
Chapter 13
Practical Database Replication

Alfrânio Correia Jr., José Pereira, Luı́s Rodrigues, Nuno Carvalho, and Rui Oliveira

Abstract This chapter illustrates how the concepts and algorithms described ear-
lier in this book can be used to build practical database replication systems. This
is achieved first by addressing architectural challenges on how required functional-
ity is provided by generally available software componentes and then how different
components can be efficiently integrated. A second set of practical challenges arises
from experience on how performance assumptions map to actual environments and
real workloads. The result is a generic architecture for replicated database manage-
ment systems, focusing on the interfaces between key components, and then on how
different algorithmic and practical optimization options map to real world gains.
This shows how consistent database replication is achievable in the current state of
the art.

13.1 Introduction

This chapter illustrates how the concepts and algorithms described earlier in this
book can be used to build practical database replication systems. Hereafter a practi-
cal database replication system is a system that has the following qualities:

• It can be configured to tune the performance of multiple database engines and
execution environments (including different hardware configurations of the node
replicas and different network configurations).

• It is modular: the system provides well defined interfaces among the replication
protocols, the database engines, and the underlying communication and coordi-
nation protocols. Thus, it can be configured to use the best technologies that fit a
given target application scenario.

• Its modularity is not an impairment to performance. In particular it provides the
hooks required to benefit from optimizations that are specific to concrete database
or network configurations.

• It combines multiple replica consistency protocols in order to optimize its perfor-
mance under different workloads, hardware configurations, and load conditions.
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To achieve these goals we have defined an architecture based on three main blocks:

• replication-friendly database,
• group communication support, and
• pluggable replica consistency protocols.

First of all, to achieve modularity without losing performance, the system needs to
have replication support from the database engine. As we will see later in this chap-
ter, the client interfaces provided by a Database Management System (DBMS) do
not provide enough information for replication protocols. The replication protocols
need to know more about the intermediate steps of a transaction in order to achieve
good performance. Secondly, we will focus on group communication-based replica-
tion protocols. A Group Communication Service (GCS) eases the implementation
of replication protocols by providing abstractions for message reliability, ordering
and failure detection. In this chapter, we will discuss some details that need to be
addressed when applying GCS to practical database replication systems. Finally,
we will describe the replication protocols, how they interact with the other build-
ing blocks and show how they can be instantiated using different technologies. The
achievements described here are the result of our experience in architecting, build-
ing and evaluating multiple instantiations of our generic architecture [9, 13].

The rest of the chapter is structured as follows. An architecture for practical
database replication is presented in Section 13.2. Then, we devote a separate sec-
tion to each main component of the architecture. In detail: Section 13.3 describes
how to offer replication-friendly database support; Section 13.4 presents the neces-
sary communication and coordination support to the pluggable replication protocols,
which are described in Section 13.5. Section 13.6 presents an evaluation of several
consistent database replication protocols on top of the described architecture. Sec-
tion 13.7 concludes the chapter.

13.2 An Architecture for Practical Database
Replication

In the following paragraphs we will briefly describe a generic architecture for prac-
tical database replication. The architecture, illustrated in Figure 13.1, is composed
of the following building blocks:

• The Application, which might be the end-user or a tier in a multi-tiered applica-
tion.

• The Driver provides a standard interface for the application. The Driver provides
remote accesses to the (replicated) database using a communication mechanism
that is hidden from the application, and can be proprietary.

• The Load Balancer dispatches client requests to database replicas using a suit-
able load-balancer algorithm.

• The DBMS, or Database Management System, which holds the database content
and handles remote requests to query and modify data expressed in standard
SQL.
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Fig. 13.1 Generic architecture for replication.

• Management tools, which are able to control the Driver and DBMS components
independently from the Application using a mixture of standard and proprietary
interfaces.

• The Reflector is attached to each DBMS and allows inspection and modification
of on-going transaction processing.

• The Replicator mediates the coordination among multiple reflectors in order to
enforce the desired consistency criteria on the replicated database. This is a dis-
tributed component that communicates using the group communication compo-
nent.

• The Group Communication supports the communication and coordination of lo-
cal replicators.

An important component of the architecture is the interface among the building
blocks, which allows them to be reused in different contexts. The interfaces exposed
by the reflector and group communication service are detailed in Sections 13.3
and 13.4 respectively. To support as much as possible off-the-shelf and third party
tools, the call-level and SQL interfaces, and the remote database access protocol
adhere to existing standards. For instance, the architecture can be easily mapped to
a Java system, using JDBC as the call-level interface and driver specification, any
remote database access protocol encapsulated by the driver and a DBMS, and an
external configuration tool for the JDBC driver.

The generic architecture can be instantiated in several ways, for example, multi-
ple logical components can be provided by multiple or by a single physical compo-
nent. Figure 13.2 illustrates three relevant instantiations of the architecture.

The first instantiation, illustrated in Figure 2(a), is denoted as the in-core variant.
In this case, the reflector is provided within the same physical component as the
DBMS, where replication and communication components can be installed to con-
trol replication. Typically, such a variant is possible when the DBMS is augmented
with replication support. Examples of protocols that need this support are [24, 31].

The second instantiation, illustrated in Figure 2(b), is denoted as middleware
variant. In this scenario, clients connect to a virtual DBMS which implements the
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Fig. 13.2 Different instantiations of the generic architecture.
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reflector interface. The virtual DBMS itself is implemented using the client inter-
faces provided by the real DBMS. The work presented in [26] exploits this approach.
A commercial product that also implements this approach is Sequoia [11].

A hybrid approach can also be achieved by adding to the database the necessary
hooks to export information about ongoing transactions by means of a reflector plu-
gin. This plug-in interacts with the distributed replication protocol which runs on a
different process. This solution is depicted in Figure 2(c).

13.3 Reflector: Replication-Friendly Database Support

A key component in the architecture is the reflector. The purpose of this component
is to export a replication-friendly database interface to the replicator (described later
in Section 13.5). In this way, the database replication protocols can be implemented
independently of the specific DBMS system being used at deployment time, thus
promoting the design and implementation of database replication protocols that can
be used in a wide range of configurations.

The independence between a specific DBMS system and the replication protocols
is achieved by augmenting the standard database interfaces with additional primi-
tives that provide abstractions that reflect the usual processing stages of transactions
(e.g. transaction parsing, optimization and execution) inside the DBMS engine. Nat-
urally, the implementation details of the replicator vary depending on the specific
DBMS instance and the architecture chosen. In this section we outline the replicator
interface and the rationale for its design.

13.3.1 Reflection for Replication

A well known software engineering approach to building systems with complex re-
quirements is reflection [27, 25]. By exposing an abstract representation of the sys-
tems’ inner functionality, the later can be inspected and manipulated, thus changing
its behavior without loss of encapsulation. DBMS have long taken advantage of this,
namely, on the database schema, on triggers, and when exposing the log.

Logging, debugging and tracing facilities are some examples of important add-
ons to DBMS that are today widely available. The computation performed by such
plug-ins is known as a computational reflection, and the systems that provide them
are known as reflective systems. Specifically, a reflective system can be defined as
a system that can reason about its computation and change it. Reflective architec-
tures ease and smooth the development of systems by encapsulating functionality
that is not directly related to the application domains. This can be done to a certain
extent in an ad-hoc manner, by defining hooks in specific points of a system, or with
support from a programming language. In both cases, there is a need for providing
a reflective architecture where the interaction between a system (i.e. base-level ob-
jects) and its reflective counterpart is done by a meta-level object protocol and the
reflective computation is performed by meta-level objects. These objects exhibit a
meta-level programming interface.
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Previous reflective interfaces for database management systems were mainly tar-
geted at application programmers using the relational model. Their domain is there-
fore the relational model itself. Using this model, one can intercept operations that
modify relations by inserting, updating, or deleting tuples, observe the tuples being
changed and then enforce referential integrity by vetoing the operation (all at the
meta-level) or by issuing additional relational operations (base-level).

A reflection mechanism for database replication was also recently proposed
in [42]. In contrast to the approach described in this section, it assumes that reflec-
tion is achieved by wrapping the DBMS server and intercepting requests as they are
issued by clients. By implementing reflection this way, one can only reflect com-
putation at the first stage (statements), i.e. with coarse granularity. Exposing fur-
ther details requires rewriting large portions of DBMS functionality at the wrapper
level. As an example, Sequoia [11] does additional parsing and scheduling stages at
the middleware level. In theory, this approach could be more generic and suitable
to reflect black-box DBMSs. In practice, this is not the case, since DBMS do not
offer the exact same interface. Therefore, the wrapper must be customized for each
DBMS. Moreover, this approach can introduce significant latency by requiring extra
communication steps and/or extra processing of requests.

Furthermore, some protocols are concerned with details that are not visible in the
relational model, such as modifying query text to remove non-deterministic state-
ments, for instance, those involving NOW() and RANDOM(). Also, one may be
interested in intercepting a statement as it is submitted, whose text can be inspected,
modified (meta-level) and then re-executed, locally or remotely, within some trans-
actional context (base-level).

Therefore, a target domain more expressive than the relational model is required.
We propose to expose a transaction object that reflects a series of activities (e.g.
parsing) that is taking place on behalf of a transaction. This object can be used
to inspect the transaction (e.g. wait for it to commit) or to act on it (e.g. force a
rollback). Using the transaction object the meta-level code can register to be notified
when specific events occur. For instance, when a transaction commits, a notification
is issued and contains a reference to the corresponding transaction object (meta-
object). Actually, handling notifications is the way that meta-level code dynamically
acquires references to meta-objects describing the on-going computation.

13.3.2 Processing Stages

The reflector interface abstracts transaction processing as a pipeline [17]. This is
illustrated in Figure 13.3. The replicator acts as a plug-in that registers itself to
receive notifications of each stage of the pipeline. The notifications are issued by the
reflector as meta-objects, where each meta-object represents one processing stage.
The processing stages are briefly described below. The replicator is notified of these
processing stages in the order they are listed bellow:

• The Parsing stage parses the received raw statements and produces a parse tree;
• The Optimization stage transforms the parse tree according to various optimiza-

tion criteria, heuristics and statistics to an execution plan;
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Fig. 13.3 Major meta-level interfaces: processing stages and contexts.

• The Execution stage executes the plan and produces object-sets (data read and
written);

• The Logical Storage stage deals with mapping from logical objects to physical
storage;

• The Physical Storage stage deals with block input/output and synchronization.

In general, the reflector will issue notifications at the meta-level (to the registered
replicator) whenever computation proceeds from one stage to the next. For instance,
if a replication protocol needs to ensure that all the requests are deterministic, it
needs to be notified on the Parsing stage to modify the initial statement and remove
non determinism; when the computation reaches the Execution stage, it will produce
a set of read and written data that is reflected, issuing a notification. The interface
thus exposes meta-objects for each stage and for data that moves through them.

13.3.3 Processing Contexts

The meta-interface exposed by the processing pipeline is complemented by nested
context meta-objects, also shown in Figure 13.3. These context meta-objects show
on behalf of whom some operation is being performed. In detail, the DBMS and
Database context interfaces expose meta-data and allow notification of life-cycle
events. Connection contexts reflect existing client connections to databases. They
can be used to retrieve connection specific information, such as user authentication
or the character set encoding used. The Transaction context is used to notify events
related to a transaction such as its startup, commit or rollback. Synchronous event
handlers available here are key to consistent replication protocols. Finally, to ease
the manipulation of the requests within a connection to a database and the corre-
sponding transactions one may use the Request context interface.

Events fired by processing stages refer to the directly enclosing context. Each
context has then a reference to the next enclosing context and can enumerate all en-
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closed contexts. This allows, for instance, to determine all connections to a database
or the current active transaction in a specific connection. Some contexts are not valid
at the lowest abstraction levels. Namely, it is not possible to determine on behalf of
which transaction a specific disk block is being flushed by the physical stage.

Furthermore, replication protocols can attach an arbitrary object to each context.
This allows context information to be extended as required by each replication pro-
tocol. As an example, when handling an event fired by the first stage of the pipeline
signaling the arrival of a statement in textual format the replication protocol gets
a reference to the enclosing transaction context. It can then attach additional infor-
mation to that context. Later, when handling an event signaling the availability of
the transaction outcome, the replication protocol follows the reference to the same
transaction context to retrieve the information previously attached.

13.3.4 Base-Level and Meta-level Calls

An advantage of reflection is that base- and meta-level code can be freely mixed, as
there is no inherent difference between base- and meta-objects. For instance, a direct
call to meta-level code can be forced by the application programmer by registering it
as a native procedure and then using the CALL SQL statement. This causes a call to
the meta-level code to be issued from the base-level code within the Execute stage.
The target procedure can then retrieve a pointer to the enclosing Request context
and thus to all relevant meta-interfaces. Meta-level code can callback into base level
in two different situations. The first is within a direct call from base-level to issue
statements in an existing enclosing request context. The second option is to use the
enclosing Database context to open a new base-level connection to the database.

A second issue when considering base-level calls is whether these also get re-
flected. The proposed interface allows to disable reflection on a case-by-case basis
by invoking an operation on context meta-objects. Therefore, meta-level code can
disable reflection for a given request, a transaction, a specific connection or even
an entire database. Actually this can be used on any context meta-object and thus
for performance optimization. For example, consider a replication protocol, which
is notified that a connection will only issue read-only operations, and thus ceases
monitoring them.

A third issue is how base-level calls issued by meta-level code interact with reg-
ular transaction processing regarding concurrency control. Namely, how conflicts
that require rollback are resolved in multi-version concurrency control where the
first committer wins or, more generally, when resolving deadlocks. The proposed
interface solves this by ensuring that transactions issued by the meta-level do not
abort in face of conflicts with regular base-level transactions. Given that replication
code running at the meta-level has a precise control on which base-level transac-
tions are scheduled, and thus can prevent conflicts among those, has been sufficient
to solve all considered use cases. The implementation of this simple solution re-
sulted in a small set of localized changes within the DBMS.
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13.3.5 Exception Handling

The DBMS handles most of the base-level exceptions by aborting the affected trans-
action and generating an error to the application. The proposed architecture does not
change this behavior. Furthermore, the meta-level is notified by an event issued by
the transaction context object; this allows meta-level to cleanup after an exception
has occurred.

Most exceptions within a transaction context that are not handled at the meta-
level can be resolved by aborting the transaction. However, some event handlers
should not raise exceptions to avoid inconsistent information on databases or recur-
sive exceptions, namely, while starting up or shutting down a database, while rolling
back or after committing a transaction. In these cases, any exception will leave the
database in a panic mode requiring manual intervention to repair the system. Fur-
thermore, interactions between the meta-level and base-level are forbidden and any
attempt of doing so, puts the database in panic mode.

Exceptions from meta-level to base-level calls need additional management. For
instance, while a transaction is committing, meta-level code might need to execute
additional statements to keep track of custom meta-information on the transaction
before proceeding, and this action might cause errors due to deadlock problems
or low amount of resources. Such cases are handled as meta-level errors to avoid
disseminating errors inside the database while executing the base-level code.

13.3.6 Existing Reflector Bindings

In this section we discuss how the reflector interface was implemented in three dif-
ferent systems, namely, Apache Derby, PostgreSQL, and Sequoia. These systems
represent different tradeoffs and implementation decisions and are thus representa-
tive of what one should expect when implementing the architecture proposed in this
chapter.

Apache Derby Binding Apache Derby [3] is a fully-featured database manage-
ment system with a small footprint developed by the Apache Foundation and dis-
tributed under an open source license. It is also distributed as IBM Cloudscape and
in Sun JDK 1.6 as JavaDB. It can either be embedded in applications or run as a stan-
dalone server. It uses locking to provide serializability. The initial implementation
of the Reflection interface takes advantage of Derby being natively implemented
in Java to load meta-level components within the same JVM and thus closely cou-
pled with the base-level components. Furthermore, Derby uses a different thread
to service each client connection, thus making it possible for notifications to the
meta-level to be done by the same thread and thus reduced to a method invocation,
which has negligible overhead. This is therefore the preferred implementation sce-
nario. The current implementation exposes all context objects and the parsing and
execution stages, as well as calling between base-level and meta-level as described
in Section 13.3.4.
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PostgreSQL Binding PostgreSQL [39] is also a fully-featured database manage-
ment system distributed under an open source license. It has been ported to multiple
operating systems, and is included in most Linux distributions as well as in re-
cent versions of Solaris. Commercial support and numerous third party add-ons are
available from multiple vendors. It currently provides a multi-version concurrency
control mechanism supporting snapshot isolation. The major issue in implement-
ing the interface is the mismatch between its concurrency model and the multi-
threaded meta-level runtime. PostgreSQL uses multiple single-threaded operating
system processes for concurrency. This is masked by using the existing PL/J bind-
ing to Java, which uses a single standalone Java virtual machine and inter-process
communication. This imposes an inter-process remote procedure call overhead on
all communication between base and meta-level. Furthermore, the implementation
of the reflector interface in PostgreSQL uses a hybrid approach. Instead of directly
coding the reflector interface on the server, key functionality is added to existing
client interfaces and as loadable modules. The meta-level interface is then built on
these. The two-layer approach avoids introducing a large number of additional de-
pendencies in the PostgreSQL code, most notably in the Java virtual machine. As
an example, transaction events are obtained by implementing triggers on transac-
tion begin and end statements. A loadable module is then provided to route such
events to meta-objects in the external PL/J server. The current implementation ex-
poses all context objects and the parsing and execution objects, as well as calling
between base-level and meta-level as described in Section 13.3.4. It avoids base-
level operations blocking meta-level operations simply by modifying the choice of
the transactions to be terminated upon deadlock detection and write conflicts.

Sequoia Binding Sequoia [11] is a middleware system for database clustering
built as a server wrapper. It is primarily targeted at obtaining replication or parti-
tioning by configuring the controller with multiple backends, as well as improving
availability by using several interconnected controllers. Nevertheless, when config-
ured with a single controller and a single backend, Sequoia provides a state-of-the-
art JDBC interceptor. It works by creating a virtual database at the middleware level,
which reimplements part of the abstract transaction processing pipeline and dele-
gates the rest to the backend database. The current implementation exposes all con-
text, parsing and execution objects, as well as calling from meta-level to base-level
with a separate connection. It does not allow calling from base-level to meta-level,
as execution runs in a separate process. It can however be implemented by directly
intercepting such statements at the parsing stage. It neither avoids base-level op-
erations interfering with meta-level operations, and this cannot be implemented as
described in the previous sections as one does not modify the backend DBMS. It
is however possible to the clustering scheduler already present in Sequoia to avoid
concurrently scheduling base-level and meta-level operations to the backend, thus
precluding conflicts. This implementation is of great interest when with a closed
source DBMS that does not natively implement reflector interfaces.
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13.4 GCS: Communication and Coordination Support

All database replica consistency protocols require communication and coordination
support. Among the most relevant abstractions to support database replication we
may identify: reliable multicast (to disseminate updates among the replicas), total
order (to define a global serial order for transactions) and group membership (to
manage the set of currently active replicas in the system).

A software package that offers this sort of communication and coordination sup-
port is typically bundled in a package called a Group Communication Toolkit. After
the pioneer work initiated two decades ago with Isis [8], many other toolkits have
been developed. Appia [28], Spread [2], and JGroups [5] are, among others, some
of the group communication toolkits in use today. Therefore, group communica-
tion is a mature technology that greatly eases the development of practical database
replication systems.

At the same time, group communication is still a hot research topic, as perfor-
mance improvements and wider applicability are sought [47, 43, 33, 35, 34]. Fur-
thermore, group communication is clearly an area where there is no one solution that
fits all application scenarios. For instance, just to offer total order multicast, dozens
of different algorithms have been proposed [15], each outperforming the others for
a specific setting: there are protocols that perform better for heavily loaded replicas
in switched local area networks [18], others for burst traffic in LANs [22], others
for heterogeneous wide-area networks [40], etc. More details about the primitives
offered by a group communication toolkit can be found in Chapter 3 and Chapter 6.

Therefore, having a clear interface between the replication protocols and the GCS
has multiple practical advantages. To start with, it allows to tune the communication
support (for instance, by selecting the most appropriate total order protocol) without
affecting the replication protocol. Furthermore, given that different group commu-
nication toolkits implement different protocols, it should be possible to re-use the
same replication protocols with different group communication toolkits.

To address these problems we have defined a generic interface to group commu-
nication services that may be used to wrap multiple toolkits. The interface, called
Group Communication Service for Java, or simply jGCS, has been designed for the
Java programming language and leverages several design patterns that have recently
become common ground of Java-based middleware. The interface specifies not only
the API but also the (minimum) semantics that allow application portability. jGCS
owns a number of novel features that makes it quite distinct from previous attempts
to define standard group communication interfaces, namely:

• jGCS aggregates the service in several complementary interfaces, as depicted in
Figure 13.4, namely a set of configuration interfaces (namely, GroupConfigura-
tion, ProtocolFactory and Service), a message passing interface (Data), and a set
of membership interfaces (Control). The configuration interface specifies several
opaque configuration objects that encapsulate specifications of message delivery
guarantees. These are to be constructed in an implementation dependent man-
ner to match application requirements and then supplied using some dependency
injection technique. The message passing interface exposes a straightforward in-
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Fig. 13.4 Components of the GCS.

terface to sending and receiving byte sequences, although concerned with high
throughput, low latency and sustainable concurrency models in large scale ap-
plications. Finally, a set of membership interfaces expose different membership
management concepts as different interfaces, that the application might support
or need.

• jGCS provides support for recent research results that improve the performance
of group communication systems, namely, semantic annotations [34, 35, 33] and
early delivery [32, 45, 43, 41].

• the interface introduces negligible overhead, even when jGCS is implemented as
wrapper layer and is not supported natively by the underlying toolkit.

13.4.1 Architectural and Algorithmic Issues

In this section we discuss the main features that must be provided by the group
communication toolkit to cope with the requirements needed by database replication
protocols. As proof-of-concept, we implemented the presented features in the Appia
group communication toolkit.

Optimistic Uniform Total Order The notion of optimistic total order was first
proposed in the context of local-area broadcast networks [32]. In many of such net-
works, the spontaneous order of message reception is the same in all processes.
Moreover, in sequencer-based total order protocols the total order is usually de-
termined by the spontaneous order of message reception in the sequencer process.
Based on these two observations a process may estimate the final total order of
messages based on its local receiving order and, therefore, provide an optimistic
delivery as soon as a message is received from the network. With this optimistic
delivery, the application can make some progress. For example, a database replica-
tion protocol can apply the changes in the local database without committing it. The
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commit procedure can only be made when the final order is known and if it matches
the optimistic order. If the probability of the optimistic order matching the final or-
der is very high, the latency window of the protocol is reduced and the system gains
in performance.

Unfortunately, spontaneous total order does not occur in wide-area networks.
The long latency in wide-area links causes different processes to receive the same
message at different points in time. Consider a simple network configuration with
three nodes a, b, and s such that network delay between nodes a and b is 2ms, and
network delays to and from node s are 12ms. Assume that process a multicasts a
message m1 and that, at the same time, the sequencer process s multicasts a message
m2. Clearly, the sequencer will receive m2 before m1, given that m1 would require
12ms to reach the sequencer. On the other hand, process b will receive m1 before m2,
as m1 will take only 2ms to reach b while m2 will require 12ms. From this example,
it should be obvious that the spontaneous total order provided by the network at b is
not a good estimate of the observed order at the sequencer.

To address the problem above, a system can be configured to use a total order
protocol such as SETO [29]. SETO is a generalization of the optimistic total order
protocol proposed in [43] and operates by introducing artificial delays in the mes-
sage reception to compensate for the differences in the network delays. It is easier to
describe the intuition of the protocol by using a concrete example. Still considering
the above simple network configuration, assume also that we are able to provide
to each process an estimate of the network topology and of the delays associated
with each link. In this case, b could infer that message m1 would take 10ms more to
reach s than to reach b. By adding a delay of 10ms to all messages received from a,
it would mimic the reception order of a’s messages at s. A similar reasoning could
be applied to messages from other processes.

When configured to use this protocol, the group communication toolkit delivers
the original message as soon as it is received (network order). Notifications about
optimistic total order and final uniform total order are later delivered, indicating that
progress can be done regarding a particular message.

Primary Partition Support Partitions in the replica group may happen due
to failures in the cluster (network, switching hardware, among others). In asyn-
chronous systems, virtual partitions (indistinguishable from physical partitions) may
happen due to unexpected delays. A partitionable group membership service allows
multiple concurrent views of the group, each corresponding to a different partition,
to co-exist and evolve in parallel [4, 16]. In the context of database replication, this
is often undesirable as it may lead to different replicas processing and committing
conflicting updates in a uncoordinated form. A partition in the group membership
can then easily lead to the split-brain phenomenon: the state in different replicas
diverges and is no longer consistent. In contrast, a primary-partition group member-
ship service maintains a single agreed view of the group at any given time, delivering
a totally ordered sequence of views (processes that become disconnected from the
primary partition block or are forced to crash and later rejoin the system).
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In our implementation, primary partitions are defined by majority quorums. The
initial composition of the primary partition is defined at configuration time, using
standard management interfaces. The system remains alive as long as a majority
of the previous primary partition remains reachable [23, 6]. The dynamic update
of the primary partition is coordinated and has to be committed by a majority of
members of the previous primary. This is deterministic and ensures that only one
partition exists at a time. Using this mechanism, a replica that belongs to a primary
partition can move to a non-primary partition when a view changes. In this case,
the replication protocol only gets notified that the group has blocked and does not
receive any view while it is not reintegrated in a primary partition.

13.4.2 Existing GCS Bindings

Open source implementations of jGCS for several major group communication sys-
tems have been already developed, namely, Appia [28], Spread [2] (including the
FlushSpread variant), and JGroups [5]. All these bindings are open source and avail-
able on SourceForge.net.1 Besides making jGCS outright useful in practice, these
validate that the interface is indeed generic. These implementations are described in
the following paragraphs.

Appia Binding Appia [28] is a layered communication support framework that
was implemented in the University of Lisbon. It is implemented in Java and aims at
high flexibility to build communication channels that fit exactly in the user needs.
More details about Appia are described in Section 13.4.1.

The implementation of GCS is built directly on Appia’s protocol composition
interfaces as an additional layer. GCS configuration objects thus define the micro-
protocols that will be used in the communication channels. Each service identifies
an Appia channel and messages are sent through the channel that fits the requested
service. As Appia supports early delivery in totally ordered multicast, this is ex-
posed in the GCS binding using the ServiceListener interface. Appia implements all
extensions of the ControlSession, depending on the channel configuration.

JGroups Binding JGroups [5] is a group communication toolkit modeled on En-
semble [19] and implemented in Java. It provides a stack architecture that allows
users to put together custom stacks for different view synchronous multicast guar-
antees as well as supporting peer groups. It provides an extensive library of ordering
and reliability protocols, as well as support for encryption and multiple transport op-
tions. It is currently used by several large middleware platforms such as JBoss and
JOnAS.

The JGroups implementation of GCS also uses the configuration interface to
define the micro-protocols that will be used in the communication channel. JGroups
can provide only one service by the applications, since configurations only support

1 GCS and its bindings are available in http://jgcs.sf.net

http://jgcs.sf.net
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one JGroups channel per group communication instance. JGroups implements all
extensions of the ControlSession.

Spread Binding Spread/FlushSpread [2] is a toolkit implemented by researchers
of the Johns Hopkins University. It is based on an overlay network that provides
a messaging service resilient to faults across local- and wide-area networks. It pro-
vides services ranging from reliable message passing to fully ordered messages with
delivery guarantees. The Spread system is based on a daemon-client model where
generally long-running daemons establish the basic message dissemination network
and provide basic membership and ordering services, while user applications linked
with a small client library can reside anywhere on the network and will connect to
the closest daemon to gain access to the group communication services. Although
there are interfaces for Spread in multiple languages, these do not support the Flush-
Spread extension, which provides additional guarantees with a different interface.

The Spread and FlushSpread implementations of GCS use the configuration in-
terface to define the location of the daemon and the group name. The implemen-
tation to use (FlushSpread or just Spread) is also defined at configuration time. In
Spread, the quality of service is explicitly requested for each message, being thus
encapsulated in Service configuration objects.

13.5 Replicator: Pluggable Replication Protocols

The replicator is a distributed component responsible for coordinating the interac-
tion among all DBMS replicas in order to enforce the consistency of the replicated
database. It directly interfaces with the reflector and relies on the GCS module for
all communication and replica membership control, as shown in the Figure 13.5.

It is within the replicator that the replica consistency protocols are implemented.
The module is built around four process abstractions that are able to express most,

Replicator

Reflector

Capture
Process

jGCS

Kernel
Process

Apply
Process

Recovery
Process

Fig. 13.5 Replicator architecture.
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if not all, database replication protocols. These are the Capture, Kernel, Apply and
Recovery processes and are described next.

Capture Process The capture process is the main consumer of the reflector events.
It receives events from the DBMS, converts them to appropriate events within the
replicator and notifies the other processes. In particular, it receives a transaction be-
gin request and registers the current transaction context. For instance, for update
transactions, the capture process may instruct the reflector to receive the write and
read sets of the transaction when the commit request is performed. Using this in-
formation, it may construct an internal transaction event that carries the transaction
identification along with the corresponding read and write sets. It then notifies the
kernel process which, in turn, is responsible for distributing the transaction data and
enforcing the consistency criterion.

Kernel Process This process implements the core of the replica consistency proto-
col. In general, it handles the replication of local transactions by distributing relevant
data and determining their global commit order. Additionally, it handles incoming
data from remotely executed transactions. The local outcome of every transaction is
ultimately decided by the kernel process, in order to ensure a target global consis-
tency criterion. To execute its task, the kernel process exchanges notifications with
the capture and apply processes, and interfaces directly the GCS component.

Apply Process The apply process is responsible for efficiently injecting incom-
ing transaction updates into the local database through the reflector component. To
achieve optimum performance, this implies executing multiple apply transactions
concurrently and, when possible, batching updates to reduce the number of transac-
tions. This needs however to ensure that the agreed serialization order is maintained.

Recovery Process The recovery process intervenes whenever a replica joins or
rejoins the group. It is responsible for exporting the database state when acting as a
donor or to bring the local replica up-to-date if recovering.

Both the recovery and the kernel modules cooperate closely with the GCS mod-
ule. To allow the integration of the new replica into the group, the kernel module is
required to temporarily block any outgoing messages until the complete recovery of
the new replica is notified by the recovery process.

13.6 Consistent Database Replication

In this section we consider a representative set of database replication protocols
providing strong replica consistency and elaborate on their suitability to handle de-
manding workloads (see Chapter 1 for more details about consistency models for
replication). We start by analyzing each protocol with respect to its contention path
and concurrency restrictions. Then we compare their performance using a common
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test-bed, implemented as plug-ins for the replicator component of our architecture,
using the industry standard TPC-C benchmark and workload.

Database replication protocols differ greatly in whether transactions are executed
optimistically [31, 24] or conservatively [37]. In the former, a transaction is executed
by any replica without a priori coordination with other replicas. It is just before com-
mitting that replicas coordinate and check for conflicts between concurrently exe-
cuted transactions. Transactions that would locally commit may end up aborting due
to conflicts with remote concurrent transactions. On the contrary, in the conservative
approach, all replicas first agree on the execution order for potentially conflicting
transactions ensuring that when a transaction executes there is no conflicting trans-
action being executed remotely and therefore its success depends entirely on the
local database engine. Generally, two transactions conflict if both access the same
conflict class (e.g. table) and one of them updates it.

As expected, both approaches have their virtues and problems [21]. The opti-
mistic execution presents very low contention and offers high concurrency levels.
However, it may yield concurrency-induced aborts which, occasionally, may impair
the protocol’s fairness since long-running transactions may experiment unaccept-
able abort rates. On the contrary, the conservative approach does not lead to aborts
and offers the same committing opportunities to all transaction types. The result-
ing degree of concurrency heavily depends on the granularity of the defined conflict
classes. Fine conflict classes usually require application-specific knowledge and any
labeling mistake can lead to inconsistencies.

Another crucial aspect of database replication protocols is whether replication
is active or passive. With active replication each transaction executes at all repli-
cas while with passive protocols only a designated replica actually executes the
transaction and the state updates are then propagated to the other replicas. Active
replication is required for structural or system wide requests, such as the creation of
tables and users, and desired for update intensive transactions. The passive approach
is otherwise preferable, as it confines the processing to a single replica, is insensible
to non-deterministic requests, and allows for more concurrency.

In the following sections we discuss and compare five consistent database repli-
cation protocols: a conservative and two optimistic passive replication approaches,
an active replication protocol (inherently conservative regarding transactions exe-
cution), and a hybrid solution that combines both conservative and optimistic ex-
ecution as well as active and passive replication. In all cases we consider a com-
mon practice that only update transactions are handled by the replication protocols.
Queries are simply executed locally at the database to which they are submitted and
do not require any distributed coordination. The discussion on the impact of this
configuration in the overall consistency criterion has been discussed elsewhere [30].

Our analysis is focused on dynamic aspects, namely on the queuing that hap-
pens in different parts of the system and on the amount of concurrency that can
be achieved. Then, we contrast the original assumptions underlying the design of
the protocols with our experience with the actual implementations using the TPC-C
workload [21].
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Fig. 13.6 Notation.

Figure 13.6 introduces the notation used to represent the state maintained by the
protocol state-machines. Given the emphasis on dynamic aspects, we use different
symbols for states that represent queuing and for states in which at most a single
non-conflicting transaction can be at any given time. We show also which queues
are likely to grow when the system is congested. When alternative paths exist, due
to optimistic execution, we show which is the more likely to be executed. We make
a distinction between local and replicated queues and identify relevant actions: exe-
cute, apply, certify, and wait.

At the core of all these protocols is an atomic (or total ordered) multicast. For all
of them we use a consistent naming for queues according to the use of the atomic
mcast primitive. Queue Q0 is before the atomic mcast, Q1 is between the atomic
mcast and its delivery, and Q2 is after the delivery.

Some of the discussed algorithms [36, 31] have been originaly proposed using
atomic primitives with optimistic delivery. The goal is to compensate the inher-
ent ordering latency by allowing tentative processing in parallel with the ordering
protocol. If the final order of the messages matches the predicted order then the
replication protocol can proceed, otherwise the results obtained tentatively are dis-
carded. Protocols with this optimistic assumption use messages in Q1. Queue Q1
has messages with tentative order. In contrast, messages in Q2 have a final order.

13.6.1 Replication with Conservative Execution

We consider the Non-disjoint Conflict Classes and Optimistic Multicast (NODO)
protocol [36] as an example of the conservative execution. In NODO data is a pri-
ori partitioned in conflict classes, not necessarily disjoint. Each transaction has an
associated set of conflict classes (the data partitions it accesses) which are assumed
to be known in advance. In practice, this requires the entire transaction to be known
before it is executed, precluding the processing of interactive transactions.

NODO’s execution is depicted in Figures 13.7 and 13.8. The former shows ex-
changed messages and synchronization points whereas the second focuses on its
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Fig. 13.7 Conservative execution: NODO.

dynamic aspects. When a transaction is submitted, its identifier (id) and conflict
classes are atomically multicast to all replicas obtaining a total order position. Each
replica has a queue associated with each conflict class and, once delivered, a transac-
tion is classified according to its conflict classes and enqueued in all corresponding
queues. As soon as a transaction reaches the head of all of its conflict class queues it
is executed. In this approach, a transaction is only executed by the replica to which
it was originally submitted.

Clearly, the definition of the conflict classes has a direct impact on performance.
The fewer the number of transactions with overlapping conflict classes, the better
the interleave among transactions. Conflict classes are usually defined at the table
level but can have a finer grain at the expense of a non-trivial validation process to
guarantee that a transaction does not access conflict classes that were not previously
specified.

When the commit request is received, the outcome of the transaction is reliably
multicast to all replicas along with the replica’s updates (write-set) and a reply is
sent to the client. Each replica applies the remote transaction’s updates with the
parallelism allowed by the initially established total order of the transaction.

The protocol ensures 1-copy serializability [7] as long as transactions are clas-
sified taking into account read/write conflicts. To achieve 1-copy snapshot isola-
tion [26] transactions must be classified taking into account just write/write con-
flicts.

A transaction is scheduled optimistically if there is no conflicting transaction
already ordered (Q2). This tentative execution may be done at the expense of an
abort if a concurrent transaction is later on ordered before it.

Figure 8(a) shows the states that a transaction goes through upon being submitted
by a client. Assuming that group communication is the bottleneck, the time spent
in the queue waiting for total order (Q1) is significant enough compared to the time
taken to actually execute such that it is worthwhile to optimistically execute trans-
actions (transition 2 instead of transition 1). This makes it possible that when a
transaction is finally ordered, it is immediately committed (transition 4). Assuming
that the tentative optimistic ordering is correct, a rollback (transition 3) is unlikely.
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1  -  F inal  Delivery (op t imistic  execution  not  started  (unlikely) or  remote)
2  -  Submit  transaction  to  op t imistic  execution  
3  -  F inal  Delivery (missed  order  and  then  rollback  (unlikely))
4 - F inal  Delivery (correct  order)
5 -  Submit  transaction  to  execution  in  order
6 - Execution  f inished  in  order
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Fig. 13.8 States, transitions, and queues in NODO.

On the other hand, if the transaction execution is the bottleneck, then queuing will
happen in queue Q2 and not in queue Q1. Thus if Q2 is never empty, then no trans-
action in queue Q1 is eligible for optimistic execution. This scenario is depicted in
Figure 8(b): The optimistic path is seldom used and the protocol boils down to a
coarse-grained distributed locking approach, which has a very large impact on scal-
ability. Notice that if there are k (disjoint) conflict classes, there can be at most k
transactions executing in the whole system.

Experiments using the TPC-C workload show that in a local area network, group
communication is not the bottleneck. Figure 13.13 shows the NODO protocol satu-
rating when there are still plenty of system resources available.

13.6.2 Replication with Optimistic Execution

To illustrate the optimistic execution approach we consider two protocols: Postgres-
R (PGR) [24] and Database State Machine (DBSM) [31]. In both protocols, transac-
tions are immediately executed by the replicas to which they are submitted without
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Fig. 13.9 Optimistic executions: PGR and DBSM.

any prior global coordination. Locally, transactions are synchronized according to
the specific concurrency control mechanism of the database engine.

The messages exchanged and the synchronization points of the execution of these
protocols are depicted in Figure 13.9. The dynamic aspects are depicted in Fig-
ures 13.10 (PGR) and 13.11 (DBSM). Upon receiving a commit request, a success-
ful transaction is not readily committed. Instead, its changes (write-set) and read
data (read-set) are gathered and a termination protocol initiated. The goal of the
termination protocol is to decide the order and the outcome of the transaction such
that a global correctness criterion is satisfied (e.g. 1-copy serializability [7] or 1-
copy snapshot isolation [26]). This is achieved by establishing a total order position
for the transaction and certifying it against concurrently executed transactions. The
certification of a transaction is done by evaluating the intersection of its read- and
write-set (or just write-set in case of the snapshot isolation) with the write-set of
concurrent, previously ordered transactions. The fate of a transaction is therefore
determined by the termination protocol and a transaction that would locally commit
may end up aborted.

These protocols differ on the termination procedure. Considering 1-copy serial-
izability, both protocols use the transaction’s read-set in the certification procedure.
In PGR, the transaction’s read-set is not propagated and thus only the replica exe-
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Fig. 13.10 States, transitions, and queues in PGR.

cuting the transaction is able to certify it. In DBSM, the transaction’s read-set is also
propagated allowing each replica to autonomously certify the transaction.

In detail, upon the reception of the commit request for a transaction t, in PGR the
executing replica atomically multicasts t’s id and t’s write-set. As soon as all trans-
actions ordered before t are processed, the executing replica certifies t and reliably
multicasts the outcome to all replicas. The certification procedure consists in check-
ing t’s read-set and write-set against the write-sets of all transactions ordered before
t. The executing replica then commits or aborts t locally and replies to the client.
Upon the reception of t’s commit outcome each replica applies t’s changes through
the execution of a high priority transaction consisting of updates, inserts and deletes
according to t’s previously multicast write-set. The high priority of the transaction
means that it must be assured of acquiring all required write locks, possibly aborting
any locally executing transactions.

The termination protocol in the DBSM is significantly different and works as
follows. Upon the reception of the commit request for a transaction t, the executing
replica atomically multicasts t’s id, the version of the database on which t was ex-
ecuted, and t’s read-set and write-set. As soon as t is ordered, each replica is able
to certify t on its own. For the certification procedure, t’s read-set and write-set
are checked against the write-sets of all transactions committed since t’s database
version. If they do not intersect, t commits, otherwise t aborts. If t commits then
its changes are applied through the execution of a high priority transaction consist-
ing of updates, inserts and deletes according to t’s previously multicast write-set.
Again, the high priority of the transaction means that it must be assured of acquir-
ing all required write locks, possibly aborting any locally executing transactions.
The executing replica replies to the client at the end of t.

In both protocols, transactions are queued while executing, as would happen in a
non-replicated database, using whatever native mechanism is used to enforce ACID
properties. This is queue Q0 in Figures 13.11 and 13.10.

The most noteworthy feature of both protocols is that since a transaction starts
until it is certified, it is vulnerable to being aborted by a concurrent conflicting trans-
action that commits. On the other hand, from the instant that a transaction is certified
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until it finally commits on every node, it is a menace to other transactions which will
be aborted if they touch a conflicting item. Latency in any processing stage is thus
bound to increase the abort rate. A side-effect of this is that the resulting system,
when loaded, is extremely unfair to long running transactions.

In the DBSM, the additional latency introduced by replication is in the atomic
multicast step, similarly to NODO (Q1) in Figure 8(a). This is an issue in WANs [20]
and can be addressed with optimistic delivery. PGR [24] does not use optimistic
delivery. In clusters, latency comes from exhausting resources within each replica as
queues build up in Q0 and Q2. It is thus no surprise that any contention whatsoever
makes the abort rate increase significantly.

Fig. 13.11 States, transitions, and queues in DBSM.

13.6.3 Active Replication

Active replication is a technique to build fault-tolerant systems in which transac-
tions are deterministically processed at all replicas. Specifically, it requires that each
transaction’s statement be processed in the same order by all replicas. This might be
ensured by means of a centralized or a distributed scheduler.

Sequoia [12], which was built after C-JDBC [10], for instance, uses a centralized
scheduler at the expense of introducing a single point of failure. Usually, any dis-
tributed scheduler would circumvent this resilience problem but would require a dis-
tributed deadlock detection mechanism. To avoid distributed deadlocks, one might
annotate transactions with conflict-classes and request distributed locks through an
atomic multicast before starting executing a transaction. In contrast with NODO,
however, a reliable message to propagate changes would not be needed as transac-
tions would be actively executed. In both approaches, the consistency criteria would
be similar to those provided by NODO.

The case against active replication is shown in NODO [36]: unbearable con-
tention with high write ratio. This technique additionally has the drawback of re-
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quiring a parser to remove non-deterministic information (e.g. random() or date()),
thereby leading to re-implementing several features already provided by a database
management system.

The active replication pays off when the overhead between transferring raw up-
dates in a passive replication is higher than re-executing the statements. And of
course, it makes it easy to execute DDL statements.

13.6.4 Hybrid Replication

Akara [20] pursues a hybrid approach: it ultimately enforces conservative execution
to ensure fairness while leveraging the optimistic execution of transactions to attain
an efficient usage of resources, and still provides the ability to actively replicate
transactions when required.

1 - Pre-classification and multicast
2 - Final Delivery
3 - Scheduler: scheduled to run optimistically or wait i f  remote or active
4 - Optmistic execution f inished or simply next in l ine
5 - Next in l ine
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Fig. 13.12 States, transitions, and queues in Akara.

Figure 13.12 depicts the major states, transitions, and queues of the protocol. For
the sake of simplicity, as in Section 13.6.1, we assume conflict classes correspond
to tables (typical case) and that all transactions access at least a common table (in-
teresting cases).

Upon submission, transactions are classified according to a set of conflict classes
and totally ordered by means of an atomic multicast. Once ordered, a transaction is
queued into Q2a waiting to be scheduled. Progression in Q2a depends on an admis-
sion control policy. When a transaction reaches the top of Q2a it is transferred to
Q2b and then executed. Transactions run while in Q2b are said to be executed opti-
mistically as they may end up aborting due to conflicts with concurrent transactions
in Q2b or Q2c. After execution, and having reached the top of Q2b, a transaction
is transferred to Q2c. When a transaction reaches the top of Q2c it may be ready
to commit (it may also need to abort due to conflicts). If it is ready to commit, its
changes are propagated to all other replicas and the transaction commits. Otherwise,
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the transaction is forced to re-execute conservatively by imposing its priority on any
locally running transaction.

The Akara protocol maximizes resource usage through the concurrent execution
of potentially conflicting transactions by means of an admission control mechanism.
It is worth noticing however that an admission policy that only allows to execute
non-conflicting transactions according to their conflict classes makes Akara a sim-
pler conservative protocol like NODO. The key is therefore to judiciously schedule
the execution of each transaction in order to exploit resource availability thus re-
ducing contention introduced by a conservative execution while at the same time
avoiding re-execution. In [20] a simple policy that fixes the number of concurrent
optimistically executed transactions is adopted. More sophisticated policies taking
into account the actual resource usage or even dynamic knowledge of the workload
could be used.

The mix of conservative and optimistic executions may lead to local deadlocks.
Consider two conflicting transactions t and t′ that are ordered < t, t′> and scheduled
to run concurrently (both are in Q2b). If t′ grabs a lock first on a conflicting data
item, it prevents t from running. However t′ cannot leave Q2b before t without
infringing the global commit order.

If both transactions have the same conflict classes and, of course, are locally
executed at the same replica, the proposed solution is to allow t ′ to overtake t in the
global commit order. Notice that when a transaction t is totally ordered this ensures
that no conflicting transaction will be executed concurrently at any other replica.
Therefore, if t’s order is swapped with that of t′ with the very same conflict classes
then it is still guaranteed that both t and t′ are executed without the interference
of any remote conflicting transaction. In the experiments conducted with the TPC-
C (Section 13.6.5), for example, the likelihood of having two transactions with the
very same conflict classes is more than 85% of the occurrences.

Finally, the protocol also allows transactions to be actively executed, thus provid-
ing a mechanism to easily replicate DDL statements and to reduce network usage
for transactions with very large write-sets. A transaction t marked as active is ex-
ecuted at all replicas without distinction between an initiating or a remote replica,
and its execution is straightforward. When t can be removed from Q2a, it is im-
mediately moved to Q2b, and so forth, until it gets to Q2c. When t can proceed
from Q2c, it is executed with high priority, committed, and then removed from Q2c.
Active transactions are not executed optimistically to avoid different interleaves at
different replicas.

13.6.5 Evaluation

To evaluate the protocols we use a hybrid simulation environment that combines
simulated and real components [44]. The key components, the replication and the
group communication protocols, are real implementations while both the database
engine and the network are simulated.

In detail, we use a centralized simulation runtime based on the standard Scalable
Simulation Framework (SSF) [1], which provides a simple yet effective infrastruc-
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ture for discrete-event simulation. Simulation models are built as libraries that can
be reused. This is the case of the SSFNet [14] framework, which models network
components (e.g. network interface cards and links), operating system components
(e.g. protocol stacks), and applications (e.g. traffic analyzers). Complex network
models can be configured using these components, mimicking existing networks or
exploring particularly large or interesting topologies.

To combine the simulated components with the real implementations the exe-
cution of the real software components is timed with a profiling timer [38] and the
result is used to mark the simulated CPU busy during the corresponding period, thus
preventing other jobs, real or simulated, from being attributed simultaneously to the
same CPU. The simulated components are configured according to the equipment
and scenarios chosen for testing as described in this section.

The database server handles multiple clients and is modeled as a scheduler and a
collection of resources, such as storage and CPUs, and a concurrency control mod-
ule. The database offers the reflector interface (Section 13.3) and implements multi-
version concurrency control.

Each transaction is modeled as a sequence of operations: i) fetch a data item;
ii) do some processing; iii) write back a data item. Upon receiving a transaction
request each operation is scheduled to execute on the corresponding resource. The
processing time of each operation is previously obtained by profiling a real database
server.

A database client is attached to a database server and produces a stream of trans-
action requests. After each request is issued, the client blocks until the server replies,
thus modeling a single threaded client process. After receiving a reply, the client is
then paused for some amount of time (thinking time) before issuing the next trans-
action request.

To determine the read-set and write-set of a transaction’s execution, the database
is modeled as a set of histograms. The transactions’ statements are executed against
this model and the read-set, write-set and write-values are extracted to build the
transaction model that is injected into the database server. In our case, this modeling
is rather straightforward as the database is very well defined by the TPC-C [46]
workload that we use for all tests. Moreover, as all the transactions specified by
TPC-C can be reduced to SPJ queries, the read-set extraction is quite simple.

Clients run an implementation that mimics the industry standard on-line trans-
action processing benchmark TPC-C. TPC-C specifies five transactions: NewOrder
with 44% of the occurrences; Payment with 44%; OrderStatus with 4%; Delivery
with 4%; and StockLevel with 4%. The NewOrder, Payment and Delivery are update
transactions while the others are read-only.

For the experiments below we added to the benchmark three more transactions
that mimic maintenance activities such as adding users, changing indexes in tables
or updating taxes over items. Specifically, the first transaction Light-Tran creates a
constraint on a table if it does not exist or drops it otherwise. The second transaction
Active-Tran increases the price of products and is actively executed. Conversely,
Passive-Tran does the same maintenance activity but its changes are passively prop-
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agated. These transactions are never executed in the same run, have a probability of
1% and when are executing the probability of the NewOrder is reduced to 43%.

The database model has been configured using the transactions’ processing time
of a profiled version of PostgreSQL 7.4.6 under the TPC-C workload. From the
TPC-C benchmark we only use the specified workload, the constraints on through-
put, performance, screen load and background execution of transactions are not
taken into account.

We consider a LAN with 9 replicas. In the LAN configuration the replicas are
connected by a network with a bandwidth of 1Gbps and a latency of 120µs. Each
replica corresponds to a dual processor AMD Opteron at 2.4GHz with 4GB of mem-
ory, running the Linux Fedora Core 3 Distribution with kernel version 2.6.10. For
storage we used a fiber-channel attached box with 4, 36GB SCSI disks in a RAID-5
configuration and the Ext3 file system.

We varied the total number of clients from 270 to 3960 and distributed them
evenly among the replicas and each run has 150000 transactions.

Experimental Results In what follows, we discuss the queues for each protocol
described in previous sections. For the NODO approach, we use the simple defini-
tion of a conflict class for each table, which can be easily extracted from the SQL
code. We do not consider finer granularity due to the possibility of inconsistencies
when labeling mistakes are made. Figures 13.13 and 13.14 compare the DBSM,
PGR and NODO.

The DBSM and PGR show a throughput higher than 20000 t pm (Figure 13(a)).
In fact, both present similar results and the higher the throughput the higher the
number of requests per second inside the database (Figure 13(b)). These requests
represent access to the storage, CPU, lock manager and to the replication protocol.
Clearly, the database is not a bottleneck. In contrast, the throughput presented by
NODO is extremely low, around 4000 t pm, and its latency is extremely high (Fig-
ure 13(c)). This drawback can be easily explained by the contention observed in Q2
(Figure 13(d)).

Unfortunately, with the conservative and optimistic approaches presented above,
one may have to choose between latency and fairness. In the NODO, for 3240
clients, 2481 transactions wait in Q2 around 40 s to start executing (Figure 14(a)).
In contrast, an optimistic transaction waits 1000 times less and the number of trans-
actions waiting to be applied is very low.

The abort rate is below 1% in both optimistic approaches as there is no contention
and the likelihood of conflicts is low in such situations (Figure 14(b)). However, to
show that the optimistic protocols may not guarantee fairness, we conducted a set
of experiments in which one requests an explicit table level locking on behalf of the
Delivery transaction thus mimicking a hotspot. This is a pretty common situation in
practice, as application developers may explicitly request locks to improve perfor-
mance or avoid concurrency anomalies. In this case, the abort rate is around 5% and
this fact does not have an observable impact on latency and throughput but almost
all Delivery Transactions abort, around 99% (Figure 14(c)).
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Fig. 13.13 Performance of DBSM, PGR and NODO.

In [21], a table level locking is acquired on behalf of the Delivery transaction to
avoid flooding the network and improve the certification procedure. Although the
reason to do so is different, the issue is the same.

In all the experiments, the time between an optimistic delivery and a final delivery
were always below 1 ms, thus excluding Q1 from being an issue.

To improve the performance of the conservative approach while at the same time
guaranteeing fairness, we used the Akara protocol. We ran the Akara protocol vary-
ing the number of optimistic transactions that might be concurrently submitted to
the database in order to figure out which would be the best value for our environ-
ment. This degree of optimistic execution is indicated by a number after the name
of the protocol. For instance, Akara-25 means that 25 optimistic transactions might
be concurrently submitted and Akara-n means that there is no restriction on this
number.

Table 13.1 shows that indefinitely increasing the number of optimistic transac-
tions that might be concurrently submitted is not worth. Basically for Akara-n, la-
tency drastically increases and as a consequence throughput decreases. This occurs
because the number of transactions that fails the certification procedure increases.
For 3240 clients, more than 89% of the transactions fail the certification procedure
(i.e. in-core certification procedure like in PGR, see Section 13.6.2). Furthermore,
after failing such transactions are conservatively executed and compete for resources



13 Practical Database Replication 281

 0

 100

 200

 300

 400

 500

 500  1000  1500  2000  2500  3000  3500

tim
e 

(m
s)

clients

Time

    DBSM
     PGR

    NODO

(a) Time in Q2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 500  1000  1500  2000  2500  3000  3500

%
 a

bo
rt

s

clients

Aborts

    DBSM
      PGR
    NODO

(b) Abort

 40

 50

 60

 70

 80

 90

 100

 500  1000  1500  2000  2500  3000  3500

%
 a

bo
rt

s

clients

Aborts

(c) Delivery’s Abort in DBSM

Fig. 13.14 Latency vs. abort rate (DBSM, PGR and NODO).

Table 13.1 Analysis of Akara.

Lat (ms) Tput (tpm) Unsuccess(%)
Akara-25 178 16780 2
Akara-45 480 16474 5
Akara-n 37255 3954 89
Akara-25 with Light-Tran 8151 9950 21
Akara-25 with Active-Tran 109420 1597 21
Akara-25 with Passive-Tran 295884 625 22

with optimistic transactions that may be executing. Keeping the number of opti-
mistic transactions low however reduces the number of transactions allowed in the
database and neither is worth. After varying this number from 5 to 50 in steps of 1,
we figured out that the best value for the TPC-C in our environment is 25.

In what follows, we used the DBSM as the representative of the family of op-
timistic protocols thus omitting the PGR. Although both protocols present similar
performance in a LAN, the PGR is not worth in a WAN due to its extra communi-
cation step.

Figure 13.15 depicts the benefits provided by the Akara-25. In Figure 15(a), we
notice that latency in the NODO is extremely high. In contrast, the Akara-25 starts
degenerating after 3240 clients. For 3240 clients the latency in the DBSM is about
9 ms, and in the Akara-25, it is about 178 ms. This increase in latency directly af-
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Fig. 13.15 DBSM, NODO and Akara-25.

fects throughput as shown in Figure 15(b). The NODO presents a steady throughput
of 4000 t pm; the Akara-25, a steady throughput of 18605 t pm after 3960 clients;
while the DBSM increases its throughput almost linearly. The DBSM starts degen-
erating when the database becomes a bottleneck what was not our goal with these
experiments.

Table 13.1 shows the impact on performance when the maintenance activities are
handled by our protocol. These maintenance activities represented by the transac-
tions Active-Tran and Light-Tran are actively executed and integrated in runs with
the Akara-25: Akara with Active-Tran and Akara with Light-Tran, respectively. In
order to show the benefits of an active execution in such scenario, we provide a run
named Akara with Passive-Tran in which the updates performed by the Active-Tran
are atomically multicast. The run with the Passive-Tran presents a latency higher
than that with the Active-Tran as the former needs to transfer the updates through
the network. However, both approaches have a reduced throughput and high latency
when compared to the normal Akara-25 due to contention caused by a large number
of updates.

The run with the Light-Tran does not have a large number of updates but its
throughput decreases when compared to the Akara-25 due to failures in the certifi-
cation procedure. This is caused by the fact that the transaction Light-Tran mimics
a change on the structure of a table and thus requires an exclusive lock on it.

In a real environment, we expect that maintenance operations occur with a rate
lower than 1% and so they should not be a problem as the optimistic execution of
other transactions might compensate the temporary decrease in performance.

13.7 Conclusions

This chapter addresses the existing trade-offs when implementing database repli-
cation in different environments. It shows that database replication in practice is
constrained by a variety of architectural, algorithmic, and dynamic issues.

To address these issues, a generic architecture that supports legacy database man-
agement systems without compromising the performance that can be achieved in na-
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tive implementations is described. Then, a communication abstraction that encapsu-
lates distributed agreement and supports a range of implementations and advanced
optimizations is presented. Finally, a modular approach to implementing replication
protocols is put together and evaluated, showing how different algorithmic choices
match assumptions on system dynamics and performance.

The experimental results reported here point out that a successful practical ap-
plication of database replication, in particular, when strong consistency is sought,
depends on a combination of factors. Namely, that the architectural approach to in-
terfacing the database server dictates which replication algorithms are feasible; and
that the availability of different communication primitives directly impacts the ef-
ficiency of different algorithms in a particular setting. By taking these factors into
account, it is possible to achieve good performance in face of variable workloads
and environments.
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