

To show NP membership of the language in Figure 4, we prove the linear arith-
metic with positively occurring stars is in NP [PK08c]. We use theorems bound-
ing the sizes of semilinear sets and again apply a sparse model theorem.
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Bounds on Size of the Vectors Defining Semilinear Set. In [Pot91] Pottier
investigates algorithms and bounds for solving a system of integer constraints.
The algorithm presented there runs in singly exponential time and returns a
semilinear set Z which is a solution of the given system. This paper also es-
tablishes the bounds on the size of base and step vectors which occurs in the
definition of Z. Let x = (x1, . . . , xn) be an integer vector. We use two standard
norms of the vector x:

– ||x||1 =
∑n

i=1 |xi|
– ||x||∞ = maxn

i=1 |xi|

For matrices we use the norm ||A||1,∞ = supi{
∑

j |aij |}.

Fact 1 ( [Pot91], Corollary 1). Given a system Ax ≤ b, a semilinear set
describing the solution can be computed in singly exponential time. Moreover, if
v is a base or a step vector that occurs in the semilinear set, then

||v||1 ≤ (2 + ||A||1,∞ + ||b||∞)m

Let F be a Presburger arithmetic formula and let Z be a semilinear set describing
a set of solutions of F . Let S be a set of all base and step vectors of Z. Theorem 1
implies that there exists polynomial p(s), where s is a size of the input formula,
such that for each v ∈ S, ||v||1 ≤ 2p(s).

Sparse Solutions of Integer Cones. Let S be a set of integer vectors. For a
vector v ∈ S∗ we are interested in the minimal number of vectors from S such
that v is their linear combination. Eisenbrand and Shmonin [ES06] proved that
this minimal number depends only on the dimension of vectors and on the size
of the coefficients of those vectors, as follows.

Fact 2 ( [ES06], Theorem 1(ii)). Let S be a finite set of integer vectors of
the dimension n and let v ∈ S∗. Then there exists S1 ⊆ S such that b ∈ S1

∗ and
|S1| ≤ 2n log(4nM), where M = maxx∈S ||x||∞.

Small Model Property for Integer Linear Programming. [Pap81] proves
the small model property for systems of integer linear constrains Ax = b.

Fact 3 ( [Pap81]). Given an m×n integer matrix A, an m-dimensional integer
vector b and an integer M such that ||A||1,∞ ≤ M and ||b||∞ ≤ M , if the system
Ax = b has a solution, then it also has a non-negative solution vector v such
that ||v||∞ ≤ n(mM)2m+1.

Membership in NP. Back to our formula F ′, consider a semilinear set
Z = ∪k

i=1LS(ai; {bi1, . . . , biki}) which corresponds to the set {t | F ′(t)}. Elim-
ination of the star operator from the expression u ∈ {t | F ′(t)}∗ results in
the formula u = FN (ai, bij), where FN is a new Presburger arithmetic formula
which has base vectors and step vectors of Z as variables. Using Theorem 2 we
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can show that there exists equisatisfiable formula u = F ′
N (ai, bij) which uses

only polynomially many (O(n2 log n)) vectors ai and bij . The next problem is to
verify in polynomial time whether a vector belongs to a set of vectors defining
the semilinear set. We showed in [PK08c] that instead of guessing ai and bij , it
is enough to guess vectors vc which are solutions of F ′.

Using this we proved that u ∈ {t | F ′(t)}∗ is equisatisfiable with the formula

u =
Q∑

i=1

λivi ∧
Q∧

i=1

F (vi)

where Q is a number (not a variable!) which can be computed from the proofs
of the above theorems, and depends on

– dimension of a problem
– ||·||∞ of generating vectors of the semilinear sets

The important is that we do not actually need to compute vectors generating the
semilinear set. We only require their norm ||·||∞ and it can be easily calculated
by applying Theorem 1.

The last hurdle is that the derived formula does not seem to be linear as
it contains multiplication of variables: λivi. This problem is solved by apply-
ing Theorem 3. Because we know that there exists a bounded solution, we can
calculate the concrete bound on the size of the solution and obtain the num-
ber r. Using this number we can rewrite vi as a binary number and expand
multiplication this way:

λivi = (
r∑

j=0

vij2j)λi =
r∑

j=0

2j(vijλi) =
r∑

j=0

2j ite(vij , λi, 0) =

ite(vi0, λi, 0) + 2(ite(vi1, λi, 0) + 2(ite(vi2, λi, 0) + · · · )))

This way we derive the linear arithmetic formula which polynomial in the size
of the initial problem and obtain NP-completeness.

4 Algebraic Data Types with Abstraction Functions

In this section, we give an overview of a decision procedure for a logic which
combines algebraic data types with an abstraction function mapping these types
to elements of a collection theory. The full account of our results is available
in [SDK10]. To simplify the presentation, we restrict ourselves to the data type of
binary trees storing elements of a countably infinite type, which in Scala [OSV08]
syntax would be written as

abstract class Tree case class Node(left: Tree, value: E ,
right: Tree) extends Tree case class Leaf() extends Tree

for an element type E . We consider abstraction functions which are given as a
catamorphism (generalized fold) over the trees, given as
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def α(t: Tree): C = t match {
case Leaf() ⇒ empty
case Node(l,e,r) ⇒ combine(α(l), e, α(r))

}
for some functions empty : C and combine : (C, E , C). Formally, our logic is
parametrized by a collection theory LC and an abstraction function α given in
terms of empty and combine as above. We denote the logic by Tα (note that LC
is implicit in α). Fig. 5 shows the syntax of Tα, and Fig. 6 its semantics. The
description refers to the catamorphism α, as well as the semantics of the theory
LC , denoted � �C .

T ::= t | Leaf | Node(T, E, T ) | left(T ) | right(T ) Tree terms
C ::= c | α(t) | TC C-terms

FT ::= T = T | T �= T Equations over trees
FC ::= C = C | FC Formulas of LC
E ::= e Variables of type E
φ ::=

∧
FT ∧ ∧

FC Conjunctions
ψ ::= φ | ¬φ | φ ∨ φ | φ ∧ φ | φ ⇒ φ | φ ⇔ φ Formulas

TC and FC represent terms and formulas of LC respectively. Formulas are assumed to
be closed under negation.

Fig. 5. Syntax of Tα

�Node(T1, e, T2)� = Node(�T1�, �e�C, �T2�)
�Leaf� = Leaf

�left(Node(T1, e, T2))� = �T1�
�right(Node(T1, e, T2))� = �T2�

�T1 = T2� = �T1� = �T2�
�T1 �= T2� = �T1� �= �T2�
�α(Leaf)� = �empty�C

�α(Node(�T1�, �e�, �T2�)� = �combine(�T1�, �e�, �T2�)�C
�C1 = C2� = �C1�C = �C2�C

�FC� = �FC�C
�¬φ� = ¬�φ�

�φ1 � φ2� = �φ1� � �φ2� where � ∈ {∨,∧,⇒,⇔}

Fig. 6. Semantics of Tα

4.1 Examples of Applications

A typical target application for our decision procedure is the verification of func-
tional code. Fig. 7 presents an annotated code fragment of an implementation of
a set data structure using a binary search tree.1 Note that the abstraction func-
tion content is the catamorphism α defined by empty = ∅ and combine(t1, e, t2) =
α(t1)∪{e}∪α(t2), and that it is used within the postcondition of the function add.
1 Set.empty, ++ and Set(e) are Scala notations for ∅, ∪ and {e} respectively.
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object BSTSet {
type E = Int
type C = Set[E]
abstract class Tree
case class Leaf() extends Tree
case class Node(left: Tree, value: E, right: Tree) extends Tree

// abstraction function α
def content(t: Tree): C = t match {

case Leaf() ⇒ Set.empty
case Node(l,e,r) ⇒ content(l) ++ Set(e) ++ content(r)

}

// adds an element to a set
def add(e: E, t: Tree): Tree = (t match {

case Leaf() ⇒ Node(Leaf(), e, Leaf())
case t @ Node(l,v,r) ⇒

if (e < v) Node(add(e, l), v, r) else if (e == v) t else Node(l, v, add(e, r))
}) ensuring (res ⇒ content(res) == content(t) ++ Set(e))

}

Fig. 7. A binary search tree implementation of a set

def sorted(t: Tree): (Option[Int],Option[Int],Boolean) = t match {
case Leaf() ⇒ (None, None, true)
case Node(l, v, r) ⇒ {

(sorted(l),sorted(r)) match {
case (( , ,false), ) ⇒ (None, None, false)
case ( ,( , ,false)) ⇒ (None, None, false)
case ((None,None, ),(None,None, )) ⇒ (Some(v), Some(v), true)
case ((Some(minL),Some(maxL), ),(None,None, ))

if (maxL < v) ⇒ (Some(minL),Some(v),true)
case ((None,None, ),(Some(minR),Some(maxR), ))

if (minR > v) ⇒ (Some(v), Some(maxR), true)
case ((Some(minL),Some(maxL), ), (Some(minR),Some(maxR), ))

if (maxL < v && minR > v) ⇒ (Some(minL),Some(maxR),true)
case ⇒ (None,None,false)

}}}

Fig. 8. A catamorphism which computes a triple where the first and second elements
are the minimal and maximal values of the tree, respectively, and the third is a boolean
value indicating whether the tree is sorted

Such specifications in term of the abstraction function are natural because they
concisely express the algebraic laws one expects to hold for the data structure.

By applying standard techniques to replace the recursive call in add by
the function contract, we obtain (among others) the following verification
condition:

∀t1, t2, t3, t4 : Tree, e1, e2 : Int . t1 = Node(t2, e1, t3) ⇒
α(t4) = α(t2) ∪ {e2} ⇒ α(Node(t4, e1, t3)) = α(t1) ∪ {e2}
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This formula combines constraints over tree terms and over terms in the collec-
tion theory (in this case, over sets), as well as a non-trivial connection given by
α (the content function in the code).

Other abstraction functions of interest include the computation of a multiset
preserving multiplicities instead of a set, the computation of a list of the elements
read in, for instance, in-order traversal, the computation of minimal or maximal
elements, etc. In fact, even invariants like sortedness of a tree can be expressed
as a catamorphism, as shown in Fig 8.

4.2 The Decision Procedure

We give an overview of our decision procedure for conjunctions of literals of Tα.
To lift it to formulas of arbitrary boolean structure, one can follow the DPLL(T )
approach [GHN+04].

The general idea of the decision procedure is to first use unification to solve the
constraints on the trees, then to derive and propagate all consequences relevant
to the type C of collections that abstracts the trees. In such manner it reduces
a problem over trees and their abstract values in LC to a problem in LC . We
assume a decision procedure is available for LC . Instances of such procedures for
sets and multisets were presented in sections 2 and 3, for example.

Rewriting into Normal Form. The first steps of the decision procedure
consist in rewriting the problem in a normal form more suitable for the final
reduction. To this end we:

– separate the equations and disequations between tree terms from the literals
of LC by introducing fresh variables and new equalities of the form c = α(t),
where c and t are variables representing a collection and a tree respectively
(purification)

– flatten the tree terms by introducing fresh variables to represent the subtrees
– eliminate the selector functions (left and right in Fig. 5)

We then guess an arrangement over all tree variables, as well as over the vari-
ables denoting elements stored in the nodes of the trees. (Note that this is a
non-deterministic polynomial process.) We add to the formula all the equalities
and disequalities that represent this arrangement. We then apply unification on
the equalities over tree variables and terms. At this point, we either detect un-
satisfiability, or we obtain a solved form for the unified equalities. In this solved
form, some tree variables are expressed as being terms built using the Node con-
structor, the Leaf constant and some other tree variables. We call all variables
appearing in such a construction parameter variables. A property of unification
is that parameter variables are never themselves defined as a term constructed
over other variables.

As a final transformation step, we rewrite all terms of the form α(t) where t is
a non-parameter tree variable as follows: we replace t by its definition in terms
of parameter tree variables from the solved form, and partially evaluate α over
this term, using the combine and empty functions which define α. After applying
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this rewriting everywhere, α is only applied to parameter tree variables, and we
can write our formula in the following normal form:

N(T (t), t) ∧ M(t, c) ∧ FE ∧ FC

where:

– t denotes all parameter tree variables
– T (t) denotes the terms mapped to the non-parameter variables in the solved

form
– N(T (t)) is a formula expressing that all parameter variables are distinct,

that none of them is equal to Leaf, and that they are all distinct from the
terms T (t)

– M(t, c) is a conjunction containing for each parameter variable ti the con-
junct ci = α(ti) (ci is introduced if needed)

– FE is a conjunction of literals of the form ei = ej or ei �= ej expressing the
arrangement we guessed over the element variables

– FC is a formula of LC

The formulas FE and FC are already expressed in the collection theory. We
call D the conjunction N(T (t), t) ∧ M(t, c). To ensure the completeness of our
decision procedure, we need to find a formula DM entirely expressed in LC which
is equisatisfiable with D. We can then reduce the problem to the satisfiability of
DM ∧ FE ∧ FC , which we can solve with a decision procedure for LC . Note that
if we choose a formula DM which is weaker than D, our decision procedure is
still sound, but the equisatisfiability is required for completeness. We now give
a sufficient criterion for the existence of such an equisatisfiable formula DM .

4.3 A Completeness Criterion

In [SDK10], we present two sufficient criteria for obtaining a complete decision
procedure. Since the first one is strictly subsumed by the second, we omit it here.

Definition 1 (Tree Shape). Let SLeaf be a new constant symbol and
SNode(t1, t2) a new constructor symbol. The shape of a tree t, denoted š(t),
is a ground term built from SLeaf and SNode( , ) as follows:

š(Leaf) = SLeaf

š(Node(T1, e, T2)) = SNode(̌s(T1), š(T2))

Definition 2 (Sufficient Surjectivity). We call an abstraction function suf-
ficiently surjective if and only if, for each natural number p > 0 there exist,
computable as a function of p

– a finite set of shapes Sp

– a closed formula Mp in the collection theory such that Mp(c) implies
|α−1(c)| > p

such that, for every term t, Mp(α(t)) or š(t) ∈ Sp.
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In practice, the formula Mp can introduce new variables as long as it is exis-
tentially closed and the decision procedure for the collection theory can handle
positive occurrences of existential quantifiers.

We give in [SDK10] a construction for DM for any sufficiently surjective ab-
straction. The intuition behind it is that we can proceed by case analysis on the
shapes of the parameter tree variables. Since there are finitely many shapes in
Sp, we can encode in our formula DM all possible assignments of these shapes
to the tree variables. The situation where the assigned tree is not of a known
shape is handled by adding the condition Mp(α(t)), which is then guaranteed
to hold by hypotheses on Sp and Mp using a strengthened version of the “in-
dependence of disequations lemma” [CD94, Page 178]. We omit the technical
details, but the sufficient surjectivity condition implies that for n trees such that
Mp(t1)∧ . . .∧Mp(tn) and α(t1) = . . . = α(tn), we can always find assignments to
t1,. . . ,tn such that p disequalities between them are satisfied (see [SDK10, Sec-
tion 5.3]). By setting p in our formula to the number of disequalities in N(T (t), t)
we obtain a formula equisatisfiable with D: since DM encodes all possible assign-
ments of trees to the variables, DM is satisfiable if D is. In the other direction,
if DM is satisfiable, then we have an assignment for the elements of the trees of
known shape, and by the sufficient surjectivity criterion we know that we can
find a satisfying assignment for the other ones which will satisfy all disequalities
of D.

We conclude by pointing out that the set abstraction, the multiset abstrac-
tion, the in-order traversal list abstraction and the sortedness abstraction are all
infinitely surjective [SDK10].

5 Combining Theories with Shared Set Operations

We have seen several expressive decidable logics that are useful for specifying
correctness properties of software and thus enable automated software verifica-
tion. The correctness properties that are of practical interest often cannot be
expressed in any single one of these logics, but only in their combination. This
raises the question whether there exist decidable combinations of these logics
and whether the decision procedure for such a combination can reuse the de-
cision procedures for the component logics, e.g., in the style of the approach
pioneered by Nelson and Oppen [NO79]. The Nelson-Oppen approach is one
of the pillars of modern constraint solvers based on satisfiability modulo theo-
ries (SMT) [dMB08,BT07,GBT07]. It enables the combination of quantifier-free
stably infinite theories with disjoint signatures. However, the theories that we
considered in the previous sections do not fit into this framework because they
all involve sets of objects and are therefore not disjoint.

To support a broader class of theories than the traditional Nelson-Oppen
combination, we consider decision procedures for the combination of possibly
quantified formulas in non-disjoint theories. In [WPK09] we explored the case
of the combination of non-disjoint theories sharing operations on sets of un-
interpreted elements, a case that was not considered before. The theories that
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we consider have the property that the tuples of cardinalities of Venn regions
over shared set variables in the models of a formula are a semilinear set (i.e.,
expressible in Presburger arithmetic).

Reduction-based decision procedure. The idea of deciding a combination
of logics is to check the satisfiability of a conjunction of formulas A∧B by using
one decision procedure, DA, for A, and another decision procedure, DB, for B.
To obtain a complete decision procedure, DA and DB must communicate to
ensure that a model found by DA and a model found by DB can be merged into
a model for A ∧ B.

We follow a reduction approach to decision procedures. The first decision pro-
cedure, DA, computes a projection, SA, of A onto shared set variables, which are
free in both A and B. This projection is semantically equivalent to existentially
quantifying over predicates and variables that are free in A but not in B; it is
the strongest consequence of A expressible only using the shared set variables.
DB similarly computes the projection SB of B. This reduces the satisfiability of
A∧B to satisfiability of the formula SA ∧SB , which contains only set variables.

A logic for shared constraints on sets. A key parameter of our combination
approach is the logic of sets used to express the projections SA and SB. A suit-
able logic depends on the logics of formulas A and B. We consider as the logics
for A, B the logics we have discussed in the previous sections and other expres-
sive logics we found useful based on our experience with the Jahob verification
system [ZKR08, Wie09]. Remarkably, the smallest logic needed to express the
projection formulas in these logics has the expressive power of BAPA, described
in Section 2. We showed that the decision procedures for these logics can be nat-
urally extended to a reduction to BAPA that captures precisely the constraints
on set variables. The existence of these reductions, along with quantifier elimina-
tion [KNR06] and NP membership of the quantifier-free fragment [KR07], make
BAPA an appealing reduction target for expressive logics.

We proved that 1) (quantified) Boolean Algebra with Presburger Arith-
metic (Section 2), 2) quantifier-free multisets with cardinality constraints (Sec-
tion 3), 3) weak monadic second-order logic of trees [TW68], 4) two-variable logic
with counting C2 [PH05], 5) the Bernays-Schönfinkel-Ramsey-class of first-order
logic [Ram30], and 6) certain algebraic data types with abstraction functions
(Section 4), all meet the conditions of our combination technique. Consequently,
we obtain the decidability of quantifier-free combination of formulas in these
logics. In the following we give an overview of our combination technique.

5.1 Example: Proving a Verification Condition

Our example shows a verification condition formula generated when verifying
an unbounded linked data structure. The formula belongs to our new decidable
class obtained by combining several decidable logics.

Decidability of the verification condition. Fig. 9 shows the verification
condition formula for a method (insertAt) that inserts a node into a linked list.
The validity of this formula implies that invoking a method in a state satisfying
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tree [ left , right ] ∧ left p = null ∧ p ∈ nodes ∧
nodes={x. (root,x) ∈ {(x,y). left x = y|right x = y}ˆ∗} ∧
content={x. ∃ n. n �= null ∧ n ∈ nodes ∧ data n = x} ∧
e /∈ content ∧ nodes ⊆ alloc ∧
tmp /∈ alloc ∧ left tmp = null ∧ right tmp = null ∧
data tmp = null ∧ (∀ y. data y �= tmp) ∧
nodes1={x. (root,x) ∈ {(x,y). (left (p:=tmp)) x = y) | right x = y} ∧
content1={x. ∃ n. n �= null ∧ n ∈ nodes1 ∧ (data(tmp:=e)) n = x} →

card content1 = card content + 1

Fig. 9. Verification condition

SHARED SETS: nodes, nodes1, content, content1, {e}, {tmp}

WS2S FRAGMENT: tree[left,right] ∧ left p = null ∧ p ∈ nodes ∧ left tmp = null ∧
right tmp = null ∧ nodes={x. (root,x) ∈ {(x,y). left x = y|right x = y}ˆ∗} ∧
nodes1={x. (root,x) ∈ {(x,y). (left (p:=tmp)) x = y) | right x = y}

CONSEQUENCE: nodes1=nodes ∪ {tmp}

C2 FRAGMENT: data tmp = null ∧ (∀ y. data y �= tmp) ∧ tmp /∈ alloc ∧ nodes ⊆ alloc ∧
content={x. ∃ n. n �= null ∧ n ∈ nodes ∧ data n = x} ∧
content1={x. ∃ n. n �= null ∧ n ∈ nodes1 ∧ (data(tmp:=e)) n = x}

CONSEQUENCE: nodes1 �= nodes ∪ {tmp} ∨ content1 = content ∪ {e}

BAPA FRAGMENT: e /∈ content ∧ card content1 �= card content + 1
CONSEQUENCE: e /∈ content ∧ card content1 �= card content + 1

Fig. 10. Negation of Fig. 9, and consequences on shared sets

the precondition results in a state that satisfies the postcondition of insertAt.
The formula contains the transitive closure operator, quantifiers, set compre-
hensions, and the cardinality operator. Nevertheless, there is a (syntactically
defined) decidable class of formulas that contains the verification condition in
Fig. 9. This decidable class is a set-sharing combination of three decidable logics,
and can be decided using the method we present in this paper.

To understand the method for proving the formula in Fig. 9, consider the
problem of showing the unsatisfiability of the negation of the formula. Fig. 10
shows the conjuncts of the negation, grouped according to three decidable log-
ics to which the conjuncts belong: 1) weak monadic second-order logic of two
successors (WS2S) 2) two-variable logic with counting C2 3) Boolean Algebra
with Presburger Arithmetic (BAPA). For the formula in each of the fragments,
Fig. 10 also shows a consequence formula that contains only shared sets and
statements about their cardinalities. (We represent elements as singleton sets,
so we admit formulas sharing elements as well. )

A decision procedure. Note that the conjunction of the consequences of
three formula fragments is an unsatisfiable formula. This shows that the original
formula is unsatisfiable as well (the verification condition is valid). In general,
our decidability result shows that the decision procedures of logics such as WS2S
and C2 can be naturally extended to compute “precise” consequences of formulas
involving given shared sets. When a precise consequence is satisfiable in some
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assignment to set variables, it means that the original formula is also satisfiable
with the same values of set variables. The consequences are all expressed in
BAPA, which is decidable. In summary, the following is a decision procedure for
satisfiability of combined formulas:

1. split the formula into fragments (belonging to, e.g. WS2S, C2, or BAPA);
2. for each fragment compute its strongest BAPA consequence;
3. check the satisfiability of the conjunction of consequences.

5.2 Combination by Reduction to BAPA

The Satisfiability Problem. We are interested in an algorithm to determine
whether there exists a structure α ∈ M in which the following formula is true

B(F1, . . . , Fn) (1)

where

1. F1, . . . , Fn are formulas with FV(Fi) ⊆ {A1, . . . , Ap, x1, . . . , xq}.
2. VS = {A1, . . . , Ap} are variables of sort set, whereas x1, . . . , xq are the re-

maining variables.2

3. Each formula Fi belongs to a given class of formulas, Fi. For each Fi we
assume that there is a corresponding theory Ti ⊆ Fi.

4. B(F1, . . . , Fn) denotes a formula built from F1, . . . , Fn using the proposi-
tional operations ∧,∨. 3

5. As the set of structures M we consider all structures α of interest (with finite
�obj�, interpreting BAPA symbols in the standard way) for which α(∪n

i=1Ti).
6. (Set Sharing Condition) If i �= j, then FV({Fi} ∪ Ti) ∩ FV({Fj} ∪ Tj) ⊆ VS .

Note that, as a special case, if we embed a class of first-order formulas into our
framework, we obtain a framework that supports sharing unary predicates, but
not e.g. binary predicates.

Combination Theorem. The formula B in (1) is satisfiable iff one of the dis-
juncts in its disjunctive normal form is satisfiable. Consider any of the disjuncts
F1∧. . .∧Fm for m ≤ n. By definition of the satisfiability problem (1), F1∧. . .∧Fm

is satisfiable iff there exists a structure α such that for each 1 ≤ i ≤ m, for each
G ∈ {Fi} ∪ Ti, we have α(G) = true. Let each variable xi have some sort si

(such as obj2 → bool). Then the satisfiability of F1 ∧ . . . ∧ Fm is equivalent to
the following condition:

∃ finite set u. ∃a1, . . . , ap ⊆ u. ∃v1 ∈ �s1�u. . . . ∃vq ∈ �sq�u.
∧m

i=1
{obj → u, A1 �→ a1, . . . , Ap �→ ap, x1 �→ v1, . . . , xq �→ vq}({Fi} ∪ Ti)

(2)

2 For notational simplicity we do not consider variables of sort obj because they can
be represented as singleton sets, of sort set.

3 The absence of negation is usually not a loss of generality because most Fi are closed
under negation so B is the negation-normal form of a quantifier-free combination.
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By the set sharing condition, each of the variables x1, . . . , xq appears only in one
conjunct and can be moved inwards from the top level to this conjunct. Using
xij to denote the j-th variable in the i-th conjunct we obtain the condition

∃ finite set u. ∃a1, . . . , ap ⊆ u.
∧m

i=1 Ci(u, a1, . . . , ap) (3)

where Ci(u, a1, . . . , ap) is

∃vi1. . . . ∃viwi .
{obj → u, A1 �→ a1, . . . , Ap �→ ap, xi1 �→ vi1, . . . , xiwi �→ viwi}({Fi} ∪ Ti)

The idea of our combination method is to simplify each condition
Ci(u, a1, . . . , ap) into the truth value of a BAPA formula. If this is possible,
we say that there exists a BAPA reduction.

Definition 3 (BAPA Reduction). If Fi is a set of formulas and Ti ⊆ Fi a
theory, we call a function ρ : Fi → FBAPA a BAPA reduction for (Fi, Ti) iff for
every formula Fi ∈ Fi and for all finite u and a1, . . . , ap ⊆ u, the condition

∃vi1 . . . ∃viwi .
{obj → u, A1 �→ a1, . . . , Ap �→ ap, xi1 �→ vi1, . . . , xiwi �→ viwi}({Fi} ∪ Ti)

is equivalent to the condition {obj → u, A1 �→ a1, . . . , Ap �→ ap}(ρ(Fi)).

A computable BAPA reduction is a BAPA reduction which is computable as a
function on formula syntax trees.

Theorem 4. Suppose that for every 1 ≤ i ≤ n for (Fi, Ti) there exists a com-
putable BAPA reduction ρi. Then the satisfiability problem (1) is decidable.

Specifically, to check satisfiability of the formula B(F1, . . . , Fn), compute
B(ρ1(F1), . . . , ρn(Fn)) and then check its satisfiability using a BAPA decision
procedure [KNR06,KR07].

5.3 BAPA Reductions

The proof that a particular decidable logic exhibits a BAPA reduction follows a
generic recipe. Given such a logic L = (F , T ) and a formula F ∈ F , let V1, . . . , Vn

be the Venn regions over the free set variables in F . To prove that L is BAPA-
reducible, one needs to characterize the cardinality vectors of the Vi in all the
models of F : V(F ) = { (| α(V1) |, . . . , | α(Vn) |) | α(T ∪{F}) = 1 } and show that
this set is semilinear. Moreover, a finite representation of the set V(F ) in terms
of base and set vectors must be effectively computable from F , by extending
the decision procedure for L appropriately. We have shown [WPK09, Theorems
5, 11, 12, 13], [SDK10] that the decision procedures for a number of expressive
decidable logics can indeed be extended in this way to BAPA reductions.

Theorem 5. There exist BAPA reductions for the following logics (see Figure 1)
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1. weak monadic second-order logic of trees [TW68]
2. two-variable logic with counting C2 [PH05]
3. the Bernays-Schönfinkel-Ramsey class of first-order logic [Ram30]
4. quantifier-free multisets with cardinality constraints (Figure 4)
5. logic of algebraic data types with the content function (in Figure 7)

Thus, the set-sharing combination of all these logics is decidable.
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Operations Research Letters 34(5), 564–568 (2006)

[GBT07] Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions
using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)

[GHN+04] Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.:
DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)

[GS66] Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas and lan-
guages. Pacific Journal of Mathematics 16(2), 285–296 (1966)

[KNR06] Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with
Presburger Arithmetic. J. of Automated Reasoning (2006)

[KR07] Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for
Boolean Algebra with Presburger Arithmetic. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 215–230. Springer, Heidel-
berg (2007)

[LS04] Lahiri, S.K., Seshia, S.A.: The UCLID decision procedure. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 475–478. Springer,
Heidelberg (2004)

[NO79] Nelson, G., Oppen, D.C.: Simplification by cooperating decision proce-
dures. ACM TOPLAS 1(2), 245–257 (1979)

[Opp78] Oppen, D.C.: Reasoning about recursively defined data structures. In:
POPL, pp. 151–157 (1978)



44 V. Kuncak et al.

[OSV08] Odersky, M., Spoon, L., Venners, B.: Programming in Scala: a compre-
hensive step-by-step guide. Artima Press (2008)

[Pap81] Papadimitriou, C.H.: On the complexity of integer programming. J.
ACM 28(4), 765–768 (1981)

[PH05] Pratt-Hartmann, I.: Complexity of the two-variable fragment with count-
ing quantifiers. Journal of Logic, Language and Information 14(3), 369–
395 (2005)

[PK08a] Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality
constraints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008.
LNCS, vol. 4905, pp. 218–232. Springer, Heidelberg (2008)

[PK08b] Piskac, R., Kuncak, V.: Fractional collections with cardinality bounds.
In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp.
124–138. Springer, Heidelberg (2008)

[PK08c] Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Ma-
lik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidel-
berg (2008)

[Pot91] Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and
algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488. Springer,
Heidelberg (1991)

[Pre29] Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Ar-
itmethik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. In: Comptes Rendus du premier Congrès des Mathématiciens
des Pays slaves, Warsawa, pp. 92–101 (1929)

[PST00] Pacholski, L., Szwast, W., Tendera, L.: Complexity results for first-order
two-variable logic with counting. SIAM J. on Computing 29(4), 1083–
1117 (2000)

[Ram30] Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc.,
s2-30, 264–286 (1930)

[SBDL01] Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure
for an extensional theory of arrays. In: LICS, pp. 29–37 (2001)

[SDK10] Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data
types with abstractions. In: POPL (2010)

[Sko19] Skolem, T.: Untersuchungen über die Axiome des Klassenkalküls und
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Abstract. While temporal verification of programs is a topic with a long
history, its traditional basis—semantics based on word languages—is ill-
suited for modular reasoning about procedural programs. We address
this issue by defining the semantics of procedural (potentially recursive)
programs using languages of nested words and developing a framework
for temporal reasoning around it. This generalization has two benefits.
First, this style of reasoning naturally unifies Manna-Pnueli-style tem-
poral reasoning with Hoare-style reasoning about structured programs.
Second, it allows verification of “non-regular” properties of specific proce-
dural contexts—e.g., “If a lock is acquired in a context, then it is released
in the same context.” We present proof rules for a variety of properties
such as local safety, local response, and staircase reactivity; our rules are
sufficient to prove all temporal properties over nested words. We show
that our rules are sound and relatively complete.

1 Introduction

A prominent approach to program verification relies on identifying pre and post-
conditions for every block. For example, the Hoare triple {ϕ}P{ψ} for partial
correctness means that if we execute the program P starting from a state sat-
isfying the state predicate ϕ, then if the program terminates, the final state
satisfies ψ [12,4,7]. The corresponding proof system contains a rule for each of
the syntactic constructs for building complex programs, allowing modular proofs
of structured programs. The last few years have seen renewed interest in such
proofs, largely due to the coming-of-age of powerful decision procedures.

While Hoare-style reasoning can establish functional correctness of programs,
it is not well-suited for reasoning about reactive programs. The most widely ac-
cepted formalism for verification of reactive programs is temporal logic [17]. In
temporal reasoning, the semantics of a program P is defined to be a set of execu-
tions, where each execution is a sequence of program states; the specification is
a formula ϕ of linear temporal logic (LTL); and P satisfies ϕ if all its executions
are satisfying models of ϕ. Manna-Pnueli-style proof systems for temporal logics
show how to establish temporal properties of programs by reasoning about state
formulas [15,16]. A limitation of these rules, however, is that they do not ex-
ploit the modularity offered by the procedural structure of programs. Also, the
temporal properties that they prove cannot refer to specific procedural contexts.
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For example, the property “If a lock is acquired in a procedural context, then it
is released before the context ends,” which refers to the non-regular nesting of
procedural contexts, is inexpressible in temporal logic.

There has been, of late, a resurgence of interest in program verification due to
the success of model checking tools like Slam [6]. In most of these settings, even
though the analyzed program is sequential, the requirements are temporal (e.g.,
“Lock A must be acquired after lock B”); thus, temporal reasoning is needed.
Yet, any verification method that does not exploit the modularity afforded by
procedures will not scale to large programs. As a result, a form of procedure-
modular temporal reasoning seems important to develop. Also, as properties of
specific procedural contexts arise naturally in procedural programs, it seems
natural to ask for proofs for these. This paper offers a framework for temporal
reasoning that satisfies both these criteria.

Here, the execution of a program is modeled as a nested word [3]. Nested
words are a model of data with both a linear ordering and a hierarchically nested
matching of items. In nested-word modeling of program executions, we augment
the linear sequencing of program states with markup tags matching procedure
calls with returns. The benefits of this modeling have already been shown for
software model checking: when all variables are boolean, viewing the program
as a finite-state nested-word-automaton generating a regular language of nested
words allows model checking of non-regular temporal properties [2,1,5].

In this paper, we first define a simple procedural language, then define its
intensional semantics using nested words. Here, each state has information only
about the variables currently in scope, and the procedure stack is not made ex-
plicit. Then we use it to develop a framework of modular reasoning for procedural
programs. State formulas here can refer to the values of variables in scope as
well as to their values when the procedure was invoked. We use them to capture
local invariants (properties that hold at each reachable state of a procedure)
and summaries (properties that hold when the procedure returns). The classical
notion of inductive invariants is now extended to local invariants. Establishing
such invariants requires mutually inductive reasoning using summaries—e.g., to
establish a local invariant of a procedure p that calls a procedure q, we use a
summary of q, establishing which may require the use of a summary of p.

Based on these ideas, we develop proof rules for several safety and liveness
properties of procedural programs. In a nested word, there are many notions
of paths such as global, local, and staircase [2,1,13]—temporal logics for nested
words contain modalities such as “always” and “eventually” parameterized by
the path type. This makes these logics more expressive than LTL—e.g., we can
now express local safety properties such as “At all points in the top-level proce-
dural context, ϕ holds” and local liveness properties such as “ϕ holds eventually
in the top-level context.”

We show that the classical rules proving safety and liveness using inductive
invariants and ranking functions can be generalized to these properties. For ex-
ample, to prove the local safety property above, we use a local invariant for
the top-level procedure p that implies ϕ. Proving local liveness requires us to
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combine reasoning using local invariants and summaries with ranking-function-
based techniques. Along with known expressiveness results for nested words
[13,5], they ensure that we have a proof system for all temporal logic properties
of nested words.

We address soundness and completeness of our proof rules. For example, for
local safety, we show that our rule is sound; that it is complete provided the set
of locally reachable states is definable within the underlying assertion language
for writing state properties; and that this set is definable provided the assertion
language is first-order and can specify a tree data structure. This establishes
relative completeness of this rule in the style of Manna and Pnueli [14]. Sim-
ilar results hold for local liveness, as well as for safety and liveness properties
interpreted on the global and staircase paths.

The paper is organized as follows. Section 2 reviews nested words. Sec. 3 fixes
a procedural language, and Section 4 defines local invariants and summaries.
Section 5, our main technical section, uses these in temporal verification.

Related Work. Hoare-style assertional reasoning [12,4] for sequential pro-
grams is inherently procedure-modular; local invariants and summaries also
show up in this setting [7]. Analysis using summaries is also key to interpro-
cedural program analysis [22,20,21,9] and software model checking [6,11]. The
standard references for temporal logic are by Manna and Pnueli [15,16]; see [14]
for completeness proofs. The theory of nested words is due to Alur and Mad-
husudan [3]. There have been many papers on nested words and associated logics
recently [13,2,1,5]—while most of these focus on model checking (of pushdown
models) and expressiveness, a recent paper uses the theory of nested words in
Craig-interpolant-based verification of general recursive programs [10].

The paper most relevant to this work is by Podelski et al [19]; it uses sum-
maries to compositionally verify termination and liveness of recursive programs.
Also, an algorithmic termination analysis of recursive programs, also based on
summaries, appears in [8]. In contrast, this paper uses a nested word semantics
of programs, and handles all properties specifiable in temporal logics over nested
words, including those explicitly referring to procedural contexts.

2 Nested Words

Let Σ be an alphabet and <, > /∈ Σ be two symbols respectively known as the call
and return tags. For a word w and i ∈ N, let w(i) denote the symbol at the i-th
position of w; and for i, j ∈ N and j < i, let wji denote the word wjwj+1 . . . wi.
Let a word wji as above be matched if it is of the form w ::= ww | σ | <w>,
where σ ranges over Σ. A nested word over Σ is now defined to be a finite or
infinite word w over (Σ ∪ {<, >}) such that for each i with w(i) = >, there is a
j < i such that w(j) = < and wji is matched.

A position i in w (positions are numbered 0, 1, . . . ) is a call if w(i+1) = <, and
a return if w(i− 1) = >. If i is a call, j is a return, and w(i+1) (j−1) is matched,
then j is the matching return of i. Calls without matching returns are pending.
For example, consider a nested word w′ = s0s1<s3<s5<s7>s9>s11. Here, position
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1 is a call (as w(2) = <), 9 is a return, 1 is a pending call, and 9 is the matching
return of 5. A language of nested words is a set L of nested words.

Intuitively, we use nested words to model executions of procedural programs,
and languages of nested words to define a program’s intensional semantics. We
interpret Σ as the set of program states, and the call and return tags as respec-
tively marking the beginning and end of procedural contexts. Call and return
positions respectively model the points right before and after control enters/exits
a context, while a pending call is a call that does not terminate.

Notably, nested words can also be defined as a logical structure that enriches
a word with a matching relation [5,1]. The present definition may be seen as
defining a linear encoding of such structures.

Local, global, and staircase paths. The markup provided by the call/return
tags in a nested word allows us to distinguish between the parts of the word cor-
responding to different procedural contexts. These “parts” are naturally viewed
as subsequences. Of them, three are of particular interest.

The global path in w is the word obtained by removing all call and return tags
from w. The local path in w is the word w′ obtained by erasing from w: (1) every
sub-word wjk such that w(j) = <, w(k) = >, and wjk is matched; and (2) the
suffix of w starting at the position (i + 1), for the least i such that w(i) is a
pending call. For example, the local path in our example nested word w′ is s0s1.

The staircase path in w is the word w′ obtained by first erasing from w every
sub-word wjk such that w(j) = <, w(k) = >, and wjk is matched, and then
erasing all call tags from the word that results. For example, the staircase path
in our example nested word w′ is s0s1s3s11.

Intuitively, if w models a program execution, then the values of its global
variables flow along its global path. The local path of captures the flow of local
data in the “top-level” procedural context. If a local path reaches a call that
eventually returns, it “jumps” to its matching return; if it reaches a pending
call, it terminates. Staircase paths also skip across terminating procedure calls.
Unlike local paths, they continue into the new context on seeing a pending call.
Thus, staircase paths capture local data flow, as well flow of global data into
nonterminating calls.

3 A Simple Procedural Language

Now we fix a simple, sequential language (called Spl from now on) whose pro-
grams we analyze. The language allows local and global variables and recursion.
For brevity, we assume that procedures do not take parameters or return values;
these features are encoded using global variables.

The syntax of programs Prog and commands Com of Spl is as in Fig. 1. Here,
p is a procedure name, x is a variable, l is a label, and Aexp, Bexp and AConst
respectively stand for arithmetic and boolean expressions, and arithmetic con-
stants. We restrict ourselves to well-formed programs where each label appears
at most once. From now on, we assume an arbitrary but fixed program P .
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The set of global variables in P is denoted by GV , and the set of local variables
in a procedure p is denoted by LV (p). The set of procedures is denoted by
Proc(P ) or simply Proc. For each procedure p, we denote by Labels(p) the set of
labels appearing in p; this set contains a special label ⊥p that is reached when
p terminates. The first label executed when p is run is denoted by First(p).

We use a standard definition of the
Prog ::= [global Gdec] Pdec

Gdec ::= x | Gdec ,Gdec
Ldec ::= x := AConst | Ldec ,Ldec

Pdec ::= proc p() = Pbody | Pdec Pdec

Pbody ::= [local Ldec] Com

Com ::= l : skip | l : x := Aexp | l : p()
| Com;Com | l : while Bexp do Com
| l : if Bexp then Com else Com

Fig. 1. Syntax of Spl (terms in square
brackets are optional)

interprocedural control-flow graph
(CFG) of P . Nodes here are labels
of P . The edges are of three types:
call edges, local edges, and summary
edges. To define these, we construct
a relation Flow (p) between the labels
of p. Suppose the label l in p does not
label a procedure call, and suppose an
execution proceeds from l to a label
l′ if the guard b is true. In this case,
(l, b, l′) ∈ Flow(p). If l is the “last”
label in p, then (l, tt ,⊥p) ∈ Flow (p).

If l labels a call and l′ is the label to which the called procedure returns control
on termination, then (l, tt, l′) ∈ Flow (p).

A call edge from procedure p to pro-
global flag, n

proc inc_n (): void = ...

proc bar() = local cond:=true

L1: while (cond) do

L2: flag:=true;

L3: if (*) then (L4: inc_n()) else

(L5: flag:=false; L6: cond:=false)

proc main() =

L7: flag:=false; L8: n:=0;

L9: while (true) do

(L10: bar(); L11: inc_n())

Fig. 2. Flagging and unflagging

cedure q is now defined as a directed
edge e = (l, m), where m = First(q)
and l is the label of a command call-
ing q. A local edge e = (l, b, m) in the
procedure p goes from l to m (both l
and m are labels in p), and exists only
if l does not label a procedure call and
(l, b, m) ∈ Flow (p). A summary edge
e = (l, q, m) in p goes from l to m, and
exists only if l labels a call to a proce-
dure q, and (l, tt , m) ∈ Flow (p).

The sets of call, local, and summary
edges in the CFG of P are respectively
denoted by Ecall , Eloc , and Esum . Fi-
nally, we define the restriction Pp of a program P with respect to a procedure p
as the program obtained by removing from P all procedures unreachable from
p in the CFG of P .

Figure 2 shows a program with procedures main and bar. The procedure bar
need not terminate, but if it does, it sets the flag to false before doing so.

Nested execution semantics. Now we give a semantics for Spl programs
using nested words. Let us fix a set Val from which the values of our variables
are drawn, and a special variable pc that captures the program counter and
does not appear in the text of any of our programs. Now we define a state
of a procedure p to be a map σ such that σ(pc) is a label in p, and for each
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x ∈ GV ∪ LV (p), σ(x) ∈ Val . An entry state of a procedure p is a state σ such
that σ(pc) = First(p), and for each local variable u of p, we have σ(u) = n if u
is initialized to n in p. We denote the set of states of p by States(p), and the set
of states in P by States.

Note that a state as defined above does not contain a procedure stack. Let a
nested execution now be a finite or infinite nested word over States. Our seman-
tics assigns, to each procedure p in P , a set of nested executions.

Let a state σ of p be a call state, calling a procedure q, if σ(pc) is the label
of a call to q. For a call state σ of p calling q, Entry(σ, q) denotes the state
σen ∈ States(q) such that: (1) σen(pc) = First(q); (2) for each g ∈ GV ar(P ),
we have σen(g) = σ(g); (3) for each local variable u of q initialized to n, we have
σen(u) = n. Intuitively, this is the entry state of q that is reached when q is called
from the state σ. Likewise, for each call state σcall of p that calls q, and state
σex ∈ States(q) such that σex(pc) =⊥q, we define a return state Retn(σcall , σex)
of p where control returns from the call.

Also, we define the sequential composition w1; w2 of two nested executions w1
and w2. Intuitively, this is the execution obtained by running w1 till termination,
then continuing with w2. Formally, w1; w2 equals:
– w1 if w1 is infinite;
– w′

1.σ1.w
′
2, if w1 = w′

1.σ1 and w2 = σ2.w
′
2 for σ1 and σ2 such that: (1)

σ1(pc) =⊥p for some p, and (2) σ1 and σ2 agree on the values of all variables;
and

– undefined otherwise.

For languages L1 and L2 of nested executions, we define L1; L2 = {w; w′ : w ∈
L1, w

′ ∈ L2}.
The semantics of a procedure p is now defined using sets [[p]]∗ and [[p]]ω re-

spectively comprising its finite and infinite executions. The semantics of p is
the union of these sets. We define these using sets [[c]]∗p and [[c]]ωp , respectively
comprising the finite and infinite executions of each command c in p.

As [[p]]∗ and [[c]]∗p only contain terminating executions, they can be obtained
by finite unrolling of loops and recursion. Accordingly, we define them as the
least fixpoint of equations following the syntax of p and c. We only show a few
cases:

1. [[c1; c2]]∗p = [[c1]]∗p ; [[c2]]∗p .
2. [[l : x := Aexp]]∗p comprises all nested executions of the form σ.σ′, where σ(pc)

= l, and σ′ is obtained by taking σ and setting pc to ⊥p and x to the value
of the expression Aexp in σ.

3. If c is a procedure call of the form l : q(), then [[c]]∗p = L, where L is the set of
words w′ = σ.〈.σen.w.σex.〉.σ′ such that: (1) σ, σ′ ∈ States(p) and σ(pc) = l;
(2) σen = Entry(σ, q); (3) σen.w.σex ∈ [[q]]∗; and (4) σ′ = Retn(σex, σ).

4. If the procedure p has the command c as its body, then [[p]]∗ = [[c]]∗p ∩LEn(p)
where LEn(p) is the set of nested words over States starting with an entry
state of p.

Infinite nested executions of procedures and commands are defined similarly,
except: (1) for commands that terminate—e.g., assignments—the set of infinite
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executions is empty; and (2) we have to take greatest fixpoints to define the
semantics of loops and procedure calls. The semantics of the procedure p, denoted
by [[p]], is now given by [[p]] = [[p]]∗ ∪ [[p]]ω .

Finally, we define the notion of local reachability between states. For σ, σ′ ∈
States(p), σ′ is locally reachable from σ if for some nested execution w ∈ [[p]] and
positions i and j ≥ i, we have w(i) = σ, w(j) = σ′, and the word wij is matched.

4 Local Invariants and Summaries

Now we develop a class of invariants, called local invariants, that apply only to
execution fragments within a single procedural context. To derive them, we use
procedure summaries and reason with respect to environment assumptions.

We start by fixing an assertion language A and defining an extended state of
a procedure p to be a pair (σen, σ) of states of p. Intuitively, in an extended
state (σen, σ), σ is the current state, and σen is the state at the beginning of the
current procedural context. An extended state formula ϕ over p is an assertion in
A such that ϕ may use two free variables xen and x for each variable (including
the control variable pc) x in scope in p. 1 Such a formula is interpreted over
extended states (σen, σ), with xen and x capturing the values of x at σen and
σ; every formula thus encodes a set of extended states. Therefore, an extended
state formula (x ≤ 5xen) says the value of the program variable x at the point
where the assertion is made is at most five times the value of x at the beginning
of the present procedural context.

We write (σen, σ) |= ϕ if (σen, σ) satisfies ϕ. If all extended states satisfy ϕ,
then we write |= ϕ. Also, we denote the set of extended state formulas over p by
Assn(p).

A local invariant of p ∈ Proc is a formula π ∈ Assn(p) such that for any nested
execution w ∈ [[p]], the local path wl of w satisfies the following property: for all
positions i in wl, (wl(0), wl(i)) |= π. A summary of a procedure p is a formula
ψ ∈ Assn(p) such that for each finite nested execution w ∈ [[p]] ending at a
position n, (w(0), w(n)) |= ψ. Intuitively, local invariants assert conditions that
hold on the path through the “top-level” context of a nested execution. Note
that if the formula π is a local invariant of p, then the formula (π ∧ (pc =⊥p))
is a summary of the procedure p—i.e., a summary can be obtained by asserting
the local invariant at the terminal label of the procedure.

Inductive local invariants and summaries. Our goal here is to obtain, for
each procedure p, an inductive local invariant. This is done with respect to a
summary of each procedure called from p. Due to recursion, these invariants and
summaries may be interdependent, and need to be defined via mutual induction.

These notions are developed via a simple generalization of the non-procedural
case. First we define a predicate transformer for each edge e in the CFG of P .
Consider, first, a local edge e = (l, b, m) in the procedure p. The transformer for

1 As a convention, we use typewriter font to refer to program variables, and italics to
refer to logical variables.
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e takes a formula ϕ ∈ Assn(p), and returns a formula ϕ′ = Poste(ϕ) ∈ Assn(p).
The latter formula encodes the least set S of extended states such that for each
(σen, σ) that satisfies ϕ and is such that σ(pc) = l, if σ′ is the state reached by
executing from σ the command to which e corresponds, then (σen, σ′) ∈ S. We
write

{
ϕ
}

e
{
ϕ′} if Poste(ϕ) ⇒ ϕ′.

Predicate transformers for call edges e are similar, except for ϕ ∈ Assn(p),
Poste(ϕ) ∈ Assn(q), where q is a procedure called from p. If e is a summary edge
capturing execution within a called procedure q, then its predicate transformer
takes in a summary ψ of q as an extra parameter, and is of the form Poste(ϕ, ψ).
Here, for given ϕ and ψ, ϕ′′ = Poste(ϕ, ψ) represents the least set of extended
states S such that if (σen, σ) satisfies ϕ and σ is a call to procedure q, then
assuming the summary ψ for q and the return state σret, we have (σen, σret) ∈ S.
We write

{
ϕ
}

(e, ψ)
{
ϕ′′} if Poste(ϕ, ψ) ⇒ ϕ′′.

Finally, let us define a formula Ip capturing the initial condition of a procedure
p—i.e., the initialization of its local variables. Inductive local invariants and
summaries are now defined as follows:

Definition 1. Let P have procedures p1, . . . , pk and initial procedure pin. The
inductive local invariant and summary for each procedure pi are respectively
given by I(pi) and Ψ(pi), where I and Ψ are maps that assign an extended state
formula to each procedure in P , and satisfy the following:

1. |= Ipin ⇒ I(pin) ∧ (pc = pcen = First(pin))
2. for each local edge e = (l, b, m) in p, |=

{
I(p)∧(pc = l)

}
e
{
I(p)∧(pc = m)

}

3. for each summary edge e = (l, q, m) in p,
|=
{
I(p) ∧ (pc = l)

}
(e, Ψ(q))

{
I(p) ∧ (pc = m)

}

4. for each call edge e = (l, m) from p to q,
|=
{
I(p) ∧ (pc = l) ∧ Iq

}
e
{
I(q) ∧ (pc = First(q))

}

5. for all p, we have |= I(p) ∧ (pc =⊥p)⇒ Ψ(p).

A pair (I, Ψ) of maps as above is called an inductive pair.

Intuitively, condition (1) requires that the inductive local invariant, when as-
serted at the label where the program starts execution, satisfies the initial con-
ditions of pin. Conditions (2) and (3) require that invariants are preserved under
transitions along local and summary edges. Condition (4) asserts the initial con-
ditions of a procedure at its entry states reached via calls. Condition (5) relates
summaries given by Ψ to invariants given by I.

It is not hard to show that Definition 1 is sound:

Lemma 1. If (I, Ψ) is an inductive pair, then for each p ∈ Proc, I(p) is a local
invariant and Ψ(p) a summary of p.

For example, consider the program in Figure 2. Suppose, assuming inc_n only
increments n, we want to derive the local invariant (flag = ff ) for main. The re-
quired reasoning is performed in a procedure-modular way. First we just consider
the body of main, while making the necessary assumptions about the procedures
it calls (in this case, bar). We note that the invariant holds if (flag = ff ) is a
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summary for bar. Now we must validate this summary by reasoning about bar.
Here we assume the invariant (cond ∨(flag = ff )) for the label L2 and show that
this is a loop invariant. Verifying the summary is now easy.

5 Temporal Verification

Local invariants may be directly applied in proving temporal safety and liveness
properties interpreted on nested program executions. We explore three classes of
temporal properties—safety, response, and reactivity—each of which has three
subclasses corresponding to interpretations on local, global, and staircase paths
in nested executions. Of these, staircase reactivity properties can capture all
properties expressible in temporal logic over nested words [13,5].

In the following, we write P, p |= f if the procedure p in the program P satisfies
a temporal property f (we will define what this means for each property we
consider). We write P, p R f , often omitting P and/or R, if we can prove using
a rule R that p satisfies f . Finally, we write  ϕ if we can prove the extended
state formula ϕ.

A rule R proving a property f of a procedure p in a program P is called sound
if P, p R f only when P, p |= f . As for completeness, consider sets S1, . . . , Sk of
extended states. We call R complete relative to these sets if, assuming that each
Si can be encoded by an extended state formula and that all assertions in A can
be proved or disproved, we have P, p |= f only if P, p R f . We call R relatively
complete if it is complete relative to a collection of sets of extended states, each
of which can be captured using A.

Local safety. A local safety property says: “In any nested execution of a proce-
dure p, a certain assertion is never violated in the top-level procedural context.”
We define:

Definition 2. Let ϕ ∈ Assn(p) for a procedure p. The procedure p satisfies the
local safety property �lϕ (read as “Always locally ϕ”) if for each w ∈ [[p]] and
for each position i in the local path σ0σ1 . . . in w, (σ0, σi) satisfies ϕ. This fact
is written as P, p |= �lϕ)

Fig. 3 shows our rule L-Safe for local safety. The rule is a generalization of
the classic proof rule for temporal safety [15]. Unlike in the classical case, the
inductive invariant we need here is a local invariant. To prove local safety for p,
we only need to consider the program Pp.

Input: (1) Procedure p in program P ; (2) ϕ ∈ Assn(p)

Rule: Find an inductive pair (I, Ψ) for the program Pp such that � I(p) ⇒ ϕ

P, p � �lϕ

Fig. 3. Rule L-Safe for local safety
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Example 1. Recall the program in Fig. 2, and consider the safety property: “flag
is always false.” While this property is violated by global program executions, it
holds locally in main. A proof follows from the inductive pair for this program
derived earlier. In fact, this example represents a class of applications of local
safety properties: those where an invariant may be legitimately broken by a
called procedure, so long as it is restored before control returns.

Soundness of L-Safe follows from Lemma 1:

Theorem 1. The rule L-Safe is sound.

As for completeness, let Proc(Pp) be the set of procedures in Pp, and let SR
q be,

for each q ∈ Proc(Pp), the set of extended states (σen, σ) such that σen is an
entry state of q and σ is locally reachable from σen. Thus, the set SR

q captures
local reachability from an entry state of q. We have:

Theorem 2. L-Safe is complete relative to the sets SR
q , where q ∈ Proc(Pp).

Proof: Let us assume that P, p |= �lϕ. For each q ∈ Proc(Pp), let χq be an
extended state formula capturing the set SR

q (i.e., for each extended state (σen, σ)
of q, we have (σen, σ) |= χq iff (σen, σ) ∈ SR

q ). By our assumption, these formulas
exist. Now consider the pair of maps (I, Ψ), each assigning a formula to each q as
above, such that for all such q, we have I(q) = χq and Ψ(q) = I(q) ∧ (pc =⊥q).

We claim that (I, Ψ) is an inductive pair for Pp. To see why this is so, consider
the conditions in Definition 1. Condition (1) holds because (σin, σin), where σin

is an entry state of p belongs to SR
p . Condition (5) holds trivially from our choice

of Ψ . Conditions (2), (3), and (4) follow from the definition of local reachability
and predicate transformers, and the hypothesis that Ψ captures summaries.

Now note that I(p) ⇒ ϕ. Recall that (σen, σ) |= ϕ for all entry states σen

of p and all σ such that σ is locally reachable from σen. As I(p) (i.e., χp)
precisely characterizes those pairs, (I, Ψ) satisfies the premises of L-Safe. Thus,
P, p  �lϕ. ��
Now we show a way to encode the sets SR

q using assertions, generalizing a tech-
nique in Manna and Pnueli’s completeness proof [14] and proving that:

Theorem 3. L-Safe is relatively complete.

Proof: We assume that our data domain can express records and binary trees
of records; our assertions use auxiliary variables of these types. For a node u
in a tree τ of records, let lc(u) and rc(u) respectively denote the left and right
children of u (the right child may not exist, in which case we write rc(u) =⊥).
The root of τ is denoted by root(τ); u satisfies the predicate leaf (u, τ) iff it is a
leaf of τ .

The records u forming the tree nodes have fields indexed by the logical vari-
ables xen and x of our state formulas. For an extended state formula ψ, the
application ψ(u) is obtained by substituting the free variables of ψ with the cor-
responding fields of u. The formula Ṽ = u has free variables x and xen for every
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variable x of q, and states that each free variable has the value of the corre-
sponding field in u. For each local or call edge e, Poste(u) refers to Poste(ψu),
where ψu states that each variable has the value of the corresponding field in u.
The application of Poste(u) to a node u′ is denoted by (u = Poste(u′)). If e is
a summary edge, the formula (u = Poste(u′, u′′)) (where u′, u′′ are records) is
likewise defined.

The formula χq is:

χq : ∃τ.((|τ | > 0) ∧ λleaf ∧ λroot ∧ ∀u.(¬leaf (u, τ) ⇒ δloc ∨ δsum))

where

λleaf : ∀u. leaf (u, τ) ⇒
∨

r∈Proc(Ir ∧ (pc =pcen =First(r))(u)
λroot : Ṽ = root(τ)
δloc : (rc(u) =⊥) ∧

∨
e∈Eloc

(u = Poste(lc(u)))
δsum : (rc(u) �=⊥) ∧

∨
e∈Esum

(u = Poste(lc(u), rc(u)))

The assertion χp encodes a proof tree establishing local reachability between
states σen and σ in p (also, σen is an entry state of p). The root of τ encodes
variable values at these states. The leaves encode the fact that each state σ
is locally reachable from itself. The children of a node u = (σ′

en, σ′) capture
reachability facts that, together, imply that σ′ is locally reachable from σ′

en

(note that these states are not necessarily in p; also, if u has no right child, then
only one premise is needed to derive it). For example, u may have a single child
(σ′

en, σ′′), where σ′′ has a transition along a local edge to σ′. Thus, χp captures
SR
p . ��

Local response. Now we extend our approach to liveness. We define local
response as:

Definition 3. Let ϕ1, ϕ2 ∈ Assn(p) for a procedure p. The procedure p satisfies
the local response property f = �l(ϕ1 ⇒ ♦lϕ2) if for each w ∈ [[p]]ω and for each
position i in the local path σ0σ1 . . . such that (σ0, σi) |= ϕ1, there exists j ≥ i
such that (σ0, σj) |= ϕ2. This fact is written as P, p |= f .

Note that the definition only considers the infinite executions of p.
Liveness properties as above are proved by generalizing techniques from clas-

sical verification using ranking functions. Let (D,�) be a well-founded preorder;
for a, b ∈ D, we write a = b if a � b and b � a, and a ≺ b if a � b and
a �= b. Let a ranking function for the above preorder and the program P be a
map δ : (σen, σ) �→ d, where (σen, σ) is an extended state and d ∈ D. We use
extended state formulas such as (δ � d) and (δ = d) that are satisfied by an
extended state (σen, σ) respectively when δ(σen, σ) � d and δ(σen, σ) = d. Ways
to encode such assertions in a language like A may be found in [14].

Our rule L-Resp for local response is in Fig. 4. Intuitively, the obligation κ is
asserted whenever ϕ1 holds along a local path, and is “released” only when ϕ2
holds on this path as well. In path fragments where κ is asserted, the ranking
function decreases in value; as D has no infinite descending chain, this means
that ϕ2 will hold eventually.
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Input: (1) Procedure p in program P ; (2) Formulas ϕ1, ϕ2 ∈ Assn(p)

Rule: Find an inductive pair (I, Ψ) for the program Pp, a ranking function from ex-
tended states of P to D, a formula κ ∈ Assn(p) and, for each procedure q ∈ Proc(Pp),
a formula βq ∈ Assn(q), such that:

1. � ϕ1 ⇒ ϕ2 ∨ κ;
2. For each local edge e in p,

� �
κ ∧ (δ = d)

�
e
�
ϕ2 ∨ (κ ∧ (δ ≺ d)

�
;

for each local edge in a procedure q,
� �

βq ∧ (δ = d)
�

e
�
(pc =⊥q) ∨ (βq ∧ (δ ≺ d)

�

3. For each call edge e from p to a procedure q,
� �

κ ∧ (δ = d)
�

e
�
βq ∧ (δ ≺ d)

�
;

for each call edge from a procedure q to a procedure r,
� �

βq ∧ (δ = d)
�

e
�
βr ∧ (δ ≺ d)

�

4. For each summary edge e = (l, r, m) in p,
� �

κ ∧ (δ = d)
�

(e, Ψ(r))
�
ϕ2 ∨ (κ ∧ (δ ≺ d))

�
;

for each such edge in a procedure q,
� �

βq ∧ (δ = d)
�

(e, Ψ(r))
�
(pc =⊥q) ∨ (βq ∧ (δ ≺ d))

�

P, p � �l(ϕ1 ⇒ ♦lϕ2)

Fig. 4. Rule L-Resp for local response

Now, when the execution enters a new context via a call, the execution frag-
ment from then on till the matching return is not part of the local path. Suppose
κ was not released by the time the call happened. If the call never terminates, the
local path will have ended at the call, and the response property will be violated.
Consequently, we must ensure that all such calls eventually return. This is done
using the properties βq (split among procedures), which are just like κ, except
they are released when the “terminal” label ⊥q is reached. Note that because of
recursive calls, a procedure may be re-entered—e.g., we may have q = p.

Example 2. In the program in Fig. 2, suppose we want to show that bar satisfies
the property �l(cond ⇒ ♦l(¬flag ∨ (n ≥ nen + 100))). This is done using a
ranking function that maps each extended state (σen, σ) of bar to a pair (l, v),
where l is the label of σ, and v is the value of max{0, (nen + 100 − n)} in this
extended state. The labels are partially ordered as (L1 < L2 < L3), (L4 < L3),
and (L5 < L3). We have (l′, v′) ≺ (l, v) iff either (v′ < v), or (v′ = v) and
(l′ < l).

Now κ says: “pc is one of L1, L2, L3, L4, or L5, and (n < nen +100).” Clearly,
this satisfies the rule’s premises.

We can show that:

Theorem 4. The rule L-Resp is sound and relatively complete.

Global response. Local invariants may also be used to modularly prove prop-
erties of executions spanning multiple contexts. The simplest of these is global
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Input: (1) Procedure p in program P ; (2) Formulas ϕ1, ϕ2 ∈ Assn(p)

Rule: Find an inductive pair (I, Ψ) for the program P ϕ2
p , a ranking function from

extended states of P to D, and, for each procedure q in P ϕ2
p , a formula κq ∈ Assn(P ),

such that:

1. � (pc = l) ∧ ϕ1 ⇒ (ϕ2 ∨ κq), if the label l is in q;
2. For each local edge e in a procedure q,

� �
κq ∧ (δ = d)

�
e
�
ϕ2 ∨ (κq ∧ (δ ≺ d)

�
;

3. For each call edge from procedure q to procedure r,
� �

κq ∧ (δ = d)
�

e
�
ϕ2 ∨ (κr ∧ (δ ≺ d))

�

4. For each summary edge e = (l, r, m) in procedure q,
� �

κq ∧ (δ = d)
�

(e, Ψ(r))
�¬#ϕ2 ⇒ (ϕ2 ∨ (κq ∧ (δ ≺ d)))

�

P, p � �g(ϕ1 ⇒ ♦gϕ2)

Fig. 5. Rule G-Resp for global response

Input: (1) Procedure p in program P ; (2) Formulas ϕ1, ϕ2, θ ∈ Assn(P )

Rule: Find an inductive pair (I, Ψ) for the program Pp, a ranking function from ex-
tended states of P to D, a formula κ ∈ Assn(p) and, for each procedure q ∈ Proc(Pp),
a formula βq ∈ Assn(q), such that:

1. � ϕ1 ⇒ ϕ2 ∨ κ;
2. For each local edge e in q,

� �
κ∧ θ∧ (δ = d)

�
e
�
ϕ2 ∨ (κ∧ (δ ≺ d)

� � �
κ∧ (δ = d)

�
e
�
ϕ2 ∨ (κ∧ (δ � d)

�

� �
βq ∧ θ ∧ (δ = d)

�
e
�
(pc =⊥q) ∨ ϕ2 ∨ (βq ∧ (δ ≺ d)

�

� �
βq ∧ (δ = d)

�
e
�
(pc =⊥q) ∨ ϕ2 ∨ (βq ∧ (δ � d)

�

3. For each call edge e from a procedure q to a procedure r,
� �

κ ∧ θ ∧ (δ = d)
�

e
�
βr ∧ (δ ≺ d)

� � �
κ ∧ (δ = d)

�
e
�
βr ∧ (δ � d)

�

� �
βq ∧ θ ∧ (δ = d)

�
e
�
βr ∧ (δ ≺ d)

� � �
βq ∧ (δ = d)

�
e
�
βr ∧ (δ � d)

�

4. For each summary edge e = (l, q, m) in a procedure r,
� �

κ ∧ θ ∧ (δ = d)
�

(e, Ψ(q))
�
ϕ2 ∨ (κ ∧ (δ ≺ d))

�

� �
κ ∧ (δ = d)

�
(e, Ψ(q))

�
ϕ2 ∨ (κ ∧ (δ � d))

�

� �
βr ∧ θ ∧ (δ = d)

�
(e, Ψ(q))

�
(pc =⊥r) ∨ ϕ2 ∨ (βr ∧ (δ ≺ d))

�

� �
βr ∧ (δ = d)

�
(e, Ψ(q))

�
(pc =⊥r) ∨ ϕ2 ∨ (βr ∧ (δ � d))

�

P, p � �s((ϕ1 ∧ �s♦sθ) ⇒ ♦sϕ2)

Fig. 6. Rule S-React for staircase reactivity

safety. Here we consider the global response property �g(ϕ1 ⇒ ♦gϕ2), which is
defined in exactly the same way as local response, except that it is interpreted
on the global rather than the local path.

Our rule G-resp for global response is in Fig. 5. To understand it, first con-
sider the rule for local response and a state of procedure p that calls the procedure
q and satisfies κ, but not ϕ2. Clearly, this state was reached along a local path
where ϕ1 held at one point, but ϕ2 has not held since. In local response, we had
to ensure that this call terminates, and that ϕ2 holds along the local path in the
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continuation. In global response, we do not need termination: a non-returning
path is legitimate if ϕ2 eventually holds in it. However, we must assert that in
all executions that do reach the matching return without having satisfied ϕ2 in
the interim, an invariant like κ must be asserted at the matching return. This
requires us to relate the fragment of the execution within q with the conditions
that hold afterwards. It is possible to do this using an auxiliary program variable.

For an assertion ϕ and a program P , let us define the program Pϕ ob-
tained by modifying P as follows. To each procedure p of P , we add a local
boolean variable #p,ϕ. Between every two commands in p, we add the command
if(ϕ) then (#p,ϕ:=true) else skip. We also make p return the value of
this variable. This is encoded using a global variable γ—the last command in p
stores the value of #p,ϕ in γ. Finally, after each procedure call from p to q, we
add a statement #p,ϕ = γ.

This augmented program tracks if ϕ is satisfied within a procedure q called
from p. As q returns the value of #q,ϕ on termination, we can refer to this value
to see if ϕ was satisfied within the called context.

The rule G-Resp uses such an augmentation of the input program P . The
interesting premise concerns summary edges: we assert liveness at the target of
such an edge only if the procedure’s auxiliary variable is false at that point (i.e.,
if the property is not satisfied within the context summarized by the edge).

Example 3. Consider the program in Fig. 2 once again, and the global response
property �g((n = 0) ⇒ ♦g(n ≥ 1)). While the local version of this property is
not satisfied by the procedure main, the global version is easily verified using
G-Resp. As bar may or may not terminate or not increment n, the auxiliary
variables are critical to the proof.

Soundness and completeness are obtained by slightly modifying the correspond-
ing proofs for local response:

Theorem 5. G-Resp is sound and relatively complete.

Staircase reactivity. Now we prove the most general of our properties: stair-
case reactivity. A staircase reactivity property asserts: “Along the staircase path
in any nested execution, if ϕ1 holds infinitely often, then ϕ2 also holds infi-
nitely often.” These properties can capture the parity acceptance condition of
ω-automata. As automata operating on the staircase path can capture all ω-
regular properties of nested words [5], a complete rule for staircase reactivity
can prove all temporal properties of nested executions.

Following [14], we use a syntactic formulation of reactivity that involves an
extra assertion θ. We define:

Definition 4. Let ϕ1, ϕ2, θ ∈ Assn(p) for a procedure p. The procedure p sat-
isfies the staircase reactivity property f = �s(ϕ1 ∧ �s♦sθ ⇒ ♦sϕ2) if for each
w ∈ [[p]] and for each position i in the staircase path σ0σ1 . . . such that: (1)
(σ0, σi) |= ϕ1, and (2) there exist infinitely many j ≥ i such that (σ0, σj) |= θ,
there is some k ≥ i such that (σ0, σk) |= ϕ2.
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Our rule S-React for staircase reactivity is shown in Fig. 6. The rule combines
features of proofs for local and global properties, and generalizes the rule for
response.

Consider, first, the case where there are no procedure calls. As in local re-
sponse, κ is asserted whenever an extended state satisfying ϕ1 is reached along a
local path, and continues to hold till the “goal” of reaching ϕ2 is met. However,
this time the rank decreases along a path fragment with invariant κ only when θ
is satisfied (and it never increases along a path). If θ holds infinitely often, then
either ϕ2 holds eventually, or the rank must decrease unboundedly. The latter
is impossible as D is well-founded.

If the program has procedure calls, we propagate two liveness conditions at
each call. Along the call edge, we assert the property that along each path within
the new context, either the reactivity condition is met, or the matching return of
the present call is reached. Along the summary edge, we assert: “the reactivity
condition is met eventually.”

To see why, suppose a call terminates after having satisfied the liveness oblig-
ation. The part of this execution within the called context is not in the staircase
path, but this is not an issue as liveness is asserted along the summary edge re-
gardless of what happens within the called context. Now suppose this call never
returns. In this case, using a strong summary, we rule out a continuation of the
current execution along the summary edge in question. However, the condition
for the call edge ensures that the context reached via the call satisfies the liveness
obligation. In general, we can show that:

Theorem 6 (Soundness, completeness). The rule S-React is sound and
relatively complete.

6 Conclusion

We have presented a set of rules to modularly verify temporal properties of
procedural programs. Our approach uses a nested-word semantics of programs,
and uses summaries and local invariants to perform modular reasoning. Our
rules are sound and relatively complete, and can prove any temporal property
of nested words.

In future work, we will mechanize these rules using recent techniques for
automatic invariant generation [7,18]. Also, we did not permit assertions referring
to the past in this paper—they will be dealt with in the journal version.
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Abstract. We present a unified game-based approach for branching-
time model checking of hierarchical systems. Such systems are exponen-
tially more succinct than standard state-transition graphs, as repeated
sub-systems are described only once. Early work on model checking of
hierarchical systems shows that one can do better than a naive algorithm
that “flattens” the system and removes the hierarchy.

Given a hierarchical system S and a branching-time specification ψ
for it, we reduce the model-checking problem (does S satisfy ψ?) to the
problem of solving a hierarchical game obtained by taking the product
of S with an alternating tree automaton Aψ for ψ. Our approach leads
to clean, uniform, and improved model-checking algorithms for a vari-
ety of branching-time temporal logics. In particular, by improving the
algorithm for solving hierarchical parity games, we are able to solve the
model-checking problem for the μ-calculus in Pspace and time com-
plexity that is only polynomial in the depth of the hierarchy. Our ap-
proach also leads to an abstraction-refinement paradigm for hierarchical
systems. The abstraction maintains the hierarchy, and is obtained by
merging both states and sub-systems into abstract states.

1 Introduction

In model checking, we verify that a system meets its specification by translating
the system to a finite state machine (FSM), translating the specification to a
temporal-logic formula, and checking that the FSM satisfies the formula [6]. The
translation of a high-level description of a system to an FSM involves a painful
blow-up, and the size of the FSM is typically the computational bottleneck in
model-checking algorithms.

There are several sources of the blow-up that the translation involves. A well-
studied source is the ability of components in the system to work in parallel
and communicate with each other, possibly using variables. Formally, concur-
rent FSMs are exponentially more succinct than flat (usual) ones [9]. This has
led to extensive research on compositional model checking, where the goal is
to reason about a system by reasoning about its underlying components and
without constructing an equivalent flat system (c.f., [8,19]). Compositionality
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methods are successfully applied in practice (c.f., [20]), but it is a known reality
that they cannot always work. Formally, the system complexity of the model-
checking problem (that is, the complexity in terms of the system, assuming a
specification of a fixed length) for all common temporal logics is exponentially
higher in the concurrent setting [15]. This exponential gap is carried over to
other related problems such as checking language-containment and bisimulation
— all are exponentially harder in the concurrent setting [13,21].

Another source of the blow-up in the translation of systems to FSMs has to
do with the ability of a high-level description of a system to reuse the same
component in different contexts (say, by calling a procedure). The sequential
setting is that of hierarchical FSMs, where some of the states of the FSM are
boxes, which correspond to nested FSMs. The naive approach to model check-
ing such systems is to “flatten” them by repeatedly substituting references to
sub-structures with copies of these sub-structures. However, this results in a flat
system that is exponential in the nesting depth of the hierarchical system. In [5],
Alur and Yannakakis show that for Ltl model checking, one can avoid this blow-
up altogether, whereas for Ctl, one can trade it for an exponential blow-up in
the (often much smaller) size of the formula and the maximal number of exits of
sub-structures. In other words, while hierarchical FSMs are exponentially more
succinct than flat FSMs [4], in many cases the system complexity of the model-
checking problem is not exponentially higher in the hierarchical setting! Thus,
even more than with the feature of concurrency, here there is clear motivation
not to flatten the FSM before model checking it.

The results in [5] set the stage to further work on model-checking of hierarchical
systems. As it so happened, however, this line of research has quickly been focused
on recursive systems, which allow unbounded nesting of components. Having no
bound on the nesting gives rise to infinite-state systems. The emergence of software
model checking, thenatural association of reusabilitywith (possibly recursive)pro-
cedure calls, the challenge and abstraction that the infinite-state setting involves,
and the neat connection to pushdown automata, have all put recursive systems
in the central stage [1,2,3], leaving the hierarchical setting as a special case. This
work hopes to shift some attention back to the hierarchical setting. We suggest a
uniform game-based approach formodel checking such systems, and argue that the
game-based approachenjoys the versatility and advantages it has proven to have in
the flat setting. In particular, the game-based approach leads to improved model-
checking algorithms and to an abstraction-refinement framework for hierarchical
systems and Ctl formulas. An important conclusion of our work is that we should
not hurry to give up the finite-state nature of the hierarchical setting, as it does
lead to simpler algorithms, and better complexities than the recursive setting.

In the flat setting, the game-based approach reduces the model-checking prob-
lem (does a system S satisfy a branching temporal logic specification ψ?) to the
problem of deciding a two-player game obtained by taking the product of S with
an alternating tree automatonAψ for ψ [15]. The game-based approach separates
the logic-related aspects of the model-checking problem, which are handled in the
translation of the specifications to automata, and the combinatorial aspects, which
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are handled by the game-solving algorithm. Using the game-based approach, it was
possible to tighten the time and space complexity of the branching-time model-
checking problem [15]. We describe a unified game-based approach for branching-
time model checking of hierarchical systems. We define two-player hierarchical
games, and reduce model checking to deciding such games. In a hierarchical game,
an arena may have boxes, which refer to nested sub-arenas. As in the flat setting,
one can take the product of a hierarchical system with an alternating tree automa-
ton for its specification, and model checking is reduced to solving the game ob-
tained by taking this product. Now, however, the hierarchy of the system induces
hierarchy in the game.

Having introduced the framework, we turn to the two main technical contri-
butions of the paper: a new and improved algorithm for solving hierarchical par-
ity games, and an abstraction-refinement paradigm for hierarchical systems. We
now briefly describe both. Consider a hierarchical game G. The idea behind our
algorithm is that even though a sub-arena may appear in different contexts, it is
possible to extract information about the sub-arena that is independent of the con-
text in which it appears. Formally, for each strategy of one of the players, we can
analyze the sub-arena and extract a summary function, mapping each exit of the
sub-arena to the best color (of the parity condition) that the other player can hope
for, given that the current play eventually leaves the sub-arena through this exit.
The summary function is independent of the context and has to be calculated only
once. The algorithm for solving the game G then solves a sequence of flat parity
games, obtained by replacing sub-arenas by simple gadgets that implement the
summary functions.

While hierarchical systems may be exponentially more succinct than flat ones,
they are not immune to the “state explosion problem”, which, in some circum-
stances, could completely absorb the flavor of using hierarchical state machines.
For flat systems, a powerful solution to the state-explosion problem is based on
reasoning about an abstraction of the concrete model. To guarantee preservation
of the branching-time specification from abstract models to concrete models, two
transition relations have been considered [7,17]: preservation of universal proper-
ties requires an over-approximation,whereas preservation of existential properties
requires an under-approximation. This is accomplished by using Modal Transi-
tion Systems (MTS) [11,14]. We extend this approach to hierarchical state ma-
chines and introduce hierarchical MTS (HMTS) and hierarchical 3-valued games.
We show how to abstract a hierarchical system and get an HMTS, and model
check specifications in Ctl. The abstraction technique fits into our game-basedap-
proach very naturally. Indeed, already in the flat setting, reasoning about abstrac-
tions has the flavor of solving games [22]. From a technical viewpoint, combining
our algorithm for the concrete hierarchical setting and the abstraction-refinement
solution for the flat setting [22], is not difficult, and is based on adding to the gad-
gets that capture the summary functions a layer in which the players can chose
between winning and not losing (i.e., forcing the game to an unknown-winner
value). We see this as a witness to the neatness of our framework.
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Related work. As described above, the formulation of hierarchical systems as
well as the observation that model-checking algorithms for them should not flat-
ten the system, was done in [5]. The work since then was focused on recursive sys-
tems, with the exception of [12,16,18]. The closest to our work here is [12], which
proved that the model-checking problem for the μ-calculus and hierarchical sys-
tems is Pspace-complete (as opposed to the recursive setting, in which μ-calculus
model checking is Exptime-complete). However, the μ-calculus model-checking
algorithm that our approach induces enjoys several advantages with respect to
the one in [12]. The first one is the complexity. Beyond having a polynomial space
complexity, the time complexity of our algorithm is usually much better than the
one that follows the “flattening” approach, and in all cases it is much better than
the one in [12]. Second, recall that we reduce the μ-calculus model-checking to
solving hierarchical parity games and our algorithm solves the latter by solving
a sequence of (non-hierarchical) parity games. As such, it can benefit from exist-
ing and future algorithms and tools for solving parity games. Third, the algorithm
presented in [12] does not deal directly with hierarchical systems. Rather, it con-
siders straight line programs (SLP). Translating a hierarchical system to an SLP
is not hard (indeed, it involves a quadratic blow-up), but it messes-up the direct
relationship between the structure of the hierarchical system and the game. This
relationship is crucial in understanding the output of the model-checking proce-
dure, by means of counterexamples, and in describing an abstraction-refinement
paradigm on top of the game.

Due to lack of space, many details are omitted from this version. A full version
of the paper can be found in the authors URLs.

2 Preliminaries

A hierarchical two-player game is a game played between two players, referred to
as Player 0 and Player 1. The game is defined by means of a hierarchical arena and
a winning condition. The players move a token along the hierarchical arena, and
the winning condition specifies the objectives of the players, which typically refer
to the sequence of states traversed by the token. A hierarchical arena is a hierar-
chical FSM in which the state space of each of the underlying FSMs is partitioned
into states belonging to Player 0 (that is, when the token is in these states, then
Player 0 chooses a successor to which he moves the token) and states belonging
to Player 1. We refer to the underlying FSMs as sub-arenas. Formally, a hierar-
chical two-player game is a pair G = (V , Γ ), where V = 〈V1,...,Vn〉 is a hierar-
chical arena, and Γ is a winning condition. For every 1 ≤ i ≤ n, the sub-arena
Vi = 〈W 0

i , W 1
i ,Bi, ini, exit i, τi,Ri〉 has the following elements:

– W 0
i and W 1

i are finite sets of states. States in W 0
i belong to Player 0, and states

in W 1
i belong to Player 1. We assume that W 0

i ∩W 1
i = ∅, and let Wi = W 0

i ∪
W 1

i . The state in i ∈ Wi is an initial state1, and exit i ⊆ Wi is a set of exit-
states. We assume that exit1 = ∅, i.e., the top-level arena V1 has no exits.

1 We assume a single entry for each sub-arena. Multiple entries can be handled by du-
plicating sub-arenas.
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– A finite set Bi of boxes. We assume that W1,..., Wn,B1,...,Bn are pairwise dis-
joint.

– An indexing function τi : Bi → {i + 1,..., n} that maps each box of the i-th
sub-arena to an index greater than i. If τi(b) = j, we say that b refers to Vj .

– An edge relationRi ⊆ (
⋃

b∈Bi
({b}× exitτi(b))∪Wi)× (Wi ∪Bi). Let the pair

(u, v) be an edge in Ri, with a source u and a target v. The source u is either
a state of Vi or a pair (b, e), where b is a box of Vi and e is an exit-state of the
sub-arenas that b refers to. The target v is either a state or a box of Vi.

In a sub-arena, the edges connect states and boxes with one another. Edges enter-
ing a box implicitly lead to the unique initial state of the sub-arena that the box
refers to. On the other hand, an edge exiting a box explicitly specifies the exit-
state it comes out of. Note that the fact that boxes can refer only to sub-arenas
of a greater index implies that the nesting depth of arenas is finite. In contrast, in
the recursive setting such a restriction does not exist [1].

A parity winning condition Γ for the game maps all states (of all sub-arenas) to
a finite set of colors C = {Cmin,..., Cmax} ⊂ IN. Thus, Γ :

⋃
i Wi → C. For techni-

cal convenience we allow Γ to be partial, but require that in every sub-arena every
cycle, and every path from an entry to an exit, has at least one colored state.

A hierarchical structure (hierarchical system) can be viewed as a hierarchical
arena with a single player. In addition, the structure is defined with respect to a
set AP of atomic propositions, and each state of the structure is mapped to the set
of propositions that hold in it. Formally, a hierarchical structure over AP is a tuple
K = 〈K1,...,Kn〉 of structures, where each Ki = 〈AP,Vi, σi〉 has a sub-arena Vi

with W 1
i = ∅, and a labeling function σi : Wi×AP → {tt,ff } that assigns a truth

value to a pair (w, p) ∈Wi×AP , which indicates whether the atomic proposition
p holds or not in w. For convenience, we sometimes abuse notation and write σi(w)
to denote the set {p ∈ AP : σi(w, p) = tt}.

A sub-arena without boxes is flat, and a sub-arena which is flat and has no ex-
its is simple. A game over a flat (resp. simple) arena is called a flat (resp. simple)
game. The special case of a simple hierarchical structure is the classical Kripke
structure. Each hierarchical arenaV can be transformed to an equivalent flat arena
Vf (called its flat expansion) by recursively substituting each box by a copy of
the sub-arena it refers to. Since different boxes can refer to the same sub-arena,
states may appear in different contexts. In order to obtain unique names for states
in the flat arena, we prefix each copy of a sub-arena’s state by the sequence of
boxes through which it was reached. Thus, a state (b0,..., bk, w) of V f is a vector
whose last component w is a state of V , and the remaining components (b0,..., bk)
are boxes that describe its context. For simplicity, we refer to vectors of length
one as elements (that is, w, rather than (w)). Formally, given a hierarchical arena
V = 〈V1,...,Vn〉, for each sub-arena Vi we inductively define its flat expansion
V f

i =〈W 0
i

f
, W 1

i
f
, ∅, ini, exit i, ∅,Rf

i〉 as follows.2

– For σ ∈ {0, 1}, the set W σ
i

f ⊆ W σ
i ∪(Bi× (

⋃n
j=i+1 W σ

j
f)) is defined as follows:

2 We note that, unlike the definition of flat structures in [5], our definition of flat arenas
also refers to exits. This is useful in the solution of games.
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• If w is a state of W σ
i , then w belongs to W σ

i
f ;

• If b is a box of Vi with τi(b) = j, and the tuple (u1,..., uh) is a state in W σ
j

f ,
then (b, u1,..., uh) belongs to W σ

i
f .

– The transition relationRf
i is defined as follows.

• If (u, v) ∈ Ri, where u ∈ Wi or u = (b, e), where b ∈ Bi and e ∈ exitτi(b),
then if the target v is a state then (u, v) ∈ Rf

i; and if v is a box then
(u, (v, inτi(v))) ∈ Rf

i. Note that (v, inτi(v)) is indeed a state of W f
i by the

second item in the definition of states above.
• If b is a box of Vi, and ((u1,..., uh), (v1,..., vh′)) is a transition of V f

τi(b), then
((b, u1,..., uh), (b, v1,..., vh′)) belongs to Rf

i.

The arena V f
1 is the required flat expansion V f of V . Let W f

i = W 0
i

f ∪ W 1
i

f . In
case K = 〈K1,...,Kn〉 is a hierarchical structure, where each Ki = 〈AP,Vi, σi〉 is a
structure over AP , then the flat expansion is Kf

i = 〈AP,V f
i , σ

f
i〉, where the labels

are induced by the innermost state. Thus, σf
i : W f

i ×AP → {tt ,ff } is such that for
every p ∈ AP , if w = (u1,..., uh), then σf

i(w, p) = σj(uh, p), where j is the index of
the structure of which uh is a state of. A hierarchical structureK satisfies a formula
ϕ (denoted K |= ϕ) iff its flat expansion Kfdoes. The hierarchical model-checking
problem is to decide, given a hierarchical structure K and temporal logic formula
ϕ, whether K satisfies ϕ.

The semantics of a game over a hierarchical arena is defined by means of its
flat expansion, and thus the definitions of a play, a strategy, etc. are essentially
the classic definitions for flat games. However, for our purpose, it is convenient
to also consider plays over arenas Vi, for 1 < i ≤ n, which are not the top level
arena V1. Such arenas may have exit nodes, and we adjust the definitions to deal
with these exits. Intuitively, a play of a game over Vi proceeds by moving a to-
ken on the nodes of the flat expansion V f

i , starting at the initial node in i. If the
token is placed on a node s ∈ W σ

i
f then Player σ chooses the next move. The

available moves are as follows. If s has no successors in V f
i , and s �∈ exit i (we call

such a node a terminal node), then the play ends; Otherwise, the player chooses
a successor of s and moves the token to this successor, or, if s ∈ exit i, he may
choose instead to move the token “outside” V f

i , in which case the play also ends.
A play of the game is thus a (finite or infinite) sequence of nodes π = π0, π1,...,
namely, the sequence of nodes the token has traversed during the play, with pos-
sibly the symbol out at the end of a finite sequence (indicating that the token was
moved out of the arena). A play π is initial if π0 = in i; it is maximal if it is (i)
initial, and (ii) it is infinite, or it is finite but it cannot be extended to a longer
play. We sometimes refer to plays as words in (W f)ω + (W f)∗ + (W f)∗ · {out}.

Consider a parity winning condition Γ . For a play π, let maxC (π) be the maxi-
mal color that appears infinitely often along π (recall that by our assumptions an
infinite play must have infinitely many colored nodes), or appears at least once if
π is finite and has at least one colored node. A play is winning for Player 0 if it
ends in a terminal node s ∈W 1

i
f , i.e., if Player 1 cannot extend the play; or if the

play is infinite and satisfies Γ , i.e., maxC (π) is even. Similarly, a play is winning
for Player 1 if it ends in a terminal node s ∈ W 0

i
f , or if the play is infinite and does
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not satisfy the winning condition Γ . A play that ends with out (i.e., because the
token was moved outside the arena) is not winning for either player, and has an
undefined value.

A strategy for a player is a function from prefixes of plays ending in one of his
nodes, to the set of nodes plus the action out , telling Player σ what move to make
in order to extend the play. Thus, for σ ∈ {0, 1}, a Player σ strategy is a partial
function ξ : (W f)∗ · W σ

i
f → (W f ∪ {out}), such that for all u · v, with u ∈ (W f)∗

and v ∈ W σ
i

f , we have that ξ(u · v) = out only if v ∈ exit f
i, and otherwise,

(v, ξ(u · v)) ∈ Rf
i. A prefix π0,..., πn is consistent with a strategy ξ of Player σ,

if for all j ≥ 0 it holds that if πj is a Player σ node then πj+1 = ξ(π0,..., πj). The
function is partial as there may be vertices in W σ

i
f with no successors, and since we

do not require it to be defined over plays that are not consistent with it. A strategy
ξ is memoryless if its output does not depend on the whole prefix of the play, but
only on the last position, i.e, if for all u, u′ ∈ (W f)∗ and all v ∈W σ

i
f , we have that

ξ(u ·v) = ξ(u′ ·v). We can thus abbreviate and think of a memoryless strategy for
Player σ as a partial function ξ : W σ

i
f → (W f ∪{out}). Observe that if b1, b2 ∈ Bi

are two boxes that refer to the same sub-arena Vj , then it is normally not the case
that ξ (even if it is memoryless) behaves in the same way, inside Vj , in both cases.
That is, the choice of how to move inside Vj depends on the context in which it
appears.

It is easy to see that for every two strategies, ξ0 for Player 0 and ξ1 for Player 1,
there is exactly one play consistent with both strategies. Thus, two strategies in-
duce a play. We denote this play by outcome(ξ0, ξ1). A strategy ξσ for Player σ
is winning, if for all strategies ξ1−σ for Player 1 − σ, the play outcome(ξ0, ξ1) is
winning for Player σ. Dually, a strategy ξσ for Player σ is losing, if there exists a
strategy ξ1−σ for Player 1 − σ, for which the play outcome(ξ0, ξ1) is winning for
Player 1− σ. Note that since plays that end with out have an undefined value, a
strategy ξσ may be neither winning nor losing. Also note that if ξσ is not a losing
strategy for Player σ, then all plays agreeing with ξσ that do not end with out are
winning for Player σ. If the arena Vi has no exits, i.e., if exit i = ∅, then neither
does V f

i , and the semantics of a game over Vi coincides with the classic definition
for parity games over simple arenas. By [10], parity games are determined with
memoryless strategies over simple arenas, i.e., it is always the case that one of the
players (called the winner of the game) has a memoryless winning strategy. To
solve a game over an arena with no exits is to find the winner of the game.

Observe that an alternative way of looking at the semantics of a game over the
hierarchical arena Vi is to think of the token as being moved directly on the nodes
of the sub-arenas Vi,...,Vn, using an auxiliary stack to keep track of the context.
Recall that a node s = (b0,..., bk, w) of V f

i is a vector whose last component w is a
node in

⋃n
j=i(Wj), and the remaining components b0,..., bk are boxes in

⋃n
j=i(Bj)

that give its context. Thus, a token that is on s can be represented by a token on
w, with an auxiliary stack containing b1 · · · bk. Since the arena is hierarchical (and
not recursive) the depth of the stack is bounded.

The size |Vi| of a sub-arena Vi is the sum |Wi|+ |Bi|+ |Ri|, and the number of
exits of Vi is |exit i|. The size |V| of a hierarchical arena V is the sum of the sizes
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of all its sub-arenas Vi, and the number of its exits exits(V) = maxi(|exit i|) is the
maximal number of exits in any of its sub-arenas. The nesting depth of V , denoted
nd(V), is the length of the longest chain i1, i2,..., ij of indices such that a box of Vil

is mapped to il+1. Observe that each state of the expanded structure is a vector
of length at most the nesting depth, and that the size of Vf can be exponential in
the nesting depth, i.e., Ω(|V|nd(V)).

We are going to take the product of hierarchical games with alternating tree au-
tomata. We work with symmetric automata with ε-transitions. In such automata,
the state space is partitioned into four types of states: universal (Q∧), existential
(Q∨), ε-and (Q(ε,∧)), and ε-or (Q(ε,∨)) states (we also write Q∨,∧ = Q∨∪Q∧, and
Qε = Q(ε,∨) ∪Q(ε,∧)). The transition function δ : Q×Σ → (Q∪ 2Q) is such that
for all σ ∈ Σ, we have that δ(q, σ) ∈ Q for q ∈ Q∨,∧, and δ(q, σ) ∈ 2Q for q ∈ Qε.
When an automaton A runs on an input tree, it starts with a copy in the initial
state q0 that reads the root of the tree. It then follows the transition function δ in
order to send further copies. For example, if a copy of A in state q ∈ Q(ε,∧) reads
a node labeled σ, and δ(q, σ) = {q1, q2}, then this copy splits into two copies, in
states q1 and q2, and both copies read the current node. As another example, if
q ∈ Q∨ and δ(q, σ) = q1, then A sends a copy in state q1 to one of the succes-
sors of the current node. Note that, by using ε-transitions, different copies of A
may be reading the same node of the input tree. We assume that Q∨ contains two
states ff (rejecting sink) and tt (accepting sink), such that for all a ∈ Σ, we have
δ(tt , a) = tt and δ(ff , a) = ff .

3 The Hierarchical Model-Checking Game

The game-based approach to model checking a flat system K, with respect to a
branching-time temporal logic specification ϕ, reduces the model-checking prob-
lem to solving a game obtained by taking the product of K with the alternating
tree automaton Aϕ [15]. In this section, we extend this approach to hierarchical
structures: given a hierarchical system K and an alternating tree automaton A,
we construct a game GK,A, such that Player 0 wins the game iff the tree obtained
by unwinding the flat expansion of K is accepted by A. In particular, when A ac-
cepts exactly all the tree models of a branching-time formula ϕ, the above holds
iff K satisfies ϕ. Note that a naive approach for doing this is to start by construct-
ing the flat expansion of K and then applying [15]. The whole point, however, is
to avoid the exponentially large flat system and work directly in the hierarchical
setting. We focus on the case in which A is an alternating parity tree automaton
(APT), to which μ-calculus formulas are translated.

Given a hierarchical system K = 〈K1,...,Kn〉 and an APT A = 〈Σ, Q, q0, δ, F 〉,
the hierarchical two-player game GK,A = (V , Γ ) for K and A is defined as follows.
The hierarchical arena V has a sub-arena Vi,q for every 2 ≤ i ≤ n and state q ∈ Q,
which is essentially the product of the structure Ki withA, where the initial state
of Ki is paired with the state q of A. For i = 1, we need only the sub-arena V1,q0 .
The hierarchical order of the sub-arenas is consistent with the one in K. Thus,
the sub-arena Vi,q can be referred to by boxes of sub-arena Vj,p only if i > j.
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Let Ki = 〈AP, W ′
i ,B′

i, in
′
i, exit

′
i, τ

′
i ,R′

i, σ
′
i〉 and let A = 〈2AP , Q, q0, δ, F 〉 be an

APT with Q partitioned to Q(ε,∧), Q(ε,∨), Q∧, and Q∨. Then, the sub-arenaVi,q =
〈W 0

i,q, W
1
i,q ,Bi,qini,q, exit i,q, τi,q,Ri,q〉 is defined as follows.

– W 0
i,q = W ′

i × (Q∨ ∪Q(ε,∨)), W 1
i,q = W ′

i × (Q∧ ∪Q(ε,∧)), ini,q = (in ′
i, q), and

exit i,q = exit ′i ×Q∨,∧.
– Bi,q = B′

i ×Q, and τi,q(b, q) = (τ ′
i(b), q).

– For a state u = (w, q̂) ∈ W ′
i ×Q, if q̂ ∈ Qε and δ(q̂, σ′

i(w)) = {p0,..., pk}, then
(u, v) ∈ Ri,q iff v ∈ {(w, p0),..., (w, pk)}; and if q̂ ∈ Q∨,∧, then (u, v) ∈ Ri,q

iff v = (w′, δ(q̂, σ′
i(w))) and (w, w′) ∈ R′

i.
– For (b, p) ∈ B′

i × Q, and an exit (e, q̂) ∈ exit ′τ ′
i(b)

× Q∨,∧ of this box, then
(((b, p), (e, q̂)), v) ∈ Ri,q iff v = (w′, δ(q̂, σ′

τ ′
i(b)

(e))) and ((b, e), w′) ∈ R′
i.

The winning condition of the game GK,A is induced by the acceptance condition
of A. Formally, for each state (w, q) of Vi,q, we have Γ (w, q) = F (q).

We now argue that the model checking problemK |= ϕ can be reduced to solving
the hierarchical game GK,Aϕ . For that, we show that GK,Aϕ is equivalent to the flat
game GKf,Aϕ

. Since, by [15], the model-checking problem can be reduced to solving
the latter, we are done. The proof of the equivalence between GK,Aϕ and GKf,Aϕ

is
based on a bijection between the strategies of the two games. In particular, for
every winning strategy for one of the players in GK,A, there is a corresponding
winning strategy for the same player in GKf,A, and vice versa.

Theorem 1. Consider a hierarchical system K and a branching-time formula ϕ.
The following are equivalent: (i) K satisfies ϕ. (ii) Player 0 has a winning strategy
in the flat game GKf,Aϕ

. (iii) Player 0 has a winning strategy in the hierarchical
game GK,Aϕ .

In Section 4, we solve hierarchical two-player games and show how Theorem 1 leads
to optimal model-checking algorithms for hierarchical systems.

4 Solving Hierarchical Parity Games

In this section we present an algorithm for solving hierarchical parity games. Con-
sider a game G = (V , Γ ). A naive algorithm for solving the game would generate
the flat expansion of V and solve it. In the flat expansion, each sub-arena may ap-
pear in many different contexts. The idea behind our algorithm is that even though
the sub-arena appears in different contexts, the effect of the strategies chosen by
the players for the segment of the game inside the sub-arena is independent of the
context and can be summarized efficiently. The effects of every strategy of Player 0
for the segment of the play inside a sub-arena Vi, can be captured by a summary
function mapping each exit of Vi to the best color that Player 1 can hope for, if
he chooses to respond by directing the token to leave Vi through this exit. The
algorithm for solving the game G = (V , Γ ) then solves a sequence of flat parity
games, obtained by replacing sub-arenas by gadgets that represent the behavior
of Player 0 as a choice among the possible summary functions, and the behavior
of Player 1 as a choice of the exit through which he wants the token to exit the
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sub-arena. The gadgets also take into account the possibility that the game will
stay forever in the sub-arena.

We now describe the concept of summary functions in detail. Consider first a
play that enters a box that has a single exit. Each player has one goal that is in-
dependent of the context in which the box appears: to either win inside the box,
or failing that, use a strategy that provides the biggest possible advantage over
the segment of the play that goes through the box. In the case where the box has
multiple exits, the situation is more involved: if a player cannot force a win inside
the box, he is faced with the question of which exit he should try to force the play
to exit through. Depending on the context in which the box appears, it may be
beneficial to force the play to a specific exit even if that involves letting the other
player gain the upper hand in the path leading to it. Also, in certain situations,
none of the players may force the game to a specific exit, and the strategy a player
chooses may reflect a certain tradeoff between the different colors achieved on the
paths going to the different exits.

In order to describe the relative merit of colors, we define an ordering �0 on
colors by letting c �0 c′ when c is better for Player 0 than c′. Formally, c �0 c′

if the following holds: if c′ is even then c is even and c ≥ c′; and if c′ is odd then
either c is even, or c is also odd and c ≤ c′. We denote by min
0 (max
0) the op-
eration of taking the minimal (maximal) color, according to �0, of a finite set of
colors. Consider a strategy ξ of Player 0 for a sub-arena Vi. We define a function
gξ : exit i → C ∪ {�}, called the summary function of ξ, that summarizes the best
responses of Player 1 to ξ. 3 Let e ∈ exit i be an exit node of Vi. If ξ is such that no
matter how Player 1 plays, the token never exits through e, then we set gξ(e) =�.
Otherwise, we set gξ(e) to be the most beneficial color that Player 1 can achieve
along all plays that agree with ξ and exit through e. Formally, let plays(ξ, e) be the
set of all plays in Vi that agree with ξ and exit through e. For every e ∈ exit i we de-
fine gξ(e) =� if plays(ξ, e) = ∅, and gξ(e) = min
0{maxC(π) : π ∈ plays(ξ, e)}.

Recall that if ξ is not a losing strategy for Player 0 then all plays that agree
with ξ and remain inside Vi are winning for Player 0. Hence, if ξ is not a los-
ing strategy then Player 1 will always direct the token to exit through some exit
e ∈ exit i. Note that Player 1 can only choose e for which gξ(e) �=�, and that
the choice of e depends on the context in which the sub-arena Vi appears. A key
point in our algorithm is that, for every game G in which the sub-arena Vi is used,
and every Player 0 strategy ξ for Vi, if ξ is not a losing strategy then gξ captures
all the information needed to analyze the influence of the play inside Vi on G.

Let Summ(Vi) = {g : g is a function from exit i to C ∪ {�}} be the set of all
summary functions4 for strategies of Player 0 over Vi. If Vi has no exits, then
Summ(Vi) contains only the empty summary function ε. Based on the ordering
�0 we defined for colors, we can define a partial order � on Summ(Vi), by letting
g � g′ if for every exit node e of Vi the following holds: g(e) =�, or g(e) �=��= g′(e)

3 Note that our choice to consider summary functions of Player 0 strategies is arbitrary,
and we could have taken Player 1’s point of view instead.

4 We call every g ∈ Summ(Vi) a “summary function” even if there is no Player 0 strat-
egy whose summary is g.
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and g(e) �0 g′(e). Observe that if ξ and � are two Player 0 strategies that are not
losing strategies, and gξ � g
, then Player 0 can always choose ξ over �. Given a
summary function g ∈ Summ(Vi), we say that a strategy ξ of Player 0 achieves g
if gξ � g; we say that g is feasible if there is a strategy ξ that achieves it; and we say
that g is relevant if it can be achieved by a memoryless strategy that is not losing.
In particular, if Vi has no exits, deciding whether the empty summary function ε
is relevant amounts to deciding if it is not losing, i.e., to solving the game over Vi.

We now describe the algorithm for solving a hierarchical parity game. The out-
line of the algorithm is described in Algorithm 1. Given a hierarchical parity game
G = (V , Γ ), where V = 〈V1,...,Vn〉, our algorithm solves G by working its way up
the hierarchy, starting with the lowest level sub-arena Vn. At iteration n ≥ i ≥ 1,
the algorithm first calculates the set Mi of relevant summary functions for strate-
gies of Player 0 overVi. It does so by going over all summary functions and checking
their relevancy. In order to check whether a summary function g is relevant, the
algorithm solves a simple parity game Gs

i,g = (Vs
i,g, Γ

s
i,g), which is defined in such

a way that g is relevant iff Player 0 has a winning strategy for Gs
i,g. The arena Vs

i,g

is built from Vi by applying to it two operations: simplify, and loop. Once the set
Mi is found, the algorithm uses it in order to construct a 3-level DAG structure
Hi that reflects Player 0’s choice of strategy for the sub-arena Vi, and Player 1’s
possible responses to this strategy.

Input: G = (V, Γ ), where V = 〈V1,..., Vn〉
Output: true iff Player 0 wins G
for i = n downto 1 do

Mi = ∅
forall g ∈ Summ(Vi) do

Gs
i,g = loop(g, simplify(Vi, Hi+1,..., Hn))

if Player 0 wins Gs
i,g then Mi = Mi ∪ {g}

end
if i > 1 then construct Hi from Vi and Mi

end
return true iff M1 �= ∅

Algorithm 1. Solving a Hierarchical Parity Game.

The gadget Hi, together with Hi+1,..., Hn which were constructed in previous
iterations, is used in future iterations. Indeed, as detailed below, the essence of the
simplify procedure is to replace a box that refers to a sub-arena Vj by the gadget
Hj . Since the top-level arena V1 has no exits, the only summary function it has is
the empty summary function ε, which, by definition, is relevant iff Player 0 wins
G. Hence, the algorithm reduces the problem of solving the hierarchical game G to
the problem of solving the simple parity game Gs

1,ε.
We now describe the construction of the gadget Hi. Let Mi be the set of all

relevant summary functions for Vi. Then, Hi is the following 3-level DAG:



72 B. Aminof, O. Kupferman, and A. Murano

– The set of nodes of Hi is {p}∪Mi∪ (exit i×C). The node p is a Player 0 node,
every g ∈ Mi is a Player 1 node, and a node (e, c) ∈ exit i × C belongs to the
same player that e belongs to.

– The set of edges is
⋃

g∈Mi
({(p, g)} ∪ {(g, (e, g(e))) : e ∈ exit i ∧ g(e) �=�}).

– A node (e, c) ∈ exit i × C is colored by c. These are the only colored nodes.

Finally, we remove from Hi all the nodes that are not reachable from its root p.
Thus, in particular, if Mi = ∅, then p is the only node that remains in Hi. Intu-
itively, when the token is at the root p of the gadget Hi, Player 0 chooses a rele-
vant summary function g for Vi, and moves the token to the node g. In response,
Player 1 chooses an exit e ∈ exit i for which g(e) �=�, and moves the token to the
node (e, g(e)). The color of (e, g(e)) is g(e), which is the best possible color achiev-
able by Player 1 in any play over Vi that exits through e, when playing against a
Player 0 strategy that achieves g.

Observe that if Mi = ∅, then it must be that all the summary functions in
Summ(Vi) are not relevant, i.e., that all Player 0 strategies for Vi are losing. Note
that this behavior is preserved if we turn all exit nodes of Vi to non-exit nodes.
Hence, from the determinacy of simple parity games it follows that Player 1 has
a winning strategy for Vi, which explains why in this case Hi is a single terminal
Player 0 node. Recall that for every g ∈ Mi there exists at least one non-losing
Player 0 strategy ξg that achieves g, and that since ξg is not losing, every play
that agrees with ξg and does not exit Vi is winning for Player 0. It follows that if
for every e ∈ exit i we have g(e) =� (in particular, if exit i = ∅), then every play
that is consistent with ξg cannot exit Vi, and is thus winning for Player 0. This
explains why in such a case the node g is a terminal Player 1 node.

It is left to describe and explain the operations simplify and loop. We start with
simplify, which simplifies a hierarchical arena Vi by replacing every box b ∈ Bi by a
copy of the gadget Hτi(b). Observe that the hierarchical nesting of the sub-arenas
guarantees that all the boxes in Bi refer to arenas with an index higher than i, and
thus the gadgets required for replacing them were already constructed in previ-
ous iterations. We usually denote the resulting flat arena simplify(Vi, Hi+1,...Hn)
by the shorter notation Vs

i . We now formally define Vs
i . To prevent name clashes

between copies of the same gadget, given a box b ∈ Bi, let Hb be a copy of Hτi(b)
with all nodes renamed by annotating them with b. Replacing b with the gadget
Hb is done by replacing every transition (u, b) ∈ Ri that enters b with a transition
(u, pb) that goes to the root of Hb, and replacing every transition ((b, e), v) ∈ Ri

that exits b with one transition ((e, c)b, v) for every color c for which (e, c)b is
present in Hb. Formally, given Vi = 〈W 0

i , W 1
i ,Bi, ini, exit i, τi,Ri〉, then Vs

i =
〈W 0

i
s
, W 1

i
s
, ∅, ini, exit i, ∅,Rs

i〉, and its coloring function Γ s
i : W s

i → C are as fol-
lows:

– For σ ∈ {0, 1}, we have that W σ
i

s = W σ
i ∪

⋃
b∈Bi

Hb,σ, where Hb,σ is the set
of Player σ nodes of Hb.

– Rs
i is (W s

i×W s
i )∩〈

⋃
b∈Bi

({(u, pb) :(u, b)∈Ri}∪{((e, c)b, v) :c∈C, e∈exit τi(b),

((b, e), v)∈Ri}∪R(Hb))∪Ri〉, with R(Hb) being the set of transitions of Hb.
– Γ s

i (s) = Γ (s) for s ∈ Wi for which Γ (s) is defined; for every b ∈ Bi and every
(e, c) ∈ exitτi(b) × C we have Γ s

i ((e, c)b) = c; otherwise, Γ s
i (s) is undefined.
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We now briefly describe the operation loop. Given a summary function g over a
sub-arena Vi, the operation loop(g,Vs

i ) constructs a simple arena Vs
i,g such that

Player 0 wins the associated simple parity game Gs
i,g = (Vs

i,g, Γ
s
i,g) iff g is relevant.

To build Vs
i,g from Vs

i , we add, for every exit node e ∈ exit i, a new Player 0 node
(e, 0) which is colored by g(e) + 1 if g(e) is odd, is colored by g(e) − 1 if g(e) is
even, and is uncolored if g(e) =�. Also, if g(e) �=�, we add the edges (e, (e, 0)),
and ((e, 0), in i). Finally, we designate all states of Vs

i,g as non-exits. Note that the
operations loop and simplify commute. By first adding the above states and loops
to Vi, and then simplifying, the reader may find it easier to see why g is relevant
iff Player 0 wins Gs

i,g.
Observe that the definition of a summary function of a strategy can also be ap-

plied to Player 0 strategies over Vs
i . Since Vi has the same exit nodes as Vs

i , then
the sets of summary functions over Vi and Vs

i coincide, and we can compare strat-
egy functions over Vi with ones over Vs

i using the relation�. Given a strategy ξ of
Player 0 for Vi, we say that a strategy ξ′, of Player 0 for Vs

i , is as good as ξ, when:
(i) if ξ is a winning strategy then so is ξ′; and (ii) if ξ is not a losing strategy then
so is ξ′, and gξ′ � gξ. We define strategies over Vi that are as good as strategies
over Vs

i in a symmetric way.

Lemma 1. For every 1 ≤ i ≤ n, and every memoryless strategy ξ of Player 0 for
Vi, there is a memoryless strategy ξ′ for Vs

i that is as good as ξ; and viceversa.

By applying Lemma 1 to the arenas V1 and Vs
1, we obtain the following result:

Theorem 2. Given a hierarchical parity game G = (V , Γ ), Player 0 wins the game
iff he wins the simple parity game Gs

1,ε = (Vs
1,ε, Γ

s
1,ε).

Analyzing the time and space requirements of the above algorithm for solving hi-
erarchical parity games, we get the following.

Theorem 3. Let G = (V , Γ ) be a hierarchical parity game with k colors, m =
|V| and e = exits(V). Solving G can be done in time 2k·log m+O(k·e·log k), and it is
Pspace-complete.

We conclude this section with a theorem that specifies the model-checking com-
plexity for various branching-time temporal logics. Given a hierarchical system
K and a branching-time temporal logic formula ϕ, the time complexity of model
checkingK with respect to ϕ follows by applying our algorithm for solving hierar-
chical parity games to the game GK,Aϕ = (V , Γ ), where Aϕ is an APT accepting
exactly the set of trees satisfying the formula ϕ. In particular, we recall that if ϕ
is a Ctl or an alternation-free μ-calculus formula, then Aϕ has O(|ϕ|) states and
index 2, if ϕ is a Ctl∗ formula, then Aϕ has 2O(|ϕ|) states and index 3, and if ϕ
is a μ-calculus formula, then Aϕ has O(|ϕ|) states and index O(|ϕ|) [15]. Let h be
the number of states ofAϕ, observe that |V| = |K| ·h, exits(V) = exits(K) ·h and
the number of sub-arenas of V is h times the number of sub-structures of K. As
we show in Theorem 3 our algorithm for solving hierarchical parity games can be
implemented in polynomial space, which gives an alternative proof of the Pspace
upper bound for the hierarchical μ-calculus model checking given in [12]. For the
other logics, a Pspace upper bound follows by simply flattening the system and
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applying the nlogspace algorithm from [15]. The Pspace lower-bound for all
these logics follows from the known result about Ctl [5]. Note that for the logic
Ctl, the time complexity of the model-checking problem was already known and
our algorithm suggests an alternative to the one in [5]. For the other logics, our
approach leads to improved time complexities. It is interesting to note that for all
branching-time temporal logics we consider, the hierarchical setting is easier than
the recursive one.

Theorem 4. Consider a hierarcical system K and a specification ϕ for it. Let e be
the number of exits of the system, and l be the alternation depth of ϕ.

– For the μ-calculus, the model checking problem is PSPACE-complete and can
be solved in time (|K| · |ϕ|)l · 2O(|ϕ|)·e·l·log l.

– For Ctl and the alternation-free μ-calculus, the model-checking problem is
PSPACE-complete and can be solved in time 2(2 log |K|+O(|ϕ|)·e).

– For Ctl∗, the model-checking problem is PSPACE-complete and can be solved
in time 2(3 log |K|+2O(|ϕ|)·e).

5 An Abstraction-Refinement Paradigm

In [22], Shoham and Grumberg defined 3-valued games and used them to describe
an abstraction-refinement framework for CTL. In this section, we lift their con-
tribution to hierarchical systems. As we show, the idea of summary functions can
be applied also for solving hierarchical 3-valued games. Due to the lack of space,
we describe here in detail the new notions of hierarchical 3-valued games and ab-
stractions, and give only the idea behind the algorithm. In fact, once the notions
are defined, then combining the algorithm in Section 4 for the concrete hierarchi-
cal setting, and the game-based approach to abstraction-refinement for the flat
setting [22], into a game-based approach to abstraction-refinement of hierarchi-
cal systems, is not technically difficult. Essentially, the idea is as follows. In a 2-
valued game, the goal of a player is to win. In a 3-valued game, the goal of a player
is to win or (in case he cannot win) not to lose (that is, force the game to an
“unknown” winning value). Accordingly, the lifting of algorithm in Section 4 to
the 3-valued setting is based on adding a layer to the gadgets Hi described there;
a layer in which Player 0 chooses between winning and not losing.

As in the flat setting, abstraction is based on merging sets of states of the con-
crete system into abstract states. What makes the hierarchical setting interesting
is the fact that now it is possible to merge also boxes. Consider a (concrete) hi-
erarchical structure. A sub-structure typically stands for a function, and a call
to a function g from within another function f is modeled by a box inside the
sub-structure modeling f that refers to the sub-structure modeling g. The val-
ues of the local variables of f are typically different in different calls to g. Thus,
the source of complexity is not the number of sub-structures, but rather the num-
ber of states and boxes in each sub-structure. Accordingly, our abstraction does
not try to merge sub-systems and contains one abstract sub-system for each con-
crete sub-system. Our abstraction does merge sets of concrete states into a single
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abstract state and sets of concrete boxes (referring to the same structures) into a
single abstract box.

A hierarchical 3-valued game is similar to a hierarchical game, only that there
are two transition relations Rmusti and Rmay i, referred to as the must and may
transitions. The transitions are defined as Ri in a hierarchical game and satisfy
Rmusti ⊆ Rmayi. A hierarchical modal transition system (HMTS) over AP is
then similar to a hierarchical system, only that, again, there are both must and
may transitions, and the labeling function σi : Wi×AP → {tt ,ff ,⊥} can map an
atomic proposition also to ⊥ (unknown). Note that, equivalently, we could have
defined HMTS by adding hierarchy to the MTS of [17].

Given a (concrete) hierarchical system K = 〈K1,...,Kn〉, with Ki = 〈AP, Wi,
Bi, ini, exit i, τi,Ri, σi〉, an abstraction of K is an HMTS M = 〈MA

1 ,...,MA
n 〉,

where for every 1 ≤ i ≤ n, the sub-model MA
i = 〈AP, WA

i ,BA
i , inA

i , exitA
i , τA

i ,
Rmusti,Rmayi, σ

A
i 〉 of M is an abstraction of the sub-structure Ki, defined as

follows. The set of abstract states is WA
i ⊆ 2Wi , and it forms a partition of Wi. The

set of abstract boxes is BA
i , it forms a partition of Bi, and an abstract box contains

only concrete boxes that refer to the same sub-structure. Thus, if b, b′ ∈ ba ∈ BA
i ,

then τi(b) = τi(b′). The latter guarantees that the indexing function τA
i : BA

i →
{i+1,..., n}, defined by τA

i (ba) = τi(b), for some b ∈ ba, is well defined. The initial
state inA

i is such that ini ∈ inA
i . The set of abstract exits exitA

i ⊆ WA
i is such that

ea ∈ exitA
i iff ea ∩ exiti �= ∅. Thus, the abstract initial state contains the concrete

initial state, and an abstract exit contains at least one concrete exit. The transition
relationsRmay i and Rmust i are subsets of (

⋃
b∈BA

i
({b}×exitτA

i (b))∪WA
i )×(WA

i ∪
BA

i ), and are over- and under-approximations of the concrete transitions. Given
wa = (ba, ea) ∈

⋃
ba∈BA

i
({ba} × exitτA

i (ba)), we write wc ∈ wa if wc = (bc, ec),

bc ∈ ba, and ec ∈ ea. Using the above notation, we have that (wa, wa′
) ∈ Rmayi if

there exist wc ∈ wa and w′
c ∈ wa′

such that (wc, w
′
c) ∈ Ri; and (wa, wa′

) ∈ Rmusti

only if for all wc ∈ wa there exists w′
c ∈ wa′

such that (wc, w
′
c) ∈ Ri. Finally, an

atomic proposition holds (does not hold) in an abstract state if it holds (does not
hold) in all the concrete states in it; otherwise, its truth value is undefined.

As shown for hierarchical systems, an HMTS M can be translated to a flat
modal transition system (MTS)Mf by means of the flattening operation (since we
only consider abstractions in which all the concrete boxes in an abstract box refer
to the same structure, the flattening described for concrete systems can indeed be
applied). The semantics of a temporal logic formula ϕ overM is thus simply de-
fined to be the semantics of ϕ overMf . For the latter, we use the 3-valued seman-
tics introduced in [14]. The idea is that since may transitions over-approximate
concrete transitions, they are used to verify universal formulas or to refute exis-
tential formulas. Dually, since must transitions under-approximate concrete tran-
sitions, they are used to verify existential formulas or to refute universal formulas.
We use [MA |= ϕ] to denote the truth value (in {tt ,ff ,⊥}) of ϕ in MA. Apply-
ing the same considerations applied to MTSs [11], it is not hard to see that if an
HMTSMA abstracts a hierarchical structure K, then [MA |= ϕ] = tt(ff ) implies
that K |= ϕ (resp. K �|= ϕ).
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Given an HMTS M, and a Ctl formula ϕ, we reduce the problem of deciding
the value of [MA |= ϕ], to solving a 3-valued game GM,Aϕ obtained by taking
the product of M with the weak alternating tree automaton Aϕ. The reason we
restrict attention to Ctl formulas is that taking the product of an HMTS with a
weak automaton that corresponds to a Ctl formula, there is a distinction between
information lost inM due to atomic propositions whose value is unknown and in-
formation lost due to may and must transitions. Indeed, the states of the weak
automaton are associated with either atomic propositions (in which case only the
first type of missed information should be taken into an account) or with a sub-
formula of the form AX or EX (where only the second type should be taken into
an account). Furthermore, in the second case, the game is in either a universal
(AX) or existential (EX) mode, so players can proceed along the must and may
transitions in their attempt to prove or refute ϕ.

Now, as in [22], both players try to either prove or refute ϕ, and winning strate-
gies must be consistent: all transitions taken during a play are must transitions
(note that the consistency requirement applies only to winning strategies; the op-
ponent can take also may transitions). Also, a winning strategy cannot end in a
state associated with an atomic proposition whose value is unknown. It may be
that none of the players have a winning strategy, in which case the value of the
game is ⊥. As described in Section 3 for concrete systems, the hierarchy in the
system induces the hierarchy in the product game.

Theorem 5. Given an HMTSM and a Ctl formula ϕ, let GM,Aϕ be the product
ofM with Aϕ. Then: (i) Player 0 has a winning strategy in GM,Aϕ iff [M |= ϕ] =
tt. (ii) Player 1 has a winning strategy in GM,Aϕ iff [M |= ϕ] = ff . (iii) None of
the players have a winning strategy in GM,Aϕ iff [M |= ϕ] = ⊥.

It is left to solve the 3-valued game GM,Aϕ . We do this by adjusting the algorithm
described in Section 4 to the 3-valued setting. Recall that while a winning strat-
egy in the 3-valued game has to proceed only along must transitions, the strat-
egy of the opponent may proceed also along may transitions. Consider a strategy
ξ of Player 0 for an abstract sub-arena Vi. In order to fully capture the possible
responses of Player 1 to ξ, we have to associate with ξ two summary functions:
gmust

ξ and gmay
ξ . The function gmust

ξ captures the possible responses of Player 1 if
it only uses must transitions (i.e., it tries to win), while gmay

ξ captures the possi-
ble responses of Player 1 if it uses may transitions (i.e., it tries not to lose). Ac-
cordingly, the gadget Hj constructed by the algorithm consists of a 4-level DAG
(rather than a 3-level DAG in the concrete setting), where the additional level
serves to let the player choose between trying to win and trying not to lose. Once
we transform an hierarchical arena into a simple one by means of the gadgets,
we can continue to solve 3-valued games on these arenas as in [22].
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Abstract. Hybrid automata are well-studied formal models for dynamical sys-
tems. However, the analysis of hybrid automata is extremely difficult, and even
state-of-the-art tools can only analyze systems with few continuous variables and
simple dynamics. Because the reachability problem for general hybrid
automata is undecidable, we give a path-oriented reachability analysis proce-
dure for a class of nonlinear hybrid automata called convex hybrid automata.
Our approach encodes the reachability problem along a path of a convex hybrid
automaton as a convex feasibility problem, which can be efficiently solved by
off-the-shelf convex solvers, such as CVX. Our path-oriented reachability veri-
fication approach can be applied in the frameworks of bounded model checking
and counterexample-guided abstraction refinement with the goal of achieving sig-
nificant performance improvement for this subclass of hybrid automata.

1 Introduction

Hybrid automata [15] are widely used as the modeling language for hybrid systems –
dynamical systems with both discrete and continuous system variables. Due to the pres-
ence of continuous real-valued variables, model checking of hybrid automata is very
difficult. Despite many years of active research, there is still a complete lack of practi-
cal techniques to check the reachability problem of high dimensional hybrid automata
with relatively simple dynamics [1][11]. For nonlinear hybrid automata, the verifica-
tion of systems with five variables usually requires several hours of computation [18].
Even for the very simple class of linear hybrid automata, the reachability problem is
computationally intensive and the size of solvable problems is quite limited [11].

In our earlier study on linear hybrid automata [17], we have proposed a complemen-
tary approach to the polyhedra based model checking of linear hybrid automata. Our
approach is an efficient method that encodes the reachability problem along a path of a
linear hybrid automaton as the feasibility problem of a linear program. As linear pro-
gramming has polynomial complexity, both the length of the path being checked and the
size of the automaton can be large enough to tackle problems of practical interest. This
approach to symbolic execution of paths can be used by design engineers to check criti-
cal paths, thereby increasing the confidence in the correctness of the system. In [17][6],
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we have conducted a series of case studies to demonstrate the practical performance of
this approach.

Nevertheless, most industrial examples are nonlinear; therefore, nonlinear hybrid au-
tomata are the models of choice for industrial plants and controllers. The state-of-the-art
nonlinear model checkers such as CheckMate [5] and d/dt [9] use general polyhedral
over-approximations to compute the reachable states. To the best of our knowledge,
they can only handle systems with few continuous variables. In this paper, we extend
the method in [17] to develop an efficient method for solving the path-oriented reacha-
bility problem for a class of nonlinear hybrid automata. With the method presented in
this paper, we can check the correctness of a given path in a hybrid automaton, where
the paths being checked can be quite long and both the dimension and the number of
locations of the automaton can be large enough to handle problems of practical interest.
Our proposed method is meant to analyze a special class of nonlinear hybrid automata
called convex hybrid automata (CHA). A hybrid automaton is said to be a convex hybrid
automaton if each flow (sequence of states) in such an automaton is inside a convex set.
In this paper, we encode the path-oriented reachability problem of a CHA as the feasi-
bility problem of a convex program. We also present several case studies to show the
performance of this method when applied to systems of high dimensions.

This paper is organized as follows. In the next section, we define the convex hy-
brid automata and the path-oriented reachability discussed in this paper. In Sec. 3, we
present a semi-decision procedure to transform a path-oriented reachability specifica-
tion of a CHA into a convex program. If the convex program is not feasible, we can
prove the path-oriented reachability specification is not satisfied. In Sec.4, we extend
our semi-decision procedure such that this procedure can give exact answer for two
special classes of CHA when the reacability specification is satisfiable. Sec. 5 describes
several case studies to show the practical performance of our method with respect to
both the length of the paths and the dimension of the systems being analyzed. Sec. 6
describes several potential future applications of the approach presented in this paper.

2 Convex Hybrid Automata

We introduce the notion of convex hybrid automata and discuss the notations needed to
study the path-oriented reachability of such systems.

2.1 Definition of Convex Hybrid Automata

The set of hybrid automata considered in this paper is a special class of general non-
linear hybrid automata where the state space of each location is a convex set. In order
to meet the convexity requirement, we take advantage of the idea of disciplined convex
programming [13]. In disciplined convex programming, all the convex constraints of a
convex program should fall into one of the two kinds below1:

– Equality (=) constraints: Both the left-hand and right-hand side of a constraint are
affine linear functions of the optimization variables, for example 2x + 5z = 3y + 7.

1 We refer the reader to the book [4] for a detailed discussion on convex programming.
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– Less-than (≤, <) inequality constraints: The left-hand expression is convex and the
right-hand expression is concave, for example 6y4 + 7z6 − 3 ≤ −5x2.

Borrowing this idea from disciplined convex programming, we add conservative re-
strictions to the definition of a hybrid automaton and refer to the resulting automaton
as a Convex Hybrid Automaton. Without loss of generality, the convex hybrid automata
considered in this paper will have just one initial location with no initial conditions or
transitions to the initial location, and each variable is reset to an initial convex set by
the transitions from the initial location.

Definition 1. A convex hybrid automaton is a tuple H = (X,V, E, vI, α, β), where

– X is a finite set of real-valued variables.
– V is a finite set of locations.
– E is the transition relation whose elements are of the form (v, φ, ψ, v′), where
• v, v′ ∈ V ,
• φ is a set of transition guards of the form:
∗ f (x) ≤ 0 where f is a convex function, or
∗ f (x) = 0 where f is an affine linear function,

• ψ is a set of reset actions of the form xi := ci where xi ∈ X (0 ≤ i ≤ m) and
ci ∈ R.

– vI is the initial location.
– α is a labeling function which maps each location in V − {vI} to a location invariant

which is a set of constraints of the form:
• f (x) ≤ 0 where f is a convex function, or
• f (x) = 0 where f is an affine linear function.

– β is a labeling function which maps each location in V − {vI} to a set of flow con-
ditions which is of the form: ẋi ∈ [ki(t), li(t)] where dki/dt ≥ 0 and dli/dt ≤ 0,
ki : R → R , li : R → R. ki(t) and li(t) are continuously differentiable over R; at
most one of ki(t) and li(t) may be −∞ (or∞).
For any location v and any xi ∈ X, there is one and only one definition of the flow
condition. 
�

Definition 2. Given a convex hybrid automaton H = (X,V, E, vI, α, β), a state s of H is
a pair (v, q) such that

– v ∈ V
– q = (x1q , x2q . . . xnq ) is a valuation of all the continuous variables in X, such that q

satisfies the location invariant αv of v .

The state space S of location vi is a (possibly infinite) set of states {(v, q) | v = vi}. 
�

2.2 Path and Path-Oriented Reachability

We use sequence of locations to represent the evolution of a convex hybrid automaton
from one location to another. For a convex hybrid automaton H = (X,V, E, vI, α, β) , a
path segment is a sequence of locations of the form
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v1
(φ1, ψ1)−→ v2

(φ2, ψ2)−→ . . .
(φn−1, ψn−1)−→ vn

which satisfies (vi, φi, ψi, vi+1) ∈ E for each i (1 ≤ i ≤ n − 1). A path in H is a path
segment starting at vI .

The behavior of a path vI
(φ0,ψ0)−→ v1

(φ1,ψ1)−→ v2
(φ2,ψ2)−→ . . .

(φn−1,ψn−1)−→ vn can be represented
by a timed sequence. A timed sequence is a sequence of the form (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn,
tn) where vi (1 ≤ i ≤ n) is a location and ti (1 ≤ i ≤ n) is a nonnegative real number.
Such a timed sequence represents the execution of a path where the system starts at
the initial location and jumps to location v1, stays there for t1 time units, then jumps to
location v2 and stays at v2 for t2 time units, and so on2.

Definition 3. For a convex hybrid automaton H = (X,V, E, vI, α, β), a path p = vI
(φ0,ψ0)−→

v1
(φ1,ψ1)−→ v2

(φ2,ψ2)−→ . . .
(φn−1,ψn−1)−→ vn in H, a timed sequence (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn)

represents a behavior corresponding to p in H if and only if the following conditions
are satisfied:

1. There exists a valuation γi(x) (1 ≤ i ≤ n) of all the state variables x when the
automaton has stayed at location vi for ti time units,such that
(a) γi(x) satisfies all the transition guards in φi , and
(b) γi(x) satisfies all the location invariants in αvi .

2. There exists a valuation δi(x) (1 ≤ i ≤ n) of all the state variables x at the time
when the automaton jumped from location vi−1 to location vi, such that
(a) δi(x) satisfies all the reset actions in ψi−1 when applied to the valuation γi−1(x),
(b) δi(x) satisfies all the location invariants in αvi .

3. There exists a differentiable function Wj : [0, ti] → R for each variable x j ∈ X(1 ≤
i ≤ n, 1 ≤ j ≤ m), with the first derivative wj : [0, ti]→ R, such that
(a) W j(0) = δi(x j) and W j(ti) = γi(x j)
(b) for all reals ε ∈ [0, ti]

i. W j(ε) satisfies all the location invariants in αi,
ii. wj(ε) ∈ [k j, l j] ∈ βvi

A path p of a hybrid automaton H is feasible if and only if there is a timed sequence ρ
which corresponds to a behavior of p in H. 
�
For a convex hybrid automaton H, a reachability specification consists of a location v
in H and a set ϕ of convex constraints, denoted by R(v, ϕ), as defined below.

Definition 4. For a CHA H = (X, Σ,V, E,VI, α, β), a reachability specification, denoted
by R(v, ϕ), consists of

– a location v in H, and
– a set ϕ of variable constraints of the form
• f (x) ≤ 0 where f is a convex function, or
• f (x) = 0 where f is an affine linear function. 
�

2 Since the initial location vI fires a transition immediately, the time spent at vI is 0.
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In this paper, we are concerned with the problem of checking whether a path in H
satisfies a given reachability specification. The formal definition is presented below.

Definition 5. Let H = (X,V, E, vI, α, β) be a convex hybrid automaton, and R(v, ϕ) be

a reachability specification. A path ρ in H of the form vI
(φ0,ψ0)−→ v1

(φ1,ψ1)−→ . . .
(φn−1 ,ψn−1)−→ vn

satisfies R(v, ϕ) if and only if there exists a behavior of H of the form (v1, t1)ˆ(v2, t2)ˆ . . .
ˆ(vn, tn) such that:

1. vn = v, and
2. any variable constraint in ϕ is satisfied when the automaton stays at vn with the

delay tn, i.e. for each variable constraint f (x) ≥ 0, f (γn(x)) ≥ 0 where γn(x) is a
valuation of all the state variables x at the time when the automaton has stayed at
vn for tn time units. 
�

Above all, given a path ρ in CHA H and a reachability specification R(v, ϕ), ρ satisfies
R(v, ϕ) if and only if there exists a timed sequence (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn) which
satisfy all the conditions in Def.3 and Def.5.

3 Semi-decision Procedure for Path-Oriented Reachability
Verification

Given a path ρ in a convex hybrid automaton H and a reachability specification R(v, ϕ),
if there is a timed sequence corresponding to ρ in H which satisfies all the conditions in
Def.3 and Def.5, then we say the path ρ satisfies R(v, ϕ).

3.1 Convex Encoding

In this section, we present our method to encode the conditions in Def. 3 (except 3(b))
and Def.5 into numerical constraints, and suggest the use of convex programming to
solve these constraints. By using this method, we can prove the path does not satisfy
the reachability specification when the convex program is not feasible.

Theorem 1. For a convex hybrid automaton H = (X,V, E, vI, α, β) where X = {x1, x2,

. . . , xm}, and R(v, ϕ) be a reachability specification, given a path ρ = vI
(φ0 ,ψ0)−→ v1

(φ1,ψ1)−→
v2

(φ2,ψ2)−→ . . .
(φn−1,ψn−1)−→ vn where vn = v, ρ does not satisfy R(v, ϕ) if there does not exist a

group of real numbers ti (1 ≤ i ≤ n) which satisfy the following conditions:

– t1, t2, . . . , tn compose a timed sequence of L(R) : (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn).
– there exists a set of real numbers γi(x) and δi(x) (1 ≤ i ≤ n) where γi(xq) (0 ≤ q ≤

m) denotes the value of variable xq when the automaton has stayed at vi for ti time
units. If ẋq(t) ∈ [kq(t), lq(t)] ∈ βi in location vi (1 ≤ i ≤ n), then

γi(xq) − δi(xq) ≥ ∫ ti
0

kq(t)dt, γi(xq) − δi(xq) ≤ ∫ ti
0

lq(t)dt

where δi(xq) denotes the value of variable xq at the time when the automaton
jumped to vi. If there is reset action xq := b in ψi−1, then δi(xq) = b otherwise
δi(xq) = γi−1(xq).
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– t1, t2, . . . , tn satisfy all the transition guards in φi (1 ≤ i ≤ n − 1), i.e. for each
transition guard f (x) ≤ 0 or f (x) = 0 in φi, we have

f (γi(x)) ≤ 0 or f (γi(x)) = 0

– t1, t2, . . . , tn satisfy the location invariant for each location vi (1 ≤ i ≤ n), i.e.
for each location invariant f (x) ≤ 0 in αi, we have

f (γi(x)) ≤ 0 and f (δi(x)) ≤ 0

– t1, t2, . . . , tn satisfy all the constraints in reachability specification ϕ, i.e. for each
constraint f (x) ≤ 0 or f (x) = 0 in ϕ, we have

f (γn(x)) ≤ 0 or f (γn(x)) = 0.

Proof. A discretized sequence of states, of the form (v1, δ1(x))ˆ(v1, γ1(x))ˆ (v2, δ2(x))
ˆ(v2, γ2(x)) ˆ . . . ˆ(vn, δn(x))ˆ(vn, γn(x)), is restricted by all the conditions in this theorem,
where δi(xq) represents the value of variable xq at the time when the automaton jumped
to vi, γi(xq) represents the value of variable xq when the automaton has stayed at vi for
time ti. This discretized sequence of states satisfy all the conditions in Def.5 and the
conditions 1(a), 1(b), 2(a), 2(b) and 3(a) in Def. 3.

Clearly if there does not exist a group of real numbers ti (1 ≤ i ≤ n) which satisfies
all the conditions in Def. 3, then the timed sequence (v1, t1)ˆ(v2, t2)ˆ . . . ˆ (vn, tn) can not
be a behavior of CHA H definitely, thus, it cannot satisfy R(v, ϕ). On the other hand, if
the group of real numbers ti (1 ≤ i ≤ n) do not satisfy the conditions in Def.5 then the
timed sequence (v1, t1)ˆ(v2, t2)ˆ . . . ˆ (vn, tn) does not satisfy the reachability specification
neither. 
�
Corollary 1. The set of constraints given in Theorem 1 forms a convex set.

Proof. From Theorem 1, the reachability analysis of a path can be encoded to the feasi-
bility problem of a conjunction of numerical constraints which are in the following four
forms:

1. f (γi(x)) ≤ 0
2. f (γi(x)) = 0
3. γi(xq) − δi(xq) ≥ ∫ ti

0
kq(t)dt

4. γi(xq) − δi(xq) ≤ ∫ ti
0

lq(t)dt

Constraints in form 1 and 2 come from transition guards, location invariants and reach-
ability specification. As shown in Def.1, all the constraints in transition guards, location
invariants and reachability specification are convex constraints, so all the constraints in
form 1 and 2 are convex constraints. Constraints in form 3 and 4 come from flow con-
ditions in each location. As dli/dt ≤ 0 and dki/dt ≥ 0,

∫ ti
0

li(t)dt is a concave function

and
∫ ti

0
ki(t)dt is a convex function. As γi(xq) − δi(xq) is an affine linear function, so

constraints in form 3 and 4 are all convex constraints as well. Thus, all the constraints
generated in Theorem 1 are all convex constraints. As intersection of convex sets is still
convex, the conjunction of these constraints form a convex set. 
�
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Table 1. Decision Procedure for Path-oriented Reachability Analysis of CHA Based on Convex
Programming

Verify (CHA H, Path ρ, Spec R(v, ϕ))

Process:
1. Encoding ρ and R(v, ϕ) to a group of convex constraints θ
2. Solving the feasibility of θ by CVX
3. If infeasible

return ρ does not satisfy R(v, ϕ)
4. Else

return do not know

Based on this corollary, we can change the path-oriented reachability analysis problem
into a convex feasibility problem, which can be determined by convex optimization
technique efficiently. If the convex program is infeasible, then the corresponding path
does not satisfy the given reachability specification. However, if the convex program
is feasible, we can not say the path satisfy the reachability specification accordingly.
Based on this argument, we give a semi-decision procedure for path-oriented reachabil-
ity analysis of CHA in Table 1.

3.2 Problem Size

Using Theorem 1, we can prove a path ρ = vI
(φ0, ψ0)−→ v1

(φ1, ψ1)−→ v2
(φ2, ψ2)−→ . . .

(φn−1 , ψn−1)−→ vn

does not satisfy a reachability specification R(v, ϕ) by proving the infeasibility of a
convex programΘ. The number of the variables and the constraints in the corresponding
convex program Θ can be calculated as follows:

– Variables
• For each location vi ∈ {V − vI} in the path segment, there is one variable ti in

the convex program, which measures the time spent in that location. Since the
initial location vI fires a transition immediately, the time spent at vI is 0.
• For each variable xk ∈ X, there are at most two variables, δi(xk) and γi(xk), in

the convex program for each location vi ∈ {V − vI} in the path segment, where
δi(xk) denotes the value of variable xk at the time when the automaton jumped
to vi, and γi(xk) denotes the value of variable xk when the automaton has stayed
at vi for time ti. If δi+1(xk) = γi(xk), which means there is no reset of xk in the
transition vi → vi+1, we do not need to generate a new variable δi+1(xk).

– Constraints
• For each variable ti, there is one constraint ti ≥ 0.
• For each variable xk ∈ X occurring in a flow condition of a location vi ∈ {V−vI}

in the path segment, there are at most two constraints in the convex program,
representing the relation between δi(xk) and γi(xk).
• For each constraint f (x) ≤ 0 in φi labeling a transition, there is one constraint

f (γi(x)) ≤ 0 in the convex program.
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• For each constraint f (x) ≤ 0 in a location invariantαi, there are two constraints,
f (γi(x)) ≤ 0 and f (δi(x)) ≤ 0 in the convex program.

• For each constraint f (x) ≤ 0 in ϕ of the reachability specification, there is one
constraint f (γi(x)) ≤ 0 in the convex program.

3.3 Illustration

We use a simple example to illustrate our technique. The automaton is shown in Fig.1. It
consists of three locations, s0, s1 and s2, where s0 is the initial location. The automaton
has two state variables x and y, with initial value x ≥ 2 and y ≥ 1. In location s1, the
flow condition of x is in the range of [t, 10 − 2t], and flow condition of y is in the range
of [t, 9 − 3t]. All other constraints are denoted in Fig.1. We want to check whether path
ρ = s0 → s1 → s2 satisfy reachability specification R(s2, y ≥ 5). Now we show how
we generate the convex program:

– generate variable t1 and constraint t1 ≥ 0 for location s1,
– generate variables x1in , x1out , y1in , and y1out , for the evaluations of the variables in

location s1,
– according to the reset actions on initial transition e0 : x ≥ 2 and y ≥ 1, generate

constraints x1in ≥ 2 and y1in ≥ 1,
– for the flow condition ẋ ∈ [t, 10−2t] in s1, get two constraints x1out−x1in−0.5t12 ≥ 0

and x1in + 10t1 − t2
1 − x1out ≥ 0,

– similarly, for the flow condition ẏ ∈ [t, 9 − 3t], obtain two constraints y1out − y1in −
0.5t12 ≥ 0 and y1in + 9t1 − 1.5t2

1 − y1out ≥ 0,
– for the location invariant x2 + y2 ≤ 9 in s1, generate two constraints : x2

1in
+ y2

1in
≤ 9

and x2
1out
+ y2

1out
≤ 9,

– for the transition guard 0 < x− y < 2 in e1, generate two constraints x1out − y1out < 2
and x1out − y1out > 0,

– for the location invariant x2+2x ≤ 3 in s2, generate one constraint : x2
1out
+2x1out ≤ 3,

– for the location invariant y ≥ 5 in reachability specification, generate one constraint
: y1out ≥ 5.

This is a simple illustration of how our technique can be used and it produces a convex
programming problem with 12 constraints and 5 variables, it took a convex program-
ming solver CVX [12] only 0.6 seconds to prove that this path is infeasible.

Thanks to the revolutions in computing during the past decade, researchers have
recognized that interior-point methods, which were originally developed in the 1980s to
solve linear programming problems, can be used to solve convex optimization problems

Fig. 1. Illustration Example
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as well. Such interior-point methods allow convex problems to be solved both reliably
and efficiently [4]. Utilizing the research on efficient solution of convex programs, we
can develop an efficient tool to check one path of a convex hybrid automaton at a time,
where the length of the path and the size of the automaton can both get closer to the
practical problem sizes.

4 Extended Decision Procedure for Path-Oriented Reachability
Verification

In the previous section, we give a semi-decision procedure to answer the reachability
of a specification along a given path in a convex hybrid automaton. In that procedure,
we give a convex encoding technique which transform the path and specification to a
set of convex constraints. By determining the feasibility of the set of constraints, the
specification can be proved to be unsatisfiable if the constraint set is infeasible. But in
the other direction we cannot say the specification is satisfiable if the constraint set is
feasible. Because all the constraints given in Theorem 1 do not concern the condition
3(b) given in Def.3.

In this section, we will extend our decision procedure by presenting two special
classes of CHA, in which our analysis technique can also give an exact answer when
the given specification is satisfiable.

4.1 Linear Flow Convex Hybrid Automata

In this subsection, we present a subclass of convex hybrid automata: linear flow con-
vex hybrid automata (LF-CHA). The difference between LF-CHA and general CHA is
that all the flow conditions of LF-CHA are linear, namely, the flow condition for each
variable in LF-CHA is in the form of ẋi ∈ [ai, bi], where ai, bi ∈ R.

Theorem 2. For a linear flow convex hybrid automaton H = (X,V, E, vI, α, β) where
X = {x1, x2, . . . , xm}, and R(v, ϕ) be a reachability specification, given a path ρ =

vI
(φ0,ψ0)−→ v1

(φ1,ψ1)−→ v2
(φ2,ψ2)−→ . . .

(φn−1,ψn−1)−→ vn where vn = v, ρ satisfies R(v, ϕ) if and
only if all the conditions given in Theorem 1 are satisfied.

Proof. (If) Similar to the proof of Theorem 1, a discretized sequence of states, of the
form (v1, δ1(x))ˆ(v1, γ1(x))ˆ (v2, δ2(x)) ˆ(v2, γ2(x)) ˆ . . . ˆ(vn, δn(x))ˆ(vn, γn(x)), is
restricted by Theorem 1, where δi(xq) represents the value of variable xq at the time
the automaton has just jumped to vi, γi(xq) represents the value of variable xq when the
automaton has stayed at vi for time ti. This discretized sequence of states satisfy all the
conditions in Def.5 and the conditions 1(a), 1(b), 2(a), 2(b) and 3(a) in Def. 3.

Now we prove this discretized sequence of states also satisfy the conditions 3(b)
of Def. 3. From corollary 1, δi(x) and γi(x) are in a convex set. According to convex
theory, if (vi, δi(x)) and (vi, γi(x)) both are in a convex set, then we can connect these
two states by a straight line π, and all the points on π are in the convex set. Since this
convex set is constrained by all the location invariants in αvi , all the states on π satisfy
all the location invariants in αvi as well.(condition 3(b)i in Def. 3).
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Furthermore, for any xq (1 ≤ q ≤ m), we can get the projection πq of π on surface
xi, t. The slope of πq is (δi(xq) − γi(xq))/ti. According to Theorem 1, γi(xq) − δi(xq) ≥∫ ti
0

kq(t)dt, γi(xq)− δi(xq) ≤ ∫ ti
0

lq(t)dt where kq(t) = aq and lq(t) = bq, so tibq ≤ γi(xq)−
δi(xq) ≥ tiaq → ((δi(xq)−γi(xq))/ti ∈ [aq, bq]. Thus, all the points on πq satisfy the flow
condition of xq ∈ [aq, bq] (condition 3(b)ii in Def. 3).

Above all, the discretized sequence of states (v1, δ1(x)) ˆ(v1, γ1(x)) ˆ (v2, δ2(x)) ˆ(v2,
γ2(x)) ˆ . . . ˆ(vn, δn(x))ˆ(vn, γn(x)) satisfy all the conditions in Def. 3 and Def. 5, which
makes (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn) represents a behavior of R = v1ˆv2ˆ . . . ˆvn and satisfies
R(v, ϕ).

(Only If) This part of the proof follows from the definition of the behavior (Def. 3)
corresponding to a path in the hybrid automaton. 
�

4.2 Monotonic Invariant Convex Hybrid Automata

In this subsection, we present another subclass of convex hybrid automata: monotonic
invariant convex hybrid automata (MI-CHA). The difference between MI-CHA and
general CHA is that all the invariants in MI-CHA are in the form of f (x) ≤ 0, where the
value of f (x) is monotonic over time t. Similarly to linear flow convex hybrid automata,
we can use the conditions given in Theorem 1 to give the exact answer about whether a
path in a MI-CHA is feasible or not.

Theorem 3. For a monotonic invariant convex hybrid automaton H = (X,V, E, vI, α, β)
where X = {x1, x2, . . . , xm}, and R(v, ϕ) be a reachability specification, given a path

ρ = vI
(φ0,ψ0)−→ v1

(φ1,ψ1)−→ v2
(φ2,ψ2)−→ . . .

(φn−1 ,ψn−1)−→ vn where vn = v, ρ satisfies R(v, ϕ) if and
only if all the conditions given in Theorem 1 are satisfied.

Proof. (If) Similar to the proof of Theorem 1, a discretized sequence of states, of the form
(v1, δ1(x))ˆ(v1, γ1(x))ˆ (v2, δ2(x)) ˆ(v2, γ2(x)) ˆ . . . ˆ(vn, δn(x))ˆ(vn, γn(x)), is restricted by
Theorem 1, where δi(xq) represents the value of variable xq at the time the automaton
has just jumped to vi, γi(xq) represents the value of variable xq when the automaton has
stayed at vi for time ti. This discretized sequence of states satisfy all the conditions in
Def.5 and the conditions 1(a), 1(b), 2(a), 2(b) and 3(a) in Def. 3.

Now we prove this discretized sequence of states also satisfy the conditions 3(b) of
Def. 3. First, as γi(xq) − δi(xq) ≥ ∫ ti

0
kq(t)dt, γi(xq) − δi(xq) ≤ ∫ ti

0
lq(t)dt, there must be

a flow function Wq : [0, ti] → R for each variable xq ∈ X(1 ≤ q ≤ m), with the first
derivative wq : [0, ti] → R, such that Wq(0) = δi(xq), Wq(ti) = γi(xq) and for all reals
ε ∈ [0, ti] wq ∈ [kq, lq] (condition 3(b)ii in Def. 3).

As δi(x) and γi(x) both satisfy all the location invariants f (x) ≤ 0 in αi, and f (x)
is monotonic over time t, all the points on flow W(t) between δi(x) and γi(x) satisfy
f (x) ≤ 0 (condition 3(b)i in Def. 3).

Above all, the discretized sequence of states (v1, δ1(x))ˆ(v1, γ1(x))ˆ (v2, δ2(x)) ˆ(v2,
γ2(x)) ˆ . . . ˆ(vn, δn(x))ˆ(vn, γn(x)) satisfy all the conditions in Def. 3 and Def. 5, which
makes (v1, t1)ˆ(v2, t2)ˆ . . . ˆ(vn, tn) represents a behavior of R = v1ˆv2ˆ . . . ˆvn and satisfies
R(v, ϕ).

(Only If) This part of the proof follows from the definition of the behavior (Def. 3)
corresponding to a path in the hybrid automaton. 
�
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4.3 Extended Decision Procedure

Based on above discussion, we extend the semi-decision procedure for the path-oriented
reachability analysis of CHA to a general framework. In this framework, we encode a
path and a reachability specification into a set of convex constraints, which feasibility
can be determined by convex programming technique efficiently. If the constraint set
is infeasible, the specification is unreachable correspondingly. If the constraint set is
feasible, we can also give an exact prove of the reachability of the specification when the
given automaton falls into these two special classes of CHA:LF-CHA and MI-CHA3.
The extended decision procedure is given in Table 2.

Table 2. Extended Decision Procedure for Path-oriented Reachability Analysis of CHA Based
on Convex Programming

Verify (CHA H, Path ρ, Spec R(v, ϕ))

Process:
1. Encoding ρ and R(v, ϕ) to a group of convex constraints θ
2. Solving the feasibility of θ by CVX
3. If infeasible

return ρ does not satisfy R(v, ϕ)
4. Else

If H is a LF-CHA
return ρ satisfies R(v, ϕ)

If H is a MI-CHA
return ρ satisfies R(v, ϕ)

Else
return do not know

In the future, we will keep on identifying more subclasses of CHA, in which we
can use the conditions given in Theorem 1 to give the exact answer about whether a
path satisfies a given reachability specification, so that our algorithm can be extended
accordingly.

5 Case Studies

Based on the technique presented in this paper, we conducted several experiments for
the path-oriented reachability analysis of convex hybrid automata. The convex program-
ming software package we use is CVX, a free package for specifying and solving con-
vex programs [12].on a DELL workstation (Intel Core2 Quad CPU 2.4GHz /4GB
RAM, Ubuntu 8.04.2, Matlab 7.4.0, CVX 1.2), we evaluated the potential of the tech-
nique presented in this paper by several case studies, which we now discuss in detail.

3 The decision of whether a CHA is LF-CHA or MI-CHA can be done easily, which will not be
described in detail here.
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Fig. 2. 3D Shuttle Simulation

3D Shuttle Simulation. 3D shuttle simulation is an extension of the billiard game in [1].
This is a closed room (with three axes x, y and z) in which a shuttle is traveling. Each
time the shuttle reaches a surface of the room, (for example, the surface yz perpendicular
to the x axis), it will stop and then keep travelling with a new direction rebounding along
the axis that is perpendicular to the striking surface but keeping the velocity in the other
two axes (y and z) intact. The hybrid automaton for this example is shown in Fig. 2. It
is easy to prove that this automaton is a MI-CHA.

The experimental result is shown in Table 3. All the columns are described as fol-
lows: “length” and “dimension” stand for the size of the path and automaton that we
are checking, “constraints” and “variables” give the size of the convex program which
describes the path, “preprocess” and “solve” give reports of the time the solver spent on
preprocessing of the constraint set and solving of the problem.

The path4 we choose to check is s0ˆ (s1ˆ s2ˆ s3ˆ s4ˆ s5ˆ s6ˆ s7ˆ s8)k. It is a trajectory
which touches all the surfaces of the room k times. When k is set to 30, CVX spent 1

4 For succinctly, in this section, we represent a path segment p= v1
(φ1,ψ1)−→ v2

(φ2 ,ψ2)−→ . . .
(φn−1 ,ψn−1)−→ vn

in H as a concise form v1ˆv2ˆ . . . ˆvn.
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Table 3. Experimental results on the 3D Shuttle Simulation

Path: s0ˆ(s1ˆs2ˆs3ˆs4ˆs5ˆs6ˆs7ˆs8)k

k length dimension constraints variables preprocess solve
30 241 3 2403 963 1m 5.7s
50 401 3 4003 1603 2m 10.2s
80 641 3 6403 2563 4m 18.3s
130 1041 3 10403 4163 7m 30.4s
140 1131 3 11203 4483 8m N/A

Table 4. Experimental results on the Vehicle Sequence Example

Path: Initial ˆ Cruise ˆ Rec 1 2 ˆ Cruise ˆ . . . ˆ Rec n-1 n ˆ Error
n length dimension constraints variables preprocess solve

20 40 40 5091 1598 2m 5.4s
30 60 60 11541 3598 5m 23.7s
40 80 80 20581 6398 15m 59.4s
45 90 90 26091 8098 20m 71.2s
50 100 100 32241 9998 29m N/A

minute in preprocessing all the constraints, which include determining the convexity of
each constraint and converting each constraint to the form that is compatible with the
underlying solver, then 5.7 seconds to solve the problem, and the path is proved to be
feasible. When k is set to 200, CVX spent nearly 60 minutes for the convexity judg-
ment, then the underlying solver ran out of memory. For the largest problem we solve,
we traversed the loop (s1ˆs2ˆs3ˆs4ˆs5ˆs6ˆs7ˆs8) 130 times, which is a path with 1041
locations. This clearly demonstrates the ability of our technique to analyze long paths.

Motorcade. In order to show the ability of our technique to handle systems with high
dimensions, we conducted another case study based on a nonlinear version of the auto-
mated highway model in [16]. The automaton we use is shown in Fig.3, which models
a central arbiter that monitors a sequence of n vehicles. In this model, the distance be-
tween two consecutive vehicles vi (1 ≤ i < n) and vi+1 can not exceed 10 units. Let xi

denote the x coordinate of vehicle i and yi denote its y coordinate. If the distance be-
tween vi and vi+1 is less than 4 units, then the arbiter will force all vehicles v j before vi+1

(1 ≤ j ≤ i + 1) to accelerate and vehicle vi+1 to decelerate until the distance between vi

and vi+1 returns to the valid range. If the distance between both x and y coordinate of
vi and vi+1 is less than 1 unit, then we say that a crash has occurred. This state should
not be reachable in a correct model of the arbiter. In the case study, we want to check
whether the error location is reachable along path: Initial ˆ Cruise ˆ Recovery 1 2 ˆ
Cruise ˆ . . . ˆ Recovery n-1 n ˆ Error, which traverses each recovery location one by
one before it finally reaches the error location. Clearly, all the flow conditions in this
automaton is in a linear range, so this automaton is a LF-CHA.

The experimental result is shown in Table 4. The largest example we ran is a system
with 45 vehicles and hence, 90 system variables. When we set the number of vehicles
to 50, CVX was unable to solve the convex programming problem.
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Fig. 3. Motorcade

To the best of our knowledge, there is no state-of-the-art tool that can perform reach-
ability analysis of a convex hybrid automaton, so we do not have any opportunity to
compare with other tools. But as widely reported in literature [18], the general verifi-
cation of nonlinear systems with even five variables usually requires several hours of
computation; if the dimension is larger than five, the state-of-the-art tools fail to analyze
them. To the best of our knowledge, this status is not significant improved yet.

As we have shown in the experiments, our path-oriented technique can analyze con-
vex hybrid automata systems with high dimensions. We also believe that the perfor-
mance will be much better if a commercial convex optimization engine is employed.

6 Discussion on Potential Applications

To the best of our knowledge, there is no path-oriented technique for analyzing nonlin-
ear hybrid automata. Although the path-oriented technique we present in this paper is
restricted to convex hybrid automata and checks only a single path at a time, we still



92 L. Bu, J. Zhao, and X. Li

believe there are several related areas where our techniques are applicable. In this sec-
tion, we discuss these applications.

General Nonlinear Hybrid Automata. Study [14] argues that general hybrid automata
can be approximated to any desired level of accuracy by linear hybrid automata, because
linear hybrid automata are sufficiently expressive to allow asymptotic completeness of
the abstraction process for a general hybrid automaton. As the set of linear hybrid au-
tomata is a subclass of convex hybrid automata, this argument also holds for convex
hybrid automata. Moreover, convex hybrid automata can approximate general hybrid
automata more easily than linear hybrid automata, as all the constraints and flow con-
ditions in convex hybrid automata can be nonlinear convex or concave expressions; the
latter are much more expressive than linear expressions in linear hybrid automata. Thus,
we can use convex hybrid automata to approximate general nonlinear hybrid automata
and perform path-oriented verification of general nonlinear hybrid automata efficiently.

Bounded Model Checking. In recent years, Bounded model checking (BMC) [3] has
been presented as a complementary technique for BDD-based symbolic model check-
ing. The basic idea is to encode the next-state relation of a system as a propositional
formula, and unroll this formula to some integer k, searching for a counterexample in
the executions of the model, whose length is bounded by k. The BMC problem can be
solved by Boolean Satisfiability (SAT) method, which has made tremendous progress
in recent years [19].

There are several related works [2,10] that use bounded model checking and linear
programming technique to verify linear hybrid automata. The bounded model checking
problem is reduced to the satisfiability problem of a boolean combination of proposi-
tional variables and linear mathematical constraints. Several tools have been built for
the analysis of linear hybrid automata, such as MathSAT [2] and HySAT [10]. We can
take advantage of these studies about bounded verification of linear hybrid automata to
develop an efficient tool to do bounded verification of convex hybrid automata, which
allows us to analyze systems with richer dynamics than those analyzed by other state-
of-art bounded model checkers, such as MathSAT and HySAT.

CEGAR. Counterexample guided abstraction refinement (CEGAR) has achieved great
success in hardware and software verification [8]. The main idea of CEGAR is that
when the original system is too big to handle, we perform over-approximation of the
original system, and look for bad states in the new system. If we can not find a coun-
terexample, the process terminates and the original system is correct. If we can find
a counterexample, we try to analyze and concretize this counterexample. If the coun-
terexample is true, the process terminates and reports the counterexample. If it is not
true, we will build a new approximation of the original system that excludes this “coun-
terexample”, and keeps going until we cannot find a counterexample in the abstraction
or we find a real counterexample in the concrete system.

Iterative Relaxation Abstraction (IRA) [16] is a technique to perform reachability
analysis of linear hybrid automata by building several low dimensional abstractions of
the original high dimensional linear hybrid automata. Then, IRA uses a state-of-the-art
linear hybrid verification tool PHAVer [11] to perform reachability verification of the
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low dimensional abstract system. If PHAVer reports a spurious counterexample, which
happens when a path reaches a bad state, IRA uses the path-oriented technique we pro-
posed in study [17] to verify whether this counterexample really exists in the original
high dimensional system. If the counterexample is present in the high dimensional sys-
tem, IRA terminates and reports that the bad state is reachable; otherwise IRA uses the
irreducible infeasible subset (IIS) technique [7] to analyze the spurious counterexample
to get a new group of variables for the next low dimensional abstraction.

We are confident that the path-oriented technique suggested in this paper can be mar-
ried to a state-of-the-art verification tool of general nonlinear hybrid automata (such as
CheckMate) by using the IRA technique. Such an approach will greatly increase the di-
mension of the problems that the state-of-the-art tools can solve and make our technique
contribute to the development of a model checker for nonlinear hybrid automata.

7 Conclusion

In this paper, we propose a class of nonlinear hybrid automata called convex hybrid
automata. Based on convex programming, we develop an efficient technique for the
path-oriented reachability analysis of convex hybrid automata. Our technique checks
one path at a time where the path being checked can be made very long and both the
dimension and number of locations of the hybrid automaton can be made large enough
to handle problems of practical interest.

We conducted several case studies using a free convex solver CVX to show the abil-
ity of our technique to analyze problems with long paths and high dimensions. Since
the existing techniques have not provided an efficient tool for checking all the paths in
a general nonlinear hybrid automaton of practical size, we also present a general de-
scription of several areas where our technique can be used in a straightforward manner
to improve the performance [18] of the state-of-the-art tools.
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Abstract. We present uniform approaches to establish complexity bou-
nds for decision problems such as reachability and simulation, that arise
naturally in the verification of timed software systems. We model timed
software systems as timed automata augmented with a data store (like a
pushdown stack) and show that there is at least an exponential blowup
in complexity of verification when compared with untimed systems. Our
proof techniques also establish complexity results for boolean programs,
which are automata with stores that have additional boolean variables.

1 Introduction

Timed automata [3] are a standard model for formally describing real-time
systems. They are automata equipped with real-valued clocks that evolve con-
tinuously with time and which can be compared to integers, and reset during
discrete transitions. When modelling concurrent real-time software systems, this
basic model must be augmented with various data structures to capture dif-
ferent features — a program stack (visible [4] or otherwise) to model recursive
procedure calls, a bag or buffer to model undelivered messages in a network,
or a higher-order stack to capture safe higher-order functions. In this paper, we
study the complexity of classical verification problems for such formal models
of real-time software, namely, invariant verification, μ-calculus model checking,
and simulation and bisimulation checking.

Our main thesis is that there is at least an exponential blowup in complexity
for verifying real-time systems when compared with non-real-time systems. More
precisely, the problem of verifying a property for automata with an auxiliary
data store (like stack, bag or higher-order stack) and clocks is exponentially
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harder than checking the same property for the automata model without clocks.
In general, the increase in complexity could be worse than exponential. For
example, (timed) language containment for timed automata is undecidable [3],
but is decidable in PSPACE for finite automata (without clocks). However, we
also show that for certain properties (specifically, invariant and μ-calculus model
checking, simulation and bisimulation checking) the increase in complexity is
exactly exponential by establishing upper bounds for solving timed games.

This increase in complexity has been implicitly observed through a series of
results that established the complexity of verification problems for the basic
timed automata model. It has also been explicitly observed in [19] again for
timed automata. In this paper we extend this line of work for timed automata
with an auxiliary store. However, there is an important difference in the proof
techniques used in the earlier papers and the one we use here. While previous
papers established lower bounds by coming up with new, non-trivial reductions
for timed automata, we obtain our results by using a uniform method to lift lower
bound proofs for automata without clocks to automata with clocks, independent
of the verification problem and the auxiliary data store being considered.

More precisely, our main technical result is that if a verification problem for
automata without clocks is hard for complexity class C1 with respect to poly-log-
time reductions then the same verification problem is hard for an exponentially
larger class C2 with respect to polynomial time reductions. In order to prove this,
we rely on the following techniques. First, we draw on the ideas previously used
in proving the complexity of problems whose input is succinctly represented as
a circuit [14,23,6,28] to show that verifying boolean automata is exponentially
harder. Boolean automata are automata with auxiliary data stores that have ad-
ditional boolean variables. Such models arise when a program is abstracted using
predicates [15] inferred through a process of counterexample-guided abstraction-
refinement [11]. Thus, our observations about boolean automata are of indepen-
dent interest. Next, we show that automata with clocks can mimic the behavior
of automata with boolean variables, and hence establishing the main lemma for
timed systems.

While poly-log-time reductions are a stricter class of reductions than polyno-
mial time reductions, we observe that typically reductions satisfy these stronger
conditions because they have a highly regular structure that depends only on
certain local bits. We establish that this intuition does indeed hold when consid-
ering the reductions that establish lower bounds for the invariant and μ-calculus
model checking, and simulation and bisimulation checking for finite state sys-
tems and pushdown systems. Thus, using our main technical lemma and our
observations about reductions used in classical verification problems, we estab-
lish new complexity results for timed automata with data stores, and re-establish
old results using new, uniform proof techniques.

Before concluding this introduction, we would like to make a couple of points
about our new proofs. First, the new proofs are significantly easier to establish,
as new reductions are not required. For the new proof, one needs to re-examine
classical reductions for automata problem to check that they are poly-log-time,
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but this requires much less creativity than constructing a new reduction. Second,
and more importantly, from a philosophical standpoint the new proof is appeal-
ing since it highlights clearly some reasons why the verification of real-time and
embedded systems is harder than that of non-real-time systems.
Our Results: We show the following complexity results.

1. The control state reachability problem for timed automata is PSPACE- com-
plete and for pushdown timed automata is DEXPTIME-complete.

2. The bisimulation and simulation problems between timed automata is
DEXPTIME-complete.

3. The bisimulation and simulation problems between two visibly pushdown
timed automata is 2-DEXPTIME-complete.

4. The bisimulation and simulation problems between a timed automata and a
pushdown timed automata is 2-DEXPTIME-complete.

5. Model checking μ-calculus properties for order n higher order pushdown
timed systems is (n + 1)-DEXPTIME-complete.

The first two results were previously known, but our proofs for them are new.
The remaining three results are completely new1.

1.1 Related Work

Verification problems for systems implicitly represented as a parallel composi-
tion of many processes, or using boolean variables has been studied since the
work of Harel et al., and Rabinovich [17,24,25], where the exponential blow-up
in complexity was first observed for model checking branching time modal logics.
This observation was extended to process algebraic equivalences and to timed
automata in [19]. All of these results were established through new reductions
for automata without an additional data store. Alur and Dill [3], introduced the
model of timed automata, and showed that the reachability problem is PSPACE-
complete. Decidability of simulation and bisimulation was shown in [8], while
tight lower bounds were established in [19]. Complexity of model checking μ-
calculus was shown in [2]. For timed automata A and B, the language contain-
ment problem (i.e., whether L(A) ⊆ L(B)), was shown to be decidable when B
has one clock [22], and undecidable otherwise; for infinite strings the language
containment is undecidable even when B has one clock [1]. The model of push-
down timed systems was first studied in [7] where reachability was shown to be
decidable; the decidability of binary reachability was demonstrated in [12]. The
language containment problem for timed systems with pushdown stacks and vis-
ibly pushdown stacks [4], was studied in [13]. For systems A and B, the problem
of whether L(A) ⊆ L(B) was shown to be undecidable when both A and B have
visibly pushdown stacks. They also conjectured that the problem is decidable
when B is a simple timed automata (without stack) with one clock; however,
this problem remains open.

1 Due to lack of space, some proofs have been eliminated which can be found in [9].
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2 Preliminaries

Transition Systems. Given a set of edge labels ΣE, a ΣE-transition system (tran-
sition system when ΣE is clear from the context) S is a tuple (S,−→, s0) such
that S is a set of configurations; ΣE is a finite set of labels; −→⊆ S ×ΣE ×S is
a set of transitions and s0 ∈ S is the initial configuration. A transition system
is said to be finite if ΣE and S are finite. We often write s

a−→ s′ instead of
(s, a, s′) ∈−→. As usual, we can define s

w−→ s′ for all w ∈ ΣE
∗. We say that

s −→∗ s′ if there exists w ∈ Σ∗
E such that s

w−→ s′. We assume the reader
is familiar with the definitions of reachability, simulation and bisimulation for
transition systems and the logic μ-calculus.

Decision problems, succinct and long representations. We assume that inputs to
decision problems are encoded as finite words over the alphabet Γ = {0, 1}. A
problem L over Γ is a subset of Γ ∗. Following [6], a succinct representation of
a word w ∈ Γ ∗ is a boolean circuit that on input (the binary representation of)
i outputs two boolean values, one indicating whether i is less than or equal to
the length of w and the other indicating, in that case, the i-th bit of w. Given
a problem L, the succinct representation of L, denoted s(L), is the set of all
boolean circuits which are succinct representations of words in L [6]. The set
long(L) is the set of all strings whose length is equal to the number represented
by some binary string 1w in L [6].

Indirect access Turing Machines and polylog-time computations. We recall the
definition of indirect access turing machines [6] used to define complexity classes
of low computational power. The Turing machines accepting languages in these
classes do not have enough time to read the whole input. Hence indirect access
turing machines are defined. The machine includes the following elements:

– an input tape;
– a fixed number of work tapes;
– a special tape (henceforth called the pointer tape) to point to a bit of the

input, which may be subsequently read in;
– a special tape (henceforth called the symbol tape) on which the symbol just

read from the input appears written;
– a “read” state.

The machine is otherwise standard. It reads its input in the following way: the
machine can write on the pointer tape the number of position i of the input tape;
whenever the “read” state is entered the machine gets (in one computation step)
in the symbol tape the contents of the i-th position of the input tape. If the input
has length less than i, then the machine does not get anything. The previous
content of the symbol tape is overwritten, but the contents of the pointer tape
and position of its head remain untouched.

We will denote by LT, the class of languages accepted by deterministic indirect
access Turing machines within a computation time bounded by O(log n). The
class PLT is the class of languages accepted by deterministic indirect access
Turing machines within a computation time bounded by O((log n)k) for some
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natural number k and the class FLT is the class of all functions computable by
such machines in O((log n)k) time for some natural number k.

Polylog time and polynomial time reductions. Given two problems A and B, A

is polynomial time m-reducible to B, denoted A ≤P
m B, if and only if there is

a polynomial time computable function f such that w ∈ A ⇔ f(w) ∈ B for
every string w. Polylog time m-reducibility (abbreviated as PLT-reducibility and
denoted ≤PLT

m ) is defined as follows. A is PLT-reducible to B if and only if there
is a function f such that i) w ∈ A ⇔ f(w) ∈ B for every w; and ii) the following
function ϕ is computable in polylogarithmic time: for w ∈ {0, 1}∗ and i ∈ N,
ϕ(w, i) is the i-th bit of f(w) if i is less than or equal to the length of f(w) and
is undefined otherwise.

We now present two results from [6]. The first result relates PLT-reducibility
and polynomial-time m-reducibility2. The second result shows that the succinct
version of long(A) is at least as hard as A.

Lemma 1. If A ≤PLT
m B, then s(A) ≤P

m s(B).

Lemma 2. A ≤P
m s(long(A)).

Automata with auxiliary stores. An automata with auxiliary store [10] consists
of a control and an auxiliary store. Formally, an auxiliary store is a tuple D =
(D, p̃red, õp, di) such that D is a set, elements of which are called data values;
õp is a finite collection of functions f : D → D; p̃red is a finite collection of
unary predicates on D; and di is an element of D, called the initial data value.
It is assumed that the identity function id ∈ õp and the always true predicate
true ∈ p̃red. Pushdown stores, visibly pushdown stores [5], and higher-order
pushdown stores [16] can be seen as instances of auxiliary stores.

An automaton is defined over an auxiliary store and a finite alphabet (the al-
phabet is used to annotate the transitions of the automaton). Formally, given an
auxiliary store D = (D, p̃red, õp, di) and an alphabet ΣE , a (D, ΣE)-automaton
A is a tuple (Q, δ, qi), where

– Q is a finite set of control states.
– δ ⊆ Q× p̃red×ΣE × õp ×Q is a transition relation.
– qi is the initial state of the automaton A.

The semantics ofA is described in terms of a ΣE-labeled transition system (S,−→δ

, si). The set of configurations is {(q, d) | q ∈ Q and d ∈ D} and (qi, di) is the initial
configuration.The transition relation−→δ is defined as follows– (q, d) a−→δ (q′, d′)
iff there exists p ∈ p̃red and g ∈ õp such that (q, p, a, g, q′) ∈ δ, p(d) is true and
g(d) = d′. We will assume the definition of isomorphism between automata.

For example, a pushdown store on an alphabet Γ in a pushdown automaton
can be formalized as an auxiliary store in the following way. The set Γ ∗ (set
2 The result in [6] is only shown for log time m-reducibility, but the extension is

straightforward.
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of all finite strings over Γ ) can be taken as the set of data values with the
empty string ε as the initial value. The set of predicates p̃red can be chosen as
{empty} ∪ {topγ | γ ∈ Γ} ∪ {true}, where empty = {ε}, topγ = {wγ |w ∈ Γ ∗}
(the top of stack is γ) and true = Γ ∗ (any stack). The set of functions õp can
be defined as {id} ∪ {pushγ | γ ∈ Γ} ∪ {popγ | γ ∈ Γ} where pushγ and popγ

are defined as follows. For all w ∈ Γ ∗, pushγ(w) = wγ and popγ(w) = w1 if
w = w1γ and w otherwise. In a pushdown system the function popγ will be
enabled only when the store satisfies topγ . The function pushγ is enabled when
the store satisfies true.

We also consider visibly pushdown automata (VPA) [5]. A VPA is a special
kind of pushdown automaton in which every symbol of the input alphabet is
designated as a call, return or internal. Every transition labelled by a call pushes
a symbol, those labelled by return pop a symbol and transitions labelled by
internal symbols do not push or pop any symbols.

The other kind of automata that will be considered are higher order pushdown
systems. First let us define a higher order store. Given an alphabet Σ, an order
1 store is a stack of elements from Σ, and an order n store for n > 1 is a stack
of elements from the set of stores of order n−1. The different kinds of operation
that can be performed on an order n store include pushw where w is a word of
the input alphabet, pushl where l ≤ n, popl where l ≤ n. A stack is written
with the top most element to the left. The first order 1 store in an order 2 store
ABC, where A, B and C are order 1 stores, is A, and the first order 2 store
is ABC itself. pushw pushes w onto the first order 1 stack in the store. pushl

pushes a copy of the first element of the first order l store to the first order l
store in the store, and popl pops the top element of the first order l store in
the store. There is another operation top which returns the top element of the
first order 1 store in the store. A higher order pushdown system of order n is
an automaton equipped with an order n store. A transition can be taken only
if the element returned by top matches the input symbol and the data store is
modified according to the operation. A formal description can be found in [16].

Automaton Problem. A k-tuple of automata with auxiliary store has signature
Sig = ((D1, ΣE1), · · · , (Dk, ΣEk)) if the i-th automaton in the tuple has auxiliary
store Di and alphabet ΣEi. A (k, Sig)-automaton problem is a set of k-tuples of
automata having signature Sig. For the rest of the paper, we assume that an
automaton problem is closed under isomorphism, i.e., if P is a k-automaton
problem, then for any k-tuple (A1,A2, · · · ,Ak), 1 ≤ i ≤ k, and A′

i such that Ai

is isomorphic to A′
i, (A1,A2, · · · , Ai, · · ·Ak) ∈ P iff (A1,A2, · · · ,A′

i, · · ·Ak) ∈ P .
For example, the simulation poblem between pushdown automata over the

same pushdown store over the same input alphabet ΣE is the set of pairs (A1,A2)
such that A1 is simulated by A2.

Encoding of an automaton. We encode the automaton over an auxiliary store D
and an alphabet ΣE as a binary string. Let n1, n2, n3 and n4 be the least integers
such that |Q| ≤ 2n1 , |ΣE | ≤ 2n2 , |p̃red| ≤ 2n3 and |õp| ≤ 2n4 , respectively. We
will assume some enumeration of the elements in Q (the initial state will always
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be numbered 0), ΣE , p̃red and õp. The automaton is then encoded as a binary
string w of length 2n, where n = n2 + n3 + n4 + 2n1 as follows. We basically
encode the transition function. Note that any position of the encoding can be
represented by a binary number of length n2 + n3 + n4 + 2n1. The first n2 bits
index the edge symbol of a transition, the next n3 bits index the predicate of
the transition, the next n4 bits index the operation and the next n1 bits index
the “current control state” and the final n1 bits index the “next control state”.

Before giving the formal encoding, let us fix some notation. Given a binary
string w ∈ Γ ∗, let |w| denote the length of w and wi denote its i-th symbol
(counting from left to right) of w. Given a binary string w, ŵ represents the
natural number whose binary expansion is w.

Let w be the encoding of the automaton. Then wi = 1 if and only if i = ŝ
and s = xvyuz where |x| = n2, |v| = n3, |y| = n4, |u| = n1 and |z| = n1, and
(q1, p1, e1, o1, q2) ∈ δ, where q1 is the û-th symbol of |Q|, p1 is the v̂-th symbol
of p̃red, e1 is the x̂-th symbol of ΣE , o1 is the ŷ-th symbol of õp and q2 is the
ẑ-th symbol of Q. wi = 0, otherwise.

We now describe how a tuple (A1,A2, · · · ,An) of automata is encoded. Let
x1, · · · , xn be the encoding of the automata A1, · · · ,An, respectively as explained
above. Let k be the length of the maximum of the lengths of xis. We pad 0s
to the end of the xis if required so that their length is k. Let these new strings
be x′

1, · · · , x′
n. Let yi be a string of length k with ji 1s followed by 0s, where

ji is the number of bits required to index the states of Ai (which was n1 in
the encoding of the individual automaton). The encoding of the automata tuple
would be y1x

′
1y2x

′
2 · · · ynx′

n.

3 Boolean Automata with Stores

In this section, we establish complexity bounds for the verification of boolean
automata, which we later use (in Section 4) to prove complexity bounds on the
verification of real-time software. Boolean automata with stores are automata
with auxiliary stores that are equipped with additional boolean variables that
influence the enabling condition for transitions. We show that solving an au-
tomaton problem when the inputs are given as boolean automata is at least as
hard as solving the same when the input automata are represented succinctly
using circuits. This observation allows us to lift lower bound proofs for automata
uniformly to those for boolean automata. Next we show that solving any problem
on boolean automata is at most exponentially worse than solving the same prob-
lem for automata without boolean variables. We conclude this section by using
these observations to establish the exact complexity for a variety of verification
problems for boolean automata.

Definitions and notations. Let Var = {x1, · · · , xn} be a finite set of boolean vari-
ables. A valuation ofVar is a function v : Var → {0, 1}.The set of boolean formulas
overVar, denoted BFor(Var) is defined inductively as: ϕ := � |x | ¬ϕ |ϕ∨ϕ |ϕ∧ϕ,
where x ∈ Var. Given ϕ ∈ BFor(Var), and a valuation v of Var, (ϕ)v is defined
inductively as (�)v = 1, (¬ϕ)v = 1 − (ϕ)v, (ϕ1 ∨ ϕ2)v = max((ϕ1)v, (ϕ2)v), and
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(ϕ1 ∧ ϕ2)v = min((ϕ1)v, (ϕ2)v). Next we define the set of reset expressions over
Var, denoted BReset(Var), as the expressions of the form x := y, x := 0, x := 1,
or nondet(x), where x, y ∈ Var. Let us fix Var = {x1, · · · , xn} with the ordering
x1, · · · , xn for the rest of this section. We define TReset(Var) to be n-tuples over
BReset(Var) where the i-th component of the tuple is of the form xi := xj , xi = 0,
xi = 1 or nondet(xi). Given η ∈ TReset(Var) we denote by ηi, the i-th component
of η. (η)v gives the valuations resulting from the application of η to v and is defined
as follows. (η)v is the set of valuations v′ such that for each i, v′(xi) is v(xj) if ηi is
xi := xj , is 0 if ηi is xi := 0, is 1 if ηi is xi := 1, is either 0 or 1 if ηi = nondet(xi).
Given a valuation v, v̄ will denote the tuple (v(x1), · · · , v(xn)).

We now define a boolean automaton as an automaton augmented with a
finite set of boolean variables on which the transitions could depend. We have
the following definition.

Boolean Automaton. Let D be a store and ΣE be an alphabet. A (D, ΣE)-boolean
automaton B is a tuple (Q,Var, δ, qi, vi), where

– Q is a finite set of control states.
– Var is a finite set of control variables.
– δ ⊆ Q × BFor(Var) × p̃red × ΣE × õp × TReset(Var) × Q is a finite set of

transitions.
– qi is the initial state of the automaton.
– vi is the initial valuation of the variables.

The semantics of B is the same as that of the (D, ΣE)-automaton [[B]] = (Q′, δ′,
q′i), where Q′ = Q× {0, 1}n; q′i = (qi, v̄i); and ((q, v̄), p, e, o, (q′, v̄′)) ∈ δ′ iff there
exists g and r such that (q, g, p, e, o, r, q′) ∈ δ, and (g)v = 1 and v′ ∈ (r)v.

In order to avoid clutter, we do not give the binary encoding of a boolean au-
tomaton, but it follows the same lines as the encoding of an automaton. The sig-
nature of a k-tuple of Boolean automata with auxiliary stores is defined as for the
case of automata. A k-boolean automaton problem is a set of k-tuples which have
the same signature. The boolean version of a k-automaton problem P , which we
denote b(P), is defined as b(P) = {(B1, B2, . . . Bk) | ([[B1]], [[B2]], . . . [[Bk]]) ∈ P}.

3.1 Lower Bounds for Boolean Automata

We now show that the boolean version of an automaton problem is at least
exponentially harder than the automaton problem itself. We first show that the
boolean version of an automaton problem is at least as hard as its succinct
version. This result will allow us to lift lower bound proofs uniformly. In order
to carry out these steps, we need the technical definition of a two-step automaton
which follows next.

Two-step automaton. Informally, a two-step of an automaton A is a collection
of automata, where an automaton in this collection is obtained by replacing
each transition of A by two consecutive transitions having the same label as the
original transition. In addition there are one or more transitions out of every state
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to some dead states. Formally, given a (D, ΣE)-automaton A = (Q, δ, ΣE), an
automaton A′ = (Q′, δ′, Σ′

E) is in two-step(A), if there exists a set Y (disjoint
from Q and δ) such that the following conditions hold. The states of Q′ are
Q ∪ δ ∪ Y . For every transition x = (q1, p, e, o, q2) in A, there are transitions
(q1, true, e, id, x) and (x, p, e, o, q2) in A′. For every q1 ∈ Q and e, there are
transitions (q1, true, e, id, q2) in A′, for one or more q2 ∈ Y . Y represents the
dead states. There are no other transitions.

For a k-automaton problem P , we define two-step(P) to be {(A′
1,A′

2, . . . ,A′
k)|

A′
i ∈ two-step(Ai) and (A1,A2, . . . ,Ak) ∈ P}. Given an automaton problem P ,

we say that P is two-step expansion invariant if two-step(P) ⊆ P . For example,
consider an automaton problem P which corresponds to pairs of automata which
are bisimilar. Then P is two-step expansion invariant, since whenever A and B
are bisimilar andA′ ∈ two-step(A) and B′ ∈ two-step(B),A′ and B′ are bisimilar.

The following important lemma states that the succinct version of an automa-
ton problem can be reduced to the boolean version of its two-step expansion.

Lemma 3. Let P be an automaton problem, then s(P) ≤Pm b(two-step(P)).

Proof (Sketch.) We show the reduction for a 1-automaton problem, the exten-
sion to the k-automaton problem is direct. Let P be an automaton problem. Let
A ∈ P be an automaton and C be its succinct representation. We construct in
time polynomial in |C|, the boolean automaton B such that [[B]] ∈ two-step(A),
i.e., B ∈ b(two-step(A)).

The circuit C computes the encoding of the automaton A. The first half of the
encoding consists of n 1s followed by zero or more 0s where n is the number of bits
used to represent the states in A. The second half encodes the transition relation.
Hence in time polynomial in the size of |C|, we can compute the value of n and also
fix the most significant bit of the input of C to 1 to obtain the circuit Cδ which
encodes only the transition relation. From now on by C we mean Cδ.

Let us name the inputs of C by variables in sets X , P , O, E and Y (will assume
the sets are ordered) such that the inputs corresponding to variables X are used
to index the current state; similarly the inputs labelled by P , O, E and Y are
used to index the predicates, operations, edge labels and next states of a tuple
(q1, p, o, e, q2), respectively. A valuation v to the variables corresponding to the
tuple (q1, p, o, e, q2) when input to C evaluates to 1 if and only if (q1, p, o, e, q2)
is a transition of A. (Note the number of variables in X and Y are the same.)

The idea is to encode the states of A using boolean variables and use the
circuit to somehow verify the transition relation. Since the boolean automa-
ton can have boolean formulas as guards and not circuits, we verify the tran-
sition relation by converting the circuit C(X, P, O, E, Y ) to a boolean guard
ϕ(X, P, O, E, Y, I) such that for a transition t = (q1, p, o, e, q2), C(q1, p, o, e, q2) =
1 iff ϕ(q1, p, o, e, q2, I) is satisfiable, when I is a new set of variables.

However to check the satisfiability of ϕ(X, P, O, E, Y, I) we need to guess the
values of the variables in I. Hence the boolean automaton B we construct has two
states, namely, the current and the guess state. There are six sets of variables
X , P , O, E, Y and I. In the current state only the variables of X are non-zero
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and they correspond to an encoding of a state of the automaton A. From the
current state there is a transition to the guess state in which the variables in X
remain intact but the variables in P , O, E, Y and I are all non-deterministically
set to 0 or 1. The transition is labelled by the label encoded in E, the predicate
is a boolean formula which checks that the edge label of the transition is same as
that encoded by the variables in E, and the operation is the identity operation
id. The values of the variables in P , O, E and Y are used to encode the predicate,
operation, edge label and the next state, whereas the variables in I correspond
to the intermediate variables which arise in the conversion from the circuit to
the boolean guard. From the guess state there is a transition to the current state
only if the variables satisfy the guard ϕ. Then the values of the variables in Y
are copied to the corresponding variables of X and all variables other than those
in X are set to 0. The edge label, predicate, operation of this transition are those
encoded in E, P and O respectively.

This construction takes time polynomial in |C| since the number of states
is 2, the number of variables is less than the size of |C| (it is just all the input
variables and one intermediate variable for each gate in the circuit), and boolean
formula is polynomial in the size of |C| (in fact linear) and can be computed in
time polynomial in |C|. Hence the boolean automaton constructed is polynomial
in the size of |C| and the reduction takes polynomial time.

It is easy to see that [[B]] is in two-step(A). Different valuations in the current
state correspond to different states of A. Every transition of A is mimicked in
[[B]] by two consecutive transition, the first one going into the guess state and
the other from the guess state to the current state. There are some transitions
into the guess state which cannot be verified in the sense that the values of
the variables do not satisfy the guard on the transition to the current state,
these will occur as transitions from the current state to dead states (which are
accommodated in the definition of two-step). �

The next theorem establishes the fact that the boolean version of an automa-
ton problem is at least exponentially harder than the automaton problem.

Theorem 1. Let C1 and C2 be arbitrary complexity classes such that for every
problem P1 in C1, long(P1) is in C2. Then for every automaton problem P2 which
is two-step expansion invariant, if P2 is hard for C2 under PLT-reducibility, then
b(P2) is hard for C1 under polynomial time m-reducibility.

Proof Let P1 ∈ C1, we need to show that P1 ≤P
m b(P2). Since long(P1) ∈ C2,

and long(P1) ≤PLT
m P2, we have from Lemma 1, that s(long(P1)) ≤P

m s(P2).
But P1 ≤Pm s(long(P1)), from Lemma 2. Hence P1 ≤Pm s(P2). Now from Lemma
3, we have s(P2) ≤Pm b(two-step(P2)). But since P2 is expansion invariant we
have s(P2) ≤Pm b(P2). Hence P1 ≤Pm b(P2). Therefore b(P2) is hard for C1 under
m-reducibility. �
Note that if C1 is an exponentially larger class than C2, then they satisfy the
condition in the above theorem. Hence if an automaton problem is hard for C2,
then its boolean version is at least exponentially harder.
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3.2 Upper Bounds for Boolean Automata

We can also show that solving the boolean version of an automaton problem is
at most exponentially harder than the automaton problem itself.

Proposition 1. Let P be a k-automaton problem. If t(n) ≥ n and P ∈ DTIME
(t(n)) (or P ∈ NTIME(t(n))) then the boolean automaton problem b(P) ∈ DTIME
(t(2O(n))) (or b(P) ∈ NTIME(t(2O(n))), respectively). If s(n) ≥ log(n) and
P ∈ DSPACE(s(n)) (or P ∈ NSPACE(s(n))) then b(P) ∈ DSPACE(s(2O(n)))
(or b(P) ∈ NSPACE(s(2O(n))), respectively).

As an example of the application of this proposition, problem of deciding whether
two boolean automata (with no store) are trace equivalent is easily seen to be
in EXPSPACE as the trace equivalence problem between finite automata is in
PSPACE.

3.3 Results

We demonstrate that Theorem 1 and Proposition 1 can be used to show that
for a variety of automata problems, there is exactly an exponential blowup in
complexity when we consider inputs that are boolean automata. For the rest of
this section, by pushdown boolean automata we shall mean boolean automata
with a pushdown stack as the auxiliary store and by boolean automata we shall
mean a boolean automata with no store.3

We can extend the results on bisimulation and simulation between finite
state machines [26], bisimulation and simulation between visibly pushdown au-
tomata [27], bisimulation and simulation between finite state systems and push-
down automata [20,18] and model-checking μ-calculus properties for higher order
pushdown automata [21] to obtain the following result.

Theorem 2.
1. The problem of control state reachability in boolean automata is PSPACE-

complete.
2. The problem of bisimulation and simulation between boolean automata is

DEXPTIME-complete.
3. The problem of bisimulation and simulation between two boolean VPAs is

2-DEXPTIME-complete.
4. The problem of bisimulation and simulation between boolean automata and

pushdown boolean automata is 2-DEXPTIME-complete.
5. Model checking μ-calculus properties for order n higher order pushdown

boolean automata is (n + 1)-DEXPTIME-complete.

The first two items have been established in [19,25], albeit by different methods.
The last three items are new. The last item also implies that the μ-calculus
satisfiability of boolean automata is DEXPTIME-complete and that of boolean
pushdown automata is 2-DEXPTIME-complete since these correspond to order
0 and 1 higher order pushdown boolean systems respectively.
3 No store is modeled by taking the set of data values to be a singleton.
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4 Timed Automata

In this section we define timed automata with auxiliary stores and prove lower
and upper bounds for problems on them. Let C be a finite set of symbols,
henceforth called clocks. The set ΦC of clock constraints over C is defined by
φ ::= true |x ∼ k |x ∼ y | ¬φ |φ ∧ φ |φ ∨ φ, where k ∈ N stands for any non-
negative integer and ∼∈ {=, <, >,≤,≥} is a comparison operator. A valuation
for C is a function from the set of clocks to the set of positive reals, i.e., v : C →
R≥0. Let ValSet(C) be the set of all valuations of C. We say that v satisfies φ,
denoted v |= φ, if φ is true when the variables of φ are replaced by their values,
i.e., x is replaced by v(x). We denote by v+ t the function mapping x to v(x)+ t,
and by v[X → 0] the function which maps x to 0 if x ∈ X and maps x to v(x)
otherwise.

Timed Automaton. Let D be an auxiliary store and ΣE be an alphabet. A
(D,ΣE)-timed automaton is a tuple (Q, C, δ, qi), where:

– Q is a finite set of control states,
– C is a finite set of clocks,
– δ ⊆ Q× ΦC × p̃red×ΣE × õp× 2C ×Q is a finite set of transitions, and
– qi ∈ Q is the initial state.

The semantics of a (D, ΣE)-timed automaton T = (Q, C, δ, qi) is described in
terms of a ΣE×R≥0-labeled transition system (S,−→δ, si), where S = Q×D×
ValSet(C); si = (qi, di, v[C → 0]); and (q1, d1, v1)

(a,t)−→δ (q2, d2, v2) iff there exists
a transition (q1, φ, p, a, o, C1, q2) ∈ δ such that v1 + t |= φ, (v1 + t)[C1 → 0] = v2,
p(d1) is true, and o(d1) = d2.

4.1 Lower Bounds for Timed Automata with Store

Our goal is to show that solving a timed automaton problem with store is at
least as hard as solving a corresponding boolean automaton problem with store.
First, we will construct a timed automaton Timedk(B) for a boolean automaton
B which has the following property. The construction of Timedk(B) is along the
lines of [19], and is omitted here for lack of space.

Lemma 4. Let B1 be a (D1, ΣE1)-boolean automata and B2 be a (D2, ΣE2)-
boolean automata, and k be the maximum of the number of variables in B1 and
B2. Then Timedk(B1) and Timedk(B2) are bisimilar iff B1 and B2 are bisimilar.
Also Timedk(B1) is simulated by Timedk(B2) iff B1 is simulated by B2.

The above lemma allows us to conclude the following results from the lower
bound results of Theorem 2:

Theorem 3.
1. The problem of control state reachability in timed automata is PSPACE-hard.
2. The problem of bisimulation and simulation between timed automata is

DEXPTIME-hard.
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3. The problem of simulation and bisimulation between two timed VPA is
2-DEXPTIME-hard.

4. The problem of bisimulation and simulation between timed automata and
pushdown timed automata is 2-DEXPTIME-hard.

5. Model checking timed μ-calculus properties for order n higher order pushdown
timed systems is (n + 1)-DEXPTIME-hard.

We note that the first result above has also been established in [3], while the sec-
ond result was established in [19]. The last three results are however new and (to
the best of our knowledge) do not appear in literature. As a byproduct we obtain
that model-checking timed μ-calculus formulas for timed systems and pushdown
timed systems is DEXPTIME-hard and 2-DEXPTIME-hard by instantiating n to
0 and 1 respectively in the last item.

4.2 Upper Bounds for Timed Automata with Store

We now show that the lower bounds for decision problems obtained in Section
4.1 are tight. As these decision problems are mainly concerned with simulation
and bisimulation, they can be converted to decision problems on game graphs
by standard techniques. The game graphs that will arise for timed automata
will be infinitely branching and we shall appeal to the region construction [3] in
order to deal with the “infinite-branching.” We start by recalling the definition
of regions and game graphs.

Regions. Regions were introduced in [3] in order to show that reachability in
timed systems is decidable. Given a finite set of clocks C and a natural number
nmax , we can define an equivalence class on the set of real-valuations ValSet(C)
as follows. For a real number r, let �r� denote the integral value of r and frac(r)
the fractional value of r. We say that for valuations v1, v2 ∈ ValSet(C), v1 is
equivalent to v2 (denoted as v1 ≡ v2) iff for all c, c1, c2 ∈ C:

1. v1(c) > nmax iff v2(c) > nmax ;
2. if v1(c), v2(c) ≤ nmax , then �v1(c)� = �v2(c)�;
3. if v1(c), v2(c) ≤ nmax , then frac(v1(c)) = 0 iff frac(v2(c)) = 0; and
4. if v1(c1), v1(c2), v2(c1), v2(c2) ≤ nmax , then frac(v1(c1)) ≤ frac(v1(c2)) iff

frac(v2(c1)) ≤ frac(v2(c2)).

The equivalence relation ≡ is of finite index and the set of equivalence classes
under ≡ shall henceforth be denoted as Reg(nmax , C).

Game graphs. A game graph is a graph G = (VP ∪VO, E) such that VP ∩VO = ∅
and E ⊆ (VP × VO) ∪ (VO × VP ). The nodes in the set VP are called proponent
nodes and the nodes in the set VO are called opponent nodes. A binary relation
R ⊆ (VP × VP ) ∪ (VO × VO) is a game bisimulation if for every (v1, v2) ∈ R the
following two conditions hold:

1. For every v′1 ∈ VP ∪ VO such that (v1, v
′
1) ∈ E, there is a v′2 ∈ VP ∪ VO such

that (v′1, v
′
2) ∈ R and (v2, v

′
2) ∈ E.
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2. For every v′2 ∈ VP ∪ VO such that (v2, v
′
2) ∈ E, there is a v′1 ∈ VP ∪ VO such

that (v′1, v
′
2) ∈ R and (v1, v

′
1) ∈ E.

The set of plays and strategies are defined in the standard way. It is well-known
that simulation and bisimulation between transition systems can be stated as
reachability games on appropriate game graphs.

Consider, for example, the problem of simulation of a timed transition system
G0 by G1 (by a timed transition system we mean a transition system arising out of
a timed automaton). A proponent node will correspond to a pair of configurations
of G0 and G1. Since every move of G0 needs to be simulated by G1, the proponent
moves are those of G0. Consider the proponent node (C1, C2) where C1 is the
configuration of G0 and C2 the configuration of G1. Suppose G0 takes a transition
(a, t) and moves to C′

1. Then, for G0 to be simulated by G1, G1 has to take a
transition (a, t) from C2 . Therefore, the proponent move corresponding to G0
transitioning to C′

1 leads us to the opponent node (C′
1, C2, a, t). Now if G2 can

take a (a, t) transition from C2 to C′
2 then we move from the opponent node

(C′
1, C2, a, t) to the proponent node (C′

1, C
′
2). It is easy to see that G0 is simulated

by G1, iff proponent does not have a strategy to reach an opponent node from
which there is no transition. The case of bisimulation is similar except that the
proponent must have moves corresponding to both G0 and G1, and a proponent
move corresponding to G0 must be answered by a move of G1 (and vice-versa).
We formalize these game graphs as timed game graphs.

Timed Game Graph. As already described above, simulation and bisimulation
between timed automata can be cast as reachability games on game graphs.
Given a (D0, ΣE)-timed automaton G0 = (Q0, C0, δ0, q̂0) and a (D1, ΣE)-timed
automaton G1 = (Q1, C1, δ1, q̂1), let (Conf0,−→δ0 , s00) and (Conf1,−→δ1 , s01) be
the timed transition systems associated with them. We assume that C0 ∩ C1 = ∅
(we can always rename clocks). Let Players be a non-empty subset of {0, 1} and
Moves = ΣE ×R. The timed game graph corresponding to G0, G1 and Players is
given by the game graph G = (VP ∪ VO, E) where:

1. VP = {(Players, Conf0, Conf1) | Confi ∈ Confi for i = 0, 1}.
2. Let V 0

O =(P × Conf0 × Conf1 ×Moves) where P = {1− i | i ∈ Players}.
3. For (v, w) ∈ VP × VO, (v, w) ∈ E iff v = (Players, Conf0, Conf1), w =

(P, Conf ′
0, Conf ′

1, (a, t)) and there exists i ∈ Players such that Confi
(a,t)−→δ0

Conf ′
i , P = {1− i} and Conf ′

1−i = Conf1−i.
For (w, v) ∈ VO × VP , (w, v) ∈ E iff w = (i, Conf0, Conf1, (a, t)) and

v = (Players, Conf ′
0, Conf ′

1), where Confi
(a,t)−→δ0 Conf ′

i and Conf ′
1−i =

Conf1−i.

So the question of simulation can be cast as a question on the game graph G.
Note that G is potentially infinite-branching and it is not immediately obvious
as to how to solve the game problem. We appeal to the region construction to
eliminate the infinite branching as follows.

The idea behind our construction is to use regions on clocks of both the
systems (a similar strategy has been used in [8] to show that bisimulation
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between two timed systems without store is decidable). Let nmax be some in-
teger such that nmax is greater than any integer occurring in the clock con-
straints of δ0 and δ1. Given v0 ∈ ValSet(C0) and v1 ∈ ValSet(C1), we use
Reg(nmax , v0, v1) for the region Reg(nmax , v)(the equivalence class of v), where
v ∈ ValSet(C0 ∪ C1) is the valuation such that v(c) = v0(c) for c ∈ C0 and
v(c) = v1(c) for c ∈ C1. Let Conf0 ∈ Conf0 and Conf1 ∈ Conf1 be config-
urations such that Conf0 = (q0, d0, v0) and Conf1 = (q1, d1, v1). For a pro-
ponent node v = (Players, Conf0, Conf1), let H(v) = (q0, d0, q1, d1,
Reg(nmax , v1, v2)). For an opponent node w = (i, Conf0, Conf1, (a, t)), let
H(w) = (i, a, q0, d0, q1, d1, Reg( nmax , v′0, v

′
1)), where v′i = vi + t and v′1−i = v1−i.

We have the following result.

Theorem 4. The relation R = {(u1, u2) | H(u1) = H(u2)} is a game bisimula-
tion on the timed game graph.

Hence, while solving the problems of simulation and bisimulation between timed
automata, one can appeal to Theorem 4 and reduce the timed game problem to
one without time by constructing the H-bisimulation quotient. Then a winning
strategy for the proponent in the timed game graph is obtained by “mimick-
ing” the strategy in the bisimulation quotient. For example, simulation between
timed automata and pushdown timed automata can be converted to a game on
pushdown graph by constructing the H-bisimulation of the graph G. Note that
the description of the resulting pushdown game however is exponential in size of
the input as one needs to construct the regions on the clocks. Further, since the
reachability game can be solved in PTIME for finite game graphs and DEXPTIME
for pushdown games, we obtain the following results.

Theorem 5.

1. The control state reachability problem of timed automata is in PSPACE.
2. The bisimulation and simulation problems between two timed automata is in

DEXPTIME.
3. The problem of simulation and bisimulation between two timed VPA is in

2-DEXPTIME.
4. The bisimulation and simulation problems between a timed automaton and

a pushdown timed automaton is in 2-DEXPTIME.
5. Model checking timed μ-calculus properties for order n higher order pushdown

timed systems is (n + 1)-DEXPTIME-complete.

The first two results are known [3,19,2] and the last three are new.

5 Conclusions

We established the exact complexity of the problems of reachability, simulation,
bisimulation, and μ-calculus model checking for timed automata, timed push-
down automata, and timed higher order pushdown automata. Our proof relied
on ideas from succinct representations to uniformly lift lower bound proofs for
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finite automata, pushdown automata, and higher order pushdown automata to
the corresponding timed versions. As an intermediate step we established com-
plexity bounds on the verification of boolean automata (without stacks, with
stacks, and with higher order stacks), which are also important models that
arise in verification. Thus we re-established some previously known results for
timed automata using new proof techniques, and proved many new results about
timed pushdown automata and timed higher order pushdown automata.
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Abstract. We introduce a new abstract domain, namely the domain of Interval
Linear Equalities (itvLinEqs), which generalizes the affine equality domain with
interval coefficients by leveraging results from interval linear algebra. The repre-
sentation of itvLinEqs is based on a row echelon system of interval linear equali-
ties, which natively allows expressing classical linear relations as well as certain
topologically non-convex (even unconnected or non-closed) properties. The row
echelon form limits the expressiveness of the domain but yields polynomial-time
domain operations. Interval coefficients enable a sound adaptation of itvLinEqs
to floating-point arithmetic. itvLinEqs can be used to infer and propagate interval
linear constraints, especially for programs involving uncertain or inexact data.
The preliminary experimental results are encouraging: itvLinEqs can find a larger
range of invariants than the affine equality domain. Moreover, itvLinEqs provides
an efficient alternative to polyhedra-like domains.

1 Introduction

In 1976, Karr [12] developed a polynomial-time algorithm to discover affine relation-
ships among program variables (

∑
k akxk = b). This algorithm is also understood as an

abstract domain of affine equalities under the framework of abstract interpretation [5].
The affine equality domain features that the lattice of affine equalities has finite height,
thus no widening is needed to ensure termination of the analysis, which makes it suit-
able for certain analyses, such as precise interprocedural analysis for affine programs
[18]. Up to now, the affine equality domain is still one of the most efficient relational
numerical abstract domains.

In recent related work [10,17,18], one difficulty observed associated with the affine
equality domain is that a rational implementation of this domain can lead to exponen-
tially large numbers. To alleviate this problem, in this paper we seek to implement the
affine equality domain using floating-point numbers, as we did for the convex poly-
hedra domain in [2]. However, simply adapting the affine equality domain to floating-
point arithmetic, both soundness and precision are difficult to guarantee due to pervasive
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rounding errors. E.g., in the floating-point world, when normalizing the coefficient of x
to be 1 in the equality 3x + y = 1, the only way to be sound is to throw this equality
away, since the new coefficient 1

3 is not a representable floating-point number. Thus, a
proper and natural way is to extend the affine equality domain with interval coefficients,
using intervals to enclose numbers not exactly representable in floating-point.

In the analysis and verification of real-life systems, the application data in the model,
especially some physical quantities, may not be known exactly, e.g., elicited by inex-
act methods or by expert estimation. To handle such uncertainty, the application data
are often provided in terms of intervals. Moreover, in program analysis, to cope with
non-linearity in programs (such as multiplication/division of expressions, floating-point
arithmetic), non-linear expressions may be abstracted into linear expressions with in-
terval coefficients through certain abstraction techniques [16]. Thus, intervals appear
naturally in program expressions during static analysis.

This paper introduces an abstract domain of interval linear equalities (itvLinEqs),
to infer relationships of the form

∑
k[ak, bk] × xk = [c, d] over program variables xk

(k = 1, . . . , n), where constants ak, bk, c, d ∈ R∪{−∞,+∞} are automatically inferred by
the analysis. Intuitively, itvLinEqs is an interval extension of the affine equality domain
(
∑

k ak xk = b) [12] and a restriction to equalities of our previous work on the interval
polyhedra domain (

∑
k[ak, bk]xk ≤ c) [3]. itvLinEqs maintains a row echelon system

of interval linear equalities and its domain operations can be constructed analogously
to those of the affine equality domain. Like the affine equality domain, both the time
and space complexity of itvLinEqs is polynomial in the number of program variables
(respectively quartic and quadratic in the worst case).

We illustrate itvLinEqs for invariant generation using a motivating example shown in
Fig. 1. Both the affine equality domain [12] and the convex polyhedra domain [6] will
obtain no information at ①, while itvLinEqs obtains x + [−2,−1]y = 1 at ① and proves
y = [−1,−0.5] at ②, which indicates that neither overflow nor division by zero happens
in the statement y := 1/y + 1.

real x, y;
if random()
then x := y + 1;
else x := 2y + 1;
endif; ①

assume x == 0; ②

y := 1/y + 1;

Loc Affine equalities/Convex polyhedra itvLinEqs
① (no information) x + [−2,−1]y = 1
② x = 0 x = 0 ∧ y = [−1,−0.5]

Fig. 1. A motivating example

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 reviews basic theory of interval linear systems. Section 4 presents the
representation of itvLinEqs. Section 5 describes domain operations of itvLinEqs. Sec-
tion 6 discusses reduction with the interval domain and the floating-point implemen-
tation of itvLinEqs. Section 7 presents initial experimental results before Section 8
concludes.
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2 Related Work

Static Analysis. In the literature, the affine equality domain has been generalized in var-
ious ways, such as the domain of convex polyhedra (

∑
k akxk ≤ b) [6] and the domain of

linear congruence equalities (
∑

k akxk = b mod c) [9]. Recently, Müller-Olm and Seidl
have generalized the analysis of affine relations to polynomial relations of bounded de-
gree [18]. In another direction, Gulwani and Necula [10] presented a polynomial-time
randomized algorithm to discover affine equalities using probabilistic techniques.

The idea of using intervals to help the affine equality domain is not new. Feret has
used a reduced product between the interval domain and the affine equality domain for
the analysis of mobile systems [7]. Recently, the domain of SubPolyhedra [14] has been
proposed based on delicate reductions between intervals and the affine equality domain,
but allows only the constant term of the equality to be an interval.

More recently, we have proposed to use intervals in our domain of interval polyhedra
(
∑

k[ak, bk]xk ≤ c) [3] which generalizes the convex polyhedra domain by using interval
linear inequalities. itvLinEqs differs from it in the following respects:

1. itvLinEqs limits the constraint system to be in row echelon form, while the interval
polyhedra domain has no such limit but restricts interval coefficients to be finite.
E.g., [−∞,+∞]x = 1 (i.e., x � 0) is only representable in itvLinEqs while {x + y ≤
1, x + 2y ≤ 1} is only representable in the interval polyhedra domain.

2. Concerning the implementation, the interval polyhedra domain relies a lot on lin-
ear programming (LP). Since most state-of-the-art LP solvers are implemented us-
ing floating-point numbers, both soundness and “numerical instability” issues of
floating-point LP should be carefully considered [2]. However, itvLinEqs avoids
LP and is lightweight.

Interval Linear Algebra. The challenging problem of solving interval linear systems
has received much attention in the community of interval analysis [19]. Both checking
the solvability and finding the solution of an interval linear system are found to be NP-
hard. Different semantics of solutions of an interval linear system have been considered,
such as weak and strong solutions.

In contrast to the above community, we are interested in designing an abstract do-
main. Thus, we mainly focus on designing new operators for manipulating interval
linear constraints according to program semantics. In addition, endpoints of interval
coefficients are restricted to be finite in the above mentioned work but not in this pa-
per, since infinite interval coefficients may appear naturally after operations such as
linearization [16] and widening (Sect. 5.7) in static analysis.

3 Preliminaries

We first briefly recall basic theory and results on standard interval linear systems [19].
We extend interval linear systems with infinite interval coefficients. Let x = [x, x] be an
interval with its bounds (endpoints) x ≤ x. Let IR be the set of all real intervals [a, a]
where a, a ∈ R. Let IE be the set of all intervals [a, a] where a ∈ R∪{−∞}, a ∈ R∪{+∞}.
Throughout the paper, intervals and other interval objects are typeset in boldface letters.
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Let A ∈ (R ∪ {−∞})m×n, A ∈ (R ∪ {+∞})m×n be two matrices with A ≤ A where the
order is defined element-wise. Then the set of matrices

A = [A, A] = {A ∈ Rm×n: A ≤ A ≤ A}
is called an (extended) interval matrix, and the matrices A, A are called its bounds.
An interval vector is a one-column interval matrix b = {b ∈ Rm: b ≤ b ≤ b}, where
b ∈ (R ∪ {−∞})m, b ∈ (R ∪ {+∞})m and b ≤ b.

Let A be an interval matrix of size m × n, b be an interval vector of size m, and x be
a vector of variables in Rn. The following system of interval linear equalities

Ax = b

denotes an (extended) interval linear system, that is the family of all systems of linear
equalities Ax = b with data satisfying A ∈ A, b ∈ b.

Definition 1 (Weak solution). A vector x ∈ Rn is called a weak solution of the interval
linear system Ax = b, if it satisfies Ax = b for some A ∈ A, b ∈ b. And the set

Σ∃∃(A, b) = {x ∈ Rn : ∃A ∈ A,∃b ∈ b. Ax = b}
is said to be the weak solution set of the system Ax = b.

The weak solution set Σ∃∃(A, b) can be characterized by the following theorem.

Theorem 1. Let Σn
j=1[Ai j, Ai j]x j = [bi, bi] be the i-th row of Ax = b. Then a vector

x ∈ Rn is a weak solution of Ax = b iff both linear inequalities⎧⎪⎨⎪⎩
∑n

j=1 A′i jx j ≤ bi

−∑n
j=1 A′′i jx j ≤ −bi

hold for all i = 1, . . . ,m where A′i j, A
′′
i j are defined through

A′i j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ai j if x j > 0
0 if x j = 0
Ai j if x j < 0

A′′i j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ai j if x j > 0
0 if x j = 0
Ai j if x j < 0

Theorem 1 can be derived from Theorem 2.11 in [19] that we extended to the case
of infinite interval coefficients. Note that for the linear inequality

∑n
j=1 A′i jx j ≤ bi in

Theorem 1, each term A′i jx j will never result in +∞, since A′i j = −∞ may hold only
when x j > 0 and A′i j = +∞ may hold only when x j < 0. Whenever one term A′i jx j

results in −∞, the linear inequality
∑n

j=1 A′i jx j ≤ bi defines the universal space and can
be omitted from the system. The same argument holds for −∑n

j=1 A′′i jx j ≤ −bi.
Recall that a (closed) orthant is one of the 2n subsets of an n-dimensional Euclidean

space defined by constraining each Cartesian coordinate to be either nonnegative or
nonpositive. In a given orthant, each component x j of x keeps a constant sign, so the
intersection of the weak solution set Σ∃∃(A, b) with each orthant can be described as a
not necessarily closed convex polyhedron. In fact, the possible non-closeness happens
in a restricted way so that making it closed will add only a set of points satisfying x j = 0
for some x j. Particularly, if A ∈ IRm×n, the region in each closed orthant is a closed
convex polyhedron [3]. In general, Σ∃∃(A, b) can be non-convex and even unconnected,
e.g., [−1, 1]x = 1 describes the set {x : x ∈ [−∞,−1] ∪ [1,+∞]}.
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Example 1. Given [−∞,+∞]x = 1, according to Theorem 1,

[−∞,+∞]x = 1⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(−∞)x ≤ 1,−(+∞)x ≤ −1} ⇔ {−∞ ≤ 1,−∞ ≤ −1} if x > 0
{(+∞)x ≤ 1,−(−∞)x ≤ −1} ⇔ {−∞ ≤ 1,−∞ ≤ −1} if x < 0
{0x ≤ 1,−0x ≤ −1} ⇔ {0 ≤ 1, 0 ≤ −1} if x = 0

To sum up, [−∞,+∞]x = 1 means x � 0 (since in the case of x = 0 the corresponding
constraint system of [−∞,+∞]x = 1 is infeasible).

4 Representation

Now, we introduce the abstract domain of interval linear equalities (itvLinEqs). The
main idea of itvLinEqs is to use a row echelon system of interval linear equalities as its
representation. The concretization of each element in itvLinEqs is defined as the weak
solution set of the corresponding constraint system.

Constraint Normalization. Throughout this paper, we fix a variable ordering x1 ≺
x2 ≺ . . . ≺ xn. Σk[ak, ak]xk = [b, b] is a universal constraint if [b, b] = [−∞,+∞] or
0 ∈ [b, b] ∧ ∀k. 0 ∈ [ak, ak]. We use Σk[0, 0]xk = [0, 0] as a normalized form for uni-
versal constraints. Let ϕ be a non-universal constraint Σk[ak, ak]xk = [b, b]. Its leading
variable xi is the variable with the least index i such that [ai, ai] � [0, 0]. ϕ is said
to be normalized if the interval coefficient of its leading variable xi satisfies [ai, ai] ∈
{[0, 1], [0,+∞], [1, c], [−1, c′], [−∞,+∞]} where c, c′ ∈ R ∪ {+∞}, c ≥ 1, c′ > 0. Then,
given ϕ which is not normalized, its normalized form can be obtained by dividing the
whole constraint ϕ by either −1 (if [ai, ai] = [−∞, 0]), ±ai (if ai � {0,−∞}), or ±ai

(if ai � {0,+∞}). Note that this normalization operation is exact, i.e., it will cause
no precision loss. For convenience sake, we enforce a normalized form on constraints
throughout this paper.

Row Echelon Form. Let Ax = b be an interval linear system with A ∈ IEm×n and
b ∈ IEm. The system Ax = b is said to be in row echelon form if

1) m = n, and
2) Either xi is the leading variable of the i-th row, or the i-th row is filled with zeros.

itvLinEqs Elements. Each domain element P in itvLinEqs is described as an interval
linear system Ax = b in row echelon form, where A ∈ IEn×n and b ∈ IEn. It represents
the set γ(P) = Σ∃∃(A, b) = {x ∈ Rn : ∃A ∈ A,∃b ∈ b. Ax = b} where each point x is a
possible environment (or state), i.e., an assignment of real values to abstract variables.
Some examples of itvLinEqs elements are shown in Fig. 2.

Row Echelon Abstraction. A system of affine equalities can be equivalently con-
verted into row echelon form via elementary matrix transformations. Unfortunately, not
all systems of interval linear equalities can be exactly expressed in row echelon form.
Let P be an arbitrary system of interval linear equalities. We seek a system in row ech-
elon form ρ(P) such that γ(P) ⊆ γ(ρ(P)). Unfortunately, row echelon abstraction ρ(P)
may not be uniquely defined and the best abstraction may not exist. A row echelon
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Fig. 2. Examples of itvLinEqs elements in 2 dimensions: (a) {[−1, 1]x+y = [0, 1], [−1, 1]y = 0.5};
(b) {[1,+∞]x + y = 1}; (c) {[1, 2]x + [1, 2]y = [2, 4], y = [−3, 3]}

abstraction ρ(P) for P can be constructed based on constraint addition (Sect. 5.3), by
“adding” the constraints in P one by one to a row echelon system initially filled with 0.

Although row echelon abstraction may cause some loss of precision, we enforce
row echelon form in itvLinEqs since it yields polynomial-time domain operations and
avoids the “exponential growth” problem (i.e., producing exponential output) [21]. Fur-
thermore, row echelon form can still represent exactly any affine space. Finally, row
echelon form also makes it easier for us to construct our new domain by following an
analogous framework to the already known domain of affine equalities.

5 Domain Operations

In this section, we discuss the implementation of most common domain operations
required for static analysis over itvLinEqs.

5.1 Constraint Comparison

To enforce a row echelon form, we often need to compare several candidate constraints
and choose the best one to take the place of the i-th row of the system. We first use some
heuristic metrics to estimate the precision of the information contained in a normalized
constraint ϕ.

Definition 2. Let ϕ : (
∑

k[ak, ak]xk = [b, b]) be a normalized constraint and [xk, xk] be
the bounds of xk. Then metrics fweight(ϕ), fwidth(ϕ) ∈ R ∪ {+∞}, fmark(ϕ) ∈ R are defined
as:
1) fweight(ϕ)

def
=
∑

k(ak − ak) × (xk − xk) + (b − b),

2) fwidth(ϕ)
def
=
∑

k(ak − ak) + (b − b),

3) fmark(ϕ)
def
=
∑

k δ(ak, ak) + δ(b, b), where

δ(d, d)
def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if d = d,
+200 else if d = −∞ and d = +∞,
+100 else if d = −∞ or d = +∞,
0 otherwise.



118 L. Chen et al.

Definition 3 (Constraint comparison). Given two normalized constraints ϕ and ϕ′,
we write ϕ � ϕ′ if ( fweight(ϕ), fwidth(ϕ), fmark(ϕ)) ≤ ( fweight(ϕ′), fwidth(ϕ′), fmark(ϕ′)) holds
in the sense of lexicographic order.

Specifically, fweight takes into account variable bounds information; fwidth considers only
the width information of interval coefficients; fmark gives marks to those constraints
having infinite interval coefficients. In this sense, it is guaranteed that an affine equality
is always smaller for � than other kinds of constraints. E.g., (x + y = 1) � (x + y =
[1, 2]) � (x+ y = [1,+∞]). For convenience, we say that a non-universal constraint ϕ is
better than ϕ′ if ϕ � ϕ′ or ϕ′ is a universal constraint. (If ϕ � ϕ′ and ϕ′ � ϕ, we choose
the best one according to the context.) Constraint comparison requires O(n) time.

5.2 Projection

In program analysis, projection is an important primitive to construct assignment trans-
fer functions and interprocedural analysis. In itvLinEqs, it is also useful for constraint
addition and join. We use {�,�,�,�} for interval arithmetic operations.

We first introduce a partial linearization operator ζ(ϕ, x j) to linearize the interval
coefficient of x j in ϕ to be a scalar.

Definition 4 (Partial linearization). Let ϕ: (
∑

k [ak, ak] × xk = [b, b]) be an interval
linear equality and [x j, x j] be the bounds of x j.

ζ(ϕ, x j)
def
=
(
c × x j +

∑
k� j [ak, ak] × xk = [b, b] � [aj − c, aj − c] � [x j, x j]

)
where c can be any real number.

A good choice of c that causes less precision loss depends on the values of aj, aj, x j, x j.
In practice, when [aj, aj] is finite, we often choose c = (a j+a j)/2 that is the midpoint of
[aj, aj], which gives good results in most cases. If one endpoint of the interval [aj, aj]
is infinite, we choose the other endpoint as c. When x j has infinite bounds, we choose
the best one w.r.t. � between resulting constraints given by c = a j and by c = aj.

Theorem 2 (Soundness of the partial linearization operator). Given an interval lin-
ear equality ϕ and a variable x j ∈ [x j, x j], ζ(ϕ, x j) soundly over-approximates ϕ, that
is, ∀x.(x j ∈ [x j, x j] ∧ x ∈ γ(ϕ))⇒ x ∈ γ(ζ(ϕ, x j)).

Now, we consider the problem of projecting out a variable from one constraint and from
a pair of constraints.

Projection by Bounds. To project out x j from one constraint ϕ: (
∑

k[ak, ak]xk = [b, b]),
we simply choose c = 0 in ζ(ϕ, x j). Then

∑
k� j[ak, ak]xk = [b, b]� [a j, aj]� [x j, x j] will

be an overapproximation of ϕ which does not involve x j any more.

Projection by Combination. Let ϕ: (
∑

k[ak, ak]xk = [b, b]) and ϕ′: (
∑

k[a′k, a
′
k]xk =

[b′, b
′
]) be two constraints satisfying [aj, aj] � [0, 0] and [a′j, a

′
j] � [0, 0]. To compute

a constraint φ that does not involve x j and satisfies γ(ϕ) ∪ γ(ϕ′) ⊆ γ(φ), we follow a
similar way to Gaussian elimination. First, we convert the interval coefficient of x j in ϕ

to 1 (e.g., by ζ(ϕ, x j) with c = 1). Assume that we get x j +
∑

k� j[a
′′
k , a

′′
k ]xk = [b′′, b

′′
].
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Algorithm 1. Project(P, x j)

Input: P : an itvLinEqs element Ax = b;
xj : a variable to be projected out;

Output: P′: an itvLinEqs element that does not involve xj and satisfies γ(P) ⊆ γ(P′).

1: P′ ← P
2: for i = 1 to j − 1 do
3: if ([Ai j, Ai j] � [0, 0]) then
4: ϕ← ζ(P′i , xj) with c = 0 // projection by bounds
5: for k = i + 1 to j do
6: if ([Ak j, Ak j] � [0, 0]) then
7: let ϕ′ be the resulting constraint by combining P′i and P′k to project out xj

8: if (ϕ′ � ϕ) then ϕ← ϕ′

9: P′i ← ϕ // ϕ is the best constraint with leading variable xi that does not involve xj

10: P′j ← [0, 0]1×(n+1)

11: return P′

Then by substituting x j with ([b′′, b
′′

]−∑k� j[a
′′
k , a

′′
k ]xk) in ϕ′, the combination of ϕ and

ϕ′ to eliminate x j can be achieved as

φ :
(∑

k� j([a
′
k, a
′
k] � [a′j, a

′
j] � [a′′k , a

′′
k ])xk = [b′, b

′
] � [a′j, a

′
j] � [b′′, b

′′
]
)
.

Particularly, when 0 � [aj, a j], converting [aj, aj] to 1 in ϕ can be also achieved by the
following theorem.

Theorem 3. Let ϕ be
∑

k[ak, ak]xk = [b, b] with 0 � [aj, aj]. Then

ϕ′′ :
(
x j +
∑

k� j([ak, ak] � [aj, aj])xk = [b, b] � [aj, aj]
)

is an overapproximation of ϕ, that is, γ(ϕ) ⊆ γ(ϕ′′).

To convert [aj, aj] to 1 in ϕ, the “division” method in Theorem 3 does not depend on
the bounds of x j but requires that 0 � [aj, aj], while ζ(ϕ, x j) with c = 1 is more general
but depends on the bounds of x j. Both methods may cause some loss of precision.
In practice, in most cases Theorem 3 gives more precise results, especially when the
bounds of x j are coarse or even infinite. E.g., given ϕ : ([1, 2]x+ y = 2) with no bounds
information, converting the coefficient of x to be 1, ζ(ϕ, x j) with c = 1 will give a
universal constraint while Theorem 3 will result in ϕ′′ : (x + [0.5, 1]y = [1, 2]). Note
that some loss of precision happens here, e.g., point (0,1) satisfies ϕ′′ but not ϕ.

Projection in itvLinEqs. We denote as Pi the i-th row of P. Based on the above projec-
tion operations on constraints, we now propose Algorithm 1 to project out x j from an
itvLinEqs element P, denoted as Project(P, x j). For each row, we try various elimination
methods (by bounds and by combining with other constraints) and keep the best result-
ing constraint w.r.t. �. E.g., given P = {x − y = 0, [−1, 1]y = [2,+∞]}, Project(P, y)
results in {[−1, 1]x = [2,+∞]}. Note that the affine space of the result of Project(P, x j)
is always as precise as that given by projecting out x j from the affine space of P via
Gaussian elimination. The worst-case complexity of Algorithm 1 is O(n3).
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5.3 Constraint Addition

We now consider the problem of “adding” a new constraint ϕ : (
∑

k[ak, ak]xk = [b, b])
to an itvLinEqs element P, denoted as [[ϕ]]#(P), i.e., to derive a row echelon abstraction
P′ such that γ(P) ∩ γ(ϕ) ⊆ γ(P′). Let xi be the leading variable of ϕ. We first initialize
P′ as P. Then, we compare ϕ with the i-th row ϕ′ of P′ (i.e., ϕ′ = P′i).

1) If ϕ is parallel to ϕ′, i.e., ∀k.[ak, ak] = [a′k, a
′
k], P′i will be updated as

∑
k[a′k, a

′
k]xk =

[max{b, b′},min{b, b′}]. If max{b, b′} > min{b, b′}, then P′ is infeasible.
2) Otherwise, we choose the best one for � between ϕ and ϕ′ to replace P′i . Next,

we combine ϕ with ϕ′ to eliminate xi (Sect.5.2) and recursively “add” the resulting
constraint ϕ′′ to the updated P′. As the index of the leading variable of the constraint
to add increases strictly, this process terminates when ϕ′′ becomes universal.

Unfortunately, in general neither γ(P′) ⊆ γ(P) nor γ(P′) ⊆ γ(ϕ) holds.
Constraint addition is used as a primitive for operations such as transfer functions,

row echelon abstraction, intersection. The intersection of two itvLinEqs elements P and
P′, denoted as P 
w P′, can be implemented via “adding” the constraints from P′ to
P one by one, from the first row to the last. Note that γ(P) ∩ γ(P′) ⊆ γ(P 
w P′), but
the converse may not hold. Also, 
w is not commutative. Constraint addition can be
computed in time O(n2) and P 
w P′ in time O(n3).

5.4 Join

In order to abstract the control-flow join, we need to design a join operation that returns
an itvLinEqs element which geometrically encloses the two input itvLinEqs elements.
However, in general, there is no best join available for itvLinEqs that computes the
smallest itvLinEqs element enclosing the input arguments. In this paper, we propose a
cheap join operation that we call weak join, which can compute the exact affine hull of
the affine spaces of the input arguments (i.e., no affine relation is missed) and performs
well but without precision guarantee on general interval linear constraints.

5.4.1 Approximate Convex Combination
In the affine equality domain, the join of two affine spaces can be computed via affine
hull that is based on affine combination.1 In the convex polyhedra domain, the join
of two convex polyhedra can be computed via polyhedral convex hull that is based
on convex combination [21].2 Following the same idea, we seek to construct a join
operation for itvLinEqs based on an approximate convex combination.

Given two itvLinEqs elements γ(P) = {x |Ax = b} and γ(P′) = {x |A′x = b′}, based
on the convex combination of points respectively from P and P′ we define a set of points

γ(P) � γ(P′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ Rn

∣∣∣∣∣∣∣∣
∃σ1, σ2 ∈ R, z, z′ ∈ Rn.
x = σ1z + σ2z′ ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧

Az = b ∧ A′z′ = b′ ∧ σ2 ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1 An affine combination of vectors x1, . . . , xn is a vector of the form Σn

i=1λi xi with Σn
i=1λi = 1.

2 A convex combination of vectors x1, . . . , xn is a vector of the form Σn
i=1λi xi with Σn

i=1λi = 1 and
∀i.λi ≥ 0.
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It is obvious that γ(P) � γ(P′) is an overapproximation of the union of γ(P) (when
σ1 = 1) and γ(P′) (when σ2 = 1). To avoid the non-linear terms σ1z and σ2z′, we
introduce y = σ1z as well as y′ = σ2z′ and relax the system into⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ Rn

∣∣∣∣∣∣∣∣
∃σ1, σ2 ∈ R, y, y′ ∈ Rn.
x = y + y′ ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧

Ay = σ1b ∧ A′y′ = σ2b′ ∧ σ2 ≥ 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
which can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣

∃σ1 ∈ R, y ∈ Rn.
A′x − A′y + b′σ1 = b′ ∧

A y − bσ1 = 0 ∧
σ1 = [0, 1]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(1)

which is in row echelon form with respect to the variable ordering x1 ≺ . . . ≺ xn ≺
y1 ≺ . . . ≺ yn ≺ σ1. Projecting out y, σ1 from (1) in sequence (i.e., y1, . . . , yn, σ1) via
the projection operation in itvLinEqs (see Algorithm 1) yields an itvLinEqs element,
denoted as P �w P′. Then we have

γ(P) ∪ γ(P′) ⊆ γ(P) � γ(P′) ⊆ γ(P �w P′).

Note that P �w P′ which is computed via the projection operation in itvLinEqs is def-
initely an itvLinEqs element, while γ(P) � γ(P′) which is a point set defined via exact
existential quantifiers may not be exactly representable in itvLinEqs.

P�w P′ will not miss any affine equality that the affine equality domain will generate
through affine combination, since an affine equality is always kept when compared with
other non-affine equalities according to the definition of constraint comparison�. More-
over, P�w P′ can also generate other kinds of interesting interval linear constraints, such
as linear stripes (of the form

∑
k ak xk = [b, b]), to take the place of those rows where

no affine relation holds anymore after the join operation. In contrast to polyhedral con-
vex hull which is of exponential time in the worst case and the result of which is always
convex, P�w P′ can be achieved in polynomial time O(n4) and can generate non-convex
constraints (although it may miss some linear inequalities).

5.4.2 Interval Combination
Definition 5 (Interval combination). Given two constraints ϕ′: (

∑
k [a′k, a

′
k] × xk =

[b′, b
′
]) and ϕ′′: (

∑
k [a′′k , a

′′
k ] × xk = [b′′, b

′′
]), the interval combination of ϕ′ and ϕ′′

is defined as

ϕ′ � ϕ′′ :
(∑

k [min(a′k, a
′′
k ),max(a′k, a

′′
k )] × xk = [min(b′, b′′),max(b

′
, b
′′

)]
)
.

This definition straightforwardly lifts to itvLinEqs elements. Given two elements in
itvLinEqs P′ and P′′, we define P′ � P′′ as P such that Pi = P′i �P′′i for all i = 1, . . . , n.

Theorem 4 (Soundness of the interval combination). Given two interval linear
equalities ϕ′ and ϕ′′, their interval combination ϕ′ � ϕ′′ soundly over-approximates
the union of ϕ′ and ϕ′′, that is, γ(ϕ′) ∪ γ(ϕ′′) ⊆ γ(ϕ′ � ϕ′′).
Theorem 4 implies the soundness of � on itvLinEqs, i.e., γ(P′) ∪ γ(P′′) ⊆ γ(P′ � P′′).
P � P′ can be computed in time O(n2).
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5.4.3 Weak Join
Definition 6 (Weak join). Given two itvLinEqs elements P and P′, we define a weak
join operation for the itvLinEqs domain as

P �w P′ def
= (P �w P′) 
w (P � P′).

Intuitively, the part P �w P′ follows a similar way as the polyhedral convex hull of the
convex polyhedra domain and thus can construct some important convex constraints
(such as affine equalities and linear stripes). Especially, P �w P′ can calculate the exact
affine hull of the affine spaces of the input. However, for non-affine relations, in gen-
eral P �w P′ has no precision guarantee, since it is implemented based on a series of
projections which often depend on the bounds of variables. Thus, we use the other part
P � P′ to recover some precision by generating non-convex constraints based on syn-
tactic heuristics. P � P′ does not depend on the bounds of variables and can be easily
implemented via the join of the interval domain. P�w P′ can be computed in time O(n4).

Example 2. Given two itvLinEqs elements P = {I = 2, J − K = 5, [−1, 1]K = 1} and
P′ = {I = 3, J − K = 8, [−1, 4]K = 2}. P �w P′ = {3I − J + K = 1, J − K = [5, 8]}.
P�P′ = {I = [2, 3], J−K = [5, 8], [−1, 4]K = [1, 2]}. Thus, P�wP′ = {3I−J+K = 1, J−
K = [5, 8], [−1, 4]K = [1, 2]}. Whereas, when considering only the join of their affine
spaces {I = 2, J−K = 5} and {I = 3, J−K = 8}, affine hull gives {3I − J+K = 1} in the
affine equality domain and polyhedral convex hull gives {3I− J +K = 1, J−K = [5, 8]}
in the convex polyhedra domain.

Theorem 5 (Soundness of the weak join). Given two itvLinEqs elements P and P′,
the weak join P�w P′ overapproximates both P and P′, i.e., γ(P) ∪ γ(P′) ⊆ γ(P�w P′).

5.5 Assignment Transfer Function

The assignment of an interval linear expression e to a variable x j can be modeled using
constraint addition, projection and variable renaming as follows:

[[x j:= e]]#(P)
def
= (Project([[x′j − e = 0]]#(P), x j))[x′j/x j] .

The fresh variable x′j, introduced to hold the value of the expression e, is necessary when

x j appears in e, e.g., x := [−1, 1]x + 1. The assignment transfer function [[x j:= e]]#(P)
can be computed in time O(n3) and its soundness is obvious.

5.6 Inclusion Test

The best order relation � on itvLinEqs is defined as P � P′ iff γ(P) ⊆ γ(P′). The-
orem 1 shows that � can be in principle checked by checking the inclusion in each
orthant in the convex polyhedra domain. However, it may be too expensive to com-
pute (an exponential number of linear programs). To solve this problem, we introduce
an approximate order relation �s on itvLinEqs. Given ϕ: (Σk[ak, ak]xk = [b, b]) and

ϕ′: (Σk[a′k, a
′
k]xk = [b′, b

′
]), ϕ �s ϕ

′ iff [b, b] ⊆ [b′, b
′
] and ∀k.[ak, ak] ⊆ [a′k, a

′
k]. Given

two itvLinEqs elements P and P′, P �s P′ iff for each row P′i of P′, either P′i is a uni-
versal constraint or Pi �s P′i . Then, P �s P′ implies P � P′, while the converse may not
hold. Checking P �s P′ requires O(n2) time.
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5.7 Widening

Unlike the affine equality domain, itvLinEqs does not satisfy the ascending chain con-
dition. Thus, to cope with loops, a widening [5] operator is needed to ensure the con-
vergence of fixpoint computations.

Definition 7. Given two interval linear equalities ϕ′ : (
∑

k[a′k, a
′
k]xk = [b′, b

′
]) and

ϕ′′ : (
∑

k[a′′k , a
′′
k ]xk = [b′′, b

′′
]), we define the widening on constraints ϕ′ and ϕ′′ as

ϕ′ �row ϕ
′′ :
(∑

k([a′k, a
′
k] �itv [a′′k , a

′′
k ])xk = ([b′, b

′
] �itv [b′′, b

′′
])
)

where �itv is any widening of the interval domain [4], such as:

[a, a]�itv[b, b] = [a ≤ b ? a : −∞, a ≥ b ? a : +∞]

Then we define the widening in the itvLinEqs domain as follows:

Definition 8 (Widening of itvLinEqs). Given two itvLinEqs elements P′ � P′′, we

define the widening as P′ �ile P′′ def
= P where

Pi =

{
P′′i if P′′i is an affine equality
P′i �row P′′i otherwise

Note that if P′ � P′′ does not hold, we use P′ �ile (P′ �w P′′) instead. The widening
�ile keeps all affine equalities from P′′, thus will not cause any precision loss on affine
relations. When no affine relation holds at the i-th row, P′i �row P′′i recovers precision
by capturing the stable information between a pair of evolving constraints P′i and P′′i . It
is easy to check that the widening �ile satisfies P′ � (P′ �ile P′′) and P′′ � (P′ �ile P′′).
And the convergence of the widening �ile can be guaranteed by the following two facts:
1) The lattice of affine equalities has finite height, and the number of affine equalities
in P′′ is decreasing until it reaches the dimension of the affine space in the program; 2)
The number of interval coefficients (including both variable coefficients and constant
coefficients) in an itvLinEq element is at most 1

2 n(n + 3), and the interval widening
�itv at each position of these interval coefficients will guarantee the convergence of the
non-affine part. The complexity of the widening �ile is O(n2).

Widening with Thresholds. Widening with thresholds [1] �T is a widening param-
eterized by a finite set of threshold values T , including −∞ and +∞. Widening with
thresholds for the interval domain is defined as:

[a, a] �T
itv [b, b] = [a ≤ b ? a : max{� ∈ T | � ≤ b},

a ≥ b ? a : min{h ∈ T | h ≥ b}]
By replacing �itv with �T

itv in �row, our widening with thresholds �T
row lifts the interval

widening with thresholds from individual variables to multiple variables in a natural
way. Quite interestingly, it can guess not only the lower and upper bounds of the con-
stant term (like augmenting the template polyhedra domain [20] with thresholds on the
constant term), but also the shape (i.e., the

∑
k[ak, ak]xk part) of the stable invariants.
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Example 3.

real x, y;
x := 0.75 ∗ y + 1;
while true do
① if random()

then x := y + 1;
else x := 0.25 ∗ x + 0.5 ∗ y + 1;

done;

Given the above program, after the first iteration, the input arguments of the widening
at ① are ϕ : ([1, 1]x + [−0.75,−0.75]y = [1, 1]) and ϕ′ : ([1, 1]x + [−1,−0.6875]y =
[1, 1.25]).ϕ�rowϕ

′ results in [1, 1]x+[−∞,+∞]y = [1,+∞]. However, if we use ±n±0.5
(n ∈ N and n ≤ 2) together with +∞ and −∞ as the threshold set T , ϕ�T

row ϕ
′ will result

in [1, 1]x + [−1,−0.5]y = [1, 1.5], which will be stable in the subsequent iterations.

6 Implementation

Reduction with the Interval Domain. Variable bounds play a very important role
in our domain. E.g., both partial linearization (Def. 4) and constraint comparison (in
Sect. 5.1) rely on variable bounds. However, itvLinEqs itself has limited ability to infer
bounds information. Thus we employ the interval domain to maintain such information.

To avoid the well-known convergence problem of interaction between reduction and
widening [15], we perform reduction between the interval domain and itvLinEqs only
in one direction, i.e., from itvLinEqs to the interval domain. After certain domain oper-
ations (such as test/assignment transfer functions, meet), we propagate the information
from itvLinEqs to the interval domain to tighten the bounds. Such bound tightening is
performed through constraint propagation techniques, as in [2], by exploiting the fact
that each constraint can be used to tighten the bounds of those variables involved.

Floating-Point Implementation. Up to now, the whole domain of itvLinEqs was con-
sidered in exact arithmetic. Now, we consider the problem of implementing itvLinEqs
using floating-point numbers, since floating-point numbers are time and memory effi-
cient. itvLinEqs is mainly based on interval arithmetic, which can be easily implemented
soundly via interval arithmetic with outward rounding (i.e., rounding upper bounds up-
ward and lower bounds downward). And this is sufficient to guarantee that all domain
operations implemented in floating-point in this way are sound.

However, a floating-point implementation of itvLinEqs may also cause other issues.
First, floating-point itvLinEqs may miss some affine equalities due to rounding errors,
that is to say, floating-point itvLinEqs is not necessarily strictly more powerful than
the exact (rational) affine equality domain. Normalizing an interval linear equality may
not be exact any more in the floating-point world, e.g., normalizing 3x + y = 1. Also,
the analysis based on floating-point itvLinEqs may suffer from the known stabilization
problem of floating-point iterations [1]. However, the widening with thresholds can
partly alleviate this problem. E.g., we can choose thresholds like ±2±n(n ∈ N), as the
division and multiplication by these threshold values are simply shifting binary bits and
are exact in most cases.
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Program Analyzer FP-itvLinEqs polkaeq Result
name(#vars) #∇delay #iter. #= #� time(ms) #iter. #= time(ms) Invar.

Karr1(3) 1 4 1 1 13 4 1 8 >

Karr2(4) 1 1 2 1 10 1 2 7 >

GS1(4) 1 1 2 3 19 1 2 13 >

GS2(4) 1 1 2 0 9 1 2 7 =

MOS1(6) 1 8 1 1 66 8 1 33 >

MOS2(1) 1 1 1 0 3 1 1 5 =

policy1(2) 1 4 1 1 12 4 1 10 >

Karr1 f(3) 1 5 0 2 19 3 0 9 >

Deadcode(2) 1 1 1 1 4 1 0 11 >

Fig. 3. Experimental results comparing FP-itvLinEqs with a domain for affine equalities

7 Experiments

We have developed a prototype domain, FP-itvLinEqs, using double precision floating-
point numbers. FP-itvLinEqs is interfaced to the Apron numerical abstract domain li-
brary [11]. Our experiments were conducted using the Interproc [13] static analyzer.
In order to assess the precision and efficiency of FP-itvLinEqs, we compare the ob-
tained invariants and the performance of FP-itvLinEqs with polkaeq [11] which is an
implementation in exact arithmetic to infer affine equalities,3 NewPolka [11] which is
an implementation in exact arithmetic of the convex polyhedra domain, as well as itvPol
[3] which is a sound floating-point implementation of our interval polyhedra domain.

We evaluated FP-itvLinEqs on three sets of examples. The results are summarized
in Figs. 3-5. The column “#∇delay” specifies the value of the widening delay param-
eter for Interproc (i.e., the number of loop iterations performed before applying the
widening operator). “#iter.” gives the number of increasing iterations during the anal-
ysis. “Result Invar.” compares as a whole the invariants obtained. A “>” (“<”, “�”)
indicates that the left analysis outputs stronger (weaker, incomparable) invariants than
the right analysis. “time” presents the analysis times (where “>1h” indicates a timeout)
when the analyzer is run on a 1.6GHz PC with 768MB of RAM running Fedora 9.

Comparison with a Domain for Affine Equalities. We first compare FP-itvLinEqs
with polkaeq on a collection of small examples for discovering affine equalities, which
were obtained from [12,18,10,8]. Fig. 3 summarizes the results on these examples. The
number of discovered invariants is given by “#=” for affine equalities and “#�” for other
kinds of constraints. For these programs, FP-itvLinEqs can find all the affine relations
that polkaeq finds, since indeed such programs involve only small integer values, thus
the floating-point computation causes little or even no precision loss. FP-itvLinEqs also
finds additional non-affine constraints. For the program Karr1 f which is the floating-
point version of Karr1, the affine equalities that hold in Karr1 do not hold in Karr1 f
any more, but FP-itvLinEqs can still find an interval linear invariant that involves 3
variables. For the program Deadcode (whose source code is {x := [0, 1]; if (x==2) then

3 In fact, polkaeq is implemented on top of NewPolka convex polyhedra rather than Karr’s al-
gorithm [12], but polkaeq is as expressive as Karr’s algorithm.
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Program Analyzer FP-itvLinEqs NewPolka itvPol Result
name(#vars) #∇delay #iter. #≤ #� time #iter. #≤ time #iter. #≤ #� time Invar.

policy2(2) 1 5 3 1 20ms 6 2 22ms 5 3 0 46ms > >

policy3(2) 1 5 2 2 18ms 6 2 20ms 5 2 2 49ms > <

policy4(2) 1 5 3 1 19ms 7 1 24ms 6 2 1 59ms > �
bubblesort(4) 1 3 3 3 87ms 8 2 58ms 8 1 3 123ms > �

symmetricalstairs(2) 1 6 3 0 33ms 6 3 31ms 5 2 0 45ms < >

maccarthy91(3) 1 5 1 2 28ms 4 2 15ms 4 2 3 83ms � <

incdec(32) 3 8 26 12 32s × × >1h × × × >1h > >

mesh2X2(32) 5 8 24 18 20s × × >1h 7 5 3 190s > �
bigjava(44) 3 7 18 16 43s × × >1h 6 6 4 1206s > �

Fig. 4. Experimental results comparing FP-itvLinEqs with domains for inequalities

y := 1; else y := x;}), at the end of the program, FP-itvLinEqs proves y = x whereas
polkaeq can not find any affine equality.

Comparison with Domains for Inequalities. The second set of examples obtained
from [8,2,20] is for discovering inequalities, as shown in Fig. 4. The number of discov-
ered invariants is given by “#≤” for linear inequalities (including affine equalities and
linear stripes, each of which is counted as two linear inequalities), and “#�” for other
kinds of constraints. The left sub-column of “Result Invar.” compares FP-itvLinEqs
with NewPolka while the right sub-column compares FP-itvLinEqs with itvPol. Com-
pared with NewPolka, in most cases FP-itvLinEqs gives more precise results, since
FP-itvLinEqs finds some non-convex interval linear invariants which make the over-
all feasible space of the invariants found (at each program point) smaller than that by
NewPolka. Particularly, for large-dimension examples, NewPolka fails to complete the
analysis in 1h, while FP-itvLinEqs works well. Compared with itvPol, FP-itvLinEqs
seems rather efficient. In fact, the efficiency difference becomes increasingly promi-
nent when the number of variables increases. Besides, FP-itvLinEqs generates some
invariants with infinite interval coefficients (e.g., 2 such constraints for policy3 and
bubblesort, 5 for incdec and mesh2X2, 12 for bigjava) out of the reach of itvPol.

Widening with Thresholds. In Fig. 5, we compare FP-itvLinEqs using widening with
thresholds and without thresholds (while we use only widening without thresholds in
Figs. 3-4). Example3 corresponds to the previous example in Sect. 5.7. ratelimiter f is
a floating-point program extracted from a real-life system [2]. nonlinear is an example
involving nonlinear expressions. When using widening with thresholds ({±n± 0.5 |n∈N,

Program Analyzer
FP-itvLinEqs Result

without thresholds with thresholds Invar.
name(#vars) #∇delay #iter. time(ms) #iter. #newinv. time(ms)

Example3(2) 1 4 12 4 1 18 <

ratelimiter f(5) 2 5 88 5 2 91 <

nonlinear(3) 1 5 29 7 1 56 <

Fig. 5. Experimental results for widening with thresholds
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n≤150} ∪ {−∞,+∞}), FP-itvLinEqs finds tighter or new invariants, the number of which
is given by “#newinv.” in Fig. 5.

8 Conclusion

We have presented an abstract domain of interval linear equalities (itvLinEqs), which
extends the affine equality domain with interval coefficients. itvLinEqs can represent
and manipulate interval linear constraints, which natively allows expressing classical
linear relations as well as certain non-convex properties. itvLinEqs enforces a row ech-
elon form of the constraint system, which enables a polynomial-time implementation.
We have shown through experiments that itvLinEqs can find interesting interval linear
invariants in practice, including commonly used affine equalities, linear stripes, linear
inequalities. itvLinEqs provides a time and space efficient alternative to polyhedra-like
domains.

Future work will consider the variable ordering in itvLinEqs, since it has an impact
on the precision of the overall analysis. In order to choose a proper variable ordering,
data dependencies between variables need to be considered. It is also possible to main-
tain dynamic variable ordering, e.g., different orderings in different loops. It would be
also interesting to consider other heuristic strategies to choose which constraint to keep
and which to drop to maintain a row echelon form, e.g., to keep those constraints ap-
pearing syntactically in the program. We also plan to improve the prototype implemen-
tation (e.g., using a sparse representation for the constraint matrix) and use itvLinEqs
for analyzing large realistic programs. Another direction of the work is to relax the row
echelon form and allow several constraints per leading variable.
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11. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis.
In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer,
Heidelberg (2009)

12. Karr, M.: Affine relationships among variables of a program. Acta Inf. 6, 133–151 (1976)
13. Lalire, G., Argoud, M., Jeannet, B.: Interproc,
http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/

14. Laviron, V., Logozzo, F.: Subpolyhedra: A (more) scalable approach to infer linear inequal-
ities. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 229–244.
Springer, Heidelberg (2009)
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16. Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363.
Springer, Heidelberg (2005)

17. Müller-Olm, M., Seidl, H.: A note on Karr’s algorithm. In: Dı́az, J., Karhumäki, J., Lepistö,
A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1016–1028. Springer, Heidelberg
(2004)

18. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. In: ACM
POPL 2004, pp. 330–341. ACM Press, New York (2004)

19. Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Linear Op-
timization Problems with Inexact Data, pp. 35–77. Springer, Heidelberg (2006)

20. Sankaranarayanan, S., Sipma, H., Manna, Z.: Scalable analysis of linear systems using math-
ematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41.
Springer, Heidelberg (2005)

21. Simon, A., King, A.: Exploiting sparsity in polyhedral analysis. In: Hankin, C., Siveroni, I.
(eds.) SAS 2005. LNCS, vol. 3672, pp. 336–351. Springer, Heidelberg (2005)

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/


Interpolant Strength

Vijay D’Silva1,�, Daniel Kroening1, Mitra Purandare2,��,
and Georg Weissenbacher1,2,� � �

1 Computing Laboratory, Oxford University
2 Computer Systems Institute, ETH Zurich

Abstract. Interpolant-based model checking is an approximate method
for computing invariants of transition systems. The performance of the
model checker is contingent on the approximation computed, which in
turn depends on the logical strength of the interpolants. A good approx-
imation is coarse enough to enable rapid convergence but strong enough
to be contained within the weakest inductive invariant. We present a
system for constructing propositional interpolants of different strength
from a resolution refutation. This system subsumes existing methods and
allows interpolation systems to be ordered by the logical strength of the
obtained interpolants. Interpolants of different strength can also be ob-
tained by transforming a resolution proof. We analyse an existing proof
transformation, generalise it, and characterise the interpolants obtained.

1 Introduction

Symbolic model checking techniques manipulate implicit representations of sets
of states to verify correctness properties of transition systems. Image compu-
tation and fixed point detection, two essential steps in model checking, involve
quantifier elimination, which is computationally expensive. Interpolant-based
model checking of finite state systems uses approximate images to compute an
inductive invariant that suffices to show correctness [11]. The approximate im-
ages are constructed from resolution refutations generated by a SAT solver,
thereby avoiding quantifier elimination.

The performance of an interpolant-based model checker depends on the ap-
proximate images obtained. A coarse approximation typically contains spurious
errors and causes the model checker to restart with a larger formula. Model
checking with a larger formula is more resource intensive than with a smaller
formula. On the other hand, a tight approximation delays convergence to a fixed
point. If the property holds, the ideal approximate image is an inductive invariant
that implies the property. If the property does not hold, the ideal approximation
is one which enables the error to be detected efficiently. Thus, rather than strong
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or weak interpolants, procedures to compute interpolants of different strengths
are required. A procedure for constructing interpolants from resolution refuta-
tions is called an interpolation system in this paper.

We study two orthogonal approaches to obtaining interpolants of different
strengths. The first approach is to construct different interpolants from a refuta-
tion. This is a challenge because only two interpolation systems exist; a symmet-
ric system, published independently by Huang [6], Kra j́ıček [8] and Pudlák [13],
and McMillan’s system [11]. We are not aware of any results relating these two
systems. The second approach, suggested by Jhala and McMillan [7], is to re-
order the sequence of resolution steps in a proof to strengthen the interpolants
obtained. Our implementation of their algorithm led us to find an error and was
the motivation for much of this work. The effect of proof transformations has
only been studied for McMillan’s system [11]. It is not known if such transfor-
mations result in stronger interpolants in other systems.

Contributions. The contributions of this paper are as follows.

– An ordered family of linear-time interpolation systems. This family subsumes
existing interpolation systems. An interpolation system Itp maps a resolu-
tion refutation R to an interpolant Itp(R). The order guarantees interpolant
strength; if Itp1 � Itp2 then Itp1(R) implies Itp2(R) for any refutation R.

– Operators for composing interpolation systems. The ordered family of inter-
polation systems with these operators forms a complete lattice with McMil-
lan’s systems being the strongest. Interpolation systems can be composed to
obtain stronger and weaker interpolants as required.

– A study of the effect of pivot reordering on interpolant strength. A proof
transformation due to Jhala and McMillan [7] is shown to produce invalid
refutations and redundant interpolants in cases. These cases are analysed
and characterised.

This paper is organised as follows. Background material on model checking and
resolution proofs is covered in § 2. Existing interpolation systems are presented
in § 3 and our parametrised interpolation system appears in § 4. Proof transfor-
mations that change interpolant strength are studied in § 5. We discuss related
work in § 6 and conclude in § 7. The proofs of all statements in this paper are
presented in the appendices of the supplemental technical report [5].

2 Preliminaries

2.1 Finite State Model Checking

A transition system M = (S, T ) is a finite set of states S and a transition relation
T ⊆ S × S. Fix the sets J and F , where J ∩ F = ∅, as sets of initial and failure
states respectively. A system is correct if no state in F is reachable from any
state in J . The image operator post : ℘(S) → ℘(S) maps a set of states to its
successors: post(Q) = {s′ ∈ S|s ∈ Q and (s, s′) ∈ T }. Let post0(Q) = Q and
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posti+1(Q) = post(posti(Q)). The pre-image operator pre : ℘(S) → ℘(S) maps
a set of states to its predecessors: pre(Q) = {s ∈ S|s′ ∈ Q and (s, s′) ∈ T }. A
set of states P is inductive if post(P ) ⊆ P . The set P is an inductive invariant if
P is inductive and J ⊆ P . Given J and F , the strongest inductive invariant RJ

is the set of states reachable from J . In a correct system, the weakest inductive
invariant WF is the largest set of states from which F is unreachable. These sets
have the standard fixed point characterisations given below.

RJ = μQ.(J ∪ post(Q)) WF = S \ μQ.(F ∪ pre(Q))

An approximate image operator ˆpost : ℘(S) → ℘(S) satisfies that post(Q) ⊆
ˆpost(Q) for all Q ∈ ℘(S). An approximation of the set of reachable states is the

set:
R̂J =

⋃

i≥0

ˆpost
i
(J) .

Observe that if R̂J ∩ F = ∅, then F is not reachable from J . Thus, it suffices to
compute an approximation R̂J to decide correctness.

2.2 Interpolant-Based Model Checking

Interpolant-based model checking is a method for computing an approximation
R̂J as above. An approximate operator ˆpost is implemented using a refutation
generating SAT solver and an interpolation system. Finite sets and relations
are encoded in propositional logic. We use sets or relations and their encoding
interchangeably. For instance, the propositional encoding of T ⊆ S×S is written
T (x, x′), where x and x′ are vectors of propositional variables. Consider a set
of states Q and k ≥ 0. A Bounded Model Checking (BMC) instance is a formula
A(x0, x1) ∧B(x1, . . . , xk), where A and B are as below.

A(x0, x1)
def= Q(x0) ∧ T (x0, x1)

B(x1, . . . , xk) def= T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ (F (x1) ∨ · · · ∨ F (xk))
(1)

If the BMC instance is satisfiable, F is reachable from a state in Q. The for-
mula P (x1)

def= ∃x0.A(x0, x1) encodes the image post(Q). If the formula Q(x0)
can be replaced by Q(x0) ∨ P (x0), we can repeatedly compute images until we
obtain a formula encoding RJ . The formula P (x1) is quantified and quantifier
elimination is necessarily expensive, so computing RJ in this manner is not fea-
sible. Instead, an efficient procedure for computing a formula I(x1) such that
∃x0.A(x0, x1) ⇒ I(x1) provides an implementation of ˆpost applicable to compute
R̂J . An interpolation system is such a procedure.

Craig [4] showed that for a valid implication A ⇒ B, where A and B are first
order formulae containing no free variables, there is a formula I such that A ⇒ I,
I ⇒ B and the non-logical symbols in I occur in both A and B. The formula
I is called the Craig interpolant. Propositional logic has the Craig interpolation
property as well [3,8]. The notion is stated differently to apply to CNF formulae.
Let Var(A) be the set of propositional variables occurring in a formula A.
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Definition 1 (Interpolant). An interpolant for a pair of CNF formulae (A, B),
where A ∧B is unsatisfiable, is a propositional formula I such that A ⇒ I, I ∧ B
is unsatisfiable and Var(I) ⊆ Var(A) ∩Var(B).

If the CNF pair (A(x0, x1), B(x1, . . . , xk)) in Equation 1 is unsatisfiable, an
interpolant I(x1) is an approximate image. Successive images are computed by
replacing Q(x0) in A(x0, x1) with I(x0). The definition of an interpolant is not
symmetric with respect to A and B; however, the following relationship holds.

Lemma 1. If I is an interpolant for (A, B), ¬I is an interpolant for (B, A).

2.3 Resolution Refutations

The procedures for checking if a BMC formula is satisfiable can be extended
to generate resolution refutations. Interpolants are computed from resolution
refutations. Let X be a set of propositional variables and LitX = {x, x |x ∈ X}
be the set of literals over X , where t or equivalently ¬t is the negation of t. Let
F denote false and T denote true. We write var(t) for the variable occurring in
the literal t.

A clause C is a set of literals. The empty clause � contains no literals. The
disjunction of two clauses C and D is their union, denoted C∨D, which is further
simplified to C ∨ t if D is the singleton {t}. A formula in Conjunctive Normal
Form (CNF) is a conjunction of clauses, also represented as a set of clauses. For
a clause C and a formula F , let C|F be the restriction of C to variables in F .
That is, C|F

def= C ∩ {x, x |x ∈ Var(F )}.
The resolution principle states that an assignment satisfying the clauses C∨x

and D∨x also satisfies C ∨D. The clauses C ∨ x and D∨x are the antecedents,
x is the pivot, and C ∨D is the resolvent. Let Res(C, D, x) denote the resolvent
of the clauses C and D with the pivot x.

Definition 2. A resolution proof R is a DAG (VR, ER, pivR, �R, sR), where VR

is a set of vertices, ER is a set of edges, pivR is a pivot function, �R is the clause
function, and sR ∈ VR is the sink vertex. An initial vertex has in-degree 0. All
other vertices are internal and have in-degree 2. The sink has out-degree 0. The
pivot function maps internal vertices to variables. For an internal vertex v and
(v1, v), (v2, v) ∈ ER, �R(v) = Res(�R(v1), �R(v2), pivR(v)).

The subscripts above are dropped if clear. A vertex v1 in R is a parent of v2 if
(v1, v2) ∈ ER. Note that the value of � at internal vertices is determined by that
of � at initial vertices and the pivot function. We write v+ for the parent of v
with piv (v) in �(v+) and v− for the parent with ¬piv (v) in �(v−).

A proof R is a resolution refutation if �(s) = �. Henceforth, the words proof
and refutation connote resolution proofs and resolution refutations. An (A, B)-
refutation R of an unsatisfiable CNF pair (A, B), is one in which �R(v) is an
element of A or B for each initial vertex v ∈ VR. Note that an (A, B)-refutation
is also a (B, A)-refutation.
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3 Comparison of Interpolation Systems

In this section, we highlight issues related to interpolant strength using examples.
We recall two interpolation systems from the literature. The examples show that
they produce different results, that there are interpolants not obtained in either
system, and that weaker interpolants can be beneficial for model checking.

3.1 Interpolation Systems

An interpolation system is a procedure for constructing an interpolant from an
(A, B)-refutation. Different linear-time interpolation systems exist. The first sys-
tem, which we call the symmetric system, was proposed by Huang [6], Kra j́ıček [8]
and Pudlák [13]. Another system was proposed by McMillan [11]. Both systems
map vertices in a refutation to a formula called the partial interpolant.

Formally, an interpolation system Itp is a function that given an (A, B)-
refutation R yields a function, denoted Itp(R, A, B), from vertices in R to
formulae over Var(A, B). An interpolation system is correct if for every (A, B)-
refutation R with sink s, it holds that Itp(R, A, B)(s) is an interpolant for (A, B).
We write Itp(R) for Itp(R, A, B)(s) when A and B are clear. Let v be a vertex
in an (A, B)-refutation R. The pair (�(v), Itp(R, A, B)(v)) is an annotated clause
and is written �(v) [Itp(R, A, B)(v)]. An interpolation system can be presented
as an extension of resolution using annotated clauses. This style of presentation
was introduced by McMillan [12].

Definition 3 (Symmetric System). The symmetric system ItpS maps ver-
tices in an (A, B)-refutation R to partial interpolants as defined below.

For an initial vertex v with �(v) = C

(A-clause)
C [F] if C ∈ A (B-clause)

C [T] if C ∈ B

For an internal vertex v with piv(v) = x, �(v+) = C1 ∨ x and �(v−) = C2 ∨ x

C1 ∨ x [I1] C2 ∨ x [I2]
C1 ∨ C2 [I3]

(A-Res) if x ∈ Var(A) \Var(B), I3
def= I1 ∨ I2

(AB-Res) if x ∈ Var(A) ∩Var(B), I3
def= (x ∨ I1) ∧ (x ∨ I2)

(B-Res) if x ∈ Var(B) \Var(A), I3
def= I1 ∧ I2

See [3,14] for proofs of correctness. The inverse of an interpolation system, de-
noted Itp′, is defined as Itp′(R, A, B)(v) def= Itp(R, B, A)(v) vertices v in R. An in-
terpolation system Itp is symmetric if Itp(R, A, B)(s) = ¬Itp′(R, A, B)(s). Huang
has shown that ItpS is symmetric [6, Lemma 13].
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a1a2 [a2] a1a3 [a3]

a2 [a2]a2a3 [a2 ∨ a3]

a3 [a3 ∧ a2]

a2a3 [�] a2a4 [�] a4 [�]

a2 [�]

a3 [�]

� [a3 ∧ a2]

(a) McMillan’s System

a1a2 [⊥] a1a3 [⊥]

a2 [⊥]a2a3 [⊥]

a3 [⊥]

a2a3 [�] a2a4 [�] a4 [�]

a2 [�]

a3 [�]

� [a3]

(b) Symmetric System

Fig. 1. Refutation yielding different interpolants for different systems

Definition 4 (McMillan’s System). McMillan’s system ItpM maps vertices
in an (A, B)-refutation R as to partial interpolants as defined below.

For an initial vertex v with �(v) = C

(A-clause) C [C|B ] if C ∈ A (B-clause) C [T] if C ∈ B

For an internal vertex v with piv(v) = x, �(v+) = C1 ∨ x and �(v−) = C2 ∨ x

C1 ∨ x [I1] C2 ∨ x [I2]
C1 ∨ C2 [I3]

(A-Res) if x /∈ Var(B), I3
def= I1 ∨ I2

(B-Res) if x ∈ Var(B), I3
def= I1 ∧ I2

See [12] for McMillan’s proof of correctness. Example 1 shows that the interpolants
obtained from ItpM and ItpS are different and that ItpM is not symmetric.

Example 1. Let A be the formula (a1∨a2)∧ (a1∨a3)∧a2 and B be the formula
(a2 ∨ a3) ∧ (a2 ∨ a4) ∧ a4. An (A, B)-refutation R is shown in Figure 1. The
partial interpolants in McMillan’s system are shown in Figure 1(a) and those
in the symmetric system in Figure 1(b). We have that ItpM (R) = a3 ∧ a2 and
ItpS(R) = a3. For the inverse systems, the interpolants are Itp′M (R) = a2 ∧ a3
and Itp′S(R) = a3. Observe that ItpM (R) ⇒ ItpS(R), ItpS(R) ⇔ ¬Itp′S(R), and
¬Itp′S(R) ⇒ ¬Itp′M (R). �
Example 2 below shows that there are interpolants that cannot be obtained by
these systems and that the interpolants from ItpM and ItpS may coincide.

Example 2. Let A be the formula a1∧(a1∨a2) and B be the formula (a1∨a2)∧a1.
An (A, B)-refutation R is shown alongside. We obtain the
following interpolants: ItpM (R) = a1∧a2, ItpS(R) = a1∧a2,
and ¬Itp′M (R) = a1∨a2. In addition, a1 is an interpolant for
A∧B, as is a2. However, we cannot obtain these interpolants
from ItpM , ItpS Itp′M or Itp′S .

a1

a1a2 a1a2 a1

a2

a1

� �
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a2a1a0

a2a1a0

a2a1a0

�

�

�

J(a) def= (a2 ∧ a1 ∧ a0)

T (a, a′) def= (a2 ∧ a1 ⇒ a′
2 ∧ a′

1) ∧ ➀

(a2 ∧ a1 ⇒ a′
2 ∧ a′

1) ∧ ➁

(a2 ∧ a1 ⇒ a′
2 ∧ a′

1) ∧ ➂

(a2 ∧ a1 ⇒ a′
2 ∧ a′

1) ∧ ➃

(a′
2 ∧ a′

1 ∨ a′
2 ∧ a′

1 ∨ a′
2 ∧ a′

1) ⇒ a′
0

F (a) def= a0 ∧ (a1 ∨ a2)

Fig. 2. A transition system implementing a binary counter

3.2 Interpolant Strength and Model Checking

In Examples 1 and 2, the interpolant obtained from ItpM implies all other inter-
polants. In § 4, we prove that the interpolant from ItpM implies the interpolants
obtained from all the systems we propose. Stronger interpolants represent more
precise approximations, so one may ask why other systems should be considered.

We make two arguments for studying other systems. First, the approximate
image operator realised using interpolation is not monotone. Using a more precise
approximation in one iteration does not guarantee a more precise approxima-
tion after two iterations. Second, a coarse approximation may converge to an
inductive invariant faster than a precise one as Example 3 illustrates.

Example 3. The state machine in this example cycles through the sequence
0, 2, 4. Let S = {0, . . . , 7} be the set of all states and J = {0} be the initial
state set. The formulae J(a) and T (a, a′) over the variables a = (a2, a1, a0)
are shown in Figure 2. The transitions encoded by the conjuncts ➀, ➁, and ➂
connect reachable states, whereas the transitions encoded by the conjunct ➃

connect unreachable states. Failure states, encoded by the formula F (a), are
odd values less than 6.

Let A1 be J(a) ∧ T (a, a′) and B1 be F (a′). An (A1, B1)-refutation R1 is
shown in Figure 3 along with the partial interpolants obtained from ItpM . The
formula I1(a′) def= ItpM (R1) = a′

2 ∧ a′
1 ∧ a′

0 is equivalent to the exact image
∃a . J(a) ∧ T (a, a′). In the next iteration of the model checker, a formula A2
is constructed by replacing J(a) with J(a) ∨ I1(a) in A1. One can construct
a sequence of pairs (Ai, Bi) and a sequence of (Ai, Bi)-refutations Ri so that
ItpM (Ri) is the set of states reachable from J(a) in i steps. In contrast, the
symmetric interpolant ItpS(R1) = a′0 is an inductive invariant. Model checking
with a weaker interpolation system converges more quickly in this case. �
We do not claim that such proofs are generated by the SAT solvers used in
practice. The example only shows that there are situations in which weaker
interpolants lead to better performance.
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a2a1a
′
1 [a′1] a1 [⊥] a2 [⊥] a2a1a

′
2 [a′2]

a′2a
′
1a

′
0 [a′2 ∨ a′1 ∨ a′0]

a′0 [�]

a2a
′
1 [a′1] a1a

′
2 [a′2]

a′1 [a′1]

a′2 [a′2]

a′1a
′
0 [a′2 ∧ a′1 ∨ a′2 ∧ a′0]

a′0 [a′2 ∧ a′1 ∧ a′0]

� [a′2 ∧ a′1 ∧ a′0]

J(a) = a2 ∧ a1

T (a, a
′) = (a2 ∨ a1 ∨ a

′
1)∧

(a2 ∨ a1 ∨ a
′
2)∧

(a′
2 ∨ a

′
1 ∨ a

′
0)

F (a′) = a
′
0

Fig. 3. Refutation with McMillan’s interpolant of J(a)∧T (a, a′) and F (a′). The figure
shows a contradictory subset of the clauses of a CNF encoding of the formulae.

4 Labelled Interpolation Systems

In this section, we introduce labelled interpolation systems. In § 4.1 we define
labelled interpolation systems and show that they are strictly more general than
the interpolation systems from § 3.1. In § 4.2 we show how labelled interpolation
systems can be composed to obtain stronger and weaker interpolants.

4.1 Labelling Functions and Interpolation

Definition 5 (Labelling Function). Let (S,!,�,�) be the lattice below, where
S = {⊥, a, b, ab} is a set of symbols and !, � and � are defined by the Hasse di-
agram. A labelling function LR : VR × Lit → S for a refutation R over a set of
literals Lit satisfies that for all v ∈ VR and t ∈ Lit:

1. LR(v, t) = ⊥ iff t /∈ �R(v)
2. LR(v, t) = LR(v+, t) � LR(v−, t) for an internal vertex

v and literal t ∈ �R(v). ⊥
a b

ab

Due to condition (2) above, the labelling function for literals at internal vertices
is completely determined by the labels of literals at initial vertices. A variable x
is A-local in a pair (A, B) if x ∈ Var(A)\Var(B), B-local if x ∈ Var(B)\Var(A),
local if it is either of these, and shared otherwise.

Definition 6 (Locality). A labelling function for an (A, B)-refutation R pre-
serves locality if for any initial vertex v and literal t in R

1. a ! L(v, t) implies that var(t) ∈ Var(A), and
2. b ! L(v, t) implies that var(t) ∈ Var(B) .
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The locality condition ensures that literals over A-local variables are labelled a
and literals over B-local variables are labelled b. Our system generalises existing
ones by permitting arbitrary labels for literals over shared variables. We refer
to locality-preserving labelling functions as labelling functions. Given a labelling
function L, the downward projection of a clause at a vertex v with respect to
c ∈ S is: �(v)�c,L

def= {t ∈ �(v) |L(v, t) ! c}. The upward projection �(v)�c,L is
similarly defined. The subscript L is omitted if clear.

Definition 7 (Labelled Interpolation System). Let L be a locality preserv-
ing labelling function for an (A, B)-refutation R. The labelled interpolation sys-
tem Itp(L) maps vertices in R to partial interpolants as defined below.

For an initial vertex v with �(v) = C

(A-clause)
C [C�b]

if C ∈ A (B-clause)
C [¬(C�a)]

if C ∈ B

For an internal vertex v with piv(v) = x, �(v+) = C1 ∨ x and �(v−) = C2 ∨ x

C1 ∨ x [I1] C2 ∨ x [I2]
C1 ∨ C2 [I3]

(A-Res) if L(v+, x) � L(v−, x) = a, I3
def= I1 ∨ I2

(AB-Res) if L(v+, x) � L(v−, x) = ab, I3
def= (x ∨ I1) ∧ (x ∨ I2)

(B-Res) if L(v+, x) � L(v−, x) = b, I3
def= I1 ∧ I2

The interpolant obtained from an (A, B)-refutation R with a labelling function
L is written Itp(L, R). Example 4 illustrates the use of a labelled interpolation
system. Our claim that labelled interpolation systems are strictly more general
than existing systems is substantiated by constructing an interpolant that cannot
be obtained from ItpM , ItpS , Itp′S or Itp′M .

Example 4. Let A = a1 ∧ (a1 ∨ a2) and B = (a1 ∨ a2)∧ a1. An (A, B)-refutation
is shown in Figure 4 with the symbol L(v, t) above each literal. The interpolant
obtained from Itp(L) is a2. Recall from Example 2 that this interpolant cannot
be derived in existing systems. �

Theorem 1 (Correctness). For any (A, B)-refutation R and locality preserv-
ing labelling function L, Itp(L, R) is an interpolant for (A, B).

Let v be a vertex in the refutation R in Theorem 1. Let C be �(v) and I be the
partial interpolant at v. We prove the theorem by showing that I and C satisfy
the following conditions:

1. A ∧ ¬(C�a,L) ⇒ I,
2. B ∧ ¬(C�b,L) ⇒ ¬I, and
3. Var(I) ⊆ Var(A) ∩Var(B).
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a
a1 [⊥]

a a
a1a2 [⊥]

b b
a1a2 [�]

b
a1 [�]

b
a2 [�]

a
a1 [a2]

� [a2]

Fig. 4. A labelled interpolation system Itp(L) that can be used to obtain a different
interpolant from ItpM , ItpS , Itp′

M or Itp′
S

For the sink s, C = � and it follows that the partial interpolant at s is an
interpolant for (A, B). Yorsh and Musuvathi use a similar invariant to prove
that ItpS is correct [14]. Lemma 2, which follows, shows that McMillan’s system
and the symmetric system are instances of labelled interpolation systems. Re-
call that the labelling function for literals at internal vertices is determined by
the labelling function at initial vertices. Thus, it suffices to define the labelling
functions corresponding to ItpM , Itp′M and ItpS at initial vertices.

Lemma 2. Let R be an (A, B)-refutation. The labelling functions LS, LM and
LM ′ are defined for initial vertices v and literals t ∈ �(v) as follows:

var(t) LM (v, t) LS(v, t) LM ′(v, t)
A-local a a a
shared b ab a
B-local b b b

The following equalities hold: ItpM (R) = Itp(LM , R), ItpS(R) = Itp(LS , R) and
Itp(LM ′ , R) = Itp′M (R).

The the value, at an initial vertex, of each labelling function in Lemma 2 is
determined only by whether a variable is A-local, B-local or shared. In contrast,
other labelling functions may assign different symbols to different occurrences of
the same literal (see, for instance, the literal a1 in Figure 4).

4.2 Strength in Labelled Interpolation Systems

Labelled interpolation systems are useful because they allow different inter-
polants to be constructed from a refutation. We now show how these interpolants
are related by strength. A labelled interpolation system Itp(L) is stronger than
Itp(L′) if for all refutations R, Itp(L, R) ⇒ Itp(L′, R). We define an order, de-
noted �, on labelling functions that guarantees an ordering in strength. This
order is different from the order on labelling functions induced by !.

Definition 8 (Strength Order). Define the total order � on S = {⊥, a, b, ab},
as: b � ab � a � ⊥. Let L and L′ be labelling functions for an (A, B)-refutation
R. The function L is stronger than L′, denoted L � L′, if for all v ∈ VR and
t ∈ �(v), L(v, t) � L′(v, t).
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Note that � is not a total order on labelling functions. Lemma 3 simplifies
the comparison of labelling functions by allowing us to compare the values of
labelling functions at initial vertices. Theorem 2 shows that if L is a stronger
labelling function than L′, the interpolant obtained from Itp(L) is stronger than
the one obtained from Itp(L′).

Lemma 3. Let L and L′ be labelling functions for an (A, B)-refutation R. If
L(v, t) � L′(v, t) for all initial vertices v and literals t ∈ �(v), then L � L′.

Theorem 2. If L and L′ are labelling functions for an (A, B)-refutation R and
L � L′, then Itp(L, R) ⇒ Itp(L′, R).

In the proof (presented in the technical report [5]), we show by structural in-
duction that I ⇒ I ′ ∨ (�R(v)|A ∩ �R(v)|B) for any vertex v, where I and I ′

are the partial interpolants at v due to Itp(L) and Itp(L′). This establishes that
Itp(L, R) ⇒ Itp(L′, R). By applying Theorem 2, we can show that McMillan’s
system produces stronger interpolants than the symmetric system.

Corollary 1. Let R be an (A, B)-refutation and LM , LS , LM ′ be as in Lemma 2.
It holds that Itp(LM , R) ⇒ ItpS(LS, R) and Itp(LS , R) ⇒ ItpM ′(LM ′ , R).

The strength order on labelling functions also suggests how interpolation systems
can be combined to obtain stronger and weaker interpolants. One only has to
strengthen or weaken the underlying labelling functions.

Definition 9. Let max(c1, c2) and min(c1, c2) be the maximum and minimum,
with respect to �, of the symbols c1, c2 ∈ S. Let R be an (A, B)-refutation and
L1 and L2 be labelling functions. The labelling functions L1 ⇑ L2 and L1 ⇓ L2
are defined for any initial vertex v and literal t ∈ �(v) as follows:

– (L1 ⇑ L2)(v, t) = max(L1(v, t), L2(v, t)), and
– (L1 ⇓ L2)(v, t) = min(L1(v, t), L2(v, t)).

The label of an internal vertex v and t ∈ �(v), is defined inductively as usual.

The final result of this section is that the set of labelling functions ordered by �
and the two operators above is a complete lattice. Further, McMillan’s system
ItpM is the least element of this lattice and the system ItpM ′ is the greatest.

Theorem 3. Let R be an (A, B)-refutation and LR be the set of locality preserv-
ing labelling functions over R. The structure (LR,�,⇑,⇓) is a complete lattice
with LM as the least and LM ′ as the greatest element.

5 Proof Transformations and Interpolation Systems

5.1 Proof Transformations

Labelled interpolation systems afford us a choice of interpolants given a refuta-
tion. Further interpolants can be obtained by modifying the structure of a proof
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a1a2 [a2] a2 [a2]

a1a3 [a3]a1 [⊥]

a3 [a3]

a2a3 [�] a2a4 [�] a4 [�]

a2 [�]

a3 [�]

� [a3]

I2

I1 I3

I ′

−→ I3

I1 I2

I

Fig. 5. An (A,B)-refutation that differs from Figure 1(a) and leads to a different
interpolant. The two circuits show the structure of a partial interpolants at the vertex
labelled a3 in Figure 1(a) and this figure, respectively.

t0t1C1 [I1]
v1 v2

v3w

v

t0C2 [I2]
t1C3 [I3]

t1C1C2

C [I]

Fig. 6. Proof R

t0t1C1 [I1]
v1 v3

v2w

v

t1C3 [I3]
t0C2 [I2]

t0C1C3

C ′ [I ′]

Fig. 7. Graph R′ def= R[w � v]

to obtain weaker and stronger interpolants. Jhala and McMillan report empirical
findings that obtaining interpolants such as (a1 ∧ a2) ⇒ (a′

1 ∧ a′
2) instead of the

stronger formula (a1 ⇒ a′
1) ∧ (a2 ⇒ a′

2) can retard convergence of a software
model checker based on predicate-abstraction [7]. They show that changing the
order of resolution steps in a proof leads to different interpolants. Example 5
illustrates such a transformation.

Example 5. Consider the formulae A = (a1 ∨ a2) ∧ (a1 ∨ a3) ∧ a2 and B =
(a2 ∨ a3) ∧ (a2 ∨ a4) ∧ a4 and the (A, B)-refutation R1 in Figure 1(a). Another
(A, B)-refutation R2 is shown in Figure 5. The interpolant ItpM (R1) is a3 ∧ a2
and ItpM (R2) is a3. Observe that ItpM (R1) implies ItpM (R2). The difference
between R1 and R2 is that the clause {a1, a2} is first resolved with {a2} in R2
but is first resolved with {a1, a3} in R1. �
The change in interpolant strength is explained by viewing interpolants as cir-
cuits. Let I ′ be the partial interpolant at the vertex labelled a3 in Figure 1(a) and
I be the partial interpolant at this vertex in Figure 5. The structure of I and I ′

is shown by the two circuits in Figure 5. If resolutions on local variables precede
those on shared variables, the interpolant is closer to CNF, hence more con-
strained and stronger. We define a swap transformation for proof-graph vertices
and study the effect of this swap on interpolant strength. To avoid notational
tedium, the proof is assumed to be tree shaped. Let v and w be the vertices to
be swapped. The ancestors of v and w are v1, v2 and v3 and the edges between
these vertices are as shown in Figure 6.

Definition 10 (Swap). Let R = (VR, ER, piv , �R, sR) be a tree-shaped (A, B)-
refutation with vertices v1, v2, v3, v and w. The clauses and partial interpolants at
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a0a1 a1

a0a1
a0

a1

w

v a1a3

a3

−→

a0a1 a0a1

a1a1

a1

w

v a1a3

a3

Fig. 8. The graph R[w � v] is not a proof
because a1 becomes a merge literal

t0t1C1 [I1] t1C3 [I3] t0t1C2 [I2]

t0C2C3t0C1C3

C ′ [I ′]

Fig. 9. Transformation for the case
where t0 is a merge literal

these vertices and edges between them are denoted as shown in Figure 6. The re-
sult of swapping w and v, denoted R[w � v], is the graph R′ = (V ′, E′, piv ′, �′, s′)
as depicted in Figure 7 where V ′ def= VR and E′ def= (E \ {(v2, w), (v3, v)}) ∪
{(v3, w), (v2, v)}. The pivot function is given by piv′(w) def= pivR(v), piv′(v) =
piv(w) and for all u ∈ V ′ \ {v, w}, piv′(u) def= pivR(u). For all vertices u ∈ V ′,
�′(u) def= �R(u) if u �= w and �′(u) def= t0 ∨ C1 ∨ C3 otherwise.

The result of a swap is shown in Figure 7. The graph R[w � v] has the same
vertex set as R and all vertices except w have the same clause label as in R.
However, R[w � v] is not a resolution proof because the clause �′(v) may not
be the resolvent of �(v+) and �(v−). Clause labels may not be correct because
of merge literals, a notion studied by Andrews [1]. A literal t ∈ �(v) is a merge
literal if t ∈ �(v+) and t ∈ �(v−). Let R and R[w � v] be as in Figure 6 and
Figure 7. The clause label �′(v) as given in Definition 10 is incorrect in two cases.

– If t1 ∈ C2 then t1 /∈ C, so t1 /∈ C′ but t1 ∈ Res(�′(v+), �′(v−), piv ′(v)).
– If t0 ∈ C3 then t0 ∈ C, so t0 ∈ C′ but t0 /∈ Res(�′(v+), �′(v−), piv ′(v)).

Jhala and McMillan claim in [7, page 11] that “this transformation is valid when
q occurs in v1, but not in v2.” The transformation they refer to is R[w � v],
and the literal q is piv(w). Figure 8 provides a counterexample to this claim.
Observe that the clause at v is not the resolvent of its antecedents. Lemma 4
shows that in cases apart from two listed the above, R[w � v] is a proof. Let R
be a proof with vertices v and w connected and labelled as in Figure 6. An edge
(w, v) in R is merge-free if t0 /∈ �R(v3) and t1 /∈ �R(v2).

Lemma 4. Let R be a proof with vertices v and w connected and labelled as in
Figure 6. If (w, v) is merge-free, then R[w � v] is a resolution proof.

Our counterexample is for the case when t0 ∈ C3 in Figure 6. If t1 ∈ C2,
Jhala and McMillan transform the part of the proof in Figure 6 as shown in
Figure 9. We show that this transformation does not change the interpolants
in ItpM . Assume that t1 is A-local and t0 is shared. The partial interpolants
I and I ′, shown as circuits in the left of Figure 10, are I = (I1 ∧ I2) ∨ I3
and I ′ = (I1 ∨ I3) ∧ (I2 ∨ I3). The transformation essentially distributes the
disjunction. Now assume that t0 is B-local and t1 is shared. The circuits in the
right of Figure 10 show that this transformation does not change the interpolants
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I3

I1 I2

I

−→

I3I1 I2

I ′

1 0t1

I1 I2

I3

I

−→
1 0 0 1t1 t1

I1
I3 I2

I ′

Fig. 10. Transforming R in Figure 6 as in Figure 9 does not change the interpolant

in ItpS in this case. Lemma 5 in Appendix C of the technical report [5] shows
that this transformation does not change the interpolants in ItpM and ItpS .

5.2 Proof Transformations and Interpolant Strength

Consider the sequence of pivot labels on a path in a proof. If pivots labelled
a occur before those labelled ab, which in turn occur before b, the interpolant
has conjunctions at the top-level. Such an interpolant is more constrained than
one obtained from a proof which does not respect this order, hence stronger. To
strengthen the interpolant obtained from a proof, we swap vertices so that the
sequence of pivot labels is close to the sequence described above.

Let LR be a labelling function for an (A, B)-refutation R, w an internal vertex
and (w, v) a merge-free edge. Note that LR is not a labelling function for the
proof R[w � v] because R[w � v] has a different clause function from R.
Nevertheless, R[w � v] has the same initial vertices and clauses as R. Recall
that labelling functions are determined by the labels of initial vertices, so we
can derive a labelling function for R[w � v], denoted LR[w � v], from LR.
Theorem 4 relates the swap transformation and interpolant strength.

Theorem 4. Let R be an (A, B)-refutation, L be a labelling function, v and w be
vertices with ancestors and partial interpolants, in particular I2 and I3, as in Fig-
ure 6, and (w, v) be a merge-free edge. Let c = L(w+, piv(w)) � L(w−,¬piv(w))
and d = L(v+, piv(v)) � L(v−,¬piv(v)).

1. If c � d and either c �= d or c �= ab, Itp(L[w � v], R[w � v]) ⇒ Itp(L, R).
2. In all other cases, if I2 ⇒ I3, then Itp(L[w � v], R[w � v]) ⇒ Itp(L, R).

Changing labelling functions and swapping vertices are two different methods for
strengthening interpolants. Corollary 2 shows that these methods can be com-
bined to obtain even stronger interpolants. The corollary follows from Lemma 3,
Theorem 2 and Theorem 4. Corollary 2 is summarised in Figure 11.

Corollary 2. Let R be an (A, B)-refutation and L and L′ be labelling functions
such that L � L′. Let w be an internal vertex of R and (w, v) be a merge-free edge,
such that for any L, Itp(L, R) ⇒ Itp(L[w � v], R[w � v]). Then, it holds that

– Itp(L[w � v], R[w � v]) ⇒ Itp(L′[w � v], R[w � v]), and
– Itp(L′, R) ⇒ Itp(L′[w � v], R[w � v]),
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6 Related Work

Craig proved the interpolation theorem for first order logic in 1957 [4]. For a
survey of the multitudinous applications and consequences of this theorem in
mathematical logic, see [10]. Though the theorem has been known for a while,
the study of interpolation algorithms is relatively recent. The first such algorithm
is implicitly present in Maehara’s constructive proof [9] of Craig’s theorem. Mae-
hara constructs interpolants from sequent calculus proofs and his algorithm does
not apply to resolution proofs.

Interpolation algorithms for resolution proofs have been discovered several
times. The first algorithm we are aware of is due to Huang [6], who constructs
interpolants in a theorem prover that uses resolution, paramodulation and fac-
toring [6]. Kra j́ıček observed that lower bounds on interpolation algorithms for
propositional proof systems have implications for separating certain complex-
ity classes [8]. He constructs interpolants from semantic derivations ; the latter
being an inference system that subsumes resolution and the propositional se-
quent calculus. Pudlák [13] studies a similar problem and constructs a circuit
representing the interpolant. Though the presentations in these papers differ,
the interpolation systems are the same. This can be seen from the exposition of
Kra j́ıček’s and Pudlák’s methods by Buss [3].

McMillan proposed an interpolation algorithm for resolution refutations and
applied it to obtain a purely SAT-based finite-state model checker [11]. We have
shown that McMillan’s algorithm is different from and produces stronger inter-
polants than the existing algorithm. Interpolant-based model checking has been
extended to infinite-state systems [7] and other logical theories [12,14]. The im-
pact of interpolant strength on the performance of a model checker was first
highlighted by Jhala and McMillan [7] who proposed two proof transformations
to strengthen interpolants. We have analysed these transformations in this paper
and shown one of them to be redundant.

The labelled interpolation systems we propose are strictly more general than
existing interpolation systems for resolution. Though much work in interpolant-
based model checking uses McMillan’s interpolation system from [11], Yorsh and
Musuvathi [14] based their interpolating decision procedure on Pudlák’s system
and gave an elaborate proof of Pudlák’s system [14]. Our generalisation arose
from studying the difference between McMillan’s system and Pudlák’s system.
Our proof of Theorem 1 is essentially Yorsh and Musuvathi’s proof parametrised
by a labelling function.

Proof transformations have been applied to reduce the size of unsatisfiable
cores in [2]. These modifications may result in vertices being eliminated from a
proof. Understanding the effect of such transformations on interpolant strength
is an open problem.

7 Conclusion

In this paper, we presented a parametrised interpolation system capable of gener-
ating a family of interpolants. Our system is strictly more general than existing
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Itp(L′[w � v], R[w � v])

=⇒ =⇒

Itp(L[w � v], R[w � v]) Itp(L′, R)

=⇒=⇒

Itp(L,R)

Fig. 11. Combining labelling functions and proof transformations (Corollary 2)

systems and was used to derive new results about existing systems. In addi-
tion, we studied two orthogonal methods for obtaining interpolants of different
strength. The first method uses labelling functions and the second method is
based on swapping vertices in a proof graph. The main results in this paper are
summarised in Figure 11. We have shown that proof transformations and la-
belling functions can be combined to obtain interpolants of predictably different
strength.

Two very important questions not answered in this paper are which strength-
ening techniques lead to performance improvements in model checking and how
one can detect situations in which strengthening techniques are to be applied.
Figuratively speaking, the methods we present can be viewed as constituting a
dial for tuning interpolant strength. The next step is to empirically determine
which settings to use for obtaining good performance in practice.
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Abstract. This paper presents a new framework for checking bounded reachabil-
ity properties of asynchronous systems by reducing the problem to satisfiability
in difference logic. The analysis is bounded by fixing a finite set of potential
events, each of which may occur at most once in any order. The events are speci-
fied using high-level Petri nets. The proposed logic encoding describes the space
of possible causal links between events rather than possible sequences of states
as in Bounded Model Checking. Independence between events is exploited in-
trinsically without partial order reductions, and the handling of data is symbolic.
Experiments with a proof-of-concept implementation of the technique show that
it has the potential to far exceed the performance of Bounded Model Checking.

1 Introduction

Design errors in concurrent hardware and software systems are notoriously difficult
to find. This is due to the tremendous number of possible interleavings of events and
combinations of data values. Symbolic model checking methods [7] attack the problem
by expressing the actual and desired behavior of a system as formulas and using the
tools of computational logic to search for a possible failure.

In this paper, we develop a new symbolic technique for verifying bounded reacha-
bility properties of asynchronous discrete-event systems. Instead of manipulating exe-
cutions as sequences of states, we take an event-centered viewpoint. First, one fixes a
collection of transitions, each of which describes one discrete step of execution. This
collection is called an unwinding of the system. We only consider finite-length execu-
tions in which each transition of the unwinding occurs at most once, in whichever order.
From the unwinding, we generate automatically a formula that is satisfiable if and only
if a predefined condition, e.g. division by zero, can be reached within this bounded set
of executions. For satisfiability checking, any SAT or SMT solver [18] can be used
as long as it can handle the data constraints of transitions. If the reachability property
holds within the bound, a witness execution can be extracted from an interpretation that
satisfies the formula. Otherwise, longer executions can be covered by adding more tran-
sitions to the unwinding and generating a new formula. This technique will be called
Bounded Event Tracing.
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The approach is similar to Bounded Model Checking (BMC) [2]. Both methods can
find bugs and report no false alarms, but they cannot be used as such to prove the
absence of bugs in realistic systems. Unlike BMC, the new technique directly exploits
the defining aspect of asynchronous systems: each transition accesses only a fraction of
the global state of the system. Although the generation of optimal unwindings is not yet
pursued in this work, Bounded Event Tracing is shown to be able to outperform BMC
on several benchmarks.

In the next section, we will go through the central concepts with an extensive ex-
ample. Section 3 defines unwindings as a class of high-level Petri nets [15] that allows
concise modeling of concurrency and software features. The logic encoding is presented
in Sect. 4, while Sect. 5 discusses the relationship to other approaches. In Sect. 6, we de-
sign one way to automatically generate unwindings for a class of state machine models
and use these unwindings in an experimental comparison to BMC.

2 Bounded Event Tracing by Example

Figure 1a presents a system with three concurrent processes that run indefinitely. Sup-
pose the reachability property in question is whether the system can ever print “equal”.
The execution in Fig. 1b shows that the property holds: after one cycle of process F
and two cycles of G, both x and y have the value 9, and process H then runs the print
statement. The circles represent the values of variables in states M1,M2, . . ., and the
rectangles f , g1, g2, and h represent the atomic execution of one cycle of process F , G,
G, and H , respectively.

Figure 1c shows a related high-level Petri net. We can interpret Fig. 1b as a finite
execution of the Petri net as follows. The transition (rectangle) named init occurs first,
producing a token in each of the places (circles) pj , px , and py , which correspond to
the variables of the system. This leads to a state M1, in which each place pj , px , and py
contains one token that carries a value 3, 2, or 5, respectively. Transition f occurs next,
consumes the token from place py and produces a new token with value 9. This results
in a state M2. Then, transition g1 simultaneously consumes a token from each place pj
and px , and uses their values to produce new tokens. Finally, the state M5 is reached.

This is an example of a one-off execution of the Petri net. Generally, a one-off ex-
ecution is a finite sequence that starts with a state in which no place contains a token.
Then, a transition occurs, consuming exactly one token with each input arc (an arrow
from a place to the transition) and producing exactly one token with each output arc (an
arrow from the transition to a place) while fulfilling the data constraints. This leads to a
new state and so on, as usual in Petri nets. The only distinctive requirement is that each
transition occurs at most once in the sequence. The transitions that occur in a one-off
execution are its events.

A Petri net whose set of one-off executions specifies a bounded portion of the be-
havior of a system is called an unwinding of the system. We assume that we are given
an unwinding whose one-off executions map easily to finite-length executions of the
original system. The unwinding of Fig. 1c has another one-off execution consisting of
the sequence init , g2, h of events. This corresponds to processG running one cycle and
then process H printing “equal”. In total, this unwinding covers all executions of the
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a) Initially: j ← 3 ; x ← 2 ; y ← 5

Process F : Process G: Process H:
while true: while true: while true:

y ← 9 x ← x + j ; j ← j + 1 if x = y: print “equal”
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Fig. 1. An example system and illustrations of its behavior

system in which process F runs at most one cycle, processG at most two cycles, andH
at most one cycle, in any possible order.

We observe that every token consumed during a one-off execution has been pre-
viously produced. Figure 1d illustrates this idea for the one-off execution of Fig. 1b.
Transition g1 consumes the token with value 2 produced by init , whereas the token
with value 5 in place pj is not consumed at all. The numeric values and dashed arrows
inside the big circles in Fig. 1d constitute an example of what we call a token trace
of the unwinding. The token trace tells us some facts about the course of events. By
following the arrows, we see that init occurs before g1, which occurs before g2, but we
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cannot infer whether f occurs before or after, say, g2. A token trace generally fixes only
a partial order of events. Figure 1e illustrates another token trace of the same unwind-
ing. This time, transitions f and g1 do not occur at all. We can check that this token
trace describes the second one-off execution discussed above.

It turns out that by specifying a simple set of rules for constructing a token trace of a
fixed unwinding, we can characterize the set of all one-off executions of the unwinding.
In other words, an unwinding induces a set of one-off executions and a set of token
traces, and there is a meaningful correspondence relation between the two sets. We
can thus reduce the search for a one-off execution with a certain property to finding
a corresponding token trace. Given an unwinding, its token traces are defined by the
following rules.

1. A token trace consists of events, links (dashed arrows), and data values.
2. A subset of the transitions of the unwinding are chosen to be events.
3. Each output arc of each event is associated with a single token with a value.
4. Each input arc of each event is linked to an output arc of an event.
5. No two input arcs are linked to the same output arc.
6. The data constraints of all events are fulfilled by the values of tokens.
7. The links impose a partial order on the events.

Figure 1f contains a third attempt at a token trace of the same unwinding. However,
there are several problems. First, transitions f and h are consuming the same token at
place py . This breaks rule 5—an input arc denotes a destructive read operation. Sec-
ond, transition h poses as an event although it gets no input from place px , breaking
rule 4. Third, there is an illegal cycle, illustrated in thick arrows, that breaks rule 7:
event g1 produces a token with value 6, then g2 consumes it and produces a token with
value 4, which in turn is consumed by g1. No chronological ordering of the occurrences
agrees with the picture. Any of these three mistakes suffices to tell that Fig. 1f does not
represent a valid token trace.

A model checking procedure. The discussion above suggests the following procedure
for checking reachability properties of an asynchronous system. Generate an unwinding
such that one-off executions of the unwinding map to finite executions of the system,
and the property corresponds to the occurrence of a designated transition t�. Generate
automatically a formula that encodes the rules for a token trace of the unwinding and
add the constraint that t� is an event. Feed the formula to an off-the-shelf satisfiability
solver. If the formula is satisfiable, convert the satisfying interpretation to a token trace
and further to an execution that witnesses the property. If the formula is unsatisfiable,
expand the unwinding to cover more executions of the system, and start over.

Assembling unwindings. Figure 1c demonstrates a rudimentary way of obtaining un-
windings, with a place for each variable and a transition or several identical transitions
for each atomic action that the system can perform. However, we expect to gain better
performance by further exploiting the versatility of Petri nets. In general, one can set up
arcs in arbitrary configurations, and the number of tokens in a place needs not be fixed.
With the multitude of possible design choices, it is generally not obvious how to find
the best way to generate unwindings for a given class of systems.
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Figure 1g shows another unwinding that covers the same set of executions as the
previous one. The labels o, o′, and e do not contribute to the semantics—they only name
some arcs for later reference. A token in place pg0, pg1, or pg2 denotes the fact that
process G has executed 0, 1, or 2 cycles, respectively. The token carries a meaningless
value denoted by •. This solution breaks the symmetry of transitions g1 and g2, and has
allowed us to inline the fixed values j1 = 3 and j2 = 4 in g1 and g2 and to eliminate
the place pj . In Sect. 6, we will use similar ideas in an automated unwinding scheme.

Another change in Fig. 1g is that transition h is incident to two test arcs (lines with
cross bars close to each end). A test arc represents a non-destructive read operation.
It is like an input arc but does not consume the token, and it is usually behaviorally
equivalent to a pair of input and output arcs. The use of test arcs is optional, but they
may result in a more efficient encoding. The following rules need to be added for token
traces. Each test arc is linked to an output arc, and multiple test arcs plus at most one
input arc can be linked to the same output arc. The partial order must be such that a
transition that tests a token occurs after the transition that produces the token. A third
transition can consume the token, but it must occur after the testing transition. The token
trace of Fig. 1g imposes a partial order that obeys these rules. In particular, because of
the links within place px , transition h occurs after g1 and before g2.

3 Semantics of Unwindings

We will use the following notations for formalizing unwindings and token traces. For
a function f : X → Y , sets A ⊆ X , B ⊆ Y , and an element y ∈ Y , we adopt
the usual notation f(A) := {f(x) | x ∈ A}, f−1(B) := {x ∈ X | f(x) ∈ B},
and f−1(y) := f−1({y}). We will use types, variables, and expressions to model data
manipulation in systems. Each type is identified with the set of elements of the type; in
particular, the Boolean type is B = {false, true}. Every variable v and expression φ has
a type type(v) or type(φ). The set of variables in an expression or a set of expressions φ
is denoted by vars(φ). A binding of a set V of variables maps each variable v ∈ V to
a value d ∈ type(v). If φ is an expression and b is a binding of (a superset of) vars(φ),
the value of φ in b, denoted by φb, is obtained by substituting b(v) for each occurrence
of a variable v ∈ vars(φ) in the expression and evaluating the result. We will not fix
a concrete language for expressions—the choice of a proper language depends on the
problem domain and on the capabilities of the satisfiability solver used.

A multiset M over a set U is a function U → N, interpreted as a collection that
contains M(u) indistinguishable copies of each element u ∈ U . A multiset M is finite
iff the sum

∑
u∈U M(u) is finite. When the base set U is clear from the context, we

will identify an ordinary set A ⊆ U with the multiset χA over U , defined as χA(u) = 1
if u ∈ A and χA(u) = 0 otherwise. If M1 and M2 are multisets over U , then M1 is a
subset of M2, denoted M1 ≤ M2, iff M1(u) ≤ M2(u) for all u ∈ U . A multiset M
contains an element u ∈ U , denoted u ∈ M , iff M(u) ≥ 1. We will use M1 + M2
and M2 −M1 with their usual meanings (as functions) to denote multiset union and
multiset difference, respectively. The latter is defined only if M1 ≤M2.

A binary relation ≺ over a set X is a strict partial order iff it is irreflexive, asym-
metric, and transitive, that is, iff for all x, y, z ∈ X (i) x ≺ y implies not y ≺ x and
(ii) x ≺ y and y ≺ z together imply x ≺ z.



Checking Bounded Reachability in Asynchronous Systems 151

3.1 Colored Contextual Unweighted Petri Nets

Colored Petri Nets [15] are a powerful language for the design and analysis of dis-
tributed systems. In this work however, we use Petri nets with restricted semantics to
specify a bounded portion of the behavior of a system. Our variant is called Colored
Contextual Unweighted Petri Nets, or “nets” for short. The word contextual means that
nets can contain test arcs [5], allowing compact modeling of non-destructive read oper-
ations. By unweighted we mean that each arc is associated with a single token instead
of a multiset of tokens as in Colored Petri Nets. This restriction is crucial for the encod-
ing, but does not seriously weaken the formalism. Places can still contain multisets of
tokens, and multiple arcs can be placed in parallel to move several tokens at the same
time.

Definition 1. A net is a tuple N = 〈Σ, P, T, Ain , Atest , Aout , place, trans, colors ,
guard , expr〉, where

1. Σ is a set of non-empty types (sometimes called color sets),
2. P is a set of places,
3. T is a set of transitions,
4. Ain is a set of input arcs,
5. Atest is a set of test arcs,
6. Aout is a set of output arcs,
7. P , T , Ain , Atest , and Aout are all pairwise disjoint,
8. place is a place incidence function Ain ∪Atest ∪Aout → P ,
9. trans is a transition incidence function Ain ∪Atest ∪Aout → T ,

10. the set trans−1(t) is finite for all t ∈ T ,
11. colors is a color function P → Σ,
12. guard is a guard function over T such that for all t ∈ T , guard(t) is an expression

with type(guard(t)) = B and type(vars(guard(t))) ⊆ Σ,
13. expr is an arc expression function over Ain ∪ Atest ∪ Aout such that for all

arcs a, expr(a) is an expression with type(expr (a)) = colors(place(a)) and
type(vars(expr (a))) ⊆ Σ,

A net is finite iff P and T are finite sets. For a transition or a set of transitions t and a
place or a set of places p, we use the shorthand notations

in(t) := Ain ∩ trans−1(t) , in(p) := Ain ∩ place−1(p) ,

test(t) := Atest ∩ trans−1(t) , test(p) := Atest ∩ place−1(p) ,

out(t) := Aout ∩ trans−1(t) , out(p) := Aout ∩ place−1(p) ,

vars(t) := vars(guard(t)) ∪
⋃

a∈trans−1(t)

vars(expr (a)) .

In the net of Fig. 1g, we have place(o) = py , trans(o) = init , test(py) = {e},
out(pg1) = {o′}, place(in(g2)) = {px , pg1}, colors(py) = Z, expr(e) = yh,
guard(h) = (xh=yh), vars(h) = {xh, yh}, and vars(init) = ∅. We omit vacuously
true guards, so guard(f) = true implicitly. Also, colors(pg1) is implicitly the type {•}
with only one meaningless value, and expr(o′) is the constant expression •.
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A token element is a pair 〈p, d〉, where p ∈ P is a place and d ∈ colors(p) is a value.
A marking M is a finite multiset over the set of token elements. Markings represent
states of the system. The interpretation is that if M(〈p, d〉) = n, then place p contains n
tokens of value d in state M .

A binding element is a pair 〈t, b〉, where t ∈ T is a transition and b is a binding of
vars(t). The shorthand consumed〈t,b〉 :=

∑
c∈in(t)

{
〈place(c), expr(c)b〉

}
will mean

the multiset of token elements consumed by a binding element, while produced 〈t,b〉 :=
∑

o∈out(t)

{
〈place(o), expr (o)b〉

}
means the multiset of produced token elements. A

binding element 〈t, b〉 is enabled in a marking M iff the following conditions hold.

1. consumed〈t,b〉 ≤M ,

2. 〈place(e), expr(e)b〉 ∈
(
M − consumed 〈t,b〉

)
for all e ∈ test(t), and

3. guard(t)b = true.

The binding element can occur in the marking iff it is enabled in the marking, leading to
a new marking M ′ = M − consumed 〈t,b〉 + produced 〈t,b〉. We denote by M [t, b〉M ′

the fact that the binding element is enabled in M and leads fromM toM ′ if it occurs. A
finite occurrence sequence of a net is a finite sequence M0 [t1, b1〉M1 · · · [tk, bk〉Mk

such that k ≥ 0 and Mi−1 [ti, bi〉Mi holds for each 1 ≤ i ≤ k.

3.2 Unwindings and One-Off Executions

We define an unwinding to be any net N = 〈Σ,P, T, . . . , expr〉 that fulfills the two
constraints below.

1. Transitions do not share variables: when t ∈ T and u ∈ T are distinct, vars(t) ∩
vars(u) = ∅. We can always achieve this by renaming variables if necessary, as
done in Fig. 1c by using subscripts.

2. Every place is incident to an output arc: out(p) �= ∅ for all p ∈ P . This is not a cru-
cial restriction either: places with no incident output arcs are useless in unwindings
and can be eliminated.

These constraints are just technicalities—the true restriction is that the transitions of
an unwinding are treated as potential events: each of them occurs once or not at all.
Thus, we define a one-off execution of an unwinding as a finite occurrence sequence
M0 [t1, b1〉M1 · · · [tk, bk〉Mk such that M0 = ∅ and ti �= tj for all 1 ≤ i < j ≤ k.
The set {t1, . . . , tk} is the event set of the one-off execution. A transition t ∈ T
is one-off reachable iff it is an event in some one-off execution. For example, the
unwinding of Fig. 1c has a one-off execution M0 [init , binit 〉M1 [f, bf〉M2, where
M2 = {〈pj , 3〉, 〈px , 2〉, 〈py , 9〉}, the binding binit is empty, and yf

bf = 5. The initial
marking M0 is fixed to be empty, but we work around this by specifying the starting
conditions with a transition init that necessarily occurs once in the beginning of any
non-trivial one-off execution.

3.3 Token Traces

Let us formalize the rules presented in Sect. 2 for a token trace.
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Definition 2. A token trace of an unwinding N = 〈Σ,P, T, . . . , expr〉 is a tuple R =
〈E, src, b〉, where

1. E ⊆ T is a finite set of events,
2. src is a source function in(E) ∪ test(E) → out(E) such that

(a) place(a) = place(src(a)) for all arcs a ∈ in(E) ∪ test(E) and
(b) src(c1) �= src(c2) for all input arcs c1, c2 ∈ in(E) such that c1 �= c2,

3. b is a binding of vars(E), called the total binding, such that
expr(a)b = expr(src(a))b for all arcs a ∈ in(E) ∪ test(E),

4. guard(t)b = true for all events t ∈ E,
5. there exists a strict partial order ≺ over the set E such that

(a) trans(src(a)) ≺ trans(a) for all arcs a ∈ in(E) ∪ test(E) and
(b) trans(e) ≺ trans(c) for all test arcs e ∈ test(E) and input arcs c ∈ in(E)

such that src(e) = src(c).

Relating to Sect. 2, the source function forms the links between the arcs, while the
total binding takes care of the data constraints. According to item 3, the arc expression
at each end of a link must evaluate to the same value, i.e. the value of the token. As
vars(E) is a disjoint union of the variables of each event, b can bind the variables of
each event independently. Item 5 above says that the events can be ordered in such a
way that each token is produced before any event consumes or tests it, and a token is
not tested during or after its consumption. Any strict partial order over (a superset of)
E that fulfills item 5 will be called a chronological partial order of the token trace.

Figure 1g portrays a token trace where E = T , yf
b = xh

b = 5, src(e) = o,
src(in(E)) ∩ out(g2) = ∅, and necessarily init ≺ g1 ≺ h ≺ g2. One of f ≺ g2 and
g2 ≺ f can be true, or both can be false, but not both true.

From a one-off execution M0 [t1, b1〉M1 · · · [tk, bk〉Mk, we can construct a token
trace by conjoining b1, . . . , bk to a total binding and tracing each consumed or tested
token to its source. The interleaving t1 ≺ t2 ≺ · · · ≺ tk then gives a chronological
partial order. Conversely, we can take a token trace and linearize its chronological partial
order to obtain a one-off execution. These constructions constitute the proof of the
following theorem. See the report [8] for details.

Theorem 1. Given an unwindingN and a finite subset E of transitions, there is a one-
off execution of N with event set E if and only if there is a token trace of N with event
set E.

4 Encoding Token Traces

Let N = 〈Σ,P, T, . . . , expr〉 be a finite unwinding. We are interested in whether a
transition t� ∈ T is one-off reachable, or equivalently, whether there is a token trace
of N whose event set contains t�. In this section, we will construct a formula that is
satisfiable if and only if such a token trace exists.

A formula φ is satisfiable iff there is an interpretation I such that φI is true. In
this context, an interpretation is a binding of the symbols in the formula. In proposi-
tional satisfiability (SAT), the formula only contains propositional (Boolean) symbols
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and Boolean connectives. Extensions known as SMT [18] also allow non-Boolean con-
straints. For example, an interpretation I satisfies the formula

∧
j∈J (Xj < Yj), where

the Xj and Yj are symbols of real type, if and only if Xj
I is less than Yj

I for all j ∈ J .
The formula will be built using the following set of symbols:

– for each t ∈ T , a propositional symbol Occurt (“transition t occurs”),
– for each t ∈ T , a symbol Timet of type R (“when transition t occurs”),
– for each pair o ∈ Aout , a ∈ Ain ∪Atest such that place(o) = place(a), a proposi-

tional symbol Linko,a (“arc a is linked to arc o”), and
– for each v ∈ vars(T ), a symbol Valv of type type(v) (“the value of v”).

We get an interpretation from a token trace 〈E, src, b〉 by setting Occurt
I to true iff t ∈

E, setting Linko,a
I to true iff o = src(a), letting Valv

I := vb, and assigning the values
Timet

I according to some chronological partial order≺. Because the symbols Timet are
used for ordering and not arithmetic, we could as well type them as e.g. integers instead
of reals. The detailed constructions from a token trace to a satisfying interpretation and
vice versa are in the report version [8].

The formula ε below (denoted by ε∅ in the report [8]) encodes the rules for a token
trace in terms of the introduced symbols. Checking the existence of a token trace con-
taining the event t� then reduces to checking the satisfiability of the formula ε∧Occurt� .

ε :=
∧

t∈T

γt ∧
∧

a∈Ain∪Atest

(
βa ∧

∧

o∈out(place(a))

ψo,a

)
∧
∧

p∈P

δp . (1)

The subformulas γt and βa encode items 4 and 2a of Definition 2. For a guard or
arc expression φ, we use the special notation φvals to denote the substitution of each
variable v ∈ vars(T ) with the symbol Valv.

γt := Occurt → guard(t)vals ,

βa := Occurtrans(a) →
∨

o∈out(place(a))

Linko,a .

The subformula ψo,a places constraints on linking arc a to output arc o, namely that
trans(o) must be an event, and items 5a and 3 of Definition 2 must hold.

ψo,a :=
(
Linko,a → Occurtrans(o)

)
∧

(
Linko,a → (Timetrans(o) < Timetrans(a))

)
∧

(
Linko,a → (expr(o)vals = expr (a)vals)

)
.

The constraints in δp are required to make sure that tokens consumed from a place p are
indeed removed. We encode items 2b and 5b of Definition 2 as

δp :=
∧

o∈out(p)

AtMostOne
({

Linko,c

∣∣ c ∈ in(p)
})
∧

∧

o∈out(p)

∧

e∈test(p)

∧

c∈in(p)

(
Linko,e ∧ Linko,c → (Timetrans(e) < Timetrans(c))

)
,

where AtMostOne (Φ) denotes a formula that is true iff exactly zero or one formulas
in the finite set Φ are true. This can be expressed in size linear in |Φ|.
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4.1 Properties of the Encoding

The principal motivation for formula (1) is that it can be used for model checking reach-
ability properties.

Theorem 2. Let N = 〈Σ,P, T, . . . , expr〉 be a finite unwinding and let t� ∈ T be
a transition. Then, t� is one-off reachable if and only if the formula ε ∧ Occurt� is
satisfiable.

The proof [8], which is based on Theorem 1, is constructive and can be used to extract
witness executions.

Concerning compactness, the formula ε contains one instance of each guard and
arc expression of the unwinding, so there is no duplication involved here. The rest of
the encoding adds a term O(|out(p)| (1 + |in(p)|)(1 + |test(p)|)) to the size for each
place p. The encoding is thus locally cubic in the number of arcs incident to a place, or
quadratic if there are no test arcs. We could generally avoid the cubic formulation by
replacing every test arc with a behaviorally equivalent pair of input/output arcs. Such a
transformation is always sound, except when it is possible that some transition accesses
a single token with two different test arcs—a presumably rare construct. However, there
are two reasons for not dropping test arcs out of the formalism. First, if the arcs inci-
dent to place p are mostly test arcs (the number of test arcs is at least of the order
|out(p)| |in(p)|), then the quadratic encoding size obtained by eliminating test arcs can
be actually larger than the original cubic size. Second, input/output arc pairs can in-
troduce unnecessary orderings of successive non-destructive read operations. Consider
duplicating transition h in Fig. 1g. In a token trace, several copies of h can have their
test arcs linked to the same output arcs without imposing an ordering of the copies.
If input/output arcs are used instead as in Fig. 1c, any token trace necessarily fixes an
ordering of the copies of h because successive copies have to be linked to each other.
Thus, a single token trace represents a smaller set of interleavings if test arcs have been
eliminated. Further experiments are needed to determine whether the smaller encoding
size compensates for the potentially larger search space in satisfiability solving.

Apart from the inner parts of guards and arc expressions, our encodings are examples
of difference logic formulas. General difference logic allows inequalities of the form
var i < varj + constant , but here the constant term is always zero. Such inequalities
offer us a very compact way to rule out all illegal cycles of the form t1 ≺ t2 ≺ · · · ≺
tn ≺ t1. Many SMT solvers support difference logic natively, and often the solver
implementation is indeed based on illegal cycle detection [13]. Another possibility is
to encode the inequalities in propositional logic [21] and use a SAT solver. As the
constant term is always zero in our formulas, the size increment using the encoding [21]
is O(|T |3) instead of exponential as in the worst case. The report [8] shows how to
further reduce the size by exploiting the absence of inequalities under negations.

5 Comparison to Related Work

A straightforward way to apply Bounded Model Checking [2] to an asynchronous sys-
tem is to unroll its interleaving transition relation k times to cover all executions of k
steps [16]. Consider a system that performs one of n possible atomic actions in each
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step. The BMC view of executions corresponds to Fig. 1b. The long horizontal lines
represent the realizations of frame conditions, which are parts of the formula that say
when a variable must maintain its value. Because of unrolling, the BMC formula de-
scribes kn potential events, and only k of them are scheduled to occur. Furthermore, the
notion of fixed time points means that insignificant reorderings of independent events,
e.g. changing the order of Fig. 1b into g1→g2→f→h, result in completely different
interpretations of the SAT formula, potentially encumbering the solver.

In contrast, the encoding of token traces contains no frame conditions for conveying
data over time steps, and no time points between independent transitions. Instead, the
inputs and outputs of transitions are directly linked to each other. The selection of links
is nondeterministic, which incurs some encoding overhead, and there are the potentially
costly constraints for ordering the transitions. Using kn potential events, we can cover
executions up to length kn instead of k, but this depends on the unwinding.

There have been several proposals for making BMC better suited to asynchronous
systems. Using alternative execution semantics [16,9], several independent actions can
occur in a single step of BMC, allowing longer executions to be analyzed without con-
siderably increasing the size of the encoding. In [22], partial order reductions are imple-
mented on top of BMC by adding a constraint that each pair of independent actions can
occur at consecutive time steps only in one predefined order. An opposite approach [14]
is to start BMC with some particular interleaving and then allow more behavior by it-
eratively removing constraints. As Bounded Event Tracing is inherently a partial order
method, there is no need for retrofitted reductions.

Ganai and Gupta present a concurrent BMC technique [12] based on a similar kind
of intuition as this paper. Individual BMC unrolling is applied to each thread of a mul-
tithreaded program, and all globally visible operations are potentially linked pairwise,
with constraints that prevent cyclic dependencies. Lockset analysis is proposed for re-
ducing the number of potential links. In the encodings of single threads, various BMC
techniques are needed to avoid blowup. Bounded Event Tracing uses places to local-
ize the communication between concurrent components, but [12] does not support this.
Instead, operations in different threads can be linked even if there is no causal relation
between them, and every thread has a local copy of all global variables. A similar, glob-
ally quadratic encoding would result from an unwinding where global communication
goes through a single place that holds a vector of all global variables, with incident
input arcs for accessing the vector and output arcs for restoring the possibly modified
vector.

The CBMC approach [6] unwinds (up to a bound) the loops of a sequential C pro-
gram, converts it to static single assignment form, and encodes the constraints on the
resulting set of variables. A version for threaded programs [20] is based on bounding
also the number of context switches. Each global read operation is conditioned on the
number of context switches that have occurred so far, with the help of explicit sym-
bols in the encoding for representing the value of each global variable x after i context
switches. This value is in turn conditioned on the location where x is assigned the last
time before the ith context switch. The encoding is geared towards the possibility of
finding a witness with a low number of context switches. As in [12], a context switch
involves copying all global variables to another thread. In contrast, the read operations
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in Bounded Event Tracing are conditioned directly on where the latest write operation
occurred, with no intermediate encoding symbols that keep the data values between
writing and reading.

CheckFence [4] is also based on CBMC-like unwinding of individual C threads
and additional constraints for modeling the communication between threads. Although
CheckFence is designed to find bugs specifically under relaxed memory models, an en-
coding of the ordinary sequential memory model is used as a baseline. Unlike in [12,20],
context switches are not made explicit in the encoding. Instead, there are symbols en-
coding the potential causal relations between individual read and write operations, much
like the potential links in Bounded Event Tracing. A global memory order plays the
same role as the chronological partial order in this paper. The proposed encoding (de-
tails in [3]) is cubic in size and is in many ways similar to what we would obtain by
consistently using test arcs for read operations and input/output arcs for write opera-
tions as in Fig. 1g. The possibility of a quadratic-size encoding or the decoupling of
producing and consuming values are not discussed in [4,3].

A completely different symbolic technique for concurrent systems is based on un-
foldings [11], which are partial-order representations of state spaces as (infinite) low-
level Petri nets of a fixed form. Model checking is performed by taking a suitable finite
prefix of an unfolding and encoding its behavior and the desired property in SAT. As
unfoldings are acyclic, the encoding is simple. Although an unfolding represents in-
terleavings implicitly, every possible control path and every nondeterministic choice
of data is explicitly present, and in practice, the generation of the unfolding prefix is
the most expensive part. We could obtain unwindings directly from unfoldings, but this
would mean to abandon symbolic data and arbitrary connections between places and
transitions.

6 Unwindings of State Machine Models

As a proof of concept, we will sketch a simple mechanical unwinding scheme for a
class of state machine models and use it in an experimental comparison to Bounded
Model Checking. Our input is a subset of the DVE modeling language, which is used
e.g. by the model checking benchmark set Beem [19].

A DVE system consists of fixed sets of communication channels and processes, and
the behavior of a process is defined by control locations connected with edges (Fig. 2a).
An action of a system is either (i) the simultaneous firing of two edges in different pro-
cesses such that one edge is labeled with ch! and the other with ch?, where ch is the
name of a channel, or (ii) the firing of a τ -edge, i.e. one not labeled with a channel.
Edges can additionally be labeled with guard expressions (in square brackets) and as-
signments to local or global variables. The treatment of other important system features,
such as arrays and buffered channels, is left for future work.

The first step is to obtain a new unwound system that contains cycle-free copies of
the original processes. For each process, we perform a depth-first search from the ini-
tial location to identify a set of retreating edges [1], i.e. those that complete a control
flow cycle (e.g. all edges leaving location wa in Fig. 2a). For each location s, the cor-
responding unwound process has the distinct locations s0, s1, . . . , sL until some loop
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Fig. 3. Test runs of BMC (�) and Bounded Event Tracing (◦) on four benchmarks



Checking Bounded Reachability in Asynchronous Systems 159

boundL. For each edge s→ s′, the unwound process has the edges si → s′i for all i, or
si → s′i+1 in the case of a retreating edge to guarantee acyclicity. Figure 2b illustrates
the expansion. With these design choices, the unwound system behaves like the original
one but the number of cycles executed in each process is bounded.

A Petri net unwinding (Fig. 2c) is then constructed from the unwound system by
defining a pair of places s�, s⊗ for each location s of each unwound process, and a
transition for every possible action. The places contain the values of all local variables
that are live (see [1]) in the corresponding location. For example, a token with value
(1, 0) in place wa�

1 or wa⊗
1 in Fig. 2c means that the location wa1 is active with d = 1

and r = 0. A location s is always entered through s� and exited through s⊗, and we
add a single trivial transition in the middle (transition w in Fig. 2c). This construct
makes the encoding smaller by eliminating the quadratic number of potential links be-
tween the entering and exiting arcs. Transition t in the figure corresponds to the τ -edge
from wa1 to to2. The edge labeled with finish? is modeled with several transitions
(f and f ′ in Fig. 2c), one corresponding to each finish!-labeled edge elsewhere in the
unwound system. These transitions thus also connect to places that belong to the other
processes. In the resulting unwinding, two transitions associated with the same pro-
cess either have a fixed mutual ordering, or they exclude one another. Global variables
would be modeled as in Fig. 1g, using a single place for each variable. Assuming that
the reachability property—like in many Beem benchmarks—is whether any location
in some set {s1, . . . , sN} can become active, we add new places and transitions as in
Fig. 2d and check whether t� is a one-off reachable transition.

6.1 Experimental Evaluation

Bounded Event Tracing with the above unwinding scheme was applied to some of the
Beem benchmarks [19] that fit in the described subset, possibly after minor modifi-
cations such as replacing arrays with multiple scalar variables or adding a reachabil-
ity property. The same properties were also checked using Bounded Model Checking
with a transition relation formula that follows the structure of the interleaving encoding
in [9]. In both approaches, Yices 1.0.22 64-bit (http://yices.csl.sri.com/)
was used for solving satisfiability modulo bit vectors and difference logic, running on
one core of an Intel Xeon 5130 processor. The results for four benchmarks that exhibit
typical behavior are plotted in Fig. 3. Each triangular marker corresponds to a BMC
instance with bound k. Each circle marks a Bounded Event Tracing instance with loop
boundL, using the same value of L for all processes for simplicity. Filled markers mean
satisfiable cases, i.e. the discovery of a witness execution. The horizontal axes denote
the (non-cumulative) median CPU time used by the solver over 11 runs. The range of
fluctuation in CPU times was generally small compared to the difference between the
methods; the exceptions are specified below. Some of the instances timed out at the
limit of 900 seconds. The vertical axes show the number of states of the original system
reachable within each unwinding or BMC bound. The states were counted by running
an explicit-state model checker on an instrumented system. Selected instances are an-
notated with the bound k or L, the number of encoded potential events |T |, which in

http://yices.csl.sri.com/
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the case of BMC is k times the number of different actions the system can perform, and
the circuit size |ε| of the formula given to the solver.

In Fig. 3a, an unwinding with loop bound 2 is sufficient for finding a witness of more
than 30 steps, while using on average less CPU time (ranging from 1.0 to 4.9 seconds)
and covering a larger number of states than the corresponding BMC instance. Figure 3b
shows a benchmark where Bounded Event Tracing covers states faster than BMC, and
the relative speed-up increases with the bound. In Figs. 3c and 3d, BMC is the faster
method. In these cases, the number of transitions in the unwindings is much higher
than the number of states reached, which indicates that the used unwinding scheme
can result in the inclusion of many unnecessary transitions, mainly due to the design
choices of a fixed system-wide loop bound L and quadratic-size modeling of channel
synchronization. Furthermore, many of the resulting large number of transitions are
connected to a common place that models a global variable, causing unwieldy growth
in the formula size. Possibly because of this, there were also four individual Bounded
Event Tracing runs of the production cell benchmark that exceeded the median CPU
time by a factor of more than 20.

The technical report [8] presents another set of experiments, in which Bounded Event
Tracing with an alternative encoding is shown to outperform BMC on a family of mod-
els with very simple control flow but heavy dependence on a global variable.

7 Conclusions and Future Work

Bounded Event Tracing offers a new, well-defined framework for symbolically check-
ing reachability properties of asynchronous systems. The analysis is bounded by a finite
unwinding that fixes a collection of potential events that may occur but leaves the order
of occurrences open. Unwindings are formalized as high-level Petri nets because the
semantics of Petri nets rises naturally from the underlying concepts. The reachability
problem is translated to a fragment of difference logic. The hard work is done by a SAT
or SMT solver.

The technique incorporates ideas from Bounded Model Checking and unfoldings.
Like in BMC, data handling is symbolic, but we avoid many pitfalls of BMC caused by
viewing an execution of an asynchronous system as a sequence synchronized by fixed
time steps. Like unfolding methods, Bounded Event Tracing has partial order reductions
built in, but without the advance cost of explicit branching at every choice point.

Using a simple automated unwinding scheme, Bounded Event Tracing already per-
forms better than interleaving BMC on a number of benchmark systems, but evident
bottlenecks in the unwindings remain. In particular, the undirected expansion of un-
windings easily becomes impractical when processes are tightly coupled with global
variables. Interesting future research topics include better guidance of the expansion
of unwindings e.g. using reachability information from smaller unwindings, integrating
the expansion with incremental SAT solving [10], modeling interprocess communica-
tion more compactly, exploiting nested loops when unwinding control flow, modeling
collections such as arrays or message queues using a place that contains a multiset of
index-value pairs, and incorporating abstraction techniques [17] in some form to bet-
ter cope with software features. The conjecture is that the construction of unwindings
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allows for much greater flexibility than, say, adjusting the bound or the transition rela-
tion formula in BMC, and that we can gain significant improvements in speed by using
a sophisticated unwinding scheme.

Acknowledgements. The author gives many thanks to Tommi Junttila for discussions
and inspiration.
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Abstract. We present a loop property generation method for loops iterating over
multi-dimensional arrays. When used on matrices, our method is able to in-
fer their shapes (also called types), such as upper-triangular, diagonal, etc. To
generate loop properties, we first transform a nested loop iterating over a multi-
dimensional array into an equivalent collection of unnested loops. Then, we in-
fer quantified loop invariants for each unnested loop using a generalization of
a recurrence-based invariant generation technique. These loop invariants give us
conditions on matrices from which we can derive matrix types automatically us-
ing theorem provers. Invariant generation is implemented in the software package
Aligator and types are derived by theorem provers and SMT solvers, including
Vampire and Z3. When run on the Java matrix package JAMA, our tool was able
to infer automatically all matrix types describing the matrix shapes guaranteed
by JAMA’s API.

1 Introduction

Static reasoning about unbounded data structures such as one- or multi-dimensional
arrays is both interesting and hard [8,10,6,14,1,11,21,12,19,27]. Loop invariants over
arrays can express relationships among array elements and properties involving array
and scalar variables of the loop, and thus simplify program analysis and verification.

We present a method for an automatic inference of quantified invariants for loops it-
erating linearly over all elements of multi-dimensional (mD) arrays, demonstrated here
for matrices. It is based on the following steps. First, we rewrite nested loops with
conditional updates over matrices into equivalent collections of unnested loops over
matrices without conditionals (Section 6). We call this step loop synthesis. In order
to derive such a collection of loops automatically, we take into account each branch
condition and construct a loop encoding this condition. This is done using symbolic
summation together with constraint solving. After that, for each loop so derived we
compute polynomial invariants using symbolic computation techniques, and then infer
quantified invariants over arrays in the combined theory of scalars, arrays, and uninter-
preted functions, by generalizing the recurrence-based invariant generation technique
of [18] to mD arrays (Section 7). The conjunction of the generated quantified invari-
ants can be used to find post-conditions of loops expressing properties of the matrices.
From these post-conditions we can derive, using a theorem prover, shape properties
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Matrix

Lower-triangular (LT)

Lower-triangular invertible (LTI)

Upper-triangular (UT)

Upper-triangular invertible (UTI)

Identity (Id)Diagonal invertible (DI)Diagonal (D)

Fig. 1. Matrix type system. The arrows represent the subtyping relation.

of matrices, such as upper/lower-triangular matrices, identity matrices etc. (Section 9).
We call these properties matrix types as they characterize particular types of matrices
(Section 3).

Our method for invariant generation and deriving loop properties is sound. It is com-
plete for generating invariants over scalars for a certain class of programs in which all
branch conditions in loops are linear. In practice, all matrix loops in the Java matrix
package JAMA [13] turned out to have linear branch conditions.

We implemented our approach to invariant generation in the Aligator software pack-
age [17] (Section 8). We have shown that the generated proof obligations can be proved
automatically by modern theorem provers and SMT solvers. When run on the JAMA
package, our technique is able to infer matrix properties which imply all matrix shapes
guaranteed by JAMA’s API and prove the implication automatically using theorem
provers. We successfully ran our system on over 3,000 lines of JAMA code.

We are not aware of any other automated method that can automatically infer quan-
tified properties for programs over mD (or even 2D) arrays without user guidance, such
as providing templates, assertions or predicates. The novel features presented in this
paper are as follows.

– The basis of our method is a new technique for transforming nested loops iterat-
ing over matrices into equivalent collections of unnested loops. This technique uses
symbolic summation and constraint solving and improves our previous method [18]
of invariant generation over scalars, which could only handle unnested loops over
scalars. This technique is general and not specifically intended for programs han-
dling matrices.

– We are able to generate invariants for programs over mD arrays such as matrices.
We show that the generated invariants are strong enough to derive matrix types. We
do not need a theorem prover as in [19] to generate these invariants.

– We require no user guidance, such as predefined predicates, templates, or annota-
tions to automatically derive quantified loop properties for the class of loops we
study.

– We show that the generated matrix properties are strong enough to prove that ma-
trices have corresponding shapes completely automatically, by using SMT solvers
or first-order theorem provers with suitably axiomatised subsets of arithmetic.

The long term goal of our work is to verify various properties of domain-specific pack-
ages, such as Mathematica [30], Matlab[4], or Mathcad [2], having explicit matrix
types.
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2 Related Work

Paper [6] addresses the problem of automatically inferring auxiliary annotations such
as invariants and post-conditions for safety property verification of programs over
mD arrays. The method relies on using code patterns for describing code constructs
that require annotations, and templates to describe the annotations that are required
by code patterns. For each program code and safety property some user-guidance is
thus needed to identify the relevant code and template patterns. Annotation templates
are then embedded in the code, resulting in the automatic generation of program
annotations.

Our approach can also be compared to quantified invariant generation methods over
1D arrays, such as [8,14,1,11,21,27]. The methods used in the cited works combine
inductive reasoning with predicate abstraction, constraint solving, and interpolation-
based techniques, and require user guidance in providing necessary templates, asser-
tions, or predicates. The various approaches differ in the extent of their required user
guidance: papers [8,11,27] infer invariants by iteratively approximating the strongest
boolean combination of a given set of predicates, whereas [14,1,21] search for appro-
priate invariant predicates using a given set of templates that define the boolean structure
of the desired invariants.

Compared to the above mentioned work, our approach does not require a priori fixed
templates and predicates. We derive quantified invariants directly from the loop descrip-
tion. Our technique allows one to generate properties of mD-arrays programs, which
only the authors of [6] have done so far.

Papers [10,12] do not require user guidance and derive quantified array invariants by
using abstract interpretation and partitioning array indexes into symbolic intervals. Our
approach handles a richer subset of arithmetic over scalar variables and works for mD
arrays.

In our previous paper [19] we derive quantified invariants by combining symbolic
computation and first-order theorem proving. The approach requires no user guidance
and allows one to infer quantified invariants with alternating quantifiers. In this paper
we do not use theorem proving and cannot derive properties requiring quantifier alter-
nations. It would be interesting to integrate the method of [19] into ours, in order to find
more complex quantified invariants and properties, such as sortedness and permutation
properties of arrays or matrices.

Since one ingredient of our method is numeric invariant generation, we also com-
pare it with other polynomial invariant generation techniques [22,25,24]. Papers [22,25]
compute polynomial equalities of fixed degree as invariants using the polynomial ideal
theory. Unlike [22,25], our method does not impose bounds on polynomials: we derive
polynomial invariants of an arbitrary degree from which any other polynomial invariant
can be inferred. Our algorithm thus returns a finite representation of the polynomial
invariant ideal, whereas [22,25] may only iteratively increase the polynomial degree
to infer such a basis. Paper [24] derives polynomial invariants for loops with positive
rational eigenvalues, by iteratively approximating the polynomial invariant ideal using
Gröbner basis computation [3]. In contrast to [24], our approach generates polyno-
mial invariants over scalars for polynomial loops with algebraic, and not just rational,
eigenvalues.
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3 Matrix Types

Figure 1 describes the matrix properties that we can infer for loops iterating over an
n×n square matrix A. These properties are expressed by first-order formulas. We will
refer to these properties and the formulas expressing them as matrix types. We only give
the types for the lower-triangular (LT), lower-triangular invertible (LTI), diagonal (D),
diagonal invertible (DI) and identity (Id) matrices, leaving the upper-triangular (UT)
and upper-triangular invertible (UTI) types to the reader.

LT: ∀i, j. 1≤i < j≤n⇒ A[i, j] = 0
LTI: ∀i, j. 1≤i≤j≤n⇒ (i < j ⇒ A[i, j] = 0) ∧ (i = j ⇒ A[i, j]�=0)
D: ∀i, j. 1≤i, j≤n⇒ (i�=j ⇒ A[i, j] = 0)
DI: ∀i, j. 1≤i, j≤n⇒ (i�=j ⇒ A[i, j] = 0) ∧ (i = j⇒A[i, j]�=0)
Id: ∀i, j. 1≤i, j≤n⇒ (i�=j⇒A[i, j] = 0) ∧ (i = j⇒A[i, j] = 1)

For checking invertibility, we use the fact that triangular and diagonal matrices are
invertible if and only if every element on the main diagonal is non-zero.

To check whether a matrix is of a given type, we first infer quantified loop properties
for a loop iterating over the matrix, as described in Sections 6 and 7, and then prove
that the inferred properties imply the matrix type (Section 9).

4 Motivating Example

We give an example illustrating for what kind of loop we would like to infer quantified
properties sufficient to derive matrix types.

Consider the program of Figure 2. This program is taken from the JAMA library [13].
We will use this example as our running example throughout the paper. The program
computes the lower unit triangular part of an n × n square matrix LU [9]. This means
that the resulting matrix L has only 0s above the main diagonal, only 1s on the main
diagonal, and all entries of L below the main diagonal are equal to the corresponding
entries of the matrix LU . We need invariants for this program that would help us to
prove matrix types of L by using quantifiers over the matrix indexes. The difficulties
for automatically finding such loop invariants come from the presence of nested loops,
the use of scalar and matrix variables, and the nested conditional used in the loop. We
overcome these difficulties as follows.

1. We rewrite the nested loop with conditional updates over L and LU into an equiv-
alent, in some sense, collection of unnested loops without conditionals over ma-
trices L and LU as shown in Figure 3. In this figure the constant c ranges over

for (i:=1; i ≤ n; i + +) do
for (j:=1; j ≤ n; j + +) do

if (i > j)
then L[i, j]:=LU [i, j];
else if (i = j)

then L[i, j]:=1;
else L[i, j]:=0;

end do
end do

Fig. 2. Lower unit triangu-
lar part computation [12]

% Guard: i > j % Guard: i = j % Guard: i < j
i := c; j := 0; i := 0; j := 0; i := 0; j := c;
while (j < n) do while (j < n) do while (i < n) do
i := i + 1; j := j+1; i := i + 1; j := j+1; i := i + 1; j := j+1;
L[i, j] := LU [i, j] L[i, j] := 1 L[i, j] := 0

end do end do end do

Here c ranges over {1, . . . , n − 1}

Fig. 3. Loop sequence for Fig.2
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{1, . . . , n − 1} and appears from the fact that i > j ⇐⇒ ∃c(c > 0 ∧ i = c + j)
(respectively, i < j ⇐⇒ ∃c(c > 0 ∧ j = c+ i)), see Section 6 for details.

2. We infer scalar invariants and quantified array invariants for each unnested loop
using symbolic computation methods. The conjunction of the inferred quantified
invariants of the unnested loops expresses matrix loop properties as postconditions
of the nested loop with conditionals.

The matrix loop property derived for the loop of Figure 2 is given below.

∧

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∀i, j. 1 ≤ i, j ≤ n ⇒ ( ∀c. c > 0 ∧ i = j + c ⇒
(∀k. 1 ≤ k ≤ j ⇒ L[k + c, k] = LU [k + c, k]) )

∀i, j. 1 ≤ i, j ≤ n ⇒ (∀k. 1 ≤ k ≤ j ⇒ L[k, k] = 1)

∀i, j. 1 ≤ i, j ≤ n ⇒ ( ∀c. c > 0 ∧ j = i + c ⇒
(∀k. 1 ≤ k ≤ i ⇒ L[k, k + c] = 0) )

(1)

Here the first quantified conjunct expresses that the lower part of L is updated by el-
ements of LU ; the second conjunct describes that the elements of L from its main
diagonal are 1s; and the third conjunct expresses that the elements of L above its main
diagonal are 0s. The LTI-type of L can be proved from this inferred property.

Note that executing the loops of Figure 3 might access matrix elements which are
actually out of the bounds of the n×nmatricesL andLU (for example, when c = n−1,
i = n, j = n). However, Figure 3 will never be executed in our work. In our approach,
the unnested loops of Figure 3 are “only” used to generate invariant properties. These
invariants, together with the property capturing the relation between the constant c and
the matrix bounds i and j, are then further used to derive matrix loop properties of
Figure 2. Access to matrix elements in the loop properties used for proving matrix
types are thus between valid matrix bounds.

In this paper we derive two kinds of loop properties. One kind expresses conditions
on scalar and mD-array variables used in the loop. These conditions are loop invariants,
and we refer to them as, respectively, scalar and quantified array invariants. Another
kind of property is a quantified condition on the values of the arrays at the loop exit,
cf. formula (1). This condition is a valid postcondition of the loop, however, it is not a
loop invariant. In the rest of the paper we will make a distinction between invariants and
valid postconditions and refer to the latter as (quantified) loop properties, (quantified)
matrix loop properties, or matrix properties.

The rest of the paper discusses in detail how we automatically infer scalar invariants,
arrayinvariantsandmatrixproperties,andprovematrixtypesfromthesematrixproperties.

5 Programming Model

This section fixes the relevant notation and introduces our model of programs.

Algebraic notation. Let N and Z denote respectively the sets of natural and integer
numbers, and Z[x] denote the ring of polynomial relations in indeterminate x over Z.

Variables. We assume that programs contain scalar variables denoted by lower-case
letters a, b, c, . . . and matrix variables denoted by capital-case letters A,B,C, . . .. All
notations may have indices. W.l.o.g. we assume that matrices are square and reserve the
lower-case letter n for their dimension.
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Expressions and their semantics. We assume that expressions contain integer con-
stants, variables over scalars and matrices, logical variables, and some function and
predicate symbols. We only consider the arithmetical function symbols +, −, and · as
interpreted, all other function symbols are uninterpreted. Similarly, only the arithmeti-
cal predicate symbols =, �=,≤, ≥, < and > are interpreted, all other predicate symbols
are treated as uninterpreted.

Programs and their semantics. We consider programs of the following form, iterating
over matrices.

for (i := li; i ≤ n; i := i + ui)do
for (j := lj ; j ≤ n; j := j + uj)do

. . . loop body . . .
end do

end do

(2)

with li, lj , ui, uj ∈ Z, and the loop body consists of (nested) conditionals, sequencing,
and assignments over scalar and matrix variables satisfying some properties formulated
below in this section. For the moment, we restrict ourselves to the case when li = lj =
ui = uj = 1. Such programs contain a nested for-loop iterating linearly (row-by-row
or column-by-column) over the matrix content by incrementing or decrementing the
matrix row and column indices. Let P be such a program. In the sequel we assume that
P is fixed and present our approach relative to it.

We denote respectively by Var and Matr the sets of scalar and matrix variables of
P , where Matr = RMatr ∪ WMatr is a disjoint union of the sets RMatr of read-
only and WMatr of write-only matrix variables. Throughout this paper, we assume that
i, j ∈ Var are the loop iteration/index variables of (2). As usual, the expression A[k, l]
is used to denote the element of an array A at the row k and column l.

Guarded assignments. Since the loop body of (2) is loop-free, we can equivalently
consider it as the collection of all its paths. Every path can be written as a guarded
guarded assignments [7] of the form

G → α1; . . . ;αs, (3)

where G is a formula, called the guard of this guarded assignments, and each of the
αk’s is an assignment over Var ∪Matr . To turn a path into a guarded assignment, we
collect all the tests satisfied on the path in the guard and write all assignments on the
right of → keeping their relative order. This gives us an equivalent representation of
the innermost loop body of P as a collection of guarded assignments of the form given
below.

G1 → α11; . . . ; α1s1 ,
· · ·

Gd → αd1; . . . ; αdsd
.

(4)

Since each guard corresponds to a different path, in every state exactly one guard holds.
That is, the formula Gk ∧ Gl is unsatisfiable for k �= l and the formula G1 ∨ · · · ∨Gd

is true in all states.

Conditions on loop bodies. After we rewrite loop bodies as collections of guarded
assignments as given above, we require the following conditions to hold:
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1. Each guard Gk is equivalent to an integer polynomial relation of the form

i R P (j) or j R Q(i), (5)

where R ∈ {=, �=, <,>,≤,≥},P ∈ Z[j] with 1 ≤ degree(P ) ≤ 2, andQ ∈ Z[i]
with 1 ≤ degree(Q) ≤ 2.

2. If some αku updates a matrix variable Au ∈ WMatr , and some αkv for u �= v
in the same guarded assignment updates a matrix variable Av ∈ WMatr , then Au

and Av are different matrices.
3. The assignments αku’s have one of the forms given below.

(a) Matrix assignments:

A[i, j] := f(Var∪RMatr), (6)

where A ∈ WMatr and f(Var∪RMatr) is an arbitrary expression over the
variables Var∪RMatr . That is, this expression may contain arbitrary inter-
preted or uninterpreted functions but does not contain write-arrays.

(b) Scalar assignments over xl ∈ Var :

xl := c0 + cl · xl +
∑

σ∈M(Var\{xl})
cσ · σ, (7)

where
– c0, cl, cσ ∈ Z and cl �= 0;
– cl �= 1 or c0 �= 0 or cσ �= 0 for some σ.
– M({x1, . . . , xk}) = {xr1

1 · · ·xrk
k | 1 ≤ r1 + · · ·+ rk ≤ 2, r1, . . . , rk ∈ {0, 1}}

is a subset of monomials over {x1, . . . , xk} ⊆ Var .

The program of Figure 2 trivially satisfies conditions 2 and 3. Its transformation to
guarded assignments does not immediately satisfy condition 1, despite that all tests in
the program are of the required form iR P (j). The problem is that having more than
one if-then-else expression results in guards that are conjunctions of formulas i R P (j),
while property 1 requires to have a single formula instead of a conjunction.

Example 1. The loop body of the program of Figure 2 gives rise to the collection of
guarded assignments shown below on the left. On the right we give its equivalent rep-
resentation in which the guards satisfy condition 1.

i > j → L[i, j] := LU [i, j]
¬(i > j) ∧ i = j → L[i, j] := 1
¬(i > j) ∧ i < j → L[i, j] := 0

i > j → L[i, j] := LU [i, j]
i = j → L[i, j] := 1
i < j → L[i, j] := 0

The matrix L is conditionally updated at different positions (i, j). Updates over L in-
volve initializations by 0 or 1, and copying from LU .

It is worth mentioning that our experiments over the JAMA library show that (i) in matrix
programs nonlinear polynomial expressions over scalars are relatively rare and are of
degree at most 2; (ii) polynomial tests on matrix indices are usually linear or otherwise
of degree 2; (iii) the operations used for constructing matrices of specific shapes only
involve initialization or copying from another matrix. Therefore, we believe that the



170 T.A. Henzinger et al.

restrictions on (5)-(7) cover a significant part of practical applications. It is also worth
noting that properties 2 and 3a can be easily generalised so that our method still works:
we only need to guarantee that matrices are never updated twice at the same positions.

One can relax and/or modify some of the conditions on the loops formulated here,
however, the page limit prevents us from discussing possible modifications.

6 Loop Synthesis

Our aim is to find an explicit representation of the loop scalar variables in terms of the
loop counters i and j. Conditions in if-then-else expressions are a main obstacle for
doing that. In order to solve the problem, we transform P into an equivalent, in some
sense, collection of unnested while-loops without conditionals, so that each unnested
loop encodes the behavior of one conditional branch of P . The unnested loops will
be parametrised by new constants, similar to the constant c in Section 4, so that every
suitable value of these constants, gives a separate unnested loop.

The transformation is performed separately for each guarded assignment G → α1;
. . . ;αs from (4) and described below.

The general shape of the desired loop is
while (indexi,j < n) do βi;βj;α1; . . . ;αs end do,

where βi and βj are respectively the assignments to be constructed for i and j, and
indexi,j is either i or j.

To infer such a loop automatically, a case analysis on the shape ofG is performed, as
given below. We only present the case when G is i R P (j). In what follows, we denote
by m the iteration counter of the loop being constructed. For a variable x, we denote by
x(m) the value of x at the iteration m, whereas x(0) will stand for the initial value of x
(i.e. its value before entering the loop). Note that 1 ≤ i(m), j(m) ≤ n.
Case 1: G is i = P (j). While-loop condition. The guard G describes the values of
i as polynomial expressions of degree at most 2 in j, and leaves j as an “independent”
variable. For this reason, we take indexi,j = j and construct a while-loop iterating over
values i and j such that at each loop iteration G is a valid polynomial relation (i.e. loop
invariant) among i and j.
While-loop body. The scalar assignments to i and j of the while-loop being constructed
should satisfy the structural constraints of (7). For inferring these assignments, we use
symbolic summation and constraint solving as described below.

As the while-loop condition depends on the values of indexi,j = j, we identify j to
be in a linear correspondence with m. The generic assignments for i and j are built as
given in (7), and the coefficients c0, cl and cσ are treated as unknowns. As G involves
only the variables i and j, the assignments of i and j need to be constructed only over i
and j. We thus have

i:=c4 · i+ c3 · j + c2; j:=c1 · j + c0,

where (c1 �= 0) ∧ (c1 �= 1 ∨ c0 �= 0) ∧ (c4 �= 0) ∧ (c4 �= 1 ∨ c3 �= 0 ∨ c2 �= 0).
Moreover, as G is a polynomial expression in i and j, the multiplicative coefficients

c4 and c1 of i and j can be considered w.l.o.g. to be 1. We then have

i:=i+ c3 · j + c2; j:=j + c0, with (8)

c0 �= 0 ∧ (c3 �= 0 ∨ c2 �= 0). (9)



Invariant and Type Inference for Matrices 171

From (8), we next derive the system of recurrences of i and j over m:

{
i(m+1) = i(m) + c3 · j(m) + c2
j(m+1) = j(m) + c0

Further, we compute the generic closed forms i(m) and j(m) as polynomial functions of
m, i(0), and j(0), by symbolic summation and computer algebra techniques as discussed
in [18]. We hence obtain:

{
i(m) = i(0) + (c2 + c3 · j(0)) ·m+ c0·c3

2 ·m · (m− 1)
j(m) = j(0) + c0 ·m

(10)

Next, closed forms i(m) and j(m) from (10) are substituted for variables i and j in G,
and a polynomial relation in the indeterminate m is derived, as given below:

2∑

k=0

qk ·mk = 0, (11)

where the coefficients qk ∈ Z are expressions over c0, c2, c3, i(0), and j(0). Using
properties of null-polynomials, we conclude that each qk must equal to 0, obtaining
a system of polynomial equations on c0, c2, c3, i(0), and j(0). Such a system can be
algorithmically solved by linear algebra or polynomial ideal theory [3], as discussed
below.

Linear algebra methods (e.g. Gaussian elimination) offer an algorithmic way to de-
rive integer solutions to a system of linear equations over integers. When G is linear,
equations (9) and (11) yield a linear 1 constraint system over c0, c2, c3, i(0), j(0). Hence,
a finite representation of the sets of integers solutions for c0, c2, c3, i(0), j(0) can be al-
ways constructed explicitly2. The loop assignments over i and j, such that the ideal of
all polynomial invariant relations among i and j is generated by G, are thus always de-
rived. Our loop synthesis method is hence complete in transforming nested loops over
matrices with linear guards (e.g. JAMA benchmarks) into an equivalent collection of
unnested loops.

When G is a non-linear polynomial relation (i.e. of degree 2), (11) yields a system
of non-linear polynomial equations. Solving this system is done using Gröbner basis
computation, which however may yield non-integer (and not even rational) solutions
for c0, c2, c3, i(0), j(0). In such cases, as matrix indices need to be integer valued, our
method fails constructing unnested loops over matrix and scalar variables. It is worth
to be mentioned though that for all examples we have tried (see Section 8), integer
solutions for c0, c2, c3, i(0), j(0) have successfully been inferred.

Example 2. Consider the condition i = j from Figure 2. The condition of the while-
loop being constructed is j < n. Substituting generic closed forms (10) into i = j, we
derive the polynomial relation

2 · (i(0) − j(0)) + (2 · c2 − 2 · c0 − c0 · c3 + 2 · c3 · j(0)) ·m+ c0 · c3 ·m2 = 0

1 Linearity of G, together with (9) and (11), implies c0 �= 0, c3 = 0 and c2 �= 0.
2 In our work, we take the smallest integer solution for c0, c2, c3, i

(0), j(0) .
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Table 1. Experimental results using Aligator on JAMA programs

Program Branch � [d,R] Time (s) Matrix Types
LU decomposition.getL 3 [1, >], [1, =], [1, <] 0.52 LT, LTI
LU decomposition.getU 2 [1,≤], [1, >] 0.37 UT
QR decomposition.getR 3 [1, <], [1, =], [1, >] 0.57 UT, UTI
QR decomposition.getH 2 [1,≥], [1, <] 0.37 LT
Matrix.identity 2 [1, =], [1, �=] 0.32 LT, UT, LTI, UTI, D, DI, Id

The coefficients of m now must equal to 0. This gives us the system
⎧
⎨
⎩

i(0) − j(0) = 0
2 · c2 − 2 · c0 − c0 · c3 + 2 · c3 · j(0) = 0
c0 · c3 = 0

Solving this system of equations and considering also constraints (9), we obtain c2 =
c0, i(0) = j(0), and c3 = 0. We conclude that c2 = c0 = 1, c3 = 0, and i(0) = j(0) = 0
are (up to constant multipliers) the desired solutions, yielding the loop assignments
i:=i+ 1; j:=j + 1, with the initial value assignments i:=0; j:=0.

The while-loop corresponding to the condition i = j is given in Figure 3.

Case 2: G is iR P (j), where R ∈ {<,>,≤,≥, �=}. We only present the case when
R is >, all other cases are handled in a similar manner.

Since G is i > P (j), G is equivalent to the existentially quantified formula

∃c ∈ N. (c > 0 ∧ i = P (j) + c).

Thus, we apply the approach discussed in Case 1 for deriving a while-loop parameter-
ized by c, yielding i = P (j) + c as one of its invariants.

Example 3. Consider the condition i > j from Figure 2. Introducing an integer skolem
constant c > 0, we first rewrite this condition into i = j + c. The condition of the
while-loop being constructed is then j < n.

Substituting generic closed forms (10) into i = j + c, we derive

2 · (i(0) − j(0) − c) + (2 · c2 − 2 · c0 − c0 · c3 + 2 · c3 · j(0)) ·m+ c0 · c3 ·m2 = 0

The coefficients of m must equal to 0. Considering also constraints (9), we obtain a
linear constraint system over c0, c2, c3, i(0), and j(0), yielding c2 = c0, i(0) = j(0) + c
and c3 = 0. We conclude that c2 = c0 = 1, c3 = 0, i(0) = c, and j(0) = 0, yielding the
loop assignments i:=i+ 1; j:=j + 1, with the initial values given by i:=c; j:=0.

The while-loop corresponding to the condition i > j (respectively, i < j) is given in
Figure 3.

Example 4. To illustrate the power of our synthesis method, consider the property i =
j2. We want to infer a loop yielding the invariant i = j2. Applying our approach,
the condition of the while-loop being constructed is j < n. The polynomial equation
derived after substituting generic closed forms (10) into i = j2 is

2 · (i(0) − j(0)2)+(2 · c2 − c0 · c3 − 4 · c0 · j(0)+2 · c3 · j(0)) ·m+(c0 · c3 − c2
0) ·m2 =0

We next solve the system of equations obtained by making the coefficients of m of the

above polynomial equal to 0. Together with (9), we get 4 · c2 = c23, i(0) = j(0)
2
, and
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2 · c0 = c3. We conclude that c0 = 1, c2 = 1, c3 = 2, and i(0) = j(0) = 0, yielding
the loop assignments i := i + 2 · j + 1; j := j + 1, with the initial value assignments
i := 0; j := 0.

7 Generation of Loop Invariants and Properties

For each while-loop derived in Section 6, loop invariants and properties are inferred in
the combined theory of scalars, arrays, and uninterpreted function symbols, by gener-
alizing the technique described in [18] to arrays. To this end, we first compute numeric
invariants over scalars and then use them to generate quantified array invariants. The
conjunction of these invariants is an invariant of the while-loop. Finally, the conjunc-
tion of the inferred quantified array invariants of the while-loops expresses matrix loop
properties as postconditions of the nested loop P with conditionals.
Invariant generation over scalars. We infer scalar (numeric) invariants by combining
symbolic summation and computer algebra, as described in [18]. Namely, (i) we build
recurrence equations for scalars over the loop iteration counter m, (2) compute closed
forms of scalars as functions of m, and (3) eliminate variables in m from the system
of closed forms. The generators of the polynomial invariant ideal of the loop are thus
inferred.

Example 5. The closed form system of the second inner loop from Figure 3 is
{
i(m) = i(0) +m

j(m) = j(0) +m

After eliminating m, and substituting the initial values i(0) = j(0) = 0, the derived
polynomial invariant is i = j. Proceeding in a similar manner, we obtain the scalar
invariant i = j + c for the first loop of Figure 3, whereas the third loop of Figure 3
yields the scalar invariant j = i+ c.
Invariant generation over mD arrays. We generalize the method described in [18] to
infer quantified array invariants. Recall that we only handle array assignments of the
form (6) with A∈WMatr . For inferring universally quantified array invariants over the
content of A, we make use of the already computed closed forms of scalars. The closed
forms of the matrix indices i and j describe the positions at which A is updated as
functions of m. We note that array updates are performed by iterating over the array
positions, where the update expressions involve only scalars, read-only array variables,
and interpreted and uninterpreted function symbols. Thus the closed form of an array
element is given by substituting the closed form solutions for each scalar variable in
(6), and is expressed as a function of m as follows:

A[i(m), j(m)] = f(Var (m)∪ RMatr), (12)

where Var (m) = {x(m)|x∈Var}.
Further, we rely on the following fact. For all loop iterations up to the current one

given by m, the array update positions and array update expressions can be expressed
as functions of m. As m is a new variable not appearing elsewhere in the loop, we
treat it symbolically, noting that every possible value of m corresponds to a single loop
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Table 2. Other loop properties inferred by Aligator on JAMA programs

Program Time (s)
Matrix.copy < 0.1
Matrix.getMatrix < 0.1
Matrix.constructWithCopy < 0.1
Matrix.arrayLeftDivide < 0.1
Matrix.arrayRightDivide < 0.1
Matrix.times < 0.1
Matrix.arrayTimes < 0.1
Matrix.plus < 0.1
Matrix.minus < 0.1

Program Time (s)
Matrix.getArrayCopy < 0.1
Matrix.setMatrix < 0.1
Matrix.uminus < 0.1
Matrix.arrayLeftDivideEquals < 0.1
Matrix.arrayRightDivideEquals < 0.1
Matrix.timesEquals < 0.1
Matrix.arrayTimesEquals < 0.1
Matrix.plusEquals < 0.1
Matrix.minusEquals < 0.1

iteration. Therefore we can strengthen (12) to the formula universally quantified over
loop iterations up to m as follows:

∀k. 1≤k≤m⇒A[i(k), j(k)] = f(Var (k)∪RMatr). (13)

We finally rewrite (13) as a quantified formula over Var∪Arr , by eliminating m. For
doing so, we rely once more on the closed forms of scalar variables, and express m as
a linear function g(Var)∈Z[Var ]. This formula is given below:

∀k. 1≤k≤g(Var)⇒A[i(k), j(k)] = f(Var (k)∪RMatr). (14)

Formula (14) is a quantified array invariant over the content of A.

Example 6. Using the closed forms i(m) = i(0) + m and j(m) = j(0) + m, the array
assignment corresponding to the second loop of Figure 3 can be expressed as a function
of the iteration counter m, as follows: L[i(0) +m, j(0) +m] = 1.

From Example 5, we have m = j, i(0) = 0, and j(0) = 0. The corresponding
quantified array invariant of the second loop of Figure 3 is: ∀k. (1≤k≤j)⇒L[k, k] = 1.

Similarly, we derive the following quantified array invariant of the first loop of Fig-
ure 3 as: ∀k. (1≤k≤j) ⇒L[k + c, k] = LU [k + c, k].

Finally, the third loop of Figure 3 yields the array invariant: ∀k. (1≤k≤i)⇒ L[k, k+
c] = 0.

Matrix loop properties of P . We can now derive the following matrix loop property
of P :

∀i, j. (1 ≤ i, j ≤ n) ⇒
d∧

k=1

φk, (15)

where φk satisfies one of the following conditions.
1. φk is a quantified array invariant (14) inferred for the while-loop corresponding to

the guarded assignment from (4) with the guard Gk ≡ i = P (j), or respectively
with the guard Gk ≡ j = Q(i).

2. φk is
∀c. (c > 0 ∧ i = P (j)± c) ⇒ φc

k or ∀c. (c > 0 ∧ j = Q(i)± c) ⇒ φc
k

where φc
k is a quantified array invariant (14) inferred for the while-loop corre-

sponding to the guarded assignment from (4) with the guard i = P (j) ± c, or
respectively with the guard j = Q(i)± c. The formula φk is thus a quantified loop
property of the while-loop corresponding to the guarded assignment from (4) with
the guardGk ≡ iR P (j), or respectively with the guardGk ≡ j R Q(j), where
R ∈ {<,>,≤,≥, �=}.
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Fig. 4. Overview of our Implementation

The appropriate type of A can be proved from (15), as discussed in Section 9.

Example 7. The quantified array invariant φ1 of the first loop of Figure 3 is:

∀c. c > 0 ∧ i = j + c ⇒ (∀k. 1 ≤ k ≤ j ⇒ L[k + c, k] = LU [k + c, k])

The corresponding matrix loop property of the nested loop from Figure 2 is shown in
(1). The LTI-type of L is a logical consequence of the formula given above and the
lower-triangular invertible shape property of L can be thus inferred, as presented in
Section 9.

8 Implementation and Experiments

Implementation. We implemented a tool that infers matrix loop properties as described
in Sections 6 and 7. Our tool is implemented in the Jahob verification system [20]. It
takes a Java program as its input, and returns a quantified matrix loop property for each
loop from its input. In more detail, the main features of our tool are as follows.

(i) It extends the Jahob framework [20] by handling mD arrays and floating point num-
bers;

(ii) It performs all the preprocessing steps needed for translating loops in the format de-
scribed in Section 5, for instance, finding read- and write-only arrays and checking
that the guards are pairwise disjoint using the SMT solver Z3 [5].

(iii) Most importantly, it integrates the software package Aligator [17] for synthesizing
loops and generating quantified array invariants and loop properties. To this end,
we extended Aligator with constraint solving over integers and loop synthesis, and
generalized the recurrence-based invariant generation algorithm of [17] over scalars
to mD arrays.

Finally, using the derived matrix properties returned by our tool, matrix types for loops
are inferred by running theorem provers on the resulting proof obligations induced by
type checking, as described in Section 9.

The overall workflow of our implementation is illustrated in Figure 4.
Experiments. We ran our tool on the JAMA linear algebra package [13], which pro-
vides user-level classes for constructing and manipulating matrices in Java. All matrix
types guaranteed by JAMA’s API, which fall into our type system, have successfully
been derived from the matrix loop properties generated by our tool. We summarize
some of our results, obtained on a machine with a 2.0GHz CPU and 2GB of RAM,
in Table 1. The first column of the table contains the name of the JAMA program, the
second specifies the number of conditional branches in the innermost loop, whereas the
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Table 3. Theorem proving results on JAMA programs

Proof obligations Vampire (s) E (s) iProver (s) Z3 (s)
LU decomposition.getL ⇒ LT 48 105 98 0.1
LU decomposition.getL ⇒ LTI 49 107 101 0.1
QR decomposition.getR ⇒ UT 53 109 410 0.1
QR decomposition.getH ⇒ LT 49 0.2 22 Unknown
LU decomposition.getU ⇒ UT 49 0.2 23 Unknown
Matrix.identity ⇒ LT 48 102 84 0.1
Matrix.identity ⇒ UT 49 112 6 0.1
Matrix.identity ⇒ LTI 48 103 86 0.1
Matrix.identity ⇒ UTI 49 112 8 0.1
Matrix.identity ⇒ D 97 214 90 0.1
Matrix.identity ⇒ DI 98 215 94 0.1
Matrix.identity ⇒ I 97 215 91 0.1
Average time 58.7 116.2 92.8 0.1

third columns gives the degree d and relation R (equality, inequality or disequality)
of the polynomial guard for each branch. The fourth column shows timing (in seconds)
needed by Aligator to infer quantified matrix loop invariants and properties. The fifth
column specifies which types we could automatically prove from the matrix loop prop-
erties using theorem provers. Theorem proving experiments are described in more detail
in Section 9.

It is worth mentioning that our tool automatically inferred quantified array invariants
and loop properties also for those JAMA programs which perform simple operations
or provide access to submatrices or copies of given matrices. Such programs are e.g.
Matrix.copy, Matrix.getMatrix, etc; the timings are shown by Table 2. The quantified
properties of these loops do not explicitly describe matrix types, but they are strong
enough so that a theorem prover can prove type-related properties, for instance, that a
shape is preserved through a matrix copy, see Section 9.

We have also run our tool successfully on the JAMPACK library [28]. Results and
timings are nearly identical to the ones in Table 1 and Table 2.

Aligator cannot yet handle programs with more complex matrix arithmetic. For ex-
ample, JAMA loops implementing the Gaussian elimination algorithm involve various
column and row switching and multiplying operations. We cannot generate loop proper-
ties implying that the resulting matrix is triangular. Handling such programs is beyond
the scope of our technique but is an interesting subject for further research.

9 Type Checking Matrices

For automatic derivation of matrix loop properties one should be able to prove automat-
ically formulas expressing that the derived loop properties imply corresponding matrix
types. In this section we present experimental results showing that such formulas can
be proved automatically by modern theorem provers.

Note that both the loop properties and matrix types are complex formulas with
quantifiers and integer linear arithmetic. Combining first-order reasoning and linear
arithmetic is very hard, for example, some simple fragments of this combination are
Π1

1 -complete [16]. A calculus that integrates linear arithmetic reasoning into the super-
position calculus is described in [16] but it is not yet implemented. There two kinds of
tools that can be used for proving such formulas automatically.
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First-order theorem provers. Such provers are very good in performing first-order
reasoning with quantifiers but have no support for arithmetic. Partial and incomplete
axiomatisations of fragments of arithmetic can be added to it. For example, this ap-
proach was used in generating loop invariants for programs over arrays in [19], and this
is the approach we used in our experiments. Namely, we added the following formulas
as axioms:

∀i, j. (i ≤ j ⇐⇒ i < j ∨ i = j); ∀i, j, k. (i < j ∧ j < k ⇒ i < k);
∀i, j. (i < j ⇒ i �= j); ∀i, j. (i < j ∨ j ≤ i);
0 < 1; ∀i. (0 < i ⇐⇒ 1 ≤ i);
∀i, j. (i + j = j + i); ∀i. (i + 0 = i);

∀i1, j1, i2, j2. (i1 ≤ j1 ∧ i2 ≤ j2 ⇒ i1 + i2 ≤ j1 + j2);

∀i, j, k. (i < j ⇐⇒ ∃k(i + k = j ∧ 0 < k)).

These formulas axiomatise inequalities and addition. We used the following first-order
theorem provers: Vampire [23], E [26] and iProver [15], the three fastest first-order
provers at the last CASC competitions [29]. Vampire and E are based on the superposi-
tion calculus, iProver is an instantiation-based prover.

SMT solvers. Contrary to first-order theorem provers, SMT solvers are good in
(quantifier-free) theory reasoning, including reasoning with linear arithmetic. To work
with quantifiers, they instantiate universally quantified variables by ground terms using
various heuristics. If a problem requires few such instances to be proved (which is the
case for the proof obligations generated), SMT solvers can be very good in solving this
problem. Among SMT solvers, we used Z3 [5] that has a good support for quantifiers.

The results of running the four systems on the hardest generated problems are sum-
marised in Table 3. An example of a hard problem is given in Example 7: it is not
immediately obvious how one should instantiate quantifiers in the generated loop prop-
erty to prove that it implies the lower-triangular-invertible type. The results of Table 3
were obtained on a machine with eight 2.8GHz CPU and 16GB of RAM. For each run,
the provers were limited to a single CPU and 2GB of RAM. It turned out that the three
first-order theorem provers were able to prove all the proof obligations, while Z3 was
unable to solve two of them. On the solved problems Z3 spent essentially no time while
the first-order provers spent between 58.7s and 116.2s on the average.

We also ran Vampire on simpler problems. The simplest problems of this kind are
that Matrix.copy preserves all types. Other simple properties involve loops applying the
same operation to all element of a matrix, for example, that Matrix.uminus preserves
all types apart from Identity. All these problems were proved by Vampire in essentially
no time. It also turned out that many problems involving element-wise operations on
more than one matrix are easy and proved in no time as well. One example is that
Matrix.plus preserves the LTI property.

One conclusion of our experiments is that our method can be fully automated. On
the other hand, some of the generated problems turned out to be highly non-trivial.
This suggests that this and similar experiments may also help to improve theorem prov-
ing with quantifiers and theories, and therefore improve theorem proving support for
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program analysis and program verification. The generated problems have been added
to the TPTP library [29].

10 Conclusions and Future Work

We address the problem of automatically inferring quantified invariants for programs
iterating over mD arrays, such as matrices. For doing so, we combine symbolic sum-
mation with constraint solving to derive unnested loops iterating over mD arrays, and
use symbolic summation to generate loop invariants and properties in the combined
theory of scalars, arrays, and uninterpreted functions. The inferred quantified loop in-
variants give us conditions on matrices from which we can derive matrix types using
a first-order theorem prover. We implemented our approach to invariant generation in
the Aligator package [17], successfully derived many matrix properties for all exam-
ples taken from the JAMA library [13], and used theorem provers and SMT solvers to
prove automatically that these matrix properties imply matrix shapes guaranteed by the
library.

We believe that the technique of generating invariants for loops with linear condi-
tions introduced in Sections 6 and 7 has an independent value and can be used in other
programs as well. Future work includes integrating our approach to loop property gen-
eration with techniques using predicate abstraction [11] and first order theorem proving
[19], and extending our method to handle programs with more complex matrix arith-
metic [13,2,30,4].
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Abstract. By combining algorithmic learning, decision procedures, and
predicate abstraction, we present an automated technique for finding
loop invariants in propositional formulae. Given invariant approxima-
tions derived from pre- and post-conditions, our new technique exploits
the flexibility in invariants by a simple randomized mechanism. The pro-
posed technique is able to generate invariants for some Linux device
drivers and SPEC2000 benchmarks in our experiments.

1 Introduction

Algorithmic learning has been applied to assumption generation in composi-
tional reasoning [9]. In contrast to traditional techniques, the learning approach
does not derive assumptions in an off-line manner. It instead finds assumptions
by interacting with a model checker progressively. Since assumptions in compo-
sitional reasoning are generally not unique, algorithmic learning can exploit the
flexibility in assumptions to attain preferable solutions. Applications in formal
verification and interface synthesis have also been reported [1,2,7,9,18].

Finding loop invariants follows a similar pattern. Invariants are often not
unique. Indeed, programmers derive invariants incrementally. They usually have
their guesses of invariants in mind, and gradually refine their guesses by observ-
ing program behavior more. Since in practice there are many invariants for given
pre- and post-conditions, programmers have more freedom in deriving invariants.
Yet traditional invariant generation techniques do not exploit the flexibility. They
have a similar impediment to traditional assumption generation.

This article reports our first findings in applying algorithmic learning to in-
variant generation. We show that the three technologies (algorithmic learning,
decision procedures, and predicate abstraction) can be arranged in concert to
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derive loop invariants in propositional (or, quantifier-free) formulae. The new
technique is able to generate invariants for some Linux device drivers and
SPEC2000 benchmarks without any help from static or dynamic analyses.

For a while loop, an exact learning algorithm for Boolean formulae searches for
invariants by asking queries. Queries can be resolved (not always, see below) by de-
cision procedures automatically. Recall that the learning algorithm generates only
Boolean formulae but decision procedures work in propositional formulae. We thus
perform predicate abstraction and concretization to integrate the two components.

In reality, information about loop invariant is incomplete. Queries may not be
resolvable due to insufficient information. One striking feature of our learning
approach is to exploit the flexibility in invariants. When query resolution requires
information unavailable to decision procedures, we simply give a random answer.
We surely could use static analysis to compute soundly approximated informa-
tion other than random answers. Yet there are so many invariants for the given
pre- and post-conditions. A little bit of random information does not prevent
algorithmic learning from inferring invariants. Indeed, the learning algorithm is
able to derive invariants in our experiments by coin tossing.

Example

{i = 0} while i < 10 do b := nondet; if b then i := i+ 1 end {i = 10 ∧ b}

The while loop assigns a random truth value to the variable b in the beginning of
its body. It increases the variable i by 1 if b is true. Observe that the variable b
must be true after the while loop. We would like to find an invariant which proves
the postcondition i = 10 ∧b. Heuristically, we choose i = 0 and (i = 10 ∧b)∨ i <
10 as under- and over-approximations to invariants respectively. With the help of
a decision procedure, these invariant approximations are used to resolve queries
made by the learning algorithm. After resolving a number of queries, the learning
algorithm asks whether i �= 0 ∧ i < 10 ∧ ¬b should be included in the invariant.
Note that the query is not stronger than the under-approximation, nor weaker
than the over-approximation. Hence decision procedures cannot resolve it due to
lack of information. At this point, one could apply static analysis and see that it
is possible to have this state at the beginning of the loop. Instead of employing
static analysis, we simply give a random answer to the learning algorithm. For
this example, this information is crucial: the learning algorithm will ask us to
give a counterexample to its best guess i = 0 ∨ (i = 10 ∧ b) after it processes
the incorrect answer. Since the guess is not an invariant and flipping coins does
not generate a counterexample, we restart the learning process. If the query
i �= 0 ∧ i < 10 ∧ ¬b is answered correctly, the learning algorithm infers the
invariant (i = 10 ∧ b) ∨ i < 10 with two more resolvable queries.

Contribution

– We prove that algorithmic learning, decision procedures, and predicate ab-
straction in combination can automatically infer invariants in propositional
formulae for programs in our simple language.
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– We demonstrate that the technique works in realistic settings: we are able to
generate invariants for some Linux device drivers and SPEC2000 benchmarks
in our experiments.

– The technique can be seen as a framework for invariant generation. Static
analyzers can contribute by providing information to algorithmic learning.
Ours is hence orthogonal to existing techniques.

We organize this paper as follows. After preliminaries (Section 2), we present
an overview of the framework in Section 3. In Section 4, we review the exact
learning algorithm introduced in [6]. Section 5 gives the details of our learning
approach. We report experiments in Section 6. Section 7 briefly discusses our
learning approach, future work, and related work. Section 8 concludes our work.

2 The Target Language and Notation

The syntax of statements in our simple imperative language is as follows.

Stmt
�
= nop | assume Prop | Stmt; Stmt |
x := Exp | x := nondet | b := Bool | b := nondet |
if Prop then Stmt else Stmt | switch Exp do case Exp : Stmt · · · |
{ Prop } while Prop do Stmt { Prop }

Natural number variables and Boolean variables are allowed. They assign to ar-
bitrary values in their respective domains by the keyword nondet. Note that
while statements are annotated. Programmers are asked to specify a precondi-
tion before a while statement, and a postcondition after the statement.

An expression Exp is a natural number (n ∈ N), a variable (x), or a sum-
mation or the difference of two expressions. Due to the limitation of decision
procedures, only linear arithmetic is allowed. It ensures complete answers from
decision procedures.

Exp
�
= n | x | Exp + Exp | Exp− Exp

A propositional formula Prop is either: the falsehood symbol (F), a Boolean
variable (b), the negation of a propositional formula, the conjunction of two
propositional formulae, or comparisons (E0 < E1 or E0 = E1).

Prop
�
= F | b | ¬Prop | Prop ∧ Prop | Exp < Exp | Exp = Exp

Let ρ0 and ρ1 be propositional formulae, π0 and π1 be expressions. We write T for
¬F, ρ0∨ρ1 for ¬(¬ρ0∧¬ρ1), ρ0 ⇒ ρ1 for ¬ρ0∨ρ1, ρ0 ⇔ ρ1 for (ρ0 ⇒ ρ1)∧(ρ1 ⇒
ρ0), ρ0 ⊕ ρ1 for ¬(ρ0 ⇔ ρ1), π0 ≤ π1 for π0 < π1 ∨ π0 = π1, and π0 �= π1 for
¬(π0 = π1). Propositional formulae of the forms b, π0 < π1, and π0 = π1 are
called atomic propositions. If A is a set of atomic propositions, PropA denotes
the set of propositional formulae generated from A.
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A Boolean formula Bool is a restricted propositional formula constructed from
truth values and Boolean variables.

Bool
�
= F | b | ¬Bool | Bool ∧ Bool

A valuation ν is an assignment of natural numbers to variables and truth
values to Boolean variables. A Boolean valuation μ is an assignment of truth
values to Boolean variables. If A is a set of atomic propositions and Var(A) is
the set of variables occurred in A, ValVar(A) denotes the set of valuations for
Var(A). Let ρ be a propositional formula. The valuation ν is a model of ρ (written
ν |= ρ) if ρ evaluates to T under the valuation ν. Similarly, the Boolean valuation
μ is a Boolean model of the Boolean formula β (written μ |= β) if β evaluates to
T under μ. If B is a set of Boolean variables, the set of Boolean valuations for
B is denoted by ValB . Given a propositional formula ρ, a satisfiability modulo
theories (SMT) solver returns a model of ρ if it exists (written SMT (ρ) → ν);
otherwise, it returns UNSAT (written SMT (ρ) → UNSAT) [11,22].

A precondition Pre(φ, S) for φ∈Prop with respect to a statement S is a univer-
sally quantified formula that guarantees φ after the execution of the statement S.

Pre(φ, nop) = φ
Pre(φ, assume θ) = θ ⇒ φ

Pre(φ, S0; S1) = Pre(Pre(φ, S1), S0)

Pre(φ, x := π) =
{
∀x.φ if π = nondet
φ[x �→ π] otherwise

Pre(φ, b := ρ) =
{
∀b.φ if ρ = nondet
φ[b �→ ρ] otherwise

Pre(φ, if ρ then S0 else S1) = (ρ ⇒ Pre(φ, S0)) ∧ (¬ρ⇒ Pre(φ, S1))
Pre(φ, switch π case πi: Si) =

∧
i

(π = πi ⇒ Pre(φ, Si))

Pre(φ, {δ} while ρ do S {ε}) =
{
δ if ε implies φ
F otherwise

Observe that all universal quantifiers occur positively in Pre(φ, S) for any S.
They can be eliminated by Skolem constants [12,23].

3 Framework Overview

We combine algorithmic learning, decision procedures [11], and predicate ab-
straction [13] in our framework. Figure 1 illustrates the relation among these
technologies. In the figure, the left side represents the concrete domain; the right
side represents the abstract domain. Assume there is an invariant for a while
statement with respect to the given pre- and post-conditions in the concrete
domain. We would like to apply algorithmic learning to find such an invariant.

To this purpose, we use the CDNF algorithm [6]. The CDNF algorithm is an ex-
act learning algorithm for Boolean formulae. It is an active learning algorithm that
makes queries about an unknown Boolean formula and outputs a Boolean formula
that is equivalent to the unknown one [3,6]. We perform predicate
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Fig. 1. Overview

abstraction to represent propositional formulae as Boolean formulae in the ab-
stract domain. Since the CDNF algorithm is able to learn arbitrary Boolean for-
mulae, our technique can infer arbitrary invariants in propositional formulae by
answering queries.

To realize this idea, we devise a mechanism (a teacher) to resolve queries in
the abstract domain. There are two types of queries: membership queries ask
whether a Boolean valuation is a model of an invariant; equivalence queries ask
whether a Boolean formula is an invariant and demand a counterexample if it
is not. It is not difficult to concretize queries in the abstract domain. Answering
queries however requires information about invariants yet to be computed.

Although an invariant is unknown, its approximations can be derived from
the pre- and post-conditions, or computed by static analysis. Hence, we esti-
mate invariant approximations heuristically and adopt decision procedures for
query resolution. For a membership query, we check if its concretization is in
the under-approximation or outside the over-approximation by an SMT solver.
If it is in the under-approximation, the answer is affirmative; if it is out of
the over-approximation, the answer is negative. Otherwise, we simply give a
random answer. Equivalence queries are resolved similarly, but we restart the
learning process when equivalence queries are not resolvable. If the concretiza-
tion is not weaker than the under-approximation or not stronger than the over-
approximation, a counterexample can be generated by an SMT solver. Otherwise,
the learning process is restarted instead of giving random answers.

4 The CDNF Algorithm

In [6], an exact learning algorithm for Boolean formulae over a finite set B of
Boolean variables is introduced. The CDNF algorithm generates a conjunction of
formulae in disjunctive normal form equivalent to the unknown Boolean formula
λ. It assumes a teacher to answer the following queries:

1. Membership queries. Let μ be a Boolean valuation for B. The membership
query MEM (μ) asks if μ is a model of the unknown Boolean formula λ. If
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μ |= λ, the teacher answers YES (denoted by MEM (μ) → YES ). Otherwise,
the teacher answers NO (denoted by MEM (μ) → NO).

2. Equivalence queries. Let β ∈ BoolB . The equivalence query EQ(β) asks if β
is equivalent to the unknown Boolean formula λ. If so, the teacher answers
YES (denoted by EQ(β) → YES ). Otherwise, the teacher returns a Boolean
valuation μ for B such that μ |= β ⊕ λ as a counterexample (denoted by
EQ(β) → μ).

(* B = {b1, b2, . . . , bm}: a finite set of Boolean variables *)

Input: A teacher answers membership and equivalence queries for an unknown
Boolean formula λ

Output: A Boolean formula equivalent to λ
t := 0;
if EQ(T) → YES then return T;
let μ be such that EQ(T) → μ;

0 t := t + 1; (Ht, St, at) := (F, ∅, μ);

1 if EQ(
t∧

i=1

Hi) → YES then return
t∧

i=1

Hi;

let μ be such that EQ(
t∧

i=1

Hi) → μ;

I := {i : μ �|= Hi};
2 if I = ∅ then goto 0;

foreach i ∈ I do
μi := μ;
walk from μi towards ai while keeping μi |= λ;
Si := Si ∪ {μi ⊕ ai};

end
Hi := MDNF (Si)[B �→ B ⊕ ai] for i = 1, . . . , t;

3 goto 1;
Algorithm 1. The CDNF Algorithm [6]

Let μ and a be Boolean valuations for B. The Boolean valuation μ⊕a is defined
by (μ⊕a)(bi) = μ(bi)⊕a(bi) for bi ∈ B. For any Boolean formula β, β[B �→ B⊕a]
is the Boolean formula obtained from β by replacing bi ∈ B with ¬bi if a(bi) = T.
For a set S of Boolean valuations for B, define

MDNF (μ) =
∧

μ(bi)=T

bi and MDNF (S) =
∨

μ∈S

MDNF (μ).

For the degenerate cases, MDNF (μ) = T when μ ≡ F and MDNF (∅) = F. Algo-
rithm 1 shows the CDNF algorithm [6]. In the algorithm, the step “walk from μ
towards a while keeping μ |= λ” takes two Boolean valuations μ and a. It flips
the assignments in μ different from those of a and maintains μ |= λ. Algorithm 2
implements the walking step by membership queries.

Intuitively, the CDNF algorithm computes the conjunction of approximations
to the unknown Boolean formula. In Algorithm 1, Hi records the approximation
generated from the set Si of Boolean valuations with respect to the Boolean
valuation ai. The algorithm checks if the conjunction of approximations Hi’s
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(* B = {b1, b2, . . . , bm}: a finite set of Boolean variables *)

Input: valuations μ and a for B
Output: a model μ of λ by walking towards a
i := 1;
while i ≤ m do

if μ(bi) �= a(bi) then
μ(bi) := ¬μ(bi);
if MEM (μ) → YES then i := 0 else μ(bi) := ¬μ(bi);

end
i := i + 1;

end
return μ

Algorithm 2. Walking towards a

is the unknown Boolean formula (line 1). If it is, we are done. Otherwise, the
algorithm tries to refine Hi by expanding Si. If none of Hi’s can be refined
(line 2), another approximation is added (line 0). The algorithm reiterates after
refining the approximations Hi’s (line 3). Let λ be a Boolean formula, |λ|DNF

and |λ|CNF denote the minimum sizes of λ in disjunctive and conjunctive normal
forms respectively. The CDNF algorithm learns any Boolean formula λ with a
polynomial number of queries in |λ|DNF , |λ|CNF , and the number of Boolean
variables [6]. Appendix A gives a sample run of the CDNF algorithm.

5 Learning Invariants

Consider the while statement

{δ} while ρ do S {ε}.

The propositional formula ρ is called the guard of the while statement; the
statement S is called the body of the while statement. The annotation is intended
to denote that if the precondition δ holds, then the postcondition ε must hold
after the execution of the while statement. The invariant generation problem is
to compute an invariant to justify the pre- and post-conditions.

Definition 1. Let {δ} while ρ do S {ε} be a while statement. An invariant ι
is a propositional formula such that

(a) δ ⇒ ι (b) ρ ∧ ι ⇒ Pre(ι, S) (c) ¬ρ ∧ ι⇒ ε.

An invariant allows us to prove that the while statement fulfills the annotated
requirements. Observe that Definition 1 (c) is equivalent to ι ⇒ ε∨ρ. Along with
Definition 1 (a), we see that any invariant must be weaker than δ but stronger
than ε∨ρ. Hence δ and ε∨ρ are called the strongest and weakest approximations
to invariants for {δ} while ρ do S {ε} respectively.

Our goal is to apply the CDNF algorithm (Algorithm 1) to “learn” an in-
variant for an annotated while statement. To achieve this goal, we first lift the
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invariant generation problem to the abstract domain by predicate abstraction.
Moreover, we need to devise a mechanism to answer queries from the learning al-
gorithm in the abstract domain. In the following, we show how to answer queries
by an SMT solver and invariant approximations.

5.1 Predicate Abstraction to Connect Algorithmic Learning and
SMT Solvers

Domains for an SMT solver and algorithmic learning are adjoined via the predicate
abstraction [13]. The α, α∗, γ, and γ∗ are the abstraction (α, α∗) and concretiza-
tion (γ, γ∗) maps between the two domains. SMT solvers work in propositional
formulae. Algorithmic learning works in Boolean formulae.

PropA BoolB(A)

γ∗

γ

α∗

α

ValB(A)ValVar(A)

Let A be a fixed set of atomic propositions. For each atomic proposition p ∈ A,
we use a Boolean variable bp to represent p. Let B(A) = {bp : p ∈ A} be the set
of Boolean variables corresponding to the atomic propositions in A. Consider the
concrete domain PropA and the abstract domain BoolB(A). A Boolean formula
β ∈ BoolB(A) is called a canonical monomial if it is a conjunction of literals such
that each Boolean variable in B(A) appears exactly once. Define the mappings
γ : BoolB(A) → PropA and α : PropA → BoolB(A):

γ(β) = β[bp �→ p]; and
α(θ) =

∨
{β ∈ BoolB(A) : β is a canonical monomial and θ ∧ γ(β) is satisfiable}.

where bp and p are the Boolean variables in B(A) and their corresponding atomic
propositions respectively.

The following lemmas are useful in proving our technical results:

Lemma 1. Let A be a set of atomic propositions, θ, ρ ∈ PropA. Then

θ ⇒ ρ implies α(θ) ⇒ α(ρ).

Lemma 2. Let A be a set of atomic propositions, θ ∈ PropA, and β a canonical
monomial in BoolB(A). Then θ ∧ γ(β) is satisfiable if and only if γ(β) ⇒ θ.1

Recall that a teacher for the CDNF algorithm answers queries in the abstract
domain, and an SMT solver computes models in the concrete domain. In order
to let an SMT solver play the role of a teacher, more transformations are needed.

1 Complete proofs are in [20]
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A valuation induces a natural Boolean valuation. Precisely, define the Boolean
valuation α∗(ν) for the valuation ν as follows.

(α∗(ν))(bp) =
{
T if ν |= p
F otherwise

Lemma 3. Let A be a set of atomic propositions, θ ∈ PropA, β ∈ BoolB(A), and
ν a valuation for Var(A). Then

1. ν |= θ if and only if α∗(ν) |= α(θ); and
2. ν |= γ(β) if and only if α∗(ν) |= β.

A Boolean valuation on the other hand induces a propositional formula. Define
the propositional formula γ∗(μ) for the Boolean valuation μ as follows.

γ∗(μ) =
∧

p∈A

{p : μ(bp) = T} ∧
∧

p∈A

{¬p : μ(bp) = F}

Lemma 4. Let A be a set of atomic propositions, θ ∈ PropA, and μ a Boolean
valuation for B(A). Then γ∗(μ) ⇒ θ if and only if μ |= α(θ).

5.2 Answering Queries from Algorithmic Learning

Suppose ι ∈ PropA is an invariant for the statement {δ} while ρ do S {ε}. Let
ι, ι ∈ PropA. We say ι is an under-approximation to an invariant ι if δ ⇒ ι
and ι ⇒ ι. Similarly, ι is an over-approximation to an invariant ι if ι ⇒ ι and
ι⇒ ε∨ρ. The strongest (δ) and weakest (ε∨ρ) approximations are trivial under-
and over-approximations to any invariant respectively.

Recall that the CDNF algorithm makes the following queries: (1) membership
queries MEM (μ) where μ ∈ ValB(A), and (2) equivalence queries EQ(β) where
β ∈ BoolB(A). In the following, we show how to resolve these queries by means
of an SMT solver and the invariant approximations (ι and ι).

Membership Queries. In the membership query MEM (μ), the teacher is
required to answer whether μ |= α(ι). We concretize the Boolean valuation μ and
check it against the approximations. If the concretization γ∗(μ) is inconsistent
(that is, γ∗(μ) is unsatisfiable), we simply answer NO for the membership query.
Otherwise, there are three cases:

1. γ∗(μ) ⇒ ι. Thus μ |= α(ι) (Lemma 4). And μ |= α(ι) by Lemma 1.
2. γ∗(μ) � ι. Thus μ �|= α(ι) (Lemma 4). That is, μ |= ¬α(ι). Since ι → ι, we

have μ �|= α(ι) by Lemma 1.
3. Otherwise, we cannot determine whether μ |= α(ι) by the approximations.

Algorithm 3 shows our membership query resolution algorithm. Note that when a
membership query cannot be resolved by an SMT solver given invariant approx-
imations, one can use better approximations from static analyzers. Our frame-
work is therefore orthogonal to existing static analysis techniques.
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(* ι: an under-approximation; ι: an over-approximation *)

Input: a valuation μ for B(A)
θ := γ∗(μ);
if SMT (θ) → UNSAT then return NO;
if SMT (θ ∧ ¬ι) → UNSAT then return YES ;
if SMT (θ ∧ ¬ι) → ν then return NO ;
abort with θ;

Algorithm 3. Resolving Membership Queries

Equivalence Queries. To answer the equivalence query EQ(β), we concretize
the Boolean formula β and check if γ(β) is indeed an invariant of the while
statement for the given pre- and post-conditions. If it is, we are done. Otherwise,
we use an SMT solver to find a witness to α(ι) ⊕ β. There are three cases:

1. There is a ν such that ν |= ¬(ι ⇒ γ(β)). Then ν |= ι ∧ ¬γ(β). By Lemma 3
and 1, we have α∗(ν) |= α(ι) and α∗(ν) |= ¬β. Thus, α∗(ν) |= α(ι) ∧ ¬β.

2. There is a ν such that ν |= ¬(γ(β) ⇒ ι). Then ν |= γ(β) ∧ ¬ι. By Lemma 3,
α∗(ν) |= β. α∗(ν) |= ¬α(ι) by Lemma 3 and 1. Hence α∗(ν) |= β ∧ ¬α(ι).

3. Otherwise, we cannot find a witness to α(ι) ⊕ β by the approximations.

(* {δ} while ρ do S {ε} *)

(* ι: an under-approximation; ι: an over-approximation *)

Input: β ∈ BoolB(A)

θ := γ(β);
if SMT (ι ∧ ¬θ) → UNSAT and SMT (θ ∧ ¬ι) → UNSAT and
SMT (ρ ∧ θ ∧ ¬Pre(θ, S)) → UNSAT then

return YES ;
if SMT (ι ∧ ¬θ) → ν then return α∗(ν);
if SMT (θ ∧ ¬ι) → ν then return α∗(ν);
abort with θ;

Algorithm 4. Resolving Equivalence Queries

Algorithm 4 shows our equivalence query resolution algorithm. Note that Algo-
rithm 4 returns YES only if an invariant is found.

Similar to membership query resolution, one can refine approximations by
static analysis when an equivalence query is not resolvable by an SMT solver
given invariant approximations. For simplicity, Algorithm 4 aborts the learning
algorithm with the unresolved equivalence query.

5.3 Main Loop of Our Approach

Algorithm 5 gives the top-level loop of our framework. Initially, we use the
disjunction of strongest approximation and the postcondition as the under-
approximation; the weakest approximation is the over-approximation.The under-
approximation aims to find an invariant that establishes the postcondition. This
heuristic is proved very useful in practice.
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(* {δ} while ρ do S {ε} *)

function randomized membership μ =
try Algorithm 3 with input μ when abort → return YES or NO randomly ;

ι := δ ∨ ε; ι := ε ∨ ρ;
repeat

try ι := Algorithm 1 with randomized membership and Algorithm 4
when abort → continue

until an invariant ι is found ;
Algorithm 5. Main Loop

After determining the approximations, Algorithm 1 is used to find an invariant.
We use Algorithms 3 and 4 to resolve queries with an SMT solver given the
invariant approximations. If Algorithm 3 aborts with an unresolved membership
query, a random answer is returned by randomized membership. If Algorithm 4
aborts with an unresolved equivalence query, the learning algorithm is restarted.

Since algorithmic learning does not commit to any specific target, it always
finds an invariant consistent with answers to previous queries. In other words,
the learning algorithm will always generate an invariant if there is one consistent
with our random answers. Although our random answers may exclude certain
invariants, an invariant can still be inferred. Verifying whether a formula is an
invariant is done by checking the sufficient conditions of Definition 1 in our
equivalence query resolution algorithm (Algorithm 4).

6 Experiments

We have implemented a prototype in OCaml. In our implementation, we use
Yices as the SMT solver to resolve queries (Algorithm 3 and 4). From SPEC2000
benchmarks and Linux device drivers we chose five while statements. We trans-
lated them into our language and added postcondition manually. Table 1 shows
the performance numbers of our experiments. Among five while statements,
the cases parser and vpr are extracted from PARSER and VPR in SPEC2000
benchmarks respectively. The other three cases are extracted from Linux 2.6.28
device drivers: both ide-ide-tape and ide-wait-ireason are from IDE driver;
usb-message is from USB driver. For each case, we report the number of lan-
guage constructs in the loop (SIZE), the number of atomic propositions (AP ),
the number of membership queries (MEM ), the number of equivalence queries
(EQ), the number of randomly resolved membership queries (coin tossing), the
number of the CDNF algorithm invocations (iterations), and the execution time.
The data are the average of 500 runs and collected on a 2.6GHz Intel E5300 Duo
Core with 3GB memory running Linux 2.6.28.

Our technique is able to find invariants for four cases within 1 second. Most
interestingly, the learning algorithm is able to find an invariant for usb-message
regardless of the outcomes of coin tossing. For the most complicated case parser,
our technique is able to generate an invariant with 991 random membership
resolutions in about 33 seconds.
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Table 1. Performance Numbers

case SIZE AP MEM EQ coin tossing iterations time (sec)
ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

{ ret = 0 ∧ bh b count ≤ bh b size }
1 while n > 0 do

2 if (bh b size − bh b count) < n then count := bh b size − bh b count
3 else count := n;
4 b := nondet;
5 if b then ret := 1;
6 n := n− count; bh b count := bh b count + count;
7 if bh b count = bh b size then

8 bh b size := nondet; bh b count := nondet; bh b count := 0;
9 end

{ n = 0 ∧ bh b count ≤ bh b size }

Fig. 2. A Sample Loop in Linux IDE Driver

6.1 ide-ide-tape from Linux IDE Driver

Figure 2 is a while statement extracted from Linux IDE driver.2 It copies data
of size n from tape records. The variable count contains the size of the data
to be copied from the current record (bh b size and bh b count). If the current
tape record runs out of data, more data are copied from the next record. The
flexibility in invariants can be witnessed in the following run. After successfully
resolving 3 equivalence and 7 membership queries, the CDNF algorithm makes
the following membership query unresolvable by the invariant approximations:

ρ︷ ︸︸ ︷
n > 0 ∧ (bh b size − bh b count) < n ∧ ret �= 0∧bh b count = bh b size

Answering NO to this query leads to the following unresolvable membership
query after successfully resolving two more membership query:

ρ ∧ bh b count �= bh b size ∧ bh b count ≤ bh b size

We proceed with a random answer YES . After successfully resolving one more
membership queries, we reach the following unresolvable membership query:

ρ ∧ bh b count �= bh b size ∧ bh b count > bh b size

For this query, both answers lead to invariants. Answering YES yields the fol-
lowing invariant:
2 The source code can be found in function idetape copy stage from user() of
drivers/ide/ide-tape.c in Linux 2.6.28.
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n �= 0 ∨ (bh b size − bh b count) ≥ n

Answering NO yields the following invariant:

(bh b count ≤ bh b size ∧ n �= 0) ∨ (bh b size − bh b count) ≥ n

Note that they are two different invariants. The equivalence query resolution
algorithm (Algorithm 4) ensures that both fulfill the conditions in Definition 1.

6.2 parser from VPR in SPEC2000 Benchmarks

Figure 3 shows a sample while statement from the parser program in SPEC2000
benchmark.3 In the while body, there are three locations where give up or
success is set to T. Thus one of these conditions in the if statements must
hold (the first conjunct of postcondition). Variable valid may get an arbitrary
value if linkages is not zero. But it cannot be greater than linkages by the assume
statement (the second conjunct of postcondition). The variable linkages gets an
arbitrary value near the end of the while body. But it cannot be greater than
5000 (the fourth conjunct), and always equal to the variable canonical (the third

{ phase = F ∧ success = F ∧ give up = F ∧ cutoff = 0 ∧ count = 0 }
1 while ¬(success ∨ give up) do

2 entered phase := F;
3 if ¬phase then

4 if cutoff = 0 then cutoff := 1;
5 else if cutoff = 1 ∧maxcost > 1 then cutoff := maxcost ;
6 else phase := T; entered phase := T; cutoff := 1000;
7 if cutoff = maxcost ∧ ¬search then give up := T;
8 else

9 count := count + 1;
10 if count > words then give up := T;
11 if entered phase then count := 1;
12 linkages := nondet;
13 if linkages > 5000 then linkages := 5000;
14 canonical := 0; valid := 0;
15 if linkages �= 0 then

16 valid := nondet; assume 0 ≤ valid ∧ valid ≤ linkages ;
17 canonical := linkages ;
18 if valid > 0 then success := T;
19 end

{ (valid > 0 ∨ count > words ∨ (cutoff = maxcost ∧ ¬search))∧
valid ≤ linkages ∧ canonical = linkages ∧ linkages ≤ 5000 }

Fig. 3. A Sample Loop in SPEC2000 Benchmark PARSER

3 The source code can be found in function loop() of CINT2000/197.parser/main.c

in SPEC2000.
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conjunct of postcondition). Despite the complexity of the postcondition and the
while body, our approach is able to compute an invariant in 13 iterations on
average. The execution time and number of iterations vary significantly. They
range from 2.22s to 196.52s and 1 to 84 with standard deviations 31.01 and 13.33
respectively. By Chebyshev’s inequality [27], our technique infers an invariant
within two minutes with probability 0.876.

One of the found invariants is the following:

success ⇒ (valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages)
∧

success ⇒ (¬search ∨ count > words ∨ valid �= 0)
∧

success ⇒ (count > words ∨ cutoff = maxcost ∨ (canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))
∧

give up ⇒ ((valid = 0 ∧ linkages = 0 ∧ canonical = linkages)∨
(canonical �= 0 ∧ valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical = linkages))

∧

give up ⇒ (cutoff = maxcost ∨ count > words∨
(canonical �= 0 ∧ valid �= 0 ∧ linkages �= 0))

∧

give up ⇒ (¬search ∨ count > words ∨ valid �= 0)

This invariant describes the conditions when success or give up are true. For
instance, it specifies that valid ≤ linkages ∧ linkages ≤ 5000 ∧ canonical =
linkages should hold if success is true. In Figure 3, we see that success is assigned
to T at line 18 when valid is positive. Yet valid is set to 0 at line 14. Hence line
16 and 17 must be executed. Thus, the first (valid ≤ linkages) and the third
(canonical = linkages) conjuncts hold. Moreover, line 13 ensures that the second
conjunct (linkages ≤ 5000) holds as well.

7 Discussion and Future Work

The complexity of our technique depends on the distribution of invariants. It
works most effectively if invariants are abundant. The number of iterations de-
pends on the outcomes of coin tossing. The main loop may reiterate several
times or not even terminate. Our experiments suggest that there are sufficiently
many invariants in practice. For each of the 2500 (= 5×500) runs, our technique
always generates an invariant. On average, it takes 12.5 iterations for the most
complicated case parser.

Since plentiful of invariants are available, it may appear that one of them
can be generated by merely coin tossing. But this is not the case. In parser,
our technique does not terminate if the under- and over-approximations are the
strongest and weakest approximations respectively. Indeed, 6695 membership
and 820 equivalence queries are resolved by invariant approximations in this
case. Invariant approximations are essential to our framework.

For simplicity, predicates are collected from program texts, pre- and post-
conditions in our experiments. Existing predicate discovery techniques can cer-
tainly be deployed. Better invariant approximations (ι and ι) computed by static
analysis can be used in our framework. More precise approximations of ι and ι
will improve the performance by reducing the number of iterations via increas-
ing the number of resolvable queries. Also, a variety of techniques from static
analysis or loop invariant generation [12,17,28,16,19,21,23,25] in particular can
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be integrated to resolve queries in addition to one SMT solver with coin tossing.
Such a set of multiple teachers will increase the number of resolvable queries
because it suffices to have just one teacher to answer the query to proceed.

In comparison with previous invariant generation techniques [12,16,17,19,21]
[23,25,28], we have the following distinguishing features. (1) We do not use fixed
point computation nor any static or dynamic analyses. Instead, we use algo-
rithmic learning [6] to search for loop invariants. (2) Templates for invariants
are not needed. Our approach does not restrict to specific forms of invariants
imposed by templates. (3) We employ SMT solvers instead of theorem provers
in our technique. This allows us to take advantages of recent development in
efficient SMT algorithms. (4) Our method can be extended and combined with
the existing loop invariant techniques.

Related Work. Existing impressive techniques for invariant generation can be
adopted as the query resolution components (teachers) in our algorithmic learning-
based framework. Srivastava and Gulwani [28] devise three algorithms, two of them
use fixed point computation and the other uses a constraint based approach [17,16]
to derive quantified invariants. Gupta and Rybalchenko [19] present an efficient in-
variant generator.They apply dynamic analysis to make invariant generationmore
efficient. Flanagan and Qadeer use predicate abstraction to infer universally quan-
tified loop invariants [12]. Predicates over Skolem constants are used to handle un-
bounded arrays. McMillan [25] extends a paramodulation-based saturation prover
to an interpolating prover that is complete for universally quantified interpolants.
He also solves theproblemof divergence in interpolated-based invariant generation.

8 Conclusions

By combining algorithmic learning, decision procedures, and predicate abstrac-
tion, we introduced a technique for invariant generation. The new technique finds
invariants guided by query resolution algorithms. Algorithmic learning gives a
platform to integrate various techniques for invariant generation; it suffices to de-
sign new query resolution algorithms based on existing techniques. The learning
algorithm will utilize the information provided by these techniques.

To illustrate the flexibility of algorithmic learning, we deploy a randomized
query resolution algorithm. When a membership query cannot be resolved, a
random answer is returned to the learning algorithm. Since the learning algo-
rithm does not commit to any specific invariant beforehand, it always finds a
solution consistent with query results. Our experiments indeed show that algo-
rithmic learning is able to infer non-trivial invariants with this näıve membership
resolution. It is important to exploit the power of coin tossing in our technique.
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A An Example of the CDNF Algorithm

Let us apply Algorithm 1 to learn the Boolean formula b0 ⊕ b1. The algorithm
first makes the query EQ(T) (Figure 4). The teacher responds by giving the
valuation μ1(b0) = μ1(b1) = 0 (denoted by μ1(b0b1) = 00). Hence Algorithm 1
assigns ∅ to S1, F to H1, and μ1 to a1. Next, the query EQ(H1) is made and
the teacher responds with the valuation μ2(b0b1) = 01. Since μ2 �|= F, we have
I = {1}. Algorithm 1 now walks from μ2 towards a1. Since flipping μ2(b1)
would not give us a model of b0 ⊕ b1, we have S1 = {μ2} and H1 = b1. In this
example, Algorithm 1 generates (b1∨b0)∧(¬b0∨¬b1) as a representation for the
unknown Boolean formula b0 ⊕ b1. Observe that the generated Boolean formula
is a conjunction of two Boolean formulae in disjunctive normal form.

equivalence query answer I Si Hi ai

T μ1(b0b1) = 00 S1 = ∅ H1 = F a1 = μ1

F μ2(b0b1) = 01 {1} S1 = {μ2} H1 = b1

b1 μ3(b0b1) = 11 ∅ S2 = ∅ H2 = F a2 = μ3

b1 ∧ F μ4(b0b1) = 01 {2} S2 = {μ5}† H2 = ¬b0

b1 ∧ ¬b0 μ6(b0b1) = 10 {1, 2} S1 = {μ2, μ6}
S2 = {μ5, μ7}†

H1 = b1 ∨ b0

H2 = ¬b0 ∨ ¬b1

(b1 ∨ b0) ∧ (¬b0 ∨ ¬b1) YES

† μ5(b0b1) = 10 and μ7(b0b1) = 01

Fig. 4. Learning b0 ⊕ b1
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Abstract. One approach to verifying bit-twiddling algorithms is to de-
rive invariants between the bits that constitute the variables of a pro-
gram. Such invariants can often be described with systems of congruences
where in each equation c · x = d mod m, m is a power of two, c is a
vector of integer coefficients, and x is a vector of propositional variables
(bits). Because of the low-level nature of these invariants and the large
number of bits that are involved, it is important that the transfer func-
tions can be derived automatically. We address this problem, showing
how an analysis for bit-level congruence relationships can be decoupled
into two parts: (1) a SAT-based abstraction (compilation) step which
can be automated, and (2) an interpretation step that requires no SAT-
solving. We exploit triangular matrix forms to derive transfer functions
efficiently, even in the presence of large numbers of bits. Finally we pro-
pose program transformations that improve the analysis results.

1 Introduction

Recently there has been a resurgence of interest in inferring numeric relations
between program variables, most notably with congruences [1,8,11]. In this ab-
stract domain, each description is a system of congruence equations (over n
variables), each taking the form c · x = d mod m, with c ∈ Z

n, d,m ∈ Z and
x an n-ary vector of variables. The congruence c · x = d mod m, henceforth
abbreviated to c · x ≡m d, expresses that there exists a multiplier k ∈ Z of
m such that c · x = d + km. Quite apart from their expressiveness [5], such
systems are attractive computationally since, if the values in [0,m − 1] can be
represented with machine integers then arbitrary precision arithmetic can be
avoided in abstract operations, and at the same time, polynomial performance
guarantees are obtained [11]. This compares favourably with systems of inequal-
ities that present, among other problems, the issue of how to curb the growth of
coefficients [6,9,15].

Of particular interest are congruences where m is a power of two, since these
can express invariants that hold at the level of machine words [11] or bits [8]. The
central idea of [8] is congruent closure which computes a system of congruences c
to describe all the solutions of a given Boolean function f . To see the motivation
for this, consider bit-twiddling programs such as those in Figure 1 (we return
to the two programs in later sections). Such programs often establish important
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�0: p := 0; y := x;
�1: while (y �= 0)

y := y & (y − 1);
p := 1 - p;

�2: skip

�0: y := x;
y := ((y � 1) & 0x5555) | ((y & 0x5555) � 1);
y := ((y � 2) & 0x3333) | ((y & 0x3333) � 2);
y := ((y � 4) & 0x0F0F) | ((y & 0x0F0F) � 4);
y := (y � 8) | (y � 8);

�1: skip

(a) (b)

Fig. 1. Computing the parity of x and reversing the 16-bit word x

but obscure invariants. Performing a complete bit-precise analysis is infeasible
for all but the simplest loop-free programs. At the same time, the invariants can
often be captured succinctly as a system of congruence equations. However, as
the assignments involved are not linear, traditional congruence analyses will not
work. An alternative is to summarise basic program blocks bit-precisely and ap-
ply congruent closure judiciously. This allows us to reveal “numeric” invariants
amongst bits, even for flowchart programs with loops, such as in Figure 1(a).
Congruences satisfy the ascending chain condition: no infinite chain c1, c2, . . .
with [[ci]] ⊂ [[ci+1]] exists. We exploit this to compute congruent closure symbol-
ically, by solving a finite number of SAT instances [8].

Congruent closure connects with work on how to compute most precise trans-
fer functions for a given abstract domain. A transfer function simulates the
effect of executing an operation where the possible input values are summarised
by an element in the abstract domain. The problem is how to find, in the do-
main, the most precise element that summarises all outputs that can result from
the summarised inputs. In predicate abstraction, when the abstract domain is
a product of Boolean values, decision procedures have been used to solve this
problem [4]. More generally, a decision procedure can also be applied to com-
pute the most precise transfer function when the domain satisfies the ascending
chain condition [13]. The idea is to translate the input summary into a formula
which is conjoined with another that expresses the semantics of the operation
as a relationship between input values and output values. An output summary
is then extracted from the conjoined formula by repeatedly calling the decision
procedure. Reps et al [13] illustrate this construction for constant propagation,
and the technique is equally applicable to congruences. In this context, the se-
mantics of an operation can be expressed propositionally [8]. The state of each
integer variable is represented by a vector of propositional variables, one proposi-
tional variable for each bit. A formula is then derived [2,7], that is propositional,
which specifies how the output bits depend on the input bits. Given an input
summary that is congruent, a congruent output summary can be derived by:
(1) converting the input summary to a propositional formula; (2) conjoining it
with the input-output formula; (3) applying congruent closure to the conjunc-
tion. The advantage of this formulation is that it can derive invariants down
to the level of bits, which enables the correctness of bit-twiddling code to be
verified [8].
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Congruent closure may require many calls to a SAT solver. As sketched, it is
computed each time a transfer function is applied. A critical observation in this
paper is that it is possible, and simpler, to summarise the input-output formula
as a linear system that prescribes a transfer function. Once all transfer functions
have been derived, it is only necessary to manipulate linear systems. In this new
scheme, the application of a SAT solver is limited to the compilation step: the
derivation of the transfer function. With this paper we:

– Consider an unrestricted flowchart language with various non-linear, bit-
manipulating operations and provide it with a relational semantics. The
semantic definition lets us dovetail bit-blasting with congruent closure, and
avoids the need for a separate collecting semantics.

– Show that congruent closure is only needed in the derivation, from the bit-
blasted relational semantics, of a certain transition system; thereafter con-
gruence invariants can be inferred by repeatedly applying linear operations
to the transition system. As well as allowing separation of concerns, this
avoids the overhead of repeated closure calculation.

– Present a new algorithm for congruent closure. Its use of (upper triangular)
matrices for congruence systems makes it considerably faster than a previous
algorithm [8].

– Show how an input program can be transformed so that range information
can be inferred for variables occurring in loops. This is possible since bit-
level (rather than word-level) congruences can express the non-negativity of
a variable, which is sufficient to verify that inequalities hold.

Analyses using congruences modulo 2k have previously been designed [8,11].
Our main contribution here is the automated derivation of transfer functions
for these analyses. This complements recent work [10] on automatically deriving
transfer functions for linear template domains [14] (which can realise octagons
and intervals) where the semantics of instructions is modelled with piecewise
linear functions. However, our approach does not impose this semantic restriction
and is not based on quantifier elimination.

The paper is structured as follows: The new algorithm for congruent closure
is given in Section 2. Section 3 presents a relational semantics for flowchart
programs over machine integers and Section 4 develops a bit-level relational se-
mantics that encapsulates the spirit of bit-blasting. Section 5 shows how these
semantics can be abstracted to derive transition systems over congruences. Sec-
tion 6 explains how programs can be transformed to derive range information.
Section 7 concludes.

2 Congruent Closure

This section introduces a new algorithm for computing the congruent closure of
a Boolean function. Let B = {0, 1} and let Zm = [0,m− 1]. If x,y ∈ Z

k then we
write x ≡m y for

∧k
i=1 xi ≡m yi where x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , yk〉.
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Definition 1. The (modulo m) affine hull of S ⊆ Z
k
m is defined:

affk
m(S) =

{
x ∈ Z

k
m

∣∣∣∣
x1, . . . ,x� ∈ S ∧ λ1, . . . , λ� ∈ Z ∧∑�

i=1 λi ≡m 1 ∧ x ≡m

∑�
i=1 λixi

}

Example 1. If S = ∅, S = Z
k
m or S = {x} for some x ∈ Z

k
m then affk

m(S) = S.
Now consider S = {〈0, 3〉, 〈1, 5〉}. We have

aff2
8(S) = {x ∈ Z

2
8 | λ1 + λ2 ≡8 1 ∧ x ≡8 λ1〈0, 3〉+ λ2〈1, 5〉}

= {x ∈ Z
2
8 | x ≡8 〈k, 3 + 2k〉 ∧ k ∈ Z}

Let Affk
m = {S ⊆ Z

k
m | affk

m(S) = S}. Suppose Si ∈ Affk
m for all i ∈ I where I is

some index set. Put S =
⋂

i∈I Si. It is not difficult to see that affk
m(S) = S. In

other words, 〈Affk
m,⊆,

⋂
〉 is a Moore family [3], and we obtain a complete lattice

〈Affk
m,⊆,

⋂
,
⊔
〉 by defining

⊔
i∈I Si =

⋂
{S′ ∈ Affk

m | ∀i ∈ I.Si ⊆ S′}. This gives
rise to a notion of abstraction in the following sense:

Definition 2. The abstraction map αk
m : ℘(Bk) → Affk

m and concretisation map
γk

m : Affk
m → ℘(Bk) are defined: αk

m(S) = affk
m(S) and γk

m(S) = S ∩ B
k.

For any k and m we call αk
m the (modulo m) congruent closure1 of its argument.

Example 2. Let us denote the set of solutions (models) of a Boolean function
f by [[f ]] thus, for example, [[x1 ∧ x2]] = {〈1, 1〉} and [[x1 ⊕ x2]] = {〈0, 1〉, 〈1, 0〉}
where ⊕ denotes exclusive-or. Likewise, let us denote the set of solutions of a
system of congruences c by [[c]]. For instance, if c = (x1 + x2 ≡4 3 ∧ 3x2 ≡4 2)
then [[c]] = {〈4k1 + 1, 4k2 + 2〉 ∈ Z

2
4 | k1, k2 ∈ Z} where Zm = [0,m− 1]. Given f

over n (propositional) variables x and a modulus m, congruent closure computes
the strongest congruence system c over n (integer) variables such that [[f ]] ⊆ [[c]],
or equivalently, [[f ]] ⊆ [[c]] ∩ B

n where B = {0, 1}. For example, given m = 4,
f1 = (¬x1)∧ (x1⊕x2⊕x3), and f2 = x1 ∧ (x2 ∨x3), congruent closure computes
c1 = (x1 ≡4 0 ∧ x2 + x3 ≡4 1) and c2 = (x1 ≡4 1) respectively. The congruences
c1 and c2 describe all solutions of f1 and f2, as

[[f1]] = {〈0, 0, 1〉, 〈0, 1, 0〉} = [[c1]] ∩ B
3

[[f2]] = {〈1, 0, 1〉, 〈1, 1, 0〉, 〈1, 1, 1〉} ⊆ {〈1, x2, x3〉 | x2, x3 ∈ B} = [[c2]] ∩ B
3

Note that c2 additionally contains a non-solution 〈1, 0, 0〉 of f2 and hence, in
general, congruent closure upper-approximates the set of models of a Boolean
function.

It is straightforward to verify that αk
m and γk

m form a Galois connection between
the complete lattices 〈℘(Bk),⊆,

⋂
,
⋃
〉 and 〈Affk

m,⊆,
⋂
,
⊔
〉.

1 The notion should not be confused with congruence closure as used in the automated
deduction community for the computation of equivalence relations over the set of
nodes of a graph a la Nelson and Oppen [12].



Automatic Abstraction for Congruences 201

function closure(input: S ⊆ B
k and modulus m ∈ N)

[A|b] := [0, . . . , 0, 1]; – the unsatisfiable system
i := 0; r := 1;
while (i < r)

〈a1, . . . , ak, b〉 := row([A|b], r − i); – last non-stable row
S′ := {x ∈ S | 〈a1, . . . , ak〉 · x �≡m b}; – impose disequality
if (there exists x ∈ S′) then – solve new SAT instance

[A′|b′] := [A|b] � [Id|x]; – merge with new solution x
[A|b] := triangular([A′|b′]);
r := rows([A|b]);

else
i := i + 1; – a · x ≡m b is invariant so move on

return [A|b];

Fig. 2. Calculating Congruent Closure Based on Triangularisation

Example 3. Suppose Sb0b1b2b3 = {〈0, 0〉 | b0 = 1} ∪ {〈0, 1〉 | b1 = 1} ∪
{〈1, 0〉 | b2 = 1} ∪ {〈1, 1〉 | b3 = 1} where b0, b1, b2, b3 ∈ B. Then

α2
16(S0000) = ∅

α2
16(S0001) = {〈1, 1〉}

α2
16(S0010) = {〈1, 0〉}

α2
16(S0011) = {〈1, k〉 | k ∈ [0, 15]}

α2
16(S0100) = {〈0, 1〉}

α2
16(S0101) = {〈k, 1〉 | k ∈ [0, 15]}

α2
16(S0110) = {〈k1, k2〉 ∈ Z

2
16 | k1 + k2 ≡16 1}

α2
16(S0111) = Z

2
16

α2
16(S1000) = {〈0, 0〉}

α2
16(S1001) = {〈k, k〉 | k ∈ [0, 15]}

α2
16(S1010) = {〈k, 0〉 | k ∈ [0, 15]}

α2
16(S1011) = Z

2
16

α2
16(S1100) = {〈0, k〉 | k ∈ [0, 15]}

α2
16(S1101) = Z

2
16

α2
16(S1110) = Z

2
16

α2
16(S1111) = Z

2
16

From this we conclude that, in general, αk
m is not surjective and therefore αk

m

and γk
m do not form a Galois insertion.

Example 4. Let f be the Boolean function c′0 ↔ (c0 ⊕ 1) ∧ c′1 ↔ (c1 ⊕ c0) ∧
c′2 ↔ (c2⊕ (c0 ∧ c1)) ∧ c′3 ↔ (c3⊕ (c0 ∧ c1 ∧ c2)). Then α8

16([[f ]]) = [[c]], where c is
the conjunction of two equations c0 +2c1 +4c2 +8c3 +1 ≡16 c

′
0 +2c′1 +4c′2 +8c′3

and c0 + c′0 ≡16 1. This illustrates how congruent closure can extract numeric
relationships from a Boolean function.

Figure 2 presents a new algorithm for finding the congruent closure of a Boolean
function. For the purpose of presentation, it is convenient to pretend the function
is given as a set S of models, although we assume it given in conjunctive normal
form. If A is an m × n matrix and b = (b1, . . . , bm) is a vector, we denote by
[A|b] the m× (n+ 1) matrix B defined by

Bij =
{
Aij if 1 ≤ i ≤ m and 1 ≤ j ≤ n
bi if 1 ≤ i ≤ m and j = n+ 1

Given a matrix A, we write ‘row(A, i)’ for its ith row, and ‘rows(A)’ for the
number of rows. We use ‘triangular(A)’ for the result of bringing A into upper
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Step i Response from SAT solver Ax ≡m b

0 0 x0 = 0, x1 = 0, x2 = 1, x3 = 0, x′
0 = 1, x′

1 = 0, x′
2 = 0, x′

3 = 0 s1

1 0 x0 = 0, x1 = 0, x2 = 0, x3 = 1, x′
0 = 1, x′

1 = 1, x′
2 = 1, x′

3 = 1 s2

2 0 UNSATISFIABLE s2

3 1 UNSATISFIABLE s2

4 2 x0 = 0, x1 = 0, x2 = 0, x3 = 0, x′
0 = 0, x′

1 = 0, x′
2 = 0, x′

3 = 0 s3

5 2 UNSATISFIABLE s3

6 3 x0 = 0, x1 = 1, x2 = 0, x3 = 0, x′
0 = 1, x′

1 = 0, x′
2 = 0, x′

3 = 0 s4

7 3 x0 = 0, x1 = 1, x2 = 1, x3 = 0, x′
0 = 1, x′

1 = 0, x′
2 = 0, x′

3 = 0 s5

8 3 x0 = 1, x1 = 0, x2 = 0, x3 = 0, x′
0 = 1, x′

1 = 0, x′
2 = 0, x′

3 = 0 s6

s1 : s2 :⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ≡4 0
x1 ≡4 0

x2 ≡4 1
x3 ≡4 0

x′
0 ≡4 1

x′
1 ≡4 0

x′
2 ≡4 0

x′
3 ≡4 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ≡4 0
x1 ≡4 0

x2 x3 ≡4 1
x3 −x′

1 ≡4 0
x′

0 ≡4 1
x′

1 −x′
2 ≡4 0

x′
2 −x′

3 ≡4 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

s3 : s4 :⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 ≡4 0
x1 ≡4 0

x2 x3 −x′
0 ≡4 0

x3 −x′
1 ≡4 0

x′
1 −x′

2 ≡4 0
x′

2 −x′
3 ≡4 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0 ≡4 0
x1 x2 x3 −x′

0 ≡4 0
x3 −x′

1 ≡4 0
x′

1 −x′
2 ≡4 0

x′
2 −x′

3 ≡4 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

s5 : s6 :⎧
⎪⎪⎨
⎪⎪⎩

x0 ≡4 0
x3 −x′

1 ≡4 0
x′

1 −x′
2 ≡4 0

x′
2 −x′

3 ≡4 0

⎫
⎪⎪⎬
⎪⎪⎭

⎧
⎨
⎩

x3 −x′
1 ≡4 0

x′
1 −x′

2 ≡4 0
x′

2 −x′
3 ≡4 0

⎫
⎬
⎭

Fig. 3. SAT responses and the six congruence systems that arise for Example 5

triangular form—Müller-Olm and Seidl [11] provide an algorithm for this. The
join operation � can be implemented in terms of projection which in turn has
a simple implementation utilising the maintenance of upper-triangular form [8].
Space constraints prevent us from repeating the join algorithm here.

It is important to observe that S′ can be expressed propositionally by aug-
menting S with a propositional encoding of the single disequality constraint
〈a1, . . . , ak〉 · x �≡m b. This ensures that the propositional encoding of S′ does
not grow without bound, which is vital for tractability. A chain length result
for congruences [11] ensures that the total number of calls to the SAT solver is
O(wk) when m = 2w.

Example 5. Suppose f = (¬x3 ∧ ¬x2 ∧ ¬x1 ∧ ¬x0 ∧ ¬x′3 ∧ ¬x′2 ∧ ¬x′1 ∧ ¬x′0) ∨
(x3 ∧ x′3 ∧ x′2 ∧ x′1 ∧ x′0) ∨ (¬x3 ∧ (x2 ∨ x1 ∨ x0) ∧ ¬x′3 ∧ ¬x′2 ∧ ¬x′1 ∧ x′0).
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(This function could appear in an attempt to reason about an assignment x :=
sign(x) for a machine with 4-bit words.) The table given in Figure 3 shows how
the algorithm proceeds when computing the congruent closure of f , assuming a
particular sequence of results being returned from a SAT solver. The responses
from the solver are shown. In step 0, a single model of f produces the equation
system s1. This, and the subsequent congruence systems, are also shown. Each
system si is produced from its predecessor si−1 by identifying some model x of
f that is not covered by si−1 and calculating the strongest congruence system
covering both, that is, si is the join of si−1 and the system expressing the fact
that x is a model. The congruent closure of f is finally given by s6.

The following proposition states the correctness of the algorithm: the result is
independent of the order in which a SAT/SMT solver finds solutions. A proof
sketch has been relegated to the appendix.

Proposition 1. Let S ⊆ B
k and m ∈ N, and let [A|b] = closure(S, m). Then

affk
m(S) = {x ∈ Z

k
m | Ax ≡m b}.

3 Relational Semantics

Flowchart programs are defined over a finite set of labels L and a set of variables
X = {x1, . . . , xk} that range over values drawn from R = [−2w−1, 2w−1 − 1]. A
flowchart program P is a quadruple P = 〈L,X, �0, T 〉 where �0 ∈ L indicates the
program entry point and T ⊆ L×L×Guard× Stmt is a finite set of transitions.

3.1 Syntax of Flowchart Programs

The classes of well-formed expressions, guards and statements are defined by:

Expr ::= X | R | −Expr | Expr bop Expr
Guard ::= true | false | Expr rop Expr | Guard lop Guard
Stmt ::= skip | X := Expr | Stmt; Stmt

where the sets of binary operators bop, logical operators lop and relational op-
erators rop are defined thus rop = {=, �=, <,≤}, bop = {+,−, & , | ,% ,& },
lop = {∧,∨} and the & , | ,% ,& symbols denote C-style bitwise operations.

Example 6. The program in Figure 1(a) can be expressed as the flowchart
〈{�0, �1, �2}, {p, x, y}, �0, T 〉 where T = {t1, t2, t3} and t1 = 〈�0, �1, true, p = 0;
y = x〉, t2 = 〈�1, �1, y �= 0, y := y & (y − 1); p := 1− p〉, t3 = 〈�1, �2, y = 0, skip〉.

Example 7. The program in Figure 1(b) is expressed as

〈{�0, �1}, {x, y}, �0, {〈�0, �1, true, y := x; y := e1; y := e2; y := e3; y := e4〉}〉

where e1, e2, e3 and e4 are the RHSs of the assignments that follow y := x.
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3.2 Semantics of Flowchart Programs

All variables are of limited-precision integer signed type, based on some word
length w. The semantics can be formulated denotationally in terms of functions:
The set of states is the function space Σ = X → R and each state σ ∈ Σ
maps a variable to a value of R; the function E : Expr → Σ → R evaluates an
expression; and the function S : Stmt → Σ → Σ transforms one state to another.
However, we prefer to give a relational semantics, for a number of reasons. First,
we consider programs to take input via the program variables, so the semantics
needs to express how, at different points, program states are related to initial
states. Second, the relational semantics can be bit-blasted in a natural way, and
this is essential to the program analysis that we discuss. Third, we avoid a need
to lift a standard semantics to a so-called collecting semantics. Hence we wish to
express the effect of a program statement as a relation r ⊆ R2k that captures the
values of the k variables before and after the statement is executed. Compared
to the denotational approach, in our relational viewpoint a state transformer
S[[s]] : Σ → Σ is replaced by a relation r = {〈σ(x1), . . . , σ(xk), τ(x1), . . . , τ(xk)〉 |
σ ∈ Σ ∧ τ = S[[s]](σ)}. Henceforth S[[s]] will denote a relation S[[s]] ⊆ R2k.

3.3 Semantic Machinery: Composition and Bit Manipulation

To formulate a relational semantics, if a, b ∈ Rk then let a · b ∈ R2k denote the
concatenation of a and b. The identity relation is then Id = {a · a | a ∈ Rk}. If
r1, r2 ⊆ R2k then the composition of r1 and r2 is defined r1 ◦ r2 = {a · c | b ∈
Rk ∧ a · b ∈ r1 ∧ b · c ∈ r2}. Furthermore, if r1 ⊆ Rk and r2 ⊆ R2k then let
r1 ◦ r2 = {b | a ∈ r1 ∧ a · b ∈ r2}. If a = 〈a1, . . . , ak〉 ∈ Rk let a[i] = ai and if
b ∈ R let a[i �→ b] = 〈a1, . . . , ai−1, b, ai+1, . . . , ak〉.

To specify bit-twiddling operations, let 〈〈.〉〉 : [−2w−1, 2w−1 − 1] → B
w and

〈.〉 : [0, 2w − 1] → B
w denote the signed and unsigned w-bit representation of

an integer. Thus let 〈〈n〉〉 = 〈x0, . . . , xw−1〉 where n = (
∑w−2

i=0 2ixi) − 2w−1xw−1

and let 〈m〉 = 〈x0, . . . , xw−1〉 where m =
∑w−1

i=0 2ixi. Let n1, n2 ∈ R. To define
n1 | n2 = n let 〈〈n〉〉 = 〈x1

0 ∨x2
0, . . . , x

1
w−1 ∨x2

w−1〉 where 〈〈ni〉〉 = 〈xi
0, . . . , x

i
w−1〉.

To define n1% n2 = n let 〈〈n〉〉 = 〈0, . . . , 0, x1
0, . . . , x

1
w−1−n2

〉 if n2 ∈ [0, w − 1]
otherwise n = 0 (which handles the normally unspecified case of when n2 < 0).
To define n1 + n2 = n let n ∈ R such that n1 + n2 ≡2w n. Bitwise conjunction,
rightshift and subtraction are analogously defined.

3.4 Semantic Equations

The relational semantics of a guard g ∈ Guard is then given by S[[g]] = {a · a |
a ∈ Rk ∧ G[[g]]a}. The effect of a statement s ∈ Stmt is defined thus:

S[[skip]] = Id
S[[xi := e]] = {a · a[i �→ E [[e]]a] | a ∈ Rk}
S[[s1; s2]] = S[[s1]] ◦ S[[s2]]
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where E and G are defined:

E [[xi]]a = a[i]
E [[n]]a = n
E [[−e]]a = r ∈ R where r ≡2w −(E [[e]]a)

E [[e1 ( e2]]a = (E [[e1]]a)( (E [[e2]]a) where ( ∈ bop

G[[true]]a = 1
G[[false]]a = 0

G[[e1 ⊗ e2]]a = (E [[e1]]a)⊗ (E [[e2]]a) where ⊗ ∈ rop
G[[g1 * g2]]a = (G[[g1]]a)* (G[[g2]]a) where * ∈ lop

The semantics of a programP = 〈L,X, �0, T 〉 is then defined as the set of smallest
relations {r� ∈ R2k | � ∈ L} such that Id ⊆ r�0 and r�i ◦ S[[g]] ◦ S[[s]] ⊆ r�j for all
〈�i, �j , g, s〉 ∈ T . Each relation r� is finite and relates states at �0 to states at �.
The set of reachable states at � is given by the composition Rk ◦ r�.

4 Symbolic Relational Semantics over Boolean Functions

This section shows how a flowchart program can be bit-blasted, that is, described
symbolically with Boolean formulae. First, two disjoint sets of propositional
variables are introduced: X = {xi,j | xi ∈ X ∧ j ∈ [0, w − 1]} and X′ =
{x′i,j | xi ∈ X ∧ j ∈ [0, w − 1]}. Second, each relation r� ⊆ R2k for � ∈ L,
is encoded symbolically as a formula f� ∈ BX∪X′ , where BY denotes the class of
propositional formulae that can be defined over the propositional variables Y .
Third, operations over relations are simulated by operations over formulae.

4.1 Semantic Machinery: Encoding and Composition

We introduce a map sym : ℘(R2k) → BX∪X′ that specifies the symbolic encoding:

sym(r) =
∨
{

∧

xi∈X,j∈[0,w−1]

(xi,j ↔ 〈〈a[i]〉〉[j] ∧ x′i,j ↔ 〈〈b[i]〉〉[j]) | a · b ∈ r}

For example, sym(Id) =
∧

xi∈X,j∈[0,w−1] xi,j ↔ x′i,j . To handle expressions and
guards, we introduce a variant of the encoding map sym : ℘(Rk) → BX defined

sym(r) =
∨
{

∧

xi∈X,j∈[0,w−1]

xi,j ↔ 〈〈a[i]〉〉[j] | a ∈ r}.

Different formulae can represent the same Boolean function, but if we identify
equivalent formulae (implicitly working with equivalent classes of formulae), then
functions and formulae can be used interchangeably. With this understanding,
sym is bijective so that a relation r ⊆ R2k uniquely defines a function f ∈ BX∪X′ ,
and vice versa. Moreover, if r1, r2 ∈ R2k then r1 ⊆ r2 iff sym(r1) |= sym(r2) where
|= denotes logical consequence.
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To simulate composition with operations on formulae, let r1, r2 ⊆ R2k and
suppose sym(r1) = f1 and sym(r2) = f2, hence f1, f2 ∈ BX∪X′ . A formula
f ∈ BX∪X′ such that sym(r1 ◦ r2) = f can be derived as follows: Let X′′ =
{x′′i,j | xi ∈ X ∧ j ∈ [0, w − 1]} so that X ∩ X′′ = X′ ∩ X′′ = ∅. Put
f ′
1 = f1 ∧

∧
xi∈X,j∈[0,w−1] x

′
i,j ↔ x′′i,j and f ′

2 = f2 ∧
∧

xi∈X,j∈[0,w−1] xi,j ↔ x′′i,j .
Define f ′ = ∃X′(f ′

1) ∧ ∃X(f ′
2) and then put f = ∃X′′ (f ′) where the operations

∃X′(f ′
1), ∃X(f ′

2) and ∃X′′ (f ′) eliminate the variables X′, X and X′′ from f ′
1, f ′

2
and f ′ respectively. Henceforth, denote f1 ◦b f2 = f .

4.2 Semantic Equations

Analogues of S[[s]] ⊆ R2k, E [[e]] : Rk → R and G[[g]] ⊆ Rk over Boolean formulae,
namely, Sb[[s]] ∈ BX∪X′ , Eb[[e]] ∈ Bw

X and Gb[[g]] ∈ BX can now be constructed.
The symbolic bit-level semantics for a guard g ∈ Guard is given by

Sb[[g]] = Gb[[g]] ∧
∧

xi∈X,j∈[0,w−1]

(x′i,j ↔ xi,j)

whereas the semantics for a statement s ∈ Stmt is given as follows:

Sb[[skip]] =
∧

xi∈X,j∈[0,w−1](x
′
i,j ↔ xi,j)

Sb[[xi := e]] =
∧

j∈[0,w−1](x
′
i,j ↔ Eb[[e]][j]) ∧

∧
xk∈X\{xi},j∈[0,w−1](x

′
k,j ↔ xk,j)

Sb[[s1; s2]] = Sb[[s1]] ◦b Sb[[s2]]

The second conjunct of Sb[[g]] expresses that variables remain unchanged. As
before, Sb is defined in terms of Gb and Eb. The semantic function Eb : Expr →
[0, w − 1] → BX takes an expression and a bit position and returns the value of
that bit, expressed in terms of a Boolean formula. The function Gb : Guard → BX
takes a guard and returns its (Boolean) value. In what follows, f1 ∈ Bw

X and
f2 ∈ Bw

X abbreviate Eb[[e1]] and Eb[[e2]], respectively.

Eb[[xi]][j] = xi,j

Eb[[n]][j] = 〈〈n〉〉[j]
Eb[[−e]][j] = Eb[[e]][j]⊕

∨i−1
j=0 Eb[[e]][j]

Eb[[e1 + e2]][j] = f1[j]⊕ f2[j]⊕
⊕j−1

k=0(f1[k] ∧ f2[k] ∧
∧j−1

m=k+1(f1[m]⊕ f2[m]))
Eb[[e1 − e2]][j] = Eb[[e1 + (−e2)]][j]
Eb[[e1 & e2]][j] = f1[j] ∧ f2[j]
Eb[[e1 | e2]][j] = f1[j] ∨ f2[j]

Gb[[true]] = 1
Gb[[false]] = 0

Gb[[g1 = g2]] =
∧w−1

i=0 (f1[j] ↔ f2[j])
Gb[[g1 �= g2]] = ¬(Gb[[g1 = g2]])
Gb[[g1 < g2]] = ¬(Gb[[g2 ≤ g1]])
Gb[[g1 ≤ g2]] = (f1[w − 1] ∧ ¬f2[w − 1])

∨
∨w−2

j=0 (¬f1[j]∧f2[j]∧
∧w−1

k=j+1 f1[k] ↔ f2[k])
Gb[[g1 ∧ g2]] = (Gb[[g1]]) ∧ (Gb[[g2]])
Gb[[g1 ∨ g2]] = (Gb[[g1]]) ∨ (Gb[[g2]])
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The formula for e1 + e2 is derived by considering a cascade of full adders with
w carry bits c. Then Gb[[e1 + e2]][j] = (f1[j] ⊕ f2[j] ⊕ c[j]) ∧ (¬c[0]) ∧ f where
f =

∧w−1
j=1 c[j] ↔ ((f1[j−1]∧f2[j−1])∨(f1[j−1]∧c[j−1])∨(f2[j−1]∧c[j−1])).

By eliminating the c variables and simplifying, the above formula is obtained.
The equation for Eb[[e1% e2]][j] can be straightforwardly defined with w + 2
cases that handle the various classes of shift. Likewise for Eb[[e1& e2]][j]. Both
equations are omitted for brevity.

4.3 Semantic Equivalence

The semantics of a program P = 〈L,X, �0, T 〉 can then be prescribed as the
set of least Boolean functions {f� ∈ BX∪X′ | � ∈ L} such that sym(Id) |= f�0

and f�i ◦b S[[g]] ◦b S[[s]] |= f�j for all 〈�i, �j, g, s〉 ∈ T . The semantics can be
equivalently stated as the least fixed point of a system of equations of the form
f�j =

∨
{f�i ◦bS[[g]]◦bS[[s]] | 〈�i, �j, g, s〉 ∈ T }, where the equation for f�0 includes

the additional disjunction sym(Id). The semantics of the previous section can
likewise be expressed as a fixed point. This allows induction to be applied to
argue sym(r�) = f� for all � ∈ L. However this itself requires the use of induction
to show sym(G[[g]]) = Gb[[g]] for all g ∈ Guard and sym(E [[e]][j]) = Eb[[e]][j] for all
e ∈ Expr and j ∈ [0, w− 1]. The key point is that the semantics of this section is
equivalent to that introduced previously in that sym(r�) = f� for all � ∈ L. The
difference is the latter semantics provides a basis suitable for deriving transition
systems over congruences.

5 Abstract Relational Semantics over Congruences

Abstract interpretation [3] is a systematic way of deriving invariants by consid-
ering all paths through a program. Each atomic operation over the concrete data
values is simulated with an abstract version manipulating abstract data values
drawn from an abstract domain. The semantics of a transition t = 〈�i, �i, g, s〉
is expressed by the Boolean function f = S[[g]] ◦b S[[s]] ∈ BX∪X′ , which permits
t to be viewed as a single atomic operation. Once the modulus m is chosen,
congruent closure provides a way to map f to a system of congruence equations
that define an abstract version of t.

5.1 Deriving Abstract Transitions

Since f is a Boolean formula on X∪X′, we let AffX∪X′
m denote the set of systems

of equations modulo m that can be defined over X ∪X′. Thus if c ∈ AffX∪X′
m

then c is a system of implicitly conjoined equations (rather than a single equa-
tion). Then the abstraction map α2kw

m : ℘(B2kw) → Aff2kw
m can be extended to

αm : BX∪X′ → AffX∪X′
m in the natural way. This leads to the notion of an ab-

stract flowchart program 〈L,X, �0, T ′〉 where T ′ = {〈�i, �j , αm(S[[g]] ◦b S[[s]])〉 |
〈�i, �j , g, s〉 ∈ T }. Enlarging m preserves more of f at the expense of a more
complicated abstract program. Note how αm(S[[g]] ◦b S[[s]]) summarises both g
and s (even when s is itself compound) with a single system of congruences.
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Example 8. Observe αm(sym(Id)) =
∧

xi∈X,j∈[0,w−1] xi,j ≡m x′i,j .

Example 9. Consider again the parity program and suppose w = 16. Then com-
puting αm(S[[g]] ◦b S[[s]]) for m = 2 and each transition 〈�i, �j , g, s〉 ∈ T given in
Example 6, we derive the abstract transitions t′1 = 〈�0, �1, c1〉, t′2 = 〈�1, �1, c2〉
and t′3 = 〈�1, �2, c3〉 where

c1 = (
∧15

i=0 p
′
i ≡2 0) ∧ (

∧15
i=0 y

′
i ≡2 xi) ∧ (

∧15
i=0 x

′
i ≡2 xi)

c2 = p0 + p′0 ≡2 1 ∧ (
∧15

i=1 pi ≡2 p
′
i) ∧ (

∧15
i=0 xi ≡2 x

′
i)

∧ y′0 ≡2 0 ∧ 1 +
∑15

i=1 y
′
i ≡2

∑15
i=0 yi

c3 = (
∧15

i=0 p
′
i ≡2 pi) ∧ (

∧15
i=0 x

′
i ≡2 xi) ∧ (

∧15
i=0 yi ≡2 0) ∧ (

∧15
i=0 y

′
i ≡2 0)

Of course, such translation cannot be performed manually and therefore we have
written a Java application that derives abstract transition systems. It applies the
congruent closure algorithm presented in Section 2 and uses the MiniSat solver
through the Kodkod Java bindings. The most complicated system, c2, requires
97 SAT instances to be derived taking 3s overall. A modulus of 2 is sufficient to
verify the correctness of parity, but in general, the behaviour of the program is
unknown and then it is more appropriate to use a modulus that reflects the size
of machine words. Using a modulus of, say, 232 does not increase the number of
SAT instances but does double the time required to compute c2. Interestingly,
if c2 is derived without the guard y �= 0 (which accidentally happened when this
experiment was conducted), then the equation 1 +

∑15
i=0 y

′
i ≡2

∑15
i=0 yi cannot

be inferred. Note too that y′0 ≡2 0 asserts that the low bit of y is reset.

Example 10. Consider the word reversal program of Example 7, with w = 16.
Thus put m = 216. Then the abstract flowchart has a single transition 〈�0, �1, c〉
where c =

∧15
i=0(x

′
i ≡216 xi ∧ y′15−i ≡216 xi). This can be derived in 0.8s and

requires 33 calls to the SAT solver. Note how c precisely summarises program
behaviour, despite the use of devious bit-twiddling operations.

5.2 Applying Abstract Transitions

Once an abstract transition system has been derived, existing techniques can be
used to compute congruences that hold at each � ∈ L. Efficient algorithms have
been reported elsewhere [1,8,11] for checking entailment c1 |= c2, calculating join
c1�c2, and eliminating variables ∃Y (c1) for c1, c2 ∈ AffX∪X′

m . We make no contri-
bution in this area, but to keep the paper self-contained, we present a semantics
for abstract flowchart programs which specifies a program analysis. The seman-
tics is formulated in terms of a composition operator, ◦c, that mirrors ◦b. To de-
fine this operator, let c1, c2 ⊆ AffX∪X′

m . Put c′1 = c1∧
∧

xi∈X,j∈[0,w−1] x
′
i,j ≡m x′′i,j

and c′2 = c2 ∧
∧

xi∈X,j∈[0,w−1] xi,j ≡m x′′i,j , and then proceed by analogy with
the ◦b construction to define c1 ◦c c2 = c.



Automatic Abstraction for Congruences 209

The semantics of an abstract flowchart program 〈L,X, �0, T ′〉 can then be
defined as the set of least congruence systems {c� ∈ AffX∪X′

m | � ∈ L} such
that αm(sym(Id)) |= c�0 and c�i ◦c c |= c�j for all 〈�i, �j, c〉 ∈ T ′. As before,
the semantics can be equivalently stated as the least fixed point of a system
of equations, which leads to an iterative approach for computing congruence
invariants.

Example 11. Returning to Example 9, the invariants c�0 , c�1 , c�2 can be com-
puted iteratively since they are the least solutions to the equations: c�0 =
αm(sym(Id)), c�1 = (c�0 ◦c c1) � (c�1 ◦c c2) and c�2 = c�1 ◦c c3. To solve these
equations, first assign c�0 = c�1 = c�2 = false where false is the unsatisfiable
congruence system. Application of the first equation then yields

c�0 = (
∧

j∈[0,15]

p′j ≡2 pj) ∧ (
∧

j∈[0,15]

x′j ≡2 xj) ∧ (
∧

j∈[0,15]

y′j ≡2 yj).

Thereafter c�0 is stable. For brevity, let

c = (
∧

j∈[1,15]

p′j ≡2 pj) ∧ (
∧

j∈[0,15]

x′j ≡2 xj).

An application of the second equation gives

c�1 = c ∧ p′0 ≡2 0 ∧ (
∧

j∈[0,15]

y′i ≡2 xi).

Then

c�1 ◦c c2 = c ∧ (p′0 ≡2 1) ∧ (y0 ≡2 0) ∧ (1 ≡2

∑

j∈[0,15]

xi −
∑

j∈[1,15]

y′i),

so reapplying the second equation gives

c�1 = c ∧ (y0 ≡2 0) ∧ (p′0 ≡2

∑

j∈[0,15]

xi −
∑

j∈[1,15]

y′i).

Thereafter c�1 is also stable. Finally, the third equation then gives

c�2 = c ∧ (
∧

j∈[0,15]

y0 ≡2 0) ∧ (
∧

j∈[0,15]

y′0 ≡2 0) ∧ (p′0 ≡2

∑

j∈[0,15]

xi).

Then c�2 is stable too, and the fixed point has been reached. Correctness of
parity follows from the invariant p′0 ≡2

∑
j∈[0,15] xi that holds at �2.

6 Transformation for Range Information

Consider the program in Figure 4(a) where n, x and y are signed w bit variables.
Bit-level congruences cannot directly represent the inequality (

∑w−2
i=0 2ixi) −

2w−1xw−1 ≤ (
∑w−2

i=0 2ini) − 2w−1nw−1 that holds at �2, which is crucial for
inferring that x and n are bit-wise equivalent at �2.
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�0: assume(0 ≤ n);
x := 0; y := 0;

�1: while (x < n)
y := y + 2;
x := x + 1;

�2: skip

�0: assume(0 ≤ n);
x := 0; y := 0; δ := n− x;

�1: while (0 < δ)
y := y + 2;
x := x + 1;
δ := n− x;

�2: skip

(a) (b)

Fig. 4. Inferring x ≤ n by using a witness variable δ

6.1 Adding Witness Variables

However, bit-level congruences can express the non-negativity of a variable,
which suggests augmenting the program with a variable δ that witnesses the
non-negativity of n− x. The program in Figure 4(b) illustrates the tactic, and
the flow-graph for this program is given below:

〈�0, �1, 0 ≤ n, x := 0; y := 0; δ := n− x〉
〈�1, �1, 0 < δ, y := y + 2;x := x+ 1; δ := n− x〉
〈�1, �2, δ ≤ 0, skip〉

Generating the abstract transitions as previously described gives t′1 = 〈�0, �1, c1〉
and t′2 = 〈�1, �1, c2〉 where

c1 =
∧
⎧
⎪⎪⎨
⎪⎪⎩

x′0 ≡16 0, x′1 ≡16 0, x′2 ≡16 0, x′3 ≡16 0,
y′0 ≡16 0, y′1 ≡16 0, y′2 ≡16 0, y′3 ≡16 0,
n′

0 ≡16 n0, n′
1 ≡16 n1, n′

2 ≡16 n2, n′
3 ≡16 n3,

δ′0 ≡16 n0, δ′1 ≡16 n1, δ′2 ≡16 n2, δ′3 ≡16 n3

⎫
⎪⎪⎬
⎪⎪⎭

c2 =
∧

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ0 + δ′0 ≡16 1, δ1 + 2δ2 ≡16 δ
′
0 + δ′1 + 2δ′2, 0 ≡16 δ3,

0 ≡16 δ
′
3, n′

0 ≡16 n0, n′
1 ≡16 n1,

n′
2 ≡16 n2, n3 ≡16 n

′
3, 1 ≡16 x0 + x′0,

y0 ≡16 y
′
0, 1 ≡16 y1 + y′1,

δ′0 + 8(n3 + x3 + x′2) + 1 ≡16
n0 + 2(n1 + x1 − δ′1) + 4(n2 + x2 − δ′2 − x′1) + 3x0,

2x′0 + 2x′1 + 4x′2 ≡16 2x1 + 4x2 + 8x3 + 8x′3 + 2,
4y2 + 4 ≡16 8y3 + 4y′1 + 4y′2 + 8y′3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The width is set to w = 4 merely for presentational purposes. The key point is
that c2 asserts that 0 ≡16 δ

′
3 indicating that δ is non-negative at the end of the

loop, as required. In general, a loop condition that is a single inequality e1 < e2
(resp. e1 ≤ e2) can be replaced with 0 < δ where δ = e2 + (−e1) (respectively
δ = e2 + (−e1) + 1) so the transformation can be automated.

6.2 Decomposing Guards

Interestingly, introducing a witness variable is not by itself sufficient to deduce
xi ≡2w ni for all i ∈ [0, w−1] at �2. The semantics of abstract transition systems
can be applied to derive:
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c�1 =
∧
⎧
⎨
⎩

δ3 ≡16 0,
y0 ≡16 0, y1 ≡16 x0, y2 ≡16 x1, y3 ≡16 x2,∑3

i=0 2iδi +
∑3

i=0 2ixi ≡16
∑3

i=0 2ini

⎫
⎬
⎭

which, although unexpected, is not in error since 8δ3 ≡16 −8δ3 and likewise
for x3 and n3. But to infer the equivalence of x and n at �2 it is necessary
to additionally impose the constraint δ ≤ 0. However, such a constraint is not
captured in the abstract transition t3 = 〈�1, �2, c〉 where

c =
∧
⎧
⎪⎪⎨
⎪⎪⎩

n0 ≡16 n
′
0, n1 ≡16 n

′
1, n2 ≡16 n

′
2, n3 ≡16 n

′
3,

x0 ≡16 x
′
0, x1 ≡16 x

′
1, x2 ≡16 x

′
2, x3 ≡16 x

′
3,

y0 ≡16 y
′
0, y1 ≡16 y

′
1, y2 ≡16 y

′
2, y3 ≡16 y

′
3,

δ0 ≡16 δ
′
0, δ1 ≡16 δ

′
1, δ2 ≡16 δ

′
2, δ3 ≡16 δ

′
3

⎫
⎪⎪⎬
⎪⎪⎭

since c does not preserve any information pertaining to the δ ≤ 0 constraint.
However, observe that δ ≤ 0 holds iff δ < 0 ∨ δ = 0 and both δ < 0 and
δ = 0 can be represented with bit-level congruences. This suggests transforming
the third transition into 〈�1, �2, δ < 0, skip〉 and 〈�1, �2, δ = 0, skip〉. Then these
rules respectively yield the abstract transitions 〈�1, �2, c1〉 and 〈�1, �2, c2〉 where
c1 = c∧ (δ3 ≡16 1) and c2 = c∧ (

∧
j∈[0,3] δj ≡16 0). Only the second transition is

applicable since c�1 asserts δ3 ≡16 0. Thus the following constraints hold at �2:

c�2 =
∧
⎧
⎨

⎩

δ0 ≡16 0, δ1 ≡16 0, δ2 ≡16 0, δ3 ≡16 0,
y0 ≡16 0, y1 ≡16 x0, y2 ≡16 x1, y3 ≡16 x2,
x0 ≡16 n0, x1 ≡16 n1, x2 ≡16 n2, x3 ≡16 n3

⎫
⎬

⎭

Thus, even if a guard is not amenable to an exact bit-level representation, its
transition may still be decomposed to circumvent this problem.

7 Concluding Discussion

We have shown how a SAT/SMT solver can be employed to derive abstract
transition systems over linear congruences. The resulting invariants can express
congruence relationships amongst the individual bits that comprise variables
and, as a consequence, the abstract transition systems can calculate relationships
even at the granularity of bit-twiddling. The advantage of the scheme presented
in this paper is that SAT solving is confined to the derivation of the abstract
transition system; only linear operations of polynomial complexity are required
thereafter. We also proposed program transformations to improve the analysis
through the use of witness variables that can help observe range information.

One may wonder how the efficiency of congruence closure depends on the SAT
(or SMT) engine. Thus, as an experiment, MiniSat was replaced with ZChaff.
This had little discernible impact on the overall time to compute the closure
(transfer functions) for transition relations that formalised a number of bit-
twiddling algorithms given in Warren’s book [16]. Rather surprisingly, only a
modest slow-down was found when MiniSat was replaced by SAT4J which is a
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solver that is implemented in Java itself. To understand why, consider Wegner’s
fast bit counting algorithm [16]. Deriving the transfer functions for the 16 bit
version involves 98 SAT instances. Solving the instances takes 0.5s overall but
5.6s is spent computing all the joins. In this example, many joins involve ma-
trices of size 129× 129 arising from a relation over 129 bits. The effect is more
pronounced for a 32 bit version of the algorithm which has one relation over 259
bits. To solve the 195 SAT instances requires 11.4s overall, but the join opera-
tion takes up 149.5s, partly because it manipulates matrices of size 259 × 259.
The bias towards join is least in an example that computes the sign operation
by bit-twiddling. For the 32 bit version of the algorithm, the timings are 0.1s
and 0.4s for the SAT and join components. We conclude that SAT is not the
bottleneck, and that future effort should focus on how to exploit the sparsity of
the matrices that arise.
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Abstract. Device drivers often keep data in multiple data structures si-
multaneously while embedding list or tree related records into the records
containing the actual data; this results in overlapping structures. Shape
analyses have traditionally relied on a graph-based representation of
memory where a node corresponds to a whole record and edges to point-
ers. As this is ill-suited for encoding overlapping structures, we propose
and formally relate two refined memory models. We demonstrate the ap-
propriateness of these models by implementing shape analyses based on
them within the TVLA framework. The implementation is exemplified
using code extracted from cache managing kernel modules.

1 Introduction

Shape analysis of heap-manipulating programs is a very active field of research;
however, the focus of most work has been devoted to Java-like data-structures,
where pointers are not as heavily manipulated and computed with as in low-
level C. While shape analyses addressing pointer arithmetic in a broad sense
have recently been designed, e.g., [7, 3,10,19,16,9,18], we address a related and
particularly difficult problem: overlapping structures. The term was coined in [3],
where the shape analysis of such structures was stated as an open problem.

Overlap is often found in device drivers where data is kept in several data-
structures at the same time by means of embedding list or tree related records
into the records containing the actual data. An example of such code is shown
in Figure 1, where a node record (we shall consequently use the more general
term record to denote C structs) contains data as well as two list-related compo-
nents. The first, hlist node, is the record type which embeds the forward and
backward pointers of an hlist (see below) into a node; the second, list head,
is a record type which serves both as the list head and as the record that embeds
standard cyclic doubly-linked lists into nodes.

Hlists (or pprev lists) are in themselves quite tricky data-structures. In order
to save memory while maintaining efficient implementation of insertion and dele-
tion, Linux developers use these doubly linked lists with a pointer to the next
component of the previous element rather than to the element itself. (This is
visualized in a memory snapshot in Figure 2, where the edges from pprev boxes
� On leave from the University of Tartu; partially supported by EstSF grant 6713.

G. Barthe and M. Hermenegildo (Eds.): VMCAI 2010, LNCS 5944, pp. 214–230, 2010.
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struct hlist_head { struct hlist_node *first; };
struct hlist_node { struct hlist_node *next, **pprev; };
struct list_head { struct list_head *next, *prev; };

struct node { int data; struct hlist_node list;
struct list_head queue; };

struct hlist_head ht[512]; struct mutex hlock;
struct list_head cq;

void cleanup_task(void *arg) {
struct hlist_head garbage; struct node *pos;
lock(&hlock);
list_for_each(pos, &cq) {

hlist_del(&pos→list);
list_del(&pos→queue);
hlist_add(&pos→list, &garbage); }

unlock(&hlock);
hlist_for_each(pos, &garbage, list) {

access(pos→data);
hlist_del(&pos→list); } }

Fig. 1. Overlapping data-structures from the Linux kernel

end at the smallest boxes rather than at the medium-sized ones as is the case
for edges originating in prev boxes.) Hlists are used in hash-tables where having
only a single pointer in the list head can be a significant gain.

The code given in Figure 1 shall serve as a basis for our case study. We use a
syntax close to the original code, but abbreviate function names and eliminate
some of the parameters to the list-traversal macros. These macros expand into
for-loops and use pointer-arithmetic to move from a record embedded within a
node to the containing record. The example is based on code for maintaining a
cache where the least recently used items are tagged and added to the cleanup
queue. This queue is processed asynchronously by a cleanup task whose code
is given in the figure. As this task may be executing concurrently with code
that accesses the cache, elements in the queue are moved to the thread-local list
garbage for statistical processing before being deallocated. This minimizes the
time that the cleanup task must keep the lock on the cache.

When an object is removed from all thread-shared data-structures, the sub-
sequent post-processing of the privatized object no longer requires protection
through the acquisition of locks. However, if an element resides in two lists si-
multaneously, traversing these distinct lists may cause a race when accessing the
data of the shared element. To prove absence of races in the example, we must
infer that an element is in the queue but no longer in the list, although both
queue- and list-related records are embedded into the same node.

Shape analyses often rely on graph-based representations of memory where a
node corresponds to a whole record and edges to pointers. For these, it is not
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Fig. 2. Overlapping Structures

immediate how to encode pointers between components. Therefore, we propose
two refined memory models which exhibit the low-level details required to reason
about overlapping structures. Both memory models are formulated in terms of
the TVLA framework [27]. Using the TVLA framework is not necessary but al-
lows for a quick prototype implementation. Since our refinement is conservative,
we can also benefit from knowledge and developments in the TVLA realm.

The model of Section 3 uses a one-node-per-component approach, i.e., each
box of Figure 2 becomes a single node in the shape graph, and the hierarchy
induced by the box nesting is translated into a tree structure. We design a
program analysis based on this model and demonstrate its potential on a list
element deletion procedure that uses unorthodox pointer manipulations.

Alternatively in Section 4, we propose a coarser and possibly more efficient
model that employs a one-node-per-outermost-record paradigm. This approach
annotates edge dereferences with access paths into the finer structure of the
records, making sources and targets of dereferencing explicit. We exemplify shape
analyses based on this coarser semantics by verifying deletion from an hlist. In
Section 5, we characterize the relationship between the two models.

In Section 6, we revisit our motivating example of Figure 1. The analysis
is conducted w.r.t. the coarse-grained semantics and enables us to verify race
detection properties for it. Sections 7 and 8 present related work and conclude.

2 Preliminaries

We begin by introducing the syntax of the C subset under consideration. Our
aim is to cover the part of the C language crucial to most low-level programs
like kernel code and drivers. We support arbitrarily nested named records and
pointers to named types only; integers are not considered. This implies that we
have both records and pointers as values. We use the domain Id of variables
ranged over by x, y, and z, and the domain Sel of component selectors ranged
over by s. Type names are ranged over by t. We consider the following languages
of types τ and pointer expressions e:



Shape Analysis of Low-Level C with Overlapping Structures 217

τ ::= struct t {τ1 s1, . . . , τk sk} | τ ∗
e ::= 0 | x | ∗e | &e | e→ s |malloc(t) | up(x, t, s)

We omit arbitrary pointer arithmetic, unions, and type-casts; rather, we restrict
pointer manipulation to component selection and the expression up(x, t, s) used
as a primitive to model the container of macro which computes the address
of a record of type t from a pointer x to its s component. Since recent versions
of the Linux kernel rely on built-in support by the compiler to implement this
macro, a primitive treatment of the container-of idiom is sensible.

In the presence of overlap the up()-operator is crucial to change views. For
instance, in the example of Figure 1 one could traverse the cleanup queue, use
the operator up() to jump to the data component of a node, and then continue
traversing the list components.

As for statements we only consider assignments between pointer expressions.
We assume that programs are compiled into a control-flow graph where assign-
ments are attached to edges and where pointer comparisons may serve as guards.
Two different semantics will be provided in Sections 3 and 4 in the framework of
the Three-valued Logic Based Shape Analysis (TVLA) [27]. We therefore briefly
recapitulate the basics of the TVLA approach in order to have the necessary
notation at hand.

TVLA builds on the notion of logical structures over a certain signature P .
A logical structure S = (U, ι) is a pair of a set of individuals U ranged over by
u and an interpretation, ι. Each predicate symbol p/k ∈ P of arity k is mapped
by ι to a boolean-valued function ι(p/k) : Uk → �. The set of all structures over
a P is written S[P ]. We evaluate formulas of first-order logic with transitive
closure, FO(TC), on logical structures. Formulas are defined by:

ϕ = 0 | p(v1, . . . , vk) | ¬ϕ | ϕ ∧ ϕ | ∃v : ϕ | TC(v1, v2 : ϕ)(v′1, v
′
2)

where v ∈ Var is a logical variable. The transitive closure operator, TC(v1, v2 :
ϕ)(v′1, v′2) defines a binary relation by ϕ using free variables v1 and v2. The
transitive closure of this relation is then evaluated on v′1 and v′2. The evaluation
of a formula ϕ in structure S and assignment Z (of free variables to individuals)
is written [[ϕ]]S(Z).

Logical structures are used to encode heap graphs. Traditionally, an individual
corresponds to a record and a binary predicate s holds of individuals u and u′, if
there is a pointer-valued component s of the record modeled by u which points
to (the head of) the record modeled by u′. The predicates used to encode a heap
are essentially the binary selectors, Sel, and the unary program variables, Id,
that hold of records pointed to by the corresponding variables. These predicates
are called core predicates, the set of which is denoted by C.

The semantics of an assignment st is a mapping [[st]] : S[C] → S[C] This is
given in terms of predicate update formulas that update the value of predicates
affected by the statement. Given for each k-ary predicate p ∈ C an update
formula ϕst

p with free variables v1, . . . , vk, the semantics of st is defined as
[[st]](S) = (U ′, λp.λu1, . . . , uk.[[ϕst

p ]]S(Z)) where Z = [v1 �→ u1, . . . , vk �→ uk] and
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the universe U ′ is either the same as before or (in the case of memory allocation)
extended with fresh individuals.

Abstract states in the TVLA framework are three-valued logical structures
based on Kleene’s three-valued logic. Abstract states are obtained by canonical
abstraction, an abstraction that summarizes individuals that are indistinguish-
able under a set of abstraction predicates to summary nodes. Due to summa-
rization, knowledge about certain predicates may become indefinite, in which
case the logical value 1/2 is introduced. To avoid serious loss of precision, in-
strumentation predicates are employed; these are additional predicates defined
through formulas of FO(TC) using the core predicates C. Instrumentation pred-
icates allow to better distinguish abstract nodes by annotating logical structures
with additional information such as reachability, sharing, or cyclicity. Update
formulas for instrumentation predicates can be automatically inferred using dif-
ferencing [25].

As abstract states are still logical structures, the concrete semantics in terms
of predicate update formulas is easily lifted to three-valued logical structures,
too. As a consequence, it is sufficient to specify predicate update formulas and
a set of instrumentation predicates to define a program analysis in the TVLA
framework. Soundness then is immediate.

3 Fine-Grained Semantics and Analysis

We now present our first refinement of the one-node-per-record paradigm by
adopting a one-node-per-component representation. More precisely, a record of
type struct t {τ1 ∗ s1, . . . , τk ∗ sk} is represented by k + 1 nodes, one be-
ing the head and one for each pointer component. If the component types are
records again, additional nodes for the subcomponents are introduced, until fi-
nally pointer types are reached. This corresponds to transforming the hierarchy
of boxes in Figure 2 into a tree.

This memory model is both more explicit and more abstract than that of real
C. While in C the address of a record and the address of its first component
coincide, they are considered as different here. On the other hand, we do not
model the order of components or padding between each two of them. In our
model, the operation up() amounts to moving from a component node to the
head of its enclosing record.

Since we rely on the TVLA framework, we aim at encoding a state as a logical
structure. Here we use the signature

C = {x/1 | x ∈ Id} ∪ {s/2 | s ∈ Sel} ∪ {∗/2}

In order to reason about expressions of the form &x, the corresponding predicate
x holds of an individual representing the stack location where x’s value is stored.
In standard TVLA the predicate x holds of the element pointed to by x.

The key predicate in our formulation is the binary ∗ for dereferencing. In
particular, it holds between the location of a pointer variable and the value the
variable points to. An interesting feature of our model is that the only predicate
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Table 1. Predicate update formulas for nullification and assignments. The latter as-
sume that ∗x, x, and x → s have been nullified.

st ϕst
∗ (v1, v2) =

x = 0 ∗(v1, v2) ∧ ¬x(v1)
∗x = 0 ∗(v1, v2) ∧ ¬∃ v′ : x(v′) ∧ ∗(v′, v1)
x → s = 0 ∗(v1, v2) ∧ ¬∃ v′, v′′ : x(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v1)
x = y ∗(v1, v2) ∨ x(v1) ∧ ∃ v′ : y(v′) ∧ ∗(v′, v2)
x = ∗y ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ ∗(v′′, v2)
x = &y ∗(v1, v2) ∨ x(v1) ∧ y(v2)
x = &y → s ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v2)
x = y → s ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′, v′′′ : y(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v′′′) ∧ ∗(v′′′, v2)
x = up(y, t, s) ∗(v1, v2) ∨ x(v1) ∧ ∃ v′, v′′ : y(v′) ∧ ∗(v′, v′′) ∧ s(v2, v

′′)
∗x = y ∗(v1, v2) ∨ ∃ v′, v′′ : x(v′) ∧ ∗(v′, v1) ∧ y(v′′) ∧ ∗(v′′, v2)
x → s = y ∗(v1, v2) ∨ ∃ v′, v′′, v′′′ : x(v′) ∧ ∗(v′, v′′) ∧ s(v′′, v1) ∧ y(v′′′) ∧ ∗(v′′′, v2)

that is affected by assignments is the ∗ predicate: once allocated, the nodes
representing a record and its components do not change and neither does the
location of a variable.

We now formalize the semantics of our programming language. Each basic
statement gives rise to an update formula. The update formulas, except for alloca-
tion, are given in Table 1. As is often done, we consider only one pointer operation
per assignment, and we assume that pointers which are assigned to are always
explicitly nullified before-hand, so that updates for assignments only introduce
a single new points-to relationship. For example, in the case of x = up(y, t, s),
we have that ∗(u1, u2) holds after the assignment if it either held before, or if u1
is the individual hosting x and u2 has an s-component which is pointed to by
the individual hosting y.

As for memory allocation, we expand the universe by a set of new individuals
depending on the type of the record to be allocated. Recall that we require
one individual per (sub)component of each non-pointer type. To this end, we
introduce the notion of an access path. Such paths are not to be confused with
access paths found in storeless semantics [20, 15]. Here, they merely reflect the
static structure of a (possibly nested) record. Intuitively, there is a path for each
component of a record. Formally, we define the set Π of access paths to be a
union over all record types t occurring in the program, Π =

⋃
t Π(t), where

Π(τ ∗) = {ε}
Π(struct t {τ1 s1, . . . , τk sk}) =

⋃k
i=1{si}.Π(τi) ∪ {si}

As t ranges over record types, ε �∈ Π ; we write Πε = Π ∪ {ε}.
Using the access paths from Π , we define the semantics of malloc as [[x =

malloc(t)]](U, ι) = (U ′, ι′) where U ′ = U ·∪ {uπ | π ∈ Πε(t)} and
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ι′(s)(u1, u2) =

⎧
⎪⎨

⎪⎩

ι(s)(u1, u2) if u1, u2 ∈ U
1 if u1 = uπ ∧ u2 = uπ.s

0 otherwise

ι′(∗)(u1, u2) =

⎧
⎪⎨
⎪⎩

ι(∗)(u1, u2) if u1, u2 ∈ U
1 if ι(x)(u1) ∧ u2 = uε

0 otherwise

Analysis. As first example which goes beyond the one-node-per-record memory
model, we consider a program which iterates over a singly-linked list pointed to
by x using a pointer, lpp, to the next component of list elements, rather than
to the elements themselves. The iteration is driven by the loop

for (lpp = &x; *lpp != NULL; lpp = &(*lpp)→next)

In the beginning lpp points to the address of x. It is advanced by dereferencing
and taking the address of the next component of the next element. Once an
element to be deleted is found, the assignment *lpp = (*lpp)→next removes
it from the list. This routine is quite elegant in that it needs only one iterator
and no check whether the iterator points to the first element or not. Also it uses
pointers to components of records.

We implemented the creation of a fine-grained singly-linked list, the iteration
over it, and the deletion of an element from it as outlined above in TVLA.1

The encoding of the fine-grained model into TVLA amounted in representing
the ∗ predicate together with its update formulas for the basic statements.
Through this encoding, we could re-use instrumentation predicates like shar-
ing and reachability (r[z]: reachability from program variable z) to make the
analysis go through and prove memory safety and well-formedness. Essentially,
these come for free from TVLA. Additional instrumentation that we had to
provide concerned type information (lnode, lnodep), the location to which
pointer variables point (ptr[z]), and the fact that each record always has a
next component (hasn).

In Figure 3, we show a sample shape graph, where summary nodes are denoted
by double lines, definite edges by solid arrows, and 1/2 edges, which may or may
not be there, by dotted arrows. Variable t points to an element in the middle
of the list and is to be deleted using the code above. The snapshot is taken
after the first iteration of the loop, where lpp was advanced once. The two
pairs of summary nodes (double circles) represent any number (at least 1) of list
elements before and after t. Each pair would be a single node in the standard
TVLA memory model. Also observe, that lpp indeed points to the n component
of the list element pointed to by x.

1 All our TVLA analysis specification files are provided online at
http://www7.in.tum.de/˜joba/overlap.tgz. These files also contain the
precise definitions of instrumentation predicates and integrity constraints.

http://www7.in.tum.de/~joba/overlap.tgz
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Fig. 3. Shape graph during list traversal with indirect pointer. Double lines indicate
summary nodes, solid arrows indicate definite edges, and dotted ones 1/2-edges. Pred-
icates within a node do hold for this node.

4 Coarse-Grained Semantics and Analysis

The fine-grained model from the last section has a very explicit view of the
heap and allows for very detailed modelling. The number of individuals, though,
in a logical structure is a multiple of the number occurring in standard TVLA
based analyses because each component of a record is modeled by a separate
individual. On top of that, care must be taken that individuals belonging to the
same record — encoded as the outermost boxes in Figure 2 — are kept together,
something not supported by standard TVLA.

Fortunately, we can atone for these drawbacks by exploiting the fact that the
structure of a record is completely static. Once allocated, the interpretation of
predicates in Sel never changes, only the ∗ predicate does. This observation sug-
gests an encoding of records as single nodes after all, rather than representing
them explicitly through a linked set of nodes — as in the one-node-per-record
paradigm. Still, pointers to the head of a record need be distinguished from
pointers to components. We do so by parameterizing the ∗ predicate. For exam-
ple, if ∗[p, n] is true of two individuals u and u′, it means that the p-component of
the record modeled by u holds a pointer to the n-component of the record mod-
eled by u′. Analogously, we parameterize the unary predicates encoding pointer
variables: if x[n] holds of individual u, it means that x holds a pointer to the
n-component of the record modeled by u. In the special case (which in practice
is the most common) of a pointer to the head of a record, we write x[ε].

Addresses of variables can be handled by adding one individual per variable ex-
actly like in the fine-grained model. In order to simplify the presentation, though,
we here omit addresses of pointer variables. Unlike in the fine-grained semantics,
the unary predicate x[ε] now holds for the individual pointed to by the pointer
x, rather than for the location of x itself. Thus, the standard TVLA model is ob-
tained from this version of the coarse-grained model by restricting predicates to
the forms ∗[s, ε] and x[ε], i.e., all pointers point to the heads of records.
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Table 2. Predicate update formulas. Here, ϕx[π] and ϕ∗[π,π′] denote rule schemes and
stand for one rule per instance of π.

st ϕst
p

x = 0 ϕst
x[π](v) = 0

∗x = 0 ϕst
∗[π,π′](v1, v2) = ∗[π, π′](v1, v2) ∧ ¬x[π](v1)

x → s = 0 ϕst
∗[π.s,π′](v1, v2) = ∗[π.s, π′](v1, v2) ∧ ¬x[π](v1)

x = y ϕst
x[π](v) = y[π](v)

x = ∗y ϕst
x[π](v) = ∃ v′ :

∨
π′∈Π y[π′](v′) ∧ ∗[π′, π](v′, v)

x = &y not supported
x = &y → s ϕst

x[π.s](v) = y[π](v)
x = y → s ϕst

x[π](v) = ∃ v′ :
∨

π′∈Π y[π′](v′) ∧ ∗[π′.s, π](v′, v)
x = up(y, t, s) ϕst

x[π](v) = y[π.s](v)
∗x = y ϕst

∗[π,π′](v1, v2) = ∗[π, π′](v1, v2) ∨ x[π](v1) ∧ y[π′](v2)
x → s = y ϕst

∗[π.s,π′](v1, v2) = ∗[π.s, π′](v1, v2) ∨ x[π](v1) ∧ y[π′](v2)

Recall the notion of an access path of the previous section. Using access paths,
we define coarse-grained states as logical structures over the following signature,
D, serving as our set of core predicates.

D = {x[π]/1 | x ∈ Id, π ∈ Πε} ∪ {∗[π1, π2]/2 | π1 ∈ Π,π2 ∈ Πε}

In order to complete the coarse-grained semantics, we provide the predicate
update formulas for the predicates in D. The update formulas shown in Table 2
constitute the state transformers both for the concrete and for the abstract
semantics. These formulas are more concise than those of the fine-grained model.
The update for the up() operation, e.g., only requires updating the predicates
x[π] to be true whenever the corresponding y[π.s] used to be true. In the case
of memory allocation, the effect of x = malloc(t) is to extend the universe with
one fresh individual for which only the predicate x[ε] holds.

Analysis. As for the fine-grained semantics, we implemented the coarse-grained
transformers inside TVLA. As an example, we analyzed a program that first
generates an hlist using the expanded hlist add macro, which was already
used in Figure 1, then iterates to some arbitrary point, and then deletes the
element there using the hlist del macro. The concrete C code of these macros
is available from the list.h file of the current Linux distribution.

Being able to handle hlists is mandatory for verifying absence of races in pro-
grams such as in Figure 1. In our TVLA implementation, we parameterized the
∗ predicate with source and target components as described in the semantics.
Other than that, we could migrate existing analysis specifications for doubly-
linked lists to hlists. The analysis of doubly linked lists uses, e.g., the instrumen-
tation predicate which says that first following the pointers n and then p yields
the same element. This predicate now is migrated to a predicate c[n, p] stating
that following ∗[n, ε] and then ∗[p, n] results in the same individual.
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c[n, p], c[p, n]
rl [t], rl [x], rr [x]

head
x[ε]

c[n, p], c[p, n]
rl [t], rr [x]

node

c[n, p], c[p, n]
rl [t], rr [t], rr [x]

node

t[ε]t[ε]

c[n, p], c[p, n]
rr [t], rr [x]

node

∗[first , ε] ∗[n, ε] ∗[n, ε]

∗[p, n]∗[p, n]∗[p, first ]

∗[n, ε]

∗[p, n]

∗[n, ε]

∗[p, n]

Fig. 4. Shape graph obtained during hlist traversal

The sample shape of Figure 4 shows a situation where t points to the middle
of an hlist. Note that there are two sorts of reachability: forward (tr, rr[z])
and backward (tl and rl[z]). This shows that t is indeed in the middle,
well-formedness follows from the c[] predicates. Finally, observe that the back
pointers either point to the first component of the head x, *[p,first], or
to the n component of a predecessor element (*[p,n]). In contrast, the forward
pointer always points to the head of a record (*[n,ε]).

We successfully verified well-formedness and memory safety for the hlist ex-
ample. Before we proceed to the example program of Figure 1, we investigate the
formal relation between the fine-grained and the coarse-grained model in terms
of expressiveness.

5 Fine-Grained versus Coarse-Grained

Since the fine-grained model is more detailed, it is able to simulate the coarser
one in a sense to be made explicit now.

We start by defining a mapping g from a coarse-grained structure Sc = (Uc, ιc)
into a fine-grained structure g(Sc) = (Uf , ιf ). The set of individuals of g(Sc) is
given by

Uf = Id ∪ {uπ | u ∈ Uc, π ∈ Πε(type(u))}

The interpretation function ιf then is given by:

ιf (∗)(uπ, u
′
π′) iff ιc(∗[π, π′])(u, u′)

ιf (∗)(x, uπ) iff ιc(x[π])(u)
ιf (x)(v) iff v = x

ιf (s)(v, v′) iff ∃uπ.s ∈ Uf . v = uπ ∧ v′ = uπ.s

where type(u) = t if u was created by malloc(t). Also we assume that Sc

respects types, i.e., there are no pointers from or to a π component of node u if
π �∈ Π(type(u)).

Since we deal with two different vocabularies, C and D, on top of the mapping
g between structures, a mapping T is required which translates formulas. Let
ϕ be a FO(TC) formula over D. The translation T commutes with boolean
connectives and additionally is defined by:
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T (∗[π1, π2](v1, v2)) = ∃v′1, v′2, v : π1(v1, v′1) ∧ π2(v2, v′2) ∧ ∗(v′1, v′2)
T (x[π](v)) = ∃v′, v′′ : x(v′) ∧ π(v, v′′) ∧ ∗(v′, v′′)
T (∃v : ϕ) = ∃v : head(v) ∧ T (ϕ)

T ((TC v1, v2 : ϕ)(v3, v4)) = (TC v1, v2 : head(v1) ∧ head(v2) ∧ T (ϕ))(v3, v4)

where for π = s1. · · · .sk ∈ Π , the formula π(v0, vk) is given by

∃v1, . . . , vk−1 : s1(v0, v1) ∧ . . . ∧ sk(vk−1, vk)

and where head holds for heads of records in a fine-grained structure only. A
node is a head, if it is not the location of a variable and if it has no incoming Sel
edge. The following theorem states that this translation preserves the valuation
of formulas and that it commutes with state transformers, i.e., with predicate
update formulas.

Theorem 1. Let Sc be a type-respecting, coarse-grained logical structure and
Sf = g(Sc) the corresponding fine-grained structure. Then we have:

1. For every closed FO(TC) formula ϕ over D, [[ϕ]]Sc = [[T (ϕ)]]Sf .
2. For every basic statement st, g([[st]]c(Sc)) = [[st]]f (Sf ).

Proof. For an induction argument, we prove the statement for open formulas.
Let Zc : Var → Uc be an assignment of logical variables to individuals in the
coarse-grained universe; we define Zf = g(Zc) : Var → Uf as an assignment
selecting the head uε for each record u. We show [[ϕ]]Sc(Zc) = [[T (ϕ)]]Sf (Zf ) by
induction on ϕ. For the core predicates, we compute for u = Zc(v):

[[x[π](v)]]Sc (Zc) = ιc(x[π])(u) = ιf (∗)(x, uπ)
= ∃u′ ∈ Uf : π(uε, u

′) ∧ ιf (∗)(x, u′)
= [[T (x[π](v))]]Sf (Zf )

And analogously for the binary predicates. We need to further consider cases for
∧, ∃, ¬, and TC (as the rest follows from DeMorgan’s Laws). Conjunction and
negation are obvious, while existential quantification and transitive closure rely
on the restriction of quantification to heads of records. We consider existential
quantification, for which we observe:

[[∃v : ϕ]]Sc(Zc) = ∃u ∈ Uc : [[ϕ]]Sc(Zc[v �→ u]) = ∃u ∈ Uc : [[T (ϕ)]]Sf (Zf [v �→ uε])

= ∃u′ ∈ Uf : head(u′) ∧ [[T (ϕ)]]Sf (Zf [v �→ u′])

= [[∃v : head(v) ∧ T (ϕ)]]Sf (Zf ) = [[T (∃v : ϕ)]]Sf (Zf )

This completes the proof of the first statement. For the second statement, let
Sc = (Uc, ιc) denote a coarse-grained logical structure. We do a case distinction
on the form of basic statements.

Consider, e.g., the statement st given by x = up(y, t, s). If it exists, let u ∈ Uc

denote the unique individual for which ιc(y[π.s]) holds for some access path π.
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Then [[st]]c(Sc) = S′
c = (U ′

c, ι
′
c) where U ′

c = Uc and ι′c equals ιc up to the predicate
x[π], which is updated such that ι′c(x[π])(u′) holds iff u′ = u. Let Sf = g(Sc)
denote the fine-grained structure corresponding to Sc. This generates for u ∈ Uc

the head uε ∈ Uf as well as its components, including uπ and uπ.s. Since we
assumed that ιc(y[π.s])(u) is true in Sc, we know that ιf (∗)(y, uπ.s) must hold
in Sf . Thus, [[st]]f (Sf ) = S′

f = (U ′
f , ι

′
f ) where the set of individuals are the same

as Sf and ι′f equals ιf up to the predicate ∗ which now additionally holds for the
pair (x, uπ). Ultimately, the only change to Sf and Sc is that ι′c(x[π])(u) holds
in S′

c and ι′f (∗)(u, uπ) holds in S′
f . As this is in accord with the definition of g,

we conclude that g(S′
c) = S′

f . This holds also if ιc(y[π.s]) is false everywhere, in
which case S′

c = Sc and S′
f = Sf . ��

The theorem effectively constitutes a simulation result between fine-grained and
coarse-grained semantics. Notice that the restriction of quantified variables to
heads of records in the translation T is an important one. It also demonstrates
exactly how fine-grained structures are finer: they can talk about record compo-
nents explicitly and quantify over them, while components occur only implicitly
in the coarse-grained model.

Part 1 of Theorem 1 can be lifted to abstract states as well. Assume an
abstract, three-valued coarse-grained structure S3

c and any two-valued coarse-
grained structure S2

c such that S2
c ! S3

c using the embedding order of [27]. Then
any formula ψ of FO(TC) that holds for S3

c also holds for S2
c by the Embedding

Theorem. By Theorem 1, T (ψ) holds in Sf = g(S2
c ). If S3

c was obtained by the
set A of abstraction predicates, then ψ will also hold in the canonical abstraction
of Sf using T (A) as abstraction predicates. Lifting part 2 of Theorem 1 is far
more involved, because it needs to take materialization strategies into account.

6 Application

Let us finally consider the motivating program from the Introduction. Its code
is shown in Figure 1 and a typical memory configuration in Figure 2. In order
to argue about data races in the presence of privatization, reachability informa-
tion is crucial. In particular, one must reason about reachability along different
embedded lists. For instance, in Figure 2, only the first and the third node are
in the queue, whereas all three are in the list.

The TVLA tool does not natively support computations on predicates as
necessary to conveniently express the string manipulation on access paths as used
in the update formulas of Table 2. This makes the implementation cumbersome
and look clumsy in places. Also, it introduces a lot of superfluous predicates
and coercion constraints greatly slowing down the tool. This, however, is not a
principal restriction of our memory model but the lack of tool support. Therefore,
we had to settle for a proof of concept implementation where the cleanup queue
is actually a singly-linked list.

First, we analyzed a program creating a structure like that of Figure 2 from
scratch. This amounts to iterating the code
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r[hash ]
rl [hash ]
rr [hash ]

hash [ε]

r[cq ]
rl [cq ]
rr [cq ]

cq [ε]

rr [hash ]
node

r[cq ]
rr [hash ]

node

∗[list .pprev ,first ]

∗[first , list ]∗[list .pprev ,first ]

∗[next , queue] ∗[queue .next , queue ]
∗[list .pprev , list .next ]
∗[list .next , list ]

∗[queue .next , queue ]
∗[list .pprev , list .next ]
∗[list .next , list ]

∗[queue .next , queue ]
∗[list .pprev , list .next ]
∗[list .next , list ]

Fig. 5. Shape graph obtained while analyzing overlapping data-structure

n = malloc(sizeof(node));

hlist_add_head(&n→list,&hash);

if (?) list_add(&n→queue, &cq);

After this loop, four shapes are obtained, the most general of which is shown in
Figure 5. It shows that (i) all nodes are reachable from hash, which is the head
of the hlist component, a fact indicated by rr[hash]; and (ii) only some nodes
are reachable from cq, indicated by r[cq]. This is the arbitrary subset of nodes
added to the cleanup queue. Also it shows the ∗ predicates with parameters like
list.pprev, denoting the pprev component of the hlist component of a node.
Recall that rr[x] (rl[x]) means reachability from x along forward (backward)
pointers in a doubly-linked list, while r[x] is just singly-linked list reachability
— which is how we implement the cleanup queue. The precise definitions can be
found at http://www7.in.tum.de/˜joba/overlap.tgz.

Subsequently, the elements of the queue are to be removed from the hlist
component using

list_for_each_entry(n, &cq, queue) { hlist_del(&n→list); }

Here, the challenge for the analysis is the change of views implied by traversing
the queue and then removing from the hlist. A lot of reachability information
is lost; in fact, properties like absence of memory leaks cannot be guaranteed
by this analysis. Still, we are able to prove that an element is deleted from the
queue using the very same routine that was used in a non-embedded record in
Section 4. Thus, we can infer that the element is no longer reachable from the
thread-shared data.

Again, the analysis specifications are available online. Even in this most com-
plicated scenario, the analysis time was just a few seconds.

7 Related Work

The body of work on shape analysis is too large to do equal justice to all tech-
niques. Approaches based on regular model checking [5], symbolic backwards

http://www7.in.tum.de/~joba/overlap.tgz
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reachability analysis [1], or decision procedures such as [6] seem not to have
dealt with the analysis of low-level system code, much less with overlapping
records. There are a number of approaches that make use of numeric reasoning
to deal with pointer arithmetic. While pioneered by Deutsch [15], who used nu-
meric domains to constrain access paths, Gulwani and Tiwari [19] provide a C
semantics which perhaps is even more explicit about blocks and offsets as ours.
However, it is unable to deal with structures such as doubly-linked lists. Recent
work [18] combines numeric and shape domains. It is focused on tracking parti-
tion sizes to prove memory safety and sometimes even termination in presence
of arrays of dynamically allocated structures. So far, however, none of the above
treats overlapping records.

More direct approaches to shape analysis are based on either TVLA [27] or
separation logic [26]. As stated before, most work in the TVLA setting focuses on
higher-level programming languages; however, Dor’s thesis [16] and subsequent
work provided a semantics of low-level C similar to our fine-grained semantics
and program analyses based on this semantics. These analyses are mostly con-
cerned with string manipulations.

As for separation logic based approaches which deal with a low-level C seman-
tics and with pointer arithmetic, one early work is [7], which however specifically
targets the data-structure of multiword lists. Berdine et al. [3] present a shape
analysis of composite data-structures which can reason about lists of lists. They
explicitly identify shape analysis of overlapping or embedded structures as pre-
sented here as a limitation to their approach. Also, Chang and Rival [9] present a
shape analysis based on separation logic and user-specified data-structure spec-
ifications called checkers. It also treats combinations of numerical and shape
domains, but overlapping records are not considered. Despite some impressive
improvements recently [31, 8], in particular concerning scalable shape analyses
of real code, a formal treatment of overlapping records has yet to be reported.
In addition, most of that work focuses exclusively on memory safety rather than
on subtle reachability problems as we face.

Separation logic is also used in the broader context of modular verification
and extended static checking. There, one relies on specifications of components,
and the analysis operates under the assumption that other components behave
as specified [17,2,14]. The fine-grained memory model we use for shape analysis
is also used by the VCC C verifier [12]; in particular, it uses an implicit type-
system to verify that distinct pointers do not reference overlapping objects [13].
In the Havoc verifier [10], a particular reachability predicate is employed which
also works on a semantics resembling ours, but is much more numeric in nature,
focused on pointer arithmetic. Other techniques exist for dealing with the heap
in modular verification, including ownership [11], which is used by Spec# and
Java/JML; dynamic frames [21,29], which is used by VeriCool 1 and Dafny; and
implicit dynamic frames [30], which are used in VeriCool 3 and Chalice.

Our interest in shape analysis of overlapping records is derived from attempts
to verify absence of data races in low-level C. In static race detection, dynamic
memory is treated at a fairly superficial level by blobbing together objects into
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static allocation sites. There are techniques for verifying mutually exclusive ac-
cess to heap objects when each record contains its own dedicated lock [24];
and analyses relying on reachability information, such as disjoint reachability
analysis [23] and region analysis [28], have been employed to ensure correct
synchronization of accesses to disjoint regions of dynamically allocated memory.
These analyses, however, cannot deal with object privatization and overlapping
structures as occur in our example. On the other hand, by virtue of not tracking
the state of the heap at each program point, such analyses can be directly used
in a concurrent setting, while our approach requires adaptations of the TVLA
approach to handle concurrency [22,4].

8 Conclusion

We presented a shape analysis for overlapping data-structures, which are ubiq-
uitous in low-level systems code. Using our prototype implementation we were
able to establish subtle reachability properties as required, e.g., for reasoning
about data races in system code with overlapping records.

For that, we introduced two refinements of existing memory models. This
enabled us to implement both approaches within the TVLA framework. Accord-
ingly, our analysis will benefit from any future improvements of the TVLA tool.
However, as dynamic manipulation of predicates is not natively supported by the
TVLA tool, a new front-end and/or tool extension is desirable as future work.

The step from fine-grained to coarse-grained semantics is essentially a tech-
nique of encoding statically known parts of graph structures like the internal
structure of records into syntax. Somehow similar, separation logic based ap-
proaches rely on inductively defined predicates capturing data-structures. This
connection might be exploited to enable the use of different formalisms for dif-
ferent parts of the heap in a common setting.
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Abstract. Verification of large multithreaded programs is challenging.
Automatic approaches cannot overcome the state explosion in the num-
ber of threads; semi-automatic methods require expensive human time
for finding global inductive invariants. Ideally, automatic methods should
not deal with the composition of the original threads and a human should
not supply a global invariant. We provide such an approach. In our ap-
proach, a human supplies a specification of each thread in the program.
Here he has the freedom to ignore or to use the knowledge about the
other threads. The checks whether specifications of threads are sound
as well as whether the composition of the specifications is error-free are
handed over to the off-the-shelf verifiers. We show how to apply this
divide-and-conquer approach for the interleaving semantics with shared
variables communication where specifications are targeted to real-world
programmers: a specification of a thread is simply another thread. The
new approach extends thread-modular reasoning by relaxing the struc-
ture of the transition relation of a specification. We demonstrate the
feasibility of our approach by verifying two protocols governing the tear-
down of important data structures in Windows device drivers.

1 Introduction

The motivation of our work is to verify the correctness of protocols embedded
in large multithreaded programs. These programs typically access a variety of
objects, including kernel resources and in-memory data structures; the protocols
govern the policy for allocating, accessing, and freeing these objects. These pro-
tocols are hard to verify not only because of concurrency but also because the
code implementing these protocols is typically spread over a large part of the
program spanning multiple procedures and deep call chains. Invariably, there is
no abstract formal model of these protocols; the code is the only artifact available
for analysis.

A substantial amount of work has been done in formally verifying abstract pro-
tocol descriptions. However, all this work assumes that the protocol has somehow
been extracted from the code implementing it. The extraction process is usually
manual and hence error-prone. A bug in the manually-extracted model may not
be a bug in the code; conversely, a proof of the manually-extracted model may
not be a proof of the code.

Our paper contributes towards formalizing the model extraction problem,
bringing much-needed rigor and automation to the process. We provide a simple
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compositional approach where the user provides an abstraction of each thread in
the program. The abstraction of each thread is simply another thread, albeit one
that may be significantly simpler due to the elimination of details irrelevant to
the property of interest. Our notion of abstraction also allows an abstract thread
to fail more often than its concrete counterpart, which is often useful for making
the abstractions concise; in particular by avoiding the need to expose some local
state of a thread that may indeed be relevant to the property of interest.

Given these abstract threads, the verification of an n-threaded concurrent
program is decomposed into n + 1 pieces – n local sequential checks that each
thread conforms to its abstract thread, and the verification of the abstract mul-
tithreaded program obtained by composing the n abstract threads. We provide
a method for checking that a concrete thread conforms to its abstract thread.
The conformance check is reduced to checking the correctness of a sequential
program, whose size is linear in the textual size of the concrete thread and
quadratic in the number of local states of the abstract thread. In addition, the
control structure of the sequential program is inherited from the thread; in par-
ticular it does not have any more loops than the underlying concrete thread.
The sequential program can be automatically produced from the concrete and
abstract threads.

Our method assists the model extraction process by telling whether the con-
structed models are sound and reporting an error when they are not; at the same
time, the conformance checker uses powerful path-sensitive analysis and auto-
mated theorem provers, providing a precise way to check if a model abstracts
the code, even in the presence of arithmetic and unbounded heap-allocated data
structures. To the best of our knowledge, we present the first formal thread-by-
thread modeling scheme.

The abstract threads serve as valuable contracts and documentation for the
underlying code, and avoid performing a global analysis across the evolution of
the underlying code of individual threads. The abstract multithreaded program
can be considerably simpler compared to the original program and can be sub-
jected to formal and rigorous analysis using existing techniques based on model
checking [7], rely-guarantee reasoning [17] or thread-modular methods [12].

Proving correctness of a multithreaded program is much more efficient after
model extraction. In general, model extraction can lead to exponential cost sav-
ings due to considering a simpler code. Even if a correctness proof unavoidably
involves state explosion in the number of threads, model extraction can reduce
the base by eliminating irrelevant local states, thus reducing the asymptotic
verification time by an exponential factor.

In practice, the approach enables applying automatic verifiers and thus di-
minishes the total verification time. Since automatic verifiers cannot handle
composition of large real-life threads, a user is doomed to fall back to man-
ual global invariant specification; while creating small threads from large ones
makes automatic tools usable. The price paid is identification of the relevant
parts of a thread – and those parts may be taken without further inspection (of
course, the user may wish to inspect them for further model reduction). This
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process requires less manual investment than manual specification of the whole
global invariant, which would require both identification and inevitable thorough
inspection of the relevant parts of a thread as a subtask.

To demonstrate the feasibility of our approach, we have applied it to the
verification of two protocols governing the teardown of important data structures
in Windows device drivers battery and bluetooth. The conformance check
for each thread is implemented using the Boogie [2] verifier and the abstract
multithreaded programs are checked using Boogie and SPIN [15].

2 Programs, Executions and Specifications

A thread T is a tuple (Global ,Local ,→, Init ,Wrong) where
– Global is a set of global states;
– Local is a set of local states;
– →⊆ (Global × Local )2 is the transition relation;
– Init ⊆ Local is the set of initial local states;
– Wrong ⊆ Global × Local is the set of error states;

This “local” error state definition is targeted towards the naturally given spec-
ifications: assert statements in the program code and implicit language con-
straints like absence of NULL-pointer dereferences. Checking general safety prop-
erties is reducible to local error checks.

We use letters g and h to denote global states and symbols g and h to denote
sequences of global states. Similarly, we use letters l and m to denote local states
and symbols l and m to denote sequences of local states.

A phased execution of a thread comprises an alternating sequence of transi-
tions of this thread and transitions of the environment of this thread. The number
of thread transitions, which is equal to the number of environment transitions,
is the length of the execution. A phased execution of length three is shown in
Figure 1; thread transitions are depicted by solid arrows going horizontally and
environment transitions are depicted by dashed arrows going vertically.

Formally, a phased execution of T of length p is a triple (g, g′, l), where g
and l are sequences of length p + 1 and g′ is a sequence of length p, such that
l(0) ∈ Init , (g(j), l(j)) �∈ Wrong, and (g(j), l(j)) → (g′(j), l(j+1)) for all j such
that 0 ≤ j < p.

Let T =(Global ,Local ,→, Init ,Wrong) and T#=(Global ,Local#,→#, Init#,
Wrong#) be some threads over the same set of shared states. Let e = (g, g′, l)

�(g(0), l(0)) � (g′(0), l(1))

�(g(1), l(1)) � (g′(1), l(2))

�(g(2), l(2)) � (g′(3), l(3))

�(g(3), l(3))

Fig. 1. A phased execution of length three
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be a phased execution of T of length p and e# = (h, h′,m) a phased execution of
T# of length q. Then e# abstracts e if q ≤ p and all of the following conditions
hold:
– g|q+1 = h and g′|q = h′;
– if (g(p), l(p)) ∈ Wrong or q < p, then (h(q),m(q)) ∈ Wrong#.

(Here, x|y is the prefix of x of length y. For presentation purposes the conditions
are kept simple; however, it is possible to relax them by allowing e or e# to do
some internal actions.) Intuitively, the execution e# must be a prefix of e and
must end in an error if either e ends in an error or e# is shorter than e. An
interesting aspect of our definition is that e# is allowed to go wrong earlier than
e. We show below using an example how this feature of our definition allows
concise abstractions. Thread T# is an abstraction of thread T if every phased
execution of T is abstracted by some phased execution of T#.

A multithreaded program P is a tuple (Ti)i∈Tid , where Tid is a set of thread
identifiers and Ti = (Global ,Local ,→i, Init i,Wrongi) is a thread. Let Locals =
Tid → Local be the set of all tuples of local states of threads in Tid . A state s of
P is a tuple (g, ls) ∈ (Global×Locals). The state (g, ls) is an initial state if ls [i] ∈
Init i for all i ∈ Tid . The transition relation of P is −→⊆ (Global × Locals)2,
defined by

(g, ls) −→ (g′, ls ′) :⇔
∃ i ∈ Tid : (g, ls[i]) →i (g′, ls ′[i]) ∧ ∀ j ∈ Tid \ {i} : ls [j] = ls ′[j] .

An execution of P is a sequence s of length k > 0 such that s(0) is an initial
state and s(j) −→ s(j + 1) for all j such that 0 ≤ j and j+ 1 < k. The program
P goes wrong from a global state g if there exist ls , ls ′ ∈ Locals and g′ ∈ Global
such that all of the following conditions hold:
– (g, ls) is an initial state of P ;
– there is an execution of P from (g, ls) to (g′, ls ′);
– (g′, ls ′[i]) ∈ Wrongi for some i ∈ Tid .
Our definition of abstraction is sound for modular reasoning. If each thread in

a multithreaded program P is abstracted by a corresponding thread in a program
P#, then it suffices to prove P# correct in order to prove P correct. This claim
is captured by the following theorem.

Theorem 1 (Soundness). Let P = (Ti)i∈Tid and P# = (T#
i )i∈Tid be mul-

tithreaded programs over the set Global of shared states such that T#
i is an

abstraction of Ti for all i ∈ Tid. Then, for all g ∈ Global , if P goes wrong from
g, then P# also goes wrong from g.

2.1 Example

Consider the multithreaded program P in Figure 2. This program has two
threads and a single shared variable g. We assume that every line in the pro-
gram is executed atomically. Suppose we wish to prove that the assertion in the
program does not fail whenever we execute P from a global state satisfying g>0.
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Thread A Thread B

int x;

x := 1;

while (*) {
if (*) {
x := g;

} else {
x := x+1;

}
}
g := x;

int y;

y := 1;

while (*) {
y := y+1;

}
g := y;

assert g>0;

Fig. 2. Multithreaded program P

Thread A# Thread B#

X1 g>0 g’=g

X2

g’>0

g’=g

Y1 g’=g

Y2 g>0

g’>0

g’=g

Fig. 3. Multithreaded program P#

Instead of proving this property directly on P , we would instead like to prove
it on the simpler program P# in Figure 3. Since P# is intended to be a spec-
ification, it is written in the style of a state machine. The labels X1, X2, Y1,
Y2 are local states of A# and B#, the predicate drawn in a local state is an
assertion (defaults to true if none given) and the predicate on an edge indicates
the transition relation for that edge. For example, an execution beginning at X1
goes wrong if g>0 is false; otherwise, either the program location and the value
of g remain unchanged or the program location changes to X2 and the value of
g is updated to some number greater than zero. The initial local states of the
threads are X1 for A# and Y1 for B#. Note that the local state of threads in P#

are finite, while each thread in P has a local integer variable in addition to the
set of program locations.

Each phased execution of thread A is abstracted by a phased execution of
thread A#. Every transition of A before the update g := x is “simulated” by
the transition of A# that goes from X1 to X1. The update g := x is “simulated”
by the transition g′ > 0 from X1 to X2. The correspondence between B and B#

is similar. The assertion at the end of B carries over to the assertion in state Y2.
The next section will present our conformance checking algorithm for formally
proving that A is abstracted by A# and B is abstracted by B#.
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Note that while there is no assertion in A, we have introduced an assertion in
A# in the state X1. This assertion is essential for conformance checking to work,
since otherwise thread A would have no assumption about the values read from
g and could assign also negative values to g, which is in turn not modeled by
A#.

Note that even though A is a small program, A# is considerably simpler than
A. Although it has more assertions, its local state has become finite by the
elimination of the variable x. In fact, the introduced assertion is the key reason
for being able to eliminate the variable x.

For demonstration purposes, consider a variant Ã of A in which x:=1 is re-
placed by x:=-1. Then Ã could update g to a negative value, and since A# can
update g only to a positive value, A# would not be an abstraction of Ã.

3 Conformance Checker

Now we show how to check that a thread is abstracted by another thread.
Let P(X) denote the powerset of a set X .
A sequential program is a tuple (Z,�,Start ,Error) where

– Z is a set of states;
– �⊆ Z2 is the transition relation;
– Start ⊆ Z is the set of initial states;
– Error ⊆ Z is the set of error states.

An execution of a sequential program is a nonempty sequence z of states of finite
length k such that z(0) ∈ Start and z(j) � z(j + 1) for all j such that 0 ≤ j
and j + 1 < k. An execution is called failing if any of its states is in Error . A
sequential program is correct if it has no failing execution.

Let T = (Global ,Local ,→, Init ,Wrong) and T# = (Global ,Local#,→#, Init#,
Wrong#) be two threads. Our solution to the problem of checking that T is ab-
stracted by T# is encoded as a sequential programC(T, T#). This program simul-
taneously runs both T and T# checking that each step of T is “simulated” by the
corresponding step of T#. Since T# is potentially nondeterministic, a partial exe-
cution of T can be “simulated” by multiple executions of T#. Consequently, a state
of C(T, T#) is a pair (l, F ) from the set Local ×P(Local#). The first component l
is the state of T . The second component F is the set of states of T# that are can-
didates for “simulating” future behaviors of T from l. Our construction provides
the guarantee that C(T, T#) goes wrong iff T is not abstracted by T#.

We now provide a formal definition ofC(T, T#). For each l ∈ Local , letW (l) =
{g ∈ Global | (g, l) ∈ Wrong}. Similarly, for each m ∈ Local#, let W#(m) =
{g ∈ Global | (g,m) ∈ Wrong#}. For each F ∈ P(Local#), let W#(F ) =⋃

m∈F W
#(m). A conformance checker C(T, T#) is a sequential program (Z,�

,Start ,Error) where
– Z = Local × P(Local#);
– Start = Init × {Init#};
– Error = (Local × {∅}) ∪ {(l, F ) ∈ Local × P(Local#) |W (l) �⊆W#(F )};
– � is defined by
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l, l′ ∈ Local F, F ′ ⊆ Local#

∃ g, g′ ∈ Global : g �∈ W#(F ) and (g, l) → (g′, l′) and
F ′ = {m′ | ∃ m ∈ F : (g,m) →# (g′,m′)}

(l, F ) � (l′, F ′)

The definition of Error and � are the most interesting and subtle parts of the
definition of C(T, T#). The set Error is the union of two parts, each corre-
sponding to a different reason why T might not be abstracted by T#. Consider
an element (l, ∅) of the first part. The conformance checker makes a transition
to this state if it arrives in a state (x, F ) and there is some transition of T out of
the local state x that cannot be ”simulated” by any transition of T# out of any
local state in F . Now, consider an element (l, F ) of the second part satisfying
W (l) �⊆ W#(F ). If the conformance checker arrives in this state, then T can
go wrong from l but T# cannot go wrong from any candidate state in F , again
violating a requirement for abstraction.

Having understood the definition of Error , it is simple to understand the
definition of �. We create a transition (l, F ) � (l′, F ′) only when there exist
g, g′ such that T can make a transition from (g, l) to (g′, l′). Here, we only need to
pick those states g from which it is not possible for T# to go wrong from a local
state in F . The reason is that if T# can go wrong from g, the “simulation” process
can stop because we have discovered an erroneous execution in the abstraction.
We collect in F ′ all those local states transitions to which can “simulate” the
transition (g, l) to (g′, l′) of T .

There are two important observations about our conformance checker. First,
its control structure is inherited from the thread T . Any loops in T get carried
over to C(T, T#); moreover, if T is loop-free then so is C(T, T#). Second, the
state of C(T, T#) is independent of the global state set Global . Essentially, the
global state gets existentially quantified at each step of the conformance check-
ing computation. This property allows us to write loop invariants for C(T, T#)
without worrying about the behavior with respect to the global state.

There are a few special cases for which the conformance checker becomes
simpler. First, if the set Local# of abstract local states is finite, then the (in
general, unbounded) quantification implicit in the definition of Error and the
calculation of F ′ in the definition of � become finite. The conformance checker
can simply enumerate the set of abstract local states allowing the assertion logic
of the sequential program to become simpler. In addition, if the concrete thread
T is either finite-state or loop-free, then the correctness of the conformance
checker can be verified fully automatically, using a finite-state model checker or
an automated theorem prover, respectively.

The correctness of our conformance checker is captured by the following
theorem.

Theorem 2. Let T =(Global ,Local ,→, Init ,Wrong) and T#=(Global ,Local#,
→#, Init#,Wrong#) be threads over a nonempty set of shared states Global .
Then T# is an abstraction of T if and only if the conformance checker C(T, T#)
is correct.
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3.1 Instrumentation

Now we show how to check abstraction when threads are given in a textual form
rather than as transition systems.

The conformance checker is implemented by instrumenting the source code
of the concrete thread. We now describe this instrumentation for the case when
the local state of the abstract thread is finite. We make the following simplifying
assumptions about the code of the concrete thread. First, we assume that every
statement is executed atomically: all statements have been split into atomic
substatements in a standard way which depends on the platform on which the
code is executed. Second, we assume that all conditionals have been eliminated
using assume statements and standard control-flow-graph transformations. Thus,
apart from the usual control flow, we only have assume, assert, and assignment
statements in the code. Third, we assume that the program has a single global
variable named v; the extension for multiple variables is straightforward.

Finally, we assume that the abstract thread is provided as a state machine
(as in Figure 3) comprising a finite set of nodes N with edges among them.
Each node x is labeled with a predicate A(x) over the variable v capturing the
assertion in that state. An edge from node x to node y is labeled with a predicate
T (x, y) over variables v and v′ capturing the transition from local state x to local
state y. The set I ⊆ N is the set of initial states.

We are now ready to describe the instrumentation. We introduce a bookkeep-
ing variable u for keeping a temporary copy of v. We also introduce a map vari-
able F : N → Boolean to model the set of locations of the abstract thread. We
insert the following initialization code at the beginning of the concrete thread.

havoc v; // assign any value to v nondeterministically
u := v;
F := λy ∈ N. y ∈ I;

Next, we replace each non-assert statement st in the program with the following
code fragment.

(1) assert
∨

x∈N F [x];
(2) assume

∧
x∈N F [x] ⇒ A(x);

(3) st ;
(4) F := λy ∈ N.

∨
x∈N F [x] ∧ T (x, y)[u/v, v/v′];

(5) havoc v;
(6) u := v;

This instrumentation preserves the invariant that upon entry to each instrumen-
tation code block, variables u and v are identical and unconstrained. Clearly, this
property is true initially; lines 5 and 6 ensure this property upon exit from the
code block. Line 1 asserts that the set F is nonempty. Line 2 assumes the asser-
tions at each location in F . If any of these facts do not hold then the abstract
execution can go wrong and the “simulation” check has succeeded. Line 3 simply
executes the statement st and line 4 computes the new value of the set F by
enumerating over all pairs of abstract nodes.
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Finally, each original-code assertion assert(φ) (which specifies a property to
be proven) is replaced by the check

assert ¬φ ⇒
∨

x∈N F [x] ∧ ¬A(x);

The check asserts that when a concrete execution goes wrong, at least one ab-
stract execution should also go wrong.

From this instrumentation technique, it is clear that the conformance checker
inherits the control structure of the concrete thread. Furthermore, the textual
size of the checker is linear in the size of the concrete thread and quadratic in the
size of the abstract thread. The instrumentation is a simple syntactical operation
and can be performed fully automatically. If the local state of the abstract thread
is finite, the analysis of the conformance checker can be automatized to the same
level as that of the concrete thread, viewed as a sequential program.

4 Experiments

We demonstrate our approach on two drivers from the Windows operating system.

4.1 Bluetooth Driver

The concrete multithreaded program in Figure 4 consists of a thread PnpStop
which unloads the driver and n threads PnpAdd which process data. The shared

// ‘‘Unload’’ thread

void PnpStop() {
stoppingFlag=1;

IoDecrement();

assume(stoppingEvent);

// release allocated resources;

stopped=1;

}

// ‘‘Worker’’ thread

void PnpAdd() {
int status;

status = IoIncrement();

if(status>0) {
// do work here

assert(!stopped);

}
IoDecrement();

}

int IoIncrement() {
int status;

pendingIO++;

if(stoppingFlag)

status=-1;

else

status=1;

return status;

}

void IoDecrement() {
pendingIO--;

if(!pendingIO)

stoppingEvent=1;

}

Fig. 4. Bluetooth driver model consisting of a single “unload” thread PnpStop and n
“worker” threads PnpAdd



240 S.K. Lahiri, A. Malkis, and S. Qadeer

〈sF ′ = 1〉sF

〈pIO ′ = pIO − 1〉pIO
〈pIO = 0〉

〈sE ′ = 1〉sE
〈sE = 1〉〈st ′ = 1〉st

(a) Abstract “unload” thread

〈pIO ′
=

pIO
+

1〉
pIO

〈pIO ′
=

pIO −
1〉

pIO

¬st 〈¬sF 〉
〈p

IO
′=

p
IO

−
1〉

p
IO

〈pIO = 0〉

〈sE ′ = 1〉sE

(b) Abstract “worker” thread

Fig. 5. Abstract bluetooth driver model

variables together with their initial values are pendingIO = 1, stoppingFlag =
stoppingEvent = stopped = 0.

The property to be proven is the correct teardown, i.e. that in no execution
a “worker” thread should try to access data after stopped flag has been raised
by the “unload” thread.

SPIN cannot check the composition of 9 threads executing Fig. 4, as we will
see. To increase the number of verifiable threads, it is reasonable to simplify the
Bluetooth code. We simplified the code by eliminating the local variable status
and merging some local states to reduce their number. A possible resulting ab-
stract program is given in Figure 5.

We use the following shorthands: sF = stoppingFlag, pIO = pendingIO,
sE = stoppingEvent, st = stopped. Further, there is a hidden idle transition
associated with each node, labeled with pIO = pIO ′∧sF = sF ′∧sE = sE ′∧st =
st ′. The notation 〈φ〉X,Y is a shorthand for φ∧

∧
v∈Var\{X,Y } v = v′, i.e., that all

variables except X and Y remain unchanged. The formulas in the nodes denote
assertions. If a formula is missing, it defaults to true.

Such simplification looks easy but is error-prone: without a correctness proof
one never knows whether the party (a human or a tool) that did the simplification
has really produced sound abstractions. Our approach automatically creates a
formal proof of abstraction soundness.

To encode the driver model and its abstraction, we used the Boogie modeling
language equipped with the Boogie verifier and Z3 theorem prover [10]. The
conformance check succeeded fully automatically. Boogie also allowed automatic
bounded verification of the composition of thread abstractions for one “unload”
and two “worker” threads. All the mentioned checks together succeeded within
33 seconds. The concrete multithreaded program in Figure 4 and, separately, the
abstract multithreaded program in Figure 5 were fed to the SPIN tool. Proofs
by exhaustive search needed following times in seconds:
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Threads 1 2 3 4 5 6 7 8 9 10 11
Concrete program 0 0 0 0.0225 0.1833 1.56 19.26 158.66 n/a n/a n/a
Abstract program 0 0 0 0 0.018 0.12 0.314 1.246 5.812 39.04 190.6

Zero means that the time was so small that it was below the measurement pre-
cision, “n/a” means that SPIN exceeds the 2GB memory limit. The asymptotic
verification times for the concrete program and abstract programs are exponen-
tial, as expected for the general-purpose uninformed tool, with experimentally
determined bases ≈ 9.3 and ≈ 4.9. Abstraction allowed verification of more
threads in less time. The exponential speedup is ≈ 1.9n.

4.2 Battery Driver

The property to verify is correct teardown, i.e. once the dispatch routines have
started the “worker” threads, and the “unload” thread has freed the data struc-
tures of the driver, no “worker” thread should try to access these data structures
any more. We examine a simple version of the driver by inlining procedures and
modeling the fields of the heap allocated data structure as scalar variables.

Figure 6 shows the simplified code of the “unload” and “worker” threads. A
star (∗) represents a nondeterministic value, and the variable stopped indicates
that the object has been freed.

To ensure correct teardown, we put an implicit assertion ¬stopped before
each access to a shared variable (except NumQueuedWorkers).

Initially, WorkerActive = 0, WantToRemove = FALSE, ReadyToRemove =
FALSE, InUseCount = 2, NumQueuedWorkers = 0. When a worker thread is
scheduled for execution by a dispatch routine (which is not depicted here),
the routine increments the WorkerActive counter. When a copy of the worker
thread is about to quit, the worker thread decrements WorkerActive. The vari-
able InUseCount models a reference count of the number of threads accessing a
shared object, and is incremented by a thread before accessing the object and
decremented later. Furthermore, if the removal is signaled by ReadyToRemove,
threads decrement InUseCount and try to quit themselves. We made one sim-
plifying assumption that the decrement of InUseCount to 0 and the signaling of
ReadyToRemove happens atomically. This simplification is justified because the
action that sets ReadyToRemove to true commutes to the left of all concurrent
actions of other threads.

The abstract worker thread is shown in Figure 7. We introduce shorthands:
R(eadyToRemove), I(nUseCount),N(umQueuedWorkers),W (orkersActive) and
S(topped). In the following pictorial representation, each assertion is implicitly
conjoined with the common part: I ≥ 0 ∧W ≥ 0 ∧N ≥ 0∧ (R ⇒ I = 0) ∧ (N >
0 ⇒ ¬S ∧ W > 0). Further, there is a hidden idle transition associated with
each node, labeled with R = R′ ∧ I = I ′ ∧ N = N ′ ∧ W = W ′ ∧ S = S′.
One interesting thing to observe is that the local variable i is not present in the
abstract specification for the worker thread. This is important to make the set of
local states of the worker thread specification finite, thus enabling us to leverage
the instrumentation provided in Section 3.1.
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“Unload” thread “Worker” thread

WantToRemove=TRUE;
if(1 == ++WorkerActive) {

if(*) {
if(0 == --InUseCount)

ReadyToRemove=TRUE;

} else {
++NumQueuedWorkers;
// Work to do,

// start working thread.

}
}
if(0 < --InUseCount)

await(&ReadyToRemove);

stopped=TRUE;

atomic {
await(NumQueuedWorkers>0);
NumQueuedWorkers--;

}
unsigned long i;

while(TRUE) {
if(WantToRemove) {
if(0 == --InUseCount)

ReadyToRemove=TRUE;

break;

}
if(*) {
++InUseCount;

if(WantToRemove)
--InUseCount;

else

--InUseCount;

}
i = --WorkerActive;
if(0==i) break;

if(1!=i) WorkerActive=1;
}

Fig. 6. Battery driver: “unload” and “worker” threads

〈 ∧ 〉

〈 〉
〈 〉

〈 〉

¬

〈 ∧ ∨ 〉

〈 〉 〈 〉

¬

Fig. 7. Specification of worker thread

We encoded the concrete and the abstract threads into the Boogie modeling
language. We supplied loop invariants for the loops in the conformance checker
manually. The corresponding conformance checkers were proven correct using
the Z3 theorem prover in around two minutes for all the threads.
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The abstract and concrete programs were also written in the Promela model-
ing language after manual abstraction of the unbounded WorkerActive variable
(one can replace it by the predicate WorkerActive> 0). The resulting code was
fed into SPIN, which created proofs by exhaustive search in the following time
in seconds:

Threads 1 2 3 4 5 6 7 8 9 10
Concrete program 0 0 0.08 1.042 7.564 54.28 242.4 929 t/o t/o
Abstract program 0 0 0 0 0.11 0.51 1.3 3.29 7.49 19.2

The symbol “t/o” means SPIN has exceeded the time bound of 20 minutes. The
empirical asymptotic runtimes are ≈ 3.832n and ≈ 2.227n. Abstraction thus
allowed an exponential speedup of ≈ 1.72n.

5 Related Work

In this work, we presented a compositional approach for analyzing real-world
multithreaded programs based on abstract threads. Our main contribution is in
providing a framework that allows the user to construct and check abstractions of
each thread and verify the composition of the abstract multithreaded program.
The approach can be seen as a semantic method for simplifying each thread
before performing an analysis of the multithreaded program. We also believe that
the abstract threads are intuitive specifications of each thread for a developer,
because they allow the user to express complex control flow required to capture
many real-life protocols.

We can view existing work on verifying multithreaded programs as comple-
mentary to our work — we can use any one of them for verifying our abstract
multithreaded program and these techniques can use our formalism to simplify
the input programs. Existing approaches to verifying multithreaded programs
use methods based on inductive invariants [21,9], induction [20], rely-guarantee
reasoning [17], partial invariants [24], thread-modular reasoning [12,19,8], model-
checking [7], concurrent data-flow analysis [26,13,6] or even bounded analysis
[22]. The analysis methods differ in the level of automation and completeness of
checking the underlying system. Model-checking based methods are automatic
for finite state models extracted manually or as a result of abstraction [14,4], but
suffer from state explosion or imprecision in the presence of complex data types.
Concurrent data-flow analysis engines extend sequential data-flow analysis in
the presence of concurrency, but are restricted to particular analysis domains.

Our method is closest to the class of works based on rely-guarantee mech-
anism; these approaches allow the user to specify rely-guarantee contracts for
each thread; however the annotation can be complex for real-life programs.

We are the first, to the best of our knowledge, to introduce our abstraction
relation between threads. Classical simulation of [1] doesn’t separate shared and
local states, [23] uses bisimulation. Closer simulation relations can be found in
process algebras [16,5,18], where a type, which is written in π-calculus or CCS,
represents an abstraction of a process, which is written in π-calculus.
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Two-level verification occurs in [4], where message-passing communicating
processes get abstracted to pushdown automata via boolean abstraction. Apart
from the difference in the communication model, we allow richer abstraction,
since it is possible to encode boolean programs as abstract threads, but not
every thread can be encoded as a boolean program due to the possible presence
of unbounded data.

The use of ownership methodology in Spec# [3] and separation logic [25]
have the potential to make the specifications more manageable by restricting
annotations to the local heap. Flanagan et al. [11] allow linearly ordered control
states in the specification of a thread, but do not allow rich control structure of
abstract threads. Their “method may be extended to more general abstractions
... at the cost of additional complexity” (p. 166). Our method is such an extension
in the call-free case.

6 Conclusion

In this work, we presented a compositional framework to check the correctness of
a multithreaded program. We believe that the notion of abstract threads provides
an intuitive as well as an expressive formalism for describing models of real-life
multithreaded programs. We have illustrated the feasibility of our approach by
studying two protocols present in real-life device drivers.

There are several directions in which we are extending the current work. Cur-
rently, procedures are treated only as control flow structures; we believe that our
method can deal with procedure specifications naturally. Second, we are working
on overcoming the restrictions of the real-world model-checkers, e.g. assist the tool
in handling loops (as in Boogie) or unbounded variables (as in SPIN). Third, we
are exploring techniques that assist a human in creating abstract threads. Finally,
we are targeting more real-world examples to evaluate our method.
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A Embedding Thread-Modular Reasoning
Now we show that any call-free finite-state program with thread-modular proof in
the sense of [11] also admits abstract threads which suffice to prove the property
such that the size of the abstract threads is linear in the size of the thread-
modular specification and quadratic in the number of shared states.

Simplifying [11], assume a single procedure. Its control location set is Local
and the transition relation of the procedure for each t ∈ Tid is →t⊆ (Global ×
Local)2. Let 0 ∈ Local be the initial control location, pre, post ⊆ Global the
pre- and postconditions of the procedure. One has to prove that the concur-
rent execution of all →t (t ∈ Tid) starting from pre respects an invariant
I ⊆ Global and that each thread satisfies post when it terminates. A thread-
modular proof of this fact requires the human to write a specification (A,E)
∈ (P(Global2))Tid × ((P(Global2))∗)Tid , where E denotes the environment as-
sumptions as transition predicates and A denotes the abstractions of the threads.
The abstraction is a statement sequence interleaved with the stuttering steps:
At = pre?〈true〉; (I?K∗; I?Y1); . . . ; (I?K∗; I?Ym); I?K∗; true?〈post〉 where K
is the stuttering relation and p?X means a state assertion p together with a
transition relation X (t ∈ Tid). If for each t ∈ Tid , the program in which the
tth thread is →t and all the other threads are E∗

t is simulated by the program
in which the tth thread is At and all the other threads are E∗

t , then the original
program is correct.

Now we transform the threads and specifications to our setting. The concrete
threads are modeled straightforwardly as Tt = (Global ,Local ,→t, {0},Wrong)
where Wrong = {(g, l) ∈ Global × Local | g �∈ I or (l = 0 and g �∈ pre)}
(t ∈ Tid). The abstract threads are T#

t = (Global ,Local#,→#
t , Init#,Wrong#

t )
(t ∈ Tid) where
– Local# = {0, 1, 2, . . . ,m+ 1} ×Global
– (g, (l, h)) →#

t (g′, (l′, h′)) iff g′ = h′ and ((l = l′ and g = g′) or (l = l+1 ≤ m
and (g, g′) ∈ Yl+1) or (l = m and l′ = m+ 1 and g′ ∈ post))

– Init# = {0} × pre
– Wrong#

t = {(g, (l, h)) ∈ Global × (Local × Global ) | g �∈ I or (l = 0 and g �∈
pre) or (h, g) �∈ E∗

t }.
For each t ∈ Tid , the abstract thread T#

t should mimic the transitions and
specifications given by At and Et. For that, T#

t must fail at least when At

fails. Moreover, the abstract thread has to fail when the environment violates its
specification. To track the change of the shared state by the environment, the
abstract thread keeps a copy of the shared state in its own local state. A state
of the abstract thread is thus (g, (l, h)) where g is a shared state, l the local
abstract program counter and h locally stores some shared state.

The environment of the abstract thread may change g, but keeps the copy h in
the local part unchanged. The abstract thread compares the shared state h before
the environment transitions with the current state g and fails if the environment
doesn’t behave according to Et. This is taken care of by the definition of Wrong#

t .
The transition relation →#

t mimics all the transition of A#
t and additionally

saves the current shared state at each step.
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Abstract. Tracking subset relations between the contents containers on the heap
is fundamental to modeling the semantics of many common programing idioms
such as applying a function to a subset of objects and maintaining multiple views
of the same set of objects. We introduce a relation, must reference sets, which
subsumes the concept of must-aliasing and enables existing shape analysis tech-
niques to efficiently and accurately model many types of containment properties
without the use of explicit quantification or specialized logics for containers/sets.
We extend an existing shape analysis to model the concept of reference sets. Ref-
erence sets allow the analysis to efficiently track a number of important relations
(must-=, and must-⊆) between objects that are the targets of sets of references
(variables or pointers). We show that shape analysis augmented with reference
set information is able to precisely model sharing for a range of data structures
in real programs that cannot be expressed using simple must-alias information.
In contrast to more expressive proposals based on logic languages (e.g., exten-
sions of first-order predicate logic with transitive closure or the use of a decision
procedure for sets), reference sets can be efficiently tracked in a shape analyzer.

1 Introduction

Precise reasoning about the structure of the program heap is crucial to understanding
the behavior of a given program, particularly for object-oriented languages. Traditional
points-to analyses, which calculate sharing properties based on coarse aggregations of
the heap (for example by coalescing all cells from the same allocation site and ignoring
program flow [15]), are known to be too imprecise for many applications. More pre-
cise shape analysis techniques [16, 5, 13, 17, 1, 9, 6, 18, 19] have been proposed when
more accurate information is desired. These analyses recover precise information by
distinguishing heap cells based on additional reachability, allocation site, or type infor-
mation. Using this additional information, these analyses can precisely model recursive
data structures [5, 19] and composite structures [1, 18, 6].

Most work on shape analysis has focused on existential (may) sharing properties (and
by negation, separation properties) of pointers or variables—the fundamental question
asked of the abstract heap representations is whether two abstract references may rep-
resent pointers that alias each other. While this is often enough to prove many sophis-
ticated properties of data structures that have limited amounts of sharing or where the
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01 Vec to r V = new Vec to r ( ) ;
02 Data [ ] A = new Data [N ] ;
03 f o r ( i n t i = 0 ; i < N; ++ i )
04 A[ i ] = new Data ( abs ( r a n d I n t ( ) ) ) ;

05 f o r ( i n t i = 0 ; i < A. l e n g t h ; ++ i ) {
06 Data d = A[ i ] ;
07 i f ( d . f > 0) V. add ( d ) ;
08 }

09 f o r ( i n t i = 0 ; i < V. s i z e ( ) ; ++ i ) {
10 Data d = V. g e t ( i ) ;
11 d . f = 0 ;
12 }

Fig. 1. Initialize array (lines 3-4), Filter values (lines 5-7), and Update f fields (lines 9-11)

sharing is simple (e.g., variable aliasing), the reasoning becomes overly restrictive (and
imprecise) for more complex subset relationships among sets of shared objects. Such
relationships arise in programs that use multiple views of the same collection of objects
(for efficiency, a class might keep the same set of objects in a Vector and in a Hashtable)
or when performing updates on a set of shared elements (filter-map and subset-remove
loops, where a sub-collection is first computed then operated on).

We introduce reference set relations that track set relations (must-=, and must-⊆)
between the targets of sets of variables/pointers in the concrete program. Thus, must ref-
erence set information is stronger than, and subsumes must-aliasing (which only tracks
must-= between pairs of variables/pointers). We show that when an existing shape anal-
ysis is extended with two simple relations to track the most commonly occurring refer-
ence set relations it can efficiently and precisely model many sharing properties in the
program, and also model how these properties affect the behavior of the program.

Sharing relations between sets of objects, including reference set relations, can be
modeled by extending the analysis with a theory for sets [8] or by quantification with
a “forall-exists” quantifier structure (i.e., for all objects pointed to by a reference in
array A, does there exist a reference in array B pointing to the same object?). However,
the introduction of additional theories or using more general logics (with quantification
and disjunction) makes reasoning computationally expensive. Instead, as demonstrated
in this paper, many sharing properties can be efficiently tracked on top of an existing
shape analysis with enough accuracy to prove many important sharing relationships.

2 Example and Motivation

Consider the three loops in Figure 1: array initialization, filtering elements into a sub-
collection, and updating the contents of the sub-collection. For simplicity the example
uses a dummy class Data with a single integer field f.

The first code fragment allocates an array A and then fills it with Data objects with
random non-negative values stored in their f fields. The second loop scans the array for
elements that have strictly positive values in the f fields and constructs a new vector
V of these elements. The third loop sets the f field of every element in the vector V to
zero. If these loops are analyzed using one of the existing shape analysis that can model
collections, such as [12], we get the abstract heap graph shown in Figure 2(a) at the end
of the second loop. In this figure we have simplified the edge/node labels to focus on the
concept of how must sharing relations between sets of objects can be used to precisely
model the behavior of a program.
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(a) (b) (c)

Fig. 2. Abstract model and two possible concrete heaps

The simplified model shows the variable A referring to a node with an id tag of 1
(a unique identifier given to each node/edge to simplify the discussions of the figures)
which abstracts an object of type Data[]. There may be many pointers stored in this
array (these pointers are abstracted by the edges with the id’s 2, 4); since these pointers
are stored in an array we give them the special storage offset ? (indicating that they
are stored at an indeterminate index in the array/container). The two outgoing edges
indicate that the pointers stored in the array may either refer to objects abstracted by
node 2 or to objects abstracted by node 4. The notation f:0, f:+, and f:0+ indicates
the values of the integer fields using a simple sign domain [4], where f:0 in node 2
indicates that all the objects that are abstracted by this node have the value 0 stored in
the f field while the f:+ entry in node 4 indicates that all the objects abstracted by that
node have values in the range [1,∞) in their f fields (and f:0+, used later, indicates f
values in the range [0,∞)). Figure 2(a) also shows the variable V which has an edge to a
node abstracting a Vector object. The pointers stored in this vector are abstracted by
edge 5 and they refer to objects abstracted by node 4.

Based on this information both of the concrete heaps shown in Figure 2(b) and 2(c)
are consistent with this model (i.e., they are valid concretizations). In Figure 2(b) we
see that array A contains three Data objects (some of which have 0 field values and
some of which have positive values), the first and third of which are also stored in the
Vector V (which only contains objects with positive values). This heap is clearly a
possible result of the construction and filter loops in our example. If we look at the
concrete heap shown in Figure 2(c) it is apparent that this program state is infeasible
since the contents of V are not a subset of A and there is a Data object in A with a
positive field value that is not in V. However, this concrete heap is consistent with the
information provided by the abstract graph model, as the fact that edges 4 and 5 end
at the same node only means that there may exist an object that is referred to by both
a pointer abstracted by edge 4 and a pointer abstracted by edge 5. In particular, the
abstraction is too weak to prove that at the end of the third loop, every element in A has
the value zero in the f field.

Thus, in order to precisely represent the desired must sharing relations between var-
ious sets of pointers stored in the array and vector we need to extend the graph model
with additional information. The analysis presented in this paper extends a standard
shape analysis by tracking two reference set equivalence relations on the heap. The first
relation is on pairs of abstract edges, which tracks pairs of edges such that the sets of
references abstracted by the two edges must always refer to exactly the same set of
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Fig. 3. Abstract Graph With Reference Set Information

objects. The second relation is on edges and nodes, and tracks edges that abstract a set
of references such that all of the objects abstracted by a node are pointed to by one of
the references in the set.

These reference set properties allow the analysis to precisely model the result of the
construction and filter loops in our example. The model enhanced with the reference set
properties is shown in Figure 3. We have made two additions to the model in Figure 2(a).
First, the EdgeEQ relation tracks which edges abstract references that always refer to
the same sets of objects. Second, for each node we add a list of sets of edges such that
every object abstracted by the node is referred to by a reference represented by one of
the edges in the set. Intuitively, these additional relations tell us that the set of objects
referred to by references abstracted by edge 4 is equal to the set of objects referred to by
references abstracted by edge 5. This information and the structure of the graph imply
that every object stored in the vector V must also be stored in A and also that if an object
is stored in A it must be either abstracted by node 5 (and have the value 0 stored in the
f field) or by node 4 (and be stored in V, which as desired, excludes the concrete heap
in Figure 2(c) from the set of feasible concretizations).

This last property then allows us to precisely model the third loop in the running
example. In particular we know that since every object in A with a non-zero f field is
stored in V we can infer that if every object in V has the f field set to 0 then after the
loop every object in A will have 0 in the f field.

3 Concrete and Abstract Heaps

3.1 Concrete Heap and Reference Set Relations

The semantics of memory are defined in the usual way, using an environment, mapping
variables into values, and a store, mapping addresses into values. We refer to the envi-
ronment and the store together as the concrete heap, which is represented as a labeled,
directed multi-graph (V,O,R) where V is a set of variables, O is a set of objects on the
heap, and R⊆ (V ∪O)×O×L a set of references, where L is the set of storage location
identifiers (a variable name in the environment, a field identifier for references stored in
objects, or an integer offset for references stored in arrays/collections).

A region of memory ℜ = (C,P,Rin,Rout) consists of a subset C ⊆ O of the objects
on the heap, all the references P = {(a,b, p) ∈ R | a,b ∈C∧ p ∈ L} that connect these
objects, the references that enter the region Rin = {(a,b,r)∈R | a∈ (V ∪O)\C∧b∈C∧
r ∈ L}, and references exiting the region Rout = {(a,b,r)∈R | a∈C∧b∈O\C∧r ∈ L}.
Note that ℜ is determined by C, and we say a region ℜ is induced by a set C of objects.
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Given a region ℜ = (C,P,Rin,Rout) and a set of references Rs ⊆ Rin we define the
function: Target(Rs) = {o ∈C | ∃a ∈ (V ∪O),r ∈ L s.t. (a,o,r) ∈ Rs}.

Definition 1 (Reference Set Relations). Given a region ℜ = (C,P,Rin,Rout), reference
sets Rs ⊆ Rin and R′s ⊆ Rin, we define the following relations:

Reference Contains R′s � Rs if Target(R′s)⊆ Target(Rs).
Reference Equivalent R′s ∼ Rs if Target(R′s) = Target(Rs).
Region Covers Rs � ℜ if C ⊆ Target(Rs).

Aliasing of two references x, y in the concrete heap is equivalent to the reference set
relation {x}∼{y}, thus the concrete reference set relations subsume the standard notion
of aliasing.

3.2 Abstract Graphs

Our abstract domain is based on the storage shape graph [2, 3] approach. Let L̂ be a
set of abstract storage offsets (variable names, field offsets, or special offsets for ref-
erences stored in arrays/collections) which are related to the storage locations L by an
abstraction function αoffset : L �→ L̂. A storage shape graph (ssg) is a tuple of the form
(V̂ , N̂, Ê), where V̂ is a set of nodes representing the variables, N̂ is a set of nodes (each
of which intuitively abstracts a region ℜ of the heap), and Ê ⊆ (V̂ ∪ N̂)× N̂× L̂ are the
graph edges, each of which intuitively abstracts a set of references.

Definition 2 (Valid Concretization of a ssg). A given concrete heap h = (V,O,R) is
a valid concretization of a labeled storage shape graph g = (V̂ , N̂, Ê,Û) if there are
functions Πv : V �→ V̂ , Πo : O �→ N̂, Πr : R �→ Ê such that Πv is 1-1, and

– for all (o1,o2, p)∈R with o1,o2 ∈O, if Πr(o1,o2, p)≡ (n1,n2, l), then n1 = Πo(o1),
n2 = Πo(o2), and l = αoffset(p).

– for all (v,o,v)∈ R with v∈V and o∈O, if Πr(v,o,v)≡ (n1,n2, l), then n1 = Πv(v),
n2 = Πo(o), and l = v.

We say (Πv,Πo,Πr) witness that h is a valid concretization of g. We introduce the
following notation for pre-images of nodes and edges of an ssg:

– We write h ↓g e for the set {r ∈ R |Πr(r) = e} of references in the concrete heap h
that are in the pre-image of e ∈ Ê under Πr.

– We write h ↓g n for the concrete region ℜ induced by the set {o ∈ O |Πo(o) = n}.

In our analysis, we extend ssg’s with a set of additional instrumentation predicates
that restrict the set of valid concretizations of an ssg. Let U denote a set of relations
(called instrumentation predicates) on concrete objects and references, and let Û de-
note instrumentation relations on the nodes and edges of an ssg, with u : U → Û a 1-1
map between them. A labeled storage shape graphs (lssg) is a tuple (V̂ , N̂, Ê,Û) where
(V̂ , N̂, Ê) is a ssg and Û is a set of relations over N̂ and Ê. In the following, we refer to
lssg’s simply as abstract graphs. A concrete heap h is a valid concretization of an lssg
(V̂ , N̂, Ê,Û) if h is a valid concretization of the ssg (V̂ , N̂, Ê) through the functions Πv,
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Πo, Πr, and additionally, for each p∈ Û , nodes n1, . . . ,nk ∈ N̂, and edges e1, . . . ,el ∈ Ê ,
if (n1, . . . ,nk,e1, . . . ,el) ∈ p holds, then each tuple in {(o1, . . . ,ok,r1, . . . ,rl) | oi ∈ h ↓g

ni, i ∈ {1, . . . ,k},r j ∈ h ↓g e j, j ∈ {1, . . . , l}} is in u−1(p).
For example, in Section 2 we introduced two instrumentation relations type and

sign. Formally, for a set {τ1, . . . ,τk} of object types, we add an instrumentation re-
lation Type[{τ1, . . . ,τk}] ⊆ N̂ to Û corresponding to the relation λ o.typeof(o) ∈
{τ1, . . . ,τk} on objects, and require that for each n ∈ Type[{τ1, . . . ,τk}] we have that
each object o ∈ h ↓g n satisfies typeof(o) ∈ {τ1, . . . ,τk}. The sign relation can be
similarly defined.

4 Instrumentation Predicates

4.1 Abstract Reference Sets

We introduce two instrumentation relations that allow us to track many useful properties
of the heap: abstract edge equivalence, which relates two abstract edges, and abstract
node coverage, which relates a set of abstract edges to an abstract node.

Abstract Edge Equivalence Given two edges e,e′ ∈ Ê , we say e is edge equivalent to
e′, written e∼̂e′, iff every valid concretization h of the abstract graph g must satisfy
(h ↓g e) ∼ (h ↓g e′).

Abstract Node Coverage Given a set of edges Ec ⊆ Ê and an abstract node n ∈ N̂ we
say Ec node covers n, written Ec�̂n, iff every valid concretization h of the abstract
graph g must satisfy

⋃{h ↓g e′ | e′ ∈ Ec} � (h ↓g n).

Proposition 1. Given lssg g = (V̂ , N̂, Ê,Û), a valid concretization h of g, n,n′ ∈ N̂, and
e,e′ ∈ Ê.

1. If {e}�̂n and h ↓g e = /0 then h ↓g n = /0 and h ↓g e′ = /0 for all e′ ending at n.
2. If e∼̂e′ and h ↓g e = /0 then h ↓g e′ = /0.
3. If {e}�̂n and {e′}�̂n then e∼̂e′.
4. If Ec�̂n, Es ⊆ {es | es ends at n} then

⋃{h ↓g es | es ∈ Es} �
⋃{h ↓g ec | ec ∈ Ec}.

Given the definition for abstract edge equivalence we can express the standard concept
of must-aliasing of edges e1 and e2 as a special case of the abstract edge equivalence
relation: e1 and e2 must alias iff e1, e2 each represent a single reference and e1∼̂e2.

We restricted the definition of the abstract reference relations to equivalence of edges
plus a special relation on nodes. This allows us to track the most common occurrences
of reference equivalence (the edge ∼̂ relation) and subset relations (the �̂ relation and
Proposition 1). We could define a more general relation, where subset relations between
sets of edges are tracked. However, this formulation requires tracking a binary relation
on the power set of Ê , which is undesirable from a computational standpoint.

4.2 Additional Instrumentation Predicates

In addition to tracking type properties of the nodes, and the edge/node abstract reference
set relations defined above, the nodes and edges of storage graphs are augmented with
the following instrumentation relations introduced in previous work [11].
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Linearity. The linearity relation is used to track the maximum number of objects in the
region abstracted by a given node or the maximum number of references abstracted by
a given edge. The linearity property has two values: 1, indicating a cardinality of [0,1],
or ω , indicating any cardinality in the range [0,∞).

Connectivity and Interference. We use two instrumentation relations to track the po-
tential that two references can reach the same heap object in the region that a particular
node represents. For this paper we use simplified versions and refer the reader to [11]
for a more extensive description of these relations.

Given a concrete region ℜ = (C,P,Rin,Rout) and we say objects o,o′ ∈C, are related
in ℜ if they are in the same weakly-connected1 component of the graph (C,P).

To track the possibility that two incoming edges e,e′ to the node n abstract references
that reach related objects in the region abstracted by n we introduce the connectivity
relation. We say e,e′ are connected with respect to n if there may ∃(a,o,r) ∈ (h ↓g

e),(a′,o′,r′) ∈ (h ↓g e′) s.t. o,o′ ∈ (h ↓g n) ∧ (o, o′ are related). Otherwise we say the
edges are disjoint.

To track the possibility that a single incoming edge e to the node n abstracts mul-
tiple references that reach the same object in the region abstracted by n we intro-
duce the interfere relation. An edge e represents interfering pointers (ip) if there may
∃(a,o,r),(a′,o′,r′) ∈ (h ↓g e) s.t. (a,o,r) �= (a′,o′,r′) ∧ (o, o′ are related). Otherwise
we say the edge represents all non-interfering pointers (np).

Pictorial Representation. We represent abstract graphs pictorially as labeled, directed
multi-graphs. Each node in the graph either represents a region of the heap or a variable.
The variable nodes are labeled with the variable that they represent. The nodes repre-
senting the regions are represented as a record [id type scalar linearity
nodeCover] that tracks the instrumentation relations for the object types (type), the
simple scalar domain (scalar), the number of objects represented by the node (linearity,
omitted when it is the default value 1), and the edge sets that cover the node (node-
Cover).

Each edge contains a record that tracks additional information about the edge.
The edges in the figures are represented as records {id offset linearity
interfere connto}. The offset component indicates the offsets (abstract storage
location) of the references that are abstracted by the edge. The number of references
that this edge may represent is tracked with the linearity relation. The interfere rela-
tion tracks the possibility that the edge represents references that interfere. Finally, we
have a field connto which is a list of all the other edges/variables that the edge may be
connected to according to the connected relation. Again to simplify the figures we omit
fields that are the default domain value (linearity = 1, interfere = np, connto = /0).

Finally, we use a global equivalence relation on the edges which tracks the abstract
edge equivalence relations (EdgeEQ in the figures).

1 Two objects are weakly-connected if there is a (possibly non-empty) path between them (treat-
ing all edges as undirected).
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5 Abstract Operations

We now define the most important and interesting dataflow transfer functions for the ab-
stract graph domain, including how the reference set relations are updated. The domain
operations are safe approximations of the concrete program operations. For brevity we
omit proofs of these safety properties (which rely on simple case-wise reasoning about
the graph structure and the instrumentation relations). For these algorithms we also
assume that all the variables have unique targets (in practice this is done by creating
one new abstract graph for each possible variable target, where in each new graph the
variable of interest has a unique target).

5.1 Operations

Variable Nullity. When performing tests we generate one version of the abstract graph
for each possible outcome. For the nullity test of a variable we create one abstract graph
in which the variable must be null and one abstract graph in which the variable must
be non-null. In the case where the variable is assumed to be null we are asserting that
the concretization of the edge that represents the variable target is empty. Thus, if the
variable edge covers (�̂) a node we infer that the node does not represent any objects
and all the other incoming edges must also have empty concretizations. Similarly any
edge that is ∼̂ to the edge representing the variable target must also have an empty
concretization (and can be removed from the graph).

Algorithm 1. Assume Var Null (v == null is true)
input : graph g, var v
ev ← the edge representing the target of v;
n ← the target node of ev;
if ev�̂n then Enull ← {all incoming edges to n};
else Enull ← {e′|e′∼̂ev};
for edge e ∈ Enull do

g.removeEdge(e);

Indexing Bounds. In order to analyze nontrivial programs that manipulate arrays and
collections we must be able to accurately model the effects of programs that use integer
indexed loops to traverse them. To do this we use several special names for the edges
that represent the pointers stored in arrays/collections. The name ? indicates elements at
arbitrary indices in an array when it is not being indexed through, at represents the dis-
tinct element at the index given by the indexing variable, bi represents all the elements
stored at indices less than the indexing variable, and ai represents all the elements stored
at indices greater than the indexing variable.

In order to simulate the effect of the test, i < A.Length, we again create two
new abstract graphs, one where the test result is true and one where the test result is
false. The true result does not provide any additional information that is applicable
in our heap domain so we do not need to do anything. The false result indicates that
the indexing variable now refers to an index larger than the array size. This implies
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that there are no elements stored at indices equal to or greater than the current value
of the indexing variable, which means that the edges with offsets at and ai must have
empty concretizations and can be eliminated from the abstract graph. Further, as with
the variable nullity test we can use the reference set relation information to eliminate
other edges and nodes that must also have empty concretizations.

Figure 4(a) shows the most general abstract heap that arises when using simple inte-
ger indexing in a loop (to focus on the loop indexing we assume the body is empty) to
traverse an array as initialized in lines 3-4. In this figure we have three outgoing edges
from node 1, the edge with offset bi (edge 6) which represents all the elements at in-
dices less than i (elements that have been processed), the edge with the offset at (edge
7) which represents the single element stored at index i (the element currently being
processed), and the edge with offset ai (edge 2) which represents all of the elements at
indices greater than i (elements not yet processed).

(a) for(i = 0; i < A.Len; ++i) (b) i < A.Len is False

Fig. 4. Integer Indexing and Test

Figure 4(b) shows the abstract graph that results from assuming the test, i <
A.Length, is false. In this figure the analysis has determined that since the index-
ing variable (i) is off the end of the array all of the elements in the array must be stored
at indices less than i and that edges 2, 7 have empty concretizations. This allows the
analysis to remove them and since these edges cover (�̂) nodes 2, 6 respectively we can
infer that these nodes have empty concretizations and can be removed as well.
Load. The field load operation (x = y.f) first computes which node is the target of
the expression y.f, creating a more explicit representation as needed (Subsection 5.2).
Then it adds an edge from x to this node and if the storage location of y.f is unique
then we know the target of x must be equal to the target of y.f (and the edges repre-
senting them are ∼̂ and have the same �̂ properties).

5.2 Materialization

The materialization operation [13] is used to transform single summary nodes into more
explicit subgraph representations. For the example in this paper we only need a simple
version of Singleton materialization which is restricted to handle the following case and
otherwise conservatively leave the summary region as it is: if the incoming edges can
be partitioned into two or more equivalence classes based on the connected instrumen-
tation relation. Once we have identified a node and the edge partitions we create a new
node for each partition.
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Algorithm 2. Load (x = y.f)
input : graph g, var x, var y, field f
nullify x;
if y. f �= null then

g.materialize(the unique target of y. f );
n ← target node of y;
e ← the unique edge at y. f ;
assign x to refer to the target of e;
if n.linearity = 1 then

n′ ← the target node of e;
set edge representing x ∼̂ to e;
if e �̂ n′ then set edge representing x �̂ n′;

Figure 5(a) shows the heap abstract graph that captures all of the possible states at
line 4 of the example program. The variable A refers to a node with the identifier 1,
which represents a Data[] array, and we know it represents at most one array (the
default omitted linearity value of 1). This array may have multiple pointers stored in it,
represented by the linearity value ω in the edge with id 2. Each of these pointers refers
to a unique Data object since the edge has the omitted default interfere value of np.
The f:0+ entry indicates that all objects abstracted by node 2 have values in the range
[0,∞) in their f fields. Finally, based on the {2} entry of the nodeCover set for the node
2, we know that each object is referred to by a pointer abstracted by edge 2.

(a) Result From Initialization Loop (b) Load of A[i] (when i = 0)

Fig. 5. Load of A[0] on result of first loop

The result of the load, d = A[i]when i = 0 during the analysis of the first iteration
of the filter loop (line 6), is shown in Figure 5(b). In this figure we have split edge 2
from Figure 5(a) into two edges, one representing the pointer stored at index 0 (edge
4, with offset at) and one representing all the pointers stored at indices [1,∞) (edge
2, with offset ai). We have also split the node which represents the Data objects into
node 4 representing the object targeted by the pointer in A[0] and node 2 representing
the objects targeted by the pointers stored at the other indices in the array.

Since we know that the edge that was split (edge 2) �̂ the node that was split (node
2) we know that the resulting edges in Figure 5(b) must �̂ the resulting nodes (edge 2
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�̂ node 2 and edge 4 �̂ the node 4). Further we know that edge 4 represents a single
pointer (it represents the single pointer at A[0]) and, since it �̂ node 4, that node must
represent at most one object (the default omitted linearity value of 1).

Finally, we have set the target of the variable d to be the same as the target of the
edge that represents the pointers stored in A[0]. Based on the load algorithm we set
the new edge (edge 11) to be ∼̂ to edge 4 and since edge 4 �̂ node 4, we know that edge
11 �̂ node 4 as well.

6 Examples

Filter Loop Example. The filter loop (lines 5-7) demonstrates how the analysis uses
reference set information and the control flow predicate (d.f > 0) to infer additional
information about the heap, in particular that the set of objects stored in V must equal
the set of objects with positive f fields in A. To simulate the effect of the test (d.f >
0) on the state of the program we create two abstract graphs, one for the result when
test result is true and one when the test result is false.

Figure 6(a) shows the abstract graph that results from assuming that the test d.f >
0 is true (on the first iteration of the loop, i = 0) and the entry is added to the Vector
V. Since the test succeeds and we know d must refer to the single object abstracted by
node 11 (default omitted linearity value of 1) we can update the scalar information to
show that the f field must be greater than 0 (the f:+ label). We have updated the graph

(a) Assert Test is True (b) Assert Test is False

(c) Fixed Point of Loop Analysis (d) i < A.Length False, Exit Loop

Fig. 6. Filter Loop Analysis
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structure by adding the edge 5 to represent the pointer that is stored into the vector
object. Since we know this pointer refers to the same object as d, which is represented
by edge 4, we add the entry (4, 5) to the EdgeEQ relation and since edge 4 �̂ node 4 we
know that edge 5 also �̂ node 4.

Figure 6(b) shows the abstract graph that results from assuming that the test d.f >
0 is false (on the first iteration of the loop, i = 0) and the entry is not added to V. Since
the test fails and again we know A[i] refers to a single object we update the scalar
information to show that the f field must equal to 0 (the f:0 label).

Figure 6(c) shows the fixed point abstract graph which represents all the states that
are generated in the loop. We see that there may be many elements in the vector V and
many elements that are not added to the vector (represented by the edges with the bi
labels, 4 and 6 respectively). Since we tracked the �̂ relation of each individual object
as it was processed we know that every object referred to by a pointer represented by
edge 4 must have been added to the vector V and thus is also referred to by a pointer
represented by edge 5. This implies that edge 5 ∼̂ edge 4 and both edge 4 �̂ node 4 and
edge 5 �̂ node 4.

Figure 6(d) shows the result of assuming that i < A.Length returns false. The
at and ai edges (edges 7, 2) must have empty concretizations and can be eliminated
(as they abstract the pointer stored at index i and pointers stored at indices larger than
i). As desired the analysis has determined that all the objects with a non-zero f field
have been stored in the vector V (since node 5 only abstracts objects with 0 in the f
field and edge 4 ∼̂ edge 5).

Update Loop Example. For brevity we omit descriptions of how the reference set in-
formation is propagated during the individual operations of the update loop (lines 9-11)
and focus on how this information is used to improve the precision of the analysis
results at the loop exit. The fixed point abstract graph for the loop body is shown in
Figure 7(a). In this figure we see that the there are potentially many pointers that come
before the current index position in the vector V (edge 10 with offset bi, all of which
point to objects with 0 in the f field). It also indicates that the edges representing the
current index location (edge 8 with offset at) and the set of pointers that come after the
current index position (edge 5 with offset ai) cover (�̂) their target nodes (nodes 4, 8).

If the exit test (i < V.size()) is false then we can infer that there are no entries
in the vector at indices that are greater than or equal to i. This implies that the edges
at and ai (edges 8, 5) have empty concretizations since they represent pointers stored
at indices greater than or equal to i. Based on the ∼̂ relations (4, 5) and (7, 8, 11) this
implies that edges 4, 7 and 11 have empty concretizations as well.

The result of this inference is shown in Figure 7(b). After the test (and the removal
of the edges/nodes) there are no longer any pointers to objects with non-zero f fields
in the vector V or the array A. Thus, the loop has successfully determined that all the
objects in the vector V must be updated and further, this update information has been
reflected in the original array A (i.e., there is no object in A that had a non-zero field
that was not updated in the loop). As desired the analysis has determined that all of the
objects in the array A have the value 0 stored in their f fields after the filter/map loops.
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(a) Fixed Point Update of Loop

(b) After Loop Exit

Fig. 7. Fixpoint and Exit of Map Loop

7 Experimental Evaluation

We have implemented a shape analyzer based on the instrumentation relations and ref-
erence set information presented in this paper. We use a number of benchmarks2 from
our version of the Jolden suite [7], two programs from SPECjvm98 [14], and two pro-
grams (exp and interpreter) written as challenge problems. The JOlden suite contains
pointer-intensive kernels (taken from high performance computing applications). We
have modified the suite to use modern Java programming idioms. The benchmarks ray-
trace and db are taken from SPECjvm98 (with minor modifications to remove test har-
ness code and threading).

Benchmarks exp and interpreter, our two internally developed benchmarks, are a
basic arithmetic expression evaluator and an interpreter for the computational core of
Java. The exp program contains a variety of heap analysis challenges (non-trivial heap
structures with and without sharing, copy traversals of the structures and destructive
traversals of the structures), and is still small enough to understand. The interpreter
program is a large program with varied heap structures, from a large well defined tree
structure in the AST, symbol and local variable tables, a call stack of pending call
frames, and a very poorly defined cyclic structure in the internal model of the heap built
by the interpreter (thus the heap analysis must be both precise and able to deal with
ambiguity efficiently). It also has substantial amounts of sharing (variables, method
signatures and objects on the interpreters internal representation of the heap are shared

2 Benchmark/Analysis code is available at www.software.imdea.org/˜marron/.

www.software.imdea.org/~marron/
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Benchmark LOC Alias Time Ref. Time
em3d 1103 0.09s 0.11s
health 1269 1.55s 1.87s
bh 2304 0.72s 0.91s
db 1985 0.68s 1.07s
raytrace 5809 15.5s 15.9s
exp 3567 152.3 161.8
interpreter 15293 114.8 119.3

Fig. 8. Alias Time reports the analysis time with basic must-alias tracking while Ref. Time
reports the analysis time using reference set relations. LOC is for the normalized program repre-
sentation including library stubs required by the analysis.

in multiple structures). Because of these characteristics we believe these programs are
excellent challenge problems for this area of research.

The analysis algorithm was written in C++ and compiled using MSVC 8.0. The anal-
ysis was run on a 2.6 GHz Intel quad-core machine with 2 GB of RAM (although mem-
ory consumption never exceeded 150 MB). Detailed information on the interprocedural
dataflow analysis methods used can be found in [10].

We compare the analysis results when using the reference set relations described
in this paper and when using a basic equivalence-based field-sensitive must points to
relation on the abstract graph edges. In each of these benchmarks when using the ref-
erence set relations we see a moderate increase in runtime which varies based on the
quantity of subset relations generated by the program (with the largest increase in db,
which represents an in-memory database and views of this database via arrays). Each
of these benchmarks possess some instances of data structures where the use of refer-
ence set relations allows the analysis to extract information that was not possible with
simple aliasing information. In some cases this information is not particularly useful (in
em3d the analysis discovers that the there are 2 vectors each of which refers to every
element in one of the halves of a bipartite graph). However, in most of the programs
the reference set information provides potentially valuable information. For example,
in bh the analysis discovers that the leaves of the space decomposition trees are always
a subset of a given vector, in db we know the set of entries in each view is a subset of
the entire database, and in interpreter the analysis determines that each variable symbol
is interned in a special table and that all live stack frame objects must be stored in a sin-
gle list container. In addition the analysis is able to precisely model (as in the running
example) most of the filter-map and subset-remove type loops that occur.

8 Conclusion

In this paper we introduced reference set relations, a novel concrete heap property that
subsumes the concept of must-aliasing and allows us to compactly express a wide range
of must-sharing relations (must-= and must-⊆) between arrays, collections, and heap
data structures. By extending an existing shape analysis with two simple relations to
track the most commonly occurring reference set relations (equality via the abstract
edge equivalence property, ∼̂, and subset relations, indirectly, via the abstract node
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cover property and �̂) we can model many useful sharing properties. As demonstrated
by the experimental evaluation, this approach has a small impact on computational costs
when compared with classic must-aliasing and allows the tracking of a much richer set
of heap sharing properties. This work also highlights the strength of the labeled stor-
age shape graph approach, which partitions the heap into conceptually homogeneous
regions. This partitioning enables even relatively simple concepts such as the reference
set relations presented in this work to extract rich information from the program (and
conversely may enable the efficient use of strong decision procedures by limiting the
complexity of the verification conditions encountered during program analysis).
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Abstract. Shape analyses (Chase et al. 1990, Sagiv et al. 2002) discover
properties of dynamic and/or mutable structures. We ask, “Is there an
equivalent to shape analysis for purely functional programs, and if so,
what ‘shapes’ does it discover?” By treating binding environments as
dynamically allocated structures, by treating bindings as addresses, and
by treating value environments as heaps, we argue that we can analyze
the “shape” of higher-order functions. To demonstrate this, we enrich
an abstract-interpretive control-flow analysis with principles from shape
analysis. In particular, we promote “anodization” as a way to generalize
both singleton abstraction and the notion of focusing, and we promote
“binding invariants” as the analog of shape predicates. Our analysis en-
ables two optimizations known to be beyond the reach of control-flow
analysis (globalization and super-β inlining) and one previously unknown
optimization (higher-order rematerialization).

1 Introduction

Control-flow analysis is not enough. In higher-order programs, the three facets
of control, environment and data meet and intertwine in a single construct:
λ. Deep static analysis of higher-order programs requires that all three facets
be co-analyzed with one another. Yet, to date, static analysis of higher-order
programs has focused largely on bounding the control facet [1,12,22,26,27,29].1

Limited excursions have tamed parts of the environment facet [16,18,20,28], and
little work even approaches the data facet [17]. These deficits in reasoning leave
higher-order languages at a disadvantage with respect to optimization. Our goal
in this work is to address these deficits with a holistic approach to the abstract
interpretation [5,6] of higher-order programs.

1.1 Limitations of Control-Flow Analysis

To motivate the kind of analysis we need, we will consider specific problems
beyond the reach of the control-flow analysis; we will identify the common thread
1 Control-flow analyses (CFA) answer the higher-order control-flow question: Given a

call site [[(f e1 . . . en)]], which procedures may be invoked here? 0CFA, for instance,
answers which λ-terms may have closures invoked at the call site.
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as the “generalized environment problem”; and we will then argue that the
higher-order analog of shape analysis is what we need to solve it.

CFA Limitation: Super-β inlining. Inlining a function based on flow infor-
mation is blocked by the lack of environmental precision in control-flow analysis.
Shivers termed the inlining of a function based on flow information super-β in-
lining [27], because it is beyond the reach of ordinary β-reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will find that at the call site (h), the only procedure ever
invoked is a closure over the lambda term (lambda () x). The lambda term’s
only free variable, x, is in scope at the invocation site. It feels safe to inline.
Yet, if the compiler replaces the reference to h with the lambda term (lambda
() x), the meaning of the program will change from #f to #t. This happens
because the closure that gets invoked was closed over an earlier binding of x (to
#f), whereas the inlined lambda term closes over the binding of x currently in
scope (which is to #t). Programs like this mean that functional compilers must
be conservative when they inline based on information obtained from a CFA. If
the inlined lambda term has a free variable, the inlining could be unsafe.

Specific problem. To determine the safety of inlining the lambda term lam at the
call site [[(f . . . )]], we need to know that for every environment ρ in which this
call is evaluated, that ρ[[f]] = (lam , ρ′) and ρ(v) = ρ′(v) for each free variable v
in the term lam .2

CFA Limitation: Globalization. Sestoft identified globalization as a sec-
ond blindspot of control-flow analysis [25]. Globalization is an optimization that
converts a procedure parameter into a global variable when it is safe to do so.
Though not obvious, globalization can also be cast as a problem of reasoning
about environments: if, for every state of execution, all reachable environments
which contain a variable are equivalent for that variable, then it is safe to turn
that variable into a global.

Specific problem. To determine the safety of globalizing the variable v, we need to
know that for each reachable state, for any two environments ρ and ρ′ reachable
inside that state, it must be that ρ(v) = ρ′(v) if v ∈ dom(ρ) and v ∈ dom(ρ′).

CFA Limitation: Rematerialization. Compilers for imperative languages
have found that it can be beneficial to rematerialize (to recompute) a value at
its point of use if the values on which it depends are still available. On modern
hardware, rematerialization can decrease register pressure and improve cache
2 The symbol ρ denotes a conventional variable-to-value environment map.
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performance. Functional languages currently lack analyses to drive rematerial-
ization. Consider a trivial example:

((let ((z y))
(lambda () z)))

At the top-level call site in this program, only a closure over the lambda term
(lambda () z) is invoked. Yet, we cannot inline the lambda term, changing the
program into ((lambda () z)), because at the very least, the variable z isn’t
even in scope at the call site. We could, however, rematerialize the lambda term
(lambda () y) instead. Of course, justifying this transformation goes beyond
reasoning about the equivalence of environments. What we need is an analysis
that can reason about the equivalence of individual bindings between environ-
ments, e.g., the equality of the binding to the variable z within the closure and
the binding to the variable y at the call site. At the moment, no such analysis
exists for higher-order programs.

Specific problem To rematerialize the expression e′ in place of expression e, it
must be the case that for every environment ρ that evaluates the expression
e into a closure (lam , ρ′), that the environment ρ evaluates the expression e′

into a closure (lam ′, ρ′′) such that the terms lam and lam ′ are equal under a
substitution σ ⊆ Var×Var and for each (v, v′) ∈ σ, it must be that ρ′(v) = ρ′′(v′).

1.2 The Generalized Environment Problem

The brief survey of optimizations beyond the reach of higher-order control-flow
analysis highlighted the importance of reasoning precisely about environments,
and more atomically, about individual bindings. In fact, Shivers’s work on k-
CFA [27] classified optimizations beyond the reach of CFA as those which must
solve “the environment problem.”

The term environment problem connotes the fact that control-flow analy-
ses excel at reasoning about the λ-term half of closures, but determine little
(useful) information about the environment half. Might refined Shivers’s defi-
nition of the environment problem to be determining the equivalence of a
pair of environments, for every pair in a given set of environment pairs [16].3

Equivalence in this case means showing that the environments agree on some
specified subset of their domains. This narrow definition is suitable for en-
abling super-β inlining and globalization, but it is too limited for higher-order
rematerialization.

For example, we could not declare the closures ([[(lambda (z) (f z))]], ρ)
and ([[(lambda (x) (g x))]], ρ′) to be equivalent unless we knew that ρ[[f]] ≡
ρ′[[g]] as well. In this case, the analysis cares about the equality of bindings to two
different variables in two different environments. Thus, the generalized envi-
ronment problem asks whether two bindings are equivalent to one another,

3 The set of pairs comes from concretizing abstract environments, i.e., γ(ρ̂)× γ(ρ̂′).
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where a binding is a variable plus the environment in which it was bound, e.g.,
“Is [[x]] in environment ρ equivalent to [[y]] in environment ρ′?”

1.3 Insight: Environments as Data Structures; Bindings as
Addresses

Under the hood, environments are dynamically allocated data structures that de-
termine the value of a λ-term’s free variables, and as a consequence, the mean-
ing of the function represented by a closure. When we adapt and extend the
principles of shape analysis (specifically, singleton abstractions [2,4] and shape
predicates [23]) to these environments, we can reason about the meaning of and
relationships between higher-order functions. As we adapt, we find that, in a
higher-order control-flow analysis, bindings are the proper analog of addresses.
More importantly, we will be able to solve the aforementioned problems beyond
the reach of traditional CFA.

1.4 Contributions

We define the generalized environment problem. We define higher-order rema-
terialization as a novel client of the generalized environment problem, and we
note that super-β inlining and globalization—both known to be beyond the reach
CFA—are also clients of the generalized environment problem. We find the philo-
sophical analog of shape analysis for higher-order programs; specifically, we find
that we can view binding environments as data structures, bindings as addresses
and value environments as heaps. Under this correspondence, we discover an-
odization, a means for achieving both singleton abstraction and focusing; and
we discover binding invariants as an analog of shape predicates. We use this
analysis to solve the generalized environment problem.

2 Platform: Small-Step Semantics, Concrete and
Abstract

For our investigation into higher-order shape analysis, our platform is a small-
step framework for the multi-argument continuation-passing-style λ-calculus:

f, e ∈ Exp = Var + Lam v ∈ Var ::= id �

� ∈ Lab is a set of labels lam ∈ Lam ::= (λ� (v1 . . . vn) call)

call ∈ Call ::= (f e1 . . . en)
�.

2.1 State-Spaces

The concrete state-space (Σ in Figure 1) for the small-step machine has four
components: (1) a call site call , (2) a binding environment β to determine the
bindings of free variables, (3) a value environment ve to determine the value of
bindings, and (4) a time-stamp t to encode the current context/history.
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The abstract state-space (Σ̂ in Figure 1) parallels the structure of the con-
crete state-spaces. For these domains, we assume the natural partial orders; for
example, v̂e � v̂e ′ = λb̂.v̂e(b̂) ∪ v̂e ′(b̂).

Binding environments (BEnv ), as a component of both machine states and
closures, are the environments to which the environment problem refers. In our
semantics, binding environments map variables to bindings. A binding b is a
commemorative token minted for each instance of a variable receiving a value;
for example, in k-CFA, a binding is a variable name paired with the time-stamp
at which it was bound. The value environment ve tracks the denotable values
(D) associated with every binding. A denotable value d is a closure.

In CFAs, bindings—the atomic components of environments—play the role
that addresses do in pointer analysis. Our ultimate goal is to infer relationships
between the concrete values behind abstract bindings. For example, we want to
be able to show that bindings to the variable v at some set of times are equal,
under the value environment, to the bindings to the variable x at some other set
of times. (In the pure λ-calculus, the only obvious relationships between bindings
are equality and inequality.)

In CFA theory, time-stamps also go by the less-intuitive name of contours.
Both the concrete and the abstract state-spaces leave the exact structure of
time-stamps and bindings undefined. The choices for bindings determine the
polyvariance of the analysis. Time-stamps encode the history of execution in
some fashion, so that under abstraction, their structure determines the context
in context-sensitivity.

The concrete and abstract state-spaces are linked by a parameterized second-
order abstraction map, αη : Σ → Σ̂, where the parameter η : (Addr → Âddr) ∪
(Time → T̂ime) abstracts both bindings and times:

αη(call , β, ve, t) = (αη(V ), αη(β), αη(ve), η(t))
αη

BEnv (β) = λv.η(β(v))

αη
VEnv (ve) = λb̂.

⊔

η(b)=b̂

αη(ve(b))

αη
D (d) = {αη

Val (d)}
αη

Val (lam , β) = (lam , αη(β)).

2.2 Transition Rules

With state-spaces defined, we can specify the concrete transition relation for
CPS, (⇒) ⊆ Σ × Σ; then we can define its corresponding abstraction under
the map αη, (�) ⊆ Σ̂ × Σ̂. With the help of an argument-expression evaluator,
E : Exp× BEnv ×VEnv ⇀ D:

E (v, β, ve) = ve(β(v))
E (lam , β, ve) = (lam , β),
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ς ∈ Σ = Call× BEnv × VEnv × Time

β ∈ BEnv = Var ⇀ Bind

ve ∈ VEnv = Bind ⇀ D

d ∈ D = Val

val ∈ Val = Clo

clo ∈ Clo = Lam× BEnv

b ∈ Bind is an infinite set of bindings

t ∈ Time is an infinite set of times

ς̂ ∈ Σ̂ = Call× B̂Env × V̂Env × T̂ime

β̂ ∈ B̂Env = Var ⇀ B̂ind

v̂e ∈ V̂Env = B̂ind → D̂

d̂ ∈ D̂ = P(V̂al)

v̂al ∈ V̂al = Ĉlo

ĉlo ∈ Ĉlo = Lam× B̂Env

b̂ ∈ B̂ind is a finite set of bindings

t̂ ∈ T̂ime is a finite set of times

Fig. 1. State-space for the lambda calculus: Concrete (left) and abstract (right)

we can define the single concrete transition rule for CPS:

([[(f e1 . . . en)
�]], β, ve, t) ⇒ (call , β′′, ve ′, t′), where:

di = E(ei, β, ve)

d0 = ([[(λ�′ (v1 . . . vn) call)]], β′)
t′ = tick(call , t)
bi = alloc(vi, t

′)
β′′ = β′[vi �→ bi]
ve ′ = ve[bi �→ di].

With the help of an abstract evaluator, Ê : Exp× B̂Env × V̂Env → D̂:

Ê (v, β̂, v̂e) = v̂e(β̂(v))

Ê (lam , β̂, v̂e) =
{
(lam , β̂)

}
,

we can define an analogous transition rule for the abstract semantics:

([[(f e1 . . . en)
�]], β̂, v̂e, t̂) � (call , β̂′′, v̂e ′, t̂′), where:

d̂i = Ê(ei, β̂, v̂e)

d̂0 / ([[(λ�′ (v1 . . . vn) call)]], β̂′)

t̂′ = t̂ick(call , t̂)

b̂i = âlloc(vi, t̂
′)

β̂′′ = β̂′[vi �→ b̂i]

v̂e ′ = v̂e � [b̂i �→ d̂i].
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2.3 Concrete and Abstract Interpretation

To evaluate a program call in the concrete semantics, its meaning is the set of
states reachable from the initial state ς0 = (call , [], [], t0):

{ς : ς0 ⇒∗ ς} .

A näıve abstract interpreter could behave similarly, exploring the states reach-
able from the initial state ς̂ = (call , [],⊥, t̂0):

{ς̂ : ς̂0 �∗ ς̂} .

In practice, widening on value environments [5] accelerates convergence [16,27].

2.4 Parameters for the Analysis Framework

Time-stamp incrementers and binding allocators serve as parameters:

alloc : Var× Time → Bind âlloc : Var× T̂ime → B̂ind

tick : Call× Time → Time t̂ick : Call× T̂ime → T̂ime.

Time-stamps are designed to encode context/history. Thus, the abstract time-
stamp incrementer t̂ick and the abstraction map αη decide how much history to
retain in the abstraction. As a result, the function t̂ick determines the context-
sensitivity of the analysis. Similarly, the abstract binding allocator chooses how
to allocate abstract bindings to variables, and in doing so, it fixes the polyvari-
ance of the analysis. Once the parameters are fixed, the semantics must obey a
straightforward soundness theorem:

Theorem 1. If αη(ς) ! ς̂ and ς ⇒ ς ′, then there exists a state ς̂ ′ such that
ς̂ � ς̂ ′ and αη(ς ′) ! ς̂ ′.

3 Analogy: Singleton Abstraction to Binding Anodization

Focusing on our goal of solving the generalized environment problem—reasoning
about the equality of individual bindings—we turn to singleton abstraction [4].
Singleton abstraction has been used in pointer and shape analyses to drive must-
alias analysis; we extend singleton abstraction, and the framework of anodiza-
tion, to determine the equivalence of bindings to the same variable. That is, we
will be able to solve the environment problem with our singleton abstraction,
but not the generalized environment problem. In Section 4, we will solve the
generalized problem by bootstrapping binding invariants on top of anodization.

A Galois connection [6] X −−−→←−−−
α

γ
X̂ has a singleton abstraction iff there exists a

subset X̂1 ⊆ X̂ such that for all x̂ ∈ X̂1, size(γ(x̂)) = 1. The critical property of
singleton abstractions is that equality of abstract representatives implies equal-
ity of their concrete constituents. Hence, when the set X contains addresses,
singleton abstractions enable must-alias analysis. Analogously, when the set X
contains bindings, singleton abstraction enables binding-equality testing.
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Example 1. Suppose we have a concrete machine with three memory addresses:
0x01, 0x02 and 0x03. Suppose the addresses abstract so that α(0x01) = â1 and
α(0x02) = α(0x03) = â∗. The address â1 is a singleton abstraction, because
it has only one concrete constituent—0x01. After a pointer analysis, if some
pointer variable p1 points only to address â′ and another pointer variable p2
points only to address â′′ and â′ = â1 = â′′ then p1 must alias p2.

In order to solve the super-β inlining problem, Shivers informally proposed a sin-
gleton abstraction for k-CFA which he termed “re-flow analysis” [27]. In re-flow
analysis, the CFA is re-run, but with a “golden” contour inserted at a point of
interest. The golden contour—allocated only once—is a singleton abstraction by
definition. While sound in theory, re-flow analysis does not work in practice: the
golden contour flows everywhere the non-golden contours flow, and inevitably,
golden and non-golden contours are compared for equality. Nevertheless, we can
salvage the spirit of Shivers’s golden contours through anodization. Under an-
odization, bindings are not golden, but may be temporarily gold-plated.

In anodization, the concrete and abstract bindings are split into two halves:

Bind = Bind∞ + Bind1 B̂ind = B̂ind∞ + B̂ind1,

and we assert “anodizing” bijections between these halves:

g : Bind∞ → Bind1 ĝ : B̂ind∞ → B̂ind1,

such that:
η(b) = b̂ iff η(g(b)) = ĝ(b̂).

Every abstract binding has two variants, a summary variant, b̂, and an anodized
variant, ĝ(b̂). We will craft the concrete and abstract semantics so that the an-
odized variant will be a singleton abstraction. We must anodize concrete bind-
ings as well because the concrete semantics have to employ the same anodization
strategy as the abstract semantics in order to prove soundness.

The concrete semantics must also obey an abstraction-uniqueness constraint
over anodized bindings, so that for any reachable state (call , β, ve, t):

If g(b) ∈ dom(ve) and g(b′) ∈ dom(ve) and η(b) = η(b′) then b = b′. (1)

In other words, once the concrete semantics decides to allocate an anodized bind-
ing, it must de-anodize existing concrete bindings which abstract to the same
abstract binding. Anodization by itself does not dictate when a concrete seman-
tics should allocate an anodized binding; this is a policy decision; anodization is
a mechanism. For simple policies, the parameters alloc and âlloc, by selecting
anodized or summary bindings, jointly encode the policy.

As an example of the simplest anodization policy, we describe the higher-
order analog of Balakrishnan and Reps’s recency abstraction in Section 3.3. An
example of a more complicated policy is closure-focusing (Section 3.4).
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Formally, the concrete transition rule must rebuild the value environment with
every transition:

([[(f e1 . . . en)
�]], β, ve, t) ⇒ (call , β′′, ve ′, t′), where:

di = E(ei, β, ve)

d0 = ([[(λ�′ (v1 . . . vn) call)]], β′)
t′ = tick(call , t)
bi = alloc(vi, t

′)
B = {bi : bi ∈ Bind1}
β′′ = (g−1

B β′)[vi �→ bi]

ve ′ = (g−1
B ve)[bi �→ (g−1

B di)],

where the de-anodization function g−1
B : (BEnv → BEnv ) ∪ (VEnv → VEnv) ∪

(D → D) ∪ (Bind → Bind) strips the anodization off bindings that abstract to
any binding in the set B:

g−1
B (b) = b

g−1
B (g(b)) =

{
b η(b) = η(b′) for some g(b′) ∈ B
g(b) otherwise

g−1
B (lam , β) = (lam , g−1

B (β))

g−1
B (β) = λv.g−1

B (β(v))

g−1
B (ve) = λb.g−1

B (ve(b)).

The corresponding abstract transition rule must also rebuild the value environ-
ment with every transition:

([[(f e1 . . . en)
�]], β̂, v̂e, t̂) � (call , β̂′′, v̂e ′, t̂′), where:

d̂i = Ê(ei, β̂, v̂e)

d̂0 / ([[(λ�′ (v1 . . . vn) call)]], β̂′)

t̂′ = t̂ick(call , t̂)

b̂i = âlloc(vi, t̂
′)

B̂ =
{
b̂i : b̂i ∈ Bind1

}

β̂′′ = (ĝ−1
B̂
β̂′)[vi �→ b̂i]

v̂e ′ = (ĝ−1
B̂

v̂e) � [b̂i �→ (ĝ−1
B̂
d̂i)],

where the de-anodization function ĝ−1
B̂

: (B̂Env → B̂Env ) ∪ (V̂Env → V̂Env) ∪
(D̂ → D̂) ∪ (V̂al → V̂al) ∪ (B̂ind → B̂ind) strips the anodization off abstract
bindings in the set B̂:
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ĝ−1
B̂

(b̂) =

{
b̂′ b̂ ∈ B̂ and b̂ = ĝ(b̂′)
b̂ otherwise

ĝ−1
B̂

{
d̂1, . . . , d̂n

}
=
{
ĝ−1

B̂
(d̂1), . . . , ĝ−1

B̂
(d̂n)

}

ĝ−1
B̂

(lam , β̂) = (lam , ĝ−1
B̂

(β̂))

ĝ−1
B̂

(β̂) = λv.ĝ−1
B̂

(β̂(v))

ĝ−1
B̂

(v̂e) = λb̂.ĝ−1
B̂

(v̂e(b̂)).

Because the concrete semantics obey the uniqueness constraint (Equation 1), the
abstract interpretation may treat the set B̂ind1 as a set of singleton abstractions
for the purpose of testing binding equality.

3.1 Solving the Environment Problem with Anodization

Given two abstract environments β̂1 and β̂2, it is easy to determine whether the
concrete constituents of these environments agree on the value of some subset
of their domains, {v1, . . . , vn}:

Theorem 2. If αη(β1) = β̂1 and αη(β2) = β̂2, and β̂1(v) = β̂2(v) and β̂1(v) ∈
B̂ind1, then β1(v) = β2(v).

Proof. By the abstraction-uniqueness constraint.

3.2 Implementing Anodization Efficiently

The näıve implementation of the abstract transition rule is inefficient: the de-
anodizing function ĝ−1

B̂
must walk the abstract value environment with every

transition. Even in 0CFA, this walk adds a quadratic penalty to every transition.
To avoid this walk, the analysis should use serial numbers on bindings “under
the hood,” so that:

B̂ind ≈ B̂ind∞ × N.

That is, the value environment should be implemented as two maps:

V̂Env ≈ (B̂ind∞ → N → D̂)× (B̂ind∞ → N).

Given a split value environment v̂e = (f̂ , ĥ), a binding (b̂, n) is anodized only if
n = ĥ(b̂), and it is not anodized if n < ĥ(b̂). Thus, when the allocator chooses to
anodize a binding, it does need to walk the value environment with the function
ĝ−1

B̂
to strip away existing anodization; it merely needs to increment the serial

number associated with that binding.
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3.3 Instantiating Anodization: Recency Abstraction

In recency abstraction [2], the most-recently allocated abstract variant of a
resource is tracked distinctly from previously allocated variants. Anodization
makes it straightforward to model recency in a higher-order setting. In a language
with mutation, recency abstraction solves the initialization problem, whereby
addresses are allocated with a default value, but then set to another shortly
thereafter. Recency abstraction prevents the default value from appearing as a
possibility for every address, which is directly useful in eliminating null-pointer
checks. In a higher-order setting, recency permits precise computation of bind-
ing equivalence for variables that are bound in non-recursive and tail-recursive
procedures or that die before the recursive call.

3.4 Instantiating Anodization: Closure-Focusing

Anodization enables another shape-analytic technique known as focusing [15,23].
In focusing, a specific, previously-allocated variant is split into the singleton
variant under focus—and all other variants. In a higher-order language, there
is a natural opportunity to focus on all of the bindings of a closure when it is
created. Focusing provides a way to solve the environment problem for closures
which capture variables which have been re-bound since closure-creation.

4 Analogy: Binding Invariants as Shape Predicates

Anodization can solve the environment problem, but it cannot solve the gen-
eralized environment problem, where we need to be able to reason about the
equality of bindings to different variables in different environments. To solve
this problem, we cast shape predicates as binding invariants. A binding invari-
ant is an equivalence relation over abstract bindings, and it can be considered
as a separate, relational abstraction of program state, αη

≡ : Σ → Σ̂≡, where:

Σ̂≡ = P
(
B̂ind × B̂ind

)
,

such that:

αη
≡(call , β, ve, t) =

{
(b̂, b̂′) : ve(b) = ve(b′) if η(b) = b̂ and η(b′) = b̂′

}
.

In contrast with earlier work, binding-invariant abstraction is a relational ab-
stract domain over abstract bindings rather than program variables [7,8].

Informally, if (b̂, b̂′) ∈ αη
≡(ς), it means that all of the concrete constituents of

the bindings b̂ and b̂′ agree in value. To create the analysis, we can formulate a
new abstraction as the direct product of the abstractions αη and αη

≡:

α̇η : Σ → Σ̂ × Σ̂≡

α̇η(ς) = (αη(ς), αη
≡(ς)).
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The constraints of a straightforward soundness theorem (Theorem 1) lead to an
abstract transition relation over this space:

(([[(f e1 . . . en)
�]], β̂, v̂e, t̂),≡) � ((call , β̂′′, v̂e ′, t̂′),≡′), where:

d̂i = Ê(ei, β̂, v̂e)

d̂0 / ([[(λ�′ (v1 . . . vn) call)]], β̂′)

t̂′ = t̂ick(call , t̂)

b̂i = âlloc(vi, t̂
′)

B̂ =
{
b̂i : b̂i ∈ B̂ind1

}

β̂′′ = (ĝ−1
B̂
β̂′)[vi �→ b̂i]

v̂e ′ = (ĝ−1
B̂

v̂e) � [b̂i �→ (ĝ−1
B̂
d̂i)],

and singleton bindings are reflexively equivalent:

b̂ ∈ B̂ind1

b̂ ≡′ b̂,

and bindings between singletons are trivially equivalent:

β̂(ei) ∈ B̂ind1 b̂i ∈ B̂ind1

β̂(ei) ≡′ b̂i,

and untouched bindings retain their equivalence:

b̂ ≡ b̂′ b̂ �∈ B̂ b̂′ �∈ B̂
b̂ ≡′ b̂′,

and bindings re-bound to themselves also retain their equivalence:

β̂(ei) ≡ b̂i

β̂(ei) ≡′ b̂i.

4.1 Solving the Generalized Environment Problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call , β̂, v̂e, t̂),≡) and two ab-
stract bindings, b̂ and b̂′, if α̇η(call , β, ve, t) ! ((call , β̂, v̂e, t̂),≡) and η(b) = b̂

and η(b′) = b̂′ and b̂ ≡ b̂′, then ve(b) = ve(b′).

Proof. By the structure of the direct product abstraction α̇η.
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5 Application: Higher-Order Rematerialization

Now that we have a generalized environment analysis, we can precisely state
the condition under which higher-order rematerialization is safe. Might’s work
on the correctness of super-β inlining formally defined safe to mean that the
transformed program and the untransformed program maintain a bisimulation
in their concrete executions [16].

Theorem 4. It is safe to rematerialize the expression e′ in place of the expres-
sion e in the call site call iff for every reachable compound abstract state of
the form ((call , β̂′′, v̂e, t̂),≡), it is the case that Ê(e′, β̂′′, v̂e) = (lam ′, β̂′) and
Ê(e, β̂′′, v̂e) = (lam , β̂) and the relation σ ⊆ Var×Var is a substitution that uni-
fies the free variables of lam ′ with lam and for each (v′, v) ∈ σ, β̂′(v′) ≡ β̂(v).

Proof. The proof of bisimulation has a structure identical to that of the proof
correctness for super-β inlining in [16].

6 Related Work

Clearly, this work draws on the Cousots’ abstract interpretation [5,6]. Binding
invariants succeed the Cousots’ work as a relational abstraction of higher-order
programs [7,8], with the distinction that binding invariants range over abstract
bindings instead of formal parameters. Binding invariants were also inspired by
Gulwani et al.’s quantified abstract domains [9]; there is an implicit universal
quantification ranging over concrete constituents in the definition of the abstrac-
tion map αη

≡. This work also falls within and retains the advantages of Schmidt’s
small-step abstract interpretive framework [24]. As a generalization of control-
flow analysis, the platform of Section 2 is a small-step reformulation of Shivers’s
denotational CFA [27], which itself was a extension of Jones’s original CFA [13].
Like the Nielsons’ unifying work on CFA [22], this work is an implicit argument
in favor of the inherent flexibility of abstract interpretation for the static analy-
sis of higher-order programs. In contrast with constraint-based, type-based and
model-checking CFAs, small-step abstract interpretive CFAs are easy to extend
via direct products and parameterization.

From shape analysis, anodized bindings draw on singleton abstraction while
binding invariants are inspired by both predicate-based abstractions [3] and
three-valued logic analysis [23]. Chase et. al had early work on counting-based
singleton abstractions [4], while Hudak’s work on analysis of first-order functional
programs employed a precursor to counting-based singleton abstraction [10]. An-
odization, using factored sets of singleton and non-singleton bindings, is most
closely related to the Balakrishnan and Reps’s recency abstraction [2], except
that anodization works on bindings instead of addresses, and anodization is not
restricted to a most-recent allocation policy. Superficially, one might also term
Jones and Bohr’s work on termination analysis of the untyped λ-calculus via
size-change as another kind of shape analysis for higher-order programs [14].



276 M. Might

Given the importance of inlining and globalization, the functional community
has responded with ad hoc extensions to control-flow analyses to support these
optimizations. Shivers’s re-flow analysis developed the concept of singleton ab-
straction independently to determine equivalence over environments [27]. Wand
and Steckler approached the environment problem by layering a constraint-
based environment-equivalence analysis on top of 0CFA [28]. Jagannathan et al.
developed a counting-based constraint analysis to drive lightweight closure con-
version [11]. More recently, Might and Shivers attacked the problem with stack-
driven environment-analysis (ΔCFA), but this analysis also proved too brittle for
many programs [18]. Might and Shivers’ reachability- and counting-driven envi-
ronment analysis (ΓCFA) provides a scalable analysis which can reason about
environment equivalence [19,21]. All of these extensions are capable of solving
the environment problem in limited cases; none of them can solve the generalized
environment problem, and none take the principled, flexible approach provided
by anodization and binding invariants.

7 Conclusion

We motivated the need to reason about the equivalence of environments in
higher-order programs by finding optimizations beyond the reach of ordinary
control-flow analysis: super-β inlining, globalization and higher-order remateri-
alization. We distilled the core problem which must be solved in order to enable
these optimizations—the generalized environment problem. The generalized en-
vironment problem asks whether two variables bound in different environments
are equivalent, e.g., “Is [[x]] in bound in ρ equivalent to [[y]] bound in ρ′?” We then
created an analysis framework for solving the generalized environment problem
by considering the analog of shape analysis in terms of control-flow analysis. We
rendered the principle of singleton abstraction as anodization, and we rendered
the principle of shape predicates as binding invariants. By composing anodiza-
tion and binding invariants, we arrived at an extended higher-order flow-analysis
framework that can solve the generalized environment problem.

8 Future Work

Next steps for this work include folding more language features into the frame-
work, considering the impact of these features on both anodization and binding
invariants and integrating Gulwani’s techniques for bounding of numeric vari-
ables [9]. For instance, once numbers are introduced, we could enrich binding
invariants to reason about both equality and inequality among the concrete con-
stituents of abstract bindings. We also expect that when we introduce dynamic
allocation, that anodization and binding invariants will naturally morph back
into the must-alias analysis and shape predicates from whence they came. This
technology is also being introduced into the U Combinator higher-order flow
analysis toolkit; the latest beta version of this toolkit is always available from
http://www.ucombinator.org/.
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Abstract. This paper is concerned with the synthesis of invariants in
programs with arrays. More specifically, we consider properties concern-
ing array contents up to a permutation. For instance, to prove a sorting
procedure, one has to show that the result is sorted, but also that it is a
permutation of the initial array. In order to analyze this kind of proper-
ties, we define an abstract interpretation working on multisets of values,
and able to discover invariant equations about such multisets.

1 Introduction

The analysis of properties of data structures is a challenging goal. It has been
widely studied, but still strongly needs to be improved, concerning the efficiency
and precision of analyzes, but also the class of properties that can be handled.
Roughly speaking, data structure properties can be divided into three classes:
(1) The most widely studied properties are structural properties: they concern
the shape of data structures and the correctness of their accesses, independently
of their contents. Array bound checking (e.g., [CC76, LS79]), and shape analysis
(e.g., [WSR00, SRW02, DRS03]) address this class of properties. (2) More re-
cently, several methods were proposed for analyzing positional properties of data
structure contents, i.e., properties relating the value of a cell with its position
in the structure [BMS06, IHV08, FQ02, LB04, JM07, GMT08, Cou03, GRS05,
HP08]. The fact that two arrays are pointwise equal, or that a list is sorted, are
examples of such properties. (3) In this paper, we will consider an instance of
non positional properties, which concern the whole content of a data structure,
independently of the structure itself. A typical example is the fact that an array
is a permutation of another array. Showing that the result of a sorting procedure
is indeed sorted is not enough to prove the procedure; one has to show also that
the result is a permutation of the initial structure. There are many examples
of such algorithms which are intended to reorganize a data structure without
changing its global content. Showing that the global content is not changed is
therefore an issue. Such non positional properties are not easily expressible with
usual formalisms: they cannot be expressed as “∀ . . . ∃ . . .” formulas as those con-
sidered in [SG09], and [SJ80] remarks that the fact that two arrays are equal up
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to a permutation cannot be expressed by a first order formula. This may explain
that these properties have been more or less ignored in the literature on program
analysis.

In this paper, we describe an analysis technique able to discover equations
about global contents of arrays. Such a global content is a multiset, since several
cells may contain the same value. For simplicity, the paper is specialized on (one-
dimensional) array analysis, but the approach could be extended to other data
structures. For instance, our method is able to discover that if, at the beginning
of an insertion sort procedure, the array A to be sorted contains a multiset M
of values, it contains the same multiset at the end of the procedure. Combined
with an analysis of positional properties such as [HP08], it provides an automatic
method for discovering the exact input/output behavior of the procedure.

Basically, our analysis is an abstract interpretation propagating multiset equa-
tions. It is helped by other, more classical analyzes, discovering equalities and
disequalities between indexes — which are, of course, very important to deal
with aliases1 — and equalities between variables and array cells. After giving
the basic notations and definitions (Section 2), we introduce the analysis by an
example (Section 3). Section 4 presents the principles of the analysis, before ad-
dressing the main problem, which concerns the computation of an upper bound
of two abstract values.

Section 5 presents a first version of our abstract lattice, together with an
algorithm for the upper bound. This operation is reduced to a classical problem
of maximum flow in a network. However, we show that the result is sometimes
not the most precise we could get, mainly because of the separation between
variable equalities and multiset equations. So, this solution is not completely
satisfactory, but still deserves to be presented as an unexpected application of
max-flow algorithms in this context.

Another solution is presented in Section 6, where variables equalities are con-
sidered as (singleton-) multiset equalities, and merged with multiset equations.
Now, we have to deal with systems of multiset equations, which are all linear
equations. The new idea is to use the classical lattice proposed by Karr as early as
1976 [Kar76], to deal with affine equalities among numerical variables. Since this
lattice only uses the affine structure of the space, its operations can be straight-
forwardly applied to our problem, and provide a well-defined and precise upper
bound operator. This solution has been implemented, and some experimental
results are given in Section 7.

2 Definitions and Notations

For simplicity, we consider a unique set X of contents values. As said before, the
content of an array should be considered as a multiset of values of X . Since a
multiset may contain several instances of the same value, it can be formalized
as a function from X to the set of naturals N: if M is a multiset, M(x) is
1 knowing that i = j or i �= j is essential to know whether an assignment to A[i] may

or must affect the value of A[j].
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the number of instances of the value x in M. M is included in M′ (noted
M ⊆ M′ as usual) iff ∀x ∈ X,M(x) ≤ M′(x). We use the generalized notion,
sometimes called hybrid multiset [Syr01, SIYJ07], of multiset with positive or
negative multiplicities, i.e., functions from X to the set Z of integers. ⊕ and *
denote the sum (disjoint union) and difference of (hybrid) multisets:

M⊕M′ = λx.M(x) +M′(x) , M*M′ = λx.M(x) −M′(x)
A sum of k instances of M can be noted k ⊗M.

For simplicity, we restrict ourselves to programs containing integer variables
(noted i, j), variables with values in X (noted v, w), and one-dimensional arrays
with values in X (noted A,B).

Let A be a one-dimensional array, indexed from 1 to |A| (the size of A). Then
Â denotes the multiset of contents of A, i.e.,

Â = λx.

|A|∑

i=1

δx,A[i] , where δx,y = (if x = y then 1 else 0)

An atom is either a value in X , or a variable valued in X , or an array cell. If a
is an atom, a will also denote the singleton multiset λx.δx,a.

Our analysis relies on (approximate but conservative) results obtained by two
other standard analyzes:
– We use equalities and disequalities about variables and constants used as

array indices, to simplify the treatment of aliases: the knowledge that i = j
(resp., i �= j) involves that A[i] and A[j] are (resp., are not) aliased. So,
we assume the availability of a standard analysis (e.g., based on poten-
tials [Dil89, ACD93], octagons [Min01], or dDBMs [PH07]) giving this kind
of informations at each control point. We call it index analysis.

– We also use equalities among content variables and array cells. Some of these
relations result from the index analysis, others come from assignments and
conditional statements. This analysis is called content analysis.

So, our abstract values are triples made of
– a system of equations and disequations between integer variables and con-

stants used as array indices, provided by the index analysis;
– a system of equations between atoms, provided by the content analysis;
– a system of equations between multiset expressions, which is computed by

our specific multiset analysis.

3 An Example of Analysis

Let’s consider the program fragment of Fig. 1.a, which switches the values of
two array cells. An analysis could run as follows:
– At control point 1, the analysis starts with the multiset equation (Â = M)

— i.e., naming M the initial content of the array.
– At point 2, the content analysis provides the equation (v = A[i]), while the

previous multiset equation (Â = M) is preserved.
– At point 3, we have to compute the effect of the assignment A[i] := A[j]; two

cases may occur:
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1. either i = j, in which case A[i] and A[j] are aliased, the assignment does
nothing, and we get the postcondition (i = j)∧ (v = A[i] = A[j])∧ (Â =
M);

2. or i �= j, and the usual semantics of the assignment provides (i �= j) ∧
(A[i] = A[j]) ∧ (∃x0, (v = x0), (Â =M* x0 ⊕A[j])) (x0 is the previous
value of A[i], which is overwritten and disappears from the array content,
while the value of A[j] is duplicated). So, after simplification, we get
(i �= j) ∧ (A[i] = A[j]) ∧ (Â =M* v ⊕A[j])

. . . . . . . . . {(Â = M)}
1 v := A[i] ; . . . . . . . . . {(v = A[i]) ∧ (Â = M)}
2 A[i] := A[j] ;. . . . . . . . . {(A[i] = A[j]) ∧ (Â = M� v ⊕ A[j])}
3 A[j] := v ; . . . . . . . . . {(Â = M)}
4

(a) Program (b) Results

Fig. 1. Switch example

Now, as a postcondition of the assignment, we want to compute an upper
approximation of the disjunction(

(i = j) ∧ (v = A[i] = A[j]) ∧ (Â = M)
)

∨
(
(i �= j) ∧ (A[i] = A[j]) ∧ (Â =M* v ⊕A[j])

)

This (least) upper bound computation will be the main topic of the paper.
Obviously, since the first term of the disjunction contains the equation (v =
A[j]), it can be rewritten into (i = j)∧(v = A[i] = A[j])∧(Â = M*v⊕A[j]).
Now, both terms contain the same multiset equation and can be unified
into (A[i] = A[j]) ∧ (Â = M* v ⊕ A[j]), which is a correct (and precise)
postcondition.

– At point 4, the computation of the effect of the assignment A[j] := v is similar:
1. either i = j, and we get (i = j)∧ (A[i] = A[j])∧ (∃x0 , Â =M* v⊕x0*

x0 ⊕ v), i.e., (i = j) ∧ (A[i] = A[j]) ∧ (Â = M);
2. or i �= j, and we get (i �= j)∧(∃x0, (A[i] = x0)∧(Â = M*v⊕x0*x0⊕v),

i.e., (i �= j) ∧ (Â =M).
So, the two cases unify into (Â =M), as expected.

4 Principles of the Analysis

As said before, our abstract values are triples (ϕI , ϕX , ϕM) , where
– ϕI is a system of equations, and possibly disequations, between indices; it

belongs to an abstract lattice (LI ,!I ,�I ,�I ,�I ,⊥I).
– ϕX is a system of equations between atoms; it belongs to an abstract lattice

(LX ,!X ,�X ,�X ,�X ,⊥X).
– ϕM is a system of equations between multiset expressions.
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All array cells appearing in ϕX or (as singletons) in ϕM are of the form A[i],
meaning that, e.g., A[i+ 1] is rewritten as A[k] where k is a fresh variable and
the equation (k = i+ 1) is expressed in ϕI .

We assume that we analyze a procedure taking arrays A1, . . . , Ap as reference
parameters, and whose body is made of assignments, conditional statements and
loops.

At the entry point of the procedure, a multiset equation is generated for
each array, to record its initial content. So the abstract value at the entry point
is ϕI = �I , ϕX = �X , ϕM = (Â1 = A1, . . . , Âp = Ap). Of course, initial
knowledge about indices and contents could be taken into account in ϕI and
ϕX , instead of taking �I and �X .

We assume that operations are available to propagate abstract values in LI

and LX among statements, together with widening or acceleration operators to
avoid infinite iterations around loops. So, we concentrate on the propagation of
multiset equations. Apart from the upper bound — that will be addressed in
next sections —, the only non-trivial operation is the assignment to an array
cell: let A[i]:=e (ϕI , ϕX , ϕM) denote the effect of the assignment A[i] := e to
the abstract value (ϕI , ϕX , ϕM). Let J be the set of index variables such that
A[j] appears in ϕX or ϕM. To get the correct and most precise result, we have
to consider all the alias cases that should be taken into account, i.e., all the cases
where i is equal to some variables j ∈ J . An alias case is subsumed by a subset
K of J , interpreted as the index formula (∀j ∈ K, i = j) ∧ (∀j ∈ J \K, i �= j).
We note E[[x/y]] the substitution of x in place of all occurrences of y in E, and
E[[x/A[i,K]]] the substitution in E of x in place of A[i] and all occurrences of
A[j], for all j ∈ K. With these notations, the rule of array assignment is the
following:

A[i]:= e (ϕI , ϕX , ϕM) =
⊔

K⊆J

ΦK

where ΦK =
(1)

(
ϕI �I (

∧
j∈K j = i) �I (

∧
j∈J\K j �= i),

∃x0,
(2) ϕX [[x0/A[i,K]]] �X (A[i] = e[[x0/A[i,K]]] ∧

∧
j∈K

�=1..p

A�[j] = A�[i]),

(3) ϕM[[x0/A[i,K]]][[Â⊕ x0 *A[i]/Â]]
)

Each ΦK is a triple (ϕI,K , ϕX,K , ϕM,K) corresponding to an alias case K. In the
formula above, line (1) defines ϕI,K and expresses that K is an alias case (notice
that it is ⊥I if ϕI makes it unfeasible), lines (2) and (3) classically involve a
common quantified variable x0 representing the previous value of A[i]: line (2)
defines ϕX,K and expresses the changes in ϕX , taking into account the aliases,
and line (3) reflects in φM that x0 represents the common previous value of all
the array elements aliased with A[i] and that, in the multiset Â, the previous
value of A[i] has been replaced by its new value. Once again, the only non-trivial
operation is the upper bound � that we consider now.
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5 Upper Bound: A Solution Based on Flows

While the least upper bound operators for systems of index and atom equations
are provided by the corresponding lattices, we have to define it for multiset
equations, i.e., to unify two multiset equations, each of which being considered
together with a system of atom equations.

Coming back to the computation made at point 3 in the example of §3, we
had to unify the multiset equation Â*M = ∅, knowing that (v = A[i] = A[j]),
with the equation Â*M = A[j]* v, knowing that (A[i] = A[j]).

Formally, given two multiset expressions E1 and E2 (∅ and A[j] * v in our
example), and two equivalence relations ≡1 and ≡2 over atoms involved in E1
and E2 ((v ≡1 A[i] ≡1 A[j]) and (A[i] ≡2 A[j]) in our example), we want to
rewrite each Ei into a common multiset expressionE, such that Ei ≡i E, i = 1, 2.

Basically, the rewriting of an expression Ei into an expression E′
i can be done

by adding to Ei a term a* b such that a ≡i b. In our example, such a rewriting
is immediate, since E1 = ∅ ≡1 (A[j]* v) and (A[j]* v) = E2.

5.1 Rewriting Atoms

As said before, when an atom a appears only in E1, one it can be introduced in
E2 by adding a * b to E2, for some b such that a ≡2 b. This rewriting introduces
b in E2, so it may have to be introduced in E1 in turn, and so on. The process of
finding a common rewriting for atoms can be seen as a travel in a graph: consider
equivalence classes of ≡1 and ≡2 as vertices, and connect two vertices V, V ′ with
an edge labelled by x if x ∈ V ∩ V ′. The obtained graph is obviously bipartite:
each edge connects classes of ≡1 and ≡2. The graph drawn below corresponds to
an example where we have to unify E1 = a with E2 = e, knowing (b ≡1 c ≡1 d)
and (a ≡2 b, d ≡2 e). Now, finding a rewriting fromE1 = x intoE2 = y boils down
to finding a path from [x]1 (the vertex corresponding to the class of x according to
≡1) to [y]2 in the graph: each succession of two edges z−→[.]1

w−→ around a vertex of
class 1 in such a path, corresponds to a rewriting of E1 into E1⊕w*z; conversely,
each succession of edges z−→[.]2

w−→ corresponds to a rewriting ofE2 intoE2⊕z*w.

For our example (see the op-
posite figure) the solution is the
path [a]1

a−→[a, b]2
b−→[b, c, d]1

d−→[d, e]2:
traversing the vertex [a, b]2 corresponds
to the rewriting E2 = e ≡2 a * b ⊕ e,
then traversing the vertex [b, c, d]1 cor-
responds to E1 = a ≡1 a * b ⊕ d, and
finally reaching [d, e]2 allows to deduce
E2 ≡2 a* b⊕ d, the common rewriting.

[a]1 [a, b]2

[b, c, d]1 [c]2

[e]1 [d, e]2

a

c

b

d

e

5.2 General Case

In general, we want to find, if it exists, a common rewriting of multiset expres-
sions E1 and E2, which are sums and differences of atoms, possibly with positive
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coefficients (e.g., E1 = a*(2⊗b)⊕(3⊗c)). We could use the previous procedure
to find a common rewriting between each atom in E1 and an atom of E2. In-
stead, we can directly convert our problem into the classical problem of finding
a maximal flow in a graph with capacities: we split each expression Ei into a
difference Fi *Gi where Fi and Gi are sums of atoms with positive coefficients.
Now, we consider again the graph of equivalence classes, as before, where all
edges are assigned an infinite capacity, and we extend it with
– a source vertex, labelled with F1 ⊕ G2; for each term k ⊗ a in F1 (resp., in
G2), we create an edge of capacity k from the source vertex to the vertex
[a]1 (resp., [a]2);

– and a target vertex, labelled with F2 ⊕G1; for each term k⊗ a in F2 (resp.,
in G1), we create an edge of capacity k from the vertex [a]2 (resp., [a]1) to
the target vertex.

Let’s recall that a flow in such a graph with capacities consists of an orientation of
the graph (from the source to the target), together with a function φ associating
with each edge e = (V1, V2) of the graph a natural φ(e), such that (1) for each
edge e, φ(e) does not exceed the capacity κ(e) of e, and (2) for each vertex V
which is neither the source nor the target, the sum of the values of the flow over
all incoming edges to V is equal to the sum of the flow over all outgoing edges. We
compute a maximal flow φmax from the source to the target (using, e.g, Ford-
Fulkerson [FF56] or Edmonds-Karp [EK72] algorithms); if this maximal flow
saturates the capacity of edges from the source and to the target, it corresponds
to a solution to the initial problem. The common rewriting of E1 and E2 is

E =
⊕

V1 ∈≡1

e = V1
a−→V2

φmax(e)⊗ a *
⊕

V2 ∈≡2

e = V2
a−→V1

φmax(e)⊗ a

Example: Let E1 = a* (2⊗b), E2 = (2⊗c)* (3⊗d), and (a ≡1 c, b ≡1 d), (a ≡2
d, c ≡2 b). The corresponding graph is represented by Fig. 2, together with
a maximum flow (each edge e is associated with κ(e)/φmax(e)). The common
rewriting is then E = (2⊗ c)* a* (2⊗ d)

a⊕ 3⊗ d 2⊗ c⊕ 2⊗ b

[b, d]1
1/1

3/3
∞/1

∞/2

∞/2

source

[a, c]1

[a, d]2 [b, c]2

∞/0
2/2

2/2
target

a

d

c

b

Fig. 2. Max-flow example

Conversely if there is a solution E to the initial problem, it corresponds to a
flow : for each atom e in E add one flow unit to the vertex labeled by e, saturate
the edges from the source and to the target and the flow conservation will follow
from the equation E1 ≡1 E ≡2 E2. The reduction is hence sound and complete.
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5.3 The Canonicity Problem

Unfortunately, there can be several maximum flows in the graph, which provide
several, non-equivalent solutions for the unified multiset equation. Let’s consider
the following program fragment:

1 d:= A[i]; A[i]:= c;
2 if cond then a:= c; b :=d;
3 else a:= d; b:= c;
4 endif
5 c:= x;

Starting with Â *M = ∅ as before, at point 2 we get Â *M = c * d, then,
after the “then” branch, (a = c∧ b = d)∧ (Â*M = c* d), and after the “else”
branch, (a = d ∧ b = c) ∧ (Â *M = c * d). After line 4, we have to compute
the unification of the previous two values. The max-flow algorithm provides two
solutions:
1. (Â*M = c* d)
2. (Â*M = a⊕ b* (2⊗ d))

If we choose the solution (1), after line 5 we lose all information since the value
of c is lost; however, if we choose the solution (2) which does not involve c, the
equation (Â*M = a⊕ b* (2⊗ d)) is preserved after line 5.

So, the max-flow method provides a correct upper bound which is not always
the most precise. However, it suggests another approach: notice that the mul-
tiplicity of solutions comes from the presence of cycles in the graph. Since the
capacities of the edges in a cycle are infinite, we can add or remove flow along
a cycle and still get a solution. So, as soon as there is a cycle in the graph, we
get an infinite set of solutions. Conversely if there are several solutions, one can
be found from another by adding or removing flow along a cycle. An idea is to
keep track of the informations given by these cycles. In the previous example
before the final assignment, we have the property a ⊕ b = c ⊕ d (which means
(a = c ∧ b = d) ∨ (a = d ∧ b = c). It is true since the only difference between
the two branches is that c and d are swapped which does not alter the equation.
Moreover, this equation corresponds to the cycle found in the graph (which is
the same as Fig 2 with different capacities). Adding this equation to one solution
is exactly the same thing as increasing the flow along the cycle a, c, b, d. Thus
keeping this additional equation between singletons allows us to find any other
solution from a single one. The next section describe a more general solution to
compute upper bounds which improves the precision since it is able to retain
singleton equations and then find the least upper bound.

6 A Solution Based on Linear Algebra

Another solution is to consider the atom equations as (singleton) multiset equa-
tions, and to handle them together with other multiset equations: then, we get
the conjunction of two systems of multiset equations, which are all linear. The
next idea is to use classical operators in linear algebra, and in particular those
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proposed by Karr [Kar76] for propagating affine equations between numerical
variables. The key operator is the least upper bound, which computes the sys-
tem of equations of the least affine space containing two given affine spaces. Of
course, we don’t consider numerical affine spaces, but the only operations used
are those of a vectorial space. Notice also that our equations are always linear
(with a null constant term).

The lattice of linear equations: Let us briefly recall the principles of Karr’s
analysis. Karr’s domain is the lattice of linear varieties of an n-dimensional
vectorial space. Such a linear variety is defined by a vectorial equation MX = C,
where M is an (m× n)-matrix, and C is a constant vector. In our special case,
the coefficients in M are integers, and C is the null vector (all its components are
the empty multiset). There is a classical normal form to this kind of equations,
by putting M in row-echelon form, using Gauss procedure. The propagation
of system of equations through linear assignments is straightforward. The least
upper bound operator provides the least linear variety containing its arguments;
it is therefore well-defined, geometrically. The procedure proposed by M. Karr
is recalled in the appendix: taking 2 matrices M1 and M2 in canonical form, it
returns a matrix M , also in canonical form, such that the variety MX = 0 is
the least variety containing both M1X = 0 and M2X = 0.

Coming back to the example of §5.3, we have to compute the least upper
bound

(
a = c ∧ b = d ∧ Â*M = c* d

)
�
(
a = d ∧ b = c ∧ Â*M = c* d

)

Karr’s operator provides the result a⊕b = c⊕d ∧ Â*M = c*d. Eliminating c
to compute the result after line 5, we get the precise result Â*M = a⊕b*(2⊗d).

Taking into account that the theoretical complexity of the max-flow algorithm
(n2) is better than the complexity of Karr’s affine hull (n3), we could use the
max-flow solution to deal with the multiset equations, and apply the affine hull
to unify atom equations. However, it is not likely that, in practice, the considered
systems of equation become very large, so the complexity is not really an issue.

Let’s recall that Karr’s lattice is of finite depth: the size of strictly increasing
chains is bounded by the number of variables (the dimension of the space), so
there is no need for widening to ensure the termination.

Atoms are not numbers

The fact that, in contrast with [Kar76], we are not working in a numerical
vectorial space may raise some questions, concerning the existence of solutions,
and some implicit consequences of atom equations.

The emptiness problem: some systems of equations have solutions in the usual
numerical space, but not in our multiset space. For instance, the equation a⊕b =
c, where a, b, c are atoms, has no solution. It is the case of all atom equations
which are not balanced (i.e., where the sum of coefficients of both members are
not equal). However, this question is not relevant for our analysis, since all the
equations considered in the analysis are well-balanced.
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Implicit equations: on the other hand, some systems of equations have implicit
consequences in our multiset space, which would not occur in the numerical
space. For instance, the equation a ⊕ b = 2 ⊗ c, where a, b, c are atoms, im-
plies a = b = c. Detecting all such implicit equations is NP-hard (see, e.g.,
[DV99, DPR08]). However, we don’t have any example of program where this
kind of implicit equations would appear and be useful. Moreover, finding equal-
ities between atoms is not the goal of the multiset analysis.

So, while algorithms exist for discovering such implicit equations, they were
not implemented in our analyzer, because of their excessive cost and the debat-
able interest of such additional properties. However, notice that this does not
change the correctness of our analysis.

7 Experimental Results

This analysis has been implemented within the analyzer developed by
M. Péron [HP08], taking as input the same language restricted to simple loops
and one-dimensional arrays. However, many language restrictions could be easily
released for our analysis.

In this section, we show some examples of analyzes. Notice that, for all the
examples presented below, the analysis based on flows gives the same results as
Karr’s lattice. The reported execution times are those with Karr’s lattice.

7.1 Insertion Sort

We detail below the analysis of the “insertion sort” procedure. We indicate at
each line the three properties, respectively concerning indices, contents, and mul-
tisets. We assume that the lattice of index properties is the lattice of potentials,
with a reasonable widening. The analysis terminates after 3 iterations.

First iteration
for i:= 1 to n do . . . {(i = 1), (Â = M)}
x:=A[i]; j:=i-1; . . . {(i = 1, j = i− 1), (x = A[i]), (Â = M)}
while j>=1 and A[j]>k do . . . {(i = 1, j = i− 1), (x = A[i]), (Â = M)}

A[j+1]:= A[j];. . . {(i = 1, j = i− 1), (x = A[i]), (Â = M� x⊕ A[j])}
j:=j-1; . . . {(i = 1, j = i− 2), (x = A[i]), (Â = M� x⊕ A[j + 1])}

end
A[j+1] := x;

end

Second iteration
for i:= 1 to n do . . . {(i = 1), (Â = M)}
x:=A[i]; j:=i-1; . . . {(i = 1, j = i− 1), (x = A[i]), (Â = M)}
while j>=1 and A[j]>k do ..(i = 1, 1≤j < i), (x = A[i]), (Â = M�x⊕A[j + 1])

A[j+1]:= A[j]; . . . {(i = 1, 0 ≤ j < i), (x = A[i]), (Â = M� x⊕ A[j])}
j:=j-1; . . . {(i = 1, 0 ≤ j < i− 1), (x = A[i]), (Â = M� x⊕ A[j + 1])}

end . . . {(i = 1, 0 ≤ j < i), (x = A[i]), (Â = M� x⊕ A[j + 1])}
A[j+1] := x;. . . {(i = 1, 0 ≤ j < i), (x = A[i]), (Â = M)}

end
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Third iteration
for i:= 1 to n do . . . {(1 ≤ i ≤ n), (Â = M)}
x:=A[i]; j:=i-1; . . . {(1 ≤ i ≤ n, j = i− 1), (x = A[i]), (Â = M)}
while j>=1 and A[j]>k do..(1≤ i≤n, 1≤j < i), (x = A[i]), (Â = M�x⊕A[j + 1])

A[j+1]:= A[j]; . . . {(1 ≤ i ≤ n, 1 ≤ j < i), (x = A[i]), (Â = M� x⊕A[j])}
j:=j-1; . . . {(1 ≤ i ≤ n, 0 ≤ j < i− 1), (x = A[i]), (Â = M� x⊕ A[j + 1])}

end . . . {(1 ≤ i ≤ n, 0 ≤ j < i), (x = A[i]), (Â = M� x⊕ A[j + 1])}
A[j+1] := x;. . . {(1 ≤ i ≤ n, 0 ≤ j < i), (x = A[i]), (Â = M)}

end . . . {(Â = M)}

7.2 An Aliasing Surprise

As another simple example, consider two versions of a procedure, intended to
perform a circular permutation of the contents of three array cells:

. . . {Â = M}
x:=A[i]; . . . {x = A[i], Â = M}
A[i]:=A[j];
. . . {A[i] = A[j], Â = M�x⊕A[j]}
A[j]:=A[k];
. . . {A[j] = A[k], Â = M�x⊕A[k]}
A[k]:=x; . . . {A[k] = x, Â = M}

(a) rotation

. . . {Â = M}
x:=A[i];. . . {x = A[i], Â = M}
y:=A[j];. . . {x = A[i], y = A[j], Â = M}
z:=A[k];
. . . {x = A[i], y = A[j], z = A[k], Â = M}
A[i]:=y;. . . {y = A[j] = A[i], Â = M� x⊕ y}
A[j]:=z;. . . {A[j] = z, Â = M� x⊕ z}
A[k]:=x; . . . {A[k] = x}

(b) copy-store

Fig. 3. Permuting 3 values

– The first version (Fig. 3.a) performs a simple rotation, using a buffer x. The
analysis proves that the final content of the array is a permutation of the
initial one.

– In the second version (Fig. 3.b), the three values are first copied in buffers,
and then stored back at their respective places. On that program, the analysis
is not able to show anything interesting about the final content. Of course,
this could result from some imprecision; but if we look closer at the cause
of the failure, it appears that there is a case where the content of the array
is not preserved: if i = k �= j, the initial value of A[i] is copied twice in the
final array, and the initial value of A[j] is lost. So, our analysis is precise and
detects a bug in the program.

7.3 Combining the Analysis with Array Partitioning

Our analysis can be easily combined with the methods [GRS05, HP08] which
partition the arrays into symbolic slices, and associate a summary variable with
each such slice.

For instance, we used the method of [HP08] to partition arrays into relevant
slices, and used our abstract domain to analyze the properties of these slices.
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Table 1. Some experimental results

Program exp. res. results time nb.iter.
switch 2 cells by rotation Â = A ok <4ms 1
switch 2 cells by copy-store Â = A ok <4ms 1
switch 3 cells by rotation Â = A ok <4ms 1
switch 3 cells by copy-store Â �= A ok <4ms 1
Dutch national flag [Dij76] Â = A ok <4ms 2
Insertion sort Â = A ok <4ms 3
Selection sort Â = A ok <4ms 2
Bubble sort Â = A ok <4ms 3
With array partitioning
Array copy ̂A[0..n−1]= ̂B[0..n−1] ok < 4ms 2
Split on sign [KV09] ̂A[0..a−1]= ̂B[0..b−1]⊕ ̂C[0..c−1] ok 12ms 2

In [HP08], array accesses and loop indices are used to separate array cells that
should be considered separately (as singleton slices). Then an array is partitioned
into these singleton slices, and contiguous slices separating these singletons.

Only a small amount of work is needed to adapt the abstract domain to this
slicing technique. When an index is progressing, a slice may be growing and then
we have to perform a substitution in the equation system to reflect that the new
slice is the union of old slice with some singleton.

This combination of techniques can now be used to find some other interesting
properties. For instance in a program which copies an array A to an array B we
are now able to state at each step of the loop indexed by i that the multisets of
values of cells with index greater than 0 but less than i are equals in the array
A and in the array B. Then this intermediate property allows us to discover the
multiset equality of A and B and finally use it to prove more specific properties.

The opposite program is another interesting exam-
ple considered in [KV09]: it splits an array A into B
and C according to the signs of the elements. Using
our combined analysis we get respectively for each ar-
rayA, B and C the partitions {A[0..a−1], A[a], A[a+
1..n − 1]}, {B[0..b − 1], B[b], B[b + 1..n − 1]} and
{C[0..c − 1], C[c], B[c + 1..n − 1]}. Propagating the
multiset properties between these slices, we find the
expected loop invariant:

̂A[0..a− 1] = ̂B[0..b− 1]⊕ ̂C[0..c− 1]

a := 0, b := 0, c := 0 ;
while a < n do

if A[a] ≥ 0 then
B[b] := A[a] ;
b + + ;

else
C[c] := A[a] ;
c+ + ;

a+ + ;

which, once again, could not be expressed as a first-order formula.

7.4 Other Examples

Table 1 shows the analysis time for several small programs. All the results are
as expected.
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7.5 An Example with Linked Data Structures

Our lattice of multiset equations can be used for other data structures than
arrays. As an example of possible application, we have analyzed (by hand) the
Deutsch-Schorr-Waite data structure traversal algorithm [SW67]. In fact, we
consider the version of [Lin73], dedicated to data structures without cycles, and
which does not involve any auxiliary marking. A slightly different version of
this algorithm has been completely proven with TVLA [LRS06]. We recall that
this algorithm traverses a binary structure (a dag or a tree), without using a
stack, by redirecting pointers in the structure to store the return path. We note
T̂ the multiset of pointers contained in the structure, i.e., contained in a node
initially reachable from the root of the structure. The goal would be to show
that this multiset is restored at the end of the traversal (of course, this does not
show that the structure has been restored). The results are shown in Fig. 4. The
goal is not reached, because it needs the additional fact that, at the end of the
program, root = prev, a fact that would need another kind of analysis, and
the knowledge that “-1” does not appear in the initial structure. However, the
computed invariants are precise.

prev:=-1; cur:=root; . . . {prev = −1, cur = root, T̂ = M}
while cur<>-1 . . . {T̂ = M⊕ root⊕−1� cur � prev}

next:=cur->left; cur->left:=cur->right;

cur->right:=prev; . . . {T̂ = M⊕ root⊕−1� cur � next}
prev:=cur; cur:=next; . . . {cur = next, T̂ = M⊕ root⊕−1� prev � next}
if cur=NULL . . . {cur = next = NULL, T̂ = M⊕ root⊕−1� prev � next}
cur:=prev; prev=NULL;

. . . {prev = next = NULL, T̂ = M⊕ root⊕−1� cur � next}
end . . . {T̂ = M⊕ root⊕−1� cur � prev}

end . . . {T̂ = M⊕ root� prev}
Fig. 4. Results for the Deutsch-Schorr-Waite algorithm

8 Conclusion

To our knowledge, it is the first automatic analysis for handling permutation-
invariant properties of data-structures. Basically, our abstract values are equa-
tions between multiset expressions, together with equations, gathered by other
analyzes, between locations (indices, pointers) and structure contents. Two ways
for computing least upper bounds of multiset equations have been proposed: the
solution based on flows is theoretically more efficient, but may be less precise in
general; the other solution makes use of the standard lattice of linear equations,
and deals jointly with multiset and content equations.

The paper is specialized to the analysis of arrays, but our lattice could be used
for any kind of data structures, as shown by the Deutsch-Schorr-Waite example,
provided a suitable interpretation of statements on these data-structures is avail-
able. This would give a relevant abstraction for every collection data structure
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and thus could be used in a shape-value abstraction [Vaf09] in conjunction with
a shape analysis to derive properties of these structures or to use these prop-
erties in programs manipulating collections. It would be also useful to consider
more general programs (e.g., recursive programs) and statements (e.g., indirect
indexing), but this would not interfere with the definition of the lattice and its
operations. Another perspective is to consider multiset inclusions, in order to
be able to show that some data structure is included, up to some permutation,
inside another one.
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Appendix: Karr’s Algorithm for Linear Hull

Let’s recall the algorithm proposed in [Kar76] for computing the linear hull:
given two linear subspaces, defined by their matrices M and M ′ in reduced row-
echelon form (i.e., (1) each row has at least one non-zero entry, and for any row
i0, if j0 is the first column with a non zero entry of the row, then (2) for all
i > i0, j <= j0, Mij = 0 and (3) forall i �= i0,Mi,j0 = 0), the algorithm returns
the matrix (in reduced echelon form) of the least linear subspace containing the
two given subspaces. The algorithm progressively modifies M and M ′ so that,
at the end of step s, the first s columns of M and M ′ are equal. After n steps,
M and M ′ are equal, and it is the solution. The two matrices are maintained in
the following form:

M =
(
C
0
N

)
, M ′ =

(
C
0
N ′
)

where the common part C has s columns at step s.
At the beginning of step s, let r be the number of rows of C plus 1. There are

3 cases according to the values of Nrs and N ′
rs:

1. either Nrs = N ′
rs = 1, then, from the hypotheses on M and M ′, we have:

M =

⎛
⎜⎜⎜⎝

C
.
.
.

0

1
N

⎞
⎟⎟⎟⎠ , M ′ =

⎛
⎜⎜⎜⎝

C
.
.
.

0

1
N ′

⎞
⎟⎟⎟⎠

and we just increment r and s;
2. or Nrs = 1 and N ′

rs = 0 (or conversely), and the matrices are in the form:

M =

⎛
⎜⎜⎜⎝

C
.
.
.

0

1
N

⎞
⎟⎟⎟⎠ , M ′ =

(
C β

N ′
)

then, M is modified by obtaining the column β in the r − 1 positions of
column s (previously 0), by performing suitable linear combinations of there
r − 1 rows with row s. Row s of M is then suppressed.

3. or Nrs = N ′
rs = 0, and the matrices are in the form:

M =
(
C α

N

)
, M ′ =

(
C β

N ′
)

If columns α and β are the same, s is just incremented. Otherwise, let � be
the greatest row index such that α� �= β�. Then, in each matrix, let R� be the
row � and Ri be a row on index < �; replace each Ri by Ri− (αi−βi)/(α�−
β�)R�; finally, delete row � in both matrices: columns s are the same in both
matrices, and s can be incremented.



Regular Linear Temporal Logic with Past

César Sánchez1,2 and Martin Leucker3

1 Madrid Institute for Advanced Studies (IMDEA Software), Spain
2 Spanish Council for Scientific Research (CSIC), Spain

3 Technische Universität München, Germany

Abstract. This paper upgrades Regular Linear Temporal Logic (RLTL)
with past operators and complementation. RLTL is a temporal logic that
extends the expressive power of linear temporal logic (LTL) to all ω-
regular languages. The syntax of RLTL consists of an algebraic signature
from which expressions are built. In particular, RLTL does not need or
expose fix-point binders (like linear time μ-calculus), or automata to
build and instantiate operators (like ETL∗).

Past operators are easily introduced in RLTL via a single previous-step
operator for basic state formulas. The satisfiability and model checking
problems for RLTL are PSPACE-complete, which is optimal for exten-
sions of LTL. This result is shown using a novel linear size translation of
RLTL expressions into 2-way alternating parity automata on words. Un-
like previous automata-theoretic approaches to LTL, this construction is
compositional (bottom-up). As alternating parity automata can easily be
complemented, the treatment of negation is simple and does not require
an upfront transformation of formulas into any normal form.

1 Introduction

In his seminal paper [23], Pnueli proposed Linear temporal logic (LTL) [20] as
a specification language for reactive systems. LTL is a modal logic over a linear
frame, whose formulas express properties of infinite traces using two future modal-
ities: nexttime and until. Although extending LTL with past operators (e.g., [12]),
does not increase its expressive power [8], it has been widely noticed that it caters
for specifications that are shorter, easier and more intuitive [19]. For example,[17]
shows that there is a family of LTL formulas with past operators whose equiv-
alent future only formulas are exponentially larger. Likewise, recalling the clas-
sical example from [27], the specification that Every alarm is due to a fault can
easily be expressed by �(alarm → fault), where � means globally/always and
means once in the past. An equivalent formulation using only future operators
is ¬(¬fault U (alarm ∧ ¬fault)), which is, however, less intuitive. The problems
of satisfiability and model checking are PSPACE-complete [17] for LTL with and
without past operators, so the past does not seem to harm in terms of complexity.

With regards to expressivity, Wolper [32] showed that LTL cannot express all
ω-regular properties. In particular, it cannot express the property “p holds only
at even moments”. In spite of being a useful specification language, this lack
of expressivity seems to surface in practice [25]. To alleviate the expressivity
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problem, Wolper suggested extended temporal logic (ETL) in which new opera-
tors are defined using automata, and instantiated using language composition.
ETL was later extended [31,14] to different kinds of automata. The main draw-
back of these logics is that, in order to obtain the full expressivity, an infinite
number of operators is needed. Among other consequences for its practical us-
age, this implies that ETL is not algebraic. An alternative approach consists of
adapting the modal μ-calculus [6,13] to the linear setting (νTL) [1]. Here, the
full expressivity is obtained by the use of fix point operators. In νTL one needs
to specify recursive equations to describe temporal properties, since the only
modality is nexttime, which tends to make typical specifications cumbersome.

At the same time, some studies [3] point out that regular expressions are very
convenient in addition to LTL in formal specifications, partly because practi-
tioners are familiar with regular expressions, partly because specifications are
more natural. Even though every ground regular expression can be translated
into a νTL expression [15], the concatenation operator cannot be directly rep-
resented in νTL. No context of νTL can capture concatenation. Extending νTL
with concatenation leads to fix point logic with chop (FLC) [22] that allows ex-
pressing non-regular languages, but at the price of undecidable satisfiability and
equivalence problems.

Some dynamic logics also try to merge regular expressions (for the program
part) with LTL (for the action part), for example, Regular Process Logic [9].
However, the satisfiability problem is non-elementary because one can com-
bine arbitrarily negations and regular operators. Dynamic linear-temporal logic
DLTL [10] (see also [16]) keeps the satisfiability problem in PSPACE, but re-
stricts the use of regular expressions only as a generalization of the until operator.
The until operator pUα q in DLTL is equipped with a regular expression (α) and
establishes that the until part (q) must be fulfilled at some position in which α
matches, while the first argument p must hold at all positions in between. It is
unclear then how to extend DLTL with past operators. The approach of defining
past operators using past regular expressions, presented in Section 2 for RLTL
cannot be used for DLTL since the notion of “in-between” is not clear anymore.
Another extension of LTL to regular expressions is the logic RELTL from [4].
However, this logic does not include past operators or negation. Moreover, it
requires a translation into positive normal form for the LTL part that makes
this translation not compositional. Also, the interaction of regular expressions
and linear temporal logic in RELTL is restricted to prefixes, while in RLTL we
consider more sophisticated combinations.

The popularity of regular expressions led also to their inclusion in the indus-
try standard specification language PSL [7]. While decision procedures and their
complexities for full PSL are still an area of active research, [16] shows that the
fragment of PSL that contains LTL and semi-extended regular expressions, even
though it allows more succinct specifications, leads to EXPSPACE-complete satis-
fiability and model checking problems, which may limit its practical applicability.

In this paper, we upgrade Regular Linear Temporal Logic (RLTL) [18] with
past operators. RLTL is a temporal logic that extends the expressive power of
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LTL to all ω-regular languages. It has an algebraic signature and fuses LTL and
regular expressions. To enrich RLTL by past operators, it suffices, as we show
here, to simply add basic past expressions, which allow the formulation of past
regular expressions. Intuitively, regular expressions with past expressions can
define finite segments of infinite strings in an arbitrary forward and backward
manner. The main contribution of RLTL comes perhaps from the simplicity of
the novel power operators, which allow the definition of most other temporal
operators and, as we show here, the treatment of past and negation while avoid-
ing non-algebraic constructs like fix-points bindings or automata instantiations.
The power operators are the key to obtain compositionality without requiring
an upfront translation to positive normal forms.

To address satisfiability and model checking for RLTL, we follow the automata
theoretic approach, but need a more sophisticated translation than in [18] to cope
with the new operators. This novel linear size translation uses 2-way alternating
parity automata on words. Besides being useful for RLTL, this translation is
also interesting for plain LTL, as it is compositional (bottom-up) unlike previ-
ous automata-theoretic approaches to LTL. As alternating parity automata can
easily be complemented, the treatment of negation is simple and does not re-
quire an upfront transformation of formulas into positive or other normal form.
A notable exception is [26], which presents another compositional translation
from LTL, but this translation generates testers instead of automata.

Building on recent automata results [5], we show here that the satisfiabil-
ity and model checking problems for RLTL (with past) are PSPACE-complete,
which is optimal for extensions of LTL.

This paper is structured as follows. Section 2 introduces RLTL. Section 3
recalls the basic definitions of LTL with past, and presents the translation into
RLTL. Section 4 describes the translation from RLTL into automata. Finally,
Section 5 contains the conclusions. Due to space limitations some proofs are
missing, but they can be easily reconstructed.

2 Regular Linear Temporal Logic

We define regular linear temporal logic (RLTL) in two stages, similarly to PSL
or ForSpec. First, we present a variation of regular expressions enriched with
a simple past operator. Then we use these regular expressions to define regular
linear temporal logic as a language that describes sets of infinite words. The syn-
tax of each of these two formalisms consists of an algebraic signature containing
a finite collection of constructor symbols. The semantics is given by interpreting
these constructors. In particular, the language of RLTL contains no fix-point
operators.

2.1 Regular Expressions with Past

We first introduce a variation of regular expressions with a past operator to
describe finite segments of infinite words. The basic elements are basic expres-
sions, which are Boolean combinations of a finite set of elementary propositions,
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interpreted in a single state (or in a single action between two states). Each set
of propositions (or equivalently, each basic expression) can also be interpreted
as a symbol from a discrete alphabet Σ that includes true (for all propositions)
and false for the empty set or propositions.

Syntax. The language of regular expressions for finite words is given by the
following grammar:

α ::= α+ α
∣∣ α ; α

∣∣ α ∗ α
∣∣ p

∣∣ −p

where p ranges over basic expressions. The intended interpretation of the oper-
ators +, ; and ∗ are the standard union, concatenation and binary Kleene-star.
There is one expression of the form −p for each basic expression p. Informally,
p indicates that the next “action”, or input symbol, satisfies the basic expres-
sion p; similarly, −p establishes that the previous action or symbol satisfies p.
Expressions of the form −p are called basic past expressions. Regular expressions
are defined using an algebraic signature (symbols like p and −p are constants,
and +, ; and ∗ are binary symbols).

Semantics. Our version of regular expressions describe segments of infinite
words. An infinite word w is a map from ω into Σ (i.e., an element of Σω). A
position is a natural number. We use w[i] for the symbol at position i in word w.
If w[i] satisfies the basic expression p, we write w[i] 	 p, which is defined in the
standard manner. Given an infinite word w and two positions i and j, the tuple
(w, i, j) is called the segment of the word w between positions i and j. It is not
necessarily the case that i < j or even that i ≤ j. Note that a segment consists
of the whole word w with two tags, not just the sequence of symbols that occur
between two positions. A pointed word is a pair (w, i) formed by a word w and
a position i. The semantics of regular expressions is formally defined as a binary
relation 	re between segments and regular expressions. This semantics is defined
inductively as follows. Given a basic expression p, regular expressions x, y and
z, and a word w:

− (w, i, j) 	re p whenever w[i] satisfies p and j = i+ 1.
− (w, i, j) 	re x+ y whenever either (w, i, j) 	re x or (w, i, j) 	re y, or both.
− (w, i, j) 	re x ; y whenever for some k, (w, i, k) 	re x and (w, k, j) 	re y.
− (w, i, j) 	re x ∗ y whenever either (w, i, j) 	re y, or for some

sequence (i0 = i, i1, . . . im) and all k ∈ {0, ..,m− 1}
(w, ik, ik+1) 	re x and (w, im, j) 	re y.

− (w, i, j) 	re
−p whenever w[j] satisfies p and j = i− 1.

One interesting expression using past is:

notfirst def= −true ; true

which matches all segments of the form (w, i, i) that are not initial prefixes (i.e.,
i �= 0). The semantics style used here is more conventional in logic than in au-
tomata theory, where regular expressions define sets of finite words. If one omits
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the basic past expressions, then a given regular expression x can be associated
with a set of words L(x) ⊆ Σ+, by v ∈ L(x) precisely when for some w ∈ Σω,
(vw, 0, |v|) 	re x. Following this alternative interpretation, our operators corre-
spond to the classical ones and regular expressions define precisely regular sets
of non-empty words.

The following theorem shows that only a finite bounded amount of information
is needed to determine whether a segment satisfies a regular expression. All
modified words that preserve all symbols within these bounds will contain a
corresponding matching segment.

Theorem 1 (Relevant segment). Let x be a regular expression and (w, i, j)
a segment of an infinite word for which (w, i, j) 	re x. There exists bounds
A ≤ i, j ≤ B such that for every word prefix v ∈ Σ∗ and suffix u ∈ Σω, the
infinite word w′ = vw[A,B]u satisfies:

(w′, |v|+ (i−A), |v|+ (j −A)) 	re x

Here, w[A,B] is the finite word w[A]w[A + 1] · · ·w[B].

Expressions that do not include basic past expressions −p are called future-only
regular expressions and satisfy strict bounds: A = i ≤ j = B.

Past Expressions In order to justify that basic past expressions allow to express
conditions on the input symbols previously seen we introduce a new operator for
regular expressions, by lifting basic past expressions into a past operator (·)−1:

(p)−1 def= −p (x+ y)−1 def= x−1 + y−1

(−p)−1 def= p (x ; y)−1 def= y−1 ; x−1

(x ∗ y)−1 def= y−1 + y−1 ; (x−1 ∗ x−1)

This definition is inductive, so every past expression can be transformed into an
equivalent expression without (·)−1 (but perhaps with one or more −p).

We now study some properties of past expressions, justifying that (·)−1 is a
good definition for a past construct. First, (·)−1 is its own self-inverse:

Lemma 1. Every regular expression x is semantically equivalent to (x−1)−1.

Semantic equivalence means that both expressions define precisely the same set
of segments. Intuitively, matching an expression x with a sequence of events
should correspond to matching the past expression x−1 with the reversed se-
quence of events. Since input words are infinite only on one end, this intuition
is not justified simply by reversing the linear order of symbols in an infinite
word. The following theorem formalizes this intuition of reverse by providing an
evidence of a finite portion of input that can be chopped and reversed to match
the inverse expression.

Theorem 2 (Inverse and reverse). Let x be a regular expression and (w, i, j)
a segment of an infinite word for which (w, i, j) 	re x. There exists bounds
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A ≤ i, j ≤ B for which for all prefix v ∈ Σ∗ and suffix u ∈ Σω, the infinite word
w′ = vw[A,B]revu satisfies:

(w′, |v|+ (B − j), |v|+ (B − i)) 	re x
−1

Here, w[A,B]rev is the finite word w[B]w[B−1] · · ·w[A], the reverse of w[A,B].

Finally, the following theorem justifies that if an expression x matches some
input, then the concatenation of x with its inverse x−1 must match the segment
that goes back to the initial position.

Theorem 3 (Inverse and sequential). Let x be a regular expression and
(w, i, j) a segment for which (w, i, j) 	re x. Then (w, i, i) 	re x ; x−1

2.2 Regular Linear Temporal Logic over Infinite Words

Regular Linear Temporal Logic expressions denote languages over infinite words.
The key elements of RLTL are the two power operators that generalize many
constructs from different linear-time logics and calculi.

Syntax The syntax of RLTL expressions is defined by the following grammar:

ϕ ::= ∅
∣∣ ϕ ∨ ϕ

∣∣ ¬ϕ
∣∣ α ; ϕ

∣∣ ϕ|α〉〉ϕ
∣∣ ϕ |α〉ϕ

where α ranges over regular expressions. Informally, ∨ stands for union of lan-
guages (disjunction in a logical interpretation), and ¬ represents language
complement (or negation in a logical framework). The symbol ; stands for the con-
ventional concatenation of an expression over finite words followed by an expres-
sion over infinite words. The operator ∅ represents the empty language (or false
in a logical interpretation).

The operators ϕ|α〉〉ϕ and its weak version ϕ|α〉ϕ are the power operators. The
power expressions x|z〉〉y and x |z〉y (read x at z until y, and, respectively, x at z
weak-until y) are built from three elements: y (the attempt), x (the obligation)
and z (the delay). Informally, for x|z〉〉y to hold, either the attempt holds, or the
obligation is met and the whole expression evaluates successfully after the delay;
in particular, for a power expression to hold the obligation must be met after a
finite number of delays. On the contrary, x |z〉y does not require the obligation
to be met after a finite number of delays. These two simple operators allow the
construction of many conventional recursive definitions. For example, the strong
until operator of LTL x U y can be seen as an attempt for y to hold, and oth-
erwise an obligation for x to be met and a delay of a single step. Similarly, the
ω-regular expression xω can be interpreted as a weak power operator having no
possible escape and a trivially fulfilled obligation, with a delay indicated by x.
Conventional ω-regular expressions can describe sophisticated delays with trivial
obligations and escapes, while conventional LTL constructs allow complex obli-
gations and escapes, but trivial one-step delays. Power operators can be seen as
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a generalization of both types of constructs. The completeness of RLTL with re-
spect to ω-regular languages is easily derived from the expressibility of ω-regular
expressions. In particular, Wolper’s example is captured by p|true ; true〉false.

Note that the signature of RLTL is, like that of RE, purely algebraic: the
constructors ∨ and ; are binary, ¬ is unary, the power operators are ternary,
and ∅ is a constant. Even though the symbol ; is overloaded we consider the
signatures of RE and RLTL to be disjoint (the disambiguation is clear from the
context). The size of an RLTL formula is defined as the total number of its
symbols.

Semantics. The semantics of RLTL expressions is introduced as a binary re-
lation 	 between expressions and pointed words, defined inductively. Given two
RLTL expressions x and y, a regular expression z, and a word w:

− (w, i) 	 ∅ never holds.
− (w, i) 	 x ∨ y whenever either (w, i) 	 x or (w, i) 	 y, or both.
− (w, i) 	 ¬x whenever (w, i) �	 x, i.e., (w, i) 	 x does not hold.
− (w, i) 	 z ; y whenever for some position k, (w, i, k) 	re z and (w, k) 	 y.
− (w, i) 	 x|z〉〉y whenever (w, i) 	 y or for some sequence (i0 = i, i1, . . . im)

(w, ik, ik+1) 	re z and (w, ik) 	 x, and (w, im) 	 y

− (w, i) 	 x |z〉y whenever one of:
(i) (w, i) 	 y.
(ii) for some sequence (i0 = i, i1, . . . im)

(w, ik, ik+1) 	re z and (w, ik) 	 x, and (w, im) 	 y
(iii) for some infinite sequence (i0 = i, i1, . . .)

(w, ik, ik+1) 	re z and (w, ik) 	 x

The semantics of x|z〉〉y establishes that either the obligation y is satisfied at the
point i of the evaluation, or there is a sequence of delays—each determined by
z—after which y holds, and x holds after each individual delay. The semantics
of x |z〉y also allow the case where y never holds, but x always holds after any
number of evaluations of z. As with regular expressions, languages can also be
associated with RLTL expressions in the standard form: a word w ∈ Σω is in
the language of an expression x, denoted by w ∈ L(x), whenever (w, 0) 	 x. The
following lemma follows easily from the definitions:

Lemma 2. For every RLTL expressions x and y and RE expression z:
– x|z〉〉y is semantically equivalent to y ∨ (x ∧ z ; x|z〉〉y).
– x |z〉y is semantically equivalent to y ∨ (x ∧ z ; x |z〉y).

Again, semantic equivalence establishes that both expressions capture the same
set of pointed words. Although the semantics of the power operators is not de-
fined using fix point equations, it can be characterized by such equations, similar
to the until operator in LTL. A power expression x|z〉〉y is then characterized to
a least fix point, while x |z〉y is characterized by a greatest fix-point.

Remark 1. It should be noted that although RLTL includes complementation
it does not allow the use of complementation within regular expressions. It is
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well-known [29] that emptiness of extended regular expressions (regular expres-
sions with complementation) is not elementary decidable, so this separation is
crucial to meet the desired complexity bounds. Similarly, adding intersection to
regular expressions—the so-called semi-extended regular expresions—makes the
satisfiability problem of similar logics EXPSPACE-complete [16].

The expression ∅ is needed in RLTL for technical purposes, as a basic case of
induction; all other RLTL constructs need some preexisting RLTL expression.
The expression x ; ¬∅ that appends sequentially the negation of empty (which
corresponds to all pointed words) to a finite expression x serves as a pump of
the finite models (segments) denoted by x to all infinite words that extend it.
Pumping was a primitive operator in [18], for a simpler logic without negation.
To ease the translation from LTL into RLTL presented in the next section we
introduce some RLTL syntactic sugar:

� def= ¬∅ first def= ¬(notfirst ;�)

3 LTL with Past

In this section we show how to translate LTL (past and future) into RLTL.
Unlike in [18], the translation presented here does not require a previous trans-
formation of LTL expressions into their negation normal form. The translation
is purely linear: every LTL operator corresponds to an RLTL context with the
same number of “holes”.

We consider the following minimal definition of LTL, with an interpretation of
atomic propositions as actions. Given a finite set of propositions Prop (with p a
representative) called basic action expressions, the language of LTL expressions
given by the following grammar:

ψ ::=p
∣∣ ψ ∨ ψ

∣∣ ¬ψ
∣∣ ψ

∣∣ ψ U ψ
∣∣ ψ

∣∣ ψ B ψ

Here, ¬ and ∨ are the conventional Boolean expressions. The operators , and
U are the future operators. Finally,  and B are called past operators.

Informal semantics LTL expressions define sets of pointed words. A pointed
word (w, i) satisfies a basic action expression p if action p is taken from w[i].
Boolean operators are interpreted in the conventional way. An expression x
(read next x) indicates that in order for a pointed word (w, i) to satisfy x its
sub-expression x must hold when interpreted at the next position: (w, i + 1).
Similarly, x (read previous x) holds at (w, i) if x holds at (w, i − 1) or i is
the initial position (w, 0). The operator x U y (read x until y) holds at (w, i)
whenever y holds at some future position and x holds in all positions in between.
Similarly, x B y (read x back-to y) states that x holds in all previous positions
(including the present) starting at the last position y held (or from the initial
position 0 if y does not hold in any past position).
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Semantics. The semantics of LTL expressions is defined inductively. Let p be
a basic expression, and x and y be arbitrary LTL expressions.

− (w, i) 	LTL p whenever w[i] satisfies p.
− (w, i) 	LTL x ∨ y whenever (w, i) 	LTL x or (w, i) 	LTL y.
− (w, i) 	LTLx whenever (w, i+ 1) 	LTL x.
− (w, i) 	LTL x U y whenever for some j ≥ i, (w, j) 	LTL y, and

(w, k) 	LTL x for all i ≤ k < j.
− (w, i) 	LTLx whenever either i = 0 or (w, i− 1) 	LTL x.
− (w, i) 	LTL x B y whenever (w, j) 	LTL x for all j ≤ i, or

for some k ≤ i, (w, k) 	LTL y and
for all l within k < l ≤ i, (w, l) 	LTL x.

We now show how to translate LTL expressions into RLTL. First, we define
recursively a map between LTL expressions and RLTL expressions and then
prove that each LTL expression is equivalent to its image.

f(p) = p f(x) = true ; f(x)
f(x ∨ y) = f(x) ∨ f(y) f(x U y) = f(x)|true〉〉f(y)
f(¬x) = ¬f(x) f(x) = first ∨ −true ; f(x)

f(x B y) = f(x) |−true〉f(y)

The function f(·) is well-defined by construction. Since both LTL and RLTL
expressions define sets of pointed words equivalence ≡ is simply equality between
two sets of pointed words.

Theorem 4. Every LTL expression is equivalent to its RLTL translation.

A practical specification language based on LTL offers more operators than the
minimal set presented above, including other Boolean connectives and additional
future operators like �x (always x or henceforth x), ♦x (read eventually x), yRx
(y release x), etc. Additional past operators include 
x (a strong version ofx),
x (has always been x), x (once x), x S y (read x since y), etc. All these can
be defined in terms of the minimal set using the following LTL equivalences [20]:

♦x ≡ true U x xR y ≡¬(¬yU¬x)
�x ≡¬♦¬x xW y ≡ (x U y) ∨ �x
x ≡ x B false 
x ≡¬¬x
x ≡¬¬x x S y ≡ (x B y) ∧y

Proceeding with these equivalences, however, does not generate an LTL expres-
sion (and consequently a RLTL expression) of linear size. In particular W and
S duplicate one of their parameters. A formula with a stack of nested W or
S symbols will generate an exponentially larger formula. On the contrary, the
following direct translations into RLTL are linear:

f(xW y) = f(x) |true〉f(y) f(x S y) = f(x)|−true〉〉f(y)

The translation function f only involves a linear expansion in the size of the
original formula. Since checking satisfiability of linear temporal logic is PSPACE-
hard [28] this translation implies a lower bound on the complexity of RLTL.
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Proposition 1. The problems of satisfiability and equivalence for regular linear
temporal logic are PSPACE-hard.

4 From RLTL to Automata

We now show how to translate an RLTL expression into a 2-way Alternating
Parity Automaton of linear size that accepts precisely the same set of pointed
words. As we justify below this implies that the problems of emptiness and model
checking for RLTL are in PSPACE.

Preliminaries Let us first present the necessary definitions of non-deterministic
automata on finite words and alternating automata on infinite words.

A 2-way nondeterministic finite automaton (2NFA) is a tupleA :〈Σ,Q, q0, δ, F 〉
whereΣ is the alphabet,Q a finite set of states, q0 ∈ Q the initial state, δ : Q×Σ →
2Q×{−1,0,1} the transition function, and F ⊆ Q is the set of final states. Intu-
itively, the automaton works by reading an input tape. The transition function
indicates the legal moves from a given state and character in the tape. A transi-
tion is a successor state and the direction of the head of the tape. Our version of
2NFA operates on segments of infinite words. A run ofA on a wordw ∈ Σω, start-
ing at position i0 and finishing at position in is a sequence of states and positions
i0q0i1q1i1 . . . inqn, where q0 is the initial state of A, and for all k ∈ {1, . . . n} we
have that (qk, ik − ik−1) ∈ δ(qk−1, w[ik−1]). The run is called accepting if qn ∈ F .
A 2NFA accepts a segment (w, i, j) whenever there is an accepting run starting at
i and finishing at j. There is an immediate correspondence to regular expressions:

Lemma 3. Each regular expression can be translated into an equivalent 2NFA.

In the proof of Lemma 3 the translation from regular expressions into 2NFA
follows the standard bottom-up construction used for conventional regular ex-
pressions into NFA [11] for the operators ;, ∗ and +, and the basic expressions p.
The translation of basic past expression −p is the automaton: 〈Σ, {q0, q1, q2}, q0,
δ, {q2}〉 with

δ(q0, true) = {(q1,−1)}, δ(q1, p) = {(q2, 0)}, δ(q2, true) = {},

depicted graphically:
q0

true,−1
q1

p,0
q2

This translation clearly coincides with the semantics of −p. The number of states
of the 2NFA obtained is linear in the size of the regular expression.

We define now alternating automata on infinite-words. For a finite set X of
variables, let B+(X ) be the set of positive Boolean formulas over X , i.e., the
smallest set such that X ⊆ B+(X ), true, false ∈ B+(X ), and ϕ, ψ ∈ B+(X )
implies ϕ ∧ ψ ∈ B+(X ) and ϕ ∨ ψ ∈ B+(X ). We say that a set Y ⊆ X satisfies
(or is a model of) a formula ϕ ∈ B+(X ) iff ϕ evaluates to true when the variables
in Y are assigned to true and the members of X\Y are assigned to false. A
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model is called minimal if none of its proper subsets is a model. For example,
{q1, q3} as well as {q2, q3} are minimal models of the formula (q1 ∨ q2)∧ q3. The
dual of a formula θ ∈ B+(X ) is the formula θ ∈ B+(X ) obtained by exchanging
true and false, and ∧ and ∨.

A 2-way Alternating Parity Automaton on Words (2APW) is a tuple A :
〈Σ,Q, q0, δ, F 〉 where Σ, Q are as for 2NFA. The transition function δ yields
a positive Boolean combination of successor states, together with a direction:
δ : Q×Σ → B+(Q× {−1, 0, 1}). The acceptance condition F that we use here
is the parity acceptance condition:

F : Q → {0 . . . k}.

The set {0 . . . k} is called the set of colors. A 2APW operates on infinite words: a
run over an infinite word w ∈ Σω is a directed graph (V,E) such that V ⊆ Q×N

satisfying the following properties:
1. (q0, 0) is in V , and it is called the initial vertex. It may have no predecessor.
2. every non-initial vertex has a predecessor. For every (q, l) distinct from (q0, 0)

{(q′, l′) ∈ V | (q′, l′) →E (q, l)} �= ∅

3. the successors of every node form a minimal model for δ, i.e., for every vertex
(q, l), the set {(q′, l′ − l) | (q, l) →E (q′, l′)} is a minimal model of δ(q, w[l]).

The set of vertices that occurs infinitely often in an infinite path π is denoted
inf (π). A run (V,E) is accepting according to F if every maximal finite path
ends in a vertex (q, l) with δ(q, w[l]) = true and every infinite path π accepts
the parity condition:

max{i | i = F (q) for some q in inf (π)} is even.

The language L(A) of a 2APW A is determined by all strings for which an
accepting run of A exists. We measure the size of a 2APW in terms of its
number of states and its number of colors.

4.1 Complementing 2APW

Every 2APW A can be easily complemented into another 2APW A of the same
size. Let n be the number of states of A. The key observation is that A can be
transformed into an equivalent automaton with a color set {0 . . . k} satisfying
k ≤ n+ 1, by only changing the acceptance condition.

Let F be the acceptance condition for A, and let F ′ be another acceptance
condition such that,

Acc1. for every two nodes p and q, if F (p) ≤ F (q) then F ′(p) ≤ F ′(q).
Acc2. for every node p, F (p) is even if and only if F ′(p) is even.

Then, given a path π of a run of A, if q is a node occurring infinitely often
with maximum color according to F , then q is also maximum according to F ′.
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Moreover, F (q) is even if and only if F ′(q) is even. Therefore, every run of A is
accepting according to F if and only if it is also accepting according to F ′.

Consequently, the following gap reduction procedure can be applied. Assume
for some color i there is no node q with F (q) = i, but for some j < i and for
some k > i, there are such nodes F (qj) = j and F (qk) = k. Color i is called a
gap in F . The following F ′ is equivalent to F according to the conditions (Acc1)
and (Acc2) described above:

F ′(q) =

{
F (q) if F (q) < i

F (q)− 2 if F (q) > i

Similarly, if for no node q, F (q) = 0 or F (q) = 1, then an equivalent F ′ can be
defined as F ′(q) = F (q) − 2 for all q. By applying these transformations until
no gap exists we ensure that all assigned colors are consecutive, and starting
either at 0 or at 1. We use F ∗ to denote the accepting condition obtained after
repeatedly applying the gap reduction procedure. It follows that the maximum
color assigned by F ∗ can be at most n+ 1. This property ensures the following
lemma.

Lemma 4. Every 2APW can be complemented into another 2APW of the same
number of states and with highest color at most n+ 1.

Proof (Sketch). LetA be a 2APW. The following 2APW accepts the complement
language:

A : 〈Σ,Q, q0, δ, F
∗〉

where δ(q, a) is the dual of the transition δ(q, a) and F (q) = F (q)+1, with F
∗

be
the gap reduced version of F . The maximum color in F

∗
is guaranteed to be at

most n+1 (also at most 1 plus the number of colors in F ∗). It is well-known [21]
that the dualization of the transition function and acceptance condition satisfies
that L(A) = Σω \ L(A). ��

4.2 Translating from RLTL to 2APW

We are now ready to formulate the main theorem of this section:

Theorem 5. For every RLTL formula ϕ, there is a 2APW with size linear in
the size of ϕ that accepts precisely the same set of ω-words.

The proof proceeds according to the following translation from RLTL into 2APW.
The procedure works bottom-up the parse tree of the RLTL expression ϕ, build-
ing the resulting automaton using the subexpressions’ automata as components.
Our translation does not require an upfront transformation into negation normal
form. On the contrary, it is truly compositional in a bottom-up fashion. The au-
tomaton for an expression is built from the automata of its subexpressions with
all the structure preserved.

For RLTL expressions x, y and a regular expression z letAx :〈Σ,Qx, qx
o , δ

x, F x〉
and Ay : 〈Σ,Qy, qy

o , δ
y, F y〉 be two 2APW automata equivalent to x and y, and
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letAz : 〈Σ,Qz, qz
o , δ

z, F z〉 be a 2NFA for z. Without loss of generality, we assume
that their state spaces are disjoint, and that the coloring is minimal (F x = (F x)∗

and F y = (F y)∗) . We consider the different operators of RLTL:

– Empty: The automaton for ∅ is A∅ : 〈Σ, {q0}, q0, δ, F 〉 with δ(q0, a) =
false for every a, and F (q0) = 0 (any number works here). Clearly, the
language of A∅ is empty.

– Disjunction: The automaton for x ∨ y is:

Ax∨y : 〈Σ,Qx ∪Qy, q0, δ, F 〉

where q0 is a fresh new state. The transition function is defined as

δ(q, a) =

{
δx(q, a) if q ∈ Qx

δy(q, a) if q ∈ Qy
δ(q0, a) = δx(qx

0 , a) ∨ δy(qy
0 , a).

For F , we consider the union of the characteristic graph of the function:

F (q) =

⎧
⎪⎨
⎪⎩

F x(q) if q is in Qx

F y(q) if q is in Qy

min{F x(·), F y(·)} if q = q0

Thus, from the fresh initial state q0, Ax∨y chooses non-deterministically one
of the successor states of Ax’s or Ay’s initial state. Clearly, the accepted
language is the union of the languages of x and y.

– Complementation: The automaton for ¬x is:

A¬x : 〈Σ,Qx, qx
0 , δ, F

x∗〉

where δ and F x∗ is as defined in Lemma 4, which guarantees that the lan-
guage for A¬x is the complement of that of Ax.

– Concatenation: The automaton for z ; x is:

Az;x : 〈Σ,Qz ∪Qx, qz
0 , δ, F

x〉

where δ is defined, for q ∈ Qz as:

δ(q, a) =

{∨
{δz(q, a)} if δz(q, a) ∩ F z = ∅∨
{δz(q, a)} ∨ qx

0 if δz(q, a) ∩ F z �= ∅

and, for q ∈ Qx as δ(q, a) = δx(q, a). Recall that Az is a 2NFA automaton.
The accepting condition is F (q) = F x(q) for q in Qx, and F (q) = 1 for q in
Qz ensuring that looping forever in z is not a satisfying path. Whenever Az

can non-deterministically choose a successor that is a final state, it can also
move to the initial state of Ax. Thus, the accepted language is indeed the
concatenation.
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– Power: The automaton for x|z〉〉y is:

Ax|z〉〉y : 〈Σ,Qz ∪Qx ∪Qy ∪ {q0}, q0, δ, F 〉

where the initial state q0 is a fresh state. The transition function δ is defined
as follows. The a successor of q0 is:

δ(q0, a) = δy(qy
0 , a) ∨ (δx(qx

0 , a) ∧
∨
{δz(qz

0 , a)})

The successor of Qx and Qy are defined as in Ax and Ay, i.e., δx(q, a) for
q ∈ Qx, δy(q, a) for q ∈ Qy. For q ∈ Qz

δ(q, a) =

{∨
{δz(q, a)} if δz(q, a) ∩ F z = ∅∨
{δz(q, a)} ∨ q0 if δz(q, a) ∩ F z �= ∅

The construction follows precisely the equivalence x|z〉〉y ≡ y ∨ (x ∧ z;x|z〉〉y)
established in Lemma 2 and the construction for disjunction, conjunction,
and concatenation. Finally, the looping in z is prevented by assigning F (q) =
1 whenever q is in Qz, and otherwise F (q) = F x(q) or F (q) = F y(q) when-
ever q is in Qx (resp. Qy). Finally, F (q0) = 1 to ensure that an infinite path
that traverses only states from Qz and q0 is not accepting.

– Weak power: The automaton for x |z〉y is:

Ax|z〉y : 〈Σ,Qz ∪Qx ∪Qy ∪ {q0}, q0, δ, F 〉

where q0 and δ are like for Power. The states in Qy and Qx are mapped to
the same colors, as before. Now, F (q0) = 2, and F (q) = 1 for all q in Qz.
Then, a path that accepts z and visits q0 infinitely often is accepting.

Complexity. From Lemma 3 every regular expression can be translated into
a 2NFA with only a linear blow-up in size. Each of the steps in the procedure
for translating RLTL expressions into a 2APW add at most one extra state.
Therefore, the number of states in the produced automaton is at most the num-
ber of symbols in the original expression. For the colors, the only construct that
increases the number of colors is complementation. The rest of the constructs
use constant colors (1 and 2), or the union of sets of colors. Therefore, the high-
est color in a generated automaton corresponds to the largest number of nested
negations ¬ in the starting expression.

Second, the structure of the sub-automata is preserved in all stages. We do
not use automata constructions like product or subset constructions; instead
only new states and transitions are added. For the accepting condition, all op-
erations preserve the accepting condition of the automata corresponding to the
sub-expression, except for complementation. Observe also how the automaton
for ¬¬x is exactly the same automaton as for x.

Given a 2APW with n states and k colors one can generate on-the-fly successor
states and final states of an equivalent 1-way nondeterministic Büchi automaton
on words (NBW) with 2O((nk)2) states [5]. Since emptiness of NBW can be
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checked in NLOGSPACE via reachability [30], it follows that emptiness of 2APW
is in PSPACE. Hence, the satisfiability, equivalence and model checking problems
for RLTL are in PSPACE. Together with Proposition 1:

Corollary 1. Checking satisfiability of an RLTL formula is PSPACE-complete.

Using clever manipulation of the automata during the bottom-up construction
one can show that only 3 colors are needed, leading to a better translation into
NBW than the one presented in this paper, using only 2O(n2) states. The detailed
explanation of this advanced translation is out of the scope of this paper.

5 Conclusion and Future Work

Amir Pnueli postulated in [24]: “In order to perform compositional specification
and verification, it is convenient to use the past operators but necessary to have
the full power of ETL”. In this paper, we have introduced regular linear tempo-
ral logic (RLTL) with past operators that exactly fulfills Pnueli’s requirements,
while at the same time keeping satisfiability and model checking in the same
complexity class as for LTL (PSPACE). RLTL (with past) has a finite set of
temporal operators giving it a temporal logic flavor and allows the integration of
regular expressions. Moreover, we have introduced a novel translation of RLTL
formulas into corresponding automata, which may be of its own interest, as it is
truly compositional (bottom-up).

It should be stressed that a practically relevant specification language needs
a variety of different operators as well as macros to support engineers in the
complex job of specifying requirements. In fact, together with industrial part-
ners, the second author was involved in the development of the language SALT
[2] which acts as a high-level specification language offering a variety of differ-
ent constructs while at the same time allowing a translation to LTL. However,
the lack of regular expressions and past operators makes such a translation dif-
ficult, error prone, and leads to automata that do not reflect the structure of
the original formula and might be larger than necessary. It is therefore essential
to have a core logic that is expressive and allows a simple, verifiable transla-
tion to automata and allows a simple translation from high-level languages like
SALT. We consider RLTL to exactly meet this goal. As future work, it remains
to build corresponding satisfiability and model checking tools to push RLTL
into industrial applications. Also, some of the operators in PSL can already be
mapped into RLTL. For example, “whenever α is matched p must be true” can
be expressed as ¬(α ;¬p). The blow-up in complexity in PSL (EXPSPACE) with
respect to RLTL (PSPACE) can then fully blamed to the availability of semi-
extended regular expressions. Moreover, the sequential connective in PSL that
connects a temporal operator with a regular expression requiring the overlap
of the last symbol can be easily expressed in RLTL as (z ; true−1 ; x), which
coincides with the PSL semantics, for future regular expressions. Future study
include other PSL operators like bounded iteration and abort.
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Another interesting line of future research is to study symbolic model-checking
algorithms for RLTL.
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ful comments and suggestions.
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Abstract. A technique for elegantly expressing In-lined Reference Mon-
itor (IRM) certification as model-checking is presented and implemented.
In-lined Reference Monitors (IRM’s) enforce software security policies by
in-lining dynamic security guards into untrusted binary code. Certifying
IRM systems provide strong formal guarantees for such systems by ver-
ifying that the instrumented code produced by the IRM system satisfies
the original policy. Expressing this certification step as model-checking
allows well-established model-checking technologies to be applied to this
often difficult certification task. The technique is demonstrated through
the enforcement and certification of a URL anti-redirection policy for
ActionScript web applets.

1 Introduction

In-Lined Reference Monitors (IRM’s) [17] enforce safety policies by injecting
runtime security guards directly into untrusted binaries. The guards test whether
an impending operation constitutes a policy violation. If so, corrective action is
taken to prevent the violation, such as premature termination. The result is
self-monitoring code that can be safely executed without external monitoring.

IRM’s dynamically observe security-relevant events exhibited by the untrusted
code they monitor and maintain persistent internal state between these observa-
tions, enabling them to accept or reject based on the history of events observed.
This allows them to enforce powerful security policies, such as safety policies,
that are not precisely enforceable by any purely static analysis [14]. Addition-
ally, IRM’s afford code consumers the flexibility of specifying or modifying the
security policy after receiving the code, whereas purely static analyses typically
require the security policy to be known by the code producer.

Certifying IRM systems [1,13] verify that IRM’s generated by a binary rewriter
are policy-adherent. Since the binary rewriters that in-line security guards into
untrusted code can be large and complex, a separate verifier is useful for shifting
this complexity out of the trusted computing base. Since the verifier does not
perform any code generation, it is typically smaller and less subject to change
than a rewriter, and therefore constitutes a more acceptable trusted compo-
nent. Past work has implemented IRM certifiers using type-checking [13] and
contracts [1].
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Model-checking is an extremely powerful software verification paradigm that
is useful for verifying properties that are more complex than those typically
expressible by type-systems and more semantically flexible and abstract than
those typically encoded by contracts. Yet to our knowledge, model-checking has
not yet been applied to verify IRM’s. In this paper we describe and implement
a technique for doing so. The work’s main contributions are as follows:

– We present the design and implementation of a prototype IRM model-
checking framework for ActionScript bytecode.

– Our design centers around a novel approach for constructing a state abstrac-
tion lattice from a security automaton [2], for precise yet tractable abstract
interpretation of IRM code.

– Rigorous proofs of soundness and convergence are formulated for our system
using Cousot’s abstract interpretation framework [6].

– The feasibility of our technique is demonstrated by enforcing a URL anti-
redirection policy for ActionScript bytecode programs.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 gives an overview of our IRM framework, including an operational
semantics and the abstract interpretation algorithm. Section 4 provides a formal
soundness proof for our algorithm and a proof of fixed point convergence for the
abstract machine. Section 5 discusses the details of our implementation of the
system for ActionScript bytecode. Finally, Sect. 6 suggests future work.

2 Related Work

In-lined Reference Monitors were first formalized by Erlingsson and Schneider in
the development of the PoET/PSLang/SASI systems [10, 17], which implement
IRM’s for Java bytecode and Gnu assembly code. Subsequently, a variety of
IRM implementations have been developed. The Java-MOP system [5] allows
policy-writers to choose from a sizable collection of formal policy specification
languages, including LTL. Mobile [13] targets Microsoft .NET bytecode by trans-
forming untrusted CIL binaries into well-typed Mobile code (a subset of CIL).
ConSpec [1] restricts IRM-injected code to effect-free operations, which allows a
static analysis to verify that a rewritten program does not violate the intended
policy. Finally, SPoX [12] rewrites Java bytecode programs to satisfy declarative,
Aspect-Oriented security policies.

To our knowledge, ConSpec [1] and Mobile [13] are the only IRM systems to
yet implement automatic certification. The ConSpec verifier performs a static
analysis to verify that pre-specified guard code appears at each security-relevant
code point; the guard code itself is trusted. Mobile implements a more gen-
eral certification algorithm by type-checking the resulting Mobile code. While
type-checking has the advantage of being light-weight, it comes at the expense
of limited computational power. For instance, Mobile cannot enforce certain
dataflow-sensitive security policies since its type-checking algorithm is strictly
control-flow based. While the security policies described by these systems are
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declarative and therefore amenable to a more general verifier, both use a verifier
tailored to a specific rewriting strategy.

Related research on general model-checking is vast, but to our knowledge no
past work has applied model-checking to the IRM verification problem. A major-
ity of model-checking research has focused on detecting deadlock and assertion
violation properties of source code. For example, Java PathFinder (JPF) [15]
and Moonwalker [16] verify properties of Java and .NET source programs, re-
spectively. Model-checking of binary code is useful in situations where the code
consumer may not have access to source code. For example, CodeSurfer/x86
and WPDS++ have been used to extract and check models for x86 binary pro-
grams [3]. In prior work [9], we have presented a general model-checking system
for ActionScript bytecode implemented using co-logic programming [19]. This
paper extends that work by introducing new formalisms specific to the verifica-
tion of safety policies enforced by IRM’s.

ActionScript is a binary virtual machine language by Adobe Systems similar
to Java bytecode. It is important as a general web scripting language and is
widely used in portable web ads, online games, streaming media, and interac-
tive webpage animations. The ActionScript VM includes standard object-level
encapsulation as well as a sandboxing model. While useful, these protections are
limited to enforcing a restricted class of low-level, coarse-grained security poli-
cies. Several past malware attacks have used ActionScript as a vehicle within
the past few years, including several virus families [11], as well as an emerg-
ing class of malicious URL-redirection attacks. URL-redirection attacks allow
an embedded webpage widget (possibly served by a third party) to redirect the
user’s browser to a different website. These attacks are particularly problematic
in the context of web advertising, since in these scenarios the security policy is
typically a fusion of constraints prescribed by multiple independent parties, such
as ad distributors and web hosts, who lack access to the applet source code. We
apply our certified IRM framework to protect against such attacks in Sect. 5.

3 System Overview

3.1 IRM Framework

Figure 1 depicts the core of our IRM framework, consisting of a collection of
rewriters that automatically transform untrusted ActionScript bytecode into
self-monitoring ActionScript bytecode, along with a model-checking verifier that
certifies the resulting IRM against the original security policy.1 The untrusted
code is obtained from ShockWave Flash (SWF) binary archives, which package
ActionScript code with related data such as images and sound. Once the raw
bytecode is extracted, a Definite Clause Grammar (DCG) [18] parser converts it
to an annotated abstract syntax tree (AST) for easy analysis and manipulation.
We implemented this parser in Prolog so that the same code functions as a code
generator due to the reversible nature of Prolog predicates [9]. Modified AST’s

1 The IRM framework includes a rewriter per security policy class.
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Fig. 1. Certifying ActionScript IRM architecture

produced by the rewriter are thereby transformed back into bytecode, and the
ABC Injector reconstructs a modified SWF file by packaging the new code with
the original data.

In practice it is usually infeasible to develop only one binary rewriter that can
efficiently enforce all desired policies for all untrusted applications. Our IRM
framework therefore actually consists of a collection of rewriters that have been
tailored to different policy classes and rewriting strategies, and that are subject
to change as new policies and runtime efficiency constraints arise. All rewriters
remain untrusted since their output is certified by a single, trusted verifier. The
verifier is more general than the rewriters, and therefore less subject to change.
This results in a significantly smaller trusted computing base than if all rewriters
were trusted.

The rewriter implementation is discussed in Sect. 5; the remainder of this
section discusses the verifier.

3.2 Verifier Overview

The verifier is an abstract machine that non-deterministically explores all control-
flow paths of untrusted code, inferring an abstract state for each code point. This
process continues, bottom-up, until it converges to a (least) fixed point. The
model-checker then verifies that each inferred abstract state is policy-satisfying.

A standard challenge in implementing such an abstract interpreter is to choose
an expressive yet tractable language of state abstractions for the abstract ma-
chine to consider. A highly expressive state abstraction language allows very
precise reasoning about untrusted code, but might cause the iteration process
to converge slowly or not at all, making verification infeasible in practice. In
contrast, a less expressive language affords faster convergence, but might result
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in conservative rejection of many policy-adherent programs due to information
lost by the coarseness of the abstraction.

In what follows, we describe a state abstraction that is suitably precise to
facilitate verification of typical IRM’s, yet suitably sparse to facilitate effective
convergence. Section 4 proves these soundness and convergence properties for-
mally. To motivate our choice of abstractions, we begin with a discussion of an
important implementation strategy for IRM’s—reified security state.

In order to enforce history-based security policies, IRM’s typically maintain
a reified abstraction of the current security state within the modified untrusted
code. For example, to enforce a policy that prohibits event e2 after event e1
has already occurred, the IRM framework might inject a new boolean variable
that is initialized to false and updated to true immediately after every program
operation that exhibits e1. The framework then injects before every e2 operation
new code that dynamically tests this injected variable to decide whether the
impending operation should be permitted.

When security policies are expressed as security automata [2], this reification
strategy can be generalized as an integer variable that tracks the current state of
the automaton. Security automata encode security policies as Büchi automata
that accept the language of policy-satisfying event sequences. Formally, a deter-
ministic security automaton A = (Q,Σ, q0, δ) can be expressed as a set of states
Q, an alphabet of security-relevant events Σ, a start state q0 ∈ Q, and a transi-
tion relation δ : Q ×Σ → Q. For the purpose of this paper, we assume that Q
is finite.2 The automaton accepts all finite or infinite sequences for which δ has
transitions. Security automata therefore accept policies that are prefix-closed.
That is, to prove that infinite executions of an untrusted program satisfy such a
policy, it suffices to prove that every finite execution prefix satisfies the policy.
We therefore define the set of finite prefixes P of the security policy denoted by
a deterministic security automaton as follows.

Definition 1 (Security Policy). Let A = (Q,Σ, q0, δ) be a deterministic se-
curity automaton. The security policy PA for automaton A is defined by PA =
ResA(Q), where notation ResA(q) denotes the residual [8] of state q in automa-
ton A—that is, the set of finite sequences that cause the automaton to arrive in
state q—and we lift ResA to sets of states via ResA(Q) = ∪q∈QResA(q). When
automaton A is unambiguous, we will omit subscript A, writing P = Res(Q).

Our verifier accepts as input security policies expressed as security automata
and IRM’s that implement reified security state as integer automaton states.
To verify that the untrusted code accurately maintains these state variables to
track the runtime security state, our abstract states include an abstract trace
and abstract program variable values defined in terms of this automaton.

Definition 2 (Abstract Traces). The language SS of abstract traces is SS =
{(Res(Q0), τ) | Q0 ⊆ Q, τ ∈ Σ∗, |τ | ≤ k} ∪ {�SS} where �SS = Σ∗. Abstract
traces are ordered by subset relation ⊆, forming the lattice (SS ,⊆).
2 Any actual implementation of an IRM must have a finite Q since otherwise the IRM

would require infinite memory to represent the current security state.
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Intuitively, Definition 2 captures the idea that an IRM verifier must track ab-
stract security states as two components: a union of residuals Res(Q0) and a
finite sequence τ of literal events. Set Res(Q0) encodes the set of possible se-
curity states that the untrusted program might have been in when the reified
state variable was last updated by the IRM to reflect the current security state.
The actual current security state of the program can potentially be out of sync
with the reified state value at any given program point because IRM’s typically
cannot update the state value in the same operation that exhibits a security-
relevant event. Thus, trace τ models the sequence of events that have been
exhibited since the last update of the state value. In general, an IRM may delay
updates to its reified state variables for performance reasons until after numerous
security-relevant events have occurred. Dynamic tests of reified state variables
therefore reveal information about an earlier security state that existed before
τ occurred, rather than the current security state. This distinction is critical for
accurately reasoning about real IRM code.

We limit the length of τ in our definition to a fixed constant k to keep our
abstract interpretation tractable. This means that when an IRM performs more
than k security-relevant operations between state variable updates, our verifier
will conservatively approximate traces at some program points, and might there-
fore conservatively reject some policy-adherent programs. The choice of constant
k dictates a trade-off between IRM performance and verification efficiency. A
low k forces IRM’s to update security state variables more frequently in order
to pass verification, potentially increasing runtime overhead. A high k relaxes
this burden but yields a larger language of abstract states, potentially increasing
verification overhead. For our implementation, k = 1 suffices.

Reified state values themselves are abstracted as integers or �VS (denoting
an unknown value). For simplicity, our formal presentation treats all program
values as integers and abstracts them in the same way.

Definition 3 (Abstract Values). Define VS = Z ∪ {�VS} to be the set of
abstract program values, and define value order relation ≤VS by (n ≤VS n) and
(n ≤VS �VS ) ∀n ∈ VS. Observe that (VS ,≤VS ) forms a height-2 lattice.

3.3 Concrete Machine

The abstract states described above abstract the behavior of a concrete machine
that models the actual behavior of ActionScript bytecode programs as inter-
preted by the ActionScript virtual machine. We define the concrete machine to
be a tuple (C, χ0, 	→), where C is the set of concrete configurations, χ0 is the initial
configuration, and 	→ is the transition relation in the concrete domain. Figure
2 defines a configuration χ = 〈L : i, σ, ν,m, τ〉 as a labeled instruction L : i, an
operand stack σ, a local variable store ν, a reified security state value m, and
a trace τ of security-relevant events that have been exhibited so far during the
current run. A program P = (L, p, s) consists of a program entrypoint label L,
a mapping p from code labels to program instructions, and a label successor
function s that defines the destinations of non-branching instructions.
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χ ::= 〈L : i, σ, ν, m, τ 〉 (configurations)

L (code labels)

i ::= ifle L | getlocal n | setlocal n | jmp L |
event e | setstate n | ifstate n L

(instructions)

σ ::= · | v :: σ (concrete stacks)

v ∈ Z (concrete values)

ν : Z → v (concrete stores)

m ∈ Z (concrete reified state)

e ∈ Σ (events)

τ ∈ Σ∗ (concrete traces)

χ0 = 〈L0 : p(L0), ·, ν0, 0, ε〉 (initial configurations)

ν0 = Z × {0} (initial stores)

P ::= (L, p, s) (programs)

p : L → i (instruction labels)

s : L → L (label successors)

Fig. 2. Concrete machine configurations and programs

To simplify the discussion, we here consider only a core language of Action-
Script bytecode instructions. Instructions ifle L and jmp n implement condi-
tional and unconditional jumps, respectively, and instructions getlocal n and
setlocal n read and set local variable values, respectively. Instruction event e
models a security-relevant operation that exhibits event e.

The setstate n and ifstate n L instructions set the reified security state and
perform a conditional jump based upon its current value, respectively. While
the real ActionScript instruction set does not include these last three opera-
tions, in practice they are implemented as fixed instruction sequences that per-
form security-relevant operations (e.g., system calls), store an integer constant
in a safe place (e.g., a reserved private field member), and conditionally branch
based on that stored value, respectively. The bytecode language’s existing object
encapsulation and type-safety features are leveraged to prevent untrusted code
from corrupting reified security state.

Figure 3 provides a complete small-step operational semantics for the con-
crete machine. Observe that in Rule (CEvent), policy-violating events cause the
concrete machine to enter a stuck state. Thus, security violations are modeled
in the concrete domain as stuck states. The concrete semantics have no explicit
operation for normal program termination; we model termination as an infinite
stutter state. The soundness proof in Sect. 4 shows that any program that is ac-
cepted by the abstract machine will never enter a stuck state during any concrete
run; thus, verification is sufficient to prevent policy violations.
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n1 ≤ n2

〈L1 : ifle L2, n1::n2::σ, ν,m, τ 〉 �→ 〈L2 : p(L2), σ, ν, m, τ 〉 (CIflePos)

n1 > n2

〈L1 : ifle L2, n1::n2::σ, ν, m, τ 〉 �→ 〈s(L1) : p(s(L1)), σ, ν, m, τ 〉(CIfleNeg)

〈L : getlocal n, σ, ν,m, τ 〉 �→ 〈s(L) : p(s(L)), ν(n)::σ, ν,m, τ 〉(CGetlocal)

〈L : setlocal n, n1::σ, ν, m, τ 〉 �→ 〈s(L) : p(s(L)), σ, ν[n := n1], m, τ 〉 (CSetlocal)

〈L1 : jmp L2, σ, ν,m, τ 〉 �→ 〈L2 : p(L2), σ, ν, m, τ 〉(CJmp)

τe ∈ P
〈L : event e, σ, ν,m, τ 〉 �→ 〈s(L) : p(s(L)), σ, ν, m, τe〉(CEvent)

〈L : setstate n, σ, ν,m, τ 〉 �→ 〈s(L) : p(s(L)), σ, ν, n, τ 〉 (CSetstate)

〈L1 : ifstate n L2, σ, ν, n, τ 〉 �→ 〈L2 : p(L2), σ, ν, n, τ 〉(CIfstatePos)

m �= n

〈L1 : ifstate n L2, σ, ν, m, τ 〉 �→ 〈s(L1) : p(s(L1)), σ, ν,m, τ 〉(CIfstateNeg)

Fig. 3. Small-step operational semantics for the concrete machine

3.4 Abstract Machine

We define our abstract machine as a tuple (A, χ0,�), where A is the set of
configurations of the abstract machine, χ0 is the same initial configuration as
the concrete machine, and � is the transition relation in the abstract domain.
Abstract configurations are formally defined in Fig. 4. Figure 5 lifts the ≤VS

relation to operand stacks and stores to form a lattice (A,≤χ̂) of abstract states.
That is, stacks (stores) are related if their sizes (domains) are identical and their
corresponding members are related.

The small-step operational semantics of the abstract machine are given in
Fig. 6. When the abstract machine can infer concrete values for operands, as in
Rule (AIflePos), it performs a transition resembling the corresponding concrete
transition. However, when operand values are unknown, as in Rule (AIfleTop),
the abstract machine non-deterministically explores all possible control flows
resulting from the operation.

The premises of rules (AEvent), (ASetstate), and (AIfstateNeg) appeal
to a model-checker that decides subset relations for abstract states according to
Definition 2. Thus, the abstract machine enters a stuck state when it encounters a
potential policy violation (see Rule (AEvent)). Abstract stuck states correspond
to rejection by the verifier.

Rule (ASetstate) requires that acceptable programs must maintain a reified
security state that is consistent with the actual security state of the program
during any given concrete execution. This allows the (AIfstatePos) and (AIf-

stateNeg) rules of the abstract machine to infer useful security information
in the positive and negative branches of program operations that dynamically
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χ̂ ::= ⊥ | 〈L : i, σ̂, ν̂, m, (Res(qm), τ̄)〉 | 〈L : i, σ̂, ν̂,�VS , τ̂ 〉 (abstract configs)

σ̂ ::= · | v̂ :: σ̂ (evaluation stacks)

v̂ ∈ VS (abstract values)

ν̂ : Z → v̂ (abstract stores)

m̂ ∈ Z ∪ �VS (abstract reified state)

τ̄ ∈ ∪n≤kΣn (bounded traces)

τ̂ ∈ SS (abstract traces)

Fig. 4. Abstract machine configurations

⊥ ≤χ̂ χ̂ · ≤VS ·
σ̂ ≤VS σ̂′ ν̂ ≤VS ν̂′ Rmτ ⊆ Rmτ ′

〈L : i, σ̂, ν̂, m, (Rm, τ )〉 ≤χ̂ 〈L : i, σ̂′, ν̂′, m, (Rm, τ ′)〉
σ̂1 ≤VS σ̂2 va1 ≤VS va2

va1 :: σ̂1 ≤VS va2 :: σ̂2

σ̂ ≤VS σ̂′ ν̂ ≤VS ν̂′ τ̂ ⊆ τ̂ ′

〈L : i, σ̂, ν̂, m̂, τ̂〉 ≤χ̂ 〈L : i, σ̂′, ν̂′,�, τ̂ ′〉
ν̂1(n) ≤VS ν̂2(n) ∀n ∈ Z

ν̂1 ≤VS ν̂2

Fig. 5. State-ordering relation ≤χ̂

n1 ≤ n2

〈L1 : ifle L2, n1::n2::σ̂, ν̂, m̂, τ̂〉 � 〈L2 : p(L2), σ̂, ν̂, m̂, τ̂〉 (AIflePos)

n1 > n2

〈L1 : ifle L2, n1::n2::σ̂, ν̂, m̂, τ̂〉 � 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂ 〉(AIfleNeg)

�VS ∈ {va1, va2} L′ ∈ {L2, s(L1)}
〈L1 : ifle L2, va1::va2::σ̂, ν̂, m̂, τ̂ 〉 � 〈L′ : p(L′), σ̂, ν̂, m̂, τ̂〉 (AIfleTop)

〈L : getlocal n, σ̂, ν̂, m̂, τ̂ 〉 � 〈s(L) : p(s(L)), ν̂(n)::σ̂, ν̂, m̂, τ̂〉 (AGetlocal)

〈L : setlocal n, va1::σ̂, ν̂, m̂, τ̂〉 � 〈s(L) : p(s(L)), σ̂, ν̂[n := va1], m̂, τ̂〉 (ASetlocal)

〈L1 : jmp L2, σ̂, ν̂, m̂, τ̂ 〉 � 〈L2 : p(L2), σ̂, ν̂, m̂, τ̂ 〉 (AJmp)

τ̂ e ⊆ τ̂ ′ ⊆ P
〈L : event e, σ̂, ν̂, m̂, τ̂〉 � 〈s(L) : p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉 (AEvent)

τ̂ ⊆ Res(qn)
〈L : setstate n, σ̂, ν̂, m̂, τ̂〉 � 〈s(L) : p(s(L)), σ̂, ν̂, n, (Res(qn), ε)〉(ASetstate)

m̂ ∈ {n,�}
〈L1 : ifstate n L2, σ̂, ν̂, m̂, (S, τ )〉 � 〈L2 : p(L2), σ̂, ν̂, n, (Res(qn), τ )〉(AIfstatePos)

m̂ �= n (S − Res(qn))τ ⊆ τ̂

〈L1 : ifstate n L2, σ̂, ν̂, m̂, (S, τ )〉 � 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂ 〉 (AIfstateNeg)

Fig. 6. Small-step operational semantics for the abstract machine
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test this state. The verifier can therefore reason that dynamic security guards
implemented by an IRM suffice to prevent runtime policy violations.

3.5 An Abstract Interpretation Example

Abstract interpretation involves iteratively computing an abstract state for each
code point. Multiple abstract states obtained for the same code point are com-
bined by computing their join in lattice (A,≤χ̂). This process continues until a
fixed point is reached.

��

��

��

��
0 1�e�

L1 : ifstate 0 L3 〈. . . , 0, ε〉 � 〈. . . , 1, e〉 = 〈. . . ,�, ε + e〉
L2 : jmp L2 ⊥ � 〈. . . ,�, e〉 = 〈. . . ,�, e〉
L3 : event e 〈. . . , 0, ε〉 � 〈. . . , 0, ε〉 = 〈. . . , 0, ε〉

setstate 1 〈. . . , 0, e〉 � 〈. . . , 0, e〉 = 〈. . . , 0, e〉
jmp L1 〈. . . , 1, e〉 � 〈. . . , 1, e〉 = 〈. . . , 1, e〉

Fig. 7. An abstract interpretation example

To illustrate this, we here walk the abstract interpreter through the simple
example program shown in the first column of Fig. 7, enforcing the policy ε+ e
whose security automaton is depicted at the top of the figure. Abstract states
inferred on first entry to each code point are written to the left of the � in the
second column. (All but the reified state value 0 and trace ε are omitted from
each configuration since they are irrelevant to this particular example.) Abstract
states inferred on second entry are written after the �, and the resulting join
of these states is written in the third column. In this example a fixed point is
reached after two iterations.

The abstract interpreter begins at entrypoint label L1 in initial configuration
χ0 = 〈. . . , 0, ε〉. Since the reified state is known, the abstract machine performs
transition (AIfstatePos) and arrives at label L3. Operation event e appends
e to the trace, operation setstate 1 updates the reified state, and operation
jmp L1 returns to the original code point.

The join of these two states yields a new configuration in which the reified
state is unknown (�), so on the second iteration the abstract machine non-
deterministically transitions to both L2 and L3. However, both transitions infer
useful security state information based on the results of the dynamic test. Transi-
tion (AIfstatePos) to label L3 refines the abstract trace from ε+e to Res(q0) =
ε, and transition (AIfstateNeg) to label L2 refines it to ε+e−Res(q0) = e. These
refinements allow the verifier to conclude that all abstract states are policy-
satisfying. In particular, the dynamic state test at L1 suffices to prevent policy
violations at L3.
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4 Analysis

4.1 Soundness

The abstract machine defined in Section 3.4 is sound with respect to the concrete
machine defined in Section 3.3 in the sense that each inferred abstract state
χ̂ conservatively approximates all concrete states χ that can arise at the same
program point during an execution of the concrete machine on the same program.
This further implies that if the abstract machine does not enter a stuck state
for a given program, nor does the concrete machine. Since concrete stuck states
model security violations, this implies that a verifier consistent with the abstract
machine will reject all policy-violating programs.

σ ≤VS σ̂ ν ≤VS ν̂ τ ∈ τ̂

〈L : i, σ, ν, m, τ 〉 ∼ 〈L : i, σ̂, ν̂,�, τ̂ 〉 (SoundTop)

σ ≤VS σ̂ ν ≤VS ν̂ τ ∈ Res(qm)τ ′ τ ∈ Sτ ′

〈L : i, σ, ν,m, τ 〉 ∼ 〈L : i, σ̂, ν̂, m, (S, τ ′)〉 (SoundInt)

Fig. 8. Soundness relation ∼

We define the soundness of state abstractions in terms of a soundness rela-
tion [7] written ∼⊆ C×A that is defined in Fig. 8. Following the approach of [4],
soundness of the operational semantics given in Figs. 3 and 6 is then proved via
progress and preservation lemmas. The preservation lemma proves that a bisim-
ulation of the abstract and concrete machines preserves the soundness relation,
while the progress lemma proves that as long as the soundness relation is pre-
served, the concrete machine does not enter a stuck state. Together, these two
lemmas dovetail to form an induction over arbitrary length execution sequences,
proving that programs accepted by the verifier will not commit policy violations.

We sketch interesting cases of the progress and preservation proofs below.

Lemma 1 (Progress). For every χ ∈ C and χ̂ ∈ A such that χ ∼ χ̂, if there
exists χ̂′ ∈ A such that χ̂ � χ̂′, then there exists χ′ ∈ C such that χ 	→ χ′.

Proof. Let χ = 〈L : i, σ, ν,m, τ〉 ∈ C, χ̂ = 〈L : i, σ̂, ν̂, m̂, τ̂〉 ∈ A, and χ̂′ ∈ A be
given, and assume χ ∼ χ̂ and χ̂ � χ̂′ both hold. Proof is by a case distinction
on the derivation of χ̂ � χ̂′. The one interesting case is that for Rule (AEvent),
since the corresponding (CEvent) rule in the concrete semantics is the only one
with a non-trivial premise. For brevity, we show only that case below.

Case (AEvent): From Rule (AEvent) we have i = event e and χ̂′ = 〈s(L) :
p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉, where τ̂ e ⊆ τ̂ ′ ⊆ P holds. Choose configuration χ′ =
〈s(L) : p(s(L)), σ, ν,m, (τ, e)〉. From χ ∼ χ̂ we have τ ∈ τ̂ . It follows that
τ̂ e ⊆ P holds. By Rule (CEvent), we conclude that χ 	→ χ′ is derivable.

The remaining cases are straightforward, and are therefore omitted. �



Model-Checking In-Lined Reference Monitors 323

Lemma 2 (Preservation). For every χ ∈ C and χ̂ ∈ A such that χ ∼ χ̂, if
there exists a non-empty A′ ⊆ A such that χ̂ � A′, then for every χ′ ∈ C such
that χ 	→ χ′ there exists χ̂′ ∈ A′ such that χ′

∼ χ̂′.

Proof. Let χ = 〈L : i, σ, ν,m, τ〉 ∈ C, χ̂ = 〈L : i, σ̂, ν̂, m̂, τ̂ 〉 ∈ A, and χ′ ∈ C be
given such that χ 	→ χ′. Proof is by case distinction on the derivation of χ 	→ χ′.
For brevity we sketch only the most interesting cases below.

Case (CEvent): From Rule (CEvent) we have i = event e and χ′ = 〈s(L) :
p(s(L)), σ, ν,m, τe〉. Since A′ is non-empty, we may choose χ̂′ = 〈s(L) :
p(s(L)), σ̂, ν̂, m̂, τ̂ ′〉 such that τ̂ e ⊆ τ̂ ′ ⊆ P by (AEvent). We can then obtain
a derivation of χ′

∼ χ̂′ from the derivation of χ ∼ χ̂ by appending event e to
all of the traces in the premises of (SoundTop) or (SoundInt), and observing
that the resulting premises are provable from τ̂ e ⊆ τ̂ ′.

Case (CSetstate): From Rule (CSetstate) we have i = setstate n and χ′ =
〈s(L) : p(s(L)), σ, ν, n, τ〉. Since A′ is non-empty, we may choose χ̂′ = 〈s(L) :
p(s(L)), σ̂, ν̂, n, (Res(qn), ε)〉 such that τ̂ ⊆ Res(qn) holds by Rule (ASet-

state). From χ ∼ χ̂ we have τ ∈ τ̂ . Thus, τ ∈ Res(qn) holds and relation
χ′

∼ χ̂′ follows from Rule (SoundInt).
Case (CIfstatePos): From Rule (CIfstatePos) we have i = ifstate n L2 and

χ′ = 〈L2 : p(L2), σ, ν, n, τ〉. If m̂ = n �= �, then τ̂ = (S, τ̄ ) by (AIfstatePos),
so choose a′ = 〈L2 : p(L2), σ̂, ν̂, n, (Res(qn), τ̄ )〉. Relation χ ∼ χ̂ proves χ′

∼

χ̂′ by (SoundInt). Otherwise m̂ = �, so choose χ̂′ = 〈L2 : p(L2), σ̂, ν̂,�, τ̂〉.
Relation χ ∼ χ̂ proves χ′

∼ χ̂′ by (SoundTop).
Case (CIfstateNeg): From Rule (CIfstateNeg) we have i = ifstate n L2 and

χ′ = 〈s(L1) : p(s(L1)), σ, ν,m, τ〉, where n �= m. If m̂ �= � then τ̂ = (S, τ̄)
by (AIfstateNeg), so choose χ̂′ = 〈s(L1) : p(s(L1)), σ̂, ν̂, m̂, τ̂ ′〉 such that
(S − Res(qn))τ̄ ⊆ τ̂ ′ holds by (AIfstateNeg). In any deterministic security
automaton, every residual is disjoint from all others. Thus, m̂ �= n implies
that τ̂ �∈ Res(qn)τ̄ , and therefore τ̂ ⊆ (S − Res(qn))τ̄ . A derivation of χ′

∼

χ̂′ can therefore be obtained from the one for χ ∼ χ̂ using (SoundInt).
Otherwise m̂ = �, and the rest of the case follows using logic similar to the
case for (CIfstatePos). �

Theorem 1 (Soundness). If the abstract machine does not enter a stuck state
from the initial state χ0, then for any concrete state χ ∈ C reachable from the
initial state χ0, the concrete machine can make progress. If state χ is a security-
relevant event then this progress is derived by rule (CEvent) of Fig. 3, whose
premise guarantees that the event does not cause a policy violation. Thus, any
program accepted by the abstract machine does not commit a policy violation
when executed.

Proof. The theorem follows from the progress and preservation lemmas by an
induction on the length of an arbitrary, finite execution prefix. �

4.2 Convergence

In practice, effective verification depends upon obtaining a fixed point for the
abstract machine semantics in reasonable time for any given untrusted program.
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The convergence rate of the algorithm described in Sect. 3.5 depends in part on
the height of the lattice of abstract states. This height dictates the number of
iterations required to reach a fixed point in the worst case. All components of the
language of abstract states defined in Fig. 4 have height at most 2, except for the
lattice SS of abstract traces. Lattice SS is finite whenever security automaton
A is finite; therefore convergence is guaranteed in finite time. In the proof that
follows we prove the stronger result that lattice SS has non-exponential height—
in particular, it has height that is quadratic in the size of the security automaton.

Theorem 2. Let A = (Q,Σ, δ) be a deterministic, finite security automaton.
Lattice (SS ,⊆) from Definition 2 has height O(|Q|2 + k|Q|).

Proof. Let Q1, Q2 ⊆ Q and τ1, τ2 ∈ ∪n≤kΣ
n be given. For all i ∈ {1, 2} define

Li = Res(Qi)τi, and assume ∅ � L1 � L2 ⊆ P . Define

m(L) = (|Q|+ 1)|suf (L)| − |Pre(L)|

where suf (L) = max{τ ∈ Σ∗ | L ⊆ Σ∗τ} is the largest common suffix of all
strings in non-empty language L and Pre(L) = {q ∈ Q | Res(q)suf (L)∩L �= ∅}
is the set of possible automaton states that an accepting path for a string in L
might be in immediately prior to accepting the common suffix. We will prove
that m(L1) > m(L2). By the pumping lemma, |suf (Li)| = |suf (Res(Qi)τi)| is
at most |Q| + k, so this proves that any chain in lattice (SS ,⊆) has length at
most O(|Q|2 + k|Q|).

We first prove that Res(Pre(Li))suf (Li) = Li ∀i ∈ {1, 2}. The ⊇ direction
of the proof is immediate from the definition of Pre; the following proves the
⊆ direction. Let τ ∈ Res(Pre(Li))suf (Li) be given. There exists q ∈ Pre(Li)
and τ ′ ∈ Res(q) such that τ = τ ′suf (Li). Since Li = Res(Qi)τi, τi is a suffix of
suf (Li), so there exists τ ′i ∈ Σ∗ such that suf (Li) = τ ′iτi. From q ∈ Pre(Li) we
obtain Res(q)suf (Li)∩Li = Res(q)τ ′iτi∩Res(Qi)τi = (Res(q)τ ′i∩Res(Qi))τi �= ∅.
Thus, there is an accepting path for τ ′i from q to some state in Res(Qi). It
follows that τ ′τ ′i ∈ Res(Qi), so τ = τ ′τ ′iτi ∈ Res(Qi)τi = Li. We conclude that
Res(Pre(Li))suf (Li) ⊆ Li.

From this result we prove that m(L1) > m(L2). Since L1 � L2, it follows that
suf (L2) is a suffix of suf (L1). If it is a strict suffix then the theorem is proved.
If instead suf (L1) = suf (L2) = x, then we have the following:

L1 � L2

Res(Pre(L1))x � Res(Pre(L2))x
Res(Pre(L1)) � Res(Pre(L2))

Since A is deterministic and therefore each residual is disjoint, we conclude that
Pre(L1) � Pre(L2) and therefore m(L1) > m(L2). �

5 Implementation

We used our IRM framework to enforce and verify a URL anti-redirection policy
for ActionScript ad applets. ActionScript bytecode performs a URL redirection
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using the navigateToURL system call, which accepts the URL target as its ar-
gument. To protect against malicious redirections, we enforced a policy that re-
quires check url(s) to be called sometime before any call to navigateToURL(s),
for each string constant s. Here, check url is a trusted implementation provided
by the ad distributor and/or web host, and may therefore rely on dynamic in-
formation such as the webpage that houses the current ad instance, the current
user’s identity, etc.

A näıve IRM can satisfy this policy by simply inserting a call to check url
immediately before each call to navigateToURL. Since calls to check url are
potentially expensive, our IRM takes the more efficient approach of reifying
a separate security state variable into the untrusted binary for each string con-
stant.3 The reified state tracks whether that string has yet passed inspection and
avoids duplicate calls for the same constant. In the less common case where the
untrusted code must call navigateToURL with a dynamically generated string,
the IRM resorts to the näıve approach described above. Maintaining persistent
internal state for dynamically generated strings is left for future work.

Program Tested Size Before Size After
Rewriting
Time

Verification
Time

countdownBadge.abc 1.80 KB 1.95 KB 1.429s 0.532s
NavToURL.abc 0.93 KB 1.03 KB 0.863s 0.233s

Fig. 9. Experimental Results

The resulting instrumented binaries are independently certified by the model-
checking verifier using the original security policy expressed as a security automa-
ton. Figure 9 shows the results of rewriting and verifying binaries extracted from
two real-world SWF ads that perform redirections. All tests were performed on
an Intel Pentium Core 2 Duo machine running Yap Prolog v5.1.4. In both cases
the IRM passed verification and prevented malicious URL redirections.

6 Conclusion

We have presented a technique for certifying IRM’s through model-checking.
Our technique derives a state abstraction lattice from a security automaton to
facilitate precise abstract interpretation of IRM code. Formal proofs of soundness
and convergence guarantee reliability and tractability of the verification process.
Finally, we demonstrate the feasibility of our technique by enforcing a URL
anti-redirection policy for ActionScript bytecode programs.

While our algorithm successfully verifies an important class of IRM imple-
mentations involving reified security state, it does not support all IRM rewriting
strategies. Reified security state that is per-object [13] instead of global, or that
is updated by the IRM before the actual security state changes at runtime rather
3 The number of string constants is known at rewriting time based on the size of the

constant pool in the ActionScript binary.
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than after, are two examples of IRM strategies not supported by our model. In
future work we intend to investigate ways of generalizing our approach to cover
these cases.

We also plan to augment our system with support for recursion and mutual
recursion, which is currently not handled by our implementation. Finally, we also
plan to extend our technique to other binary languages and the IRM systems
that have been implemented for them.
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Abstract. We propose Considerate Reasoning, a novel specification and
verification technique based on object invariants. This technique sup-
ports succinct specifications of implementations which follow the pattern
of breaking properties of other objects and then notifying them appropri-
ately. It allows the specification to be concerned only with the properties
directly relevant to the current method call, with no need to explicitly
mention the concerns of subcalls. In this way, the specification reflects
the division of responsibility present in the implementation, and reflects
what we regard as the natural argument behind the design.

We specify and prove the well-known Composite design pattern using
Considerate Reasoning. We show how to encode our approach in Boogie2.
The resulting specification verifies automatically within a few seconds;
no manual guidance is required beyond the careful representation of the
invariants themselves.

1 Introduction

Verification for imperative object-oriented languages is challenging. The arbi-
trarily complicated heap structures which can arise out of even quite short pro-
grams, and the potential for aliasing make it difficult to structure the verification
argument in an organised fashion, or to predict the effects of code fragments.

Some approaches to these challenges use specification languages which re-
flect the heap structure explicitly, describing the intended topology of objects
and references in a logic which includes customised assertions for the purpose.
Such approaches include separation logic [18,20], dynamic frames [10], implicit
dynamic frames [23] and regional logic [2].

Other approaches build on the concept of object invariant, and usually sup-
port some variation of visible states semantics (with the notable exception of the
Boogie methodology [3]). In visible states semantics, object invariants should
hold at the pre- and post-states of method calls, but may be temporarily bro-
ken during method execution. Various refinements have been proposed, usually
based on some notion of ownership - a way of imposing structure on the heap by
requiring that one object is encapsulated within another. This idea neatly sup-
ports client-provider implementations in which the encapsulated object is only
modified via its owner; but it cannot support another programming pattern,
whereby methods may break other objects’ invariants and then notify them, ie

G. Barthe and M. Hermenegildo (Eds.): VMCAI 2010, LNCS 5944, pp. 328–344, 2010.
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class Composite {
private Composite parent;
private Composite[] comps;
private int count = 0;
private int total = 1;

// Inv1 : 1 ≤ total ∧ 0 ≤ count

// Inv2 : total = 1 +
∑

0≤i<count

comps[i].total

// requires : c �= null && c.parent = null;
public void add(Composite c) {

// resize array if necessary
comps[count] = c;
count++;
c.parent = this ;
addToTotal(c. total ) ;

}

private void addToTotal(int p) {
total += p;
if (parent != null) parent .addToTotal(p);

}
}

Fig. 1. A single-class variant of the Composite pattern

call other methods to fix them. This kind of pattern is prevalent, e.g., in the
Marriage example, the Subject-Observer and Composite patterns [7], and the
Priority Inheritance Protocol [22].

The Composite pattern, recently proposed as a verification challenge in [11],
was the 2008 challenge problem at the SAVCBS workshop. It describes a tree-
structure, and allows addition of subtrees in any part of the tree. Figure 1 con-
tains a simplified version of the code from [11]. A Composite node has fields
comps which contain all its direct descendants, parent which points to its parent,
and integer total. The code has to preserve the invariant that the total field of
an object is equal to the size of the subtree rooted at that object.

The major difficulty in verifying this invariant is that the data structure can
be directly modified at any point, by calling add on any Composite object. This is
problematic for, e.g., ownership-based approaches, since these typically require
modification of owned objects to be controlled by the owning object (thus modi-
fication would be preceeded by a top-down traversal of the tree-structure). Sim-
ilarly, separation logic specifications of such patterns typically require recursive
predicates describing properties over the data structure [17,18]; such predicates
are easier to fold/unfold from the root of the structure downwards.

In this paper we propose Considerate Reasoning, a novel approach to verifica-
tion, and apply it to the Composite problem. Considerate Reasoning was briefly
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outlined in [24]; it extends the work of Middelkoop et. al. [15], and is related to
[4,12]. It is based on visible states semantics; in order to support methods meant
to fix invariants, it introduces the specification construct broken. Invariants de-
clared “broken”in a method specification are not expected to hold before calls to
the corresponding methods, but are expected to be re-established by these meth-
ods. All invariants are expected to hold at the end of a method execution. Thus,
the specification of method addToTotal contains broken : Inv2(this), cf. Fig. 2.

In Fig. 2 we give a specification of the Composite in Considerate Reasoning.
This specification is concerned only with properties directly relevant to the cur-
rent method call, without needing to explicitly mention the concerns of subcalls.
In this way, the specification reflects the division of responsibility present in the
implementation, and reflects what we regard as the natural argument behind
the design.1 This is the specification we ultimately expect the user to have to
write (up to a couple of additional keywords whose use will become apparent).

Considerate Reasoning also introduces concerns-descriptions, which describe
which invariants may be broken by a field update. These are used to determine
which invariants may be broken (ie are vulnerable) at each code point, and there-
fore must be re-established at the end of a method body. Because no tool directly
supports Considerate Reasoning, we have encoded our approach in Boogie2 [13],
using explicit assume and assert statements to describe our handling of invari-
ants. We developed refinements which allow for simplifications of the required
proof obligations. The resulting specification is natural and succinct, and verifies
automatically in approximately six seconds. In section 3.5 we outline how a tool
could infer concerns-descriptions and other internal concepts.

Conventions. To simplify the presentation, we make the following simplifying
assumptions: The names of fields declared in different classes should be distinct.
The names of invariants declared in different classes should be distinct. Type-
incorrect expressions in the specifications are considered false. The predicate
describing the meaning of an invariant I is called PI. Invariants only depend
on path expressions containing field accesses, and in particular do not feature
predicates. 2

2 A Considerate Specification of the Composite

We first identify what we believe to be the intuitive argument underlying the
implementation. By making this argument precise, we are able to identify and

1 Our specification does not express framing, which we left to further work. Note
however, that in the Composite example, we believe that the client naturally should
not depend on the value of total remaining unmodified.

2 The last assumption is the only one to represent a true restriction. Note, however,
that all invariants we require for the Composite pattern have definitions we permit,
even though other specifications of the Composite used recursive predicates. We
expect recursively defined predicates to be expressible through explicit invariants in
a semantics where the invariants of all objects are expected to hold by default.
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incorporate invariants and conditions which are necessary for soundness but
missing from the original code.

Had we only been interested in the preservation of Inv2(this), then the fol-
lowing would have been an adequate implementation for adding a component:

public void addWeak(Composite c) {
// resize array if necessary
comps[count] = c;
count++; // breaks Inv2(this)
c.parent = this ;
total += c.total; // fixes Inv2( this ) ,

// breaks Inv2(o), where this ∈ o.comps
}

This simpler implementation does preserve the invariant of the receiver, but
in turn it breaks Inv2 of any object with the receiver in its comps. The real

class Composite {
private Composite parent;
private Composite[] comps;
private int count = 0;
private int total = 1;

// Inv1(o): 1 ≤ o.total ∧ 0 ≤ o.count

// Inv2(o): o. total = 1 +
∑

0≤i<o.count

o.comps[i].total

// Inv3(o): ∀0≤i<o.count : o.comps[i].parent = o
// Inv4(o): o.parent �= null ⇒ ∃0≤i<o.parent.count : o.parent.comps[i] = o
// Inv5(o): ∀0≤i�=j<o.count : o.comps[i] �= o.comps[j]

// requires : c �= null;
// requires : c.parent = null ;
public void add(Composite c) {

comps[count] = c;
count++;
c.parent = this ;
addToTotal(c. total ) ;

}

// broken: Inv2( this )

// requires : this.total + p = 1 +
∑

0≤i<count

comps[i].total

private void addToTotal(int p) {
total += p;
if (parent != null) parent .addToTotal(p);

}
}

Fig. 2. A considerate-style specification in Java
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implementation takes account of this fact: the method addToTotal performs the
role not only of fixing the invariant of the receiver, but also of being considerate
of the invariants of other objects. In particular, after the total field of the receiver
is updated, the parent of the receiver is notified of the change by another call to
addToTotal, in order to ensure that their invariant can also be maintained.

How do we know that this implementation is indeed correctly considering ex-
actly the concerned invariants? In particular, why is it correct for the addToTotal
method to recursively call the parent of the current receiver? The intuitive argu-
ment here depends on the assumption that the comps of any object are exactly
those objects which point to it via parent fields. This assumption is implicit in
the design pattern, but was missing in [11]. We add two further invariants:

Inv3(o): ∀0≤i<o.count : o.comps[i].parent = o
Inv4(o): o.parent �= null⇒ ∃0≤i<o.parent.count : o.parent.comps[i] = o

A further subtle problem arises if the comps of an object are not distinct. If
an object is in the comps of another object twice, then the implementation of
addToTotal would be incorrect. We add a further invariant:

Inv5(o): ∀0≤i �= j<count : o.comps[i] �= comps[j]
This invariant may seem redundant, since it is preserved by the methods of the
class Composite; however there is no guarantee that the heap structure is already
a tree; this is indispensable in the proof that the information propagated upwards
through addToTotal is correct. Note that the combination of the invariants Inv3,
Inv4 and Inv5 guarantee that the whole Composite structure is a tree.

We now give a specification of the Composite in Figure 2. We include in the
specification of addToTotal the declaration broken : Inv2(this), reflecting that this
method fixes a broken invariant. The precise semantics of this construct will be
made clear in the following section. In order to make it possible for addToTotal to
guarantee to fix the declared invariant, we add a pre-condition requiring that the
value of total is “out” by exactly the value passed as argument to the method.

3 Considerate Reasoning

Our proposed methodology, once fully supported by tools, requires the user to:

1. Define the invariants.
2. Declare certain invariants as structural (Definition 5 below).
3. Define the broken declarations along with method specifications.

We will now explain the workings of our methodology, and then in Section 3.5 we
will outline how it can be automated. Our methodology consists of the following:

1. An invariant semantics, specifying which invariants must hold at which
points in execution.

2. The concept of a concerns-description, which describes which objects’ in-
variants are concerned with field updates in a program.

3. The derivation of vulnerable invariants at all intermediate program points,
computed from the code and concerns-description.

4. A verification technique, defining sufficient proof obligations to guarantee
soundness with respect to the invariant semantics.
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3.1 Invariant Semantics

Visible states semantics [19,16] requires all invariants of all objects to hold im-
mediately before and immediately after any method calls. For simplicity of the
presentation, we base the work in this paper on this simple visible states se-
mantics, but our work could be applied to weaker variants of the semantics,
in which only the invariants of certain objects need hold in the visible states.
programming patterns which involve calling certain methods to fix broken in-
variants (e.g method addToTotal in our example), the visible states semantics
requirement is too restrictive. In the Considerate Reasoning methodology we
add the necessary flexibility with the extra specification construct broken : to
explicitly declare exceptions to the visible states semantics. Invariants declared
“broken” in a method specification are not required to hold before calls to the
corresponding methods, but are expected to be fixed by these methods.

Definition 1 (Broken Declarations and Invariant Semantics). A method
specification may contain a declaration broken : I1(e1), I2(e2), .., In(en).
A verification methodology is sound if for any method m whose specification
contains broken : I1(e1), I2(e2), .., In(en), it guarantees that:

1. At the beginning of execution of m, all invariants of all objects must hold,
except for Ii for those objects denoted by an expressions ei, for i ∈ {1, ..., n}.

2. At the end of method execution, all invariants of all objects must hold.

3.2 Concerns-Descriptions

Updating objects’ fields may break invariants of other objects. For example, up-
dating total of this, may break Inv2 of this.parent. We say that objects whose
invariants may be broken when a field of another object is updated, are concerned
with the field. Obviously, concern is naturally a dynamic notion. For a static ap-
proximation of this notion, we define concerns-descriptions which associate with
each field name f (the field to be updated) and invariant name I (the invariant un-
der consideration), a description of the set of concerned objects. This set usually
depends on the identity of the object being updated, therefore the set description
may mention a special variable mod, which denotes the object being modified.
Thus, the variable mod has a special meaning for concerns-descriptions, similar
to the way the variable this has a special meaning for methods. Furthermore,
we allow additional flexibility to the descriptions by also including a (possibly
empty) list of invariant names, which we call supporting invariants. Their intu-
itive meaning is that the set described is only guaranteed to be conservative at
program points where the supporting invariants are guaranteed to hold (for all
objects). This allows us to use more-refined definitions of the sets of concerned
objects, which depend on the guarantees that other invariants provide - the use
of this feature will become clear shortly.

Definition 2 (Concerns Descriptions). A concerns-description D is a map-
ping from a field name and an invariant name to a pair consisting of a set
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description, and a (possibly-empty) set of invariant names - the supporting in-
variants. 3 A set description is a description of a set of references, parameterised
by a special variable mod; it may be described using usual set-theoretical opera-
tions, including comprehensions.

For the Composite pattern, a possible concerns-description would determine
D(count, Inv1) = ({mod}, ∅), specifying that when the field count of any ob-
ject mod is modified, at most the single object mod has invariant Inv1 broken.
To obtain a sound verification methodology, the concerns-descriptions should
be “big enough”, i.e., any object whose invariant could be violated by a field
update should fall within the corresponding described set. In fact, we make the
weaker requirement that the set must be guaranteed “big enough” so long as the
supporting invariants hold for all objects.

Definition 3 (Admissible Descriptions). A concerns-description D is ad-
missible if, for all invariants I, I1, I2, . . . , Im, such that D(f, I)↓2 = {I1, I2, . . . , Im}
and for any (sub-)expression o.f1.f2 . . ..fn.f (with n ≥ 0) occurring in PI(o), we
can prove for arbitrary o that:

(∀o′, PI1(o
′) ∧ PI2(o

′) . . . PIm(o′)) ∧ PI(o)⇒ o ∈ D(f, I)↓1[o.f1.f2 . . . .fn/mod]

Consider the simple case of no supporting invariants being specified (i.e., D(f, I)
= (S, ∅) for some set description S, and m = 0 in the definition above). Then
admissibility guarantees that whenever we modify the field f of an object mod
and the invariant I of an object o can become broken as a result, it must be the
case that o∈ S.

Note that we only need to show that o is in the described set if the invariant
of o actually held - since we are trying to predict the invariants which get broken
by a particular field update, we are only interested in the case where an invariant
held prior to the update. There is a simple, mechanical way of deriving one such
admissible concerns-description directly from the definitions of the invariants:

Definition 4 (Simplest Concerns-Descriptions). For expressions e1 and e2
we write e1 � e2 to mean e1 is a syntactic subexpression of e2. We then define
the simplest concerns-description DS for any field f and invariant I as follows:

DS(f, I) =

⎛
⎝

⋃

n≥0, this.f1.f2....fn.f�PI(this)

{o | o.f1.f2 . . . .fn = mod} , ∅

⎞
⎠

We treat array accesses analogously to field accesses, except that if any quantified
variables occur in an array index expression, we additionally include existential
quantifiers (with the same bounds) around the equality generated in the set com-
prehension.

3 We write Q↓1 and Q↓2 for the first and second projections of pair Q, respectively.
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For the Composite, we derive the following simplest concerns-description, in
which the shorthand o∈o′.comps stands for ∃0≤i<o′.count :: o′.comps[i] = o:

DS(parent, Inv3) = ({o | mod ∈ o.comps}, ∅) DS(parent, Inv4) = ({mod}, ∅)
DS(comps, Inv2) = ({mod}, ∅) DS(comps, Inv3) = ({mod}, ∅)
DS(comps, Inv4) = ({o | o.parent = mod}, ∅) DS(comps, Inv5) = ({mod}, ∅)
DS(count, Inv1) = ({mod}, ∅) DS(count, Inv2) = ({mod}, ∅)
DS(count, Inv3) = ({mod}, ∅) DS(count, Inv4) = ({o | o.parent = mod}, ∅)
DS(count, Inv5) = ({mod}, ∅) DS(total, Inv1) = ({mod}, ∅)
DS(total, Inv2) = ({mod} ∪ {o | mod ∈ o.comps}, ∅)
DS(f, I) = (∅, ∅) otherwise

Admissibility is trivially satisfied by the simplest concerns-description:

Proposition 1. The simplest concerns-description DS is admissible.

Observe that DS given above uses sets {mod}, {o | o.parent = mod}, and
{o | mod ∈ o.comps}. We call a set description direct, if any field access paths
start at mod, and indirect otherwise. Thus, the set description {mod} is direct,
and the other two above are indirect. Indirect set descriptions turn out to be
undesirable in practice, since they give rise to proof obligations concerning indi-
rectly described objects, which are often too difficult for the automated theorem
prover.

We shall attempt to transform the four cases of indirect sets in our example
into direct ones. We start with DS(parent, Inv3), which specifies that modification
of parent of an object mod may break invariant Inv3 for those objects which
contain mod in their comps. Recall however that the “structural” invariant Inv3
guarantees that for any o′, if o′ ∈ o.comps then o′.parent = o. Therefore, we can
conclude that if an object o satisfies Inv3, then o ∈ {o | mod ∈ o.comps} ⇒ o ∈
{mod.parent}; the latter set is direct. Since the definition of admissibility allows
us to assume that the concerned invariant (in this case Inv3) holds, applying the
invariant’s definition to the set description does not affect admissibility:

Proposition 2. Suppose D and D′ are concerns-descriptions, and that for all
fields f and invariants I, it holds that D(f, I)↓2 = D′(f, I)↓2 and we can prove for
arbitrary o that if PI(o) holds and o ∈ D(f, I)↓1 then o ∈ D′(f, I)↓1. Then, if D is
admissible then D′ is admissible.

Using this proposition, we can take a set description from a concerns-description
known to be admissible, and rewrite it using the definition of the invariant it is
concerned with. Admissibility of the resulting concerns description is guaranteed
to be preserved. In particular, for the Composite we can replace the concerns-
description for parent and Inv3 as follows:
D(parent, Inv3) = ({mod.parent}, ∅)

Similarly, we can replace the next two indirect set descriptions with the following:
D(comps, Inv4) = ({o ∈ mod.comps}, ∅)
D(count, Inv4) = ({o ∈ mod.comps}, ∅)
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This leaves us now with one remaining indirect set description:
D(total, Inv2) = ({mod} ∪ {o | mod ∈ o.comps}, ∅)

This set comprehension is the same as for the first case, therefore if we could
assume that Inv3 held for all objects in the set, we could rewrite the set into the
direct form, {mod.parent} as before. In this case, Proposition 2 does not apply,
because we wish to use a different invariant Inv3 to rewrite the set description
for Inv2. In order to justify the desired rewriting of the set comprehension, we
can instead make use of the supporting invariants, and explicitly mark that the
correctness of the new set description depends on Inv3 holding, i.e., we define
D(total, Inv2) = ({mod} ∪ {o | mod.parent}, {Inv3})

This can be understood at an intuitive level also: We can be sure that the objects
whose invariants Inv2 are affected by modifying the total of mod are (at most)
the objects mod and mod.parent only if we can be sure that mod cannot be in
the comps of any other object. This is what invariant Inv3 guarantees. We can
generalise the process we applied above with the following result:

Proposition 3. Suppose D is an admissible concerns-description, and D′ is a
concerns-description identical to D except for the definition of D(f, I) for some
particular f and I. Suppose further that for some invariant J we have D′(f, I)↓2 =
D(f, I)↓2 ∪ {J}. Then, if by assuming that ∀o, PJ(o) holds, we can prove that
D(f, I)↓1 ⊆ D′(f, I)↓1, then D′ is admissible.

Using this proposition, we can take a set description from a concerns description
known to be admissible, and rewrite it using the definition of any invariant we
like (adding the invariant to the supporting invariants). Admissibility of the
resulting concerns-description is guaranteed to be preserved. However, in order
for a verification technique based on the resulting concerns-description to be
sound, we require a mechanism for guaranteeing that supporting invariants will
hold when required. For example, in case of the Composite, we require some
way of ensuring that whenever we wish to use DS(total, Inv2)↓1, the condition
∀o :: PInv3(o) holds. For this reason, we need a way of treating the invariant
Inv3 in some special fashion. We recall that the invariants Inv3 and Inv4 were
introduced to make explicit the inverse relationship between components and
parent, which is implicitly intended in the implementation. As such, we expect
these invariants to hold almost all of the time. The only reason the invariants
ever need to be broken is that it is impossible to simultaneously update the
necessary fields to keep the implementation of this relationship consistent. For
this reason, the invariant semantics of Definition 1 seems too coarse-grained
for these invariants, since it allows them to be broken for arbitrarily long code
fragments (so long as no method boundaries are reached), whereas in fact they
are only required to be broken for a handful of consecutive statements at a time.

Using this observation, we introduce a refinement of our treatment of invari-
ants. The idea is to allow some invariants to be declared as more fundamental,
and to only allow these invariants to be broken for short and prescribed sec-
tions of the code. A scoped declaration unreliable is used to specify that cer-
tain named invariants may possibly be violated for the duration of the scope
(which is expected to enclose only a brief fragment of the code). This follows
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the intuition behind why these “structural invariants” are broken at all - it is
just while the necessary field updates can all be made, to modify the intended
parent-components relation.

Definition 5 (Structural Invariants and Unreliable Declarations). The
keyword structural may be placed before an invariant declaration, to mark the
invariant as a structural invariant. By default, invariants are not structural.

1. Concerns-descriptions D are restricted to only allow structural invariants to
be mentioned in the supporting invariants.

2. A scoped construct unreliable : I1, I2, . . . , In{..}, may be placed around any se-
quence of statements which do not contain any method calls (specifying which
structural invariants may possibly be broken within the scope).

3. Programs are restricted as follows: for any field update e.f = e′, and for any
invariant I, if D(f, I)↓1[e/mod] is non-empty, then the field update must not
occur within an unreliable declaration which names any (structural) invari-
ants I′ in D(f, I)↓2. Additionally, if I is itself a structural invariant, then the
field update must occur within an unreliable block declaring I.

4. Structural invariants may not be mentioned in broken declarations.

Note that the restrictions in the latter two points above do not introduce extra
proof obligations for the verification process, since they can be guaranteed by
syntactic checks on the program code.

Intuitively, this approach guarantees that structural invariants can only be vi-
olated within unreliable blocks which explicitly declare that they might be, while
structural invariants may be depended on to accurately predict the concerns of a
field update only outside the scope of such blocks. Furthermore, any structural
invariants violated within an unreliable block should be re-established by the end
of the block4. From a practical perspective, the burden of determining which ob-
jects’ invariants are “concerned” with a field update can be completely lifted
from the prover - not only are supporting invariants used to precisely identify
which objects should be considered, but the validity of the supporting invariants
is guaranteed by purely syntactic means.

3.3 Verification Technique

We say that an object’s invariant is vulnerable at some point in the code, if we
have no guarantee that it holds at that point. We calculate vulnerable invariants
based on the concerns-descriptions D. Namely, for an update to r.f, and invariant
I, the set D(f, I)↓1[r/mod] gives a conservative approximation of the vulnerable
invariants. For sequences of statements we accumulate the vulnerable invariants

4 Our unreliable blocks described are similar to the expose blocks used in the Spec�
methodology [3], but are simpler since they only mention invariants by name, rather
than distinguishing them for particular objects.
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for each statement, in a similar fashion to standard static code analysis tech-
niques. 5 For conditional branches we accumulate the effects of each branch.6

Finally, according to the invariant semantics, after a method finishes executing
all invariants must hold, and so it is justified after a call to “reset” the vulnerable
set to empty.

Definition 6 (Vulnerable Invariants). At any program point, the vulnerable
invariants are represented by a map V from invariant names to descriptions of
sets of references (denoting which objects may possibly not satisfy the invariant).
It is computed as follows.

1. At the start of a method body, the vulnerable invariants are exactly those
declared by the method’s broken constructs (if any).

2. After a field assignment e.f = e′, if V describes the vulnerable invariants
before the assignment, then the vulnerable invariants after the assignment,
V ′ are defined for each invariant I, by: V ′(I) = V(I) ∪ D(f, I)↓1[e/mod].7

3. After a conditional statement, the vulnerable invariants for each invariant
is the union of those at the end of each branch.

4. After the end of an unreliable block, for each (structural) invariant I named
by the block and not named by a further enclosing unreliable block, V(I) is
empty. For all other invariants, V(I) is as it was at the end of the block.

5. After a method call, V(I) is empty for all invariants I.

Note that we allow for the possibility of nesting unreliable blocks within each
other. While we don’t require this feature for our specification of the Composite,
it could add extra flexibility in a setting where several structural invariants are
mutually dependent - in this case it may be useful to accurately reflect the
situation when some structural invariants are re-established before others by
closing one block and leaving another open.

Our verification technique allows us to make assumptions about the validity
of invariants and imposes proof obligations for invariants as follows:

Definition 7 (Considerate Verification Technique). Given a program an-
notated with specifications, invariants, an (admissible) concern-description D
and unreliable blocks, our methodology handles invariants as follows:

1. At the start of a method body, all invariants of all objects may be assumed to
hold, except those explicitly declared as broken in the method specification.

2. Before call to a method m, for every invariant I, if S is the set of expressions
e for which I(e) is mentioned in a broken declaration of m, then ∀o, o ∈
V(I) ∧ o /∈ S ⇒ PI(o) must be proven.

5 In fact, the meaning of the set descriptions may be affected by subsequent field
updates. We cater for this by recording copies of the symbolic heap, and writing
assert and assume statements in terms of these copies, cf. [1]

6 For simplicity we do not handle loops here, but believe that they can be handled by
suitably extending the usual loop-invariant-based approach from Hoare Logic.

7 Recall that we are eliding details of how to handle field updates which change the
meaning of the vulnerable invariants recorded so far.
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3. After a method call, all the invariants of all objects may be assumed to hold.
4. At the end-point of an unreliable block, for every invariant I declared in the

block but not in an enclosing such block, ∀o, o ∈ V(I)⇒ PI(o) must be proved.
5. At the end of a method body, for every invariant I, ∀o, o ∈ V(I)⇒ PI(o) must

be proven.

Proposition 4. The Considerate Verification Technique is sound.

Proof sketch. We first show as an easy lemma that the vulnerable set for a
structural invariant I is empty at all program points which are not inside an
unreliable block declaring I.

This allows us to prove that any invariants which are broken by any field as-
signment fall within the described vulnerable set, as follows. Because we assume
invariants only depend on the heap via field accesses, we know that if I(o) holds
in heap h, but does not hold in heap h′, and h′ differs from h only in the value
of o′.f , then there exist fields f1, ... fn, such that o.f1...fn.f appears in PI(o),
and o.f1...fn = o′ in h. By the previous lemma, we know that for any struc-
tural invariant I′∈ D(f, I)↓2, it is safe to assume ∀o′, PI′o

′ holds. By definition 3,
we obtain that o ∈ D(f, I)↓1[o.f1...fn/mod]. The latter set corresponds in h to
D(f, I)[o′/mod], which is the set added to the vulnerable invariants.

We can now show that assuming that all methods have been checked according
to Def. 7, then execution preserves the property that any invariants which do
not hold are within those calculated to be vulnerable according to Def. 6. This
can be shown by induction on the execution.

At all point where our invariant semantics (Def. 1) specifies that invariants
must hold, our technique imposes proof obligations to show that all required
invariants which are also vulnerable, are shown to hold. Therefore, by the above,
no required invariants can be false at these points.

3.4 Verification of the Composite Pattern

For the Composite code, we use the improved concerns-description developed
earlier in the paper, which we recall here in full, for reference:

D(parent, Inv3) = ({mod.parent}, ∅) D(parent, Inv4) = ({mod}, ∅)
D(comps, Inv2) = ({mod}, ∅) D(comps, Inv3) = ({mod}, ∅)
D(comps, Inv4) = ({o | o ∈ mod.comps}, ∅) D(comps, Inv5) = ({mod}, ∅)
D(count, Inv1) = ({mod}, ∅) D(count, Inv2) = ({mod}, ∅)
D(count, Inv3) = ({mod}, ∅) D(count, Inv4) = ({o | o ∈ mod.comps}, ∅)
D(count, Inv5) = ({mod}, ∅) D(total, Inv1) = ({mod}, ∅)
D(total, Inv2) = ({mod, mod.parent}, {Inv3})
D(f, I) = (∅, ∅) otherwise

We consider the invariants Inv3,Inv4 and Inv5 to be structural, and place an
unreliable block around the three assignment statements in the add method which
temporarily violate these invariants. Def. 5 requires that a total field is not mod-
ified within such a block - this is indeed the case. Using the concerns-description,
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we analyse the code to predict vulnerable invariants at each point, and generate
proof obligations according to Def. 7. Figure 3 shows the complete code, includ-
ing assume/assert statements which encode the proof obligations. Note that these
statements are exactly as specified by Def. 7 - no additional manual assertions
are required, and no further assert/assume statements need to be provided. We
map this specification to Boogie2, which then passes the proof obligations to the
Z3 automatic theorem prover for verification.

Verification of the Boogie2 code opens up a low-level problem concerning
the prover’s treatment of quantifiers. In particular, some control needs to be
imposed to stop the prover from taking arbitrarily many (mostly irrelevant)
instances of a quantifier formula it “knows”, and thus looping forever. The very
strong assumptions made by our methodology at the beginning of a method body
and after a method call, can actually negatively impact the performance of the
prover, if not controlled. This problem is generic to the use of quantifiers with
the Z3 prover, and can be tackled by using triggers [6,13,14], a mechanism which
restricts the situations under which the prover instantiates quantified formulae.
We do not go into detail here; however, we have developed a methodology for
defining triggers for the formulae concerned with our methodology, which we
will describe in future work. Our Boogie2 code [1] uses triggers.

Verification of the Boogie2 code succeeds, in approximately six seconds. In-
terestingly, if one takes the simplest concerns-description instead (which still
employs indirect set comprehensions), the resulting specification does not verify.
Therefore, the improvements introduced by Propositions 2 and 3 are essential for
our approach to be practical. However, the current need to annotate the code
with unreliable declarations and concerns-descriptions seems to place an extra
burden to the user; we next consider how to alleviate it.

3.5 Automation of Our Technique

We now explain how the various aspects of our methodology could be supported
by automatic tools.

Determine Concerns-Description: A tool can straightforwardly derive the
simplest concerns-description D′ (Def. 4). Next, any declared structural invari-
ants expressing “inverse” relationships (e.g., o.components[i].parent = o) can be
used to rewrite any indirect set descriptions. Given a set description of the form
{o | o.f1 . . . .fm−1.fm = mod.g1 . . . .gn} a structural invariant of the form o′.fm.h =
o′ (i.e., declaring an inverse relationship for the field fm) should be sought. The
set description can then be rewritten to {o | o.f1 . . . .fm−1 = mod.g1 . . . .gn.h}
in which the length of the “indirect” field access from o has been reduced. To
preserve admissibility, a structural invariant used to rewrite the set must be
recorded in the supporting invariants (cf. Prop. 3), unless it is the same invari-
ant as the one being described by D (c.f. Prop. 2). This process of rewriting
the set can be repeated until the length of the indirect field access is zero, at
which point the set comprehension describes precisely one object, and the set
can be made direct. In practice, invariants of the desired kind tend to exist in
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// requires : c �= null;
// requires : c.parent = null ;
public void add(Composite c) {

assume ∀ o :: Inv1(o) ∧ Inv2(o) ∧ Inv3(o) ∧ Inv4(o) ∧ Inv5(o);

// unreliable : Inv3 , Inv4 , Inv5 {
this .comps[this.count] = c;
this .count = this .count + 1;
c.parent = this ;
assert Inv3( this ) ∧ Inv3(c.parent);
assert ∀ o :: o=c ∨ (∃0≤i≤this.counti:int :: this.comps[i] = o) ⇒ Inv4(o);
assert Inv5( this ) ;
// }

assert Inv1( this ) ;
assert this �= this ⇒ Inv2(this); // trivial − by ”broken” declaration
addToTotal(this,c. total ) ;
assume ∀ o :: Inv1(o)∧Inv2(o)∧Inv3(o)∧Inv4(o)∧Inv5(o);

}

// broken: Inv2( this )

// requires : this . total + p = 1 +
∑

0≤i<count

comps[i].total

private void addToTotal(int p) {
{

assume ∀ o :: Inv1(o)∧Inv3(o)∧Inv4(o)∧Inv5(o);
assume ∀ o :: o�= this ⇒ Inv2(o);

this . total = this . total + p;
if (parent != null) {

assert Inv1( this ) ;
assert ∀ o :: (o=this ∨ o=this.parent) ∧ o�= this.parent ⇒ Inv2(o);
parent .addToTotal(p);
assume ∀ o :: Inv1(o)∧Inv2(o)∧Inv3(o)∧Inv4(o)∧Inv5(o);

}

assert Inv1( this ) ;
assert ∀ o :: (o=this ∨ o=this.parent) ⇒ Inv2(o);

}

Fig. 3. Proof Obligations for the Composite

“considerate” implementations, since the inverse field references are required for
the implementation to be able to notify objects appropriately (e.g., the parent
field in the Composite). However, if at any point a suitable structural invari-
ant cannot be found, either an error can be reported to the user (suggesting
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that further structural invariants may need to be specified), or a warning could
be given, and the verification optimistically continued using the indirect
description.

Introduce unreliable blocks: One can automatically infer when an unreliable
block needs to begin, and which invariants need to be named, by using D to
identify the points in the code at which structural invariants may be invalidated.
Inferring where to end the unreliable blocks is more challenging, since we need to
“guess” how soon we re-establish these invariants. The simplest solution is to be
lazy, and leave the block open until these invariants are required to hold again,
either because a method call, end of method or conditional block is reached, or
because they appear in the supporting invariants of a concerns-description for a
field update. In practice, this typically doesn’t leave much scope for “laziness”,
and showing that the structural invariants are re-established at the derived point
is not problematic. For example, in the Composite add method, the structural
invariants must be re-established before addToTotal can be called.
Calculate proof obligations: The vulnerable invariants can be calculated
(Def. 6) and corresponding assume/assert statements derived (Defs. 7 and 5).

4 Conclusions, Related and Future Work

We have proposed Considerate Reasoning, a specification/verification method-
ology based on object invariants, which, we claim, neatly reflects the natural
argument of the implementation, and leads to succinct specifications. We have
outlined soundness of the technique, described how its support could be auto-
mated, and applied it to specify the Composite pattern.

Our work is based on, and extends, that of Middelkoop et. al. [15]. Our
concerns-descriptions add to their “coop-sets” the concept of supporting in-
variants; we introduced inference of admissible concerns-descriptions, structural
invariants, unreliable blocks, and the application to Boogie2.

Several specifications of the Composite were proposed for SAVCBS 2008. For
example, Jacobs et. al. [9] give a specification in separation logic, which ex-
presses the decomposition of a tree-structure into different context-tree views
from the viewpoint of the current receiver. The specification is not able to en-
force invariants for all objects, and thus cannot guarantee preservation of the
main invariant, Inv2, for all objects in the heap. It was machine-verified using
VeriFast [8]. The verification was interactive, and required the manual addition
of lemmas, and open/close and assert statements.

Bierhoff and Aldrich [5] present a specification using data groups, fractional
permissions, type states, and explicitly marking the violation/re-establishing of
invariants through unpack/pack statements. Permissions control state dependen-
cies in invariants - essentially each object depending on certain state for its in-
variant must carry some permission to that state. The authors outline a manual
verification, and discuss how a tool could infer unpack/pack statements.

More recently, Rosenberg et. al. [21] give a specification of the Composite using
regional logic [2]. They express an invariant semantics similar to ours, whereby
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they explicitly quantify over the set of all allocated objects, and require in the
pre- and post- conditions of the methods the invariants of all objects to hold,
except for those objects belonging to a further region (this corresponds to our
broken declarations). They mapped the specification into Boogie2 and verified it
in approx 6 secs. However, because their handling of invariants is explicit, rather
than with a prescribed methodology, some guidance is needed for the verified,
which takes the form of several lemmas, and manually annotating the Boogie
code with several assume/assert statements.

All these specifications required significant technical development; this is re-
flected in their length. Conversely, we have tried to retain in the specification
only those details which are essential and intuitive from the point of view of the
programmer. Furthermore, verification of these specifications requires further
work from the programmer, in that he needs to provide lemmas and insert fur-
ther annotations into the code. Conversely, our methodology can be automated
as we discussed earlier on; with our hypothetical tool, the programmer will only
need to provide the 25 lines of code and specification shown in Fig. 2. On the
other hand, our methodology does not deal with framing, whereas the above
approaches address this issue.

In future work we will formalise and prove soundness of Considerate Reason-
ing, and will combine it with other methodologies supporting complementary pro-
gramming patterns, as e.g., ownership-based methodologies. We will also address
the framing problem, and investigate extending our work to more-general kinds of
invariants and patterns in which collections of objects may be broken at a time.

We have considered the extension of our approach to concurrency. We propose
a locking discipline based on the calculated vulnerable invariants (calculated per
thread). Any object in the vulnerable invariants should be locked by the current
thread. Correspondingly, objects can only be unlocked if all of their invariants
which are vulnerable, can be shown to have been re-established. When applied
to the Composite, this idea allows a hand-over-hand locking discipline which can
handle many threads updating the tree structure concurrently. Formalising this
idea and its extensions will be interesting future work.
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RGSep Action Inference

Viktor Vafeiadis

Microsoft Research Cambridge, UK

Abstract. We present an automatic verification procedure based on
RGSep that is suitable for reasoning about fine-grained concurrent heap-
manipulating programs. The procedure computes a set of RGSep actions
overapproximating the interference that each thread causes to its con-
current environment. These inferred actions allow us to verify safety,
liveness, and functional correctness properties of a collection of practical
concurrent algorithms from the literature.

1 Introduction

Low level C programmers constantly rely on two very error-prone programming
features: manual memory management (malloc/free) and concurrency. While
there are several verification techniques for reasoning about either feature in
isolation, few techniques can handle programs using both features.

One such technique is RGSep [20], a recent extension of rely-guarantee reason-
ing [11] that incorporates separation logic [15]. RGSep specifications describe the
updates to the shared state using two binary relations: the rely and the guaran-
tee. A thread’s rely relation under-approximates the interference it can tolerate
from its environment (that is, the updates that other threads are allowed to do),
whereas the guarantee over-approximates the updates the thread can do, i.e. the
interference that it causes to its concurrent environment. RGSep represents these
binary relations as the reflexive and transitive closure of a set of actions, which
are precondition-postcondition pairs describing the possible small updates.

On its own RGSep is just a program logic: users must prove their programs
correct with pencil and paper using RGSep’s proof rules. As constructing such
proofs manually is quite tedious and often error-prone, there has been some work
on constructing such proofs semi-automatically [5,19] by letting the programmer
supply the rely and guarantee relations and doing abstract interpretation to
figure out the more tedious aspects of the proof.

Here, we extend the aforementioned work to be fully automatic. We present an
algorithm (Infer-Actions, §3) that calculates the rely and guarantee relations
as a set of actions, each of which is extended with a special context assertion
describing the part of the state that is not affected by the action. These contexts
arise naturally during action inference and allow us to define a useful join on
actions (§4).

In the process of inferring these actions, our algorithm also proves memory
safety, discovers shape invariants, and discharges any user-supplied assertions.
The output of action inference has been used to prove advanced safety properties,
such as linearizability, and conditional termination [9].
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2 Preliminaries

We consider programs in a first-order subset of C. Programs consist of an ini-
tialization phase followed by a top-level parallel composition of a possibly un-
bounded number of threads. The programs for the initialization phase and for
each thread are converted to the following simpler language of commands:

C ::= skip | x := E | x := [E] | [E] := E′ | x := malloc()
| assume(E) | C1;C2 | C1 ⊕ C2 | C∗ | atomic C

where x ranges over program variables and E over arithmetic expressions. Pro-
gram commands, C, include the empty command, variable assignments, memory
loads and stores, memory allocation, assume statements, sequential composition,
non-deterministic choice, loops, and atomic commands.

An important aspect of our intermediate language is that the atomicity of
memory accesses is explicit. By default, we assume that memory accesses are
non-atomic. When, however, a memory access is guaranteed to be atomic by the
memory model (for example, a single-word memory access to a volatile variable
or field), we make this explicit by enclosing it in an atomic block. Similarly, we
also use atomic blocks to encode complex atomic instructions such as compare-
and-swap. As data races on non-atomic memory accesses can lead to incoherent
results, our proof system ensures that there are no races on non-atomic memory
accesses, but permits races between two atomic commands.

2.1 Underlying Separation Logic Domain

Our verification is parametric with respect to an underlying separation logic ab-
stract domain. Elements of a separation logic domain are assertions belonging to
a fragment of separation logic and are ordered by logical implication. Further, we
assume that this fragment of separation logic includes 	→-assertions, disjunction,
∗-conjunction and that assertions can have free logical variables. We shall use
uppercase italic letters (P , Q, R) to range over such separation logic assertions.
Their meaning with respect to an interpretation (I) mapping logical variables
to values is a set of heaps (partial finite maps from addresses to values):

[[emp]]I
def= {h | dom h = ∅}

[[E 	→ E′]]I
def= {h | dom h = {[[E]]I} ∧ h([[E]]I) = [[E′]]I}

[[P ∗Q]]I
def= {h1 � h2 | h1 ∈ [[P ]]I ∧ h2 ∈ [[Q]]I}

where h1 � h2 denotes the union of the functions h1 and h2 if their domains are
disjoint, and is undefined if their domains overlap. Finally, the abstract domain
must support the following three operations:

Abstraction: Abstract(P ) over-approximates P ([[P ]]I ⊆ [[Abstract(P )]]I)
ensuring that fixpoint calculations of the form P ← P ∨ α(transform(P ))
terminate. This is usually achieved by Abstract having a finite range.
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(Must-)Subtraction: Subtract(P,Q,A) is an enhanced entailment checking
procedure and is also known as ‘frame inference’ [2]. It takes two assertions
(P , Q) and a set of logical variables (A) that are implicitly existentially
quantified in Q. Subtraction tries to find an assertion F such that P =⇒
∃A. Q ∗ F . If such an assertion exists, it returns it; otherwise, it throws an
exception (usually resulting in a verification failure). Note that the frame F
may provide witnesses for the existentially quantified variables A.

May-Subtraction: May-Subtract(P,Q,R) takes three assertions P , Q, and
R and returns an assertion S denoting the left-over state if Q and R are
removed from P and the R-part is added back. Formally, for all I, h1, and
h2, if (h1 � h2) ∈ [[P ]]I and h1 ∈ [[Q]]I and h2 ∈ [[R ∗ true]]I , then h2 ∈ [[S]]I .
May-subtraction is an overapproximation of the separation logic formula
(Q−� P ) ∧ (R ∗ true), where −� is the ‘septraction’ operator [20,5].

The difference between Subtract and May-Subtract is rather important.
Subtract(P,Q, ∅) proves that Q can be removed from P and returns the re-
maining part of the state. In contrast, May-Subtract(P,Q, emp) considers all
the ways that Q might be removed from P and returns the remaining parts of
the state. Consider the following example:

Example 1. Let P ≡ x 	→ 1 ∗ y 	→ 2, Q ≡ a 	→ b. Calling Subtract(P,Q, ∅)
would throw an exception because P does not imply that a is allocated. In
contrast, May-Subtract(P,Q, emp) would return (a = x ∧ b = 1 ∧ y 	→ 2) ∨
(a = y ∧ b = 2 ∧ x 	→ 1). Similarly, May-Subtract(P, emp, Q) would return
(a = x ∧ b = 1 ∧ x 	→ 1 ∗ y 	→ 2) ∨ (a = y ∧ b = 2 ∧ x 	→ 1 ∗ y 	→ 2).

During action inference, we shall use Subtract to calculate the effect of the
atomic commands of the current thread, and May-Subtract to calculate the
effect of interference (i.e., of the commands of the other threads).

Our implementation uses the abstract domains from Distefano et al. [6] and
Vafeiadis [19] as underlying separation logic domains. For Subtract, we used
the entailment algorithm of Berdine et al. [2], and for May-Subtract an im-
provement over the septraction elimination algorithm of Calcagno et al. [5],
which is reported in Appendix A.

2.2 RGSep

RGSep [20] is the program logic on top of which our verification is based. RGSep
logically partitions the state of the program into a number of (disjoint) compo-
nents, which are called regions. Each thread owns one region for its local data,
and there is also one region containing data that is shared among threads. RGSep
assertions describe only the shared region and the current thread’s region and
are given by the following grammar:

p, q ::= PL ∗ PS | p ∨ q | ∃x. p
The first assertion form says that the thread’s local state satisfies PL and that
the shared state is disjoint and satisfies PS. Formally,

[[PL ∗ PS ]]I
def= {(hL, hS) | hL ∈ [[PL]]I ∧ hS ∈ [[PS]]I ∧ defined(hL � hS)}
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Note that the separation logic formulas PL and PS can have common variables.
Such common variables keep track of the correlation between each thread’s local
state and the shared state. In contrast, there is no way of expressing correlations
between the local states of two threads.

The concurrent behaviour of a thread is abstracted by a set of precondition-
postcondition pairs, P � Q, known as actions. Actions summarise what mod-
ifications the atomic statements of a thread can perform on the shared state.
Their semantics is formally defined as follows:

A[[P � Q]] def= {(s � s0, s′ � s0) | ∃I. s ∈ [[P ]]I ∧ s′ ∈ [[Q]]I}

The action’s precondition and postcondition describe only the part of the state
that changes; the remaining part (s0) is assumed not to change, and is not
further constrained. The assertions P and Q can have some free logical variables
(in the domain of I): these are implicitly existentially quantified and their scope
extends over both P and Q.

In this paper, we extend the notion of actions with a context assertion, R,
restricting when the action can execute. Contexts are very useful during action
inference and, in particular, for defining a good join operation (see §4). Formally,
their meaning is:

A[[R | P � Q]] def= A[[P � Q]] ∩ A[[P ∗R � Q ∗R]]
= {(s� s0, s′ � s0) | ∃I. s∈ [[P ]]I ∧ s′ ∈ [[Q]]I ∧ s0 ∈ [[R ∗ true]]I}

The meaning of a set of actions is the reflexive and transitive closure of the
union of the meanings of the individual actions:

[[{a1, . . . , an}]] def= (A[[a1]] ∪ . . . ∪ A[[an]])∗

Reflexive and transitive closure models any arbitrary interleaving of any number
of repetitions of the actions a1 to an.

RGSep judgments are of the form Rely,Guar �RGSep {p} C {q} , where Rely
and Guar are sets of actions and p and q are RGSep assertions. Informally, this
specification says that if the initial state satisfies p and all environment transi-
tions are included in Rely, then (a) C does not fault, (b) all of C’s transitions
are included in Guar , and (c) if C terminates, then the final state satisfies q.
RGSep provides a collection of proof rules for deriving such judgments, which
we omit for brevity. These can be found in [20,18].

Stabilization. An important requirement of the RGSep proof rules is that
certain assertions appearing in the proof of a thread are stable under the rely
condition. Stability is formally defined as follows:

Definition 1 (Stability). An assertion P about the shared state is stable under
the binary relation R, if and only if interference with R cannot falsify P : i.e. for
all I, s, s′, if s ∈ [[P ]]I and (s, s′) ∈ R, then s′ ∈ [[P ]]I .
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Algorithm 1. Stabilize(S,Rely)
1: repeat
2: Sold ← S
3: for all (R | P � Q) ∈ Rely do
4: S ← S ∨Abstract(May-Subtract(S, P, R) ∗Q)
5: until S = Sold

6: return S

Given a rely condition Rely and a possibly unstable assertion S, Alg. 1 computes
a weaker assertion S′ that is stable under Rely. It does so by taking into account
interference with each action in Rely until a fixpoint is reached. To ensure that
the fixpoint calculation converges, we apply abstraction at each loop iteration.

Theorem 1 (Stabilization Soundness). If Stabilize(S,Rely) = S′, then for
all I, [[S]]I ⊆ [[S′]]I and S′ is stable under Rely.

The proof of this theorem follows directly from the definitions of stability, RGSep
actions, and the specification of May-Subtract.

Note that the execution time of Stabilize(S,Rely) is linear in the number
of actions in Rely . Since stabilization is the most time-consuming component of
action inference, it is important that action inference infers small sets of actions.
We shall return to this point in Sect. 4.

3 Action Inference Algorithm

A library consists of an initialization method, init , and a number of access meth-
ods, Ms , which can be executed concurrently after the initialization method has
finished. The most general concurrent client of a library is defined as follows:

Definition 2 (Most General Client). The most general client of a library
executes its initialization method followed by an unbounded number of threads,
each executing any number of the access methods in any order:

mgc(init , {C1, . . . , Cn}) def= init ;‖(C1 ⊕ . . .⊕ Cn)∗

The most general client over-approximates all legal clients of the library in that
concrete clients will use the module in a more constrained way than the most
general client.

Some libraries require that their methods are called in a more constrained
fashion than the most general client above. For example, a lock library typically
assumes that threads do not attempt to acquire any locks that they already
hold nor to release any locks that they do not hold. These requirements can be
formalized with a simple state machine per thread describing which methods the
thread is allowed to call at each time. To verify the lock library, one can encode
the state machine in the body of the acquire and release methods using an
auxiliary thread-local variable.
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Algorithm 2. Infer-Actions(init ,Ms)
1: G ← ∅
2: (−, Inv) ← Symb-Exec(emp, ∅, init)
3: repeat
4: Gold ← G
5: Inv ← Stabilize(Inv , G)
6: for all C ∈ Ms do
7: (Gnew,−) ← Symb-Exec(Inv , G, C)
8: G ← G ∪Gnew

9: until G = Gold

10: return (G, Inv)

Algorithm 3. Memory reads: Symb-Exec(∃z. PL ∗ PS ,Rely, x := [E])
1: if Subtract(PL, E �→α, {α}) = RL then
2: return (∅, ∃z α β. x = α ∧E �→α ∗ RL[β/x] ∗ PS[β/x] )
3: else if inside an atomic block and Subtract(PS, E �→α, {α}) = RS then
4: return (∅, ∃z α β. x = α ∧ PL[β/x] ∗ E �→α ∗ RS[β/x] )
5: else
6: return Error

Infer-Actions (see Alg. 2) takes a library and computes the total interfer-
ence caused by its access methods (G) and its data structure invariant (Inv)
by considering the library’s most general client and doing a fixpoint computa-
tion. The algorithm assumes that clients of the library cannot directly access the
library’s internal state; thus, there is no external rely condition.

To calculate the interference produced by a command, Infer-Actions calls
our new symbolic execution procedure, Symb-Exec. This takes a precondition
p, a rely R, and a command C and tries to prove memory safety returning
a guarantee G and a postcondition q such that R,G �RGSep {p} C {q}. If
Symb-Exec(p,R,C) fails to prove memory safety, then it returns Error.

We consider memory safety to be the most basic property that all programs
should have, and thus fail verification if this property cannot be established.
In addition to memory safety, however, action inference can prove much more
interesting properties, such as data structure invariants, and discharge user-
supplied assertions.

Symbolic execution is defined by induction on the command, C.

Memory Reads. When symbolic execution encounters a memory read (see
Alg. 3), it tries to apply the memory read axiom of separation logic. If it is a non-
atomic read, the memory location must be in the local state: this is to prevent race
conditions. Otherwise, if the read is inside an atomic block (e.g. because the read
is atomic, or it used to implement a complex atomic instruction such as CAS), the
memory location can also be in the shared state. As memory reads do not change
the heap, the guarantee condition is empty. If Symb-Exec cannot prove that the
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Algorithm 4. Memory writes: Symb-Exec(∃z. PL ∗ PS ,Rely , [E] := E′)
1: if Subtract(PL, E �→α, {α}) = RL then
2: return (∅, ∃z. E �→E′ ∗RL ∗ PS )
3: else if inside an atomic block and Subtract(PS, E �→α, {α}) = RS then
4: (PL2S, P ′

L) ← Reachable-Split(PL, E �→E′)
5: act ← A-Abs(RS | E �→α � E �→E′ ∗ PL2S)
6: return ({act}, ∃z. P ′

L ∗ E �→E′ ∗ PL2S ∗RS )
7: else
8: return Error

memory cell exists, it returnsError. This is consistentwith the standard memory
model, where programs fail when they access unallocated memory.

If the precondition is disjunctive, Symb-Exec does the obvious case split:

Symb-Exec(
∨

i ∃zi. Pi ∗ Qi ,Rely , x := [E]) def=
for each i do

(Gi, qi) ← Symb-Exec(∃zi. Pi ∗ Qi ,Rely , x := [E])
return (

⋃
i Gi,

∨
i qi)

Memory Writes. If the precondition is disjunctive, symbolic execution does
the same case split as for memory reads above. For non-disjunctive preconditions,
see Alg. 4. If the write is local, it does not affect the shared state; so G = ∅. If,
however, the write is on the shared state (and hence the write is required to be
within an atomic block), then its effect is an action, act, which might include
some transfer of ownership that re-adjusts the boundary between the local and
the shared states. The algorithm relies on a simple reachability heuristic to decide
how to re-adjust this boundary. After the memory write, any part of the local
state that is reachable from E′ is accessible from the shared memory location E,
and thus can be accessed by other threads. Therefore, symbolic execution splits
the local assertion PL into two parts: PL2S that becomes shared, and P ′

L that
remains local.

As a final step, symbolic execution calls action abstraction, A-Abs, which
over-approximates the inferred action. Its input an action R | P � Q and
returns a larger action R′ | P ′ � Q′; i.e. A[[R | P � Q]] ⊆ A[[R′ | P ′ � Q′]].
Over-approximation is necessary in order to ensure convergence of the algorithm.

Our implementation of A-Abs consists of two steps. First, it existentially
quantifies over local program variables and forgets any pure facts involving them.
Second, it applies the underlying abstraction of the separation logic domain to
R, P , and Q. We have also experimented with a more aggressive abstraction that
removes any list segments appearing in the context. This was partly motivated
by our experience: actions containing list segments are rarely needed in manual
proofs. Nevertheless, they are necessary for some examples.

Other Program Constructs. Dealing with the other constructs is easy and
follows directly from the corresponding RGSep proof rules (see Alg. 5).
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Assignments: For simplicity, we assume that all shared variables are allocated
in the heap. This is easy to achieve by a preprocessing step which allo-
cates global variables at statically known memory addresses, converting any
assignments to global variables into memory writes. Thus, the remaining as-
signments affect only local variables, and their guarantee condition is empty.

Allocation Commands: Allocated cells are part of the local state.
Sequencing: The guarantee condition of a sequential composition, C1;C2, is

the union of the guarantee conditions of the two commands, C1 and C2.
Choice: Similarly, the guarantee condition of C1 ⊕C2 is the union of the guar-

antee conditions of the two branches, C1 and C2.
Loops: Calculating the loop invariant involves a standard fixpoint computa-

tion which applies widening after each iteration. The guarantee condition
of the loop is the guarantee condition of the last iteration in the fixpoint
computation. To ensure that the fixpoint converges, at each iteration p is
abstracted by performing the abstraction of the underlying separation logic
domain (Abstract) to all its PL and PS components.

Atomic Commands: Symbolic execution runs the body of the atomic com-
mand assuming that there is no interference (Rely = ∅) and then does a
stabilization step to take into account interference from other threads. The
guarantee condition of the atomic block is just the guarantee condition of
its body.

Symbolic execution and action inference are sound in the following sense:

Theorem 2 (Symbolic Execution Soundness). If Symb-Exec(p,Rely, C)
returns (G, q), then Rely, G �RGSep {p} C {q}.

Theorem 3 (Action Inference Soundness). If Infer-Actions(init ,Ms)
returns (G, Inv ), then ∅, G �RGSep {emp} mgc(init ,Ms) {Inv }.

To prove these theorems, we first have to prove the following simpler lemma:

Lemma 1. If Symb-Exec(p, ∅, C) returns (G, q), then ∅, G �RGSep {p} C {q}.

This follows from the RGSep proof rule for atomic blocks and the proof rules in
Section 4.2 of Vafeiadis’s thesis [18]. The theorems then follow easily from the
RGSep proof rules [20] and from Lemma 1.

Incompleteness. There are three sources of incompleteness to consider.
First, without auxiliary variables rely-guarantee reasoning is intentionally in-

complete. This incompleteness is exactly what makes rely-guarantee reasoning
tractable. In practice, auxiliary variables are rarely needed for the sort of pro-
grams we have looked at. (None of the memory safety benchmarks of Sect. 5
needed auxiliary variables, except that in the algorithms using locks we modelled
locks as storing the identifier of the thread holding the lock. In the linearizability
benchmarks, auxiliary variables are used as part of the specification.) Symbolic
execution does not attempt to infer such auxiliary variables.
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Algorithm 5. Symb-Exec(p,Rely , C) where p ≡
∨

i ∃zi. Pi ∗ Qi

1: if C is skip then
2: return (∅, p)
3: else if C is assume(E) then
4: return (∅,∨i ∃zi. E �=0 ∧ Pi ∗ Qi )
5: else if C is x := E then
6: return (∅,∨i ∃zi.∃β. x=E[β/x] ∧ Pi[β/x] ∗ Qi[β/x] )
7: else if C is x := malloc() then
8: return (∅,∨i ∃zi.∃α β. x�→α ∗ Pi[β/x] ∗ Qi[β/x] )
9: else if C is (C1; C2) then

10: (G1, q1) ← Symb-Exec(p,Rely , C1)
11: (G2, q2) ← Symb-Exec(q1,Rely , C2)
12: return (G1 ∪G2, q2)
13: else if C is (C1 ⊕ C2) then
14: (G1, q1) ← Symb-Exec(p,Rely , C1)
15: (G2, q2) ← Symb-Exec(p,Rely , C2)
16: return (G1 ∪G2, q1 ∨ q2)
17: else if C is (C0)∗ then
18: repeat
19: pold ← p
20: (Gnew, p) ← Abs-Post(Symb-Exec(p,Rely , skip⊕ C0))
21: until p = pold

22: return (G ∨Gnew, p)
23: else if C is atomicC0 then
24: (G,

∨
i ∃xi. Pi ∗ Qi ) ← Symb-Exec(p, ∅, C0)

25: return (G,
∨

i ∃xi. Pi ∗ Stabilize(Qi,Rely) )

Second, symbolic execution of atomic blocks is incomplete if the body of an
atomic block contains an execution path with more than one memory write. For
example, consider the atomic block atomic ( [a] := 10; [b] := 10 ). Assuming
the two memory locations a and b were initialized to α and β respectively, then
the atomic block does the action:

A def= (emp | a	→α ∗ b 	→β � a 	→10 ∗ b 	→10)

However, calling Symb-Exec would return two actions:

G
def= {(b 	→β | a 	→α � a 	→10), (a 	→10 | b 	→β � b 	→10)}

It is easy to show that [[{A}]] � [[G]]. Action A can be simulated by doing the
two actions of G in sequence. In the other direction, G allows us to change one
field at a time, whereas A demands that both fields are modified in one step.

Normally this form of incompleteness is harmless because atomic commands
arise from a single memory read, write or CAS and hence contain at most one
memory write. More advanced atomic commands, such as those due to a DCAS
or ones containing assignments to auxiliary variables, can contain more than
one memory writes. To deal with such atomic commands precisely we introduce
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a parallel memory write command, which writes to multiple heap locations in
one step. This is analogous to the parallel assignment statement present in some
programming languages. Symbolic execution of parallel memory writes executes
each write separately, but collects all the updates together and returns one action
describing all the updates.

Third, the sub-procedures used by the analysis are often incomplete. This
includes Subtract, May-Subtract, the abstraction of separation logic asser-
tions and of RGSep actions, and the reachability heuristic for deciding ownership
transfer. From all these, incompleteness arising from the abstraction of separa-
tion logic assertions is the most frequent.

Small Example. To illustrate our symbolic execution and action inference
algorithms, consider a trivial shared stack which supports only a push operation:

init def= S := malloc(); [S] := NULL

push def= y := malloc(); b := false;⎛

⎝
assume(¬b); atomic〈x := [S]〉; atomic〈[y] := x〉;

atomic

〈
t := [S];

(
(assume(t = x); [S] := y; b := true)
⊕ assume(t �= x)

)〉
⎞

⎠
∗

;

assume(b)

The stack is implemented as a linked list starting from address S. The initial-
ization method, init, creates an empty stack. The method push creates a new
node (y) and tries to add it at the beginning of the stack using a compare&swap
(CAS) instruction inside a loop. The big atomic block inside the loop results
from desugaring the CAS instruction. Similarly, the variable b arises from a
break statement.

Let us execute action inference on this example: Symb-Exec(emp, ∅, init)
returns the postcondition S 	→ NULL. As every assertion is stable under the
empty rely, stabilization does nothing and returns the same assertion. Then,
action inference calls Symb-Exec(S 	→ NULL , ∅, push). Symbolically executing
the first two commands of push results in the state ∃α. ¬b ∗ y	→α ∗ S 	→ NULL .

Now consider the loop of push. The first memory read is from the shared state
and gives us the postcondition: ∃α. x = NULL∗¬b∗y	→α∗ S 	→ NULL . Next, there
is a local write, which gives the postcondition: x=NULL ∗ ¬b ∗ y 	→x ∗ S 	→ NULL .
Then, there is the big atomic block representing a CAS. After the memory read,
t := [S], we get: t=x ∗ x=NULL ∗ ¬b ∗ y 	→x ∗ S 	→ NULL . Therefore, from the two
conditional branches, only the first one is possible. In this branch, the memory
write is shared; so symbolic execution has to compute an action. According to
reachability heuristic, the memory cell y	→x becomes shared, as it is reachable
from y. The postcondition is t=x ∗ x=NULL ∗ ¬b ∗ S 	→ y ∗ y 	→NULL and the
inferred action is

A1
def= emp | S 	→ NULL � S 	→ y ∗ y 	→ NULL

Then, as b becomes true, symbolic execution exits the loop, and returns.
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Therefore, in the first iteration of its fixpoint loop, action inference has com-
puted G = {A1} and Inv = S 	→ NULL. In the second iteration, Inv is no longer
stable. Stabilization returns Inv = (S 	→ NULL∨∃y. S 	→ y ∗y 	→ NULL), and sym-
bolic execution also returns the action A2

def= x 	→ NULL | S 	→ x � S 	→ y∗y 	→ x.
In the third iteration, Inv becomes listseg(S, NULL)1 and symbolic execution also
returns: A3

def= listseg(x, 0) | S 	→ x � S 	→ y ∗ y 	→ x. In the fourth iteration,
Inv is already stable, and symbolic execution returns no new actions. Therefore,
action inference terminates after four iterations and having found three actions.

4 Non-standard Join

As presented above, the Infer-Actions and Symb-Exec algorithms use set
union to combine sets of actions. Using set union, however, produces too many
actions, many of which are unnecessary. For instance, in the stack example above,
the actions A1 and A2 are both included in the action A3, and hence are unnec-
essary once A3 is discovered.

As remarked in Sect. 2, having a large set of actions makes stabilization cal-
culations slower, which in turn slows down action inference. More importantly,
however, the output of action inference becomes difficult to read and slows down
any verification procedures that use action inference as their first step (e.g. [9]).

Therefore, we shall replace set union with a more aggressive join operation.
The idea is to define a ‘lossless’ join that removes actions that are already in-
cluded in other actions. Note that there is a natural inclusion order on actions:
action a is semantically included in action b if and only if A[[a]] ⊆ A[[b]]. In gen-
eral, testing whether A[[a]] ⊆ A[[b]] is undecidable. We can, however, define the
following decidable approximation to action inclusion:

Definition 3. (R1 | P1 � Q1) � (R2 | P2 � Q2) if and only if there exists a
substitution σ of the logical variables such that P1 = σ(P2), Q1 = σ(Q2), and
R1 � σ(R2) ∗ true.

It is easy to check that if a � b, then A[[a]] ⊆ A[[b]]. To calculate (R1 | P1 �
Q1) � (R2 | P2 � Q2), we run first order unification to find a substitution σ
such that P1 = σ(P2) and Q1 = σ(Q2), and then call Subtract(R1, σ(R2), ∅)
to decide whether R1 � σ(R2) ∗ true.

Example 2. Consider the actions A def= (y 	→3 | x 	→0 � x	→1), A′ def= (x 	→0 ∗
y	→3 � x 	→1 ∗ y	→3), and B

def= (x 	→a � x 	→1). Clearly, A[[A]] = A[[A′]] ⊆ A[[B]],
because A and A′ allow us to write 1 to x only when it previously contained 0
and y contained 3, whereas B allows us to write 1 to x regardless of the original
value of x and the value of y. It is also easy to check that A � B; just take σ to
be the substitution mapping a to 0. In contrast, A′ �� B, A �� A′, and A′ �� A.
In principle, we could have defined a finer approximation to inclusion so that

1 The list segment comes from applying Distefano’s abstraction to the formula
∃yz. S �→ y ∗ y �→ z ∗ z �→ NULL, which arises during the initial stabilization.
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Data structure No join Lossless join Man
#I #A Time #I #A Time #A

Treiber stack [17] 4 5 0.09s 4 2 0.08s 2
M&S two-lock queue [13] 5 26 0.33s 5 12 0.25s 6
M&S non-blocking queue [13] 5 10 1.69s 5 6 1.45s 3
DGLM non-blocking queue [7] 5 12 2.23s 5 8 1.97s 3
Lock-coupling list [10] 4 21 0.98s 4 10 0.81s 4
Optimistic list [10] 5 30 109.06s 5 10 52.29s 4
Lazy list [10] 5 48 59.98s 5 13 26.21s 5
CAS-based set [21] 3 9 24.74s 2 5 8.80s 3
DCAS-based set [21] 2 6 0.31s 2 4 0.27s 2

Fig. 1. Verification times for the memory safety benchmarks

Data structure No join Lossless join Man
#I #A Time #I #A Time #A

Treiber stack [17] 4 5 0.14s 4 2 0.09s 2
M&S two-lock queue [13] 6 39 0.70s 6 13 0.48s 6
M&S non-blocking queue [13] 6 14 4.37s 6 7 3.76s 3
DGLM non-blocking queue [7] 6 16 4.88s 6 9 4.22s 3

Fig. 2. Verification times for the linearizability benchmarks

the latter three inclusions were also true, but such a finer approximation would
have been significantly slower to compute. Instead, we simply avoid generating
problematic actions such as A′.

From this computable check for action inclusion, we define the following ‘lossless’
join operator:

A � {b} def= if ∃a ∈ A. b � a then A else {b} ∪ {a ∈ A | a �� b}
A � {b1, . . . , bn} def= (· · · (A � {b1}) � . . .) � {bn}

The join A � B inserts the actions of B into A one at a time. For every such
action, b, if it is already included in A, it is discarded; otherwise, b is added into
A and every action of A that is included in b is removed.

Finally, we prove that join does not forget any information.

Lemma 2. For all sets of actions A and B, [[A �B]] = [[A ∪B]].

The proof of this lemma follows from the observation that if a � b, then
[[{a, b}]] = [[{b}]]. Lemma 2 means that we can replace union by the lossless
join in the Infer-Actions and Symb-Exec algorithms without any loss in
precision.

5 Evaluation

We have run action inference on a number of fine-grained concurrent algorithms
from the literature. For the first set of benchmarks (Fig. 1), we have proved
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memory safety and inferred the expected data structure shape invariants (e.g.,
in all cases we can show the data structures are acyclic). For the second set of
benchmarks (Fig. 2), we have taken the stack and queue algorithms from Fig. 1
and have proved linearizability using the method described in [19,1], which is to
instrument the algorithms by manually inserting auxiliary code describing the
linearization points of each algorithm.

We have run our tool in two modes: with no join enabled, and with lossless join
enabled. For each run, we have recorded the number of iterations that Infer-
Action takes in order to reach a fixpoint (#I), the number of actions inferred
(#A), and the total verification time (Time). The final column reports the
minimum number of actions needed for a manual proof of the algorithm. The
tests were conducted on a 3.4GHz Pentium 4 processor running Windows Vista.

Enabling join significantly reduces the number of actions inferred, and hence
also the verification times especially for the more difficult benchmarks. The num-
ber of actions inferred using the lossless join is still quite larger than what would
have been written by hand. This is mainly due to a number of unnecessary case
splits present in the set of inferred actions. Normally, enabling lossless join does
not affect the number of iterations taken by Infer-Action. This is expected,
because the action set calculated using lossless join is semantically equivalent to
the set calculated using normal set union. Somewhat counter-intuitively, how-
ever, the CAS-based set example finishes in fewer iterations when lossless join is
used. This is probably due to the incompleteness of entailment checking between
separation logic formulas.

Trying to further reduce the number of inferred actions, we have experimented
with a more aggressive action abstraction that drops all list segments from the
actions’ contexts. While this abstraction works well for most of the examples,
the resulting actions are too weak to prove functional correctness of the linked
list benchmarks. (They are sufficient for proving memory safety.)

Other Uses of Action Inference. Action inference has already been used
as a subcomponent in two related verification procedures. The first use was in
verifying liveness properties of non-blocking algorithms by Gotsman et al. [9].
There, one first runs action inference to prove memory safety and to compute a
set of RGSep actions. Then, one does a layered proof search attempting to show
that certain actions are not executed infinitely often and that certain operations
terminate. This proof search is quadratic in the number of inferred actions; so
inferring few actions is necessary for achieving good performance.

The second use is in a new verification procedure for linearizability that does
not require linearization point annotations. This procedure constructs a list of
candidate linearization point assignments, and then searches through the list
checking whether any of those assignments is valid. In this case, action inference
is executed both as an initial phase in order to find candidate linearization point
assignments and at each step of the proof search in order to determine whether
a given linearization point assignment is valid. This procedure can verify the
benchmarks in Fig. 2 within 10 seconds each.
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6 Related Work

Action inference extends the original work on RGSep shape analysis [5]. It is
similar in spirit to the thread-local shape analysis by Gotsman et al. [8], but
technically quite different. Both works attempt to verify one thread at a time
and do a global fixpoint calculation to compute the interaction between threads.
The major difference is that Gotsman calculates resource invariants, whereas we
calculate a set of actions. The shift from invariants to sets of actions makes our
method more expressive and thus able to reason about fine-grained concurrency,
but also required us to introduce concepts such as stabilization. In contrast,
Gotsman et al. can handle only coarse-grained concurrency.

Manevich et al. [12], Berdine et al. [3], and Segalov et al. [16] have developed
a series of related shape analyses that suitably restrict the correlations between
the states of different threads that are tracked. This gives them a very strong
thread-modular flavour. Their main difference is that action inference does an
abstract interpretation over both invariants and actions, whereas the other three
analyses do abstract interpretation only over invariants. The second important
difference is the underlying abstract domain: we use separation logic, whereas
they use three value logic. Using action inference, we can verify roughly the same
programs and properties as the other three analyses, but our verification times
have so far been significantly faster.

7 Conclusion

We have presented an algorithm for computing the interference caused by a
program enabling us to verify safety properties of concurrent heap-manipulating
programs. Our action inference algorithm forms the basis of more advanced
verification methods for proving certain liveness properties [9] and linearizability.

In the future, we would like to apply action inference to larger and more
complex concurrent libraries. The main technical obstacle in achieving this is to
make the sequential shape analyses expressive enough to describe the invariants
of such libraries. We would also like to consider program verification in the
context of relaxed memory models, and to replace the reachability heuristic for
determining ownership transfer with a more robust technique possibly based on
footprint analysis [14] or bi-abduction [4].

Acknowledgements. I would like to thank Alexey Gotsman, Matthew Parkin-
son, Mohammad Raza, Mooly Sagiv, and Hongseok Yang for useful discussions
and comments, and especially the anonymous reviewers for their constructive
and detailed feedback.
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A May-Subtraction Implementation

This section describes an efficient implementation of may-subtraction for the
following simple list segment domain:

P,Q,R ::= false | (∃z. Π ∧Σ) | P ∨Q Full assertions
Π ::= true | E = E′ | E �= E′ | Π ∧Π Pure part
Σ ::= emp | true | E 	→A E′ | lsA(E,E′) | Σ ∗Σ Spatial part

To implement may-subtraction efficiently, each primitive assertion is annotated
with a permission set, ∅ �= A ⊆ {1, 2, 3}, represented as a bit-vector. These
permission annotations are used only internally within the may-substraction
calculation; its interface does not expose the permission annotations.

Similar to Berdine et al. [2], we represent formulas in a canonical form up to
the usual properties of ∗, ∧, and ∨ (commutativity, associativity, distribution
of ∗ and ∧ over disjunction, identity and nullary elements, true ∗ true = true),
substitution of equated terms, and the following three new normalization rules:

x	→Ay ∗ x	→Bz ⇐⇒ y = z ∧ x	→A�By
x	→Ay ∗ lsB(x, z) ⇐⇒ x = z ∧ x	→Ay ∨ x	→A�By ∗ lsB(y, z)

lsA(x, y) ∗ lsB(x, z) ⇐⇒ lsA�B(x, y) ∗ lsB(y, z) ∨ lsA�B(x, z) ∗ lsA(z, y)

where we take x	→A�By to mean x	→A∪By if A ∩ B = ∅ and false otherwise.
Similarly, lsA�B(x, y) stands for lsA∪B(x, y) if A ∩ B = ∅, and x = y ∧ emp
otherwise. These rules check whether there are any overlapping spatial conjuncts,
and perform case splits to eliminate such conjuncts. (Repeated application of
these rules terminates, because within each disjunct each rule either reduces the
number of spatial conjuncts, or keeps the same number of spatial conjuncts, but
increments one of their permission annotations.) Our rules are better than the
normalization rules of Berdine et al. [2], as they resolve all ‘spooky’ disjuncts
and avoid a quadratic expansion of the formula in the common case.

Our implementation of may-subtraction uses the permission annotations to
exploit the above normalization rules. It is defined in terms of a helper function:

May-Subtract(P,Q,R) def= MaySubHelper(P{1} ∗R{2} ∗Q{2,3})

where PA marks the spatial conjuncts of the (non-annotated) assertion P with
A. Permission {1} indicates that the conjunct belongs the P ; permission {2} says
that it belongs to either Q or the context R (and has to be matched with some-
thing in P ), whereas permission {3} indicates the conjunct has to be matched
with something in P and then removed for the result.

The helper function, MaySubHelper, is defined in Alg. 6. First, it applies
the normalization rules. If all conjuncts are matched (i.e., none remain with
a label not containing 1), it returns all the conjuncts that must not be re-
moved (i.e., those whose label does not contain 3). If, there is an unmatched
	→, then MaySubHelper does a case split as to which primitive conjunct the
	→ belongs, and continues. Otherwise, if an unmatched list segment remains,
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Algorithm 6. MaySubHelper(P )
Res ← false
for each disjunct Π ∧Σ in Normalize(P ) do

if ∃x, y,A such that (x �→Ay) ∈ Σ and 1 /∈ A then
Res ← Res ∨MaySubHelper(

∨
S∈Σ Π ∧ Expose(x, y, S) ∗�(Σ \ S))

else if ∃x, y,A such that (lsA(x, y)) ∈ Σ and 1 /∈ A and 3 /∈ A then
Res ← Res ∨MaySubHelper(Π ∧Σ)

else if ∃x, y,A such that (lsA(x, y)) ∈ Σ and 1 /∈ A then
Res ← Res ∨ (Π ∧ true)

else
Res ← Res ∨ (Π ∧�{S | SA ∈ Σ ∧ 3 /∈ A})

return Res

where
Expose(x, y, true) def= x �→{1}y ∗ true Expose(x, y, z �→Bw) def= x = z ∧ x �→Bw

Expose(x, y, lsB(z, w)) def= lsB(z, x) ∗ x �→By ∗ lsB(y, w)

MaySubHelper conservatively assumes that it could match any part of the
formula.

Our May-Subtract algorithm is a significant improvement over the sep-
traction elimination algorithm by Calcagno et al. [5], as it can handle contextual
matches (i.e., the R component) and it delays the application of the expensive
rule that exposes 	→-assertions. The soundness of our algorithm follows from the
semantics of separation logic assertions and permissions.
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Abstract. This paper investigates relative precision and optimality of
analyses for concurrent probabilistic systems. Aiming at the problem at
the heart of probabilistic model checking – computing the probability of
reaching a particular set of states – we leverage the theory of abstract in-
terpretation. With a focus on predicate abstraction, we develop the first
abstract-interpretation framework for Markov decision processes which
admits to compute both lower and upper bounds on reachability prob-
abilities. Further, we describe how to compute and approximate such
abstractions using abstraction refinement and give experimental results.

1 Introduction

Markov decision processes (MDPs) play a crucial role as a semantic model in
the analysis of systems with random phenomena like network protocols and ran-
domized algorithms. MDPs feature non-determinism and probabilistic choice.
Typically one is interested in computing (maximal or minimal) reachability prob-
abilities, e.g., the probability of delivering three messages after ten transmission
attempts. For finite MDPs, probabilistic reachability can be reduced to a lin-
ear optimization problem [1]. Recently predicate-abstraction techniques have
evolved [2,3] that scale to realistic programs which map to very large, even infi-
nite MDPs. However, fundamental questions remain open, e.g. for given predi-
cates, what is the most precise abstract program that is still a valid abstraction?

The theory of abstract interpretation [4] has provided answers to such ques-
tions in the non-probabilistic case [5] and has served as a foundation and de-
sign paradigm for a wide range of other program analyses, e.g. [6,7,8]. In ab-
stract interpretation, program analyses are expressed in terms of non-standard
abstract semantics obtained by replacing the actual domain of computation
(also called concrete domain) by an abstract domain. Concrete and abstract do-
main are partially ordered sets where ordering describes relative precision of the
denotations.

A specification of the most precise analysis is given by the composition
f � = α ◦ f ◦ γ of concretization function γ, the functional f characterizing the
program semantics and abstraction function α, under the condition that func-
tions α and γ form a Galois connection. Being the limit on the best achievable
precision for any valid abstraction, functional f � is called best transformer [9].

These concepts are the starting point of our work. Yet a key element is missing:
a suitable instantiation of abstract interpretation for our setting.
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Related Work. While in [10,11,12,13] ideas from abstract interpretation have
been applied to probabilistic models, to the best of our knowledge, there is no
preceding framework for MDP abstraction with Galois connections and best
transformers. Papers [11,12,13] target deterministic models and not MDPs.

The pioneering contribution in terms of abstract interpretation for MDPs is
due to Monniaux [10]. His parametric concept of abstract domains allows to
plug in a wealth of base domains from static analysis. However, the resulting
abstract domains contain distinct abstract values with the same denotation [14],
which means that the abstract domain is not partially ordered (the order is not
anti-symmetric). Thus the abstraction precludes Galois connections and is not
suitable to develop best transformers.

Further, the aforementioned abstract-interpretation approaches have yet to be
combined with abstraction refinement. Refinement admits to adjust the abstrac-
tion to the desired precision, which is particularly important in our quantitative
setting. In this respect, abstraction refinement based on predicate abstraction
has recently shown promising results. The abstraction-refinement method Prob-
abilistic CEGAR [2] computes upper bounds on reachability probabilities for
concurrent probabilistic programs, an infinite-state variation of the language of
the popular probabilistic model checker PRISM [15]. The software model checker
in [3] employs predicate abstraction and game-based abstraction [16]. Game-
based abstraction maps MDPs to stochastic games. The salient and inspiring
point of this influential work is that game-based abstraction yields both lower
and upper bounds on reachability probabilities, rather than just one bound.

Contribution. Our major theoretical contribution (Sec. 3) is the first abstract-
interpretation framework for MDPs which admits to compute both lower and
upper bounds on reachability probabilities. This provides a solid basis to reason
about the relative precision and optimality of abstract transformers. Further, we
prove equivalence of game-based abstraction with best transformers in our frame-
work. Crucial differences to the abstract-interpretation framework [10,14] are: we
consider not only upper but also lower bounds, we target predicate abstraction
not classical domains from static analysis, and we express our abstraction in
terms of Galois connections.

Our second contribution (Sec. 4) is the first abstraction-refinement technique
for concurrent probabilistic programs that yields both lower and upper bounds.
Previous analysis techniques for such programs are [17,2,18], also based on pred-
icate abstraction. While [2] comes with refinement, it employs an MDP-based
abstraction [19] that gives only effective upper bounds. Whereas [18] comes with-
out refinement and uses game-based abstraction, which yields these bounds but
requires up to exponentially higher construction cost than MDP-based abstrac-
tion and tracking of complex dependencies between commands, which makes
all the difference in practice. The basis of our refinement technique is paral-
lel abstraction, a novel abstraction, computable with the same complexity as
MDP-based abstraction [17,2]. Parallel abstraction yields effective lower and up-
per bounds and combines well with refinement. We have implemented our ideas
in the PASS tool and report on experimental results (Sec. 5).
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2 Background

Sec. 2.1 first recalls basic notions of abstract interpretation including lattices,
Galois connections and best transformers. We then introduce the lattice of val-
uations, the domain for abstract probabilistic reachability analysis, in which
probabilities can be represented and computed. In Sec. 2.2, we turn to MDPs
and probabilistic reachability.

2.1 Galois Connections, Best Transformers and Valuations

The pair (A,≤) is a partially-ordered set, or poset, if A is a set and ≤ ⊆ A×A a
partial order, i.e. a reflexive, antisymmetric and transitive relation. Let (A,≤),
(B,≤), (C,≤) be posets. For two functions f, g : A → B, we write f ≤ g if
f(a) ≤ g(a) for all a ∈ A. We denote the composition of two functions f1 : A → B
and f2 : B → C by (f2 ◦f1) : A→ C where (f2 ◦f1)(a) = f2(f1(a)) for all a ∈ A.
Function f : A→ B is monotone if for all a, a′ ∈ A, a ≤ a′ =⇒ f(a) ≤ f(a′).

A (complete) lattice is a poset (L,≤) in which each subset M ⊆ L has a
greatest lower bound

�
M and least upper bound

⊔
M w.r.t. ≤. For a mono-

tone function f : L → L over a lattice (L,≤), Tarski’s theorem [20] guarantees
existence of least and greatest fixpoints, lfp≤ f and gfp≤ f respectively. They
are given by: lfp≤(f) =

�
{x ∈ L|f(x) ≤ x} and gfp≤(f) =

⊔
{x ∈ L|f(x) ≥ x}.

In abstract interpretation, the original program semantics, also called concrete
semantics, is typically defined over a lattice (L,≤), called concrete domain, and
the abstract semantics is defined over a lattice (M,≤), called abstract domain.
The intuition behind the order ≤ in both lattices is that elements higher in the
order represent less information. Thus an element m ∈ M is more precise than
another element m′ ∈ M if m ≤ m′, so m′ over-approximates m. For L, the
analog holds. The program semantics is described by a concrete transformer, a
monotone function f : L → L. An abstract transformer is a monotone function
g� : M → M . Two monotone functions relate abstract and concrete world: the
abstraction function α : L → M and the concretization function γ : M → L.
The pair (α, γ) is a Galois connection, denoted by (L,≤) −−−→←−−−

α

γ
(M,≤), if for all

l ∈ L and m ∈M , we have α(l) ≤ m⇐⇒ l ≤ γ(m).
We call an abstract transformer g� : M → M a valid abstraction of f if

(f ◦ γ) ≤ (γ ◦ g�). For transformer f : L → L, the best transformer [9], is the
composition of functions: f � = α ◦ f ◦ γ. By construction, f � is the most precise
abstract transformer that is a valid abstraction of f , i.e. f � ≤ g� for any valid
transformer g� : M →M . This follows from properties of the Galois connection.

Lattice of Valuations. A valuation over a set S is a function w : S → [0, 1] that
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maps elements of S to probabilities. The valu-
ations WS = {w | w : S → [0, 1]} over S form a
lattice (WS ,≤) with order ≤ where w ≤ w′ if
w(s) ≤ w′(s) for all s ∈ S. The figure to the right
shows two valuations w1 and w2 over a set S with
16 elements. Each element is drawn as a circle and the corresponding value is
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annotated above the circle. We have w1 ≤ w2, i.e., w2 is an upper bound for
w1, and w1 a lower bound for w2. The lattice (WS ,≥) results by inverting the
order in (WS ,≤). We later use lattice (WS ,≥) for abstractions yielding lower
bounds and lattice (WS ,≤) for upper bounds. Two lattices are necessary because
lattice ordering represents precision, and a lower bound is the more precise the
larger it is, while an upper bound is the more precise the smaller it is. To avoid
confusion: symbols

�
and

⊔
always refer to the least elements and greatest el-

ements respectively in (WS ,≤) as given above, and not the ones in (WS ,≥).
We have (

�
V ) (s) = infw∈V w(s), and (

⊔
V ) (s) = supw∈V w(s) for V ⊆WS . A

valuation transformer is a monotone function f : WS →WS . Due to duality, we
have (gfp≥ f) = (lfp≤ f) and (lfp≥ f) = (gfp≤ f).

2.2 Markov Decision Processes

A distribution π over S is a function π : S → [0, 1] such that
∑

s∈S π(s) = 1. Let
DistrS be the set of distributions over S. For a distribution π ∈ DistrS , we
denote by Supp(π) = {s ∈ S | π(s) > 0} its support and abbreviate summation
over a subset S′ ⊆ S by π(S′) :=

∑
s∈S′ π(s).

A Markov decision process (MDP) M is a tuple (S, I,A, R) where S is a
set of states, I ⊆ S is a set of initial states, A is a finite action alphabet, and
R : S×A⇀ DistrS the transition function. The transition function R is a partial
function, as indicated by the ⇀ arrow: only certain actions may be enabled in a
state of the MDP or even none. In the latter case, the state is called absorbing. For
s ∈ S, we denote its enabled actions by A(s) = {a | ∃π ∈ DistrS . π = R(s, a)},
and its out-going distributions by Distr(s) = {R(s, a) | a ∈ A(s)}. For a ∈ A(s),
we define π(s,a) := R(s, a) and say that (s, a, π(s,a)) is a transition of M.

A path is a sequence (s0, a0, π0), (s1, a1, π1), . . . such that s0 ∈ I, (si, ai, πi)
are transitions ofM, and si+1 ∈ Supp(πi) for all i ∈ N. Let Path(M) denote the
set of all paths overM. Similarly finite paths can be defined. For β ∈ Path(M),
let β[i] = si denote the (i+ 1)-th state of β.

Markov chains are special cases of MDPs, deterministic MDPs where for every
state s there is at most one enabled transition |A(s)| ≤ 1. Unlike a Markov chain,
an MDP is not a fully determined stochastic process. In order to obtain a prob-
ability measure, the notion of a strategy is needed to resolve non-determinism.
In general, a strategy σ of an MDP M is a function from finite paths to dis-
tributions over actions. We denote the set of strategies of M by ΣM. For a
given state s ∈ S and a strategy σ, let Prσ

s denote the corresponding probability
measure [1] over Path(M).

Probabilistic Reachability. Let M = (S, I,A, R) be an MDP, and let F ⊆ S
be a set of goal states. Let pσ

s (F ) := Prσ
s ({β ∈ Path(M) | ∃i ∈ N : β[i] ∈ F})

denote the probability of reaching a goal state in F from state s ∈ S with strategy
σ. For a fixed strategy σ, this defines a valuation pσ(F ) ∈ WS which maps a state
s to pσ

s (F ). In the context of MDPs, one studies minimal p−(F ) ∈WS and max-
imal p+(F ) ∈WS reachability probabilities where p−(F ) =

�
{pσ(F ) | σ ∈ ΣM}
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is the infimum and p+(F ) =
⊔
{pσ(F ) | σ ∈ ΣM} the supremum over all strate-

gies. Below we define two valuation transformers to characterize the minimal
and maximal reachability probabilities.

Definition 1 (Valuation Transformers for MDPs). Let F0 ⊆ S be the set of
states that cannot reach states in F . The valuation transformer pre−F : WS →WS

is defined by: pre−F (w)(s) = 1 if s ∈ F , pre−F (w)(s) = 0 if s ∈ F0, and otherwise:

pre−F (w)(s) = min
a∈A(s)

∑

s′∈S

π(s,a)(s′) · w(s′).

The valuation transformer pre+F : WS → WS is defined analogously, with the
difference that it maximizes over all enabled actions.

Example 1. We illustrate the transformer pre−F by considering the MDP in Fig-
ure 1. Assume that the goal states are given by the set F = {s2, s3} and that
valuation w assigns probability 1 to s0, s2 and s3 respectively and probabil-
ity 0 to all other states. Inserting the values and solving for state s0, we get
pre−F (w)(s0) = min{w(s0),

w(s1)+w(s2)
2 , w(s2)+w(s3)+w(s4)

3 } = min{1, 1
2 ,

2
3} = 1

2 .
For state s4, we have: pre−F (w)(s4) = 1

3w(s0) + 2
3w(s4) = 1

3 .

s0

s1 s2 s3

s4
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b
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1
2
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1
3 1

3

1
3

c

2
3

1
3

Fig. 1.

Minimal and maximal reachability probabilities are
expressible as least fixpoints of valuation transform-
ers pre−F and pre+F respectively [21] or more formally
p−(F ) = lfp≤ pre−F and p+(F ) = lfp≤ pre+F . This fix-
point characterization together with the background
on abstract interpretation allows us to express ab-
stractions for probabilistic reachability.

3 Abstraction

We present our novel abstract-interpretation framework for MDP abstraction.
The concrete and abstract domain are given by lattices of valuations. Thereby
lattice order expresses the concept of lower and upper bounds. In Sec. 3.1, we
develop the abstract domain and apply the resulting abstraction framework to
transformers, their fixpoints and particularly probabilistic reachability. Sect. 3.3
reveals a strong connection between the game-theoretical construction of game-
based abstraction and certain best transformers.

3.1 Lower- and Upper-Bound Abstraction

Let S be a set of states. A partition Q of S is a finite set of pairwise disjoint,
nonempty subsets of S such that S =

⋃
B∈QB. Elements of Q are called blocks.

For a state s ∈ S, we denote by s the unique block B containing s, i.e., s ∈ B.
Abstract valuations are valuations over blocks, elements of WQ.

We give two abstraction functions that, given a valuation over states, yield
a valuation over blocks: lower-bound abstraction αl : WS → WQ returns the
infimum of the values αl(w)(B) = infs∈B w(s) within a block while upper-bound
abstraction αu : WS →WQ returns the supremum αu(w)(B) = sups∈B w(s).
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The concretization of an abstract valuation w� ∈ WQ is the valuation over
states γ(w�) that assigns each state the value of its block γ(w�)(s) = w�(s). This
defines the concretization function γ : WQ →WS .

A lower bound is the more precise the larger it is, while the converse is true
for an upper bound. This notion of precision is reflected by the lattice order: the
order is ≥ if we compare lower bounds, and ≤ for upper bounds.

We obtain two Galois connections corresponding to αl and αu respectively:

Lemma 1 (Galois Connections). For a given partition Q, let αl, αu, γ be
the functions defined above. We have the following two Galois connections:

(a) (WS ,≥) −−−→←−−−
αl

γ
(WQ,≥) (lower-bound abstraction)

(b) (WS ,≤) −−−−→←−−−−
αu

γ
(WQ,≤) (upper-bound abstraction)

Proof. We focus on lower-bound abstraction. Monotonicity of αl and γ follows
directly by definition. It remains to show that for allw ∈ WS andw� ∈WQ, it holds
that: w ≥ γ(w�) ⇔ αl(w) ≥ w�. First assume w ≥ γ(w�). For B ∈ Q, we have
αl(w)(B) = infs∈B w(s) ≥ infs∈B γ(w�)(s) = w�(B). Now assume αl(w) ≥ w�.
Then, for all s ∈ S, we have w(s) ≥ αl(w)(s) ≥ w�(s) = γ(w�)(s). The proof for
upper-bound abstraction works analogously.
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Fig. 2. Functions αl and αu

The two Galois connections are illustrated
in Figure 2. The big dashed box on the
left represents valuations over states WS

(concrete domain), the one on the right
represents valuations over blocks WQ (ab-
stract domain). The partition into blocks
B1, B2, B3 is depicted by rectangles sur-
rounding states. Consider the valuation w
with the thick border. Abstraction αl(w)
provides a lower bound, i.e. γ(αl(w)) ≤ w.
Taking the αu-abstraction yields an upper
bound αu(w), i.e. we get w ≤ γ(αu(w)).

Remark. We point out crucial differ-
ences to Monniaux’s framework [10]: un-
like in this paper, only upper bounds not
lower bounds are computed, his abstract
domains are in general not partially or-
dered, and the concrete domain consists of sets of valuations rather than val-
uations. Therefore, unlike in our setting, the concretization function maps an
abstract valuation to a set of valuations, as opposed to a single valuation.

Lower and Upper Bounds of Fixpoints. Aiming for probabilistic reacha-
bility, we consider fixpoints of valuation transformers. If a valuation transformer
is bounded from below and above by two abstract transformers which are valid
abstractions w.r.t. lower-bound and upper-bound abstraction respectively, the



368 B. Wachter and L. Zhang

fixpoints of these two abstract transformers enclose the fixpoint of the valuation
transformer, which is formalized in Lemma 2. In the following, we fix Q as the
given partition, and let αl, αu, γ be the functions defined above.

Lemma 2 (Bounds from Valid Transformers). Let f : WS → WS . Let
f �
1 , f

�
2 : WQ →WQ be valuation transformers such that f �

1 is a valid lower-bound
of f and f �

2 a valid upper-bound abstraction of f , i.e., γ ◦ f �
1 ≤ f ◦ γ ≤ γ ◦ f �

2 .
Then the following inequality holds regarding the fixpoints of these functions:

γ
(
gfp≥(f �

1 )
)

≤ lfp≤(f ) ≤ γ
(
lfp≤(f �

2 )
)
.

Proof. Let w∗ = lfp≤(f �
2 ) be the least fixpoint of f �

2 . It holds that f �
2 (w∗) = w∗

and hence (γ ◦ f �
2 )(w∗) = γ(w∗). By assumption, we have f ◦ γ ≤ γ ◦ f �

2 , which
implies (f ◦ γ)(w∗) ≤ (γ ◦ f �

2 )(w∗) = γ(w∗) and γ(w∗) ∈ {x ∈ WS | f (x) ≤ x}.
Hence lfp≤(f) =

�
{x ∈ WS | f (x) ≤ x} ≤ γ(w∗), as claimed. The other

inequality can be shown in a dual way.

For any concrete valuation transformer f , the fixpoints of the best transformers
w.r.t. lower- and upper-bound abstraction enclose the least fixpoint of f :

Lemma 3 (Fixpoints of Best Transformers). Let f : WS →WS be a given
valuation transformer. Then the following inequalities hold:

γ
(
gfp≥(αl ◦ f ◦ γ)

)
≤ lfp≤(f) ≤ γ

(
lfp≤(αu ◦ f ◦ γ)

)
.

The proof follows immediately by applying Lemma 2 to the best transformers
f �
1 = (αl◦f ◦γ) and f �

2 = (αu◦f ◦γ). For probabilistic reachability, we consider four
different best transformers: α{l,u} ◦ pre{−,+}

F ◦ γ where the abstraction function
controls whether we get lower or upper bounds, and the valuation transformer
controls whether maximal or minimal reachability probability is considered. Ex-
ploiting the fact that p−(F ) = lfp≤ pre−F and p+(F ) = lfp≤ pre+F , we have the
connection to probabilistic reachability:

Theorem 1 (Bounds for Probabilistic Reachability). LetM=(S, I,A, R)
be an MDP and let F ⊆ S be a set of goal states. Then we have:

γ(gfp≥(αl ◦ pre+F ◦ γ)) ≤ p+(F ) ≤ γ(lfp≤(αu ◦ pre+F ◦ γ))

γ(gfp≥(αl ◦ pre−F ◦ γ)) ≤ p−(F ) ≤ γ(lfp≤(αu ◦ pre−F ◦ γ))

The best transformer (αu ◦pre−F ◦γ) for the upper bound of minimal reachability
contains an alternation between minimization, as in pre−F , and maximization, as
in αu. This suggests a connection to stochastic games where minimization and
maximization are the objectives of two adversarial players. After an interlude on
stochastic games in Sec. 3.2, we make the connection to game-based abstraction.

3.2 Stochastic Games

We consider turn-based stochastic games with two players [22]. A stochastic
game is a tuple G = ((V,E), Vinit , (V1, V2, Vp), δ) where (V,E) is a finite directed
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graph with edges E ⊆ V × V , Vinit ⊆ V1 is the set of initial vertices, (V1, V2, Vp)
is a partition of the set V , and δ : Vp → DistrV where δ(v)(v′) > 0 implies
that (v, v′) ∈ E. The vertex sets V1, V2 are called player 1 vertices and player 2
vertices respectively. For v ∈ V , let E(v) = {w | (v, w) ∈ E} be the successors
of v. A play of the game is a sequence ω = v0v1 . . . such that vi+1 ∈ E(vi) for all
i ∈ N. Let ω[i] = vi denote the (i+ 1)-th vertex of ω, and denote the last vertex
by last(ω) = vn if ω is finite.

A player 1 strategy is a function σ1 : V ∗V1 → DistrV such that for any fi-
nite play ω, σ1(ω)(v) > 0 implies that (last(ω), v) ∈ E. Player 2 strategies are
defined analogously. A strategy σi is called pure memoryless if it does not use
randomization and is memoryless: it is a function σi : Vi → V for i = 1, 2. For
any vertex v ∈ Vinit , a fixed pair of strategies corresponds probability measure
Prσ1,σ2

v over infinite plays. Given a vertex v, a reachability objective F ⊆ V1,
and strategies σ1, σ2, pσ1,σ2

v (F ) denotes the probability of reaching F starting in
v: pσ1,σ2

v (F ) = Prσ1,σ2
v ({ω | ∃i ∈ N : ω[i] ∈ F}). This defines a valuation

pσ1,σ2(F ) ∈ WV . Optimal valuations for player 1 and player 2 w.r.t. F are de-
fined by: supσ1

infσ2 p
σ1,σ2(F ), infσ1 supσ2

pσ1,σ2(F ) ∈ WV respectively. Player 1
strategy σ1 is optimal for v ∈ V if infσ2 p

σ1,σ2
v (F ) = supσ1

infσ2 p
σ1,σ2
v (F ). The

optimal player 2 strategy can be defined similarly. We also consider the cases
where both players cooperate infσ1,σ2 p

σ1,σ2(F ) and supσ1,σ2
pσ1,σ2(F ). Below we

define four valuation transformers to characterize these optimal valuations:

Definition 2 (Valuation Transformers for Games). Given a reachability
objective F , let F0 ⊆ V1 be the set of vertices that cannot reach F . The valuation
transformer pre+−

F : WV1 → WV1 is defined by: pre+−
F (d)(v) equals 1 if v ∈ F

and 0 if v ∈ F0, and otherwise,

pre+−
F (d)(v) = max

v2∈E(v)
min

vp∈E(v2)

∑

v′∈E(vp)

δ(vp)(v′) · d(v′).

The valuation transformers pre−−
F , pre−+

F , pre++
F can be defined analogously by

changing the extrema in the summation accordingly, e.g. pre−+
F minimizes over

E(v) and maximizes over E(v2).

The optimal valuations are least fixpoints of valuation transformers, e.g.
supσ1

infσ2 p
σ1,σ2(F ) = lfp≤ pre+−

F , and supσ1
supσ2

pσ1,σ2(F ) = lfp≤ pre++
F .

3.3 Best Transformers and Game-Based Abstraction

Given a finite partition, game-based abstraction maps an MDP to a stochastic
game1. The blocks of the partition are the player 1 vertices and player 2 vertices
1 In full generality, infinite stochastic games may arise through game-based abstrac-

tion. From now on, we assume finiteness. In effect, this excludes MDPs with infinitely
many different transition probabilities, which are not representable in our modeling
language. In subsequent proofs of this section, finiteness of the games also implies
that the abstraction functions αu and αl are applied to valuations for which not only
infima and suprema but minima and maxima exist.
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are sets of abstract distributions. The abstraction of a distribution π ∈ DistrS

is the distribution π ∈ DistrQ with π(B) :=
∑

s∈B π(s). The abstraction of a
set of distributions D is the set D = {π | π ∈ D} for D ⊆ DistrS .

Definition 3 (Game-based Abstraction [16]). Let M = (S, I,A, R) be an
MDP, and Q be a partition. The game abstraction ofM w.r.t. Q is the stochastic
game GM,Q = ((V,E), Vinit , (V1, V2, Vp), δ) where the player 1 vertices V1 = Q

are given by the blocks, the player 2 vertices V2 = {Distr(s) | s ∈ S} ⊆ 2DistrQ

are sets of distributions and the vertices Vp = {π | ∃s ∈ S : π ∈ Distr(s)} dis-
tributions. δ : Vp → DistrV is the identity function. The initial vertices are
Vinit = {B ∈ Q | B ∩ I �= ∅} and the edges E are given by:

E = {(v1, v2) | v1 ∈ V1, ∃s ∈ v1 : v2 = Distr(s)}
∪ {(v2, vp) | v2 ∈ V2, vp ∈ v2} ∪ {(vp, v1) | vp ∈ Vp, vp(v1) > 0} .

Intuitively, a player 1 decision is a concretization step for a given block. The
abstract distributions of a player 2 vertex correspond to the out-going distribu-
tions of a concrete state. The player 2 decision is then like the application of
the concrete transformer ensued by an abstraction step. In fact, the best trans-
formers w.r.t. lower and upper bound abstraction (see Sec. 3.1) are exactly the
valuation transformers of game-based abstraction:

Theorem 2 (Game-based Abstraction and Best Transformer). Let M
be an MDP and F ⊆ S a set of goal states. Further, consider the partition Q of
S such that the goal states F in M are exactly representable: i.e., F =

⋃
B∈F � B

for a suitable F � ⊆ Q. Let pre±±
F � be the valuation transformers in the game

GM,Q as defined in Def. 2. Then it holds that:

pre−−
F � = αl ◦ pre−F ◦ γ , pre+−

F � = αu ◦ pre−F ◦ γ
pre−+

F � = αl ◦ pre+F ◦ γ , pre++
F � = αu ◦ pre+F ◦ γ

Proof. We sketch the proof for pre−+
F � = αl ◦ pre+F ◦ γ, i.e., the claim is that, for

all w� ∈WQ and v ∈ V1, pre−+
F (w�)(v) =

(
(αl ◦ pre+ ◦ γ)(w�)

)
(v). The claim is

trivially fulfilled if v ∈ F �∪F �
0 . Otherwise the transformer of the game is defined

as pre−+
F � (w�)(v) = minv2∈E(v) maxvp∈v2

∑
v′∈V1

δ(vp)(v′)·w�(v′). The successors
of vertex v ∈ V1 are given by E(v) = {Distr(s) | s ∈ v}. It is easy to see that
pre−+

F � (w�)(v) = mins∈v maxπ�∈Distr(s)

∑
v′∈V1

π�(v′) · w�(v′). Observe that for
a distribution π and a block v′ ∈ V1, we have by definition π(v′) =

∑
s∈v′ π(s)

and thus
∑

v′∈V1
π(v′) ·w�(v′) =

∑
s′∈S π(s′) ·w�(s′). As a final step, we get the

equality
(
(αl ◦ pre+F ◦ γ)(w�)

)
(v) = mins∈v maxπ∈Distr(s)

∑
s′∈S π(s′) · w�(s′),

which proves the claim.

As corollary of Theorem 2, one obtains that the valuation transformers of the
games are a valid abstraction for minimal and maximal reachability. Together
with Theorem 1 this proves that game-based abstraction yields lower and upper
bounds on probabilistic reachability:
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γ( inf
σ1,σ2

pσ1,σ2(F �)) ≤ p−(F ) ≤ γ(sup
σ1

inf
σ2
pσ1,σ2(F �)) (1)

γ(inf
σ1

sup
σ2

pσ1,σ2(F �)) ≤ p+(F ) ≤ γ( sup
σ1,σ2

pσ1,σ2(F �)) (2)

Theorem 2 establishes that the obtained probability bounds are optimal, i.e. any
valid abstraction cannot yield more precise bounds.

One can thus compute best transformers by game-based abstraction, yet com-
putational cost is higher than for abstractions that map to MDPs [18]. In the
next section, we introduce abstractions for concurrent programs that alleviate
this problem and still yield effective lower and upper bounds.

4 Abstraction Refinement for Concurrent Programs

We discuss concurrent probabilistic programs in Sec. 4.1. In Sec. 4.2, we present
a novel abstraction tailored to these programs and introduce the correspond-
ing game construction in Sec. 4.3. Together with the refinement algorithm in
Sec. 4.4, we obtain the first abstract-refinement method for infinite-state con-
current probabilistic programs that provides both lower and upper bounds.

4.1 Concurrent Probabilistic Programs

As in [2], we consider a variation of the popular PRISM language [15] that ad-
ditionally supports integer and real variables. We now give the abstract syntax
and the semantics of concurrent probabilistic programs. We fix a finite set of pro-
gram variables X and a finite set of actions A. We denote the expressions over
the variables V by ExprV and Boolean expressions by BExprV . An assignment
is a function E : X → ExprX.

module two_chains
m : [0..3]; // control flow
x : int; // counter variable
[a] m=0 -> 1.0: (x’=1000) & (m’=1);
[b] m=0 -> 1.0: (x’=2) & (m’=1);
[c] m=1 & x>0 -> 0.3: (x’=x-1) + 0.7:(m’=3);
[d] m=1 & x<=0 -> 1.0: (m’=2);
endmodule
init
m = 0 & x = 0

endinit

Fig. 3. Example program with variables m and x and
four commands

A program P = (X, I, C)
consists of an initial condi-
tion I ∈ BExpr X and com-
mands C. A command c con-
sists of a unique action a, a
guard g ∈ BExprX and assign-
ments Eu1 , ..., Euk

weighted
with probabilities p1, ..., pk

where
∑k

i=1 pi = 1. We de-
note by X′ = E the simulta-
neous update E of variables
X. With the i-th update of c,
we associate a unique update label ui ∈ U. Updates are separated by a “+”:
[a] g → p1 : X′=Eu1 + . . . + pk : X′=Euk

. If the guard is satisfied, the i-th update
executes with probability pi. For a command c, we write ac for its action, gc for
its guard and omit subscripts if the command is clear from context.

A state over variables X is a type-consistent total function from variables in X
to their semantic domains. We denote the set of states by S(X), or S for short,
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and a single state by s. For an expression e ∈ ExprX, we denote by �e�s its
valuation in state s. For a Boolean expression e ∈ BExpr X, we have �e�s ∈ {0, 1}
and denote by �e� = {s ∈ S | �e�s = 1} the set of states that fulfill e.

The semantics of a program P = (X, I, C) is the MDP M = (S, I,A, R) with
states S = S(X), initial states I = �I�, actions A = {ac | c ∈ C}, and transitions
induced by the commands. Consider s ∈ S and ac ∈ A. If s ∈ �gc�, we define
R(s, ac) = π such that π fulfills the following dependency where {| . . . |} delimits
a multiset: π(s′) =

∑k
i=1 {|pi | ∀x ∈ X : s′(x) = �Eui

(x)�s|}. We use a multiset
since two updates may have the same probability and yield the same state.

4.2 Parallel Abstraction

A concurrent probabilistic program consists of the parallel composition of com-
mands. In parallel abstraction, abstract transformers for the program are ob-
tained by the parallel composition of the abstract transformers of the commands.

We first focus on abstraction for maximal probabilistic reachability. Before
defining the abstract transformers, we reformulate concrete transformer in terms
of transformers pre+F [a] for the individual actions. Let w ∈WS be a valuation and
s ∈ S a state. Then pre[a]+F (w)(s) equals 1 if s is a goal state, 0 if s cannot reach
a goal state or action a is not enabled on s, and, lastly,

∑
s′∈S π(s,a)(s′) · w(s′)

otherwise. It is obvious that the transformer pre+F for maximal reachability of
goal states F is given by:

pre+F (w)(s) = max
a∈A(s)

pre[a]+F (w)(s) . (3)

We assume that the partition Q is chosen such that the goal states can be
represented precisely, i.e. there exists a set of blocks F � ⊆ Q with F =

⋃
B∈F � B.

Further, we assume that, without loss of generality, a block in a partition contains
either only absorbing or no absorbing states.

For a block B ∈ Q, we denote by A(B) the set {a ∈ A | ∃s ∈ B : a ∈ A(s)}
of actions that are enabled some state in B. By combining abstract transformers
of the commands, we get the abstract transformer for the whole program.

Definition 4 (Maximal Parallel Abstraction). We define the respective ab-
stract transformers for the lower and upper bounds of maximal reachability:

p̃re l+
F �(w�)(B) := max

a∈A(B)
(αl ◦ (pre[a]+F ) ◦ γ)(w�)(B) ,

p̃reu+
F � (w�)(B) := max

a∈A(B)
(αu ◦ (pre[a]+F ) ◦ γ)(w�)(B) .

Similar to maximal reachability, we define transformer pre[a]−F : WS →WS for
action a as follows. For a valuation w ∈ WS and state s, pre[a]−F (w)(s) equals
1 if state s is a goal state or the action is not enabled, 0 if the goal states
are not reachable from s, and

∑
s′∈S π(s,a)(s′) ·w(s′) otherwise. As for maximal

reachability, the transformer pre−F is given by:

pre−F (w)(s) = min
a∈A(s)

pre[a]−F (w)(s) . (4)
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Now we define the abstract transformers for the two bounds in terms of the best
transformers of individual commands.

Definition 5 (Minimal Parallel Abstraction). We define the respective ab-
stract transformers for the lower and upper bounds of minimal reachability:

p̃rel−
F �(w�)(B) := min

a∈A(B)
(αl ◦ (pre[a]−F ) ◦ γ)(w�)(B) ,

p̃reu−
F � (w�)(B) := min

a∈A(B)
(αu ◦ (pre[a]−F ) ◦ γ)(w�)(B) .

The following theorem states that the introduced maximal and minimal abstract
transformers are valid abstractions. For p̃reu+

F � and p̃re l−
F � one can even show a

stronger result: these transformers are exactly the best transformers αu◦pre+F ◦γ
and αl ◦ pre−F ◦ γ respectively. In general, this does not hold for the other two
transformers. Overall we have:

Theorem 3 (Validity of Parallel Abstraction).

1. p̃reu+
F � equals the best transformer αu ◦ pre+F ◦ γ,

2. p̃re l+
F � is a valid abstraction of pre+

F � w.r.t. the Galois connection (αl, γ),
i.e., γ ◦ p̃rel+

F � ≤ pre+
F ◦ γ,

3. p̃reu−
F � is a valid abstraction of pre−

F � w.r.t. the Galois connection (αu, γ),
i.e., pre−

F ◦ γ ≤ γ ◦ p̃reu−
F � ,

4. p̃re l−
F � equals the best transformer αl ◦ pre−F ◦ γ.

Proof. Part (1): Let w� ∈ WQ, B ∈ Q \ F �. By definition, we have the equality
(αu ◦ pre+F ◦ γ)(w�)(B) = maxs∈B maxπ∈Distr(s)

∑
s′∈S π(s′) · w�(s′). Moreover,

we have p̃reu+
F � (w�)(B) = maxa∈A(B)(αu ◦ (pre[a]+F ) ◦ γ)(w�)(B) by Def. 4. This

can be rewritten to: p̃reu+
F � (w�)(B) = maxs∈B maxa∈A(s)

∑
s′∈S π(s,a)(s′) ·w�(s′),

which is the same as maxs∈B maxπ∈Distr(s)
∑

s′∈S π(s′) · w�(s′). We are done.
Part (3): we show (pre−F ◦ γ)(w�)(B) ≤ (γ ◦ p̃reu−

F � )(w�)(B) for all w� ∈ WQ

and B ∈ Q. We consider the Galois connection (αu, γ) with order ≤. By Eq. (4),
it holds2: (pre−F ◦ γ)(w�)(B) = mina∈A(B)(pre[a]−F ◦ γ)(w�)(B). Since the best
transformer f := αu ◦ (pre[a]−F ) ◦ γ is a valid abstraction of pre[a]−F , we have
(pre−F ◦ γ)(w�)(B) ≤ mina∈A(B)(γ ◦ f)(w�)(B). To finish the proof we exploit
that γ is a morphism [23, Lemma 4.22] w.r.t.

⊔
:

min
a∈A(B)

(γ ◦ f)(w�)(B) = γ( min
a∈A(B)

(f)(w�)(B)) = (γ ◦ p̃reu−
F � )(w�)(B) .

4.3 Parallel-Abstraction Games

In this section we introduce parallel-abstraction games, the game construction
corresponding to parallel abstraction.
2 Let sB ∈ S such that B = sB, obviously, (pre−F ◦ γ)(w�)(B) = (pre−F )(γ(w�))(sB).

Applying Eq. (4), it can be rewritten to mina∈A(B) pre[a]−F (γ(w�))(B) which is the
same as mina∈A(B)(pre[a]−F ◦ γ)(w�)(B).
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Definition 6. Let M = (S, I,A, R) be an MDP and Q a partition. The parallel-
abstraction game is ĜM,Q = ((V,E), Vinit , (V1, V2, Vp), δ) with V1 = Q ∪ {!},
V2 = {(v1, a) | v1 ∈ V1, a ∈ A(v1)}, Vp = {π(s,a) | s ∈ S, a ∈ A(s)} ∪ {v�

p},
Vinit = {B ∈ Q | B ∩ I �= ∅}, δ is the identity function. Let v�

p(!) = 1. The
edges E are defined by:

E ={(v1, v2) | v1 ∈ V1, v2 = (v1, a) ∈ V2, a ∈ A(v1)}
∪ {(v2, vp) | v2 = (v1, a) ∈ V2, ∃s ∈ v1 : vp = π(s,a)}
∪ {(v2, v�

p), (v�
p , !) | v2 = (v1, a) ∈ V2, ∃s ∈ v1 : a /∈ A(s)}

∪ {(vp, v
′) | vp ∈ Vp, vp(v′) > 0} .

A player 1 vertex v1 has a player 2 successor for each a ∈ A(v1). A player 2 vertex
(v1, a) represents the abstraction of the a-transitions. Further, the partition may
contain both states on which a particular action a is enabled and states on which
it is not, i.e. the abstraction loses information about enabledness. In this case,
player 2 vertex (v1, a) has distribution v�

p as a successor.

Example 2. We consider an MDP with states: S = {s0, . . . , s7}. The state par-
tition is Q = {{s0, s1}, {s2}, {s3}, {s4, s7}, {s5, s6}}. Figure 4 shows the MDP
and the corresponding parallel-abstraction game.

The enabled actions A(B0) in B0 = {s0, s1} are given by A(B0) = {a, b}. In
the corresponding abstract game, blocks are player 1 vertices. For each enabled
action, there is one player 2 vertex. For example, for block B0, there are two
player 2 vertices for action a and b respectively. The successors of the player 2
vertex for a reflect that from B0 there are concrete a-transitions into {s2} and
{s3}. One successor of the player 2 vertex for b represents the b-distribution out
of s0. Vertex ! reflects that b is not enabled at s0.

s0 s1

s2 s3 s4

s5 s6 s7

1 1
2

1 1
0

1 1 0

a a b1
2 1

2

a a c

{s0, s1}

{s2} {s3} {s4, s7}

{s5, s6}

block player 1

Legend:

player 2
distribution

block block

[ 12 , 1]

[1, 1] [1, 1]

[1, 1]

[0, 0]

a
b

1
2

1
2

!

a a c

Fig. 4. Illustration of parallel abstraction

Theorem 4 (Parallel-Abstraction Game and Parallel Abstraction). Let
M, Q and ĜM,Q as defined in Def. 6. Moreover, let pre±±

V ′ be the valuation
transformers in GM,Q w.r.t. objective V ′ as defined in Def. 2. Then we have:
p̃rel−

F � = pre−−
F �∪{�}, p̃reu−

F � = pre−+
F �∪{�}, p̃re l+

F � = pre+−
F � and p̃reu+

F � = pre++
F � .

While the proof proceeds in a similar fashion as Thm. 2, the following example
provides some intuition.
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Example 3. Figure 4 illustrates the concrete and abstract transformers for min-
imal reachability. In the MDP the minimal reachability probabilities w.r.t. goal
states {s5, s6} are written next to each state. In the game the probability bounds
are annotated at each block as an interval, e.g., [12 , 1] for {s0, s1}. Now the func-
tion of the !-vertex becomes clear. If there was no !-vertex, action b would
contribute probability 1

2 and win against the probability 1 from a, so that for
block {s0, s1} the abstraction would spuriously report 1

2 as an upper bound.

To compute the games for a given set of predicates, we employ SMT-based
enumeration along the lines of [17,2] with a few additions. The construction also
has the same complexity (number of SMT solver calls). We refer to [2] for details,
and focus on background needed to continue our exposition. Let P = (X, I, C) be
a program, and let M be the semantics of P. A predicate ϕ stands for the set of
states satisfying it, i.e., �ϕ� ⊆ S. A set of predicates P induces a finite partition
of S: two states are in the same block iff they satisfy the same predicates.

Discussion and Comparison. Figure 5 shows a program. Consider predi-
cates s = 0 . . . 2, x < 0, x = 0 and x > 0 and the following blocks in the
partition: B1 = {s = 0, x > 0}, B2 = {s = 1, x < 0}, B3 = {s = 1, x = 0},
B4 = {s = 1, x = 0} and B5 = {s = 2, x > 0}.

module main
s : [0..2]; // control flow
x,y : int; // integer variables
[a] s=0 -> 1.0:(s ’=1)&(x’=y);
[b] s=0 & x>10 -> 0.5:(s’=0)+ 0.5:(s ’=2);
endmodule

Fig. 5. Example program

Figure 6 shows MDP-based
abstraction [2] (6(a)), par-
allel abstraction (6(b)) and
game-based abstraction [16]
(6(c)). The MDP-based ab-
straction contains four distri-
butions. Command a induces
three of them, since it assigns
y to x, and there are states in B1 where y is smaller, equal or less than zero
respectively. Command b induces one distribution. Parallel abstraction has ad-
ditionally two player 2 vertices, one for each command, so one can tell which
command induces which distributions. Again, the !-vertex reflects that com-
mand b is not enabled on all states in B1. Game-based abstraction introduces
six player 2 vertices: these vertices contain abstract distributions from both
commands.

B1

B2 B3 B4

B5

a a a

b

(a) MDP-based

B1

B2 B3 B4

B5

a
b !

(b) Parallel

B1

B2 B3 B4

B5

(c) Game-based

Fig. 6. Example of parallel, MDP-based and game-based abstraction
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An advantage of parallel and MDP-based abstraction is that they can be
computed by abstracting commands in isolation. Game-based abstraction, on
the other hand, requires a different approach in presence of concurrency: certain
player 2 vertices result from the combined effect of different commands. As a
result, the abstraction needs to track correlations between different commands,
which can be expensive [18]. Put differently, the number of player 2 vertices is
the sum

∑
v1∈V1

|A(v1)| in parallel abstraction, while, for game-based abstrac-
tion [16], this number is

∑
v1∈V1

∣∣{Distr(s) | s ∈ v1}
∣∣ and, since each player 2

vertex corresponds to a subset of Vp, the worst case lies in the order of 2|Vp|.

4.4 Refinement

We are interested in (minimal or maximal) reachability probabilities for the
initial states of the program. The analysis produces lower and upper bounds
wl and wu respectively for the reachability probabilities w.r.t. to goal states
F . Refinement is invoked whenever the bounds for the initial vertices are too
imprecise, i.e. wu(vinit)−wl(vinit) > ε for some initial game vertex vinit ∈ Vinit

where ε is the user-specified precision.
The analysis of the game also yields a game strategy for the lower and upper

bound respectively. We can use existing techniques [2] to check if abstract paths,
ending with a goal block and admissible w.r.t. the strategy, actually correspond
to feasible paths in the program. However, in the given framework, we can focus
feasibility checks on parts of the game where the bounds are not tight.

The idea is to refine blocks v1 ∈ V1 containing states s ∈ v1 that would achieve
more precise bounds if separated from the other states in the block, i.e., more
formally,

(
(preF ◦ γ)(wl)

)
(s) < wu(v1) or wl(v1) <

(
(preF ◦ γ)(wl)

)
(s) (where

preF is the concrete transformer, i.e. pre−F for minimal and pre+F for maximal
reachability). For example, consider the program in Figure 3 and its abstraction
using predicates {m = 0,m = 1,m = 2,m = 3, x ≥ 1} in Figure 7(a). We
want to compute the maximal probability to reach {m = 2}. Consider block
B = {m = 1, x ≥ 1}. All states with x < 1 in B (in this case just one state s
with m = 1, x = 1) can go to the block {m = 1, x < 1} via c with probability
0.3. Thus state s fulfills

(
(preF ◦ γ)(wl)

)
(s) = ((preF ◦ γ)(wu)) (s) = 0.3. By

introducing the predicate {x ≥ 2}, we obtain the abstraction in Figure 7(b)
where block B is split into blocks {m = 1, x ≥ 2} and {m = 1, 1 ≤ x < 2} with
more precise probability bounds [0.3, 0.3] and [0, 0.09] respectively.

We put these ideas to work in the following way. First, we select a block to
be refined such that3: (1) lower and upper bound differ wu(v1) − wl(v1) > 0
and, (2) for a player 2 vertex v2 ∈ E(v1), the lower-bound strategy chooses some
v ∈ E(v2) distinct from the choice of the upper-bound strategy v′ ∈ E(v2).
Then we invoke function RefBlock(v1, (v, v′)). If v or v′ equals v∗p, RefBlock
returns the guard of command a. Otherwise, there exists v′1 ∈ V1 such that
v(v′1) �= v′(v′1) where v and v′ differ in a predicate valuation for some predicate
ϕ. Then RefBlock returns the precondition of ϕ w.r.t. command a. In the
3 This is a relaxation of the criterion that refers to the concrete transformer.



Best Probabilistic Transformers 377

m = 0
x < 1

m = 1
x ≥ 1

m = 3
x ≥ 1

m = 1
x < 1

m = 2
x < 1

[0, 0.3]

[0, 0.3]

[0, 0][1, 1]

[1, 1]

a, b

c
0.3

0.7
0.3 0.7

d

(a) Step 1.

m = 0
x < 1

m = 1
x ≥ 2

m = 1
1 ≤ x < 2

m = 3
1 ≤ x < 2

m = 3
x ≥ 2

m = 1
x < 1

m = 2
x < 1

[0, 0.09]

[0, 0.09]

[0.3, 0.3]

[0, 0]

[0, 0]

[1, 1]

[1, 1]

a, b

c

0.3 0.7

0.3

0.7

c

0.3 0.7
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(b) Step 2: x ≥ 2.
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x < 1

m = 1
x ≥ 3

m = 1
2 ≤ x < 3
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1 ≤ x < 2

m = 3
1 ≤ x < 2
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2 ≤ x < 3
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x ≥ 3

m = 1
x < 1

m = 2
x < 1

[0.09, 0.09]

[0, 0.027][0.09, 0.09]

[0.3, 0.3]

[0, 0]

[0, 0]

[0, 0]

[1, 1]

[1, 1]

a b

c

0.3 0.7

c

0.3
0.7

c
0.3

0.7

0.3
0.7

d

(c) Step 3: x ≥ 3.

Fig. 7. Illustration of abstraction refinement

example, we have computed preconditions of predicates {x ≥ 1} and {x ≥ 2}
w.r.t. command c and update x’=x-1 which leads to the refinement steps in
Figure 7(b) and 7(c). This refinement strategy is inspired by [3]: while they
consider sequential programs we consider concurrent programs.

5 Experiments

We have implemented our method in the PASS tool [2], which, until recently,
gave only upper bounds for maximal probabilistic reachability, and, only in
some cases, effective lower bounds from counterexample analysis. The new ver-
sion PASS 2.0 provides both lower and upper bounds for minimal and maximal
probabilistic reachability. Experiments were run on a Pentium 4 with 2.6GHz
and 1GB RAM. We considered models of network protocols, including all mod-
els from [2] and, examples of probabilistic C programs from [3], if they could
be translated to PASS models. We first discuss minimal reachability problems
(here PASS 1.0 is not applicable): PASS 2.0 computed precise minimal reachabil-
ity probabilities for properties of the csma and wlan models from [2]. Further, it
solved the zeroconf and herman case study from [3]. Their tool took 1.97s and
33.5s respectively, on a faster machine, compared to 1.3s and 5s for PASS 2.0. In
the table below, we compare with PASS 1.0 giving running times (in seconds):

wlan1 wlan2 csma1 csma2 brp1 brp2 sw1 sw2

PASS 2.0 43s ✔ 115s ✔ 10s ✔ 5s ✔ 27s ✔ 1s ✔ 18s ✔ 2s ✔

PASS 1.0 72s ✗/✔ 306s ✗/✔ 38s ✗/ ✔ 11s ✗/ ✔ 21s ✔ 3s ✔ 87s 90%/45% 89s ✔
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In the table ✔ means success, i.e. the difference between the two established
bounds is less than ε = 10−6. ✗/ ✔ means lower bound 0 and a correct upper
bound. 90%/45% means 90% underestimation of the lower and 45% overestima-
tion of the upper bound. PASS 2.0 succeeds in all cases, while PASS 1.0 success-
fully finds upper bounds, in one case, however, an imprecise one. PASS 2.0 is often
faster. Thanks to lower and upper bounds, it focuses on points of imprecision
and thus finds smaller abstractions.

6 Conclusion

Abstraction is the key to probabilistic model checking of realistic models. This
paper presents the first abstract-interpretation framework for MDPs which ad-
mits to compute both lower and upper bounds on reachability probabilities.
Based on this framework, we present an automatic analysis for concurrent pro-
grams to compute precise lower and upper bounds on reachability probabilities.
As future work, we would like to extend our framework also to probabilistic
safety, rewards and probabilistic equivalence checking [24,25].
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Abstract. Logics that involve collections (sets, multisets), and cardinal-
ity constraints are useful for reasoning about unbounded data structures
and concurrent processes. To make such logics more useful in verification
this paper extends them with the ability to compute direct and inverse
relation and function images. We establish decidability and complexity
bounds for the extended logics.

1 Introduction

Deductive verification of software often involves proving the validity of formu-
las in expressive logics. Verification condition generation produces such formulas
directly from annotated source code [3, 5], whereas predicate abstraction tech-
niques [4] generate many formulas during fixpoint computation. Abstract inter-
pretation [6] precomputes parameterized transfer functions; the automation of
this process [25] also reduces to proving formula validity.

As the starting point of this paper we consider decidable logics whose vari-
ables denote collections of objects, corresponding to, for example, dynamically
allocated objects in the heap, or concurrent processes. Our logics include stan-
dard set algebra operations such as ∩,∪ and complement. They also include
the cardinality operator, to compute the number of elements in the collection,
and support linear integer arithmetic constraints on the cardinalities. One such
logic is QFBAPA (quantifier-free Boolean Algebra with Presburger Arithmetic),
which we recently proved to be in NP [16], an improvement over the previous
NEXPTIME algorithms based on quantifier elimination [9,14]. We subsequently
generalized this result to quantifier-free constraints on multisets (bags), collec-
tions in which an element can occur multiple times [22, 23]. The usefulness of
collections and cardinality measures on them has been established through a
number of examples from software analysis and verification, including not only
decision procedures [16, 14,29] but also static analyses that operate directly on
the set abstraction or the cardinality abstraction [11, 13,21].
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To make the logics of collection more useful, in this paper we generalize them
in a natural direction: we introduce functions and relations and supports com-
puting images and inverse images of sets under these functions and relations. Our
primary motivation is that in verification problems, collections such as sets and
multisets are often defined by computing an image of a more concrete data struc-
ture, often itself a set (see Section 2). The resulting logics are extensions of both
the logics with cardinalities, but also of certain previously studied constraints
(none of which include symbolic cardinality bounds): certain Tarskian set con-
straints [10], certain Description Logics [1], and set-valued field constraints [15].
Our techniques are also related to the technique of bridging functions [19]. What
distinguishes our result from previous ones is the (often optimal) complexity that
we achieve in the presence of sets, multisets, relations, and symbolic cardinality
constraints. Our NEXPTIME fragment includes images of n-ary relations and
is thus not expressible in the two-variable logic with counting [20,24].

Contributions. We summarize the contributions of this paper as follows:

– We describe a new NEXPTIME-complete logic that includes sets, n-ary re-
lations, unary functions, and symbolic cardinality constraints.

– We sketch the extension of the logic above with cardinalities of relations and
with n-ary function symbols; we prove 2-NEXPTIME upper bound for its
satisfiability.

– We point to a few simple extensions of the above logic that lead to undecid-
ability.

– We consider an extension of QFBAPA [16] with relation image constraints,
for a relation between two disjoint sorts of elements results. We show that
the sparse model solution phenomenon of QFBAPA continues to apply in
the presence of such relations, and use it to prove that the logic remains
inside NP.

– We show NEXPTIME completeness (by reduction to [22]) of a logic that
allows computing multisets instead of sets as function images, preserving
the multiplicity of elements that occur in the range of the function multiple
times. This is a natural definition of the notion of multiset comprehension
and arises e.g. when using multisets to abstract the content of Java-like
linked data structures.

2 Motivating Examples

In this section we list several examples from verification of data structures that
have motivated us to consider extending BAPA with functions and relations.

We start with a dynamically allocated data structure (such as a list or a
tree) that manipulates a set of linked nodes denoted by the variable nodes. The
useful content in the data structure is stored in the data fields of the elements
of nodes. The nodes set can be either explicitly manipulated through a library
data type or built-in type [7], or it can be verified to correspond to a set of
reachable objects using techniques such as [27]. The content of the list, stored in
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nodes ⊆ alloc ∧ card tmp = 1 ∧ tmp ∩ alloc = ∅ ∧ data[tmp] = e ∧
content = data[nodes] ∧ nodes1 = nodes ∪ tmp ∧ content1 = data[nodes1] →

card content1 ≤ card content + 1

Fig. 1. Verification condition for verifying that by inserting an element into a list,
the size of the list does not decrease. The variables occurring in the formula have the
following types: nodes, alloc, tmp, e, content, content1 :: Set〈E〉, data :: E → E.

nodes ⊆ alloc ∧ card tmp = 1 ∧ tmp ∩ alloc = ∅ ∧ data[tmp] = e ∧
content = data[nodes] ∧ nodes1 = nodes ∪ tmp ∧ content1 = data[nodes1] →

card content1 = card content + 1

Fig. 2. Verification condition for verifying that by inserting an element into a list, the
size of a list increases by one. The variables occurring in the formula have the following
types: nodes, alloc, tmp :: Set〈E〉, content, content1, e :: Multiset〈E〉, data :: E → E.

the content specification variable, is then an image of nodes under the function
data. We consider two cases of specification in our example: 1) content is a set,
that is, multiple occurrences of elements are ignored and 2) content is a multiset,
preserving the counts of occurrences of each element in the data structure.

The verification condition generated for the case when the image is a set is
given in Figure 1. This formula belongs to the language QFBAPA-Rel defined in
Section 3 and a decision procedure presented there checks satisfiability of such
formulas. It reduces a formula to a (exponentially larger) quantifier-free BAPA
formula [16] by introducing Venn regions [26] and cardinality constraints on
them, and eliminating the function symbols such as data. The resulting formula
can be decided using the NP algorithm in [16], giving NEXPTIME procedure
overall.

A more precise abstraction is obtained if content is viewed as a multiset.
Figure 2 shows the verification condition for this case. Section 6 describes a
decision procedure for an extension of QFBAPA with function symbols where
functions can also return a multiset, not only set. The approach also rewrites
sets as a disjoint union of Venn regions. It then constrains the cardinality of the
multiset obtained through the image to be equal to the cardinality of the original
set. This final formula is a formula in the NP-complete logic for reasoning about
multisets and cardinality constraints [23,22].

Another motivation in software verification comes from regional logic [2], used
for proving correctness of programs with shared mutable objects. Regional logic
introduces region variables, which are finite sets of object references, and uses
to express properties about separation and mutation. Following the example
presented in [2], consider a finite binary tree and let x be a variable of type
Node. A node y, y �= null, has three fields: left, right and item. We can
express that for x �= null, x has two disjoint subtrees which are closed under
left and right as follows:

P ≡ x �= null ∧ x.left ∈ r1 ∧ x.right ∈ r2 ∧ r1#r2 ∧ closed
closed ≡ r1.left ⊆ r1 ∧ r1.right ⊆ r1 ∧ r2.left ⊆ r2 ∧ r2.right ⊆ r2
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Those formulas can be translated into QFBAPA-Rel logic by treating each region
as a set and each field as a function defined on a set:

P1 ≡ |X | = 1 ∧X �= ∅ ∧ l(X) ⊆ R1 ∧ r(X) ⊆ R2 ∧R1 ∩R2 = ∅ ∧ closed1

closed1 ≡ l(R1) ⊆ R1 ∧ r(R1) ⊆ R1 ∧ l(R2) ⊆ R2 ∧ r(R2) ⊆ R2

Many of the assertions used in [2] can be easily translated in QFBAPA-Rel. In
addition, conditions such as expressing that two regions have the same size can
be also expressed in QFBAPA-Rel.

3 QFBAPA-Rel: A Logic of Sets, Cardinalities, Relations,
and Unary Functions

This section presents a decision procedure for the language of sets, cardinalities,
n-ary relations, and unary total functions. The language we consider is denoted
QFBAPA-Rel and is defined by the grammar in Figure 3. It naturally extends
quantifier-free fragment of BAPA [16] with unary function symbols (denoted by
f, g, . . .) and relations of any arity (denoted by p, q, r, . . . to distinguish them
from functions). The expression f [B] denotes the set {y | ∃x.x ∈ B ∧ y = f(x)}.
Cardinality constraints allow us, in particular, to express whether a function
is injective on A (by |f [A]| = |A|) or surjective onto A (f [U ] = A). For a
binary relation r, the expression r[A] is a relational join expression denoting
{y | ∃x.x ∈ A∧ (x, y) ∈ r}. Analogously, r−1[B] denotes {x | ∃y.y ∈ B ∧ (x, y) ∈
r}. We require functions to be total, whereas relations need not be left-total
or right-total. Higher-arity relations have an analogous interpretation with the
term r[B1, . . . , Bi−1, ∗, Bi+1, . . . , Bk] standing for the set

{xi | ∃x1 ∈ B1, . . . , xi−1 ∈ Bi−1, xi+1 ∈ Bi+1, . . . , xk ∈ Bk ∧ (x1, . . . , xk) ∈ r}

for a relation r of arity k.
The decision problem we are concerned with is the satisfiability problem for

QFBAPA-Rel: the question of existence of a finite interpretation α in which for-
mula is true.

An interpretation assigns values to a set, an integer, function and relation
variables. If α is an interpretation then α[x := v] is the interpration such that
α[x := v](x) = v and α[x := v](y) = α(y) for x �= y.

F ::= L | F1 ∨ F2 | ¬F
L ::= B1 ⊆ B2 | T1 < T2 | K dvdT
B ::= x | ∅ | U | B1 ∪B2 | Bc | f [B] | f−1[B] | r[B] | r−1[B] |

r[B1, . . . , Bi−1, ∗, Bi+1, . . . , Bk]
T ::= k | K | MAXC | T1 + T2 | |B|
K ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·

Fig. 3. Syntax of QFBAPA-Rel
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3.1 Decision Procedure for QFBAPA-Rel

Our decision procedure for QFBAPA-Rel satisfiability is a reduction to the satisfi-
ability of quantifier-free Boolean algebra with Presburger arithmetic (QFBAPA).
The first step of the reduction is elimination of function inverses and functional
and relational composition from the given formula. Because all functions are
total, B = f−1[A] is equivalent to f [B] ⊆ A ∧ f [Bc] ⊆ Ac. We allocate a fresh
set variable for every functional or relational complex expressions. For example,
a formula f [r[A]] ⊆ h[B ∩ C] becomes E ⊆ G ∧ D = r[A] ∧ E = f [D] ∧ F =
B ∩ C ∧G = h[F ]. This separates functional and relational terms from the rest
of the formula. Using these transformations we obtain (in polynomial time) a
conjunction of a QFBAPA formula FBAPA and a conjunction of set constraints
FIMAGE.

For every function term f , formula FIMAGE contains constraints of the
form Ai = f [Bi] where Ai and Bi are set variables. For every relational
term r where r is binary, FIMAGE contains constraints of the form Ai =
r[Bi] and A′

i = r−1[B′
i] where Ai, A

′
i, Bi, B

′
i are set variables. For a rela-

tion r of arity k the formula FIMAGE contains constraints of the form Aj
i =

r[Bj
i1, . . . , B

j
i(j−1), ∗, B

j
i(j+1), . . . , B

j
k] for 1 ≤ j ≤ k.

Eliminating function applications. Let s1, . . . , sm be the Boolean algebra
terms representing the disjoint Venn regions that are formed by taking intersec-
tion

⋂
αi∈{0,1} b

αi

i of all set variables bi appearing in the entire original formula.
For a set x, x1 denotes x and x0 denotes xc. We focus on a single function symbol
f and its constraints from FIMAGE, We repeat the following algorithm for every
function symbol f that appears in FIMAGE.

Let
∧

iAi = f [Bi] be the constraints for f . Each term Bi may be written as
a disjoint union of cubes si1 ∪ si2 ∪ . . . ∪ sik

so that f [Bi] =
⋃
f [sij ]. Because

the cubes are disjoint, we can define the values of the function on each cube
independently. Introduce set variables tj = f [sj]. Replace each term f [Bi] with
the corresponding union

⋃
tij of a subset of cube images:

Ai =
⋃

sj⊆Bi

tj (1)

After this transformation, the set constraints are reduced to QFBAPA by in-
troducing fresh set variables ti. Moreover, we introduce the following functional
consistency axioms:

∧
|ti| ≤ |si| ∧ (|ti| = 0⇔ |si| = 0) (2)

Theorem 1. The projections of the set of solutions (models) for formulas (1)
∧ (2) and the formula FIMAGE onto set variables Ai, Bi are equal.

Proof. Given a solution of FIMAGE, define the value of tj as the value of f [sj ].
The result is a model satisfying (1) ∧ (2). Conversely, consider a model α of
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(1) ∧ (2); we construct a model α′ that agrees with α on Ai, Bi and has the
value α′(f) such that α′(f [sj ] = tj) holds. For different sj such definitions are
independent. For α(sj) = ∅ also α(sj) = ∅, so condition α′(f [sj ] = tj) holds.
Otherwise, 0 < |α(tj)| ≤ |α(sj)| by (2). Then there is a surjective function
h : sj → tj . Pick any such h and define restriction of α′(f) on sj to be h.

Eliminating binary relations. Previous procedure does not apply in a
straightforward way to relations partly because we do not have a way to ex-
press directly inverses for relations that are not total. We instead apply the
algorithm in Figure 4 for each relation r. The motivation for this algorithm is
as follows.

Let Ai = r[Bi] and A′
i = r−1[B′

i] be the constraints from FIMAGE for r. Simi-
larly to the above, let bj be Venn regions over Bi. Introduce fresh set variables
cj that are constrained by cj = r[bj ]. Because relational join commutes with set
union, Ai = r[Bi] is equivalent to Ai =

⋃
bj⊆Bi

cj . Repeat this procedure for B′
i

using b′k as Venn regions over B′
i. We obtain constraints of the form cj = r[bj ]

and c′k = r−1[b′k].

INPUT: contrains
∧

i Ai = r[Bi] ∧∧i A′
i = r−1[B′

i]
OUTPUT: an equisatisfiable QFBAPA formula
1. define Boolean algebra terms bj for Venn regions over Bi

2. define Boolean algebra terms b′k for Venn regions over B′
i

3. introduce fresh set variables Ljk, Rjk for every pair bj and b′k
4. introduce constraints Ljk ⊆ bj ∧Rjk ⊆ b′k ∧ (Ljk = ∅ ⇐⇒ Rjk = ∅)
5. replace each set constraint Ai = r[Bi] with Ai =

⋃
bj⊆Bi

⋃
k Rjk

6. replace each set constraint A′
i = r−1[Bi] with A′

i =
⋃

b′
k
⊆Bi

⋃
j Ljk

7. take conjunction of all set constraints from steps 4,5,6

Fig. 4. Algorithm for eliminating relations from QFBAPA-Rel

Next, introduce new relation variables rjk meant to denote the restriction
{(x, y) | x ∈ bj ∧ y ∈ b′k ∧ (x, y) ∈ r} of the relation r to bj in the domain and
b′k in the codomain. Then r is the disjoint union of rjk over all pairs of j and k.
We rewrite the constraints on cj , c

′
k as:

∧

j

(
cj =

⋃

k

rjk[bj ]
)
∧
∧

k

(
c′k =

⋃

j

r−1
jk [b′k]

)

The behavior of each relation rjk is unrestricted by any other constraints as long
as it is a relation from domain bj to codomain b′k. That means that the relation
rjk is determined for our purposes by its domain and range rjk[bj] and r−1

jk [b′k].
We introduce two set variables to encode these as Rjk and Ljk, respectively. We
rewrite the relation constraints as cj =

⋃
k Rjk and c′k =

⋃
j Ljk.

The relational consistency condition amounts to the following axioms:
∧

j,k

Ljk ⊆ bj ∧Rjk ⊆ b′k ∧ (Ljk = ∅ ⇐⇒ Rjk = ∅)



386 K. Yessenov, R. Piskac, and V. Kuncak

Because both j and k range over singly exponentially many variables, there are
singly exponentially many fresh variables and constraints introduced.

Theorem 2. The algorithm in Figure 4 produces a QFBAPA formula of singly
exponential size with the same set of solutions for Ai, Bi, A

′
i, B

′
i.

Proof. Because we only made sound syntactic transformations and introduced
variables defined by existing terms, it suffices to show that a model of the gen-
erated QFBAPA formula extends to a model of the original formula. Assume we
are given an interpretation of the QFBAPA formula, that is values of Ljk and
Rjk and the set variables from the original formula Ai, Bi, A

′
i, B

′
i. Relation con-

sistency axioms allow us to define total relations rjk by mapping every element
from Ljk to every element from Rjk. An interpretation of r is then the union of
all these pairwise non-intersecting relations rjk. To see that we satisfied the set
constraints, consider, for example, constraint Ai = r[Bi]:

r[Bi] =
⋃

bj⊆Bi

r[bj ] =
⋃

bj⊆Bi

⋃

j′,k

rj′k[bj] =
⋃

bj⊆Bi

⋃

k

rjk[bj] =

=
⋃

bj⊆Bi

⋃

k

rjk[Ljk] =
⋃

bj⊆Bi

⋃

k

Rjk = Ai.

Eliminating higher-arity relations. The algorithm for binary relations
extends naturally to higher-arity relations. We sketch the construction in this
section. We focus on a single k-arity relation r with set constraints Aj

i =
r[Bj

i1, . . . , B
j
i(j−1), ∗, B

j
i(j+1), . . . , B

j
k] for j = 1, . . . , k. Similar to above, we in-

troduce Venn regions bjl over j-th coordinate set variables Bij . For a k-tuple of
Venn regions v = (b1l1 , b

2
l2
, . . . , bklk), we consider the restriction rv of the relation

r to bjlj on every coordinate.
Observe that every set constraint can be replaced with a union of application

of the relations rv to tuples of Venn regions. The key idea is that each such
application is uniquely defined by projections of rv onto every coordinate. That
is we introduce k set variables {P i

v}i=1,...,k for every relation rv such that:

∧

j=1,...,k

P j
v ⊆ bjij

∧

⎛

⎝
∧

j=1,...,k

|P j
v | = 0 ∨

∧

j=1,...,k

|P j
v | > 0

⎞

⎠

Any model to this condition gives rise to a well-defined relation rv equal to the
Cartesian product of the sets P 1

v × . . .×P k
v (or empty if any of them is empty).

This way we can reconstruct the original relation r from the pairwise disjoint
interpretations of relations rv.

For instance, the following formula represents a set constraint above (after
dropping j super-script):

Ai =r[Bi1, . . . , Bi(j−1), ∗, Bi(j+1), . . . , Bk]=
⋃

cubebl⊆Bil

r[b1, . . . , bj−1, ∗, bj+1, . . . , bk]

=
⋃

bl⊆Bil,l �=j,v=(bl)

rv[b1, . . . , bj−1, ∗, bj+1, . . . , bk] =
⋃

bl⊆Bil,l �=j,v=(bl)

P j
v
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The total number of fresh set variables and the size of the resulting formula are
still singly exponential in the size of the formula, since we consider Venn regions
for each coordinate and take k-tuples of these regions for k linear in size.

3.2 Complexity of QFBAPA-Rel

Combining results of the previous sections, we obtain a reduction from QFBAPA-
Rel to QFBAPA. This reduction produces a formula of a singly exponential size
by introducing set variables for Venn regions over set variables in the original
formula for each function and relation. Because QFBAPA is known to be NP-
complete [16], we conclude that QFBAPA-Rel is in NEXPTIME. Moreover, we
obtain EXPTIME BAPA reduction from QFBAPA-Rel to QFBAPA [28], which
means that the method can be used to combine QFBAPA-Rel with other logics,
such as the Weak Monadic Second-Order Logic over Trees.

Theorem 3. QFBAPA-Rel is NEXPTIME-complete, even with no relation sym-
bols and with only one unary function symbol.

Proof. The algorithm above established the NEXPTIME upper bound, we next
prove the matching lower bound. In [10], NEXPTIME lower bound for Tarskian
set constraints with constants and binary functions is shown by reduction of a
fragment of first order logic. We adapt this proof to QFBAPA-Rel. The proof
relies on the result [17] that acceptance of nondeterministic exponential-time
bounded Turing machines can be reduced to satisfiability of formulas of the
form ∃z.F1 ∧ ∀y∃x.F2 ∧ ∀y1∀y2.F3 where F1, F2, and F3 have no quantifiers
and are monadic (have only unary predicates). Given a formula of this from,
we construct an equisatisfiable QFBAPA-Rel formula as a set of constraints, as
follows. We identify monadic predicate symbols with set variables, using the
same symbols for both. After Skolemizing the formula by introducing a constant
symbol a and a monadic function symbol f , and putting F1, F2, and F3 into the
conjunctive normal form, there are three types of clauses (as remarked already
in [10]); we describe our encoding of each of these clauses.

1. monadic formulas over the constant symbol a (obtained from ∃z.F1)
We transform the conjunction of all such formula into a set constraint as
follows. For each monadic predicate P replace P (a) with P , replace ∨ with
∪, replace ¬ with c, and ∧ with ∩. Let the result of this replacement be a
set algebra expression S; then generate the QFBAPA-Rel formula S �= ∅.

2. clauses of the form:

∀x.P1(x) ∨ P2(x) ∨ . . . ∨ Pm(x) ∨Q1(f(x)) ∨Q2(f(x)) ∨ . . . ∨Qn(f(x))

For each such clause, we generate a constraint:

f (P c
1 ∩ P c

2 ∩ . . . ∩ P c
m) ⊆ Q1 ∪Q2 ∪ . . . ∪Qn

3. clauses of the form:

∀y1∀y2. P1(y1) ∨ P2(y1) ∨ . . . ∨ Pm(y1) ∨Q1(y2) ∨Q2(y2) ∨ . . . ∨Qn(y2)
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For each such clause we generate the QFBAPA-Rel formula:

(P1 ∪ P2 ∪ . . . ∪ Pm = U) ∨ (Q1 ∪Q2 ∪ . . . ∪Qn = U)

(This last constraint differs from the one in [10] and does not require any
binary function symbols).

The resulting QFBAPA-Rel formula is equisatisfiable with the original formula,
so NEXPTIME lower bound follows from [17].

Decidable Extensions: n-ary Functions, Relation Cardinalities. We have
presented QFBAPA-Rel, as a logic with monadic functions and arbitrary relations
and shown it to be NEXPTIME-complete. We next sketch how to extend the
decidability to include also the functions of higher arity. Generalizing the method
for unary functions, we have for e.g. a binary function f [p1 ∪ p2, q1 ∪ q2] =
f [p1, q1] ∪ f [p1, q2] ∪ f [p2, q1] ∪ f [p2, q2]. We apply such reasoning to all Venn
regions. This creates a singly exponential blowup in formula size. Given Venn
regions p, q and image f [p, q], let their cardinalities be kp, kq, kfpq, respectively.
Then a necessary condition for a function to be definable on p×q is kfpq ≤ kpkq,
which is a non-linear constraint. In general, the satisfiability of QFBAPA-Rel
with n-ary function symbols reduces to the satisfiability of a conjunction of 1)
such non-linear constraints x ≤ y1 . . . yn and 2) linear integer constraints. Such
conjunctions are called prequadratic in [10] and their satisfiability is shown to
be in NEXPTIME. (The quadratic as opposed to higher-degree monomials on
right-hand side suffice because replacing x ≤ y1y2 . . . yn with x ≤ y1z1 ∧ z1 ≤
y2 . . . yn preserves the projection of solution set onto x, y1, . . . , yn.) The generated
prequadtratic formula is singly exponential, which gives an upper bound of 2-
NEXPTIME for QFBAPA-Rel extended with functions of arbitrary arity.

A similar construction works for an extension of QFBAPA-Rel with the cardi-
nality operator applied to relations (computing the number of related pairs of
elements). In the notation of Section 3.1, we add the prequadratic constraints
|rjk| ≤ |Ljk| |Rjk| as well as the appropriate linear constraints.

3.3 Undecidable Extensions: Injective Binary Functions, Quantifiers

Injective binary functions. If in addition to introducing binary function sym-
bols we allow stating that they are injective, then instead of prequadratic con-
straints of the previous section we obtain constraints of the form x = yz. Indeed,
|f [p, q]| = |p| |q| for an injective function f . Together with linear constraints,
these constraints can express arbitrary Diophantine equations (polynomial inte-
ger equations). The satisfiability in such language is undecidable [18] (Hilbert’s
10th problem), and thus adding an injective function symbol to QFBAPA gives
an undecidable logic.

Relation cardinality with Cartesian product. We noted that decidability
is preserved if we allow computing the cardinality of a relation. However, if we
can additionally constrain a relation to be full Cartesian product of two sets,
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then we again obtain the constraint |p × q| = |p| |q|, and the undecidability
by [18].

Quantification. Note that BAPA with arbitrary set and integer quantifiers is
decidable [14,9]. On the other hand, the logic that allows quantification over sets
and one function symbols is also decidable [12, Theorem 8.3]. However, a BAPA
extension that allows quantified formulas with unary function symbol images is
undecidable. Indeed, define a function f mapping A onto B where each inverse
image has k elements: B = f [A] ∧ ∀e. e ⊆ B ∧ |e| = 1 ⇒ |f−1[e]| = k. Then
|B| = k|A| and the set of values (|B|, k, |A|) contains precisely the solutions
(x, y, z) of the equation x = yz. Recall that f−1[e] = u is expressible by f [u] ⊆
e∧f [uc] ⊆ ec, so either direct or inverse function image can be used, or a relation
restricted to be functional using a quantified formula, in each case resulting in
undecidability by [18].

4 NP-Complete Two-Sorted QFBAPA-Rel Fragment

In this section we identify a fragment of the QFBAPA-Rel logic in Figure 3.
Remarkably, this fragment has NP instead of NEXPTIME complexity for the
satisfiability problem. Figure 5 shows the syntax of this fragment, QFBAPA-R2,
which is an extension of QFBAPA with relation image of one two-sorted binary
relation symbol. Compared to full QFBAPA-Rel, there are no function symbols,
no inverse images, and there is only one relation symbol, denoted r, which is
binary. Moreover, each set contains only elements of sort A, or only elements
of a disjoint sort B. There are two disjoint universal sets UA and UB for the
corresponding sorts. The boolean operators ∪,∩ and complement apply only to
sets of the same sort. We require that the relation r relate sort A to sort B,
that is, the semantic condition r ⊆ UA × UB holds. An example formula in this
fragment is x = y → |r[x]| = |r[y]|. In this formula x, y have sort A and the
expressions r[x] and r[y] have sort B.

F ::= L | F1 ∨ F2 | ¬F
L ::= B1 ⊆ B2 | T1 < T2 | K dvdT
B ::= xB | ∅ | UB | B1 ∪B2 | Bc | r[A]
A ::= xA | ∅ | UA | A1 ∪A2 | Ac

T ::= k | K | MAXC | T1 + T2 | |B| | |A|

K ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·

Fig. 5. Syntax of QFBAPA-R2

Normal form. Consider an arbitrary QFBAPA-R2 formula F . By introducing
fresh variables for sets and integers (similarly as in [16]), we can rewrite the
formula in (with only linear increase in size) in the form

FC ∧ FB ∧ FA ∧ P (3)
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where:

– FC is
∧n

i=1 Bi = r[Ai] and this is the only part of formula containing r;
– FB is of form

∧
i Li where each Li is of the form |b| = k for some integer

variable k and some set algebra expression b of sort B (it is thus a QFBAPA
formula);

– FA is analogously of form
∧

i Li where each Li is of the form |a| = k for
some integer variable k and some set algebra expression a of sort A (it is
thus also a QFBAPA formula);

– P is a quantifier-free Presburger arithmetic formula.

In the sequel we assume that QFBAPA-R2 formulas are in normal form. The
proof of the following Lemma is straightforward.

Lemma 4 (Models Modulo Venn Regions). Let p be a Venn region over
sets Ai and q a Venn region over sets Bi. If α is a model of the QFBAPA-R2
formula F and α(r) ∩ (α(p) × α(q)) �= ∅, then α′ given as α[r := w] is also a
model of the formula F where w = α(r) ∪ (α(p) × α(q)).

By repeated application of the above lemma it follows that it suffices to consider
completed models α, in which α(r) is a union of products of Venn regions, and
is thus given by a bipartite graph, denoted E, between Venn regions of sort A
and Venn regions of sort B.

Sparse models. We are interested in the finite satisfiability problem for
QFBAPA-R2 formulas. We show that this problem is in NP. This result is a strict
a generalization of the proof that QFBAPA is in NP [16] and similarly proceeds
by proving a sparse model property: if the formula is satisfiable, it has a model
in which only polynomially many Venn regions are non-empty. By Lemma 4,
models with sparse Venn regions can also be assumed to have polynomial repre-
sentations that have polynomial sized bipartite graphs E. By polynomial in this
section we mean polynomial in the size of formula F , where integer constants are
denoted in binary. The following theorem builds on the sparse model property
for QFBAPA [16]. QFBAPA models can be represented by introducing an inte-
ger variable for each Venn region, and the sparse model property for QFBAPA
relies on the integer analogue of Carathéodory theorem [8].

Theorem 5. If a QFBAPA-R2 formula has a model, then it has a sparse model.

Proof. Let α be a completed model of a formula F in form (3). Using α we
simplify FC as follows. For all sets Ai where α(Ai) = ∅, replace Ai and Bi with
∅ and remove such Ai and Bi from consideration. Let K be the number of sets
Ai remaining. For the remaining sets Ai, introduce constraint |Ai| = k′i into FA

and constraint k′i > 0 into P .
Next, apply the sparse model construction of QFBAPA to FB part, as follows.

Consider the result of replacing in FB each integer variable k with the constant
α(k). By [16], consider a sparse solution for the resulting QFBAPA formula
that does not introduce any new non-empty Venn regions. That is, consider the
Presburger arithmetic formula generated by those Venn regions q over sets Bi for
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which α(q) �= ∅, eliminating the variables corresponding to Venn regions q with
α(q) = ∅. The sparse solution of such Presburger arithmetic formula [16,8] yields
a polynomial subset of non-empty Venn regions over Bi for which the integer
values of |b| expressions in FB remain the same. We therefore obtain a set of
cubes CB = {q1, . . . , qN} and a model α1 such that 1) α1(q) �= ∅ iff q ∈ CB , 2)
α1(FB ∧ P ), and 2) variables other than Bi have same values in α1 and α.

Next, pick a set CA0 of cubes over Ai related to the chosen sparse set of cubes
CB. Let 1 ≤ j ≤ N . Let i be any index such that qj ⊆ Bi. Because α(Bi = r[Ai])
there exists some pair (a, b) ∈ α(r) ∩ α(Ai) × α(qj). Let a ∈ p where p ⊆ Ai

is the cube containing a. Denote such cube pji and repeat this process for all
1 ≤ j ≤ N and all Bi where qj ⊆ Bi and let CA0 be the resulting set of cubes
pji. The set CA0 has at most NK elements, which is polynomially many. In
this process we have also identified a bipartite graph E ⊆ CA0 × CB , given by
E = {(pji, qj) | 1 ≤ j ≤ N, 1 ≤ i ≤ K}.

Observation about E: If (p, q) ∈ E and p ⊆ Ai, then q ⊆ Bi. Proof: Let (p, q) ∈
E and p ⊆ Ai. By construction of E, for some witness elements a ∈ α(p), b ∈ α(q)
we have (a, b) ∈ α(r). Because α(Bi = r[Ai]), we have b ∈ α(Bi). Because α(q)
and α(Bi) intersect, q ⊆ Bi, completing the proof of the observation.

We can now apply the sparse model construction of QFBAPA to the FA part
to pick a sparse set of cubes CA ⊇ CA0. Treat again the values of integer variables
in FA as constant, but then also in the resulting non-redundant integer cone
generator replace the cardinalities of variables denoting sizes of each selected
cube in p ∈ CA0 by the constant |α(p)|, thus removing these variables from the
integer equation and removing the corresponding elements from the universe UA.
Solve the remaining equations to obtain a sparse solution for the simplified FA

formula, again using the results on sparse solutions of such Presburger arithmetic
formulas [16,8]. We obtain a sparse solution that gives a polynomial number of
non-empty cubes CA1. We use the obtained values to define α1(p) for p ∈ CA1.
We let α1(p) = α(p) for p ∈ CA0. Let CA = CA0 ∪ CA1. Define α1(p) = ∅ for
p /∈ CA. This yields the sparse interpretation α1, where only cubes in CB ∪ CA

are non-empty and where α1(FB ∧ FA ∧ P ) holds.
Finally, define define α1(r) as a completed model α1 =

⋃
{p× q | (p, q) ∈ E}

where E is defined (by edges (pji, qj)) above. We claim α1(FC). Indeed, consider
a set Ai. Then Ai is union of certain cubes from CA0 and certain cubes from CA1.
Because E has no outgoing edges for CA1, we have α(r[

⋃
CA1]) = ∅. Therefore,

α1(r[Ai]) = α1(r[∪{p | p ∈ CA0, p ⊆ Ai}]) = α1(∪{q | ∃p.p ⊆ Ai ∧ (p, q) ∈ E}

By the above Observation about E, we have that for each q above (belonging
to E[{p}]) the condition q ⊆ Bi holds. Therefore α1(r[Ai]) ⊆ α(Bi). For the
converse set inclusion, let b ∈ α1(Bi) be arbitrary and let qj ∈ CB be such that
b ∈ α1(qj) and qj ⊆ Bi. Note that α1(pji) �= ∅, so there exists a ∈ α1(pji). Then
(a, b) ∈ α1(r). Because pji ⊆ Ai, we have b ∈ α1(r[Ai]). Thus, α(Bi) ⊆ α1(r[Ai])
and the therefore α1(r[Ai] = Bi). Because i was arbitrary, α1 is a sparse model
for the entire formula.

Theorem 6. The satisfiability for QFBAPA-R2 is NP complete.
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Proof. (Sketch) NP-hardness follows because QFBAPA-R2 subsumes proposi-
tional logic. To show NP membership, we use the sparse model property from the
previous theorem: we non-deterministically guess a subset of non-empty sets Ai,
then guess a polynomial subset CB of Venn regions over Bi, using the polynomial
bounds from [16]. We then guess the subset CA0 bounded by K|CB| and guess
CA1 conservatively bounded by the same bound as in [16]. Finally, we guess a
graph E whose number of edges is bounded by |CB |(|CA0|+ |CA1|). Given such a
guess, we can compute a formula that describes all Boolean Algebra expressions
and all images of non-empty relations fragments under non-empty Venn regions,
and thus describes the existence of a model for this guess of Venn regions and
relation between them. As in [16], the entire guessing process can be compiled
into a polynomially large quantifier-free formula of Presburger arithmetic with
conditional expressions.

We next discuss some extensions of the two-sorted fragment.

NP extensions. Consider any finite number of sorts s1, . . . , sn related by a strict
total ordering, and any number of relations of sorts si × si+1 for 0 ≤ i < n. We
can then repeat the construction above, starting with relations of sorts sn−1×sn

and moving towards relations of sort s1 × s2. For a fixed number of sorts, we
obtain NP complexity. In fact, we can repeatedly apply the sparsity theorem in
the case of multiple sorts and multiple relations forming a directed acyclic graph
over the sorts.

Limits of membership in NP. Note that if we consider a chain of rela-
tions whose sorts form a cycle, through repeated composition we can simulate
relations of sort s × s. In this case the above NP construction fails. Moreover,
the EXPTIME lower bound follows for such language from the lower bound
on the complexity of the ALC Description Logic with general TBox inclusion
axioms [1, Theorem 3.27].

5 Logic of Multiset Images of Functions

In this section we illustrate that some of the techniques of the previous section
generalize from sets to multisets. A multisetM is a function M : E → N mapping
the set of elements into the non-negative number of their occurrences. The first
NP decision procedure for multisets with the cardinality operator was presented
in [23]. In this section we extend the logic of multisets with cardinalities to also
include a function image operator that maps a set into a multiset.

We define the function image of a set A to be a multiset f [A] : E → N such
that (f [A])(e) = |{x. x ∈ A ∧ f(x) = e}|. The set of distinct elements occurring
in a multiset is obtained using the set operator: set(M) = {x. M(x) > 0}. This
way set(f [B]) is the set corresponding to the standard notion of function image
used in previous sections.

Figure 6 shows the logic that embeds the logic of multisets [22, Figure 1], [23],
and extends it with the multiset image operator. The logic distinguishes the sorts
of sets and multisets, but also includes a casting function mset(B) which treats
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F ::= A | F ∨ F | ¬F
A ::= B ⊆ B | M ⊆ M | T ≤ T | K dvd T
B ::= x | ∅ | U | B ∪B | B ∩B | Bc | set(M)
M ::= m | ∅M | M ∩M | M ∪M | M !M | M \M | M \\M | mset(B) | f [B]
T ::= k | K | MAXC | T1 + T2 | K · T | |B| | |M |
K ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·

Fig. 6. MAPA-Fun logic of multisets, cardinality operator, and multiset images of sets

INPUT: formula in the syntax of Figure 6
OUTPUT: multiset formula in the syntax of Figure 1 in [22]

1. Flatten expressions containing the operator set:
C[. . . set(M) . . .] � (BF = set(M) ∧ C[. . . BF . . .])

where the occurrence of set(M) is not already in a top-level conjunct of the form
B = set(M) for some set variable B and BF is a fresh unused set variable

2. Let S be the set of variables occurring in the formula
Define the set SN = {s1, . . . , sQ} of Venn regions over elements of S

3. Rewrite each set expression as a disjoint union of the Venn regions from SN

4. Eliminate function symbols:
C[. . . f [si1 ∪ . . . ∪ sik ] . . .] � C[. . . (Mi1 ! . . . !Mik ) . . .]

where each Mij is a fresh multiset variable denotes f [sij ]
5. Add the conjuncts which states a necessary condition for Mij = f [sij ]

F � F ∧∧Q
i=1 |si| = |Mi|

6. Add the conjuncts which state that sij are disjoint sets
F � F ∧ ∀e.∧Q

i=1(si(e) = 0 ∨ si(e) = 1) ∧∧i�=j(si ∩ sj = ∅)

Fig. 7. Algorithm for reducing a MAPA-Fun formula to a MAPA formula

a set as a multiset, and an abstraction function set(M) which extracts the set of
distinct elements that occur in a multiset. Unlike the previous section, we do not
have disjointness of domains and ranges of functions, and, in terms of expressive
power, we effectively treat sets as a special case of multisets.

Given a formula F in the language described in Figure 6, a decision procedure
for F works as follows:

1. Apply the algorithm in Figure 7 to translate F into an equisatisfiable multiset
formula F ′ in the syntax given in Figure 1 in [22]. In this step we eliminate
function symbols in a way similar to that described in Section 3. The new
formula F ′ has size singly exponential in the size of F ;

2. invoke on the formula F ′ the decision procedure described in [23]. The deci-
sion procedure runs in NP time.

The entire procedure runs in NEXPTIME. The lower bound proof from Sec-
tion 3.2 applies in this case as well, so we conclude that our logic is NEXPTIME-
complete.

The correctness of the reduction is stated in the following theorem.
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Theorem 7. Given a formula F as an input to the algorithm described in Fig-
ure 7, let the formula F ′ be its output. Then formulas F and F ′ are equisatisfi-
able and their satisfying assignments have the same projections on the set and
multiset variables occurring in F .

Proof. Given a model for F , we construct a model for F ′ by interpreting Mi

as f [si]. Conversely, let α be a model for F ′. We can define f on each disjoint
set si independently. Because |si| = |Mi| holds in the model, we can enumerate
both si and Mi into sequences a1, . . . , aK and b1, . . . , bK of same length. This
enumeration defines a function assigning aj to bj for 1 ≤ j ≤ K such that
f [si] = Mi.
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