
Chapter 12
Database Replication: A Tutorial

Bettina Kemme, Ricardo Jiménez-Peris, Marta Patiño-Martı́nez, and
Gustavo Alonso

Abstract This chapter provides an in-depth introduction to database replication, in
particular how transactions are executed in a replicated environment. We describe
a suite of replication protocols and illustrate the design alternatives using a two-
step approach. We first categorize replication protocols by only two parameters and
present a simple example protocol for each of the resulting categories. Further pa-
rameters are then introduced, and we illustrate them by the given replication proto-
cols and some variants.

12.1 Introduction

12.1.1 Why Replication

Database replication has been studied for more than three decades. It is concerned
with the management of data copies residing on different nodes and with each copy
controlled by an independent database engine. A main challenge of database repli-
cation is replica control: when data can be updated, replica control is in charge
of keeping the copies consistent and providing a globally correct execution. Consis-
tency needs to be enforced through some protocol running across the different nodes
so that the independent database engines can make local decisions that still provide
some form of global consistency when the system is considered as a whole.

Some particular characteristics differentiate database replication from replication
approaches in other domains of distributed computing. While database replication
can be used for fault-tolerance and high-availability in a similar spirit as replication
is used in distributed computing in general, there are many other purposes of repli-
cation. Foremost, often the primary purpose of database replication is to increase the
performance and improve the scalability of database engines. Having more database
replicas distributed across geographic regions provides fast access to local copies,
having a cluster of database replicas provides high throughput. Finally, for some
applications replication is a natural choice, e.g., in the context of mobile users that
are frequently disconnected from the corporate data server, or for data warehouses,

B. Charron-Bost, F. Pedone, and A. Schiper (Eds.): Replication, LNCS 5959, pp. 219–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

220 B. Kemme et al.

which have to reformat data in order to speed up query processing. These various
use cases bring to the fore a tradeoff between consistency and performance, which
attracts less attention when replication is targeted at high availability, as studied in
previous chapters of this book.

A further difference is that databases, by their name, are data centric, usually
consisting of a large set of individual data items, and access to this data is enclosed
in transactions. This means that the database supports operations which are grouped
together in transactions, rather than being processed independently of one another.
A transaction reflects a logical unit of execution and is defined as a sequence of
read and write operations. Transactions come with a set of properties. Atomicity
requires a transaction to either execute entirely and commit, or abort and not leave
any changes in the database. Isolation provides a transaction with the impression
that no other transaction is currently executing in the system. Durability guarantees
that once the initiator of the transaction has received the confirmation of commit,
the changes of the transaction are, indeed, reflected in the database (they can, of
course, later be overwritten by other transactions). Transactions are a particularity
of database systems and provide additional challenges compared to object or process
replication, as the latter usually only consider individual read and write operations.

12.1.2 Organization of the Chapter

In this chapter we provide a systematic introduction to the principles of replica con-
trol algorithms. In the following, the term replica mostly refers to a site running
the database system software and storing a copy of the entire database. But depend-
ing on the context, a replica can also refer to the physical copy of an individual
data item. Replica control has to translate the operations that transactions submit
on logical data items into operations on the physical data copies. Most algorithms
are based on a specific form of read-one-write-all-(available) (ROWAA) approach
where a transaction is assigned to one site (replica), where it is local, and all its
read and write operations are executed at this local site. The write operations are
also executed at all other replicas in the form of a remote transaction. This chapter
only considers ROWAA protocols. We refer readers interested in quorum systems
for database replication to [24]. Replica control also has to make sure that the copies
are consistent. Ideally, all copies of a data item have the same value at all times. In
reality, many different levels of consistency exist.

We first introduce two main parameters that were presented by Gray et al. [20]
to provide a coarse categorization of replication algorithms. The transaction lo-
cation determines where update transactions are executed, namely either at a pri-
mary replica or at any replica. The synchronization strategy determines when up-
date propagation takes place, either before or after commit of a transaction. We use
these parameters as a basis to develop a suite of replication algorithms that serve as
examples and illustrate the principles behind the tasks of replica control. We keep
the description at an abstract level and provide very simple algorithms in order to
better illustrate the principles. Many issues are only discussed informally.

12 Database Replication: A Tutorial 221

As a second step, we discuss a wide range of other parameters. In particular, we
have a closer look at the level of correctness provided by different replica control
solutions in regard to atomicity, isolation and durability. We also have a closer look
at the choice of concurrency control mechanism (e.g., optimistic vs. pessimistic), the
degree of replication (full vs. partial replication), and other design choices that can
have a significant influence on the performance and practicality of the replication
solution.

At the end of this chapter we present some of the research and commercial repli-
cation solutions, and how they fit into our categorization. We also discuss the rela-
tionship between replication and related areas of data management, such as materi-
alized views, caching, and parallel database systems. They all maintain data copies,
and data maintenance can, to some degree, be categorized with the parameters pre-
sented in this chapter. However, they have some fundamental differences that we
would like to point out.

In a replicated database, the replica control needs to interact closely with the gen-
eral transaction management. Transaction management includes concurrency con-
trol (which delivers isolation) and logging to allow an aborting transaction to roll
back any changes previously made (this is part of ensuring atomicity). In most of
this chapter, we assume that each site uses strict two-phase locking (2PL) for con-
currency control; that is, an exclusive lock is acquired on an item before that item is
written, a shared lock is acquired before reading the item, and each lock is held until
the commit or abort of the transaction holding the lock. Other concurrency control
techniques are possible, as we discuss briefly in Section 12.4.3. More details can be
found in [7].

Another essential feature of all replica control protocols is the inter-site commu-
nication. Since we discuss ROWAA approaches, write operations must be sent to
all available sites. We assume that a primitive, called multicast, is used to propagate
information to all replicas. In most of the chapter, we require FIFO multicast, which
means that all recipients get the messages from the same sender in the order they
were sent. We will introduce more powerful multicast primitives later in the chapter
when we discuss protocols that take advantage of them.

12.2 Basic Taxonomy for Replica Control Approaches

Gray et. al [20] categorize replica control solutions by only two parameters. The pa-
rameter transaction location indicates where transactions can be executed. In gen-
eral, a transaction containing only read operations can be executed at any replica.
Such a read-only transaction is then called a local transaction at this replica. For
update transactions, i.e., transactions that have at least one write operation, there
exist two possibilities. In a primary copy approach, all update transactions are exe-
cuted at a given replica (the primary). The primary propagates the write operations
these transactions perform to the other replicas (secondaries) (see Chapter 2 for
primary-backup object replication). This model is also called passive replication (as
in Chapters 11 and 13). In contrast, in an update anywhere approach, update trans-
actions can be executed at any site, just as the read-only transactions which then

222 B. Kemme et al.

transaction location: WHERE?

synchronization
point: WHEN?

+ simple cc

primary copy update anywhere

eager

lazy

+ strong consistency

- inflexible - complex cc

+ flexible

+ simple cc
+ often fast

- inflexible
- stale data

+ flexible

- inconsistency
- conflict resolution

+potentially long response times

+ always fast

Fig. 12.1 Categories.

takes care of update propagation. This model is also called multi-primary (as in
Chapter 11). Using a primary copy approach, conflicts between concurrent update
transactions can all be detected at the primary while an update anywhere approach
requires a more complex distributed concurrency control mechanism. However, a
primary copy approach is less flexible as all update transactions have to be executed
at a specific replica.

The synchronization strategy determines when replicas coordinate in order to
achieve consistency. In eager replication, coordination for the updates of a transac-
tion takes place before the transaction commits. With lazy replication, updates are
asynchronously propagated after the transaction commits. Eager replication often
results in longer client response times since communication takes place before a
commit confirmation can be returned, but it can provide strong consistency more
easily than lazy replication (see Chapter 1 for a definition of strong consistency).

Using these two parameters, there are four categories as shown in Figure 12.1,
and each replica control algorithm belongs to one of these categories. The defini-
tions so far contain some ambiguity and we will refine them later. Each category has
its own implications in regard to performance, flexibility and the degree of consis-
tency that can be achieved. We illustrate these differences by providing an example
algorithm for each of the categories. At the same time, these algorithms provide an
intuition for the main building blocks needed for replica control, and also reflect
some other design choices that we will discuss in detail later.

In the following algorithms, a transaction Ti submits a sequence of read and write
operations. A read operation ri(x) accesses data item x, a write operation wi(x,vi)
sets data item x to value vi. At the end of execution, a transaction either submits a
commit request to successfully terminate a transaction or an abort request to undo all
the updates it has performed so far. We ignore the possibility that operations might
fail due to application semantics (e.g., updating a non-existing record). The algo-
rithms, as we describe them, do not consider failures, e.g., failure of replicas or the
network. Our discussions, however, mention, how the protocols could be extended
in this respect.

12 Database Replication: A Tutorial 223

12.2.1 Eager Primary Copy

Eager primary copy protocols are probably the simplest protocol type to understand.
We present a protocol that is a straightforward extension of non-replicated transac-
tion execution.

Example Protocol

Figure 12.2 shows an example protocol using strict 2-phase-locking (2PL) for con-
currency control at each replica. When a client submits a transaction Ti it sends all
the operations of this transaction to one replica R. Ti is then a local transaction at
R and R is responsible for returning the corresponding responses for the requests
associated with Ti. Update transactions may only be submitted to the primary. Read
operations are executed completely locally (lines 1-5). They acquire a shared lock
before accessing the local copy of the data item. For a write operation (lines 6-12),
the primary replica first acquires an exclusive lock locally and performs the update.
Then it multicasts the request to the other replicas in FIFO order. Aborts can occur
due to deadlock (lines 13-16). If an update transaction aborts the primary informs
the secondary replicas if they had already received some write requests for this trans-
action. Similar actions are needed if the client decides to abort the transaction (line
17). When the client submits the commit request after completion of the transaction
(lines 18-24), an update transaction needs to run a 2-phase-commit protocol (2PC)
to guarantee the atomicity of the transaction (we discuss this later in detail). The
primary becomes the coordinator of the 2PC. The 2PC guarantees that all decide
on the same commit/abort outcome of the transaction and that all secondaries have
successfully executed the transaction before it commits at the primary. Read-only
transactions can simply be committed locally. After successful commit (lines 22-
24), the transaction releases its lock and the local replica returns the confirmation
to the client. When a secondary replica receives a write request for a transaction
from the primary (lines 25-26), it acquires an exclusive lock (in the order in which
messages are received), and executes the operation. Although an update transaction
might be involved in a deadlock at the secondary, it is not aborted at the secondary.
If it is a deadlock among update transactions only, the primary will detect such a
deadlock and act appropriately. If the deadlock involves local read-only transac-
tions, those read-only transactions need to be aborted. When a secondary receives
an abort request for an update transaction it has to abort it locally.

Example Execution

Figure 12.3 shows a simple example execution under this protocol. In this and all
following examples, time passes from top to bottom. Furthermore, T1 acquiring a
shared lock on data item x is denoted as S1(x), and T1 acquiring an exclusive lock
on x is denoted as X1(x). T1 = r1(x),w1(x,v1) is an update transaction local at pri-
mary R1. T2 = r2(y),r2(x) is a read-only transaction local at secondary R2. Read
operations are executed locally. The write operation of T1 is multicast to all replicas
and executed everywhere. When T1 wants to commit it requires a 2-phase-commit

224 B. Kemme et al.

Upon: ri(x) for local transaction Ti

1: acquire shared lock on x
2: if deadlock then
3: call abortHandling(Ti)
4: else
5: return x

Upon: wi(x,vi) for local transaction Ti {only at
primary replica}

6: acquire exclusive lock on x
7: if deadlock then
8: call abortHandling(Ti)
9: else

10: x := vi

11: multicast wi(x,vi) to secondaries in FIFO
order

12: return ok

Upon: abortHandling(Ti)
13: if Ti update transaction and at least one

wi(x,vi) was multicast then
14: multicast abort(Ti) to all replicas
15: abort Ti, release locks of Ti

16: return aborted
Upon: abort request for local transaction Ti

17: call abortHandling(Ti)
Upon: commit request for local transaction Ti

18: if Ti update transaction then
19: run 2PC among all replicas to commit Ti

20: else
21: commit Ti

Upon: successful commit of transaction Ti

22: release locks of Ti

23: if Ti local transaction then
24: return committed

Upon: receiving w j(x,v j) of remote
transaction Tj from primary replica

25: acquire exclusive lock on x
26: x := v j

Upon: receiving abort(Tj) for remote
transaction Tj from primary replica

27: abort Tj, release locks of Tj

Fig. 12.2 Eager Primary Copy Algorithm.

S1(x)
r1(x)

S2(y)
r2(y)

r1(x)

r2(y)

y
x

X1(x)
w1(x,v1)

w1(x,v1)

S2(x)

r2(x)

commit

w1(x,v1)

X1(x)
w1(x.v1)

commit

2PC for T1
committed

Replica R1
(Primary)

Replica R2
(Secondary)

r2(x) x

committed

Fig. 12.3 Eager Primary Copy Example.

12 Database Replication: A Tutorial 225

protocol. When T2 requests the shared lock on x it has to wait because T1 holds
the lock. Only after T1 commits can T2 get the lock and complete. If there were a
deadlock between T1 and T2, the secondary would abort read-only transaction T2.

Discussion

Advantages In most primary copy approaches concurrency control is nearly the
same as in a non-replicated system. For our protocol, the only difference is that
secondaries have request locks for update operations in the order they receive them
from the primary. And in case of deadlock they have to abort local read-only trans-
actions. Since secondaries execute conflicting updates in the same order as they are
executed at the primary and strict 2PL is used, execution is globally serializable.
This means that the concurrent execution of transactions over the physical copies is
equivalent to a serial execution of the transactions over a single logical copy of the
database.

As execution is eager and a 2PC is run, all copies are virtually consistent (have
the same value at commit time of transactions). This means that read operations at
the secondaries never read stale data. This also provides strong guarantees in case
of failures. If the primary fails, active transactions are aborted. For all committed
transactions it is guaranteed that the secondaries have the updates. Therefore, if
one of the secondaries takes over and becomes the new primary, no updates are
lost. However, if the primary has failed during a 2PC some transactions might be
blocked. This could be resolved by the system administrator. Clients connected to
the primary can reconnect to the new primary. Some systems provide automatic
reconnection.

Disadvantages Requiring all update transactions to execute at the primary leads
to a loss of replication transparency and flexibility. Clients need to know that only
the primary replica can execute update transactions. Some primary copy systems
automatically redirect update transactions to the primary. However, in this case, the
system needs to know at the start of a transaction whether it is an update transaction
or not even if the first operation submitted is a read operation, as is the case in the
example of Figure 12.3.

The price to pay for an eager protocol that uses 2PC are long execution times for
update transactions as they only commit at the primary once they have completely
executed at all secondaries. We discuss in Section 12.2.5 some eager protocols that
do not have this behavior.

12.2.2 Eager Update Anywhere

Eager update anywhere replica control algorithms were the first replica control al-
gorithms to be proposed in the literature. The early algorithms extended traditional
concurrency control mechanisms to provide globally serializable execution with a
large emphasis on correctly handling failures and recoveries.

226 B. Kemme et al.

Example Protocol

Figure 12.4 shows the changes to the eager primary copy algorithm of Figure 12.2
to allow for update anywhere. Both read-only and update transactions can now be
local at any replica which coordinates their execution. Read operations are executed
as before at the local replica. A write operation has to execute at all replicas (lines 1-
11). The local replica multicasts the request to the other replicas and then acquires an
exclusive lock locally and performs the update. Then, it waits for acknowledgements
from all other replicas before returning the ok to the client. The acknowledgements
are needed as conflicting requests might now occur in different order at the different
replicas and it is not guaranteed that the remote replicas can execute the request
in the same order. In fact, distributed deadlocks can occur, as we discuss below.
Aborts for local transactions are handled as in the primary copy protocol. Commits
are handled as before with the only difference that the 2PC can now be initiated by
any replica that wants to commit a local update transaction. When a replica receives
a write request from a transaction that is local at another replica (lines 12-17), it
acquires an exclusive lock, executes the operations and sends an acknowledgement
back to the local replica. When a deadlock is detected, it might involve remote
transactions. The system can choose to abort a remote transaction; if that is the
case, the replica where the transaction is local is informed accordingly. Similarly,
any replica has to abort a remote transaction when it is informed by the transaction’s
local replica (line 18).

Example Execution

Figure 12.5 shows an example execution under this protocol indicating the spe-
cial case of a distributed deadlock. This time, T1 = r1(x),w1(x,v1) is local at R1.
T2 = r2(y),w2(x,v2) also updates x and is local at R2. As the lock requests in this
execution were processed in different orders at the two replicas, there is a deadlock.
This cannot be detected with information from a single site, but the system must
have a distributed deadlock mechanism or timeout. In this execution, T2 is chosen
to abort.

Discussion

Advantages Being an update anywhere approach it is more flexible than the pri-
mary copy approach and provides transparency as it allows update transactions to
be submitted to any replica. As it is again eager, using a 2PC, all data copies are vir-
tually consistent. Failures are tolerated without loss of correctness. Given that the
protocol extends strict 2PL, it provides global serializability.

Disadvantages Although the concurrency control mechanism appears very simi-
lar to the one of the eager primary copy approach, the complexity is higher as dis-
tributed deadlocks may occur. As distributed algorithms to detect distributed dead-
locks are expensive, many systems use timeouts, but these are hard to set sensibly. If

12 Database Replication: A Tutorial 227

Upon: wi(x,vi) for local transaction Ti

1: multicast wi(x,vi) to all other replicas
2: acquire exclusive lock on x
3: if deadlock then
4: call abortHandling(Ti)
5: else
6: x = vi

7: wait for all to return answer
8: if all return ok then
9: return ok

10: else
11: call abortHandling(Ti)

Upon: receiving w j(x,v j) of
remote transaction Tj from replica R′

12: acquire exclusive lock on x
13: if deadlock then
14: send abort(Tj) to R′
15: else
16: x := v j

17: send ok back to R′

Upon: commit request for local transaction Ti

18: if Ti update transaction then
19: run 2PC among all replicas to commit Ti

20: else
21: commit Ti

Upon: successful commit of transaction Ti

22: release locks of Ti

23: if Ti local transaction then
24: return committed

Upon: receiving abort(Tj) for
remote transaction Tj from replica R′

25: abort Tj, release locks of Tj

Fig. 12.4 Eager Update Anywhere Algorithm.

S1(x)
r1(x) S2(y)

r2(y)

r1(x)

r2(y)

y
x

X1(x)
w1(x,v1)

w1(x,v1)

X2(x)
w2(x,v2)

w2(x,v2)

deadlock aborted T2

w1(x,x1)

w2(x,x2)

ok

ok

X1(x)

X2(x)

w1(x,v1)
abort T2

commit

2PC for T1
committed

Replica R1 Replica R2

Fig. 12.5 Eager Update Anywhere Exam-
ple.

too short, many transactions are aborted unnecessarily. If set too long, a few dead-
locks can block large parts of the database leading quickly to deterioration. This
was one of the reasons, why Gray et. al [20] indicated that traditional replication
solutions do not scale.

Comparing the two protocols presented so far, the update anywhere protocol is likely
to have longer response times than the primary copy protocol as each write opera-
tion has to be executed at all replicas before the next operation can start. However,
this is a consequence of the protocol detail, rather than being intrinsic to the up-
date anywhere and primary copy styles. The primary copy protocol could also wait
for each write to be executed at the secondaries before proceeding, or the update
anywhere protocol could simply multicast the writes as the primary copy protocol
without waiting. Conflicts would then be resolved at commit time. One could even

228 B. Kemme et al.

change the protocols and send all changes in a single message only at the end of
transaction. We will discuss the issue of message overhead and number of messages
per transaction in Section 12.4.1. At this point, we only want to point out that we
have consciously chosen to present different flavors of protocols to already give an
indication that there are many design alternatives.

12.2.3 Lazy Primary Copy

Compared to eager approaches, lazy approaches do not have any communication
among replicas during transaction execution. A transaction can completely execute
and commit at one replica and updates are only propagated to the other replicas
after commit. Combining lazy with primary copy leads to a quite simple replication
approach.

Example Protocol

Figure 12.6 presents a simple lock-based lazy primary copy protocol. Read-only
transactions are executed as in the eager approach (lines 1-5). Update transactions
may only be submitted to the primary which executes both read and write operations
locally (lines 1-5 and 6-11). Therefore, when the transaction aborts during execution
or when the client requests it (line 14), the abort remains local (lines 12-13). When
the client submits a commit (lines 15-18), the transaction commits first locally and
only after commit are all write operations multicast within a single message, often
referred to as write set. These writesets are multicast in FIFO order. The multicast
can be directly after the commit or some time after, e.g., in certain time-intervals.
The secondaries, upon receiving such a writeset (lines 19-23) acquire locks in re-
ceiving order to make sure that they serialize conflicting transactions in the same
way as the primary.

Example Execution

Figure 12.7 shows an example where T1 = r1(x),w1(x,v1),w1(y,w1) executes at the
primary updating x and y. Only after commit the updates are sent to the secondary.
At the secondary, the locks for the updates are requested. As there is a deadlock
with a local transaction T2 = r2(y),r2(x), the local transaction has to abort in order
to apply the updates of T1.

Discussion

Advantages Being a primary copy approach, concurrency control remains simple
while serializability is provided. It is similar to the eager primary copy approach
as secondaries apply updates in receiving order. In contrast to eager approaches the
response times of update transactions are not delayed by communication and coor-
dination overhead among the replicas which can potentially lead to shorter response
times.

12 Database Replication: A Tutorial 229

Upon: ri(x) for local transaction Ti

1: acquire read lock on x
2: if deadlock then
3: call abortHandling(Ti)
4: else
5: return x

Upon: wi(x,vi) for local transaction Ti {only at
primary replica}

6: acquire exclusive lock on x
7: if deadlock then
8: call abortHandling(Ti)
9: else

10: x := vi

11: return ok

Upon: abortHandling(Ti)
12: abort Ti, release locks of Ti

13: return aborted

Upon: abort request for local transaction Ti

14: call abortHandling(Ti)

Upon: commit request for local transaction Ti

15: commit Ti, release locks
16: return committed
17: if Ti update transaction then
18: send all wi of Ti in single write set

sometime after commit
in FIFO order

Upon: receiving write set message of
remote transaction Tj from primary replica
in FIFO order

19: for all w j(x,v j) in write set do
20: acquire exclusive lock on x
21: for all w j(x,v j) in write set do
22: x := v j

23: commit Tj , release locks

Fig. 12.6 Lazy Primary Copy Algorithm.

S1(x)
r1(x)

S2(y)
r2(y)

r1(x)

r2(y)

y

x

X1(x)
w1(x,v1)

w1(x,v1)

ok

commit

committed

X1(y)
w1(y,w1)

w1(y,w1)

ok

w1(x,v1), w1(y,w1)

X1(x)
w1(x,v1)

X1(y)

S2(x)

r2(x)

aborted T2

w1(y,w1)

Replica R1
(Primary)

Replica R2
(Secondary)

Fig. 12.7 Lazy Primary Copy Example.

Disadvantages While a lazy primary copy approach easily provides serializability
or other strong isolation levels, lazy replication provides an inherent weaker consis-
tency than eager replication. Lazy replication does not provide the virtual consis-
tency shown in eager approaches. At the time a transaction commits at the primary,
the data at the secondary becomes stale. Thus, read operations that access the secon-
daries before the writeset is processed read outdated data. Note that serializability is
still provided, with read-only transactions that read stale data being serialized before
the update transactions although those happened earlier in time.

More severe, if the site executing and committing an update transaction fails
before propagating the writeset, the other replicas are not aware of the transaction.
If another site takes over as primary, this transaction is lost. When the failed replica

230 B. Kemme et al.

recovers it might try to reintegrate the changes into the existing system, but the
database might have changed considerably since then. We can consider this a loss
of the durability guarantee. We will discuss this later in more detail.

Although there is no communication among replicas during transaction execution,
transactions are not necessarily faster than in an eager approach. If the clients and
replicas are geographically distributed in a WAN, then clients that are not close to
the primary copy experience long response times as they have to interact with a
remote primary copy. That is, there can still be considerable communication delay
between client and primary copy. To address this issue, many commercial systems
partition the database, with each partition having the primary copy on a different
replica. In geographically distributed applications, a database can often be parti-
tioned by regions. Clients that are local to one region typically access mostly the
partition of the database that is relevant for this region. Thus, the replica of a region
becomes the primary for the corresponding partition. Therefore, for most clients the
primary of the data they access will be close and client/replica interaction will be
fast. A challenge with this approach is to find appropriate partitions. Also, the pro-
grammer has to be aware to write code so that each transaction only accesses data
for a single partition.

12.2.4 Lazy Update Anywhere

Allowing update transactions to execute at any replica and at the same time propa-
gate changes only after commit combines flexibility with fast execution. No remote
communication, neither between replicas nor between client and replica, is neces-
sary.

Example Protocol

Figure 12.8 shows the differences to the lazy primary copy approach. Write opera-
tions can now be processed at all replicas and each replica is responsible to multicast
the writesets of its local transactions to the other replicas (lines 1-6). When a replica
receives such a remote writeset, it applies the changes (lines 7-14). However, as lazy
update anywhere allows conflicting transactions to execute and commit concurrently
at different replica without detecting conflicts during the life-time of transactions,
conflict resolution might be needed. The system has to detect for a write operation
on a data item x whether there was a concurrent conflicting operation on the same
data item. If such a conflict is detected, conflict resolution has to ensure that the
different replicas agree on the same final value for their data copies of x. There are
many ways to resolve the conflict; a common choice is the Thomas Write Rule,
which discards any update with earlier timestamp than a previously applied update.

Example Execution

Figure 12.9 shows an example execution under this protocol indicating the special
case of a conflict. Both T1 = r1(x),w1(x,v1), local at R1 and T2 = r2(y),w2(x,v2),

12 Database Replication: A Tutorial 231

Upon: wi(x,vi) for local transaction Ti

1: acquire exclusive lock on x
2: if deadlock then
3: call abortHandling(Ti)
4: else
5: x := vi

6: return ok

Upon: receiving write set message of
remote transaction Tj from replica R′

7: for all w j(x,v j) in write set do
8: acquire exclusive lock on x
9: for all w j(x,v j) in write set do

10: if Conflict detected then
11: resolve conflict for eventual consistency
12: else
13: x := v j

14: commit Tj , release locks

Fig. 12.8 Lazy Update Anywhere Algorithm.

S1(x)
r1(x) S2(y)

r2(y)

r1(x)

r2(y)

y
x

X1(x)
w1(x,x1)

w1(x1)

ok X2(x)
w2(x,x2)

w2(x2)

ok
commit

comitted commit

comittedw1(x,x1)
w2(x,x2)

conflict
detection

conflict
detection

discard w2(x,x2) X1(x)
w1(x,x1)

Replica R1 Replica R2

Fig. 12.9 Lazy Update Anywhere Example.

local at R2 update x and commit. After commit, the writesets are propagated. If both
R1 and R2 simply applied the update they receive from the other replica, R1 would
eventually have the value written by T2, and R2 would have the value written by
T1. Upon receiving the writeset of T2, R1 has to detect that T1 was concurrent to
T2, conflicts with T2, and already committed. R2 has to detect this conflict when
receiving the writeset of T1. A resolution mechanism, e.g., via timestamps, has led
both replicas to decide that T1’s update wins out, and so R1 discards the write of x
from T2, while R2 overwrites x using T1’s update. In this way, it is guaranteed that
the data copies converge towards a common value.

Discussion

Advantages Lazy update anywhere provides flexibility and fast execution for all
transactions. These are two very strong properties. In some situations the approach
is possible and necessary, e.g., if WANs have frequent connection loss, forbidding
updates would lead to large revenue loss, and either conflicts are rare or easy to
resolve.

Disadvantages One has to be aware that the fundamental properties of transac-
tions are violated. Durability is not guaranteed as a transaction might commit from
the user perspective but the updates are finally lost during conflict resolution. Atom-
icity might be lost, if conflict resolution is done on an per-object basis. If a transac-
tion Ti updates data items x and y, and a conflict with Tj exists only on x, then it could
be possible that Ti’s update on x is not considered while its update on y succeeds.

232 B. Kemme et al.

The traditional concept of serializability or other isolation levels is also not longer
guaranteed. Finally, conflict resolution is potentially very complex; depending on
the semantics of data objects and the application architecture, different resolution
mechanisms might be needed for different parts of the database. Therefore, such an
approach is appropriate in very controlled environments with exact knowledge of
the application. It is likely not suitable for a general replication solution.

12.2.5 Eager vs. Lazy

Since Gray et. al. [20] categorized protocols into eager and lazy many new replica
protocols have been developed, and it is not always clear whether they are eager
or lazy. In eager algorithms using a 2PC, the transaction at the local replica only
commits once the transaction has been executed at all replicas. With this, all data
copies are virtually consistent. This results in the disadvantage that the response
time perceived by a client is determined by the slowest machine in the system.

Many recent protocols that also define themselves as eager do not run a 2PC.
Instead, they allow a transaction to be committed at the local replica once the lo-
cal replica knows that all remote replicas will “eventually” commit it (unless the
remote replica fails). This typically requires that all replicas have received the write
operations or the writeset, and that it is guaranteed that each replica will decide on
the same global serialization order. It is not necessary that remote replicas have ac-
tually already executed the write operations at the time the local replica commits.
This means, some “agreement” protocol is executed among the replicas but it does
not necessarily include processing the transaction or writing logs to disk. We use
this weaker form of “eagerness” in order to accommodate many of the more recent
replication solutions.

Many of these approaches use the delivery guarantees of group communication
systems [13] to simplify the agreement protocol. Group communication systems
provide multicast primitives with ordering guarantees (e.g., FIFO order or total or-
der of all messages) and delivery guarantees (see Chapter 3). In particular, a multi-
cast with uniform reliable delivery guarantees that whenever a message is delivered
to any replica, it is guaranteed that it will be delivered to all replicas that are avail-
able. Now assume that transactions multicast their writesets using uniform reliable
delivery. In case a replica receives a writeset of a local transaction and commits the
transaction, uniform reliable delivery guarantees the writeset will be received by all
other replicas, even if the local replica crashes immediately after the commit. There-
fore, assuming an appropriate concurrency control method, the transaction will also
commit at all other replicas. This provides the “eager” character of these protocols
offering atomicity and durability without the need of a 2PC. Uniform reliable deliv-
ery itself performs some coordination among the group members before delivering
a message to guarantee atomicity in the message delivery, though this is not visible
to the replication algorithm. There are some subtle differences in the properties pro-
vided by uniform reliable delivery multicast compared to 2PC as the first assumes a
crash-stop failure model where nodes never recover, while 2PC has a crash-recovery
model that assumes sites to rejoin.

12 Database Replication: A Tutorial 233

In contrast, we use the term lazy for protocols where write operations are not sent
at all before commit time, or where the sending multicast occurs earlier but is not
reliable. Thus, if a local replica fails after committing a transaction but before prop-
agating its write operations successfully, then the remote replicas have no means to
commit the transaction. If the others don’t want to block until the local replica has
recovered and sent the write operations, the transaction can be considered lost.

12.3 Correctness Criteria

So far, we have only informally reasoned about the differences in correctness that
the protocols provide. In fact, the research literature does not have a single, generally
agreed on understanding of what “correctness” and data consistency mean. Terms
such as strong consistency, weak consistency, 1-copy-equivalence, serializability,
and snapshot isolation are used but definitions vary and it is not always clear which
failure assumptions are needed for a protocol to provide its properties (see Chapter
1 for consistency models for replicated data). In this section, we discuss different
aspects of correctness, and how they relate to one another.

In our discussion above, the eager protocols provided a stronger level of consis-
tency than the lazy ones. This is, however, only true in regard to atomicity. But there
does not simply exist a stack of consistency levels, from a very low level to a very
high level. Instead, correctness is composed of different orthogonal issues, and a
replica control protocol might provide a high level of consistency in one dimension
and a low level for another dimension. In regard to lazy vs. eager, all lazy protocols
are weaker than eager protocols in regard to atomicity. But given two particular pro-
tocols, one lazy and one eager, the lazy protocol could provide stronger consistency
than the eager protocol in regard to a different correctness dimension.

In the following, we look at several correctness dimensions individually, extract
what are the possible levels of consistency for this dimension and discuss to what
degree replication protocols can fulfill the criteria depending on their category.

12.3.1 Atomicity and Consistency

Atomicity in a replicated environment means that if an update transaction commits
at one replica it has to commit at all other replicas and its updates are executed at all
replicas. If a transaction aborts, none of the replicas may have the updates reflected
in its database copy. Considering a failure-free environment only, this means that the
replica and concurrency control system has to ensure that each replica takes the same
decision on commit/abort for each transaction. For instance, in the primary copy
protocols described in the previous section, this was achieved via a FIFO multicast
of write operations or writesets and strict 2PL.

Considering a system that is able to tolerate failures, atomicity means that if a
transaction commits at a replica that fails after the commit, the remaining available
replicas also need to commit the transaction in order for the transaction to not be
“lost”. Note that available replicas can continue committing transactions while some
replicas are down and thus, don’t commit these transactions. Recovery has to ensure

234 B. Kemme et al.

that a restarted replica receives the missing updates. In summary, available replicas
commit the same set of transactions and failed replicas have committed a subset of
these transactions.

Atomicity in the presence of failures can only be achieved by eager protocols as
all replicas are guaranteed to receive the writeset information and all other informa-
tion needed to decide on the fate of a transaction before the local replica commits
the transaction. Thus, the available replicas will eventually commit the transaction.
In a lazy protocol, available replicas might not know about the existence of a trans-
action that executed at a replica that fails shortly afterwards. In a lazy primary copy
protocol, atomicity can be guaranteed if no new primary is chosen when the cur-
rent primary fails. Then, upon recovery of the primary, the missing writesets can
eventually be propagated. However, this would severely reduce the availability of
the system. If a failover takes place to a new primary, or in a lazy update anywhere
approach, one can still attempt to send the writesets after recovery. However, the
transaction might conflict with other transactions that committed in the meantime,
and therefore, no smooth integration of the “lost” transaction into the transaction
history is possible.

In summary, while eager protocols can provide atomicity, lazy approaches can
be considered non-atomic.

In the research literature, one often finds the term strong consistency associated
with eager protocols and weak consistency associated with lazy protocols. The use
of these terms usually remains vague. One way to define strong consistency is by
what we have called virtual consistency, requiring all data copies to have the same
value at transaction commit time. Only eager protocols with a 2PC or similar agree-
ment provide virtual consistency; the weaker forms of eagerness described in Sec-
tion 12.2.5 allow a transaction to commit before all replicas have executed the write
operations. Nevertheless, protocols based on this weaker eager definition are usually
also associated with providing strong consistency. Strong consistency is different
than atomicity as it refers to the values of data items and not the outcome of trans-
actions. It typically implies that all replicas apply conflicting updates in the same
order. In theory, one might have a replica control protocol that provides atomicity
(guaranteeing that all replicas commit the same set of transactions) but the execu-
tion order of conflicting transactions is different at the different replicas. However,
we are not aware of such a protocol.

Weak consistency generally means that data copies can be stale or even tem-
porarily inconsistent. Staleness arises in lazy primary copy approaches. As long as
the primary has not propagated the writeset to the secondaries, the data copies at the
secondaries are outdated. If the secondaries apply updates in the same serialization
order as they primary, the data copies at secondaries do not contain any incorrect
data but simply data from the past. A system can be designed to limit the staleness
experienced by a read operation on a secondary site. For instance, for numeric val-
ues the difference between the value read and the value at the primary might be kept
below a threshold like 100. Other systems use different forms of limiting the diver-
gence, for example, the secondary copy might be required to have missed no more
than a fixed number of writes which were already applied at the primary, or the limit

12 Database Replication: A Tutorial 235

might be on the time between when a write is done at the primary and when it gets
to the secondary. These staleness levels, also referred to as freshness levels allow
one to bound the discrepancy between replicas visible to the outside world. These
intermediate consistency levels can be achieved by refreshing secondary copies at
appropriate time points.

Lazy update anywhere protocols allow the copies to be inconsistent. As our ex-
ample in Figure 12.9 has shown, each replica might have changes of a local com-
mitted transaction while missing conflicting changes from a concurrent transaction
committed at a different replica. In such a scenario, the most important property to
provide is eventual consistency [42]. It indicates that, assuming the system reaches a
quiescent state without any further write operations, all copies of a data item eventu-
ally converge to the same value. Note that eventual consistency is normally defined
outside the scope of transactions. As such, it is possible that if two conflicting trans-
actions Ti and Tj update both x and y, all copies of x will eventually contain Ti’s
update while all copies of y will have Tj’s update. One way to define eventual con-
sistency in the context of transactions is as follows: there must exist a subset of the
committed transactions and an order on this subset, such that data copies converge
to the same values as if the write operations of these transactions had been executed
in the given serial order.

12.3.2 Isolation

Isolation in a Non-replicated System

In non-replicated database systems, the level of isolation indicates the degree to
which concurrently executing transactions are allowed to be seen by another one.
The most well-known correctness criteria is serializability: the interleaved execu-
tion of transactions is equivalent to a serial execution of these transactions. Typi-
cally, two executions are considered equivalent if the order of any two conflicting
operations is the same in both executions. Two operations conflict if they access
the same data item and at least one is an update operation. The most well-known
concurrency control mechanisms providing serializability are strict 2-phase-locking
and optimistic concurrency control. Weaker levels of isolation are often defined by
specifying a set of anomalies that are allowed to occur during the execution. For
instance, snapshot isolation allows an anomaly that may not occur in a serializable
execution1. Snapshot isolation can be implemented very efficiently and provides
much better concurrency in applications with a large read proportion. Transactions
read from a snapshot of the database that represents the committed version of the
database as of start of transaction. Conflicts only exist between write operations. If
two concurrent transactions want to update the same data item only one of them may

1 Note that strictly speaking snapshot isolation and serializability are incomparable since snapshot
isolation disallows some executions allowed by serializability (concurrent blind writes, e.g. con-
sider two transactions, r1(x); r2(y);w1(y);w2(x);c1;c2, being the subscripts the transaction identi-
fier) and vice versa (write skew: r1(x); r2(x);w1(y);w2(y);c1;c2).

236 B. Kemme et al.

succeed, the other has to abort. Snapshot isolation typically uses multiple versions
to provide snapshots.

Global Isolation Levels

Ideally, a replicated system should provide exactly the same level of isolation as a
non-replicated system. For that, definitions for isolation in a replicated system have
to reduce the execution over data copies onto an execution over a single logical
copy. For instance, serializability in a replicated system is provided if the execution
is equivalent to a serial execution over a single logical copy of the database.

Apart from serializability, snapshot isolation has also been well studied in repli-
cated systems. All transactions must read from snapshots that can also exist in a
non-replicated system and writes by concurrent committed transactions must not
conflict, even if they are executed at different replicas. In a replicated environment,
snapshot isolation is very attractive due to its handling of read operations.

Atomicity vs. Isolation

In principle, isolation is orthogonal to atomicity. Both eager and lazy protocols can
provide serializability or snapshot isolation across the entire system. However, this
only holds if there are no failures. If there are failures, then the problem of lost
transactions occurs in lazy protocols, as we have discussed before. It is not clear
how these lost transactions and transactions that have read values written by these
lost transactions, can be placed in the execution history to show that it is equivalent
to a serial history or fulfills the snapshot isolation properties.

1-Copy-Equivalence

1-copy-equivalence requires the many physical copies to appear as one logical copy.
It was introduced with failures in mind, that is, the equivalence must exist even
when copies are temporarily not available; in this view, lazy protocols do not pro-
vide 1-copy-equivalence. 1-copy-equivalence can then be combined with an isola-
tion level to consider isolation in a failure-prone environment. For example, 1-copy-
serializability requires the execution over a set of physical copies, some of them
possibly unavailable, to be equivalent to a serial execution over a single logical
copy.

Linearizability and Sequential Consistency

Linearizability and sequential consistency are two correctness criteria defined for
the concurrent execution on replicated objects. They include the notion of the exe-
cution over the replicated data to be equivalent to an execution on a single image of
the object. However, none of the two has the concept of transactions which requires
to take operations on different objects into account (although sequential consistency
takes the order within a client program into account). Different to serializability and
snapshot isolation, linearizability requires an order that is consistent with real time.

12 Database Replication: A Tutorial 237

12.3.3 Session Consistency

Session consistency is yet another dimension of correctness that is orthogonal to
atomicity, data consistency or isolation. It defines correctness from the perspective
of a user. Users typically interact with the system in form of sessions. For instance, a
database application opens a connection to the database and then submits a sequence
of transactions. These transactions build a logical order from the user’s perspective.
Therefore, if a client first submits transaction Ti and then Tj, and Ti has written
some data item x that Tj reads, then Tj should observe Ti’s write (unless another
transaction has overwritten x since Ti’s commit). This means, informally, session
consistency guarantees that a client observes its own writes.

Definitions like serializability and 1-copy-serializability do not include session
consistency, since they require the execution to be equivalent to a serial order, but
that may not match the order of submission within a session. In the usual non-
replicated platforms, built with locking or SI, session consistency is observed. Thus
a truly transparent replicated system should provide session consistency, too.

In a replicated system, without special mechanisms, replica control may not en-
sure session consistency For instance, in a lazy primary copy approach, the client
could submit an update transaction to the primary, and then submit a read-only trans-
action to a secondary before the writeset of its update transaction has been propa-
gated to the secondary. In this case, it does not observe its own writes. In order
to provide session consistency, such a protocol needs to be extended. For instance,
transactions can receive global transaction identifiers which are monotonically in-
creasing within a session. The driver software at the client then keeps track of the
transaction identifiers. Whenever it submits a new transaction to a replica it pig-
gybacks the identifier of the last transaction that was committed on behalf of this
client. Then, the replica to which the new transaction was submitted will make sure
that the new transaction will see any state changed performed by this last or older
transactions.

Other protocols provide session consistency automatically, e.g., an eager proto-
col with 2PL and 2PC. Assume again a primary copy approach and a client submits
first update transaction Ti to the primary and then read-only transaction Tj to a sec-
ondary. Although Ti might not yet be committed at the secondary when the first
operation of Tj is submitted, Ti is guaranteed to be in the prepared state or a later
state holding all necessary locks. Thus, Tj will be blocked until Ti commits and
will see its writes. Eager protocols that only guarantee “eventual commit” typically
need a special extension, e.g., a special driver as described above, to provide session
consistency.

12.4 Other Parameters

We have already seen that eager protocols do not necessarily always provide higher
guarantees than lazy protocols. In the same way, lazy protocols do not always per-
form better than eager protocols. In fact, performance depends on many issues.
Some fundamental techniques can be applied to most replica control algorithms

238 B. Kemme et al.

to speed-up processing. In this section, we discuss some of them. We also discuss
some other fundamental design choices for a replicated database architecture that
have a great influence on the performance, feasibility, and flexibility of the replica-
tion solution.

12.4.1 Message Management

The number of message rounds within a transaction are an important parameter for a
replica control protocol. Looking at our examples of Section 12.2, the eager update
anywhere protocol has a message round per write operation of a transaction (write-
set and acknowledgement) plus the 2PC. With this, the number of messages within
a transaction is linear with the number of write operations of the transaction. In con-
trast, the presented lazy protocols send one message per transaction, independently
of the number of operations.

The number of messages per transaction depends on protocol details rather than
simply on the category. For example, eager protocols can have a constant number of
messages and lazy protocols can send a message per write operation. As an example,
let’s have a look at two further eager update anywhere protocols. The first alternative
(Alternative 1) to the protocol presented in Figure 12.4 (Original protocol) executes
first all operations only on the local database copy. Only when the client submits
the commit request, the local replica sends the writeset with all write operations
to all other replicas. The other replicas acquire the locks, execute the operations
and return when they have completed. Finally the 2PC is performed. This model
has one message round for the writeset and acknowledgements plus the overhead
for the 2PC. The second alternative (Alternative 2) also executes the transaction
first locally and sends the writeset at commit time. The remote replicas acquire the
locks and send the acknowledgement once they have all locks. The local replica
commits the transaction once it has received all acknowledgements. No 2PC takes
place. The remote replicas execute the write operations in the writeset and commit
the transaction in the meantime. That is, transaction execution contains only a single
message round.

It is often assumed that transaction response time increases with the number of
message rounds which occur during the transaction. In WANs, where messages take
a long time, this means it is usually unacceptable to include more than one message
round. In LANs, however, message latency might not play such a big role, and
message throughput is often high. In such an environment, response time may be
influenced more by other aspects rather than rounds of message exchange.

We illustrate this along the eager update anywhere protocol of Figure 12.4 and
the two alternatives presented above. Figure 12.10 shows an example execution of
a transaction T1 = w1(x,v1),w1(y,w1) updating x and y under these three variant
protocols. In this diagram, we show time by the vertical distance, and we pay spe-
cial attention to the possible concurrency between activities. The original protocol
of Figure 12.4 multicasts each write operation and then executes it locally. That is,
in the ideal case, the write operations on the different physical copies occur con-
currently, and the local replica receives all acknowledgements shortly after it has

12 Database Replication: A Tutorial 239

X1(x)
w1(x,v1)

w1(x,v1)
w1(x,v1)

ok
ok

X1(x)
w1(x,v1)

commit

2PC for T1
committed

Replica R1 Replica R2

X1(y)
w1(y,w1)

w1(y,w1)
w1(y,w1)

ok
ok

X1(y)
w1(y,w1)

X1(x)
w1(x,v1)

w1(x,v1)

w1(x,v1), w1(y,w1)

ok

ok

X1(x)
w1(x,v1)

X1(y)
w1(y,w1)

commit

2PC for T1
committed

Replica R1 Replica R2

X1(y)
w1(y,w1)

w1(y,w1)

ok

X1(x)
w1(x,v1)

w1(x,v1)

w1(x.v1), w1(y,w1)

ok

ok

X1(x)
X1(y)

commit

committed

Replica R1 Replica R2

X1(y)
w1(y,w1)

w1(y,w1)

ok

w1(x,v1)
w1(y,w1)

Original protocol Alternative 1 Alternative 2

Fig. 12.10 Example execution with three different eager update anywhere protocols.

completed the operation itself. As such, execution is concurrent (this execution is
also called conservative in Chapter 13). What is added is the latency of n messages
rounds if there are n write operations and the latency of the 2PC. In the first al-
ternative described above, the local replica first executes locally, then sends one
message, then the remote replicas execute the write operations and then the 2PC
occurs. Thus, while the number of message rounds is lower, the pure execution time
is actually longer than in the original protocol as execution at the local replica and
remote replicas is not performed in parallel. Finally, the last algorithm has the local
execution, then one writeset message, then the time to acquire the locks successfully
and finally the acknowledgement phase within the response time of the transaction.
This approach has the lowest number of messages rounds and the actual execution
time at the remote replicas is not included in the response time. These two alterna-
tives are executed optimistically at the local replica (called optimistic execution in
Chapter 13).

12.4.2 Executing Writes

Write operations have to be executed at all replicas. This can be done in two ways.
In statement replication, also called symmetric replication, each replica executes the
complete write operation, e.g., the SQL statement (update, delete, insert). In con-
trast, in object replication, also called asymmetric replication, only the local replica
executes the operation and keeps track of the tuples changed by the operation. Then,
the changed tuples are sent to the remote replicas which only apply the changes.

Applying the changes has usually much less overhead than executing the state-
ment itself. For instance, experiments with PostgreSQL have shown that even for

240 B. Kemme et al.

simple statements (update on primary key), applying the change takes only 30% of
the resources compared to executing the entire statement. The reasons are the cost
in parsing the SQL statement, building the execution tree, etc. However, if a state-
ment changes many data records, then sending and processing them might be costly
because of message size. In this case, statement replication is likely to be preferable.

A challenge of statement replication is determinism. One has to make sure that
executing the statement has the same results at all replicas. If statements include
setting the current time, generating a random number, etc. determinism is no more
given.

An extreme case of statement replication would actually not only execute the
write operations of an update transaction at all replicas, but the entire update trans-
action. This might be appropriate in WANs in order to keep the message overhead
low.

12.4.3 Concurrency Control Mechanisms

Our example protocols so far all used standard strict 2PL as concurrency control
mechanism. Clearly, replica control can be combined with various concurrency con-
trol mechanisms, not only 2PL. In this section, we look at optimistic and multi-
version concurrency control.

Concurrency Control in a Non-replicated System With optimistic concurrency
control, a transaction’s writes are done in a private workspace, and then, at the end
of the transaction, a validation phase checks for conflicts, and if none are found,
then the private workspace is written into the shared database. One mechanism is
backward validation, where the validation of transaction T checks whether there
was any concurrent transaction that already performed validation and wrote a data
item that was read by T . If this is the case, T has to abort.

Multi-version concurrency control is used in connection with snapshot isolation.
Each write operation generates a new version of a data item. We say a data version
commits when the transaction that created the version commits. Versions can be
used to provide read operations with a snapshot. The read operation of a transaction
Ti reads the version of a data item that was the last to commit before Ti started.
With this, a transaction reads from a snapshot as of transaction start time. Snapshot
isolation has to abort one of two concurrent transactions that want to update the
same data item. Commercial systems set write locks to detect conflicts when they
occur and abort immediately. However, conflicts can also be detected at commit
time similar to the mechanisms for optimistic concurrency control.

Concurrency Control in a Replicated System The challenge of distributed con-
currency control is to ensure that all replicas decide on the same serialization order.
Primary copy approaches can simply rely on the (non-replicated) concurrency con-
trol mechanism at the primary and then forward write operations or writesets in
FIFO order. The concurrency control tasks at secondaries are then quite straightfor-
ward. The extensions for an update anywhere approach are often more complicated.

12 Database Replication: A Tutorial 241

In the particular case of strict 2PL, no extensions to the protocol itself are needed.
However, distributed deadlock can occur. For optimistic and snapshot isolation con-
currency control the question arises how to perform validation. Validation of all
transactions could be performed at one central site. Alternatively, each replica could
perform validation. However, in the latter case, the validation process needs to be
deterministic to make sure that all replicas validate transactions in the same order
and decide on the same outcome. For that purpose, many replication approaches use
a total order multicast to send the relevant validation information to all replicas. To-
tal order multicast is provided by group communication systems [13]. It guarantees
that all members of a group receive all messages sent to the group in the same total
order.

Optimistic Concurrency Control Figure 12.11 sketches a replica control proto-
col based on optimistic concurrency control and a central scheduler that performs
validation for all transactions. A transaction is submitted to any replica and exe-
cuted locally according to standard optimistic techniques. A read operation (lines
1-2) accesses the last committed version of the data item. Data items are tagged
with the transaction that was the last to write them. A transaction keeps track of
all data versions read in the read set RS. A write (lines 3-5) creates a local copy
which is added to the transaction’s writeset WS. An abort (lines 6-7) simply means
to discard both read and writeset. Upon a commit request, the read and writesets
are sent to the scheduler (line 8) which performs validation (lines 9-12). It checks
whether the readset of the currently validated transaction overlaps with the writesets
of any concurrent transaction that validated before. If yes, it tells the local replica to
abort the transaction. Otherwise it forwards the writeset to all replicas using a FIFO
multicast. The replicas apply them (lines 13-20). A write w(x) of this transaction
becomes now the last committed version of x (line 17). Validation and applying the
writeset is performed in the same serial order. The protocol description hides sev-
eral technical challenges when such an approach should really be implemented in
a database system. Firstly, one has to determine whether two transactions are con-
current. For that some timestamp mechanism must to be used, which can compare
transactions that are local at different replicas.

Snapshot Isolation Figure 12.12 sketches a replica control protocol based on
snapshot isolation and using total order multicast. A transaction executes locally
(lines 1-4) reading the last committed snapshot as of start time and creating new
versions upon write operations. Abort simply means to discard the writes (lines 5-
6). At the end of transaction only the writeset is multicast in total order (line 7).
Validation now checks whether this writeset overlaps with the writesets of any con-
current transaction that validated before (line 8). No information about reads needs
to be sent, since in SI conflict, leading to abort (lines 9-11), is only considered be-
tween write operations. If validation succeeds, remote transactions have to create
the new versions (lines 13-16). Transactions are committed serially to guarantee
that all replicas go through the same sequence of snapshots. The advantage over the
optimistic concurrency control protocol is that read operations remain completely

242 B. Kemme et al.

Upon: ri(x) for local transaction Ti {let Tj be
the last to update x and commit}

1: add x j to read set RSi

2: return x j

Upon: wi(x,vi) for local transaction Ti

3: create local copy xi of x and add to write set
W Si

4: xi := vi

5: return ok

Upon: abort request for local transaction Ti

6: discard RSi and W Si

7: return abort

Upon: commit request for local transaction Ti

8: send (RSi,W Si) to central scheduler

Upon: receiving (RSi,WSi) from replica R
{validation at central scheduler}

9: if ∃Tj , Tj||Ti∧W S j ∩RSi then
10: send abort(Ti) back to R
11: else
12: multicast W Si to all replicas in FIFO or-

der

Upon: receiving W Si for any transaction Ti

from central scheduler in FIFO order
13: for all wi(x,vi) in W S j do
14: if Ti remote transaction then
15: create local copy xi of x
16: xi := vi

17: write xi to database
18: commit Ti

19: if Ti local transaction then
20: return ok

Upon: receiving abort(Ti) for local transaction
from central scheduler

21: discard RSi and W Si

22: return abort

Fig. 12.11 Update Anywhere Protocol based
on Optimistic Concurrency Control and Central
Scheduler.

Upon: ri(x) for local transaction Ti

1: return committed version x j of x as of start
time of Ti

Upon: wi(x,vi) for local transaction Ti

2: create version xi of x and add to write set
WSi

3: xi := vi

4: return ok

Upon: abort request for local transaction Ti

5: discard W Si

6: return abort

Upon: commit request for local transaction Ti

7: multicast W Si to all replicas in total order

Upon: receiving W Si for any transaction Ti in
total order

8: if ∃Tj , Tj||Ti∧WS j ∩W Si then
9: discard W Si

10: if Ti local transaction then
11: return abort
12: else
13: if Ti remote transaction then
14: for all wi(x,vi) in W Si do
15: create version xi of x
16: xi := vi

17: commit Ti

18: if Ti local transaction then
19: return ok

Fig. 12.12 Update Anywhere Protocol based on
Snapshot Isolation and Total Order Multicast.

local. The local replica makes sure that all reads are from a committed snapshot. For
validation they don’t play any role.

Fault-Tolerance Both the optimistic and the pessimistic protocol above use mul-
ticast primitives. If the multicast primitive provides uniform reliable delivery, then
we can consider these protocols as eager: a transaction only commits locally when
it is guaranteed that the writeset will be delivered at all replicas and when the global
serialization order of the transaction is determined. Therefore, when a transaction

12 Database Replication: A Tutorial 243

R R R

C C C C C

replica control

Fig. 12.13 Kernel-based Architecture.

R R R

C C C C C

Replication Middleware

Fig. 12.14 Central Middleware.

R R R

C C C C C

Replication
Middleware

Replication
Backup

Fig. 12.15 Central Middleware with Backup.

Middleware
Replica

C C C C C

R R R

Middleware
Replica

Middleware
Replica

Fig. 12.16 Middleware Replica for each
Database Replica.

commits locally it will commit in the same order at all other available replicas. If
the above protocols use a multicast without uniform reliable delivery, they have the
characteristics of a lazy protocol: a transaction might be committed at a replica that
fails and the other replicas do not receive the writeset.

12.4.4 Architectural Alternatives

There exist two major architectural design alternatives to implement a replication
tool. Our description of protocols so far followed a kernel-based or white box ap-
proach, where the replica control module is part of the database kernel and tightly
coupled with the existing concurrency control module. A client connects to any
database replica which then coordinates with the other replicas. The database sys-
tem is replication-aware. Figure 12.13 depicts this architecture type.

Alternatively, replica control can be implemented outside the database as a mid-
dleware layer. Clients connect to the middleware that appears as a database system.
The middleware then controls the execution and directs the read and write opera-
tions to the individual database replicas. Some solutions work with a purely black-
box approach where the underlying database systems that store the database repli-
cas do not have any extra functionality. Others use a gray-box approach where the
database system is expected to export some minimal functionality that can be used
by the middleware for a more efficient implementation of replica control. For in-
stance, the database system could collect the writeset of a transaction in form of the
set of records the transaction changed and provide it to the middleware on request. A

244 B. Kemme et al.

S1(x)
r1(x)

S2(x)
r2(x)

r1(x)

r2(x)

x

x

X1(x)
w1(x,v1)

w1(x.v1)

ok

commit T1

committed

w1(x,v1)

commit T1

extract WS1

X1(x)

Middleware Primary Secondary

(x,v1)

w1(x,v1)

r1(x)

r2(x)

commit T2

commit T2

committed
w1(x,v1)

ok

commit T1

committed

Fig. 12.17 Execution of a lazy primary-copy protocol with a central middleware.

middleware-based approach has typically its own concurrency control mechanism
which might partially depend on the concurrency control of the underlying database
systems. There might be a single middleware component (centralized approach)
as in Figure 12.14, or the middleware might be replicated itself. For example, the
middleware could have a backup replica for fault-tolerance (Figure 12.15). Other
approaches have one middleware instance per database replica, and both together
build a replication unit (Figure 12.16). A transaction can then connect to any mid-
dleware replica.

Figure 12.17 depicts an example execution of a lazy, primary copy protocol based
on a central middleware. There is an update transaction T1 and a read-only transac-
tion T2. All requests are sent to the middleware. T1 (solid lines) is executed and
committed at the primary. T2 (dashed lines) is executed at any replica (in the ex-
ample the secondary). After T1 commits, the middleware extracts the writeset, and
executes the write operations at the secondaries. The proper order of execution of
these write operations and the local concurrency control mechanisms at the database
replicas (here strict 2PL) guarantees the same serialization order at all replicas.

Discussion Kernel-based approaches have the advantage that they have full ac-
cess to the internals of the database. Thus, replica control can be tightly coupled
with concurrency control and it is easy to provide concurrency control at the record

12 Database Replication: A Tutorial 245

level across the entire replicated system. Writeset extraction and application can be
made highly efficient. In contrast, middleware-based protocols often have to par-
tially re-implement concurrency control. Before execution of a particular statement,
they often only have partial information of which records are exactly accessed (as
SQL statements can contain predicates). This results often in a coarser concurrency
level (e.g, table-based). If the database system does not export writeset functionality,
writesets need to be extracted via triggers or similar procedures, which often is much
less efficient than a kernel-based extraction. Fault-tolerance of the middleware is a
further major issue. Depending on how much state the middleware manages, it can
be complicated. Finally, the middleware represents a level of indirection, increasing
the total number of messages.

However, middleware-based systems have many advantages. They can be used
with 3rd-party database systems that do not provide replication functionality and
whose source-code is not available. Furthermore, they can potentially be used in
heterogeneous environments with different database systems. They also present a
nicer separation of concerns. In a kernel-based approach, any changes to the con-
currency control implementation might directly affect the replica control module.
For middleware-based approaches this is likely only the case with major changes in
the functionality of the underlying system.

12.4.5 Cluster vs. WAN Replication

We have already mentioned in the introduction that replication is done for different
purposes, and in different settings. When replication is used for scalability, then
the replicas are typically located in a single cluster. Read access to data items can
then be distributed across the existing replicas while write operations have to be
performed on all replicas. If the read ratio is high, then an increasing load can be
handled by adding more replicas to the system. In a LAN, message latency is low
and bandwidth high. Thus, the number of messages does not play a major role.
Hence, a transaction can likely have several message rounds and a middleware can
be interposed without affecting performance too much. Furthermore, there is no
need for lazy update anywhere replication as the gain in efficiency is not worth the
low degree of consistency that it provides. Finally, the write overhead should be
kept as low as possible as it determines how much the system can be scaled. Thus,
asymmetric replication will be better than symmetric replication.

Often, replication serves the purpose of fast local access when the application
is geographically distributed. In this case, replicas are connected via a WAN. Thus,
message latency plays an important role. In this context, lazy update anywhere might
be preferable as it does not have any message exchange within the response time of
the transaction. The price for that, namely conflict resolution and temporary incon-
sistency, might be acceptable. It might also be possible to split the application into
partitions and put a primary copy of each partition close to the clients that are most
likely to access it. This would provide short response times for most transactions
without inconsistencies. One has to make sure that clients don’t have to send sev-
eral rounds of messages to a remote replica or a remote middleware. They always

246 B. Kemme et al.

should be able to interact with their local site or send transaction requests in a single
message to remote sites. The influence of symmetric vs. asymmetric replication will
likely play a minor role in a WAN setting. The larger message sizes of asymmetric
replication might be of disadvantage.

Replication for fault-tolerance can deploy replicas both in a LAN and a WAN. In
LANs, typically eager protocols are used to keep replicas consistent. When a replica
fails, another replica can take over the tasks assigned to the failed replicas in a trans-
parent manner. Replicas can also be distributed across a WAN, typically with lazy
propagation. When a catastrophic failure occurs that shuts down an entire location,
a replica in a different location can take over. As catastrophic failures seldom occur,
weaker consistency is acceptable for the advantage of having better performance
during normal processing.

12.4.6 Degree of Replication

So far, we have assumed that all replicas have a full copy of the database, referred
to as full replication. In partial replication, each data item of the database has a
physical copy only on a subset of sites. The replication degree of a data item is the
number of physical copies it has (see Chapter 5 for partial replication).

Partial replication serves different purposes. We mentioned above that for cluster
replication, the ratio of write operation presents a scalability limit. Ideally, if a single
system can handle C transactions per time unit, than a n-node system should be
able to handle nC transactions. However, write operations have to be executed at
all replicas. Thus, if write operations constitute a fixed fraction of the submitted
workload, increasing the workload means increasing the absolute number of write
operations each replica has to perform. This decreases the capacity that is available
to execute local read operations. At some level of load, adding new sites will not
increase the capacity available for further operations, and thus, throughput cannot
be increased beyond this point. In the extreme case with 100% write operations and
symmetric replication a replicated system does not provide any scalability as it can
handle C transactions just as the non-replicated system.

When using partial replication in a cluster environment, read operations are exe-
cuted at a single replica, as in full replication. Write operations now only need to be
executed at replicas that have a copy of the data item accessed. For instance, if each
data item has only two copies, then only two write operations need to be performed.
Assuming again 100% write operations and symmetric replication, n replicas can
handle nC/2 transactions (assuming data copies are distributed and accessed uni-
formly). With less write operations, it scales appropriately better. The important
point is that when the replication degree is fixed to a constant (e.g., 2 or 4), then the
system can scale without facing a limit from contention for writing. In contrast, if
the replication degree increases with the number of sites in the system (e.g., n, n/2),
then there is a scalability limit.

In a WAN environment, having a data item replicated at a specific geographic
location decreases communication costs for read operations but increases commu-

12 Database Replication: A Tutorial 247

nication and processing costs for update transactions. In this context, the challenge
is to place data copies in such a way to find a trade-off between the different factors.

Partial replication has several challenges. Finding an appropriate replication de-
gree and the optimal location for the replicas is difficult. Concurrency control has to
be adjusted. When a client accesses a data item, a replica needs to be located. This
is not necessarily the local replica. Also, partial replication might lead to distributed
queries if no site has data copies of all data items accessed by the query.

12.4.7 Recovery

Recovering failed replicas and letting new replicas join the system is an important
task. A joining replica has to get the up-to-date state of the database. This can be
done by transferring a copy of the entire database to the joining replica. For a replica
that had failed and now rejoins, it is also possible to only receive fresh copies of the
data items that were actually changed during the downtime. Alternatively, it could
receive and apply the writesets of the transactions it has missed during its downtime.
This state transfer can take place offline or online. With offline transfer, transac-
tion processing is interrupted until the transfer is completed. Using online recovery,
transaction execution continues during state transfer. In this case, one has to make
sure that the recovering replica does not miss any transactions. For a given trans-
action, either its changes are contained in the state transfer, or the joining replica
receives its updates after the transfer is complete.

12.5 Existing Systems

12.5.1 Early Work

Database replication had its first boom in the early 80s. The book “Concurrency
Control and Recovery in Database Systems” [7] provides a formalism to reason
about correctness in replicated database systems. The term 1-copy-serializability
was created and is still used today. Early work on replication took as baseline con-
currency control mechanisms of non-replicated systems, extended them and com-
bined them with replica control [7, 9]. Failure handling – both site and network
failures – were a major research issue [6, 1]. Basically all these approaches used
eager replication and provided strong correctness properties in terms of atomicity
and isolation. In 1996, Gray et al. [20] indicated that these traditional approaches
provide poor performance and do not scale as they commit transactions only if they
have executed all their operations on all (available) physical data copies. Also, exe-
cution is often serially, leading to extremely long response times.

12.5.2 Commercial Systems

Since then, many new replication solutions have been developed. Commercial sys-
tems often provide a choice of replication solutions. High-availability solutions of-
ten implement a simplified version of primary-copy. In these approaches, all trans-

248 B. Kemme et al.

actions (update and read-only) are submitted to the primary. The secondary only
serves as a backup. Writeset propagation to the backups can be eager or lazy. In case
the primary fails, clients are automatically redirected to the backup which becomes
the new primary. Typically, any active transaction is aborted. Otherwise, clients can
continue their requests as if no failure had occurred.

Lazy replication solutions, which allow looser consistency when reading at a
replica, are often provided for WAN replication. Sophisticated reconciliation tech-
niques are offered for update anywhere, based on timestamps, site priority, values
or arithmetic functions. Both distributed and centralized reconciliation mechanisms
exist. Eager update anywhere protocols are rarely found in commercial systems.

12.5.3 Lazy Replication Made Serializable

Some research efforts analyzed the correctness of lazy primary copy protocols
where different data items have their primary copies on different sites [14]. In such
a scenario, global serializability can be violated even if each site implements strict
2PL. In order to avoid incorrect executions some solutions restrict the placement
of primary and secondary copies to avoid irregularities [8, 34]. The main idea is
to define the set of allowed configurations using graphs where nodes are the sites
and there are edges between sites if one site has a primary copy and the other a
secondary copy of a given data item. Serializability can be provided if the graph
has certain properties (e.g., it is acyclic). Others require to propagate updates along
certain paths in the graph.

12.5.4 Cluster Replication

Group Communication Work in this direction started with approaches that ex-
plore the use of group communication and was based on kernel-replication (such
as Postgres-R [25, 47] or the state machine approach [37]). Different tasks, such as
transaction execution and data storage, can further be distributed [16]. Many other
followed, e.g., [2, 22, 23, 26, 47, 27]. They provide different concurrency control
mechanisms, differ in the interface they provide to the clients of the database sys-
tem (JDBC interface vs. procedural interface), the way they interact with the group
communication system, etc. They also consider recovery and failover mechanisms.

Middleware-Based Systems A lot of work has designed replication protocols
that are especially targeted for middleware-based replication. There exist several
approaches based on group communication [35, 10, 29, 36]. They often assume one
middleware replica for each database replica and middleware replicas communicate
with each other via multicast. They are typically all eager protocols.

Other solutions have a single middleware, possibly with a backup [3, 39]. Both
eager and lazy approaches have been proposed. There is also considerable work
that focuses less on the replica control itself but on issues such as load distribu-
tion and query routing [41, 32, 18, 4, 17, 48]. In lazy approaches one has a wide
range of options when to actually propagate updates to other replicas, e.g., only

12 Database Replication: A Tutorial 249

when the freshness level goes below a threshold acceptable for queries. Load can
be distributed according to many different strategies. Dynamically deciding on the
number of replicas needed to handle a certain load has also been considered [19].

In [11], the authors provide an interesting discussion of the gap between the
replica control protocols proposed by the research community, and the technical
challenges to make them work in an industrial setting.

12.5.5 Other Issues

Approaches such as [40, 46, 28, 30, 44] take the specifics of WAN replication into
account. They attempt to keep the number of message rounds low or accept weaker
levels of consistency. Many approaches touch on partial replication, such as [17, 46,
45, 43, 44]. The particular issue of session consistency is discussed in [15].

12.5.6 Related Areas of Research

Many other techniques widely used in database systems can actually be considered
some form of replication although they are not identified as such by research. In
regard to scalability, materialized views are internal replicas of data that have been
reorganized and processed in such a way so as to speed up certain queries that no
longer need to be processed but can be answered directly from the materialized view.
Materialized views can be seen as a special form of lazy primary copy replication
(in some cases even update anywhere replication), where a materialized view is not
a copy of a specific data item but an aggregation over many data items (i.e, table
records) of the database. Thus, this makes change propagation considerably more
complex [21] .

Parallel databases use both partitioning and redundant data allocation across
disks and memory. Replica control algorithms look somewhat different as there is
not an independent database engine at each node but the system is treated as a sin-
gle logical unit (regardless of whether the hardware is intrinsically parallel such as
a multi core processor or it is an actual cluster of machines).

In regard to fault-tolerance, the log of a database is a form of replication [33]. All
changes to the database are replicated onto stable storage in form of redo and undo
logs. When a server fails, a new server instance is started, reading the log in order to
recreate the state of the database. Fault tolerance is also achieved through redundant
hardware and RAID disks [12] which provide replication at a lower level.

Database caching has been explored extensively for performance improvements
[31, 5, 38]. The database cache usually resides outside the database system and
caches the most frequently used data items. It is used for fast query execution while
updates typically go directly to the database backend. Consistency mechanisms are
in place but often involve discarding outdated copies.

250 B. Kemme et al.

12.6 Conclusions

This chapter provides a systematic overview of replica control mechanisms as they
occur in replicated databases. We started with a two-parameter characterization pro-
viding example protocols based on 2-phase-locking for each of the categories that
help to understand the trade-offs between the different categories. Furthermore, we
provided an overview of correctness criteria that are important in the context of
database replication. Finally, we discuss several other parameters of the replica con-
trol design space such as the number of message rounds, writeset processing, con-
currency control mechanism, the replication architecture and the degree of replica-
tion assumed. We provide a comparative analysis how these parameters influence
the performance, design and applicability of a given replica control protocol for
certain application and execution environments.

Acknowledgements This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Spanish National Science Foundation (MICINN) un-
der grant TIN2007-67353-C02, the Madrid Regional Research Council (CAM) under the AU-
TONOMIC project (S-0505/TIC/000285), and the European Commission under the NEXOF-RA
project (FP7-216446).

References

1. Abbadi, A.E., Toueg, S.: Availability in partitioned replicated databases. In: ACM Int. Symp.
on Principles of Database Systems (PODS), pp. 240–251 (1986)

2. Amir, Y., Tutu, C.: From Total Order to Database Replication. In: IEEE Int. Conf. on Dis-
tributed Computing Systems (ICDCS), pp. 494–506 (2002)

3. Amza, C., Cox, A.L., Zwaenepoel, W.: Distributed Versioning: Consistent Replication for
Scaling Back-End DBs of Dynamic Content Web Sites. In: Endler, M., Schmidt, D.C. (eds.)
Middleware 2003. LNCS, vol. 2672, pp. 282–302. Springer, Heidelberg (2003)

4. Amza, C., Cox, A.L., Zwaenepoel, W.: A comparative evaluation of transparent scaling tech-
niques for dynamic content servers. In: IEEE Int. Conf. on Data Engineering (ICDE), pp.
230–241 (2005)

5. Bernstein, P.A., Fekete, A., Guo, H., Ramakrishnan, R., Tamma, P.: Relaxed-currency serial-
izability for middle-tier caching and replication. In: ACM SIGMOD Int. Conf. on Manage-
ment of Data, pp. 599–610 (2006)

6. Bernstein, P.A., Goodman, N.: An algorithm for concurrency control and recovery in repli-
cated distributed databases. ACM Transactions on Database Systems (TODS) 9(4), 596–615
(1984)

7. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading (1987)

8. Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., Silberschatz, A.: Update propagation
protocols for replicated databases. In: ACM SIGMOD Int. Conf. on Management of Data,
pp. 97–108 (1999)

9. Carey, M.J., Livny, M.: Conflict detection tradeoffs for replicated data. ACM Transactions
on Database Systems (TODS) 16(4), 703–746 (1991)

10. Cecchet, E., Marguerite, J., Zwaenepoel, W.: C-jdbc: Flexible database clustering middle-
ware. In: USENIX Annual Technical Conference, FREENIX Track, pp. 9–18 (2004)

11. Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based database replication: the gaps be-
tween theory and practice. In: ACM SIGMOD Int. Conf. on Management of Data, pp. 739–
752 (2008)

12 Database Replication: A Tutorial 251

12. Chen, P.M., Lee, E.L., Gibson, G.A., Katz, R.H., Patterson, D.A.: Raid: High-performance,
reliable secondary storage. ACM Comput. Surv. 26(2), 145–185 (1994)

13. Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifications: a comprehen-
sive study. ACM Computer Surveys 33(4), 427–469 (2001)

14. Chundi, P., Rosenkrantz, D.J., Ravi, S.S.: Deferred updates and data placement in distributed
databases. In: IEEE Int. Conf. on Data Engineering (ICDE), pp. 469–476 (1996)

15. Daudjee, K., Salem, K.: Lazy database replication with snapshot isolation. In: Int. Conf. on
Very Large Data Bases (VLDB), pp. 715–726 (2006)

16. Elnikety, S., Dropsho, S.G., Pedone, F.: Tashkent: uniting durability with transaction ordering
for high-performance scalable database replication. In: EuroSys Conference, pp. 117–130
(2006)

17. Elnikety, S., Dropsho, S.G., Zwaenepoel, W.: Tashkent+: memory-aware load balancing and
update filtering in replicated databases. In: EuroSys Conference, pp. 399–412 (2007)

18. Gançarski, S., Naacke, H., Pacitti, E., Valduriez, P.: The leganet system: Freshness-aware
transaction routing in a database cluster. Information Systems 32(2), 320–343 (2007)

19. Ghanbari, S., Soundararajan, G., Chen, J., Amza, C.: Adaptive learning of metric correlations
for temperature-aware database provisioning. In: Int. Conf. on Autonomic Computing, ICAC
(2007)

20. Gray, J., Helland, P., O’Neil, P.E., Shasha, D.: The dangers of replication and a solution. In:
ACM SIGMOD Int. Conf. on Management of Data, pp. 173–182 (1996)

21. Gupta, A., Mumick, I.S.: Maintenance of materialized views: Problems, techniques, and ap-
plications. IEEE Data Engineering Bulletin 18(2), 3–18 (1995)

22. Holliday, J., Agrawal, D., Abbadi, A.E.: The performance of database replication with group
multicast. In: IEEE Int. Conf. on Fault-Tolerant Computing Systems (FTCS), pp. 158–165
(1999)

23. Jiménez-Peris, R., Patiño-Martı́nez, M., Kemme, B., Alonso, G.: Improving the scalability
of fault-tolerant database clusters. In: IEEE Int. Conf. on Distributed Computing Systems
(ICDCS), pp. 447–484 (2002)

24. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G., Kemme, B.: Are quorums an alternative
for data replication? ACM Transactions on Database Systems (TODS) 28(3), 257–294 (2003)

25. Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-R, a new way to implement
database replication. In: Int. Conf. on Very Large Data Bases (VLDB), pp. 134–143 (2000)

26. Kemme, B., Alonso, G.: A new approach to developing and implementing eager database
replication protocols. ACM Transactions on Database Systems (TODS) 25(3), 333–379
(2000)

27. Kemme, B., Pedone, F., Alonso, G., Schiper, A., Wiesmann, M.: Using optimistic atomic
broadcast in transaction processing systems. IEEE Transactions on Knowledge and Data
Engineering (TKDE) 15(4), 1018–1032 (2003)

28. Leff, A., Rayfield, J.T.: Alternative edge-server architectures for enterprise javaBeans appli-
cations. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 195–211. Springer,
Heidelberg (2004)

29. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Middleware based data repli-
cation providing snapshot isolation. In: ACM SIGMOD Int. Conf. on Management of Data,
pp. 419–430 (2005)

30. Lin, Y., Kemme, B., Patiño-Martı́nez, M., Jiménez-Peris, R.: Enhancing edge computing
with database replication. In: Int. Symp. on Reliable Distributed Systems (SRDS), pp. 45–54
(2007)

31. Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Woo, H., Lindsay, B.G., Naughton, J.F.:
Middle-tier database caching for e-business. In: ACM SIGMOD Int. Conf. on Management
of Data, pp. 600–611 (2002)

32. Milan-Franco, J.M., Jiménez-Peris, R., Patiño-Martı́nez, M., Kemme, B.: Adaptive middle-
ware for data replication. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp.
175–194. Springer, Heidelberg (2004)

252 B. Kemme et al.

33. Mohan, C., Haderle, D.J., Lindsay, B.G., Pirahesh, H., Schwarz, P.M.: Aries: A transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-ahead
logging. ACM Transactions on Database Systems (TODS) 17(1), 94–162 (1992)

34. Pacitti, E., Minet, P., Simon, E.: Fast Algorithm for Maintaining Replica Consistency in Lazy
Master Replicated Databases. In: Int. Conf. on Very Large Data Bases (VLDB), pp. 126–137
(1999)

35. Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: MIDDLE-R: Consistent
database replication at the middleware level. ACM Transactions on Computer Systems
(TOCS) 23(4), 375–423 (2005)

36. Pedone, F., Frølund, S.: Pronto: A fast failover protocol for off-the-shelfcommercial
databases. In: Symposium on Reliable Distributed Systems (SRDS), pp. 176–185 (2000)

37. Pedone, F., Guerraoui, R., Schiper, A.: The Database State Machine Approach. Distributed
and Parallel Databases 14(1), 71–98 (2003)

38. Perez-Sorrosal, F., Patiño-Martinez, M., Jimenez-Peris, R., Kemme, B.: Consistent and scal-
able cache replication for multi-tier J2EE applications. In: Cerqueira, R., Campbell, R.H.
(eds.) Middleware 2007. LNCS, vol. 4834, pp. 328–347. Springer, Heidelberg (2007)

39. Plattner, C., Alonso, G.: Ganymed: Scalable replication for transactional web applications.
In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 155–174. Springer, Hei-
delberg (2004)

40. Rodrigues, L., Miranda, H., Almeida, R., Martins, J., Vicente, P.: Strong Replication in the
GlobData Middleware. In: Proceedings Workshop on Dependable Middleware-Based Sys-
tems (part of DSN02), pp. 503–510. IEEE Computer Society Press, Los Alamitos (2002)

41. Röhm, U., Böhm, K., Schek, H.J., Schuldt, H.: FAS - a freshness-sensitive coordination
middleware for a cluster of OLAP components. In: Int. Conf. on Very Large Data Bases
(VLDB), pp. 754–765 (2002)

42. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81 (2005)
43. Schiper, N., Schmidt, R., Pedone, F.: Optimistic algorithms for partial database replication.

In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 81–93. Springer, Hei-
delberg (2006)

44. Serrano, D., Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B.: An autonomic approach
for replication of internet-based services. In: Int. Symp. on Reliable Distributed Systems
(SRDS), pp. 127–136 (2008)

45. Serrano, D., Patiño-Martı́nez, M., Jiménez, R., Kemme, B.: Boosting database replication
scalability through partial replication and 1-copy-SI. In: IEEE Pacific-Rim Conf. on Dis-
tributed Computing (PRDC), pp. 290–297 (2007)

46. Sivasubramanian, S., Alonso, G., Pierre, G., van Steen, M.: Globedb: autonomic data repli-
cation for web applications. In: Int. World Wide Web Conf (WWW), pp. 33–42 (2005)

47. Wu, S., Kemme, B.: Postgres-R(SI): Combining replica control with concurrency control
based on snapshot isolation. In: IEEE Int. Conf. on Data Engineering (ICDE), pp. 422–433
(2005)

48. Zuikeviciute, V., Pedone, F.: Conflict-aware load-balancing techniques for database replica-
tion. In: ACM Symp. on Applied Computing (SAC), pp. 2169–2173 (2008)

	Database Replication: A Tutorial
	Introduction
	Why Replication
	Organization of the Chapter

	Basic Taxonomy for Replica Control Approaches
	Eager Primary Copy
	Eager Update Anywhere
	Lazy Primary Copy
	Lazy Update Anywhere
	Eager vs. Lazy

	Correctness Criteria
	Atomicity and Consistency
	Isolation
	Session Consistency

	Other Parameters
	Message Management
	Executing Writes
	Concurrency Control Mechanisms
	Architectural Alternatives
	Cluster vs. WAN Replication
	Degree of Replication
	Recovery

	Existing Systems
	Early Work
	Commercial Systems
	Lazy Replication Made Serializable
	Cluster Replication
	Other Issues
	Related Areas of Research

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

