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Abstract. An induced matching in graph G is a matching which is an
induced subgraph of G. Clearly, among two vertices with the same neigh-
borhood (called twins) at most one is matched in any induced matching,
and if one of them is matched then there is another matching of the same
size that matches the other vertex. Motivated by this, Kanj, Pelsmajer,
Schaefer and Xia [10] studied induced matchings in twinless graphs. They
showed that any twinless planar graph contains an induced matching of
size at least n

40
and that there are twinless planar graphs that do not

contain an induced matching of size greater than n
27

+O(1). We improve
both these bounds to n

28
+O(1), which is tight up to an additive constant.

This implies that the problem of deciding an whether a planar graph has
an induced matching of size k has a kernel of size at most 28k. We also
show for the first time that this problem is FPT for graphs of bounded
arboricity.

Kanj et al. presented also an algorithm which decides in O(2159
√

k+n)-
time whether an n-vertex planar graph contains an induced matching of
size k. Our results improve the time complexity analysis of their algo-

rithm. However, we show also a more efficient, O(225.5
√

k + n)-time algo-
rithm. Its main ingredient is a new, O∗(4l)-time algorithm for finding a
maximum induced matching in a graph of branch-width at most l.

1 Introduction

An induced matching in graph G is a matching which is an induced subgraph
of G. It was introduced by Stockmeyer and Vazirani [17] and motivated as the
“risk-free” marriage problem (decide whether there exist at least k pairs such
that each married person is compatible with no married person except the one
he or she is married to). In this paper we study induced matchings in planar, or
more generally bounded arboricity graphs, both from combinatorial and compu-
tational perspective.

1.1 Combinatorial Perspective

It is a natural and heavily researched area in extremal graph theory to establish
lower bounds on the size of various structures in selected graph classes. For
example, Nishizeki and Baybars [15] and later Biedl et al. [3] showed tight lower
bounds on the size of matching in subclasses of planar graphs, Alon, Mubayi and
Thomas [1] show a lower bound on the size of induced forest in sparse graphs.
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Kanj, Pelsmajer, Schaefer and Xia [10] were first to consider the size of in-
duced matchings in planar graphs. Graphs like K1,n, K2,n show that general
planar graphs have no nontrivial lower bound on the induced matching size.
Kanj et al. observed that among two vertices with the same neighborhood (called
twins) at most one is matched in any induced matching, and if one of them is
matched then there is another matching of the same size that matches the other
vertex. In particular, after removing one of two twins from a graph, the size
of maximum induced matching does not change. Motivated by this, Kanj et al.
studied induced matchings in twinless graphs. They showed that any twinless
planar graph contains an induced matching of size at least n

40 and that there are
twinless planar graphs that do not contain an induced matching of size greater
than n

27 + O(1).
In this paper we improve both these bounds to n

28 + O(1), which is tight
up to an additive constant. The lower bound is also generalized to bounded
genus graphs, i.e. we show that any twinless graph of genus g contains an in-
duced matching of size at least 2(n−10g+9)

7(7+
√

1+48g)
. This improves an earlier bound

2(n−10g+10)

13(7+
√

1+48g)
of Kanj et al. [10].

Kanj et al. showed also that any planar graph of minimum degree 3 contains
an induced matching of size (n + 8)/20. We note that results of Nishizeki and
Baybars [15] imply a better bound of (n+2)/12 for these graphs, as well as some
better bounds for planar graphs of minimum degree 4 and 5.

Finally, we consider graphs of bounded arboricity, i.e. graphs whose edges set
can be partitioned into O(1) forests. For example, planar graphs have arboricity
3. Intuitively, graphs of bounded arboricity are uniformly sparse, since this class
is equal to the class of graphs of bounded maximum density, where maximum
density of a graph G is defined as d∗ = maxJ⊆V,J �=∅

|E(G[J])|
|J| (see e.g. [11] for

some relations between classes of sparse graphs). We show that any n-vertex
twinless graph of arboricity c contains an induced matching of size Ω(1

cn1/c).

1.2 Computational Perspective

It was shown by Yannakakis [18] that deciding whether a planar graph contains
an induced matching is NP-complete. Although the optimization problem is
APX-complete in general [8], for planar graphs, and more generally for graphs
that do not contain K5 or K3,3 as a minor, there is a PTAS working in 2O(1/ε)n
time due to Baker [2] and Chen [4]. The PTAS (though with a worse running-time
bound) can be generalized to H-minor-free graphs due to Demaine et al. [7].

In the area of parameterized complexity, one asks whether there is an al-
gorithm for the induced matching problem which verifies whether an n-vertex
graph contains an induced matching of size k in time nO(1)f(k). If so, then the
problem is fixed parameter tractable (FPT in short). It is known that the problem
is W [1]-hard in general [13], which means that most likely the induced match-
ing problem is not FPT. However, there is a 2O(

√
k)nO(1)-time parameterized

algorithm for H-minor-free graphs [6] due to Demaine, Fomin, Hajiaghayi and
Thilikos. For the (smaller) class of planar graphs, Moser and Sikdar [12] showed
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that the problem has a linear kernel, which means that one can reduce the prob-
lem in polynomial time to the same problem but on instance of size O(k). The
result of Kanj et al. mentioned in Section 1.1 implies that the size of the kernel
is bounded by 40k. Our results improve the bound further to 28k.

We show, using the concept of eliminating twins, that the induced matching
problem has a polynomial kernel for graphs of bounded arboricity. This implies
that for such graphs there is an FPT algorithm with time complexity of the form
O(n+f(k)). Since H-minor-free graphs have bounded arboricity, this generalizes
the result of Demaine et al. [6] for the special case of the induced matching prob-
lem (the results in [6] are stated for all so-called bidimensional problems). This
is also particularly interesting because there are classes of bounded arboricity
graphs (like 4-regular graphs) for which the problem is APX-hard.

By using the linear kernel and planar separator technique, Kanj et al. showed
an O(2159

√
k + n)-time parameterized algorithm. Our lower bound of the size of

induced matching in twinless planar graphs improves the time complexity anal-
ysis of their algorithm to O(2133

√
k +n). However, we show also a more efficient,

O(225.5
√

k + n)-time algorithm based on the branch-width decomposition.
We also note that the proof of the lower bound gives a very practical and

easy-to-implement algorithm for finding large induced forests in planar graphs
(see Section 2.4).

2 Lower Bounds

In this section we present some lower bounds on the size of induced matching
in subclasses of planar graphs and some classes of twinless sparse graphs. Our
general approach is the same as that of Kanj et al., who used the following
lemma. (We give a simple proof for completeness).

Lemma 1 (Kanj et al. [10]). Let G be a minor-closed family of graphs and
let c be a constant such that any graph in G is c-colorable. Moreover, let G be
a graph from G and let M be a matching in G. Then G contains an induced
matching of size at least |M |/c.

Proof. Let M be a matching in G. We obtain graph G′ by removing all un-
matched vertices and contracting all edges of matching M . Then G′ ∈ G. Color
the vertices of G′ in c colors. The largest color class in V (G′) is an independent
set of size at least |M |/c. It corresponds to an induced matching in G of size at
least |M |/c.

It follows that a lower bound on the size of a matching in a subclass H of a
minor-closed graph family implies a bound on the size of an induced matching
in H.

2.1 Planar Graphs of Large Minimum Degree

Kanj et al. showed that a planar graph of minimum degree 3 contains a matching
of size at least (n+ 8)/5. Using this with Lemma 1 and the Four Color Theorem
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they obtained that any planar graph of minimum degree 3 contains an induced
matching of size at least (n+8)/20. However, this bound can be easily improved
by using the following tight bounds for the size of matchings due to Nishizeki
and Baybars.

Theorem 1 (Nishizeki and Baybars [15]). Let G be an n-vertex planar
graph of minimum degree δ and let M be a maximum cardinality matching in G.
Then,

(i) if δ = 3 and n ≥ 10, then |M | ≥ n+2
3 ,

(ii) if δ = 4 and n ≥ 16, then |M | ≥ 2n+3
5 ,

(iii) if δ = 5 and n ≥ 34, then |M | ≥ 5n+6
11 .

Corollary 1. Let G be an n-vertex planar graph of minimum degree δ and let
M be a maximum cardinality induced matching in G. Then,

(i) if δ = 3 and n ≥ 10, then |M | ≥ n+2
12 ,

(ii) if δ = 4 and n ≥ 16, then |M | ≥ 2n+3
20 ,

(iii) if δ = 5 and n ≥ 34, then |M | ≥ 5n+6
44 . ��

Let us note that the above bound |M | ≥ n+2
12 is tight (up to an additive constant),

as we show in Section 3. Let us also note that the paper of Nishizeki and Baybars
contains also tight lower bounds on the matching size in graphs of minimum
degree 3, 4 and 5 and vertex connectivity 1, 2, 3 and 4 and the corresponding
bounds for induced matchings can be obtained.

2.2 Twinless Graphs of Bounded Genus

In this section we present an improved lower bound for the size of induced
matchings in twinless graph of bounded genus. To this end, we are going to
establish a lower bound on the size of a maximum cardinality matching in such
graphs, and apply Lemma 1.

We begin with two simple observations.

Lemma 2. Let uv be an edge in a maximum cardinality matching M in graph
G and let I the set of unmatched vertices. If N(u) ∩ I �= ∅ and N(v) ∩ I �= ∅,
then there is a vertex x ∈ I such that N(u) ∩ I = N(v) ∩ I = {x}. In particular
u, v and x form a triangle.

Proof. Follows from the maximality of M .

Lemma 3. For any twinless graph G there exists a maximum cardinality match-
ing such that all 1-vertices of G are matched.

Proof. Let M be a maximum cardinality matching in G and let I be the set of
unmatched vertices. Suppose I contains a 1-vertex v. Let y be the sole neighbor
of v. Then y is matched for otherwise M is not maximal. Let x be the vertex
matched with y by M . Since G is twinless, x has degree at least two. We can
now replace the edge xy with the edge vy in matching M and hereby decrease
the number of vertices of degree 1 in I, without changing the size of M . After
applying the above procedure to all 1-vertices we get the desired matching.
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Now we are ready to show a lower bound on the size of a matching in twinless
graphs of bounded genus.

Theorem 2. Every n-vertex twinless graph G of genus g contains a matching
of size n+10(1−g)−1

7 .

Proof. We will show that if G has no isolated vertices then G contains a matching
of size n+10(1−g)

7 . Since a twinless graph contains at most one isolated vertex
then the claimed bound will follow. In what follows, M denotes the matching
described in Lemma 3 and I = V \V (M). Note that I is an independent set, by
the maximality of M . In what follows, we show a lower bound on |M |.

Let M	 ⊂ M be the set of edges in matching M that form triangles with
vertices in I. Similarly, let I	 ⊂ I be the set of vertices in I that form triangles
with edges of M . Let I2 ⊂ I denote the vertices of degree two in I and I3+ the
vertices with degree three or more.

First note that Lemma 2 implies that

|M	| ≥ |I	|. (1)

Hence it suffices to bound |M \M	| from below. Let R be the set of vertices in
M \ M	 that are adjacent to I. Note that by Lemma 2 each edge of M \ M	

has at most one endpoint in R, so

|M \ M	| ≥ |R|. (2)

Now we bound R from below in terms of |I2 \ I	|. Let G2 be a graph on the
vertices R such that G2 contains an edge uv when there is a vertex x ∈ I2 \
I	 adjacent to both u and v. Observe that G2 has genus at most g, because
after subdividing its edges we get a subgraph of G. Hence, by Euler’s Formula,
|E(G2)| ≤ 3|V (G2)| − 6 + 6g. Since |E(G2)| = |I2 \ I	| and V (G2) = R, we get
|R| ≥ |I2\I�|+6−6g

3 . By (2),

|M \ M	| ≥ |I2 \ I	| + 6 − 6g

3
. (3)

Now we bound |R| from below in terms of |I3+ \ I	|.
Let G3 be the bipartite subgraph of G, on the vertices R ∪ (I3+ \ I	) and

with edges incident with I3+ \ I	. Since G3 is bipartite its embedding on an
orientable surface of genus g has no triangles and we get the following bound on
the number of its edges by Euler’s Formula :

|E(G3)| ≤ 2|V (G3)| − 4 + 4g.

By combining it with the fact that vertices in I3+ have degree at least 3, we can
bound |E(G3)| as follows.

3 · |I3+ \ I	| ≤ |E(G3)| ≤ 2 · (|R| + |I3+ \ I	|) − 4 + 4g.
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It gives us |R| ≥ |I3+\I�|+4−4g
2 so with (2) we get

|M \ M	| ≥ |I3+ \ I	| + 4 − 4g

2
. (4)

Now we are going to merge the bounds (3) and (4) into the following bound:

|M \ M	| ≥ |I \ I	|
5

+ 2(1 − g). (5)

When |I2\I	| ≥ 3
5 |I\I	|, we get (5) from (3). Similarly, when |I2\I	| ≤ 3

5 |I\I	|
we get (5) from (4) by replacing |I3+ \ I	| by |I \ I	| − |I2 \ I	|.

By combining (1) and (5) we get

|M | = |M \ M	| + |M	| ≥ |I \ I	|
5

+ 2(1 − g) + |I	| =

=
|I|
5

+ 2(1 − g) +
4
5
|I	| ≥ |I|

5
+ 2(1 − g).

Since I = n − 2|M |, we get |M | ≥ n+10(1−g)
7 , as desired.

By using Lemma 1, Four Color Theorem, and Heawood’s Theorem (which states
that any graph of genus g > 0 is �(7 +

√
1 + 48g)/2�-colorable), we get the

following corollaries.

Corollary 2. Every n-vertex twinless graph of genus g contains an induced
matching of size (2n + 20(1 − g) − 2)/(49 + 7

√
1 + 48g).

Corollary 3. Every n-vertex twinless planar graph contains an induced match-
ing of size n+9

28 .

2.3 Twinless Sparse Graphs

In this section we focus on graphs of bounded arboricity. Let arb(G) and d∗(G)
denote arboricity and the maximum density of graph G, respectively.

Theorem 3. Any n-vertex twinless graph of maximum density d∗ contains a
matching of size Ω(n1/
d∗�).

Proof. Let G be an n-vertex twinless graph of maximum density d∗ and let M
be a maximum cardinality matching in G. Denote d = �d∗�. Let I denote the
independent set V (G) \ V (M). Let us partition I into vertices of degree at least
d + 1 and vertices of degree at most d, denoted by Id+1↑ and Id↓ respectively.

Let E(V (M), Id+1↑) denote set the edges between V (M) and Id+1↑. Then

(d + 1)|Id+1↑| ≤ |E(V (M), Id+1↑)| ≤ d(2|M | + |Id+1↑|),
where the second inequality follows from the fact that E(V (M), Id+1↑) induces
a graph of maximum density at most d∗. By rearranging we get

|M | = Ω(|Id+1↑|/d). (6)



140 R. Erman et al.

On the other hand, since G is twinless,

|Id↓| ≤
d∑

i=0

(
2|M |

i

)
= O((2|M |)d).

Hence, |M | = Ω(|Id↓|1/d). Together with (6) we get the claimed bound.

Theorem 4. Any n-vertex twinless graph G of maximum density d∗ contains
an induced matching of size Ω( 1

d∗ · n1/
d∗�).

Proof. Let M be a maximum cardinality matching in G. Similarly as in Lemma 1
we consider graph G′ which is obtained from G by removing all unmatched
vertices and contracting all edges of matching M . Consider any set of vertices
S′ ⊆ V (G′). Then S′ corresponds to a set S ⊆ V (G), i.e. S′ is obtained from
S by identifying endpoints of edges of M . Then |E(G′[S′])| ≤ |E(G[S])| and
|S′| = |S|/2, hence |E(G′[S′])|

|S′| ≤ 2 |E(G[S])|
|S| ≤ 2d∗(G). It follows that G′[S′]

contains a vertex of degree at most 4d∗. Since S′ was chosen arbitrarily we
infer that G′ is �4d∗�-degenerate and hence (�4d∗� + 1)-vertex-colorable (by a
simple algorithm which chooses a vertex v with the smallest degree, removes
it from the graph, colors the resulting graph recursively and assigns to v the
smallest color which is unused by v’s neighbors). By choosing the subset of M
corresponding to the biggest color class in G′ we obtain an induced matching of
size |M |/(�4d∗� + 1) = Ω(|M |/d∗). Since |M | = Ω(n1/
d∗�) by Theorem 3, the
claim follows1.

Although it is more convenient to prove the above result refering to maximum
density, we feel that arboricity is more often used as a measure of graph sparsity.
However, we can easily reformulate Theorem 4 using the following lemma, which
follows from the Nash-Williams Theorem [14].

Lemma 4. For any graph G with at least one edge, �d∗(G)� < arb(G). ��
Corollary 4. Any n-vertex twinless graph G of arboricity c contains an induced
matching of size Ω(1

cn1/c).

Now, if we want to decide whether an n-vertex graph of arboricity bounded by
a constant c contains an induced matching of size k, we begin by eliminating
twins in linear time (see [10]). Let H be the resulting graph. From Theorem 4
we know that H contains an induced matching of size α · |V (H)|1/c, for some
constant α. Hence if k ≤ α · |V (H)|1/c we answer “yes”, and otherwise we know
that |V (H)| = O(kc) and hence |E(H)| = O(ckc) = O(kc). Since we can find a
maximum induced matching in H by the exhaustive search, the overall algorithm
runs in time O(n+exp(kc)). We note that one can also find induced matchings of
size k within this time bound (see Section 4). We summarize it with the following
corollary.
1 Independently, Kanj et al. [10] in the journal version observed that any matching

M in a graph of maximum density d∗ contains an induced matching of size at least
|M |/(4d∗ − 1).
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Corollary 5. The induced matching problem for graphs of arboricity bounded by
c = O(1) has kernel of size O(kc). In particular, this problem is fixed parameter
tractable for these graphs. ��

2.4 A Practical Algorithm for Planar Graphs

The discussion in Section 1.2 shows that if we want to find large induced match-
ing in a planar graph in practice, then most likely we should use PTAS of Baker
or Chen, since they are linear-time (for any fixed approximation ratio) and their
time complexities do not hide large constants. However, these algorithms are
still very complicated and hard to implement.

Here we want to note that the proof technique of Corollary 3 (introduced
by Kanj et al. [10]) can be turned into the following algorithm. Given an input
graph G, remove twins, find a maximum matching M , remove the unmatched
vertices, contract the edges from M , color the resulting graph and choose the
subset of M which corresponds to the biggest color class.

Eliminating twins can be easily done in linear time (see [10]). Finding a maxi-
mum matching using Hopcroft-Karp algorithm works in O(n3/2)-time for planar
graphs and is implemented in many libraries. Since so far there is no fast and
simple algorithm for 4-coloring planar graphs, we use 5 colors instead and then
the coloring can be found by a simple linear-time algorithm (see e.g. [5]). Be-
cause of using 5 colors instead of 4 the constant 28 increases to 35. Then we
get a O(n3/2)-time algorithm which always finds an induced matching of size at
least n′/35, where n′ is the number of pairwise different vertex neighborhoods
in G. If one insists on linear-time, a maximal matching can be used instead of
maximum matching M . (Then the constant 35 doubles because any maximal
matching has size at least |M |/2.)

3 An Upper Bound

In this section we show that the bound in Corollary 3 is tight, up to an additive
constant. Namely, we show the following.

Theorem 5. For any n0 ∈ N there is an n-vertex twinless planar graph G such
that n > n0 and any induced matching in G is of size at most n

28 + O(1).

Proof. In what follows we describe an n-vertex planar graph with maximum
induced matching of size at most n

28 +O(1). It will be clear from our construction
that the number of vertices can be made arbitrarily large.

We begin with a graph Tk, which consists of k copies of K4 and some additional
edges. We obtain Tk from the graph drawn in Fig 1 by identifying vertex v1 with
w1, v2 with w2 and so on. It is easy to see that the resulting graph is still planar,
since the cylinder is homeomorphic to a subset of the plane. Also, Tk is twinless.

Note that Tk has 4k vertices, 8k+O(1) triangular faces and 12k+O(1) edges.
Now, we build a new graph Gk by extending Tk, as follows:
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v1 v2 v3 v4 v5 v6 v7 v8 v9
. . .

w1 w2 w3 w4 w5 w6 w7 w8 w9 . . .

Fig. 1. Building Tk: arranging k copies of K4 in 4 layers of triangles

(i) For each 3-face xyz of Tk add a 3-vertex v adjacent to x, y and z,
(ii) For each edge xy of Tk add a 2-vertex v adjacent to x and y.

(iii) For each vertex x of Tk add a 1-vertex v adjacent to x.

Note that by adding vertices like this we do not introduce twins and the graph
stays planar. It is clear that Gk has 4k + 8k + 12k + 4k + O(1) = 28k + O(1)
vertices. Moreover, every edge of Gk is incident with a vertex of one of the k
copies of K4. On the other hand, if M is an induced matching in Gk, vertices
of each copy of K4 are incident with at most one edge of M . It follows that
|M | ≤ k, so |M | ≤ |V (Gk)|/28 + O(1).

In a very similar way, we get that Corollary 1 (i) is also tight.

Corollary 6. For any n0 ∈ N there is an n-vertex planar graph G of minimum
degree 3 such that n > n0 and any induced matching in G is of size at most
n
12 + O(1).

Proof. Just remove the 1- and 2-vertices from the graphs constructed in the
proof of Theorem 5.

4 An Algorithm Based on Branch-Width

In this section we discuss an algorithm that, given a planar graph G on n vertices
and an integer k, either computes a induced matching of size ≥ k, or concludes
that there is no such induced matching. The algorithm requires O(n + 225.5

√
k)

time.

4.1 Preliminaries

A branch decomposition of a graph G is a pair (T, r), where T is a tree with
vertices of degree 1 or 3 and τ is a bijection from E(G) to the set of leaves of
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T . The order function ω : E(T ) → 2V (G) of a branch decomposition maps every
edge e of T to a subset of vertices ω(e) ⊆ V (G) as follows. The set ω(e) consists
of all vertices of V (G) such that for every vertex v ∈ ω(e) there exist two edges
f1, f2 ∈ E(G) that are incident with v and the leaves τ(f1), τ(f2) are in different
components of T −{e}. The width of (T, τ) is equal to maxe∈E(T ) |ω(e)| and the
branch-width of G, bw(G), is the minimum width over all branch decomposition
of G. A set D ⊆ V (G) is a dominating set in a graph G if every vertex in
V (G) − D is adjacent to a vertex in D.

Now we will introduce a few lemmas, that will connect induced matching
problem with branch-width decomposition.

Lemma 5. In any graph without isolated vertices if D is a minimum dominating
set and M is a maximum cardinality matching, then |D| ≤ |M |.

Proof. Let V (M) be the set of the vertices of edges from M . We will describe a
dominating set of size |M |. Let us observe that every vertex is adjacent to some
vertex from the matching M , for otherwise the matching M is not maximal.
Hence V (M) is dominating. However, it is sufficient to choose just one endpoint
for each edge of M . Then clearly all vertices of V (M) are dominated, but we
need to be careful about which endpoint we choose to dominate the unmatched
vertices. Namely, for each edge of uv ∈ M we choose its endpoint which has
unmatched neighbors (or any endpoint if both have only matched neighbors).
It may happen that both endpoints have unmatched neighbors but then by
Lemma 2, N(u) − V (M) = N(v) − V (M) = {x} for some x, so it does not
matter whether we choose u or v.

Lemma 6 ([9]). For any planar graph G with dominating set D,

bw(G) ≤ 3
√

4.5 · |D|.

Lemma 7. For any planar graph G with maximum induced matching I,

bw(G) ≤ 3
√

18 · |I| ∼= 12.7 ·
√
|I|.

Proof. From Lemma 1 we know that the maximum cardinality matching M of
G has size |M | ≤ 4|I|. Combining lemmas 5 and 6 we get

bw(G) ≤ 3
√

18 · |I| ∼= 12.7 ·
√
|I|.

4.2 Algorithm Outline

Let G be the input planar graph on n vertices and let k be the size of induced
matching we look for. As long as there is a pair of twins in G we remove one of
them. This can be implemented in O(n) time (see [10]). Let n′ be the number of
vertices of the resulting graph H . Now we describe an algorithm which decides
whether H has an induced matching of size k.



144 R. Erman et al.

Step 1. If n′ > 28k we can answer True, since the induced matching of size at
least k exists as a consequence of Corollary 3. Otherwise we proceed
with the next step and we can assume our graph has O(k) vertices.

Step 2. Compute the optimal branch-decomposition of graph H . Using algo-
rithm of Seymour and Thomas [16] this step requires O(k4) time. If
bw(G) ≥ 12.7

√
k then as a consequence of Lemma 7 we can return

answer True. Otherwise we proceed with the next step.
Step 3. Use the dynamic programming approach for finding a maximum cardi-

nality induced matching in graph G. In Section 4.3 we present an algo-
rithm that solves this problem on graphs with branch-decomposition of
width ≤ l in O(m · 4l) time where m is the number of edges in a graph.
This step requires O(k · 412.7

√
k) = O(225.5

√
k) time, since l ≤ 12.7

√
k.

If we want to find the matching, in Step 1, we check whether n′ > 70k and
if so we find an induced matching of size k by the linear-time algorithm from
Section 2.4. Otherwise, we know that our graph has O(k) vertices. Then we find
the matching using the self-reducibility approach. Let T (n′) denote the time
complexity of the decision algorithm described above. First, using the decision
problem we determine the size s of the maximum induced matching in H . Then
we can test in time O(k+T (n′)) whether a chosen edge e belongs to some induced
matching of size s: just remove e and the adjacent vertices and test whether there
is an induced matching of size s−1. If that is the case, find the induced matching
of size s − 1 recursively, and otherwise we put back the removed vertices (and
their incident edges) and we test another edge, which has not been excluded
so far. Clearly this procedure takes overall O(|E(H)|(k + T (n′))) time, which is
O(k2 · 412.7

√
k) = O(225.5

√
k).

Theorem 6. For any planar graph G on n vertices and an integer k, there is
an O(n + 225.5

√
k)-time algorithm which finds in G an induced matching of size

k if and only if such a matching exists.

4.3 Dynamic Programming on Graphs of Bounded Branch-Width

Our approach here is based on the algorithm for dominating set proposed by
Fomin and Thilikos in [9]. We closely follow the notation and presentation from
their paper.

Let (T ′, τ) be a branch decomposition of a graph G with m edges, let ω′ :
E(T ′) → 2V (G) be the order function of (T ′, τ). The tree T ′ is unrooted, so we
build its rooted version T , by choosing an edge xy in T ′, putting new vertex v
of degree 2 on this edge and making v adjacent to new vertex r, which is the
new root of tree T . For every edge f ∈ E(T ) ∩ E(T ′) we define ω(f) = ω′(f),
and for edges ω(xv) = ω(vy) = ω′(xy) and ω(rv) = ∅.

For an edge f of T we define Ef (Vf ) as the set of edges (vertices) of tree
T that are “below” f , i.e. the set of all edges (vertices) g such that every path
containing g and vr in T contains f . Every edge f of T that is not incident to
a leaf has two children that are edges of Ef incident to f .
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For every edge f of T we color the vertices of ω(f) in three colors {0, 1, 2}. We
say that an induced matching M is valid for a coloring c : ω(f) → {0, 1, 2} when
for every x ∈ ω(f):

– if c(x) = 2, then x ∈ V (M),
– if c(x) = 1, then x �∈ V (M), but it can be adjacent to some vertex of the

matching,
– if c(x) = 0, then x �∈ V (M), and x is not adjacent to a vertex of the matching

(for all y ∈ N(x), y �∈ V (M)).

For every edge f of T we use a mapping:

Af : {0, 1, 2}ω(f) → N ∪ {−∞}
For a coloring c ∈ {0, 1, 2}ω(f), the value Af (c) denotes the largest cardinality
of an induced matching in the subgraph Gf of G that is defined by inducing the
edge set:

{τ−1(x) : x ∈ Vf and x is a leaf of T ′}
subject to the condition that the matching is valid with coloring c.

We define Af (c) = −∞ if there is no valid induced matching in Gf with
coloring c.

Let f be a non-leaf edge of T and let f1, f2 be the children of f . Define
X1 = ω(f) − ω(f2), X2 = ω(f) − ω(f1), X3 = ω(f) ∩ (ω(f1) ∩ ω(f2)), X4 =
(ω(f1) ∩ ω(f2)) − ω(f).

Let us note that for 1 ≤ i �= j ≤ 4 we have Xi ∩ Xj = ∅. Moreover, ω(f) =
X1 ∪ X2 ∪ X3, ω(f1) = X1 ∪ X3 ∪ X4, and ω(f2) = X2 ∪ X3 ∪ X4.

We say that a coloring c of ω(f) is formed from coloring c1 of ω(f1) and
coloring c2 of ω(f2) if

(F1) For every x ∈ X1, c(x) = max({c1(x)} ∪ {c2(y) − 1 : y ∈ ω(f2) ∩ N(x)}),
(F2) For every x ∈ X2, c(x) = max({c2(x)} ∪ {c1(y) − 1 : y ∈ ω(f1) ∩ N(x)}),
(F3) For every x ∈ X3, c(x) = max{c1(x), c2(x)},
(F4) For every x ∈ X3 ∪ X4, c1(x) + c2(x) ≤ 2.

If coloring c of ω(f) is formed from colorings c1 of ω(f1) and coloring c2 of ω(f2),
then Af (c) ≥ Af1 (c1) + Af2(c2).
We compute functions Af from leaves of T by bottom-up fashion.

For a leaf edge f ∈ E(T ), and its leaf node v ∈ V (T ) corresponding to an
edge xy ∈ E(G) we define function Af as follows:

– if c(x) ≤ 1 and c(y) ≤ 1, then Af (c) = 0,
– if c(x) = c(y) = 2 then Af (c) = 1,
– otherwise Af (c) = −∞.

For non-leaf edges f of T we can compute function Af as follows (f1, f2 denote
the children of f):

Af (c) = max{Af1(c1) + Af2(c2) | c1, c2 forms c}
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If coloring c can not be formed from colorings c1, c2 of f1, f2, then we define
Af (c) = −∞.

Let xi denote |Xi|. The number of pairs (c1, c2) of colorings that can form a
coloring c, can be bounded by

3x1+x2 · 6x3+x4

since there are three possible colorings of vertices u ∈ X1 ∪ X2, and six pairs of
colorings of vertices u ∈ X3 ∪ X4, that is:

(c1(u), c2(u)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (0, 2)}.

We can observe that if for some coloring c, Af (c) �= −∞, we change coloring c
into c′ by replacing the color of a vertex x with c(x) = 0, to a new color c′(x) = 1,
then Af (c′) �= −∞, and Af (c′) ≥ Af (c). This leads us to an observation, that
during computation of function Af , instead of investigating pairs of colorings
(from sets X3, X4) {(0, 1), (1, 0), (1, 1)}, it is sufficient to check only one pair,
namely (1, 1).
We can compute function Af using a slightly modified formula:

Af (c) = max{Af1(c1) + Af2(c2) | c1, c2 satisfies (F1), (F2), (F3) and (F4’)}

where condition (F4’) is defined as follows:

(F4’) For every x ∈ X3 ∪ X4, (c1(x), c2(x)) ∈ {(0, 0), (1, 1), (2, 0), (0, 2)}.

The complexity of computing Af , with this optimization, can be bounded by:

3x1+x2 · 4x3+x4

Let l = bw(G), and xi = |Xi|, the values xi are bounded by following inequalities:

x1 + x2 + x3 = |ω(f)| ≤ l
x1 + x3 + x4 = |ω(f1)| ≤ l
x2 + x3 + x4 = |ω(f2)| ≤ l

The maximum value of linear functions log4 3(x1 + x2) + x3 + x4 subject to
constraints on xi is l (which is achieved for x1 = x2 = 0, x3 = x4 = 0.5l). Hence
the cost of computing function Af for a single edge f can be bounded by O(4l).
Since we have to compute function Af for each edge of tree T , the total time
complexity is O(m · 4l). The size of the maximum induced matching is stored
in Avr(ε), (where ε is the coloring of the empty set). The matching itself can be
easily retrieved using standard methods. This gives us the following theorem.

Theorem 7. For a graph G on m edges and with given a branch-decomposition
of width l, the maximum induced matching of G can be computed in O(m · 4l)
time.
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We finish this section by noting that there is also an O∗(4t)-time algorithm by
Moser and Sikdar [12], where t denotes the tree-width of the input graph. It
follows that our algorithm improves on this result, since for any graph G of at
least 3 edges, bw(G) ≤ tw(G) + 1 ≤ 3

2bw(G) and the existing algorithms for
finding optimal branch-decomposition are regarded as more practical than those
for finding optimal tree-decomposition.
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