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Abstract. The ROOTED MAXIMUM LEAF OUTBRANCHING prob-
lem consists in finding a spanning directed tree rooted at some prescribed
vertex of a digraph with the maximum number of leaves. Its parameterized
version asks if there exists such a tree with at least k leaves. We use the
notion of s − t numbering studied in [19, 6, 20] to exhibit combinatorial
bounds on the existence of spanning directed trees with many leaves. These
combinatorial bounds allow us to produce a constant factor approximation
algorithm for finding directed trees with many leaves, whereas the best
known approximation algorithm has a

√
OPT -factor [11]. We also show

that ROOTED MAXIMUM LEAF OUTBRANCHING admits an edge-
quadratic kernel, improving over the vertex-cubic kernel given by Fernau
et al [13].

1 Introduction

An outbranching of a digraph D is a spanning directed tree in D. We consider
the following problem:

ROOTED MAXIMUM LEAF OUTBRANCHING:

Input: A digraph D, an integer k, a vertex r of D.
Output: TRUE if there is an outbranching of D rooted at r with at least k

leaves, otherwise FALSE.

This problem is equivalent to finding a Connected Dominating Set of size at most
|V (D)| − k, connected meaning in this setting that every vertex is reachable by
a directed path from r. Indeed, the set of internal nodes in an outbranching
correspond to a connected dominating set.

Finding undirected trees with many leaves has many applications in the area
of communication networks, see [8] or [24] for instance. An extensive literature is
devoted to the paradigm of using a small connected dominating set as a backbone
for a communication network.

ROOTED MAXIMUMLEAF OUTBRANCHING is NP-complete, even restricted
to acyclic digraphs [2], and MaxSNP-hard, even on undirected graphs [16].

Two natural ways to tackle such a problem are, on the one hand, polynomial-
time approximation algorithms, and on the other hand, parameterized complex-
ity. Let us give a brief introduction on the parameterized approach.

An efficient way of dealing with NP-hard problems is to identify a parameter
which contains its computational hardness. For instance, instead of asking for a
minimum vertex cover in a graph - a classical NP-hard optimization question -
one can ask for an algorithm which would decide, in O(f(k).nd) time for some
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fixed d, if a graph of size n has a vertex cover of size at most k. If such an
algorithm exists, the problem is called fixed-parameter tractable, or FPT for
short. An extensive literature is devoted to FPT, the reader is invited to read
[10], [14] and [21].

Kernelization is a natural way of proving that a problem is FPT. Formally, a
kernelization algorithm receives as input an instance (I, k) of the parameterized
problem, and outputs, in polynomial time in the size of the instance, another
instance (I ′, k′) such that: k′ ≤ g(k) for some function g, the size of I ′ only
depends of k, and the instances (I, k) and (I ′, k′) are both true or both false.

The reduced instance (I ′, k′) is called a kernel. The existence of a kerneliza-
tion algorithm clearly implies the FPT character of the problem since one can
kernelize the instance, and then solve the reduced instance (G′, k′) using brute
force, hence giving an O(f(k) + nd) algorithm. A classical result asserts that
being FPT is indeed equivalent to having kernelization. The drawback of this
result is that the size of the reduced instance G′ is not necessarily small with
respect to k. A much more constrained condition is to be able to reduce to an
instance of polynomial size in terms of k. Consequently, in the zoology of param-
eterized problems, the first distinction is done between three classes: W[1]-hard,
FPT, polykernel.

A kernelization algorithm can be used as a preprocessing step to reduce the
size of the instance before applying some other parameterized algorithm. Being
able to ensure that this kernel has actually polynomial size in k enhances the
overall speed of the process. See [17] for a recent review on kernelization.

An extensive litterature is devoted to finding trees with many leaves in undi-
rected and directed graphs. The undirected version of this problem, MAXIMUM
LEAF SPANNING TREE, has been extensively studied. There is a factor 2 ap-
proximation algorithm for the MAXIMUM LEAF SPANNING TREE problem
[22], and a 3.75k kernel [12]. An O∗(1, 94n) exact algorithm was designed in [15].
Other graph theoretical results on the existence of trees with many leaves can
be found in [9] and [23].

The best approximation algorithm known for MAXIMUM LEAF OUTBRANC-
HING is a factor

√
OPT algorithm [11]. From the Parameterized Complexity view-

point, Alon et al showed that MAXIMUM LEAF OUTBRANCHING restricted to a
wide class of digraphs containing all strongly connected digraphs is FPT [1], and
Bonsma and Dorn extended this result to all digraphs and gave a faster parame-
terized algorithm [4]. Very recently, Kneis, Langer and Rossmanith [18] obtained
an O∗(4k) algorithm for MAXIMUM LEAF OUTBRANCHING, which is also an im-
provement for the undirected case over the numerous FPT algorithms designed for
MAXIMUM LEAF SPANNING TREE (Chen and Liu have a similar algorithm in
[5]). Fernau et al [13] proved that ROOTED MAXIMUM LEAF OUTBRANCHING
has a polynomial kernel, exhibiting a cubic kernel. They also showed that the
unrooted version of this problem admits no polynomial kernel, unless polynomial
hierarchy collapses to third level, using a breakthrough lower bound result by Bod-
laender et al [3]. A linear kernel for the acyclic subcase of ROOTED MAXIMUM
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LEAF OUTBRANCHING and an O∗(3, 72k) algorithm for ROOTED MAXIMUM
LEAF OUTBRANCHING were exhibited in [7].

This paper is organized as follows. In Section 2 we exhibit combinatorial
bounds on the problem of finding an outbranching with many leaves. We use
the notion of s− t numbering introduced in [19]. We next present our reduction
rules, which are independent of the parameter, and in the following section we
prove that these rules give an edge-quadratic kernel. We finally present a constant
factor approximation algorithm in Section 5 for finding directed trees with many
leaves.

2 Combinatorial Bounds

Let D be a directed graph. For an arc (u, v) in D, we say that u is an in-neighbour
of v, that v is an outneighbour of u, that (u, v) is an in-arc of v and an out-arc of
u. The outdegree of a vertex is the number of its outneighbours, and its indegree
is the number of its in-neighbours. An outbranching with a maximum number of
leaves is said to be optimal. Let us denote by maxleaf(D) the number of leaves
in an optimal outbranching of D.

Without loss of generality, we restrict ourselves to the following. We exclu-
sively consider loopless digraphs with a distinguished vertex of indegree 0, de-
noted by r. We assume that there is no arc (u, r) in D with u ∈ V (D), and no
arc (x, y) with x �= r and y an outneighbour of r, and that r has outdegree at least
2. Throughout this paper, we call such a digraph a rooted digraph. Definitions
will be made exclusively with respect to rooted digraphs, hence the notions we
present, like connectivity and resulting concepts, do slightly differ from standard
ones. Let D be a rooted digraph with a specified vertex r.

The rooted digraph D is connected if every vertex of D is reachable by a
directed path starting at r in D. A cut of D is a set S ⊆ V (D) − r such that
there exists a vertex z /∈ S endpoint of no directed path from r in D − S.
We say that D is 2-connected if D has no cut of size at most 1. A cut of size
1 is called a cutvertex. Equivalently, a rooted digraph is 2-connected if there
are two internally vertex-disjoint paths from r to any vertex besides r and its
outneighbours.

We will show that the notion of s− t numbering behaves well with respect to
outbranchings with many leaves. It has been introduced in [19] for 2-connected
undirected graphs, and generalized in [6] by Cheriyan and Reif for digraphs
which are 2-connected in the usual sense. We adapt it in the context of rooted
digraphs.

Let D be a 2-connected rooted digraph. An r−r numbering of D is a linear or-
dering σ of V (D)−r such that, for every vertex x �= r, either x is an outneighbour
of r or there exist two in-neighbours u and v of x such that σ(u) < σ(x) < σ(v).
An equivalent presentation of an r−r numbering of D is an injective embedding
f of the graph D where r has been duplicated into two vertices r1 and r2, into
the [0, 1]-segment of the real line, such that f(r1) = 0, f(r2) = 1, and such
that the image by f of every vertex besides r1 and r2 lies inside the convex hull
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of the images of its in-neighbours. Such convex embeddings have been defined
and studied in general dimension by Lovász, Linial and Wigderson in [20] for
undirected graphs, and in [6] for directed graphs.

Given a linear order σ on a finite set V , we denote by σ̄ the linear order on
V which is the reverse of σ. An arc (u, v) of D is a forward arc if u = r or if u
appears before v in σ; (u, v) is a backward arc if u = r or if u appears after v in
σ. A spanning out-tree T is forward if all its arcs are forward. Similar definition
for backward out-tree.

The following result and proof is just an adapted version of [6], given here for
the sake of completeness.

Lemma 1. Let D be a 2-connected rooted digraph. There exists an r − r num-
bering of D.

Proof : By induction over D. We first reduce to the case where the indegree of
every vertex besides r is exactly 2. Let x be a vertex of indegree at least 3 in
D. Let us show that there exists an in-neighbour y of x such that the rooted di-
graph D− (y, x) is 2-connected. Indeed, there exist two internally vertex disjoint
paths from r to x. Consider such two paths intersecting the in-neighbourhood
N−(x) of x only once each, and denote by D′ the rooted digraph obtained from
D by removing one arc (y, x) not involved in these two paths. There are two
internally disjoint paths from r to x in D′. Consider z ∈ V (D) − r − x. Assume
by contradiction that there exists a vertex t which cuts z from r in D′. As t does
not cut z from r in D and the arc (y, x) alone is missing in D′, t must cut x and
not y from r in D′. Which is a contradiction, as there are two internally disjoint
paths from r to x in D′. By induction, D′ has an r− r numbering, which is also
an r − r numbering for D.

Hence, let D be a rooted digraph, where every vertex besides r has indegree
2. As r has indegree 0, there exists a vertex v with outdegree at most 1 in D
by a counting argument. If v has outdegree 0, then let σ be an r − r numbering
of D − v, let u1 and u2 be the two in-neighbours of v. Insert v between u1 and
u2 in σ to obtain an r − r numbering of D. Assume now that v has a single
outneighbour u. Let w be the second in-neighbour of u. Let D′ be the graph
obtained from D by contracting the arc (v, u) into a single vertex uv. As D′ is
2-connected, consider by induction an r − r numbering σ of D′. Replace uv by
u. It is now possible to insert v between its two in-neighbours in order to make
it so that u lies between v and w. Indeed, assume without loss of generality that
w is after uv in σ. Consider the in-neighbour t of v smallest in σ. As σ is an
r − r numbering of D′, t lies before uv in σ. We insert v just after t to obtain
an r − r numbering of D. �

Note that an r − r numbering σ of D naturally gives two acyclic covering sub-
digraphs of D, the rooted digraph D|σ consisting of the forward arcs of D, and
the rooted digraph D|σ̄ consisting of the backward arcs of D. The intersection
of these two acyclic digraphs is the set of out-arcs of r.
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Corollary 1. Let D be a 2-connected rooted digraph. There exists an acyclic
connected spanning subdigraph A of D which contains at least half of the arcs of
D − r.

Let G be an undirected graph. A vertex cover of G is a set of vertices covering
all edges of G. A dominating set of G is a set S ⊆ V such that for every vertex
x /∈ S, x has a neighbour in S. A strongly dominating set of G is a set S ⊆ V
such that every vertex has a neighbour in S.

Let D be a rooted digraph. A strongly dominating set of D is a set S ⊆ V
such that every vertex besides r has an in-neighbour in S. We need the following
folklore result:

Lemma 2. Any undirected graph G on n vertices and m arcs has a vertex cover
of size n+m

3 .

Proof : By induction on n + m. If there exists a vertex of degree at least 2 in G,
choose it in the vertex cover, otherwise choose any non-isolated vertex. �

Lemma 3. Let G be a bipartite graph over A∪B, with d(a) = 2 for every a ∈ A.
There exists a subset of B dominating A with size at most |A|+|B|

3 .

Proof : Let G′ be the graph which vertex set is B, and where (b, b′) is an arc if b
and b′ share a common neighbour in A. The result follows from Lemma 2 since
G′ has |A| arcs and |B| vertices. �

Corollary 2. Let D be an acyclic rooted digraph with l vertices of indegree at
least 2 and with a root of outdegree d(r) ≥ 2. Then D has an outbranching with
at least l+d(r)−1

3 + 1 leaves.

Proof : Denote by n the number of vertices of D. For every vertex v of indegree
at least 3, delete incoming arcs until v has indegree exactly 2. Since D is acyclic,
it has a vertex s with outdegree 0.

Let Z be the set of vertices of indegree 1 in D, of size n − 1 − l. Let Y
be the set of in-neighbours of vertices of Z, of size at most n − 1 − l. Let A′

be the set of vertices of indegree 2 dominated by Y . Let B = V (D) − Y − s.
Let A be the set of vertices of indegree 2 not dominated by Y . Note that Y
cannot have the same size as Z ∪ A′. Indeed, Z contains the outneighbours
of r, and hence Y contains r, which has outdegree at least 2. More precisely,
|Y | + d(r) − 1 ≤ |Z ∪ A′|. As B = V (D) − Y − s and A = V (D) − A′ − Z − r,
we have that |B| ≥ |A|+ d(r)− 1. Moreover, as Y has size at most n− 1− l, we
have that |B| ≥ l. Consider a copy A1 of A and a copy B1 of B. Let G be the
bipartite graph with vertex bipartition (A1, B1), and where (b, a), with a ∈ A1

and b ∈ B1, is an edge if (b, a) is an arc in D. By Lemma 3 applied to G, there
exists a set X ⊆ B of size at most |A|+|B|

3 ≤ 2|B|−(d(r)−1)
3 which dominates A in

D. The set C = X ∪ Y strongly dominates V (D)− r in D, and has size at most
|X | + |Y | ≤ 2|B|−(d(r)−1)

3 + |Y | = |B| + |Y | − |B|+d(r)−1
3 . As |Y | + |B| = n − 1

and |B| ≥ l, this yields |X ∪ Y | ≤ n − 1 − l+d(r)−1
3 . As D is acyclic, any set
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Fig. 1. The "boloney" graph D6

strongly dominating V − r contains r and is a connected dominating set. Hence
there exists an outbranching T of D having a subset of C as internal vertices. T

has at least l+d(r)−1
3 + 1 leaves. �

This bound is tight up to one leaf. The rooted digraph Dk depicted in Fig-
ure 1 is 2-connected, has 3k − 2 vertices of indegree at least 2, d(r) = 3 and
maxleaf(Dk) = k + 2.

Finally, the following combinatorial bound is obtained:

Theorem 1. Let D be a 2-connected rooted digraph with l vertices of indegree
at least 3. Then maxleaf(D) ≥ l

6 .

Proof : Apply Corollary 2 to the rooted digraph with the larger number of ver-
tices of indegree 2 among Dσ and Dσ̄. �

An arc (u, v) of D is said to be a 2-circuit if (v, u) is also an arc in D. An arc is
simple if does not belong to a 2-circuit. A vertex v is nice if it is incident to a
simple in-arc.

The second combinatorial bound is the following:

Theorem 2. Let D be 2-connected rooted digraph. Assume that D has l nice
vertices. Then D has an outbranching with at least l

24 leaves.

Proof : By Lemma 1, we consider an r − r numbering σ of D. For every nice
vertex v (incident to some in-arc a) with indegree at least three, delete incoming
arcs of v different from a until v has only one incoming forward arc and one
incoming backward arc. For every other vertex of indegree at least 3 in D, delete
incoming arcs of v until v has only one incoming forward arc and one incoming
backward arc. At the end of this process, σ is still an r − r numbering of the
digraph D, and the number of nice vertices has not decreased.

Denote by Tf the set of forward arcs of D, and by Tb the set of backward arcs
of D. As σ is an r− r numbering of D, Tf and Tb are spanning trees of D which
partition the arcs of D − r.

The crucial definition is the following: say that an arc uv of Tf (resp. of Tb),
with u �= r, is transverse if u and v are incomparable in Tb (resp. in Tf), that
is if v is not an ancestor of u in Tb (resp. in Tf ). Observe that u cannot be an
ancestor of v in Tb (resp. in Tf) since Tb is backward (resp. Tf is forward) while
uv is forward (resp. backward) and u �= r.
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Assume without loss of generality that Tf contains more transverse arcs than
Tb. Consider now any planar drawing of the rooted tree Tb. We will make use
of this drawing to define the following: if two vertices u and v are incomparable
in Tb, then one of these vertices is to the left of the other, with respect to our
drawing. Hence, we can partition the transverse arcs of Tf into two subsets:
the set Sl of transverse arcs uv for which v is to the left of u, and the set Sr

of transverse arcs uv for which v is to the right of u. Assume without loss of
generality that |Sl| ≥ |Sr|.

The digraph Tb ∪Sl is an acyclic digraph by definition of Sl. Moreover, it has
|Sl| vertices of indegree two since the heads of the arcs of |Sl| are pairwise distinct.
Hence, by Corollary 2, Tb ∪ Sl has an outbranching with at least |Sl|+d(r)−1

3 + 1
leaves, hence so does D.

We now give a lower bound on the number of transverse arcs in D to bound
|Sl|. Consider a nice vertex v in D, which is not an outneighbour of r, and with
a simple in-arc uv belonging to, say, Tf . If uv is not a transverse arc, then v is
an ancestor of u in Tb. Let w be the outneighbor of v on the path from v to u in
Tb. Since uv is simple, the vertex w is distinct from u. No path in Tf goes from
w to v, hence vw is a transverse arc. Therefore, we proved that v (and hence
every nice vertex) is incident to a transverse arc (either an in-arc, or an out-arc).
Thus there are at least l−d(r)

2 transverse arcs in D.
Finally, there are at least l−d(r)

4 transverse arcs in Tf , and thus |Sl| ≥ l−d(r)
8 .

In all, D has an outbranching with at least l
24 leaves. �

As a corollary, the following result holds for oriented graphs (digraphs with no
2-circuit):

Corollary 3. Every 2-connected rooted oriented graph on n vertices has an out-
branching with at least n−1

24 leaves.

3 Reduction Rules

We say that P = {x1, . . . , xl}, with l ≥ 3, is a bipath of length l−1 if the set of arcs
adjacent to {x2, . . . , xl−1} in D is exactly {(xi, xi+1), (xi+1, xi)|i ∈ {1, . . . , l−1}}.

To exhibit a quadratic kernel for ROOTED MAXIMUM LEAF OUTBRANCH-
ING, we use the following four reduction rules:

(0) If there exists a vertex not reachable from r in D, then reduce to a trivially
FALSE instance.

(1) Let x be a cutvertex of D. Delete vertex x and add an arc (v, z) for every
v ∈ N−(x) and z ∈ N+(x) − v.

(2) Let P be a bipath of length 4. Contract two consecutive internal vertices of
P .

(3) Let x be a vertex of D. If there exists y ∈ N−(x) such that N−(x) − y cuts
y from r, then delete the arc (y, x).

Note that these reduction rules are not parameter dependent. Rule (0) only
needs to be applied once.
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Observation 1. Let S be a cutset of a rooted digraph D. Let T be an outbranch-
ing of D. There exists a vertex in S which is not a leaf in T .

Lemma 4. The above reduction rules are safe and can be checked and applied
in polynomial time.

Proof :

(0) Reachability can be tested in linear time.
(1) Let x be a cutvertex of D. Let D′ be the graph obtained from D by deleting

vertex x and adding an arc (v, z) for every v ∈ N−(x) and z ∈ N+(x) − v.
Let us show that maxleaf(D) = maxleaf(D′). Assume T is an outbranching
of D rooted at r with k leaves. By Observation 1, x is not a leaf of T . Let f(x)
be the father of x in T . Let T ′ be the tree obtained from T by contracting
x and f(x). T ′ is an outbranching of D′ rooted at r with k leaves.
Let T ′ be an outbranching of D′ rooted at r with k leaves. N−(x) is a cut
in D′, hence by Observation 1 there is a non-empty collection of vertices
y1, . . . , yl ∈ N−(x) which are not leaves in T ′. Choose yi such that yj is not
an ancestor of yi for every j ∈ {1, . . . , l}− {i}. Let T be the graph obtained
from T ′ by adding x as an isolated vertex, adding the arc (yi, x), and for
every j ∈ {1, . . . , l}, for every arc (yj , z) ∈ T with z ∈ N+(x), delete the arc
(yj , z) and add the arc (x, z). As yi is not reachable in T ′ from any vertex
y ∈ N−(x) − yi, there is no cycle in T . Hence T is an outbranching of D
rooted at r with at least k leaves. Moreover, deciding the existence of a cut
vertex and finding one if such exists can be done in polynomial time.

(2) Let P be a bipath of length 4. Let u, v, w, x and z be the vertices of
P in this consecutive order. Let T be an outbranching of D. Let D′ be the
rooted digraph obtained from D by contracting v and w. The rooted digraph
obtained from T by contracting w with its father in T is an outbranching of
D′ with as many leaves as T .
Let T ′ be an outbranching of D′. If the father of vw in T ′ is x, then T ′ −
(x, vw)∪ (x, w)∪ (w, v) is an outbranching of D with at least as many leaves
as T ′. If the father of vw in T ′ is u, then T ′ − (u, vw) ∪ (u, v) ∪ (v, w) is an
outbranching of D with at least as many leaves as T ′.

(3) Let x be a vertex of D. Let y ∈ N−(x) be a vertex such that N−(x) − y
cuts y from r. Let D′ be the rooted digraph obtained from T by deleting the
arc (y, x). Every outbranching of D′ is an outbranching of D. Let T be an
outbranching of D containing (y, x). There exists a vertex z ∈ N−(x) − y
which is an ancestor of x. Thus T − (y, x) ∪ (z, x) is an outbranching of D′

with at least as many leaves as T . �

We apply these rules iteratively until reaching a reduced instance, on which none
can be applied.

Lemma 5. Let D be a reduced rooted digraph with a vertex of indegree at least
k. Then D is a TRUE instance.

Proof : Assume x is a vertex of D with in-neighbourhood N−(x) = {u1, . . . , ul},
with l ≥ k. For every i ∈ {1, . . . , l}, N−(x) − ui does not cut ui from r. Thus
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there exists a path Pi from r to ui outside N−(x) − ui. The rooted digraph
D′ = ∪i∈{1,...,l}Pi is connected, and for every i ∈ {1, . . . , l}, ui has outdegree 0 in
D′. Thus D′ has an outbranching with at least k leaves, and such an outbranching
can be extended into an outbranching of D with at least as many leaves. �

4 Quadratic Kernel

In this section and the following, a vertex of a 2-connected rooted digraph D is
said to be special if it has indegree at least 3 or if one of its incoming arcs is
simple. A non special vertex is a vertex u which has exactly two in-neighbours,
which are also outneighbours of u. A weak bipath is a maximal connected set of
non special vertices. If P = {x1, . . . , xl} is a weak bipath, then the in-neighbours
of xi, for i = 2, . . . , l − 1 in D are exactly xi−1 and xi+1. Moreover, x1 and xl

are each outneighbour of a special vertex. Denote by s(P ) the in-neighbour of
x1 which is a special vertex.

This section is dedicated to the proof of the following statement:

Theorem 3. A digraph D of size at least (3k − 2)(30k − 2) reduced under the
reduction rules of previous section has an outbranching with at least k leaves.

Proof : By Theorem 1 and Theorem 2, if there are at least 6k + 24k − 1 special
vertices, then D has an outbranching with at least k leaves. Assume that there
are at most 30k − 2 special vertices in D.

As D is reduced under Rule (2), there is no bipath of length 4. We can associate
to every weak bipath B of D of length t a set AB of 	t/3
 out-arcs toward special
vertices. Indeed, let P = (x1, . . . , xl) be a weak bipath of D. For every three
consecutive vertices xi, xi+1, xi+2 of P , 2 ≤ i ≤ l − 3, (xi−1, xi, xi+1, xi+2, xi+3)
is not a bipath by Rule (2), hence there exists an arc (xj , z) with j = i, i + 1 or
i+2 and z /∈ P . Moreover z must be a special vertex as arcs between non-special
vertices lie within their own weak bipath. The set of these arcs (xj , z) has the
prescribed size.

By Lemma 5, any vertex in D has indegree at most k − 1 as D is reduced
under Rule (3), hence there are at most 3(k − 1)(30k − 2) non special vertices
in D. �

To sum up, the kernelization algorithm is as follows: starting from a rooted
digraph D, apply the reduction rules. Let D′ be the obtained reduced rooted
digraph. If D has size more than (3k − 2)(30k − 2), then reduce to a trivially
TRUE instance. Otherwise, D′ is an instance equivalent to D with O(k2) vertices
and O(k2) edges.

This quadratic bound is tight up to a constant factor with respect to our
reduction rules.

5 Approximation

Let us describe our constant factor approximation algorithm for ROOTED
MAXIMUM LEAF OUTBRANCHING, being understood that this also gives an



On Finding Directed Trees with Many Leaves 95

approximation algorithm of the same factor for MAXIMUM LEAF OUTBRANC-
HING as well as for finding an out-tree (not necessarily spanning) with many
leaves in a digraph.

Our reduction rules directly give an approximation algorithm asymptotically
as good as the best known approximation algorithm [11] (see Annex). Let us now
describe our constant factor approximation algorithm. Given a rooted digraph
D′′, apply exhaustively Rule (1) of Section 3. The resulting rooted digraph D is
2-connected. By Lemma 4, maxleaf(D′′) = maxleaf(D).

Let us denote by Dns the digraph D restricted to non special vertices. Recall
that Dns is a disjoint union of bipaths, which we call non special components. A
vertex of outdegree 1 in Dns is called an end. Each end has exactly one special
vertex as an in-neighbour in D.

Theorem 4. Let D be a 2-connected rooted digraph with l special vertices and
h non special components. Then max( l

30 , h − l) ≤ maxleaf(D) ≤ l + 2h.

Proof : The upper bound is clear, as at most two vertices in a given non special
component can be leaves of a given outbranching. The first term of the lower
bound comes from Theorem 1 and Theorem 2. To establish the second term,
consider the digraph D′ whose vertices are the special vertices of D and r. For
every non special component of D, add an edge in D′ between the special in-
neighbours of its two ends. Consider an outbranching of D′ rooted at r. This
outbranching uses l − 1 edges in D′, and directly corresponds to an out-tree
T in D. Extend T into an outbranching T̃ of D. Every non special component
which is not used in T contributes to at least a leaf in T̃ , which concludes the
proof. �

Consider the best of the three outbranchings of D obtained in polynomial time
by Theorem 1, Theorem 2 and Theorem 4. This outbranching has at least
max( l

30 , h − l) leaves. The worst case is when l
30 = h − l. In this case, the

upper bound becomes: 92l
30 , hence we have a factor 92 approximation algorithm

for ROOTED MAXIMUM LEAF OUTBRANCHING.

6 Conclusion

We have given an edge-quadratic kernel and a constant factor approximation
algorithm for ROOTED MAXIMUM LEAF OUTBRANCHING: reducing the gap
between the problem of finding trees with many leaves in undirected and di-
rected graphs. The gap now essentially lies in the fact that MAXIMUM LEAF
SPANNING TREE has a linear kernel while ROOTED MAXIMUM LEAF
OUTBRANCHING has a quadratic kernel. Deciding whether ROOTED MAXI-
MUM LEAF OUTBRANCHING has a vertex-linear kernel is a challenging ques-
tion. Whether long paths made of 2-circuits can be dealt with or not might be
key to this respect.
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