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Abstract. Say that an algorithm solving a Boolean satisfiability prob-
lem x on n variables is improved if it takes time poly(|x|)2cn for some
constant c < 1, i.e., if it is exponentially better than a brute force search.
We show an improved randomized algorithm for the satisfiability prob-
lem for circuits of constant depth d and a linear number of gates cn:
for each d and c, the running time is 2(1−δ)n where the improvement

δ ≥ 1/O(c2d−2−1 lg3·2d−2−2 c), and the constant in the big-Oh depends
only on d. The algorithm can be adjusted for use with Grover’s algorithm

to achieve a run time of 2
1−δ
2 n on a quantum computer.

1 Introduction

All NP-complete problems are equivalent as far as the existence of polynomial
time algorithms is concerned. However, the exact complexities of these problems
vary widely. There are frequently algorithms for NP-complete problems that
achieve substantial improvement over exhaustive search. This raises the questions:
Which problems have such improved algorithms? How much can we improve? Can
we provide evidence that no improvement over some known algorithm is possible?
Work addressing such questions, both from the algorithmic and complexity theo-
retic sides, has become known as exact complexity, and it is related to the field of
parameterized complexity. While significant work has been done, both areas are
still fairly new and leave open many problems. In particular, the answers and tech-
niques seem to rely on the exact NP-complete problem in question, and there are
few unifying techniques. (This is in some ways similar to the situation for the exact
approximation ratios achievable for different NP-complete problems, which also
is problem dependent. However, the use of probabilistically checkable proofs, and
the unique games conjecture and related conjectures, provide very general tools for
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understanding approximability for a wide variety of problems. We are still looking
for similar tools for exact complexity.)

From the viewpoint of exact complexity, the most studied and best understood
problems are probably the restricted versions of the satisfiability problem (SAT),
in particular, k-SAT, a restriction of SAT to k-CNFs, and CNF-SAT, a restriction
to general CNFs. There has been a sequence of highly nontrivial and interesting
algorithmic approaches [Sch99, PPZ99, PPSZ05, Sch05, DW05, CIP06] to these
problems, where the best known constant factor improvements in the exponent
are of the form 1−1/O(k) for k-SAT and 1−1/O(lg c) for CNF-SAT with at most
cn clauses. Also, a sequence of papers ([IPZ01, IP01, CIKP08, CIP06]) has shown
many nontrivial relationships between the exact complexities of these problems,
and helped characterize their hardest instances (under the assumption that they
are indeed exponentially hard.) For what other circuit/formula models can we ex-
pect to show improved exponential-time (i.e., O(2cn)-time for c < 1) algorithms
for the satisfiability problem?

1.1 Linear-Size Bounded Depth Circuits

In this paper, we give what we believe is the first improved algorithm for the
satisfiability problem for circuits of constant depth and linear size (AC0 type),
which seems significantly harder than k-SAT. (Note that it is trivially possible
to give an improved algorithm in terms of the circuit size parameter m if the
circuit has fan-in 2, e.g. by the standard reduction to 3-SAT and then applying
a 3-SAT solver, but this is no better than exhaustive search once m gets larger
than around 4n or so. Sergey Nurik [Nur09] has recently communicated a some-
what improved bound along these lines.) For each c, d > 0, we give a constant
δ > 0 and a randomized algorithm that works in 2(1−δ)n time and solves the
satisfiability problem for depth d, size at most cn circuits. (Here, it is significant
that circuit size is measured by gates rather than wires.)

For d = 2, our algorithm becomes deterministic and matches the current
best bound [CIP06], since our algorithm and analysis are generalizations of the
ones there. However, randomizing the algorithm also yields the best quantum
algorithm for this case, with running time 2

1−1/O(lg c)
2 n. For d = 3, this gives

δ ≥ 1/O(c lg4 c), which, as far as the authors know, is the first improvement
achieved for this problem.

There are a few motivations to consider linear-size circuits. One is the question
of ideal block cipher design. Block ciphers are carefully constructed to maximize ef-
ficiency for a given level of security. Particularly, since we want ciphers to be usable
by low-power devices, and to be implemented at the network level, it is often very
important to have efficient hardware implementations that make maximum use
of parallelism. A typical cipher computes for a small number of “rounds”, where
in each round, very simple operations are performed (e.g., substitutions from a
look-up table called an S box, permutations of the bit positions, or bit-wise ⊕
operations). These operations are almost always AC0 type or even simpler. It is
also considered vital to have key sizes that are as small as possible, and an al-
gorithm that breaks the cryptosystem in significantly less time than exhaustive
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search over keys is considered worrisome. So this raises the question: Can we have
an ideal block cipher family (one per key size), i.e., so that the number of rounds
remains constant, each round being implementable in constant depth with a lin-
ear number of gates, and security is almost that of exhaustive search over keys?
Our results rule out such ideal block ciphers, and so give a partial explanation for
why the number of rounds needs to increase in new generations of block ciphers.
(Block ciphers require average-case security, not worst-case, but worst-case algo-
rithms obviously also rule out average-case security. Our values of δ are vanishingly
small for the sizes and depths of real cryptosystems, so our results cannot be used
for cryptanalysis of existing block ciphers.)

Another motivation is that linear-size circuits are perhaps the most general class
of circuits for which we can expect to show improved upper bounds on their exact
complexity. To explain this statement, we need the following notation. Let sk =
inf{c|∃ a randomized algorithm for k-SAT with time complexity poly(m)2cn for k-
CNF formulas of size m over n variables}. Let ETH denote the Exponential-Time
Hypothesis: s3 > 0. We know that the sequence {sk} has a limit and let s∞ denote
this limit. [IP01] proposed the open question whether s∞ = 1, which we will call
the Strong Exponential-Time Hypothesis (SETH). The best known upper bounds
for sk are all of the form 1−1/O(k), which makes the conjecture SETH plausible.

Here is the connection between SETH and the complexity of satisfiability of
linear-size circuits: Since one can embed k-CNFs for any k into any non-linear
size circuit model (in particular, nonconstant density CNF) [CIP06], improved
upper bounds for the satisfiability problem for nonlinear-size circuits would im-
ply s∞ < 1. Thus, we are primarily left with the question of the complexity
of the satisfiability problem for linear-size circuits if SETH holds. The follow-
ing partial converse shows a further connection between SETH and improved
bounds for the satisfiability of linear-size circuits. If s∞ < 1, one can easily show
using the depth-reduction technique of Valiant [Val77] (see also [Cal08]) that the
satisfiability problem for cn-size series-parallel circuits has an improved upper
bound of 2δ(c)n where δ(c) < 1.

Yet another motivation is that improved algorithms for SAT for a circuit
model C may reveal structural properties of the solution space of circuits in C.
These structural properties may in turn be helpful in proving stronger lower
bounds on the size of circuits which are disjunctions of circuits in C. In fact,
[PSZ00, PPZ99, PPSZ05, IPZ01] exploit this connection to provide the best
known lower bounds of the form 2Δ(k)n/k where Δ(k) > 1 for depth-3 un-
bounded fan-in circuits with bounded bottom fan-in k. This connection between
the hardness of the satisfiability problem for a circuit model and lower bounds
of a related circuit model is not surprising since, as a more general circuit can
compute more complicated functions, it may be more difficult to invert, i.e.,
check the satisfiability of these functions.

1.2 Extension to Quantum Computing Model

Since Grover’s quantum search algorithm [Gro96] provides a quadratic speed-
up, the baseline in the quantum model for improved algorithms is 2n/2. In other
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words, a quantum algorithm is an improvement for the satisfiability problem if
the constant factor in the exponent in the running time is strictly less than 1/2.
However, it is not clear that every improved algorithm in the classical model can
benefit from a quadratic speed-up in the quantum model. It is known that the
class of algorithms that are exponential iterations of probabilistic polynomial
time algorithms can obtain quadratic speed-up using Grover’s technique.

More precisely, [Gro96, BBHT96] show that a probabilistic algorithm running
in time t and with success probability p can be transformed into a quantum al-
gorithm with running time O(t/

√
p) and with constant success probability. The

quadratic speed-up provided by quantum algorithms prompts the following ques-
tion: Given an algorithm A with exponential running time t, can we transform
it into an exponential iteration of a polynomial time algorithm B with success
probability approximately 1/t? Such a transformation would prime A for use in
Grover’s algorithm and we could reap the full benefit of its quadratic speedup
in the quantum model. We will show that our algorithm for the satisfiability of
bounded-depth linear-size circuits can be sped up quadratically in the quantum
model, i.e., that our algorithm, which runs in time 2(1−δ)n with constant success
probability, can be sped up by transforming it into a probabilistic polynomial
time algorithm that succeeds with probability at least 2−(1−δ)n.

For simplicity, we will only describe this probabilistic version of the algorithm.
To convert this back into a backtracking algorithm, simply try both branches
deterministically. Note that either way, the subroutine find restriction would still
use randomness, though the authors strongly suspect that it can be derandom-
ized. For completeness, we include the backtracking version (without analysis,
which would be essentially the same, just more verbose) at the end in figure 2.

2 The Algorithm

2.1 Definitions

The inputs (outputs) of a dag are those nodes with indegree 0 (outdegree 0).
A circuit F is a dag where each input is labeled with a literal, each non-input
(called a gate) is labeled AND or OR, and there is exactly 1 output. A subgate
of size k of a gate g is a gate h (not necessarily in F ) with the same label as g
and with k of g’s inputs. The depth d of F is the number of edges in a longest
path in F . The ith level of F is the set of gates a distance of i from the output,
e.g. the output is at level 0 and the bottom gates are at level d− 1.

2.2 High Level Description

The overall algorithm consists of four subroutines, Ad,c, Ad,c,k, find restriction
and PPZ main. We first provide a high level description of the key routines Ad,c

and Ad,c,k which mutually call each other. We then provide an intuitive expla-
nation as to how the algorithm reduces the average number of variables whose
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values need to be guessed. In the next subsection, we provide a detailed descrip-
tion of the subroutines accounting for all the parameters. Figure 1 provides a
complete description of the routines except for PPZ main.

The argument F of Ad,c and Ad,c,k denotes the current circuit after it is
simplified as a result of variable assignments. We use the argument V of Ad,c

and Ad,c,k to keep track of the unassigned variables, which is a superset of the
remaining variables var(F ). In particular, each time we simplify the circuit by
assigning to a group of variables, we will remove them from V . Subsequently
simplifying the circuit may result in the removal of other variables from F so
that var(F ) ⊆ V may become a proper containment. Because of these simplifying
steps, |V | is a measure of the algorithm’s progress that will be easier to keep
track of than | var(F )|. In order to describe the progress made at various points in
Ad,c and Ad,c,k, we use the identifier V to denote the set of unassigned variables
at that point whereas we use n to denote the number of unassigned variables at
the beginning of an invocation of the routines.

Ad,c starts with a circuit F of depth d and a set of unassigned variables V
satisfying the condition, var(F ) ⊆ V and |F | ≤ cn where n = |V |. It reduces the
the fan-in of each bottom gate to k by repeatedly selecting a subgate h of size k
of any bottom gate g with fan-in greater than k and setting h to either true or
false. One of these settings will eliminate k variables from V and the other will
eliminate a gate. The one that eliminates k variables we choose with probability q
and the other with probability 1−q. We continue setting the subgates of bottom
gates until we reach one of two cases. In the first case, we’ve at least halved the
number of unassigned variables compared to the number n at the invocation of
Ad,c. In this case, we simply guess an assignment to the unassigned variables.

In the second case we have that each bottom gate has fan-in less than or
equal to k and that the number of gates is at most 2c times the number |V | of
unassigned variables. In this case the control passes to the routine Ad,2c,k.

Ad,c,k takes as input a set V of unassigned variables and a circuit F of depth
d, bottom fan-in restricted to k satisfying the condition var(F ) ⊆ V and |F | ≤
cn where n = |V |. It chooses a random restriction (by invoking the routine
find restriction) to all but a p fraction of the variables of V for some p. This may
leave some bottom level gates with more than one unassigned variable. We clean
up these gates by randomly setting all the variables in them. By choosing k, p
appropriately, with probability at least 1

2 there will still be ≥ 1
2pn unassigned

variables but the bottom level gates will each have at most one unassigned
variable. So we can collapse the circuit to depth d− 1 and recurse. If the circuit
is already at depth 2, Ad,c,k applies PPZ main, which applies one iteration of
the PPZ solver [PPZ99], which takes polynomial time and finds a satisfying
assignment with probability at least 2−(1− 1

k )n if one exists.
To see why the algorithm succeeds better than random guessing, observe that

the algorithm either preserves a constant fraction of the unassigned variables
by the time the circuit reaches depth 2 or sets a large number of variables
correctly according to a satisfying assignment without having to guess each one
of them independently. If the algorithm produces a circuit of depth 2 with a
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constant fraction of unassigned variables, PPZ main guarantees that at most
(1 − 1

k ) fraction of the unassigned variables need to be looked at on average to
find a satisfying assignment. If the algorithm terminates earlier in Ad,c when the
number of unassigned variables gets halved, it must be the case that at least half
of the variables are assigned in Ad,c by setting subgates of size k. The variables
of the subgates are set with probability q and each such setting results in an
assignment to k variables where k is sufficiently large compared to lg 1

q thus
saving a number of bits.

The overall algorithm takes polynomial time and has exponentially small prob-
ability s of finding a satisfying assignment given that there is one. By iterating
s−1 times, we increase the probability of success to a constant.

2.3 Detailed Description

We describe our algorithm in several subroutines:

– Ad,c(F, V ) seeks a solution of F when F has depth d with V as the set of
unassigned variables such that var(F ) ⊆ V , |V | = n, and |F | ≤ cn. Although
initially |F |

|V | ≤ c, the algorithm may set variables, increasing the ratio. If
it ever exceeds 2c, Ad,c will simply guess an assignment to the remaining
variables.

– Ad,c,k(F, V ) seeks a solution of F when F has depth d, var(F ) ⊆ V , |V | = n,
|F | ≤ cn, and F has bottom fan-in at most k.

– find restriction(F, V, p) finds, with probability at least 1
2 , a set of variables

W ⊆ V whose complement has size in the interval [12pn, pn] and such that
if the variables of W are assigned, then each bottom level gate has at most
one unassigned variable.

– PPZ main is 1 iteration of the k-SAT solver (which is the same as a depth
2 circuit solver) from [PPZ99] which takes polynomial time and has success
probability ≥ 2−(1− 1

k )n. More specifically, PPZ main assigns the variables,
one at a time, in a random order. If a variable about to be assigned appears
in a unit clause C (a clause of size 1), then it is assigned so as to satisfy C,
otherwise it is assigned uniformly randomly. Note that this algorithm solves
depth 1 circuits in polynomial time and with success probability 1.

Our algorithm description is not the most succinct. For example, one could
construct an equivalent algorithm containing only one subroutine by eliminating
tail recursion, but this would make the analysis obtuse. Below, the choices of
k, p, q, c′ are unspecified, and are left for the analysis section.

If h is an AND of literals, then F |(h = 1) sets those literals to true and simplifies
the circuit by removing true children of AND gates, false children of OR gates,
replacing empty AND gates by true, replacing empty OR gates by false; unless h
contains contradictory literals, in which case F |(h = 1) is simply false. Ifh is an OR
of literals, F |(h = 1) removes any gate of which h is a subgate and then performs a
similar simplification. Also if h is an AND (OR) of literals, then F |(h = 0) can be
treated as F |(h′ = 1) where h′ is the OR (AND) of the negations of those literals.
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Ad,c(F, V ) // F has depth d, var(F ) ⊆ V, |V | = n, |F | ≤ cn
choose k, q // as some function of d, c
while ∃ bottom gate g in F of fan-in > k

let h be a subgate of g of size k

b←
{

1 with probability 1− q

0 with probability q

b′ ←
{

1 if h is an AND gate

0 if h is an OR gate

F ← F |(h = b XOR b′)
if b = 0, V ← V − var(h)
if |F | > 2c|V | // guess assignment

choose a ∈u 2var(F )

if F (a) = 1, return a
return “probably not satisfiable”

return Ad,2c,k(F, V )

Ad,c,k(F, V ) // F has depth d, F also has bottom fan-in ≤ k,
var(F ) ⊆ V, |V | = n

if d ≤ 2, return PPZ main(F )
choose p, c′ // as functions of d, c, k
W ← find restriction(F, V, p)
choose a ∈u 2W

// the bottom level gates of F |a are trivial
F ′ ← F |a but collapsing the bottom level
return Ad−1,c′(F

′, V −W )

find restriction(F, V, p) // |V | = n
B ← {bottom gates of F}
U ← random subset of V of size (1− p)n
G← {g ∈ B | |var(g)− U | > 1}
U ′ ← var(G)
if |U ′| ≤ 1

2
pn, return U ∪ U ′

else die // algorithm fails

Fig. 1. Linear size, constant depth circuit solver

The purpose of all these definitions is so that below, in Ad,c, the line F ← F |(h =
b XOR b′) sets h in the way that eliminates k variables with probability q and the
other way with probability 1− q. See figure 1.

3 Run Time Analysis

Suppose Ad,c, Ad,c,k succeed with probability ≥ 2−(1−ad,c)n, 2−(1−ad,c,k)n, respec-
tively, given that find restriction succeeds on each call to it – we will eliminate
this assumption later. Here n is the number of variables in V at the time Ad,c

or Ad,c,k are invoked. We assume c ≥ 2 and ∀d ≥ 2, k ≥ 4 ad,c, ad,c,k ≤ 1
4 .
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Lemma 1. ∀d, c ≥ 2 if k ≥ 4 lg 4c
ad,2c,k

, then ad,c ≥ 1
2ad,2c,k.

Proof. Each iteration of the while loop of Ad,c(F, V ) eliminates (1) a gate or
(2) k variables. (1) occurs ≤ cn times and (2) occurs r ≤ n

k times. Let a be a
solution to F . Exactly one sequence of random choices, say with r choices of
type (2), can lead Ad,c(F, V ) to find a. So the probability that Ad,c(F, V ) finds
a solution given that each call to find restriction succeeds, is

≥ qr(1− q)cn min{2−(1−ad,2c,k)(n−kr), 2−
n
2 }.

(Note carefully that we are not asserting that with at least this probability a is
found. This is because PPZ main may return another solution.)

To lower bound qr(1 − q)cn2−(1−ad,2c,k)(n−kr), take the logarithm, divide by
n, and set r′ = r

n ∈ [0, 1
k ] to get

r′ lg q + c lg(1 − q)− (1 − ad,2c,k) + (1− ad,2c,k)kr′

=− (1 − ad,2c,k) + c lg(1 − q) + r′(lg q + (1− ad,2c,k)k)
≥− (1 − ad,2c,k)− 2cq + r′(lg q + (1 − ad,2c,k)k)

(taking n = 4, x = nq in the fact ∀n ≥ 1, x ∈ [0, 1]
(
1− x

n

)n−1

≥ e−x)

≥− (1 − ad,2c,k)− 2cq + r′
(

lg q +
1
2
k
)

since ad,2c,k ≤ 1
2
,

which is ≥ −(1− 1
2ad,2c,k) if we set q = ad,2c,k

4c , k ≥ −2 lg q.
To lower bound qr(1 − q)cn2−

n
2 , note that if we choose k ≥ −4 lg q, then

r′ lg q + c lg(1− q)− 1
2

≥1
k

lg q − 2cq − 1
2

≥− 1
4
− 1

2
ad,2c,k − 1

2

≥−
(
1− 1

2
ad,2c,k

)
since ad,2c,k ≤ 1

4
.

Lemma 2. If |V | = n, |F | ≤ cn, F has bottom fan-in ≤ k, and we choose
p = 1

2ck3 , then the probability that find restriction(F, V, p) dies is ≤ 1
2 .

Proof. Let g ∈ B and X = |var(g) − U |. g has a fan-in k′ ≤ k and so X is
hypergeometric with parameters n, k′, pn. We claim that Pr(g ∈ G) = Pr(X ≥
2) ≤ (

k′

2

)
p2. To see this, note that the sample points where X ≥ 2 can be

partitioned according to the positions among the k′ variables of g of the first 2
free variables (i.e., not in U), and the probability of any of these

(
k′

2

)
events is

≤ p2. So

E(|U ′|) ≤ E(|G|)k ≤
(

k

2

)
p2|B|k ≤ 1

2
k3p2cn ≤ 1

4
pn.
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By Markov’s inequality,

Pr
(
|U ′| > 1

2
pn

)
≤ E(|U ′|)

1
2pn

≤ 1
2
.

So the probability that find restriction(F, V, p) dies is ≤ 1
2 .

Lemma 3. If we set p = 1
2ck3 , c′ = 4c2k3, then ad,c,k ≥ 1

4ck3 ad−1,4c2k3 .

Proof. Ad,c,k(F, V ) leaves f ∈ [12pn, pn] variables of V free and sets the rest.
So |F ′|

|V −W | ≤ cn
1
2 pn

= 4c2k3 = c′. (The proof of this lemma would have been con-
founded if we had used var(F ) to keep track of variables instead of V .) The prob-
ability that Ad,c,k(F, V ) finds a solution, assuming each call to find restriction
succeeds, is then

2−(n−f+(1−ad−1,c′)f) = 2−(n−ad−1,c′f) ≥ 2−(1− 1
2 pad−1,c′ )n,

and the lemma follows.

Lemma 4. ∀d, c ≥ 2,

ad,c ≥ 1/O(c2d−2−1 lg3·2d−2−2 c),

where the constant in the big-Oh depends only on d.

Proof. We use induction to show that for each d, k can be chosen to be O(lg c)
so as to satisfy the hypothesis of lemma 1 and ad,c ≥ 1/O(cf(d) lgg(d) c) for some
functions f, g where the constants in the big-Ohs depend only on d.

a2,c,k = 1
k . From lemma 1, we need to choose k such that k ≥ O(lg c

a2,2c,k
) =

O(lg c + lg k). So k = O(lg c) suffices, and we conclude that a2,c ≥ 1/O(lg c). So
f(2) = 0, g(2) = 1. This completes the base case.

From the inductive hypothesis and lemma 3,

ad,c,k ≥ 1/O(ck3(c2k3)f(d−1) lgg(d−1)(c2k3))

= 1/O(c2f(d−1)+1k3f(d−1)+3 lgg(d−1)(ck)).

To use lemma 1, we need to choose k such that

k ≥ O(lg(c2f(d−1)+2k3f(d−1)+3 lgg(d−1)(ck)))
= O(lg c + lg k).

So k = O(lg c) suffices, and we conclude that

ad,c ≥ 1/O(c2f(d−1)+1 lg3f(d−1)+3+g(d−1) c).

So we have the recurrence

f(d) = 2f(d− 1) + 1 f(2) = 0
g(d) = g(d− 1) + 3f(d− 1) + 3 g(2) = 1

which has solution f(d) = 2d−2 − 1, g(d) = 3 · 2d−2 − 2.



84 C. Calabro, R. Impagliazzo, and R. Paturi

Ad,c(F, V )
if |F | ≥ 2c|V | // solve by brute force

for each a ∈ 2var(F )

if F (a), return 1
return 0

choose k // as some function of d, c
if ∃ bottom gate g in F of fan-in > k // branch

let h be a subgate of g of size k

(V0, V1)←
{

(V, V − var(h)) if h is an AND gate

(V − var(h), V ) if h is an OR gate

if Ad,c(F |(h = 1), V1), return 1
if Ad,c(F |(h = 0), V0), return 1
return 0

return Ad,2c,k(F, V )
Ad,c,k(F, V )

if d ≤ 2, return PPZ(F )

// PPZ solves k-SAT in time poly(|F |)2(1− 1
k

)n

// with exponentially small error probability
choose p, c′ // as functions of d, c, k
W ← find restriction(F, V, p) // same subroutine as in figure 1
for each a ∈ 2W

// the bottom level gates of F |a are trivial
F ′ ← F |a but collapsing the bottom level
if Ad−1,c′(F

′, V −W ), return 1
return 0

Fig. 2. Linear size, constant depth circuit solver, backtracking version

Theorem 1. ∀d, c ≥ 2, the probability that Ad,c(F, V ) finds some solution is
≥ 2−(1−α)n where

α ≥ 1/O(c2d−2−1 lg3·2d−2−2 c),

where the constant in the big-Oh depends only on d.

Proof. This is a corollary from the previous lemma together with the following:
find restriction is called ≤ d times, each with success probability ≥ 1

2 , so the
probability that in every call it succeeds is ≥ 2−d, a penalty that can be absorbed
into the big-Oh in the theorem statement.

Again, we are not asserting that every solution is found with this probability, just
that some is, and this asymmetric property is inherited from the PPZ algorithm.

4 Open Problems

Can find restriction be derandomized without too much performance penalty?
Can we find a nontrivial algorithm for the case where d grows very slowly
with n?
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