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Abstract. We introduce the graph parameter boolean-width, related to
the number of different unions of neighborhoods across a cut of a graph.
For many graph problems this number is the runtime bottleneck when
using a divide-and-conquer approach. Boolean-width is similar to rank-
width, which is related to the number of GF (2)-sums (1+1=0) of neigh-
borhoods instead of the Boolean-sums (1+1=1) used for boolean-width.
For an n-vertex graph G given with a decomposition tree of boolean-
width k we show how to solve Minimum Dominating Set, Maximum
Independent Set and Minimum or Maximum Independent Dominating
Set in time O(n(n+23kk)). We show for any graph that its boolean-width
is never more than the square of its rank-width. We also exhibit a class of
graphs, the Hsu-grids, having the property that a Hsu-grid on Θ(n2) ver-
tices has boolean-width Θ(log n) and tree-width, branch-width, clique-
width and rank-width Θ(n). Moreover, any optimal rank-decomposition
of such a graph will have boolean-width Θ(n), i.e. exponential in the
optimal boolean-width.

1 Introduction

Width parameters of graphs, like tree-width, branch-width, clique-width and
rank-width, are important in the theory of graph algorithms.Many NP-hard graph
optimization problems have fixed-parameter tractable (FPT) algorithmswhen pa-
rameterized by these graph width parameters, see e.g. [12] for an overview. Such al-
gorithms usually have two stages, a first stage computing the right decomposition
of the input graph and a second stage solving the problem by a divide-and-conquer
approach, or dynamic programming, along the decomposition. For practical ap-
plications we must look carefully at the runtimes as a function of the parameter.
We may then have to concentrate on heuristic algorithms for the first stage, for
example in the way done for tree-width as part of the TreewidthLIB project at
University of Utrecht, see e.g. [2]. For the second stage we should carefully design
algorithms for each separate problem. When comparing the usefulness of these
width parameters, we first need to compare the values of the parameters on vari-
ous graph classes, we secondly need good algorithms or fast heuristics for the first
stage, and we thirdly need to compare the best runtimes for the second stage. In
this paper we introduce a graph width parameter called boolean-width, and com-
pare it to other parameters.
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Fig. 1. Upper bounds tying parameters tw=tree-width, bw=branch-width, cw=clique-
width, rw=rank-width and boolw=boolean-width. An arrow from P to Q labelled f(k)
means that any class of graphs having parameter P bounded by k will have parameter
Q bounded by O(f(k)), and ∞ means that no such upper bound can be shown. Except
for the labels in a box the bounds are known to be tight, meaning that there is a class
of graphs for which the bound is Ω(f(k)). For the box containing label 2k a Ω(2k/2)
bound is known [6].

Firstly, we show that the boolean-width of a graph is never more than quadratic
in its rank-width, which also constitutes a comparison with other parameters since
the rank-width of a graph is known to never be larger than its clique-width, nor
its branch-width (resp. tree-width) plus one [19,20,22]. We also know that the
boolean-width of a graph is never larger than its tree-width plus one [1]. On the
other hand we show a class of graphs, the Hsu-grids, that have boolean-width
bounded by k while they have rank-width (and thus also clique-width, branch-
width and tree-width) exponential in k. See Figure 1 for a sketch of how the various
parameters compare. Note that for any class of graphs we have only three possi-
bilities: either all five parameters are bounded (e.g. for trees) or none of them are
bounded (e.g. for grids) or only clique-width, rank-width and boolean-width are
bounded (e.g. for cliques).

Secondly, regarding first stage algorithms, since boolean-width is tied to rank-
width, when parameterizingby the boolean-width of an input graphwe get an FPT
algorithm that computes an approximation of an optimal boolean-width decom-
position, by applying either the algorithm of Hliněný and Oum [11] computing an
optimal rank-decomposition or the approximation algorithmof Oum and Seymour
[20]. We have also initiated research into heuristic algorithms for the first stage.

Thirdly, for the second stage, we concentrate in this paper on the Minimum
Dominating Set (MDS) problem and show that given a decomposition of boolean-
width k of an n-vertex graph we can solve MDS in time O(n(n + 23kk)). See
Figure 2 for a comparison of the best runtimes for MDS when parameterized by
other width parameters. Combining the information in Figures 1 and 2 we see
that the runtime for MDS compares well to the other parameters. For example,
clique-width is bounded for a class of graphs exactly when boolean-width is, but
as we show in Section 3 boolean-width is never larger than clique-width, and
therefore O∗(23boolw) is always better than O∗(24cw). We also show there exists
graphs where cliquewidth is exponential in boolean-width and for these graphs
O∗(23boolw) is exponentially better than O∗(24cw). In [4] we similarly show that
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tree-width branch-width clique-width rank-width boolean-width

MDS O∗(21.58tw)[23] O∗(22bw) [8] O∗(24cw) [16] O∗(20.75rw2+O(rw)) [5,9] O∗(23boolw) [here]

Fig. 2. Runtimes achievable for Minimum Dominating Set using various parameters

in time O∗(2d×q×boolw2
), for problem-specific constants d and q, we can solve a

large class of vertex subset and vertex partitioning problems.
A main open problem is to approximate the boolean-width of a graph better

than what we get by using the algorithm for rank-width [11]. Nevertheless, for
many problems it could be advantageous to use boolean-width for the second
stage regardless of which decomposition is given. In Figure 3 we illustrate the
runtimes achievable by the best second-stage algorithm for the MDS problem
using either the algorithm given in Section 4 of this paper or the best runtime
when parameterized by rankwidth, which are O∗(20.75rw2+O(rw)) algorithms in
both [5] and [9]. The values in Figure 3 assume we are given a decomposition
tree (T, δ) of rank-width rw and is based on the result from Section 3 that the
boolean-width of (T, δ) lies between log rw and 1

4rw2 + 5
4rw + log rw.

boolean-width of (T, δ)= using rank-width using boolean-width

0.25rw2 + O(rw) O∗(20.75rw2+O(rw)) O∗(20.75rw2+O(rw))

rw O∗(20.75rw2+O(rw)) O∗(23rw)

log rw O∗(20.75rw2+O(rw)) O∗(1)

Fig. 3. Runtimes achievable for Minimum Dominating Set. Given a decomposition tree
(T, δ) of rank-width rw, we know that the boolean-width of (T, δ) lies between log rw
and 0.25rw2 + O(rw).

For an appropriate class of Hsu-grids we are able to show that any optimal rank-
decomposition will have boolean-width exponential in the optimal boolean-width.
This suggests that although we can solve NP-hard problems in polynomial time
on Hsu-grids if we use boolean-width as the parameter (as we see in Figure 3) we
would get exponential time if we used any of the other graph width parameters.

Finally, we remark that the use of Boolean-sums in the definition of boolean-
width (see Section 2) means a new application for the theory of Boolean ma-
trices, i.e. matrices with Boolean entries, to the field of algorithms. Boolean
matrices already have applications, e.g. in switching circuits, voting methods,
applied logic, communication complexity, network measurements and social net-
works [7,15,17,21].

2 Boolean-Width

When applying divide-and-conquer to a graph we first need to divide the graph.
A common way to store this information is to use a decomposition tree and to
evaluate decomposition trees using a cut function. The following formalism is
standard in graph and matroid decompositions (see, e.g., [10,20,22]).
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Definition 1. A decomposition tree of a graph G is a pair (T, δ) where T is
a tree having internal nodes of degree three and n = |V (G)| leaves, and δ is a
bijection between the vertices of G and the leaves of T . For A ⊆ V (G) let A
denote the set V (G) \ A. Every edge of T defines a cut {A, A} of the graph,
i.e. a partition of V (G) in two parts, namely the two parts given, via δ, by the
leaves of the two subtrees of T we get by removing the edge. Let f : 2V → R

be a symmetric function, i.e. f(A) = f(A) for all A ⊆ V (G), also called a cut
function. The f -width of (T, δ) is the maximum value of f(A), taken over all
cuts {A, A} of G given by an edge uv of T . The f -width of G is the minimum
f -width over all decomposition trees of G.

The cuts {A, A} given by edges of the decomposition tree are used in the divide
step of a divide-and-conquer approach. For the conquer step we solve the problem
recursively, following the edges of the tree T (after choosing a root) in a bottom-
up fashion, on the graphs induced by vertices of one side and of the other side
of the cuts. In the combine step we must join solutions from the two sides,
and this is usually the most costly and complicated operation. The question of
what ’solutions’ we should store to get an efficient combine step is related to
what type of problem we are solving. Let us consider vertex subset or vertex
partitioning problems on graphs, and in particular Maximum Independent Set
for simplicity1. For a cut {A, A} we note that if two independent sets X ⊆ A
and X ′ ⊆ A have the same set of neighbors in A then for any Y ⊆ A we have
X∪Y an independent set if and only if X ′∪Y an independent set. This suggests
that the following equivalence relation on subsets of A will be useful.

Definition 2. Let G be a graph and A ⊆ V (G). Two vertex subsets X ⊆ A
and X ′ ⊆ A are neighbourhood equivalent w.r.t. A, denoted by X ≡A X ′, if
A ∩ N(X) = A ∩ N(X ′).

If for each class [X ]≡A we store the maximum independent set in [X ]≡A , and
similarly for each class [Y ]≡A

we store the maximum independent set in [Y ]≡A
,

then we can perform the combine step in time depending only on the number
of such equivalence classes. The same argument can be made for a large class of
vertex subset and partitioning problems. Thus, to solve these problems as fast
as possible on general graphs by divide-and-conquer we need a decomposition
tree minimizing the number of equivalence classes over each cut defined by the
tree. This minimum value is given by the boolean-width of the graph.

Definition 3 (Boolean-width). The cut-bool : 2V (G) → R function of a graph
G is

cut-bool(A) = log2 |{S ⊆ A : ∃X ⊆ A ∧ S = A ∩
⋃

x∈X

N(x)}|

1 Minimum Dominating Set is the main example of this paper and solving it by divide-
and-conquer is indeed more complicated than solving Maximum Independent Set.
Nevertheless, the runtime of our algorithm for Minimum Dominating Set, after em-
ploying several tricks, will in fact have a runtime matching what we could get for
Maximum Independent Set.
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It is known from Boolean matrix theory that cut-bool is symmetric [15, Theorem
1.2.3]. Using Definition 1 with f = cut-bool we define the boolean-width of
a decomposition tree, denoted boolw(T, δ), and the boolean-width of a graph,
denoted boolw(G).

Note that we take the logarithm base 2 of the number of equivalence classes
simply to ensure that 0 ≤ boolw(G) ≤ |V (G)|, which will ease the compari-
son of boolean-width to other parameters. For a vertex subset A, the value of
cut-bool(A) can also be seen as the logarithm in base 2 of the number of pairwise
different vectors that are spanned, via Boolean sum, by the rows of the A × A
sub-matrix of the adjacency matrix of G.

3 Values of Boolean-Width Compared to Other Graph
Width Parameters

Missing proofs can be found in the appendix. In this section we compare boolean-
width to tree-width tw, branch-width bw, clique-width cw and rank-width rw.
For any graph, it holds that the rankwidth of the graph is essentially the smallest
parameter among the four [19,20,22]: rw ≤ cw and rw ≤ bw ≤ tw + 1 (unless
bw = 0 and rw = 1). Accordingly, we focus on comparing boolean-width to
rankwidth, and prove that log rw ≤ boolw ≤ 1

4rw2 + 5
4rw + log rw with the

lower bound being tight to a constant multiplicative factor. We also know that
the boolean-width of a graph is never larger than its tree-width plus one [1].
Furthermore, we also prove that log cw − 1 ≤ boolw ≤ cw with both bounds
being tight to a constant multiplicative factor.

Rank-width was introduced in [18,20] based on the cut-rank : 2V (G) → N

function of a graph G, which is the rank over GF (2) of the submatrix of the
adjacency matrix of G having rows A and columns A. To see the connection
with boolean-width note that

cut-rank(A) = log2 |{Y ⊆ A : ∃X ⊆ A ∧ Y = A ∩
x∈XN(x)}|
Here 
 is the symmetric difference operator. Note that cut-rank is a symmetric
function having integer values. Using Definition 1 with f = cut-rank will define
the rankwidth of a decomposition tree, denoted rw(T, δ), and the rankwidth of a
graph, denoted rw(G). We first investigate the relationship between the cut-bool
and the cut-rank functions.

Lemma 1. [5] Let G be a graph and A ⊆ V (G). Let nss(A) be the num-
ber of spaces that are GF (2)-spanned by the rows (resp. columns) of the A ×
V (G) \ A submatrix of the adjacency matrix of G. Then, log cut-rank(A) ≤
cut-bool(A) ≤ log nss(A). Moreover, it is well-known from linear algebra that
nss(A) ≤ 2

1
4 cut-rank(A)2+ 5

4 cut-rank(A)cut-rank(A).

This lemma can be derived from a reformulation of [5, Proposition 3.6]. We
now prove that both bounds given in this lemma are tight. For the lower bound
we recall the graphs used in the definition of Hsu’s generalized join [13]. For
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all k ≥ 1, the graph Hk is defined as the bipartite graph having color classes
A(Hk) = {a1, a2, . . . , ak+1} and B(Hk) = {b1, b2, . . . , bk+1} such that N(a1) = ∅
and N(ai) = {b1, b2, . . . , bi−1} for all i ≥ 2. Here, a union of neighborhoods of
vertices of A(Hk) is always of the form {b1, b2, . . . , bl}, hence,

Lemma 2. For the above defined graph Hk, it holds that cut-bool(A(Hk)) =
log k and cut-rank(A(Hk)) = k.

For the tightness of the upper bound of Lemma 1 we now recall the graphs
used in the characterization of rank-width given in [5]. The graph Rk is defined
as a bipartite graph having color classes A(Rk) = {aS, S ⊆ {1, 2, . . . , k}} and
B(Rk) = {bS, S ⊆ {1, 2, . . . , k}} such that aS and bT are adjacent if and only if
|S ∩ T | is odd.

Lemma 3. For the above defined graph Rk, it holds that cut-bool(A(Rk)) =
log nss(A(Rk)) and cut-rank(A(Rk)) = k.

Since Lemma 1 holds for all edges of all decomposition trees, it is clear for
every graph G that log rw(G) ≤ boolw(G) ≤ 1

4rw(G)2 + 5
4rw(G) + log rw(G).

We now address the tightness of this lower bound. A cut {A, A} is balanced if
1
3 |V (G)| ≤ |A| ≤ 2

3 |V (G)|. In any decomposition tree of G, there always exists an
edge of the tree which induces a balanced cut in the graph. We lift the tightness
result on graph cuts given by Lemma 2 to the level of graph parameters in
a standard way, by using the structure of a grid. The main idea is that any
balanced cut of a grid will contain either a large part of some column of the
grid, or it contains a large enough matching. We then add edges to the columns
of the grid and fill each of them into a Hsu graph (see below). Note that graphs
with a similar definition have also been studied in relation with clique-width in
a different context [3].

Definition 4 (Hsu-grid HGp,q). Let p ≥ 2 and q ≥ 2. The Hsu-grid HGp,q is
defined by V (HGp,q) = {vi,j | 1 ≤ i ≤ p ∧ 1 ≤ j ≤ q} with E(HGp,q) being
exactly the union of the edges {(vi,j , vi+1,j) | 1 ≤ i < p ∧ 1 ≤ j ≤ q} and of the
edges {(vi,j , vi′,j+1) | 1 ≤ i ≤ i′ ≤ p ∧ 1 ≤ j < q}. We say that vertex vi,j is at
the ith row and the jth column.

Lemma 4. For large enough integers p and q, we have that boolw(HGp,q) ≤
min(2 log p, q) and rw(HGp,q) ≥ min(
p

4�, 
 q
6�). Moreover, if q < 
p

8� then any
optimal rank decomposition of HGp,q has boolean-width at least 
 q

6�.
Notice that not only the lemma addresses the tightness of the lower bound
on boolean-width as a function of rank-width, but also the additional stronger
property that for a special class of Hsu-grids any optimal rank decomposition
has boolean-width exponential in the optimal boolean-width.

Theorem 1. For any decomposition tree (T, δ) of any graph G it holds that
log rw(T, δ) ≤ boolw(T, δ) ≤ 1

4rw(T, δ)2+ 5
4rw(T, δ)+log rw(T, δ) and log rw(G)

≤ boolw(G) ≤ 1
4rw(G)2 + 5

4rw(G) + log rw(G). For large enough integer k,
there are graphs Lk and Uk of rank-width at least k such that boolw(Lk) ≤
2 log rw(Lk) + 4 and boolw(Uk) ≥ 
 1

6rw(Uk)� − 1.
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Remark 1. The inequalities about Lk is a direct application of Lemma 4 for
well-chosen values of p and q. The graph Uk are standard k × k grids.

Remark 2. Let (T, δ) and (T ′, δ′) be such that rw(G) = rw(T, δ) and OPT =
boolw(G) = boolw(T ′, δ′). We then have from Theorem 1 that boolw(T, δ) ≤
rw(T, δ)2 ≤ rw(T ′, δ′)2 ≤ (2OPT )2. Hence, any optimal rank-width decomposi-
tion of G is also a 22·OPT -approximation of an optimal boolean-width decom-
position of G. There is an FPT algorithm to compute an optimal rank-width
decomposition of G in O(f(rw(G)) × |V (G)|3) time [11].

One of the most important applications of rank-width is to approximate the
clique-width cw(G) of a graph by log(cw(G) + 1) − 1 ≤ rw(G) ≤ cw(G) [20].
Although we have seen that the difference between rank-width and boolean-
width can be quite large, we remark that, w.r.t. clique-width, boolean-width
behaves similarly as rank-width, namely

Theorem 2. For any graph G it holds that log cw(G)−1 ≤ boolw(G) ≤ cw(G).
For large enough integer k, there are graphs Lk and Uk of clique-width at least
k such that boolw(Lk) ≤ 2 log cw(Lk) + 4 and boolw(Uk) ≥ 
 1

6cw(Uk)� − 1.

4 Algorithms

Given a decomposition tree (T, δ) of a graph G we will in this section show how
to solve a problem on G by a divide-and-conquer (or dynamic programming)
approach. We subdivide an arbitrary edge of T to get a new root node r, denoting
by Tr the resulting rooted tree, and let the algorithm follow a bottom-up traversal
of Tr. With each node w of Tr we associate a table data structure Tabw, that will
store optimal solutions to subproblems related to the cut {A, A} given by the
edge between w and its parent. In Subsection 4.2 we will define the tables used
and in particular give the details of the combine step. For the moment it suffices
to say that the table indices will be related to the classes of the equivalence
relation ≡A of Definition 2. Firstly, in Subsection 4.1 we show how to enhance
the decomposition tree with information needed to handle these equivalence
classes.

4.1 Computing Representatives

We assume a total ordering on the vertex set of G which stays the same through-
out the whole paper. If vertex u comes before vertex v in the ordering then we
say u is smaller than v. Using this ordering we also denote that a vertex set X
is lexicographically smaller than vertex set Y by X ≤lex Y . Let {A, A} be a cut
given by an edge of the decomposition tree. For each equivalence class of ≡A we
want to choose one vertex subset as a representative for that class. The repre-
sentative set for a class will be the lexicographically smallest among the sets in
the class with minimum cardinality. More formally we define for A ⊆ V (G) the
list LRA of all representatives of ≡A.
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Definition 5 (List of Representatives). Given a graph G and A ⊆ V (G) we
define the list LRA of representatives of ≡A as the unique set of subsets of A
satisfying:

1) ∀X ⊆ A, ∃R ∈ LRA : R ≡A X
2) ∀R ∈ LRA : if R ≡A X then |R| ≤ |X |
3) ∀R ∈ LRA : if R ≡A X and |R| = |X | then R ≤lex X .

Note that such a list will contain exactly one element for each equivalence class
of ≡A.

Lemma 5. Let G be a graph and A ⊆ V (G). Let R be an element of the list
LRA of representatives of ≡A, then for any X, Y ⊆ R s.t. X �= Y , we have
X �≡A Y .

Corollary 1. Given a graph G and A ⊆ V (G), every element R of the list LRA

of representatives of ≡A satisfies |R| ≤ cut-bool(A).

We now describe an algorithm to compute LRA. It will at the same time compute
a list LNRA containing N(R)∩A, for every element R of LRA. These two lists
will be linked together, in such a way that given an element N of LNRA we can
access in constant time the element R of LRA such that N = N(R) ∩ A, and
vice versa. To do this in time depending only on cut-bool(A) we will need the
notion of twin classes.

Definition 6. Let G be a graph and let A ⊆ V (G) be a vertex subset. A subset
X ⊆ A is a twin set of A if, for every z ∈ A and pair of vertices x, y ∈ X , we have
x adjacent to z if and only if y adjacent to z. A twin set X is a twin class of A if
X is a maximal twin set. The set of all twin classes of A forms a partition of A,
that we call the twin class partition of A. We denote by TCA the set containing
for each twin class of A the smallest vertex of the class.

Note that u and v belong to the same twin class of A if and only if {u} ≡A {v}.
One consequence is that |TCA| ≤ 2cut-bool(A). Our algorithm will handle the
edges crossing a cut {A, A} by using the two vertex sets TCA and TCA. As a pre-
processing step, we will compute TCA and TCA associated to every A ⊆ V (G)
that will be needed in our principal dynamic programming algorithm as specified
in the lemma below.

Lemma 6. Let G be a graph and (T, δ) a decomposition tree of G. Then, in
O(n(n+22boolw(T,δ))) global runtime we can compute, for every edge uv of T the
two vertex sets TCA and TCA for {A, A} being the 2-partition of V (G) induced
by the leaves of the trees we get by removing uv from T . In the same runtime,
for every v ∈ A, resp. A, we compute a pointer to the vertex u in TCA, resp.
TCA, such that u and v are in the same twin class of A, resp. A.

We now focus on a particular cut {A, A}, induced by some edge of the decompo-
sition tree of G. Our algorithms will use the bipartite graph HA with color-classes
TCA and TCA and containing all edges of G crossing the cut {A, A}. The graph
HA can be built in O(|TCA| × |TCA|) = O(22cut-bool(A)) time.
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Lemma 7. Given HA as defined above for any A ⊆ V (G), we can in time
O(23cut-bool(A)cut-bool(A)) compute the list of representatives LRA and the
sorted list LNRA of neighborhoods of elements of LRA.

Proof. We describe the algorithm. The lists LRA and LNRA are initially
empty. We will use auxiliary lists NextLevel, initially empty, and LastLevel
which initially will contain the empty set as its single element. We then run the
following nested loops.

while LastLevel != ∅ do
for R in LastLevel do

for every vertex v of TCA do
R′ = R ∪ {v}
compute N ′ = NHA(R′)
if R′ �≡A R and N ′ is not contained in LNRA then

add R′ to LRA and NextLevel, and add N ′ to LNRA at proper
position

end if
end for

end for
set LastLevel = NextLevel, and NextLevel = ∅

end while
Let us first argue for correctness. The first iteration of the while-loop will set {v}
as representative, for every v ∈ TCA, and there exist no other representatives
of size 1 in LRA. The algorithm computes all representatives of size i before it
moves on to those of size i+1. LastLevel will contain all representatives of size i
while NextLevel will contain all representatives of size i + 1 found so far. Every
representative will be expanded by every possible node and checked against
all previously found representatives. The only thing left to prove is that any
representative R can be written as R′ ∪ {v} for some representative R′. Assume
for contradiction that no R′ exists such that R = R′ ∪ {v}. Then let v be the
lexicographically largest element of R, then R \ {v} can not be a representative
so let R′ be the representative of [R \ {v}]≡A . We know that R′ ∪ {v} ≡A R, we
know that |R′∪{v}| ≤ |R| and that R′∪{v} comes before R in a lexicographical
ordering contradicting that R is a representative.

We now argue for the runtime. Let k = cut-bool(A). The three loops loop once
for each pair of element R (of TCA) and vertex v (of TCA). The number of rep-
resentatives are exactly 2k, while |TCA| ≤ 2k, hence at most O(22k) iterations in
total. Inside the innermost for-loop we need to calculate the neighbourhood of R′,
from Corollary 1 we get |R′| ≤ k + 1. Since no node in HA have degree more than
2k we can find NHA(R′) in O(k2k) time. Then to see if R′ ≡A R we compare the
two neighbourhoods in O(2k) time. Then we want to check if the neighbourhood is
contained in the list LNRA, hence we want LNRA to be a sorted list, then search-
ing only takes O(k) steps, however for each step comparing two neighbourhoods
can take O(2k) time. Inserting into the sorted list LNRA takes O(2k), and in the
other lists O(1) time. This means all operations in the inner for-loop can be done
in O(k2k) time, giving a total running-time of O(k23k). �
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Algorithm 1. Initialize datastructure used for finding representative R of [X ]≡A

INPUT: Lists LRA and LNRA and bipartite graph HA

Initialize M to a two dimensional table with |LRA| × |TCA| elements.
for every vertex v of TCA do

for R in LRA do
R′ = R ∪ {v}
find RU in LRA that is linked to the neighbourhood NHA(R′) in LNRA

add a pointer from M [R][v] to RU

end for
end for
OUTPUT: M

Given X ⊆ A we will now address the question of computing the representative
R of [X ]≡A , in other words accessing the entry R of LRA such that X ≡A R. The
naive way to do this is to binary-search in the list LNRA for the set N(X) ∩ A
in time O(2cut-bool(A)cut-bool(A)), but we want to do this in O(|X |) time. To
accomplish this we construct an auxiliary data-structure that maps a pair (R, v),
consisting of one representative R from LRA and one vertex from TCA, to the
representative R′ of the class [R∪{v}]≡A . It will be stored as a two dimensional
table, leading to a constant time lookup.

Lemma 8. Given HA as defined above for any A ⊆ V (G), we can in time
O(23cut-bool(A)cut-bool(A)) compute a datastructure allowing, for any X ⊆ A, to
access in O(|X |) time the entry R of LRA such that X ≡A R.

Proof. Let k = cut-bool(A). First we need to initialize the datastructure used
for finding representatives using Algorithm 1. It goes through 2 for-loops, in total
iterating O(22k) times. To find the neighbourhood of R′ takes O(2kk) time. To
search LNRA for the neighbourhood takes O(2kk) time. All other operations
are done in constant time, thus the runtime is O(23kk).

Given X ⊆ A we find the representative R of [X ]≡A as follows. Initially R will
be empty. Then we iterate over all elements u ∈ X , first looking up v ∈ TCA

such that u and v belong to the same twin class of A, and then replacing R
by the representative of the class [R ∪ {v}]≡A (as given by the auxiliary data
structure). �

4.2 Dynamic Programming for Dominating Set

This section is based on the dynamic programming scheme used in [5] to give
an algorithm for Minimum Dominating Set parameterized by rankwidth. For
example, Lemma 11 is an adaptation from that paper to the current formal-
ism parameterizing by boolean-width. Recall that our algorithm will follow a
bottom-up traversal of the tree Tr, computing at each node w of the tree a table
Tabw, that will store optimal solutions to subproblems related to the cut {A, A}
given by the edge between w and its parent. If we were solving Maximum In-
dependent Set then Tabw would simply be indexed by the equivalence classes
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of ≡A. However, unlike the case of independent sets we note that a set of vertices
D dominating A will include also vertices of A that dominate vertices of A ’from
the outside’. This motivates the following definition.

Definition 7. Let G be a graph and A ⊆ V (G). For X ⊆ A, Y ⊆ A, if A \X ⊆
N(X ∪ Y ) we say that the pair (X, Y ) dominates A.

The main idea for dealing with this complication is to index the table at w by two
sets, one that represents the equivalence class of D∩A under ≡A that dominates
’from the inside’, and one that represents the equivalence class of D ∩ A under
≡A that helps dominate the rest of A ’from the outside’. The subsequent lemma
should indicate why this will work.

Lemma 9. Let G be a graph and A ⊆ V (G). For X ⊆ A, Y, Y ′ ⊆ A, If (X, Y )
dominates A and Y ≡A Y ′ then (X, Y ′) dominates A.

Proof. Since (X, Y ) dominates A we have A \ X ⊆ N(X ∪ Y ). Since Y ≡A Y ′

we have N(Y ) ∩ A = N(Y ′) ∩ A. Then it follows that A \ X ⊆ N(X ∪ Y ′),
meaning (X, Y ′) dominates A. �

For a node w of Tr we denote by {Aw, Aw} , the cut given by the edge between w
and its parent. In the previous subsection we saw how to compute for every node
w of Tr the lists LRAw of representatives of ≡Aw and LRAw

of representatives
of ≡Aw

.

Definition 8. The two-dimensional table Tabw will have index set LRAw ×
LRAw

. For Rw ∈ LRAw and Rw ∈ LRAw
the contents of Tabw[Rw][Rw] after

updating should be:

Tabw[Rw][Rw] def= minS⊆Aw{|S| : S ≡Aw Rw and (S, Rw) dominates Aw}
Note that the table Tabw will have 22cut-bool(Aw) entries. For every node w we
assume that initially every entry Tabw is set to ∞. For a leaf l of Tr, since
Al = {δ(l)}, note that ≡Al

has only two equivalence classes: one containing ∅
and the other containing Al. For Al, we have the same situation with only two
equivalence classes: one containing ∅ and the other containing Al. Therefore,
we set Tabl[∅][∅] := ∞, and Tabl[{δ(l)}][∅] := 1 and Tabl[{δ(l)}][R] := 1 and
Tabl[∅][R] := 0 (where R is the representative of [Al]≡Al

) since the only of the
four combinations that does not dominate Al as in Definition 7 is (∅, ∅). Note
that there would be a special case if δ(l) was an isolated vertex, but isolated
vertices can easily be removed.

For the updating of internal nodes we have a node w with two children a and b
and can assume that the tables Taba and Tabb have been correctly computed. We
need to correctly compute the value of Tabw[Rw][Rw] for each Rw ∈ LRAw and
Rw ∈ LRAw

. Each table can have 22boolw(T,δ) entries. Therefore, the number of
pairs of entries, one from each of Taba and Tabb, could be as much as 24boolw(T,δ).
Looping over all such pairs of entries we would in fact spend time 25boolw(T,δ)

since we would have to compute the right entry in Tabw. Instead we achieve
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23boolw(T,δ) time by looping only over one half of the entries in each of the three
tables, as follows:

for all Ra ∈ LRAa , Rb ∈ LRAb
, Rw ∈ LRAw

do
find the representative Ra of the class [Rb ∪ Rw]≡Aa

find the representative Rb of the class [Ra ∪ Rw]≡Ab

find the representative Rw of the class [Ra ∪ Rb]≡Aw

Tabw[Rw][Rw] = min(Tabw[Rw][Rw],Taba[Ra][Ra] + Tabb[Rb][Rb])
end for

Lemma 10. For a graph G, let A, B, W be a 3-partitioning of V (G), and let
Sa ⊆ A, Sb ⊆ B and Sw ⊆ W . (Sa, Sb ∪ Sw) dominates A and (Sb, Sa ∪ Sw)
dominates B iff (Sa ∪ Sb, Sw) dominates A ∪ B.

Proof. Let S =Sa∪Sb∪Sw. Clearly, (Sa, Sb∪Sw) dominates A iff A\Sa⊆N(S).
Likewise, (Sb, Sa ∪ Sw) dominates B iff B \ Sb ⊆N(S). Therefore, A \ Sa⊆N(S)
and B \Sb⊆N(S) iff A∪B \Sa ∪Sb⊆N(S) iff (Sa ∪SB , Sw) dominates A∪B. �

Lemma 11. The table at node w is updated correctly, namely for any represen-
tative Rw ∈ LRAw and Rw ∈ LRAw

, if Tabw[Rw][Rw] is not ∞ then

Tabw[Rw][Rw] = minS⊆Aw{|S| : S ≡Aw Rw ∧ (S, Rw) dominates Aw}.
Theorem 3. Given an n-vertex graph G and a decomposition tree (T, δ) of G,
the Minimum Dominating Set problem on G can be solved in time O(n(n +
23boolw(T,δ)boolw(T, δ))).

Proof. As a preprocessing step we compute the twin classes for all cuts induced
by the edges of (T, δ) as described in Lemma 6. We then loop over all edges uv of
T . Let {A, A} be the cut of G induced by the leaves of T after removing uv from
T . We compute the graph HA, as well as the lists LRA, LRA, LNRA, and LNRA

as described in Lemma 7, and also the datastructure for finding a representative
of [X ]≡A and [Y ]≡A

as described in Lemma 8. After this loop we subdivide an
arbitrary edge of T by a new root node r to get Tr. We then initialize the table
Tabl for every leaf l of Tr as described after Definition 8. Finally, we scan Tr in
a bottom-up traversal and update the table Tabw for every internal node w as
described right before Lemma 10. After this, the optimum solution can be read
at the (unique) entry Tabr[V (G)][∅] of the table at the root of Tr.

The correctness follows from Lemma 11, when applied to w = r. The complexity
analysis of the computation before setting the root r is a straightforward combina-
tion of those given in Lemmas 6, 7 and 8. After this, the initialization at every leaf
of Tr takes O(1) time. The update at every internal node w of Tr loops through
23boolw(T,δ) triplets, and for each of them spend O(boolw(T, δ)) time finding the
three representatives and O(1) time updating the value of Tabw[Rw][Rw]. �

Solving Maximum Independent Set (MIS) is simpler than solving Minimum Dom-
inating Set. The table Tabw at a node w will then be one-dimensional, indexed by
the equivalence classes of≡Aw , and will store the size of the maximum independent
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set in that class. In the combine step we loop over all pairs of representatives Ra

from Taba and Rb fromTabb and check if there are any edges between Ra and Rb. If
not, then we look up the representative Rw of [Ra∪Rb]≡Aw

and update Tabw[Rw]
by the maximum of its old value and Taba[Ra]+Tabb[Rb]. Combining these ideas
we can solve both the Minimum and Maximum Independent Dominating Set prob-
lems. The runtimes will be dominated by the computation of representatives.

Corollary 2. Given an n-vertex graph G and a decomposition tree (T, δ) of G,
we can solve the Maximum Independent Set, Minimum Independent Dominating
Set and Maximum Independent Dominating Set problems on G in time O(n(n+
23boolw(T,δ)boolw(T, δ))).

5 Conclusion and Perspectives

There are many questions about boolean-width left unanswered. The foremost
concerns possibly its practical applicability. The divide-and-conquer algorithms
given here are practical and easy to implement, but we need fast and good
heuristics computing decomposition trees of low boolean-width. Research in this
direction is underway.

On the theoretical side it would be nice to improve on the 22·OPT -approximation
algorithm to an optimal boolean-width decomposition (c.f. Remark 2) we get by
applying the algorithmcomputing an optimal rank-widthdecomposition [11].Note
that the runtime of that approximation algorithm is FPT when parameterized by
boolean-width. The best we can hope for is an FPT algorithm computing a de-
composition of optimal boolean-width, but any polynomial approximation would
be nice.

The graphs of boolean-width at most one are exactly the graphs of rank-width
one, i.e. the distance-hereditary graphs. What about the graphs of boolean-width
at most two, do they also have a nice characterization? Is there a polynomial-time
algorithm to decide if a graph has boolean-width at most two? More generally, is
there an alternative characterization of the graphs of boolean-width at most k?

We do not know if the bound boolw(G) ≤ 1
4rw(G)2 + 5

4rw(G) + log rw(G)
is tight to a multiplicative factor. For most well-known classes we should have
boolw = O(rw), but this needs to be investigated. Are there well-known graph
classes where boolw = O(log rw)? It has been shown that a k × k grid has rank-
width k [14], and we have seen that its boolean-width lies between 1

6k (proof
Theorem 1) and k + 1 (derived from its clique-width). What is the right value?
All these questions should benefit from the connections between boolean-width
and the field of Boolean matrix theory.
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