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Abstract. We study the parameterized complexity of the following fun-
damental geometric problems with respect to the dimension d:
i) Given n points in R

d, compute their minimum enclosing cylinder.
ii) Given two n-point sets in R

d, decide whether they can be separated
by two hyperplanes.

iii) Given a system of n linear inequalities with d variables, find a max-
imum size feasible subsystem.

We show that (the decision versions of) all these problems are W[1]-
hard when parameterized by the dimension d. Our reductions also give
a nΩ(d)-time lower bound (under the Exponential Time Hypothesis).

Keywords: parameterized complexity, geometric dimension, lower
bounds, minimum enclosing cylinder, maximum feasible subsystem, 2-
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1 Introduction

We study the parameterized complexity of the following three fundamental geo-
metric problems with respect to the dimension of the underlying space: minimum
enclosing cylinder of a set of points in R

d, 2-linear separation of two point sets in
Rd, and maximum-size feasible subsystem of a system of linear inequalities with
d variables. All these problems are NP-hard when the dimension d is unbounded
and all known exact algorithms run in nO(d) time (basically, using brute force),
where n is the total number of objects in the input sets. As with many other ge-
ometric problems in d dimensions, it is widely conjectured that the dependence
on d cannot be removed from the exponent of n. However, no evidence of this
has been given so far.

In terms of parameterized complexity theory the question is whether any of
these problems is fixed-parameter tractable with respect to d, i. e., whether there
exists an algorithm that runs in O(f(d)nc) time, for some computable function f
and some constant c independent of d. Proving a problem to be W[1]-hard with
respect to d, gives a strong evidence that such an algorithm is not possible, under
standard complexity theoretic assumptions. We summarize our results bellow.
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Results. We study the following decision problems:

i) Given n unit balls R
d, decide whether there is a line that stabs all the balls.

(Note that since the balls are unit, this is the decision version of the problem
of computing the minimum enclosing cylinder of a set of n points.)

ii) Given two n-point sets in R
d, decide whether they can be separated by two

hyperplanes.
iii) Given a system of n linear inequalities with d variables and an integer l,

decide whether there is a solution satisfying l of the inequalities.

We prove that all three problems are W[1]-hard with respect to d. This is done by
fpt-reductions from the k-independent set (or clique) problem in general graphs,
which is W[1]-complete [9]. As a side-result, we also show that, when restricted to
equalities, problem (iii) is W[1]-hard with respect to both l and d. The reductions
for problems (i) and (ii) are based on a technique pioneered in Cabello et al. [7],
see next section. With the addition of these two problems this technique shows a
generic trait and its potential as a useful tool for proving hardness of geometric
problems with respect to the dimension.

In all three reductions the dimension is linear in the size k of the independent
set (or clique), hence an no(d)-time algorithm for any of the problems implies
an no(d)-time algorithm for the parameterized k-clique problem, which in turn
implies that n-variable 3SAT can be solved in 2o(n)-time. The Exponential Time
Hypothesis (ETH) [11] conjectures that no such algorithm exists.

Related work. The dimension of geometric problems is a natural parameter for
studying their parameterized complexity. However, there are only few results of
this type: Langerman and Morin [12] gave fixed-parameter tractability results for
the problem of covering points with hyperplanes, while the ‘dual’ parameteriza-
tion of the maximum-size feasible subsystem problem, where parameter l is now
the smallest number of inequalities one has to remove to make the system feasi-
ble is fixed-parameter tractable with respect to both l and d [4]. As for hardness
results, the problems of covering points with balls and computing the volume of
the union of axis parallel boxes have been shown to be W[1]-hard by Cabello et
al. [7] and Chan [8] respectively. We refer the reader to Giannopoulos et al. [10]
for a survey on parameterized complexity results for geometric problems.

The problem of stabbing balls in R
d with one line was shown to be NP-hard

when d is part of the input by Megiddo [14]. This problem is equivalent to
the minimum enclosing cylinder problem for points, see Varadarajan et al. [15].
Exact and approximation algorithms for the latter problem can be found, for
example, in Bădoiu et al. [5].

Megiddo [13] showed that the problem of separating two point sets in R
d

by two hyperplanes is NP-hard. He also showed that the general problem of
separating two point sets by l hyperplanes can be solved in polynomial time
when both d and l are fixed.

The complexity of the maximum-size feasible subsystem problem was studied
in Amaldi and Kann [1]. Several results on the hardness of approximability
can also be found in this paper, as well as in Arora et al. [3]. For exact and
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approximation algorithms for this and several related problems see Aronov and
Har-Peled [2].

2 Preliminaries

2.1 Methodology

As mentioned above, all three hardness results use a reduction from the k-
independent set (or clique) problem. Using the technique in [7], we construct
of a scaffolding structure that restricts the solutions to nk combinatorially dif-
ferent solutions, which can be interpreted as potential k-cliques in a graph with
n vertices. Additional constraint objects will then encode the edges of the input
graph.

The main ideas are the following. We construct geometric instances which
lie in Euclidean space whose dimension depends only on k. Note that the lower
the dependence on k, the better the lower bound we get from the hardness
result. In our case the dependence is linear. The scaffolding structure is highly
symmetric. It is composed of k symmetric subsets of a linear (in n) number of
objects that lie in orthogonal subspaces. Orthogonality together with the specific
geometric properties of each problem allows us to restrict the solutions to nk

combinatorially different solutions. The way of placing the constraint objects is
crucial: each object lies in a 4-dimensional subspace and cancels an exponential
number of solutions.

Model of computation. The geometry of the constructions in Sections 3, 4 will be
described as if exact square roots and expressions of the form sin π

n were available.
To make the reduction suitable for the Turing machine model, the data must be
perturbed using fixed-precision roundings. This can be done with polynomially
many bits in a way similar to the rounding procedure followed in [7,6]. We omit
the details here. The construction in Section 5 uses small integral data.

2.2 Notation

Let [n] = {1, . . . , n} and G([n]), E) be an undirected graph.
In sections 3, 4, it will be convenient to view R

2k as the product of k or-
thogonal planes E1, . . . , Ek, where each Ei has coordinate axes Xi, Yi. The
origin is denoted by o. The coordinates of a point p ∈ R

2k are denoted by
(x1(p), y1(p), . . . , xk(p), yk(p)). The notions of a point and vector will be used
interchangeably. We denote by Ci the unit circle on Ei centered at o.

3 Minimum Enclosing Cylinder (or Stabbing Balls with
One Line)

Given an undirected graph G([n], E) we construct a set B of balls of equal radius
r in R

2k such that B can be stabbed by a line if and only if G has an independent
set of size k.
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For every ball B ∈ B we will also have −B ∈ B. This allows us to restrict
our attention to lines through the origin: a line that stabs B can be translated
so that it goes through the origin and still stabs B. In this section, by a line we
always mean a line through the origin. For a line l, let l be its unit direction
vector.

For each plane Ei, we define 2n 2k-dimensional balls, whose centers ci1, . . . ,
ci2n are regularly spaced on the unit circle Ci. Let ciu ∈ Ei be the center of the
ball Biu, u ∈ [2n], with

xi(ciu) = cos(u − 1)π
n , yi(ciu) = sin(u − 1)π

n .

We define the scaffolding ball set B0 = {Biu, i = 1, . . . , k and u = 1, . . . , 2n}.
We have |B0| = 2nk. All balls in B0 will have the same radius r < 1, to be
defined later.

Two antipodal balls B, −B are stabbed by the same set of lines. A line l stabs
a ball B of radius r and center c if and only if (c · l)2 ≥ ‖c‖2 − r2. Thus, l stabs
B0 if and only if it satisfies the following system of nk inequalities:

(ciu · l)2 ≥ ‖ciu‖2 − r2 = 1 − r2, for i = 1, . . . , k and u = 1, . . . , n.

Consider the inequality asserting that l stabs Biu. Geometrically, it amounts to
saying that the projection li of l on the plane Ei lies in one of the half-planes

H+
iu = {p ∈ Ei|ciu ·p ≥

√
‖ciu‖2 − r2} , H−

iu = {p ∈ Ei|ciu ·p ≤ −
√
‖ciu‖2 − r2}.

Consider the situation on a plane Ei. Looking at all half-planes H+
i1, H

−
i1 , . . . , H

+
in,

H−
in, we see that l stabs all balls Biu (centered on Ei) if and and only if li lies

in one of the 2n wedges ±(H−
i1 ∩ H+

i2), . . . ,±(H−
i(n−1) ∩ H+

in),±(H−
i1 ∩ H−

in); see
Fig. 1. The apices of the wedges are regularly spaced on a circle of radius λ =√

2(1 − r2)/(1 − cos π
n ), and define the set

Ai = {± (
λ cos(2u − 1) π

2n , λ sin(2u − 1) π
2n

) ∈ Ei, u = 1, . . . , n}.
For l to stab all balls Biu, we must have that ‖li‖ ≥ λ. We choose r =√

1 − (1 − cos π
n )/(2k) in order to obtain λ = 1/

√
k.

Since the above hold for every plane Ei, and since l ∈ R
2k is a unit vector,

we have
1 = ‖l‖2 = ‖l1‖2 + · · · + ‖lk‖2 ≥ kλ2 = 1.

Hence, equality holds throughout, which implies that ‖li‖ = 1/
√

k, for every
i ∈ {1, . . . , k}. Hence, for line l to stab all balls in B0, every projection li must
be one of the 2n apices in Ai. Each projection li can be chosen independently.
There are 2n choices, but since l and −l correspond to the same line, the total
number of lines that stab B0 is nk2k−1.

For a tuple (u1, . . . , uk) ∈ [2n]k, we will denote by l(u1, . . . , uk) the stabbing
line with direction vector

1√
k

(
cos(2u1 − 1) π

2n , sin(2u1 − 1) π
2n , . . . , cos(2uk − 1) π

2n , sin(2uk − 1) π
2n

)
.
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Fig. 1. Centers of the balls and their respective half-planes and wedges on a plane Ei,
for n = 4

Two lines l(u1, u2, ..., uk) and l(v1, v2, ..., vk) are said to be equivalent if ui ≡ vi

(mod n), for all i. This relation defines nk equivalence classes L(u1, . . . , uk), with
(u1, . . . , uk) ∈ [n]k, where each class consists of 2k−1 lines.

From the discussion above, it is clear that there is a bijection between the
possible equivalence classes of lines that stab B0 and [n]k.

3.1 Constraint Balls

We continue the construction of the ball set B by showing how to encode the
structure of G. For each pair of distinct indices i 	= j (1 ≤ i, j ≤ k) and for each
pair of (possibly equal) vertices u, v ∈ [n], we define a constraint set Buv

ij of balls
with the property that (all lines in) all classes L(u1, . . . , uk) stab Buv

ij except
those with ui = u and uj = v. The centers of the balls in Buv

ij lie in the 4-space
Ei × Ej . Observe that all lines in a particular class L(u1, . . . , uk) project onto
only two lines on Ei × Ej . We use a ball Buv

ij (to be defined shortly) of radius r
that is stabbed by all lines l(u1, . . . , uk) except those with ui = u and uj = v.
Similarly, we use a ball Buv̄

ij that is stabbed by all lines l(u1, . . . , uk) except those
with ui = u and uj = v̄, where v̄ = v + n. Our constraint set consists then of
the four balls

Buv
ij = {±Buv

ij ,±Buv̄
ij }.

We describe now the placement of a ball Buv
ij . Consider a line l = l(u1, . . . , uk)

with ui = u and uj = v. The center cuv
ij of Buv

ij will lie on a line z ∈ Ei × Ej

that is orthogonal to l, but not orthogonal to any line l(u1, . . . , uk) with ui 	= u
or uj 	= v. We choose the direction z of z as follows:
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xi(z) = μ(cos θi − 3n sin θi), yi(z) = μ(sin θi + 3n cos θi),

xj(z) = μ(− cos θj − 6n2 sin θj), yj(z) = μ(− sin θj + 6n2 cos θj),

where θi = (2u − 1) π
2n , θj = (2u − 1) π

2n , and μ = 1/(9n2 + 36n4 + 2). It is
straightforward to check that l · z = 0.

Let ω be the angle between l′ and z. We have the following lemma, whose
proof can be found in the appendix:

Lemma 1. For any line l′ = l(u1, . . . , uk), with ui 	= u or uj 	= v the angle ω
between l′ and z satisfies | cosω| > μ√

k
.

This lower bound on | cosω| helps us place Buv
ij sufficiently close to the origin

so that it is still intersected by l′, i. e., l′ lies in one of the half-spaces cuv
ij · p ≥√

‖cuv
ij ‖2 − r2 or cuv

ij · p ≤ −
√
‖cuv

ij ‖2 − r2, p ∈ R
2k.

We claim that any point cuv
ij on z with r < ‖cuv

ij ‖ <
√

k
k−μ2 r will do. For

any position of cuv
ij on z with ‖cuv

ij ‖ > r, we have (cuv
ij · l)2 = 0 < ‖cuv

ij ‖2 − r2,
i. e., l does not stab Buv

ij . On the other hand, as argued above we need that

|cuv
ij · l′| ≥

√
‖cuv

ij ‖2 − r2. Since cuv
ij · l′ = cosω · ‖cuv

ij ‖, we have the condition

| cosω| ≥
√

1 − r2

‖cuv
ij ‖2 . By Lemma 1 we know that | cosω| > μ√

k
, hence by

choosing ‖cuv
ij ‖ so that μ√

k
>

√
1 − r2

‖cuv
ij ‖2 we are done.

Reduction. Similarly to [7], the structure of the input graph G([n], E) can now
be represented as follows. We add to B0 the 4n

(
k
2

)
balls in BV =

⋃Buu
ij , 1 ≤

u ≤ n, 1 ≤ i < j ≤ k, to ensure that all components ui in a solution (class of
lines L(u1, . . . , uk)) are distinct. For each edge uv ∈ E we also add the balls
in k(k − 1) sets Buv

ij , with i 	= j. This ensures that the remaining classes of
lines L(u1, . . . , uk) represent independent sets of size k. In total, the edges are
represented by the 4k(k−1)|E| balls in BE =

⋃Buv
ij , uv ∈ E, 1 ≤ i, j ≤ k, i 	= j.

The final set B = B0 ∪ BV ∪ BE has 2nk + 4
(
k
2

)
(n + 2|E|) balls.

As noted in above, there is a bijection between the possible equivalence classes
of lines L(u1, . . . , uk) that stab B and the tuples (u1, . . . , uk) ∈ [n]k. The con-
straint sets of balls exclude tuples with two equal indices ui = uj or with indices
ui, uj when uiuj ∈ E, thus, the classes of lines that stab B represent exactly
the independent sets of G. Thus, we have the following:

Lemma 2. Set B can be stabbed by a line if an only if G has an independent
set of size k.

From this lemma and since this is an fpt-reduction, we conclude:

Theorem 1. Deciding whether n unit balls in R
d can be stabbed with one line

is W[1]-hard with respect to d.
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4 Separating Two Point Sets by Two Hyperplanes

Let P and Q be two point sets in R
d. Two hyperplanes split space generically into

four “quarters”. There are three different versions of what it means to separate
P and Q by two hyperplanes:

(a) Each quarter contains only points of one set.
(b) The set Q is contained in one quarter only, and set P can populate the

remaining three quarters.
(c) Same as (b), but the roles of P and Q are not fixed in advance.

In the following we work only with version (a), which is the most general. For
the point sets that we construct, it will turn out that if a separation according
to (a) exists, it will also be valid by (b) and (c). Thus, our reduction works for
all three versions of the problem.

Separation according to (a) is equivalent to requiring that every segment pq
between a point p ∈ P and a point q ∈ Q is intersected by one of the two
hyperplanes. Note that we restrict our attention to strict separation, i. e., no
hyperplane can go through a point of P or Q. (The result extends to weak
separation; see the end of this section.)

Given an undirected graph G0([n0], E0) with n0 ≥ 2 and an integer k, we
construct two point sets P and Q in R

2k with the property that they can be
separated by two hyperplanes if and only if G0 has an independent set of size
k. For technical reasons, we duplicate the vertices of the graph: we build a new
graph with n = 2n0 vertices. Every vertex u ∈ [n0] of the original graph gets
a second copy u′ := u + n0, and for every original edge uv, there are now four
edges uv, uv′, u′v, u′v′. The new graph G([n], E) has an independent set of size
k if and only if the original graph has such a set.

On each plane Ei, i = 1, . . . , k, we define a set Pi of n points regularly spaced
on the circle Ci:

Pi = { piu ∈ Ei | xi(piu) = cos(u − 1)2π
n , yi(piu) = sin(u − 1)2π

n , u = 1, . . . , n }.
For an index u ∈ [n], it will be convenient to define its antipodal and almost
antipodal partner u′ = u + n

2 and ū = u + n
2 + 1 respectively. (All indices are

modulo n). Thus we are extending the notation u′ to all (original and new)
vertices u, with (u′)′ = u.

The scaffolding is defined by two sets P =
⋃

Pi and Q0 = {o}. We have
|P | = nk.

Since the points in each Pi are regularly spaced on Ci, a hyperplane that
does not contain the origin can intersect at most n/2 segments opiu on each
plane Ei. Hence, at least two hyperplanes are needed to separate P and Q0.
Actually, two suffice. One hyperplane can intersect the n/2 consecutive (in a
counter-clockwise order) segments opiūi , . . . , opiui on each Ei, for a choice of
ui ∈ [n] (see Fig. 2). There is an infinite number of such hyperplanes, forming
an equivalence class H(u1, . . . , uk). Since the planes E1, . . . , Ek are orthogo-
nal, each ui independently defines which of the n/2 consecutive segments on
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cuv
ij

a

pi1

pi2

pi8
pi9

pi10

H(u1, . . . , uk)

H(u′
1, . . . , u

′
k)

H

o

Fig. 2. Point set Pi, for n = 10, a hyperplane H in the class H(u1, . . . , uk) and the
corresponding boundary hyperplane H(u1, . . . , uk) for ui = 2. The placement of quv

ij is
shown in a two-dimensional analog.

Ei are intersected by a hyperplane in H(u1, . . . , uk). The remaining n/2 seg-
ments −opiūi , . . . ,−opiui on each Ei can then be intersected by any hyperplane
in the ‘complementary’ class H(u′

1, . . . , u
′
k) = {−H | H ∈ H(u1, . . . , uk)}. Ef-

fectively, every hyperplane in H(u1, . . . , uk) separates Q0 from the kn
2 -point set

P (u1, . . . , uk) = {p1ū1 , . . . , p1u1} ∪ · · · ∪ {pkūk
, . . . , pkuk

}. Concluding, there are
nk possible partitions of P into two groups, each separated from Q0 by one
hyperplane, in correspondence to the nk possible tuples (u1, . . . , uk) ∈ [n]k:

Lemma 3. The possible pairs of hyperplanes that separate P from Q0 are of the
form h, h′ with h ∈ H(u1, . . . , uk) and h′ ∈ H(u′

1, . . . , u
′
k), for some (u1, . . . , uk)

∈ [n]k.

Since by construction, the graph G has the property that uv ∈ E iff u′v′ ∈ E,
the separating pairs of hyperplanes h, h′ can be used to encode the potential
independent sets {u1, . . . , uk}: it does not matter which of h and h′ we choose,
the corresponding vertex set will be an independent set in both cases, or a
dependent set in both cases.

4.1 Constraint Points

For each pair of indices i 	= j (1 ≤ i, j ≤ k) and for each pair of (possibly
equal) vertices u, v ∈ [n], we will define a constraint point quv

ij ∈ Ei × Ej with
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the following property: in every class H(u1, . . . , uk), there is a hyperplane that
separates {quv

ij } from P (u1, . . . , uk) except those classes with ui = u and uj = v
(in which case no such hyperplane exists). In this way, no partition of P into
sets P (u1, . . . , uk) and P (u′

1, . . . , u
′
k) with ui = u and uj = v will be possible

such that each set is separated from Q0 ∪ {quv
ij } by a hyperplane.

Let H(u1, . . . , uk) be the unique hyperplane through the 2k affinely indepen-
dent points p1u1 , p1ū1 , . . . , pkuk

, pkūk
. Note that H(u1, . . . , uk) is not in the class

H(u1, . . . , uk), since we want strict separation; informally, H(u1, . . . , uk) lies at
the boundary of H(u1, . . . , uk), with an appropriate parameterization of hyper-
planes: moving H(u1, . . . , uk) towards the origin by a sufficiently small amount
leads to a hyperplane in H(u1, . . . , uk).

We define the constraint point quv
ij as the centroid of piu, piū, pjv, pjv̄. Its

nonzero coordinates are

xi =
cos θi + cos θ̄i

4
, yi =

sin θi + sin θ̄i

4
, xj =

cos θj + cos θ̄j

4
, yj =

sin θj + sin θ̄j

4
,

for θi = (u − 1)2π
n , θ̄i = (ū − 1)2π

n , θj = (v − 1)2π
n , and θ̄j = (v̄ − 1)2π

n .

Lemma 4. If ui = u and uj = v, no hyperplane in H(u1, . . . , uk) separates quv
ij

from P (u1, . . . , uk).

Proof. Such a hyperplane would in particular have to separate point quv
ij from

piu, piū, pjv, pjv̄, which is impossible.

To see that quv
ij does not “destroy” the classes H(u1, . . . , uk) with ui 	= u or

uj 	= v, let us consider a fixed pair of indices i 	= j. All points quv
ij , (u, v ∈ [n]) lie

on a sphere Sij around the origin in Ei ×Ej (of radius
√

1/2 · sin π
n ). The inter-

section H(u1, . . . , uk) ∩ (Ei × Ej) is a 3-dimensional hyperplane F
uiuj

ij uniquely
defined by ui and uj : F

uiuj

ij goes through the four points piui , piūi , pjuj , pjūj .
Moreover, q

uiuj

ij is the point where F
uiuj

ij touches the sphere Sij . (This follows
from symmetry considerations, and it can also be checked by a straightforward
calculation that the vector q

uiuj

ij is perpendicular to the hyperplane F
uiuj

ij .) This
allows us to conclude:

Lemma 5. If ui 	= u or uj 	= v, then quv
ij lies on the same side of the hyperplane

H(u1, . . . , uk) as the origin o.

Proof. The point quv
ij lies on the sphere Sij ∈ Ei × Ej centered at the origin.

This sphere lies on the same side of H(u1, . . . , uk) as the origin, except for the
point where it touches H(u1, . . . , uk). But this touching point q

uiuj

ij is different
from quv

ij .

This means that quv
ij and the points in P (u1, . . . , uk) are on different sides of

the hyperplane H(u1, . . . , uk) (except for the points p1u1 , p1ū1 , . . . , pkuk
, pkūk

,
which lie on it). Since quv

ij /∈ H(u1, . . . , uk), every sufficiently close translate of
H(u1, . . . , uk) in H(u1, . . . , uk) with ui 	= u or uj 	= v separates P (u1, . . . , uk)
and {quv

ij }.
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Reduction. Similarly to the reduction in Section 3, we encode the structure of G
by adding to Q0 the n

(
k
2

)
constraint points quu

ij (1 ≤ u ≤ n, 1 ≤ i < j ≤ k) and
2|E|(k

2

)
constraint points quv

ij (uv ∈ E and i 	= j). Let Q be the resulting point
set. Then the possible partitions of P into two sets, each separated from Q by
one hyperplane, represent the independent sets of G.

Lemma 6. Sets P and Q can be separated by two hyperplanes if and only if G
has an independent set of size k.

From this lemma, and since this is an fpt-reduction, we conclude with the fol-
lowing:

Theorem 2. Deciding whether two point sets P, Q in R
d can be separated by

two hyperplanes is W[1]-hard with respect to d.

Remark. The construction above depends on requiring strict separation, i. e.,
the separating hyperplanes are not allowed to go through the given points. For
the fixed-precision approximation that is necessary to make the reduction suit-
able for a Turing machine, we have to move the constraint points quv

ij a little
bit further away from the center before rounding them to rational coordinates.
The statement of Lemma 4 is refined and excludes the possibility of separating
P (u1, . . . , uk) from the set {o, quv

ij } rather than from the point quv
ij alone.

These modifications are also suitable for the version of the problem where
weak separation is allowed, i. e., points on the separation boundary can be from
P or Q arbitrarily. In this case

(
2k
2

)
additional points on the coordinate planes

close to the origin must be added to Q0, in order to eliminate the coordinate
hyperplanes as potential separating hyperplanes.

5 Maximum-Size Feasible Subsystem

We first consider the special problem: Given a system of linear equations find
a solution that satisfies as many equations as possible. (Note that this problem
is dual to the problem of covering as many points as possible by a hyperplane
through the origin.) The decision version of this problem is as follows: Given a
set of n hyperplanes in R

d and an integer l, decide whether there exists a point
in R

d that is covered by at least l of the hyperplanes.
In the following, x = (x1, . . . , xk) ∈ R

k denotes a k-dimensional vector (a
notation that is slightly different from the one used in the previous sections).
We identify the grid [n]k with the set of vectors in R

k with integer coordinates
in [n].

For a set H of hyperplanes in R
k and a point x ∈ R

k we define

depth(x,H) = |{h ∈ H | x ∈ h}|.
Given an undirected graph G([n], E) and k ∈ N, we will now construct a set
HG,k of nk + 2|E|(k

2

)
hyperplanes in R

k such that G has a clique of size k if and
only if there is a point x ∈ R

k with depth(x,HG,k) = k +
(
k
2

)
.
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For 1 ≤ i ≤ k and 1 ≤ v ≤ n we define the hyperplane hv
i = {x | xi = v}.

The scaffolding hyperplane set H0 = { hv
i | 1 ≤ i ≤ k, 1 ≤ v ≤ n } consists of nk

hyperplanes. Any point x is contained in at most k hyperplanes in H0; equality
is realized for the points in [n]k:

Lemma 7. depth(x,H0) ≤ k for any x ∈ R
k, and depth(x,H0) = k if and

only if x ∈ [n]k.

For 1 ≤ i < j ≤ k and 1 ≤ u, v ≤ n we define the hyperplane huv
ij = {x |

(xi − u) + n(xj − v) = 0 }. This hyperplane contains only those points x of the
grid for which xi = u and xj = v:

Lemma 8. x ∈ huv
ij ∩ [n]k if and only if xi = u and xj = v.

Proof. Assume x ∈ huv
ij ∩ [n]k, i. e. (xi − u) + n(xj − v) = 0 and xi, xj ∈ [n]. If

xi 	= u, the left-hand side of the equation is not divisible by n and thus cannot
be 0. Therefore, xi = u and thus, xj = v. The other direction is obvious.

For 1 ≤ i < j ≤ k we define the set HE
ij = { huv

ij | uv ∈ E or vu ∈ E } of 2|E|
hyperplanes. All these hyperplanes are parallel; thus a point is contained in at
most one hyperplane of HE

ij . By Lemma 8, a point x ∈ [n]k is contained in a
hyperplane of HE

ij if and only if xixj is an edge of E.
We define the set HE =

⋃
1≤i<j≤k HE

ij consisting of 2|E|(k
2

)
hyperplanes. From

the above, we have the following facts:

Lemma 9. (a) depth(x,HE) ≤ (
k
2

)
for any x ∈ R

k.
(b) Let x ∈ [n]k. Then depth(x,HE) = |{ (i, j) | 1 ≤ i < j ≤ k, xixj ∈ E }|
(c) Let x ∈ [n]k. Then depth(x,HE) =

(
k
2

)
iff {x1, . . . , xk} is a k-clique in G.

For the set HG,k = H0 ∪HE , Lemmas 7 and 9 immediately imply:

Lemma 10. depth(x,HG,k) = k +
(
k
2

)
if and only if x ∈ [n]k and {x1, . . . , xk}

is a k-clique in G.

Note that the above construction of the set HG,k is an fpt-reduction with respect
to both the depth of the set of hyperplanes, i. e., the maximum number of hy-
perplanes covering any point, and the dimension. Hence, we have the following:

Theorem 3. Given a set of n of linear equations on d variables and an integer
l, deciding whether there exists a solution that satisfies l of the equations is
W[1]-hard with respect to both l and d.

Replacing each equation by 2 inequalities, an instance of the above problem is
transformed into an instance with linear inequalities such that there exists a
solution satisfying l out of the n equations of the original instance if and only
if there exists a solution satisfying n + l out of the 2n inequalities of the final
instance; the number of variables stays the same. Hence, we have the following:

Theorem 4. Given a set of n linear inequalities on d variables and an integer
l, deciding whether there exists a solution that satisfies l of the inequalities is
W[1]-hard with respect to d.
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