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Stumbling over Consensus Research:
Misunderstandings and Issues

Marcos K. Aguilera

Abstract The consensus problem has recently emerged as a major interest in sys-
tems conferences, yet the systems community tends to ignore most of the large body
of theory on this subject. In this chapter, I examine why this might be so. I point out
misunderstandings by the systems community of the theory. I also consider some
issues in this work that remains to be addressed by the theory community.

4.1 Introduction

In the consensus problem, each process proposes some initial value, and processes
that do not fail must reach an irrevocable decision on exactly one of the proposed
values. The consensus problem captures an essential component of replication in
distributed systems: the fact that replicas (processes) need to agree on the next re-
quest they handle, so that they can remain in identical states.

The consensus problem has been a fertile topic for theoretical study and it has
recently become a major interest in systems conferences. Yet, theory and practice are
divorced: the large body of theoretical work on this subject has had limited impact,
and the systems community tends to ignore most of that theory. In this chapter, I
examine why this may be so.

The chapter is divided into two main parts. In Section 4.2, I consider some mis-
understandings by the systems community of the theoretical work on the consensus
problem. In Section 4.3, I consider some issues in this body of work that remains to
be addressed by the theory community. Section 4.4 concludes the chapter.

The chapter presents a somewhat personal point of view. Another perspective on
consensus misunderstandings is provided in [8], while [3] describes an experience
of applying consensus in practice.
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4.2 Misunderstandings

There are some deep misunderstandings by the systems community of a signifi-
cant part of the theoretical research on the consensus problem. This section covers
these misunderstandings. They have hindered the adoption of many interesting tech-
niques, ideas, and algorithms, for incorrect reasons. My hope is that, once the mis-
understandings are clarified, systems researchers can make better informed choices
and benefit from work that they once thought to be inapplicable. At the same time, I
hope that theory researchers can become sensitized to the misunderstandings so that
they can present their research in a more effective manner.

4.2.1 Asynchronous Systems

An asynchronous (distributed) system is a system in which processes need not sat-
isfy any timeliness properties. There are no bounds on the relative rate of execution
of processes, so one process may execute at a much faster rate than another. More-
over, there are no bounds on message delays, so messages sent from one process
to another may be delivered quickly or slowly. On the other hand, in a synchronous
system, there are bounds on the rate of execution of non-faulty processes and on
message delays.

Critics say that asynchronous systems are not realistic, because in reality one
process cannot be 10999999 slower than another process, and a message never takes
10999999 seconds to be delivered. That is a fair criticism and, indeed, it is un-
likely that asynchronous systems accurately model any real system. However, asyn-
chronous systems have an important practical aspect: algorithms developed for them
are very general, because they work irrespective of whether the system is fast or
slow. In contrast, algorithms developed for synchronous systems explicitly rely on
particular timing assumptions, and the algorithms can fail if those assumptions are
violated. The problem is that it is hard for the system designer to decide what tim-
ing assumptions he should make, because the timing behavior of a real system tends
to be imprecise and highly variable in practice. Specifically, the average message
delay of a network could be 1 millisecond, but infrequently messages may take 1
second or much longer when there is congestion. In that case, what should the sys-
tem designer assume as the maximum message delay? On one hand, if he chooses
1 millisecond then this choice will be incorrect sometimes, which can cause a pre-
mature timeout and lead to consistency problems (e.g., a premature timeout may
cause a backup process to be promoted to the primary, while another primary is
still active). On the other hand, if the system designer picks 1 second or more as
the maximum message delay, then when a message is really missing (because, say,
a server or a process crashes), it will take long to timeout on the message, caus-
ing the system to block in the meantime, leading to a loss of availability. Thus, the
system designer is left with two bad choices: assuming a small maximum message
delay affects consistency, while assuming a large conservative delay affects avail-
ability. With asynchronous systems, the system developer does not have to choose
what timing assumptions to make: he simply develops an algorithm that works irre-
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spective of whether the system is fast or slow. From this point of view, it is much
harder to criticize asynchronous systems: they merely embody the fact that timing
assumptions should be avoided. The fewer the assumptions needed by an algorithm,
the smaller the likelihood that it will fail when used in practice. Thus, from a prac-
tical perspective, asynchronous systems can be highly desirable when it comes to
designing algorithms.

However, asynchronous systems have some practical shortcomings. Impossibil-
ity results, which state that a problem cannot be solved in asynchronous systems,
are particularly limited. These results rely on the fact that asynchronous systems ad-
mit executions where messages and processes are delayed arbitrarily, whereas these
executions may be unlikely. Thus, these results are of limited interest in practice;
even in theory, these results are weak because they do not carry over to a system
with any form of synchrony. I will elaborate on this topic, focusing specifically on
the consensus impossibility result, in Section 4.2.4.

4.2.2 Eventually-Forever Assumptions

In the consensus literature, it is common to find assumptions in the form of
eventually-forever properties. An eventually-forever property is a property of the
form “eventually X is true and continues to be true forever after”. Common exam-
ples include the following:

• Eventual leader election. Eventually some correct process is elected as leader
and it remains leader forever after [5, 4].

• Eventual timeliness. Eventually non-faulty processes are timely and messages are
delivered and processed in a timely fashion, and this timeliness continues forever
after [6].

These assumptions are made as a condition for the algorithms to solve consensus.
Practitioners object that these assumptions are not realistic and therefore the algo-
rithms that depend on them are not useful. However, it turns out that these assump-
tions are actually reasonable from a pragmatic perspective. Practitioners are right
that these properties cannot hold in practice, but the misunderstanding is that they
are not really required to hold; they are only assumed to hold for purely technical
reasons. In reality, what is required to hold are somewhat weaker properties, such as
“a process remains the leader for sufficiently long”. These weaker properties, how-
ever, are cumbersome to formalize, and that is why eventually-forever properties are
used instead.

To illustrate this point, consider the simple example of a washing machine. Its
manufacturer would like to say that, after the machine is started, it eventually ter-
minates the washing cycle. But it will not terminate if the machine is disconnected
from the power supply during operation. Hence, to ensure termination one needs an
assumption such as “eventually the machine is connected to the power supply and
remains connected for 60 minutes”. However, if the washing machine has a variable
washing time that depends on its load, 60 minutes may not be enough and, in fact, it
may be impossible to determine how long is enough without knowing the exact load.
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An eventually-forever property comes handy in this case: the manufacturer simply
assumes that “eventually the machine is connected to the power supply and it re-
mains connected forever after”. This assumption handles the case of every possible
load. Note that, once the machine terminates, it is irrelevant whether or not the ma-
chine is connected to the power supply. Saying that the machine remains connected
forever is just a simple way to say that the machine is connected for sufficiently
long.

Similarly, consider a consensus algorithm that uses a leader election service. The
algorithm designer assumes that some process eventually gets elected as leader and
remains leader forever after. The algorithm does not really need the leader for eter-
nity, but it can be hard or impossible to know in advance for how long the leader is
needed, as this can depend on many factors, such as actual message delays and the
load on processes.

The washing machine manufacturer could give a table that shows, for each load,
how long the machine needs to be plugged in to terminate. Similarly, algorithm de-
signers could state assumptions that depend on all factors that influence the behavior
of their algorithm. Doing so, however, requires a more refined model than the asyn-
chronous model—something that algorithm designers prefer to avoid to keep the
model simple.

4.2.3 Eventual Guarantees

Many algorithms for consensus satisfy a progress guarantee described by eventual
properties. An eventual property is a property of the form “eventually X holds”. A
common example is the termination property, which says that “eventually non-failed
processes reach a decision”. Such a property does not say exactly when processes
reach a decision, only that sooner or later they do so.

Practitioners object that such a guarantee is not sufficient in practice, because
it allows processes to terminate, say, only after 1099999 years. This is a valid ob-
jection, but there is a reason to do things in this way: to separate correctness from
performance. As an analogy, the specification of the sorting problem requires that
the algorithm eventually terminate. The exact running time of the algorithm, per-
haps O(n logn), is a performance characteristic of the algorithm not a correctness
guarantee, and it is good form to separate performance from correctness.

One way to address this objection is to include an analysis of the running time
of the proposed algorithm, rather than just a termination proof. In an asynchronous
system, this analysis can be done in terms of the maximum observed message delay
(e.g., as in [1]), or in terms of the the largest causal chain of messages (e.g., as in
[13]), or based on the time when the system starts “behaving well” (e.g., as in [6],
using a partially synchronous system with a global stabilization time). This type of
analysis should be done more often.
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4.2.4 The Consensus Impossibility Result

The consensus impossibility result by Fischer, Lynch, and Paterson [7] is one of
the most cited results in the consensus literature. It states that there does not exist
a (deterministic) algorithm for the consensus problem in an asynchronous system
subject to failures, even if messages can never be lost, at most one process may fail,
and it can only fail by crashing (stopping executing).

This result is misunderstood because the exact nature of asynchronous systems is
itself misunderstood. To get a better appreciation of what the result means exactly,
let us examine its proof in some detail.

The proof considers a purported algorithm A that satisfies the safety properties
of consensus1, namely, that processes never decide differently and they never decide
a value that is not proposed. It then shows that A violates the liveness property of
consensus by constructing an execution of A in which processes never decide. The
proof proceeds as follows. Consider the set of all possible global states of the system
running algorithm A . A state is said to be bivalent if the consensus decision has not
been fixed yet: from that state, there are ways for processes to decide one value or
another value. Note that I distinguish between the decision being known and it being
fixed. For example, consider an initial state where all processes have proposed the
same value v, but they have not yet communicated with each other. Then, the only
possible decision is v, so the decision is certain to be v. However, the processes in
the system have not yet learned that this is the case.

The proof is based on two key propositions. The first key proposition is that al-
gorithm A has some initial state that is bivalent. This proposition is depicted in
Figure 4.1, where the grey area represents the set of bivalent states and the leftmost
disc represents a bivalent initial state. For example, in the ♦S-based algorithm of

bivalent states of A

p
p...
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proposition 2

s �

Fig. 4.1 Depiction of key propositions in the proof of impossibility of consensus.

1 Roughly speaking, a safety property is a property that states that something bad does not hap-
pen, while a liveness property is a property that states that something good eventually happens.
The safety properties of consensus are Agreement and Validity. Agreement says that no processes
decide different values, and Validity says that a process can only decide on a value that is the initial
value of some process. The liveness property of consensus is Termination. Termination says that
eventually correct processes decide on a value.
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Chandra-Toueg [5] or in the Paxos algorithm [11],2 one bivalent initial state is the
initial state in which half of the processes proposes some value and the other half
proposes a different value. In fact, this initial state is bivalent in many of the known
algorithms for consensus in partial synchrony models or in models with failure de-
tectors.

The second key proposition is that if s is a bivalent state but after a step of some
process p the state is no longer bivalent, there exists a sequence σ of steps such
that if σ is inserted before the step of process p then p’s step leads to a state that
is still bivalent. This proposition is depicted in Figure 4.1, where the leftmost ar-
row labeled p is a step of process p after state s, which leads to a state that is not
bivalent; the very same step by process p, if taken after the sequence σ , leads to a
state that is still bivalent. For example, in the ♦S-based algorithm of Chandra and
Toueg, a step that leaves the grey region occurs when the last process in a majority
receives the new estimate proposed by the coordinator. However, if this receipt step
is delayed until after the process sees that the coordinator is suspected and abandons
the round, then this receipt no longer leaves the grey region. As another example,
in the Paxos algorithm, a step that leaves the grey region occurs when the last pro-
cess in a majority receives a high-numbered proposal. But if this step is delayed
for long enough—until another higher-number proposal appears—then the proposal
becomes stale and useless.

The first and second key propositions can be shown by contradiction with rela-
tively simple arguments, whose details are not relevant here (they are given in [7]).

These two propositions allow us to find an execution of algorithm A in which
processes never decide. Intuitively, in Figure 4.1, the execution starts in an initial
state in the grey region and all processes keep taking steps, say in a round-robin
fashion. If any step by some process leaves the grey region, then one inserts a se-
quence of steps by other processes such that, after those steps, the aforementioned
step no longer leaves the grey region. This gives us an execution in which all pro-
cesses keep taking steps but the state always remain bivalent. As a result, processes
never decide.

So where is the misunderstanding of the impossibility result? Most computer
scientists understand impossibility results from the halting problem, which suggests
that one should not even try to solve it. On the other hand, the consensus impossibil-
ity says that, given any purported solution, the consensus decision may keep getting
delayed forever if processes are scheduled in an unfavorable way. This is different
from the halting problem impossibility in two ways. First, the consensus impossi-
bility result is based on a model where processes can be scheduled according to the
worst case, but in reality process scheduling tends to have a random aspect to it, and
the probability of an unfavorable schedule could be small. Second, these unfavor-
able schedules produce a problem that is transient, not permanent: if processes fail
to terminate because the schedule has been unfavorable, processes are still able to
terminate subsequently if the schedule stops being unfavorable. A more enlighten-

2 Technical remark: to illustrate the FLP proof, here I consider the behavior of these algorithms in
an asynchronous model, where the failure detector or the leader election service output unreliable
information.
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ing formulation of the consensus impossibility result might be that any algorithm
that ensures the safety properties of consensus could be delayed indefinitely during
periods with no synchrony (the schedule is unfavorable). In fact, it can be shown that
consensus is solvable when there is a very small amount of temporary synchrony in
the system, namely, if there is a single link from one process to another such that
this link is timely [2].

4.2.5 Uses of Replication

Most people realize that a consensus algorithm lies at the heart of a service repli-
cated using the state machine approach [10, 14]. Fewer people realize that the repli-
cated service need not be the entire system; it could be just a smaller component of
the system. For example, each node in the system may need to know some set of
system parameters, such as buffer sizes, resource limits, and/or a list that indicates
what machines are responsible for what function. One could use a state machine to
replicate just this information across nodes. This is illustrated in Figure 4.2.

Fig. 4.2 Squares show what is replicated by consensus. On the left, the entire system is replicated.
On the right, just some service within a larger (non-replicated) system is replicated.

There are some caveats in using consensus and state machines in that way. First,
the number of replicas can be much larger than the minimum needed. (The mini-
mum number of replicas needed is usually 2 f+1 or 3 f+1, depending on the failure
model, where f is the maximum number of failures to be tolerated.) For example,
if one replicates the set of system parameters as described above, then the number
of replicas is the number of nodes in the system, which can be very large. In this
case, it is important to use simple optimizations in which not all replicas actively
participate in the consensus protocol, instead of, say, using all available replicas to
increase the fault tolerance threshold f . Increasing f beyond the necessary is bad
because consensus protocols scale poorly in f .

The second caveat is that only requests processed through the state machine are
guaranteed to see the current state of the state machine, because some replicas may
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be missing some state machine updates. In the above example, suppose that a com-
ponent of the system wants to know the current system parameters. If it tries to read
the system parameters directly from the local replica, it may obtain stale informa-
tion, because the local replica may be lagging behind. To ensure it obtains up-to-date
information, the component must submit a read request to the state machine and wait
for the request to execute through the consensus protocol. Note that, even if the read
request executes through consensus, the returned information is guaranteed to be up-
to-date only for a brief moment. By the time the component uses this information
(perhaps immediately after obtaining it), the system parameters may have changed
already. If this is a problem then the component needs to be placed as part of the
state machine, so that the component’s actions can be ordered using consensus. The
bottom line is that, one needs to be very careful about how components outside the
state machine interact with components inside the state machine.

4.2.6 Correlated Failures

The consensus problem has solutions in synchronous models, in models of partial
synchrony, or in models with unreliable failure detectors. These solutions typically
require that there exist an upper bound t on the number of failures in the system.
Practitioners argue that these upper bounds are not realistic, even for relatively large
values of t, because in practice failures could be correlated. For example, power
failures, security exploits, and bugs could all result in the simultaneous failure of all
processes in the system, which exceed the threshold t.

I argue that, even though correlated failures exist, there are also many situations
where failures are certainly not correlated, where consensus can be useful. For in-
stance, one could argue that tolerating crash failures is not always about tolerating
crashes, but about tolerating slowness caused by busy processes, swapping to disk,
or other unexpected local events. Slowness is less likely to be correlated across ma-
chines. Moreover, bugs are one of the leading cause of process crashes, and heisen-
bugs (bugs that are not deterministic) are probably the hardest ones to detect, and
hence they are the bugs most likely to be left in a working system. Heisenbugs tend
to produce failures that are not correlated.

One could argue that the techniques for handling correlated failures would auto-
matically take care of uncorrelated failures, thus obviating the need for consensus.
However, the costs of using those techniques are very different. For example, if there
is a power failure, recovery may involve rebooting the machine and retrieving state
from stable storage, which can take a long time, leading to a loss of availability. In
contrast, one can use consensus-based replication to handle a single (uncorrelated)
node crash without any downtime.

The jury is still out on whether most failures are correlated or not. But even if
many failures are correlated, I believe there is still significant benefit in tolerating
those cases when they are not.
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4.3 Issues

Besides misunderstandings, there are also some issues in the consensus literature
that have prevented a wider adoption of existing results, algorithms, and techniques.
This section covers these issues. I do not adopt an absolute notion of what is an
issue—this would amount to subscribing to moral dualism. Instead, my notion of an
issue is relative to the point of view of a practitioner who would like to benefit from
the research on consensus. It is worth noting that some of the issues that I describe,
particularly in Sections 4.3.3–4.3.6, extend beyond just the consensus problem: they
apply to research in theory of distributed computing in general.

4.3.1 The Application Interface

The notion of an interface to an abstraction is well-known to computer scientists.
For example, the problem of sorting a list has a very simple, intuitive, and agreed-
upon interface. If one needs to implement the interface, it is clear what must be
done, and if one wants to use the interface, it is clear how to do that. Unfortunately,
such is not the case for consensus, for the following reasons:

• Multiple application interfaces. In order for an abstraction to be well specified,
it should have a single application interface that everyone adopts. Unfortunately,
consensus has two commonly adopted interfaces. The first is the interface used by
the Paxos algorithm, which I shall call the p-interface. The second is the interface
used by all other consensus algorithms, including algorithms based on failure de-
tection, randomization, or partial synchrony. I shall call the latter the r-interface.
There are a number of differences between these interfaces, and practitioners do
not understand why there are these differences and which interface they should
use. The differences are the following:

1. Process roles. In the p-interface, processes are divided into proposers, learn-
ers, and deciders3 while in the r-interface there are just processes.

2. Termination condition. With the r-interface, all correct processes are required
to terminate, while with the p-interface, correct processes are required to ter-
minate only if certain conditions are met (e.g., eventually a leader is elected
for sufficiently long). With the r-interface, these conditions are assumptions
made in the model.

3. Initial state of processes. With the r-interface, all non-faulty processes initially
propose a value, while with the p-interface, any positive number of non-faulty
processes initially propose a value.

Of these differences, the first and second are cosmetic, but the third is more
significant, so let us examine it more closely. The p-interface is more directly ap-
plicable to implementing a state machine, because only one replica may receive
a request for the state machine to execute, and so only one replica may propose
a value. However, the r-interface can also be used to implement a state machine:

3 In the original Paxos paper, this division did not exist, but it appeared in a later description [12].
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Fig. 4.3 The two different interfaces for the consensus problem.

when a replica receives a request v for the state machine, it sends this request
to other replicas telling them to propose v if they have not proposed yet. In this
way, all correct replicas will propose, as required by the r-interface. An inspec-
tion of the algorithms that implement the p-interface reveals that the first thing
that a process does after proposing is to send a message to all other processes.
Thus, intuitively, one can think that algorithms for the r-interface “leave out” this
send-to-all step for the application to do before invoking consensus. This dif-
ference essentially corresponds to two different cuts in the boundary between a
state machine and consensus, shown in Figure 4.3. The r-interface cuts at a lower
level, requiring that the state machine perform a send-to-all before invoking con-
sensus. With the p-interface, this send-to-all is effectively done by the consensus
algorithm.
So this difference is not inherent. However, it is problematic because it makes
it difficult for practitioners to understand the consensus literature. For example,
there is an algorithm for the r-interface in which all non-faulty processes decide
in one communication step if all processes propose the same value. At the same
time, one can show that this is not possible for the p-interface. (Intuitively, this is
because with the r-interface, all correct process can initially send their proposed
value to all and then wait to receive n− f messages, but this initial waiting is not
possible with the p-interface since only a few processes may propose.) These two
results look contradictory, but they are not.
The reason for having two interfaces is historic. The r-interface appeared as a
variation of the interactive-consistency problem, in which every process starts
with some initial value. The p-interface was later proposed as an interface more
directly applicable to the state machine approach. Regardless of the historical
development, it is about time to converge on a single interface for consensus.

• Usability issues. Another problem with the consensus interface is usability, and
this problem has multiple facets.
First, consensus is a single-use service: after decision is reached, the consensus
instance is stuck and must be eventually garbage collected. Garbage collection
must be done manually by the application, and this can be tricky, because a pro-
cess that crashes before the decision may subsequently recover and want to learn
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the decision, but it cannot do that if the consensus instance has been garbage
collected. Another problem with a single-use service is that it needs to be instan-
tiated repeatedly, which imposes overhead and impacts performance. This can be
an issue for applications that must solve consensus repeatedly at a high rate.
Second, the consensus problem assumes that the set of processes that propose
and decide (the participants) is fixed and known a priori. However, in practice, a
machine may crash and remain crashed for long periods (even permanently), and
this machine must be excluded from the set of participants and eventually be re-
placed. How to do that is explained in an extension of Paxos to multiple instances,
called Multi-Paxos, but Multi-Paxos is an algorithm not an interface. This feature
needs to be described by the interface, by specifying it independently of how it
is implemented. Furthermore, Multi-Paxos has several important optimizations
but these optimizations are not expressible through the consensus interface: they
apply neither for a (one-instance) consensus algorithm nor for multiple instances
of a consensus algorithm given as a black box.

The above problems perhaps indicate that consensus is the wrong abstraction to ex-
pose. In other words, the consensus problem does not have the same simple and
universal appeal that the sorting problem has. Consensus may not be the most intu-
itive and applicable abstraction for practitioners. An alternative to consensus is the
atomic multicast abstraction as defined in [9], which provides reliable and totally-
ordered delivery to a variable subset of users which need not include the broadcaster.
In my opinion, this abstraction should be studied and adopted more often in the the-
oretical literature.

4.3.2 Violation of Abstraction Boundaries

The consensus literature often states key properties and results by referring to the
inside of a consensus algorithm, instead of referring to the interfaces exposed by the
consensus algorithm. This is problematic for practitioners because often they do not
want to know what is “inside the box”; they only care about how the box behaves
externally.

A common example is to analyze the performance of a consensus algorithm in
terms of the number of phases that it needs to decide, where a phase is an algorithm-
specific notion. This metric looks inside the box and it is not useful to compare
different algorithms, since each algorithm may have its own notion of what is a
phase, or may not have phases at all.

Another common example is to state the timeliness requirements of an algorithm
in terms of a communication primitive implemented by the algorithm itself. For ex-
ample, some consensus algorithms in a partially synchronous system require that
some non-faulty process be able to receive responses to its queries in a timely fash-
ion. However, a query is an algorithm-specific notion.

To follow the principles of abstraction, results and properties about an algorithm
should always be stated in terms of the algorithm’s upper and lower interfaces.
The upper interface is the consensus application interface, while the lower interface
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refers to the services on top of which the consensus algorithm runs, such as interpro-
cess communication and leader election or failure detection. Rather than analyzing
the performance of an algorithm in number of phases, it is more useful to do so in
terms of the lower interface—say, based on the maximum observed message delay,
in executions where the failure detector makes no mistakes (e.g., as in [1]). Rather
than stating the synchrony requirements of an algorithm in terms of timeliness of a
query-response mechanism implemented by the algorithm, it is more useful to do
so in terms of properties in the lower interface—say, by indicating which links in
the message-passing service are timely (e.g., as in [2]). If this is not possible, then
the query-response mechanism needs to be placed in the lower interface so that it is
exposed outside the algorithm.

4.3.3 Ambiguities and Errors

In distributed computing, it is easy to make mistakes in algorithms and results. This
is because distributed systems are inherently non-sequential and failures create ex-
ceptional conditions, resulting in many corner cases that are easy to overlook. This,
in turn, leads to technical glitches, ambiguous results, or even more serious mis-
takes in published results.4 These problems are eventually detected (and perhaps
corrected), but many times they are only publicized informally through word of
mouth. This method may suffice for the researchers in the area, but may not reach
practitioners and outsiders, making it very hard for them to understand the literature.

One proposal to address this issue is to publish the mistakes and possible correc-
tions in the form of small notes. These notes could appear as short papers or brief
announcements in one of the important theory conferences in distributed comput-
ing. This would create a public record of the problem for outsiders (and insiders) to
be aware of.

4.3.4 Unfriendly Formalisms

As a reaction to ambiguous algorithms and incorrect results, the theoretical commu-
nity has proposed the use of formal frameworks to present algorithms and results,
and to prove their correctness. These formalisms certainly eliminate ambiguity and
reduces errors, but they are difficult for practitioners to digest because they are too
low-level or abstract.

A common practice is to explain results both intuitively and formally, in order
to reap the benefits of both approaches. However, it is dangerously easy to provide
intuitions that are much too superficial, using as justification a formal presentation
“given later”. It is also dangerous to provide formal presentations that are much too
low-level, using as justification the intuition “given earlier”. The result is that neither
intuitive nor formal presentations end up being useful.

4 Lest this discussion be interpreted as a remark about any particular paper, I note that there are
many results about which this concern can be raised.
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Researchers in the theoretical community must find the right balance between
formalism and intuition for the particular result that they want to convey. A one-
size-fits-all solution cannot adequately address every case, or even most cases.

4.3.5 Lack of Feedback from Practitioners

Practitioners provide very little feedback to theoretical algorithm designers on what
needs to be improved, and algorithm designers rarely seek feedback from practition-
ers. As a result, one often finds algorithm designers optimizing for many different
variations of cases and parameters, without knowing which are relevant. That is a
somewhat inefficient way to proceed, because only a few cases and parameters re-
quire optimization in practice. It would be much better to get input on an actual
system from practitioners on what is not working well, and thereby focus on im-
provements that are likely to be used. Perhaps part of the problem is that it is often
difficult to understand a system and isolate which aspects are likely to benefit from
better algorithms. Doing so requires close collaboration between theoreticians and
practitioners.

4.3.6 Hidden Limitations in Algorithms

Sometimes algorithms proposed in the literature have hidden limitations that could
be troublesome in practice. For example, there are many consensus algorithms that
decide quickly if some fixed designated process is the leader (“process 1”), but these
algorithms become much slower if this process crashes or is not the leader. Such
limitations can often be circumvented, but only if practitioners are aware of them.
For that to happen, algorithm designers need to be explicit about the weaknesses of
their algorithms.

In some cases, the limitations of an algorithm are inherent and cannot be over-
come, and whether they are tolerable in practice depends on factors that only prac-
titioners can determine. In these cases, it is even more important for them to be
disclosed. If limitations are hidden, a practitioner that implements the algorithm
eventually finds out the limitation by herself, but only after much effort. At that
point, the practitioner will conclude that either the algorithm designer could not see
the problem or, perhaps worse, he was trying to hide it.

Limitations of an algorithm should be explained by the designer of the algorithm,
when the algorithm is published. It is better if the designer tell readers of a limitation
than if readers later tell the designer.

4.4 Conclusion

The consensus problem is at the heart of replicated distributed systems, which are
increasingly becoming a vital part of our society in areas such as commerce, bank-
ing, finance, communication, critical infrastructure, and others. While consensus has
recently attracted the attention of the systems community and practitioners, the the-
oretical work on this problem remains underutilized due to misunderstandings and
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issues. This situation is a loss for everyone: theoreticians are missing an opportunity
to apply their work, while practitioners are overlooking an untapped resource. To ad-
dress this problem, the theory and practical communities need to engage in a more
open dialog. This step is sorely needed. The conceptual mechanisms and techniques
underlying the consensus problem are very subtle and, without a firm theoretical
foundation, it will be hard to go very far. At the same time, consensus is a problem
initially motivated by practical concerns, and without interest and feedback from
practitioners, the theory will have limited impact.
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