
Balanced Hashing, Color Coding and

Approximate Counting

Noga Alon1,� and Shai Gutner2,��

1 Schools of Mathematics and Computer Science, Tel-Aviv University,
Tel-Aviv, 69978, Israel and IAS, Princeton, NJ, 08540, USA

nogaa@tau.ac.il
2 School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel

gutner@tau.ac.il

Abstract. Color Coding is an algorithmic technique for deciding effi-
ciently if a given input graph contains a path of a given length (or another
small subgraph of constant tree-width). Applications of the method in
computational biology motivate the study of similar algorithms for count-
ing the number of copies of a given subgraph. While it is unlikely that
exact counting of this type can be performed efficiently, as the problem
is #W [1]-complete even for paths, approximate counting is possible, and
leads to the investigation of an intriguing variant of families of perfect
hash functions. A family of functions from [n] to [k] is an (ε, k)-balanced
family of hash functions, if there exists a positive T so that for every
K ⊂ [n] of size |K| = k, the number of functions in the family that are
one-to-one on K is between (1−ε)T and (1+ε)T . The family is perfectly
k-balanced if it is (0, k)-balanced.

We show that every such perfectly k-balanced family is of size at
least c(k)n�k/2�, and that for every ε > 1

poly(k)
there are explicit con-

structions of (ε, k)-balanced families of hash functions from [n] to [k] of
size e(1+o(1))k log n. This is tight up to the o(1)-term in the exponent,
and supplies deterministic polynomial time algorithms for approximately
counting the number of paths or cycles of a specified length k (or copies
of any graph H with k vertices and bounded tree-width) in a given input
graph of size n, up to relative error ε, for all k ≤ O(log n).

Keywords: Approximate counting of subgraphs, color-coding, deran-
domization, expanders, perfect hashing, k-wise. independence.

1 Introduction

1.1 Motivation and Background

Color Coding is an algorithmic technique for deciding efficiently if a given in-
put graph contains a path or a cycle of a given length, or any other prescribed
� Research supported in part by an ERC Advanced grant, by a USA-Israel BSF grant,

by NSF grant CCF 0832797 and by the Ambrose Monell Foundation.
�� This paper forms part of a Ph.D. thesis written by the author under the supervision

of Prof. N. Alon and Prof. Y. Azar in Tel Aviv University.

J. Chen and F.V. Fomin (Eds.): IWPEC 2009, LNCS 5917, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 N. Alon and S. Gutner

subgraph of bounded tree-width. Focusing, for simplicity, on paths, the method
supplies a deterministic algorithm for deciding, in time 2O(k)|E| log |V |, whether
or not a given input (directed or undirected) graph G = (V, E) contains a (sim-
ple) path on k vertices. The basic approach, introduced in [8], is very simple.
One first gives a randomized algorithm, and then converts it into a deterministic
one. The randomized algorithm works by first coloring the vertices of G ran-
domly by k colors. Call a path on k vertices (a k-path, for short) colorful if its
vertices get all the distinct k colors. It is not difficult to check in time O(k2k|E|),
using dynamic programming, if there is a colorful path. As the probability of a
k-path to become colorful in a random coloring is k!/kk > e−k, repeating the
above procedure some Cek times provides a randomized algorithm in which the
probability not to find a path in case one exists is smaller than e−C . The crucial
point in the derandomization of this algorithm is the observation that known
constructions of families of hash functions given by [22] following [14], supply
an explicit family of 2O(k) log |V | colorings of the vertices of G by k colors, so
that the members of every set of k vertices get distinct colors in at least one of
the colorings. Thus one can simply run the dynamic programming algorithm for
each of these colorings, getting a deterministic algorithm for the problem.

The above technique has found several recent applications in computational
biology (see [23], [24], [25], [17]), where it has been applied for detecting signaling
pathways in protein interaction networks. These applications suggest the problem
of counting, or approximating the number of k-paths (or other graphs of bounded
tree-width) in a given graph. As using dynamic programming it is easy to count
precisely the number of colorful k-paths in a given graph with colored vertices, the
existence of efficient randomized approximation algorithms for counting follows
quite easily by following the same approach; this is done in [2].

In order to derandomize the randomized counting (or approximate counting)
procedures, one needs a strengthening of the usual notion of hash functions. This
is given in the following definition.

A family of functions from [n] to [�] is an (ε, k)-balanced family of hash func-
tions, if for every S ⊂ [n], |S| = k, the number of functions that are one-to-one
on S is between (1 − ε)T and (1 + ε)T for some constant T > 0. The family is
perfectly k-balanced if it is (0, k)-balanced, that is, it is (ε, k)-balanced for ε = 0.

Note that with a perfectly k-balanced family one can count precisely the
number of k-paths in a graph on n vertices: we simply count, by dynamic pro-
gramming, the number of colorful k-paths for each of the functions (considered
as a coloring of the vertices), sum the results and divide by T . Similarly, an
(ε, k)-balanced family will enable us to approximate the number of paths up to
a relative error of ε. This suggests the study of the smallest possible size of such
families, and the problem of constructing explicitly such families.

1.2 Related Work

The problem of counting paths and cycles in graphs has been considered by
various researchers. In [9] the authors describe an O(|V |ω) algorithm for counting
the number of cycles of size at most 7, where ω < 2.38 is the exponent in fast

Balanced Hashing, Color Coding and Approximate Counting 3

matrix multiplication. The method of this paper does not extend to longer paths,
and indeed Flum and Grohe [13] proved that the problem of counting exactly
the number of paths and cycles of length k in both directed and undirected
graphs, considered as a problem parameterized by k, is #W [1]-complete. This
implies that it is unlikely that there is an f(k) · nc-time algorithm for counting
the precise number of paths or cycles of length k in a graph of size n for any
computable function f : IN → IN and constant c. The best known algorithms
for computing exactly the number of k-paths in an n vertex graph run in time
nk/2+O(1), see [11], [26].

However, the problem of approximating these numbers is more tractable.
Arvind and Raman (see [10]) obtained a randomized fixed-parameter tractable
algorithm to approximately count the number of copies of k-paths (or any fixed
subgraph with bounded tree-width) within a large graph. A similar approxima-
tion appears in [2].

In an earlier paper [4] we considered deterministic approximation counting
algorithms for this problem. To this end, we introduced the notion of (ε, k)-
balanced families of hash functions and used them to exhibit a deterministic
polynomial time algorithm for approximating the number of paths of length k up
to any k ≤ O(log n

log log log n) in a graph with n vertices. This was done by construct-
ing explicitly (ε, k)-balanced families from [n] to [k], where the size of the family
is 2O(k log log k) log n and the time for construction is 2O(k log log k)n log n. The main
open problem raised in [4] is to find such a construction of size 2O(k) log n (in
time 2O(k)nO(1)), which is optimal, even for standard (non-balanced) families
of hash functions, and will supply polynomial time deterministic approximation
algorithms for counting the number of paths of length k in a given graph of size
n, for all k ≤ O(log n). This problem is settled in the present paper.

1.3 The New Results

The results of Flum and Grohe mentioned above suggest that there is no perfectly
k-balanced family of hash functions from [n] to [k] of size f(k)nO(1). We prove a
stronger result, showing that every perfectly k-balanced family of hash functions
from [n] to [�] is of size at least c(k, �)n�k/2�, where c(k, �) is a positive constant
depending only on k and �. We also observe that this is not far from being tight,
as for every n > k there is a perfectly k-balanced family of functions from [n] to
[k] of size

(
n

k−1

)
. This shows that the Color Coding approach cannot supply an

algorithm for counting k-paths in an n vertex graph in time o(n�k/2�).
Our main positive result is an explicit construction, for every 1

poly(k) < ε ≤ 1,

of an (ε, k)-balanced family of hash functions from [n] to [k] of size ek+O(log3 k)

log n. The running time of the procedure that provides the construction is
ek+O(log3 k)n log n. Note that the size of the family is optimal up to the error term
O(log3 k) in the exponent, as there is a known lower bound of Ω(ek log n/

√
k)

for the size of any family of hash functions from [n] to [k], (even if it is not
balanced and the only requirement is that every set of size [k] is mapped in a
one-to-one fashion at least once).

4 N. Alon and S. Gutner

This supplies deterministic approximation algorithms for counting the number
of simple k-paths in a graph G = (V, E) up to a relative error of ε = 1

poly(k) in
time 2O(k)|E| log |V |. Similar results hold for counting approximately the number
of copies of any graph of size k with constant tree-width. Note that this is
polynomial for all k ≤ O(log n), and it is unlikely that one can do better, as
this would imply the existence of a 2o(n)-time algorithm for the Hamilton path
problem, contradicting the Exponential Time Hypothesis of [18,19].

1.4 Methods and Organization

Our lower bound for the size of perfectly balanced families are proved by Linear
Algebra tools, combining the basic approach of [1] in the proof of the lower bound
for the size of sample spaces supporting k-wise independent random variables
with two additional ideas.

The construction of (ε, k)-balanced families combines several ingredients. Two
of them are rather standard and are based on nearly pairwise independent ran-
dom variables and on the method of conditional expectations. The third one is
more challenging, and combines the approach of [21] with an iterative construc-
tion based on properties of expanders. It is convenient to apply here (some version
of) the expanders of [5], though other expanders could have been used as well.

Since our main motivation is the application for the subgraph approximate
counting problem using Color Coding, there is no reason to provide explicit con-
structions of (ε, k)-balanced families of functions which are more efficient than
the time of writing these functions down, as anyway our counting algorithm will
have to go through these functions. We thus describe the constructions in this
way, without trying to describe separately which parts of them admit more effi-
cient descriptions. It is worth noting, however, that the part of our construction
which applies the method of conditional expectations indeed requires the time
stated in its description.

The rest of this paper is organized as follows. In section 2 we describe the main
ingredients of the construction: balanced families of hash functions and balanced
splitters, a modified version of a notion introduced in [21]. Section 3 contains the
results concerning perfectly balanced families of hash functions. The explicit con-
struction of expanders presented in section 4 is used in section 5 for constructing
small sample spaces supporting a certain relaxed version of nearly k-wise inde-
pendent random variables. This is used to obtain a construction of what we call
balanced (n, k, �)-splitters, which is later applied in section 6 as a crucial ingredi-
ent in the construction of balanced families of hash functions. The constructions,
together with the color coding technique, are used for designing algorithms for ap-
proximately counting the number of copies of subgraphs of bounded tree-width in
given graphs. We conclude with some remarks and open problems.

2 The Ingredients of the Construction

In this section we formally define the notions of balanced families of hash func-
tions and balanced splitters. For a positive integer n, denote by [n] the set

Balanced Hashing, Color Coding and Approximate Counting 5

{1, . . . , n}. For any k, 1 ≤ k ≤ n, the family of k-sized subsets of [n] is de-
noted by

(
[n]
k

)
. As usual, k mod � denotes the unique integer 0 ≤ r < � so that

k = q� + r, for some integer q.

Definition 1. Suppose that 1 ≤ k ≤ � ≤ n and ε ≥ 0. A family of functions
from [n] to [�] is an (ε, k)-balanced family of hash functions if there exists a
constant T > 0, such that for every S ∈ (

[n]
k

)
, the number of functions that

are one-to-one on S is between (1 − ε)T and (1 + ε)T . The family is perfectly
k-balanced if it is (0, k)-balanced.

The following definition is motivated by a related notion defined and used in [21].

Definition 2. Suppose that 1 ≤ � < k ≤ n and ε ≥ 0, and let H be a family of
functions from [n] to [�]. For a set S ∈ (

[n]
k

)
, let splitH(S) denote the number of

functions h ∈ H so that for every j, 1 ≤ j ≤ k mod �, |h−1(j)∩S| = 	k/�
, and
for all k mod � < j ≤ �, |h−1(j) ∩ S| = �k/��. The family H is an ε-balanced
(n, k, �)-splitter if there exists a constant T > 0, such that for every S ∈ (

[n]
k

)
,

(1 − ε)T ≤ splitH(S) ≤ (1 + ε)T .

Note that if � divides k, then in the above definition splitH(S) is the number
of functions that split S into equal parts. The splitters of [21] differ from the
ones defined here, just as usual families of hash functions differ from balanced
families; in [21] it is only required that for every set S there will be some function
in H splitting it evenly, while in our splitters each S should be divided evenly
by roughly the same number of functions. The construction of balanced splitters
is thus much harder than the one of splitters in [21], and is in fact the most
challenging part in the explicit description of balanced families of hash functions.

Each function f in our explicit construction of balanced families of hash func-
tions is the composition of members from three families. The first one is an
(ε1, k)-balanced family of hash functions from [n] to [q], where q = Θ(k2

ε). The
second one is an ε2-balanced (q, k, �)-splitter from [q] to [�], where � = Θ(log k),
and the last one is an (ε3, k/�)-balanced family of hash functions from [q] to
[k/�] (for simplicity assume for now that � divides k). In order to define f we
actually need � members of the third family, with each of them being applied to
the elements mapped by the members of the second family to a single j ∈ [�].

3 Perfectly Balanced Families

Let n > � ≥ k > 0 be positive integers. Recall that a family F of functions from
[n] to [�] is perfectly k-balanced, if there exists a number T > 0 so that for every
set K ⊂ [n] of size |K| = k, |{f ∈ F : |f(K)| = k}| = T . In this section we show
that the size of each such family must be at least c(k, �)n�k/2�, where c(k, �) is a
positive constant depending only on k and �.

Theorem 1. Let F be a perfectly k-balanced family of functions from [n] to [�],
where
n > � ≥ k.

6 N. Alon and S. Gutner

(i) If k = 2r is even then

|F| ≥
(
n
r

)

(
�
r

)(
�−r

r

) .

(ii) If k = 2r + 1 is odd then

|F| ≥
(
n−1

r

)

(
�−1

r

)(
�−r−1

r

) .

(iii) If � = k = 2 then |F| ≥ n − 1, and equality can hold if and only if there
is a Hadamard matrix of order n. Otherwise, the smallest possible size of F is
precisely n.

Proof. (i) Let F be a perfectly 2r-balanced family of functions from [n] to [�].
For each R ⊂ [n] of size |R| = r, define two vectors uR and wR, each of

length |F|(�
r

)(
�−r

r

)
, whose coordinates are indexed by the set of all ordered triples

(f, S1, S2), with

f ∈ F , S1, S2 ⊂ [�], |S1| = |S2| = r, and S1 ∩ S2 = ∅.
These vectors are defined as follows:

uR(f, S1, S2) = 1 if f(R) = S1, and uR(f, S1, S2) = 0 otherwise.

wR(f, S1, S2) = 1 if f(R) = S2, and wR(f, S1, S2) = 0 otherwise.

Note that the inner product of two such vectors uR1 and wR2 is zero if R1∩R2 �=
∅. Indeed, in this case f(R1) must have a nonempty intersection with f(R2) for
all f ∈ F , and thus there is no coordinate (f, S1, S2) as above in which both vR1

and wR2 do not vanish. Similarly, if R1 ∩ R2 = ∅, the inner product of uR1 and
wR2 is precisely the number of functions f ∈ F which are one-to-one on R1∪R2.
Indeed, for each such f there is a unique pair of disjoint sets S1, S2, each of
size r, so that f(R1) = S1 and f(R2) = S2, while if f maps two elements of
R1∪R2 to the same image, there is no such pair. Since F is a perfectly balanced
2r-family, there exists a positive T so that for every disjoint R1, R2 as above,
the inner product of uR1 with wR2 is T .

Let U be the
(
n
r

)
by |F|(�

r

)(
�−r

r

)
matrix whose rows are all vectors uR with

R ⊂ [n], |R| = r, and let W be the matrix whose rows are all vectors wR. By
the above discussion, the product U · W t = T · DISn,r, where DISn,r is the
disjointness matrix whose rows and columns are indexed by the r-subsets of [n],
defined by DISn,r(R1, R2) = 1 if R1∩R2 = ∅ and DISn,r(R1, R2) = 0 otherwise.
It is well known (see, e.g., [20]) that the matrix DISn,r is nonsingular (over the
reals) for all n ≥ 2r, and as this is the case here and T is nonzero, it follows that
the rank of U is at least that of U ·W t which is

(
n
r

)
. As this rank is at most the

number of columns of U , we conclude that

|F|
(

�

r

)(
� − r

r

)
≥

(
n

r

)
,

completing the proof of part (i).

Balanced Hashing, Color Coding and Approximate Counting 7

(ii) The proof is similar to that of part (i), with a few modifications. Here are
the details. Let F be a perfectly 2r + 1-balanced family of functions from [n] to
[�].

For each R ⊂ [n − 1] of size |R| = r define two vectors uR and wR, each of
length |F|(�−1

r

)(
�−r−1

r

)
, whose coordinates are indexed by the set of all ordered

triples (f, S1, S2), satisfying

f ∈ F , S1, S2 ⊂ [�] − {f(n)}, |S1| = |S2| = r, and S1 ∩ S2 = ∅.

These vectors are defined as before:

uR(f, S1, S2) = 1 if f(R) = S1, and uR(f, S1, S2) = 0 otherwise.

wR(f, S1, S2) = 1 if f(R) = S2, and wR(f, S1, S2) = 0 otherwise.

It is clear that just as before, the inner product of two such vectors uR1 and wR2

is zero if R1 ∩ R2 �= ∅. Similarly, if R1 ∩ R2 = ∅, the inner product of uR1 and
wR2 is precisely the number of functions f ∈ F which are one-to-one on R1 ∪
R2 ∪ {n}. Indeed, for each such f there is a unique pair of disjoint subsets S1, S2

of [�]−{f(n)}, each of size r, so that f(R1) = S1 and f(R2) = S2, while if f does
not map R1 ∪ R2 ∪ {n} in a one-to-one manner, there is no such pair. As before,
since F is a perfectly balanced 2r + 1-family, there exists a positive T so that for
the matrices U and W whose rows are all vectors uR and wR, respectively, with
R ⊂ [n − 1], |R| = r, the product U · W t = T · DISn−1,r. The desired result
follows as before, since DISn−1,r is nonsingular and yet its rank cannot exceed
the number of columns of U . This completes the proof of part (ii).
(iii) Let F be a perfectly 2-balanced family of functions from [n] to [2]. Note that
by part (i), |F| ≥ n/2, but here one can improve the constant factor and obtain
a tight bound. To do so, define, for each i ∈ [n], a vector ui of length |F|, whose
coordinates are indexed by the elements of F , where here ui(f) = (−1)f(i)−1. It
is easy to check that the inner product of ui and uj is |F| if i = j, and is |F|−2T
if i �= j, where here T > 0 is the number of functions f ∈ F that map i and j
to distinct elements. (This number is the same for all i �= j, as F is perfectly
2-balanced.) We conclude that all diagonal elements of the gram matrix of the n
vectors ui are |F|, while all other elements are |F| − 2T . It is easy to check that
this matrix is nonsingular unless the sum of its elements in each row is zero, in
which case it has rank n− 1. In fact, all eigenvalues of this matrix are 2T , with
multiplicity n − 1, and the sum of all entries in a row, with multiplicity 1. (In
case this sum is also 2T , then the matrix is 2T times the identity matrix, and all
eigenvalues are equal). We conclude that the length of the vectors, |F| is always
at least n−1. Equality can hold only if the sum of elements in a row of the gram
matrix is 0. In this case, |F| = n − 1 and n − 1 − 2T = −1, that is, the inner
product of each two of our n vectors is −1. For each 1 ≤ i ≤ n, let ui denote
the vector obtained from ui by adding to it a coordinate in which its value is 1.
Then the vectors ui are n pairwise orthogonal vectors of length n with {−1, 1}
entries, that is, they form the rows of a Hadamard matrix of order n. Thus, if
there is no Hadamard matrix of order n then any family of perfectly 2-balanced

8 N. Alon and S. Gutner

functions from [n] to [2] has at least n functions. The family F = {f1, f2, . . . , fn}
in which fi(i) = 1 and fi(j) = 2 for all j �= i shows that this is tight, completing
the proof of the theorem. ��
Remarks:
(i) A well known conjecture (c.f., e.g., [15]) asserts that for n > 2 there is a
Hadamard matrix of order n iff n is divisible by 4. It is easy to see that if there
is such a matrix then n is indeed divisible by 4. The converse is not known, but
there are many infinite families of known Hadamard matrices, showing that the
(n − 1)-bound in part (iii) of the theorem is tight in many cases.
(ii) It is easy to see that for every n > k there is a perfectly k-balanced family
F of functions from [n] to [k] of size |F| =

(
n

k−1

)
. Indeed, for each subset R =

{r1, r2, . . . , rk−1} of [n], with r1 < r2 < . . . < rk−1 let fR denote the function
defined by fR(ri) = i for all 1 ≤ i ≤ k − 1, and fR(j) = k for all j ∈ [n] − R.
It is not difficult to check that the family of all these functions fR is perfectly
k-balanced (with T = k).
(iii) The lower bounds in Theorem 1 hold for weighted families as well, even if
the weight weight(f) of some of the functions f is negative, as long as there is
a real T �= 0 so that for every K ⊂ [n], |K| = k, the total weight of functions
which are one-to-one on K is exactly T . To see this, repeat the proof above,
modifying the definition of the vectors uR to be

uR(f, S1, S2) = weight(f) if f(R) = S1, and uR(f, S1, S2) = 0 otherwise,

keeping the definition of the vectors wR as before.

4 Expanders

In this section we describe a special case of the Cayley expanders of [5] that
we use later. Note that these are not bounded-degree graphs, and their degrees
grow with the number of vertices, but they suffice for our purpose. This is a
special case of a construction suggested in [5], which is based on one of the codes
described in [3].

The following are standard definitions and observations concerning eigenvalues
and expanders (c.f., e.g., [7],[16]).

Let G = (V, E) be a d-regular graph and let A = AG = (auv)u,v∈V be its
adjacency matrix. Since G is d-regular, the largest eigenvalue of A is d, cor-
responding to the all 1 eigenvector. Let λ = λ(G) denote the largest absolute
value of an eigenvalue other than the first one. For two (not necessarily disjoint)
subsets B and C of V , let e(B, C) denote the number of ordered pairs (u, v),
where u ∈ B, v ∈ C and uv is an edge of G. The following useful bound is the
Expander Mixing Lemma (c.f., e.g., [7], page 146).

Proposition 1. Let G be a d-regular graph with n vertices and set λ = λ(G).
For every two sets of vertices B and C of G, where |B| = bn and |C| = cn, we
have

|e(B, C) − bcdn| ≤ λ
√

bc n.

Balanced Hashing, Color Coding and Approximate Counting 9

We need the following explicit expanders, described, for example, in [6], following
[5]. Let bin : GF (2k) �→ {0, 1}k be a one-to-one mapping satisfying bin(0) = 0k

and bin(x + y) = bin(x) ⊕ bin(y), where α ⊕ β means the bit-by-bit xor of the
binary strings α and β. (The standard representation of GF (2k) as a vector space
satisfies the above conditions.) Given x, y ∈ GF (2k), let < x, y > denote the bit
(bin(x), bin(y))2, where (α, β)2 is the inner-product mod 2 of the binary vectors
α and β. For a fixed d and x, y ∈ GF (2k), the binary vector uxy is defined as
< x, y >< x2, y > · · · < xd, y >. For every d, k ≥ 1, we define a 4k-regular graph
Gd,k with 2d vertices, as follows. The vertex set is {0, 1}d and every vertex v is
adjacent to v ⊕ uxy for all x, y ∈ GF (2k).

Theorem 2. For every two positive integers d and k satisfying 4k < 2d there
is an explicit construction of a 4k-regular graph Gd,k on 2d vertices so that
λ(Gd,k) ≤ d · 2k.

Proof. Denote F = GF (2k), D = {0, 1}d, and let A be the 2d × 2d adjacency
matrix of Gd,k. For every a = a1a2 · · ·ad ∈ D, let va be the vector whose bth
entry, where b ∈ D, satisfies va(b) = (−1)(a,b)2 . Let pa(x) be the polynomial∑d

i=1 aix
i and denote λa =

∑
x,y∈F (−1)<pa(x),y>. We now prove that va is an

eigenvector of A over IR with eigenvalue λa.

(Ava)(b) =
∑

c∈D

Abcva(c) =
∑

x,y∈F

va(b ⊕ uxy) = va(b)
∑

x,y∈F

va(uxy)

= va(b)
∑

x,y∈F

(−1)(a,uxy)2 = λava(b).

It is easy to verify that the 2d vectors {va}a∈D are orthogonal, and therefore we
found all the eigenvalues of A. It remains to bound the absolute value of λa. For
a fixed x ∈ F , the term

∑
y∈F (−1)<pa(x),y> is equal to 2k if pa(x) = 0, and to

zero in case pa(x) �= 0. If a �= 0d, then pa(x) is a non-zero polynomial of degree
at most d, and therefore has at most d roots. Thus, |λa| ≤ d · 2k, as needed. ��

Note that this construction is applicable for a wide range of parameters, that
is, the number of vertices of the expander can be any power of 2, whereas the
degree can be any power of 4.

5 Partially Independent Variables

In this section we introduce a certain relaxation of almost k-wise independence
and describe an appropriate explicit construction, which will give the main build-
ing block required in the construction of balanced families of hash functions of
optimal size. For notational convenience, we give the following definitions related
to the probabilities implied by a multinomial distribution.

10 N. Alon and S. Gutner

Definition 3. Suppose that 1 ≤ � ≤ k and k = k1 + k2 + · · ·+ k�, where ki ≥ 0
for every i. Define m(k1, . . . , k�) to be the following probability:

(
k

k1,k2,...,k�

)

�k
=

k!
k1!k2! · · · k�!�k

.

For random variables X1, . . . , Xk, let Yi denote the number of variables Xj that
are equal to i. Define M(X1, . . . Xk; k1, . . . k�) to be the event that Yi = ki for
every i, 1 ≤ i ≤ �.

We now construct probability distributions which are uniform over a set of strings
of length q in the alphabet [�]. In the standard notion of almost k-wise indepen-
dence, it is required that in any k positions, each substring of length k appears
with probability close to �−k. Here we are interested in a weaker condition. Our
objective is to construct small probability spaces of the following type.

Definition 4. A sequence X1, . . .Xq of random variables that take values from
[�] is (ε, k)-partially-independent if for any p ≤ k positions i1 < · · · < ip and any
� values k1, . . . , k� such that k1 + · · · + k� = p, we have

|Pr[M(Xi1 , . . .Xip ; k1, . . . k�)] − m(k1, . . . , k�)| < ε.

Observe that we require the property to hold for any p variables, where 1 ≤
p ≤ k. This is needed since the fact that the property is satisfied for a value
p does not imply that it holds for p′ < p. Furthermore, requiring that it ap-
plies for every value p ≤ k is crucial for the correctness of our recursive con-
struction. To demonstrate the definition, here is what it means for � = 2. A
sequence X1, . . . Xq of random Boolean variables (taking values from {0,1}) is
(ε, k)-partially-independent if for any p ≤ k positions i1 < · · · < ip and any r,
0 ≤ r ≤ p, we have

∣
∣Pr[Xi1 + · · · + Xip = r] − (

p
r

)
2−p

∣
∣ < ε.

Theorem 3. For any � ≤ k ≤ q and 0 < ε ≤ 1, a sample space of size
(

qk�

ε

)O(log q)

that supports q variables that take values from [�] and are (ε, k)-

partially-independent can be constructed in time
(

qk�

ε

)O(log q)

.

Proof. Assume, without loss of generality, that q is a power 2. Otherwise, q can
be simply rounded to the next power of 2. Assume also that ε ≤ 1

k� . If this is not
the case, then ε can be replaced by ε

k� . We recursively construct sample spaces
that support an increasing number of variables. For every t = 0, 1, . . . , log2 q, we
shall construct a sample space Ct that supports 2t variables that take values from
[�] and are

(
4tε
q2 , k

)
-partially-independent. The sample space Ct will consists of

strings of length 2t over the alphabet [�].
We start with t = 0. To support one variable, it is possible to simply define a

sample space that consists of the � strings of length 1, and there will be no error
at all in this case. For our purpose, the size of each sample space should be a

Balanced Hashing, Color Coding and Approximate Counting 11

power of 2, so let N0 be the result of rounding the value 4(20q2k�

ε)4 to the next
higher power of 2. The sample space consists of N0 strings, where each string of
length 1 appears either �N0

� � or 	N0
�
 times. Obviously N0 ≤ 8(20q2k�

ε)4 and we

have one variable which is certainly
(
1, ε

q2

)
-partially-independent.

Let D be the result of rounding the value
(

20q2k�

ε

)4

to the next higher power

of 4. Suppose that in step t, a sample space of size Nt ≤ 8Dt+1 that supports 2t

variables that are
(

4tε
q2 , k

)
-partially-independent has been constructed. We now

describe step t + 1. Let G be the D-regular expander with Nt vertices described
in section 4 (note that D < Nt). It follows from Theorem 2 that

λ(G)
D

≤ log2 Nt√
D

≤ 3 + (t + 1) log2 D√
D

≤ (log2 D)2√
D

≤ 20
D1/4

≤ ε

q2k�
.

To every vertex of the graph G we assign one of the Nt strings of length 2t from
Ct that were constructed in step t. For every ordered pair (u, v) such that uv is
an edge of G, the concatenation of the string assigned to u followed by the string
assigned to v is added to the sample space Ct+1. The resulting sample space is
of size Nt+1 = DNt.

Suppose that in step t, a sample space Ct of size Nt that supports 2t variables
that are (γ, k)-partially-independent has been constructed, where γ = 4tε

q2 . We
now prove that the approximation error is increased in step t+1 by a multiplica-
tive factor of at most 4, that is, the sample space Ct+1 supports 2t+1 variables
that are (4γ, k)-partially-independent. Suppose that p ≤ k and take any p posi-
tions 1 ≤ i1 < · · · < ip ≤ 2t+1 and any � values k1, . . . , k� such that k1+· · ·+k� =
p. We further assume that among the p positions selected, exactly p′ posi-
tions are in the first half of the string. Therefore Pr[M(Xi1 , . . . Xip ; k1, . . . k�)] is
equal to

∑

k′
1+···+k′

�=p′
Pr[M(Xi1 , . . .Xip′ ; k′

1, . . . , k
′
�)∩M(Xip′+1

, . . . Xip ; k1−k′
1, . . . , k�−k′

�)].

We would like Pr[M(Xi1 , . . .Xip ; k1, . . . k�)] to be close to:

m(k1, . . . k�) =
∑

k′
1+···+k′

�=p′
m(k′

1, . . . , k
′
�)m(k1 − k′

1, . . . , k� − k′
�).

Note that the number of terms in the two summations above is at most k�

and that obviously
∑

k′
1+···+k′

�
=p′ m(k′

1, . . . , k
′
�) ≤ 1. Since Ct is (γ, k)-partially-

independent, it follows from Proposition 1 that the estimation error is as follows:

12 N. Alon and S. Gutner

∣
∣Pr[M(Xi1 , . . . Xip ; k1, . . . k�)] − m(k1, . . . k�)

∣
∣ ≤

∑

k′
1+···+k′

�=p′

[
(m(k′

1, . . . , k
′
�) + γ)(m(k1 − k′

1, . . . , k� − k′
�) + γ) +

λ(G)
D

]
−

∑

k′
1+···+k′

�=p′
m(k′

1, . . . , k
′
�)m(k1 − k′

1, . . . , k� − k′
�) =

∑

k′
1+···+k′

�=p′
γ[m(k′

1, . . . , k
′
�) + m(k1 − k′

1, . . . , k� − k′
�)] + γ2 +

λ(G)
D

≤

2γ + k�

(
γ2 +

λ(G)
D

)
≤ 4γ,

where the last inequality follows from the inequalities γ ≤ ε ≤ 1
k� and λ(G)

D ≤
ε

q2k� ≤ γ
k� . After step log2 q, the sample space constructed is (ε, k)-partially-

independent, as needed. ��

6 Balanced Families and Approximate Counting

The following inequality is Robbins’ formula [12] (a tight version of Stirling’s
formula).

Claim. For every integer n ≥ 1,
√

2πnn+1/2e−n+1/(12n+1) < n! <
√

2πnn+1/2e−n+1/(12n).

This supplies the following simple lower bound for the multinomial distribution
(recall Definition 3).

Lemma 1. If k ≥ � > 0, then

m(k/�
, . . . , 	k/�

︸ ︷︷ ︸

k mod �

, �k/��, . . . , �k/��
︸ ︷︷ ︸

�−(k mod �)

) > (15k/�)−�/2.

Proof. (sketch) Assume first that � divides k. Using Robbins’ formula, we get:

m(k/�, . . . , k/�
︸ ︷︷ ︸

�

) =
k!

(k/�)!��k
> (2πk/�)−�/2e−�2/12k

≥ (2πe1/6k/�)−�/2 > (7.5k/�)−�/2.

The result for general k and � follows similarly. ��
The previous Lemma shows that the events we would like to estimate have a
relatively high probability, enabling us to give the following construction.

Theorem 4. For any k ≥ � and 0 < ε ≤ 1, an ε-balanced (q, k, �)-splitter of size
(

qk�

ε

)O(log q)

can be constructed in time
(

qk�

ε

)O(log q)

.

Balanced Hashing, Color Coding and Approximate Counting 13

Proof. As implied by Theorem 3, we use an explicit probability space of size
(

qk�

γ

)O(log q)

that supports q random variables that take values from [�] and

are (γ, k)-partially-independent, where γ = (15k/�)−�/2ε. We attach one of the
random variables to each element of [q]. If follows from Lemma 1 that the splitter
achieves the required approximation. ��
We can now describe our main construction of balanced families of hash func-
tions, using the ingredients mentioned at the end of section 2. Recall that there
are three ingredients in this construction. Two of them are relatively simple, and
are given in the next two propositions.

Proposition 2. For any 0 < ε ≤ 1, an (ε, k)-balanced family of hash functions
from [n] to [q], where q = 	 2k2

ε
, of size kO(1) log n
εO(1) can be constructed in time

kO(1)n log n
εO(1) .

Proposition 3. For any 0 < ε ≤ 1, an (ε, g)-balanced family of hash functions
from [m] to [g] of size O(eg√g log m

ε2) can be constructed in time
(
m
g

)
eggO(1)m log m

ε2 .

The first proposition is proved using a standard construction of nearly pairwise
independent random variables. Here n is the number of variables, they attain
values in [q], and the number of functions is the size of the sample space. Since
every two variables are equal with probability close to 1/q, for every fixed set S
of k variables, the values of the random variables in S are pairwise distinct in at
least a fraction of (1 − ε) of the functions.

The second proposition is proved using the method of conditional expecta-
tions. The details appear in [4].

The main part of the construction is the balanced (q, k, �)-splitter described
in Theorem 4. The three ingredients are combined as follows. Each function f
of our final family is described by a member f1 of an (ε/6, k)-balanced family
of Proposition 2, a member f2 of the ε2-balanced splitter of Theorem 4 with
ε2 = ε

6 , q = 	 2k2

ε2

 and � = 	log k
, and � members φ1, . . . , φ� of the (ε

6� , g)-
balanced family of Proposition 3 with m = q and g = k/�. (For simplicity we
assume here that � divides k.) To compute the value of f on some x ∈ [n], we
first apply f1 to x, getting a value y in [q], then we apply f2 to y, getting as
a result some i ∈ [�], and finally we apply φi to y, where the final result is
(i − 1)k/� + φi(y). A k-set S ⊂ [n] can be mapped in a one-to-one manner by
such an f only if it is mapped in a one-to-one manner by f1, and then only if
it is split evenly into � parts by f2, and then only if its elements mapped to
each of the � parts are mapped in a one-to-one manner by each of the functions
φi. Since all the ingredients in the construction are sufficiently balanced, this
gives the required balanced family. The detailed computation, which yields the
following theorem, is postponed to the full version of the paper.

Theorem 5. For 1
poly(k) < ε ≤ 1, an (ε, k)-balanced family of hash functions

from [n] to [k] of size ek+O(log3 k) log n can be constructed deterministically in
time ek+O(log3 k)n logn.

14 N. Alon and S. Gutner

Using Color-Coding we can now approximate the number of paths and cycles (or
other fixed graphs of bounded tree-width) in a given input graph. Let G = (V, E)
be a directed or undirected graph. The algorithms use the construction of (ε, k)-
balanced families of hash functions from V to [k]. Each such function defines a
coloring of the vertices of the graph. Recall that a path is colorful if each vertex
on it is colored by a distinct color. Using dynamic programming one can count
efficiently the exact number of colorful paths in each of these colorings. The
properties of the balanced family of hash functions then provide the following
deterministic polynomial time algorithms for approximately counting the num-
ber of paths or cycles of size k in a given input graph of size n for all k ≤ log n
. Similar results apply for approximate counting of prescribed subgraphs of size
k and bounded tree-width.

Theorem 6. For any 1
poly(k) < ε ≤ 1, the number of simple (directed or undi-

rected) paths of k vertices in a (directed or undirected) graph G = (V, E) can be
approximated deterministically up to relative error ε in time 2O(k)|E| log |V |.
Theorem 7. For any 1

poly(k) < ε ≤ 1, the number of simple (directed or undi-
rected) cycles of size k in a (directed or undirected) graph G = (V, E) can be
approximated deterministically up to relative error ε in time 2O(k)|E||V | log |V |.

7 Concluding Remarks

– The notion of balanced families of hash functions seems natural and useful,
and it will be interesting to find additional applications of it.

– An easy combination of Proposition 2 and Theorem 5 supplies, for any
ε ≥ 1

k� , explicit ε-balanced (n, k, �)-splitters of size at most eO(� log2 k) log n.
In particular, for � = 2 the size is eO(log2 k) log n. A simple probabilistic
argument shows, however, that for any fixed ε > 0 there are ε-balanced
(n, k, 2)-splitters of size O(k

√
k log n), and although this is not crucial for

our application here, it will be interesting to find an explicit construction of
such splitters of size polynomial in k and log n.

– Our results settle the problem of approximately counting the number of
paths and cycles of length k = Θ(log n) in an n-vertex graph in deterministic
polynomial time. As mentioned in the introduction, it is probably impossible
to extend the result for larger values of k, since even a polynomial time
algorithm for deciding whether there exists one simple path of length k
where log n = o(k) would imply a sub-exponential time algorithm for the
Hamiltonian cycle problem. This follows easily by padding a graph on k
vertices by n − k = 2o(k) isolated ones, thus converting the above decision
algorithm to one that decides in time 2o(k) whether a graph on k vertices is
Hamiltonian, contradicting the Exponential Time Hypothesis (ETH) [18,19].

– Our method here, combined with the Color Coding technique, easily yields
results for additional approximate counting problems for graphs. In partic-
ular, given a weighted graph G on n vertices, we can approximate deter-
ministically, in polynomial time, the number of minimum (or maximum)

Balanced Hashing, Color Coding and Approximate Counting 15

weight paths or cycles (or copies of any prescribed subgraph of bounded tree
width) on k vertices in G up to any fixed desired relative accuracy, for all
k ≤ O(log n).

References

1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms 7(4), 567–583 (1986)

2. Alon, N., et al.: Biomolecular network motif counting and discovery by color coding.
In: ISMB (Supplement of Bioinformatics), pp. 241–249 (2008)

3. Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304
(1992)

4. Alon, N., Gutner, S.: Balanced families of perfect hash functions and their appli-
cations. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 435–446. Springer, Heidelberg (2007)

5. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct.
Algorithms 5(2), 271–285 (1994)

6. Alon, N., Schwartz, O., Shapira, A.: An elementary construction of constant-degree
expanders. Combin. Probab. Comput. 17(3), 319–327 (2008)

7. Alon, N., Spencer, J.H.: The probabilistic method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken (2008)

8. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

9. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

10. Arvind, V., Raman, V.: Approximation algorithms for some parameterized count-
ing problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp.
453–464. Springer, Heidelberg (2002)

11. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting paths and packings
in halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586.
Springer, Heidelberg (2009)

12. Feller, W.: An introduction to probability theory and its applications, 3rd edn.,
vol. I. Wiley, New York (1968)

13. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
Journal on Computing 33(4), 892–922 (2004)

14. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. Journal of the ACM 31(3), 538–544 (1984)

15. Hall Jr., M.: Combinatorial theory, 2nd edn. Wiley-Interscience Series in Discrete
Mathematics. John Wiley & Sons Inc., A Wiley-Interscience Publication, New York
(1986)

16. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Amer. Math. Soc (N.S.) 43(4), 439–561 (2006) (electronic)

17. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding to
facilitate signaling pathway detection. In: Sankoff, D., Wang, L., Chin, F. (eds.)
APBC. Advances in Bioinformatics and Computational Biology, vol. 5, pp. 277–
286. Imperial College Press (2007)

18. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.
Sci 62(2), 367–375 (2001)

16 N. Alon and S. Gutner

19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

20. Jukna, S.: Extremal combinatorics. Texts in Theoretical Computer Science. An
EATCS Series. Springer, Berlin (2001); With applications in computer science

21. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandom-
ization. In: 36th Annual Symposium on Foundations of Computer Science, pp.
182–191 (1995)

22. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash func-
tions. SIAM Journal on Computing 19(5), 775–786 (1990)

23. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting
signaling pathways in protein interaction networks. Journal of Computational Bi-
ology 13(2), 133–144 (2006)

24. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network
comparison. Nature Biotechnology 24(4), 427–433 (2006)

25. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: QPath: a method for querying
pathways in a protein-protein interaction network. BMC Bioinformatics 7, 199
(2006)

26. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Sympo-
sium on Theory of Computing, pp. 455–464. ACM, New York (2009)

	Balanced Hashing, Color Coding and Approximate Counting
	Introduction
	Motivation and Background
	Related Work
	The New Results
	Methods and Organization

	The Ingredients of the Construction
	Perfectly Balanced Families
	Expanders
	Partially Independent Variables
	Balanced Families and Approximate Counting
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

