
An Augmented Reality Tourist Guide

on Your Mobile Devices

Maha El Choubassi, Oscar Nestares, Yi Wu, Igor Kozintsev,
and Horst Haussecker

Intel Corporation
2200 Mission College Blvd

Santa Clara, CA 95052, USA
{maha.el.choubassi,oscar.nestares,yi.y.wu,igor.v.kozintsev,

horst.haussecker}@intel.com

Abstract. We present an augmented reality tourist guide on mobile
devices. Many of latest mobile devices contain cameras, location, orien-
tation and motion sensors. We demonstrate how these devices can be
used to bring tourism information to users in a much more immersive
manner than traditional text or maps. Our system uses a combination
of camera, location and orientation sensors to augment live camera view
on a device with the available information about the objects in the view.
The augmenting information is obtained by matching a camera image to
images in a database on a server that have geotags in the vicinity of the
user location. We use a subset of geotagged English Wikipedia pages as
the main source of images and augmenting text information. At the time
of publication our database contained 50 K pages with more than 150 K
images linked to them. A combination of motion estimation algorithms
and orientation sensors is used to track objects of interest in the live
camera view and place augmented information on top of them.

Keywords: Mobile augmented reality, image matching, SIFT, SURF,
location and orientation sensors, optical flow, geotagging.

1 Introduction

In the past few years, various methods have been suggested to present aug-
mented content to users through mobile devices [1,2,3,4,5]. Many of the lat-
est mobile internet devices (MIDs) feature consumer-grade cameras, WAN and
WLAN network connectivity, location sensors (such as Global Position System -
GPS) and various orientation and motion sensors. Recently, several applications
like Wikitude (www.wikitude.org) for G1 phone and similar applications for
iPhone have been announced. Though similar in nature to our proposed system,
these solutions rely solely on the location and orientation sensors, and, there-
fore, require a detailed location information about points of interest to be able
to correctly identify visible objects. Our system extends this approach by using
the image matching techniques both for recognition of objects and for precise
placement of augmenting information.

S. Boll et al. (Eds.): MMM 2010, LNCS 5916, pp. 588–602, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.wikitude.org

An Augmented Reality Tourist Guide on Your Mobile Devices 589

In this paper, we demonstrate a complete end-to-end mobile augmented reality
(MAR) system that consists of Intel R© AtomTM processor-powered MIDs and
Web-based MAR service hosted on a server. On the server, we store a large
database of images crawled from geotagged English Wikipedia pages that we
update on a regular basis. The MAR client application is running on a MID.
Figure 1 demonstrates a snapshot of the actual client interface. In this example
the user has taken a picture of a Golden Gate bridge in San Francisco. The MAR
system uses the location of the user along with the camera image to return
top 5 candidate matching images from the database on the server. The user
has an option of selecting the image of interest, which retrieves a corresponding
Wikipedia page with an article about the Golden Gate bridge. A transparent logo
is then added to the live camera view ”pinned” on top of the object (Figure 1).
The user will see the tag whenever the object is in the camera view and can click
on it later on to return to the retrieved information.

Fig. 1. A snapshot of our MAR system

The following are the main contributions of this paper:

– In [6], we relied on location and orientation sensors to track objects. In
this paper, we additionally use the image content for tracking objects using
motion estimation, thus improving the precision of placement of augmenting
information in the live camera view.

– We created a representative database sampled from the large Wikipedia
database to perform systematic testing of the MAR performance in a realistic
setting.

– We propose a new method to improve the matching algorithm based on
histograms of minimum distances between feature descriptors and present
the results for our sample database.

– We propose a simple and promising way to extend our database of images
by combining text and GPS information and various sources of images like
Google image search and Wikiepdia. As a result we enhance the accuracy of
image matching of our system.

– We implemented a fully-functional client application and optimized its per-
formance for Intel R© AtomTM processor.

The organization of our paper is as follows. In Section 2, we give an overview of
our MAR system. In Section 3, we describe the small sample Wikipedia database.

590 M. El Choubassi et al.

In Section 4, we present an enhanced version of the matching algorithm based
on our testing results on this database. In Section 5, we extend our matching al-
gorithm by investigating histograms of minimum distances between descriptors.
In Section 6, we supplement our database by images from Google image search
and show better image matching results on our sample database. In Section 7,
we illustrate our algorithms with experimental results. In Section 8, we explain
some of the implementation and code optimization aspects. Finally, we conclude
in Section 9.

2 System Overview

In this section, we present the overview of MAR system as illustrated in Figure 2.
The system is partitioned into two components: client MID and a server.
The MID continuously communicates with the server through WAN or WLAN
network.

Fig. 2. MAR system Diagram with the image acquisition, feature extraction, rendering,
and tracking on the client side, and the database and image matching on the server
side

2.1 Client

– Query acquisition. Client MID devices contain cameras, orientation and
location (such as GPS) sensors. Client continuously acquires live video from
the camera and waits for the user to select the picture of interest. As soon
as a picture is taken, sensor data from location and orientation sensors is
written to the images EXIF fields.

– Feature extraction. Visual features are then extracted from the picture.
We use 64-dimensional SURF [7] which are fast to compute compared to
SIFT [8]. Client sends extracted feature vectors and recorded sensor data to

An Augmented Reality Tourist Guide on Your Mobile Devices 591

the server for searching matched images and related information. The reason
of sending the compact visual features instead of full resolution images is to
reduce network bandwidth, hence reduce latency.

– Rendering and overlay. Once the matched information is found, related
data including matched image thumbnail, wikipage link, etc. will be down-
loaded to the client via WAN or WLAN network. Client will render the
augmented information such as wiki tag related to the query object and
overlay it on the live video. Our device has orientation sensors: a compass,
an accelerometer, and a gyroscope. As the user moves the device around, the
augmented information representing the query will be pinned to the position
of the object. This way, multiple queries can be interacted with separately
by simply pointing the camera at different locations.

– Tracking. When a query is made, the direction of the MID is recorded
using the orientation sensors on the device. Client will continuously track
the movement of orientation sensor [6]. However, tracking using orientation
sensors is not very precise. We extend our tracking method to also include
the visual information. The image based stabilization is based on aligning
neighbor frames in the input image sequence using a low parametric motion
model. The motion estimation algorithm is based on a multi-resolution, iter-
ative gradient based strategy [9], optionally robust in a statistical sense [10].
Two different motion models have been considered, pure translation (2 pa-
rameters) and pure camera rotation (3 parameters).

2.2 Server

– Database collection. We crawled Wikipedia pages, in particular those with
GPS information associated with them [6]. We downloaded the images from
these pages to our server, extracted visual features from images and built our
image database. At the time of publishing [6], the database had 50K images.
Currently, it has over 150K images and it is constantly growing. This fact
further emphasizes the need and the importance of applications exploring
large resources of images.

– Image match. Once the server receives query from client MID, the server
will perform image match. For image matching, we combine both the GPS
information and the image content. More explicitly, we restrict the database
of candidate matching images to those within certain search radius from
the user GPS location. Next, we use computer vision techniques to match
the query image to the GPS-constrained set of images. Downscaling the
database from 150K images to a much smaller candidate image set after GPS
filtering enhances the performance of image-based matching algorithms. If
the number of nearby candidates is reasonable (< 300) we perform brute-
force image matching based on the ratio of the distance between the nearest
and second nearest neighbor descriptors [8]. Otherwise, for scenarios with
highly dense nearby images or with no GPS location available, the database
is large and we use indexing as proposed by Nister & Stewenius in [11].
Details of the matching algorithm are presented in the following sections.

592 M. El Choubassi et al.

3 Building a More Realistic Database

In our previous paper [6], we showed quantitative results on the standard ZuBuD
test set [12] with 1005 database images and 115 query images. Also, we only had
qualitative results for a small benchmark of images of iconic landmarks in an
effort to represent MAR. Although the results on the ZuBuD set are informative,
they do not precisely reflect the performance of the actual MAR system. To
better represent MAR, we select 10 landmarks around the world: the triumph arc
(France), the Pisa tower (Italy), the Petronas towers (Malaysia), the colosseum
(Italy), the national palace museum (Taiwan), the golden gate bridge (California,
USA), the Chiang Kai-Shek memorial hall (Taiwan), the capitol (Washington
D.C., USA), the palace of justice (France), and the Brandenburg gate (Germany).
For each landmark, we follow the steps of the MAR system. First, we filter the
150K images database on the server to a smaller set that includes only the images
within a radius of 10 miles1. Next, we randomly pick one of the landmark images
in the set as a query image, and keep the others as the database images. We now
have a set of 10 query images and 10 databases. The total number of images in all
the databases is 777. Please refer to Figure 3 for samples from these databases.
Each row corresponds to one landmark and the leftmost image is the chosen
query image. In the leftmost column, we show the number of relevant images
out of the total number of images in the database. For example for the triumph
arc landmark, the database has 5 images of the arc out of all the 27 images
inside it. Moreover, the characteristics of these databases vary. For instance,
the size of the database is only 5 for the national palace museum, while it is
200 for the justice palace. Also, the database corresponding to the golden gate
bridge has 12 relevant images out of 19 images, while that of the justice palace
has only 1 relevant image among 200 images. Finally, we manually annotate
the databases. Simulating MAR on these databases, we obtain representative
quantitative results for its performance since such databases are sampled from
the Wikipedia data on our server, i.e, the actual database queried by MAR. Note
that images labeled by the same landmark might look different depending on
the lighting conditions, the viewpoint, and the amount of clutter.

4 Matching Enhancement by Duplicates Removal

4.1 Original Matching Algorithm

In order to recognize the top matching database images, our algorithm inspects
each database image at a time and compares it to the query image. More specifi-
cally, for each SURF keypoint in the query image, the algorithm finds the nearest
and the second nearest neighbor keypoints in the database image based on the
L1 distance between descriptors. Next, it computes the distances ratio and de-
cides whether the query keypoint matches the nearest keypoint in the image
database as in [8]. After the algorithm detects the matching pairs between the

1 Our MAR system uses this radius also.

An Augmented Reality Tourist Guide on Your Mobile Devices 593

Fig. 3. Sample images from the GPS-constrained databases for 10 landmarks

query image and all the database images, it ranks these images in a descending
order according to the number of such pairs.

4.2 Duplicates Removal

Running MAR on the data collected in Section 3, we identified one problem
in the matching algorithm that degrades MAR’s performance: having multiple
matching keypoints in the query image corresponding to one keypoint in the
database image magnifies false matches and degrades the matching accuracy.
We adjusted the algorithm to remove duplicate matches and improve matching
accuracy at no computational cost as shown below.

Example. In Figure 4, we see the top 5 images returned by MAR for the golden
gate bridge query. The features used are SURF with a threshold2 of 500. Clearly,
the top 1 image is a mismatch.

In Figure 5, we see that many of the matches between the query image and the
top 1 image are actually duplicates: for example, the 14 keypoints in the query
image correspond to only one keypoint in the database image. Moreover, these
matches are actually false. It turns out that many of the 60 matches are due
2 The threshold is a parameter in the SURF algorithm. The larger this parameter is,

the less sensitive is the keypoints detector and the smaller is the number of keypoints.

594 M. El Choubassi et al.

Fig. 4. Top 5 matches retrieved by MAR for the golden gate bridge query

Fig. 5. Right: query image. Left: database image. Illustration of a typical problem of
the matching algorithm: one keypoint in the database image has duplicate matches in
the query image (14 matches in this example).

to duplicates. Even when these matches are false, they are highly amplified by
their multiplicity, which eventually affects the overall retrieval performance. We
believe that this problem particularly arises in cases of strong imbalance between
the number of keypoints in the database and query images (155 versus 2169).
The imbalance forces many keypoints in the query image to match one single
point in the database image. The standard ZuBuD data set does not have this
issue since its images are more or less uniform and have comparable numbers of
keypoints. Contrarily, Wikipedia and web images in general are highly variant,
which emphasizes the necessity of having representative sample databases as
in Section 3. To solve this problem, our adjusted algorithm prohibits duplicate
matches. Whenever a keypoint in the database image has multiple matches in
the query image, we only pick the keypoint with the closest descriptor. Applying
the new algorithm to the golden gate query, the number of matches between the
query image and the previously top 1 image decreases from 60 to 21, and the new
top 5 images are shown in Figure 6. We recognize that duplicate matches may still
be correct in particular for repetitive structures, however as it is shown for this
particular example and in the more extensive results in Section 7, substituting

An Augmented Reality Tourist Guide on Your Mobile Devices 595

Fig. 6. Top 5 matches retrieved by the adjusted algorithm for golden gate bridge query

the duplicates with the “best” matching descriptor, i.e., the nearest, improves
the overall performance of our system.

5 Matching Enhancement by Histograms of Distances

For each keypoint in the query image, the current matching algorithm computes
the minimum distance and the second minimum distance between its descriptor
and the descriptors of the database image keypoints. Next, the ratio between the
distances is used to decide about the match as explained in Section 4.1. Instead of
merely relying on the distances ratio, we propose further exploring other statis-
tics based on descriptors’ distances. More explicitly, we compute the histogram of
minimum distances between the query image and the top ten retrieved database
images. Our purpose is to extract more information from these distances about
the similarity/dissimilarity between the query and the database images. Next, we
examine these histograms in order to remove obviously mismatching images. The
cost of this approach is not high, since the distances are already computed and
hence we are only leveraging their availability. We applied this approach to 10
query images and their corresponding GPS-constrained databases. We obtained
promising results.

5.1 Algorithm

Let Q be the the query image. We first apply our existing matching algorithm
and we retrieve the top 10 database images D1, D2, . . ., D10. Next, we consider
each pair (Q, Di) at a time and build the histogram Hi of minimum distances
from keypoints in the query image Q to the database image Di. There is no
additional overhead since these distances were already calculated by the existing
matching algorithm. For each histogram Hi, we obtain its empirical mean Mi

and and skewness Si:

Mi =
1
n

n∑

j=1

Hi,j ,

Si =
1
n

∑n
j=1 (Hi,j − Mi)

3

(
1
n

∑n
j=1 (Hi,j − Mi)

2
)3/2

.

596 M. El Choubassi et al.

The smaller the skewness is, the closer to symmetric is Hi. Our main assumptions
are:

1. If Mi is large then many of the descriptors pairs between Q and Di are quite
distant and hence are highly likely to be mismatches. Therefore, image Di

must not be considered a match for image Q.
2. If Si is small (close to zero), then the histogram Hi is almost symmetric.

Having many descriptors in Q and Di that are “randomly” related, i.e., not
necessarily matching, would result in this symmetry. We expect this scenario
when the the two images Q and Di don’t match and hence there is no reason
for the histogram to be biased.

Based on these assumptions, we remove database images that have very low skew
Si. We also cluster the images based on the means M1, M2, . . ., M10 into two
clusters (we used k−means). We remove the images that belong to the cluster
with the higher mean. For the experimental results, please refer to Section 7.2.
Figure 7 displays the block diagram of our adjusted matching algorithm.

Fig. 7. Block diagram of our algorithm for image matching with the duplicates removal
and enhancement based on histograms added

6 Matching Enhancement by Database Extension

As mentioned before, the images on our server are downloaded from Wikipedia.
Although Wikipedia is a good source for information in general, it is not the best
source for images. As we see in Figure 3 there is only one image that matches
the justice of palace query out of 200 images in the database. However, not only
the matching algorithm but also the number of matching images in the database
impacts the performance accuracy. Moreover, the query image might be taken
from different views and under different light conditions. Having a small number
of matching images, e.g., one image in the day light for the justice of palace
query, would limit the performance of MAR. For this reason, we prefer if the
database has more matching images to the query and we aim at extending it

An Augmented Reality Tourist Guide on Your Mobile Devices 597

by combining GPS-location, geotagged Wikipedia pages, text in these pages,
and the large resources of web images. For each Wikipedia page, we don’t only
download its images, but we also use its title as a text query on Google image
search engine. Next, we pick the first few retrieved images and associate them
with the same Wikipedia page. As we will see in Section 7.3, the performance of
our MAR system improves significantly.

7 Experimental Results

7.1 Duplicates Removal

To test the impact of duplicate matches removal, we ran both the original and
the new matching algorithms (see Section 4) on the sample databases of Section 3
for various SURF thresholds. In Figure 8, we display the average of the top 1, top
5, and average precision over the 10 databases. Clearly, removing the duplicate
matches improves the performance at almost the same running time.

Fig. 8. Top 1, top 5, and average precision results for the 10 landmarks of Section 3
vs. the SURF threshold

7.2 Matching Enhancement through Histograms of Distances

In Figure 9, we display the top 10 retrieved images for each of the 10 databases
in Section 3 by the updated matching algorithm of Section 4.2 with duplicates
removal. We also used the histograms of distances to further refine the match as
explained in Section 5.1. Based on the histograms analysis, images labeled with
a red square in the figure are rejected and those tagged with a blue square are
not rejected. From these experiments, we see that portraits and statues of people
can be clearly distinguished and rejected since most of the queries are those of
buildings. Such images in general have a very low skew, i.e., a very symmetric
histogram. They also may have a large mean.

598 M. El Choubassi et al.

Fig. 9. Results for matching enhancement based on histograms of distances. Images
before the red line are the queries.

7.3 Matching Enhancement through Database Extension

For each of our 10 landmarks, we download the top 21 images returned by
Google image search when queried with the title of the landmark Wikipedia
page and add them to the corresponding landmark database. Next, we apply
our improved matching algorithm with no duplicates and using histograms of
distances and display the improved results in part (a) of Figure 10. Part (b)
illustrates the top 10 images returned by MAR for query images under new light
conditions (golden gate bridge at night and triumph arc during the day). The
top returned images have similar lighting conditions due to the sensitivity of
SURF features to light conditions, which applies to other popular features such
as SIFT. Hence we need a diverse set of images in the database in order to
compensate for the limitation of visual features. Finally, in the actual scenario
Google images relevant to all geotagged Wikipedia pages must be added to our
databases, while in part (a) we only added the images corresponding to the query

An Augmented Reality Tourist Guide on Your Mobile Devices 599

Fig. 10. Results for matching enhancement based on database extension, images before
the red line are the queries. (a) All the 10 landmarks. (b) New light conditions for
query: night for golden gate bridge, day for triumph arc. (c) Add also a large number
of mismatching images to the database (427 mismatching images and 21 google images
to 174 database.

landmark. For this reason, in order to make sure that the improvement in the
matching accuracy is not due to the bias in the number of matching vs. mis-
matching images, we added 427 various mismatching images to the Brandenburg
gate database in addition to the 21 google images (original size 174 images).
In part (c), we view the top 10 retrieved images. Clearly, we still have a sig-
nificant improvement in performance due to the database extension. Note that
for parts (b) and (c) we only use the improved matching algorithm excluding
duplicates but without refinement based on histograms of distances. Indeed, the
main point of the results in part (b) is to stress the sensitivity to light con-
ditions and the need for diverse databases, while the purpose of the results of
part (c) is to prove the success of database extension. Both points are clear
from the results independently of the particular refinements of the matching
algorithm.

600 M. El Choubassi et al.

8 Implementation and Optimization

8.1 Code Optimization

The original SURF feature extraction code is based on OPENCV implementation
(http://sourceforge.net//projects/opencv/library) and match algorithm
as described in Section 2.2. We further identified the hot spots in the MAR source
codes and employed the following optimization:

– Multi-threaded all the hotspots, including interesting point detection, key-
point description generation and image match.

– Data and computation type conversion. In the original implementation, dou-
ble and float data types are used widely, and floating point computations as
well. We quantized the keypoint descriptor from 32-bit floating point format
to 8-bit char format. We also converted many floating point computation to
fixed point computations in key algorithms. By doing that, not only the data
storage is reduced by 4X , but also the performance is improved by taking
advantage of the integer operations. The image recognition accuracy isn’t
affected from our benchmark results.

– Vectorization. We vectorized the image match codes using SSE intrinsic to
take advantage of 4-way SIMD units. Significant speedups are observed com-
pared to original implementation.

8.2 Tracking

The tracking algorithm explained in Section 2.1 has been optimized by: 1) using
a simplified multi-resolution pyramid construction with simple 3-tap filters; 2)

Fig. 11. Performance measured in fps of the image-based stabilization method on

an Intel R© AtomTM processor based platform (1.6GHz, 512KB L2 cache) for several
choices of model, estimation method, resolution levels and iterations per level

http://sourceforge.net//projects/opencv/library

An Augmented Reality Tourist Guide on Your Mobile Devices 601

using a reduced linear system with gradients from only 200 pixels in the image
instead of from all the pixels in the images; 3) using SSE instructions for the
pyramid construction and the linear system solving; 4) using only the coarsest
levels of the pyramid to estimate the alignment. Performance was measured on an
Intel R© AtomTM system (1.6GHz, 512KB L2 cache) using VGA (640×480) input
video and different options. The results are shown in Figure 11, which displays
the measured frames per second (fps) for different models (displacement/camera
rotation), estimation method (robust/non-robust) and resolution levels and iter-
ations per level used. For pure displacement model, using non-robust estimation
and running 5 iterations in the levels 3 and 4 of the multi-resolution pyramid
(being level 1 the original resolution) the performance is over 80 fps.

9 Conclusion

In [6], we presented MAR with a fully functional prototype on a MID device with
Intel R© AtomTM processor inside. In this paper, we described new improvements
to the matching and tracking algorithms in addition to the design of the system
and its database. We also built a new realistic testing database. With all these
improvements, MAR demonstrates the powerful capabilities of future mobile
devices by integrating location sensors, network connectivity, and computational
power.

References

1. Pradhan, S., Brignone, C., Cui, J.H., McReynolds, A., Smith, M.T.: Websigns:
hyperlinking physical locations to the web. Computer 34, 42–48 (2009)

2. Lim, J., Chevallet, J., Merah, S.N.: SnapToTell: Ubiquitous Information Access
from Cameras. In: Mobile and Ubiquitous Information Access (MUIA 2004) Work-
shop (2004)

3. Zhou, Y., Fan, X., Xie, X., Gong, Y., Ma, W.Y.: Inquiring of the Sights from the
Web via Camera Mobiles. In: 2006 IEEE International Conference on Multimedia
and Expo., pp. 661–664 (2006)

4. Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.C., Bismpigiannis,
T., Grzeszczuk, R., Pulli, K., Girod, B.: Outdoors augmented reality on mobile
phone using loxel-based visual feature organization (2008)

5. Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from
community photo collections. In: Proceedings of the 2008 international conference
on Content-based image and video retrieval, pp. 47–56. ACM, New York (2008)

6. Gray, D., Kozintsev, I., Wu, Y., Haussecker, H.: WikiReality: augmenting real-
ity with community driven websites. In: International Conference on Multimedia
Expo., ICME (2009)

7. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–
417. Springer, Heidelberg (2006)

8. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Interna-
tional Journal of Computer Vision 60(2), 91–110 (2004)

602 M. El Choubassi et al.

9. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision, pp. 674–679

10. Nestares, O., Heeger, D.J.: Robust multiresolution alignment of MRI brain vol-
umes, pp. 705–715

11. Nister, D., Stewenius, H.: Scalable Recognition with a Vocabulary Tree. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (2006)

12. Shao, H., Svoboda, T., Van Gool, L.: ZuBuD: Zurich Buildings Database for Image
Based Recognition. Technique report No. 260, Swiss Federal Institute of Technology
(2003)

	An Augmented Reality Tourist Guide on Your Mobile Devices
	Introduction
	System Overview
	Client
	Server

	Building a More Realistic Database
	Matching Enhancement by Duplicates Removal
	Original Matching Algorithm
	Duplicates Removal
	Example.

	Matching Enhancement by Histograms of Distances
	Algorithm

	Matching Enhancement by Database Extension
	Experimental Results
	Duplicates Removal
	Matching Enhancement through Histograms of Distances
	Matching Enhancement through Database Extension

	Implementation and Optimization
	Code Optimization
	Tracking

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

