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Abstract. The bandwidth of a graph G on n vertices is the minimum b such that
the vertices of G can be labeled from 1 to n such that the labels of every pair of
adjacent vertices differ by at most b.

In this paper, we present a 2-approximation algorithm for the Bandwidth prob-
lem that takes worst-case O(1.9797n) = O(30.6217n) time and uses polynomial
space. This improves both the previous best 2- and 3-approximation algorithms
of Cygan et al. which have an O∗(3n) and O∗(2n) worst-case time bounds, re-
spectively. Our algorithm is based on constructing bucket decompositions of the
input graph. A bucket decomposition partitions the vertex set of a graph into or-
dered sets (called buckets) of (almost) equal sizes such that all edges are either
incident on vertices in the same bucket or on vertices in two consecutive buck-
ets. The idea is to find the smallest bucket size for which there exists a bucket
decomposition. The algorithm uses a simple divide-and-conquer strategy along
with dynamic programming to achieve this improved time bound.

1 Introduction

Let G = (V, E) be a graph on n vertices and b be an integer. The Bandwidth problem
asks whether the vertices of G can be labeled from 1 to n such that the labels of every
pair of adjacent vertices differ by at most b. The Bandwidth problem is a special case of
the Subgraph Isomorphism problem, as it can be formulated as follows: Is G isomorphic
to a subgraph of P b

n? Here, P b
n denotes the graph obtained from Pn (the path on n

vertices) by adding an edge between every pair of vertices at distance at most b in Pn.
A typical scenario in which the Bandwidth problem arises is that of minimizing the

bandwidth of a symmetric matrix M to allow for more efficient storing and manipulat-
ing procedures [11]. The bandwidth of M is b if all its non-zero entries are at a distance
of at most b from the diagonal. Applying permutations on the rows and columns to re-
duce the bandwidth of M corresponds then to reordering the vertices of a graph whose
adjacency matrix corresponds to M by replacing all non-zero entries by 1.
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The Bandwidth problem is NP-hard [19], even for trees of maximum degree at most
three [14] and caterpillars with hair length at most three [17]. Even worse, approximat-
ing the bandwidth within a constant factor is NP-hard, even for caterpillars of degree
three [21]. Further, it is known that the problem is hard for every fixed level of the
W-hierarchy [3] and unlikely to be solvable in f(b)no(b) time [4].

Faced with this immense intractability, several approaches have been proposed in the
literature for the Bandwidth problem. The first (polynomial time) approximation algo-
rithm with a polylogarithmic approximation factor was provided by Feige [10]. Later,
Dunagan and Vempala gave an O(log3 n

√
log log n)-approximation algorithm. The

current best approximation algorithm achieves an O(log3 n(log log n)1/4)-approxima-
tion factor [16]. For large b, the best approximation algorithm is the probabilistic algo-
rithm of Blum et al. [2] which has an O(

√
n/b log n)-approximation factor.

Super-polynomial time approximation algorithms for the Bandwidth problem have
also been widely investigated [5,8,9,12]. Feige and Talwar [12], and Cygan and
Pilipczuk [8] provided subexponential time approximation schemes for approximating
the bandwidth of graphs with small treewidth. For general graphs, a 2-approximation
algorithm with a running time of O∗(3n)1 is easily obtained by combining ideas from
[11] and [12] (as noted in [5]). Further, Cygan et al. [5] provide a 3-approximation algo-
rithm with a running time of O∗(2n), which they generalize to a (4r−1)-approximation
algorithm (for any positive integer r) with a running time of O∗(2n/r).

Concerning exact exponential time algorithms, the fastest polynomial space algo-
rithm is still the elegant O∗(10n) time algorithm of Feige [11]. When allowing ex-
ponential space, this bound is improved in a sequence of algorithms by Cygan and
Pilipczuk; their O∗(5n) time algorithm uses O∗(2n) space [6], their O(4.83n) time al-
gorithm uses O∗(4n) space [7], and their O(4.473n) time algorithm uses O(4.473n)
space [8]. The most practical of these algorithms is probably the O∗(5n) time algo-
rithm as the space requirements of the other ones seems forbiddingly large for practical
applications. The Bandwidth problem can also be solved exactly in O(nb) time using
dynamic programming [18,20].

Another recent approach to cope with the intractability of Bandwidth is through the
concept of hybrid algorithms, introduced by Vassilevska et al. [22]. They gave an al-
gorithm that after a polynomial time test, either computes the minimum bandwidth
of a graph in O∗(4n+o(n)) time, or provides a polylogarithmic approximation ratio in
polynomial time. This result was recently improved by Amini et al. [1] who give an
algorithm which, after a polynomial time test, either computes the minimum bandwidth
of a graph in O∗(4n) time, or provides an O(log3/2 n)-approximation in polynomial
time.

Our Results. Our main result is a 2-approximation algorithm for the Bandwidth prob-
lem that takes worst-case O(1.9797n) time (Theorem 1). This improves the O∗(3n)
time bound achieved by Cygan et al. [5] for the same approximation ratio. Also, the
previous best 3-approximation algorithm of Cygan and Pilipczuk [8] has an O∗(2n)
time bound. Therefore, our 2-approximation algorithm is also faster than the previous
best 3-approximation algorithm.

1 O∗(f(n)) denotes nO(1)O(f(n)).
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Our algorithm is based on constructing bucket decompositions of the input graph.
A bucket decomposition partitions the vertex set of a graph into ordered sets (called
buckets) of (almost) equal sizes such that all edges are either incident on vertices in the
same bucket or on vertices in two consecutive buckets. The idea is to find the smallest
bucket size for which there exists a bucket decomposition. This gives a 2-approximation
for the Bandwidth problem (Lemmas 2 and 1). The algorithm uses a simple divide-
and-conquer strategy along with dynamic programming to achieve this improved time
bound.

2 Preliminaries

Let G = (V, E) be a graph on n vertices. A linear arrangement of G is a bijective
function L : V → [n] = {1, . . . , n}, that is a numbering of its vertices from 1 to n.
The stretch of an edge (u, v) is the absolute difference between the numbers assigned
to its endpoints |L(u)−L(v)|. The bandwidth of a linear arrangement is the maximum
stretch over all the edges of G and the bandwidth of a graph is the minimum bandwidth
over all linear arrangements of G.

A bucket arrangement of G is a placement of its vertices into buckets such that for
each edge, its endpoints are either in the same bucket or in two consecutive buckets [12].
The buckets are linearly ordered and numbered from left to right. A capacity vector C
is a vector of positive integers. The length of a capacity vector C = (C[1], . . . , C[k]) is
k and its size is

∑k
i=1 C[i]. Given a capacity vector C of size n, a C-bucket arrangement

of G is a bucket arrangement in which exactly C[i] vertices are placed in bucket i, for
each i. For integers n and � with � < n/2, an (n, �)-capacity vector is a capacity vector

(a, �, �, . . . , �,
︸ ︷︷ ︸
�n

� �−2 times

b)

of size n such that a, b ≤ �. We say that an (n, �)-capacity vector is left-packed if a = �
and balanced if |a − b| = 1.

Let X ⊆ V be a subset of the vertices of G. We denote by G[X ] the subgraph
of G induced on X , and by G \ X the subgraph of G induced on V \ X . The open
neighborhood of a vertex v is denoted by NG(v) and the open neighborhood of X is
NG(X) := (

⋃
v∈X NG(v)) \ X .

3 Exponential Time Algorithms for Approximating Bandwidth

We first establish two simple lemmas that show that constructing a bucket arrangement
can approximate the bandwidth of a graph.

Lemma 1. Let G be a graph on n vertices, and let C be an (n, �)-capacity vector. If
there exists a C-bucket arrangement for G then the bandwidth of G is at most 2� − 1.

Proof. Given a C-bucket arrangement for G, create a linear arrangement respecting the
bucket arrangement (if u appears in a smaller numbered bucket thanv, thenL(u)<L(v)),
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where vertices in the same bucket are numbered in an arbitrary order. As the capacity
of each bucket is at most � and each edge spans at most two consecutive buckets, the
maximum edge stretch in the constructed linear arrangement is at most 2� − 1. �	
Lemma 2. Let G be a graph on n vertices, and let C be an (n, �)-capacity vector. If
there exists no C-bucket arrangement for G then the bandwidth of G is at least � + 1.

Proof. Suppose there exists a linear arrangement L of G of bandwidth at most �. Con-
struct a bucket arrangement placing the first C[1] vertices of L into the first bucket, the
next C[2] vertices of L into the second bucket, and so on. In the resulting bucket ar-
rangement, no edge spans more than two consecutive buckets. Therefore, a C-bucket
arrangement exists for G, a contradiction. �	
We will use the previous fastest 2-approximation algorithm of Cygan et al. [5] as a
subroutine. For completeness, we describe this simple algorithm here.

Proposition 1 ([5]). There is a polynomial space 2-approximation algorithm for the
Bandwidth problem that takes O∗(3n) time on connected graphs with n vertices.

Proof. Let G be a connected graph on n vertices. For � increasing from 1 to �n/2�,
the algorithm does the following. Let C be an (n, �)-capacity vector. The algorithm
goes over all the k =

⌈
n
�

⌉
choices for assigning the first vertex to some bucket. The

algorithm then chooses an unassigned vertex u which has at least one neighbor that
has already been assigned to some bucket. Assume that a neighbor of u is assigned to
the bucket i. Now there are at most three choices of buckets (i − 1, i, and i + 1) for
assigning vertex u. Some of these choices may be invalid either because of the capacity
constraints of the bucket or because of the previous assignments of (other) neighbors
of u. If the choice is valid, the algorithm recurses by assigning u to that bucket. Let
�′ be the smallest integer for which the algorithm succeeds, in some branch, to place
all vertices of G into buckets in this way. Then, by Lemma 1, G has bandwidth at most
2�′−1 and by Lemma 2, G has bandwidth at least �′. Thus, the algorithm outputs 2�′−1,
which is a 2-approximation for the bandwidth of G. As the algorithm branches into at
most 3 cases for each of the n vertices (except the first one), and all other computations
only contribute polynomially to the running time of the algorithm, this algorithm runs
in worst-case O∗(3n) time using only polynomial space. �	
We now show another simple algorithm based on a divide-and-conquer strategy that
given an (n, �)-capacity vector C, decides whether a C-bucket arrangement exists for a
connected graph G.

Proposition 2. Let G be a connected graph on n vertices and C be an (n, �)-capacity
vector with � < n/2. There exists an algorithm that can decide if G has a C-bucket

arrangement in O∗
((

n
�

) · (n/2
�

) · 24� · 3n/4
)

time.

Proof. Let k =
⌈

n
�

⌉
be the number of buckets in the C-bucket arrangement. Number

the buckets from 1 to k from left to right according to the bucket arrangement. Select
a bucket index i such that the sum of the capacities of the buckets numbered strictly
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smaller than i and the one for the buckets numbered strictly larger than i are both at
most n/2.

The algorithm goes over all possible
(
n
�

)
choices of filling bucket i with � vertices.

Let X be a set of � vertices assigned to the bucket i. Given a connected component of
G\X , note that all the vertices of this connected component must be placed either only
in buckets 1 to i − 1 or buckets i + 1 to k. Note that each connected component of
G \ X contains at least one vertex that is adjacent to a vertex in X (as G is connected).
Therefore, for each connected component of G \ X , at least one vertex is placed into
the bucket i − 1 or i + 1. As the capacity of each bucket is at most �, G \ X has at
most 2� connected components, otherwise there is no C-bucket arrangement where X
is assigned to the bucket i. Thus, there are at most 22� choices for assigning connected
components of G\X to the buckets 1 to i−1 and i+1 to k. Some of these assignments
might be invalid as they might violate the capacity constraints of the buckets. We discard
these invalid assignments.

For each choice of X and each valid assignment of the connected components of G\
X to the left or right of bucket i, we have now obtained two independent subproblems:
one subproblem for the buckets {1, . . . , i − 1} and one subproblem for the buckets
{i + 1, . . . , k}. These subproblems have sizes at most n/2. Consider the subproblem
for the buckets {1, . . . , i − 1} (the other one is symmetric) and let Y be the set of
vertices associated to these buckets. Let Z ⊆ Y be the set of vertices in Y that have at
least one neighbor in X . Now, add edges to the subgraph G[Y ] such that Z becomes a
clique. This does not change the problem, as all the vertices in Z must be assigned to the
bucket i−1, and G[Y ] becomes connected. This subproblem can be solved recursively,
ignoring those solutions where vertices in Z are not all assigned to the bucket i − 1.

The algorithm performs the above recursion until it reaches subproblems of size
at most n/4, which corresponds to two levels in the corresponding search tree. On
instances of size at most n/4, the algorithm invokes the algorithm of Proposition 1,
which takes worst-case O∗(3n/4) time.

Let T (n) be the running time needed for the above procedure to check whether a
graph with n vertices has a bucket arrangement for an (n, �)-capacity vector. Then,

T (n) ≤
(

n

�

)
· 22� ·

(
n/2
�

)
· 22� · 3n/4 · nO(1) = O∗

((
n

�

)
·
(

n/2
�

)
· 24� · 3n/4

)
.

This completes the proof of the proposition. �	
Combining Proposition 2 with Lemmas 1 and 2, we have the following corollary for
2-approximating the bandwidth of a graph.

Corollary 1. There is an algorithm that, for a connected graph G on n vertices and an
integer � ≤ n can decide whether the bandwidth of G is at least � + 1 or at most 2�− 1
in O∗

((
n
�

) · (n/2
�

) · 24� · 3n/4
)

time.

Proof. If � ≥ n/2, the bandwidth of G is at most 2� − 1. Otherwise, use Proposition 2
with G and some (n, �)-capacity vector C to decide if there exists a C-bucket arrange-
ment for G. If so, then the bandwidth of G is at most 2� − 1 by Lemma 1. If not, then
the bandwidth of G is at least � + 1 by Lemma 2. �	
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The running time of the algorithm of Corollary 1 is interesting for small values of �.
Namely, if � ≤ n/26, the running time is O(1.9737n). In the remainder of this section,
we improve Proposition 2. We now concentrate on the cases where k = �n/�� ≤ 26.

Let C be an (n, �)-capacity vector. A partial C-bucket arrangement of an induced
subgraph G′ of G is a placement of vertices of G′ into buckets such that: (a) each vertex
in G′ is assigned to a bucket or to a union of two consecutive buckets, (b) the endpoints
of each edge in G′ are either in the same bucket or in two consecutive buckets, and (c) at
most C[i] vertices are placed in each bucket i. Let B be a partial C-bucket arrangement
of an induced subgraph G′. We say that a bucket i is full in B if the number of vertices
that have been assigned to it equals its capacity (= C[i]). We say that two consecutive
buckets i and i + 1 are jointly full in B if a vertex subset Y of cardinality equal to the
sum of the capacities of i and i+1 have been assigned to these buckets (i.e., each vertex
v ∈ Y is restricted to belong to the union of buckets i or i + 1, but which among these
two buckets v belongs is not fixed). We say that a bucket is empty in B if no vertices
have been assigned to it.

Proposition 3. Let G be a graph on n vertices and C be a capacity vector of size n
and length k, where k is an integer constant. Let B = B(G′) be a partial C-bucket
arrangement of some induced subgraph G′ of G such that in B some buckets are full,
some pairs of consecutive buckets are jointly full, and all other buckets are empty. If in
B no 3 consecutive buckets are empty, then it can be decided if B can be extended to a
C-bucket arrangement in polynomial time.

Proof Outline. Let G = (V, E) and G′ = (V ′, E′). Let r be the number of connected
components of G \ V ′ (the graph induced on V \ V ′), and let Vl represent the set of
vertices in the lth connected component of G \ V ′.

If the bucket i is full in B, let Xi denote the set of vertices assigned to it. If the buck-
ets i and i + 1 are jointly full in B, let Xi,i+1 denote the set of vertices assigned to the
union of buckets i and i+1. We use dynamic programming to start from a partial bucket
arrangement satisfying the above conditions to construct a C-bucket arrangement. Dur-
ing its execution, the algorithm assigns vertices to the buckets which are empty in B.
We only present an outline of the dynamic programming algorithm here. The dynamic
programming algorithm constructs a table T [. . . ], which has the following indices.

– An index p, representing the subproblem on the first p connected components of
G \ V ′.

– For every empty bucket i in B such that both the buckets i − 1 and i + 1 are full, it
has an index si, representing the number of vertices assigned to the bucket i.

– For every two consecutive empty buckets i and i + 1 in B, it has indices ti,i+1, xi,
and xi+1. The index ti,i+1 represents the total number of vertices assigned to the
buckets i and i + 1. The index xi represents the number of vertices assigned to the
buckets i and i + 1 that have at least one neighbor in the bucket i − 1. The index
xi+1 represents the number of vertices assigned to the buckets i and i + 1 that have
at least one neighbor in the bucket i + 2.

– For every two consecutive buckets i, i + 1 which are jointly full in B, it has indices
fi and fi+1 representing the number of vertices assigned to these buckets that have
at least one neighbor in the bucket i − 1 (fi) or in the bucket i + 2 (fi+1).
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Table T [. . .] is initialized to false everywhere, except for the entry corresponding to
all-zero indices, which is initialized to true. The rest of the table is built by increasing
values of p as described below. Here, we only write those indices that differ in the
looked-up table entries and the computed table entry (i.e., indices in the table that play
no role in a given recursion are omitted). We also ignore the explicit checking of the
invalid indices in the following description. The algorithm looks at the vertices which
are neighbors (in G) of the vertices in Vp and have already been assigned.

If the vertices in Vp have at least one neighbor in each of the full buckets i − 1 and
i + 1, have no neighbors in any other buckets, and bucket i is empty in B, then

T [p, si, . . .] = T [p− 1, si − |Vp|, . . .].
If the vertices in Vp have at least one neighbor in the full buckets i − 1 and i + 2, have
no neighbors in any other buckets, and the buckets i and i+1 are both empty in B, then

T [p, ti,i+1, xi, xi+1, . . .] =
⎧
⎪⎨

⎪⎩

false if NG(Xi−1) ∩ NG(Xi+2) = ∅,
T [p − 1, ti,i+1 − |Vp|, xi − |Vp ∩ NG(Xi−1)|,

xi+1 − |Vp ∩ NG(Xi+2)|, . . .] otherwise.

If the vertices in Vp have at least one neighbor in the jointly full buckets i− 2 and i− 1,
and at least one neighbor in the jointly full buckets i+1 and i+2, but have no neighbors
in any other buckets, and bucket i is empty in B, then

T [p, si, fi−1, fi+1, . . . ] = T [p − 1, si − |Vp|, fi−1 − |NG(Vp) ∩ Xi−2,i−1|,
fi+1 − |NG(Vp) ∩ Xi+1,i+2|, . . . ].

The recursion for the other possibilities where Vp has neighbors in two distinct buckets
can now easily be deduced. We now consider the cases where Vp has only neighbors
in one bucket. Again, we only describe some key-cases, from which all other cases can
easily be deduced.

If the vertices in Vp have only neighbors in the full bucket i−1, and the buckets i−2
and i are both empty in B, but the buckets i− 3 and i+1 are either full or non-existing,
then

T [p, si−2, si, . . .] = T [p− 1, si−2 − |Vp|, si, . . .] ∨ T [p − 1, si−2, si − |Vp|, . . .].
If the vertices in Vp have only neighbors in the full bucket i − 1, and the buckets i − 3,
i − 2, i, and i + 1 are all empty in B, then

T [p, ti−3,i−2, xi−2, ti,i+1, xi, . . .] =
T [p− 1, ti−3,i−2 − |Vp|, xi−2 − |Vp ∩ NG(Xi−1)|, ti,i+1, xi, . . .]
∨ T [p− 1, ti−3,i−2, xi−2, ti,i+1 − |Vp|, xi − |Vp ∩ NG(Xi−1)|, . . .].

If the vertices in Vp have only neighbors in the jointly full buckets i and i + 1, and the
buckets i − 1 and i + 2 are both empty in B, but the buckets i − 2 and i + 3 are either
full in B or non-existing, then
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T [p, si−1, si+2, fi, fi+1, . . .] =
T [p− 1, si−1 − |Vp|, si+2, fi − |NG(Vp) ∩ Xi,i+1|, fi+1, . . .]
∨ T [p− 1, si−1, si+2 − |Vp|, fi, fi+1 − |NG(Vp) ∩ Xi,i+1|, . . .].

The final answer (true or false) produced by the algorithm is a disjunction over all table
entries whose indices are as follows: p = r, si = C[i] for every index si, ti,i+1 =
C[i] + C[i + 1] for every index ti,i+1, xi ≤ C[i] for every index xi, and fi ≤ C[i] for
every index fi. �	

Remark 1. The dynamic programming algorithm in Proposition 3 can easily be modi-
fied to construct a C-bucket arrangement (from any partial bucket arrangement B satis-
fying the stated conditions), if one exists.

If the number of buckets is a constant, the following proposition will be crucial in
speeding up the procedure for assigning connected components to the right or the left of
a bucket filled with a vertex set X . Denote by sc(G) the set of all connected components
of G with at most

√
n vertices and by lc(G) the set of all connected components of G

with more than
√

n vertices. Let V (sc(G)) and V (lc(G)) denote the set of all vertices
which are in the connected components belonging to sc(G) and lc(G), respectively. We
now make use of the fact that if there are many small components in G \ X , several of
the assignments of the vertices in V (sc(G \ X)) to the buckets are equivalent.

Let C be a capacity vector of size n (i.e.,
∑

i C[i] = n) and let B be a partial C-
bucket arrangement of an induced subgraph G′ of G. Let C′ be the capacity vector
obtained from C by decreasing the capacity C[i] of each bucket i by the number of
vertices assigned to the bucket i in B. We say that B produces the capacity vector C′.

Proposition 4. Let G = (V, E) be a graph on n vertices. Let C be a capacity vector of
size n and length k, where k is an integer constant. Let j be a bucket and X ⊆ V be a
subset of C[j] vertices. Consider all capacity vectors which are produced by the partial
C-bucket arrangements of G[V (sc(G \ X)) ∪ X ] where the vertices in X are always
assigned to the bucket j. Then, there exists an algorithm which runs in O∗(3

√
n) time

and takes polynomial space, and enumerates all (distinct) capacity vectors produced
by these partial C-bucket arrangements.

Proof. Let Vl be the vertex set of the lth connected component in sc(G \ X). Let Lp

denote the list of all capacity vectors produced by the partial C-bucket arrangements of
G[

⋃
1≤l≤p Vl ∪ X ] where the vertices in X are always assigned to the bucket j. Note

that since k is a constant, the number of distinct vectors in Lp is polynomial (at most
nk). Then, L1 can be obtained by executing the algorithm of Proposition 1 on the graph
G[V1] with a capacity vector C′ which is the same as C except that C′[i] = 0. In general,
Lp can be obtained from Lp−1 by executing the algorithm of Proposition 1 on the graph
G[Vp] for every capacity vector in Lp−1. As the size of each connected component in
sc(G \ X) is at most

√
n, the resulting running time is O∗(3

√
n). �	

3.1 Exponential Time 2-Approximation Algorithm for Bandwidth

Let G = (V, E) be the input graph. Our algorithm tests all bucket sizes � from 1 to
�n/2� until it finds an (n, �)-capacity vector C such that G has a C-bucket arrangement.
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For a given �, let k =
⌈

n
�

⌉
denote the number of buckets. Our algorithm uses various

strategies depending on the value of k. The case of k = 1 is trivial. If � = �n/2�, we
have at most two buckets and any partition of the vertex set of G into sets of sizes � and
n − � is a valid C-bucket arrangement. If k ≥ 27, Corollary 1 gives a running time of
O(1.9737n). For all other values of k, we will obtain running times in O(1.9797n).

Let Ik be the set of all integers lying between n/(k − 1) and n/k. The basic idea
(as illustrated in Proposition 2) is quite simple. The algorithm tries all possible ways of
assigning vertices to the middle bucket. Once the vertex set X assigned to the middle
bucket is fixed and the algorithm has decided for each connected component of G \ X
if the connected component is to be assigned to the buckets to the left or to the right of
the middle bucket, the problem breaks into two independent subproblems on buckets
which are to the left and to right of the middle bucket. To get the claimed running time,
we build upon this idea to design individualized techniques for different ks (between 3
and 26). For each case, if G has at least one C-bucket arrangement for an (n, �)-capacity
vector C, then one such arrangement is constructed. We know that if G has no C-bucket
arrangement for an (n, �)-capacity vector C then the bandwidth of G is at least � + 1
(Lemma 2), and if it has one then its bandwidth is at most 2� − 1 (Lemma 1). If k =
8, 10, or 12, the algorithm uses a left-packed (n, �)-capacity vector C, and otherwise,
the algorithm uses a balanced (n, �)-capacity vector C.

k = 3. The algorithm goes over all subsets X ⊆ V of cardinality |X | = C[3] ≤
�(n− �)/2� with � ∈ I3. X is assigned to the bucket 3. If the remaining vertices can be
assigned to the buckets 1 and 2 in a way such that all vertices which are neighbors of the
vertices in X (in G) are assigned to the bucket 2, then G has a C-bucket arrangement
where C has length 3. The worst-case running time for this case is max �∈I3 O∗(

(
n
|X|

)
).

k = 4 or k = 5. The algorithm goes over all subsets X ⊆ V with |X | = � and � ∈ Ik.
X is assigned to the bucket 3. Then, we can conclude using the dynamic programming
algorithm outlined in Proposition 3 (see also the remark following it). The worst-case
running time for these cases are max �∈Ik

O∗(
(
n
�

)
).

k = 6. If k = 6, the algorithm goes through all subsets X ⊆ V with |X | = 2� and
� ∈ I6. X is assigned to the union of buckets 3 and 4 (i.e., some non-specified � vertices
from X are assigned to the bucket 3, and the remaining vertices of X are assigned to
the bucket 4). Then, we can again conclude by the algorithm outlined in Proposition 3.
The worst-case running time for this case is max �∈I6 O∗ ((

n
2�

))
.

k = 7. The algorithm goes through all subsets X ⊆ V with |X | = � and � ∈ I7.
X is assigned to the bucket 4. For each such X , the algorithm uses Proposition 4 to
enumerate all possible capacity vectors produced by the partial C-bucket arrangements
of G[V (sc(G \ X)) ∪ X ] (with X assigned to the bucket 4). This step can be done in
O∗(3

√
n) time. There are only polynomially many such (distinct) capacity vectors. For

each of these capacity vector C′, the algorithm goes through all choices of assigning
each connected component in lc(G \ X) to the buckets 1 to 3 or to the buckets 5 to
7. Thus, we obtain two independent subproblems on the buckets 1 to 3 and on the
buckets 5 to 7. As the number of number of components in lc(G \X) is at most

√
n (as



182 M. Fürer, S. Gaspers, and S.P. Kasiviswanathan

each connected component has at least
√

n vertices), going through all possible ways
of assigning each connected component in lc(G \ X) to the buckets numbered smaller
or larger than 4 takes O∗(2

√
n) time. Some of these assignments may turn out to be

invalid. For each valid assignment, let V1 denote the vertex set assigned to the buckets
1 to 3. Then, the vertices of V1 are assigned to the buckets 1 to 3 as described in the
case with 3 buckets with the capacity vector (C′[1], C′[2], C′[3]) and with the additional
restriction that all vertices in V1 which are neighbors of the vertices in X need to be
assigned to the bucket 3. The number of vertices in V1 is at most �(n − �)/2� (as C is
balanced). Now the size of bucket 1 is C′[1] ≤ �(n − 5�)/2�. Let n1 = �(n − �)/2�
and �1 = �(n − 5�)/2�. If V1 has at least one valid bucket arrangement into 3 buckets
(with vertices in V1 neighboring the vertices in X assigned to the bucket 3), then the
above step will construct one in worst-case O∗(

(
n1
�1

)
) time. The algorithm uses a similar

approach for V2 = V \ (V1 ∪ X) with the buckets 5 to 7. Since, the algorithm tries out
every subset X for bucket 4, the worst-case running time for this case is

max
�∈I7

O∗
((

n

�

)
·
(

3
√

n + 2
√

n ·
(

n1

�1

)))
= max

�∈I7
O∗

((
n

�

)
· 2O(

√
n) ·

(
n1

�1

))
.

k = 8. The algorithm uses a left-packed (n, �)-capacity vector C for this case. The
algorithm goes through all subsets X ⊆ V with |X | = � and � ∈ I8. X is assigned to
the bucket 4. The remaining analysis is similar to the case with 7 buckets. Buckets 1
to 3 have a joint capacity of 3� (as C is left-packed) and the buckets 5 to 8 have a joint
capacity of n − 4�. The worst-case running time for this case is

max
�∈I8

O∗
((

n

�

)
· 2O(

√
n) · max

{(
3�

�

)
,

(
n − 4�

�

)})
.

The terms in the max expression come from the cases with 3 and 4 buckets.

k = 9 or k = 11. The algorithm goes through all subsets X ⊆ V with |X | = � and
� ∈ Ik. X is assigned to the bucket �k/2�. As in the previous two cases, Proposition 4
is invoked for G[V (sc(G \ X)) ∪ X ] (with X assigned to the bucket �k/2�). For each
capacity vector generated by Proposition 4, the algorithm looks at every possible way of
assigning each connected component in lc(G\X) to the buckets 1 to �k/2�−1 or to the
buckets �k/2�+1 to k. Each assignment gives rise to two independent subproblems —
one on vertices V1 assigned to the buckets 1 to (k−1)/2, and one on vertices V2 assigned
to the buckets (k + 3)/2 to k (with vertices in V1 and V2 neighboring the vertices in X
assigned to the buckets (k − 1)/2 and (k + 3)/2, respectively). The algorithm solves
these subproblems recursively as in the cases with 4 or 5 buckets. Let n1 = �(n−�)/2�.
Then, the worst-case running times are max �∈Ik

O∗(
(
n
�

) · 2O(
√

n) · (n1
�

)
).

k = 10 or k = 12. The algorithm uses a left-packed (n, �)-capacity vector C for these
cases. The algorithm goes through all subsets X ⊆ V with |X | = � and � ∈ Ik. X is
assigned to the bucket k/2. The remaining analysis is similar to the previous cases. For
k = 10, the worst-case running time is max �∈I10 O∗(

(
n
�

) ·2O(
√

n) ·(n/2
�

)
). For k = 12,

the worst-case running time is max �∈I12 O∗(
(
n
�

) · 2O(
√

n) · max{(5�
�

)
,
(
n−6�

2�

)}).
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13 ≤ k ≤ 26. The algorithm enumerates all subsets X ⊆ V with |X | = � and � ∈ Ik.
X is assigned to the bucket �k/2�. As in the previous cases, Proposition 4 is invoked
for G[V (sc(G \ X)) ∪ X ]. For each capacity vector generated by Proposition 4, the
algorithm looks at every possible way of assigning each connected component in lc(G\
X) to the buckets 1 to �k/2� − 1 or to the buckets �k/2� + 1 to k. Each assignment
gives rise to two independent subproblems. For each of these two subproblems, the
algorithm proceeds recursively until reaching subproblems with at most 2 consecutive
empty buckets, which can be solved by Proposition 3 in polynomial time. If k ≤ 23,
this recursion has depth 3, giving a running time of

max
�∈Ik

O∗
((

n

�

)
· 2O(

√
n) ·

(
n/2
�

)
· 2O(

√
n) ·

(
n/4
�

)
· 2O(

√
n)

)
.

If 24 ≤ k ≤ 26, the recursion has depth 4, giving a running time of

max
�∈Ik

O∗
((

n

�

)
· 2O(

√
n) ·

(
n/2
�

)
· 2O(

√
n) ·

(
n/4
�

)
· 2O(

√
n) ·

(
n/8
�

)
· 2O(

√
n)

)
.

k ≥ 27. By Proposition 2 the running time of the algorithm is bounded in this case by

max
�∈Ik

O∗
((

n

�

)
·
(

n/2
�

)
· 24� · 3n/4

)
.

Main Result. Putting together all the above arguments and using numerical values
(see [13] for the complete details) we get our main result (Theorem 1). The running
time is dominated by the cases where k = 7 and k = 8. The algorithm outputs 2� − 1,
where � is the smallest integer such that G has a bucket arrangement with an (n, �)-
capacity vector. The algorithm requires only polynomial space.

If G is disconnected, the algorithm finds for each connected componentGi =(Vi, Ei)
the smallest �i such that Gi has a bucket arrangement corresponding to a (|Vi|, �i)-
capacity vector and outputs 2�m − 1, where �m = maxi{�i}.

Theorem 1 (Main Theorem). There is a polynomial space 2-approximation algorithm
for the Bandwidth problem that takes O(1.9797n) time on graphs with n vertices.

4 Conclusion

For finding exact solutions, it is known that many problems (by subexponential time
preserving reductions) do not admit subexponential time algorithms under the Expo-
nential Time Hypothesis [15] (a stronger hypothesis than P = NP). The Exponential
Time Hypothesis supposes that there is a constant c such that 3-SAT cannot be solved
in time O(2cn), where n is the number of variables of the input formula. We conjecture
that the Bandwidth problem has no subexponential time 2-approximation algorithm,
unless the Exponential Time Hypothesis fails.
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